...y_.‘....-...-...g-9.a...-.~—~-4...__ 0" ~ ’ PALYNOLOGY OF THE ALMOND mmflonwwm , cmAcsousy, max muss wrung moms 3 Wis for the Degree of may i. 7 _ _ . :3 WW WWI-rm 't ; I. FRED SIDNE; ' " - - '1921‘-=j “ i“ ’lL/ll/K’L/Wll/l/LlW/I///////////////I ’ ’ .1 1:;1’; ' R'?5'~‘?‘53122n St”! 1,. g d r ‘ - u. 13v Lg Umversity in: This is to certify that the thesis entitled PALYNOLOGY OF THE ALMOND FORMATION (UPPER CRETACEOUS), ROCK SPRINGS UPLIFT, WYOMING presented by J. Fred Stone has been accepted towards fulfillment of the requirements for Ph . D . degree in Geology WJZJW humupumnun 0-7639 ABSTRACT PALYNOLOGY OF THE ALHONO FORMATION (UPPER CRETACEOUS), ROCK SPRINGS UPLIFT, WYOMING By J. Fred Stone The palynomorph content of the Almond Formation was investigated using 80 samples from six measured sections on the east flank of the Rock Springs Uplift. A composite standard reference section of the total Almond and four additional sections of the marine interval of the upper Almond were used. One hundred thirteen species of palynomorphs were identified. Of these, one genus and Six Species are thought to be new and previously undescribed. The affinities or possible relationships of the form Species with living plants are noted. Paleoenvironmental and paleoecological investigations were made using the distribution and stratigraphic range of the Species, the relative abundance of Species and groups of Species; the absolute abundance of species, groups of species and dispersed plant tissues; the ratio of marine species to nonmarine Species, the diversity of the palynomorphs and the cluster analysis grouping of samples and species. The marine upper Almond Formation is easily distinguished by the presence of 25 Species, mainly dinoflagellates and acritarchs, which are restricted to it in the sections studied. The dinoflagellate species, :Irithyrodinigm Sp. A, is abundant and restricted to the marine upper Almond and may be used to characterize it. The dinoflagellate species, Deflandrea coogggni, has a restricted range within the upper Almond and is used to subdivide the marine interval. The criteria which are most useful in subdividing the upper Almond are the ratio of marine to nonmarine Species and the absolute abundance of marine Species and nonmarine Species. Three subunits, J. Fred Stone A, B and C, are defined using the ratio and absolute abundance as observed from plots of this information for each section. A Qrmode cluster analysis was performed using the Jaccard Coefficient of Similarity with species presence-absence data and weighted pair group clustering. A Q-mode analysis was also performed using the Coefficient of Geometric Distance with the species count data. Some grouping of samples to their respective measured sections was noted. An R-mode cluster analysis was made using the Jaccard Coefficient and resulted in some distinct groupings of Species at a high Similarity level. The marine Species were clustered as one large group, and a subgroup at a higher Similarity level contained the more relatively abundant marine species which, it is suggested, represent the most marine association of Species. One high level cluster group contains Species restricted to the lower Almond and has possible* significance as a nonmarine species association. PALYNOLOGY OF THE ALMOND FORMATION (UPPER CRETACEOUS), ROCK SPRINGS UPLIFT, WYOMING by J; Fred Stone A Thesis Submitted to Michigan State University In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Geology l97I ACKNOWLEDGEMENTS The author is deeply indebted to Dr. A. T. Cross of the Departments of Geology and Botany and Plant Pathology of Michigan State University under whose direction this thesis was accomplished. Drs. C. E. Prouty, J. E. Smith, J. H. Fisher of the Department of Geology and Drs. J. E. Cantlon and S. N. Stephenson of the Department of Botany and Plant Pathology served on the advisory committee. Dr. R. L. Anstey of the Department of Geology critically reviewed the cluster analysis program. R. L. Tabbert and others of the Atlantic Richfield Campany supported the thesis and contributed helpful suggestions. J. N. Minick and his associates measured and described the geologic sections and collected most of the samples. J. E. Bennett advised as to the chemical processing of the samples and J. H. Dial assisted in the processing. The facilities of the Field Research Laboratory of the Mobil Research and DevelOpment Corporation were made available to the author during the completion of the thesis. Of particular value was the use of the computer center. The program for the distribution'range charts was written by T. Nash. The programs for relative abundance, absolute abundance and diversity were written by Dr. R. J. Pauken. The cluster analysis program was written by Dr. Ed Hagmeier of the Department of Biology of the University of Victoria, British Columbia, Canada, and implemented for Mobil's computer by Dr. R. J. Pauken and D. Duncan. This Study was supported in part by National Science Foundation Grant GAA29, ”Palynological Analysis and the Determination of Environ- ments of Deposition in theltnky Mountain Cretaceous,” A. T. Cross, principal investigator. The author's wife, Judith C. Stone, assisted in compiling the manuscript and in typing the thesis. smn TECE‘N DISC, PALY 9:5. \r: TABLE OF CONTENTS Page INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . I Purpose and Sc0pe . . . . . . . . . . . . . . . . . . . . . I Previous Investigations . . . . . . . . . . . . . . . . . . I STRATIGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . 3 General Statement 3 Almond Formation 3 Measured Sections and Sample Localities 5 TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . . . . lh Sample Collection . . . . . . . . . . . . . . . . . . . . . l4 Sample Processing . . . . . . . . . . . . . . . . . . . . . IA Slide Making . . . . . . . . . . . . . . . . . . . . . . . IA ASSEMBLAGE ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . 16 Distribution and Range of Species . . . . . . . 16 Relative Abundance of Species and Groups of Species . . . . 22 Absolute Abundance of Groups of Species and Tissue . . . . 2“ Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 32 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . 36 DISCUSSION AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . 42 Age of the Almond Formation . . . . . . . . . . . . . . . . #2 Depositional Environments . . . . . . . . . . . . . . . . . A3 Palynological Correlations . . . . . . . . . . . . . . . . #5 Plant Associations. . . . . . . . . . . . . . . . . . . . . A7 PALYNOMORPH DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . A9 Taxonomic Listing . . . . . . . . . . . . . . . . . . . . . #9 Descriptive Listing . . . . . . . . . . . . . . . . . . . . 54 Alphabetical Listing . . . . . . . . . . . . . . . . . . . 56 Descriptions . . . . . . . . . . . . . . . . . . . . . . . 59 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . ll5 APPEND PINES Page APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 PLATES ..... . . . . . . . . . . . . . . . . . . . . . . . . . ISO Ta VI X I VI. VII. VIII. IX. XI. XII. XIII. LIST OF TABLES Representative printout of relative abundance data Measured Section A, absolute abundance of palynomorph groups . . . . . . . . . . . Measured Section IA, absolute abundance of palynomorph groups . . . . . . . . . . . Measured Section 23, absolute abundance of palynomorph groups . . . . . . . . . . . . Measured Section 9, absolute abundance of palynomorph groups . . . . . . . . . . Measured Section l2, absolute abundance of palynomorph groups . . . . . . . . . Diversity and equitability, all Species Diversity and equitability, marine species . Diversity and equitability, nonmarine Species Taxonomic placement of form genera and Species Arrangement of species in the descriptions and plates. Alphabetical arrangement of genera and species Count Data Page 25 14h 145 147 lh8 . lh9 3h 57 . Pocket Figure Figure kw I0. ll. 12. 13. IA. 15. l6. 17. LIST OF FIGURES Late Campanian lithofacies map . Outcrop pattern of Almond Formation showing location of measured geologic sections . Measured section.8 . Measured section A . Measured section lA Measured section 23 Measured section 9 . Measured section l2 Distribution section 8 Distribution section A . Distribution section IA . Distribution section 23 . Distribution section 9 . Distribution section l2 . Distribution Determination of an optimum count. Lower Almond Formation, ratio marine to nonmarine species, range of restricted Species and Species diversity and range and range and range and range and range and range and range of palynomorphs, measured of palynomorphs, measured of palynomorphs, measured of palynomorphs, measured of palynomorphs, measured of palynomorphs, measured of palynomorphs, standard section, measured sections 8 and lA combined . . . Page I] I2 Pocket 17 Pocket I8 19 20 Pocket 23 26 20. ZI. 22. 23. 2A. 25. 26. 27. 28, 29. 30, 31, 32, Figure I8. 19. 20. 2]. 22. 23. 2A. 25. 26. 27. 28. 29. 30. 31. 32. Relative abundance of selected nonmarine Species of the total nonmarine Species, measured section 8 . Relative abundance of major palynomorph groups, measured section 8 . . . . . . . . . . . . . . . . Relative abundance of selected nonmarine Species of the total nonmarine species, measured section A . . . Relative abundance of selected nonmarine Species of the total nonmarine Species, measured section lA Relative abundance of selected nonmarine Species of the total nonmarine species, measured section 23 . . Relative abundance of selected nonmarine Species of the total nonmarine species, measured section 9 . . . Relative abundance of selected nonmarine species of the total nonmarine species, measured section l2 Relative abundance of selected dinoflagellate Species of the total dinoflagellate Species, measured SBCt ion l. o o o a a o o o o o o o o o a o o o a o 0 Relative abundance of selected dinoflagellate Species of the total dinoflagellate species, measured section IA . . . . . . . . . . . . . . . . . . . . . Relative abundance of selected dinoflagellate species of the total dinoflagellate Species, measured section 23 O O O O O O O O O O O O O O O O O O I Relative abundance of selected dinoflagellate species of the total dinoflagellate Species, measured section 9 O O O O O O O O O O O O O O O O O O O O O 0 Relative abundance of selected dinoflagellate Species of the total dinoflagellate species, measured section '2 O O O O O O O O O O O O O O O I O O O O 0 Relative abundance of major palynomorph groups, measured section A . . . . . . . . . . . . . . . . . Relative abundance of major palynomorph groups, measured section IA . . . . . . . . . . . . . . . Relative abundance of major palynomorph groups, measured section 23 . . . . . . . . . . . . . . . . Page I27 128 129 130 13l I32 I33 l3A I35 I36 I37 I38 I39 IAO IAl Figure 3A. 35. 36. 37. 38. 39. III. #2. I3. Figure 33. 3A. 35. 36. 37. 38. 39. AO. Al. A2. A3. A5. Relative measured Relative measured Absolute measured Absolute measured Absolute measured Absolute measured Absolute measured abundance of major palynomorph groups, section 9 . . . . . . . . abundance of major palynomorph groups, section l2 . . . . . . . . . . . . . abundance of selected palynomorph groups, section A . . abundance of selected palynomorph groups, section IA 0 O O O O O C O O O O O O O O abundance of selected palynomorph groups, section 23 . . . . . abundance of selected palynomorph groups, section 9 . . . O O O O O O O O O O O O abundance of selected palynomorph groups, section I2 . Qrmode cluster analysis, all samples, Jaccard coefficient, weighted pair group clustering . . . . Qrmode cluster analysis, all samples, geometric distance clustering . . . . . . . . coefficient, weighted pair group Qrmode cluster analysis, all 200 count samples, geometric distance coefficient, weighted pair group clustering . . . . . Qrmode cluster analysis, measured section IA, 200 count samples, geometric distance coefficient, weighted pair group clustering . R-mode cluster analysis, all samples, all .snecies, Page . IA2 . 1A3 . 27 28 . 29 . 3O . 3| .Pocket .Pocket 39 . A0 Jaccard coefficient, weighted pair groups clustering .Pocket Upper Almond Formation Correlations using marker beds, range restricted Species, ratio marine to nonmarine Species, absolute abundance marine and nonmarine Species and marine and nonmarine Species diversity . . . . .Pocket Th content section .tlift, classif 1‘: eff living Pa the has :56 rel. abundanl {If rat ”II/norm Pa HESIErn "nth the {fans 0‘ Cf this INTRODUCTION Purpose and Sc0pe The objective of this Study is to investigate the palynomorph content of the Upper Cretaceous Almond Formation from measured sections in the area of outcrOp on the east flank of the Rock Springs Uplift, wyoming. The palynomorphs are documented, identified and classified into form taxa. New form Species encountered are described. The affinities or possible relationships of the form Species with living plants are noted. Paleoenvironmental and paleoecological inferences are made on the basis of the distribution and stratigraphic range of the Species, the relative abundance of Species and groups of Species, the absolute abundance of Species, groups of Species and dISpeIsed plant tissues, the ratio of marine Species to nonmarine Species, the diversity of the palynomorphs and the cluster analysis grouping of samples and species. Previous Investigations Palynological investigations of Upper Cretaceous rocks in the Western Interior of the United States and Canada have mainly dealt with the Upper Cretaceous-Tertiary boundary and include mainly forma- tions of Maestrichtian and Paleocene age. The major contributions of this type include those of Rouse (I957, I962), Anderson (I960), Stanley (I965), Srivastava (l966), Drugg (I967), Norton and Hall (I969), Oltz (I969) and Snead (I969). With the exception of a reprint by Leffingwell (l97l) the proceedings volume of the Geologi- cal Society of America symposium on Late Cretaceous and Early Tertiary palynomorphs (Kosanke and Cross, ed., l97l) was not received in time for inclusion in the present study. Few published palynological Studies concerning this geographic area deal with rocks of Campanian age. One important exception is the work ' (of Newman (I96A, I965) which gives the stratigraphic occurrence of selected palynomorphs of Campanian, Maestrichtian and Paleocene ages in rocks from northwestern Colorado. Most of the palynomorphs which I here e iienti pubI'Is of upp liobra paieoe are th Iretac rev iew 2 were encountered in the Almond Formation have been illustrated without identification or explanation by Leapold and Tschudy (I965, un- published, U.S.G.S. Open-File Report) as'a result of their study of upper Campanian-Iower Maestrichtian age rocks near Redbird, Niobrara County, Wyoming. Two papers of interest in terms of paleoenvironmental interpretations involving slightly older rocks are those of Sarmiento (I957) and Burgess (I970). The Upper Cretaceous palynological literature through I966 has been adequately reviewed by Srivastava (I967). TI feature Tie Str of the BYOSIOI I‘eestr are, f Springs Fox Hi T Inter; Status Status and Al Pierre TeYIOI lees}: i5 {hi I. I; . “PDQ! STRATIGRAPHY General Statement The Rock Springs Uplift, a large, anticlinal, Structural feature, is located in Sweetwater County in southwestern Wyoming. The structural axis of the uplift trends north-south and lies east of the town of Rock Springs. The uplift has been breached by erosion, exposing Upper Cretaceous rocks of Santonian, Campanian and Maestrichtian age. The formational names applied to these rock units are, from oldest to youngest, Baxter Formation, Blair Formation, Rock Springs Formations, Ericson Sandstone, Almond Formation, Lewis Shale, Fox Hills Sandstone and Lance Formation. The Mesaverde rock unit name is widely used In the Western Interior of the United States, both with formational and group status. In the Rock Springs area, the Mesaverde is given group status and consists of four formations,Blair, Rock Springs, Ericson and Almond. The Mesaverde Group is correlated, in part, with the Pierre. Shale, also of the Western Interior, and, In part, with the Taylor and Navarro Groups of the Gulf Coastal Plain (Cobban and Reeside, l952). The Almond Formation, in a Stratigraphic framework, is the uppermost fonmation of the Mesaverde Group, Gulf Series, (Upper) Cretaceous System of the Mesozoic rocks. Almond Formation The Almond Formation consists of a body of sediments of both nonmarine and marine origin. These were deposited along the western margin of the Late Cretaceous epicontinental sea (Figure I). This seaway was elongate north-south and extended from the present Gulf of Mexico to northern Canada. It was bordered on the east by the lowlands of the Stable interior of the continent and on the west by the {Laramide Highland (Clark and Stearn, I960). The tectonically positive Laramide Highland is considered to be the source of the Almond Formation sediments. Illlllll. Figure I I i \\// ,‘ — ‘— — __ ‘| i-.— l ‘A‘— "" r-.." wawauosmow y g — """ I . and/at / E —" —" | _J uouow ’ __ __ __ __ | , AllONlfii/ — 1-2)”; —- —— "‘ I Rack ./ ————— — I i— f. I .__.o~~» til—jug: \— I $71.7;- ws'——-:5:—f L- *— 2.7:" —— MANCOS —— -— O I. a i “:- LATE CAMPANIAN LITHOFACIES MAP _-— Naritic shale and Illtnana Barrier bar sanduana and coastal Plain deposits C 3 Coastal plain clayuane, silutane, sandstone, and coal Modified from Walther, I965 Ileasurec flank of the The thicknes‘. composite sen thickness of a lover “non upper 'tnarin subdivided I Siitstone Ur Into an Uppe At its underlying E IMr Si Its: Interbedded i” the stant In origin. tMuff-cob sandSIOne p the 'iiafine and sHIStOI and lenses ‘ SeIIII‘EI‘Ice CO I) Hell dew ”SWIM Shel. LEWIS Shale of the “ROI th e outcrop Measured surface sections of the Almond Formation on the east flank of the Rock Springs Uplift have been published by Lewis (I965). The thickness ranged from 555’ to 67I' for six sections. The composite section used as a standard in this study has a total thickness of 660'. Lithologically the Almond may be divided into a lower "nonmarine” portion (377' at the Standard section) and an upper “marine” portion (283'). Each of these two units may be further subdivided into two parts; the lower nonmarine portion into a Lower Siltstone Unit and Lower Sandstone Unit, and the Upper marine portion Into an Upper Shale Unit and Upper Sandstone Unit. At its base the Almond Formation contrasts Sharply with the underlying Ericson, a coarse white to buff-colored sandstone. The Lower Siltstone Unit is'a lithologically variable unit of siltstones interbedded with shales, sandstones and coals which is 33l' thick in the standard section. As a unit these sediments are fluviatile in origin. The Lower Sandstone Unit (A6') consists of light gray to buff-colored, thick-bedded or massively crossbedded, fine grained sandstone probably of barrier-bar origin. The Upper Shale Unit, the "marine tongue" of the Almond Formation, is a gray marine shale and Siltstone sequence about 200' thick with occasional thin layers and lenses of sandstone. The Upper Sandstone Unit is a barrier-bar sequence comparable to the Lower Sandstone Unit. It is not particular- ly well deveIOped at the standard section (about 83' thick). The marine shales of the Upper Almond interfinger with the overlying Lewis Shale. The depositional environments and geologic history of the Almond Formation have been studied in considerable detail on the outcrOp by Jacka (I965) and in the subsurface by Weimer (I96I, I966) and McCubbin and Brady (I969). Measured Sections andSample Localities The location of the six measured sections utilized in this study may be seen in Figure 2. The sections used are numbered, from north to south, A, IA, 23, 9, l2 (Upper Almond) and 8 (Lower Almond). The composite section, 8-IA, which is used here as the standard section for this study was selected because it has the closest sample interval. These Six particular stratigraphic sections were chosen from several SHI /_/ FIGURE 2 OOTOIIOP PATTERN OF ALMOND FORMATION SHOWING lOOATlON OF MEASURED OEOLOSIO SECTIONS ROCK SPRINGS 3‘ w SCALE m was WYOMING UTAH ' COLOR-ADO '- available sc of the cum urine shalI lithoiogic I outcrop is l The sec and other 9 reoresent u of the sect cases Supp it 0f the seam 7 available sections because of their location on the easternmost portion of the outcrOp area where the Upper Shale Unit is best deveIOped. The marine shale thins and pinches out both to the north and the south. Reliable lithologic correlations are present between these sections. The outcrOp is continuous and may be"walked out.” The sections were measured, described and sampled by J. N. Minick and other geologists of the Atlantic Richfield Co. in I966 and represent unpublished information. In I967 the author inspected all of the sections in the field with the field geologists and in some cases supphemented the sampling. The measured sections and the position of the samples are presented in Figures 3 - 8 . Figure 3 MEASURED SECTION 8 J. N. MInIck, I966, Unpublished Sec. I2,TI9N, RIOIW Sweeiwoter Co., Wyoming Sand Description SANDSTONE UNIT (ET/zM/iz 33 Z O i: < 2 Ix 0 IL ALMON D ERICSON 2: 9 p— ‘< a: 0 LL .— 23 3 Lu .1 ‘< I UPPER Figure 4 MEASURED SECTION 4 J. N. Minick I966, Unpublished Sec. 25, 26, T20N, RIOI Sweetwaier Co., Wyoming Sand t Z 3 W _J < I V) Figure 5 MEASURED SECTION I4 J. N. Minick, I966, Unpublished Sec. 36, T2ON,‘RIOIW Sec. 31, T20N, RIOOW Sweetwaier Co., Wyoming FORMATION : I: 3 Lu -O D< 2: Oct) 32 I: —Iu.: <& D Figure 6 MEASURED SECTION 23 J. N. Minick, I966, Unpublished Sec. 7, TI9N, RIOOW Sweetwaier Co., Wyoming Sand .. a" cm; ,‘61 l2 Figure 7 MEASURED SECTION 9 J. N. Minick, I966, Unpublished Sec. I2, TI9N, RIOIW Sweetwaier Co., Wyoming 2 9 [— < E c: O u. ALMOND 13 Figure 8 MEASURED SECTION 12 J. N. Minick, 1966, Unpublished Sec. 16, TI7N, RIOIW Sweetwater Co., Wyoming FORMATION ’: Z :> ”J —l < I ALMOND PPER TECHNIQUES Sample Collecting To avoid modern pollen and Spore contamination and to avoid to some extent the destructive effects of surface weathering on fossil palyno- morphs, all samples were collected from channels dug two to three feet into the outcrOp. The samples were composited from approximately one- foot intervals which were exposed in the channel. The samples were placed in cloth bags with plastic liners to prevent contamination. Only the finer clastic rocks, e.g., shales and siltstones were collected. Sample Processing The following procedures were used in the laboratory processing of the samples. I. Weigh crushed sample, I0 9. 2. Demineralization A. Hydrochloric acid, concentrated, 2A hours B. Hydrofluoric acid, concentrated, 2A hours 3. Heavy liquid separation, 2.0 specific gravity, zinc bromide, 20 minutes at 2000 r.p.m. A. Oxidation, Schulze solution, 3 minutes, saturated solution of potassium chlorate in concentrated nitric acid. 5. Oxidation, potassium hydroxide, 5% solution, one minute. 6. Heavy liquid separation, l.7 specific gravity, l5 minutes at 2000 r.p.m. 7. Stain, safranine 0 §ljde Making Processing of a known weight of sample permits one to arrive at an estimation of the absolute abundance of palynomorphs In the sample, The technique used was essentially that of Davis (I966) and represents some refinement of the technique of Stone (I967). When a precise aliquot of a known volume of residue from a known ”eight Of sample is counted,the number of ”grains per gram" of sediment Inay be calculated. Critical to the technique is the use of a PIPEtte controlled by a hypodermic syringe. USIOQ a small volume IA (generally . on the slide slides with l5 (generally .0] ml) of residue permits the counting of all palynomorphs on the slide. In addition to the known aliquot slide, ordinary Slides with a high concentration of palynomorphs were also made. listribotic The Oh each of the toothed) a ina sample :55 Single) The ranges AW and u 5. The ar Nils and i taxonomic areilSlS bu 3‘65 are c ilSiilbutio A numb 3f SpECleg “‘9 reStri. m U ) 1 j -——4 E _L. (- <1) C.— 3 —-l ,.) - (1 \. I‘D Ft, ('4 C) /. -- . ‘C; m (3 t.) d Is? ,— . ‘7 0/ r”) ASSEMBLAGE ATTRIBUTES Distribution and Range of Species The observed distribution and inferred range of each Species at each of the six measured sections and the standard section (8 and IA combined) are presented in Figures 9-IS. The presence of a given Species in a sample is noted by one or more X's (reflecting relative abundance in the sample) and the resulting range is noted by connecting with dashes. The ranges of palynomorphs or grOUps thought to be characteristic for lower and upper Almond are indicated by solid bars on Figures 9 through IS. The arrangement of Species is on a “first occurrence-longest range'I basis and is not consistent from section to section. A consistent 'Waxonomic arrangement” of Species giving distribution was used in the analysis but is not reproduced here. The numbers given with the Species names are code numbers used solely for the computer construction of the distribution-range charts. A number of observations may be made concerning the distribution of species. The most outstanding distribution characteristic is the restriction of many dinoflagellate and acritarch species to the Upper Almond. The following 25 species are restricted to the Upper Almond: Trithyrodinlum sp. A Deflandrea magnifica 94, cf. L verrucosa 2;,pannucea ,2; cooksoni Palaeocystodinium benjaminii fixstrichosphaera ramosa var. membranacea Dinoqymnium sp. I 2; nelsonense EQIdOSphaeridium fibrospinosgm fl¥§trichosphaeridium tubiferum .Elehx§§_colligerum .Eélaeostomocystis Iaevigata fli§rhystridium inconspicuum £L_£LLIiferum fl; fragile fierOSpermopsis australiensis ml’opollis cf. §_._ laqueaeformis lLUdOPOIIiS meekeri W cf. _‘_|'__._ minor EQLZEQgiisporites favus 1m maior -LLLL§E§dites complexus ‘l .o. .' I. Iii. |"" 3)i..,’<:‘ l)(,'\.3|.- .IS’. T 'p- , , O ih'v".. Si. ": nut-1‘s" I. N“: !§.'|r'-~ “- “‘5 It). -‘~c I.‘,'v£"': 1.x" .- - n I.:I.“. IT.7 .1" ‘T..I.'- , 'Ir.'v'o ‘— I’-.’_ pup... l IIrV-_.. ‘ e“.‘~"' . 1“;‘ A: A3.-35’ - .‘.S.:.f I. 1"e‘E“ I'}.'a'p. . ’e"-'- :NI.Te'p is..'t'-- {J‘e‘ a '( Species % of Total per Sample oe » o“ zauamozx>e A on xouamozxse m.c zauemo2z>c m.~ xuuumozx>o o.o~ xuuamozxse A o :ouamozzsc m.“ ueoem n.5n macaw m.- umeam¢¢xx ¢.oc~ uaoua o.eo~ upauuuoauuozno m.s~ upeguueaueozno o.» upauumoauuozuo e.om upauuueaueozuo m.~ upcuumeaueozuo e.m~ uc—ezc mezz>¢ uuaoom meow: meouc mozuo .pue .pua .puo .eoa .hua .pun .Aum .aum .nam .aam .aum .aum .c_oz¢-.ozn>e-;uuonm .‘ew::uneun .ozao 0.00 oucovcoa< o>_.o_o~_ *o 325$ 03.02.3953. _ wdmMIIIIIhnhIIIII m.n ~.~ n en. o.— I -- >4- 4 — I-IIInnHIII I n.» _.n s un— ~.o I o.~ c .i.. buy .I I co" >. a mmu nob -IIIIIII-whmIII.b DDHH e.. p. A no °.~ p. A n>--- - —.~ m.~ u no m.p~ _.o u” -.. OWE; :. o.m m._ m An cmpmtl.b.e~ am pm v.~ s. g AN o.n~ c.n.I:ro-III:;umIIIIII beech Jake» .pua, .rue.-.z>4¢uzi .ezi .aam .uam Jake» .mpu ucoo mkudUc uz~¢ntabzzw2HChtltO. okptllletmllteflllll oe ocmloo Hat21m c.0— noco now 0.— "AN mxaou uz~u¢szoz no .nhue.o~eznlll mxuou uznaqxzoz no .hua ozt>¢ asap; u2~unuzpzlubIIypequpnMIII mxuou uzumazzoz no .poe meow: mxaou wzaquzoz no Appe.wnpunlli o.oo. mxaou mzcacz no .hua oz~o coo wzuacx 44h0h (n- «a mzcou wz~¢e o.» coo.!UkbnMIIl s. e.” mean: - o. iII;I.IImmeIukbukIII voON.I taco OZHO o.o a c-e .rhnunII: DUUDDDDDDIODDDDDII'O'D hzwuauu £3039. 2» >0 mhzzou ..v:-. mPRDDD-II oaoau Joke» wracoxczsucn.4¢pmw .20nhuum .. .I. III- -IieIIII lingo of Inn-lend Sp-cln (“Hahn hegllls filter-emu ngnpollenltu lgniculus ' 6&669 66v] 70 SN} ‘ WIJB‘ mun 26 “9.." I1 RATIO MARINE T0 mNMARINE SPECIES RANGE OF RESTRICTED SPECIES SPECIES DIVERSITY Measured Section 8 Lower Almond Formation II Nerlne/ Dlverslty Diversity urine ”av-rin- Speclns Specie: Species 27 Figure 35 ABSOLUTE ABUNDANCE OF SELECTED PALYIIDNDRPH GROUPS Measured Section 4 Upper Almond Formation 3 5 E 8 3 . I i . "i 3 r '2 _~. 3 5% s ; “ms 66HIO§ P I I 66am: I y I I “um:- I i) i L73» 66vI0I- ( )- “moo- -’— 66v”- ’ M IIIIWTT lllllllll IITTIIIII IIITIITII IIrrpTrI] O 5 O 5 O 5 O 5 O 5 x103 m3 mo3 “03 x103 Polynomorphs Per Gram of Sediment f3" 1" -l evl. .' so I' [050 '3‘" ‘ . Juli. ~ "-'I. 1,. I-.. 11‘191’ ~ r r rTlT—IT Cogfisams. zoo-1 ., ‘_ some-4 ’ p 'I 28 Figure 36 ABSOLUTE ABUNDANCE OF SELECTED PALYINDMORPH GROUPS Measured Section l4 Upper Almond Formation Spores Gymnosperms Anglosperms Tissue 6M5:- “Inso- “vasl‘ 68:21.9 - mus - 6min ‘ 66mins - 66m“ 66m“ -« “was .‘ 66H2h2" “Inkl- 660237— “36- 660135- man-J 66U233— 66H232d GGHZSI‘ sumo: 66H229'$ “Inn-1 66l227‘ 66U226- WIS " 66U22h- “ms-L 66H222-1 668221- 66mm- GGHZIS‘ Gélzls- ' Dlnoflegelletes r ulrmul 10' l5 0 5 o S 0 5 o 5 III" lllllllll Ililrrnl m03 m03 x103 x103 xlo Palynomorphs Per Gram 0f Sediment 29 Figure 37 ABSOLUTE ABUNDANCE OF SELECTED PALYmMORPH GROUPS Measured Section 23 Upper Almond Formation Dinoflagelletes Spores Gymnosperno Angioeperms Tissue A .0 fi ‘ M A ‘ rMO~ 0 D- W». L? N I 4 “ “vim-ii ‘ 0 l l t 0 I l t IIIIIIIII llllllTII Illllllll [Ill'llll IUIIIIIIT] s o 5 o 5 o s o 5 x103 m03 m03 x103 “03 Palynamorphs Per Gram or Sediment 30 Figure 38 ABSOLUTE ABUNDANCE OF SELECTED PALYNOMORPH GROUPS Measured Section 9 Upper Almond Formation E ltzgr 5 E g 8. i. 0 8 l :2 s 8 § 2 0 en 3 § E E : 66Uh70 q - 66Hh69“ Mil *r - 66uh67-4r {l - WNW-1i ‘r , {'9' “"378“ ‘ i I 7| :I ..; '”. - ~ ecum- “5 nvpnv ”Tull" null!" lnqun "Inn”; 3 o 5 o s o s o s o 5 um3 x103 :003 x103 xio’ Palynomorphs Per Gram 0f Sediment : "' WISH Dinof legel letes 31 Figure 39 ABSOLUTE ABUNDANCE OF SELECTED PALYMJNDRPH GROUPS Measured Section l2 Upper Almond Formation Spores Gymosperm Anglosperns Tissue .. “um:- «i 1 Illllllll O 5 mo3 IIII]IIII lllllllil IIIIIITII ITIIIIIUTIIIITITTTT 0 5 0 5 0 5 O 5 l0 '5 x103 mo3 x103 zuo3 Pelynanorphs For Green or Sediment 96“. Ross tol Stu The 32 In light of modern sediment studies of the distribution of palynomorphs (Huiier, l959; McKee, Chronic and LeOpoid, i959; Rossignol, l96l; Stanley, l966; Cross,-Thompson and Zaitzeff, l966;- Traverse and Ginsburg, l966) the ”grains per gram” statistic may prove to be one of the more useful in determining sedimentary environments through the use of palynomorphs. Confident comparison of samples is limited by some unknown factors such as the Size, composition (and hence the density) and rate of accumulation of the sedimentary particles making up the rock. in the present study all the samples are terrigenous clastics in the clay and silt size fractions with varying sand content. The mineralogic composition has not been investigated and the rate of accumulation is unknown. Evaluation of the absolute abundance data is deferred to the Dis- cussion and Conclusion section. Diversity Ecologists have applied a measure of diversity which is derived from information theory and takes into consideration the number of species and the distribution of individuals among the species. Pielou (l969) discusses ecological diversity and its measunement. Beerbower and Jordan (l969) have investigated diversity of paleon- tological assemblages.. The eXpression of diversity, R, used in this study is: “t m H: -i<2_ 91109 91, where p, =-N—' . 1'1 The number of individuals in species "i“ is n‘. The total number of individuals in the sample is N. The number of species in the sample is m, and k is a constant which may be set equal to l. The number of Species and the total individuals determine the range of diversity available to a community. The derivation of this statistic given by Patten (l962) is particularly lucid. Authors vary as to the base of the logarithms used in the calculation. For comparison purposes with other studies the diversity statistic has been computer calculated using base e, , base l0 and base 2 logarithms (Tables Vii-ix). The diversity statistics analyzed here use the base e logarithms and are plotted in Figure i7 and HHS, #5 in pocket. The diversity statistics have been calculated for the total palynomorphs, the marine palynomorphs and the nonmarine palynomorphs. )euJ-ldrutcu 'i)hn|.l)uc 000 c": I. “NI-Q- o.l>>~elu>~0 Hi); ~llU)~C ORV? 33 mm_ummm 44< mo >h_4.mH_mmm>_o __> m4mhu4~n¢rnnou coo. coo. coo. coo. coo. noo. coo. coo. coo. moo. noo. coo. coo. noo. noo. coo. coo. coo. coo. coo. coo. noo. coo. coo. moo. coo. noo. coo. noo. noo. coo. coo. coo. coo. coo. noo. coo. coo. noo. noo. coo. noo. moo. coo. coo. coo. coo. coo. coo. coo. coo Ne>hum¢u>~o cm." -.. ~_.~ ~n.~ -.. «o.— o~.— aw.— ”a." cn.~ oo. co.~ o..~ so. mo. ——.~ so.“ co.” o~.~ c_.~ -.~ on. om.” cu." mn.~ co.— co. n_.~ ~o.~ oo. on." so.~ no.“ o~.~ co." oo.. so.— ~_.~ oo. no. on." no. cn.~ om." o~.~ n~.— no." cm.— c~.~ cu.” om u o~e>humuu>no m¢.~ os.~ om.~ nc.n o».~ ~n.~ no.~ co.~ cm.~ oo.n o~.~ cc.~ om.~ c~.~ o_.~ mm.~ op.~ ~m.~ co.~ nc.~ oo.~ mo.~ ss.~ mm.~ -.n on.~ ~_.~ om.~ on.~ so.~ ~m.~ sc.~ oc.~ oc.~ nc.~ ~n.~ sc.~ om.~ o~.~ o_.~ cm.~ o~.~ oo.n mo.~ oo.~ po.~ oc.~ co.~ no.~ oo.~ co m ue>hnmuw>~o muuuunm cooxoo mouroo co—noo Mouton nonxoo poutoo «cczcoli hectoo 00—100 csnzoo oaczoc pmcxoo omczoo nmczoo. onczco ~m~1coni om~roo _mwroo cc~3oo mcmroo .c~)oo ocwxoc onmroc onwzoo on~zoo mnwroo cnwxoo nnmxoo pnwxoo ¢m~noo ommsoo mmwxoc cnwxoo m-xoo .m~3oo cwmxoo oo~roo ocuxcci on—tco onozoc onoxoo amazon nnnzco v-eoo conceal. neuron mouroo ucnroo oouzoo 00300 co co wdazcm 65 Ski Zl SN EZI‘SN fil uogqoes peJnseew {3 SN *7 SN c. _. 9% .. o.~J-. 3....1... o 3:. \3) . \i).~lv.c)-: )Je 3K0 3>~azd)~: I 1! ‘ \. ..\ _(o- .NI)L ~r: oas: d ducct‘fl. 31+ mm_ummw mz_¢h_4_mH_mmm>_o ___> m4m.~ oo:.4 cos. cor. cu . ~n.. cc). "4.. on.. ._—4_zz»~33u moo. Noo. Noo. moo. moo. moo. Moo. ~oo. Noe. Hoar doc. Noo. ~oo. Noo. ~oo. ~oo. doom moo. moo. Noo. ~oo. goo. Moo. woo. Noo. ~oo. ~oo. ~oo. Moo. Noo. moo. ~oo. woo. woo. ~oo. Noo. moo. ooo.o noo. ooo.o ooouo goo. ooo.o ooo.o woo. woo. Moo. Moo. woo. moo. uoo. ~i>.~n1m>~o cs. 2. cm. on. no. on. no. No. em. no. on. :c. an. am. nm. em. o~. om. cs. on. I. on. no. am. we. 3. a. no. .5. am. as. on. no. :9. me. co. co. ao.oi on. oo.oi oo.ou no. oo.on oo.oa on. on. em. ac. 90. :3. as. o~e>-mzu>~o on.~ No.~ n~.~ ~o._ no.” «n.— o~.~ cm." o~.~ 59.. 9c. ~_.~ ac.“ -.~ -.~ we." m.. no.— on." no.— cm.— to. cc.— m—.~ oo.~ cc.— ao.~ no.~ 55.. n~.~ m~.~ e~._ >c.~ oo.~ me.— ac.— -.~ oo.ou to. oo.ol oo.oo s». DOeOI co.o| oo.~ cm." on.~ om.~ sc.o co.~ .c.~ us»p_mxus_: —e “0-. S'SQIZODJ‘x'UFK‘V—‘h—‘O'ON ~ 4303543 .-e e-O‘ ——v-3-c‘%3.nor~n Adda-O 3") .—ea-e 41—. ‘3‘: d—e—e w o. s manusam 0.,2 oo-eoo nan-co cognac moo-0e quuoo «y—eoo nocsool. NOQIOD 90.300 Osmeoo Occeoo nmfizoo ochOt qnceoa oncnoo emascci ommeoc «mmeoc ccwxoc acmeoo _cwaoo ocweoo onwuoo cameos hflmeoo nm~coc camaoo MMNJOO ~m~soo nmmeoo cowsoc mwmcoc cmwxoc nmwxoc ~m~¢ot :VNeO: mhwflfil anqsoc nc~eoc on_eoe mn_eor flfl.eoc 1~.eoc tc—lar noueoo ~a~coc usage: oooeoe 99:00 37100 uuazcm EZ SN 6 SN Zl SN hi uognoes peJnseew £3 SN 473w I: otfl 5.1 I\ n. u. . VI e . K— P. —~ ,,?(-\ S : otc cl..- 0- on. ~u . 2?..(( Hi . _. i .. pu— . as...?c \ ) _rle)... Cciih~V1o3~C ti)s.t».i).2 (.isUkneV e.2 \JBLQO 35 coo. coo oc._ ac.“ _~ co_.c¢ wo.. coo ac._ mc.m a. repac: coo. moo. oo._ or.“ o" co.xe. moo. coo. o—._ oc.m cm no.:c« coo. coo 4..— at.“ mw ~o—ccx oo:. moo. no. t:.~ w_ no.1cc .: . coo >,.— Mu.“ - ocazonll co.. coo o... mm.“ _~ noose; moo. Moo 3:." —n.m _N cc_mct moo. coo. an.~ so.n «m aspect coo. noo so. on.m ow oacnchll mzo. Mcc. so. MA.“ rm ~¢ee£r poo. moo no. on.m m. omcxo: -.. moo. no. ~o.. m. _wcac: ooo. moo. no. ~9._ m. oncoc. co.. coo so." oc.m mm ~mnocnli moo. coo. c—.— nc.n um oxnsc: sot. no: no. cn.n c— «that: cos. noo no.“ an.m - ccnnc: mo:. coo 9c.y ~w.n en Mcnzoc no”. coc ~c.~ oc.~ mm ucnroc c~ . No: no. to.— c~ ocwroc moo. coo .w._ mm.“ mm opnxc: no . noo g ._ or.“ x~ craze: mm_an_m m2_m<2202 mo . coo on; c...“ an on??? o: . poo :1. no.” t— mnnxoc .._o >._._.__m<._._:.om o: . 2:. no. mo; 1 .22.... oz< >._._mmm>_a mo .. moo. no. om.“ an nnngco oo.. noo no. ~o.— s. .mmxcc s. . ~oo no. or.. m. aware; x_ w.._m<.r ooo. moo or. 3." c. aware... 02.. moo no. op.“ 9. mouse: 00.. no: no. Odom 3— ounce: ac . no: no. mo.— cu manta: co.. moo. yo. o~.m 5— _mnsca c~.. moc Ma. c¢.— c— cameo: nu . flee. sh. O~.~ (~ np\I04 not. coo. o—._ mm.“ cw qd.sorll mo;. moc mo. o—.~ MN om_eoo oo.. moo. .o. o~.m c. apogee co.. co: no.~ mc.m :N amonc 5:1. moo ta. Nc.~ 9— mr.10( mo”. coo. Mn.— nc.n Mn nmusoc moo. coo sm._ —o.m on ou-ncnli. coo. coo ~_._ oc.m - couroc co.. coo. oo.— om.n .w no_scc co:. coo. so.— cc.m Jo ~o~30¢ no.. coo n_.~ or.~ ow .o_zc: mo:. moo. no. mm.~ ow oo—roa mo,. moo co. s..~ .N oovco co.. noo. no.~ do.~ - oescc .eooozocozoe ~u>-_mco>_o ooispomau>~o mu>phmzm>eo cu_owam .cz uoaocm 17l U°!3395 PBJDSEQN CZ SN 6 SN Zl SN 85H ‘75“ AI reflec1 Gibson‘ and use The EQI all Sp< been ca (Tables Di fineric Physica (Odom, been 9; tion tc [Dweent Cmclus Ciu t0 thei Species of Simi absence a cOeff [Haetha Various ebSence are C1” are re] tiye Cy by SORa a de'ldr levels . Ciu .JSed LC, Cl UStEr 36 An additional statistic, the equitability (E) of the sample, reflects the distribution of individuals among the Species (Buzas and (E=e“) and uses the value of'fi calculated with base e logarithms. k Gibson, 1969). Equitability is e raised to the fi power The equitability varies from o to l with i being the condition in which all Species have an equal number of Specimens. The equitability has been calculated for all samples for which the diversity was calculated (Tables Vii-IX). Diversity is a parameter of a community which is independent of its generic and Specific composition. It is apparently dependant on the physical, chemical and biological (interSpecific competition) environment (Odum, Cantlon and Kornicker, l960). Various diversity indices have been given considerable biostratigraphic importance and used as a correla- tion tool within individual coal seams (Gibson and Clarke, l968). Comments concerning the diversity data are deferred to the Discussion and Conclusion section. Cluster Analysis Cluster analysis in the Q-mode permits comparison of samples as to their species content (or as to the counts of the contained species) and permits the grouping of like samples at various levels of similarity (”community”-approach). in the case of presence or absence data each sample is compared with all other samples and a coefficient of similarity is generated which expresses the comparison. Cheetham and Hazel (l969) have listed in a standardized notation, the various similarity coefficients which have been used for presence- absence data. Using the matrix of similarity coefficients the samples are clustered into a hierarchy of pairs and groups of samples which are related at various levels of similarity as determined by consecu- tive cycles of clustering. Several clustering techniques are discussed by Sokal and Sneath (l963). The final product of cluster analysis is a dendrogram which displays the groups of samples and the similarity levels at which they are grouped. Cluster analysis in the R-mode is a population approach and is used to group species on a basis of their comparable occurrence. Cluster analysis has been widely used by ecologists and is being used in 37 the study of fossil organisms, e.g. Fox (l968) and Hazel (l970). Cluster analysis in the R-mode has been applied to palynological data by Oltz (l969). in the present study the techniques of cluster analysis were 'applied to the ”presence or absence" data and the ”200 count“ data for ll3 species from 76 samples from six measured sections. A 200 count was available for only SI of the samples. For the Q-mode cluster analysis of presence-absence data the Jaccard Coefficient of Community was used (Jaccard, l908). The Jaccard Coefficient is a simple coeffi- cient of similarity which has been widely used. it places emphasis on those samples which contain many individuals and many Species (Hello and Bu2as, l968). The coefficient ignores negative matches, i.e., no contribution is made to the coefficient if a species is absent from both samples being compared. In the notation of Cheetham and Hazel (l969), this coefficient is as follows: Jaccard Coefficient = C (C+E1) + (C+E2) - C = c N1+Na"c C, Species present in both samples E1, species present only in first sample E5, Species present only in second sample N1, total Species present in first sample N2, total species present in second sample For any two samples being compared, a value of l is contributed to C if a given Species is present in both samples, a value of i is contributed to EI if a given Species is present only in the first sample and a value of l is contributed to E2 if a given species is present only in the second sample. After the contribution of all Species occurring in both samples is compiled, the coefficient is calculated. Each sample is compared with all other samples under consideration and the coefficients are compiled in a data matrix. The clustering was done by the weighted pair group method with simple arithmetic averages (Sokal and Sneath, l963). In the initial clustering step the matrix of similarity coefficients is examined and all samples are paired which have values higher than that value at which a third sample becmes 1 generated and an no two sin” of the be the secon since the the value and Fecal 0' the re that of H. The . absence d.- lethod Hi1 A O-r in “lithe; ‘Wariso, Mitotic W). ii' Mtric iii“ A is in Sm. 1 38 becomes eligible to join the initial cluster. .A new matrix is then generated in which the relationship between a bonded pair of cycle l and an unbonded sample is the arithmetic mean (simple average) of the two similarily coefficients between the unbonded sample and each member of the bonded pair. A second cycle of clustering is then undertaken on the second matrix. Weighting occurs in this cycle and subsequent cycles since the value of all members of an existing cluster is averaged with the value of a potential sample or cluster of samples. The clustering and recalculation is repeated until all samples have been clustered or the relationships are zero. This explanation of clustering follows that of Hello and Buzas (l968). The dendrogram resulting from the cluster analysis of the presence- absence data using the Jaccard Coefficient and the weighted pair group method with arithmetic means is presented in Figure ‘00, in pocket. A 0-mode cluster analysis was performed using the count data, in which‘a coefficient of geometric distance was used for the initial comparison of samples. This coefficient is the Coefficient of Taxonomic Distance, based on standardized characters (Sokal and Sneath, l963). in the notation of Sokal and Sneath (l963) the expression for geometric distance(the concept of Euclidean distance between two points in an n‘- dimensional space is A!" Li (st ' xxx”? , E Hhere.¢ is the geometric distance between sample , and sample t and X,, is the count of species , in sample , and X“I is the count of species , in sample n The two samples contain n species. A matrix of geometric distances was calculated and clustering was done by the weighted pair group method. The dendrograms of this analysis are presented in Figures hl-h3, hi in pocket. These include a Coefficient of Geo- metric Distance comparison of all samples, all "200 count" samples and the "200 count" samples from Section lh. ’ An R-mode cluster analysis*was performed utilizing the same presence-absence data as was used in the Qrmode analysis. In this 39 Figure 42 QrMODE CLUSTER ANALYSIS, 200 COUNT SAMPLES Geometric Distance Coefficient Weighted Pair Group Clustering § 3 .2 73 3 Code Sample 00° 0‘ a! a, a. a. a. g, a. e. Ia. o....:.....OI............... -:v' ‘- --'-'- - v-A v ‘--'--‘v ‘--:vv‘-- " “'t‘. I. 0 g . e - . , ,0 --‘- -‘ ‘ “2 2‘“ ‘ “‘ ““ ; ‘ -‘ - ‘-- "‘ I? “III? [In 0 ' ' e j “‘ ‘ ' e , . .0 e . ‘ ‘- - 2: - ‘ -‘-‘- ‘---- - OI “I“. I e 0 e e ‘ e . . .e e . ee . -_ - ‘- ‘ ‘--“: .; “-“‘-— “1"“: OI “III. I e e e eeeeeeeeeeee e . , ,o e . eee , nu -- - _- -_ “22‘" “3-: - 0. one" o e "‘-'“— "“ 1““(‘" Dee ' ' \p e . . ,e e . e e -- - -_‘ -- “ ‘ ‘- ‘---:-- OI “MI 0 e e e eeeee ‘ e e . , .e e . e : ‘---- ‘-- -‘ :-- “-‘-‘—- - “-- ‘-‘ I. “III. , l. e e e e 4 g e . , ,0 e . e --““ ‘ ‘ “‘2- ‘ - - -- ‘ --- - Ii 0“”! I e ‘ ““——‘T"“I O eee " ”' e . , .0 e . e e ----‘ --‘ ---- ‘ -‘ ‘-- - ‘----2— I. “I". I e e e e e meeeeee e . , .e e . e e . - 2:“ H. ‘ -‘ ‘- 1"“ H “I". I O I O 0.0 O | e . L _Le e . e e e . Wu ‘ ‘ -“ -- “ ‘ ‘-— “-- ‘ D “IND :4 e ' ‘ e “—3“ _1'b"'e ‘ ‘e' ‘ “ " ’ " ' 0 . . .0 o . o 0 O . o . --- “--““ - “ ‘ 2- --- — I “a” e e ' noun 0 e a can «be a , . .u e . e e e . e e e n- -2- “n- “ ‘ ‘- ‘ —--“‘ I “I” 01 e ' ee 0 e e e e eeeeee ' “ "I e . 0. e 1 e e e 0 ea ---- -‘- ““ - “J -- - “-- ‘c a 0' - . --- ---: I i D 6 ' . O" ’06 “O ' "‘ " "‘ " ....- ' ‘ ' " '-'-J ’ e , . e ,0. e . e e e , e e -- ‘ -‘ ‘ -- ‘ - -- - ‘ ----- l0 “III. M e 0 ea e e e e e e e . , e .u e . e e e . o ---- - ‘ a-“ z; “12‘- “u I “at“ d m o e ‘ 0e ' e e O a nee e . , e In 0 . e em 0. e - an-“ -; ‘ —‘ - “"3- H “a!!! N O. o ”' a as 1 3“" e 6 '6 "' 0"“ ' " ” "‘ “‘ "" "' "'" " " ""—" 8 e . . e ,ee e . e e e. e no . - - --‘ -;-- “I ‘- ‘---:-- 7 “it“ 6 ‘- e e' ee 0 e e e e e e «em 0 . , e .00 e . e e e. e e e e - -‘ ““ - “ ‘ ‘- “--- OI “IflI I. a o e 00 e e e e e e eeee e . , e ,0. e . e e a. e e e - -- “ - ‘ -‘ -- “‘---:-- I. “all 1:“ e ' e I. T I"" n4”'““’ ‘1' m“ ' "° ' ”- ' " "" " " e . , e ,u e . e no. e eeeeee ---- ---- ‘ - - -- - ‘---:-- 19 ecu“ I e e ee 0 e no e a o . . o .00 o . . m. o . - ‘ ““ - ‘ -‘ ‘- “‘ ..... so men I I O O. C O ”O O o . , e .00 «one on. -- - - ‘- ‘ - ‘ -‘ ‘- 1-- )1 me” I e e co e ' 7'06 " “ ’w'" " ' " ‘ ' ' 4' o . . . .u . o m. ‘ -- 2-“ an ‘ J 2-‘ “‘ --‘ a: ecu e o co a one. . o . . e .Oe . e u x“ -2 - u‘ ““ - “ ‘ ‘-- “2"“- u sum 5 e o u e 00 a e . , e .Oe . e e . - ‘ ‘—-‘ u “ ‘ ‘- ‘-_-“ II '“IIOI I e e 00 e 0 me e . . o .00 . o e . e e . - -‘ nu “ ‘ 1— 3.52. CI “I." e e 00 e e e meeeee e . , e ,0. . e e . e . - “ -- - ‘ -‘ - ‘-- “‘ 6! “.00. II 0 O O O O C... ' - _ - A m 0 . _ --.9 0 _ __.,. 0 - __ 3:. __9 . 0 .9 _v'e3-vv--' --‘— -- — - - ‘ "vi-j 09 __“¢_i‘f_ e e ‘0' e e e e me a. e . , e . e . o O . 0 e e .0 - --“ ‘ —- “-‘ ‘---‘- II “i!” l e a e e e e eeee eee'eeee 8 e . , e , e . 0 me. e . ‘ ““ - “ ‘ ‘- ‘---‘ II “I!” ‘- e e e e e e (9 e eOeeoeeeeOeeeu_ _e' _ .- J _e . e , e - - -‘ - ‘ -‘ ‘- ‘---‘-- 07 “'III II .' O O O O O O o o . , e , e , e . I ..... -_ - --‘- -- “ ‘ ‘- "2‘“ II MIDI II 9 e e e e eeee e e . , e . e . e . - - “ ‘ Z-“ -- “‘ ‘ ‘- ‘--_‘ OD “.191 O O O O O N o o . _ __‘_ g g _ , °, _ J °.. , - ‘-- ‘ ‘- ““ - “ ‘ ‘-- ‘ ------ I. _WIQI l. e e e e eeeeeeeeee e o o . . o . o . . ‘—— - - ‘- 223“--- “ ‘ ‘- “1-2333 II “a”. l0 ‘- e e e e a e o . , e , e . “ ‘ ““ - ‘ ‘--‘“ - ‘ —‘ ‘- ‘ ‘—--:-- 6 “I!“ O 0 0 e O 0 ° 9 . _ L... - _ . 0, -_ .o. ' . : _. ‘-‘--“ ‘-- "7‘ ‘—‘- “-. ----- 1' ,._..9!'.’.'. It 0 e e e 0 e O O . . o . o . 0 . O . ----‘ 23‘3";— “-‘ ‘- “‘ — “ II “UIIO l. e e e e 0 e e e e . , e . e . O , eeeeee eee :--“:- “‘-‘ ‘- ‘---:-- (I “at“ I. e e e e .0000. e e e e eeoee ,- e o . .o ,e e, o . e eee o e -;--- ‘- - ‘ ...... I. “ll” 16 eeeeeOe ' 3" e ' ’ 'e e e a e .5... 000006 "” 7—" ""_-"' e e . . e , e e . O . e gee e . ageeeeeOOeOeemeeuuuu 13 “UIII u g e e e e e e emu. e e e e , , e . e e , 0 e . a e -_‘-_“ -; ‘ - _ ‘ --“- I. “III. I. L e e e e e O 0 e e a e e , , e . meeee . e e , e - -‘ -‘. ‘ - - ‘ ------ I: “all I. e e ' "a" e "10.6! e ‘ ""”‘ “‘ “ """ O o . . o . O . O . 2- - -- — ‘--‘ L “‘-‘-‘-_ ‘---‘-- I. “III. 10 e e e e e on o o . . e . e . e . - ‘--‘ .; “-‘ ‘- ‘—-—‘-- I. “IIII N e e e e e 0 0 . . o . I . -—--‘ “‘ ‘ --‘ 4 ‘ - -‘-~ ‘—-— - II “III. I e e ‘ ‘0' ’ "’e ‘ ' ' ' """ 0 O . . e . -:---‘ ------- - ‘ ‘—-‘“ —; “‘-‘ ‘- ‘--:‘“ I? “UIIl l. O O O o o . . e “ ---- ‘ “““ - ‘2 “““ “‘--‘ '. ‘ -‘- -- ‘_--‘ II “I". I O O O... o o . . “:---‘---‘ ‘ ‘ “ ‘ - - - ‘ L ‘ —‘ ‘-- ‘ ...... I out" 0 O O ‘ . - .. .. _— 0.. :‘--------- - : -“----‘- ‘ — —‘ — - ‘ ---- -‘--‘ ‘ L “‘-‘-‘ “‘-—-“‘ I “UNI I 0’0 0' 0’ a) I. 0. O. a, O. I. ‘0. Similarity Level 40 Figure #3 Q-MODE CLUSTER ANALYSIS, MEASURED SECTION In, 200 COUNT SAMPLES Geometric Distance Coefficient Weighted Pair Group Clustering 0 1D 0 (J 060 Cl I? I3 C‘ Is I6 .1 08 I9 lIo .aIIIgIIIIIIIIIII-eueee - A A - - “ “ “ w-vw ““ ‘---=-- 21 I I . . . . _ - - - _ v ' .- - 0 I IIIIIII 17 . I e .... . I ‘ - A A " v “‘ ‘ - ..--_‘_--' 22 I I I I I . . I I I . --- ‘ ‘ ‘ ‘ ‘ ‘ -‘ -. ‘ - ‘------ 15 I I I I I o , , I III , I ‘ ‘ ‘ ‘ -‘ - ‘ - “‘---“- 10 I I I I I I , . I I , I III - ‘ - ‘ 2 ‘ - ‘ - ‘--- - II I I I I I I I I . . I I , I I I I -‘ --‘ ‘ - - - -- ‘ - ‘_-_ go I I IIIII I IIII I I , . I . I I I I --- - - -.-- ‘ _ ‘ ‘_- 12 I I I I I I IIIIIII . I I . I . . . . I . " A ‘ '- """' A ' " ‘-"‘ 11 I I I I III IIIII I . , I . I I . I D. I , -- ‘ -‘ - ‘ - “‘---‘ - 16 I II I I I I I IIIIIII I , , II . IIII . I IIII. III ,‘- ‘ ‘ - ‘ ‘ ‘ --‘ O I II I I I I I I , . II . I , I I I. ---- - -‘ - ‘ ‘ ..... 6 I II I IIIII I I , , II , I . I ‘ - ‘ - ‘vw-‘v 9 I II I I I . . II , I , “ ‘ ‘ - ‘ ‘ ‘ ‘ 7 I II I . I e .. I . l - - v A - ‘V‘v- Z I IIIIIIIIIIIII- I IIIIIII I .I . II , III . “ - - ‘ “ “ - “ - ‘ - 5 I I II I .I . II , —“ - .. ‘ ‘ ‘ - ‘ - - “ - I0 I I II I .I . II . ‘ ‘ - - ‘ ‘ ‘ V ‘ ‘ - ‘---- 19 I'IIIOI'IIII IIIIIIIIIIIIIII I .I . I . ‘ ‘ ‘ ‘ - ‘ ‘ - 13 I I I .5 . I -‘-- ‘ ‘ - ‘ ‘ w I U I IIIIIIIII I ,a . -‘--- ‘ ‘ -‘ --- ‘ ‘------ I i I .0000... - “‘ ‘ ‘ T ‘ ‘ “ wv-w ‘ v ‘--—‘ 3 DEC 61 c2 .3 «I .5 .6 .7 .5 o9 1.0 Similarity Level : O J.) u e U, 1: o m L .— 3 CL M E s 3 z 66u250 1¢ 66u2Ix 1; 66I252 1o 66u239 II 66I2I3 II 66d233 II 66I251 16 66I235 II OOIZSI 14 OOIZID 1s 66u226 16 66'225 II 66I21l II OIIZZO II 66v220 1o 66I22I 1o 66'233 II 66IZII 1o OOIZJT II IIIZZS II 66v218 II 66I221 1. GrOup I tn instance a Species to species comparison is made as to presence or absence in each of the samples. A Jaccard Coefficient is calculated for each species compared with all other species and a matrix of coeffi- cients is generated which is clustered by the weighted pair group method. The resulting dendrogram shows the clustering of related species (Figure A4, in pocket). Evaluation of the cluster analyses is deferred to the Discussion and Conclusions section. I‘m mg the i- “Pper part of Leh'asi Zone aiso includes | ”Nether am is Placed at t we Wt of [mg Lewis 5* cOntact mum is Present, Wham)” is, “age (P0553 0“ curse is "Gt Vast” lea“ 25 Almc “an‘Paleoce, “Md dinof Inestrichtia My Species as campanian beCaUSe 0f tl DISCUSSION AND CONCLUSIONS Age of the Almond Formation Upper Cretaceous relative age dating is based primarily on a standard of ammonoid fossils. In the Western Interior the Campanian Stage encompasses 21 megafossil zones with the end of the Campanian coincidirgwith the top of the Baculites eliasi Zone. In south-central Wyoming the Almond Formation corresponds (in ascending order) to the upper part of Baculites reesidei Zone, the Q; ienseni Zone and the Q; eliasi Zone. In the Roch Springs Uplift the Almond Formation also includes the lower part of the overlying_§; baculus Zone (Gill, Merewether and Cobban, l970). The Campanian-Haestrichtian boundary is placed at the g, eiiasi-§;_baculus Zonal boundary. Since the upper Shale Unit of the Upper Almond interfingers imperceptibly into over- lying Lewis Shale the Campanian-Maestrichtian boundary is not a sharp contact except in the area where the Upper Sand Unit of the Upper Almond is present. The indigenous palynomorph assemblage of the Almond Formation is, by virture of the associated ammonoids, Upper Campanian in age (possibly Maestrichtian in the Uppermost Almond). 0n cursory inspection the Almond Formation palynomorph assemblage is not vastly different from North American Maestrichtian assemblages. At least 25 Almond pollen and Spore Species have been reported from Maestrich- tian-Paleocene rocks of Montana by Norton and Hall (l969), and at least l0 Almond dinoflagellate and acritarch species have been reported from Maestrichtian and Paleocene rocks of South Dakota by Stanley (I965). Many Species are reported here for the first time from rocks as old as Campanian. These lower extensions of ranges are not surprising because of the similarity of Upper Campanian and Maestrichtian assenblages and the species are not tabulated here but may be ascertained from the occurrences in the descriptive section. Seven Species are reported for the first time from rocks as young as Campanian: Deflandrea cf. _D_ verrucosa Micrhystridium denSiSpinum £1; inconSpicUUm £1; eugeglos Schizosporis cooksoni InaperturOpollenites atlanticus #2 L11 of 43 Rugubivesiculites floridus. Little biostratigraphic significance is attached to their occurrence because of their rarity, morphological ambiguity and the possibility of reworking. The palynological age assessment of the Almond Formation must depend on the total assemblage and the percentages (or absolute abundance) of its constituents. The assemblage may be recognized as Upper Cretaceous by the presence of Aguilapollenites spp., Proteacidites Spp., §£x§_spp., and Liliacidites (éghi205poris) complexus. Considering the total assemblage and with the presence of the genera and species just mentioned, the absence of Wodehouscia Spp. is suggestive of, but does not prove an age older than Maestrichtian. With the exception of two index fossils there are no Campanian age-destinctive species. Trudopollis meekeri and Conclavipollis wolfcreekensis have been reported only from restricted intervals within Campanian age rocks (Newman, l965). Three Species, Trithyrodinium sp. A, Cygaggpites Sp. A and Genus A sp. A, are considered to be new and in any future work their possible Campanian age significance should be investigated. Depositional Environments The Almond Formation consists of sediments formedin three major depositional environments, the nonmarine coastal-plain and lagoonal environment, the shoreline (barrier-bar) environment and the near Shore (neritic) marine environment. These environments may be recognized from the distinctive sediment types which they produced (Weimer, 1966). The coastal-plain (fluviatile)sediments are ciaystones, siltstones. nonmarine shales, coals and sandstones. The near-Shore sediments are barrier bar sandstones,and the neritic sediments are shales. The variations in environment and in corresponding sediment type are the result of minor transgressions and regressions of the Late Cretaceous sea and their cyclic nature has been described in detail by Jacka (I965). With the exception of coals,which were not studie¢.and sandstones, the depositional environments of the Almond Formation sediments have been determined by their palynomorph content. Palynomorphs are oridinari- lY not recovered from sandstone and this lithology was not sampled. The coal beds were not sampled because the palynomorphs they contain repr DON". near (Our vari Livi IEnt eStL inc: dis: repr an C fact in ‘ Envi Suck 1.1+ represent the very restricted environment of the coal swamp. The nonmarine environment of the Lower Siltstone Unit is evidenced by the near absence of dinoflagellates and acritarchs. When present these palynomorphs comprise about l-3% of the sample with the single exception of sample 66WI35 which contains 15.8%. This sample represents a dark gray shale bed of only two feet in thickness. The marine environment of the Upper Shale Unit is evident from the l7 species of dinoflagellates and acritarchs which are restricted to it. These palynomorphs comprise from 20-50% of the total palynomorphs in samples from this unit. Within the Upper Shale Unit,variations, both vertical and horizon- tal, are noted in the absolute abundance of dinoflagellates and their counterparts in distribution, the acritarchs. To what extent these variations reflect changes in depositional environment is unknown. Living dinoflagellates are known from fresh water and marine environ- ments, but in the rock record they appear to be limited to rocks of estuarine and marine origin. As a generalization, dinoflagellates increase in number away from shores and to some extent the plots of the absolute abundance of marine Species (Figure #5, in pocket) reflect distance from shore. (It is to be remembered that all of the samples represent shallow marine deposition in an epicontinental sea and never an Open marine environment.) This generalization is complicated by the fact that dinoflagellates, as do other plankton, have maxima and minima in their distribution that reflect variations in their physico-chemical environment. Such fluctuations have been noted near river mouths and areas of current influence such as upwelling. The absolute abundances of dinoflagellates in the Almond Formation are comparable to those observed in the modern Gulf of California with values of several hundreds to a few thousands per gram of sediment and occasional maxima up to l6-I7,000 per gram of sediment (Cross, Thompson and Zaitzeff, I966). One such maximum is noted in Section lh, Samples 66W220 and 66W22l, which re- presents an interval of at least five feet with a highest value of l8,000 per gram. As a generalization the land derived pollen and spores Show a decrease in abundance away from shore in a marine environment. They also Show max} in p and I'fite sa~¢ Cont #5 maxima and minima in their distribution which are controlled at least in part by the proximity of the parent plants and the sorting action and distribution by water currents. The assemblage attribute which in the author's opinion best measures the proximity to shore line is the ratio of marine to non- marine species. This ratio when combined with the absolute abundance information may be used to subdivide the Upper Shale Unit of Section i“ into three subunits. Subunit A from Sample 66W218 to Sample 66W229 is an interval of a high ratio marine-nonmarine species and high abun- dance. Subunit B from Sample 66W230 to Sample 66W236 is an interval of high ratio and relatively low abundance. Subunit C from Sample 66W237 to Sample 66W252 is an interval of a relatively low ratio and a relatively low abundance. These subunits are present to some extent in the other measured sections of the Upper Shale Unit. It may be observed in each section of the Upper Shale Unit that the Sterile samples show some relationship to the sand content of the interval sampled. In general there is a drop in abundance and sterile samples appear as the Upper Sandstone Unit is approached and the sand content of the shale increases. The diversity of the nonmarine species is consistantly higher than that of the marine Species. Samples with high diversity indices for the most part are not samples with the highest absolute abundance. Any relationship between diversity and depositional environment has not been demonstrated. Within the Upper Shale Unit no relationship has been demonstrated between the presence-absence or relative abundance of any individual species and the depositional environment other than what has already been discussed for the formation as a whole. Eajxnglggig§1_Correlations The Upper Shale Unit is defined on a lithologic basis and correla- tion between the five Upper Almond sections may be accomplished by Inarker beds including a gastropod zone (shells«are abundant enough locally for the rock to be considered a coquina) at the base of Sections IA, 23 and 9, a bentonite layer between Sections-23 and 9 and a cone- in-c viti othe subc 1+5, of n and the beth (def A zc Sing Some are POCk incl A6 in-cone layer between Sections 23, 9 and l2. As a unit the Upper Shale Unit may be correlated palynologically within the Almond Formation by the dinoflagellates, acritarchs and other Species which are restricted to it. The Upper Shale Unit may be subdivided at the standard section (14) by several criteria, see Figure #5, in pocket, the most useful of which are considered to be the ratio of marine to nonmarine Species, the absolute abundance of marine Species and nonmarine Species, Species restricted in range, and the diversity of the marine and nonmarine Species. Attempts have been made to correlate between the five sections using these criteria. The subunits A, B and C based on the ratio and abundance of marine and nonmarine Species (defined above) may be correlated with some success between sections. A zone of Deflandrea cooksoni may be correlated with little success since it varies a great deal in thickness and is absent in Section 23. Some correSponding peaks on the diversity curves may correlate but they are not evident in all sections. Four dendrograms are presented (Figures ho-AB, #0 and hi in pocket) which give the results of the Qrmode cluster analysis. These include a Jaccard Coefficient comparison of all samples, a Coefficient of Geometric Distance comparison of all samples, all ”200 count" samples and the "200 count” samples from Section II. Evaluation of the dendro- gram from the comparison of samples using the Jaccard Similarity Coeffi- cient reveals little clustering above the .5 similarity level (Figure #0 in pocket). Clustering between the .2-.S level tends to group samples from the different individual sections. Six groups of samples are desig- nated which possibly have significance. Group l is predominatly composed of Section A samples, Group 2 of Section lh samples, Group 3 of Section lh samples, Group 4 of Section l2 samples, Group 5 of Section 5 and Section 23 samples and Group 6 of Section IA and 23 samples. It is postulated that a greater individuality, based on presence of Species, exists for the sections than was apparent from studying the distribution and range charts. This dendrogram shows a clustering of the near Sterile samples which have less than l0 Species and equally few individuals. The geometric distance comparison is judged to be the more powerful tool since it evaluates the count data. In all cases examined it results The San; denc (Grc appa iECO 47 in the initial clustering at a higher similarity level (.5 and greater). The comparison of all samples resulted in three distinct clusters of those samples with fewer than l0 species and individuals (Figurehl in pocket).ThiS dendrogram has not been evaluated beyond identifing these clusters (Groups l-3). This analysis was rerun using only those samples with a count of approximately 200 individuals (Figureh2.). Clusters are apparent at a high similarity level (.5-.7). Six groups have been recognized which tend to relate samples as to the number of individuals in the species which they contain. Clustering of this type has potential as a correlation tool, but in this instance it does not seem as meaningful as the other criteria discussed above. An additional analysis was run of Section Ill samples in an attempt to subdivide it (Figurell3 ). One cluster (Group 1) resulted at a high similarity level (.5) which groups samples from the center of the Upper Shale Unit and roughly corresponds to Subunit D which is based on the ratio and absolute abundance of marine and nonmarine species. Plant Associations The R-mode cluster analysis results in groups of species which are related by their common occurrence (co-occurrence) in samples. Since these species are related by common occurrence it may be hypothesized that the groups to some degree represent plant communities. It must be remembered that the program is designed so that all species will eventually cluster. Whether or not a given cluster on the dendrogram has ecological significance is a value judgement on the part of the interpreter and must be based on some knowledge of the species comprising the cluster. The similarity scale of the dendrogram varies from 0 (complete dissimilarity) to l (complete similarity). The species stems of the R-mode dendrogram (FigureAh-in pocket)which cluster at .5 or greater have been drawn as solid lines for emphasis. These pairs and clusters of Species have the greatest similarity of occurrence and are thought to represent portions of synecological units. Eight clusters at approximately the .3-.h level have been designated as subgroups and l2 clusters at approximately the .2-.3 similarity level have been designated as groups. Son clusters 93 in this I _Slig asuppos: ‘iageiiai m tions. fl hélative Closely r rePresent m restricte “mi-Brine GrOU "it!“ only r . m #8 Some comments and interpretations may be made concerning the following clusters, but no special significance is attached to the other clusters. Group ID. Virtually all of the dinoflagellates and acritarchs occur in this clusten Group 10 represents the marine phytoplankton community. Subgroup IOA. This subgroup is of interest since Palambages Form A, a supposed green alga, has a distribution parallel to that of the dino- flagellates. Subgrogp lOB. The two species of Dinogymnium have parallel distribu- tions. Spbgroup IOD. This highly similar subgroup contains the most abundant (relatively abundant) dinoflagellate Species (Figure 25-29). They are closely related in their distribution, and it is suggested that they represent the most marine association of Species. Group II. This cluster contains two Species, Cassidium fragilis and Cingulatisporites dakotaensis, with parallel distribution which are restricted to the Lower Almond. This cluster may characterize the nonmarine toestuar‘ine Lower Almond. Group l2. Group l2 is an artificial group of extremely rare species with only one or two specimen occurrences. Group A. This group is a large and closely related cluster of angiOSperms and gymnosperms whose significance is unknown. M R the ide the aui sp., fig affinit extinct These 5 family tanpiet been co only th PlaCtH'ne distrib su'iiEd t: Divi: cl,- PALYNOMORPH DESCRIPTIONS Taxonomic Listing Form genera and form species have been used almost exclusively in the identification of the palynomorphs encountered in this study. To the author's knowledge form taxa have not been published for Botryococcus Sp., Pediastrum paleogeneites and Azolla sp. of this study. The affinities of the form Species with living plants and in some cases with extinct plant megafossils have been noted in the specific descriptions. These suggested affinities are for the most part the modern genus and family indicated by the original author of the species. To provide the complete taxomonic placement of the palynomorphs the following list has been compiled (Table)(). The acritarchs have not yet been classified so only their unofficial group and subgroup status may be given. Their placement follpwing the dinoflagellates reflects the fact that their distribution parallels that of the dinoflagellates and they are pre- sumed to be marine phytoplankton. Table X Taxonomic Placement of Form Genera and Species Page Kingdom Plantae Subkingdom ThallQphyta Division Chlorophyta Class Chlorophyceae Order Chlorococcales Family Botryococcaceae Genus Botryococcus (Q, braunii) Botryococcus pp, . ... . . . . . . . . . . . Family Hydrodictyaceae Genus Pediastrum Pediastrum paleggeneites . . . . . . . . . . . . . . . 60 Family Uncertain Palambages Form A . . . .. . . . . . . . . . . . . . . 61 Division Pyrrophyta Class Dinophyceae Order Gymnodiniales Family Gymnodiniaceae Dinogymnium nelsonense . . . . , . . . . . . . . . . 6i Dinogymnium sp. l . . . . . . . u . . . . . . . . . . 62 60 A9 50 Table X (cont'd) Order Peridiniales Family Deflandreaceae Deflandrea microgranulata . . . . . . . . Deflandrea cf. 2, pirnaensis . . . . . . Deflandrea cooksoni . . . . . . . . . . . nglandrea magnifica . . . . . . . . . . Deflandrea pannucea . . . . . . . . . . . Deflandrea cf. 2, verrucosa . . . . . . . Splnidinium densispinatum . . . . . . . . Trithyrodinium sp. A . . . . . . . . . . Palaeocystodinium begjaminiiv . . . . . Order Uncertain Family Hystrichosphaeridiaceae flyStrichosphaeridium tubiferum . . . Cordosphaeridium fibrospinospm_ . . . . . Forma A Sp. l . . . . . . . . . . . . Diphyes'colligerum . . . . . . . . . . . flystrichosphaera ramosa var. membranacea Family Areoligeraceae _ Cyglonephelium sp. I . . . . . . . . . . Cassidium fragilis . . . . . . . . . . . Family Uncertain Membranosphaera maastrichtica . . . . . . Palaeohystrichophora infusorioides . . . Division Uncertain Group Acritarcha , Subgroup Acanthomorphitae Micrhystridium densjspinum . . . . . . . Micrhystridium_inconspicuum . . . . . . Micrhystridium piliferum . . . . . . . . Micrhystridium fragile . . . . . . . . . Micrhystridium eupeplos . . . . . . . . . Subgroup Pteromorphitae Pterospermopsis australiensis .-. . . . Subgroup Uncertain Palaeostomocystis laevigata . . . . . . . Genus A Species A . . . . . . . . . . . Subkingdom Embryophyta Division Bryophyta Class Musci Order Sphagnales Family Sphagnaceae Stereisporites antiqgasporites . . . . . Division Tracheophyta Subdivision Lycopsida Class Lycopodineae Order Lycopodiales Family Lycopodiaceae Foveosporites canalis . . . . . .‘. . . . Hamulatisporis hamulatis . . . . . . Lycopodiumsporites austroclavatidites . 62 62 63 6h 61. 65 66 67 68 68 68 69 7O 7O 70 7| 7I 72 72 73 7A 7A 73 79 80 8| 8h 5] Table X (cont'd) Foveasporis triangulus . Zlivisporis novomexicanum Order Selaginellales Family Selaginellaceae Ci_gulatisporites dakotaensis Subdivision Uncertain Undulatjsporites sp. . Styx minor (megaspore?) Styx major (megaSpore) Schlzosporis cooksoni (Spore?) Schizosporis parvus (spore?) . Subdivision Pteropsida Class Filicineae Subclass LeptOSporangiatae Order Eufilicales Family Osmundaceae anbaculatisporites sp. Ipdisporites cf. 1, minor Family Schizaeaceae Cicatricosisporites doroggnsis . . . Appendicispprites cf. A. dentimarginatus . Family Gleicheniaceae Deltoidosporg diaphana . . . Gleicheniidites senonicus Family Dicksoniaceae Alsophilidites kerggelensis Family Polypodiaceae Laevigatosporites ovatus . Polypodiisporites favus Order Hydropteridales Family Salviniaceae Genus Azolla 5.2.2... I 'a 59- Class Gymnospermae Order Pteridospermae (extinct) Family Caytoniaceae Genus Caytonanthus Vitreisporites pgjlidus Order Cycadales Family Cycadaceae Cycadopites sp. A Cycadopites follicularis . Order Coniferales Family Podocarpaceae Phyllocladidites mawsoni Podocarpidites maximus 83 79 81 85 85 7h 75 80 77 82 ,83 77 .78 .75 76 86 92 90 90 93 93 52 Table X (cont'd) Rugubivesiculites floridus . . . . . . Family Cheirolepidaceae lextinct) Classggollis classoides . . . . . . . Family Araucariaceae Inaperturopollenites atlanticus . . . Araucariacites ljmbatus . . . . . . . Familv Finaceae LarIcoIdItes magnus . . . . . . . . . Laricoidites gigantus . .y. .-. . . . Tsugaepollenites igniculus . . . . . cedriEiteS gaFVUS o o o o o o o o o o‘ Abietineaepollenites foveoreticulatus Alisporites grandis . . . . . . . . . Familv Taxodiaceae Taxodiaceaegollenites hiatus . . . . . FamiHesTaxodiaCeae and Cupressaceae. Inaperturgpollenites dubius . . . . Order Gnetales Family Ephedraceae gguisetosgorites ovatus . . . . . . . 0rdd$ Bennettitales, Cycadales and Ginkoales . Monosulcites Scabratus . . . . . . . . Order Uncertain Eucommiidites couperi . . . . . . . . Quadripollis krempii . . . . . . . . . Sgermatites sp. (ovule). . . . . . . . Class Angiospermae Subclass Monoctyledoneae Order Uncertain Arecipites reticulatus . . . . . . . . Liliacidites. complexus . . . . ._. . Liliacidites leei . . . . . . . . . . Subclass Dicotyledoneaefi Order Salicales Family Salicaceae Iljcolpopollenites clavireticulatus . Order Fagales Family Fagaceae Cgpuliferoipollenites Busillus . . ; Family Betulaceae AlnipoIIenItes g_adrapollenites. . . . Order Urticales Family Ulmaceae lyjmipollenites sp. A . . . . . . . . . 95 96 87 =88 87 88 ’ 95 93 9A 9A 89 86 .92 9| 9| 95 96 97 98 97 99 l07 II3 ll2 53 Table X (cont'd) Order Proteales Family Proteaceae Proteacidites Lgtusus . . . firpteaciditgg thalmanni . . Orders Santalales and LamialITsw Families Olacaceae and Labiatae Tricolpites bathyreticulatus .‘ Family Olaceceae Fraxinoipollenites variabilis Family Loranthaceae Cranwellia rumseyensis Order Ranales Family Trochodendraceae Tricolpopollenites compactus . Family Ranunculaceae Tricolpites lillei . . . Order Sapindales Family Buxaceae Erdtmanipollis pachysandroides . Family Sapindaceae CupanIeidites major '. . .HL .7. Order Rhamnales Family Vitaceae Tricolporopollenites afflueng Order Myrtiflorae Family Haloragaceae Tricolpites reticulatus . . Order Ericales Family Ericaceae Genus Kalmia? Ericaceojpollenites rallu§_. Order Contortae Family Gentianaceae Pistillipollenites sp. A Order Uncertain Tricolpopollenites sp. l . Tricolpites mutabilis Tricolpopollenites microscabratus Tricolpites gsilascabratus . . . . Tricolpopollenites microrcticulatus, . Tricolpopollenites deliclavatus Tricolpites anguloluminosus Aguilapollenites Bolaris . Aguilapollenites pulcher . Aguilapollenife; striatus Aguilapollenites reticulatus . III III l02 l03 th IOO IOl II3 l08 I07 l06 I05 loh 98 IOO 98 l00 99 l00 l03 I05 I06 I06 106 5h Table X (cont'd) Engelhardt ioidites minutus . . . . . . . . . Triporopollenites rugatus . . . . . . . . . Triporopollenites sp. 8 . . . . . . . . . Trudopollis meekeri . . . . . . . Blicapollis sp. . . . . . . . . . . . . . . Sporopollis cf. S, lagueaeformis . . . . . . Conclavipollis wolfcreekensis . . . . . . . I08 l09 l09 Ill Il0 IlO IIO Descriptive Listing An arbitrary arrangement of the form species has been chosen for the descriptive section. The arrangamnm consists of six groups: the Algae (exclusive of the dinoflagellates), the Dinoflagellates, the Acritarchs, the Spores, the Gymnosperms and the Angiosperms. This -arrangement into groups reflects the gross affinities of each Species, and within each group it reflects increasing morphologic complexity. The following list (Table Xl ) gives the order of each species as it appears in the descriptions and the plates. Table XI Arrangement of Species In the Descriptions and Plates Algae excluding dinoflagellates l. Pediastrum paleogeneites . . . . . . . .g. . . . . 2. Botryococcussp. A . . . . . . . . . . . . . . . 3. Palambages Form A . . . . . . . . . . . . . . . . Dinoflagellates h. Oinggymnium nelsonense . . . . . . . . . . . . . . 5. 2;.5p. I . . . . . . . . . . . . . . . . . . . . 6. Deflandrea microgranulata . . . . . . . . . . . . 7 8 9 _l}_cf. _Q. pirnaensis . ._ . O 0—. COOksoni O O O O O O O O O O O O O O O O O O O O 0—. magnif ica O O O O O O O O O O O C O O O O C O 0 l0. ‘QL’Eannucea . . . . . . . . . . . . . . . . . . . . ll. .2; cf. 2; verrucosa . . . . . . . . . . . . . . . ‘l2. Spinidinium densispinatum . . . . . . . . . . . . 13. Trithyrodinium Sp. A . . . . . . . . . . . I4. Palaeocystodinium benjaminii . . . . . . . . l5. flystrichosphaeridium tubiferum . . . . . . . l6. Cordosphaeridium fibrospinosum . . . . . . . l7. Form A sp. I . . . . . . . . . . . . . . . . I8. Diphyes colligerum . . . . . . . . . . . . . . . . l9. flystrichosphaera ramosa var. membranacea . . . . . 20. Cyclongphelium sp. l . . . . . . . . . . . . . . 2I. Cassidium fragilis . . . . . . . . . . . . . . . . 55 Table XI (cont'd) 22. Hembranosphaera maastrichtica . . . . . 23. Palaeohystrichophora infusorioides . . . 2h. Hicrhystridium densispinum . . . . . . 25. fl;_lnconspicuum . . . . . . . . . . . . 26.§_._Eiliferum............. 27. fl;_fragile . . . . . . . . . . . . . . 28. fl;.eupeplos . . . . . . . . . . . . . 29. Genus A sp. A . . . . . . . . . . . . . 39. Palaeostomocystis Iaevigata . . . . . . 3|. EterOSQermopsis australiensis . . . . . Spores ' 32. Schizosporis cooksoni . . . . . . . . . 33. S, parvus . . . . . . . . . . . . . . . 3A. Laevigatosporites ovatus . . . . . . . . 35. Polypodiisporites favus . . . . . . . . 36. Todisporites cf. 1;.minor . . . . . . . 37. Deltoidospora diaphana . . . . . . . . . 38. Alsophilidites kerguelensis . . . . . . 39. Gleicheniidites senonicus . . . . .,. . ho. Stereisporites antiquasporites . . . . . AI. Cingulatisporites dakotaensis . . . . . 42. Foveosporites canalis . . . . . . . . . A3. Conbaculalisgnrites undulatus . . . . . “A. 'Undulatisporites 5p. . . . . . . . . . . AS. Hamulatisporis hamulatis . . . . . . . . A6. Cicatricosisporites dorogensis . . . . . A7. Appendicisporites cf. £:_dentimarginatus A8. FOveasporis triangulus . . . . . . . . . A9. Zlivisporis novomexicanum . . . . . . . SO. Lycopodiunlsporites austroclavatidites . SI. Styx minor . . . . . . . . . . . . . . . 52. §;_maior . . . . . . . . . . . . . . . . 53. Azolla sp. . . . . . . . . . . . . . . . Gymnosperms 5h. Inaperturopollenites dubius . . . . . . 55. 1;_atlanticus . . . . . . . . . . . . 56. Laricoidites magnus . . . . . . . . . . 57. .g; gigantus . . . . . . . . . . . . . . 58. Araucariacites Iimbatus . . . . . . . . 59. Taxodiaceagpollenites hiatus . . . . . . 60. Cycadopites follicularis . . . . . . . . 6|. §;_sp. A . . . . . . . . . . . . . . . 62. Monosulcites scabratus . . . . . . . . 63. Eucommiidites couperi . . . . . . . . . 6h. quisetosporites ovatus . . . . . . . . 65. Vitreisporites pallidus . . . . . . . . 66. Bhyllocladidites mawsonii . . . . . . . 67. Podocarpidites maximus . . . . . . . . . 68. Cedripites parvus . . . . . . . . . . 69. Abietineaepollenites foveoreticulatus . O O O O O O O O O O O O C O O O O O O O I O O O O O O O O O O O O O I O I O O O O O O O O C O O O O O O O O O O O O I O O O O O O O O O O O O O O O I O O O O O O .56 Table XI (cont'd) 70. Alisporites grandis . . . . 7|. Rugubivesiculites floridus . . . . . . . . . . . . . . 72. nggaepollenites igniculus . . . . . . . . . . . . . . 73. Quadripgllis krempii . . . . . . . . . . . . . . . . . 7h. Classopollis classoides . . . . . . . . . . . . . .‘. . 75. Spermatites sp. . . . . . . . . . . . . . . . . . . . Angiosperms 76. Arecipites reticulatus . 77. Liliacidites Ieei . . . . 78. L=_com2|exus . . . . . . 79. Tricolpopollenites sp. I 80. ILDmicroscabratus . . . . 8|. I;_microreticulatus . . 82. . clavireticulatus . 83. . deliclavatus - . . 8h. comeactus . . . . 85. Tricolpites mutabilis 86. 1;_psllascabratus . . . . 87. ];_Iillei . . . . . . . . 88. 1;_reticulatus . . . . . . . 89. ];_bathyreticulatus . . . . . 90. 1;.anguloluminosus . . . . . 9|. Fraxinoipollenites variabilis 92. Cranwellia rumseyensis . . . 93. Pistillipollenites sp. A . . 9h. Ericaceoipollenites rallus . 95. Aquilapollenites Bojaris . . 96..A_._Eulcher........ 97. A. striatus . . . . . . . . . 98. _A_._ reticulatus . . . . . . . 99. Qgpuliferoipollenites Qusillus lOO. Tricolporqxfllenites affluens I0l. Cupanieidites maior . . . . . I02. Engelhardtioidite§_minutus . I03. Triporopollenites sp. 8 . . . I09. .I; rugatus . . . . . . . . . . . IOS. Conclavipollis wolfcreekensis . . IO6. Sporopollis cf.‘§; laqueaeformis I07. Plicapollis sp. . . . . . . . . . I08. Trudopollis meekeri . . . . . . . I09. Proteacidites retusus . . . . . . IIO. 2;.thalmanni . . . . . . . . . . Ill. Ulmlpollenites sp. A . . . . . . lI2. Alnipollenites guadrapollenites . Il3. Erdtmanjpollis pachysandroides . . -l ITI'I Alphabetical Listing To facilitate locating the form genera and species in the descriptive section and on the plates the following alphabetical listing has been compiled (Table XII ). . l . II rI D U du .II. MW pull _ EA.A_A_A_AT:A_A_k_m_k.&.u.ua‘h~grm .w In... .u n... W\&L\&%\D.\D.\D.\DDI\DAW\DAIU\D.H.\PI P.\NVL\~WL C I\DAU.D SSSSS 58 TABLE XII, (cont'd) Page Plate Figure Foveasporis triangulus . .'. . . . . . . . . . . . . 83 II 6h Foveosporites canalis . . . . . . . . . . . . . . . 80 II 57 Fraxlnoipollenites variabilis . . . . . . . . . . . l03 I8 l|6 |l7 Genus A sp. A . . . . . . . . . . . . . . . . . . . 73 9 A2 53 Gleicheniidites senonicus . . . . . . . . . . . . . 78 IO 55 Hamulatisgoris hamulatis .., . . . . . . . . . . . . 8| II 6| Hystrichosghaera ramosa var. membranacea . . . . . . 69 8 30 fixstrichosghaeridium tubiferum . . . . . . . . . . . 67 6 22,23,29 _naEerturogollenites atlanticus . . . . . . . . . . 87 19 73 ._: dubius . . . . . . . . . . . . . . . . . . . . . 86 IA 72 ,aevigatoseorites ovatus . . . . . . . . . . . . . . 75 IO “8 Iaricoidites gigantus . . . . . . . . . . . . . . . 88 19 75 _== ma nus . . . . . . . . . . . . . . . . . . . . . 87 I“ 7“ _-iliacidites complexus . . . . . . . . . . . . . . . 98 '7 97,98 .I—CleeiOOOOUOOOIOOCDIOUUOIIOOI 97 ‘7 96 _ .ycogodiumsgoritgg austroclavatidites . . . . . . . 85 ‘l 56 .Iembranosghaera maastrichtica . . . . . . . . . . . 70 9 39,35 flicrhystridium densispinum . . . . . . . . . . . . . 7l 9 37 .1Q-eueeelos I. I O O O D O C 0 O O I O O C O I O C C 73 9 l.‘ _LfrHSI'eooooooaoooaooo-ooooon 72 9 “0 _1; inconspicuum . . . . . . . . . . . . . . . . . . g: g 33 L.Elllferum................-.-. ZWOnosuIcites scabratus . . . . . . . . . .5. . . . . 9| '5 80:81 -’alaeocystodinium beniaminii . . . . . . . . . . . . 66 5:6 2022' falaeohystrichoghora infusorioides . . . . . . . . . 7] 9 36 falaeostomocystis Iaevigata . . . . . . . . . . . . 7h 9 AA falambages Form A . . . . . . . . . . . . . . . . . 6] I 3 >ediastrum paleogeneite . . . . . . . . . . . . . . 60 I I Phyllocladidites mawsonii . . . . . . . . . . . . . 93 '5 85 Distilli>o|lenites sp. A . . . . . . . . . . . . . . IOA '8 120,12] flicagol_L§ sp. . . . . . . . . . . . . . . . . . . ‘10 20 '38 fodocarg dites maximus . . . . . . . . . . . . . . . 93 '5 86 ’olypodi sporites favus . . . . . . . . . . . . . . 76 '0 “9: SO Proteacidites retusus. . . . . . . . . . . . . . . . 1" 2° '30: '3‘ 3. thalmanni . . . . . . . . . . . . . . . . . . . . ‘1‘ 20 I[*3 '9 Pterosgermogsis— australiensis . . . . . . . . . . . 7‘l 9 “5 Quadripollis krem ii . . . . . . . . . . . . . . .3. 95 ‘6 92 Rugubivesiculites floridus . . . . . . . . . . . . . 95 ‘6 90 Schizosporis cooksoni . . . . . . . _ . , , , , , , g: ‘2 2? S-EarVUS.o...aoooooooaoocooc.o SEermatites sp. . . . . . . . . . . . . . . . . . . 96 '7 9h Spinidinigm.ggpsisplnatum . . . . . . . . . . . . . 65 h '7 Sgorogollis cf. S. lagueaefor ml 5 . . . . . . . . . . 1'0 20 '37 59 TAB LE )0 I, (contld). Page Plate Figure Stereisporites antiquasporites . . . . . . . . . . . 79 i0 55 Styx maior . . . . . . . . . . . . . . . . . . . . 85 i3 70 5—. mi nor 0 O O O O O O O C O O O O O O O O O O O O O 85 '2 67,68,69 Taxodiaceaepollenites hiatus . . . . . . . -.- . . . 89 15 77 Glelcheniidites senonicus '. . . . . . . . . . . . . 77 I0 5] Tricolpites agguloluminosus . . . . . . . . . . . . I03 18 Iih,li5 L bathyret‘CU'atUS o o o o o o o o o o o o o o o o ‘02 '8 1'3 L li‘le‘ O O O O O O O O O O O O O O O O O O I O O '0' '8 '1' l..- mtabII‘S O O O C O O O O O O O O O O O O O O O O loo '8 '08 1;.psilascabratus . . . . . . . . . . . . . . . . . IOI I8 I09,IIO L retiCUlatus O 0 O O O O O O O O O C O O O O O C O '02 '8 '12 Tricolpopollenites clavireticula u . . . . . . . . 99 I8 I04,I05 L CQHEaCtus O O O O O I O O O O O O O O O O O O O O '00 '8 '07 ‘1; deliclavatus . . . . . . . . . . . . . . . . . . I00 l8 I06 ‘1; microreticulatus . . . . . . . . . . . . . . . . 99 I8 |02,l03 1;_microscabratus . . . . . . . . . . . . . . . . . 98 18 IOI L sp. l O I O O O O O O O O O O O O O O O O O O O O 98 '8 99,300 Tricolporopollenites affluens . . . . . . . . . . . '07 l9 l30 Triporogollenites ruggtus . . . . . . . . . . . . . '09 20 l35 1..- sp. 8 O O O O C O O O .0 C O O O O O O C C O O O '09 20 13h Trithyrodinium sp. A . '. . . . . . . . .- . . . . . 66 5 18,19 TrUdOPOll'S meekeri. o o o o o o o a o o o o o o o o 3" 20 I39 Tsugaepollenites igpiculus . . . . . . . . . . . . . 95 '6 9' UlmipOlleNItes SP. A o o o o o a o o o o o o a o e 3‘2 20 3135,1136 undUIatiSporiteS Sp. 0 o o o o o o o o o o o o o o 8' ll 60 Vitreisporites pallidus . . . . . . . . . . . . . . 92 '5 8“ gjivisporis novomexicanum . . . . . . . . . . . . . 83 ll 65 Descriptions The palynomorph descriptions consist of the generic citation, the type species of the genus, the species citation and synonomy, a discussion, the suggested affinities and the occurrence and Almond Formation distribution. The discussion includes the size range, a notation of important morphology, comparisons with closely related species and the justification of any transfers or combinations. The 60 known stratigraphic range of each species is given as it has been interpreted from the literature. The occurrences given are in general limited to the Upper Cretaceous-lower Tertiary of North America and are not meant to be all inclusive. The description of those species which are unpublished and have not been previously described includes a diagnosis, formal description and a holotype designation. Genus Pediastrum Meyer, l829 Jype species: Unknown Pediastrum paleogeneites Wilson and Hoffmeister, I953 Pl. i, Fig. l I953 Pediastrum paleggeneites Wilson and Hoffmeister, p. 756, pl. I, figs. 7, 8. ' Discussion: The size range of the coenobia was #3 (65) 86p based on six specimens. To the author's knowledge a form genus has not been proposed for fossil specimens related to this llving genus. SuggeSted affinities: Hydrodictyaceae, Pediastrum Occurrence: Upper Campanian-Eocene (7)."Lower Formation“, Tertiary (probably Eocene), Sumatra (Wilson and Hoffmeister, I953); lower Dos Palos Shale, upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This species occurs in the lower and upper Almond Formation. Genus Botryococcus Kutzing, I899 Type species: Botryococcus braunii Kutzing, l8h9 Botryococcus sp. A Pl. I, Figs. 2a, 2b Discussion: The sizes of the two colonies observed were 39p and ‘79”. The presence of Botryococcus in sediments has been discussed by Cookson (l953), Traverse (I955) and Tschudy (l96l). To the author's knowledge a form genus has not been proposed for fossil specimens related to this living genus. Suggested affinities: Botryococcaceae, Botryococcus braunii Kutzing Occurrence: Cretaceous-Tertiary. Upper Cretaceous and lower Tertiary, Montana (Norton and Hall, I969). This species is rare in the upper Almond Formation. 6| Genus Palambages 0. Hetzel, l96l Type species: Palambages morulosa 0. Hetzel, l96l Palambages Form A Manum and Cookson, l96h Pl. I, Fig. 3 I96“ Palambages Form A Manum and Cookson, p. 2“, pl. VII, figs. 3-6. l967 Palambages sp. Drugg, p. l2, pl. l, fig. 2. Discussion: Manum and Cookson (l96h) indicate that fp'Form A is is comparable to P; morulosa but do not place it in that species .since the ornamentation of’the wall of £;_morulosa was not known. ,5; Form A was described as “smooth to very finely granular." Specimens from the Almond Formation are psilate. The size of the individuals is about 20p. The size range of the colonies (ca. 30 individuals) was 79 (82) 86p for the three colonies which were measured. Suggested affinities: Algae7, ChlorococcalesI Occurrence: Cretaceous. upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This species occurs in the lower and upper Almond Formation. Genus Dinogymnium Evitt,.Clarke and Verdier, l967 Type species: Dinogymnium acuminatum Evitt, Clarke and Verdier, I967 Dinogymnium nelsonense (Cookson) Evitt, Clarke and Verdier, I967 Pl. 2, Fig. 4 I956 Gymnodinium nelsonense Cookson, p. I83, pl. l, figs. 8-ll. l967 Dinogymnium nelsonense (Cookson) Evitt, Clarke and Verdier, p 5. Discussion: The observed size range was 50 (63) 72p for three specimens. Suggested affinities: Gymnodiniaceae Occurrence: Upper Campanian-Paleocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); upper Moreno Formation, Maestrichtian, California (Drugg, l967); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs only in Section I“ of the upper Almond Formation. 1%? HIE Egg Eg- Forn SPEC l9S: I96I The ant. The 9551 ,62 Dinogymnium sp. I (Zaitzeff) Pl. 2, Figs. 5, 6 I967 Gymnodinium sp. I Zaitzeff, p. 83, pl. 2|, figs I-h. Discussion: The observed size range was 32 (BA) 37p for eight specimens. Suggested affinities: Gymnodiniaceae Occurrence: Upper Campanian-Maestrichtian. Corsicana and Escondido Formations, Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs in the Upper Almond Formation. Genus Deflandrea Eisenack, I938 Type species: Deflandrea phogphoritica Eisenack, I938 Deflandrea microgranulata Stanley, I965 Pl. 2, Fig. 7 I965 Deflandrea micrggranulata Stanley, p. 2l9, pl. I9, figs. 9-6. Discussion: The slightly smaller size of this species distinguished it from 2y.ventriosa Alberti, I959, which has a size range of 6S-78u. Q;_obscura Drugg, l967, with a size range of hS-60u, closely resembles 2g_microgranulata but is separated by its "nongranular cyst". ‘p; microgranulata has a microgranulate (i338) endophram. The observed size range was 32 (#3) SA“ for l3'specimens. Suggested affinities: Deflandreaceae Occurrence: Upper Campanian-Paleocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967); Upper Cretaceous? or Paleocene7, Montana (Oltz, I969). This species occurs in the lower and upper Almond Formation. Deflandrea cf.1gp pirnaensis Alberti, I959 Pl. 2, Figs. 8, 9, I0, II I959 Deflandrea pirnaensis Alberti, p. I00, pl. 8, figs. I-S. I960 Scriniodinium cooksonae Anderson, p. 30, pl. IX, figs. l-3. Discussion: The outline of the periphragm is polygonal to almost rhombic. The periphragm exhibits scattered granules (flu in diameter). The second antapical horn is reduced to fairly well developed in some specimens. The cingulum is well developed and wide. The longitudinal furrow is obscure. The endophragm is circular and smaller than the periphragm. The a most which Arche adjac prese for i as de FA|ber 63 The archeopyle is obscure in some specimens (PI. 2 fig. IO), but in most specimens it involves a single intercalary plate (Pl. 2 fig. 9) which may be attached, or detached and found in the interior or missing. Archeopyle formation may also involve the flap-like detachment of the adjacent precingular plate (PI. 2, fig. 8). A comparable opening is present in the endophragm. The observed size range was 58 (67) 82p for I6 specimens. The Almond Formation specimens are comparable to gy_pirnaensis as defined by Alberti (I959). An archeopyle was not observed in -Alberti's specimens. The Size range was 80 to IO6u. Sarjeant and Anderson (I969) have attributed poorly preserved specimens ranging from 75-80u to,2; piraensis. They indicate an attached single-plate intercalary archeopyle for their specimens. This Species is only tentatively assigned toigg piraensis due to the uncertainty regarding the archeopyle and the slightly smaller size. Suggested affinities: Deflandreaceae Occurrence: Turonian-Maestrichtian. Turonian-Coniacian, Germany (Alberti, I959); Lewis Shale, Maestrichtian, New Mexico (Anderson, I960 and Sarjeant and Anderson, I969); 7(Deflandre and Deflandre, I965). This species occurs in the lower and upper Almond Formation. Deflandrea cooksoni Alberti, I959 Pl. 3, Figs. I2, l3 I959 Deflandrea cooksoni Alberti, p. 97, pl. 9, figs. I-6. Discussion: Considerable variation in diape exists in this species C as a result of the development of the "shoulder" of the epitheca. The endophragm Isusually wider(transverse dimension) than it is long resulting in a three part shape of the outline. ,2p_cooksoni is distinct from 2;,tripartita Cookson and Eisenack, I960, which it closely re- sembles, and Qy'cincta Cookson and Eisenack, I958, in that it does not exhibit an obvious girdle. Specimens designated 2p.cf.‘2; cooksoni by Manum and Cookson (I964) are distinctly different in shape and should be excluded from the species. Specimens designated 2; cf. Qp_cooksoni by Clarke and Verdier (l967) have a distinct girdle and should also be excluded. The observed size range for this Species was 72 (89) Il8u for l2 specimens. Suggested affinities: Deflandreaceae 2c_c_u (Alb Cal i‘ Form. l965 m spec m Form; Form.- GrouF the I. 10“ % Cale“ (124) Seen i been m “bib; 0? the length 6h Occurrence: Upper Senonian-Danian. Upper Senonian, Germany (Alberti, I959); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This species occurs in the upper Almond Formation. Deflandrea magnifica Stanley, I965 Pl. 3, Fig. IA I965 Deflandrea magnifica Stanley, p. 2I8, pl. 20, figs. I-6. Discussion: The observed size range was 86 (IO6) 123u for nine specimens. 'Suggested affinities: Deflandreaceae Occurrence: Upper Campanian-Paleocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, I967); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs in the upper Almond Formation. Deflandrea annucea Stanley I965 min—fig. l5 ’ I965 Deflandrea pannucea Stanley, p. 220, pl. 22, figs. I-h, 8-IO. Discussion: The size range of the periphragm, including horns was Ioh (I29) lhhu while the endophragm was 6l (70) Bhu for six specimens. §gggested affinities: Deflandreaceae Occurrence: 'Upper Campanian-Paleocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Navarro Group, Maestrichtian, Texas (Zaitzeff, I967). This species occurs in the* o upper Almond Formation. Deflandrea cf. D. verrucosa Manum, I963 FLT, Fig. l6 ' I963 Deflandreg verrucosa Manum, p. 60, pl. Ill, figs. l-h. Discussion: The size, verrucate ornamentation and hexagonal inter- calary archeopyle of this species is comparable to,2; verrucosa, lI2 (IZA) I35u. A point of difference is the more fully expanded endophram seen in the Almond Formation Specimens. A definite assignment has not been made since only three incomplete specimens have been found and none exhibits the ”shoulders” of the expanded periphragm above the endophragm or the apical horn. The sizes observed were 86p, 9kg and IZQu in length. The average length was lOlp. m M ibper 1963 a 66U2 l8 65 Suggested affinities: Deflandreaceae Occurrence: CenomanianI-Campanian. Lower Upper Cretaceous to mid- Upper Cretaceous, Graham and Ellef Ringnes Islands, Arctic Canada (Manum, I963 and Manum and Cookson, 1969). This species occurs only in Sample 66U2l8 of Section IA of the upper Almond Formation. Genus Splnidinium Cookson and Eisenack, l962 Type species: Spinidinium styloniferum Cookson and Eisenack, I962 Spinidinium densispinatum Stanley, I965 PI. 9, Fig. l7 I965 Spinidinium densispinatum Stanley, p. 226, pl. 2|, figs. I-5. I965 Spinidinium microceratum Stanley, p. 227, pl. 22, figs. 5-6. Discussion: Variations in shape, density of the spine coat and length of the apical horn were used to distinguish é; densispinatum and §g_microceratum by Stanley (I965). It is here Suggested that the differences are so slight that two Species are not warranted and that §;.microceratum be placed in synonymy with §p_densispinatum. The Almond Formation specimens are encompassed by the following description. The test is covered with Sharp curved spines, l.5-2u in length. The apical horn is 5-l0u long. Two antapical horns are present, one about Bu long and a shorter one, l-hu long. The girdle is about 6p wide with spine covered flanges at each Side. A longitudinal furrow is not obvious, but one is suggested by folding. The archeopyle is intercalary and polygonal in outline. The overall length is 98 (59) 67p for eight specimens. Excluding the horns, the length is 37 (Ah) 50p, and the width is #2 (#5) 6h“. Suggested affinities: Deflandreaceae Occurrence: Upper Campanian-Maestrichtian. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965);I1pper Moreno Formation, Danian, California (Drugg, l967), Navarro Group, Maestrichtian, Texas, (Zaitzeff, I967). This species occurs throughout the Almond Formation. Genus Trithyrodinium Drugg, I967 Type species: Trithyrodinium evittii Drugg, I967 213339 apical on the may be 933551 apical horns preser Icabra antapi fOI’mec Additl 0f the i5 abc for I} 5919:, ”0- 6e Mow 66 Trithyrodinium sp. A Pl. 5, Figs. l8, l9 Diagnosis: The distinctive cyst is scabrate-granulate and exhibits apical and antapical tufts of granules._ The archeopyle as observed on the cyst is formed by the removal of three intercalary plates which may become disassociated. Description: The test wall is thin (less than Ip) and smooth. An apical horn about 28p in length is present. Two shorter antapical horns are present. A girdle and sulcus are not known to be present. The test cavity contains a rounded cyst. The cyst wall is Scabrate with tufts of larger granules (ca. In) on the apical and antapical ends. As observed on the cyst, an intercalary archeopyle is formed by the removal of three plates which may become dissociated. Additional tabulation has not been observed. The range of the length of the test was 95 (l08) l30u for the specimens. The width of the test is about 62p. The size range of the length of the cyst is 58 (69) Bin for I7 Specimens. Holotype: Pl. 5, fig. l8. Slide No.3lO9Al, Coor. h3.2-Il8.6, Collection No. 66W23l, Section IA, Almond Formation, Late Campanian, Sec. 36, T20N, RIOIW and Sec. 3], T20N, RIOIW, Sweetwater County, Wyoming. Discussion: A Single specimen with a test and cyst was observed. The exact nature of the antapical horns is not known. The detached cySts are abundant. ];_evittii Drugg, l967,is a comparable Species, but it differs in having a finely punctate cyst wall, in exhibiting a girdle and in having tripartite opercula with fused plates. ' Suggested affinities: Deflandreaceae Occurrence: Upper Campanian. This species is abundant in the upper Almond Formation and absent from the lower Almond Formation. Genus Palaeogystodinium Alberti, I96l Type species: Palaeocystodinium gglzowense Alberti, I96l Palaeocystodinium benjaminii Drugg, l967 Pl. 5, Figs. 20a, 20b; Pl. 6 Fig. 2i l967 Palaeocystodinium benjaminii Drugg, p. 3i, pl. 3, fig. l. l967 Svalbardella cf. é; Iidiae (Gorka) Zaitzeff, p. IOZ, pl. 30, figs. 9-9a, pl. 3|, fig. I. . ’ arch not (ave The I épggf 955$” tian- Texas Forms 1937 I838 I933 1937 9 SPEC Siiss % Fey-ma, MaeStI MaeStr 67 Discussion: Six Specimens were observed from the Almond Formation. They exhibit an inner body, apical horn andan antapical horn which has a rudimentary second antapical horn bifurcating from it. The archeopyle is occasionaly obscured by longitudinal folding. Hairs were not observed on the apical horn. The overall length was l83-236u (average 2l3u) for 6 specimens. The inner body is about l33u in length. The width is about SA“. Suggested affinities: Deflandreaceae? Occurrence: Upper Campanian-Danian. Upper Moreno Formation, Maestrich- tian-Danian, California (Drugg, I967); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs in the upper Almond Formation. Genus Hystrichosphaeridium Deflandre emend. Eisenack, I958 Type species: flystrichosphaeridium tubiferum (Ehrenberg) Deflandre, l937 flystrichosphaeridium tubiferum (Ehrenberg) Deflandre, l937 PI. 6, Figs. 22, 23, 2h I838 Xanthidium tubiferum Ehrenberg, pl. I, fig. l6. I933 flystrichosphaera tubifera (Ehrenberg) Wetzel, p. A0, pl. A, fig. I6. ’ l937 Hystrichosphaeridium tubiferum (Ehrenberg) Deflandre, p. 68. Discussion: The observed size of the central body was 3A (A3) A9u for 9 Specimens. The processes were l6-20u in length. ' Suggested affinities: Hystrichosphaeridiaceae Occurrence: Cenomanian-middle Miocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This Species occurs in the upper Almond Formation. Genus Cordosphaeridium Eisenack, I963 Type species: Cordosphaeridium inodes (Klumpp) Eisenack, I963 Nae: AImI I953 1955 68 Cordosphaeridium fibrospinosum Davey, et al., I966 Pl. 7, Fig. 25 I965 flystrichosphaeridium inodes Klumpp Stanley, p. 23], pl. 25, figs. 3-6. ' l966 Cordosphaeridium fibrospinosum Davey, et al., p. 86, pl. 5, fig. 5. Discussion: The maximum diameter of the central body varies from 66-9Au, with an average of 8Iu. The width of the processes varies from lI-30u and the length from lA-29u as observed on six specimens. ,Spgggsted affinities: Hvstrichosphaeridiaceae 'Occurrence: Upper Campanian-Eocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota, (as fly_inodes), (Stanley, l965); London Clay, Eocene, England (Davey, et al., l966); Navarro Group, Maestrichtian, Texas (Zaitzeff, I967). This Species occurs in the upper Almond Formation. Genus Forma A Zaitzeff, l967 Type Species: Forma A Sp. I Zaitzeff, l967 Forma A Sp. I Zaitzeff, I967 Pl. 7, Figs. 26, 27 I967 Forma A sp. I Zaitzeff, p. 5A, pl. 9, fig. l2, pl. IO, figs. l-IO. Discussion: The observed size range was 52 (62) 72p for seven Specimens. Suggested affinities: Hystrichosphaeridiaceae Occurrence: Upper Campanian-Maestrichtian. ,Navarro Group, Maestrichtian, Texas (Zaitzeff, I967), This species occurs in the lower and upper Almond Formation. v Genus Diphyes Cookson emend. Davey, et al., l966 Type species: Diphyes colligerum (Deflandre and Cookson) Cookson emend. Davey, at al., l966 Diphyes colligerum (Deflandre and Cookson) Cookson emend. Davey, et al., l966 Pl. 8, Figs. 28, 29 I953 Hystrichosphaeridium Sp. C Cookson, p. Il5, pl. 2, figs. 29, 30. I955 flystrichosphaeridium colligerum Deflandre and Cookson, p. 278, pl. 7, fig. 3. I963 Baltisphaeridium colligerium (Deflandre and Cookson) Downie and Sarjeant, pl. 9]. 69 I965 Diphyes colligerum (Deflandre and Cookson) Cookson, p. 86, pl. 9, figs. l-l2. I966 Diphyes colligerum (Deflandre and Cookson) Cookson emend. Davey, et al., p. 96, pl. A, figs. 2, 3. Discussion: This species is distinguished by a Single large antapical process. The size range of the test was 28 (32) 36p for Six specimens. Suggested affinities: Hystrichosphaeridiaceae Occurrence: Senonian? - Eocene. Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Navarro Group, Maestrichtian, Texas (Zaitzeff, I967). This species occurs in the Upper Almond Formation. Genus flystrichosphaera Wetzel £5. Deflandre, l937 Type species: flystrichosphaera ramosa (Ehrenberg) Deflandre, I937 flystrichOSpaera ramosa var. membranacea (Rossignol) Davey, et al., I966 PI. 8, Fig. 30 l96A flystrichosphaera furcata var. membranacea Rossignol, p. 86, pl. I, figs. A, 9, l0, pl. 3, figs. 7, l2. l966 HystrichOSphaera ramosa var. membranacea (Rossignol), Davey, et al., p. 37, pl. A, fig. 8, I2. l967 Hystrichosphaera aff. H. furcata (Ehrenberg) Wetzel Drugg, p. 23, pl. A, figs. 3,‘E"" I967 Hystrichosphaera sp. l Zaitzeff, p. 6A, pl. l5, figs. 7-9. Discussion: The observed size range of the central body was 33 (39) 58p while the processes were about IZu long as measured on eight specimens. The genus Spiniferites Mantell, l850, will apparently be accepted as having priority, but the name change has not been incorporated here (Wall and Dale, I970, Sarjeant, I970). Suggested affinities: HystrichOSphaeraceae Occurrence: Upper Campanian-Pleistocene. Upper Moreno Formation, Maestrichtian-Danian, California (Drugg, I967); Corsicana Formation, Navarro Group, Maestrichtian, Texas (Zaitzeff, I967). This species ' occurs in the upper Almond Formation. 70 Genus Cyclonephelium Deflandre and Cookson emend. Davey, et. al., l966 Type Species: Cyclonephelium compactum Deflandre and Cookson, l955 Cyclonephelium sp. I Zaitzeff, l967 PI. 8, Fig. 3| l967 Cyclongphelium sp. I Zaitzeff, p. 68, pl. l6, figs. l-3. Discussion: The tabulation of this species was not determined. It exhibits a chorate cyst of the Cylonephelium-Areoligera type with an apical archeopyle and anastomosing processes l2-A0u in length. The operculum was detached in all specimens examined. The size range of the maximum dimension, exclusive of the processes, was 58 (6|) 6Su for five specimens. Suggested affinities: Areoligeraceae Occurrence: Upper Campanian-Maestrichtian. Navarro Group, Maestrich- tian, Texas (Zaitzeff, l967). This species occurs in the Upper Almond Formation. Genus Cassidium Drugg, l967 Type species: Cassidium fragilis (Harris) Drugg, I967 Cassidium fragilis (Harris) Drugg, l967 Pl. 8, Figs. 32, 33 I965 Ovoiditesfragilis Harris, p. 97, pl. 27, figs. u-s. l967 Cassidium fragilis (Harris) Drugg, p. 22, pl. 3, figs lS-l6. Discussion: The observed size range was 52 (56) 66p on five specimens. Suggested affinities: Areoligeraceae v Occurrence: Upper Campanian-Paleocene. Pebble Point Formation and Dilwyn Clay, Paleocene, Australia (Harris, l965); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This Species occurs in the lower Almond Formation. Genus MembranOSphaera Samoilovitch £5, Norris and Sarjeant emend. Drugg, I967 Type species: Membranosphaera maastrichtica Samoilovitch, I96l Membranosphaera maastrichtica Samoilovitch, l96l Pl. 9, Figs. 3A, 35 I96I Membranosphaera maastrichtica Samoilovitch in Samoilovitch and Mtchedlishvili, p. 252, pl. 83, figs. I, 2. 7| Discussion: The observed size range was 30 (3A) 39p for five Specimens. Zaitzeff's (l967) Hexagonifera sp. I may be referable to this species. Spgggsted affinities: Unknown Occurrence: Upper CretaceouS.Upper Moreno Formation, Maestrichtian- Danian, California (Drugg, I967). This species occurs in the lower and upper Almond Formation. Genus Palaeghystrichophora Deflandre emend. Deflandre and Cookson, I955 'Type Species: Palaeohystrichophora infusorioides Deflandre, l93A Palaeohystrichophora infusorioides Def Iandre, l93A Pl. 9, Fig. 36 l93A Palaeohystrichophora infusorioides Deflandre, p. 967, fig. 8. Discussion: The figured specimen appears to exhibit a girdle and sulcus. They are not apparent on other specimens. The observed size ,range exclusive of the hair-like processes was 33 (A9) S9u for five Specimens. Suggested affinities: Unknown Occurrence: Cenomanian-Maestrichtian. Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs in the lower and upper Almond Formation. Genus Micrhystridium Deflandre emend. Downie and Sarjeant, I963 Type Species: Nicrhystridium inconsgicuum (Deflandre) Delandre, l937 Hicrhystridium densispinum Valensi, I953 Pl. 9, Fig. 37 I953 Micrhystridium densispinum Valensi, p. 52, pl. XIV, fig. A. Qiscussion: This species is distinguished by a dense coat of short spines, l-2.5u in length. "It differs from Myicastaninum by its denser, Shorter and sharper spines which never appear flexible” (Valensi, I953, p. 53). This size range of three Almond Formation specimens was Il-IZu exclusive of the spines. Suggested affinities: Unknown Occurr (Valen castan OCCUI'S o‘cun califc 1967) . 72 Occurrence: Middle Jurassic-Campanian. Middle Jurassic, France (Valensi, I953). Drugg (l967) reported the similiar species, 5; castaninum, from the Maestrichtian'Danian of California. Mp.densispinum occurs in the lower and upper Almond Formation. Micrhystridium incoggpicupg,.(Deflandre) Deflandre, l937 Pl. 9, Fig. 38 l935 flystrichosphaera inconSpicua Deflandre, p. 233, pl. IX, figs. ll, l2. l937 Micrhystridium inconspicuum Deflandre, p. 80, pl. XII, figs. lI-l3. Discussion: The observed size range was l0 (l3) l7u for the test of seven specimens. The spines are about 2.5u in length. Suggested affinities: Unknown Occurrence: Middle Jurassic-Campanian. The Species has been reported from the Middle Jurassic (Deflandre, l9A7) and Cenomanian (Deflandre, I937). The Species occurs in the upper Almond Formation. Micrhystridium pjliferum Deflandre, l937 Pl. 9, Figs. 39 l937 Micrhystridium piliferum Deflandre, p. 80, pl. XV, fig. ll. Discussion: The observed size range was l9 (2|) 2Au for six Specimens. Suggested affinities: Unknown Occurrence: Cretaceous-Paleocene. Silex 8, Cretaceous, Paris, France (Deflandre, l937); Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965). This species occurs in the Upper Almogd Formation. Micrhygtridium fragile Deflandre, I9A7 Pl. 9, Fig. lIo I9A7 Micrhystridium fragile Deflandre, p. 8, figs. l3-l8. Discussion: The observed size range of the test was l6 (I8) 20p for three specimens. The spines are about l6u in length. Suggested affinities: Unknown Occurrence: Middle Jurassic-Oligocene. Upper Moreno Formation, Danian, California (Drugg, l967); Navarro Group, Maestrichtian, Texas (Zaitzeff, l967). This species occurs in the upper Almond Formation. m; m: 73 Micrhystridium eupeplos Valensi, '953 Pl. 9, Fi9- “l I953 Micrhystridium eupeplos Valensi, p. A8, pl. XIV fig. IA, IS, I9. Discussion: This species exhibits an irregular reticulum. The muri are thin and membranous. The junctions of muri are dark and extend as “processes" beyond the margin of the test.. The size range of the test is l2 (l6) l8u for size specimens. Suggested affinities: Unknown Occurrence: Middle Jurassic-Campanian. This Species was described from the Middle Jurassic of France. Late Cretaceous occurrences are not known. It occurs in the lower and upper Almond Formation. Genus A Type Species: Genus A species A Genus A species A Pl. 9, Figs. A2, A3 Diagnosis: Spherical body with a coarse reticulum. Description: Specimens consist of a compressed spherical body with a coarse reticulum. The central body is dark, psilate? and without openings. The reticulum extends about 3p above the body as measured at the periphery. The reticulum is composed of muri 12.5u wide and lumina :3u in diameter. The reticulum is supported by rods about 2.5u in diameter. The rods connect at their tips forming the reticu- lum. The muri are 2u high above the rods and minute (Iu) spines project out as crests on the muri. The Size rangeof the maximum , dimension of five specimens is 26 (30) 3Au. The holotype is 32p over- all and has a 28p central body. Holotype: Pl. 9, Fig. A2.’ Slide 3l3l AIV, Coor. AA.8-ll3.7, Collection No. 66WA68, Section 9, Upper Almond Formation, Late Campanian, Sec. l2, TI9N, RIOIW, Sweetwater County, Wyoming. Discussion: This species is grossly comparable to Reticulatasporites iardinus Brenner, I968, but this species has a coarser more closely appressed reticulum and a slightly smaller size. Suggested affinities: Unknown Occurrence: Coniacian-Campanian, Mancos Formation, Coniacian- Santonian, Colorado (Thompson, l969). This Species occurs in the lower Almond Formation. l967 .Djfi.‘ Su CI 95.5.9.1 New in ti 7A Genus Palaeostomocystis Deflandre, l937 Type species: Palaeostomocystis reticulata Deflandre, l937. Palaeostomocystis laevigata Drugg, l967 PI. 9, Fig. AA l967 Palaeostomocystis laevigata, Drugg, p. 35, pl. 6, figs. IA, l5. Discussion: The observed size range was 38 (A6) 52p for six Specimens. Suggested affinities: Unknown Occurrence: Upper Campanian-Danian. Upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This species occurs Pin the Upper Almond Formation. Genus Pterospermopsis Wetzel, I952 Type species: Pterospermopsis danica Wetzel, I952 Pterospermopsis australiensis Deflandre and Cookson, l955 Pl. 9, Fig. A5 l955 Pterospermopsis australiensis Deflandre and Cookson, p. 286, pl. 3, fig.VA. Discussion: Warren (l967) discusses the status of various Species of PteroSpermopsis. The size range was 2A (As) 88p overall and IA (26) 58p for the body of the five specimens observed. Suggested affinities: Etecgspermg, an extant phytoplankton of uncertain taxonomic placement. Pteromorphitae, the acritarch subgroup of Downie, Evitt and Sarjeant (l963). Occurrence: Jurassic-Tertiary. Fort Union Formation, Paleocene, South Dakota (Stanley, I965). This species occurs in the Upper Almond Formation. Genus Schizosporis Cookson and Dettmann, I959 Iype species: Schizosporis reticulatus Cookson and Dettmann, I959 Schizosporis cooksoni Pocock, l962 Pl. 9, Fig. A6 I962 Schizosporis cooksoni Pocock, p. 76, pl. l3, figs. I97, I98. Discussion: A two layered exine was not apparent. Specimens up to 56u in maximum dimension are included here. Pocock gave a Size range of 32-A2u. The size range of this Species should be expanded to 6Au making it continuous with Sp'parvus Cookson and Dettmann, l959- Fom 1955 I96! DIsI SpeI PFC: as Aus: NGOI Cam Fm:T Red |96€ and Hell Pale H585 Th;S 194,6 75 The observed size range was 38 (A9) 56p for four Specimens. Suggested affinities: Unknown. Cookson and Dettmann (I959) referred to the species of Schizosporis as alete spores. Subsequent authors, e.g. Stanley (I965), have considered them to be inaperturate pollen. Occurrence: Upper Jurassic-Campanian. Upper Vanguard Formation, Mannville Group, Upper Jurassic-Lower Cretaceous, western Canada (Pocock, I962). This species occurs in the lower and upper Almond Formation. Schizospgris parvus Cookson and Dettmann, I959 Pl. I0, Fig. A7 I959 Schizosporis parvus Cookson and Dettmann, p. 2l6, pl. I, figs. l5-l9. I965 Schizosporis laevigatus Stanley, p. 268, pl. 23, figs. 6-7, pl. 37, figs-T‘s. Discussion: The observed size range was 83 (90) 98p for three specimens. A two layered exine was not observed on these Specimens, presumably due to weathering. Suggested affinities: Unknown Occurrence: Cretaceous-Paleocene. Albian-Cenomanian7, Eastern Australia (Cookson and Dettmann, I959); Mannville Group, upper Neocomian, Western Canada (Pocock, I962); Mannville Group, Barremian?- Cenomanian? Alberta (Singh, I96A); Cannonball Member, Fort Union Formation, Paleocene, South Dakota (§;_laevigatug) (Stanley, l965); Red Branch Member, Woodbine Formation, Cenomanian, Oklahoma (Hedlund, l966); "Walnut Clay”, Fredericksburg Group, Albian, Oklahoma, (Hedluna and Norris, I968); Dakota Sandstone, Cenomanian, Arizona (Agasie, I969); Hell Creek Formation, Uppermost Cretaceous and Tullock Formation, Paleocene, Montana (Norton and Hall, I969); Hell Creek Formation, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs in the lower and upper Almond Formation. Genus Laevigatosporites (Ibrahim) Schopf, Wilson and Bentall, I9AA Type Species: LaevigatoSporites vulgaris (Ibrahim) Ibrahim, I933 Leevigatosporites ovatus Wilson and Webster, I9A6 Pl. l0, Fig. A8 I9A6 Laevigatosporites ovatus Wilson and Webster, p. 273, fig. 5. Discussic‘ spec imens I Suggestec Occurrenc * Carbon to Vancouver (Rouse, l. Group and Group, Loi PwPer Cm (Stanley, Okiahoma Alberta (1 Danian, c,- Cretaceou: (Norton aI tionS, Ha: 869). Ti 76 Discussion: The observed size range was 30 (Al) 59p for nine Specimens. Suggested affinities: Polypodiaceae Occurrence: Upper Jurassic-Paleocene. rFort Union Series, Paleocene, Carbon County, Montana (Wilson and Webster, I9A6); Comox Formation, Vancouver Island and Oldman Formation, Upper Creataceous, Alberta, (Rouse, I957); Upper Vanguard Formation, Upper Jurassic, Mannville Group and Lower Cretaceous, Western Canada (Pocock, I962); Mannville Group, Lower Cretaceous, Alberta (Singh, l96A); Hell Creek Formation, .Upper Cretaceous and Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Red Branch Member, Woodbine Formation, Cenomanian, Oklahoma (Hedlund, l966); Edmonton Formation, Maestrichtian, Alberta (Srivastava, l966); upper Moreno Formation, Maestrichtian- Danian, California (Drugg, l967); Hell Creek Formation, uppermost Cretaceous and Tullock and Lebo Formations, Paleocene, Montana (Norton and Hall, I969); Bearpaw, Fox Hills and Hell Creek forma- tions, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Formation. Genus Polypodiigporites Potonie, I93A 1125.22351333 Polypodiisporites favus (Potonié) Potonié, l93A Polypodiisporites favus (Potonié) Potonié, l93A Pl. l0, Figs. A9, 50 l93l Polypodii(?)-sporonites favus Potonié, p. 556, fig. 3. l93A Polypodiisporites favus (Potonié) Potonié, p. 38, pl. l, figs. l9-20. l938 Polypodiumsporites favus (Potonié) Thiergart, p. 295, pl. 22, fig. IAZ I953 Verrucatosporites favus (Potonié) Thomson and Pflug, p. 60, pl. 3, figs. 52-55, pl. A, figs. l-A. I957 Polypodiaceaegporites favus (Potonié) Thiergart, l938, Rouse, p. 36A, pl. 3, figs. 70-72. l97l Reticuloidosporites pseudomurii Elsik, I968, Leffingwell, p. 2A, pl. 5, figs. la, lb. Discussion: The synonomy follows that of Srivastava (I966). The observed size range of the species was AA (5A) 65p for five specimens. \ Suggeste range has Colorado Canada (5 lhion Fo species 0 Image 1958 199 The size Smiler, Maw % flaestrich the Upper 3mm 77 Suggested affinities: Polypodiaceae Occurrence: Upper Cretaceous-Tertiary. The precise stratigraphic range has not been determined. Vermejo Formation, Maestrichtian, Colorado (Clarke, l963); Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, l966); Lance Formation, Maestrichtian and Fort Uhion Formation, Paleocene, Wyoming, (Leffingwell, 1971). This species occurs in the upper Almond Formation. Genus Todisporites Couper, l958 Igge species: Todisporites major Couper, l958 Todisporites cf. I;_mlgg£ Couper, l958 - Pl. l0, Fig. Si l958 TodiSQOrites minor Couper, p. l35, pl. l6, figs. 9, IO. Discussion: Two specimens were measured, each 25p in diameter. The size range as given by Couper (1958) is 32 (AS) 50p. Although smaller, the Almond Formation specimens agree in other characters. Suggested affinities: Osmundaceae, Todites Occurrence: Middle Jurassic-Upper Cretaceous. Vermejo Formation, 'Maestrichtian, Colorado (Clarke, l963). This species is rare in the upper Almond Formation. Genus Deltoidospora Miner emend. Potonié, l956 Type species: Deltoidospora hallii Miner, l935 Deltoidospora diaphana Wilson and Webster, l9h6 v Pl. lO, Fig. 52 l9h6 Deltoidospora diaphana, Wilson and Webster, p. 273, fig. 3. l965 Cardoiaggulina diaphana (Wilson and Webster) Stanley, p. 2h8, pl. 30, figs. 17-21. Discussion: The observed size range was 28 (37) h8p based on eight specimens. Suggested affinities: Gleicheniaceae Occurrence: Upper Campanian-Paleocene. Fort Union Series, Paleocene, Montana (Wilson and Webster, I9A6); Hell Creek Formation, uppermost Cretaceous and Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Hell Creek Formation, Uppermost Cretaceous, Montana (Norton and Hall, l969). This species occurs throughout the Almond Formation. 78 Genus Alsophilidites Cookson §5_ Potonié, I956 Type Species: Alsophilidites kergyelensis Cookson, l9h7 Alsophilidites kerguelensis Cookson, l9h7 Pl. l0, Fig. S3 l9h7 Alsophilidites kerguelensis Cookson, p. l36, pl. XVI, fig. 69. Discussion: The size range was 20 (26) 37p for five Specimens. The trilete rays extend to the equator and distinguish this species from Deltoidospora diaphana which has shorter rays. There is no equatorial thickening observed between the apices as in species of gleicheni id ites. §gggested affinities: Dicksoniaceae? Occurrence: Upper Campanian-Tertiary. Tertiary, Kerguelen (Cookson, l9h7); Hell Creek Formation, Maestrichtian, and Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Lebo Formation, Paleocene, Montana (Norton and Hall, l969); Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Formation. Genus Gleicheniidites Ross g§.Delcourt and Sprumont, l955 Type species: Gleicheniidites senonicus Ross, l9“9 Gleicheniidites senonicus Ross, l999 Pl. lO, Fig. Sh l999 Gleicheniidites senonicus Ross, p. 3i, pl. l, fig. 3. l957 §jeichenia concavisporites Rouse, p. 363, pl. 2, figs. 36, Q8; ' pl. 3, fig. “9. l96l Gleichenia senonica (Ross) Grigorjeva in Samoilovitch et. al., p; L6, pl. l3, figs. la-b, Za-b, 33-h. Discussion: The observed size range was l9 (22) 26p for five specimens. Suggested affinities: Gleicheniaceae, Gleichenia Occurrence: Jurassic-Paleocene. This species is widely distributed in Jurassic and Cretaceous rocks. Upper Cretaceous and Paleocene occurrences include the following: Upper Cretaceous, Scania, Sweden (Ross, l9h9); Matawan and Monmouth Groups, Senonian, Delaware and New Jersey (Gray and Groot, l966); Red Branch Member, Woodbine Formation, Cenomanian, Oklahoma (Hedlund, l966); Dakota Sandstone, Cenomanian, Arizona (Agasie, I969); Bearpaw Shale, Fox Hills Sandstone and Hell Creek Formation, uppermost Cretaceous and Tullock and Lebo fonnat OCCUTS 1m: Pflug Haes H695 and Pa]E Hell Hon1 tior A}? 79 formationS,Paleocene, Montana (Norton and Hall, l969). This species occurs throughout the Almond Formation. Genus Stereisporites Pflug, l953 Type spgcies: Stereisporites stereoides (Potonié and Venitz) Pflug, 1953 Stereisporites antiquasporites (Wilson and Webster) Dettmann, I963 Pl. lO, Fig. 55 l9h6 Sphagnum antiquasporites Wilson and Webster, p. 273, fig. 2. I953 Sphagnites australis (Cookson) forma parva Cookson, p. #6“, pl. 2, figs. 25, 26. l956 Sphagnumsporites antiguasporites (Wilson and Webster) Potonié, p. l7. l959 Sphagnum punctaesporites Rouse, p. 308, pl. l, figs 25, 26. I963 Stereisporites antiquaspprites (Wilson and Webster) Dettmann, p. 25, pl. I, figs. 20, 2]. Discussion: As described by Dettmann (l963), this species has a l-Zp equatorial thickening and a low, circular, distal polar thickening, 6-8u in diameter. The observed size range was 23 (26) 30W based on six specimens. Sggggsted affinities: Bryophyta Occurrence: This species is widely distributed in the Jurassic, Cretaceous and Tertiary of the northern and southern hemispheres. Hell Creek Formation, Upper Cretaceous and Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Edmonton Formation, Maestrichtian, Alberta (Srivastava, l966; upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967); Fox Hills Sandstone and Hell Creek Formation, uppermost Cretaceous and Tullock Formation, Paleocene, Montana (Norton and Hall, I969); Bearpaw, Fox Hills and Hell Creek formations, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Forma- tion. Genus Ciggulatisporites Pflug, emend. Potonie, l956 Iype species: Cingulatisporites levispeciosus Pflug, l953 Cingulatisporites dakotaensis Stanley, l965 Pl. 10, Fig. 56 l96S Cingulatisporites dakotaensis Stanley, p. 2A3, pl. 30, figs. l-8. 80 Discussion: The observed size range was 26 (28) 30p for six Specimens. Suggested affinities: Selaginellaceae, Selaginella Occurrence: Upper Campanian-Paleocene. Hell Creek Formation, Maestrichtian and Ludlow Member, Fort union Formation, Paleocene, South Dakota (Stanley, l965); Hell Creek Formation, uppermost Cretaceous and Tullock Formation, Paleocene, Montana (Norton and Hall, l967, l969); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, l969); Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs in the Lower Almond Formation. Genus Foveosporites Balme, l957 Type species: Foveosporites canalis Balme, I957 Foveosporites canalis Balme, l9S7 Pl. ll, Fig. 57 I957 Foveosporites canalis Balme, p. l7, pi. i, figs. lS-l7. Discussion: The observed size range was 32-h5p based on two specimens. Suggested affinities: Lycopodiaceae. Balme (l957) referred this species to the Lycopodium verticillatum group. Occurrence: Cretaceous. Donnybrook Sandstone, Lower Cretaceous?. Perth Basin, Western Australia (Balme, l957); Hell Creek Formation, Uppenmost Cretaceous, South Dakota (Stanley, I965). This species is rare in the lower and upper Almond Formation. Genus Conbaculatisporites Klaus, l96O Type species: Conbaculatisporites mesozoicus Klaus, l96O ' Conbaculatisporites undulatus (Leffingwell) P1. 11, Figs. 58, 59 I97] Foraminisporis undulatUs Leffingwell, p. 25, pl. h, figs. 5a, 5b. Description: The spores are triapsidately triangular in shape with strongly convex sides and well rounded apices. The trilete rays of the faint trilete mark extend l/2 to 2/3 of the spore radius. Lips are not present and the commissure is closed. A sparse coat of essentially baculate projections is present on both the proximal and distal surfaces. The projections may vary to clavate and a few have blunt bifurcations at the tip. The baculae are ca. 2p wide and up to 2.5p in length. The exine is slightly thickened at the equator (l.5p). A size range of 31+ ( SEES beer orne KlaL ggpg well [955 l963 's_ug_. 9521 llyor A lm: 1m Pf]. % SPE1 5l21 5Pe1 Log OCCI \ Hae: in 1 1955 Disc 8l 3“ (39) “hp was observed on five specimens. Discussion: This species is not considered to be cingulate. It has been transferred to Conbaculatisporites because of its baculate ornament and its triangular shape. It differs from gy.mesozoicus Klaus, I960 in having a sparse coat of baculae and from Baculatisporites comaumensis (Cookson) Potonié; i956, in having a triangular shape as well as in the spacing of the baculae. The cingulate nature of Foraminisporis foraminis Krutzsch, l959, and §;_wonthaggiensis Dettman, l963, which this species closely resembles, is also questionable. 'Suggested affinities: Osmundaceae Occurrence: Upper Campanian-Maestrichtian. Lance Formation, Maestrichtian, Wyoming (Leffingwell, l97l). This species occurs in the lower and upper Almond Formation. Genus Undulatisporites Pflug, l953 Type species: Undulatisporites microcutic Pflug in Thomson and Pflug, l953. Undulatisporites sp. Pl. ll, Fig. 60 l966 Undulatisporites cf. . undulapolus Brenner, l963. Srivastava, p. 515, pl. 111, fig. . Discussion: The rugulate ornamentation is sufficient basis for a new species. The description remains as given by Srivastava (l966). The size range of Almond Formation specimens is 22 (29138p for three Specimens. 'gpgggsted affinities: ”Pteridophyta“ Occurrence: Upper Campanian-Maestrichtian. Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, l966). This species occurs in the lower and upper Almond Formation. Genus Hamulatisporis Krutzsch, l959 Type species: Hamulatisporis humulatis Krutzsch, i959 Hamulatisporis hamulatis Krutzsch, l959 Pl. 11, Fig. 61 l959 Hamulatisporis hamulatis Krutzsch, p. l57, pl. 29, figs. 326-328. Discussion: The observed size range was 27 (29) 3lu for three Specimens. m Hell Hill: Edmoi Bearl and ' OCCUI lSSl l96l 82 Suggested affinities: Lycopodiaceae Lycopodium? Occurrence: Upper Campanian-Eocene. Eocene, Germany (Krutzsch, l959); Hell Creek Formation, Maestrichtian, South Dakota (Stanley, 1965); Fox Hills Formation, Maestrichtian, Montana (Norton and Hall, l969); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, l969); Bearpaw, Fox Hills and Hell Creek Formations, uppermost Cretaceous and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs in the lower and upper Almond Formation. Genus Cicatricosisporites Potonié and Gelletich, 1933 Type species: Cicatricosisporites dorogensis Potonié and Gelletich, l933 Cicatricosisporites dorogensis Potonié and Gelletich, l933 Pl. ll, Fig. 62 l933 Cicatriosisporites dorogensis Potonié and Gelletich, p. 522, pl. ‘, figs. 1-5. l95l Mohrioisporites dorogensis Potonié, p. l35, pl. 20, fig lk. i953 Mohrioisporites australiensis Cookson, p. #70, pl. 2, figs. 3l-3h. l956 Cicatricosisporites austratiensis (Cookson) Potonié, p. #8. l96l Mohria dorogensis (Potonié) Markova in Samoilovitch, et al., p. 86, pl. 22, fig.h. Discussion: TWo specimens were observed, 38p and 39p in equatorial diameter. Suggested affinities: Schizaeaceae, Anemia Occurrence: Jurassic-Tertiary. Oldman Formation, Upper Cretaceous, ’ Alberta, Canada (Rouse, l957); upper Moreno Formation, Maestrichtian- Danian, California (Drugg, l967); Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, l969); Bear Paw and Hell Creek Formations, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This Species occurs only in Sample 66Wlh0 of Section 8 of the lower Almond and Sample 66Wl05 of Section A of thellpper Almond. Genus Appendicisporites Weyland and Krieger, I953 Type species: Appendicisporites tricuspidatus Weyland and Krieger, l953 196C l967 '971 83 Appendicisporites cf. 5; dentimarginatus Brenner l963 9 Pl. ll, Fig. 63 I963 APEgndicisporiteS dentimarginatus Brenner, p. #5, pl. 6, figs. 2, 3. - Discussion: The Specimen illustrated here (601;) and those recorded by Clarke (I963) (63-80u) are considerably larger than Brenner's specimens, 22 (30) 3hu. Suggested affinities: Schizaeaceae, Anemia Occurrence: Lower Cretaceous (Barremian) - lower Tertiary. Potomac Group, Barremian-Albian, Maryland (Brenner, l963); Vermejo Formation, Maestrichtian, Colorado (Clarke, l963); Midway and Wilcox Groups, lower Tertiary, Gulf Coast, U.S.A. (Fairchild and Elsik, l969). This species occurs in sample 66Wl33 of the lower Almond Formation. Genus Foveasporis Krutzsch, l959 Type Species: Foveasporis fovearis Krutzsch, l959 Foveasporis triangulus Stanley, l965 P1. 11, Fig. 6t: 'l965 Foveasporis triangulus Stanley, p. 239, pl. 27, figs. l8-22. Discussion: A single Specimen, 56p in diameter, was found. Suggested affinities: Lycopodiaceae, Selaginella Occurrence: Upper Campanian-Paleocene. Fort Union Formation, Paleocene, South Dakota (Stanley, l965). This species was found only in Sample 66Wl33 of Section 8 of the lower Almond Formation. Genus Zlivisporis Pacltova, l96l Type species: Zlivisporis blanensis Pacltova, l96l Zlivisporis novomexicanum (Anderson) Leffingwell, l97l Pl. ll, Fig. 65 l960 Lycopodium novomexicanum Anderson, p. I“, pl. l, fig. 2, pl. 8, fig. l. ' l967 Lycopodiumsporites novomexicanum (Anderson) Drugg, p. 40, pl. 6, . fig. 27. , l97l Zlivisporis novomexicanum (Anderson) Leffingwell, p. 25, figs. 3a, 3b, a. 1_n.;n for $4.55 & Crel I961 Lane Hyon Mm: and 8A Discussion: The distinctness of.;; blanensis from Z; novomexicanum as maintained by Norton and Hall (l969) deserves further investigation. This species resembles individuals of the Lower Cretaceous Rouseisporites Pocock, l962, with missing equatorial flanges. it is also comparable to the Cenomanian Retitriletes pluricellulus of Pierce (l96l). Jpgperturopollenites sp. A of Orlansky (l967) is apparently identical. The observed size range of Almond Formation specimens was 32 (A7) 59p for four specimens. Suggested affinities: Lycopodiaceae? 'Occurrence: Upper Campanian-Paleocene. Kirtland Shale, uppermost Cretaceous and Nacimiento Formation, Paleocene, New Mexico (Anderson, l960); upper Moreno Formation, Maestrichtian, California (Drugg, l967); Lance Formation, Maestrichtian and Fort Union Formation, Paleocene, Wyoming (Leffingwell, l97l). This species occurs in the lower and upper Almond Formation. Genus Lygopodiumsporites Thiergart 25 Delcourt and Sprumont, l955 Type Species: Lycopodiumsporites agathoecus (Potonié) Thiergart, l938 Lycgpodiumsporites austroclavatidites (Cookson) Potonié, 1956 Pl. ll, Fig. 66 l953 Lycopodium austroclavatidites Cookson, p. #69, pl. 2, fig. 35. l956 Lycopodiumsporites austroclavatidites (Cookson) Potonié, p. #6. l958 Lycopodiumsporites clavatoides Couper, p. l32, pl. l5, figs. 12, 13. l959 Lycopodiumgporites reticulumsporites Rouse, p. 309, pi. i, fig: 3. Discussion: The selected synonomy above follows Dettmann (I963). The observed size range was 3l-39u for two specimens. Suggested affinities: Lycopodiaceae. This species has been related to the recent Lycopodium clavatum group of Knox (l950). Occurrence: Jurassic-Paleocene. .This species is widely distributed in Jurassic and Cretaceous rocks. Upper Cretaceous occurrences include the following: Magothy Formation, Turonian-Senonian, Atlantic Coastal Plain, Eastern United States (E; clavatoides) (Groot, Penny and Groot, l96l); Bearpaw Shale, Fox Hills and Hell Creek FormationS, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species is rare in the lower and upper Almond Fonnation. I967 235;! lZZp 50 (Si peris exten cal c ridge Speci deflr tion and ( Rafe. 5.14995 OCCU1 uPPM creel Bear] (Olt; 85 Genus Styx Norton, l967 Type species: Styx minor Norton, in Norton and Hall, l967 Styx minor Norton, l967 Pl. l2, Figs. 67, 68, 69 I967 §£y§_ming_Norton, in Norton and Hall, p. th, pl. I, fig. C. Discussion: The observed size range of the maximum dimension was l08- l22p (two specimens) while that of the endospore excluding spines was 50 (58) 66p on.a total of lO specimens. A foveolate inner layer of the periSpore was not observed. As noted by Oltz (l969) §y_migpp,has an extension of the perispore into an arcolamella. The other morphologi- cal characters agree favorably especially the Size and the radiating ridges within the lumina of the reticulum of the perispore. One specimen with a partially detached perispore clearly reveals a well defined trilete mark (Pl. l2, Fig. 69). in comparing Norton's descrip- tion with his plate, it is apparent that the photographs of figures B and C have been reversed. Fig. C exhibits the "radiating ridges“. Refer to Norton and Hall (l969). Suggested affinities: Filicinae?, megaSpore? Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Uppermost Cretaceous, eastern Montana (Norton and Hall, l967); Hell Creek Formation, Uppermost Cretaceous, Montana (Norton and Hall, l969); Bearpaw, Fox Hills and Hell Creek Formations, Maestrichtian, Montana (Oltz, i969). This species occurs throughout the Almond Formation. Styx maior Norton, 1967 Pl. l3, Fig. 70 l967 §£y§_mgipp_Norton and Hall, p. lOS, pl. l, fig. B. Discussion: As noted by Oltz (l969) Sy.m§125,has an extension of the perispore into an arcolamella. The size was 300p overall and ll5u for the spore body of the single specimen observed. Suggested affinities: Filicinae?, megaSpore ' Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, l967, l969 and Oltz, l969). This species occurs only in Sample 66W221, Section lh, of the Upper Almond Formation. 86 Genus Azolla Lamarck, l783 Type Species: Unknown Azolla Sp. , PI. I3, Fig. 7I Discussion: Glaucidia, 75p in length, were found with seven alternating hooks about Au in length and Bu wide at the base. The hooks taper rapidly to a sharp point and are recurved. Cross walls are present in the glaucidia with one hook per division. Three divisions are present at the base without hooks. The glaucidia are similiar to those illus- 'trated by Stough (l968) for Azolla polyancrya from the Upper Cretaceous of Argentina and Chile. To the author's knowledge a form genus has not been proposed for fossil specimens related to this living genus. Suggested affinities: Salviniaceae, Azolla Occurrence: Upper Campanian. This species was found only in Sample 66Wl33 of Section 8 of the lower Almond Formation. Genus lnaperturopollenites Thomson and Pflug, I953 Type species: lnaperturopollenites dubius (Potonié and Venitz) Thomson and Pflug, l953 lnaperturopollenites dubius (Potonié and Venitz) Thomson and Pflug, I953 Pl. IA, Fig. 72 I93A Pollenites magnus dubius Potonié and Venitz, p. l7, pl. 2, fig. 2i. l953 lnaperturopollenites dubius (Potonié and Venitz) Thomson and Pflug, p. 65, pl. A, fig. 89, pl. 5, figs. l-I3. I962 lnaperturopollenites juniperoides Rouse, p. ZOI, pl. 2, fig. 6. O Discussion: The observed size range was 28 (36) A6u for seven Specimens. Brenner (l963, p. 88) and Norris (I967, pl. I6, fig. IA) have included deeply split specimens in this Species. Such Specimens could be contained in the morphological circumscription of Taxodiaceae- pgllenites hiatus; however, in the Almond Formation the individuals of 1;.hiatus have slightly thicker, more distinctly scabrate exines. Suggested affinities: Cupressaceae, Taxodiaceae Occurrence: lnaperturopollenites dubius is widely distributed in Jurassic, Cretaceous and Tertiary rocks. Upper Cretaceous occurrences include: Raritan, Tuscaloosa and Magothy Formations, Cenomanian- 87 Senonian, Eastern United States (Groot, Penny and Groot, I96I); Burrard Formation, Eocene (in part), British Columbia, Canada (Rouse, I962); Edmonton Formation, Maestrichtian, Scollard, Alberta, Canada (Srivastava, l966); Hell Creek Formation, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Formation. lnaperturopollenites atlanticus Groot, Penny and Groot, l96l PI. IA, Fig. 73 196I ln_perturopollenites atlanticus Groot, Penny and Groot, p. I30, Discussion: The size range was A6 (5A) 59p for three specimens. Suggested affinities: Araucariaceae Occurrence: Cenomanian-Campanian. Tuscaloosa Formation, Cenomanian- Senonian (i), Eastern United States (Groot, Penny and Groot, I96I). This species occurs in the lower and upper Almond Formation. Genus Laricoidltes Potonié, Thomson and rThiergart ex Potonié, l958 Type specieszy Laricoidites magnus (Potonié) Potonié, I958 Laricoidites magnus (Potonié) Potonié, Thomson and Thiergart, I950 PI. IA, Fig. 7A I93I Sporonites (7) magnus Potonié, p. 556, fig. 6. I93A Pollenites magnus (Potonié) Potonié, p. A8, pl. 6, fig. 5. I937 {Lgrix:pollenites magnus (Potonié) Raatz, p. I5. l950 Laricoidites magnus (Potonié) Potonié, Thomson and Thiergart, l953 lnaperturopollenites magnus (Potonié) Thomson and Pflug, p. 6A, pl. A, figs. 83- 88. I962 ‘Lpplx_plicatipollenites Rouse, p. 200, pl. I, figs. IA, is. Discussion: The arbitrary size designation of 50-I00u (Thomson and Pflug, I953) of L:.magnus is intermediate between that of lnaperturg;_ pgjlenites dubis (Potonié and Venitz) Thomson and Pflug, I953 and L:_ gigantus Brenner, I963. The observed size range was 50 (69) 95p for ID specimens. Suggested affinities: Pinaceae, pgplx, Affinities for this species have been suggested with the Pinaceae, Larix, and the Araucariaceae 88 (Hedlund, l966). On the basis of available modern reference material, the Larix designation seems the most plausible. Pollen of Larix americana, L; decidua and Lpiloricina are thinner, highly folded and often ruptured, closely resembling LariCoidites magnus. The pollen of Araucaria cunninghamii is scabrate, thicker and less commonly folded. Occurrence: Cenomanian-Paleocene. Tertiary, Germany (Potonié, I93I, I93A), Thomson and Pflug, I953); Burrard Formation, Eocene (in part), British Columbia, Canada (Rouse, I962); Cannonball Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Red Branch Member, ‘Woodbine Formation, Cenomanian, Oklahoma (Hedlund, I966); Fort Union Group, Paleocene, Montana (Norton and Hall, I969); Hell Creek Formation, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, I969). This species occurs throughout the Almond Formation. Laricoidites gigantus Brenner,.l963 PLW, Fig. 75 I963 Lgricoidites gigantu§_Brenner, p. 88, pl. 36, figs. I, 2. I96A lnaperturopollenites giganteus Goczan, p. 239, pl. V, fig. I. DiscusSion: The observed size range was lOl-I27p for the two specimens observed. Suggested affinities: Pinaceae, Lgplx Occurrence: Lower Cretaceous (Barremian)-Maestrichtian. Edmonton Formation, Maestrichtian, Alberta, Canada ( Srivastava, I966). This species is rare in the lower and upper Almond Formation. Genus Araucariacites Cookson g§_ Couper, I953 Type species: Araucariacites australis Cookson, I9A7 Araucariacites Iimbatus (Balme) Habib, I969 PI. 15, Fig. 76 I957 lnaperturopollenites Iimbatus Balme, p. 3i, pl. 7, figs. 83, 8A. .I969 Araucariacites Iimbatus (Balme) Habib, p. 9i, pl. A, fig. 6. Discussion: The observed size range was 66 (78) 95p for five Specimens. Suggested affinities: Araucariaceae ’ Occurrence: Jurassic(?)-Maestrichtian. Lewis Shale, uppermost Cretaceous, New Mexico (Anderson, I960). This species occurs in the lower and Upper Almond Formation. 39 Genus Taxodiaceaepollenites Kremp, I9A9 Type Species: Taxodiaceaepollenites hiatus (Potonié) Kremp, I9A9 Taxodiaceaepollenites hiatus (Potonié) Kremp, I9A9 PI. I5, Fig. 77 1931 Pollenites hiatus Potonié, p. 5, fig. 27. I933 Taxodium hiatipites Wodehouse, p. A93, fig. l9. I9A9 Taxodiaceaepollenites hiatus (Potonié) Kremp, p. 59, pl. 5, figs. 31, 37, 38. - I950 Taxodoidites hiatus (Potonié) Potonié, Thomson and Thiergart, p. A9, pl. A, fig. 23. I95I Taxodioipollenites hiatus (Potonié) Potonié, p. IA3, fig. I7. I953 lnaperturopollenites hiatus (Potonié) Thomson and Pflug, p. 65, p'- 5’ figs. '1'20. I965 Thu|a7 hiatus (Potonié) Stanley, p. 273, pl. 38, figs. l-3. Discussion: The grains from the Almond Formation are scabrate. The ornamentation consists of isodiametric granules which are less than 0.5p in size. The observed Size range was 25 (30) 37p and was based on 7 specimens. Suggested affinities: Taxodiaceae, Taxodium Occurrence: Cretaceous-Tertiary.. Pollen of this species is widely dispersed in Cretaceous and Tertiary rocks. The occurrences given here are Selected to illustrate the Stratigraphic range. Oligocene-Miocene, Germany, (Kremp, I9A9); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, I967); Hell Creek and Fort Union Formations, UppeF' Cretaceous-Paleocene, South Dakota (Stanley, I965); Tuscaloosa, Raritan and Magothy Formations, Cenomanian-Senonian, Alabama, Georgia, North Carolina, Delaware, Maryland and New Jersey, (Groot, Penny and Groot, I96I); Fredericksburg Group, Albian, Oklahoma (Hedlund and Norris, I968); Bearpaw Shale, Fox Hills Sandstone and Hell Creek Formation, uppermost Cretaceous and Tullock and Lebo Formations, Paleocene, Montana (Norton and Hall, l969); Bearpaw, Fox Hills and Hell Creek Formations, Maestrich- tian and Tullock and Lebo Formations, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Formation. 9O Genus Cycadopites Wodehouse 55 Wilson and Webster, I9A6 Type Species: Cycadopites follicularis Wilson and Webster, I9A6 Cycadopites follicularis Wilson and Webster, I9A6 PI. l5, Fig. 78 I9A6 Cycadopites follicularis Wilson and Webster, p. 27A, fig. 7. Discussion: The observed size range was 33 (38) A8u for five specimens. ‘§gggested affinities: Cycadaceae? Occurrence: Upper Campanian-Paleocene. Fort Union Group, Paleocene, Montana (Wilson and Webster, I9A6); Edmonton Formation, Maestrichtian, Alberta, Canada. (Srivastava, I966); Lance Formation, Maestrichtian and Fort Union Formation, Paleocene, Wyoming (Leffingwell, I97I). This species occurs throughout the Almond Formation. Cycadopites sp. A PI. IS, Fig. 79 Diagnosis: The subcircular outline, psilate exine and broad sulcus distinguish this species. Description: The shape is subcircular to slightly elliptical. The sulcus extends the entire length of the grain. It is about 2.5u wide at the center and eXpands at the ends to about 5p wide. The exine is psilate and about Iu thick. The size range is I7 (23) 30p in the long dimension for eight specimens. Holotype: PI. l5, Fig. 79. Slide No. I6A9-3, Coor. 30.A-l25.l, ' Collection No. 66Wl33, Section 8, Almond Formation, late Campanian, Sec. l2, TI9N, RIOIW, Sweetwater County, Wyoming. Discussion: Slightly weathered Specimens appear roughened and pitted. It is not known if this is the scabrate ornamentation of other authors, e.g. Stanley (l965; P. 27l). ‘Monosulcites latus Norton in Norton and Hall, I969 is comparable but larger (30-37p) and scabrate. Suggested gffinltlgg: Cycadaceae? _Occurrence: Upper Campanian. This Species occurs in the lower and upper Almond Formation. 9I Genus Monosulcites Cookson g§_Couper, l953 Type species: Monosulcites minimus Cookson, I9A7 Monosulcites scabratus (Stanley) n. comb. P1. 15, Figs. 80, 81 1965 Schizosporis scabratus Stanley, p. 269, p1. 35, figs. 16-17. Discussion: The aperture of this species is considered to be monosulcate with occasional flaring at the ends and not inaperturate with Splitting as indicated by Stanley (I965). The observed size ‘was 20 (30) AOp for four specimens. Suggested affinities: Gymnospermae Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Maestrichtian, South Dakota (Stanley, I965). This species occurs in the lower and upper Almond Formation. Genus Eucommiidites Erdtman emend. Couper, I958 Type Species: Eucommiidites troedssonil Erdtman, I9A8 Eucommiidite§_couperi Anderson, I960 Pl. I5, Fig. 82 I960 Eucommiidites couperi Anderson, p. 2i, pl. ll, figs. 7, 8. Discussion: Anderson (I960) considered this species to be tricolpate. In light of Hughes' (l96l) discussion, the morphology of the apratures seems best interpreted as a sulcus and a ring furrow (zonisulcate); however, from the orientation of Specimens illustrated by Anderson and those observed from the Almond Formation it is not readily apparent that the two apertures are on opposite faces. The observed size range was 2A (26) 3Ip for six specimens. Suggested affinities: Gymnospermae Occurrence: Upper Campanian-Maestrichtian. Lewis Shale, Uppermost Cretaceous, New Mexico (Anderson I960). This Species occurs in the lower and Upper Almond Formation. Genus_§guisetosporites Daugherty emend. Singh, I96A Type species: Equisetosporites chinleana Daugherty, I9AI 92 §guisetosporites ovatus (Pierce) Singh, l96A PI. IS, Fig. 83 I96I Striainaperturites ovatus Pierce, p. A5, pl. Ill, fig. 80. l96A Eguisetosporites ovatus (Pierce) Singh, p. I33, pl. l7, fig. I6. I969 Ephedripites ovatus (Pierce) Norton in Norton and Hall, p. 3A, pl. 3, fig. I9. Discussion: The observed size range was 28 (37) ASp for the polar dimension of II specimens. Suggested affinities: Ephedraceae, E hedra 'Occurrence: Aptian-Maestrichtian. Cenomanian, Minnesota, (Pierce, l96l); Ellerslie Member, McMurray Formation, Aptian, Alberta, Canada (Singh, I96A); Bearpaw Shale, Maestrichtian, Montana (Norton and Hall, l969). This species occurs in the lower and upper Almond Formation. Genus Vitreisporites Leschik, I955 Type species: Vitreisporite§_signatus Leschik, I955 Vitreisporites pallidus (Reissinger) Nilsson, I958 PI. I5, Fig. 8A l938 Plt195porites pallidus Reissinger, p. IA. I950 Pityopollenites pallidus (Reissinger) Reissinger, p. I09, pl. l5, figs. l- 5. I958 Caytonipollenites pallidus (Reissinger) Couper, p. ISO, pl. 26, figs. 7, 8. I958 Vitreisporites pallidus (Reissinger) Nilsson, p. 77, pl. 7, figs. figs. Iz-IF. 0 Discussion: The observed size range was 2A (35) ASp for nine specimens. Suggested affinities: Caytoniaceae, Caytonanthus Occurrence: Jurassic-Cretaceous. This Species is widely reported from Jurassic and Cretaceous rocks. Vermejo Formation, Maestrichtian, Colorado (Clarke, I963). It occurs in the lower and Upper Almond Formation. Genus Phyllocladidites Cookson £5 Couper, l953 Type Species: Phyllocladidites mawsonii Cookson‘gg Couper, l953 93 Phyllocladidites mawsonii Cookson £5. Couper, I953 PI. I5, Fig. 85 I9A7 Phyllocladidites mawsonii Cookson, p. I33, pl. XIV, figs. 22-28. I953 Phyllocladidites mawsonii Cookson g§_Couper, p. 38, pl. 9, fig. l35. Discussion: The observed size range was AS-SOu for two Specimens. Suggested affinities: Podocarpaceae, Dacgydium Occurrence: Lower Cretaceous-Lower Oligocene. Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, l969); Bear Paw and Hell Creek Formations, Maestrichtian, Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs in the lower and upper Almond Formation. Genus Podocarpidites Cookson g§,Couper, l953 Type Species: Podocarpidites ellipticus Cookson g§.Couper, l953 Podocarpidites maximus (Stanley) Norton, l969 PI. 15, Fig. 86 I965 Podoca_pus maximus Stanley, p. 28I, .AI, figs. I-8. I969 Podocarpidities maximus (Stanley) Norton in Norton and Hall, p. 3I, .A—, fig. l2. Discussion: The observed size range was 50 (55) 58p for the overall dimension of four Specimens. Sgggested affinities: Podocarpaceae, Podocarpus Occurrence: Upper Campanian-Paleocene. Fort Union Formation, Paleocene, South Dakota (Stanley, l965); Tullock and Lebo Formations, Paleocene, Montana (Norton and Hall, I967, I969); Hell Creek Formations, Maestrich- tian and Tullock and Lebo Formations, Paleocene, Montana (Oltz, I969). This species occurs in the lower and Upper Almond Formation. Genus Cedripites Wodehouse, I933- Type species: Cedripites eocenicus Wodehouse, I933 Cedripites parvus Norton, l969 PI. I5, Fig. 87 I969 Cedripites parvus Norton in Norton and Hall, p. 29, pl. ilflscussion: The overall size range was 60 (65) 69p for five Specimens. A, fig. 7. 91, Suggested affinities: Pinaceae, Cedrus? Occurrence: Upper Campanian-Paleocene. Tullock Formation, Paleocene, Montana (Norton and Hall, I969); Fox Hills and Hell Creek Formations, Maestrichtian and Tullock and Lebo Formations, Paleocene, Montana (Oltz, l969). This species occurs in the lower and Upper Almond Formation. Genus Abietineaepollenites Potonié, I95I .Type Species: Abietineaepollenites microalatus (Potonié) Potonié, l95l. Abietineaepollenites foveoreticulatus Norton, I969 PI. I5, Fig. 88 I969 Abietineaepollenites foveoreticulatus, Norton in Norton and Hall, p. 28, pl. A, “9.7;. Discussion: The overall size range was 58 (62) 68p for four specimens. Suggested affinities: Pinaceae Occurrence: Upper Campanian-Paleocene. Fort Union Group, Paleocene, Montana (Norton and Hall, l969). This species occurs throughout the Almond Formation. Genus Alisporites Daugherty, I9Al Type species: Alisporites opii Daugherty, I9Al Alisporites grandis (Cookson) Dettmann, I963 P1. 16, Fig. 89 , I953 Dissaccites ggandis Cookson, p. A7l, pl. 2, fig. AI. I957 PityoSporites grandis (Cookson) Balme, p. 36, pl. I0, figs. llO, III. I959 Alisporites rotundus Rouse, p. 3l6, pl. l, figs. l5, l6. I963 Alisporites ggandis (Cookson) Dettmann, p. l02, pl. XXV, figs l-A. Discussion: The overall size range was 79 (93) ll3p for five specimens. Suggested affinities: Pinaceae Occurrence: Upper Jurassic-Cretaceous. This species has been reported ‘from the Upper Jurassic-Lower Cretaceous by Balme (l957) and from the lxxuer Cretaceous by Cookson (l953) Rouse (I959) Pocock (I962) Dettmann (I963) and Singh (l96A). Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, l966). This species occurs in the lower and Upper Almond Formation. 95 Genus Rugubivesiculites Pierce, l96l Type Species: Rugubivesiculites convolutus Pierce, l96l Rugubivesiculites floridus Pierce, I96l PI. l6, Fig. 90 I96I Rugubivesiculites floridus Pierce, p. A0, pl. II, fig. 63. Discussion: The overall size of the single specimen observed was 50p. Suggested affinities: Podocarpaceae Occurrence: Cenomanian-Campanian. To the author's knowledge this 'species has not been previously reported above the Cenomanian (Pierce, l96l). The genus is known to range throughout the Upper Cretaceous. This Species occurs only in Sample 66WIAA of Section 9 of the upper Almond Formation. Genus Tsugaepollenites Potonié and Venitz emend. Potonié, I958 Type species: Tsugaepollenites igniculus (Potonié) Potonié and Venitz, I93A Tsugaepollenites igniculus (Potonié) Potonié and Venitz, l93A .PI. l6, Figs. 9I I93l Sporonites igniculus Potonié, p. 556, fig. 2. I93A Tsugaepollenites igniculus (Potonié) Potonié and Venitz, p. l7, pl. I, fig. 8. I953 Zonalapollenites igniculus (Potonié) Thomson and Pflug, p. 66, pl. A, figs. 75-79. ' Discussion: The observed size range was AA (A9) 53p for six specimens. A tetrad mark was present on some specimens. Suggested affinities: Pinaceae, TSU a ‘Qccurrence: Upper Campanian-Pliocene. Miocene-Pliocene, Middle Europe (Thomson and Pflug, l953); Upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967). This species occurs only in Sample 66Wl33, Section 8, of the lower Almond Formation. Genus Quadripollis Drugg, l967 'pre Species: (Quadripollis krempii Drugg, I967 _Quadripollis krempii Drugg, I967 PI. I6, Fig. 92 I967 Quadripollis krempii Drugg, p. 62, pl. 8, figs. 55, 56. 96 Discussion: Drugg (l967) compares this species with lnaperturopollenites Iimbatus Balme, I957. The size range was Al (A6) 56p for the three tetrads observed. ' Suggested affinities: Gymnospermae? Occurrence: Upper Campanian-Maestrichtian. Upper Moreno Formation, Maestrichtian, California (Drugg, l967). This Species occurs in the lower and Upper Almond Formation. Genus Classopoliis Pflug emend. Pocock and Jansonius, l96l Type species: Classopollis classoides Pflug emend. Pocock and Jansonius, I96l Classopollis classoides Pflug emend. Pocock and Jansonius, I96l PI I6, Fig. 93 I953 Classopollis classoides Pflug, p. 9i, pl. l6, figs. 29-3I. I96l Classopollis classoides Pflug emend. Pocock and Jansonius, p. AA3, p1. 1, figs. 1-9. Discussion: The observed size range was 22 (25) 3lu for five specimens. Suggested affinities: Gymnospermae. Classopollis pollen occurs in the Mesozoic conifer family Cheirolepidaceae(Barnard, I968.) Occurrence: Jurassic-Cretaceous. Vermejo Formation, Maestrichtian, Colorado (Clarke, I963). This species occurs in the lower andiipper Almond Formation. Genus Spermatites Miner, l935 Type Species: None designated. Spermatites sp. Pl. l7, Fig. 9A Discussion: A single partial specimen was found measuring 279p in length. No pollen was found in the pollen chamber of this ovule. It has not been identified as to species. Suggested affinities: Gymnospermae. Occurrence: Cretaceous occurrences are reported by Miner (l935), Hughes (I96l), Hedlund (I966) and Brenner (l967). This Species occurs only in Sample 67WI of Section 8 of the lower Almond Formation. 97 Genus Arecipites Wodehouse emend. Anderson, I960 1125.52351333 Arecipites punctatus Wodehouse, I933 Arecipites reticulatus (van der Hammen) Anderson, I960 Pl. I7, Fig. 95 I95A Monocolpites reticulatus van der Hammen, p. 89. I95A Pollenites reticulatus van der Hammen, p. 96. ,I960 Arecipites reticulatus (van der Hammen) Anderson, p. I8, pl. I, fig. I9, pl. 7, fig. 6, pl. 8, fig. 3, pl. IO, fig. 7. I965 Pseudotricolpites reticulatus Stanley, p. 3I7, figs. 26-37. I966 Liliacidites variegatus Couper. Srivastava, p. 525, pl. IV, figs. 15, 16. I969 Liliacidites sp. Norton and Hall, p. 36, pl. 5, fig. 3. Discussion: The observed size range was 27 (29) 32p for the polar diameter of four specimens. Sgggested affinities: Monocotyledoneae? Occurrence: Upper Campanian-Paleocene. Kirtland and Lewis Shales, Uppermost Cretaceous and Nacimiento Formation, Paleocene, New Mexico (Anderson, I960); Hell Creek Formation, Maestrichtian and Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, I966); Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, l969). This Species occurs throughout the Almond Formation. Genus Liliacidites Couper, I953 Type species: Liliacidites kaitangetaensis Couper, I953 '- ' Liliacidites leei Anderson, I960 PI. l7, Fig. 96 I960 Liliacidites leei Anderson, p. l8, pl. I, figs. 9-ll; pl. 5, fig. IO; pl. 7, fig. 7; pl. 8, figs. A, 5. Discussion: The observed size range was 25 (35) SAp for I3 specimens. Suggested affinities: Angiospermae Occurrence: Upper Campanian-lower Paleocene. Kirtland Shale, Ojo Alamo Sandstone and Nacimiento Formation, uppermost Cretaceous-Paleocene, San Juan Basin, New Mexico (Anderson, I960). This species occurs in the lower and Upper Almond Formation. 98 Liliacidites complexus (Stanley) Leffingwell, l97l PI. 17, Figs. 97, 98 I965 Schizosporis complexus Stanley, p. 267, pl. 36, figs. 7-I7. I97l Liliacidites complexus (Stanley) Leffingwell, p. AI, pl. 7, figs. 3a, 3b. Discussion: This species is thought to have a monosulcate aperture. The size range was 22 (37) A8u for seven specimens. Suggested affinities: Angiospermae. The complex exine serves to relate this species to the angiosperms. 'Occurrence: Upper Campanian-Maestrichtian, Paleocene? Hell Creek Formation, Maestrichtian, South Dakota (Stanley, I965). Fox Hills and Hell Creek Formations, Maestrichtian, Montana (Norton and Hall, I967 and I969), Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, I969); Bear Paw, Fox Hills and Hell Creek Formations, uppermost Cretaceous and lower Tullock Formation. Paleocene, Montana (Oltz, I969), Lance Formation, Maestrichtian, Wyoming (Leffingwell, I97l). This species occurs in the upper Almond Formation. Genus Tricolpopollenites Pflug and Thomson, I953 Type species: Tricolpopollegjtes permularius (Potonié) Thomson and Pflug, I953 Tricolpopollenites sp. l Norton and Hall, l969 P1. 18, Figs. 99, 100 I969 Tricolpgpollenites sp. l Norton and Hall, p. A9, pl. 7, fig. l5. Discussion: The observed size range was ll (I2) l5u in the polar diameter for three specimens and 9-I2u for the equatorial diameter of two specimens. .“ Suggested affinities: Dicotyledonae Occurrence: Upper Campanian-Maestrichtian. Bearpaw Shale, uppermost Cretaceous, Montana (Norton and Hall, l969). This species occurs throughout the Almond Formation. Tricolpopollenites microscabratus‘ Norton, I969 P1. 18, Fig. 101 I969 Tricolpopollenites microscabratus, Norton in Norton and Hall, p. A7, p1. 7, fig. 8. Discussion: The observed size range was l6 (l9) 22p in the polar diameter for six specimens. 99 Suggested affinities: Dicotyledoneae Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Uppermost Cretaceous, Montana (Norton and Hall, l969). This species occurs in the lower and upper Almond Formation. Tricolpopollenites microreticulatus Norton, I969 PI. 18, Figs. 102, 103 I969 Tricolpopollenites microreticulatus Norton in Norton and Hall, p. A7, pl. 7, fig. 8. 1969 Tricolpopollenites tersus Oltz, p. I52, pl. A2, fig. IA7. Discussion: The observed size range was l2 (IA) I6u for the polar axis as observed on six specimens and I0 (I3) I7p for the equatorial axis as observed on nine specimens. The small size and microreticulate exine (lumina ca. 0.5p) distinguish this species. It closely resembles I;_micromunus Groot and Penny, I960,except in having a finer reticulum. Suggested affinities: Dicotyledoneae Occurrence: Upper Campanian-Paleocene. Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, l969): Tullock Formation, Paleocene, Montana (Oltz, I969). This species occurs throughout the Almond Formation. TricopoPollenites clavireticulatus Norton, l969 P1. 18, Figs. 109, 105 I969 Tricolpopollenites clavireticulatus Norton in Norton and Hall, p. A9, pl. 7, fig. IA. ' I969 Salixipollenites sp. 8 Snead, p. 35, pl. 6, figs. 8, 9. I969 Tricejpites sp. C Oltz, p. I59, pl. A2, fig. I38. Discussion: This species is distinguished by a variable reticulum in which the lumina become larger at the equator between the coIpi. The size range was IA (I8) Zlu for the polar diameter of five specimens and l2 (I3) IAp in the equatorial diameter for four specimens. A Suggested affinities: Salicaceae .Qecurrence: Upper Campanian-Maestrichtian. Bearpaw, Fox Hills and Hell Creek Formations, Uppermost Cretaceous, Montana (Norton and Hall, I969); Hell Creek Formation, Maestrichtian, Montana, (Tricolpites Sp. C) I00 (Oltz, I969); Edmonton Formation, Maestrichtian (Snead, I969). This species occurs in the lower and upper Almond Formation. Tricolpopollenites deliclavatus Oltz, l969 Pl. I8, Fig. l06 I969 Tricolpopollenites deliclavatus Oltz, p. I5l, pl. A2, fig. IAO. Discussion: The size range of this species was l6-l7p for three specimens. The Upper Albian-Cenomanian species I; micromunus Groot and Penny, I960 is comparable but slightly smaller (ca. IAu). Suggested affinities: Dicotyledoneae Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Maestrichtian, Montana (Oltz, l969). This species occurs in the lower and upper Almond Formation. Tricolpopollenites compactus Norton, l969 PI. 18, Fig. 107 I969 Tricolpopollenites compactus Norton in Norton and Hall, p. A7, pl. 7, fig. 9. Discussion: The observed size range of the polar_axis was 20 (2A) 27p for six specimens. Suggested affinities: Trochodendroceae? Occurrence: Upper Campanian-Paleocene. Lebo Formation, Paleocene, Montana (Norton and Hall, I969). This Species occurs in the lower and Upper Almond Formation. Genus Tricolpites Cookson e; Couper, I953 Type species: Tricolpites reticulatus Cookson, l9A7 Tricolpites mutabilis Leffingwell, I97I P. I8, Fig. I08 l96A ”Tricolpopollenites” sp. Leopold and Pakiser, pl. 5, figs. l, 2 (figs. 3-5 excluded). I965 Tricolpites sp. Jardiné and Magloire, p. 2IA, pl. X, figs. 9, l0, I3, IA (figs. 8, II, I2 excluded). I97l Tricolpites mutabilis Leffingwell, p. AA, pl. 8, figs. I-3. Description: The pollen are rounded triangular, with convex sides, and oblate. The three colpi extend into the grain for 3/A of the radius as seen in polar view and divide the grain into distinct lobes. IOI The exine is about lp in thickness, psilate to microgranulate (scabrate or infreponctuée). The granules are less than .Su in size. The size range is l2 (I5) 20p as observed on nine specimens. Discussion: Stanley (I965, p. 320) lists the synonomy of the genus. Descriptions or sizes are not provided for the specimens listed as "Tricolpopollenites“ by Leopold and Pakiser (I96A), but they appear to be conspecific from the photographs. Tricolpites mutabilis is conspecific with ];_sp. of Jardiné and Maglorie (I965). The psilate- scabrate exine of I;_mutabilis distinguishes it from the reticulate species of the genus. Iy_pechyexinus Couper, I953 is a psilate Species, but it has a thicker exine and a large size (26-A0p). Suggested affinities: AngiOSpermae, Dicotyledoneae Occurrence: Cenomanian-Paleocene. Tuscaloosa Group, Cenomanian-Turonian, Alabama (Leopold and Pakiser, l96A); Turoniani-Lower Senonian, Sénégal and C8te-d'lvoire (Jardiné and Magloire, I965), (the Senonian as used by Jardiné and Magloire excludes the Maestrichtian); Lance Formation, Maestrichtian and Fort Union Formation, Paleocene, Wyoming (Leffingwell, I97l). This Species occurs throughout the Almond Formation. Tricolpites psilascabratus Norton, I969 PI. 18, Figs. 109, 110 I969 Tricolpites psilascabratus Norton in Norton and Hall, p. A5, pl. 7, fig. 3. Discussion: The observed size range was I9 (23) 27p for the equatorial diameter of four specimens and 23-2Ap for the polar diameter of two specimens. Suggested affinities: Dicotyledoneae Occurrence: Upper Campanian-Paleocene. Hell Creek Formation, Maestrichtian and Fort Union Formation, Paleocene, Montana (Norton and Hall, l969); Fox Hills and Hell Creek Formations, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This species occurs throughout the Almond Formation. Tricolpites lillei Couper, l953 Pl. I8, Fig. III I953 Tricolpites lillei Couper, p. 62, pl. 8, figs. ll6, ll7. l02 Discussion: The observed size range was 26-27p for the equatorial diameter of two specimens. Suggested affinities: Ranunculaceae Occurrence: Cretaceous-Paleocene. Cretaceous, New Zealand (Couper, l953); Lebo Formation, Paleocene, Montana (Norton and Hall, I969). This species is rare in the lower and Upper Almond Formation. Tricolpites reticulatus Cookson, 19A7 PI. 18, Fig. ll2 I9A7 Tricolpites reticulatus Cookson, p. l3A, pl. XV, fig. A5. l95A Gunnerites reticulatus Cookson, in Cookson and Pike, p. 20I, pl. I figs. 18, 19. I965 Tricolpites interangulus Newman, p. IO, pl. I, fig. 3, ’ l97l Gunnera microreticulata (Belsky, Botenhagen and Potonié) Leffingwell, p. 37, pl. 6, figs. 7, 8. Discussion: Specimens from the Almond Formation are gradational in shape from circular to subcircular with slight convexity between the colpi. The latter condition does not seem to warrant the separate species, L inter- angulus. The observed size range was 20 (26) 30u for I2 specimens. Suggested affinities: Haloragaceae, Gunnera Occurrence: Campanian-Tertiary. Tertiary, Kerguelen, (Cookson, I9A7); Tertiary, New Guinea and Australia (Cookson and Pike, I95A); Upper Mancos, Mesaverde, Iles and Williams Fork Formations, Campanian and Lewis Forma- tion, Maestrichtian, Colorado (Newman, I965); Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, I966); Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, I967, I969 and Oltz, l969); Lance Formation, Maestrichtian, Wyoming,(Leffingwell, I97l). This species occurs in the lower and upper Almond Formation. Tricolpites bathyreticulatus Stanley, I965 PI. 18, Fig. 113 I965 Tricolpites bathyreticulatus Stanley, p. 320, pl. A7, figs. l8-23. I969 Salixipollenites sp. Snead, p. 3A, pl. I, fig. 8. Discussion: The observed size range was 2i (23) 26p for Six specimens. Suggested affinities: Dycotyledoneae Occurrence: Upper Campanian-Paleocene. Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Tullock and Lebo Fermations, Paleocene, l03 Montana (Morton and Hall, I967, I969); Teurian, Paleocene, New Zealand, (McIntyre, I968); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, l969); Tullock Formation, Paleocene, Montana (Oltz, I969); Fort Union Formation, Paleocene, Wyoming (Leffingwell, l97l). This species occurs in the lower and Upper Almond Formation. Tricolpites Cf°.I; anguloluminosus Anderson, I960 PI. 18, Fig. 1111, 115 I960 Tricolpites anguloluminosus Anderson, p. 26, pl. 6, figs. l5-l7; pl. 8, figs. I7, l8. Discussion: The specimens from the Almond Formation have Slightly coarser muri (Ip) in comparison to Anderson's specimens (0.5“), but they compare favorably in the height of the muri (l.5u) and the width (ca. 2p) of the angular lumina. The size range of the polar axis of two specimens was 39-A3p and the equatorial axis of a third specimen was 37p. Suggested affinities: AngIOSpermae, Dicotyledoneae Occurrence: Upper Campanian-lower Paleocene. Ojo Alamo Sandstone and Naciemiento Formation, Mower Paleocene, San Juan Basin, New Mexico (Anderson, I960); Fort Union Formation, Paleocene, Wyoming,(LeffingwelI, l97l). This species occurs in the lower andiipper Almond Formation. Genus Fraxinoipollenites Potonié, I960 Type species: Fraxinoipollenites pudicus (Potonié) Potonié, I960 Fraxinoipollenites variabilis Stanley, l965 P1. I8, Figs. 116, 117 I965 Fraxinoipollenites variabilis Stanley, p. 306, pl. A5, figs. 29-35. Discussion: The observed Size range was l8 (20) 27p for the polar diameter of l2 Specimens and I8 (l9) 2lu for the equatorial diameter of five specimens. Suggested affinities: Oleaceae, Fraxinus? Occurrence: Upper Campanian-Paleocene. Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Fort Union Formation, Paleocene, Wyoming (Leffingwell, I97l). This species occurs throughout the Almond Formation. Genus Cranwellia Srivastava, l966 Iype species: Cranwellia striata (Couper) Srivastava, l966 IOA Cranwellia rumseyensis Srivastava, l966 PI. 18, figs. 118, 119 I966 Cranwellia rumseyensis Srivastava, p. 538, pl. ll, figs. 3, 7. Discussion: 'flg.rumseyensis differs from §;_striata in having very inconspicuous or no pore chambers, slightly straight to convex sides, bluntly rounded equatorial arms, less pronounced striations in the polar area“ (Srivastava, I966). The observed size range was 22 (27) 38p for the equatorial diameter of seven specimens. Suggested affinities: Loranthaceae, Elytranthe Occurrence: Upper CampaniangMaestrichtian. Edmonton Formation, Maestrich- tian, Alberta, Canada (Srivastava, l966 and Snead, l969). This Species occurs in the lower and upper Almond Formation. Genus Pistillipellenites Rouse, I962 Type species: Pistillipollenites mcgregorii Rouse, I962 Pistillipollenites sp. A PI. l8, Figs. l20, l2l I963 Pistillipollenites? sp. Clarke, p. IOO, pl. II, figs. l8, I9. Diagnosis: This Species is distinguished by its closely spaced gemmate ornamentation. Description: The pollen grains are subcircular when seen in polar view and elliptical in equatorial view. The exact nature of the apertures is uncertain. Three equatorially positioned indentations which are elongate parallel to the polar axis are interpreted as colpi. These are best seen in Pl. I8, Fig. l20. The colpi are closed in equatorial view. The gemmate ornamentation is closely spaced. The gemmae are slightly bulbose at the apex, and they are approximately l.5u wide and approxi- mately 2p high. The size range was 2] (2A) 28p for nine Specimens. The polar diameter is approximately the same as the equatorial diameter. Holotype: PI. I8, Fig. l20. Slide No. l6A9-3, Coor. 27.7-l22.8, Collection No. 66Wl33, Section 8, Almond Formation, late Campanian, Sec. l2, TI9N, RIOIW, Sweetwater County, Wyoming. Discussion: Pistillipollenites sp. A is conspecific with Ep2 Sp. of Clarke (I963). It has a closely spaced gemmate ornamentation and is distinct from E; mcgregorii Rouse (I962) which has a widely spaced gemmate ornamentation. Drugg (I967, p. 50) identified a comparable species as IOS Ilexpollenites sp., but it is Somewhat larger (A8p). I. megagemmatus McIntyre, I968 is Similar, but it has large gemmae (3-Ap in height and width). Suggested affinities: Gentianaceae, Rusbyanthus. This species agrees well with Rusbyanthus cinchonifolius as illustrated and described by Erdtman (I952, p. I85). Drugg (l967) referred his species to the Aquifoliaceae. Occurrence: Upper Campanian-Maestrichtian. Vermejo Formation, Maestrich- tian, Colorado (Clarke, I963). The species occurs in the ower and Upper Almond Formation. Genus Ericaceoipollenites Potonié, I960 Type species: Ericaceoipollenites roboreus (Potonié) Potonié, I960 Ericaceoipollenites rallus Stanley, I965 Pl. I8, Fig. I22 I965 Ericaceoipollenites rallus Stanley, p. 296, pl. AA, figs.I5-l8. Discussion: All specimens appear to be weathered. Stanley (I965) describes the species as scabrate with partially pitted exines. Speci- mens from the Almond are best described as reticulate but agree in other characters. The observed size range was 23(29) 37p for I3 specimens. Suggested affinities: Ericaceae, Kalmia? Occurrence: Upper Campanian-Paleocene. Fort Union Formation, Paleocene, South Dakota (Stanley, I965). This species occurs throughout the Almond Formation. Genus Aquilapollenites Rouse emend. Funkhouser, l96l Type species: (Aguilapollenites quadrilobus Rouse, I957 Aquilapollenites polaris Funkhouser, l96l PI. 19, Figs. 123, 124 l96l Aguilapollenites polaris Funkhouser, p. I98, pl. I figs. l,2. Discussion: The observed size range of the polar axis was 23 (38) 52p for 2 l7 specimens. Suggested affinities: Angiospermae Occurrence: Upper Campanian-Maestrichtian. Lance Formation, Maestrich- tian, Wyoming (Funkhouser,.l96l); Hell Creek Formation, Maestrichtian, Montana, (Norton, I965 and Norton and Hall, l969); Edmonton Formation, l06 Maestrichtian, Alberta, Canada (Srivastava, I966 and Snead, I969). This Species occurs throughout the Almond Formation. Aquilapollenites pulcher Funkhouser, l96l P1. 19, Fig. 125 l96l Aquilapollenites pulcher Funkhouser, p. I98, pl. l, fig. 7. Discussion: The observed size range of the polar axis was 26 (30) 35p for three specimens. Suggested affinities: AngiOSpermae Occurrence: Upper Campanian-Maestrichtian. Lance Formation, Maestrich- tian, Wyoming (Funkhouser, l96l). This species occurs in the lower and Upper Almond Formation. Aquilapollenites striatus Funkhouser, l96l P1. 19, Fig. 126 I96l Aquilapollenites striatus Funkhouser, p. I96, pl. 2, fig. A. Discussion: The size range of the polar axis was 27-A3p on two specimens. Suggested affinities: Angiospermae Occurrence: Upper Campanian-Maestrichtian. Lance Formation, Maestrichtian, Wyoming (Funkhouser, l96l). This species occurs in the lower and upper Almond Formation. Aguilapollenites reticulatus Stanley, I965 P1. 19, Fig. 127 I965 Aquilapollenites reticulatus Stanley, p. 3A8, pl. 8, figs. I-l2. Discussion: The reticulate exine of the body and the Striate exine of the protrusions serve to distinguish this species. The size was 56u for the polar axis of the single specimen observed. Suggested affinities: Angiospermae Occurrence: Upper Campanian-Maestrichtian. Hell Creek Formation, Maestrichtian, South Dakota (Stanley, l96l, I965); Hell Creek Formation, Maestrichtian, Montana (Norton, I965; Norton and Hall, l969; Oltz, l969); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, I969). Thhs species occurs only in Sample 66W237, Section IA, of theIJpper Almond Formation. Genus Cupuliferoipollenites Potonié, I95l Iype species: Cupuliferoipollenites pysillus (Potonié) Potonié, l95l l07 Cupuliferoipollenites pusillus (Potonié) Potonié, l95l PI. 19, Figs. 128, 129 I93A Pollenites guisqualis forma pusillus Potonié, p. 7i, pl. 3, fig. 2I. 1951 Cupyliferojpollenites pusillus (Potonié) Potonié, p. 150, pl. 20, fig. 69. ' Discussion: The observed size range was I3 (I6) 20p for the polar dimension of six specimens. Suggested affinities: Fagaceae, Castanea Occurrence: Upper Campanian-Miocene. Brightseat Formation, Paleocene, Maryland (Groot and Groot, I962); pper Moreno Formation, Danian, California (Drugg, l969); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, I969). This species occurs in the lower and upper Almond Formations Genus Tricolporopollenites Thomson and Pflug, I953 Type species: Tricolporopollenites dolium (Potonié) Thomson and Pflug, l953 Tricolporopollenites affluens (Stanley) n. comb. P]. 1.9) Fig. '30 I962 InigolporOQollenites sp. Rouse, p. 2l6, pl. 5, fig. I. I965 Vitis? affluens Stanley, p. 3II, pl. A6, figs. l8-2I. l969 y_i_§_§_s_ sp. cf. 1.? affluens Snead, p. 29, pl. 7, figs. 8, 9. I969 Tricolpites abatus Oltz, p. IA7, pl. Al, fig. I23. Discussion: The description of this species remains as designated by Stanley. The porate nature is not obvious on all individuals. The colpi are open only at the equator and not for their entire depth as seen in the polar view. The subtriangular shape is definitive. An equatorial orientation has not been observed. The size range of the Almond Formation specimens was IA (l7) 2Ap for seven specimens. Suggested affinities: Vitaceae, yi£i§_ Occurrence: Upper Campanian-Eocene. Terminal Dock Locality, Burrard Formation, Eocene, British Columbia, Canada (Rouse, I962); Ludlow Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, l969); Tullock Formation, Fort Union Group, Paleocene, Montana (Oltz, l969). This species occurs in the lower and Upper Almond Formation. I08 Genus Cupanieidites Cookson and Pike, I95A Type epecies: Cupanieidites orthoteichus Cookson and Pike, I95A Cupanieidites major Cookson and Pike, I95A P1. 20, Figs. 131, 132 I95A Cupanieidites major Cookson and Pike, p. 2I3, pl. 2, figs. 83-85. I965 Cupanieidites speciosus Stanley, p. 309, pl. A6, figs. I2-I7. l966 Cupanieidites sp. Srivastava, p. 533, pl. VII, fig. 20. 197i Cupanieidites inaegualis Leffingwell, p. 49, pl. 9, figs. 5, 9, 10. Discussion: C. speciosus (I8-25p) is apparently identical to 2y,mglp£, 29-35u (Cookson and Pike, l95A) and 25-35u (Norton and Hall, l969), except for its slightly smaller size. The observed size range of nine Specimens from the Almond Formation was I7 (2i) 2Ap, This Species exhibits a tricolporate aperture with the colpi uniting at the poles. The morphological term “syncolporate” is preferred to describe this condition. It is analogous to the term ”syncolpate”. Suggested affinities: Sapindaceae, Cupanieae Occurrence: Upper Campanian-Eocene. Eocene, Victoria, Australia, (£y_mglg£) (Cookson and Pike,'l9SA); Hell Creek Formation, Maestrichtian, South Dakota (Stanley, l965); Edmonton Formation, Maestrichtian, Alberta, Canada, (gy_sp.)(Srivastava, I966); Upper Moreno Formation, Maestrichtian-Danian, California, (gy.mglgp) (Drugg, I967); Hell Creek Formation, Maestrichtian and Tullock Formation, Paleocene, Montana, (§y_mgipp) (Norton and Hall, I969); Hell Creek Formation, Maestrichtian, Montana (Oltz, l969); Lance Formation, Maestrichtian and Tullock Member, Fort Union Formation Paleocene, Wyoming (Leffingwell, l97l). This species occurs in the lower and Upper Almond Formation. Genus Engelhardtioidites Potonié, Thomson and Thiergart, I950 _Iype epecies: Engelhardtioidites microcoryphaeus (Potonié) Potonié, Thomson and Thiergart, I950 Engelhardtioidites minutus Newman, I965 PI. 20, Fig. 133 I965 Engelhardtioidites minutus Newman, p. I3, pl. I, fig. 8. I09 Discussion: The size range was l0 (l3) lAu for ll specimens. Suggested affinities: Angiospermae Occurrence: Campanian-Maestrichtian. Upper Mesaverde, lower Wasatch, Williams Fork, Lewis and Lance Formations, Campanian, Maestrichtian, Colorado (Newman, I965). This species occurs in the lower and upper Almond Formation. Genus Triporopollenites Pflug e§_Thompson and Pflug, l953 Type species: Triporopollenites coryloides Pflug in Thompson and Pflug, l953 Triporopollenites Sp. B Clarke, I963 P1. 20, Fig. 1311 I963 Triporopollenites sp. B Clarke, p. 9A, pl. II, figs. 5, 6. Discussion: The observed size range was 25 (28) 32p for eight specimens. Suggested affinities: Betulaceae Occurrence: Upper CampanianfMaestrichtian. Vermejo Formation, Maestrich- tian, Colorado (Clarke, I963). This Species occurs in the lower and upper Almond Formation. Triporopollenites rugatus Newman, I965 PI. 20, Fig. I35 l96A Caryepollenites sp. Newman, pI. I, fig. I6. I965 Triporopellenites rugetus Newman, p. I2, pl. I, fig. 7. Discussion: The observed size range was l9 (26) 32p for ID specimens. Cagyapollenites scabratus Groot and Groot of Snead (I969) may be conspecific. Suggested affinities: Juglandaceae, Engelhardtia (Norton and Hall, I969). Occurrence: Upper Campanian-Paleocene. Wasatch and Fort Union Formations, Paleocene, Colorado (Newman, l965); Hell Creek Formation, Maestrichtian, Montana (Norton and Hall, I967, I969). This species occurs in the lower and upper Almond Formation. Genus Conclavipollis Pflug, I953 Type epecies: Conclavipollis anulopyramis Pflug, l953. IIO Conclavipollis wolfcreekensis Newman, I965 PI. 20, Fig. I36 I965 Conclavipollis wolfcreekensis Newman, p. l3, pl. I, fig. l0. Discussion: The observed size range was I8 (2i) 26p for five specimens. VSuggested affinities: Angiospermae, Dicotyledoneae Occurrence: Campanian. Upper Mancos, lower Mesaverde, Iles and lower Williams Fork formations, Campanian, Colorado (Newman, I965). This species occurs in the upper Almond Formation. Genus Sporopollis Pflug, I953 Type species: Sperepollis documentum Pflug, I953 Sporopollis cf. §y_lagueaeformis Weyland and Greifeld, I953 PI. 20, Fig. I37 l953 §poropollis laqueaeformis Weyland and Greifeld, p. A5, pl. l3, figs. 111, 112. , Discussion: The size of the Single specimen observed was 20p. It seems to be identical with §y_laqueaeformis as used by Newman (I965); however, Weyland and Greifeld's specimens have more strongly protruding pores. Suggested affinities: Angiospermae, Dicotyledoneae . Occurrence: Upper Cretaceous. Mancos, Mesaverde, lies and Williams Fork fbrmations, Campanian, Colorado (Newman, I965). This species occured only in Sample 66W2I8 of Section IA of the upper Almond Formation. Genus Plicapollis Pflug, I953 Type species: Plicapollis serta Pflug, l953 Plicapollis sp. PI. 20, Fig. I38 Discussion: TWo Specimens were observed, 2Ap and 26p in size. They were not identified as to Species but appear to belong in the genus Plicapollis and somewhat resemble £y_conserta Pflug, I953. Suggested affinities: Angiospermae, Dicotyledoneae Occurrence: Upper Campanian. This species occurred only in Sample 66WI29 of Section 8 and Sample 66W2Al of Section A of the lower and upper Almond respectively. Genus Trudgpollis Pflug, I953 Type species: Trudopollis pertrudens (Pflug) Pflug, I953 Trudopollis meekeri Newman, I965 PI. 20, Figs. 139a, l39b I965 Trudopollis meekeri Newman, p. IA, pl. l fig. I2. Discussion: The observed size range was 25 (28) 32“ for three Specimens. 1 Suggested affinities: AngIOSpermae, Dicotyledoneae. Occurrence: Campanian. Mancos Shale, Mesaverde, lies and Williams Fork formations, Campanian, Colorado (Newman, I965). This species occurs in the upper Almond Formation. Genus Proteacidites Cookson e§_Couper, l953 Type species: Proteacidites adenanthoides Cookson, I950 Proteacidites retusus Anderson I960 P1. 20, Figs. 1E0, 191, 142 I960 Proteacidites retusus Anderson, p. 2I, pl. 2, figs. 5-7. Discussipp: This Species is distinguished from'fiy thalmanni on the basis of its pores which appear circular in polar view; whereas, those of E; thalmanni are notch-like in polar view. The two Species probably represent end members of a continuum of pore shapes.. Individuals which conform in size, ornament and pore Shape but which have thinner annuli are included in this species (PI. 20, Fig. IAI). Even though Anderson's description specifies a thick endannulus there does not seem to be sufficient difference to warrant a new species. The observed size range was I8 (27) 3Ap for I8 specimens. Suggested affinities: Proteaceae Occurrence: Upper Campanian-Danian. Kirtland Shale, uppermost Cretaceous, San Juan Basin, New Mexico (Anderson, I960); Hell Creek Formation, upper- most Cretaceous, South Dakota (Stanley, I965); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, I967). This Species occurs throughout the Almond Formation. Proteacidites thalmanni Anderson, I960 PI. 20, Figs. 153, 1AA I960 Proteacidite§_thalmanni Anderson, p. 2i, pl. 2, figs. I-A, pl. IO, flgS. 9"]30 II2 I962 Proteacidites terrazus Rouse, p. 205, pl. 2, figs. 20-22. l966 Proteacidites thalmanni var. maior Srivastava, p. 536, pl. VII, fig. 7. Discussion: This species is distinguished on the basis of its pores which are a shallow notch-like ”V” shape in polar view and are not circular as in £y_retusus. The observed size range was I9 (26) 35p for ID specimens. Published sizes vary from I7-5Ap. Suggested affinities: Proteaceae Occurrence: Upper Campanian-Danian. Kirtland Shale and Lewis Shale, uppermost Cretaceous, San Juan Basin, New Mexico (Anderson, I960); Burrard Formation (Brothers Creek Locality), Upper Cretaceous, Vancouver, British Columbia, (E; terrazus), (Rouse, I962); Mt.LaureI-Navesink Formation, Woodbury Clay and Merchantville Formation, Senonian, Delaware and New Jersey (Gray and Groot, I966); Upper Edmonton Formation, Maestrich- tian, Scollard, Alberta, (£y_thalmanni var. £2125), (Srivastava, l966); upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967)- Campanian and Turonian occurrences have been indicated for the genus Proteacidites by Tschudy (I965) and Orlansky (I968); Fox Hills and Hell Creek formations, Maestrichtian and Tullock Formation, Paleocene, Montana (Oltz, l969). This Species occurs throughout the Almond Formation. Genus Ulmipollenites Wolff, l93A Type Species: Ulmipollenites undulosus Wolff, I93A Ulmipollenites sp. A PI. 20, Figs. IA5, IA6 Diagnosis: The granulate exine and the absence of arci distinguish this species. Description: The grains are rounded-triangular to subcircular in shape. The three or four pores are equatorial, circular in outline and about 2.5g in diameter. The annuli are very slightly developed and about 2p in width. Arci were not observed. The exine is about l.5p in thickness and ornamented with circular granules l.5-2p in diameter. The observed size range was I8 (22) 25p for seven specimens. Holotype: PI. 20, Fig. IA5. Slide No. 3055 AVII, Coor. AO.5-ll3.5, IIB Collection No. 66W250, Section IA, Almond Formation, Late Campanian, Sec. 36, T20N, RIOIW and Sec. 3i, T20N, RIOOW, Sweetwater County, Wyoming. _ Discussion: This species may be conspecific with Ulmipollenites undulosus Wolff,l93A,as used Norton and Hall (l969). ,U. Sp. A was not included in that species because.g. Sp. A lacks distinct arci and its ornamentation is not considered to be rugulate. Triporate individuals were observed most often. . Suggested affinities: Ulmaceae?, Zelkova? Occurrence: Upper Campanian-Paleocene. Lance Formation, Maestrichtian and Fort Union Formation, Paleocene, Wyoming (Leffingwell, l97l). This species occurs in the lower and Upper Almond Formation. Genus Alnipollenites Potonié I93l Type species: Alnipollenites verus (Potonié) Potonié, l93A Alnipollenites guadrapollenites (Rouse) Srivastava, I966 PI. 20, Fig. 197 I962 Alnus guadrapollenites Rouse, p. 202, pl. 2, figs. 9, 36. I966 Alnipollenites guadrepollenites (Rouse) Srivastava, p. 530, pl. VII, fig. 3. Discussion: The size range was 2I (25) 30p for the three specimens measured. A Specimen of Alpg§_££jpg_5tanley, I965, (Pl. A3, fig. 6) is comparable but smaller (range I3-l9p). Suggested affinities: Betulaceae, Alpgg Occurrence: Upper Campanian-Eocene. Burrard Formation, Eocene (in part?), British Columbia, Canada (Rouse, I962); Edmonton Formation, Maestrichtian, Alberta, Canada (Srivastava, l966). This species occurs in the lower and upper Almond Formation. Genus Erdtmanipollis Krutzsch, I962 Type species: Erdtmanipollis pachysandroides Krutzsch, I962 Erdtmanipollis pachysandroides Krutzsch, I962 P1. 20, Figs. 158, IA9a, lA9b, 150 I962 Erdtmanipollis pachysandroides Krutzsch, p. 28l, pl. 8, figs. l-8. I965 Pachysandra cretacea Stanley, p. 29A, pl. AA, figs. l-9. IIA l969 Erdtmanipollis cretaceous (Stanley) Norton in Norton and Hall, p. A3, pl. 5, figs. 2I. l969 Erdtmanipollis cretacea (Stanley) Oltz, p. IAO, pl. AI, fig. IOO. Discussion: The size variation or fy,cretacea, 20-A0p, (Stanley, I965) is not considered sufficient basis for its separation from E; pachy- gangggiggg, 25-35p, (Krutzsch, I962). This contention was advanced by Snead (I969). Specimens with the ektexine removed were common. -The observed size range was 29 (3A) AOu for eight Specimens. Suggested affinities: Buxaceae, Pachysandra or Sarcococca Occurrence: Upper Campanian-Oligocene. Oligocene, Germany (Krutzsch, I962); Hell Creek Formation, Maestrichtian and Ludlow Member, Fort Union Formation, Paleocene, South Dakota (Stanley, I965); Upper Moreno Formation, Maestrichtian-Danian, California (Drugg, l967); Bearpaw, Fox Hills and Hell Creek formationS,Uppermost Cretaceous and Tullock Formation, Paleocene, Montana (Norton and Hall, l969); Edmonton Formation, Maestrichtian, Alberta, Canada (Snead, l969); Bearpaw, Fox Hills and Hell Creek formations, uppermost Cretaceous, Montana (Oltz, l969). This species occurs throughout the Almond Formation. REFERENCES REFERENCES Agasie, J. M., I969, Late Cretaceous palynomorphs from northeastern Arizona: Micropaleontology, v. I5, no. I, pp. I3-30. Alberti, Gerhard, I959, Zur Kenntnisder Gattung Deflandrea Eisenack (Dinoflag) in der Kreide und im Alttutiar Nordund Mitteldeutsch- lands: Mitt. Geol. Staatsinst. Hamburg, v. 28, pp. 93-I05. , I96l, Zur Kenntnis Mesozoischer und Alttertiarer Dino- flagellaten und HystrichOSphaerideen von Nord-und Mitteldeutsch- Iand souie einigen anderen EurOpaisehen Gebieten: Palaeonto- graphica, v. ll6, pp. l-58. Anderson, R. Y., I960, Cretaceous-Tertiary palynology eastern side of the San Juan Basin, New Mexico: Bureau of Mines and Mineral Resources, New Mexico Inst. of Mining and Tech., Memoir 6, 58p. Balme, B. E., I957, Spores and pollen grains from the Mesozoic of western Australia: Phys. and Chem. Surv. Nat. Coal Res., Commonwealth of Australia, Ref. T. C., 25, A8p. Bernard, P. D. W., I968, A new Species of Masculostrobus Seward producing ClaSSOpollis pollen from the Jurassic of Iran: J. Linn. Soc. ‘(Bot.) v. 6T, no. 38A, pp. l67-l76. Beerbower, J. R. and Dianne Jordan, I969, Application of information theory to paleontologic problems: taxonomic diversity: J. of Paleontology, v. A3, no. 5, pp. Il8A-II98. Brenner, G. J., I963, The Spores and pollen of the Potomac Group of Maryland: Dept. of Geol., Mines and Water Res. Bull. No. 27, 2I5p. ‘ , 1967, The gymnOSpermous affinity of egoanniidites Erdtman, I9A8: Rev. Palaeobot. Paly., v. 5, pp. I23-l27. , I968, Middle Cretaceous Spores and pollen from Northeastern Peru: Pollen et Spores, v. X, no. 2, pp. 3Al-383. Burgess, J. 0., I970, Palynological correlation and interpretation of frontier environment in Central Wyoming: Wyo. Geol. Assoc. Guide- book, pp. l33-IAS. Buzas and Gibson, l969, Species diversity: Benthonic Foraminifera in Western North Atlantic: Sci., v. I63, pp. 72-75. IIS‘ Il6 Cheetham, A. H. and J. E. Hazel, I969, Binary (presence-absence) similarity coefficients: J. of Paleontology, v. A3, no. 5, pp. II30-ll36. Clark, T. H. and C. W. Stearn, I960, The geological evolution of North America: The Ronald Press Co., A3Ap. Clarke, R. F. A. and J. P. Verdier, l967, An investigation of micro- plankton assemblages from the chalk of the Isle of Wright, England Verhandelingen der Koninklijke Nederlands Akademie van Wetenschappen, afd. Natuurkunde, v. XXIV, no. 3, pp. l-9A. Clarke, R. T., I963, Palynology of Vermejo Formation coals (Upper Cretaceous) in the Canon City Coal Field, Fremont County, Colorado: Univ. of Okla., unpub. Ph.D. thesis, l36p. Cobban, W. A. and J. B. Reeside, Jr., I952, Correlation of Cretaceous formations of the Western Interior of the United States: Geol. Soc. Am. Bull., v. 63, pp. IOIl-IOAA. Cookson, I. C., I9A7, Plant microfossils from the Iignites of Kerguelen Archipelago: B. A. N. Z. Antarctic Res. Exp. I929-3l, Rep. Ser. A. 2., pp. I27-IA2. , I950, Fossil pollen grains of Proteaceous type from Tertiary deposits in Australia: Aust. J. Sci. Res. 8., v. 3, no. 2, pp. I66-l77. , l953, Records of the occurrence of_§ptryococcus brownii, Pediastrum and the HystrichoSphaerideae in Cainozaic deposits of Australia: Nat. Mus. Victoria, Mem., v. I8, pp. IO7-l23. , l956, Additional micrOplankton from Australian Late Mesozoic and Tertiary sediments: Aust. J. of Marine and Freshwater Research, v. 7, pp. I83-I9I. , I965, Cretaceous and Tertiary microplankton from South- g—Eastern Australia: Proc. Roy. Soc. Vict., v. 78, pp. 35‘93- and M. E. Dettman, I959, On Schizosooris, a new form genus from Australian Cretaceous deposits: MicrOpaleo., v. 5, no. 2, pp. 2l3-2l6. and A. Eisenack, l958, MicrOplankton from Australia and New Guinea Upper Mesozoic deposits: Royal Soc. Victoria, Proc., v. 70, PP- 18-79. , I960, MicrOplankton from Australian Cretaceous sediments: MicrOpaIeontology, v. 6, no. I, pp. l-l8. Il7 Cookson, I. C. and A. Eisenack, I962, Additional micrOplankton from Australian Cretaceous sediments: ‘MicrOpaIeontology, v. 8, no. A, pp. ASS-507. and K. M. Pike, I95A, Some dicotyledonous pollen types from Cainozoic deposits in the Australian region: Aust. J. Bot., V. 2’ pp. '97-219. Couper, R. A., I953, Upper Mesozoic and Cainozoic Spores and pollen grains from New Zealand: New Zealand Geol. Surv., Paleont. Bull. no. 22, 77p. , I958, British.Mesozoic micrOSpores and pollen grains, a systematic and stratigraphic study: Palaeontographica v. I03 (8). PP. 75-179. Cross, A. T., G. C. Thompson and J. B. Zaitzeff, I966, Source and distribution of palynomorphs in bottom sediments, southern part of Gulf of California: Marine Geol., v. A, pp. A67-52A. Daugherty, L. H., I9AI, The Upper Triassic floras of.Arizona: Carnegie Inst., Pub. No. 526, I08p. ' Davey, R. J., et al., l966, Studies on Mesozoic and Cainozaic ‘ Dinoflagellate cysts: Bull. Brit. Mus. (Nat. Hist.) Geol., no. 3’ Pp. 1-2‘88. . Davis, M. 8., I966, Determination of absolute pollen frequency: Ecology, v. A7, pp. 3lO-3ll. Deflandre, 6., I93A, Sur les microfossils d'origine planctonique, conserves a I'etae de matiere organique dans les Silex de la craie: Acad. Sci., Paris C.R., v. I99, pp. 966-968. , l935, Microorganisms d'origine planctonique conserves dans les Silex de la craie: Bull. Biol., v. 69, pp. 2I3-2AA. , l937, Microfossiles des Silex Cretaces,deuxieme partie, flagelles incertae sedis, hystrichOSphaerides, sarcodines, organismes divers:: Ann. Paleont., v. 26, pp. A9-IO3. , I9A7, Sur queiques microoganismes planctoniques des Silex Jurassiques: Monaco, no. 92l, pp. l-IO. _ and I. C. Cookson, l955, Fossil microplankton from Australian late Mesozoic and Tertiary deposits: Australian.J. Marine and Freshwater Res., v. 6, pp. 2A2-3I3. and M. Deflandre, I965, Dinoflagelles, A. Deflandreaceae I, Fichierz. MicrOpaIeontologique General, Ser. IA, Arch. Originales Centre Doc., Centre Nat. Res. Sci., A07 (l-A). lI8 Delcourt, A. and G. Sprumont, I955, Les Spores et grains de pollen du Wealdien du Hainaut: Soc. Belg. Geol., Paleont., et Hydrolog., Mem. Nouv., ser. in A, no. 5, 73p. Dettmann, M. E., I963, Upper Mesozoic microfloras from southeastern Australia: Proc. Roy. Soc. Victoria, v. 77, no. I, pp. I-IA8. Downie, C., W. R. Evitt and W. A. S. Sarjeant, l963, Dinoflagellates, hystrichOSpheres and the classification of the acritarchs: Stanford U. Pub., Geol. Sci., v. 7, no. 3, pp. l-I6. and W. A. S. Sarjeant, I963, On the interpretation and status of some hystrichoSphere genera: Palaeontology, v. 6, no. I, pp. 83-96. Drugg, W. S., l967, Palynology of the Upper Moreno Formation (Late Cretaceous/Paleocene) Escarpado Canyon, California: Palaeonto- graphica, v. l20, nos. l-A, pp. l-7l. Ehrenberg, C. 6., I838, Uber das massenverhaltnis der jetzt lebenden kieselinfusorien und Uber ein neues Infusorien-Conglomerat als polierschiefer ven Jastraba in Ungarn: Akad. Wiss. Berlin, v. I, pp. I09-l35. Eisenack, A., l938, Die phOSphoritknolIen der Bersteinformation als Ubertierferer Tertiaren planktons: Scher. Physicokon. Ges. Konigsberg (Pr.), v. 70, pp. l8l-I88. ,, l958, MikrOplankton aus dem Nortdeutschen apt nebst einigen bermerkunger Uber fossile dinoflagellaten: Neues Jb. Geol. Palaeont., v. IO6, pp. 383-A22. , l963, Sind die hystrichosphaeren zysten von dinoflagellaten?: Neues Jb. Geol. Palaeont., Monatsch., no. 5, pp. 225-23I. Elsik, W. C., I968, Palynology of a Paleocene Rockdale Lignite, Milam County, Texas. I. Morphology and taxonomy: Pollen et Spores, v. X, no. 2, pp. 265'3lA. Erdtman, G., I9A8, Did dicotyledonous plants exist In Early Jurassic timesiz Geol. Foren. Forhandl., v. 70, no. 2, pp. 265-27l. , I952, Pollen morphology and plant taxonomy: Almquist and Wiksells, Uppsala, 539p. Evitt, W. R., R. F. A. Clarke and J. P. Verdier, I967, Dinoflagellate studies III, Dinogymnium acuminatum n. gen., n. sp. (Maestrichtian) and other fossils formerly referable to Gymnodinium Stein: Stanford U. Pub., Geol Sci., v. X, no. A, pp. l-27. ll9 Fairchild, w. v. and w. c. Elsik, 1969, Characteristic palynomorphs of the Lower Tertiary in the Gulf Coast: Palaeontographica B, v. l28, pp. 8l-89. Fox, W. T., I968, Quantitative paleoecologic analysis of fossil commu- nities in the Richmond Group: J. of Geol., v. 76, no. 6, pp. 6l3- 6A0. Funkhouser, J. W., l96l, Pollen of the genus Aquilapollenites: MicrOpaleo. v. 7, no. 2, pp. l93-l98. Gibson, L. B. and R. T. Clarke, I968, Floral succession and palynological correlation: J. of Paleontology, v. A2, no. 8, pp. 576-58l. Gill, J. R., E. A. Merewether and W. A. Cobban, I970, Stratigraphy and nomenclature of some Upper Cretaceous and Lower Tertiary rocks in south central Wyoming: U. S. Geol. Survey Prof. Paper 667. Goczan, F., l96A, Stratigraphic palynology of the Hungarian Upper Cretaceous: Acta Geologica, v. 8, no. l-A, pp. 229-26A. Gray, T. C. and J. J. Groot, I966, Pollen and Spores from the marine Upper Cretaceous formations of Delaware and New Jersey: Palaeontographica B, v. ll7, pp. llA-l3A. Groot, J. J. and C. R. Groot, I962, Some plant microfossils from the Brightseat Formation (Paleocene) of Maryland: Palaeontographica B, v. Ill, no. A-6, pp. l6I-l7l. and J. 5. Penny, I960, Plant microfossils and age of non- marine Cretaceous sediments of Maryland and Delaware: MicrOpaleo., v. 6, pp. 225-236. and C. R. Groot, l96l, Plant microfossils and age of the Raritan, Tuscaloosa and Magothy formations of the Eastern United States: Palaeontographica, v. IO8, pp. l2l-IAO. Habib, Daniel, l969, Middle Cretaceous palynomorphs in a deep-sea core from the Seismic Reflector A outcrOp area: MicrOpaleon- tology, v. IS, no. I, pp. 85-IOI. Harris, W. K., I965, Tertiary microfloras from Brisbane, Queensland: Geol. Surv. Queensland Rept. l0, pp. l-7. Hazel, J. E., I970, Binary coefficients and clustering in biostrati- graphy: Geol. Soc. of Am. Bull., v. 8|, pp. 3237-3252. Hedlund, R. W., l966, Palynology of the Red Branch Member of the ' Woodbine Formation (Cenomanian), Bryan County: Okla. Geol. Surv. Bull. ll2, 69p. ' and G. Norris, I968, Spores and pollen grains from Fredericks- burgian (Albian) strata, Marshall County, Oklahoma: Pollen et Spores, v. X, no. I, pp. l29-l59. l20 Hughes, N. F. ., l96l, Further interpretation of Eucommiidites Erdtman, I9A8: Palaeontology, v. A, p. 292- 299. Ibrahim, A., l933, Sporenformen des Agirhorizonts des Ruhr-Reviers, dissertation an der technischen Hoschschule zu Berlin: Privately pub. by Konrad Triltch, Wurzburg, A8p. Jaccard, P., I908, Nouvelles recherches sur la distribution florale: Bull. Soc. Vaud. Sci. Nat., v. AA, pp. 223-270. Jacka, A. 0., I965, Depositional dynamics of the Almond Formation, Rock Springs Uplift, Wyoming: Wyo. Geol. Assoc. Guidebook, pp. 8l-IOO. Jardiné, S. ,and L. Magloire, I965, PIIynologic et straigraphie du Cretace des Bassins dU Senegal et de Cote D' Ivoire: Mémoires du Bureau de Recherches Geologique et Minieres, no. 32, pp. I87-2A5. Klaus, W., I960, Sporen der karnischen Stufe der ostalpinen Trias: Geol. Jb. B.A., v. 5, pp. lO7-l8A. Knox, E. M., I950, The Spores of Lyc0podium Phyllogossum, Selaginella and Isoetes: Bot. Soc. Edinburgh, Trans., v. 35, pt. 3, pp. 207- 357. . Kosanke, R. M. and A. T. Cross (Editors), l97l, Symposium on palynology of the Late Cretaceous and Early Tertiary: G.S.A. Special Paper l27) 396p- Kremp, G., I9A9, Pollenanalytische Untersuchung des Miozanen Braunkohlenlagers von Konin an der Warthe: Palaeontographica B, v. 90, pp. 53'93. Krutzsch, W., I959a, MikrOpalaontologiche (sporenpalaontologische) Untersuchungen in der Braunkohle des Geiseltales: Geologie, v. 8, pp. 2l-22. , l959b, Einige neue formgattungen und-arte von Sporen und pollen aus der MitteleurOpaischen Oberkreide und dem Terti3r: Palaeontographica B, v. l05, pp. l25- l57. , I962, Stratigraphisch bzw. botanisch wichtige neue Sporen und pollenformen aus dem deutscher Tertiar: Geol., V. II, no. 3, pp. 265-307. Leffingwell, H. A., l97l, Palynology of the Lance (Late Cretaceous) and Fort Union (Paleocene) Formations of the Type Lance Area, Wyoming: Geol. Soc. Am. Special Paper I27, (R. M. Kosanke and A. T. Cross, Eds.) 6Ap. LeOpold, E. B. and H. M. Pakiser, I96A, A preliminary report on the pollen and Spores of the Pre-Selma Upper Cretaceous strata of Western Alabama: U.S.G.S. Bull. II60, pp. 7l-95. I2l Leapold, E. B. and B. D. Tschudy, I955, Plant and miscellaneous micro- fossils of the Pierre Shale: 'U.S.G.S. Open'File Report, 7p. Leschik, G., l955, Die Keuperflora von Neuewelt bei Basel. II. Die Iso-Und Mikro5poren: Schweiz, Palaeont. Abh. 72. Lewis, J. L., I965, Measured surface sections of the Almond Formation on the east flank of the Rock Springs Uplift, Sweetwater County, Wyoming: Wyo. Geol. Assoc. Guidebook, pp. IOI-III. Mantell, G. A., l850, A pictorial atlas of fossil remains consisting of coloured illustrations selected from Parkinson's l'Organic remains of a former world”, and Artis's HAntediluvian phytology“: London: Henry G. Bohn, 207p. Manum, 5., I963, Some new Species of Deflandrea and their probable affinity with Peridinium: Norsk Polarinstitut, Arlok I962, Oslo, I963, pp. 55-67. . and l. C. Cookson, l96A, Cretaceous micrOplankton in a sample from Graham Island, Arctic Canada, collected during the second Fram Expedition (I898-l902): Skr. Norske Vidensk Akad. I. Mat.-Nat.‘ . KL, N. Ser. I7. 36p. McCubbin, D. G. and M. J. Brady, I969, Depositional environment of the Almond Reservoirs, Patrick Draw Field Wyoming: The Mountain Geologist, v. 6, no. I, pp. 3-26. McIntyre, D. J., I968, Further new pollen species from New Zealand Tertiary and Uppermost Cretaceous deposits: N. Z. J. Bot., v. 6, no. 2, pp. l77-20A. McKee, E. 0., John Chronic and E. B. Leapold, I959, Sedimentary belts in lagoon of Kapingamarangi Atoll: Am. Assoc. Petr. Geol.,BulI., v. A3, pp. SDI-562. Mello, J. F. and M. A. Buzas, I968, An application of cluster analysis as a method of determining biofacies: J. of Paleo. ., v. A2, no. 3, PP 7117-758. Miner, E. L., l935, Paleobotanical examinations of Cretaceous and Tertiary coals: Am. Midl. Nat., V. I6, no. A, pp. 585-625. Muller, Jan, l959, Palynology of recent Orinoco delta and shelf sediments: MicrOpaleo., v. 5, pp. l-32. Newman, K. R., l96A, Palynologic correlations of Late Cretaceous and Paleocene formations, Northwestern Colorado: S.E.P.M., Spec. Pub. II, (Palynology in Oil Exploration, A. T. Cross, Ed.), PP- 169-179. , I965, Upper Cretaceous-Paleocene guide palynomorphs from Northwestern Colorado: Univ. of Colo. Studies, Series in Earth Sciences, no. 2, Zip. l22 Nilson, T., l958, Uber das vorkommen lines Mesozoischen saprOpelgesteins in schonen: Lunds Univ. Arsskrift, N.F., Avd. 2, Bd. 5A, no. IO. Norris, G., l967, Spores and pollen from the Lower Colorado Group (Albian7, Cenomanian) of Central Alberta: Palaeontographica B, v. IZO, pp. 72-115. Norton, N. J. and J. W. Hall, l967, Guide Sporomorphae in the Upper Cretaceous-Lower Tertiary of eastern Montana (U.S.A.): Rev Palaeo- bot. Palynol., v. 2, pp. 99-IIO._ , l969, Palynology of the Upper Cretaceous and Lower Tertiary in the type locality of the Hell Creek Formation, Montana, U.S.A.: Palaeontographica, v. l25, nos. I-3, pp. I-6A. Odum, H. T., J. E. Cantlon and L. S. Kornicker, l960, An organizational heirachy postulate for the interpretation of species-individual distributions, Species entrOpy, ecosystem evolution and the meaning of a species-variety index: Ecology, v. Al, pp. 395'399. ‘ Oltz, D. F., Jr., I969, Numerical analyses of palynological data from Cretaceous and Early Tertiary sediments in East Central Montana: Palaeontographica, v. l28, nos. 3-6, pp. 90-l66. Orlansky, 0., I967, Palynology of the Upper Cretaceous Straight Cliffs Sandstone Garfield County, Utah: Univ. of Utah, Unpub., Ph.D. thesis, l86p. , I968, Palynology of the Upper Cretaceous Straight Cliffs Sandstone, South Central Utah: Geol. Soc. Am. S.C. Sect. 2nd Ann. Meet., Program p. 3i, (Abstract). Pacetova, 8., I961, Nektere rostlenné mickrofosilii ze sladkovodnich Ulozenin Svrchni kridy (Senon) jihoceskych panvich: Sb. ustred.- Ust. geol., Odd. Paleont., v. 26, pp. A7-l02. Patten, B. C., I962, Species diversity in net phytOplankton of Raritan Bay: J. of Marine Res., v. 20, no. I, pp. 57-75. ' Pflug, H. 0., I953, Zur Entutchung und Entwicklung des Angiospermiden pollen in der Erdgeschichte: Paleontographica, v. 96, pp. 60-l7l. Pielou, E. C., I969, An intrOduction to mathematical ecology: John Wiley 5 Sons, New York, pp. 22l-235. .Pierce, R. L., l96l, Lower Upper Cretaceous plant microfossils from ' Minnesota: Minn. Geol. Surv. Bull., v. A2, 86p. Pocock, S. J., I962, Microfloral analysis and age determination of strata at the Jurassic-Cretaceous boundary in the Western Canada Plains: Palaeontographica B, v. Ill, pp. l-95. and J. Jansonius, I96l, The pollen genus Classopollis Pflug, l953: MicrOpaIeo., v. 7, PP. A39-AA95 l23 Potonié, R., l93l, Pollen formen aus Tertiaren Braunkohlen, III: Jb. Preuss. Geol. L. A.,v. 52, pp. l-7. , l93A, Zur Mikrobatanik des eoganen Humodils des Geiseltals: Arb. Inst. Palaobot. Petrograph. Brennsteine, v. A, pp. 25-l25. , l95l, Revision stratigraphisch wichtiger Sporomorphen des MitteleurOpaischen Tertiars: Palaeontographica B, v. 9l, pp. l3l- I5l. ‘ , l956, SynOpsis der gattungen der Sporae dispersae, Teil I: Beih. Geol. Jb. v. 23, l03p. , l958, SynOpSis der gattunger der Sporae diSpersae, pt. 2.: Beih. Geol. Jb. v. 3], llAp. , I960, SynOpsis der gattungen der Sporae dispersae Teil III: Beih. Geol. Jb. v. 39, l89p. and J. Gelletich, l933, Uber pteridOphyten-sporen einer eozanen braunkahle aus Dorog in Ungarn: 5.8. Gas. Nat. Freunde (I932) V. 33: PP- 5l7-523. , P. W. Thomson and F. Thiergart, I950, Zur nomenklatur and klassifikation der neogenen Sporomorphae: Geol. Jb. 65. and A. Venitz, l93A, Zur mikrobotanik des Miozanen Humodils der niederrheinischen Bucht: Arb. Inst. Palaob. Petrogr. Brennstein, v. 5, pp. l-SA. Raatz, G., I937, Mikcrobotanisch-stratigraphische Untersuchung der Braunkohle des Muskauer Bogens: Preuss. Geol. Landes, Abh., neue Folge, no. I83, A8p. Reissinger, Adolf, I938, I'PoIlenanalyse" ausgedehnt auf alle Sediment- gesteine der geologischen Vergangenheit“: Palaeontographica 8, v. 8A. , I950, Die “pollen-analyse“ ausgedehnt auf alle Sediment- gesteine der geologischen Vergangenheit: Palaeontographica B, v. XC, pp. 99-I26. Ross, N. E., I9A9, On a Cretaceous pollen and spore bearing clay of Scania: Bull. Geol. lnstn. Univ. Uppsala v. 3A, pp. 25-A3. Rossignol, M., l96l, Analyse pollinique de sédiments marins Quaternaires in Israel I; Sediments Récents: Pollen et Spores, v. III, pp. 303- 32A. , l96A, Hystrichospheres dU Quaternaire en Mediterranee Qriental dans les sediments Pleistocene et les Boues marines actuelles: Rev. MicrOpaleontologie, v. 7, no. 2, pp. 83-99. l2A Rouse, G. E., I957, The application of a new nomenclatural approach to Upper Cretaceous plant microfossils from Western Canada: Can. J. Botany, v. 35, no. 3, pp. 3A9-375. , l959, Plant microfossils from Kootenay coal measures strata of British Columbia: MicrOpaleo., v. 5, pp. 303-32A. , I962, Plant microfossils from the Burrard Formation of western British Columbia: MicrOpaleo., v. 8, no. 2, pp. I87-2l8. Samoilovitch, S. R. and N. D. Mchedlishvilli, I96l, Pollen and Spores of Western Siberian Jurassic to Paleocene: Tr. Uses. Neft. Nauchn. lssled. Geologarazved. Inst., v. I77, pp. I-658. Sarjeant, W. A. 5., I970, The genus Spiniferites Mantell, l850 (DinOphyceae): Grana, v. IO, pp. 7A-78. . and R. Y. Anderson, l969, A re-examination of some Dinoflagellate cysts from the Uppermost Lewis Shale (Late Cretaceous) New Mexico (U.S.A.): Rev. Palaeobotan. Palynol., v. 9, pp. 229-237. Sarmiento, Roberto, I957, Microfossil zonation of Mancos Group: Bull. Am. Assoc. Petr. Geol., v. Al, no. 8, pp. I683-l693. SchOpf, J. M., L. R. Wilson and Ray Bentall, I9AA, An annotated synOpsis of Paleozoic fossil spores and the definition of generic groups: Ill. Report of Investigations, no. 9l, pp. I-72. Singh, C., l96A, Microflora of the Lower Cretaceous Mannville Group, East Central Alberta: Bull. Geol. Div. Res. Council Alberta, v. l5, pp. l-238. Snead, R. G., l969, Microfloral diagnosis of the Cretaceous-Tertiary boundary Central Alberta: Res. Council of Alberta, Bull. 25, lA8p. Sokal, R. R. and P. H. A. Sneath, l963, Principles of numerical taxonomy: W. H. Freeman and Co., 359p. Srivastava, S. K., l966, Upper Cretaceous microflora (Maestrichtian) from Scollard, Alberta, Canada: Pollen et Spores, v. VIII, no. 3, PP. A97- 552. , I967, Upper Cretaceous palynology-A Review: The Botanical Review, v. 33, no. 3, pp. 260-288. Stanley, E. A., I965, Upper Cretaceous and Paleocene plant microfossils and Paleocene dinoflagellates and hystrichosphaerids from North- western South Dakota: BUII. of Am. Paleo., v. A9, no. 222, PP- 179-384. , l966, Abundance of pollen and spores in marine sediments off the Eastern coast of the United States: Southeastern Geol., v. 7, no. I, pp. 25-33. l25 Stone, J. F., l967, Quantitative palynology of a Cretaceous Eagle Ford exposure: The Compass, v. A5, no. I, pp. l7-25. Stough, J. 8., I968, Palynomorphs from South America: Univ. of Kan. Paleo. Contributions, Paper 32, pp. l-7. Theirgart, F., I938, Die pollenflora der Niederlausitzer Braukohle: Jahrb. Preuss. Geol. L. A. (Berlin) v. 58, pp. 282-35l. Thompson, G. G., l969, Paleoecology of Palynomorphs in the Mancos Shale Southwestern Colorado: Mich. State Univ., Unpub., Ph.D. thesis, l69p. ' Thomson, P. W. and H. Pflug, l953, Pollen and Sporen des Mitteleuropfiischen Tertiars: Palaeontographica v. 9A, pp. I-l38. Traverse, Alfred, l955, Pollen analysis of the Brandon lignite of Vermont: U. S. Dept. Int., Bur. Mines Rept. Inv. no. 5l5l, l07p. and R. N. Ginsburg, l966, Palynology of the surface sediment of Great Bahama Bank, as related to water movement and sedimen- tation: Marine Geol., v. A, no. 2, pp. Al7-A59. Tschudy, R. H., l96l, Palynomorphs as indicators of facies environment in Upper Cretaceous and Lower Tertiary strata, Colorado and Wyoming: Wyo. Geol. Assoc. Guidebook, pp. 53-59. , I965, An Upper Cretaceous deposit in the Appalachian Mountains: U.S.G.S. Prof. Paper 525-8, pp. 6A-68. Valensi, L., l953,Microfossils des silex dU Jurassique Mayen, remarques petrographiques: Soc. Geol. Fr. Mem. no. 68, IOOp. Van der Hammen, T., l95A, El desarrollo de la flora Colombiana en los periodos geologicos. I Maestrichtiano hasta Terciario mas inferior: Bol. Geol. Columbio, v. 2, no. I, pp. A9-IO6. Wall, 0. and B. Dale, I970, Living hystrichOSphaerid dinoflagellate spores from Bermuda and Puerto Rico: Micropaleontology, v. I6, no. I, pp. A7-58. Warren, J. 5., I967, Dinoflagellates and Acritarchs from the Upper Jurassic: Stanford Univ., Unpub. Ph.D. thesis, A09p. Weimer, R. J., l96l, Uppermost Cretaceous rocks in Central and Southern Wyoming, and Northwest Colorado: Wyo. Geol. Assoc. Guidebook, . pp. l7-28. , I965, Stratigraphy and petroleum occurrences, Almond and Lewis Formations (Upper Cretaceous), Wamsufler Arch, Wyoming: Wyo. Geol. Assoc. Guidebook, pp. 65-80. l26 Weimer, R. J., l966, Time-stratigraphic analysis and petroleum accumula- tions Patrick Draw Field, Sweetwater County, Wyoming: Bull. Am. Assoc. Petr. Geol., v. 50, no. l0, pp. 2l50-2l75. Wetzel, 0., I933, Die in Organischer substanz Erhaltenen mikrofossilien des Baltischen Kreide-Freuersteins: Palaeontographica, v. 77, pp. lAl-188. , l96l, New microfossils from Baltic Cretaceous flintstones: MicrOpaleontology, v. 7, no. 3, pp. 337-350. Wetzel, W., I952, Beitrag zur Kenntris des dan-Zeitlichen mechplanktons: Geol. Jb. v. 6, pp. 39I-Al9. Weyland, H. and G. Greifeld, l953, Uber strukturbietende Blatter und pflanzliche microfossilien aus den Untersenonen Tonen der Gegen von Quedlinburg: Palaeontographica B, v. 95, pp. 30-52. and W. Krieger, l953, Die Sporen und pollen der Aachener Kreide and ihre Bedeutung fiir die charakterisierung des Mittleren Senons: Palaeontographica, v. 95, PP. 6-29. Wilson, L. R., l959, A method of determining a useful microfossil assemblage for correlation: Okla. Geol. Notes, V. I9, no. A, P- 9l-93. and W. Hoffmister, l953, Four new Species of fossil Pediastrum: Amer. J. Sci., v. 25I, pp. 753-760. and R. M. Webster, I9A6, Plant microfossils from a Fort Union Coal of Montana: Am. J. Bot., v. 33, pp. 27l-278. Wodehouse, R. P., l933, Tertiary pollen. II. The oil shales of the Eocene Green River Formation: Bull. Torrey Bot. Club, v. 60, PP- A79-525. Wolff, H., l93A, Mikrofossilien des Plioza’nen Humodils der Grube Freigericht bei Dettingen a. m. und Vergleich mit 3lteren Schichten des Tertiares sowie posttertifiren Ablagerungen: Arb. Inst. Paleobot. U. Petrogr. Brennst. Preuss. Geol. Landes, Berlin, v. 5, pp. 55-86. Zaitzeff, J. 8., I967, Taxonomic and Stratigraphic significance of dinoflagellates and acritarchs of the Navarro Group (Maestrichtian) from east central and southwest Texas: Mich. State Univ., Unpub. Ph.D. thesis, l72p. APPENDIX l27 Figure l8 W’ RELATIVE ABUNDANCE OF SELECTED : MNMARIIE SPECIES OF THE '71 TOTAL MNMARIM SPECIES , Measured Section 8 ’ Upper Almond Formation .. s O 2 U1 '2 3 m A g; i; i. E :5 a; is 32 .s ' x. .2 £3 E" a, as -a a; .2 " '; ' .2 *3 7, 3‘ .2 - '- 33 ° 31 5‘ 5‘ 2" E‘ 3" E" E' E '_ 6611370‘ "'1 m n “who-1 1 0 w. 56,, d I I ,1 76.1334 : i. . I ““36" 1 11 11 ) fl 6611135- 1 11 1 1 .1 l - manna m 5.32- _ 6M .1 ._- 66‘1”” -1 r 1 11 1 1 VHS 6M - 1 l1 l1 0 11 1 1 (1 1 1 1 1 1 1 1 1 1 50 0 so 0 50 o 50 0 so 0 50 0 50 o 50 0 so Per Cent 128 Figure 19 RELATIVE ABUNDANCE OF MAJOR PALYIIDNDRPH GROUPS Measured Section 8 Lower Almond Formation Dino! legal late: Acritarchs Algae Ibo-spores Spores smear-s Anglospern *- 1 fl I 1 1 1 1 l 50 50 O 50 O 50 Per Cent l29 Figure 20 NONMARINE SPECIES OF THE TOTAL MNMARINE SPECIES RELATIVE ABUNDANCE OF SELECTED Measured Section 4 Upper Almond Formation no.90nw oe_c-lcoa cacao ..< 250—30. u.bOLU—I oou_eo__onoa.oU_ch n___ae_c-s «ou_co_.oe_oe.xecu «axe—aeoU aou_u_uo___4 mag-.30.... nou_o_uoL< a:_a:o .ou_co_.oo0caucoooe. 2.50.... nou_co._oeooouo_ooxe» oaueao neu_coeoouno_>oqa no._ocoooo_oa sagas-_voc » GGUIOO ' h 66H99 - 1 50 50 50 SO 50 50 50 50 Per Cent .‘L 6611101- '0 wot b 0,1- 11 1 rfli‘r f 1 ‘1’ r I :in .661a39,2~o -11 )1- Pediastrum paleogeneites Laevigatosporites Ovatus Toxodlaceaepollenites hiatus l30 Figure 21 RELATIVE ABUNDANCE 0F SELECTED NONMARINE SPECIES OF THE TOTAL MNMARINE SPECIES Measured Section I4 Upper Almond Formation reticulatus complexus lnaperturopollenites dubius Fraxinoipollenites Liliacidites Arecipites variabilis microreticulatus Tricolpogoilenites Mom-fine Species All Other 66W2521er 6M50-1 66W251‘di 66U2l09“I 66W2A8-1 66U2A7'd 66U2A6“ 66112115 - 66u2AA ~ 6602A} 4 mu: -1 -66H2AI 11 660238 41 66U237141 6611236 -1 was '1‘ 66W23A <1 66U233 <1 66W232 u 66W231 4i 6611230 - 660229 ‘ 661.1228 -11 66H227 - 66H226 4 66U225 di 66U22A - 66U222i- OGUEZI q. Gfiuzzo «1 66H2191- 66HIIB 4’ v ‘N f A. 50 50 O 50 Per Cent l3l Figure 22 MNMARIIE SPECIES (X7 THE TOTAL MNMARINE SPECIES REATIVE ABUNDAMIE OF SEECTED Measured Section 23 Upper Almond Formation no.00nm If»: .23 :< ova-30. c.5050.- o.» 2.... .9823?» a: 30...! «out... 338:2... 233.58”. «3.30.: 3 Sue— au. 00.. a: _a_ueL< 333v a3 :3. 333:8... 3:... n3 :3. 310032993... .316 a3 20:38:63 no» _ £0.00— on Etna-.10; 50 50 SO 50 50 Per Cent 132 Figure 23 NONMARINE SPECIES OF H mm. WNMARINE SPECIES Measured Section 9 Upper Almond Formation RELATIVE ABUNDANCE OF SELECTED .208... 0......ch .25.; 0 x m, 3:— :u. “9.90:- 335208202: f D b L 0 v :0, 1.30:! «3.5202055: 0 0 I 5 «33.9.69 3:332... II! 1 i 0 t a _l ” c '- nan-.30.»... N 3138.; ”HT b i 0 r w Gaug‘ 'III'\.‘ T «3.520593382. I 0 v w 252.. nou_¢o__onooooo_uox£. D i i L O .l 0 5 «315 “outcome-3:3 TIT it 0 I w 358980.! stun-3.0L 0 4. L- “whee-o mm .. “VIM-O I33 Figure 2“ RELATIVE ABUNOANCE OF SELECTED MNMARIII SPECIES OF THE TOTAL WNMARINE SPECIES Measured Section l2 Upper Almond Formation ole-am 2.7.1.3.. .350 ._< 2.:. :u. .295..- 325208202; i l a: 31...) pan—co. .8353: max-_clcu 3:38.24 T tr «32:930.. 3:332 i I 33% . «3.5.38.3...81: 1 ill 3:2 a: _ co. _oaooouozuoxo» lr 3.30 no» Icons-3.53 aura-881 shoal—t: I 30 50 so 50 50 so 50 Per Cent 50 50 a m a F .I 9 l- l3# Figure 25 RELATIVE ABUNDANCE OF SELECTED DIMFLAGELLATE SPECIES OF THE TOTAL DIllDFLACfllATE SPECIES Measured Section 4 Uwu'MmMMFamNMn . '3 5 5 s 35 5 2 2 a 2 :§ 3 33 32 53 g '3 _. _- u Q L B a E . 8; - 8 g n: -E :3 sa :2 B: E: -3 ' 8 8 .9. 3: 8 1‘2 2 6611105 “ 66Uioh .1/, [ 1i l 660w} J 1. l 1} r i “via: -1 I D II D 66mm - L I l 1 GGUIoo 4 1? ll 66V” .4 II + I “use L 1» 1 i l T I r o 50 o 50 0 so 0 50 0 so 0 Per Cent Iicrogrenuleta Def lendree 135 Figure 26 RELATIVE ABUNDAMIE OF SELECTED DIMFLACELLATE SPECIES OF THE TOTAL DIWFLAGELATE SPECIES masured Section l4 wiper Almond Formation Defiendree pi rneene is demlepimu- Trithyrodlnlu so. A fibroepinoeu For- 9 MI other. dinoflege i letee Splnldinit- Cordeepheerldiu 568252 1 “U250: “UZSI * “tale, < 66!!“ - 6632107‘ 6“!“ -1 (1th * “mu. '1 6&2“) ‘ 6681“ -1 6632‘" ‘ 1' 3.3 .sevzsmum ‘A A ‘ AA '7 A T—v fl #— POI' Cent Tfil A M 1‘ a T.“ 136 Figure 27 RELATIVE ABUNDANCE OF SELECTED DINOFLAGELLATE SPECIES OF THE TOTAL DIWFLAGELLATE SPECIES Measured Section 23 Upper Almond Formation 3 O u z s 5 55 g — u v 8 .— 2 3 E E 'C c g a n 9 2 Sn —- o-a L . 3%. 8 o c 3 B 2 8 2: V B! ”“ ‘< “c ‘“ no ‘ B a -— E 2 I . 31: ° = f'g :21 £8 :2 E: E3 -3 8 8 .2 t: 8 .2 < r- “wag -1i i 0 0 1i 66mm '1 I» 1 '- “W50 -1 r 0 l i 1 1 " “$32 .1 — 66m: “J ID i 1 p 1» I" “W30 -1 l J I} 1) It i l l i 1 f i o 50 0 SO 0 50 o 50 0 so 0 50 o 50 Per Cent 137 Figure 28 REIATIVE ABUNDAMZE OF SELECTED DIMFLAGELATE SPECIES OF THE TOTAL DIMFLAGELLATE SPECIES Abasured Section 9 ther Almond Formdlon 2 a s é; E 3 l! E I- i a. E“ :6 8 it a... LL -= .- 8 _ :— §§ E? a; s2 :5 g- a! 8; in 3‘ E‘ 3.- 1. 3‘ J - seem _ i I I l T ' 0 $0 0 so 0 so 0 so 0 so 0 Per Cent ‘§'-umg« rum;- " “HIST —1 eicrogrenulete Deflandrea 138 Figure 29 RELATIVE ABUNDANCE 0F SELECTED DINOFLAGELLATE SPECIES OF THE TOTAL DlhDFLAGflLATE SPECIES Measured Section l2 umu'MmMMFumMMn s E . 5 .5 i3 5 3% g; g i3 53 E! ii ET gg ‘" 83 :3 53 :2 z E: -3 a a t 3 a 2 “VI” II Per Cent 139 Figure 30 RELATIVE ABUNDANCE OF MAJOR PALYMJMORPH GROUPS Measured Section 4 Upper Almond Formation 3 5 I .— § 3. E E I 3 .3 a a x a .. E i d- e 8 e. _ a i - _, . a a ‘ I In I ' '33 “mos .. “not 1D I 1» ‘l I “mos-II 1» 1r “vim-1i 1i 0 “HIOI'U 0 "7‘13- “moo "l I 0 /.. 68199 p 0 0 I 1 I I I I 1 so 0 so 0 so 0 so 0 so 0 so 0 so Per Cent . F ‘ P 1'“? - ‘ *‘n ‘ 11 h “0" ‘P 366%“. l Dinoflage l laces ll-IO Figure 3| RELATIVE ABUNDANCE OF MAJOR PALYIIDMORPH GROUPS masured Section l4 Aigee ”spores Lpper Almond Formation Angiospem “RSI-1 ' ' ‘ Acritarchs Gunsl‘ sums- sense - 66min - 221.2“: 6682“) '- “Ink!“ (13:79:39,260 1 gauze " [ LA'iGMfi‘ J- mas-1r Means:- ”VGMJI-l ' 6M2?- :mzr ‘ 6am:- “um-I .6“)? "' “DIS" “fie-D sense - “ens - .same- i “Hula-1 l mza- ' “tall" “nzo‘l Gama-1 same a fi' wf‘ fl Vi Spores Snooper-s SO 50 SO 0 T I 50 o 50 0 Fer Cent 50 50 il+l Figure 32 RELATIVE ABUNDANCE OF MAJOR PALYMJMORPH GROUPS Measured Section 23 Upper Almond Formation ‘3 3 E E e g a a z : 9 v1 3 m 8 I 8 g s g E "a 3 E. < f m J: 5 FMS" I I I T T T " 66015: 4b 0 1} {b 1} 1i ’ ‘MO -0 1D I L i i .. ,. F- 1 Z sauna: «i 0 0 1 1 In Loews: -1> I 0 1D 1 I T “M30“ IL L 0 1» 1L Jr I I I I I I I 0 so 0 so 0 so 0 so 0 so 0 50 0 so Per Cent “+2 Figure 33 RELATIVE ABUNDANCE OF MAJOR PALYNOMORPH GROUPS Measured Section 9 Upper Almond Formation Dinoflagellotos Also. Hugosporos Spores Gymnosperms Angiosporns Acritarchs __ 66ml.) 4 U r I U I l l osoosoosoosoosoosooso For Cant “+3 Figure 3‘0 RELATIVE ABUNDANCE OF MAJOR PALYWMORPH GROUPS Measured Section l2 Upper Almond Formation 'o' * 3 a a S - I § 5) § , a a E ‘9' 5, a 2 g l5 3 “a 3 i cg o g ““97- uunssqp T { I 0 T saunas-i 0 i n it T “HMO-1) ‘ L L L L miss-i U n 66ul92-D 0 1| “um-i 0 0 V I l I I I I 0 so 0 so 0 so 0 so 0 so o so 0 so For Cunt lhh .ucue_vum mo scum Lug mzauoeoc>_ma ~:Emum Lou mc_muo: «# .xuoL *0 mo_ scum .uav_mog mo _Em Baum muo:a__< « .. mum. ms mNm mm om~. om oou w o o _mmw __ mm__ n: 00. J «0. mm 3mm _omo omm oon ~_m mmmu on: unm_ 9.. o o moon m. mmmm mmu con N: no. mm 30m om_~ m: con :. oooN 0: 0mm m o 0 .mo. ~ omm u. o o _o. oo_3mm u_m _m n_~ m_ mm. __ mm N o o o a mm. o. m. _ mo. _o_Zmo owm. ~w. om:_ m:_ o:w :w om. m. o o o. _ ommm mmm o. _ mo. No.30m om. m. 0mm m. 00—. NN oo~ J o o 00. N 0mm 5. om _ _o. no.3mm coo. ow om: m co: m oou : o o o 0 0mm m. o o .0. 30.300 0 o o o o o o o o o o o o o o o _o. mo_3mo 53535353635353i rV» wmwmwmwmwmwmwmmMum w w w w m w wwwm m u. u mm an m" mu mm “w .M« a S 5 w 0 5 5 U J S t. D J 9 9 O I. m m m m a a u a w e. m .w. u. w m s m w. 5 S I. E 11 a manomo :mxozoz>4.ma stmLm Lon mc.m.u: .¢ .xuo. mo mo. 50.» Noau.mog no .Em EON» macaw..< « 147 om.. MN oo. N .omm N o o o o ooN : om». Nm oo. N .o. om::oo co: m on . o o om . o 0 cm . com N. o o .o. .mazom om. m o o o o o o o o o o om. m o o .o. Nm¢3oo omm N oo. N ooN : o o o o o o ooN : o o .o. om:3om coo: Nm oon :0. ommm. No. omN m. o o omm .. ommN N: com o .o. .m::oo comm NN OONN :m om:N m: cmm N. o o o o o o o o .o. mmszmm .b n. a. 4 a. .b 1. .b n. .b n. .b a. .b «a .0 1. iv.r .5 mw m mw m mw m mw “W my MW mw mm mW. m mw m u. w W W W W N W W m. u b d s. 10 n I: u UV m N. w. w m N m... a S 5 w 0 5 . a» U J M m. w m w a o M” a S S S d U E .w .w m .w w m m a m. m. S 5 ll . 9 0 1w 9 S mmaomo :mxozoz>4. u4m. m4m.ma N:Eaum Lug mc.m.0: «N .x00. *0 00. so.» Nuav.mou mo .Em EOLN muO:U..< % 0mm. mm 00N a. 0mm m. 00N : 0 0 0m . 0m0m .0 0m. m .0. .m.300 0mm: N0 0mmN Nm 0mNN mm 000. 0N 0 0 00.. NN 0m: 0 0mm N .0. Nm.300 00NN :m 00m. mm 0mm N. 000 N. 0 0 00. N 000: 00 cm . .0. mm.300 000. mm 00N :. 00: w 0 0 0 0 00. N 0m: 0 .0 0 .0. 40.300 0m:N. m:m 0mmm N0 00.: Nm 0m:. mN 0 0 0 0 0mm. .m cm . .0. mm.300 00Nm :0. 0mN m. 0mm N 00. N 0 0 0m . 0 0 0 0 .0. 0m.300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0. Nm.300 5 3 5 3 5 3 6 3 6 3 .b 3 .b 3 6 3 V S W m W m W m W m W m W m W m W m u m. w w w w w m w w. .m m. .1 . c. v. a. nu m. a N. m m w w .m. m. m m. m. .u. N n a m. u. 8 S S S d I; E w m m N... m. m .m. a m. m S S m... m... mmnomu 20¢0z02>a¢4uzuu wuszmHHDmmxazza mwFHszHumquc szxummmmsamH .w .mu mHHAQchme .mw wHoqommuHHm Hmwxwuz wHHJDmoaax» m .mw wprZMJHemDmDLHxF mapmmax wprZMJHomsmamHm» mDHDZH: wthnDHhachmezw wDHmHnqumm wwszmJJDmmHHzam wskazpw mwFHZMJJBmmJHnam zuzugsm mwthmJJDLEJHsam mHKEJDm meHZMJJDLEJHaac wowszH:3454:mzm meHmJDuHmk w3k¢>m4uHuma waHzmngmemgauHm» wzpquqummomuH: meHZMHADmDmJDuHmh wzpmxmmumeHwL mmHHmJDuHxh wahczmmumumqu WMFHZMHJDmamJDQHmF wHHHmmhaz wprmJDupr H .Lw wwHquHgamnmgsuHmp c .mm wMFszJJDmHJJHFme w344mz wMFszJHomHDmumuHmm wzhququmm wprmuuuHmk mzuagmmm mwbHZMJJDmeumJDuHmH mafia: kaHonHzmmzu wmmHoxnz¢w>xucm mngomHzcxhnmm HMJJHH wMHHmHOUHKF mzkummzuu wwwHZMJJDmumJQUHzF mezw>mwzam quuuzzamu wHJHmchm> wwszmggomHoszmzm wzpmJDUHme>Ipmm waHLHDuHx» H22¢24¢IF wMFHDHUEmpuzm wawnhmm wwanHUEMPDzm a .mw wwkszJJOmHIJD wDJJHmDL wmszmggoLHDmmmHJDmsu wzchsquwa>m4u waszHJDmumuouHmp wa4 mmpHoHuaHJHH waxwgmzou wproHumHgHJ wDHGJDqumz mMHHmHuwxm wDQHmnom mprgzunm>Hmnwsm .mw mmepmzxwmm Hmemmx quuumemcza Hmumnou waHoHszouzm wapmxmmum mMPHUJDwozo: wzhm>o wthzomwohwszam mahcmxHq wwhHUchmuzmxc wDHQDQ wprzMHJOmomnkzumczH WDFGH: wMFszJJoLm¢MU¢HQDxmp chzmxm mMFHmome4¢ wapmuzqummeu>uL meHszHBmequmemm w3>mmm mMFHLHxDuu wDJDUHzmH wwszudHommcuawF wshzmem meHanuHmmH wzzwmz mprnHuuHmcH waquzc4hm wwkquJJomomakzmmmzH quHawmIJU wHJJomOmwcuu waszmz wprnHmzmucnom Hzowzmt WNFHQHD¢HUDJJ>IL mecgauHJJDL.WMFHLonmU>u H... .mm wEHmoomu>u wnnHHJmL mprzuLwHumpH> mDHDwchmh szommmm>om wn>¢m wwthommHHaom>JoL mozH: .h .80 wthmommHnoh mahm>u mprchwapcmH>m¢4 meZMJmexwx wprnHJmeome wDquozww waHnHHzmtungm mzcxmcHn czomwumthqua mzpaszxthpzwn .m .mu wmpHmoLwHanzmmmc mezwwoxon wmszDLmeauHthuHu machDoz: awkaomeh¢43u¢mzeu w2>zmm szommcmquw Hzowzoou wacmwumHIuw .Lw wmszuLthcJanz: mezmthxmo waqummemewzHu :Dzmumexo>nz mHmuLwH>HJN meHthc>¢Huoxpwsa wwthoszsHoomou>H wHH¢432¢I meoLthcqzxcz wHJszu mmkHzDLwnw>am wthzcmmmDaszc wwHquLmemmkm .Lw 1449mm mafia: x>Lm szH: x>hm a 2x98 wmwmmtc4¢m mwkazmmouch taxpmeowm .Lw msuuou>mwom umaunmmm> .n .mu muxothwua H .mw {DHHmzmw204u>u wononowamzH mmoxmoquzhw>xom¢4m¢ HHthcfizum :3H2Hoahm>uowcucm cquzuHmezcx cmm¢rmwozczm2mt mHHmemm :anwacu mmumzcszw: .m¢> mmozmm mummxmwcquzhm>I raxwwHJHau wm>men H .mw m mtxnm taszHmwomem stonmmILwanzou rammmHmzh :nHuHmmmzmwozqupw>I a .mw zaHzHaoz>IhHmh zapmzHLmezwo zaHzHDHzHLm ¢Muzzzmm mmMQZQJLmn auHmHzomz mumozmqumn Hzawxoau mMKoZGJumn wszm¢zmHm .n .Lu mumnz¢48mn chm432mxwomuH: mwxozmewo H .Lw zaHzx>tzHn wwzuzowqwz 23H22>wnan q wwHuumm I WDZMu ¢F¢0H>wm4 thw>uaxspwuw¢4m8 wszwHJIKFwac wHwLotszwozmhL wDHmumzu zszprm>xquz mJHummL stnHmhw>IzuHx tsmmmHHHL zaHaHmpm>Iqux IssuHmwzoqu zzHaHzpw>1mUHx zzzHLwszmn thonkw>rquz eaten» in 1b. Samples Table XIII C O U NT D A T A 2" noun! dam only, vnidenvfliable specimen: Oxc Iuded, specimens observed indudod 2'. Coon" are excluded bu! no! I... HS_OI_0>Z wqbam CZ_.1a'cn.nnnnLLEN11€s CONDICVHS 17h. r911 AN1 90L LI< PA CHV SANDBHIDES 1”-1'M'ILA nLLENIV Es sfflxntué 193 YFIDHDODOLLENIYE§ DUGAIUS 4. .-1c A if: 11> <:> —- 1~> 141 -— 1:) c: If; -- 11> ;; “3 — - - - - :§% 5;; - - - — - — — — — E ====== <1\ <7\ <:\ <3\ <1\ - - <:\ <:\ <3\ <3\ <1\ <:\ <:\ <:\ <:\ co 9 <3 -4 ha - Q9 4? \n <1~ ~4 <3 LO :3 <1 .. I ~-- - ,__ v . ' ' ' «11--..- II “A 4 ' ,Ix----- u. A! :---—-------~---l-------I.------l------- . : . .-2 . ,, --' 2‘ xxx-----" "' ' "“""-----_---_----_-_--_-._-.---_-_- Z : -------------—----------.------. _ . -.----------.- -----.--.--.-.-- ;--.-_.- ' .--.---- x1111— xxx---;.5---.--- x-—---.--------- : ' ;.-----—x-.----- ' 5-- ----. u- “ ' 5-----.-x------_ :“‘--'--~"""-""'-""'-"‘ " I----_---:_---------_---;------_ I l 1 ---~- -.,------- l--u—--~ '-------I---——-- X---—--— §------- VIII¥--- I-I----— villi--- Subzone IA I H§EEEEEE 1B Zone I LIJIIEEFI ALMOND FORMATION Species % of Total per Sample 311 SIO s20 O w u: .. H —_ Q MODE CLUSTER ANALYSIS, ALL SAMPLES u E 0 m— V’ r2__'°§ Jacca rd Coefficuent 1: :——-———o Wei hted P ‘rG c1 ' ‘” * ° 9 a l roup usterl ng m L 5— r— : I! 3 a, (I. U! U1::=====‘_ 3 E 3 :—~ 0 3 z 3—0 0 o ' “J n I I1 .2 .3 I I. .5 It “.7 I .l 49, 1.0 2 0'1 9 V, N , ,, LI, ,_ I , . ' II nun I 17,—“1‘ I IIIO'IIIIIII Z I shuns A {—00 0 . V . . . 0 . . . , _ , ’ 16 Ian” 12 §—" - O . . ,.. . I ., ; II «um I g IIIIIIIIIII . IIIIIIIIII _ ' so IAIIIS II I I ' 51 «ms u - . . L I! In!" [I IIIIIOIIIOIIIIIIII ‘0 . IO . n Isuzu K . . ' ’ ‘ ' ' ' ‘ II um: I: 3' q ' u IIIZIY II E - I; Is‘uI Q Li I ' . . I. 60 “I651 13 ‘ I IIIIIIIIII I ' . . . II OOIQI‘ I! I _— . I . . ' s: “an IL I I 9 l 9 I 0 57 “I.“ 13 0 I IIIIIII I ' l IOOIIII ,__‘k, , . . __,- _, . 59 661650 13 I I I A I . I I . ' I1 “I“: a . I I ' l— . 0 . I . , . 9V . I, I: Ina" 9 (5 , I I IIIIIIII w~ . 0 . I . I I .0 ' , I, II “III? 9 £5?) . I IIII ' I 0 ._ I . . . 4 ' 1A Anni! 1L . Q — u ' I ' 10 III"! 12 IIIIO OIIIIIII I I. I I . I IIIIIIIIII , 1! 66‘193 12 4* . I I I I I III. I. I I . . I 15 LLIIOA 12 . I I I I I L. I I I I I 71‘ It'll. I! .. . O . O . ‘ w .17 9 . l 9 . I 7‘ Ofiilgz I: . . . Q . I, I I . I I _ 3. Obit). I. I I I I I I. I I . III , IO OOIZI' I. I I I I .. I I . I . . 66 5012.1 II I I I I I I IIIIIII I; 1 I I ll...- IIIIIIIII A1 1.5.1511 1A I I I I I I I . If I, I I . I 5. I . . I. he: 0 II I I I I I I (V\ I. I I . I I 32 “I226 lo I I I I I IIIIII O. I I I .Iil‘ An 5553;: 1L 3 I I I I O I. 0 0 . I. . at Mano u l- . C . Q ............. Q 0. ' 0 I I. o ' at 66122) It I I IIIIIIII I I AL I 1| 55.12:! I I II IIIIIIIII I, I , I . u “will u I I I V . I. 0 . 50 GIIIJI 23 A Q — I I u. “a!!! I I I IIIIIIIII '- ' . . I 19 “uni I I I IIIIIIIIIIIII '. ' . 0 . 0 . l1 blillb l I I I IIIIIIII I- I I A) ALIZJI 1‘ D . ..O. IIIIII. I I. I :I I7 _66'232 II N I I I I I CL 'v ' 0. 0 0 . 30 “IEZ‘ 10 3 . O . ....... 0. o I. I I I II II IIA-("J 1A ‘- . . Q Q ........... ' w 0. 0 I. . ' n 50:23: n I I I I 'I ' 'n . h 21 “I221 [I . C . I ... '0‘ III _ ___ IIIIIII ‘ n III-I231 1A I I I .0 .I I l ’. 66:22! I. I I _ _ .l .I I I w 20 EOIIJ’ I . O ............... __QL __L. I . 0 m Lulzi L I I I IIII -. I. 9. . 0 15 sun: I I I I III 9. 0L 6. . ‘ n “I!“ a I IIIIIIIIIII 9L . ,u._ I. . . I “mu I »~ I I F' i :n I :I I . ablloa ‘ 0.! -. . 6. a «no I 3 I I IIII e , k . IIO.-Inn . ' ‘ 1 hhl.‘ I * . p . . ' 55 III!!! u II I I "I u 5. “I10! I I IIIIIIII . . '- ' . . 1 “not I IIIIII IIIIIIIIIII I o I ' a u 3 bed!” I I . . . ‘ so Imso u 3! infill; 1A 33 66'227 I. Still. I. l x AIIIJII I. I‘ll! . . . ..... ..I... . L I. 601137 I O I n "In I I . ' ' z: sumo I I I , . . , I I . I , . . I II “I136 10 I I IIIIIIIIIIIIIIIIOOIIIII . I I I . 0 I! “In I: g —I— H "_ IIIIIIII I I I w 66 0613‘" 9 I ° 10 “In: II : . I . . ll Mun 31 I I I I I U 56!!!! I ll OOIJOO O 0.0 II I! .3 0‘ ,5 .g .7 .. .. ‘.° Similarity Levei Figure 1+1 ’ .— Q—MODE CLUSTER ANALYSIS, ALL SAMPLES 3 8 m Geometric Distance CoeffICient E . ‘ . . <1 _ Weighted Pair Group Clustering E g_.,, 2 a _|_—_g 0 D. u) > _C u E m ’:—-— 0 iii iii g .g W E m_in 0.5 fl 0 J .t .5 .I .1 .o .9 1.0 ' g ; IT:'.;‘.';.T-..T.‘...r ' ‘ " ' " 16 unzv I 3=_° 'I I E (“I 0 . II . II 66!!!! II <—m 42.“ W, II ,I, # ,.'___,_~_ 7, , , ..... I, , 7 , k *—N 0 . . b . I2 16m?! u ‘0 .— . Z "'I ' ‘ . """"" fi‘ ‘#’" II Isiah“ u < M I I Q...— P I I I ' 2] SGHXIO G I I I 9 ‘7' 7. 7 A“““-" "'77. 777‘ 'I " o 7' 7 7' 7‘ 77 I6 77'66I2’I17_l7r E I i I 17777 ' ." __‘I'T ' #73 ‘ “0"" 21 ' ln2n77TI— 9 " ' . . I . . . I .- ' u Isuzu u I I I I 7" 7.7 7 7 7 TD """""" . ' o' '- 7 7- ‘ , Kf7 "697215737— 9 0 ' ' O . . 7| ' 7 7. ”‘15— _7 — '. 7 I I. h ' ' 36 766I2fl—1T77 I I I I T . .p . I .I I, II 3! 56!!!! II I I I IIIIII I '5 {—777 .7777 7777777 7 7 .7 7 .0 "I I. I ‘77 7 7 77.7 7 7 77576SIT‘IWIIIII‘I‘U'OIIIIII 3.7 ' 7C§a7ffl777fi7 I I I I I I I 7 7 7 77,7'7_—_'—.‘ ‘VUITIOOOFI '7 ,0 I I. I 7 7 777 777" 7'37IIII7II7IIII'II “7 36'2727‘ 1. 7 I I I I I I I IIII : T I .I I I. I II , I I ,IIIIIIIIII ” 66'221 u I I I I I I IIIIIIIIIII IIII - I I .0 I I. I "I'IIII'I ’ .' ' .7 7 .I’III‘III’III“ 7777‘59‘2737‘7713 L I I I I IIIIII I I I u I I‘ ‘ .I I ‘I 6"" 75‘" ." IIII'III’IIII’I’II'IVEL “H7231 TI ‘ O I I... I I I I I I I .I I . I I Io III!!! II 1 I I I I I I I I I”? .I 6' . I‘ IIIIII’I‘II'IIIIIIIIIIIIIIIIIIIIII 50' "36.713? TI“ I I I I _I I _ 0 " T' 0' I. 5 o ‘ ‘7. 32 763752671377 I I I I I I I I I .r I 30 GIIZZI II I I I I I ‘ U ’ ' I ‘ J I I 776Ffll‘01'7737 I I I . I I I ‘ _ I " ’I 'I' I .I I I ' " ’ "" ’ ' " ’1""537f33 "'T'# I I I I . . I I I I I I I ,I I I I . 1 Iona I I . I I I I I I I I... I I _ *fin . ---I ' _ ' I I ,I I I I IIII ' “" 5 56.95 ' 'r’ I I i I I I I I I 'IIII I I 9 ‘ 77 . 777777A-7i7 77 77' .7 ‘ ' I. I ' I ' ' . 777 h I H 577' SKIN?" I ' I I I I . I I I . Q I _ _ I I . . I , I I ,I I I I I , 26 66H!!!) 16 I I I I I IIIIIIIIII I IIII . I I . ' *‘T’ ”“1 _ I I . II I IIII .I "y gguifiI 7I 'I I I I I II I I IIII ' . '77. 7773' 7‘ . 0' 0 I 0' . ‘ u 7 7 ' 7 7 V‘ 7 7' 7 " 29 7667-12237 17777 I I I I I II I I ‘Ii r . I , I I . II I 3 OIHIOO I I I I I I II I > ‘ — I I ," ' '1 , I I . II I , ' " " " f? 51.1” ’r' I I I I I II I I ‘ I I .' “' ’ "1 , I I' . II I , ‘l , IIIIIIIIIIIIIIIIIIIIIIIII 1 Gswfis 7I I I I I I II I I I . I I . . - . I I . .I II . I . I . II 66!!!! I I I I I I I II I IIIIII IIIIIII ’1 ‘ I . ‘ *“——, WW1”) "T I , 'II , IIIIIII‘I “* :I“ I" ’.' 8 ' r I , “Inf; “ ' SHIT!” "I ’ I I I I I II I I I I I IIIIII. ' ' . ’fi" '“"”'"- “' " I " o "1 . ' .5 7 l7 '. I ." ' I I'lUII-‘f IGiiJY 777! L M I I i I I I II I I I IIIIIII III - v . . - . I - . u . I . - .- . I . "III a "I: I O- I . I I I I II I I I I 3 I I"*, M . i—“fir‘; ’ ’ I" I . II . I '. III'IIII , I IIIIIIIIIIIIIIII” “9131" “5‘ O I I I I I I II i I I IIIII ‘- I 'I *4 :7!‘ {‘77. 'I ' j I' ’r . II . I IIIII ’ 7.77. , "I ’ 'IIIIII‘IIIII .59 "65.316 ' “5' U! I I i I I II I I I IIIII I 1 . I 0 ' I 0' I D ' ' o .0 . ' m 66H?” H I I I I I II I I I I IIII I I , 7777;777:577 .77. , 'II , I I I , 7.7.7 ‘ ’ . " , IIIIIIII” 66'2722 'iI I I I I I I II II. I I I I , ’ "Ii” "T ; I I . II . I 'I’,’ ' _" " ’ ' ' ' % 56.33. '3‘ I I D . I I II I I — f i . .i I . I I . u . I 11 “use I . I I I I I II . I . I I , ""“7 I 3",1 ’.' 77 7' ‘ .7 0 7. 3! 56V!!! 'IT I I I I I I I > i ‘ "'r'” 7’ 4__..._-'__,T T ' *r’r I" ' " lo "fiw1!§"j’ I I I I I I I I _ . . . V . w I . {II-u" . I I . I -. 55 Mini; 23 I I I IIII I III . I” "V ”—.’“";—-—_'”‘- “Vi r ' “‘H' I Vii oeuvrTr' . . I I I I I I I _. .. . 1, War, a? _ . ,_',_.. w 7 ‘ . - - . . "'97 ' 72 66'“?! IE 77 I I I I > 'r , _ . I I I II Isuzu II I I O I , _ '1 "I “."W— - ' I I 57"'1wnr“’23 " . I I I . 'InIWi‘fl‘f7 7—7 '7‘ I! ' 7756I72W771T' I I 0 I I . —‘I'—_" I ' I ' ' 53 66!!!! II I I I I I I I ~r~— r-T—w—fi—'—1——5A~-w—r‘ "Y r I’"’ ** 31' I " ImIIIInnIII-IIIIIInIi'si‘"missu—fl" I I 0 I I I I -1~- I— ;,__ — . _T‘:‘—~~1”. I I * *' ll‘l‘Im"' T A’ : " " W’ W i7 ' IIII" 'IGUEW‘ "11‘ . . I I I I IIIIII 'II —"——r . . I . I . I I _I I . _ w HUZIS II . . I I I I i I I I . , >1 . >*-—~—— . —1r——.“" ‘ ‘I’ ;" 'I I . I .I ,h "IIIIIIIII'I' '. “III" ' ISUZS‘F'TF7 N . . I I I I I IIIII I. I -r'—--~-I . ~—- . '—'—"“'T" *"1 : v I " ." I I"’.’r"'”"—"',—ir ~'—'",'*"ImIIIIvIIIIIm " mutt—1T D. . . I I I I I I I I i D —'~—.r _ . - . - . - I . v v .- - . . . "v' I w—msw—T' O . I I I I I I I I I I IIIIIIIIIIII L ,1 .- ..r . 4———.——r—:A ‘ 'I ,* III ’ .77 I 1 '.I' I . ‘ " ‘ ' . IIIII’I'II a! 6m“ "V (D , 5 . I I I III I I I ‘ .1", - Te . ———#———r, ~;- I” .* * I '. I .1 'IIIr*'{ “ ”'T'IIIIIIIII‘ImI-IIIII ' "ecwm'w 5 . I I I I I I I _ I I . I ' . 0 I I u ' I. 0 6! Guam) 2! i . . I I I I I I I , I— ‘I I ." 7-—7 ‘T'J' ' - _0 . ' .0 ° " . . . _ Iouuo 9 . . I I I I III I IIIIIIIIIIIIIII _ I 1 - >57 _7- — , *1 . ’ I ." a . ‘I' _ ' I ISIIII‘III’IIIIIIIII . III \I' (will? "i L . I I I I I I I ' is Y 671 . I . I . I ' I . I . I I ~ 66Il97 12 0 I ' A9.-." 9 ,9 _..'t,._ _. .7 W- H.“ .Vr__-u___ v.3. , .57 5' A . — . . . . , . , so «an 23 0 9 ' ._ 9 . 9 . . ' . ‘3 Mi" ' . 0‘. I . .' . I n “no: 12 I i I I I I I I I . I O . O I I I 7! IIIlOI 12 I I ' ' . 9 A A. . L. .-, I ,,_.___ I" I", . I . ’ "" IT I . 75 can“ 12 i I O I I “A .‘ 7 , , ‘_ ___ T ”1.- 44--.——~:»—+1—w ~ - . . __ ~ vi. . A - n “In! 12 i I I I I I I . I . I: Ionian I I I IIIIIIII _ 7 ' ' ' " ' ' u ‘ 'mmi'r '“r' I '1' 19 “I”! I I . I 6" IOUIO' 'l I . ' ' 5!" 'FIUEW’I‘I” I . .1 Si "ISim"7IT7 I .5 IOUII. I 15 ICU!“ l l! KENS! "I"; 0.0 .l I? .3 II .5 .6 .1 .I .9 1.0 _ ; Similarity Level Cluster Analysis Code ..JEVII‘IIIJV‘ Complete Species Name MlcndvsvHIUllIM ogNfiISqu-I PfgnMpewMopsxs AUII’DALInJSys DALAEnsrouvasTls LAEVIGAYA GENII': A 5" I'. IFS DI‘mGYH- IU'I NELSONFNSE DIVOSVH ‘IUII DEFLAN-D EA HICDUIIHANIILA DEFLAHI) EA i. n. DIRNAENSIS SPIMnI lll'4 ue- .slsnmnu» YRIT-I MR nm mu . NVsY-nc-OS DHAE mm: YURIKF mm conoospAAERulmm annspymnuu FOR RNA DIP’dVL S CnLL I5 HVSTdIC'U)§PHAF:A :AMosA VAR. MEMHQANACEA CASSID IlM FRA GILISA HEW-2AM: SDHAFH MA RICHVICA PALAEOCVSYOn INIlIM HENJA uni Ix PALAEOHVSTHICNOP:UHA IPIFll<7fiIOIDES DEFLANOLEA C“. I). VERRUCOS‘ PEDIAET: UM PAL; OGENFITFS PALA‘flaA'ES row srvx ~41 nu STvx HA .0}: A20 STEREISrouUEs ANTIOUASPnalrfis FOszsP' an nus LVcoanumsPern Austm-I AVAYIOITPS Zva 59 us no VOMEXICA‘JUM CINGULA 'ISPO HULS DAKOTAFMSIS UNDHLAI'swriHIHs SA. SCHIIIIS WIS f‘x‘UKSUNI 5041105 HIS PAHV vus cowacm AYISPO‘H YES lwnUans CICATQIrOSIsvna-vnn mummy; ’XLMTI‘IARGI'JQTJS vnnglslnunp: PALLIDIJ‘ CVCAJ JP') VTES ’SF’ . CV CA an UVP IFS FOLLICULMJIS F’I'VVLLOCl AUIDITES MINSONI INNEHY 'QOPULI [rungs ArLAurycug LAHICUI IVES “Mi: us LARICUI‘ITES GIG TSUGAEP'LLEN IHSA l'vNIcuL'K chBIPI'LSB uvus ABIETINKAEPOLLFNITZS rovrwrncuLnus LILIACI’- HES chHLEXIIS LILHCIWTLS LiEI Wu: 0L P DnLLENIlES CLAVIBrTICULATUs cunqurruoxPnLL LNITES vusyLLiis CR Am ELl 1A nunssv EN; 15 TRIcoLD FOLLFNI TES councwq TRIcoLPvTES LIL LE LRDngny :OL LL15 DAL‘uVSANnnnInES cunnlgy s MAJ JRO YRIcoLPnPOPUL LENITEST AZFLIIENS Inc oLwyL 5 Hz? 1L CILA ERICACEHPULL ENITf—s PlAJLLUS PISTILLiPOLLENlTES SP. A THICOIP'POLLENITFS SP. 1 TWICOLPiIrS MU Ha I YHICDLPHFOLLENITES HchDSrM-IRATUS YHIC OLD i TES DsILAscm EA to < TRICOLPrPOLLENUFI utcnonrncULA‘rus s . SPDHOPoiLIS CF. 5. LA QUEIFFOBMIS ALuiFnuENH. s GiJAonAvoLLPNITEs CONCLAVIPOLLIS HULFCREEKEVSIS \‘ \ . , Figure 44 R-MODE CLUSTER ANALYSIS, ALL SAMPLES, ALL SPECIES Jaccard CoeffiCient . I Weighted Pair Group Clustering In (1) ._ a) U 'U 0 O D. Q U) my ,1 .2 _3 a I” . .1 .I .9 1.0 7 7" " . ll) ILNI'ULLENITI’Y W‘ ’ "mm or asu’n'm'l ‘ ’ . . a! utoro u o x . . . ' r7 . . v I I I I I I I I "6 -r 5"! . II n. C' .O... I L L L L LL L LL .. . . . . . . _ . . , SI AzoLLA s». I. . LLL; " ' I . . Is CICAYRICGSBPOIIYEE .. . ..O.......... n u (‘nnlll‘m _L II I V II , ‘ 73 [VIE FL .. fl ” I I I 35 STEREIS’ORITES ANT” .. ...;.O. 0' I . 31 HAIULHISPORIS NANUL II IIIIIII I L , I' . . 6. i . I 1 W 7 23 CAssmIUM minus I. LLL ,LLLL L .I _. , r a, -, . . E;* " ’ ' oo ci~IULATISP0iir¢s DA . . II IIIIIII . U GENuS l SPECIES I I. I " ' 7 7 7 36 FOVEUSPUNIIES CWLI’”"" .I . ..I.. L .. . . . . ** I1 uuDuLATIsPORITES SP. .. . II......... .I I . _ 26 ML I. . LLLLLL H I . . 2I MEIaRANOsPNAERA Hus .. . I.............. L L L L 77L LL A II I _ I , ’ ’ ’ 5 ucnnvsfalnxuu EUPEP .. . . — II I , I , I Nicanvs" WM o M: II I . I 7 _ . L D .I I _ I , I 2 mean 0 I. I O ...I. . _ L '— II I , I . .. I, , , I 7 16 ., DENSISPI‘ .. ... I I I D. II I I . I . I, IIIIIII, . . l1 DEVLINDEEA MICIOGRAN :5 II I I I I I IIII L-n-I} , 0 II I I _ I _ I_ I. I _ .- ‘ 11 in SP. A S. I. O I I . I . or, II I I7 , I _ II, IIIIIIII , 7 7 I? DEFLANUIEI CV. DI F1 .0 I. I . 5.. I. O 3 II I I I I . I _ I 20 Pom“ A SP. I II I I , I I , II. , . 19 o o A . FIa .. . . . . .. — .I I . . I I _ ’ ‘ " “ 15 ocrLANDREA PANNUCEA 0 II I I I . IIIIIIIIIIIIIII C) II I . , I . , _ , 25 IALAEocvsionxuxuii a: -— I. . I I I z :.I... II I I , I I _ I 3 PILI' w I. . I . I .0....0. (I) II I I 7I I -. 18 I.“ . - I II I IIIIIIII I I IIIIIIIII .. , . . _. 21 omves COLLiomN II I III.I.II I II I . I ,I 22 . ,. RAH II I I I _1‘ m .I I , I _. , . 10 -. . . 59. i o .I O I I I..II.I.I.I ,_. _ TTI ” ,"i. . , 1‘ DEFLlnbEEA MAGNIFICI II I I I 7 (D I. ' . I . . “ 9 A‘vvv . NELSONEN U) Q. . O _l II I , I 7 IALAEosTOIocvers Ll < .I . .IIIIIIOI o .I I _ I 31 DALAIIAIES rain I .— .. C ..D..... _ .I I , , 13 ochANDREA Cooxsoru a II ' _v m " ' I - I 33 srvx MAJOR I. . II.... II I , I FRAGI II I I I , _ V II IIIIII , . 7 6 rumva III ‘UST .. . II 28 DEFLANDREA CF. 0. VI .. — I. . I 53 VIYREISPOGIYES FILL: .. .......... .I , I .. ‘ . ' TauDOPOLLIs NEEKERI II IIIIIIIIIIIIII IIII' . _ . . 56 PHVLLOCLADIDITES MAI . 6! Luxwiuiizs GIGIN‘I’U , 51 poLwoonsponx‘rss FA :.........0....... . 52 FoVEASFORIS TRIANGUL ..........: . 27 cchONEPHELIUM 5P. 1 .I. _ 32 srvx MINOR . . I 29 ‘ 5'. 0......00. ..O..... .........l _ , , PLICAPOLLIS 5P. I... O IIII , ‘ AouILAPOLLENITES PUL O... IIII _ ’ 62 TsugAEPOLLENITEs ION I... IIII IIIIIIIIII . '56 TIICOLPITES LILLEI IIII I I IIIIIIIII IIII I , IIIIIIIIIIII ' SI CVCIDOFITES SP. A O... I . . 71 :uCo-mnnnzs couPER , _ “* II CIANI L I .I...... . I , 30 DEDIISTRUI PALEOBENE .. .... ' - 7 AZ SCI-0110590315 COOKSDN I... . . . III I , I IIIII , . ‘ LAEVIG‘TOSPOIIYES 0V .. Q . ..O.... I H II I I , I I, ‘9 ALsoMlLIDITES KERBU I. . I . I l .I I . ,' . ., _ . n DELTOIDOSPDRA DIANA Q. . . . II I I . I ‘ " '—— IO OLglurIIVAAvAILS SEND .. C . . — M 0 I . I . . ea THICOLPODOLLENIYES D .. I I I...II.I.....I.. II I I . I I ’ .' ' . 55 CLASSOPOLLIS CLASSOI .. . I I O ‘4 ___7“ 7_ AAA" 5 II’ I I , I I , 89 TnxcoLFOROPOLLENl ES II I I I I I a: II I I IIIIIII I ,IIIIIII , 7° LILIACIDXIES LEEX J7 I. U . . . . . ..... L .I I I I , . I _I I I . ‘ YBIBORO’OLLENITES SP (.5 II I I I I I I I # 7 m A II I I . , I I ,I 9‘ THICOLPITES NUT‘SILI .. ... . . . Q _ .I I I , . I ,I . 96 YRICOLPITES PstAscA .. . O . . . ............ II I I . I I ,I , I . I II paorEAchYEs YH‘LIIA I. . I . I I I ..II ’30 I I . I I ,I , I . "*7 "77' 76? 7 LARICOI n 5 news I. . I I . I . II I I I I II I , . ' YRIPOROPOLLENIYES EU .0 . I I... II I... II... II I I I I. ,I I I, 93 rnxcoLPOPOLLENHEs s A .. Q g 0 Q. . O . — IT I I . I .I _I I n. . """"'sa’ 77FTXI~ 9 LL ~17 H II I I I II I I I 0‘ 0 I I I II .I .I l . 80 PROYEACIDITES IETUSU I. G I O I. I I.III: ..I.‘ II I I . I7 II _I .I 0 I 66 v. ENITE .. . O . .. . . . . A L < H I - . I u .u i. ‘ . . 97 TncOLPODOLLENnES ‘17 i .. O I . I. I C 0 I I II I I , I IIIIIIIIIIII I. ’I _. I 67 . I r- LLENIYES 0" II I I I I I IIIIIIII 3 0' ' I I I I .I , I . AouxLAPDLLENITEs POL e I. D I I I p I 7‘ 7_ if 7777 _ .. . . . . . ,. , . , 91 mamma— g I. . I G I I I 0' ' I I ' ~ .- . I I It AIIETmEAEPOLLEunzs 3 .. . . I . D I... m I- I I . "III' .I . . . ' 'F' ‘M ARECIFXTES “new” I. O I I . fl 3' 7' ' I 3 I' I I I 75 LILIACIDITES COMPLEX I. . I I I _J II III . ’ I , 87 .. . ' -LIS MCHV .. . . II . . I , 1o nanosULCnEs SCABRAT .. I I ....I.II II I . I I _ 69 muncwavuuits OVA .0 . . ...... m II I . I I, 79 uLiAIPoLLENITEs SPI A m .0 I O I ..O..: 0' ' I I h 95 TnIcOLPOIOLLENITES M (3 I. I I I I... m " ' - ‘ '- r '77? 7 90 TIICOLPITES “TICULI 7 I. I I r .0... ' ..I...I.u4 0' 0 . o I 0. I . 55 CYCADOFITES roLLICuL I. I I . I _— H o . I 0 -. I II cquNielolYEs MAJOR .. I I I . ..IOOI...I.. .I . , .IIIII I_..I I , . ENGELHAwonooncs I: < .0 . . . I m .I . , I III 71 TRICOLPOPOLLENITES C .0 . W . I (D H I I . 0 . 65 ALIsPonnEs IRANDIS U) .. . I _ H I . . IZ TiucoLPITES IAYHVREY I_I I _— I. I 51 nooocmnonss Mun I. O ..OIIII. II I I 59 . .. ILLENITES .. I O .0.... V ,L II I I _ 68 it: LINBA .. ..I. .. .. . . . . 72 oquniPOLLxs «mix I. I. I 0.I.....l...............0.. II 0 0 . . . I3 scurzosvons PIRVUS .0 I. ..OIIII. I6 I 33 zLIvlsPDals NOvoHExI .. . ..0....I..... II II . , . . AouxLABOLLENHES an .. . V .....................l ‘ I. 0 . . . . 99 ancoLPITEs ANIULOLU .. I II I . u. AQUILAPOLLENITES 51R .. . ..Q........ n I . . as YIIcoLPOPDLLENiYES c .. I .....I II IIIII - , ' 63 czonxmes MINUS 7 O. . II I I 1! CUFULIF‘EIW‘KFDLLENIYE .. ..I.... . II , ’ ' " 92 HSYILLIPDLLENIYI'S S Q. 7 7 ' ‘ .n CONCLAVIPOLLIS ~6ch . . Sean P LL . I L 0.0 II .2 .3 II .5 .6 I1 .8 ,9 III) Similarity Level Group 12 Group II Group ID Group 9 Gr. Gr. 8 Group 6 5 Gr Group 4 Group 3 Group 2 ijk‘ y A; l T'RARIES 1L3 I I ll 00 WiERSITY Ll 15 Ill H3 3 l ATE UN 1'19 I I 3 I I MICHIGAN ST I. I MINER . SUPPLEMENTARY ll.‘ / \(K) v. I A’ ,w_,_<_,__‘_=_h___g___,w__§_,_g Egg 2r 7 23 a; /———_,I .5 8‘ Ta é/c /3 ‘— / / / njfl/ H , Is/ W H! WM ‘9 Took/V “*5 1' "Iilfififliflfljflmflfiflmflflfllflfliflflm“