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ABSTRACT

RELATIONSHIPS BETWEEN THE RESTRICTED IDEALS
AND INDUCED MODULES OF THE GROUP RING %G

By

Julie Rogers Kraay

Let H be a subgroup of the group G, % a field,
and I an ideal of %G. We wish to determine when the
phenomenon I = (I N FH)¥G occurs. Our first result,
an extension of a theorem published by D.S. Passman,
shows that there exists a unique normal subgroup, W, of
G such that I = (I N FH)FG iff W ¢ H. We also obtain

a second characterization which states that I = (I N %H)%G

FH

G
InFH and N denotes the

iff I c Anng. NG, where N =

tensor product N ®3

H?G.
If we restrict our attention to ideals I

of the form I = AnnsGM where S is a non-empty set
MeSs

of irreducible %G-modules, then we obtain the following
additional partial characterizations. If H A G and
[G:H] < », then I = (I N FH)%G iff for each M € S
and for each irreducible FH-submodule W of M,

I E'AnnsGwG. If in addition to these hypotheses we assume



that [G:H] is a unit in %, we see that I = (I N FH)%G

. . G
iff I = (N An M= (N Ann_.(M.) , where denotes
Mes nsf; Mes | ¥G My My

M viewed as an FH-module by restricting the domain of
right multipliers to %H. Finally if we add to all
previous assumptions the additional one that G be
finite, we are able to conclude that I = (I N FH)%G
iff for each M € S and for each irreducible

)G

%G-submodule, L, of (MH it is true that L ¢ S

(up to isomorphism).

‘We conclude the thesis with a brief chapter
concerning some relationships between the semisimplicity
of the group ring %(G/H) and the phenomenon
Rad ¥G ¢ (Rad FH)¥G, where Rad denotes the Jacobson

radical.
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CHAPTER 1 INTRODUCTION

§1. Group Rings and Their Modules

Let G be a group and ¥ a field. Then the group
ring %G 1is the set of all finite sums of the form

Z a_g, where ag € . So %G 1is a vector space over
geG

F with the members of G serving as a basis. If we
define addition componentwise and multiplication
distributively via the multiplication in the group, then

¥G becomes an algebra over &.

Let H be a subgroup of G and I an ideal of %G.
Then FH may be viewed as a subalgebra of %G, and
I N%H is an ideal in ZH. Our main goal is to determine
those pairs (H,I) for which I = (I N ¥FH)¥G. It turns
out that this phenomenon is intricately related to the
behavior of certain %G- and %H-modules. Consequently,
a large portion of this thesis will be concerned with the
theory of modules. We begin by stating some elementary
results that will be crucial to our later work. Throughout
we will assume that all modules are right modules unless

otherwise specified.

Let M be an %G-module. By restricting the domain
of right multipliers to %H, M may be viewed as an
FH-module. This %H-module will be denoted MH‘

1
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We will frequently exploit the following lemma, whose
proof involves an application of Zorn's lemma. (See

Passman [9], p. 224.)

Lemma 1.1. Let H be a subgroup of G and let W
be an irreducible ZH-module. Then there exists an
irreducible %*G-module, M, such that W is a submodule
of MH.

If [G:H] < » and if H A G, then the study of
%G, %H, and their respective modules is greatly facilitated
by the following well-known theorem. (See Passman (9],

p. 28l.)

Theorem 1.2. (Clifford's Theorem)

Let H be a normal subgroup of G of finite index
n, and let M be an irreducible %G-module. Then MH
has an irreducible %H-submodule W, and for suitable
XysXgoeoesXy € G with m { n, we have My =
le ® sz ® - @ me. an %H-direct sum of irreducible

F¥H-modules. In particular, M, is completely reducible.

Just as to each %G-module M there corresponds

the restricted %H-module MH' given an %H~-module N
there corresponds the induced %G-module N ®$H %G, where
® denotes tensor product. This induced module will be
denoted N°. If {xi}ieJ is a right transversal for H
in G, then NG = @® NQ® x, as vector spaces. It

. i

ied
follows that if [G:H] < » and if dimsN is finite,
then dimyNG is also finite and in fact dimsnG =

(G:H] dimgN.
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The following basic propositions concerning induced
modules will be used freely without further comment. (See

Curtis and Reiner [2].)

Proposition 1.3. If N is an FH-module such that
N = N1 @ N2 as F¥H~direct sum, then NG = N? (&) Ng as

¥G-direct sum.

Proposition 1.4. If H and K are subgroups

G
of G such that H K G, then (NK) = N as

%G-modules.

If M is an FG-module, we denote by Anng,.M the
annihilator of %G in M. Thus AnnsGM is an ideal in
%¥G. Such ideals will play an important role in our
later work, and we will use the following basic lemma

freely.

ILemma 1.5. If M=L as %G-modules, then
AnnsGM = AnnsGL.

Proof. Let @ :M -+ L be an %G-isomorphism. Let
a € Anng M, and let g € L. Then 4 = ¢(m) for some
meM, and ga =g(m)a = g(ma) = ¢(0) = 0. Thus

a € AnnSGL. and AnnsGMug AnngGL. The opposite inclusion

holds by symmetry.



§2. The Jacobson Radical

The Jacobson radical of the algebra *G will be denoted
Rad ¥G. Thus Rad %G is the intersection of the annihilators
of the irreducible %*G-modules. (There are, of course,
other characterizations.) Many of our results will concern
a class of ideals of which Rad G is a minimal member.
Thus Rad %G will be an important object of study for us,
both in its own right and as a specific example of an

ideal belonging to this more general class.

One of the most fundamental problems in group rings
is that of determining when Rad %G = 0. (We say that
%G 1is semisimple in this case.) For infinite groups,
conclusions exist for several important classes of groups,
such as solvable groups and linear groups, but both the
characteristic O and characteristic p cases remain
unsolved in general. However, the semisimplicity problem
has been solved for finite groups as indicated by the

following theorem:

Theorem 1.6 (Maschke's theorem)

Let G be a finite group and ¥ a field. If %
has characteristic O, then %G is semisimple. 1If
¥ has characteristic p > O, then %G is semisimple

iff p does not divide |G]|.

Unfortunately, even for finite groups, it is not an
easy matter to describe Rad %G once we know Rad %G ¥ O.

One natural approach to this problem is to seek relationships
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between Rad G and Rad ¥H, where H is some fixed
subgroup of G. The next two theorems are basic results of
this sort. The first of these is an immediate consequence
of Lemma 1.1. (See Passman [9], p. 273 for an alternate

proof.)

Theorem 1.7. Let H be a subgroup of G. Then

(Rad ¥G) N FH c Rad FH.

Proof: Let a € (Rad ¥G) N FH, and let N be an
irreducible FH-module. By Lemma 1.1, there exists an
irreducible %G-module, M, such that N c M. Since
a € Rad ¥G, a annihilates M. Certainly, then, a
annihilates N. As N was an arbitrary irreducible

¥H-module, a € Rad %H.

If H is a normal subgroup of G with [G:H] ( =,
then we have the following stronger result, whose proof
is a simple application of Clifford's Theorem. (See

Passman [9], p. 282).

Theorem 1.8. Let H A G such that [G:H] < =.

Then (Rad ¥G) N ¥H = Rad ¥H.

Additional background results concerning the

Jacobson radical are given in the next section.

§3. Relative Projectivity, Property p, and the Complete

Reducibility of Induced Modules.

Let H be a subgroup of G. An %G-module, M, is

said to be H-projective, or projective relative to %H, if

every exact sequence of %G-modules O + L+ N4+ M40
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which is split over %H is also split over %G. Note
that if H = 1>, then M is H-projective iff M is
projective in the usual sense, for O+ L+ N+ M=+ 0

always splits over % = FH in this case.

D. G. Higman has characterized the H-projective
modules for those subgroups H having finite index in

G. (See Higman [3]).

Theorem 1.9 (Higman's Criteria)
Let [G:H] < » and let M be an %G-module. Then

the following statements concerning M are equivalent:

(a) M is H-projective.

(b) M is isomorphic to a direct summand of (MH)G

(c) There exists an ¥H-endomorphism n of M such
-1

i where (x, )9

n
that .Z x M’ i‘i=1

nx, =1
i=1 1

is a right
transversal for H in G.

If [G:H] = n is a unit in %, then n = n-llM
satisfies (c) above. So as an immediate consequence of

Theorem 1.9 we have the following result:

Corollary 1.10 (Higman)
If ([G:H] = n is a unit in &, then every %G-module

is H-projective.

Subgroups H for which every %G-module is H-projective
are of special interest. So, following Khatri and Sinha (6],

we state
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Definition 1.11. Let H be a subgroup of G. Then
(¥G,¥H) is said tobe a projective pairing iff every

¥G-module is H-projective.

So Corollary 1.10 says that if [G:H] = n is a unit
in %, then (¥G,¥H) is a projective pairing. 1In fact,
the converse holds as well. Khatri and Sinha [6] established
it for finite groups, and Gloria Potter [10] extended their

result to include infinite groups. In summary, we state

Theorem 1.12. Let H be a subgroup of G. Then
(¥G,¥H) is a projective pairing iff [G:H] = n is a unit in &.
It turns out that if H A G, then the concept

of projective pairing is strongly related to the following

concept.

Definition 1.13. (Sinha [12])
Let H be a subgroup of G. Then the pair (%G,%H)

is said to have property p iff Rad ¥G < (Rad FH)ZG.

The connection between property p and projective
pairing for normal subgroups H is made evident by the

following theorem. (See Passman [9], p. 278).

Theorem 1.14. (Villamayor)
Let H be a normal subgroup of finite index such
that [G:H] is a unit in %. Then Rad %G = (Rad %H)ZG.

In particular, (¥G,¥H) has property p.

As an immediate corollary we have
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Corollary 1.15. (Potter [10])

If HA G and if (¥G,¥H) is a projective pairing,

then (¥G,%¥H) has property ¢p.

For finite groups we have the following result
which further relates the concepts of project pairing

and property p.

Theorem 1.16. (Motose and Ninomiya [7])
Let G be a finite group and H a subgroup of
G such that Rad %G ¢ (Rad FH)¥G. Then (%G,¥H) is a

projective pairing.

In general, the concepts of property p and projective
pairing are independent of each other. (That is, there
exist pairs (%G,¥H) having property p but not projective
pairing, and vice versa. See Potter [10].) However, both
of these are consequences of a third more stringent

condition, as described in the next theorem.

Theorem 1.17. Let H be a subgroup of G, and

consider the following statements:

(i) (¥G,F¥H) is a projective pairing.
(ii) (¥G,¥H) has property p.

(iii) For each irreducible %H-module N, the
corresponding induced module, NG, is a completely reducible

%G-module.

Then (iii) = (i) (Potter [10]), and

(iii) =» (ii) (Sinha and Srivastava [13])
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If HA G, then (iii) « (i). (Potter [10]).

If |G| < =, then (iii) « (ii). (Motose and Ninomiya [7])

Because of the strong connections between conditions
(i), (ii) and (iii) of the previous theorem, Khatri [5]
and Potter [10] studied those groups G for which the
classes of subgroups satisfying (i), (ii) and (iii),
respectively, exactly coincide with each other. We make
no attempt to list all their results. Suffice it to say
that there are many non-trivial examples of such groups.
We do, however, mention one result along these lines, since

we will call upon it later.

Theorem 1.18. (Khatri ([5])

Let p, @ be distinct primes and let % be a field
of characteristic p. Suppose further that G is a
finite group of order pn, pg or pqz. Then for any
H G, H satisfies (i) (of Theorem 1.17) iff H satisfies
(ii) iff H satisfies (iii).

It is élear from the results described in this section
that the relationship between Rad ¥G and Rad FH depends
on such factors as [G:H], the behavior of the induced
modules NC where N is an irreducible *H-module, and
the behavior of modules of the form (MH)G, where M
is an irreducible. F¥G-module. It is reasonable, therefore,

to examine these factors in our study of more general

ideals. This we do in the next two chapters.



CHAPTER 2 ON IDEALS IN ¥G AND THEIR
RESTRICTIONS TO FH

§1. Statement of the Problem

Let I be a fixed ideal in %G. 1In this chapter
we seek conditions on H ¢ G which are necessary and/or

sufficient for I = (I N ¥H)%G to hold.

Let H G, and = T be a right transversal

CIRIPY

of H in G such that 1 € T. Then %G = 2, (FH)qg,.
. i
i€Jd

exhibits %G as a free left %H-module. Thus each

a € ¥G has a unique representation of the form a = 2 a9
ies
where a; € FH and g5 € T.

Given a = % agg € ¥G, we may project a onto %H
geG

via the mapping Ty :¥G » FH defined by WH(G) =

gy € T ag)= L ag. If a has T a,g; as its unique
gec 9 gen 9 ied

representation with fespect to the right transversal T

of H, it then follows that a; = WH(ngl), Yi.

We begin with a basic lemma which restates the problem

in terms of Ty and the ai's.

Lemma 2.1. Let I be an ideal of %G. Then, using

the above notation, the following are equivalent:

(1) I = (1IN FH)FG

} cInNg%H

(2) Ya= T a;9, €I, (a icy S

ied i

10
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(3) INJFH= ‘n‘H(I)

n
Proof: (1) = (2). By assumption, a= 2 B for

t=1
some positive n, where B_ € I N FH and vy, € FG.

tYt

Write y_ = X

€ ZH, 93 € T. Thus
ies

“ei9i’ Cei

n n
a= 2 B (X e€,..9.)= Z (X B,e,.)g.. It follows that
t=1 t ied ti1°1 ied t=1 t t1' 71
n
Vied, a;, = Z Be ;. Now B € IAFG=Be,, €I Also,
t=1 n
. I . = . ’
Bye,; € FH. So Vt, Bee, . € INFH=a Z B.e,; € I NFH

t=1
as required.

(2) = (3). If ae€ I N FH, then

Q
]

TrH(a) € 1rH(I). Conversely, let a € I. Then

z vH(agzl)g.. By assumption,

a = 2 WH(ngl)gl = WH(G) + 1

ied ies
19,
vH(agzl) = q belongs to I N &¥H, Yi. 1In particular,

1rH(a) € I N FH. Since a € I was arbitrary, w,(I) ¢ I N FH.

(3) = (1). Since I A %G, it is clear
that (I N ¥H)%G c I. Conversely, let a € I. Then

1 1

a= 2 ‘rrH(agi )gi. Since a € I, so does ag; ™ . Thus

ied
-1 _ .
vH(agi ) € 1rH(I). But WH(I) = I N ¥H, by assumption.

Thus a € (I N FH)%G.

We pause to give a couple examples of the phenomenon

I = (I N FH)%G.

Theorem 2.2. Let H A G such that [G:H] = n is

a unit in ., Take I = Rad ¥ G. Then I = (I N %H)%G.
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Proof: By Villamayor's Theorem (Thm 1.14),
Rad ¥G = (Rad FH)¥G. But by Theorem 1.8 Rad ¥H = (Rad %¥G) N ZH.

Hence the result.

Under the assumptions of Theorem 2.2, we note that
from Lemma 2.1 it follows that Rad FH = WH(Rad ¥G) and,
equivalently, that those elements a belonging to Rad %G

are precisely the ones of the form a = 2 @9, 9 € Rad FH.

Before turning to the next example, we mention

a piece of convenient notation. Let a = Z agg € %G.
geG

Then Supp a = {g € G \ag # 0}. Recall that %G consists

of finite sums of the form 2 agg. Thus Ya € %G,
geG

Supp a 1is a finite set.

Now let G = <x> be an infinite cyclic group and
let H be a subgroup of G. Let O % I A ¥G. 1In this
case %G 1is known to be a principal ideal domain, so
I = a%G, some a € ¥G. By multiplication by xk, we

may choose a generator, a, for I of the form

(*) a=a +ax+afg+n-+%ﬁ{ co+o, %1+0.

Theorem 2.3. Let G be infinite cyclic, H a

subgroup of G, and o¥FG = I A ¥G, where a is of the

form (*). Then I = (I N FH)%G iff Supp a < H.

Proof: If Supp a S H, then I N FH = a¥H and so
(I N FH)%G = (aFH)FG = aoFG = I. Conversely, suppose

I =(IN%H)¥G. By Lemma 2.1, vH(I) =INZFH. 1In
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particular, WH(G) € I. SsO WH(G) = ay, some Yy € %G.
Now if xt € Supp Y, themn t > 0 = xn+t € Supp ay = WH(G),
while t ¢ 0= :~:-t € Supp ay = rﬂ(a). But each of these is
impossible since Supp WH(Q) c {(1,%,...,x"}. Thus t =0

and y € ¥ = Supp WH(G) = Supp a. Hence Supp a c H.

§2. The Controller Subgroup
If HAG and I = (I N FH)¥G, then H 1is said to

control I. The following lemma is taken from Passman's

text. (See Passman [9], p. 304).

Lemma 2.4. Let I be an ideal of %G. Then there
exists a unique normal subgroup, W, called the controller

of I, with the property that H A G controls I 1iff

HD W.

It is clear that the controller, W, of I described
in Lemma 2.4 is W = N H, where the intersection is over

all normal subgroups H for which I = (I N $H)%G.

Lemma 2.4 extends to non-normal subgroups H as

indicated in the following theorem.

Theorem 2.5. Let I be an ideal of %G. Then there
exists a unique normal subgroup, W, of G such that
for H { G, H not necessarily normal, I = (I N FH)%G

iff HDO W.

Proof: Let S = {HL G| I = (I NFH)FG}. Note that

GES and so S ¥ @g. Set W= (1 H. We claim that
Hes



14
(1) WA G

(2) 1

(I N FW)FG

Proof of (l): Let x € W, g € G. Given H € S we
1

have I = (INJH)FG =1 =g "Ig = [g-l(I n FH)g][g-lﬁcg].

But g‘l(I NgH)g = I N %89. Thus I = (I n %89)%G,

and B ¢ S. Since xew= N H, x € H = gxg"'1 € H.
HeS

But H was an arbitrary member of S. So

gxgt e N 6 =W, and WA G.
HeS

Proof of (2): By Lemma 1.1, it suffices to show that

INFW = 1rw(I). Clearly I N FW = 1rw(I N W) c TrW(I).

We prove the converse by mimicking an argument given by
Passman in his proof of Lemma 2.4. Given a € I, we
need to show that ww(a) € I. We proceed by induction on
|Supp a|. If |Supp al| = O, then a = O and certainly
ww(a) =0 € I. Suppose |Supp al =n > O, and ﬁﬁat the
result is true for all smaller support sizes. If a € FW,
then Ww(a) = a € I, and we are done. On the other hand,
if a € ¥W, then, by the definition of W, there exists
some H € S such that Supp a £ H. Since H € S, we
have I = (I N FH)FG and it follows from Lemma 2.1 that
rH(a) € I. Furthermore, |Supp vH(a)\ < |Supp a|, and
therefore, because H DO W, induction yields

vw(a) = vw(vH(a)) € I.

The theorem now follows easily. For if I = (I N %H)%G,

then by definition of W, W  H. Conversely, if W  H,
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then, by (2), I = (I N FW)FG < (I N FH)FG c I, and so

I =(INFH)FG.

Corollary 2.6. If G is a simple group and O # I
is a proper ideal of %G, then for all proper subgroups

H of G, (I N FH)FG S-I‘

Proof: If I = (I N FH)%G, then by the previous
theorem, I = (I N FW)FG for some normal subgroup W
contained in H. As G 1is simple, the only such W is

<1>», and in this case I = (I N FW)FG is clearly impossible.

Example 2.7. Let G be a finite group, % a field

of characteristic p > 0, and I = Rad ¥G. By

Corollary 1.15, Theorem 1.16, and Theorem 1.12, if H A G

then Rad %G <€ (Rad FH)%G iff H contains a Sylow-p-subgroup
of G. By Theorem 1.8, if H A G then each of these is
equivalent to I = (I N FH)FG. Hence if H ) G, then

I =(INFH)FG iff H contains a Sylow-p-subgroup of G. -
In particular, it follows that W, the controller of I,

is the unique normal subgroup of G which is minimal

among all normal subgroups containing Sylow-p-subgroups.

Example 2.8. Let G = <x> be infinite cyclic, H

a subgroup of G, and I a non-zero ideal of %G. We

have previously seen that I = a%G for some generator

2

a of the form a =qa_ +a.Xx+a,x +---+anxn, where

o 1 2
a, # O and a, # 0. Then it is clear from Theorem 2.3
that W, the controller of I, is the subgroup of G

which is generated by Supp a.
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§3. erni Induced Modules
In this section we offer another characterization
of those subgroups H for which I = (I N FH)%G. We

begin with a definition.

Definition 2.9. Let I be a fixed ideal of %G. Then

c(I) = {H < G/I [= AnngGNG for each %H-module N such that

IN%FHC Ann. N

Sinha [l1l1] observed that a connection exists between
those subgroups H of G satisfying I = (I N FH)%G
and the subgroups of G which belong to C(I). We quote

his result.

Lemma 2.10. (Sinha (11]) Let I A ¥G. Then
(i) If H € C(I) then I = (I N FH)FG.
(ii) If H A G, then H ¢ C(I) 4iff I = (I N FH)%G.

Unfortunately, we see from the definition of C(I)
that any direct application of Lemma 2.10 would involve
testing each FH-module N, and the class of all FH-modules
is, at best, unwieldy. We now offer an improvement of
Lemma 2.10 which simplifies the criterion for membership
in C(I), and which shows that in fact C(I) consists

precisely of those subgroups H of G for which I = (I N FH)%G.

Theorem 2.11. Let I be an ideal of %G and H

a subgroup of G. Then the following are equivalent:
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(1) 1 (I N $H)FG

(ii) H e C(I1)

G FH
AnngGN , wWhere N = InFH °

Proof: (i) = (ii) Suppose that I = (I N FH)Z%G.

(iii) I

In

Then by Theorem 2.5, H D> W, where W is the controller
of I. Let N be any F¥H-module such that I N FH c AnngN.

Certainly, then, I N W cC Anng.N.

Let {gi} be a right transversal for H in G, and
let [kj] be a right transversal for W in G. Finally,
let a € I. Since W is the controller of I, I = (I N FW)%G.

In particular, by Lemma 2.1, a =% ajkj' where
aj € I NFW, VY. Note that since W A G,

-1
giajgi

G
a € Ann:,’,GN , and H € C(I).

€ IN3WcaAnngN, vi,j. Thus (8%)a =

1 =
® gikj) = 0. Hence

(ii) =» (iii) Suppose H € C(I). Then
since (I n %H) ¢ Ann,}HN, it follows from the definition
G
of C(I) that I_C_Ann:,’,GN .

(iii) =» (i) Suppose I < AnnsGNG. Let

a=2 a;9; € I, where {gi] is a right transversal for
H in G, and where a; € ¥H, ¥Yi. By assumption, (NG)a = 0.

In particular, ¥Yn € N we have (n ® l)a = (n ® 1) aigi) =

2 (na, ® g,) =0. Thus na, = 0, Yi. Since n e N
i i i i
was arbitrary, we have Nqi =0, Vi. So each a; € Annfr,HN =

=INP%H, and I = (I N FH)ZG.
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Let H be a subgroup of G. Now the class of
irreducible FH-modules is always of special interest in
the study of %H. Furthermore, in some cases this class
is completely determined; for example, in the case where
H is finite and % is algebraically closed of characteristic
O. So it is natural to wonder how C(I) compares to the

following class of subgroups of G.

Definition 2.12. Let I be an ideal of %G. Then

we denote by A(I) the set of all H ( G such that for

G

each irreducible ¥H-module N, I N FH € Ann N,

g = I S Ann

FG
From their respective definitions, it is clear that

C(I) € A(I). Equivalently, by Theorem 2.11, if H K G

such that I = (I N ¥H)%G, then H € A(I). The converse

fails, as demonstrated by the next example.

Example 2.13. Let G = {l,a,b,ab}, the Klein

4-group, and let H = <a>. Let ¥ be the field of two
elements. Since H 1is a p-group where p = char ¥, it
is known that Rad FH = w(%H), the augmentation ideal of ZH.

Since w(%¥H) is a maximal ideal in %H of dimension 1,

it follows that = B—— is a field of dimension 1 over %.
FH . . . .
Thus Rad FH = F. Since each irreducible FH-module is also

an irreducible EE%giﬁ - module, we see that there is but
one irreducible FH-module, denote it N = <n>, with the
action of H defined by n*l = n = n-a.

We compute AnnsGNG. Let a = al4-q2a-ra3b4-a4ab € AnngGNG,

where each a, € ¥. Now an arbitrary member of NG has the
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form (nél ®3H 1) + (n52 ®$H b), where each éi € F.

Since a € AnngGNG, we have

0= [(n&l ® 1)+ (n&2 ® b)](al+a2a+a3b+a4ab)
= [n(51a1+6]_d2+62a3+5204) ® 1] + [n(61a3+6104+6201+6202)
® b].
Thus V&i € F, 61a1+61a2+62c3+62a4 = 0, and
61a3+51a4+52a1+52c2 =0 .

If 6, = 1 and 6, = 0, we have a, +a, = 0= a; +a,.

If 6, = O and 6, = 1, we have a;+a, = 0= a, +a,.

If 6, = l-= 65, we have a, tay+az+a, = 0.

The only other possibility is 6, = 0= 62. which imposes
no restrictions on the ai. Thus we conclude that

Ann:‘GNG = [a1+q2a+a3b+a4ab /al = a, and a, = a4].

Now let I =<Kl+a+b+ab>. That is,
I = {a(l+a+b+ab)/a € ¥}. We claim that H ¢ A(I),
but I # (I N FH)%G. Recall that there is only the
trivial ZFH-module, N, to consider. Now I N ¥H = O,
so certainly I N §H c Ann:‘HN So we must verify that

Ic AnnsGNG. But this is clear since
G

Ann, N~ = {al+a2a+a3b+ ct4ab/a1 = a,, ay = a4} )
{a1+a2a+a3b+a4ab/c(1 =Qqa, =0, = cx4} = I,

Thus H € A(I). However, (I N FH)FG = 0 # I.

Although C(I) and A(I) do not coincide in general,
there are special cases in which H € A(I) = H ¢ C(I).
In fact, Theorem 2.11 gives rise to some of these, which we

now state as corollaries.
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Corollary 2.14. Let I be an ideal of %G and
suppose that I N ¥FH is a maximal right ideal of ¥H.

Then H e A(I) = I = (I N FH)%G.

FH . . .
In%H is an irreducible

Proof: In this case N =

F¥H-module such that I N FH C Ann,.N. Thus if H € A(I),

G
then I c Ann:,r,GN

result follows from Theorem 2.11.

by the very definition of A(I). The

Corollary 2.15. Let I be an ideal of %G and suppose

FH
INFH

HeA(I) » I = (I N FH)FG.

that N = is a completely reducible FH-module. Then

Proof: By assumption, N = Nl ® N2 @ - @ N,

where each Ni is an irreducible %H-module. Now
INGS%RB _C_Ann:,r,GN = I N%H C AnnztnNi' vi. If H € A(I),

then since each Ni is irreducible, it follows that

k

G .

IcaAnn . (N.) , ¥i. Thus I CA (e
gt R "Myt )

Again, the result follows from Theorem 2.11.

G G
(Ni) ) = Ann, .N”.

Corollary 2.16. Let I be an ideal of %G, and

let H be a finite subgroup of G. Suppose that

IN%HD Rad FH. Then H ¢ A(I) = I = (I N FH)%G.

Proof: In this case N = gﬂ%f may be viewed as an
FH . FH . - ‘o
Rad 7H module. Since g=="z= 1is semisimple artinian,

all its right modules are completely reducible. In particular,
N 1is a completely reducible ﬁ% - module. It follows
that N 1is also completely reducible when viewed as an

FH-module. The result now follows from the previous corollary.
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We conclude this section with a theorem which

describes another instance in which H ¢ A(I) = I = (I N FH)%G.

Theorem 2.17. Let I be an ideal of %G and let

H be a finite subgroup of G. Suppose that (I N %H)

is a prime ideal of %¥H. Then H € A(I) = I = (I N FH)%G.

Proof: Since H 1is finite, there exists an

irreducible right ZH-submodule L, say, of i%gﬁ' Furthermore,
*
L

%*
L is of the form L = InFE * where L is a right ideal

of ¥H containing I N FH. Now I N $H'5‘Ann$HL and
so since H € A(I) we have I E,AnngGLG. Let

a =X a;9; € I, where {g;]}is a right transversal for
H in G, and where a; € FH, ¥Yi. Then (LG)a = 0.
In particular, V¢ € L, (4@ l)a= (4 1)(Z a9,) =
ZI.(Lai) ® g, =02 ga;, =0, Vi. Since ¢4 € L was

arbitrary, it follows that a; € AnngﬂL, Vi.

*
Let O# 4 € L. Then 4 =4 +1I N %H, where
* * * .
L €L cFH, but 4 € I N FH. Since a; € Anng.L, Vi,
* *
we have 1 a; € INFH., Since 4 €I NFH and since”
I C¥H is prime, it follows that a, €I N%FH, Vi.
Thus a € (I N FH)¥G, and as a € I was arbitrary, we

have I = (I N %H)%G.

§4. Concerning Chains of Subgroups

We conclude this chapter with a couple of results
dealing with the situation where K ¢ H ¢ G, and where
‘one of the subgroups K, H belongs to A(I), I being

an ideal of 3%G.



22
Theorem 2.18. Let K < H<C G and let I be an ideal
of ¥G. Suppose H € A(I), K€ A(I N FH), and that for
each irreducible %K-module, N, “the corresponding induced

module Nt is completely reducible. Then K € A(I).

Proof: Let N be an irreducible FK-module such
that N(I N FK) = O. Since K € A(I n ¥H), it follows that
(NH)(I N ¥H) = 0. Now by assumption, NY is completely
reducible; say N = L, @ ... ® L.,
irreducible FH-modules. Since (NH)(I Nn ¥g) = 0, it is

where the Li are

certainly true that Li(I N ¥FH) = O, Vi. But since

L
H € A(I), this implies that I € (\ Ann (L.)G =
G _ .G G, _ G _ G
Ann:,r,G(L1 ® L2 @ .- @ Lt) = AnngG(NH) = AnnFGN , and so K € A(I).

Theorem 2.20. Suppose K j H<C G with [H:K] =n

a unit in ¥, and let I be an ideal of %G. Then if

K belongs to A(I), so does H.

Proof: Suppose N is an irreducible FH-module such
that N(I N ¥H) = O. By Clifford's Theorem,
NK=Nl@N2
FK-module. Since N(I N FH) = O, we certainly have

® - @ Nt' where each Ni is an irreducible

N(I N ¥K) = O. Thus Ni(I N ¥K) = 0, Yi. Since
K € A(I), it follows that I ¢ Ann. (N,)®, vi.

Therefore, I < AnnsG(N?_ ® Ng @ - @ Ni) = AnngG(NK)G.

Now since [H:K] is a unit in %, (¥H,%¥K) is a
projective pairing by Theorem 1.12. It follows from

Theorem 1.9 that N 1is isomorphic to a direct summand
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of (NK)H, say (NK)H =~ N® L, for some %H-module L.

. G
So we have the following; (N’K)G o= [(NK)H] = [N ® L]G = NC ® LS.

Since I annihilates (NK)G, it follows that I also

annihilates NG. Thus H € A(I).



CHAPTER 3 ANNIHILATORS OF IRREDUCIBLE MODULES

§1. The General Case

Let G be a group and let Irr(%¥G) denote the class
of all irreducible %G-modules. In this chapter we
restrict our attention to ideals I of the form

I= N Anng M. where S is a non-empty subset of
MeS

Irr(¥G). We note that Rad %G = N AnngGM is an
MEIrr(%G)

ideal of this form, as is Anng M for any M € Irr(%G).
Of course, in some cases Rad %G = O. However, the
augmentation ideal of %G, w(%G), is the annihilator
of the trivial irreducible %G-module and w(%G) # O
provided |G| > 1. So the class of ideals under

consideration is never trivial.

We begin with a definition.

Definition 3.1. Let G be a group, let ¥ be fixed, let

g #S c Irr(%G), and let I = ) AnngGM. Then we say
Mes

H < G has property p with respect to I and S, or

H € p(IS). if I = (\ Ann

Mc (. N Ann, W)%G.
Mes %G Nen

wirred oM,
MesS

We note that our definition depends on the choice of

S as well as I, since it is not clear that I = () Ann__M
Mes 26
has a unique representation of this form.

24
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We now pause to consider an important example.

Example 3.2. Take S = Irr(%¥G) and

I = N Ann, M = Rad ¥G. Then H € p(I_) iff
MEIrr(%G) ¢ S
I = Rad ¥G ¢ (Rad FH)¥G. This is so since by Lemma 1.1,

given any irreducible F¥H-module, W, there exists some

M ¢ Irr(¥G) such that W c MH' Thus Rad %H = . N Annus.
wJ.rred = MH
ME€S

In this special case, therefore, we see that
H € p(Is) iff (¥G,¥H) has property p in the sense of
Definition 1.13. So Definition 3.1 may be viewed as a

generalization of the concept of property p.

Our main interest is still the study of those pairs
(I,H), I A %G, HK G, for which I = (I N FH)¥G. If I

is of the form I = () Anng M for some S < Irr(¥G), then

MeS
it is clear that I N ¥H = () Ann HM. Thus I = (I N FH)Z%G
Mes %
iff I =(N A )¥G. Actually, I < (N A )¥G is
Mes g M Mes nng M

sufficient for I = (I N $H)F¥G since the opposite inclusion

[N Ann HM]:-'G = (I N FH)FG < I automatically holds.
Mes O =

For future reference, we summarize these comments in a lemma.

Lemma 3.3. Let G be a group, & # S < Irr(%¥G), and

I= (N Ann_,M. Then I = (I N FH)FG iff

MeS %G
I= N Ann_Mc (N Ann,_M)FG.
mes | FG Mes FH
Now let I be of the form I = (\ Ann,_ .M, where

MeS ZG

S € Irr(¥G). Then as we'd expect from the similarities
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between Lemma 3.3 and Definition 3.1, the class consisting
of those subgroups H of G for which I = (I N %H)%G is
strongly related to the class p(IS). Indeed, as we shall
later see, these classes coincide in several important

special cases. In general we have

Theorem 3.4. Let G be a group, @ # S c Irr(%G),

and let I = (N Ann, M. If H is a subgroup of G such
Mes  °C

that I = (I N FH)%G, then H ¢ p(IS).

Proof: Suppose 1 (I N FH)¥G. Then by Lemma 3.3

we have I = () An Mc (N Ann )¥G. But
Mes %G Mes FH

(N An )FG < ( N Ann_ . W)%G, since any element
MeS nz‘HM wirred c MH FH

Mes
of %H which annihilates some M ¢ S must certainly

annihilate all its irreducible FH-submodules.

We note that in the case I = Rad ¥G, Theorem 3.4
simply says that if Rad %G = [(Rad ¥G) N FH]%¥G, then
Rad %G < (Rad FH)%G. Otherwise put, if H contains the
controller of Rad %G, then (¥G,¥H) has property p.

This was also an immediate consequence of Theorem 1.7.

The following example shows that in general H ¢ p(IS)

is not sufficient for I = (I N %H)%G.

Example 3.5. Let G = 83. char ¥ = 2, S = Irr(%G),

and I = Rad 5G. Let H be a subgroup of G of order 2.

Then since [G:H] is a unit in %, it follows from
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Theorem 1.12 that (¥G,¥H) is a projective pairing. Further-
more, since ‘G\ = 2-3, we conclude from Theorem 1.18

that (¥G,¥H) has property p. Equivalently, H € p(IS).

However, I # (I N FH)%G. For suppose equality holds. Then
H contains the controller subgroup, W, of I = Rad ¥G. But
the only normal subgroup of G contained in H is <(1>.
This means that W = 1> and so consequently
(Rad ¥G) N W = (Rad ¥G) N F = 0. Since W controls 1I,
we have I = Rad %G = [(Rad %¥G) N FW]¥G = O. But by
Maschke's Theorem (Thm 1.6), Rad ¥G ¥ O. Thus

I =(IN%H)FG is impossible.

Let I = Jgs Ann; .M for some S c Irr ¥G, and let
C denote the class of all subgroups H of G such that
I =(INJ%H)FG. Since H € C iff H contains the
controller of I, it is evident that the class (¢ has
the property that H K G, HeC = Ke . It is
not clear that the same property holds for the class
P(Ig), but the next theorem provides a result somewhat
along these lines.

Theorem 3.6. Let I = (\ Ann__M for some
Mes  °©

@ #S c Irr(%G). Suppose that H € p(Ig) and K is a

subgroup of G such that H A K G and ([K:H] < =.
Then K € p(Ig).

Proof: Let L be any irreducible FK-module. Then
by Clifford's Theorem LH is completely reducible. It
is therefore clear that Anng.L = N AnngpW. 1In

W irred c

Ely
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particular, this is true for any L C MK’ where M ¢ S.

Thus, since H € p(I_ ), we have I = (\ Ann, M C
S Mes  °¢ T
[ N Anng W) %G c [ N ( N Ann_. W) ] %G
. - . . %H
W:l.r:redsMH ],_':eredszMK W:eredSLH
MesS MES
= [ N Ann 1% < [ N An ] 56 .
irred $HL irred nng
L =My L M,
MeS MesS

So by definition, K € p(IS).

Corollary 3.7. Let I = (\ Ann_ M for some
Mes  °C

@ #S c Irr(¥G). Suppose that H € p(IS) and that K

is a subgroup of G such that H < K< G, [K:H] =,

and H is subnormal in K. Then K € p(Is).
Proof: Repeated applications of Theorem 3.6.
The following theorem gives a sufficient condition

for H e p(Ig).

Theorem 3.8. Let I = (\ Ann, M for some
Mes  °C

@ #S c Irr(¥G). Suppose H < G has the property that

for each M € S and for each irreducible FH-module

G
WS M. it is true that Ann, W 2 I. Then H ¢ p(IS).

Proof: Let X2 a;x; €I, where {xi] is a right
transversal for H in G and where a; € FH, Vi. Let
M e S and let W be any irreducible FH-submodule of MH

By assumption X a;x, annihilates WG =2, W® X, . In-
i
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particular, for each w ¢ W we have 0 = (w ® 1) (Z a;x;) =
i

2z (wa, ®x,). Thus wa, = 0, Vi. Since w ¢ W was
i i i i

arbitrary, a; € Anngn + Yi. Furthermore, since M was
an arbitrary member of S and W an arbitrary irreducible

FH-submodule of MH' it follows that for each i,

a; € irrél AnnyHW. Thus X a;x, € ( . fl Ann,HW) %G,
W oM, wirre oM,
MES MES

and H € p(IS).

Corollary 3.9. Let I = (\ Ann_M for some
MeS *G

g #S c Irr(¥G). Then A(I) ¢ p(IS). where A(I) is as

in definition 2.12.

Proof: Let H € A(I) and let W be an irreducible
FH-submodule of MH, where M € S. By its definition,
I annihilates M. Since W C M. it is therefore clear

that I N FH < Anng, W. But since H € A(I), this implies

that I E;AnngGWG. So the hypotheses of Theorem 3.8 are

satisfied and H ¢ p(Is).

§2. Normal Subgroups of Finite Index

If the subgroup H of G is normal in G and has
finite index in G, then Clifford's Theorem may be applied
to extend the results of the previous section. Indeed,
in this case the converses of Theorem 3.4 and Theorem 3.8

both hold. We begin with the converse of Theorem 3.4.
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Theorem 3.10. Let I = AnngGM for some
Mes

@ #S cIrr(¥G). If HA G and ([G:H] < =, then

I=(INFH)FG iff H € p(Ig) iff H € A(I).

Proof: By Clifford's Theorem, each M € S is
completely reducible as an ¥H-module. So an element of
FH annihilates MH iff it annihilates each of its

irreducible %H-submodules. Thus N Ann__M =

MeS *G
N Ann_.W. It is therefore clear from Definition 3.1
irred FH
W C:MH
MegS

and Lemma 3.3 that I = (I N ¥H)¥G iff H € p(IS).

Now I = (I N FH)¥G iff H € ¢(I) (Thm 2.11) and
C(I) < A(I) by their respective definitions. Furthermore,

A(I) < p(IS) by Corollary 3.9. The result follows.

We note that if I is not of the form I = (\ Ann__M
MeS *G

for some S c Irr(%G), then it is possible that I # (I N FH)%G
even though H A G, ([G:H] < «= and H € A(I). Such was the
case in Example 2.130f the previous chapter where we took

I to be an ideal properly contained in Rad %G.

We now turn out attention to the coverse of Theorem 3.8
in the case H A G and [G:H] < =, In view of our last
result, we employ a slightly different wording than that used
originally in the statement of Theorem 3.8.

Theorem 3.11. Let I = () AnngGM for some
MeS

@ #S c Irr(¥G). Suppose H A G and [G:H] < =. Then
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I=(INYH)FG iff for each M € S and for each

irreducible ¥H-module W c M, it is true that I c Ann},GWG.

The following simple lemma is used in the proof of
Theorem 3.11.

Lemma 3.12. Let I = (\ Ann__ M for some
Mes  °C

g #S c Irr(¥G), and suppose H A G. Then

InN H = N Anng:HM is a G-invariant ideal of %G.
MeS

Proof: Let a € I NFH and x € G. Then for each

bd 1

MesS, Md = M(x “ox) € Max. But I ¢ Anng M by its

X

definition. Hence Ma = O which forces Ma = 0. So

o* € Annf’,GM for each M € S, and consequently ax € I.
Also, since HA G and a € FH, we have o € ¥H. Thus

& € IN%FH and I N ¥H 1is G-invariant.

Proof of Theorem 3.11l: In view of Theorems 3.8 and

3.10 we need only show that if I = (I N ¥H)%¥G, then
Ic AnnsGWG for each irreducible FH-module W such that

W_g_MH. some M ¢ S.

n
So suppose that I = (I N FH)¥G. Let a = Z a;x. € I,
i=1

where {xi}n is a right transversal for H in G and

i=1
where each a; € FH. Then by Lemma 2.1, each
ai €I N%FH= MQS Am‘a’HM‘ Now I N ¥FH 1is a G-invariant

ideal by the previous lemma. So in particular_,_lfor each i
X,
and j and for each M € S we have that ai:’ € Ann,f,HM.
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Now let W be an irreducible %H-submodule of MH'
x.

where M ¢ S. Then since a J € AnnsHM for each i
-1
and Jj, certainly a; J € AnngHW. Hence (WG)q =
WG(Zaixi) (Z‘ W®x)(2 a;x.) < Z)(E We x.ax,) =
_ J =1 I i= j=1 i=1 J
n -1 n n x.-1
2 (Z} W®a3 x.xi) = L(Z inJ ®x.xi) =
j=1 i=1 J j=1 i=1 J

Since a € I was arbitrary, I < Ann WG, as required.

We pause to interpret Theorems 3.10 and 3.11 in
the special case I = Rad %G.

Corollary 3.13. Let I = Rad §G, H A G, and
[G:H] < ». Then the following are equivalent.

(i) Rad %G c (Rad FH)%G

(ii) Rad %G [(Rad ¥G) N FH]¥G

(iii) For each irreducible FH-module W, Rad %G < Annyswg.

If in addition we assume that [G:H] = n is a unit

in %, we obtain the following result.

Theorem 3.14. Let I = Anng M for some
Mes

@ #S < Irr(¥G). If HA G and [G:H] = n is a unit in &,
)G

then I = (I N%H)¥G iff 1 = N Ann_, M= (N Ann__(
Mes ¢  Mes  7G "x

Proof: First suppose that I = (I N FH)FG. Let
M€ S. Since [G:H] = n is a unit in %, (¥G,¥H) is a
projective pairing by Theorem 1.12. It follows from Theorem 1.9
)G

that M is a component of (MH . Consequently,

G .
GMgAn.rn,G(MH) . Letting M range over S we have



33

G
I= N Ann, M2 N Ann__.(M,)
A s O My

Clifford's Theorem guarantees that for each M ¢ S,

. On the other hand,

MH is of the form MH = Wl ® W2 @D o0 @ wt, where the

Wi are irreducible $H-modules. Since I = (I N FH)%G,
we have by Theorem 3.11 that I c AnngG(Wi)G, Yi. Thus

t
Ic N AnngG(wi)G = AnngG(MH)G. Letting M range over
i=1

| | G G
S wehave I c (\ Ann..(M.,)°. So I = (N Ann_.(M,)",
es set M A

as required.
Conversely, suppose I = () Annge(MH)G
McS
and W be an irreducible FH-submodule of MH. Then

W c (MH)G and so Ji.nn‘,jc;t‘i’G g.Annz‘G(MH)G > N AnngG(MH)G =1I.

Mes

. Let Mg S

By Theorem 3.11, I = (I N ¥H)%G.
Theorem 3.14 suggests a condition sufficient for
I = (I N FH)FG, as seen in our next result.

Theorem 3.15. Let I = (\ A M for some
Mes NNeg

g #S c Irr(¥G), and let H A G such that [G:H] =n

is a unit in %. Suppose that for each M € S and for

each irreducible F¥G-submodule, L, of (MH)G it is true

that L € S (up to isomorphism). Then I = (I N %H)%G.

Proof: Since HA G and ([G:H] = n is a unit in 7%,
it follows from Theorems 1.12 and 1.17 that for each
irreducible FH-module, W, the corresponding induced
module, WG, is a completely reducible Z%G-module. Now

by Clifford's Theorem and Proposition 1.3, for each
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G G_ .G ... G
M ¢S, (MH) is of the form (MH) = W1 ) ® W£. where
the Wi are irreducible F¥H-modules. Since each (W‘i)G is

completely reducible, so is (MH)G. It follows that

N Ann?G(MH)G is precisely the intersection of the
MeS

annihilators of the irreducible #G-components appearing
in the (MH)G. Since by assumption the only such components

are among the members of S, we certainly have

N amn, (M)®> N Ann, M.
McS 76 H MES G

On the other hand, since by Theorem 1.12 (%G,¥H) is
a projective pairing, we have by Theorem 1.9 that M is
a component of (MH)G, V M e S. Consequently,

G
N AnngM2 N Anng. (M)

MeS MeS
_ G
Thus Annch = N AnngG(MH) ., and by Theorem 3.14,

Mes Mes
I = (I N FH)FG.

Theorem 3.15 gives rise to an interesting corollary,

but before stating it we need a definition.

Definition 3.16. An %¥G-module, L, is said to be

homogeneous if it is a direct sum of, say, n copies of

an irreducible %¥G-module M.

Corollary 3.17. Let I = Ann,.M for some M ¢ Irr(%G),
and let H A G such that [G:H] = n is a unit in %,
if (MH)G

Proof: Since (¥G,¥H) is a projective pairing, by

Theorem 1.9 M is a component of (MH)G. Since (MH)G is

is a homogeneous %G-module, then I = (I N FH)%G.
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homogeneous, M is the only irreducible component. Thus

the hypotheses of Theorem 3.15 are satisfied, and I = (I N ¥H)%G.

We now take time out to consider an example which

illustrates some of the concepts discussed so far.

Example 3.18. Let G = D4 = <a,b/'a2 = b4 =1, ab = b3a>

and let H be the central subgroup of G generated by
: b2. Let ¥ be an algebraically closed field of characteristic
O. Then, in particular, the hypotheses of Theorem 3.15

are satisfied.

Now H and G have the following character tables:

H 1 b2 G 1 b%® (b,b°} (a,ab?] {ab,ab’]
|1 1 x| 1 1 1 1 1
b 1 -1 x| 11 -1 1 -1
xg| 1 1 -1 -1 1
x| 1 1 1 -1 -1
xg| 2 -2 o 0 0

Let M be the irreducible ¥G-module corresponding

to XS' let I = AnngeM, and let W be the irreducible

%G-module corresponding to ¢2. Than an easy computation shows
that (%Xg)y = 2¥,, and (4,0€ = 2%.

In terms of the corresponding irreducible modules, we

G G is homogeneous,

have (MH) =M®M®M®® M., Thus (MH)

and so I = (I N ¥H)¥G by Corollary 3.17. Since H 1is a

minimal noh-identity normal subgroup of G, it follows that
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H is the controller of I. Consequently, if K K G,
then I = (I N FK)¥G iff K > H.

We haven't been able to prove the converse of
Theorem 3.15 as stated, but the converse does hold under
the added assumption that |G| < ». The proof of this fact

is the main result of the next section.

§3. Finite Groups

If G is finite, then %G 1is a finite dimensional
algebra. 1In this case, the structure of the ideals of
¥G 1is more easily ascertained. Since we are only

interested in ideals I of the form I = () Ann_.M,

McS FG
and since each such ideal corresponds uniquely to some
ideal of §E%§§E , much insight can be gained by examining
FG . . .. ..
Rad 3G ' which is a semisimple, artinian algebra. The

following facts concerning EZ%§§E (which are also true

for semisimple artinian algebras in general) will prove
useful. See Isaacs [4] and Curtis and Reiner [2] for

more details.

Proposition 3.19. Let G be a finite group.

a. Each irreducible %¥G-module may be viewed as an

. . FG .
irreducible Rad 7G module, and vice versa. Furthermore,
there are only finitely many of these (up to isomorphism).
%G _
Say Irr(%G) = Irr(Rad 36) = [Ml.Mz,...,Mt}.
b. Each (right) EE%QEE - module is completely

ZG

Rad 76 module is

reducible. Equivalenfly, each (right)
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3 » ] gG
the sum of its irreducible Rad 3G modules.
3G _— -~ . -—
c. Rad 7C = I1 @ 12 ® ® It , Wwhere

i. Each .Ti is a simple ideal

ii. Each Ti is the sum of all the right ideals of

b ] . . . FG
Rad 7G which are isomorphic to M., where M, € Irr(Rad $G)

was defined in part a.

iii. Ann %G M. = 12' Ii
Rad %G J

d. For each i, 1 i t, let Ii be that unique

right ideal containing Rad %G which corresponds to Ti

ZG

Rad 7G - Then

under the canonical homomorphism %G =+

AnnsGMj = i?j I,.

The considerations listed in proposition 3.19 lead

us to the following theorem:

Theorem 3.20. Let G be a finite group. Then the

ideals I of the form I = (N Ann,.’, M, & #8 c Irr(%G),
- Mes G

are precisely those proper ideals of ‘%G which contain

Rad %G.

Proof: (We use the notation of proposition 3.19)

Clearly, if I = N AnngGMr then I > Rad %G.
MeSs

I .
Conversely, suppose I 2 Rad %G. Then Rad 3¢ 1is an
ZG c s
Rad 3G module. Consequently, by Proposition 3.19 (b),
I . . . . FG _
Rad %G is the sum of its irreducible Rad 7G modules,
FG

namely, those minimal right ideals of which are

Rad %G
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I
Rad %G °

3.19 (c) are simple, Vi we have that

contained in Now since the ii of proposition

I - .
Rad 76 ' I 1S

either empty or equal to EE itself. These considerations

I
Rad %G

of the 'fi: wolog, it is the sum of the first k of

lead to the conclusion that is the direct sum of some

I —_ — —
them. Thus Rad 56 = 11 @ 1, ® - ®I,, where 1< k ( t.
Now by Proposition 3.19 (c), Ann M, = ® I,. It
ZG i i3 i
Rad %G J

. I _ - _
follows easily that Rad 7G I1 @ I, @ . ® Ik =
.Fk Ann . M. .
1> Rad G

We claim that I = N AnnyGM.. For let a € I. Then
. i
i>dk
N\ Ann
i>dk

I

(a+ Rad %G) € Rad 7G =

%G Mi’ and so for

Rad %G
each i > k, (Mi)a = Mi(a4-Rad %G) = 0. Thus

aec N Anng .M. On the other hand, suppose a ¢ N\ Ann__M.

i>k isk 7@
Then Vi > k, Mi(a4-Rad %G) = (Mi)a = 0. So
_ I
(a+Rad ¥G) € (N Ann %G M, = gz3 75 - It follows that

i>k Rad %G
a+Rad ¥G = B+ Rad ¥ G for some B ¢ I. Consequently
a=B+y, some y € Rad ¥G. Since I D Rad %G, y € I.

Thus a € I, and I = () Ann

Mi' as claimed.
i>k

FG

Corollary 3.21. If char ¥ = O, or if
char § = p does not divide |G|, then every proper ideal

of %G 'is of the form I = N Ann

M.
MeS FG

Proof: By Maschke's Theorem, Rad G = O in this

case.
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In the finite group case, therefore, we see that
our hypothesis that I be of the form I = () AnngGM

MeS
is not terribly restrictive.

It is also clear from Proposition 3.19 that if G is

finite, then each proper ideal I containing Rad %G

has a unique representation of the form I = () Ann,_M,
McS %G
g #S c Irr(¥G). For from N AnngGM = N AnngGM it
MeS Mes '’
follows that AQS Ann g. M= AgslAnn sc M and,
Rad %G Rad %G

due to the direct sum decomposition described in Proposition
3.19 (c¢), that S = S’. Since, therefore, I has a unique
representation, Definition 3.1 no longer depends on S

and we may simply say that H ¢ p(I) if H is a subgroup
of G satisfying Definition 3.1. With these comments

in mind, we now state our next theorem.

Theorem 3.22. Let G be a finite group, I a

proper ideal of %G, and suppose that char ¥ = O or
char ¥ = p does not divide |G|. Then V¥V H < G, ‘

I=(IN%HSF «H ¢ p(I).

Proof: By Corollary 3.21 and our comments above,

I = () Ann_.M for some unique S < Irr %G, S ¥ @g. Let
Mes 0O

HL G. Then Y Me€S , M, is completely reducible

since %H 1is semisimple and artinian. Thus

Anng M = irreg] Anng W. By comparing Definition 3.1

Cw cn,

and Lemma 3.3, we now see that H ¢ p(I) iff I = (I N FH)%G.
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We now prove the converse of Theorem 3.15 for

finite groups.

Theorem 3.23. Let G be a finite group and H a

normal subgroup such that [G:H] is a unit in %. Let

I = () Ann

M, for some @ #¥ S < Irr(%G). Then

I =1(INZFH)FG iff for each M € S and for each irreducible

submodule L of (MH)G it is true that L € S (up to

isomorphism).

Proof: < Theorem 3.15

= Let M€ S and let L be an irreducible

FG-submodule of (MH)G. Suppose L g S. Now since

Lc (MH)G, we have Anng LD Anngg(MH)G 2 N Anngs(MH)G.

MeSs
G
But by Theorem 3.14, (N Ann_.(M.)° = N Ann, M= I. It
Mes  °© "x MeS "#6
follows that I = (N AnngGM) n AnnEGL. But this violates

MeS
the fact that I has a unique representation of the form

I = (N Ann,.M, as discussed before the statement of

Theorem 3.22. Thus L ¢ S, and the theorem is proved.
Paraphrasing Theorem 3.23, we see that (I N FH)ZG
is smaller than I precisely when for some M ¢ S, (MH)G

contains an irreducible submodule outside of S.

Of special interest is the case I = AnngGM, some

M € Irr(¥G). We have

Corollary 3.24. Let G be a finite group and H

a normal subgroup such that [G:H] is a unit in %. Let



41
I = AnnyGM for some M € Irr ¥G. Then I = (I N FH)%G

iff (MH)G is homogeneous.

Proof: We recall that as discussed in the proof
of Theorem 3.15, (MH)G is completely reducible. Since
[G:H] is a unit in %, we have from Theorems 1.12 and
1.9 that M is a component of (MH)G. Thus (MH)G is
homogeneous if M is its only irreducible %G-submodule, and

the result now follows from the theorem.

We remark that if ([G:H] = n is not a unit in &%,
then Theorem 3.23 fails. For instance, let G be a
finite abelian p-group and % an algebraically closed field
of characteristic p. Then %G has only one irreducible
module, namely the trivial one - call it M. Take
I= AnngeM = W(¥G), the augmentation ideal of 3%G.
Then for H g_G, we have I N FH = w(%H), and it is
well known (see, for example, Connell [1]) that
w(FG) a_w(?H)?G. Thus I = (I N FH)FG fails. On the
other hand, since M is the only irreducible %G-module,
certainly M is the only irreducible %G-submodule of (MH)G.
(Of course, it would not be accurate to say that (MH)G
is homogeneous in this case, since it fails to be completely

reducible.)

We conclude this section by remarking that if G
is finite and I is an ideal containing Rad %G, then
Theorem 3.23 provides a complete solution to the problem
of determining those subgroups H of G for which

I = (I N %H)FG. The procedure is to use Theorem 3.23 to test



42
the normal subgroups of G, and to eventually locate the
controller of I. (Recall that the controller is always a
normal subgroup.) Admittedly, this procedure will be
formidable in some cases. But if, for example, % is
an algebraically closed field of characteristic O, then
the computations may easily be performed in terms of
characters. 1In section 5 of this chapter, we will illustrate
these comments with some examples. First, however, we turn
out attention to the special case I = AnnyGM, where

M ¢ Irr(%G).

§4. The Annihilator of a Single Irreducible ¥G-Module

Throughout this section we will assume that % is
an algebraically closed field of characteristic 0. Our
goal is to study the phenomenon I = (I N FH)¥G in the
case that G is finite and I = AnngsM for some
M € Irr(%¥G). Many of the results in this section will
depend heavily on character theory. We will sometimes
use characters and modules interchangeably. For example,
Irr(¥G) will denote both the set of distinct (up to

isomorphism) irreducible ¥G-modules and the set of

irreducible characters of G, depending on the context.

The following version of Clifford's Theorem will
facilitate a later result. Although it is stated in
terms of characters, it may be interpreted in terms of

modules as well. (See Isaacs (4], p. 79.)
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Theorem 3.25. (Clifford) Let G be a finite group,

HApG, and ¥ € Irr(¥G). Let @ Dbe an irreducible
constituent of Xy and suppose 0 ==alﬁ2,...,et are the
distinct conjugates of 6§ in G. Then

Xg = e(91+.92+-...+-et), where e is the multiplicity

of 8 in Xg*

Note, in particular, that if ¢ 1is an irreducible
constituent of Xy’ then all the other irreducible
constituents of Xy are conjugates of 8§ and, conversely,
that any conjugate of § 1is a constituent of X *

Furthermore, each conjugate occurs with the same multiplicity.

The conjugates in G of irreducible FH-modules (or
characters) have a bearing on our problem. The following
theorem is crucial. (See Curtis and Reiner [2], p. 329

for the proof.)

Theorem 3.26. Let G be a finite group, let

HAG, and let T be an irreducible representation of H.
Then the induced representation TG is irreducible iff
¥ X ¢ H the representations T and ™ :h = T(x-lhx) are
disjoint.

Theorem 3.26 actually says that the representation
TG being irreducible is equivalent to T having [G:H]
distinct conjugate representations. Or, in terms of modules,
if W is an irreducible ¥H-module, then w® is irreducible

iff there are [G:H] distinct isomorphism classes of

FH-modules conjugate to W. These considerations give rise

to the following theorem:
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Theorem 3.27. Let G be a finite group, let

HAG, and let I = Ann_..M for some M € Irr(%G).

*G

Suppose MH = Wl ® ... @ Wt, where the Wi are
distinct (up to isomorphism) conjugates and where t = [G:H].

Then I = (I N FH)ZG.

G is irreducible.

Proof: By Theorem 3.26, each (Wi)
Furthermore, by the Frobenius Reciprocity Theorem, for
each i the multiplicity of M in (wi)G is the same
as the multiplicity of W, in M. ; namely, the multiplicity
)G

is one. Thus (M)€ = (wl)G ® (wz)G @ - @ (wt)G .

M®M® ... @M, and so (MH)G is homogeneous. It follows
t times

from Corollary 3.24 that I = (I N FH)%G.
The situation described in Theorem 3.27 can indeed

occur. Consider, for example, this next result.

Theorem 3.28. (Isaacs (4], p. 86) Let G be a finite
group and let H A G such that [G:H] = p is prime. Suppose
M € Irr(¥G). Then either

(a) MH is irreducible, or

P
(b) MH = @ W,, where the W, are irreducible,
i=1 *
distinct (up to isomorphism), and conjugate.
Rewording Theorem 3.28 to better suit the context

of this paper, we have

Corollary 3.29. Let G /be a finite group, and let

HA G such that [G:H] = p is prime. Let M € Irr(%G)

and let I = AnngGM. If MH is reducible, then I = (I N FH)%G.
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Our next result is actually a restatement of
Theorem 3.27. We include it because it lends itself to

an interesting application.

Theorem 3.30. Let G be a finite group, H A G,

and suppose there exists an irreducible character, g,

of H such that eG € Irr(¥G). Then I = (I N FH)%G,

where M 1is the irreducible %¥G-module associated with
G

X = 6 and I = AnngGM.

Proof: Since ¥ = eG, it follows from the

Frobenius Reciprocity Theorem that 8 is a constituent
of multiplicity one in Xgg* So if ¢ = el.ez,...,et
are the distinct conjugates of § in G, we have by

4 ] - e e 0
Clifford's Theorem (Theorem 3.25) that Xg = el+-92+ +8,-
Furthermore, since eG is irreducible, by Theorem 3.26

8 has [G:H] distinct conjugates. Thus t = [G:H] and

I = (I N FH)FG by Theorem 3.27.

Before proceeding to the promised application of

Theorem 3.30, we will need the following definition.

Definition 3.31. A finite group G is called

Frobenius with kernel N and complement H if G = NH,

NAG, HNN=1, and HNH =1 for all x € G-H.

We now quote a result from Isaac's text.

Theorem 3.32. (Isaac's [4], p. 94) Let G be

a finite Frobenius group with kernel N A G. Then for

each character ¥ € Irr(¥G) with N & ker x we have

X = @G for some ¢ € Irr(ZFN).
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As an immediate consequence of Theorems 3.30 and

3.32, we can now state

Corollary 3.33. Let G be a finite Frobenius group

with kernel N A G. Let ¥ € Irr(%¥G) such that
N £ ker . Finally, let I = Ann, M where M is the
irreducible ¥G-module corresponding to ¥. Then

I =(INZFN)FG.

The proceeding results provide some examples of
the phenomenon I = (I N ¥H)%G, where I = AnnsGM
for some M ¢ Irr(?G). We now turn out attention to some

situations in which this phenomenon cannot occur.

Theorem 3.34. Let G be a finite group, let H ( G,

and let M be an irreducible %*G-module with associated
irreducible character <. Finally, let I = AnngeM.

1f x(l)2 < [G:H], then I ¥ (I N FH)%G.

Proof: Let n = [G:H]. Now, by assumption,
dim(Homg(M,M)) = x(l)2 < n. Thus any n linear trans-
formations on M are linearly dependent. 1In particular,

if  (x.)0

ili=1 is a right transversal for H in G, then

the linear transformations corresponding to the X

via the representation associated with M are linearly
dependent. So there exist a; € ¥, not all a, = o,
such that alxl-razxz-r----+anxn corresponds to the zero

linear transformation. In other words,

a1x1+a2x2+ +a.nxn € Ann?GM = I.
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Suppose a;X;+a X, +---+ax ¢ (I N FH)%G = (AnnSHM)ﬁc.
Then by Lemma 2.1 it follows that a; € Anng.M, Yi. But
the a; are members of ¥ and so this forces a;, = o Yi,
a contradiction. Thus 7, a.x. £ (I N FH)%¥G, and so

i%i
I a_(I 0 FH)FG.

Corollary 3.35. Let G be a finite group, let H
be a proper normal subgroup, and let M be an irreducible
¥G-module with associated irreducible character <. Finally,

let I = Anng M. If Hc ker x, then I # (I N FH)FG.

Proof: Suppose H < ker x. Then ¥ may be viewed

as an irreducible character of G/H. Now [G:H] = ) ¢(1)2.
yEIrr (G/H)

Since ¥ € Irr(G/H) and since |Irr(G/H)| > 1, it follows
that x(1)% < [G:H].

Corollary 3.36. Let G be a finite group, let M

be an irreducible FG-module with associated irreducible
character ¥, and let I = AnngGM. Suppose ¥x(1) = 1.

Then for H G, I = (I N FH)FG » H = G.

Proof: Let W Dbe the controller of I. Then
I =(INFW)FG and so by Theorem 3.34 we must have
x(1) = 1 > [G:W]. This forces W = G, and the result

follows.

Corollary 3.37. Let G be a finite abelian group.

Let M€ Irr(¥G) and I = Ann, .M. Then for H < G,

I =(INJ%FH)FG « H = G.



48
Proof: In this case x(1) =1 for all

irreducible characters <y of G.

§5. Examples

We conclude this chapter with a couple of examples
which illustrate the use of Theorem 3.23 and the results
of the previous section. Once again, we assume throughout
that ¥ is an algebraically closed field of characteristic

OO

Example 3.38. Let G = S3 = <(12),(123)>, and

let H = <(123)> A G. Then the respective character tables

of G and H are

¢ 1 [(12),(13),(23)] ((123,(132)] 1 (123) (132)
x; | 1 1 1 Wl o1 1
X, | 1 -1 1 1w w2
%3 | 2 0 -1 iyl 1 WP w

For each i, let Mi be the ir:educible FG-module
corresponding to X - Recall that by Corollary 3.21, each

proper ideal of %G 1is of the form I = ()| Ann
MeS

where @ # S < Irr(¥G). For each ideal of I, we now

GG

compute its controller subgroup.

If I = Ann:,r,GM1 or Anngsz, then, by Corollary 3.36,

G 1is the controller of 1I.
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Suppose I = Ann, M.,. Now (M3) is reducible since

FG 3 H
H is abelian and so all its irreducible modules must be
one-dimensional. It follows from Corollary 3.29 that
I =(INJ%H)FG. Now H 1is the unique non-trivial normal
subgroup of G, and the controller of I must be a normal
subgroup other than one. We conclude, therefore, that
H 1is the controller of 1I.

Suppose I = (AnngGMI) n (AnnggM2)° Now

-— -— G—
(X )g = (Xx)y = ¥, and (§;)7 = x3+X%,- It follows from
Theorem 3.23 that I = (I N ¥H)¥G. Once again we conclude

that H is the controller of 1I.

Suppose I = (AnnyGMI) n (AnngGM3). Since Xo is
G
)

. G .
a constituent of [(x;)ygl = (¥;)" = %X; +X,,» it follows
from Theorem 3.23 that I #¥ (I N ¥H)¥G. Since H is
the only non-trivial candidate for the controller of 1I,

we are forced to the conclusion that G 1is the controller.

An analagous computation shows that G is the

controller of I = (AnnsGMz) n (AnnEGM3)-

The only remaining ideals of %G are O and %G
itself. Clearly <1l> is the controller in each of these

cases.

Example 3.39. We now do a more exhaustive study of
the group G = D4 = <a,b/'a2 = b? = l, ab = b3a> of example
3.18. 1In the'previous exampie, we listed the ideals of
¥G and computed the controller subgroup of each. This

time we will list the normal subgroups H of G, and
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in each case determine which ideals of %G are controlled

by H. The normal subgroups of G are the following:

2

<1>,<b?>,<b>,H = <l,a,b2,ab2>,H2 = <1,b%,ab,ab’>,G

Before proceding with our computations, we repeat

the character table of G for convenience.

G 1 b2 (b,b3) (a,ab?} (ab,ab’}
x; | 1 1 1 1 1
%y | 1 1 -1 1 -1
x; | 1 1 -1 -1 1
xe | 1 1 1 -1 -1
X | 2 -2 0 0 0

For each i, 1 ig 5, let M. be the irreducible
F¥G-module associated with Xi+- We now consider the normal

subgroups of G one by one.

H = <1>: It is clear that H is the controller of

O and %G, and that H controls no other ideal of %G.
H = <b2>: Then H has character table

1 bl

LN
¥, -1
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Furthermore, (xl)H = (Xl = (X3)g = (qly = vy

(Xg)y = 2¥,

)G

(47)7 = X + X+ Xzt X,

G
It follows from these computations and Theorem 3.23 that
H controls the non-trivial ideals AnnyGMS and
(Annmel) n (AnnﬁGMZ) n (Ann3GM3) n (Ann36M4). Since H
is a minimal non-identity normal subgroup of G, we see

that H is the controller of these ideals.

H = <b>: Then H has character table

. 1 b b2 b3
v | 1 1 1 1
yz 1 -1 1 -1
¢3 1 i -1 -1
Wl 1 - -1 i
Furthermore, (xl)H =¥ (*l)G = X+ %
(xx)g = ¥3 (40 = %, + %
(x3)g = ¥, (4305 = %
(Xg)y = ¥y (450 = %

(X5)g = ¥3+ ¥,

It follows from these computations and Theorem 3.23

that in addition to those ideals controlled by <b2>.
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= <b> controls the non-trivial ideals (AnngGMI) N (Ann Nge 4).
(AnngGMz) n (AnngGM3). (Annmel) n (Ann:,l‘G ) N (AnngeMs),
and (Anngsﬂz) n (AnnyG ) N (AnnscMs) Furthermore,

<b> 1is the controller of each of these additional ideals.

H = Hy: Then H has character table
o 1 a  ap® b
N 1 1 1 1
v, 1 -1 -1 1
Vs 1 -1 1 -1
ty 1 | -1
Now (x;)y = ¥; (4% = %+ %,
(Xp)y = ¥, (1) = %3+ %
(X3)g = ¥ (43)¢ = xg
(Xg)yg = ¥5 (q;4)G = X5
(Xs)g = ¥3% 4,

It follows from these computations and Theorem 3.23

that in addition to the ideals controlled by <b2>, H = Hl

controls the non-trivial ideals (Ann$GM1) n (AnngGMz),
(Anng:G 3) n (AnngG 4). (AnnsG 1) n (AnngG 2) 0 (AnnscMs)' and
(Ann3GM3) n (AnnFG 4) n (AnngeM5)° Furthermore, H = Hl
is the controller of each of these additional ideals.
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H = H2: This case 1is completely analagous to the

case H =H so we omit the details. It turns out that

ll
H = H2 is the controller of the ideals (AnnﬁGMl) n (AnnscMa)'
(Anngst) n (Ann$Gﬂ4), (AnngGMl) n (AnngGM3) n (AnnﬁGMS)'

and (AnngGle N (AnngGM4) n (AnngGMS).

This now exhausts all normal subgroups except
G itself. So G is the controller of all ideals not
explicitly mentioned above. These are all of the form

N AnngGM, where ¢ # S ¢ Irr ¥G, and we will not
MeS

bother listing them. We remark, however, that from
the start we knew that G 1is the controller of Ann?GMl'

Anngsz, AnnsGM » and Annng@4 by Corollary 3.36.



CHAPTER 4 PROPERTY p AND SEMISIMPLE GROUPS

Wallace [l4] introduced the concept of JK-groupé.

Their definition is as follows:

Definition 4.1. Let K be a field and G a group.

Then G 1is a JK-group if for all groups T and normal
subgroups S with T/S = G the pair (¥T,¥S) has property
p.

It is clear that if G 1is a JK-group then G is
semisimple. For G/1 = G = (KG,K) has property p = Rad KG = O.
Examples of JK-groups include locally finite or abelian
groups having no elements of order p where p = char K.

(See Passman [9], p. 293).

We now generalize this concept.

Definition 4.2. Let % be a field and let X be a

class of groups which is closed under homomorphic images.
Then a group G € X is a J(X)-group if VT € X and

¥VS AT with T/S = G, the pair (¥T,%¥S) has property p.

Once again, it is clear that any J(X)-group must
be semisimple. Furthermore, any JK-group belonging to X

is a J(X)-group.

54
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Of particular interest to us are certain classes, X,
of groups which we will call p-classes. We will use the

notation P ¢ H to indicate that the subgroup H of G
G

contains a conjugate of the subgrqQup P.

Definition 4.3. Let % be a fixed field, and let

X be a fixed class of groups closed under homomorphic
images such that for each G € X there exists a collection

p(G) of subgroups of G satisfying the following properties:
(a) Y Pe p(G), (%G,¥P) has property p.

(b) If H L G such that (%G,¥H) has property p,

then for each P € p(G), P < H.
G

(c) If WAG, then p(GMW) = {<1>} iff for each
G

(d) 1If Gy, G2 € X and 9 :G, + G, is an isomorphism,

1 2
then Y P ¢ p(Gl). e(P) € p(Gz).

Then X 1is called a p-class and for each G ¢ X, the

members of p(G) are called p-subgroups of G.

We pause to mention some examples of p-classes.

Example 4.4. Let ¥ have characteristic p and

let X be the class of finite groups having normal p-Sylow-
subgroups. For each G € X, 1let p(G) be the p-Sylow-
subgroup of G. We verify (a), (b) and (c) of the previous

definition. The remainder is clear.

Part (a) holds by Theorem 1.12 and Corollary 1.15.
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Suppose H { G such that (%G,¥H) is a projective
pairing. So by Theorem 1.12 [G:H] is a unit in % and

H contains P. Thus part (b) of Definition 4.3 holds.

Now suppose W A G 3 p(G/W) = {<1>]. Then &(G/W)
is semisimple. By Maschke's Theorem, it follows that G/W
has no elements of order p and W contains P. Conversely,
if G/W contains no elements of order p, then <1> is the
p-Sylow-subgroup of G/W and so p(G/W) = {(<1>}. Thus

part (c) of Definition 4.3 holds.

Before proceeding to our next example, we need some

preliminary definitions and results.

Definition 4.5. Let G be a locally finite group.
Then a subgroup A of G is said to be locally subnormal
in G if A 1is finite and is subnormal in all finite

subgroups of G which contain it.

P
The characteristic subgroup I (G) of G was defined

by Passman in [8].

Definition 4.6. (Passman) Let G be a locally finite

group. Then

fp(G) - <\/A is locally subnormal in G and c>
A 1is generated by elements of order p

p
Passman proved the following result concerning .f (G).

Theorem 4.7. (Passman [8])

Let % be a field of characteristic p >0 and G a
locally finite group. If H A G such that Rad %G < (Rad %H)3G,

then H D ‘fp((;).
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Finally we quote a result from Passman's text [9].

Theorem 4.8. Let H A G with G/H 1locally finite.

If either char $ =0 or char ¥ = p and G/H is a p’-group,

then Rad %G = (Rad FH)ZG.

We now make the following observations:

Theorem 4.9. Let % have characteristic p > O. Let

X be a class of locally finite groups closed under homomorphic
images such that ¥V G € X, the p-Sylow-subgroups of G

are all conjugate to each other. Further suppose that for

each G € X, IP(G) D P where P is a p-Sylow-subgroup

of G. Then X is a p-class where for each G € X,

p(G) 1is the set of Sylow-p-subgroups of G.

Proof: Definition 4.3 (a) follows from Theorem 4.8.

For part (b), if H G such that (%G,%H)
p
has property p, then by Theorem 4.7 Hig_f (G) o P, where
P is a p-Sylow-subgroup of G. Since by assumption all

p-Sylow-subgroups of G are conjugate, (b) holds.

For part (c), if W A G such that
p(G/W) = {<1>}, then G/MW is a p’-group and W contains
a p-Sylow-subgroup of G. Since all p-Sylow-subgroups of G
are conjugate, P WY P € p(G). Conversely, if P W,
G G
then G/W is a p’-group and so p(G/MW) = {K1>]}.
Part (d) is clear.

Example 4.10. As an example of a p-class satisfying

the hypotheses of Theorem 4.9, let X be the class of
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locally finite nilpotent groups. Then each G € X is the
direct sum of its Sylow subgroups. (See Wehrfritz and Kegel [15],
p. 63). In particular, G has a unique normal p-Sylow=-subgroup,
P, and p(G) = {P}. So we need only verify that for each
G € X and corresponding Sylow subgroup P, P C fp(G).
From the definition of IP(G), it clearly suffices to
show that ¥ x € P, <x> 1is locally subnormal in G. So
let H be a finite subgroup of G containing <x>. Then
PNHAH, and so it only remains to show that <x> is
subnormal in PN H. But P N H is a finite nilpotent
group and so each of its subgroups is subnormal. In particular,
<X> 1is subnormal in P N H, as required. ([See Huppert:

Chap. 3].

The following lemma further describes p-classes, X,

as defined in Definition 4.3.

Lemma 4.11. Let X be a p-class. Then

(i) Rad $P = O for some P € p(G) iff p(G) = {K1>].

(ii) Any two members of p(G) are conjugate and,

conversely, if P belongs to p(G) so do all its conjugates.

(iii) If p(G) consists of a single normal subgroup P,
then p(G/p) = K1>].

(iv) If in addition Rad %G = (Rad ¥P)3G ¥ P € p(G),

then P < W< G = Rad ¥P c Rad W.
N, (W)

Proof: (i) If p(G) = {<1>}, then certainly

n
o

Rad P = O .for each P ¢ p(G). Conversely, suppose Rad FP

for each P ¢ p(G). Then by Definition 4.3 (a),
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Rad ¥G ¢ (Rad ¥P)¥G = 0. Thus Rad G = O and (%G,%)

has property p. By Definition 4.3 (b) P 1V P € p(G).
G
This forces p(G) = {<1>}.

(ii) Let P,,P, € p(G). By Definition 4.3 (a),

1°72
the pair (3G,3Pl) has property p. So by Definition 4.3 (b),

P2‘é Pl. Analagously, Pl é_Pz. Thus P1 and P2 are

conjugate. On the other hand, let P ¢ p(G) and x € G.
Now the map ¢ : G » G given by ¢(g) = gx is an automorphism
of G. By Definition 4.3 (d), o(P) = P ¢ p(G). Thus

all conjugates of P belong to p(G).

(iii) This is immediate from Definition

4.3 (c).

(iv) Suppos; P < W, where P € p(G) and
x € Ny(W). Then (Rad $P)* = Rad $P" = Rad P N W =
(Rad 3P N FW)* c [(Rad FP)FG N FW]® = [(Rad %G) n FW1¥
< (Rad gW)*. (The last inclusion follows from Theorem 1.7).

Thus Rad P € Rad FW.

We close this chapter with a theorem which relates the
semisimplicity of %(G/H) to property p in the case that

G belongs to a p-class X.

Theorem 4.12. Let X be a p-class of groups such

that .Rad %G = (Rad ¥P)¥ G Y G € X and ¥ P ¢ p(G). Then for
each G ¢ X
(i) %(G/H) is semisimple iff G/H is a J(X)-group.
(ii) If HA G, then (%¥G,¥H) has property p iff

G/H is a J(X)-group.
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Proof: (i) It is clear that if G/H is a J(X)-group
then %(G/H) 1is semisimple. Conversely, suppose % (G/H)
is semisimple. Let T € X and S A T such that T/S = G/H.
Thus %(T/S) 1is semisimple. Since X is closed under
homomorphic images, T/S € X. Let P ¢ p(T/S). Then
O = Rad $(T/S) = (Rad ¥P)%(T/S) = Rad ¥P = O. By Lemma 4.11
(i), p(T/S) = <1>. It follows from Definition 4.3 (c)

that for each Q € p(T), Q < S. Lemma 4.11 (iv) now yields
T

Rad ¥Q ¢ Rad §s. Thus Rad FT = (Rad FQ)FT c (Rad ¥S)¥T
and (%T,%S) has property p. By definition, G/H is

a J(X)=-group.

(ii) Suppose H A G such that (%G,FH)

has property p. By Definition 4.3 (b), P  H for each
G

P ¢ p(G). It follows from Definition 4.3 (c) that
p(G/H) = {<1>}. By Lemma 4.11 (i), %(G/H) is semisimple.

By part (i), G/H 1is a J(X)-group. The converse is immediate.
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