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ABSTRACT

LOCAL ENERGY FUNCTION METHODS FOR

POWER SYSTEM TRANSIENT STABILITY

BY

Parviz Rastgoufard

Energy function, the first integral of the accelerating

power equation, is used to investigate the problem of power

system transient stability. In contrast to the total system

(global) energy function, the partial (local) energy

function, which is the energy existing between and within an

"accelerated" and a "stationary" group of generators, is

considered in the analysis. Based on simulation, it has

been shown that the local energy function results in a

larger region of stability and removes some of the

conservativeness of the direct method of Lyapunov.

Furthermore, the concepts of "critical group," the

group of generators separating from the system

simultaneously, "critical generator," the individual

generator the behavior of which dictates the transient

stability of the entire power systeni and the "critical

boundary," an appropriate boundary around the critical

generator which is used to determine the region of stability

(critical clearing time) of the power system have been

introduced. and. investigated. The "Local IKinetic Energy

Condition" (LKEC) and the "Local Equal Area Condition"



(LEAC) are two critical boundaries that are based on kinetic

and potential energy of the individual generator (critical

generator).

The concepts and computational algorithms based on LKEC

and LEAC are tested on the 17-generator "Reduced Iowa

System." The simulation results verify that the region of

stability determined from the individual machine boundaries

are accurate and very close to the results obtained from the

simulation of the entire power system (the actual region of

stability).
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CHAPTER 1

INTRODUCTION

1.1 The Basic Problem

In the interconnected power system, the question of

availabiliby of a continuous and an uninterrupted electric

energy supply is of :main concern. The ever-increasing

dependence of society on electric energy requires not only

the production of a continuous electric supply but also

energy within acceptable quality limits.

The quality (the magnitude and frequency of the voltage

at the consumer's terminal) and the continuity of service

(lack of interruptions) [1] is most significantly affected

by the occurrence of disturbances in the power system. The

interconnection of a power system partially guarantees the

desired quality and continuity of service. However, as the

size of the interconnection grows, the operation and
 

planning of the power system become a challenging task and

the questions of security and reliability assume greater
 

importance.

A vital concern for both the planning and operating

engineer in their decision making is the transient stability

of the power system. The concept of stability arises when

the power system is subjected to the occurrence of a
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disturbance. Depending upon the size of the disturbance,

the power system stability is divided into two categories.

First, if the size of the disturbance is small, snob as a

small change in load, then the power system variables, such

as the rotor angles, powers, etc., undergo a small deviation

from their nominal value if the system is stable around a

particular operating point. This type of stability is

called steady state stability. Second, if the size of the
 

disturbance is large, a transition from one operating state

to another results. The issue of transient stability is

related to the second category when the behavior of the

system response to occurrence of a large disturbance

(electrical fault, loss of a generator, or loss of a part of

the transmission network) is of interest.

If during the transition all of the generators maintain

synchronous Speed, then the transition is considered to 1x2

stable. However, if one or more generators lose

synchronism, instability results. Loss of synchronism of

one or more machines may lead to cascading interruptions and

black-outs [2].

The concept of transient stability is used by the

planning engineer in both

- long-term planning, and

- short-term planning.

In long-term planning (where the need for additional

generation or transmission 5-20 years in the future is of

concern), planning engineers consider several alternatives
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and investigate the behavior of each alternative in response

to a set of contingencies. From the planning point of view

the loss of one or more transmission lines or the dropping

of one or more generators in the power system must be

considered a first step in evaluating each expansion

alternative. These contingencies should not result in loss

of stability or security for any of the alternatives if the

alternative is to be considered further. This security

analysis is performed for each of the several expansion

planning alternatives using a DC load-flow security analysis

for possibly all first and second contingencies and several

third contingencies. This early approximate analysis is

primarily performed to filter out some of the contingencies

and select those contingencies which require further

analyses using AC load flows or *which show a planning

alternative meeting certain design requirements. After the

early approximate contingency analyses and a more careful

load-flow analysis of a few contingencies, a set of

transient stability simulation runs is performed to further

investigate the performance of each planning alternative

under the combinations of possible loading level transfers

and line outage contingencies. Clearly, a more reliable

expansion plan would result if one is able to apply a larger

number of transient stability runs for a wider Spectrum of

loading and transfers as well as for a larger number of

proposed contingencies. to each alternative plan. Thus,

there is a need for the develOpment of direct methods for
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assessing transients in expansion planning applications that

would reduce computation requirements and allow many

hundreds of stability simulations at reasonable cost and

memory would significantly improve expansion planning

security assessment and reduce its cost.

In operation or short—term planning, the planning of

network maintenance, unit commitment and generation dispatch

schedules over a day or weeks must be checked to assess

whether the system is vulnerable to security or stability

problems. Thus, the proposed operation plan must be checked

for security or stability violations over that period due to

single or multiple line outage, loss of generation

contingencies or fault contingencies. The system must be

able to survive abnormal disturbances, such as faults and

loss of system elements, created by equipment malfunctions,

switching surges, lightening strikes, etc. [3]. Hence, in

short-term planning a larger number of transient stability

simulation runs are desired. However, in recent years this

task has become complicated due to [4]:

- size increase of power system interconnections;

- the emphasis on consideration of more detailed

power system models;

- the concern to model the components of system

such as power system stabilizers, static VAR

compensators, DC lines, braking resistors;

- and consideration of the transient stability for

more than first-swing behaviors.
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The benefits of reduced computation and manpower in

applying the direct methods of assessing power system

transient stability in both long- and short-term planning is

clearly seen. Similarly in on-line operation of the power

system, the operating engineer is also interested in

investigating the response of the power system for a

proposed fault contingency and a network configuration, unit

commitment, and generation diSpatch not investigated in the

operation planning effort. However, in contrast to the

operation planning stage, the time frame for study of

specific contingencies is very short and at times quick

decisions must be made. Moreover, the computation

capabilities that are available for transient stability

simulation are limited compared to off-line operation and

expansion planning. However, there is a need for on-line

transient stability analysis, Inn: the transient stability

analysis performed, must be capabler of on-line

implementations, which implies rapid and computationally

efficient solution such as might be available if direct

methods were available.

The most widely used and implemented transient

stability analysis is obtained by the time solution of the

machine's rotor angles. Then, based on the observation of

the swing curves and engineering judgment, the stability or

instability of the power system is decided. The

disadvantages of this technique are [2]:
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- "in each study, stability (or instability) is

determined for a given system condition and for a

given impact (fault, etc.) only,

- a clear-cut indication of stability (or

instability) is not always possible,

- the computation is cumbersome and time consuming

for a large system, especially if on-line digital

computer analysis is contemplated."

The drawbacks of the time solution and the need for

fast, computationally' efficient anui approximate ‘transient

stability analysis made researchers inquire into an

alternative approach. As a result, the concept of direct

methods of stability was pursued. From the early stages of

development, the direct methods of Lyapunov and the energy

function analysis showed promise of assessing transient

stability rapidly without the computation required to

integrate the many system differential equations even though

the method remained far from implementation. The use of

such a method for contingency analysis in expansion

planning, operation planning and on-line operation was

exciting. It is clear, however, that such methods would

never replace time solution for accurate stability

assessment or design of generation controls.

The historical development of the direct methods for

transient stability in this area is divided into three

distinct but continuous phases. This division is primarily’
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considered to indicate the turning points in the development

and does not include all previous work.

Phase One: The work of Magnusson in 1947 [5] considers

a classical model representation of the power

system. In this representation the transfer

conductance is omitted and an energy function for

the system is evaluated. Then the critical energy,

by which the region of stability is identified, is

determined by the energy of the lowest saddle point,

V1s' The work of Aylett in 1958 [6] is devoted to

finding an energy integral. The kinetic (KB) and

potential (PE) components of energy are identified

and the stability of the power system is decided by

determining whether KE < PE.

Phase Two: The work in phase one, although outstanding

in the elaboration of the concept, was far from

implementation. The main issues remaining were:

- to resolve the difficulty in obtaining all

singular points,

- to be able to identify the correct singular

point,

- to be able to include the transfer conductances

in the model,

— to have the ability to identify the critical

value of energy at clearing which if exceeded

would result in loss of stability.
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The work of El-Abiad et al. [7] and Prabhakara et al.

[8] was devoted to finding the appropriate saddle points and

hence the critical energy. The work of Uyemura et al. [9]

was devoted to approximating the transfer conductance term,

while Smith and Tavora [10] initiated the first work toward

considering the critical energy which was related to the

faulted trajectory.

Phase Three: The work in references [4,11,12] in

development of the Potential Energy Boundary Surface

(PEBS) and [13,14,151 in development of energy

accounting by using the transient energy function

mark the latest advances of algorithms for direct

assessment of transient stability. A. main

characteristic of this phase is that the critical

value evaluated is directly related to the fault

trajectory and hence a larger region of stability is

obtained. The work in this phase will be discussed

in detail in Chapter 2.

However, in Spite of these encouraging results, it is

believed that the true region of stability is identified by

consideration of local kinetic and potential energy of an

individual machine rather than global kinetic and potential

energies of all generators in the system. This

investigation attempts to identify the particular individual

machine whose behavior dictates the stability of the entire

system. Furthermore, it is shown that the region of
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stability obtained by the algorithms based on these concepts

is the most accurate attained to date.

To achieve the goals, the content of Chapter 2 is

devoted ix) describing the behavior of the power system and

the concept of transient stability analysis. The historical

development of the direct methods for transient assessment

is revisited in further detail. The concepts and algorithms

based on potential. energy"boundary' surface [4,11,12] and

global energy accounting [13,14,15] are explained.

Chapter 3 considers the presence of energy within and

between coherent groups of generators that swing together

due to the fault energy. Based on this division of energy,

an analogy to the "equal area criterion" of a one-machine

infinite bus system is obtained by aggregating the energy

function without aggregating the power system model used for

simulation. The analysis of within-group and between-group

potential and kinetic energies of the system was used as a

foundation to develop a reasonably accurate algorithm for

estimating the critical clearing time of the entire power

system. This algorithm is based on the assumption that the

kinetic energy between groups (the accelerated group and the

rest of the system) will approach zero at some time after

fault clearing only when the system is stable. If the

system is not stable, the ‘mininmnt of the between-group

kinetic energy over time after fault clearing is a measure

of the excess energy at clearing that caused the loss of

stability.
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Chapter 4 proposes and justifies two hypotheses that

(a) the stability of a group of machines and thus the system

is dictated by a region of stability for one machine in that

group and (b) that this region of stability is reflected in

the kinetic and potential energy of this machine. The

individual machine energy function is then presented and

shown not to be a Lyapunov function. An algorithm [16] is

then justified that utilizes the maximum individual

generator potential energy as a function of time for a fault

on trajectory as a critical energy threshold for deciding

whether the system is or is not stable. This threshold

energy value is compared with the sum of the individual

generator kinetic and potential energy at fault clearing to

decide retention or loss of stability. This justification

is based on the assumption that the transmission network

connected to the generator has a maximum magnetic energy

available for decelerating the generators' initial fault

acceleration. This maximum potential energy over time for a

fault on trajectory is further assumed to be a measure of

this maximum energy for deceleration.

A second criterion for determining the boundary of

stability for this individual generator is then justified

based on the kinetic energy of the individual generator.

This criterion suggests that the individual generator

kinetic energy minimum over time after the fault is cleared

will only approach zero if the system is stable. The
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zeroing of kinetic energy indicates a reversal of initial

direction of motion caused by the fault which in turn

suggests stability for this generator.

A justification of the hypothesis that one generator in

the fault-accelerated group of machines dictates the

stability of the group is then made. An explanation based

on physical reasoning is offered for why this will occur and

then this explanation is justified based on the simulation

of the energy of individual generators in an accelerated

group for a particular fault case on the Reduced Iowa

System.

Chapter 5 presents two algorithms based on the kinetic

and potential energy conditions discussed. above. These

conditions indicate a crossing of the boundary of stability

for the individual generators. Simulation results are then

presented that indicate these algorithms are extremely

accurate and hold significant promise for future development

of both accurate and computationally efficient procedures.

Finally, in Chapter 6 the contribution of this

investigation and the avenues for future inquiry are

considered.



CHAPTER 2

THE ENERGY FUNCTION AND ITS USE IN

POWER SYSTEM TRANSIENT STABILITY

2.1 Power System Behavior During A Transient

When the power system is operating in its normal state,

all the equality and inequality constraints are satisfied,

there is negligible imbalance between supply and demand, and

all the generators are operating at synchronous Speed. In

this situation the system is said to be operating at its

stable equilibrium operating point £51 (s.e.p.) defined by

x = f (x51 P0) = 0 (2 1)
_ .0— ’_ _ '

l o
where fogs ,2) is the transient stability model of the

power system with parameters P0 of the pre-fault system.

Upon the occurrence of an electrical fault, the power system

undergoes two new phases: (a) during the fault, and (b)

post-fault (after clearance of the fault).

The dynamic behavior of the power system during the

fault phase is governed by a set of nonlinear differential

equations of the form

' f
x — §1(x,Pi) o < t < tc (2.2)

12
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where P: is the parameter vector of the system for the ith

disturbance.

Once the fault is cleared (post-fault phase), the

system will assume a new configuration and thus its behavior

will be governed by another set of nonlinear differential

equations of the form [23]

‘ f

2: = Jim’s" > t > tc (2.3)

If, after the transition from the fault phase to the

post-fault phase, synchronism for all the generators in the

system is naintained, then transient stability results and

the system ‘trajectory' will converge toward a post-fault

s.e.p.

E £52.pr) = 0 (2.4)

If, after this transition, synchronism of all the

generators is not maintained, the trajectory will pass close

to an unstable equilibrium point (u.e.p.) that satisfies

u pf _ .
gas .2 > - _0_ (2.5)

For understanding the transient stability, it is

essential to comprehend the interaction between the input

and output power of the generators during these two phases.

The following example is an attempt to clarify the point.

Consider the CIGRE 225 PO; system [17] depicted in

Figure 2.1. Prior to the occurrence of the fault at t(U),
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(E) -— Generator
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Figure 2.1 CIGRE 225 kV system
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the system is operating at the pre-fault s.e.p. Due to the

distribution of the load, let us assume that there is a

large power flow from bus 6 to bus 4, through line 6-4. Let

us further assume that all the electric power needed on load

bus 8 is supplied through line 7-8 and from generator 7, so

that there is no flow of power from bus 6 to bus 8 by line

6-8.

At the time t(0) a 3-phase fault is applied to the line

6-4 near bus 6. After a fraction of a second at time tc,

the fault is cleared by tripping out line 6-4.

The outage of line 6-4 introduces a mismatch between

the input (mechanical) and the output (electrical) power of

bus 6 which is electrically closest to the location of the

disturbance. Depending upon the period of the fault

clearing time tc, two events may happen. If tc is less than

a critical time tcc' generator 6 may accelerate initially

but return to synchronous Speed eventually. In contrast,

for tc longer than tcc’ generator 6 will accelerate and pull

out of step from the rest of the system.

Once the fault is cleared and the voltage on bus 6 is

recovered, the excess electric power' of bus 6 will be

transferred to bus 8 via line 6-8. This power flow will

reduce the flow of energy from bus 7 to bus 8 and thus cause

another power mismatch at bus 7. The second power mismatch

forces generatcm' 7 to accelerate and pull out of step.

Similar arguments indicate that some of the generators in

the system would decelerate and fall out of synchronism.
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Note that in this example generators 6, 7 or both 6 and 7

may pull out of step and thus result in different modes of

instability, and hence different unstable equilibrium points

(u.e.p.). For a multi-machine power system all the singular

points are identified by the solution in of the equation

2 = F2(§P,2Pf). Among the singular points one is the

2, and the rest are either (u.e.p.) finpost-fault (s.e.p.) 55

or saddle points. Theoretically once the trajectory of the

system passes one of these u.e.p.'s or saddle points, then

instability is resulted and it is impossible to return to a

normal operating state.

In this section the concepts of transient stability and

critical clearing time were discussed based on the mismatch

between the input and output powers of the generators. An

alternative approach investigates this concept by comparison

of energy at two different instants of time. The energy

produced in the "during fault phase" is compared to a

"critical energy" and transient stability or instability is

concluded. The next section is devoted to the transient

stability analysis from the energy point of view.

2.2 Transient Energy Analysis

2.2.1 Discussion
 

Before the occurrence of the fault, the power system is

residing at the pre-fault s.e.p. and the machine velocities

are zero. AS was discussed previously, the fault changes

the network configuration of the system and some of the
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generators accelerate (or decelerate). During the fault

period the machine velocities will increase, thus increasing

kinetic energy. This increase in kinetic energy moves the

system from its pre-fault s.e.p. 551. At clearing time tc,

the fault is removed and a new network configuration

results. The excess kinetic energy produced during the

fault period is distributed in the post-fault network

according to the load and network requirements. If the

motion of the accelerated (or decelerated) generators is

reversed--due to the kinetic energy distribution, then the

system converges toward the post-fault s.e.p. where again

the machine velocities are zero. If the motion of the

accelerated generator is not reversed, a loss of stability

occurs. The restoring forces of the post-fault network are

proportional to relative rotor position of generators and

thus the electro-magnetic forces of the post-fault network

could be considered as producing or recovering stored

potential energy in the network elements.

The mechanism by which the disturbed system assumes a

new equilibrium point is one of converting the kinetic

energy (produced during the fault) to potential energy

(produced after the fault clearing). Comparison of the

kinetic and potential energy of the system enables one to

draw some conclusion on the transient stability of the

system. If all the kinetic energy is converted to potential

energy, then stability is resumed and a new s.e.p. is

obtained. In this case the post-fault network was able ‘30
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slow down the accelerated generators and in the transition

from pme-fault s.e.p. to post-fault s.e.p. the synchronism

was maintained.

In contrast, if the kinetic energy exceeded the

potential energy capacity of the network, then instability

resulted. This situation implies that some of the

generators at clearing time have accelerated considerably

and the restoring energy is not able to slow them down. In

this case synchronism is lost.

There are several approaches for transient energy

analysis, but what they all have in common is that the

energy at clearing VC is compared to a critical value ver1

which solely depends on the post-fault configuration.

Evaluation of an accurate critical value has been the goal

of many researchers in this area. Further investigation on

the subject requires a mathematical model representing the

dynamic behavior of the power system. In section 2.4.2 the

system model is introduced and the latter part of this

chapter is then devoted to the discussion of the direct

methods that evaluate both clearing and critical energies.

2.2.2 Mathematical Formulation

The dynamic behavior of the power system is described

by a set of nonlinear differential equations. The order of

these differential equations depends upon two factors, the

time frame of interest and the inclusion of the components

of the power system. Fouad [2] states that the mathematical

model of a synchronous machine with amortisseur windings,
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exciter and turbine-governor can be a set of fourteen

first-order differential equations. Other controls such as

power system stabilizer, boiler, etc., increase the

complexity.

The complexity will become more apparent if a

multi-machine power system is considered. Even for modern

computing facilities, the solution of several thousand

nonlinear coupled differential equations is a challenging

task. For the purpose of investigation of stability for

short clearing times and for approximate and easily computed

transient security assessment, a simplified classical model

will determine the dynamic behavior of the power system.

The classical model is valid and useful if the time frame of

investigation is limited to order of one second.

The classical model used in this dissertation is

characterized by [18]:

(1) Mechanical power input from the turbine is constant.

(2) Damping coefficient, both mechanical and electrical, is

neglected.

(3) The voltage behind transient reactance of the

synchronous machine is assumed to be constant.

(4) The mechanical rotor angle of a machine coincides with

the angle of the voltage behind the transient

reactance.  
(5) The dynamic behavior of the load is neglected. LoadES

are represented by constant impedances.
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Using the classical model, the equation of motion for

machine i is represented as 2.6

where:

ei

G..

13

B..

13

ii

=P. -P. (2.6)

=0). i=1,2'ooo'n

E.E.B..

1 j 13

EiEjGij

mechanical input power

constant voltage behind transient reactance

rotor angle

rotor Speed

moment of inertia

real part of the reduced bus admittance matrix

connecting bus i to j

imaginary part of the reduced bus admittance

matrix connecting bus i to j

Sum of negative of Gij's for row i and columns

j=1’2'ooo'i-1'i+1'ooo'n

The transient energy function proposed by Athay et al

[4] is obtained from equation (2.6) by first evaluating the

relative accelerating equations of machines i and j

MiMj(wi-wj) = (MjPi-Min) - (MjPe.-M.P .) (2.7)
1 1 e3
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Then, multiplying both sides of (2.7) by relative velocity

(mi-wj) and summing the resulting equations for all possible

n(n-1)/2 combinations, (2.8) is produced

-1 n . . -1 n

j=i+1 ’i=1 i=1 3=1+1

n

X (MjPei'MiPeiji‘wj’

j=i+1

(2.8)

By integrating (2.8) from an arbitrary reference (a

s.e.p.) to a variable upper limit, the transient energy

function V of (2.9) is obtained

“'1 n 1 2 1 s
v = Z 234'; MiMj(wi-wj) - 17171: (PiMj-PjMi) (aij-aij)

i=1 j=i+1

s 61+Gj-26O

-Cij(Cos Gij-Cos dij) + s s DijCos Gijd(61+6j-260)

61+Gi-260

(2.9)

where:

n

MT = 2: Mi

i=1

1

= —— 2.1050 MT Z M151 ( )

1:1

The terms in the transient energy function arse?

physically identifiable. The first term corresponds tc>tk1€3
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total kinetic energy of the system, the second term is the

energy produced from rotor angle disposition and thus the

position energy, the third term relates to the magnetic

energy and finally the fourth term is related to the real

part of the post-fault reduced admittance matrix and thus

the conductance (dissipative) energy. The last three terms

constitute the total potential energy of the system.

The transient energy function of (2.9) is derived from

the equation of motions of synchronous machines which are

referenced with respect to a synchronously moving frame.

This representation is particularly valuable if the

interaction of energy between generators is of interest. It

is, however, possible to formulate the swing equations with

respect to a fictitious center of inertia reference frame.

Let

n

_ 1

(no - M- ZMiwi (2.113)

T .

i=1

n

_ 1

50 — 1E ZMiGi (2.11b)

i=1

n n

' é
MTwO - ZMiwi =Z1(Pi-Pei) — PCOA (2.110)

1:111:

The machine rotor angle and velocity with respect to

the center of inertia is defined as  
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(2.12)

From (2.6), (2.11) and (2.12) the dynamic behavior of

the machines with respect to the center of inertia is

M.

— — -..._1.

Mimi " Pi Pei MT PCOA

(2.13)
e
a
-

i=1'2'III'n

Applying the steps in obtaining the transient energy

function of (2.9) on (2.13) and noting that

n n

:Mi‘gi = ZMiwi = 0

i=1 i=1

results in the transient energy function of (2.14)

n n n-1 n

_ 1 m2 _ _ S _ _

V — 2 ZMiwi Z (PiH)i Si) 2 Z Cij(Cos&)ij Cossij)

i=1 i=1 i=1 j=i+1

si+8j

-J{ DijCos Sijd(01+3j)

SS+8S

i 3'

(2.14)

where Sij = 31-3j.

Equations (2.9) and (2.14) define the system transient

energy from a S.e.p. (pre-fault or post-fault) ‘tO an

arbitrary' position. If the lower‘ and ‘upper liJnitS are

$1

chosen as pre-fault s.e.p., 3 and the angle at clearing
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time so, respectively, then the transient energy identifies

the energy of the system accumulated in the fault periodJ

Yc1'

Similarly, if the transient energy is evaluated between

52

the post-fault s.e.p., 3 and a critical angle, say, an

appropriate unstable equilibrium point, su, the critical

energy V r is obtained.

Note that the integration of the conductance term in

(2.9) and (2.14) requires the knowledge of the trajectory of

the system. Since the clearing time is relatively short,

the system trajectory can be simulated up to this point

using eni appropriate numerical integration technique, and

thus V can be evaluated. However, a closed-form

c1

expression for transient energy function is required if Vcr

is to be evaluated without Significant computation.

In order to use the transient energy function as a

direct method for assessing transient stability, an

approximation to the conductance energy term is necessary.

By assuming a linear trajectory in the angle space, the

integral term is expressed as (2.15) [4]

si+8j

Iij = DijCos sijd(si+sj)  
 

s_ss

= 1 j 1 _j . _ . s . D
S [S1n Sij S1n Sij] ij (2.15)

1
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Based on (2.15), the transient energy function of (2.9)

and (2.14) will become

 

 

n-1 n

_ 1 _ 2 _ l_ _ _ S

V - Z Z ——2MT MiMjm)i wj) MT (PiMj PjMiHcSij Gij)

i=1 j=i+1

ai+5.-5:-5? s

-C (Cos 6. -Cos 6 ) + J 3 Sin 6..-Sin 6.. D
1 6 _ 13 13 1]

ij 1]

(2.16)

n n

_1 'L2 _ _ s

V - 2 ZMiwi Z P1991 Si)

i=1 i=1

n-1 n

s

- 2: CGj(Cos Sij-Cos Sij)

i=1 j=i+1

s s

S.+S.-8.-S.

- 1 3 1 4 [Sin 8..—Sin 35.] 1).. (2.17)
3 .-85. 13 1] ij

ij 1]

According to (2.16) or (2.17), the clearing energy VC1

and the critical energy Vcr are

v =v , v =v (2.18)

This concludes the formulation of the transient energy

function. However, the identification of clearing and

critical energies by transient energy function is one of

dispute; section 2.2.3 is devoted to the further

clarification and physical interpretation of this concept.
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2.2.3 Transient Stability Assessment by Direct Method

(I) Two-Machine Case: The Equal Area Criterion

The motivation for multi-machine transient stability

assessment is provided by the concept of the "equal area

criterion" where the swing equations of two machines, or

equivalently one machine against an infinite bus with zero

transfer conductance, is considered.

The pre-fault, fault, and post-fault nonlinear

differential equations are

. 6 o m

X = = F (X,P ) = (2.19)
- -0 — —

. 1 IEI IEmI

w - Sin 6
M X0

. 6 f w

I = = 21 (6:2 > = (2.20)

. 1 IE1 113‘”!

w - Sin 6
M Xf

. 6 w

25 = = 1523.2“) = (2.21)

. 1 IEI |E°°l

- Sin 6
M pr

where:

IE I: voltage magnitude of the internal generator bus

IEm|= voltage magnitude at the infinite bus

6 = angle difference between the generator internal

bus and the infinite bus

M = inertia constant
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IE! lel IEI IE”! [El IE“!

0 Sin 6, Sin 5, and Sin 5

x xf xpf

are 11m} power angle curves for the rue-fault, fault, and

post-fault system differential equations.

Figure 2.2 illustrates the power angle curves for

pre-fault, during-fault and post-fault situations. Prior to

the occurrence of the fault, the system is residing at 851,

satisfying (2.19), the pre-fault stable equilibrium point,

at which the system velocity is zeno. Upon occurrence of

the fault, the system will accelerate and moves away from

SS1. In this motion the system gains an amount of energy

proportional to area A1. By clearance of the fault at so,

the system resumes a new configuration (post-fault power

curve on Figure 2.2). The new network attempts to

compensate for the energy produced during the fault and

52

moves the system toward the post-fault s.e.p. 3 satisfying

(2.20). The remaining restorative energy of the post-fault

network is proportional to the area A Note that area A

2’ 2

is evaluated from ‘the instant of fault clearing to the

unstable equilibrium point an, satisfying (2.21) and thus

resulting :Ul the maximum remaining restorative energy. If

the clearing time is such that the area A does not exceed

1

area A2, then stability is maintained. In contrast, if for

a larger clearing time A1 exceeds A2, then instability

results. That particular clearing time which equates A1 anéi

A2 is denoted by the critical clearing times tcc' The
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prediction of this time is of interest to the power

engineer.

The transient energy function of section 2.2.2 for a:

two-machine systemt with the assumption of zero transfer

conductance is analogous to the equal area criteria.

Considering the situation at clearing time, the

transient energy function, using the post—fault network and

SS1 as reference, is given by [13]:

SC

_ _ 1 mc 2_ c_ 51 _ c_ 51
VC1 - V — 2 M (w ) C(Cos 3 Cos 3 ) Pmax(§ 3 )

351 (2.22)

_ _ _ 2
where C — E1E2B12 , Pmax - (PM V1G11).

The first term in the right-hand side of (2.22) is the

kinetic energy produced during the fault and is proportional

to the area Oabf of Figure 2.2. The second and third terms

add up to the potential energy of the system during the

fault which is associated with the (area cdf - area Oed).

It is worthwhile to note that, if 352 is used as a

reference, then the potential energy term is equal to the

area cdf. The clearing energy of (2.21) is tjuns the area

dcfbaed.

The critical energy is evaluated from post-fault s.e.p.

52 2
3 to the u.e.p., 89. At both 85 and an the velocity of

the system is zero and thus the critical energy consists of

only potential energy,

22 u s

)-Pmax(8 -8 ) (2.23)

_ _ u_ 5

Ver — C(Cos 8 Cos S
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Point 0: prefault operating point; 3 = 381, t = t;

Point a: electrical power at t = t2, 3 = 381

Point b: electrical power at t = t2, 3 = 3c

Point c: electrical power at t = t2, 3 = 3C

Point d: operating point when transient subsides, t+ m,

8 = 882

Figure 2.2 Power angle curves for one—machine infinite-bus

system (transfer conductances neglected) [13]



30

From Figure 2.2 it is clearly seen that area dgcd

corresponds to the right-hand side of (2.23).

2
When both VC and Vcr use as as a reference (which is

1

the case for the investigation of Athay et al. in [4]), the

transient energy function is not analogous to the equal area

criteria. However, Fouad et al. in [13] argue that the

s1

clearing energy should be evaluated from 3 and thus a

correction term of

352

Vcor = V
(2.24)

SS1

must be added to the critical value, Vcr'

9n 352 Su

I _ _ .—

v Cr — vcr + vcor — V + v — v (2.25)

352 351 SS1

V'Cr then corresponds to the area dgcd - Oed and

contains the area cdfc - Oed in addition to A2. The VC1 in

(2.22) contains area dcfd - Oed in addition to A1. Thus,

the condition

V S V'

C1 Cr

with the correction Vcor in V'Cr corresponds to the equal

area criterion. The VCr can be found for multi-machine

power systems by computing the proper u.e.p. Su and knowing

352. Thus, Fouad [13]performed the above analysis to Show

that it is improper to compare the easily computed VCR
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. , .
(2.22) With Vcr (2.23) but rather V Wlth the Vcor term as

Cr

in (2.25) to assess whether the system is stable.

In a multi-machine power system the unstable u.e.p. can

be computed by minimizing

J = figepfmzqepf)

based on a proper initial guess for §u where §2(§,pr) are

the equations given in equations (2.21).

(II) Three-Machine Case: Potential Energy Surface

The "potential energy surface" is an abstraction which

extends the concept of equal area criterion of two-machine

to a multi-machine power system. Consider the case where

the power system consists of three machines. Taking one

machine, 33, as reference, the maximum ability of the system

to absorb the fault energy depends on the relative rotor

position 313, 323 and thus the potential energy of the

remaining machines.

Figure 2.3 [4,14] illustrates a three-machine energy

terrain where the horizontal axes are the rotor positions,

8 and the vertical axis represents the system's
13' 23

energy. The post-fault s.e.p. could be considered as the

S

bottcm1 of the valley’ where the potential energy' of the

system is zero. The valley is surrounded by mountains with

different summit and pass elevations (the summits and passes

represent the u.e.p.'s and saddle points, reSpectively).

Finally, the system could be thought of as a ball traveling

around the s.e.p. and on the potential energy surface.
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Figure 2.3 Potential energy Surface (solid lines) and the

boundary surface (dotted line) for three-machine

system [4]
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The fault energy motivates the ball to climb up the

potential surface. At any given time two forces will act on

the rolling ball: a force produced by the fault kinetic

energy V which pushes the ball in an upward direction,
c1'

anui a force produced by the torque (potential energy) Vér,

which pulls the ball downward.

If the moving ball reaches zero velocity before hitting

the potential energy boundary surface, PEBS (the boundary

which connects the u.e.p.'s and saddle points and is

perpendicular to the energy contours), the trajectory is

stable and the ball will eventually settle down at 352. In

contrast, if the trajectory reaches this boundary, then the

ball will escape from the valley and instability results.

The three-dimensional energy terrain is generalized to

n-dimensional and the transient energy function of section

2.2.2 mathematically represents this concept. The total

potential energy of the system is visualized as an

n-dimensioned potential energy terrain where £52 represents

the minimum energy point of this surface. Also, there is a

one-to-one correSpondence between the energy points of this

surface and the possible positions of the generators [14].

(III) Evaluation of Clearing and Critical Energies

The determination of the region of stability (critical

clearing time) by direct methods has been recently

investigated by [4,11,12,13,16]. Athay et al. [4] compare

the total transient energy function. at (clearing with a

critical energy and estimate the region of stability. The
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critical energy Vcr is evaluated by two methods. First, it

is argued that the critical trajectory passes through an

appropriate u.e.p., in. At in the system's velocity is

zero, resulting in elimination of the kinetic energy term in

the transient energy function. The potential energy term

evaluated at _3_u will determine the critical value Vcr'

Hence, the main task involved in this approach is the

identification of the appropriate u.e.p. (a u.e.p. which

depends on the trajectory of the system).

In their second method, the potential energy boundary

surface (Figure 2.3) is identified and the total potential

energy of the system at the crossing of PEBS and the

trajectory constitutes Vcr' This approach was also pursued

in [12].

Fouad et al. [13] estimate the critical clearing time

by again considering the 132331 energy at the instants of

clearing and a boundary. It is argued that not all the

kinetic energy at clearing contributes to instability. The

kinetic energy contributing to system separation is equal to

the energy produced from the relative motion of the center

of inertia of the accelerated group in regard to the

inertial center of the rest of the system. Thus, the

kinetic within the accelerated group and in the group

representing the rest of the system at clearing time tC must

be subtracted from V . Examining equation (2.18), it is

C1

also claimed that Vc and vcr must be evaluated from the1
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same reference and thus Vcr must be used with correction

Vcor (2.24). Hence, :ni estimating time critical clearing

time, these two corrections must be made. However, in spite

of the previous discussion, it is the kinetic and potential

energies of the individual machines (and. not the total
 

energy) which must be considered for accurately estimating

the stability boundary (critical clearing time). A very

recent work [16] does also support this idea mathematically.

Chapter 3 is devoted, to (analyzing the transient energy

function and investigating the partial energies in contrast

to total energies.



CHAPTER 3

AGGREGATION AND LOCALIZATION

OF ENERGY FUNCTION

3.1 Coherent Group Energy

3.1.1 Discussion

As was discussed in the previous chapter, the fault

energy breaks the system into groups of generators that

swing together and form coherent groups. The generators of
 

a coherent group approximately possess identical rotor angle

positions and angular velocity and thus could be replaced by

an equivalent generator.

Accurate simulation of the response of a power system

is possible when the coherent generator groups for a

particular fault are aggregated to form single-generator

equivalents and thus a reduced-order power system transient

stability model. This ability to aggregate coherent groups

before the simulation of a particular fault is performed to

determine whether or not a system is stable suggests that

the stability of the system is dictated by the components of

the model that govern the coherent group against coherent

group dynamics. The components of the power system

transient Stability model that determine the dynamic

36
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response within coherent groups appear to have little or no

effect on the retention or loss of Stability for a

particular fault.

It is believed that the total system energy function

can be broken into within-group and between-group

components. The vnthin-group kinetic and potential energy

components are hypothesized to have little or no effect on

stability based on the observation that within-group

dynamics can be aggregated without much effect on the

accuracy of the simulation model in prediction of retention

or loss of stability for a particular fault. This chapter

is devoted to the determination of expressions for the

within- and between-group kinetic and potential energy

components in the total system energy function. The

within-group kinetic and potential energy components are

then eliminated to form an aggregated transient energy

function (ATEF). This ATEF attempts to preserve

between-group kinetic and potential energy components. This

representation is especially of interest where the fault

separates the system into two groups where the fault energy

accelerates a group of generators with respect to the

others. In this situation the ATEF is analogous to the

well-known "equal area criterion" and thus the transient

stability of a multi-machine could be approximately

estimated by the "equal area criterion" of two equivalent

machines that represent the two coherent groups.
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The motion of coherent groups is shown to be dictated

by the "center of inertia" rotor angle position and angular

velocity that are represented by the motion of the

equivalent inertial center machine. The aggregation of the

coherent group into an equivalent machine requires obtaining

parameters of the equivalent machine model, aggregated

mechanical input power and an aggregated network model.

This aggregation procedure has been applied to produce

dynamic equivalents for transient stability studies. A

crucial point worth noting in this analysis is that the

aggregation of the power system parameters does not reduce

the order of the system, i.e., the dynamic behavior of the

power system iS not approximated by a lower order model.
 

The aggregation is solely applied to the energy components

in the transient energy function and thus results in an

approximate stability condition.
 

The "Equal Area Stability Condition" obtained for

multi-machine systems is Shown to obtain an optimistic (too

large) region of stability and critical clearing times

because the aggregation of time energy function is shown

through analysis and simulation to stiffen the network

between groups. The derivation and discussion of the equal

area condition for mmlti-machine power systems is given in

section 3.2.

A second effort is made to Show that between-group

kinetic and potential energy contains the information about

whether the system is or is not stable for a particular
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fault. An algorithm is developed in section 3.4 based on

the observation that the kinetic energy between groups will

approach zero at some time instant after fault clearing if

the system is stable. If the system is unstable, the

minimum kinetic energy over time after the fault is cleared

is considered to be the excess kinetic energy at clearing

that caused the loss of stability. This algorithm is Shown

to obtain a more accurate estimate of the region of

stability and thus the critical clearing time than the

u.e.p. method [13] discussed in section 3.3. However, this

u.e.p. method is Shown to be a computationally attractive

approximation of this new algorithm. The encouraging
 

results of this algorithm led to the effort in Chapters 4

and 5 to determine if a particular generator in the

accelerated group of generators would even more accurately

determine the region of stability for the system.

The remainder of this first subsection of Chapter 3 is

devoted to deriving expressions for the between- and

within-group potential and kinetic energy components of the

total system energy function. The assumption and procedure

required to aggregate the generators within a coherent group

are then reviewed in subsection 3.1.3 so they can be applied

to the total system energy function divided into within- and

between-group components.
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3.1.2 Between-Group and Within-Group

Energy Function Components

 

 

The transient energy function of (2.16) (presented in

(3 .1) for convenience) could alternatively be written in

terms of energy components residing within and between

coherent groups.

n-1 n

_ 1 _ 2

‘ Z Z [Z'MT Mi“j“"i “’3"
i=1 j=i+1

-l—( jM.l-PMM )(5. -6S.)

MT 3' 13

- C.. Cos ..-Cos + I. 3.1
13( 61] 5ij)1j] ( )

In order to achieve our objective, the following

nomenclature is considered and then applied to (3.1) to

Obtain (3.2):

N = total number of generator

K = number of groups

N1 = number of generators in group i where i=1,2,...,K

nO = A constant equal to zero

j

nj= 2N1 j=1,2,...,K

i=1

Expressing (3.1) in terms of the preceding

terminologies results in

2;:=1

nk K-1 K

Z A~+Z Z1]

j=' k= 1 2=k+13
‘

(3.2)
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where Aij is the argument of the double summation in (3.1).

The first and second terms in (3.1) represent the kinetic

and potential energy residing within and between K coherent

groups. From this derivation, the between-group kinetic and

potential energies for all K groups are

K-1 K n n

‘ k 1 2
KEBG = Z Z Z i a“; MiMj (mi-(.03.) (3.3a)

k=1 £=k+1 1=nk_1+1 j=n£_1+1

K-1 K n n

k if 1 s

PEBG "' Z Z + if; ‘Pij’PjMi’ (Gij'éij’
k=1 1=k+1 1=nk_1+1 j=n£_1+1

6i+6j-26O

s
+ _ -

Cij(Cos 6ij Cos 6ij) DijCos6ijd6ij

6i+6§-250

(3.3b)

The within-group kinetic and potential energies can be

similarly defined from (3.2).

3.1.3 Assumptions and Procedures for

Aggregating A Coherent Grogp

The assumptions and methodology of obtaining the

aggregated transient energy function are:

(i) to replace rotor angle position and angular

velocity of all generators in a Specific

coherent group In! the center of inertia

variables of the same group, so that each group

is represented by a center of inertia center

machine;
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(ii) to model the mechanical input power of the

inertial center machine that represents the

coherent group by the sum of the mechanical

input powers of the generators contained in the

same group;

(iii) to develop a transmission network representation

that connects the center' of inertia of

equivalent machines that represent the coherent

group's generators.

In order to develop an appropriate mathematical

representation of the equivalent transmission network

connecting the coherent groups, the power flow between

generators is considered.

The real transmitted power from bus i to bus j of a

power system through line i-j consisting of resistance and

reactance rij' x.., respectively, is given by (3.4).

 

1]

P.. = 1 [r..|v.|2 - r..|V.|1V.| Cos 5..
13 rij2+xij2 13 1 13 1 j 13

+ Xijlvillvjl Sin Gij] (3.4)

The change in transmitted power due to a change in the

relative rotor angle position of buses i (and j is the

synchronizing torque coefficient or stiffness of the line

Tij g1ven by

v. [v.1

T.. = I ll — r..Sin6..+x..Cosé.. (3.5)
1 l l l1

r.. +X..

1) 1)
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Consider the case depicted in Figure 3.1 where the

power system includes two coherent groups and it is desired

to produce an equivalent line representation of the power

system connecting group 1 (G to (group 2 (G The

1) 2"

transmission lines connecting a Specific gnerator i a G1 to

all the generators j 6 G2, j=n1+1, nr2,...,n, are

constrained. by ‘the synchronizing torque: coefficient Tij'

Therefore, an equivalent line connecting bus 1 6 G1 to the

fictitious center of inertia of the second group (602) must

maintain the same constraint, i.e.,

n

2 Tij = Ti’II (3.6)

j: 1+1

where Ti II is the synchronizing torque coefficient of the

I

equivalent line connecting bus 1 g Gr to 'the center of1

inertia of G 6

2' 02’

Without loss of generality let uS assume that the

transmission line consists of reactive components, xij'

only. In this case

 if IVE; JVil Cos 6i. = T

 

j 3 1,11
.= +
3 n1 1

V. V

= J il l Ill Cos 61 II (3.7)

1.11 '

where VII' Xi,II' 6II are the variables of the equivalent

line of interest.
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Expanding the cosine terms in (3.7) and equating the

coefficients of the known variable i s G

   
 

n2 (V1 vj

Z 'x..

 

 

1 reveals

(CosSiCoséj+Sin6iSih5j) =

 

j=n1+1 13

lvil ij‘ (C055 C055 +Sin6 Sin6 ) (3 86)
X. 1 II i II ’
1,II

n

2 V. V. V. V

2: J 1i 1 1| C08 5. = l i1 1 III Cos 511 (3.8b)

. ij 3 1 II
j=n1+1

'

By implementing the assumption that the rotor angle

positions of generators of a Specific group are equal to

their center of inertia,

 

(3.8b) becomes

n

j=n1+1 13 1,11

Efz

j=n1+1M361 n2

51: = 502 - MT , MT2 = 2 MJ. (3.8d)

2 j=n +1

where 502 is the center of inertia

1

rotor angle position of

G2.

Continuing the same analysis but now considering a

generator j, je G2 with respect to all the generators

i a G1, following similar steps as found in equation

(30831brcrd)

j a G2, (3.9) is obtained.

and finally summing over all possible i e G
1:
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n1 n . .

2: 2:2 lvli (VII Cos6i. = JVII 'VIIl Cos6O1

       
 

 

(3.9a)
. j X 2

i=1 j=n1+1 1]
I'll

where

1 n1 n1

6012 = 601.502' 601 = Mi 2: ”151' MT = 2: M1
. 1

1 1:1 1:1

vI vII n1 n2 JV. v.
- 1

X — Z Z ' X.. (309b)

Equations (3.9a,b) identify the parameters of an equivalent

line connecting the center of inertia of G1 to the center of

inertia of G2. Representing the power system by an

equivalent line will introduce some approximation which will

be the subject of the following section.

The one-line equivalent representation of the ‘power

system is applied to the transient energy function to

produce the ATEF. Section 3.2 obtains the ATEF and will

Show the analogy between the equal area criteria and the

ATEF when the power system consists of only two coherent

groups.

3.2 Equal Area and Energy Function

Relationship and Approximation

3.2.1 Formulation and Discussion

Implementation of the assumption of 33331 rotor angle

positions and speeds (assumption (i) in 3.1.3) for the
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generators of an identical group eliminates

term--which represents within-group

(3.2) and consequently (3.2) reduces to

 

. K- k nk n£

V 1:: V = Z X X Z A. .

1]

k=1 =k+1 1=nk_1+1 j=n2_1+1

or

A K-1 K MT MT 2 1

V = Z Z ZMT (wok-“’02) MT (PTkMT5L

k=1 £=k+1

s s s

(6 '6 ) (T -I‘ ) -t (I -I )

okz okIL Tki Tkl Tm Tki

where

“k

MT =2 k=1'2'III'K

k ._
1—nk_1+1

“k

1=nk_1+1

N

MT = 2 Mi

i=1

n

. ___1 {k
0k M M u).

Tk i=n +1 1

energy--in

first

equation

(3.10)

(3.10a)

(3.10b)

(3.10c)

(3.10a)
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n

1 ..k
60k - F’I—EE- M151 (3.108)

2 1=nk_1+1

wokg = wok - (noR (3.10f)

60kg = 50k ' 602 (3.109)

8 V1 V. Vi V S

.. , (T. ) = Cos 6.. , ( Cos 6..)
13 13 13 13 Xij 13

(3.10h)

s nk n2 5 .
TTk1 , (TTkg) = 2: E: Tij , (Tij) (3.101)

1=nk_1+1 j=n£_1+1

n n s S

.- .+ .- .I = 2:k 2:2 V1 V1 61 61 63 63 .

T 5

k9 ._ ._ 13 6 -6

1‘nk-1+1 3’”z-1+1 13 13

S n. - .
.10 )(S1n 6ij S1n 6ij) (3 3

1:

When the fault energy separates the system into two ccfiuerefl

3.

groups, then (3.10) is almost analogous to the equal are

63

criterion of the two-machine system, i.e., when K=2 tn

  

(ATEF) is

V= ( )m “w ) “ (P M "PT T
2(MT +MT ) 01 02 (MT +MT ) T1'T2 2 1

1 2 1 2

5 5 5 3.11)
(6 -6 ) - (T -T ) + (I -I ) (

O12 O12 T12 T12 T12 T12
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60k = M M16i (3.10e)

Tl i=n +1
k-1

wokz = wok - won (3.10f)

50kg = 50k - 502 (3.109)

5 Vi V. Vi V. s

.. , (T..) = Cos 6.. , ( Cos 6..)
1] 13 Xij 13 Xij 13

(3.10h)

n n

T (Ts ) ‘ k 2:1 T5 3 10°Tkg I Tkg' — ij I ( ij) ( 0 1)

1=nk_1+1 j=n2_1+1

n n s s
I = Zk :2 Vi V. 61-6i+6j-6j .

T r . 5

k2 . . ' 6..-6..
1=nk_1+1 j=n£_1+1 13 13 13

. . s .
(Sin 6ij Sin dij) (3-1031

When the fault energy separates the system into two coherent

groups, then (3.10) is almost analogous to the equal area
 

criterion of the two-machine system,

(ATEF) is

MT1MT

A

V = 2

1 2

(6

S

012'5012)

(2(MT +MT ))(wo1-woz)

i.e., when K=2 the

 

(T

T12
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The parameters TT and IT defined in (3.10h)

12 12

represent an equivalent line connecting the equivalent

inertial center generators ‘1 and 2 vuth. angle position

6(6 and velocities (w01, woz), respectively; Thus,
01' 02)

the ATEF in (3.11) could be used to measure the energies A1

and A2 to produce an equal area criterion. The equal area

criterion based on (3.11) would not be accurate based on the

analyses and simulation results which follow.

To obtain the exact analogy with the equal area

criterion, the last term in (3.11), which represents the

conductance term in the system, must be eliminated. In

applying a direct method stability criterion, such as the

equal area criterion, it is assumed that the total system

energy remains constant after the fault period (only

conservative systems could be analyzed). However, for a

qualitative view, it is possible to analyze the systems with

losses.

Examining the terms in V of (3.11), it is revealed that

the first term represents the kinetic energy produced by

relative motion of the center of inertia of G1 and G2. The

work of Fouad et a1. [13] points out that not all the

kinetic energy at clearing contributes to instability. The

kinetic energy responsible for system separation is equal to

the kinetic energy associated with the relative motion of

the center of inertia of the groups at fault-clearing time.

This kinetic energy that contributes to instability in [13]

is exactly equal to the first term of (3.11).
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The potential energy term, however, introduces some

errors. The ATEF in (3.11) suggests that the potential

energy term within the coherent groups must be eliminated

but the potential energy existing between the coherent

groups must be retained. By this elimination, it seems that

the ability of the overall system to absorb kinetic energy

dwe to the fault will be increased rather than reduced as

might at first be thought. The requirement that all

generators have the same motion effectively stiffens the

effective network connecting the two groups. Stiffening

connections between the two groups would clearly occur if

the network in between generators in a group is shorted

together to produce a network equivalent. The assumption

that the angles at every generator in the group are

identical effectively assumes the network between these

generators is shorted and would stiffen the effective

network between the groups as indicated. The effective

stiffening of the network caused by assuming identical

angles in a group and the resulting errors in the equal area

criterion based on the ATEF in (3.11) is indicated by the

simulation results on an example test system in the next

subsection.

3.2.2 Research Test System
 

The test network used in the simulation studies of this

research consists of 17 generators, 163 busses, 304 lines

and transformers. This network (Reduced Iowa System Model)
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is an equivalent to the real generation network of Iowa

State consisting of 862 busses and 1323 lines [14]. Figure

3.2 shows a one-line diagram of the Reduced Iowa System.

The study done at Iowa State confirms that this

reduction preserves the dynamic behavior of the system for

"first swing" stability. In references [13,14], a detailed

investigation of the matter is performed. The data for this

model were provided by Iowa State University and the

generator initial conditions and data are presented in Table

3.1.

Two different fault cases are considered in this

investigation.

(1) RAUN CASE

A three-phase fault is applied to the high side

of the transformer connected to generator 6

(Raun) and is removed by clearing line 372-193.

(ii) COOPER CASE

A three-phase fault is applied to generator 2

(Cooper) and is removed by clearing line 6-439.

From Figure 3.2 the generators electrically close to

the fault location (Raun Case) are generators 5, 16, 10, 12,

17 and 2. For different fault clearing times the system

trajectory was Simulated and it was observed that generator

5 was electrically closest to the fault location and thus

possesses similar behavior as generator 6. The fault energy

separated the system into two groups, one consisting of the

accelerated generators (5 and 6) and the second by the rest
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Table 3.1 Reduced Iowa System Generator Data and Initial

Conditions

Initial Conditions

Generator

Parameters Internal Voltage

Generator H x.d Pmoa E

Number (MW/MVA) (pu) (pu) (pu) (degrees)

1 100.00 0.004 20.000 1.0032 -27.92

2 34.56 0.043 7.940 1.1333 -1.37

3 80.00 0.0100 15.000 1.0301 -16.28

4 80.00 0.0050 15.000 1.0008 -26.09

5 16.79 0.0507 4.470 1.0678 -6.24

6 32.49 0.0206 10.550 1.0505 -4.56

7 6.65 0.1131 1.309 1.0163 -23.02

8 2.66 0.3115 0.820 1.1235 -26.95

9 29.60 0.0535 5.517 1.1195 -12.41

10 5.00 0.1770 1.310 1.0652 -11.12

11 11.31 0.1049 1.730 1.0777 -24.30

12 19.79 0.0297 6.200 1.0609 -10.10

13 200.00 0.0020 25.709 1.0103 -38.10

14 200.00 0.0020 23.875 1.0206 -26.76

15 100.00 0.0040 24.670 1.0182 -21.09

16 28.60 0.0559 4.550 1.1243 -6.70

17 20.66 0.0544 5.750 1.116 -4.35

a
on 100-MVA base
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of the system. Figures 3.3 and 3.4 Show the swing curves of

generators for fault clearing times, tc, of .19 and .1925

seconds, respectively. For tC=.19 (s) all the rotor

positions do not exceed the stability limit and do not

accelerate indefinitely. However, it is clear that the

behavior of generators 5 and 6 is different from that of the

other generators. Figure 3.4, where the fault was cleared

at tc=.1925 (S), also indicates the similarity 2U) behavior

of generators 5 and 6, but here they are both accelerated

and thus pull out of step from the rest of the system

causing instability. For the stable case, the components of

energy, i.e., position, conductance and magnetic, is

illustrated in Figure 3.5a. These energy components, for

example position energy, may exceed the total energy of the

system but the sum of these components (potential energy)

will always remain below the upper bound imposed by total

energy which is constant after to. Figure 3.5b illustrates

the relationship between kinetic, potential and the total

system energy. The total energy increases up to the

clearing time indicating the accumulation of energy during

the fault period. After clearing time, it is seen that

there is an interchange between potential and kinetic energy

but constant total energy is maintained.

Based on simulation results, it was concluded that the

system may consist of either: (a) two groups (5, 6) and the

rest of the system, or (b) three groups; 5, 6, rest of the

system. For each of these cases the center of inertia rotor
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Figure 3.3 Swing curves. Clearing time = .1900 seconds.

a) Generators 10, 13, 16

b) Generators 5, 6
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Figure 3.4 Swing curves. Clearing time = .1925 seconds.
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Figure 3.5 Energy analysis of 17-generator system. Clear-

ing time = .1900 seconds.

a) Magnetic, position and conductance energy

b) Kinetic (K.E.), potential (P.E.) and total

energy (T.E.)
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angle position and velocity of each group and the parameters

of the equivalent line connecting these centers of inertia

was evaluated. Finally, the ATEF of (3.10) for different

clearing times was computed.

Figures 3.6 and 3.7 depict the aggregated-unaggregated

transient energy function comparisons. In both figures it

is observed that the aggregated kinetic energy at any given

time is smaller than the unaggregated kinetic energy

indicating the elimination of within-group energy. In

contrast, the maximum of aggregated potential energy exceeds

that of the unaggregated case. This discrepancy is due to

the effective stiffening of the connections between the

groups by assuming all generator angles are identical in

each group, which allows representing the connection between

the two groups by one equivalent line. The direct

consequence of this fact is that a more optimistic critical

clearing time will be obtained. This is to say that a

larger aggregated maximum potential energy implies a larger

energy-absorbing capability of the system and thus a longer

critical clearing time. For power system transient

stability, a conservative critical clearing time, tcc' is

preferable over an optimistic region of stability, i.e., for

a conservative tcc the power system integrity is assured

while for the optimistic tcc' the actual region of stability

is crossed and thus instability has resulted.

In spite of the foregoing discussion, the consideration

of within- and between-group energies (without--one-line
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Figure 3.6 Energy analysis when the system consists of

three groups, generator 5, generator 6 and the

rest of the system.

a, b) Unaggregated, aggregated kinetic (K.E.),

potential (P.E.) and total (T.E.) ener-

gies, reSpectively
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Energy analysis when the system consists of

two groups, (5,6) and the rest of the system.

Clearing time = .1900 seconds.

a, b) Potential and kinetic energy, reSpec-

tively.
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equivalent representation) is a valuable tool in assessing a

realistic region of stability. The algorithms represented

in the latter part of this chapter and also the following

chapters will confirm the idea.

3.3 A u.e.p. Method Based on Coherent Group Energies

In direct. methods based (N1 an. unstable equilibrium

point (u.e.p.), it is argued that in response to fault

energy, the critical system trajectory will move toward a

particular u.e.p.,‘gu, and will reach in with zero velocity

vector 21:53. At 2%“, the system energy V=Vk(_u_,_)+vp(§) is

solely potential, i.e., V=Vp(§u). For a given fault

clearing time, tc' the total energy at the instant of

clearing VC is compared with a critical value, V r=Vp(su).

1 c

If V stability is preserved whereas if vc1>vcr<

cl’vcr'

stability is lost. In summary, the steps taken in this

procedure are

- evaluation of an appropriate u.e.p., 3n

- evaluation of the critical energy Vcr=vp(£u)

- comparison of clearing energy Vc with Vc1

For the Raun case discussed in the previous section,

I'

the critical group, the group pulling away from the system,

consisted of generator 5 or 6 or both 5 and 6, so that, if

the critical group contains n1 generators, the number of

possible combinations in which generators could lose

synchronism and thus interesting u.e.P.'S is
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1

2: n1- 2n11i - - (3.12)

i=1

Determination of the appropriate u.e.p., the one that

the faulted trajectory passes by, among all interesting

u.e.p.'s, is not an easy task. This task is extremely

difficult. if the critical. group» consists of 10's of :ni

generators. However, the establishment of the ni generators

in the critical group restricts the number of u.e.p.'s to

ni-1 N-1

rather than 22 which is the total number of u.e.p.'s

in an N generator system. The system potential energy

Vp(§_u) at a u.e.p., in, in general will be different for

different interesting u.e.p.'s g2. Depending upon the

choice of the appropriate u.e.p., the critical energy will

differ and thus produce different estimates, tCC , of

1

critical clearing times at which Vc(tc )=VP(S:). Without

determining the prOper u.e.p. in and thus the appropriate

estimate of critical clearing time tcc' there is no precise

estimate of the region of stability. The proper u.e.p. was

usually chosen [13] as the one that gives the most accurate

estimate of stability after evaluating all 2ni-1 u.e.p.'s.

Following the approach proposed by Fouad et al. [13],

the critical group for Raun case consists of both generators

5 and 6. The potential energy at the 5,6 unstable

equilibrium point is estimated to be

gu

V = V = V = Vp(3

gsz

U _
5,6) — 17.16 p.u.
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2
where gs is the stable equilibrium point of the post-fault

network.

The authors claim that if Vcr is to be compared to a

clearing energy VC1 which is evaluated fromgs1

ac

Vc1 = V

251

1

where as is the stable equilibrium point of the pre-fault

network and-9C is the rotor angle at clearing, a correction

term due to change of reference from £51 to £52 must be

added to the critical value, i.e.,

£82

_ u _ _ =

(Vcr)corrected—Vp(§ )+V ~17.16+( .498) 16.662 p.u.

851

It is also suggested that the kinetic energy

responsible for system. separation is the kinetic energy

produced by the relative motion of the center of inertia of

groups, and not the total kinetic energy of the system, at

the instant of fault clearing. According to the

terminologies developed for the coherent groups, the kinetic

energy correction that does not contribute to instability

and thus must be subtracted from clearing energy is exactly

equal to the within-group kinetic energy evaluated at

critical clearing time; hence,
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Based on this procedure, a critical clearing time, tzcg

(.189, .191) seconds, is estimated. From simulation of the

system trajectory, it is observed that actual tcce (.1922,

.1925).

It is possible to obtain a larger region of stability

by estimating the total potential energy plus the kinetic

energy which does not contribute to instability at a

critical boundary for stability. The kinetic energy not

responsible in system separation is that amount of kinetic

energy remained within groups at the critical boundary. The

u.e.p. methods assume that the kinetic energy at the

critical boundary, i.e., at a u.e.p., is zero. Although

this argument may be correct, at t=ay practically the system

trajectory does not reach the unstable equilibrium point in

finite time and at best first passes near an appropriate

u.e.p. To clarify the point, let us consider a critically

stable case, i.e., the Raun fault for tc=.1922 seconds. The

maximum total potential energy, i.e., the maximum absorbing

capability of the system is Vp(t;)=18.56952 p.u. and

coincides with the minimum of total kinetic energy which is

* 'k *

K.E.(tB)=.30908 p.u., at t=t . At t
B B'

energy resides within groups and this amount of energy

a portion of kinetic

(.12916 p.u.) does not contribute to instability and can be

deducted from the total energy at the estimated clearing

time. ‘Alternately this group kinetic energy KJE

*

'group(tB)

*

can be added to Vp(tB) to produce an estimate of Vcr
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< ll

*

cr Vp(tB) + K.E

*

'(Group)(tB)

V
or

18.56952 + .12916 = 18.698681 p.u.

The clearing energy

v = v + K.E. = v (t ) + K.E.(t )
p c c

and the estimate of critical energy

g<tB> 3th)

= +Vcr(tB) vp K.E.Group

§s1 851

= vp(tB) + K.E.G(tB)

 
1

both have the same reference gs and thus there is no need

382

for correction V - to Vcr(t
)0

852 B

The procedure for estimating the critical clearing time

presented in the next section requires

vc1(tcc) < vcr(tB) = 18.698

*

and would produce a tCC e (.191, .192).

V andThis modified procedure gives a larger tcc' cr

region of stability than the u.e.p. method. Before

discussing this new method, the difference in calculating

kinetic energy correction at tC in the u.e.p. method and at

tB in this new method should be explained. The total energy

for all t > tc including t=tB is constant and the kinetic

and potential energy components at tc or tB can be broken

into within-group (group) and between:group (boundary)
  

components and therefore
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VCR(tB) = VPG(tB) + VPB(tB) + K’E'G(tB) + K'E'B(tB) =

VPG(tC) + VPB(tc) + K.E.G(tc) - K.E.B(tc)
VCL(tc)

1
VPG(t) - potential energy within groups from 95 to 8(t)

1

VPB(t) - potential energy between groups from as to 3(t)

s1

K.E.G(t) - Kinetic energy within groups from m =0 to wit)

s1
K.E.B(t) Kinetic energy between groups from w to m(t)

The total kinetic energy K.E.B(tB)+K.B.G(tB) at tB does not

become zero; hence. the trajectory just passes near the

u.e.p. :Ul finite time and never exactly reaches it. The

kinetic energy between the group, which measures the kinetic

energy associated with the relative motion of inertial

centers of these groups, does approach zero if the system is

stable. Thus, if the system is stable K.E.B(tB) is

approximately zero, but if unstable, K.E.B(th>0. The best

estimate of V for an unstable trajectory is to subtract
CL

K.E.B(tB) and thus estimate VCL as

VCL = VPG(tB) + VPB(tB) + K.E.G(tB)

where tB is the time at which the K.E.(t) reaches a minimum

and Vp(t) is maximum. Note that the kinetic energy

correction would in this case be K.E.G(tB) since it is the

kinetic energy that must be added to the potential energy at

the boundary to equal the clearing energy estimate.

The proper theoretical estimate of the kinetic energy

correction is the group kinetic energy at some boundary

where stability is actually determined and not the kinetic
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energy' within, the group an: the clearing time K.E.G(tc),

which from_ simulation results is larger than K.E.G(tB).

However, in the u.e.p. method the use of the group kinetic

energy at clearing is quite appropriate from a practical

standpoint since

(1) the correction K.E.G(tc) is easily calculated by

approximations without simulation where K.E.G(tB)

requires simulation which is to be avoided,

(2) the kinetic energy correction at tC is larger than at

tB from simulation results and compensates for the fact

that V u 's s alle than V t .p(§)1 m r p(B)

Discussing the energy accounting at t rather than tc

B

required a new computation procedure. The procedure is

presented and applied to the Raun case on the Reduced Iowa

System in the next subsection.

3.4 Global KINETIC ENERGY Stability criterion

Among the components of energy, i.e., the magnetic,

kinetic, position and conductance energy, the system kinetic

energy is directly related to the fault energy and reaches

its peak at the instant of fault clearing. It assumes a

minimum at a later time and then oscillates back and forth

until the system resumes an equilibrium point where the

kinetic energy becomes zero. Thus, the observation of the

global and rou kinetic energy may reveal valuable

information on determination of the region of stability.

Based (m1 this observation, an algorithm for estimation cm
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critical clearing time is developed and will be pursued

along with the concept of potential energy boundary surface

(PEBS).

In Chapter 2 it was discussed that the PEBS is a

surface passing through all the u.e.p.'s and saddle points.

Figure 3.8 illustrates a PEBS for a three-machine system

where one generator is considered as reference. The dotted

line connects all the u.e.p.'s and saddle points of the

system (mountain summits and passes of Figure 2.5) and thus

a PEBS. Consider the following two cases

Unstable trajectories: If the fault is cleared at ts,

tsztCC (critical clearing), the faulted trajectory

would go over the ridge and crosses the boundary at

a point, BC (Figure 3.8). At BC, the total kinetic

energy is minimum but not necessarily zero. The

excessive fault energy does not allow the velocity

vector at BC to approach zero. Note also that the

smaller the amount of fault energy, the smaller the

minimum of kinetic energy.

Stable trajectories: If the fault is cleared at

tc< tcc’ the faulted trajectories do not reach the

boundary but the kinetic energy will reach its

minimum. However, the minimum kinetic energy

between groups is zero but there is a substantial

amount of kinetic energy within groups. Thus, the

total kinetic energy has a minimum which never

approaches zero.
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(0.0)

Figure 3.8 Stable, unstable and critical trajectory for

a 3-machine system

12
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Besides the two types of trajectories, stable and

unstable, there is a: critical. trajectoryu The critical

trajectory touches the boundary at BC', and at this point,

the between-group kinetic energy is almost zero and the

total and group kinetic energies are both minimum.

Therefore, the potential energy plus the group kinetic

energy at the instant where the critical trajectory has

minimum kinetic energy could be considered as the critical

energy, Vcr' The between-group kinetic energy when total

kinetic energy is minimum is then considered to be the

excess energy at clearing that causes loss of stability.

Note that, if one was able to identify the true critical

trajectory, then both group and global kinetic energies

would also be identically zero. The steps followed in this

algorithm are:

Initialization:

- t >> t , sustained fault
ci cc

- VC1 - energy at tCi

- Min(KE)i - minimum of kinetic energy KE(t), for

given clearing time tC

i

- ti - time at which Min(KE)i occurs

- KEG(ti) - group kinetic energy at ti

- e - a prespecific small number

STEPS:

_. = I
(1) Evaluate Vc1 K‘E'G(ti) V c1

(2) Clear the fault when V = V' at t , and

c1 c1+1
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(3) Monitor

E = M1n(K.E.)i-Mln(K.E.)i+1

(a) If Est; the potential energy at ti+1'

i.e., PE(t = Vcr identifies the
1+1)

critical energy and t =t . Terminate

CC 1+1

the algorithm when appropriate t is

cc

obtained.

(b) if E>€, set i=i+1 and go to step 1.

Based on this algorithm, the Raun case was analyzed and

the results of Table 3.2 were obtained. The critical

clearing time predicted is tc €(.191, .1922) for €=.25. The

c

predicted critical clearing time very well matches the

actual critical clearing time of tC e(.1922, .1925) obtained
c

by simulation of the system trajectory.

Based on the analysis of Table 3.2, the following

remarks are made:

- For tc=.2, the minimum of kinetic energy is 5.2541

p.u. and the peak of potential energy is 15.51829

p.u. Based on the algorithm, the next clearing

energy' is approximately 18.4013 at ‘time interval

tC (.19, .2).

- When the fault is cleared at tc=.1925, the minimum

of kinetic energy is reduced by 91.5% (from 5.25411

to .50262) and the potential energy increased by

15.8%. Columns 3 and 4 show that before critical

clearing time the kinetic and potential energy
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decrease and increase, respectively, and after the

tCC the process is reversed.

Investigation of the fourth and fifth columns

reveals that the critical energy (Max (PE)) is

getting closer to the clearing energy Vc1' up to the

instant of critical clearing. Recall that in the

equal area criterion, A =A2 at the critical clearing1

time. Past the critical clearing time these two

values diverge from each other.

The estimated critical energy Vcr is at least

18.56952 (if tCC is considered to be .1922 seconds).

By the u.e.p. method of the previous section, the

critical energy was estimated to be 17.18 p.u.

spite of the large region of stability obtained by

algorithm, it is believed that the actual boundary

of stability is dictated by the behavior of the individual

machines rather than the overall power system. In other

words, the mechanism of stability is a local phenomenon

rather than a global phenomenon. More Specifically, the

boundary

behavior

generato

of stability for the Raun case hinges upon the

of generators 5 and 6 rather than all the

rs in the power system. The content of the

following chapters is an attempt at clarification of the

subject.



CHAPTER 4

LOSS OF STABILITY DUE TO SEQUENTIAL

DECOUPLING OF THE INDIVIDUAL GENERATORS

IN THE CRITICAL GROUP

4.1 Discussion

In Chapter 2 an attempt was made to investigate the

recent development in assessment of transient stability by

direct methods. The concept of potential energy boundary

surface [4,11] and energy accounting of the total system

energy [13] was introduced. Several stability criteria [7]

based on total system energy were also identified. However,

it was pointed out that the region of stability evaluated

based on total system energy produces conservative results.

For larger and more accurate regions of stability and thus

critical clearing times the stability problem must be

investigated in terms of the potential and kinetic energies

components that truly reflect retention or loss of stability

for a particular fault and post-fault network. As a first

step, the separation of the system energy into “within" and

"between" coherent group energies was considered.

A. "Kinetic Energy Stability' Criterion” was 'proposed

based on the within-group and between-group potential and

kinetic energy components. This stability' criterion was

74
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based on the assumption that the kinetic energy representing

motion between the group of accelerated generators and those

in the rest of the system would approach a minimum close to

zero at some instant after the fault is cleared as long as

the system is stable. This between-group kinetic energy

minimum over time would itself be minimized as a function of

clearing time if the clearing time equaled the critical

clearing time. This minimum between-group kinetic energy

would increase as a function of clearing time if the

clearing time exceeded the critical clearing time since

there is excess kinetic energy that cannot be absorbed in

potential energy. The "Kinetic Energy Stability Criterion"

was applied to a single—fault case on the Reduced Iowa

System and the prediction of critical clearing time and

region of stability was more accurate than a u.e.p. method

applied to the same fault case. The result produced by the

new algorithm was quite encouraging even though it was not

exhaustively tested on other fault cases.

The testing of this algorithm based on the "Kinetic

Energy Stability Criterion" was not pursued because the

algorithm is still based on accounting for the total system

kinetic and potential energy even though it was for the

first time properly separated into between- and within-group

kinetic and potential energies. The following two

hypotheses concerning stability of the system is the basis

0f the research that follows in this chapter and Chapter 5
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why algorithms based on the within-group and

between-group kinetic and potential energy were not pursued.

(1)

(2)

It is believed that

a single generator can be identified for each fault

case that determines whether a group of one or more

generators and thus the system will remain stable or

lose stability. This single generator is one of the

members of this group of generators whose stability is

in question for the particular fault.

The kinetic and potential energy between this single

generator and the rest of the system contains all the

information necessary to determine the stability of

this group of generators and thus the stability of the

system. The kinetic and potential energy is thus

hypothesized to contain no information about whether

the group will remain stable or lose stability.

Moreover, it is hypothesized that the between-group

kinetic and potential energy that contains the

essential information about stability is not that

between the entire group of generators that are

accelerated and the rest of the system but the kinetic

and potential energy between an individual generator in

this accelerated group» and the rest of the system

including other members of the accelerated group.

The kinetic energy and potential energy of this

individual generator is obviously contained in the total

system energy function. If the region of stability of the
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group of generators and thus the stability of the entire

system is dictated by a region of stability of the single

generator that is totally captured in the kinetic and

potential energy of this single generator, then the total

system between and within group potential and kinetic energy

also contains this essential information about stability.

However, the ‘total systenn energy function also contains

information about kinetic energy and between every other

generator in the accelerated group and the rest of the

system which is not essential to assessing stability and

cannot be filtered out to obtain criteria based on the

kinetic and potential energy of the individual generator

that assesses if the boundary of the region of stability of

this individual generator is crossed and thus whether the

system is or is not stable.

The total system kinetic and potential energy is

sometimes strongly dominated by the individual machine

kinetic and potential energy, which explains the partial

success of stability criteria and methods based on the total

system kinetic and potential energy found in Chapter 3 and

[13], respectively. The stability criteria based on the

individual generator potential and kinetic energy for

assessing the region of stability of this individual

generator could then clearly be applied to the total kinetic

and potential energy function to assess whether the region

of stability of the individual generator has been crossed.

This discussion suggests that if the hypotheses (that
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(a) stability of the system is dictated by the stability of

a single generator and (b) that the region of stability for

this generator is captured solely in the kinetic and

potential energy function for this generator) are true, then

the methods and criteria developed for the total system

kinetic and potential energy could also be applied to the

individual machine kinetic and potential energy functions

with hopefully more accurate results. This will be

confirmed in the next chapter.

It should be :noted that the kinetic and potential

energy of the individual generator depends on the rotor

position and velocity of all the generators in the system.

Thus, the stability criteria to be deve10ped depend on the

dynamic behavior of the total system even if it does not

depend on the total energy in the entire system.

This chapter will define the individual generator

energy function and then show that it is not a Lyapunov

function for the system if the system is sufficiently weakly

damped. The total system energy function with conductance

energy terms has not been proven to be a Lyapunov function

but certainly was assumed to be a Iyapunov function. The

fact that the individual generator energy function is not a

Lyapunov function may at first be quite disturbing.

However, the stability criteria to be deve10ped in Chapter 5

and their justification is not based on Lyapunov stability

theory but observation of the minimum of kinetic energy and

the maximum of potential energy of the individual generator
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as a function of time after the fault is cleared. The

individual generator kinetic energy minimum as a function of

time after the fault is cleared should approach zero if the

generator reverses direction after its initial acceleration

due to the fault. This reversal of the individual

generator's rotor velocity direction would indicate the

generator would remain stable. A kinetic energy minimum

after the fault is cleared that is not zero indicates there

is excess kinetic energy due to the fault's acceleration.

This excess kinetic energy cannot be absorbed in the

magnetic field.:U1 the transmission network connecting this

generator to the rest of the system, which implies that the

rotor motion at the: fault clearing' time will never be

reversed, which in turn implies loss of stability.

Observation of the maximum of the individual generator

potential energy as a function of time, after the fault is

cleared, is another indicator of whether stability is

retained or lost. This individual generator potential

energy maximum stability indicator is also not dependent on

Lyapunov stability theory and thus is not diminished in

usefulness by the fact that the individual generator energy

function is not a Lyapunov function. The maximum of the

individual generator' potential energy function after ‘the

fault is cleared is a measure of the effect of the magnetic

coupling of the transmission network in decelerating the

individual generator. As the fault clearing time is

increased, toward critical clearing time, the larger will be
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the magnetic coupling energy that decelerates and reverses

the direction of rotor velocity. The increase in negnetic

coupling energy required for deceleration at clearing time

increases; the larger should be the maximum of potential

energy that in part measures this magnetic coupling energy.

It is clear that for any clearing time that exceeds the

critical clearing time, the maximum magnetic coupling energy

has been utilized in an attempt to decelerate the individual

generator. The maximum potential energy after the fault is

cleared is in part a measure of this maximum magnetic energy

if the clearing time exceeds critical clearing time. Thus,

it can be argued that the maximum potential energy as a

function of time may well be approximately equal for any

clearing time that exceeds the critical clearing time. IX

very recent paper [16] utilizes the maximum individual

generator potential energy for a fault on trajectory as the

critical energy value Vcr , which is compared to the

1

individual generator's energy at clearing Vc1 to assess

i

whether the system is stable. This algorithm is not

justified based on the above understanding of maximum

magnetic coupling energy but rather based on the assumption

that the individual generator energy function is Lyapunov

function and thus Lyapunov stability theory.

The development and justification of stability criteria

based on the understanding of the physical implications of

the minimum kinetic energy and the maximum potential energy

after the fault is cleared as a function of the fault
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clearing time is pursued in Chapter 5. The remainder of

this chapter is devoted to

(1) presenting and discussing the form and properties of

the individual generator potential and kinetic energy

function

(2) proving that the individual generator energy function

is not a Lyapunov function

(3) justifying the hypothesis that the stability or

instability of the accelerated group of generators is

determined 13! whether an individual generator :ni the

group crosses its region of stability and that this

individual generator's region of stability is measured

by observing the maximum of the individual generator

potential energy and the minimum of the individual

generator's kinetic energy after the fault is cleared.

The individual generator energy function will now In:

presented and discussed. Consider the equation of motion of

a single machine written with respect to center of inertia,

(2.13). From multiplication of both sides of (2.13) by $1,

(4.1) is obtained

' . M. .
'1. — - .. .3;

M19131 ‘ (Pi Pei MT PCOA)Si (4'1)

Integrating Eq. (4.1) from a s.e.p., 8? to an arbitrary

angle, Si, results in
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n 9.

lMEBZ=P(a-a)-Z lCSina da
2 1 i ij ij i

i=1 5

jyéi 3'

n 31 Mi 81

j=1 s S
j¢i si 31

or equivalently the total energy of the ith unit is,

V.=%M.$2-P(8-8)+ZIC..Sin81jd81
l l l

#13

n ‘91 Mi ‘91

+ z D Cosa.jidS + 12C (4.3)
13 MT

j=1 as as
#1 1

Considering the definitions of the center of inertia

variables,

n n

— _ 1.. 1' — ...l.

‘91 ‘ (51 MT 2 M151) and “’1 " (“’1 MT 2 Mimi)

i=1 i=1

reveals that the individual machine energy of Eq. (4.3)

depends on the angular velocity and rotor angle position of

the entire system. It is clear that, if the individual

generator function is to be capable of assessing the region

of stability for the individual generator and the system, it
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must be a function of the angle position and velocity of the

entire system as shown above.

The very recent work of Michel et al. [16] discusses

direct methods for determining stability based on the

individual machine energy function. The individual machine

energy function argued to be a Lyapunov function is

partially based on simulation results and partially on

proof. It is also argued that this energy function will

satisfy additional conditions based on the invariance

principle of ordinary differential equations. The following

section will show that this individual energy function is

not a Lyapunov function.

4.2 Application of Invariance Theory in Power

System Transient Stability

Recall that one way of assessing the transient

stability of a power system is by comparison of the critical

energy, the energy at the lowest saddle point, with the

clearing energy Vc A second method was based on the1.

concept of potential. energy' boundary' surface (PEBS), the

collection of hypersurfaces which are orthogonal to

equipotential surfaces and pass through the saddle points.

In this method the critical energy is considered to be the

potential energy at the crossing of the total system

trajectory and the PEBS. It was pointed out previously that

the region of stability obtained by the application of the

PEBS is larger than the one resulting by consideration of
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the energy at the lowest saddle point. Theoretically

speaking, these different approaches are based on similar

Lyapunov stability theorems but with different (smaller or

larger) regions of definiteness. For clarification,

consider theorem (4.1) [4,20,24].

Theorem 4.1

Let V(§) be a scalar function. Suppose that the

region R ={x|V(_x) < k} is bounded. Let V(_x_) be

the derivative of V(x) along the solutions of

x=f(x); f(9). If V(x) is positive definite and V(x)

negative definite in R, then the origin is an

asymptotically stable equilibrium state and all

motions starting in R converge to the origin as t+m.

The region R in theorem 4.1 could be the entire state

space, and if this is the case, the equilibrium point will

be called asymptotically stable in the large. However, this

condition cannot be met and thus for power systems, one is

able to Speak at most of l2£2l asymptotic stability. Thus,

it isdesired to identify the largest region of stability

UH. When the energy of the lowest saddle point, V15, is

chosen as the critical energy, the value of k in theorem

(4.1) is equated to V and thus a region of stability (R1)
15

is identified. On the other hand, when the critical energy

is chosen as the ‘potential energy of the saddle point

closest to the system trajectory, then another region of

is such that R > R is found.stability, R2, 2 1
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The regions R, R1 and R2 are by definition the

invariant sets; i.e., for any initial condition of the

post-fault system contained in the set, the post-fault

trajectory converges to the post-fault stable equilibrium

point as t+at Note that if the initial condition contained

in the invariant set, then VC1 s Vcr‘ The initial

conditions of the post-fault dynamics are rotor position and

angular velocity of all units an: the instant of fault

clearing, which is represented in terms of energy by Vc1'

Michel et al. [16] propose that the concept of

invariance theory and potential energy boundary surface is

extendable to the individual machine energy. The maximum

potential energy of a specific individual machine, 1, for a

sustained fault is chosen as the critical energy, V =

cr

PEi . Then the region of stability for the entire power

max

system is identified by an invariant set

R1 = {x: Vi(x) S PEi }, when Vi(_x_) is the kinetic plus

max

potential energy of the its1 unit. Note that, in order to

apply an invariance theorem, it is first required to show

that the individual machine energy function is a Lyapunov

function, i.e., Vi(§) z 0 and Vi < O on the region of

interest (refer to theorem 4.1). Before proceeding to the

proof for the individual generator energy function, it is

worthwhile 11) Show how the conditions of theorem (4.1) are

indicated to be satisfied for the total system energy

function. The sign definiteness of the total system energy

functhmn V and its derivative V cannot be proven when the
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transfer conductance term is included in V. However, the

total system energy function restricted to a suitably small

region of interest can be shown to be positive. The

derivative of this total systenl energy function without

mechanical damping is zero based on simulation results in

[4,13,14,15,21], for all system trajectories and all t z tc.

This observation is then coupled with a proof that the

effect of the mechanical damping is negative definite to

suggest that V(x) < 0.

Consider the mathematical model including the

mechanical damping

where Di presents the mechanical damping for i=1,2,...,n.

Writing the equation of nation in terms of center of

angle results in (4.4)

X. Mi Mi n

Mimi = (Pi-Pei-Diwi) ' "' P OA + F1" 2 Djwj

=1

n

$2:DJ (4.4)

From (4.4) the contribution of the mechanical damping

L
J
.

1
(Pi Pei — P

MT COA)
(Dii-w

.
4
3
1
3

to the time derivative of the energy function is



n n

_ _ m _ _ _ 2 _

‘ Z iwiwi 0 ‘ Diwi Z DiwiwCOA

i=1 i=1 i=1

(4.5)

The right-hand side of (4.5), i.e., the contribution of

the mechanical damping to the time derivative, is negative,

if [4]

wCOA< (Di i=1'2'3'ooo'n (406)

Condition (4.6) and the fact that (from simulation) the

time derivative of energy function of a model without

mechanical damping is zero results in V < 0. Under these

conditions and simulation observation, one is able to apply

an invariance theory' to ‘theoretically' estimate a larger

region of stability. In summary, the steps taken in the

analysis are (a) to show that the energy function is

positive in a suitable small subregion, (b) to suggest that

the constant energy of the undamped system in simulation

results indicates the time derivative of the energy function

is zero and (c) to suggest that the contribution of damping

under certain conditions is negative and thus result in a

negative time derivative of the energy function. However,

when the individual machine energy is considered, one is not

able to Hake any judgment on the sign definiteness of the
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time derivative of the individual machine energy. In

contrast to the case of the total system energy, the

individual machine energy does not maintain a constant value

after the fault clearing time. There is always a transfer

of energy back and forth between machines. Figure 4.1 shows

the potential, kinetic and the sum of these energies for

generator 6 of the Reduced Iowa System. Generator 6 belongs

to the accelerated coherent group and as individual energy

is of particular interest. The oscillatory nature of the

sum of the potential and kinetic energy of this individual

machine in Figure 4.1a clearly diSplays the nondefinite

behavior of the time derivative of the energy. Thus, the

individual energy function is not; a Lyapunov function for

weakly damped systems and thus theorem (4.1) cannot be used

as the theoretical bases of the algorithm developed in [16]

or the algorithms developed in Chapter 5 for the individual

energy functions.

These algorithms need not be justified based on

Lyapunov stability theory because there are sound physical

arguments for justifying these algorithms. The algorithm in

[16] selects the critical energy to be the maximum potential

energy over time after the fault is cleared. This potential

energy maximum is in part of the maximum magnetic coupling

that attempts to reverse the direction of motion of the

individual generator due to the fault acceleration. The

maximum magnetic coupling and the maximum potential energy

as a function of time after the fault is cleared varies only
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slightly for any fault clearing time that exceeds critical

clearing time tesed on exhaustive simulation results. The

decision that the system will be stable or unstable based on

2(x(tc)) < PEi and 2(x(tc)) > PEi' respectively, assumes

that the energy of the individual generator energy function

does change as a function of time and that the kinetic

energy of the individual generator approaches zero for some

instant after the fault is cleared for clearing times less

than the critical clearing time. This kinetic energy of

generator 6 is shown to approach zero for an instant after

the fault is cleared when tC < t as shown in Figure 4.1c,
cc

indicating the second assumption is true. The assumption

that the individual generator energy does not change as a

function of time after clearing is not true based on the

energy of generator 6 shown in Figure 4.1a. The energy of

generator 6 decreases after clearing thus indicating the

stability criterion 2(x(tc))< PEi is conservative and would

predict slightly smaller clearing times than if the

individual generator energy function did not change as a

function of time. The results in [16] predicted a .1920

clearing time that is indeed conservative but comparable to

simulation results that indicate the critical clearing time

lies in (.1922, .1925). The very high accuracy of the

algorithm in predicting critical times based on application

to several fault cases on three different power system data

bases [16] further justifies the algorithm and stability

criteria based on the individual generator energy function.
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.A very important but unanswered question for applying

this algorithm based on the individual energy function is

which of the accelerated generators will dictate the

stability of the group. This particular problem is of

particular interest for the Raun case on the Reduced Iowa

System since three different critical clearing times are

given in [16] based on selecting generators 6, 5 and group

(5,6) as the individual or group energy function. This same

problem existed in selecting the proper u.e.p. in [13]. The

following section proposes a procedure for identifying this

individual generator that dictates stability of the

accelerated group of generators and thus the system.

4.3 Critical GroupL Generator and Boundary

In the latter part of Chapters 2 and 3 it was suggested

that the accurate ‘transient stability assessment of the

entire power system depends on the analysis of the

individual machines. To show the legitimacy of using the

individual machine energy, it was also argued in section 4.1

that the individual machine energies are related to the

entire system rotor angle position and angular velocity, and

thus could be used to estimate the critical clearing time of

the entire system. Knowing that it is possible to predict

the critical clearing time by an individual machine raises

the argument that one has to identify a: particular

individual machine whose behavior dictates most accurately

the stability of the entire power system.
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In response to occurrence of a fault, those generators

of the power system which are electrically closer to the

fault location are the ones which are most affected by the

fault energy. These generators deviate drastically from

their pre-fault conditions and consequently gain a

substantial. acceleration. The group (n? generators

consisting of the generators which are most affected and

disturbed by the fault energy is called the accelerated

group. The generators of the accelerated group are then

those generators which are electrically close to the

location of the disturbance. Hence, the candidacy of this

group depends on two factors: (a) the system configuration,

i.e., the resistance and reactance of the transmission line

connecting these generators to the rest of the system, and

(b) the fault duration. The longer the fault remains on the

system, the larger will be the number of generators in this

group. For example, in the Cooper case where the fault is

applied to the high side of the transformer connected to

generator 2 and the fault is cleared at tc=.21 seconds, only

generator 2 is contained in the accelerated group. On the

other hand, if the fault is kept on for a longer time and

cleared at tC=.3 seconds, then generator 17 also enters the

accelerated group (to be shown in Chapter 5). Note that

from Figure 3.2 generator 17 (Neb. CT, bus 774) is close to

the fault location and thus would logically enter the

accelerated group> as the fault clearing time increases.

Setting aside the generators of the accelerated group, the
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rest of the system constitutes the stationary group.
 

Generators of the stationary group are least affected by the

fault energy and remain relatively close to their pre-fault

conditions and thus have very similar dynamic behavior for

the particular fault being experienced. In contrast, the

behavior of the generators of the accelerated group are very

different from that of their pre-fault condition. This

observation leads one to believe that the specific generator

dictating the transient stability of the entire system is

contained in the accelerated group. A point worth noting is

that the generators initially forming the accelerated group

do not necessarily remain in this group. Some of the

generators may initially accelerate and diverge from their

pre-fault condition but at a later time decelerate and join

the generators of the stationary group. This situation

particularly happens if a large number of generators are

located in a small area and the disturbance is applied

inside this area. In this case a number of generators are

accelerated initially and form a large accelerated group but

at a later time the transmission network and inertia of

generators decelerate some of these generators and force

them to join the generators of the stationary group. These

generators will be considered as part of the stationary

group in this discussion since they will remain stable.

Further investigation of the generators of the

accelerated group reveals that there are two types of

generator behavior present. in this group. Fhu' a given
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clearing time a generator or a group of generators

acceleerates and pulls out of the system simultaneously. If

the fault cleared with a longer fault clearing time, then

other generators also pull out from the system and thus a

different mode of instability results. However, the group

of interest is that group of generators which pull out from

the system initially for the smallest clearing time among

all the clearing times which cause instability. This group

is called the critical group. For example, the critical
 

group for the Cooper case consists of generator 2 and not

generators 2 and 17. Recall that generator 17 joined the

accelerated group when the fault was at tc=.3 seconds rather

than .21 seconds. As another example, the critical group

for the Raun case consists of both generators 5 and 6.

These two generators pull out of the system simultaneously.

A more detailed discussion for practically identifying the

critical group will be presented in Chapter 5 where the

simulation results are considered.

Once the critical group is identified, the dynamic

behavior and energy transfers between the individual

machines in this group must be investigated. Although all

of the generators of the critical group pull out of

synchronism with the system, there is only one particular

generator whose stability or loss of stability accurately

indicates the stability or instability of the critical group

and thus the system. This particular generator in the

critical group, which dictates the stability or instability
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of the critical group, is called the critical generator.

The appropriate boundary encircling the critical generator

is called the critical boundary. The critical transmission

boundary determines a potential or kinetic energy boundary

surface whose violation or crossing results in instability.

The kinetic energy’ boundary crossing’ is <evidenced by a

ndnimum in kjnetic energy of the critical generator after

the fault is cleared that does not approach zero. The

crossing of a potential energy boundary for the critical

generator is evidenced by a maximum in potential energy of

the critical generator after the fault is cleared that does

not increase with an increase in fault clearing time.

Generators of the critical group will each cross their

own potential or kinetic energy boundary with respect to the

generators of the stationary group one at a time and the

critical generator is the last generator in the critical

group which crosses a potential or kinetic energy boundary.

If the critical generator crosses its potential or kinetic

energy boundary, then the entire critical group loses

synchronism with the stationary group. If this critical

generator never crosses its potential or kinetic boundary,

the critical group will remain stable. To clarify the loss

of synchronism between the critical generator and the

generators of the stationary group, a very simplified

example is in order. Consider the real power transmitted

between two generators i and j connected by a lossless line

with reactance xij'

 



96

i
P j = 'Viiilvjl Sin 5

where 6 = Si-Gj and Vi , Vj are the magnitude of voltage at

buses i and j. If V1 and Vj are kept constant, then

Pij = PmaxSin 5 (4.7)

V. V.

13'

The real power transmitted from bus i to bus j through

line ij clearly depends on the phase angle difference

between buses i and j. When the phase angle difference (due

to load increase or a change in generation due to a fault)

is forced to attain a value near 90°, the power transmitted

will reach P the maximum value, and any additional phase
max'

angle difference (beyond 90°) will decrease the transmitted

power; At the point where 15=9O° (the static stability

limit), the system "pulls apart electrically" and the

synchronism between buses i and j is lost [22] if buses i

and j are only connected through this one path. If buses i

and j are operating in such a way that the phase angle

difference is small, then these two generators are said to

be operating in synchronism or strongly coupled. In

contrast, if the angle difference exceeds 90°, buses i and j

are weakly coupled. If there are several paths connecting
 

two sets of buses I and J, then all buses 1k 6 I and jg 5 J

must be weakly coupled for I and J to lose synchronism. One

can now argue that, once the potential energy of the line
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connecting bus 1 to bus j achieves its maximum capacity,
k

then generators i and jg become weakly coupled. In a
k

dynamic sense, if all of the generators i belonging to the

k

critical group and all generators j2 belonging to the

stationary group exceed the potential energy capacity of the

equivalent line connecting them, the two groups lose

synchronism and thus the critical group goes unstable. The

last generator in the critical group which approaches its

potential energy boundary of the lines connecting it to the

stationary group decides the stability of the critical group

and hence the entire system.

The above simplified example can be generalized to

investigate the loss of synchronism between any generator in

the critical group with respect to all the generators of the

stationary group. The potential energy produced between the

generators of the critical group and that of the stationary

group is investigated via extensive simulation runs. For

the Raun case, generators 5 and 6 constitute the critical

group and the rest of the generators are then considered to

be in the stationary group. Based on simulation, it was

observed that for clearing time of tc=.1922 seconds the

system was critically stable. For this situation, Figures

4.2a and 4.2b illustrate the swing curves of some of the

generators of the stationary and all of the generators of

the critical group, respectively. Note that the peak of the

swing curves of the stationary group is somewhere around

90°-100° while that of the critical group is about
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160°-170°, confirming the fact that the critical group is

initially pulling away from the stationary group but at a

later time all of the generators (both in the critical and

stationary groups) resume a relatively small angle

indicating stability. For the same clearing time, i.e.,

tc=.1922 seconds, Figure 4.3a illustrates the sum of the

potential energy produced between generators 5 and 6

(critical group) and all of the generators of the stationary

group. Figure 4.3b depicts two Plots: one for the

potential energy produced between generator 5 and the

stationary group (partial potential energy) and a similar

one for the partial potential energy between generator 6 and

the stationary group. From Figure 4.3b it is clearly seen

that the 6-partial potential energy increases up to t=.25

seconds and. decreases afterward. The ‘peak of 6-partial

potential energy indicates the maximum energy capacity of

the transmission network connecting generator 6 to the

stationary group. To confirm the fact that the peak at

t=.25 seconds is indeed the maximum energy capacity between

generator 6 and the stationary group, several simulation

runs were performed for different clearing times (tC> tcc).

The maximum of 6-partial potential energy maintained a

constant value for all tC > tCC indicating the limit on the

potential energy capacity of all lines connecting 6 and the

stationary group is achieved at tc=.1922< tcc (the

simulation results will be shown in Chapter 5). The maximum

potential energy capacity, recalling the simplified example,
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depends on the transmission line parameters, the bus

voltages and the angle difference between generator 6 and

all of the generators of the stationary group. Before

reaching the peak of potential energy, there is a strong

coupling between generator 6 and the stationary group, and

after the energy exceeds the maximum potential energy

capacity of all lines connecting 6 and the stationary group,

the magnetic coupling between generator 6 and the stationary

group become weakly coupled. If generator 6 was the only

machine in the critical group, then upon observation of the

maximum energy capacity of the 6-partial potential energy

one could conclude that generator 6 would pull away from the

system and thus lose synchronism. However, for this

particular case, where generator 5 is also in the critical

group, one cannot yet make any decision on the loss of

stability. A crucial point to .note is the difference

between the peak. of 6-partia1 potential energy and the

"maximum potential energy capacity" between generator 6 and

the stationary group» .It is true that at some instant of

time the partial potential energy peaks; however, this peak

may or may not be the "maximum energy capacity." If the

peak of partial potential energy and the maximum energy

capacity coincide (which is the case for generator 6), then

one can conclude that this particular generator is weakly

coupled (or electrically pulled apart) from the stationary

group. The peak of partial potential energy is always less

than or at most equal to the maximum energy capacity. Now
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considering the energy behavior of generator 5 reveals that

the peak of 5-partial potential energy is reached at a later

time, indicating the fact that, although generator 6 is

trying to pull away from the system, generator 5 is holding

on to the stationary group and maintains a strong coupling.

Thus, among the generators of the critical group (S and 6)

generator 5 is the last generator to exceed its potential

energy boundary capacity and therefore by definition the

criticalygenerator. Figure 4.3a, which displays the sum of
 

partial potential energies of generator 5, shows a very

pronounced peak in potential energy at t=.31 indicating the

network connecting generator 5 to the stationary group

decelerates generator 5 and causes it to reverse direction

and thus causes 5 and 6 to remain stable.

To further pursue the matter, let us investigate the

Raun case where the fault is cleared at tc=.1925 seconds.

Figures 4.4a and 4.4b again illustrate the swing curves of

some of the generators of the stationary and the generators

of the critical group, reSpectively. It is clear that the

swing curves of generators 5 and 6 swing away from their

initial operating condition and reach a value of several

hundred degrees. Clearly this is an unstable case. In

contrast, the swing curves of the generators of the

stationary group remain below 100° and ultimately reside at

an angle close to their initial condition. Investigation of

Figures 4.5a and 4.5b where the partial potential energies

are illustrated reveals that again generator 6 reaches its
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maximum energy capacity and becomes weakly coupled with

respect to 'the stationary group. In: a later time the

partial potential energy of generator 5 peaks and attempts

to prevent generator 6 from pulling away from the system.

However, it is observed that due to large angle deviations

between the angles of generators 5, 6 and those of the

stationary group, this attempt is not successful, critical

generator 5 also becomes weakly coupled, and both pull away

from the system.

From these observations it is confirmed that for both a

critically stable and critically unstable case, generator 5

is the critical generator. Note that the fault was applied

on the high side voltage of the transformer connected to

generator 6, but generator 5 was shown as the critical

generator.

Now that the critical generator is identified, it still

remains to identify a boundary of stability. As was

discussed before, the boundary of stability is an

appropriate boundary encircling the critical generator. As

a candidate one can investigate the quantity

A =
1 2

EM; MiMj(wi wj)

:
3
1
1
§
’
1
s

1

i

where i is the critical generator.

This quantity is an indication of the velocity

deviation existing between the critical generator and the
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rest of the system. In Chapter 5, two boundary conditions

are investigated and the accuracy of the critical clearing

time estimates which are based on these stability boundaries

will be discussed. It is worth noting that the observations

made based on swing curves of this chapter are only true for

short time Spans. This is a limitation of the classical

model used in this investigation. However, for the short

clearing times of fractions of a: second and simulation

period of approximately two seconds the applications of the

classical model for transient stability analysis is believed

to be appropriate.



CHAPTER 5

LOCAL STABILITY BOUNDARIES AND

COMPUTATIONAL RESULTS

5.1 Discussion
 

In the previous chapter the concept of individual

machine energy, the critical group and critical machine were

defined. Once the last generator in the critical group, the

critical generator, was decoupled from the stationary group

then the two groups produced by the fault energy will

disconnect and all of the generators of the critical group

lose synchronism with respect to the rest of the system.

Thus, the true region of stability of the entire system or

the critical clearing time depends on the energy behavior of

the critical generator.
 

The energy behavior of the critical generator is

investigated by consideration of a boundary encircling this

generator. One such boundary is observed in the sum of the

relative kinetic energy between the critical generator and

the rest of the generators in the system (both the

generators of the stationary group and the remaining

generators of the critical groupn. This boundary, the

"Local Kinetic Energy Condition" (LKEC), is crossed when the

critical trajectory reaches a point where the critical

107
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generator kinetic energy is minimum as a function of time

after the fault is cleared. The crossing of this kinetic

energy boundary indicates a crossing of the region of

stability of the individual generator and thus a loss of

stability for the critical generator, critical group, and

system. It is quite clear that in the fault period

t e (0,tc) the critical machines accelerate and hence the

sun! of the kinetic energies (LKEC) increaseu Upon the

clearance of the fault, the post-fault network decelerates

the critical generator and the LKEC decreases until it

reaches a minimum. The increase of LKEC during the fault

and the decrease until reaching a minimum is true for every

clearing time.

When the fault is cleared at tC > tCC (critical

1

clearing time), the fault energy accelerates the critical

generator so much that the absorbing capability of the

post-fault transmission lines connecting the critical

generator to the rest of the system is consumed rapidly and

the minimum of LKEC, occurring at time t is achieved
’

B1

quickly. Once this minimum is achieved, the LKEC increases

sharply. Now if the fault is cleared at tc2> tCC such that

tC2 < tc1' then a smaller amount of energy is contributed to

the acceleration of the critical generator, and thus the

absorbing capability of the post-fault network existing

between the critical generator and the rest of the system is

consumed at a longer time and hence the minimum of LKEC

occurs at tB > tB . As the fault is cleared at a clearing

2 1
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time closer to the actual critical clearing time, the

minimum of LKEC occurs at a longer time, and furthermore,

the level of this minimum LKEC is reduced indicating the

existence of a, smaller amount. of excess kinetic energy

between the critical generator and all of the generators in

the rest of the system. Among all the minimum of the LKEC,

the absolute nunimum corresponds to the critical clearing

time and has a value near zero. A minimum of individual

generator kinetic energy over time after clearing near zero

indicates the direction of motion of the critical generator

with respect to the other generators has reversed indicating

the critical generator and system remain stable. The

minimum kinetic energy over time after clearing for tc < t
CC

will be near zero indicating stability, but when tc=t the
cc'

kinetic energy minimum is less than for tC < tCC from

simulation results to be presented suggesting that at tc=tCC

more of the kinetic energy is drained from the critical

generator at tc=tcc° An algorithm based on the LKEC will be

pursued further in the next section.

The second approach in estimation of the critical

clearing time uses the concept of the equal area criterion.

Recalling the method of "Equal Area Criterion" of two

machine, the region of stability is defined by comparison of

energy in two different periods of time, i.e., the potential

energy (A1) obtained during the fault period that is a

measure of acceleration between critical generator and the

generators in the rest of the system and the potential
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energy in the post-fault period that measures the

deceleration energy. The sum of the partial energy of the

system existing between the critical generator and the rest

of the system over the two periods is the basis of a "Local

Equal Area Condition." This LEAC condition requires that

the sum of the partial potential energy function must be

zero indicating the initial acceleration energy during the

fault period is absorbed by the post-fault network resulting

in deceleration to a near-zero kinetic energy. The partial

potential energy over the fault period is evaluated by the

use of the during-fault network configuration and the
 

partial potential energy is evaluated by using the reduced

post-fault admittance matrix. Hence

n n

_ J_ __ _ S
Ak — MT 2: (P.iMj PjMi )(cSi +218: ki(Cos<Sij Cosdij)

3.2131:

jfi ji¢

51+51'250 pfk

-jr Dij (Cosdij)d(di+6j-260)

6 +6 -26

where k=1 ,2 : identifies the during-fault and post-fault

pf1 pf1 pfz pfz .
parameters (Cij , Dij ) and (Cij , Dij ), the during-fault

and post-fault quantities A1 and A2, reSpectively. Section

5.3 is devoted to the investigation of the properties

associated with this concept.
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5.2 Local Kinetic Energy Condition
 

As the first criterion for assessment of the transient

stability of the entire power system, the kinetic energy of

the critical generator is investigated. Considering the

one-machine infinite bus case, the boundary of stability is

identified by the comparison of the energy gained during the

fault on period and the amount of energy at an instant of

time where the relative velocity of the machine with respect

to the infinite bus, w, reaches zero. In transition from

one state to another, there are two states where the

relative velocity of the machine with respect to the

infinite bus becomes identically zero, i.e., at the

post-fault stable equilibrium state and/or at the unstable

equilibrium state. A zeroing of kinetic energy at some

instant after fault clearing which then again increases is a

necessary and sufficient condition for stability for the

single generator infinite bus system. If the system is

unstable, the kinetic energy never approaches zero after

fault clearing, and if critically stable, the kinetic energy

remains zero after it becomes zero.

Based on the foregoing observation and the fact that

the generators of the critical group decouple from the rest

of the system one at a time, it is intuitively appealing to

consider the generators of the critical group (and

particularly the critical generator) against the rest of the

system analogous to the one machine-infinite bus case.

Hence the kinetic energy produced by the relative motion of
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the generators of the critical group with reSpect to the

rest of the system is monitored.

The quantity

n

_ 1 _ 2

KEi ‘ ZMT Z MiMj(wi “’3" (5.1)

i=1

#1

where i represents a unit in the critical group, is a

quantitative measure of the kinetic energy produced from the

relative motion of generator i with respect to the motion of

the rest of the system. It can be viewed as a normed

measure of the velocity of the generator with respect to all

other generators in the system.

At the pre-fault stable equilibrium point, the

acceleration of the entire system, i.e., ééo, and thus there

is no kinetic energy produced by the relative movement of

the generators. When the fault is applied, the state of the

system deviates from the equilibrium state and the fault

energy in part becomes kinetic energy. Because of the fault

energy, the generators of the critical group and hence the

critical generator are accelerated with respect to the rest

of the system resulting in an increase of the kinetic energy

of the critical generator with respect to the rest of the

generators in the system. The maximum kinetic energy of the

critical generator is achieved. at the instant of fault

clearing. After the fault clearing, the post-fault net—wolfk

decelerates the accelerated generators and the )tinetic
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energy of the generators of the critical group start to

decrease and reach a minimum.

For any clearing time, the kinetic energy of the

critical generator attains a minimum but what is of interest

is the fact that for the clearing times tC > t not all
cc’

the kinetic energy is absorbed by the post-fault network.

Thus, even though the kinetic energy reaches a minimum after

the fault clearing time, the amount of the minimum of the

kinetic energy is relatively large. At a clearing time less

than or equal to the critical clearing time, almost all of

the kinetic energy of the system is absorbed in potential

energy of the transmission network. A minimum of kinetic

energy after fault clearing indicates a reversal of the

direction of nmkion of the critical generator (or critical

group) from that caused by the fault acceleration. A

reversal of direction of motion on the first swing in the

critical group has traditionally been interpreted as a

necessary and sufficient indication that stability is

preserved. The minimum of kinetic energy after fault

clearing near zero is just a measure that can but does not

necessarily reflect this traditional indication of

stability. However, if multi-machine systems behave as the

single-machine infinite bus, a zeroing of kinetic energy

that increases afterwards is :1 necessary’ and sufficient

condition for retention of stability.

The "Kinetic Energy Stability Criterion" in Chapter 3

was based on this principle and assumed that the kinetic
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energy of the accelerated group would approach zero sometime

after fault clearing. The algorithm based on this condition

cleared the fault when the total system energy at clearing

VC (tc) approaches a critical value V For an initial
CR'

.
= >chOice of VCr such that VC (tc) VCr where tC tcc’ the

between-group minimum kinetic energy KEBG(tB) at t > tC was

B

assumed to be the excess energy in VCr that caused loss of

stability. Thus the revised choice for VCr is

I = -
V V KEBG(t

Cr Cr B)

The algorithm proposed in this chapter replaces KEBG(tB) by

the minimum kinetic energy between the critical generator i

and the rest of the generators (5.1) at t'B > to. The

kinetic energy boundary based on (5.1) is a measure of the

kinetic energy between a generator in the critical group

with respect to the rest of the system. This kinetic energy

is exactly the "between group" kinetic energy introduced in

Chapter 3 if the individual machine (a member of the

critical group) is considered as one group and the rest of

the system as a second group. Recall that the total kinetic

energy was split into two parts,

KE = KEBG + KEWG (5.2)

where KEBG and KEWG are the between- and within-group

kinetic energies. Also from Chapter 3



11 K- K nk

KEBG = ZMT Z Z Z

k=1 2=k+1 i=

1-1 (5.3)

where K, nk, ng are the number of groups, number of

generators in the kth and 2th group, respectively. For the

assumption that the power system consists of two groups and

further that one of the groups contains only one of the

generators of the critical group, then (5.3) will become the

LKEC of (5.1). It is hypothesized then that the true region

of stability is related to the Local Kinetic Condition based

on (5.1). Furthermore, for every generator in the critical

group, there exists a kinetic energy condition between this

generator and the rest of the system. Among all these

LKEC's time one existing between the critical generator and

the rest of the system, i.e.,

n

KEBG = iii- 2 MiM.(w.-w.)2

i T ._ 3 1 3
j—

3%

where i is the critical‘generator, dictates the true region
 

of stability.

COOPER CASE: Consider the Cooper Case where a

three-phase fault is applied near generator 2. The

generators electrically close to the faulted generator are

generators 1, 17, 12 and 16. For several fault clearing

times the behavior of all of the generators in the power

system was investigated. Figures 5.1, 5.2 and 5.3 depict
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Figure 5.1 Swing curves. Clearing time = .2100 seconds.

a) Generators 2, 16 and 17

b) Generators 5, 6 and 10
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Figure 5.2 Swing curves. Clearing time = .2400 seconds.

a) Generators 2, 16 and 17

b) Generators 5, 6 and 10
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Figure 5.3 Swing curves. Clearing time = .3000 seconds.

a) Generators 2, 16 and 17

b) Generators 5, 6 and 10
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the swing curves for generators 5, 6, 10, 17, 16 and 2, for

fault clearing times of tc=.21, .24 and .30 seconds,

respectively. When the fault is cleared at tc=.21, all the

generators stay stable, and although the peak of swing

curves of generator 2 reaches approximately 126°,

(32 > 90°), it ultimately decelerates and forms a stable

group with the rest of the system. Figure 5.2, however,

illustrates that for a longer clearing time (tC=.24 sec)

generator 2 accelerates and pulls away from the rest of the

system and hence by the definitions of Chapter 4 forms the

critical group. As a further step, Figure 5.3 illustrates
 

that for tc=.3 second both generators 2 and 17 lose

synchronism with respect to the rest of the system but the

group consisting of these two generators, which did not lose

synchronism simultaneously, is not considered as the

critical group. To further confirnn the fact that the

critical group consists of generator 2 solely, a special

program based on the Davidon-Fletcher and Powell

Optimization technique, developed by Systems Control, Inc.

(SCI) was used. This algorithm minimizes a scalar

one-dimensional quantity, the mismatch function (F(3), which

is a measure of closeness to an equilibrium point. The

scalar quantity [4]

n

19(9) = Z rim)

i=1

. M.

where fi(3) = lel = Pl-Pe1 Mi PCOA is identically zero for
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m.=O, i=1,2,...,n. Therefore, at a true equilibrium point

F(3)=0 and increases as the trajectories move away from the

equilibrium state. Starting’ from time post-fault stable

equilibrium point where F(3)=0 (bottom of the valley in

Figure 2.4), the mismatch power reaches its maximum at a

point ass on the boundary connecting all the unstable

equilibrium points. Starting from 958, the same function is

minimized in every angle direction to obtain an

A

approximation, g

 

u to the actual unstable equilibrium point

a“. g“ is then the result of a minimization load flow

technique using £9 as its starting points [4].

Table 5.1 illustrates the post-fault s.e.p. and the

apprOpriate u.e.p. closest to the faulted trajectory for

both the Cooper and Raun cases. From the third and fourth

columns of Table 5.1, it is clearly seen that the 8; in

Cooper and «1:, 32) in Raun exceed 90°, indicating the

generators of the critical group. Note that for the Cooper

case the cxdtical group and critical generator are

identical. For Raun this result indicates (5,6) is the

critical group but results in Chapter 4 indicates (5) is the

critical generator.

The critical boundary or the LKEC for Cooper is based

on the minimum over time after tC of

szjZm-w)

r
v
1
_
.

_M2

KEzW2

j 1

j#2
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Table 5.1. The equilibrium points for Cooper and Raun cases

 

Post-fault s.e.p. Unstable Equilibrium

  

 

(Degrees) Points (Degrees)

Machine

COOper Raun Cooper Raun

-5.11 -4.92 1 -5.91 -1.41

21.77 22.26 2 150.04 46.63

5.36 5.60 3 3.55 9.68

-4.51 -8.34 4 -9.86 -23.95

15.28 18.87 5 18.06 163.55

16.75 21.57 6 20.42 144.87

-1.41 -1.53 7 -9.31 -15.96

-4.88 -4.76 8 -9.52 -7.98

9.33 8.91 9 .86 -6.62

10.37 12.85 10 19.64 47.77

-4.03 -1.17 11 -5.17 10.28

11.39 13.90 12 21.28 49.58

-6.93 -6.61 13 -16.54 -25.80

-5.29 -5.08 14 —14.83 -23.62

.52 -2.12 15 -5.66 -17.61

14.87 17.78 16 23.34 63.55

17.98 19.43 17 34.78 50.06
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This critical generator kinetic energy is observed in Figure

5.4 and the results are summarized in Table 5.2.

For a relatively large clearing time, the kinetic

energy existing between the critical generator and the rest

of the systeml is large indicating' the inability' of the

post-fault network to reverse the motion of the accelerated

generator (the critical generator). Consider the first row

of Table 5.2 where the fault is cleared at tc=.3 sec. The

post-fault network is able to absorb only a small portion of

the kinetic energy at clearing (approximately 8%) and the

minimum of the critical boundary is reached very shortly

after the clearing time (at t =.35 sec), indicating the fact
B

that the critical generator is only slightly decelerated (a

point of inflection on the critical generator trajectory).

The critical generator is accelerated after crossing the

boundary as seen. in increasing kinetic energy shown in

Figure 5.4 and thus the critical generator and system loses

stability. The results in Figure 5.4 and Table 5.2 indicate

as clearing time is reduced, a higher percentage of the

critical generator's kinetic energy at the clearing time is

absorbed by the post-fault network. Eventually an instant

of clearing time is reached for which all of the clearing

kinetic energy of the critical generator is absorbed by the

post-fault network and the minimum of the critical generator

kinetic energy KE2(t reaches zero indicating stability.B)

The maximum. clearing time at ‘which this kinetic energy

*

minimum KE2(tB) is zero is the critical clearing time. It
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Determination of critical clearing time for

Cooper via LKEC.

a) Kinetic energy vs. time

b) Boundary time vs. clearing time
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Table 5.2 Local Kinetic Energy Condition for

 

 

Cooper

tC KE2(tC) tB KE2(tB)

.3 12.74 .35 11.73

.25 8.92 .40 4.63

.24 8.23 .42 3.10

.22 6.94 .56 .12

.21 6.33 .48 .14

.19 5.19 .4 .1

 

t : time at which the minimum of LKEC occurs

to: clearing time
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should also be noted that the critical generator trajectory

for this particular clearing time (tcc) achieves the kinetic

energy minimum at a latest time (t than all theB)

trajectories for which the fault was cleared at tC < tcc

since for tC < t the machine receives less initial energy
cc

and takes a shorter time to decelerate and turn around. The

crossing of the kinetic energy boundary also occurs earlier

for tC > tC than at tc=t since the excess kinetic energy
C CC

that cannot be absorbed is a measure of the velocity of that

generator as it crosses the boundary. Therefore, based on

observation of the time tB at which the crossing of the

critical boundary happens, one is able to predict the

critical clearing time as the tC for which tB is nmximum.

The other method of predicting tC is the maximum tC for
c

which KE2(tB) z 0. For the Cooper case it is estimated that

the actual critical time is tC e (.21, .22) seconds based on

both criteria for selecting toc’ accurate results are

possible if the simulation is performed. with a smaller

integration step.

RAUN CASE: For the generators of the Raun critical

group, a similar analysis to that of generator 2 of the

Cooper Case is performed. Tables 5.3a and 5.3b summarize

the results obtained by monitoring the individual machine

kinetic energy for generators 5 and 6, respectively, shown

in Figure 5.5. From Table 5.3a it is clearly observed that,

as the clearing time decreases toward the actual critical

clearing time (which is not known at this time), the minimum
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Figure 5.5 Determination of critical clearing time for

Raun via LKEC.

a) Kinetic energy vs. time

b) Boundary time vs. clearing time
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Table 5.3a. Local Kinetic Energy Condition for

Generator 5 (Raun)

 

 

tC KE5(tC) tB KE5(tB)

.25 2.10 .27 2.08

.2 1.53 .35 1.17

.195 1.47 .415 .98

.1925 1.444 .9300 .2

.1922 1.44 .8835 .008

.192 1.438 .816 .019

 

Table 5.3b. Local Kinetic Energy Condition for

Generator 6 (Raun)

 

 

tC KE6(tC) tB KE6(tB)

.25 19.84 .30 14.56

.2 11.44 .42 1.55

.195 10.88 .515 .40

.1925 10.61 .5375 .11

.1922 10.57 .5209 .115

.192 10.50 .504 .93
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of the critical boundary decreases until it reaches its

minimum value at t e: (.8835, .9300). Note that again by

observation of column three or four of Table 5.3a one is

able to estimate the critical clearing time tcc e (.1922,

.1925). Further, it is seen that tB reaches a minimum for

tc e (.1922, .1925), confirming tCC lies in this range.

From Table 5.3b where the LKEC for generator 6 is

considered, it is observed that again the minimum of KE6(t)

decreases sharply as the clearing time approaches the

critical clearing time and stays almost flat for the

tC < tcc’ The critical clearing time based on the third and

fourth columns of this table are again estimated to be in

the interval tcc e (.1922, .1925). However, the time at

which the minimum of KE6(tB), that is, the time at which the

velocity of generator 6 reverses direction and is as close

as possible to the velocity of the rest of the system, is

shorter than that of generator 5. The phenomenon indicates

that more time is needed to drain out the excess clearing

kinetic energy of generator 5 than that of generator 6. In

other words, although both generators 5 and 6 lose

synchronism with respect to the stationary group, generator

5 is strongly coupled to the rest of the system, after 6 has

become weakly coupled and becomes weakly decoupled at a

later time. This further confirms the fact that the true

mechanism of stability is dictated by generator 5 rather

than 6.
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It should be noted that the prediction of the critical

clearing time in the middle of the interval (.1922, .1925)

agrees with transient stability simulation results. This

accuracy of the prediction of critical clearing times is

greater than. for’ the kinetic energy stability condition

based on (5,6) group kinetic energy approaching zero where

tCC was predicted to occur in (.19, .1922). The accuracy of

these results is similar to that in [16] based on setting

the critical energy VCr in

Vi(tc) = KBi(tC) + PEi(tC) S VCri

based (x1 the peak potential energy PE(t This algorithm
B)'

[16] is based on the individual machine energy function.

The algorithm based on the local kinetic energy

stability condition and the potential energy [16] based on

individual machine energy function are far more accurate

than methods based on total system energy described in

Chapter 2 by a factor of 5 and up to 200. Thus, it appears

that algorithms for individual. generator‘ energy function

should be pursued further to find efficient computational

methods that do not require simulation of the transient

stability model.

5.3 Local Equal Area Condition

The second method for determining the boundary of

stability for a nmlti-machine power system is based on the

well-known "equal area criterion" (EAC) of one-machine

infinite bus systems. The~ WLocal Equal Area Condition"
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(LEAC) is an extension of EAC in the sense that a particular

machine of the critical group is considered against the rest

of the generators in the power sysem. Then by comparison of

the energy transaction between this particular generator and

the rest of the system during and after the fault period, a

decision on the stability of the entire power system is

made. In order to clarify the subject, the concept of EAC

is revisited and is investigated in a suitable manner.

For the cme-machine infinite bus model, consider the

power angle representation of Figure 5.6 illustrating the

behavior of the single machine against the infinite bus

during the transition from one state to another. The area

A1 in Figure 5.6a, which is obtained from the mismatch of

power existing between the mechanical input and the faulted

electrical output is compared with a critical energy A2.

The critical energy A is the amount of decelerating energy

2

produced by the power mismatch of the post-fault network.

Note that for tC < tCC the rotor angle position peaks when

A1=A2 and starts to decrease and oscillate afterwards. If

the system is damped, then the rotor angle also damps out

and assumes the post-fault steady—state angle.

AE(t)=-A1(t)+A2(t) is defined to be a function of rotor

angle position which in turn is a function of time as

follows
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a (t)

+ (PM-P281n6)d6 6(t) < 6c

a
A (t) = 51

1

0 5(t) 2 6C

0 0(t) < 6C

A2”) a (t)

"JC (PM-P1Sin6)d6 6(t) 2 6C (5.5)

C

Note that AE(t)=-A1(t) becomes more negative as t and 5(t)

increase. AE(t) captures the accelerating energy on the

machine that is stored in the form of kinetic energy of the

inertia of that machine. The acceleration is due to the

fact that the faulted transmission network is too weak to

hold the ma' ine compared to the mechanical input power that

performs work PM(6(t)-681) in accelerating the generator.

AE(t)=-A1(tc)+A2(t) for t> tC where -A1(tc) is the total

accelerating (negative) energy and A2(t) is the total

decelerating energy at t > tC provided by the post-fault

network that is more than capable of coping with the

accelerating torque PM'

Figure 5.6b depicts the quantity AE(t)=A2-A1 as a

function of time. IUl the fault period AE(t) < 0, and

reaches its minimum value at the clearing time. At tc, the
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network is switched to assume the post-fault network and

hence for tC < t AE(t) increases until it becomes zero (at
CC

B ). Note that tB is also the time at which the rotor

1 1

angle position is maximum (6(tB)=6

t

).
max

The quantity AE(t) has an oscillatory response for

tc < tcc once t > tB reflecting the oscillations in 6(t)

1

for t > tB . Note that in the presence of damping, the

1

oscillatory response of 6(t) and E(t) damps out. In

contrast, for tc > tcc' the quantity AE(t)=-A1(t) decreases

with time and then increases (AE(t)=—A1(tc)+A2(t)) for

t > tc. However, in this case Max(AE(t)) < 0 and occurs

where <S(t)=5u at t=tB2. Thus, the decelerating energy

capability of the post-fault network A2(t is less than

32’

the acceleration energy A1 (tc) . Since

AE(tB2)=-A1(tc)+A2(tB2) < 0 15 a measure of the net

decelerating energy and the kinetic energy remaining in the

machine's inertia and since AE(t) remains negative and never

reaches zero for all t > 0, the machine angle 6(t) never

changes its direction of motion and continues to increase

for t > t . Thus, AE(t)=-A1(tc)+A2(th)+A4(t) for t > t
BZ BZ

where

0 5(t) <5“

A4(t) =

6(t) u

- (PM-P1Sin6)d6 6(t) > 5

_ u

6(tB2)—6
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where A4(t) < 0. Thus, for t > t AE(t) reaches a

c cc'

maximum less than zero at 5(tB)=5u and then decreases to a

more negative value for t > th.

It should be noted that increasing tC for tC< tcc'

where AE(t and thus kinetic energy is zero,
t131' B1)

increases since more accelerating energy A1(tc) is put into

the system and thus it takes a larger angle excursion.

6 =Max 5(tB1) and thus a longer time for

AE(t =A1(tc)+A2(tB)=0' For tC > t t decreases for

B1) cc' BZ

increasing tC since there is a larger excess accelerating

and thus kinetic energy AE(t -A.(tc)+A2(tB2)< 0. Thus,

132)=

the max1mum tB1 and t132 occurs when tB1=th

Thus, there are two indicators of tcc by observing the

t = .for c tCC

maximum values of E(t).

(a) the maximum value of tc for which the maximum

value of AE(t) over t is zero

. . <
(b) the max1mum time tB1 for ‘tC.. tCC or tB2 for

tC z tCC at which AE(t) reaches its maximum value

which satisfies tB1=tBZ and E(tB1)=E(th) for

t =t .

c cc

This equal area. criterion is runv extended to

multi-machine systems by attempting to apply a similar equal

area analysis to the energy associated with accelerating and

decelerating torques between critical generator 1 and the

rest of the generators j7éi in the system. The potential

energy measure is in part contributed by the torques on

machine 1 and all j¢i from the equivalent transmission lines
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connecting generator 1 to the rest of the generators in the

system.

Consider' a ‘particular* generator 1, :UI the critical

group (for example, the critical generator). Then it is

hypothesized that the boundary energy existing between this

generator and the rest of the generators in the power system

determines a boundary of stability of the entire system.

The quantity,

n n

_ 1 _ - s _ s

PEi — MT Z (PiMj PjMiHSij 613.) + z Cij(Cos<Sij Cosfiij)

i=1 j=1
375i jréi

61+Gj-260

- s S DijCoséijd(61+6j-260) (5.6)

61+Gj-26

identifies this boundary energy once with the during-fault

configuration for 0 < t < tC , to obtain A and then using
1!

the post-fault network from t 2 tc, to obtain A as was done

2

in (5.5) for the single-machine infinite bus case. By

observation of the behavior of AE=-A1+A2 and also the time

and magnitude of the peak of -A1+A2 just as in the

single-machine infinite bus case, the boundary of stability

is determined. Before pursing the subject further, the

following remarks and limitations are in order.

Remarks:

(a) The concept of equal area is justified only for

the lossless systems.
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(b) When the power system consists of two generators

or one generator against an infinite bus, the

acceleration energy of the single machine is

totally consumed by the infinite bus, and hence

the quantity -A1+A2 at most reaches zero.

However, this phenomenon may not necessarily hold

for the boundary energy. A part of the energy

produced by the critical generator resides within

the center of inertia of the rest of the system.

Hence, the partial boundary energy at most is an

approximation to the equal area. The errors involved in the

analysis are in part due to the losses of the transmission

network and in part due to the nonconstancy of the flow of

energy between the critical generator and the rest of the

system or measured by 5.6 (a and b above).

As a further justification of the analogy between the

EAC and the LEAC, refer to Chapter 3. Note that in the

analysis of this chapter the infinite bus assumptions are

not considered and the real parameters of the network

existing between the critical generator and the rest of the

system are maintained.

For the Raun case, for both the inclusion and exclusion

of the transfer conductances, several simulation runs for

different clearing times were performed. Figure 5.7 through

Figure 5.12 illustrate some of these results. Figure 5.7

depicts the partial potential energy across the boundary of

generator 6, cleared at tc=.18 seconds. It is clearly seen
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Figure 5.7 Equal area analysis (AZ-A1). Raun case, 6-

infinite bus. Clearing time = .18 seconds.

a, b) Transfer conductance excluded and in—

cluded, reSpectively
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Figure 5.8 Equal area analysis. Raun case, 6-infinite

bus. Clearing time = .1922 seconds.

E(t) = A2(t)-A1(t) vs. time (transfer con-

ductance included)

b) Areas A1 and A2 vs. time (transfer conduc-

tance included)
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Figure 5.9 Equal area analysis. Raun case, 6-infinite

bus. Clearing time = .1925 seconds.

a) E(t) = A2(t)-A1(t) vs. time (transfer con-

ductance excluded)

b) Areas A1(t) and A2(t) (transfer conductance

excluded)
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Equal area analysis. Raun case, 5-infinite

bus.

8)

b)

Clearing time = .1922 seconds.

E(t) = A2(t)-A1(t) vs. time (transfer con-

ductance included)

Areas A1(t) and A2(t) vs. time (transfer

conductance included)
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Figure 5.11

(b)

Equal area analysis. Raun case, 5-infinite

bus.

a)

b)

Clearing time = .1925 seconds.

E(t) = A2(t)-A1(t) vs. time (transfer con-

ductance included)

Areas A1(t) and A2(t) vs. time (transfer

conductance included)
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Figure 5.12

 

Equal area analysis. Raun case, S-infinite

bus. Clearing time = .24 seconds.

a) E(t) = A2(t)-A1(t) VS. time

b) Areas A1(t) and A2(t) vs. time (transfer

conductance excluded)

 



143

that the AE(t) for this case is oscillatory confirming the

stability of the system. However, in contrast to the case

of equal area criterion of one-machine infinite bus, the

peak of AE(t) is not zero. As was discussed earlier, this

phenomenon was expected. Note that the oscillatory behavior

holds for both cases where the transfer conductance is and

is not included. This observation certainly shows that for

the qualitative analysis the concept of the equal area

criterion can be extended for a multi-machine case. Figure

5.8, where the fault is cleared at tc=.1922, illustrates the

oscillatory behavior of generator 6 while in Figure 5.9,

tc=.1925, a sharp negative decrease in AE(t) is observed

after th indicating loss of stability.

Figures 5.10 through 5.12 depict the generator 5

potential energy boundary for tc=.1922, .1925, and .24

seconds, respectively. The oscillatory behavior is only

observed for tc=.1922 seconds while the negative sharp

decrease after t is seen for both tc=.1925 and tc=.24
B2

indicating loss of stability. In comparison of the behavior

of generator 5 with that of generator 6, it is seen that the

peak of AE(t) for generator 5 takes place at a later time

than that of generator 6. Although the potential energy

boundary of both generators predicts tcc e (.1922, .1925),

but the fact that the peak of AE(t) for generator 5 occurs

at a later time confirms that the deciding generator is the

critical generator.
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Although the LEAC is an: approximation ‘to EAC, the

results obtained by this method match perfectly with that of

the LKEC of section 5.2. This technique is far from

practical implementation; however, it sheds light on the

importance of the consideration of an individual machine in

determination of stability. Both the LKEC and LEAC as well

as the algorithm of [16] are far more accurate than previous

methods [13] for the cases studied. It should be pointed

out that more exhaustive testing of the three algorithms is

required to assure that they are robust in the sense that

there are no special cases where they might fail to predict

retention or loss of stability. The second major area of

further work is to develop computationally efficient

algorithms based on these conditions that do not require

step-by-step integration of the system differential

equations. Two approaches could be pursued :Ul eliminating

the need to integrate the differential equations; the first

is to develOp a Taylor series approximation for the system

trajectory based on the pre-fault state 5 faulted network,
51

post-fault network, and clearing time; the second is to

develop a measure that will somehow predict the maximum

angular swing for each generator based on the same

information that is required for the Taylor series

approximation. If either of these techniques is successful

and if there are no special cases where the conditions

developed in this chapter and in [16] fail, then the promise
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of a direct method for transient stability assessment may be

realized.

 

 



CHAPTER 6

REVIEW, CONCLUSION, AND TOPICS FOR

FUTURE INQUIRY

This final chapter is devoted to summarizing the

results of the previous chapters and indicating the avenues

for future investigations.

6.1 Chapter Review

The first part of Chapter 1 was devoted to the

introduction of the concept of transient stability and its

importance in preserving the quality of electric service.

It was pointed out that in response to occurrence of a large

disturbance the operating state of the power system will

transit to a new operating point. In this transition the

dynamic behavior and thus the stability of the system is

determined via a step-by-step integration of the synchronous

machine's rotor angles.

It was argued that in both planning and operation of a

power system it is necessary to perform a set of transient

stability simulations for several postulated contingencies.
 

However, the increasing sizer of the power system

interconnection, the need for consideration of a more

detailed model of the power system and inclusion of such
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components as power system stabilizer in the power system

model limits the ‘use (n? the ‘present transient stability

analysis. Hence, the investigation of direct methods of
 

Lyapunov for transient stability analysis of the power

system was initiated as an alternative. A historical

perspective for this investigation is provided by the

consideratnmu of the energy function develOpment from 1947

to date. In the later part of the chapter it was concluded

that the results obtained (regions of stability) by direct

methods are conservative (small compared to the real value).

It was then hypothesized that the true region of stability

for the system is determined by a region of stability for a

particular individual machine and this consideration removes

part of the conservativeness.

In Chapter 2, the behavior of a power system during a

transient is discussed. Based on this understanding, a

two-dimensional (equal area) and aa three-dimensional (3-D

potential energy surface) example were presented. Finally,

a discussion of an algorithm based on the potential energy

boundary surface [4] and a u.e.p. algorithm based on energy

accounting [13,14] were presented. A justification for the

use of the classical transient stability model and an

associated energy function concluded. the chapter. This

chapter is essential in presenting the ideas of the

preceding chapters.

The first part of Chapter 3 was devoted to arguing that

the fault splits the system into two coherent groups. The
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system kinetb: and potential energy functions were divided

into within-group and between-coherent group components.

Then the assumptions of coherency were applied to the

transient energy function. of Chapter' 2 (and :not to ‘the

dynamics of the system), to develop an aggregated transient

energy function (ATEF). It ‘was shown that the energy

function no longer had the within-group kinetic or potential

energy components. The kinetic and potential energy

components of ATEF were shown to measure the kinetic energy

produced by the relative movement of the center of inertia

of the two groups, and the potential energy of the

equivalent transmission network connecting the two groups.

Furthermore, the analysis indicated that the ATEF indeed is

analogous to the equal area criterion. However, it was

concluded that the region of stability identified by ATEF

yields Optimistic results because aggregating the generator

groups in the energy function has the effect of stiffening

the network connecting the groups and increasing the

potential energy between groups. The transient energy

function of the system, analytically Split into within- and

between-group energies, was then investigated. Based on the

analysis of within-group and between-group energies at fault

clearing time (tc) and at the time (tB) where the trajectory

reaches the boundary of’ a region of stability, it was

observed that kinetic energy between groups is zero at some

t > tC if the system is stable but is not zero at the fault
B

clearing time. This observation is used in a new algorithm
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that assumes the minimum between-group kinetic energy after

fault clearing at tC that exceeds critical clearing time

(t ) is the excess energy at fault clearing that causes
cc

instability. This excess kinetic energy is subtracted from

the clearing energy to obtain a new threshold for clearing

energy at which the fault is cleared. The results of this

algorithm are quite encouraging and far more accurate on

this example than other methods that utilize total system

energy. In the last part of this chapter it was again

concluded that the consideration of the individual machine

energy will estimate a still larger region of stability.

In Chapter 4, two hypotheses are discussed; i.e., (a) a

single generator within an accelerated group dictates the

stability of the accelerated group and thus the stability of

the entire system and (b) that kinetic energy and potential

energy of this critical generator indicate a kinetic and

potential energy boundary, respectively. If these

boundaries are exceeded, then the region of stability for

the individual machine is crossed and the stability of the

accelerated group and hence the entire system are lost. It

is further discussed that the partial kinetic energy and

partial potential energy existing between the critical

generator and the rest of the system contain the individual

machine's energies and thus are an indication of the

individual machine's energy. The second section of this

chapter investigates the individual machine energy functions

from the perspective of the invariance theory. The need for
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a physical basis for using the individual machine energies

as a criterion of stability is pointed out since it is shown

that the individual generator energy function is not a

Lyapunov function. Hence the latter part of the chapter is

devoted to the argument that, if the maximum magnetic energy

coupling, available to decelerate the machine, is exceeded,

then this particular generator and the accelerated group

both lose stability. The algorithm in [16] is argued to

measure this maximum magnetic energy for deceleration by

determining the maximum potential energy over time for a

fault on trajectory. This maximum potential energy is then

used as a threshold on the individual generator's kinetic

and potential energy at clearing to determine a boundary of

stability.

A method for determining the critical generator that

dictates the stability of the accelerated group, which is

the single generator or group of generators that lose

synchronism together at the smallest clearing time, is then

indicated. The critical generator in this accelerated group

is then argued to be the last generator in the accelerated

group to cross its potential energy boundary that partially

decouples the strong connection between this generator and

the rest of the system.

In Chapter 5, two algorithms based reSpectively on a

"Local Kinetic Energy Condition" and "Local Equal Area

Condition" existing between the critical generator and the

rest of the system is introduced and justified based on
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physical arguments. The Local Kinetic Energy Condition

states that the kinetic energy of the critical generator

approaches zero at some time after fault clearing if the

system is stable. This condition is based on the physical

reasoning that, if the critical generator is observed to

reverse the direction of motion caused by the fault, then

the system is stable. This reversal of the direction of

motion can hmt not necessarily occur if the kinetic energy

approaches zero. Thus, a zero of kinetic energy is assumed

to indicate a reversal of the direction of motion although

such a change in direction of motion need not occur in all

cases. If the multimachine system is analogous to the

single-machine infinite bus, then a zero in kinetic energy

followed. by an increase lhl kinetic energies will always

indicate a reversal of the direction of motion of the

critical generator and thus retention of stability.

The Local Equal Area Condition is based on the fact

that the accelerating potential energy becomes increasingly

negative during the fault period and decreases toward zero

for the deceleration in the post-fault period. The Equal

Area Condition requires the: potential. energy to reach a

maximum value of zero at some time after fault clearing and

then oscillate to some steady state value if and only if the

system is stable. This condition indicates all the fault

acceleration energy caused. by the difference in torques

between generators during the fault on period is extracted

by differences in decelerating torque between generators in
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the post-fault period. A loss of stability is indicated by

a potential energy time record that has a maximum that is

less than zero after which the energy decreases rapidly.

This Local Equal Area Condition is observed to be the

potential energy analog of the Local Kinetic Energy

Condition. The algorithms are then implemented and tested

on tflua Reduced Iowa System consisting of 17 generators and

163 buses. Simulation results are presented and indicate

the extreme accuracy of the algorithms and their significant

promise for the future.

6.2 Topics for Future Research

Based on the development of the first five chapters, it

is concluded that, in using the direct methods of transient

stability, the energy behavior of a particular individual

machine (critical generator) is the determining factor in

accurately estimating the region of stability (critical

clearing time). It is believed that the contents of the

preceding chapters serve as a basis for understanding why

and how an accelerated group of generators lose stability.

The results of Chapters 3, 4 and 5 are extremely promising

and could be further investigated as follows:

(1) development of a method for determining the accelerated

group and the critical generator without simulating the

system for the particular fault and analyzing the

individual generator energy function time records

 

 

 



(2)

(3)

(4)

(5)
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development of computationally efficient algorithms for

implementing the algorithms based on the Local Equal

Area Condition, Local Potential Energy Condition, or

the Local Kinetic Energy Condition without simulation

of the system and thus integration of the differential

equations. Three approximations

- Taylor series

- cosine function

- faulted rms coherency measure

exist that could be used to obtain the information

about the system state trajectory required to implement

these algorithms without simulation.

extensive verification of the algorithms developed on

several different example systems and extensive fault

cases to determine if there are special cases for which

these algorithms fail

extension of the algorithms to energy functions which

do not assume constant impedance load models and

networks aggregated to internal generator tmses.

Constant current, constant power, and equivalent

dynamic load models could be considered. The network

model utilized may be the actual network rather than

the aggregated network back to generator internal buses

extension of the algorithms developed in this thesis to

nonclassical transient stability models.
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This work will take continued effort over several years

to obtain practical and widely accepted algorithms for

direct stability assessment, but it is believed that the

foundation for' this development finally exists after 35

years of effort.
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