

MSU
LIBRARIES

._c—_

RETURNING MATERIALS:

PIace in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped beIow.

MIXED SYSTOLIC ARRAYS : A RECONFIGURABLE

MULTIPROCESSOR ARCHITECTURE

BY

Tung-Liang Chang

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

and

Systems Science

1982

ABSTRACT

MIXED SYSTOLIC ARRAYS:

A RECONFIGURABLE MULTIPROCESSOR ARCHITECTURE

BY

Tung-Liang Chang

Systolic arrays are special-purpose, high-performance

data-flaw multiprocessor structures which are characterized

by having a: simple, regular and short communication geome-

try, which is considered as one of the most desired attri-

butes in VLSI implementation. The principal drawback to

these special-purpose arrays is that they are designed for

specific algorithms which possess very simple and regular

data flow patterns. These restrictions limit the types of

algorithms or applications that can effectively be support-

ed by such architectures.

The primary objective of this research is to develop,

characterize, and evaluate a basic computing model for a

class of architectures, which broadens the scope of algo-

rithms executable on systolic arrays. while retaining much

of the simplicity and regularity of the original systolic

array architecture. Computing elements and control buffers

Tung-Liang Chang

are mixed in regular geometric patterns to form reconfigu-

rable systolic arrays known as mixed systolic arrays

(MSA's). For a particular implementation, the mixing ratio

is chosen to match an algorithm's local vs. global data re-

quirements. Classes of algorithms with similar data require—

ments may be executed on the same array by merely preset-

ting the control buffers at load time. By decomposing an

MSA into two basic regions, the dependence (”1 computing

power vs. I/O bandwidth as a function of array edge size

can be relaxed.

Data-driven computations result in self-directed compu-

tational rings within the MSA, and composite cells of data-

flow instructions are executed in a pipelined fashion.

Vertical grouping of composite cells along critical-path

data-flow instructions and horizontal grouping across con-

current data-flow instructions are employed for mapping

data-flow directed graphs on computational rings for effec-

tive execution. By viewing an MSA as a computing network of

interlinked ring pipelines, data-flow programs can be

uniformly distributed for efficient resource utilization.

Data flow on the mixed systolic array is demonstrated

by solving a second-order recursive equation with non-

constant coefficients and by the implementation of a modi-

fied hourglass computing model. MSA space-time complexity

is compared. with that of the systolic array along ‘with

other key performance measures.

ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation

to Dr. P.D. Fisher, the author's thesis advisor, for his

assistance during the course of this research and for super-

vising this thesis and showing considerable patience.

Thanks are also due to the other members of the graduate

committee, Dr. J.B. Kreer, Dr. S.R. Crouch, Dr. D.K.

Reinhard, Dr. R.G. Reynolds and. Dr. M.Au Shanblatt, for

their suggestions and encouragement throughout this re-

search effort. I wish to thank Ronald Kraus for preparing

all of the illustrations contained in this thesis.

Very special thanks are due V.E. Leichty for his

encouragement during my stay with him in the past four

years.

Work reported here was supported in part by NSF under

Grant No. MCS 79-09216.

ii

Chapter

I.

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTION 0 O O O O C O C O O O 0

BACKGROUND 0 O O O O O O O O C O O O

2.1

N
N
N
N

o
o

o
0

£
1
1
t
h

Limitations of Single-Processor

Machines

Array Architectures

Systolic Arrays

Data-Driven Machines

Local Computation and

Communication

PROGRAMMABLE SYSTOLIC ARRAYS

3.1

3. 2

3. 3

Functional and Structural

Description

Sample Algorithm Implementation

Discussion

MIXED SYSTOLIC ARRAYS

4.1

4.2

4.3

Structure of Mixed Systolic

Arrays

Uniform Mixing

Partial Uniform Mixing

DATA-FLOW COMPUTATIONS o o o o o o o

5.1

m
m

0

l
b
W
M

U
1

0

Store-and-Forward Control

Buffers

Computational Rings

Loading and Scheduling of

Composite Cells

Data-Driven Computations . . .

iii

Page

11

14

17

22

26

26

33

37

43

44

49

59

63

64

66

71

76

Chapter Page

VI. THE HOURGLASS MACHINE 82

6.1 Modified Hourglass Computing

Model 0 O O O O O O O O O O O O O O O 83

6.2 Hourglass Tree Machine 85

6.3 Two-Phase Data Transfer

MeChanism O O O O O O O O O O O O O O 89

6.4 Hourglass Machine Performance

Measures 92

6.5 Implementation Considerations 95

VII 0 CONCLUSIONS 0 O O O O O O O O O O O O O O 97

7 .1 sumary O O O O O O O O O O O O O O O 97

7.2 Future Research 102

REFERENCES 0 O O O O O O O O O O O O O O O 10 4

iv

Table

2.1

3.1

LIST OF TABLES

TWO STANDARD VON NEUMANN MACHINE

DYNAMIC INSTRUCTION MIXES FOR

SCIENTIFIC AND TECHNICAL

APPLICATIONS [11]

DATA FLOW TIMING EXAMPLE

Page

10

39

Figure

1.1

2.5

2.6

3.3a

3.3b

3.3c

LIST OF FIGURES

A modified systolic array made up of

both control buffers and computing

elements 0 O O I O O I O O O O O O O O

The structure of the von Neumann

maChine O O O O O O O O O O O O O O O

The array organization of the Illiac

Iv [12] O O O O O O O O O O O O O O 0

Two types of inner-product processors

[9]

The hex-connected systolic array for

matrix multiplication problem [8] . .

A directed graph representation

example

The block diagram of a basic data-

driven machine [24]

A data-flow instruction cell example .

A multiprocessor system for the fast

execution of numerical programs [6] .

A ring-structured processing module .

A PM with N pairs of local and one

pair of global I/O ports

A computation series, yl->y2->y3->y4 .

Sequence of intracomputations executed

on a PM 0 I O O O O O O O O O O O O 0

Sequence of intercomputations executed

step-by-step on a three-PM array . . .

vi

Page

12

15

16

18

20

21

24

28

30

32

32

32

Figure

3.4

3.5

3.6

4.1

5.1

5.3a

5.3b

5.3c

5.4a

A rotating wheel computing structure

example 0 O O O O O O O I O O O O O O O

The triangular PSA for solving a second-

order recursive problem

Computing steps for a second-order

recursive equation on a triangular PSA .

A mixed systolic array constructed

from a diamond-like basis

A partially regular hexagonal mixed

systolic array composed of a central

region and an outer shell. The latter

is constructed from a triangular basis .

Hexagonal array bases with (a) Ob = l/7,

(b) 9b = 2/7. and (C) 9b = 3/7

A regular hexagonal mixed systolic array

constructed from a pb = 1/7 basis . . .

A regular hexagonal mixed systolic array

constructed from a Db = 2/7 basis . . .

A regular hexagonal mixed systolic array

constructed from a Db = 3/7 basis . . .

Four classes of mixed systolic arrays:

(a) CICO, (b) CIDO, (C) DICO, and

(d) DIDO. The arrows indicate the

direction of data flow

The structure of the control buffer . .

A typical two-stage computational

ring within a hexagonal MSA

A data-flow directed graph example . . .

A two-stage computational ring

The Gantt chart illustrating the

execution of (a) on (b)

A data-flow directed graph example . . .

vii

Page

34

36

38

46

47

52

53

54

55

61

65

67

70

70

70

73

Figure

5.4b

Page

The simplified time/space grid

representation for (a) 73

An example of vertical grouping of

composite cells on a grid represen-

tation graph 74

An example of horizontal grouping 77

The modified hourglass computing

model 84

The structure of the data-flow hour-

glass computing machine 86

A five-level linking structure in the

buffer tree 87

The data address syntax 91

viii

CHAPTER I

INTRODUCTION

The demand for improved or advanced computer systems

continues unabated with special emphasis on increased over-

all throughput. One approach being considered exploits

very-large-scale-integrated (VLSI) circuit technology to

scale down IC devices to submicron features, thereby reduc-

ing logic gate speed-power products to 0.1 pJ and below

[1]. Based on this figure, single chips may contain 107

to 108 transistors, which is equivalent to about 103

unconnected 32-bit microprocessors [2,3]. However, with the

interprocessor communication path complexity growing at a

much more rapid rate than that of logic circuitry, inter-

connections may account for most of the chip area. What's

more, these interconnection networks may account for the

critical time delays [2]. Therefore, the full reward for

using VLSI circuits lies with the ability of the computer

architect to design practical machines with simple and

regular communication paths. Moreover, they must be design-

ed 1x) exploit fully concurrencies that exist in the user's

applications.

2

Array-based architectures appear to be very attractive

in this respect. It is argued that such architectures have

several important advantages:

*
Arrays require shorter communication paths--a shorter

communication wire not only improves system operations,

but also consumes less chip area [2].

Arrays have regular communication wiring patterns—~a

regular layout leads to efficient, high density designs

and simplified debugging procedures [4].

Arrays execute structured algorithms efficiently--

through parameterization procedures, algorithms with

particular computational demands, control, and I/O struc-

tures can be effectively executed on these architectures

[5].

Arrays are built from a small set of predesigned modules

--modularity reduces design time because design auto-

mation techniques become useful. Modularity also reduces

cost since general-purpose modules may be used in multi-

ple applications once they are available to the system

designer [4].

Arrays support very high concurrencies in local compu-

tations and communications--locality of computation and

communication leads to ease of algorithm decomposition

and to an effectiveness of distributed computations [6].

Arrays are easy to expand--expandability allows the

system designer to enhance the computing power or appli-

cability of the architectures with a minimum effort [7].

3

The purpose of this thesis is to investigate alterna-

tive strategies which fully exploit emerging IC technology

to yield useful, high-performance, cost-effective array-

based computer architectures.

One important class of VLSI architectures which has

received a great deal of attention is the systolic array

[8,9]. These arrays are characterized by having a simple,

regular and short communication geometry which is consider-

ed as one of the most desired attributes in VLSI implemen—

tation. The principal drawback to these special-purpose

arrays is that they are designed for specific algorithms

which possess very simple and regular data flow patterns.

These restrictions limit the types of algorithms or appli-

cations that can efficiently be supported by such architec-

tures. Thus the investigation of a new class of array archi-

tectures, which can broaden the scope of algorithms execu-

table on them while retaining much of the simplicity and

regularity of the systolic array architectures, can be of

practical use.

The primary objective is to develop, characterize, and

evaluate a basic computing structure for a class of array

architectures--a modified systolic array--which broadens

the scope of algorithms executable on systolic arrays while

retaining much of the simplicity and regularity of the

original systolic array structure. One aspect of the

approach taken here is to introduce control buffers (CB's)

into the array [5]. In contrast with the systolic array

4

structure in which data are regularly moved on a limited

pattern of communication paths, these control buffers

provide a means to increase the flexibility of data move-

ments. More specifically, these CB's are programmable,

thereby increasing the array's potential usefulness. As

shown in Fig. 1.1, the modified array is partitioned into

interconnected control buffers and computing elements. The

control buffers (CB's) control the sequence of computations

in the array and the computing elements (CE's) implement

the primitive mathematical operations. Within the modified

array, there are numerous mini-systolic-like subarrays,

each of which executes data-flow subgraphs scheduled to it.

The control buffers, when initiated by a control signal,

tag data in such a manner as to control their direction of

movement and the computations performed on the computing

elements. As proposed, the array-based architectures

constructed from the modified systolic array will support

asynchronous as well as synchronous control structures,

local as well as global communication structures, distribut-

ed functional computation structures, and balanced I/O

structures.

In order to help define and establish the significance

of this particular class of array architectures, some back-

ground information is presented in Chapter II. As the

groundwork for the development of this class of array archi-

tectures, the design of a triangular programmable systolic

array for solving a second-order recursive problem is

.1

p \

l .

gagggg Computing

Element

Figure 1.1. A modified systolic array made up of both

control buffers and computing elements.

6

presented in Chapter III. This is followed in Chapter IV by

the discussion of mixing in the systolic array and the

functional and structural characteristics of the mixed

array. Chapter V describes block-driven computations on the

mixed systolic array, including the discussion of basic

ring computing structures and their subsequent chain oper-

ations for the support of effective block-driven compu—

tations. Next, in Chapter VI, the design of an hourglass

computing machine is presented, along with an analysis

based on some performance measures such as throughput,

cost—effectiveness, hardware complexity, and VLSI implemen-

tation, among other things. And, finally, conclusions and

thoughts which might lead to future research possibilities

are included in the last chapter, Chapter VII.

CHAPTER II

BACKGROUND

2.1 Limitations of Single-Processor Machines

The single-processor sequential machine performs one

elemental activity at a time, much like a single individual

would solve EH1 arithmetic problem by hand. But this compu-

tational model has serious limitations. To understand these

limitations let us consider the structure of such a com-

puter-~the von Neumann machine (see Fig. 2.1). Here program

instructions and data both reside in the random-access main

memory. The program's task of producing output given some

input is accomplished entirely by pumping single words

across the data channel which connects the processor with

its memory. A typical instruction execution cycle proceeds

as follows: an instruction is fetched by the controller

from main memory. Next, the controller decodes the instruc-

tion. Then necessary operands, or addresses of operands,

are fetched from main memory. Once all of these operands

are available, the instruction is executed. The instruction

cycle ends with results being left. in CPU registers or

deposited in main memory. The communication channel connect-

ing the CPU and main memory is generally "saturated”,

ll

r

Control

Unit f

f W

Main

Memory

ALU ...__

Figure 2.l. The structure of the von Neumann Machine.

9

leaving the arithmetic logic unit (ALU) idle a significant

percentage of the time. Moreover, a large part of the infor-

mation moving on this channel at any instant is not data at

all, rather it is addresses for program statements and

data. Backus refers to this channel as the ”von Neumann

bottleneck” since it limits the nachine's throughput [10].

The only 'way to retain this sequential. architecture: and

increase throughput is by reducing main memory read/write

access times.

But the ramifications of this bottleneck do not become

completely clear until it is recognized that in a typical

scientific application, where one would expect a large

percentage of the machine operations to be arithmetic, less

than 20% of all machine instructions executed are actually

fixed-point or floating—point arithmetic operations [11].

Data access operations and control unit executed branch

operations account for approximately one half and one third

of the total instructions executed, respectively (see Table

2.1).

Perhaps the greatest shortcoming of the single-

processor sequential machine is that the structure of the

problem being executed rarely corresponds to the structure

of the machine. Specifically, simple operations such as

vector addition or nmtrix nmltiplication have high degrees

of concurrency built into the very structure of the mathe-

matical operation, yet the single-processor sequential

10

TABLE 2.1

TWO STANDARD VON NEUMANN MACHINE DYNAMIC INSTRUCTION

MIXES FOR SCIENTIFIC AND TECHNICAL APPLICATIONS [ll]

Gibson mix, Flynn mix,

Instruction class % %

Load/store 31.2

45.1

Index 18

Branch 16.6 27.5

Compare 3.8 10.8

Fixed point 6.9 7.6

Floating point 12.2 3.2

Shift/logical 6.0 4.5

Other 5.3 1.3

100.0 100.0

11

machine does not take advantage of them to enhance through-

put.

2.2 Array Architectures

Array architectures, such as Illiac IV [12] and vari-

ous distributed arrays [13-16], perform a single operation

on a stream of operands available to each of the arrays'

elements. As designed, these SIMD (Single Instruction

Stream Multiple Data Stream) arrays are very effective for

solving algorithms which either have very large data struc-

tures, as in the vector and matrix problems, or a high

degree of locality, as in the image processing applications

[15-18]. Usually these arrays have fixed networks. At each

node in the arrays is a von Neumann-style machine known as

a processing element. Each processing element is associated

with its own memory, and paths are provided for the input

of data to the array for processing and the output of re-

sults after processing.

Depending on their structure, each N(i,j) in the array

can communicate with its neighboring nodes N(i : n, j i

m), where n and m are positive integers. As with the Illiac

IV machine, each of the 64 nodes, N(i,j), i,j = 0,1,...,7

is connected to its four nearest nodes N((i : 1) mod 8),

(j i 1) mod 8) (see Fig. 2.2). Data transfers within this

array are taken on a uniform shifting basis under a central-

ized control. Therefore, several continued. operations of

shifting are required for transferring a data item from one

J

12

'_.. L...

’.... L...

I‘-

-i-

-‘-- -I- g...

(7.01 (All—.1403}...N(7.7)

Figure 2.2. The array organization of the Illiac IV [l2].

l3

node to a disjointed node.

One important aspect of these array architectures is

that the number of interconnections for each processing

element is constant and these connecting wires are very

regular and simple. This makes them very attractive in VLSI

implementation. The drawbacks of these array architectures

occur chiefly from the use of a centralized control and

from their inherent fixed structures. These drawbacks

include:

1. limited applicability--since every processing

element must work in the same phase, a lot of

effort must be taken in the design of concurrent

algorithms before they can be efficiently executed

on these machines [19,20].

2. system clock required--the scaling down of IC

devices will result in difficulty of moving infor-

mation from point. to point synchronously’ with a

system-wide clocking discipline. This will become

even worse as the devices are scaled down to sub-

micron features or as chips get larger [21].

3. I/O constraints--due to the constraint on the

number of maximum I/O pinouts in VLSI chips,

getting data into or off the parallel arrays can be

very costly to the arrays' overall performance

[22].

14

2.3 Systolic Arrays

A systolic array rhythmically computes and passes data

through a network of tightly-coupled processors [8-9].

Since data are regularly pumped into and out of each pro-

cessor, this structure has an advantage in ease of implemen-

tation and cost-effectiveness over the traditional parallel

processors in which data flows are managed with the help of

costly interconnection networks.

The basic component of the systolic array processor is

the inner-product step processor (see Fig. 2.3) which

consists of three registers, Ra' Rb’ and Rc' each

register having two ports, one for input and the other for

output. During each unit-time interval, the processor loads

data from its input lines into registers Ra' R and
bl

respectively, computes RC <-- Ra x Rb + RR
c' c'

and unloads Ra' Rb' and the new value of RC as out-

put. Using this inner-product processor as the building

block, a number of systolic arrays for band matrices multi-

plication, LU-decomposition and solving triangular linear

systems are designed [8-9].

As an example, a hex-connected systolic array for the

matrix multiplication of two n x n band matrices, C = A x B

with A = (a), B = (bij)’ and C = (Cij)' 15 shown in

ij

Fig. 2.4. In this example, the elements in the bands of A

and B and the initialized values of C are pumped through

the systolic network in three directions in a synchronous

fashion. Entries in C are accumulated as it is shifted

15

c a

a . l
c -n———m .-———.c

b ____... ----b

b a

V v
c a

c‘-» axb + c

Figure 2.3. Two types of inner-product processors [9].

l6

The hex-connected systolic array for matrix

multiplication problem [9].

Figure 2.4.

l7

upward from the bottom of the array, where the Cij enter

with zero value. Each cij is able to accumulate all of

its terms before it leaves through the upper boundaries.

As described, the systolic array architectures provide

the capability for realizing a number of important matrix

operations. In addition to achieving a high computational

rate by means of pipelining and concurrent computation,

these arrays are characterized by having a simple, regular

and short communication geometry which is considered as one

of the most desired attributes in VlSI implementation. The

principal drawback to these special-purpose arrays is that

they lack the flexibility in implementation since they are

designed for specific applications, a redesign and recons-

truction for new applications are required. Another draw-

back is that algorithms to be efficiently executed on these

arrays must possess very simple and regular data flow

patterns. Besides these drawbacks, due to the I/O con-

straint of pinouts on a chip, systolic arrays are hardly to

be applied for practical implementation.

2.4. Data-Driven Machines

A data-driven machine executes data-flow programs

modeled by Karp—Miller computation graphs [23]. These data-

flow programs are represented as two-dimensional directed

graphs, where nodes represent operations and links repre-

sent the data movements from operation to operation. Fig.

2.5 shows a simple Fortran-like statement represented as a

18

f(a,b) 3 (gigig

Figure 2.5. A directed graph representation

example.

l9

directed graph. The power of the directed graph is that

data and control dependencies are explicitly expressed, as

are the exact serial-parallel relationship of the set of

operations to be executed. Unlike the conventional architec-

tures, where execution of a program is managed by a program

counter in a sequential manner, execution of a data-flow

program is data-driven; an instruction proceeds on its own

when its operands are available. Therefore, the data-driven

approach allows a large number of instructions to be execut-

ed simultaneously.

Numerous data-driven machines have been reported in

the past few years [24-28]. These include a series of

machines with upgrading capability described by Dennis and

Misunas [24-25]. Fig. 2.6 shows a block diagram of a basic

data-driven machine from Dennis's group. In this machine,

the instructions of a data-flow program are stored in the

instruction memory cell. A data-flow instruction cell con-

sists of a number of operand fields in which other instruc—

tion cells should receive the result from this instruction

cell. An example of such an instruction cell is shown in

Fig. 2.7. When an instruction cell fires, the data in the

cell which will be needed in later phases of execution are

transmitted in a packet to an arbitration network which

routes the packet to one of a number of processors. When a

processor completes its execution, a result packet is

formed and transmitted to a distribution network. The

distribution network transmits the result value computed by

20

operation

. packets

Operation

Units 7'

Decision
I_I

I“)

control Units

packet:

data Control decision

packets Network packets

I O O

i ll

’ Instruction ___

Gen 0 """

O O _.l

__ Distribution . Instruction . Arbitration

Network Memory Network
. . ‘.i

_ Instruction _ I

Cell n-l ’

Figure 2.6. The block diagram of a basic data-driven machine [24].

21

0pcode Flag

Operand (l)

Operand (2)

Destination Address (l)

 Destination Address (2)
Figure 2.7. A data-flow instruction

cell example.

22

the processor to each destination. Advantages of the data-

driven architecture include flexibility in the machine

design, flexibility in program control, exploitation of

parallelism at all progranl levels. Disadvantages of the

data-driven architecture include difficulties in implement-

ing familiar data structures such as arrays and high over-

head for communication between functional units of the

machine [29-30].

2.5. Local Computation and Communication

The concept of defining local and. global variables

developed in structured. programming languages suggests a

similar approach for researchers who are developing VLSI

computing systems. As predicted by Mead, future VLSI comput-

ing systems will have hundreds of processing elements

clustered together (”1 a single silicon chip [2]. The issue

of how ix: coordinate these processing elements in order to

improve the overall processing power has become more

critical than before. An interprocessor communication net-

work seems to be practical only if the amount of infor-

mation flow among these processing elements is smaller than

the number of tasks to be performed on them. To avoid a

severe jam of information flow resulting from the use of a

global communication network, one possible solution is to

group a number of processing elements, which interact most

frequently, into a block; thereby, data and control

messages can move locally on the much shorter communication

23‘

paths [6,29].

Computer architectures based on the above approach

have been reported [6,29]. One such machine proposed by

Kuck et a1. [6], is shown in Fig. 2.8. In this machine,

local control structures and functional tasks invoked by

these structures are fully distributed over blocks of pro-

cessor clusters under a global controller. Compound func-

tions or local computations are performed in concurrency on

each of these processor clusters following the execution of

their local control in a dependency-driven fashion. A two-

level communication network is provided; the local inter-

connection network is used for both intracluster and

adjacent clusters communications, while a global intercon-

nection network provides facilities for both synchronous

and asynchronous transfers of data or codes from the global

memory to the clusters or vice versa.

As described in Sections 2.3 and 2.4, the architec-

tures of the data-driven machines and of the systolic

arrays represent innovations of the computer advances built

to meet specific needs. The data-driven architecture

supports asynchronous execution on both of the control and

the function structures, while execution of these two struc-

tures on the systolic array is most likely to be synchro-

nous rather than asynchronous. By combining these two

machines' characteristics, it is possible to design a

prototype machine which can be more useful and cost-

effective than either of the other two. As proposed, this

24

Global Controller

l
o
c
a
l

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

N
e
t
w
o
r
k

II

Local Control

I I

r---- I I I I

.
I

I

Local Control

A

T

V

Local Control

I I

L--------J

 I

I I

I I

I I

I I

I I

I

..‘L L. : ,....‘L.. _.‘L_. I .1. J...

P1 oo-Ec I p1 one PC : P1 new PC

—I . I I . I II- —I — I

TTII II'IIT I "In T TIIT : TIIII IT?

I I

II II I I l j I II

I

. . f
/ I I I II II I I I

\ l I l I I I I

I ' 'I I

I I I I I I I A I

I I

I

.quz. JDUL, I 111'. .IILIL . _I_IuL JLIL‘L
. I I

I I

Global Interconnection Network

I

Global Memory

 L...m

Figure 2.8. A multiprocessor system for the fast executions

of numerical programs [6].

25

new class of machines will support asynchronous execution

on the global control structures in a data-driven fashion

and execute the functions invoked by local control struc-

tures synchronously’ on E1 local homogeneous modified

systolic array; As described above, information communi-

cation in these array machines is also organized into a

global-level and local-level basis. Inside the arrays,

directed paths or hierarchical paths provide for fast local

data transfers. At the global level, a distribution network

is used to transfer global data. and. microcoded control

instructions.

fo

Th

5V

CHAPTER III

PROGRAMMABLE SYSTOLIC ARRAYS

In this chapter, we provide the requisite groundwork

for the development of a new class of array architectures.

The array structure to be considered here is a modified

systolic array or progranunable systolic array [5]. First,

we outline the basic programmable systolic array structure

and its properties in Section 3.1. Following that, we illus-

trate the array's ability to implement a second-order re-

cursive equation with nonconstant coefficients. We conclude

in Section 3.3 with a discussion of the space-time complexi-

ty of this array structure and compare its features and

general usefulness with those of the systolic array.

3.1. Functional and Structural Description

In general, a programmable systolic array (PSA) has a

structured configuration with a simple and interconnectable

module as its building block. A functional and structural

description of this PSA follows:

* Processing Module (PM)--The processing module is

the basic building block of the PSA. It is a localized

computational center and a data router. For our purposes

26

27

here, each PM is constructed by connecting two pairs of

interlinked computing elements (CE's) and control buffers

(CB's) in a ring configuraiton (Fig. 3.1). But in general a

PM may have more than two pairs. Also included in the

processing module is a global I/O port which provides

communication paths for the module.

* Computing Element (CE)--The computing element is a

coprocessor on which elementary FLP operations are perform-

ed. It can be simply a numeric coprocessor such as the

Intel 8087 [31] or a specially designed processor such as

an inner—product step processor used in systolic arrays

[8,9]. The choice is based on the computational demands of

the class of algorithms to be implemented on the machine.

* Control Buffer (CB)--The control buffer is basical-

ly a data controller which directs the flow of incoming and

outgoing data to and from the processing module according

to their specific header and address destination tags. Each

CB contains a number of buffer registers and a router. When

the transfer of a tagged data item is made, the header is

first decoded by the router to determine the destination

ports to which this data item is to be sent, and the

address is then applied to lead this data item to the

proper location once transmitted on the port. Specifically,

there are two types of tags being used in this array archi-

tecture. The tags, which are attached to a global data

item, are not permanent and are removed when the transfer

is complete. But those attached to a local data item are

28

9 9
ports ports

Figure 3.l. A ring-structured processing module.

29

preset and imbedded in a particular buffer register and are

used exclusively to convey the data stored in the register.

To support the global and local hierarchy concept,

each control buffer is multiply connected. A global I/O

port, shared by the control buffer pair, provides communi-

cation for the processing module with the outside world,

while local I/O ports are used for intermodule communi-

cations.

The structure of a processing module varies depending

on the number of local I/O ports in the module. It can be a

hexagon, an octagon, a decagon, etc. A PM with N pairs of

local I/O ports is shown in Fig. 3.2, where the subscripts

9. and 9 represent the local port and global port, respec-

tively. The index k is used to number the module while the

index j denotes the jth local port in the module. The

number of local I/O ports associated with a processing

module can be enlarged, but there is a limit on the

increase of this number due to fan-out limitations.

* Computation Series (CS)--A computation series is

defined as a finite sequence of identical step computations

with the requirement that each succeeding step computation

in the series be driven by the result from the previous

step. Conceptually, the forming of a computation series is

derived by applying the data-driven principle to its exe-

cution [24-25]. The complexity of the step computations

varies: it can be a simple elementary FLP operation such as

3O

I (k) 09(k)
9

\

1‘" \

Q @3‘
‘69- ‘st

3‘:

C's—- PM(k) ~—-- 02mm

\ /

\ /

\ /

\ /

noun o,(j.k)

Figure 3.2. A PM with N pairs of local and one pair of

global I/O ports.

31

addition or multiplication, or it can be a term of FLP

operations such as (a + b x c), or it can even be as

complex as an inner product of (aibi)° A computation

series can represent either intercomputations or intracompu-

tations, depending (Hi how it is executed inside the array.

An intracomputation series refers to computations that are

performed within a processing module, while an intercompu-

tation series is taken sequentially on a step-by-step pro-

cessing module basis. In general, a PSA built witn N pro-

cessing nodules will be able to compute N intracomputation

series and one intercomputation series simultaneously. An

example of these intra- and intercomputations is illustrat-

ed graphically in Fig. 3.3.

* Global Series Control (GSC)—-A global series

control signal, which is under the control of the host

processor, initiates a new intercomputation series.

* Local Series Control (LSC)--A local series control

signal, which is under the control of the control buffer,

initiates a new intracomputation series.

* Global Data (GD)--The global data are pumped

either into or out of the PSA under the control of the host

processor.

* Local Data (LD)--The local data circulate within

the array under the control of the control buffer. They can

be intra types or inter types depending on where they are

located.

* Constant Data (CD)--The constant data are

32

Figure 3.3.

(a) A computation series, y1 + y2 + y3 +Iy4.

(b) Sequence of intracomputations executed on a PM.

(c) Sequence of intercomputations executed step-by-step

on a three-PM array.

33

stationed in the registers of the control buffer. Usually,

these data can be preloaded before computing commences by

the host processor.

In a programmable systolic array, the execution of

concurrent functions is represented as the parallel exe-

cution of inter- and intracomputation series. Each intra-

computation series corresponds to a particular function,

while each intercomputation series indicates the amount of

interactions on these functions. The execution of these

series can In; visualized as rotating wheels. The principal

wheel, which represents the intercomputation series, will

rotate against the inner wheels of intracomputation series.

The force which is applied to initiate the moving of a

wheel is in reality the series control (SC) signal. If all

of the rotating wheels are set to move in the clockwise

direction, conflict-free computations result. This is

accomplished by feeding the address codes and the control

headers into the wheels to steer the direction. In Fig.

3.4, we illustrate this rotating wheel computing structure

concept.

3.2. Sample Algorithm Implementation

The utility of this programmable systolic array struc-

ture can be illustrated through implementation of a second-

order recursive equation of the following general form of

-2

Yi = C1 +314 (cijxj + dijyj), 2 g 1 g n, Y = o

34

Principal

Figure 3.4. A rotating wheel computing structure example.

35

C. are constant, C.. and d.
1 1] 1j are precomputed weights,

J

interested in a modular design, the computing of outputs

x. are input data, llj are output results. Since we are

Yi are distributed over a number of interconnected pro-

cessing modules. In this particular application, three proc-

essing modules PM(l), PM(2), and PM(3) connected in a tri-

angular configuration are used with each PM(k) assigned to

compute outputs Y 2= 0, 1, 2,..., etc.
(k + 32 + l)’

The specific design of a PM is of major concern and

consists of the design and interconnection of a CE and a

CB. Based on the inner-product type of computation in the

computing of outputs Yi' the grain size of the CE is

chosen to be an inner-product step computation of (a + b x

c). Since double recurrence occurs in each computation of

Y.1' the CB possesses dual local I/O ports. The fully

connected PSA with specifications for each of its building

components is shown in Fig. 3.5. And to understand how a

second-order recursive equation is evaluated on such an

array, it is instructive to note the flow of the intercompu-

tation series and those of the intracomputation series

within the array.

The intercomputation series is chosen here to be

Y -->Y2-->Y3--> . . . -->Yn .
1

And the intracomputation series are those which advance in

computing of Yi' that is, those series of

36

CBIZJ)

CE(2.down)

0 (I) 053.2) I {3)

Figure 3.5. The triangular PSA for solving a second-order recursive

problem.

37

) +C.. X.]-->
[Ci + C' 11-2 1-211-1Xi-1

[((Ci-I-C

]--->[(ci + cii_lxi_1

ii-lxi-l) + Cii-in-Z) + dii-ZYi—Zl’ — —

Execution of the intercomputation series is taken along the

perimeter of the array with each step computation Y(k+3£+l)

being computed by the CE(k,up), while three concurrent

intracomputation series are executed simultaneously within

the ring-structured processing modules.

Before the computation initiates, the constant and the

precomputed weights, the address codes, and the control

headers are loaded into the registers of the CB's. Follow-

ing execution of the series controls, the input data

X(k+3£) are alternately pumped into the Ig(k) ports.

Accordingly, intra- and intercomputation series are comput-

ed. And, a few cycles later, the computational results

Y(k+32+l) are pumped out at the Og(kn ports; simultane-

ously, they are bmoadcast to the addressed modules via the

intermodule connected paths to stimulate new computations.

We illustrate the first eight computational steps in Fig.

3.6, and a more detailed description of the data flow

timing for this example is provided in Table 3.1.

3.3. Discussion

The triangular array executes an rrdhput second-order

recursive computation in O(n) time units after the initial

preload step. Basically, the array's performance bears some

resemblance to that of a pipeline architecture [32-33]. A

38

Figure 3.6. Computing steps for a second-order recursive

equation on a triangular PSA.

.3!9

Table 3.l

Data Flow Timing Example

Computation

steps Module Specifications

PM(l) PM(Z) 994(3)

1 CE(l.uo) : idle CE(Z.up) : idle CE(3.uo) : idle

CE(l.down) : C2+C21 X1 CE(Z.down) : idle CE(3.oown) : idle

2 CE(l.up) :(C2+C21X1)¢0 X 0 CE(2.uo) : idle CE(3.up) : idle

CE(l.down) : idle CE(Z.down) : C3+C32 X2 CE(3.down) : idle

3 CE(IJID) : Id]! CE(Z.UO):(C3‘C32 xz)’ C31 x1 CE(39U9) 3 Y1

n I

:X‘oI (l)¢C8(l.2)¢C8(Z.l) :x‘¢C8(Z.l) C8(3.2): y1._, "§\3)

9 caII.I)

‘ CE(l.uo) : v2 CE(2.uo) 2 idle c£(3.mn:(c,,+c,3 1:94,sz2

CE(l.down) : C5+C5‘ X‘ CE(Z.down):((C3+C32 X2) * CE(3.down) : idle

c3l "imai '1

09(1) I
C3(l.2) : v2 __, C8(2.l) :xsoig(2)—CB(2.ZI*CB(3.I) :xsscal3.l,

5 CB(3.Z)

I:£(l.uII):(c.54-I:54 x,)+c53 II3 CE(2.up) : v3 CE(3.up) : idle

CE(l.down) : idle CE(2.down) : CG‘C65 X5 CcIa.down):((C‘+C43 X3, o

‘42 ‘2' ‘ “:2 Y2

'X ‘C8(l l) 09(2) -x oi ’3)‘C8(3 2)—CB(l “. 6 e CE(Z.2) 1Y3 _. C3(3,l) e 5 gt o 9-;

6 C8(l.2)

CE(l.uo) : idle CE(2.up):(C6*C65 X5)*C5‘ X‘ CE(3.up) : Y4

CE(l.down):((C5+C54 X4) * CE(2.down) : idle CE(3.down) : C7rC76 x6

c53 x:IWsa ’3

°X+I(U4EUJD43Q'H m-cmzi) 053’
' 7 g ’ ' ' 7 ' ”(3.2) 1Y4—o can.”

C3(2.2I

7 CE(l’up) : Y5 CE(Z.UD) 2 idle CE(39UDI-IC7TC76 XSI+C7S X5

CE(l.down) : C8*Ca7 X7 CE(E.dOUn):((C6*C55 X5) r CE(3,d0wn) : idle

'64 x4)+45‘ Y4

09(1)
‘ . v . - , . 1.

CE(IOZ) ~ '5‘ CE(Zgl) .X8*Ig(2)"CB(2.2)‘CB(3cII -x8.‘08('01)

CE(Ivup) : (:8+C87 X7I+C86 x6 CE(Z.UD) 1 Y5 CE(ngD) 2 Idle CE(l.down) : idle CE(2,down) : C9+C98 x8 CE(3.down):((C7vc76 x5; .

C75 xSW75 Y5

40

start-up time, tx, is required to set the array for later

pipelining operations. It includes the time, th, to pre-

load the tags of header and address and the initial comput-

ing time, ti‘ As in a 3-stage pipeline, the second-order

recursive computation requires an initial computing time of

3 x ty based on the unit time latency ty. Since a multi-

ply and an add operation are performed during each unit

time, after adding the data transfer time, tc, we can

express the latency of the pipeline operation as

t = t + t + t

y p d c

where tp is the time of a multiply operation and td is

the time of an add operation. Thus, for an n-input

second-order recursive problem the execution time, Tr' on

a triangular PSA can be expressed as

r th + 3(tp + td

th + (3 + n)(tp + ta + tc).

*
3 II +t)+n(t +t +t),

c p d c

As with a von Neumann machine, it takes 6 multiply

operations and 6 add operations for each second-order

recurrence. Thus, by assuming the same data transfer time

required for each operation, the execution time, Tv' on

such a machine is

T = n(6tp + 6td + 12tc), or

6n(tp + t + 2tc).
d

41

Therefore, the PSA represents a speed—up of

Tv 6n(tp + td

Tr th + (3 + n)(tp + td + tc)

+2t)

c

The significance of this speed-up has stemmed in part

from the concurrent operations of three processing modules

and in part from the 2-stage pipeline operation in each

module and also from applying data-driven computations

which, as observed, have reduced the overhead of the so-

called von Neumann bottleneck [10] by a factor of 3. Like

the pipeline operation, the PSA will have a maximum speed-

up of 6 provided the number of operations n is much greater

than the order of recurrence.

The programmable systolic array described here excels

over the systolic array in two aspects. First, the PSA

possesses a dynamic probelm-solving capability. Through

ndcroprogramming different control headers into the control

buffers, a PSA can be applied to solve a variety of

probelms as compared to a static systolic array, which is

specially designed to solve a particular problem. For

example, the described triangular PSA can be used in

solving a second-order recursive problem, a 3 x 3 matrix

multiplication, an inner—product computation, or any compu-

tational tasks which can be decomposed into up to three

concurrent operations; this is not possible with a systolic

array. Second, the PSA contains a set of internal buffer

registers, which provide a means to preload the constant

42

data, thereby reducing the traffic density at the global

I/O ports. For example, the precomputed weights and the

constant data in the second-order recursive computation

described in the previous section or the elements in one of

the two matrices in the matrix multiplication can be pre-

loaded. But there is an added cost in using the PSA. The

host processor must interact with a more complex control

structure. Moreover, the control buffer and the amount of

intermodule connections cause the PSA to reduce the maximum

number of computing elements per unit chip area.

CHAPTER IV

MIXED SYSTOLIC ARRAYS

Attempts to broaden the systolic array's potential

usefulness have been made either through designing new

structures of systolic systems, such as systolic priority

queues [34], or through modifying the systolic array.

Examples of the latter approach include programmable

systolic arrays [5] and cellular systolic arrays for the

dynamic programming computation and the transitive closure

problem [35]. Designing new systolic structures for speci-

fic applications has its inherent limitation because many

specialized VLSI devices would be required, i.e., one for

each algorithm. However, the modifying approach may be more

fruitful. Methodologically, this approach implements

control structures or switching circuits into the systolic

array, or simply includes control information in the data

packets [5,35,36]. In this chapter, we present strategies

for mixing control buffers and computing elements in the

array structure. The word mixing is employed here to

indicate the presence of both control buffers and computing

elements within the arrays and to specify, as a result, how

these arrays' characteristics change from their original

43

44

ones. First, the basic structure of a mixed systolic array

(MSA) is described. Next, in Section 4.2, we discuss the

impact that different mixing ratios have on a given uniform

network and how this relates to global vs. local data re-

quirements for a particular algorithm. This is followed by

the discussion of partial uniform mixing and various MSA

structures.

4.1. Structure of Mixed Systolic Arrays

The first step toward the modification of a systolic

array is through mixing, a strategy of incorporating both

control buffers and computing elements into an array. A

control buffer is a data router; it directs the flow of

incoming data and outgoing data to and from the computing

element according to their specific data type headers and

destination address tags, but it is also a data and control

code buffer, providing a local storage queue for data-flow

instruction cells. For our purposes, a computing element is

a coprocessor on which elementary arithmetic operations

(+,-,x,/) are performed.

A mixed systolic array (MSA) differs from Kung's

systolic arrays in a number of ways [37]. Structurally, a

mixed systolic array is formed by using two basic elements,

as compared to the original array, which contains only one

basic computing element. If the basic computing elements

and the control buffers are not uniformly placed in the

array, an MSA array displays some degree of irregularity in

45

its structure. Functionally, an MSA executes its compu-

tational steps according to the sequence of programmed

control codes stored in the control buffers. Therefore, a

given implementation may be applied to solve a broader

spectrum of user design algorithms than a conventional

systolic array. Geometrically, an MSA communicates with the

outside world through its control buffers, which are con-

sidered as the masters. This master-slave MSA architecture

is more easily interfaced with other chips than a slave-

based systolic array chip.

Basically, the structure of an MSA is determined by

the mixing profile. By the term uniform mixing, we mean

there is a subarray or basis from which the array can

be constructed. We consider a uniformly mixed array a

regular array. Fig. 4.1 shows a mixed systolic array

constructed from a diamond-like basis. When mixing is

placed on some particular regions in the array with empha-

sis, it yields an irregular array structure. And an irregu-

lar array is partially regular if it can be segmented into

two or more regions which are each uniformly mixed (see

Fig. 4.2).

The mixing profile determines the possible frames of

data-flow patterns within the MSA. Unlike the original

systolic array, on which execution of an algorithm is based

on two-dimensional or two-way pipelined data flows moving

along in the preformed paths from one side of the array to

pm

mom 5. m ><>

,//, Asa‘

.. -«Q’s»

{P4 9322. so

noaaxoi mLmamaa

mcmmma

mincxm S.L. > amxma mkmnodin m11m< nozmdxcnama

4103 m diagonaldlxm cmmim.

mlocwm s.~.

bu

> umafiimddk xmmcimx :mxmmosmL aixma mkmaoLIn

usage noauomma o4 m nmznxmh xmmmos man as

ocamx mszL. 43m Lmnamx Im nosmflscnama 4403

m aximancdmx ommim.

48

the other, an MSA, in contrast, has reconfigurable pipe-

lined paths. Therefore, algorithms with similar global vs.

local data requirements can all be effectively executed on

it rather than on numerous systolic arrays.

The mixing profile contains information about the

mixing density and the boundary conditions. The mixing

density function, 0 , is defined as

N

o = CE (4.1)

NCB + NCE

where NCB And NCE are the number of control buffers and

the number of computing elements contained in the array,

respectively. When the mixing density is high, the array

most likely will be used for algorithms which require more

complex data routing and less complex computing. However,

the array with a low mixing density will be applied primari-

ly to algorithms which have simple data routing but require

a large amount of computing. There are two limiting cases:

when p=0, the MSA reduces to a systolic array. And when O=1

the MSA reduces to a reconfigurable interconnection network

with no computing power.

The boundary conditions in an MSA are represented by a

boundary condition function, 9:

N .
a: CB , (4.2)

NCB

where N is the number of control buffers placed on the
CB'

49

boundary of the array. Since the control buffers on the

boundary of the MSA are the communicaticni centers,l con-

nections from these centers to the outside world provide

the basic I/O operations. Therefore, the evaluation of n is

a direct neasure of the complexity of the I/O connections.

Thus, the proper choice of o and S) for a particular imple-

mentation relates directly to the ratio of the global and

local data requirements of the algorithms for which the MSA

is intended.

4.2. Uniform Mixing

Although the number of mixing profiles which yield a

regular array structure is large, only a few of them appear

to be practical for real algorithm applications. What's

more, a balance must be achieved between the computing

power and the data routing capability in order to maximize

resource utilization and throughput. For these two reasons,

we will focus here only on those profiles which yield a

geometric balance between the control buffers and the

computing elements in the structure of their corresponding

21352- Also, for ease in implementation we assume that

each control buffer has the same physical size as the

computing element.

The hexagonal array is a very important array struc-

ture because of its utilization of the planar communication

and its high packing density. In a hexagonal array the

total number of elements, N, contained in the array can be

50

evaluated from the array's edge length, n, as

N = 2[n + (n + 1) + (n + 2) +...+ (2n -2) + (Zn-1)]

3n2 - 3n + 1 (4.3)

The smallest hexagonal array is the one which has size N=7

when n=2. Since most of the array structures of interest

are subsets (us a hexagonal topology [30] and the hexagonal

array of any size can be grown from such a structure with

sharing or overlapping, this elemental array structure

conveniently serves as the mixing big—S. When this

smallest hexagonal array is mixed with the control buffers,

the basis-mixing density, Ob, in the b_a§_i_s can be one

of the following:

, i=1,2,....,7.

\
I
l
I
-
h

But mixing profile constraints state that each control

buffer to be placed into a basis (1) will have the same

number of computing elements at its nearest neighbors

except the one which is to be placed in the center of the

basis and (2) will seek to have the maximum number of

computing elements at its nearest neighbors. The first

constraint assures uniform mixing in the mixed array when

it is grown from such a basis, while the second maximizes

the computing power of the mixed array. Based on these two

constraints, the set of computing elements neighboring each

control buffer with respect to the above basis-mixing

51

density set is

The bases corresponding to the first three mixing profiles

are shown in Fig. 4.3. MSA's grown from these particular

bases are intended for computation use.

With an increased fraction of control buffers being

mixed into the arrays, we are interested in knowing to what

extent the computing power has been sacrificed, as well as

what constraints must be added due to the presence of the

control buffers. The hexagonal MSA's grown from the bases

in Fig. 4.3 are presented here for comparison. The

hexagonal arrays, as shown in Fig. 4.4, are formed (or

grown) by adding a new basis adjacent either to each of the

growing bases' edges or corners. The mixing density

function, I), and the boundary condition function, 9 , in

these MSA's are given as follows:

Case 1: (MSA's constructed from a Ob = l/7 basis)

The number of control buffers in this type of MSA's is

given by

NCB = 6 [p + (p-l) +...+ 0] + 1

n-1

where p =

2 .

If n is odd, 2

3n + l

NCB '—

52

Figure 4.3. Hexagonal array bases with (a) ob = l/7,

(b) pb = 2/7, and (c) ob = 3/7.

constructed from a ob =

Figure 4.4.(a) A regular hexagonal mixed systolic array

l/7 basis.

O
O
O
O
O
O
O
O

O
®
O
®
O
®
O
®
O

O
O
O
O
O
O
O
O
O
O

O
®
O
®
O
®
O
®
O
®
O

O
®
O
®
O
®
O
®
O
®
O

O
O
O
O
O
O
O
O
O
O

O
E
O
®
O
®
O
®
O

0
0
0
0
0
0
0
0

53

Figure 4.4.(b)

from a ob =

A regular hexagonal m

2/7 basis.

ixed systolic array constructed

O
O
O
O
O
O
O
O

®
O
®
O
®
O
®
O
®

O
O
O
O
O
O
O
O
O
O

®
O
®
O
®
O
®
O
®
O
®

@
O
®
O
®
O
®
O
®
O
®

O
O
O
O
O
O
O
O
O
O

®
O
®
O
®
O
®
O
®

0
0
0
0
0
0
0
0

54

55

O
$
O
O
®
O
O
$

®
O
O
®
O
O
®
O
O

O
O
®
O
O
®
O
O
®
O

O
®
O
O
®
O
O
®
O
O
®

O
®
O
O
$
O
O
®
O
O
®

O
O
®
O
O
®
O
O
®
O

®
O
O
$
O
O
®
O
O

O
®
O
O
®
O
O
®

Figure 4.4.(c) A regular hexagonal mixed systolic array

3/7 basis.constructed from a ob =

56

If n is even,

3(n-1)2 + 1

NCB = 4

Thus,

3n2 + l

2 , n is odd

4(3n - 3n + 1)

D: 2

3(n-l) + 1

2 , n is even.

4(3n - 3n + l)

The number of control buffers on the boundary of this

type of MSA's is given by

NCB' = 0 , n is even

N , = 3(n-1) , n is odd.

Thus, CB

12(n-l)

-—-2———,nisodd

3n + 1

Q:

0 , n is even.

Case 2: (MSA's constructed from a Db = 2/7 basis)

The number of control buffers in this type of MSA's is

given by

NCB = 2 [p + (p+l) +...+ (n-l-n(mod 2))]

+ (n-l + (n-l)(mod 2)),

where

n + (_1)n(mod 2)

p =

57

If n is an odd number,

n—1 n-1

N = 2 [— + (— + 1) +...+ (n-2)]
CB 2 2

3n2 - 4n + l

+ (n-l) =

4 .

If n is an even number,

n+2 n+4

CB 2 2

3n2 - 2n

4 0

Thus,

3n2 - 4n + 1

2 , n is odd

4(3n - 3n + l)

o = 2

3n - 2n

2 , n is even.

4(3n - 3n + l)

The number of control buffers on the boundary of this

type of MSA's is given by

{ (n-l) , if n is odd

N,=

CB 2(n-1) , if n is even.

Thus,

4(n-l)

2 , n is odd

3n - 4n + 1

Q:

8(n-1)

-—7f————- , n is even.

3n - 2n

Case 3: (MSA's constructed for a pb = 3/7 basis)

The number of control buffers in this type of MSA's is

58

given by

n x (n-l) + 1, if n = 3i-l, i = 1,2,...

NCB —
n x (n-l) , otherwise.

Thus,

112 - n + 1

2 , if n=3i-l, i=l,2,...

3n - 3n + l

p:

n2 - n

2 , otherwise.

3n - 3n + 1

The number of control buffers on the boundary of this

type of MSA's is given by

2n-1 , if n 3i-1,

3i+1, i = 1,2,...

2n-3 , if n = 31.

Thus, 2 l

n—

2 , if n = 31-1,

n -n+1

2n-2

Q: 2 , ifn=3i+l, 1:1121000

n -n

2n-3

2 , 1f n = 31.

n -n

The mixing density function measures reveal that the

hexagonal MSA's (Fig. 4.4) contain roughly from two thirds

to three quarters of their constituents as computing

elements. Since in hex-connected systolic arrays only a

59

portion (one third) of the computing elements is active at

a time, the presence of control buffers in these MSA's

leads to no reduction in the real computing power. The

boundary condition function measures show a similar linear

decrease in n in these MSA's. So, I/O communication de-

crease as n-1 relative to on-chip communication. Thus,

for a proper balance between global data and local data in

algorithms executed on such uniformly mixed arrays, global

data requirements must also decrease as the inverse of the

local data. But this constraint can be overcome by relaxing

the uniform mixing requirement.

4.3. Partial Uniform Mixing

The design parameters of the uniformly mixed systolic

arrays described in the previous section emphasize balanc-

ing the computing power and the local data routing capabili-

ty inside a given array. However, since the number of I/O

pinouts is a major constraint in VLSI implementation [22]

and since balancing on-chip processing with I/O is a must

on a VLSI chip [35], an MSA should be designed to include

the built-in I/O structure as well. Unlike the systolic

arrays, in which I/O can take place only at the boundary

computing element, in an MSA, I/O is granted to the control

buffer. By carefully mixing control buffers into MSA's,

various I/O structures can be created. An I/O structure, in

general, can be constructed as being either centralized or

60

decentralized depending on the global data transfer band-

width. A centralized I/O structure has only one single

port, while a decentralized I/O structure has multiple

ports.

One important option is mixing a given MSA into two

uniform regions, one region for computing and local data

routing purposes and the other for I/O or interconnection

purposes. Thus a partially regular array is formed. Topo-

logically, a partially regular array has a centralized

input or output structure, or both, depending on the speci-

fic applications for which it is designed. The region which

is mixed for exclusively the I/O structure or interconnec-

tion purposes contains control buffers only; that is, the

mixing density has a value of one. Since within a hexagonal

array structure, the most likely spot to be mixed for the

centralized I/O structure is in the central region, we

consider only the partially regular array which has a

structure shown in Fig. 4.2. Based on the built-in I/O

structure (see Fig. 4.5), an MSA can be classified as

follows:

(1) CICO (centralized input centralized output). A

CICO type of MSA is characterized by having a

relatively low I/O bandwidth for its global data.

Such an MSA has a fast response time and is very

suitable for on-line pipelined database systems

[38].

(2) CIDO (centralized input decentralized output). A

Figure 4.5.

6]

(d)

Four classes of mixed systolic arrays:

(a) CICO, (b) CIDO, (c) DICO, and

(d) 0100. The arrows indicate the

direction of data flow.

62

CIDO type of MSA is characterized by having a

relatively low input bandwidth but a relatively

high output bandwidth for its global data. Such an

MSA is very useful for centralized massive system

control applications or for algorithms which can

be decomposed into hierarchical computations [27].

(3) DICO (decentralized input centralized output). A

DICO type of MSA is characterized by having a

relatively high input bandwidth but a relatively

low output bandwidth for its global data. Such an

MSA is best used for distributed stream-oriented

computing systems [39].

(4) DIDO (decentralized input decentralized output). A

DIDO type of MSA is characterized by having a rela-

tively high I/O bandwidth for its global data.

Such an MSA will likely be applied to simple two-

dimensional pipelined operations [8-9]. This DIDO

structure is the classic systolic array architec-

ture.

By decomposing an MSA into two basic regions, the

constraint on uniformly mixed systolic arrays can be

relaxed since there is now less of a dependence on comput-

ing power vs. I/O bandwidth as a function of array edge

size. This is so because the boundary condition function,

9, in a partially regular array can be reduced by a factor

of 2 over the uniform array to meet pinout and/or global

I/O data requirements.

CHPATER V

DATA-FLOW COMPUTATIONS

Computations are carried out in a data-driven fashion

on an MSA. The control buffer is the data-driven master,

and the computing element is the slave. The driving mecha-

nism takes place in the control buffer; when the required

data are available a data-flow instruction cell is executed

on a neighboring computing element [24]. One important

consequence of applying data-driven principles is that

computations can be uniformly distributed over self-direct-

ed computational rings within the MSA. Thus, a computation-

al ring is the basic data-flow computing structure in the

MSA.

In this chapter, we focus on data-flow computations on

an MSA. First, the store-and-forward control buffer is pre-

sented. Next, in Section 5.2, composite cell computations

on computational rings are illustrated. This is followed in

Section 5.3 by the description of forming composite cells

on a data-flow graph. And finally, in Section 5.4, ‘we

discuss data flow within the MSA and we also compare the

array's performance to the systolic array.

63

64

5.1. Store-and-Forward Control Buffers

Fundamentally, the control buffer is designed for

store-and-forward purposes. It stores data-flow instruction

cells at load time, arbitrates the incoming data and

forwards outgoing data at execution time. The basic

structure of the control buffer is illustrated in Fig. 5.1.

The components consist of an input FIFO, an output buffer,

a queueing FIFO, a driven memory, a linking buffer, and a

router. The I/O buffers are connected to the I/O ports for

I/O operations. The queueing FIFO is connected to a

neighboring computing element for discipling executable

instruction cells. The linking' buffer' is 'used. for

internetwork purposes. The driven memory is applied

exclusively for the purpose of storing data-flow

instruction cells. And the router is used to arbitrate the

input data to one of the queueing buffer, the output

buffer, the linking buffer or the driven memory.

Each data item entering a control buffer is identified

by an attached data type header, which specifies a certain

operation such as a memory read/write, an output operation,

or a by-pass operation, and is guided by an attached

address tag which leads the data item to its destinations.

When a write operation occurs, the data item is written

into the addressed instruction cell within the driven

memory of the control buffer; simultaneously, a flag is

raised to indicate a condition that the content at that

particular cell is ready to be driven. However, when a read

65

address

Driven w Output Linking

Memory r 1 Buffer Buffer

Ifi

III I

I " data
O «i- L

t a T r’ E
O O

m
G. 3

(D F?
4.

in '5

G.
O

c. o: n

E I 5" - s
+ c

w m 8 "
G. 3 O

:- r: 2
data + control code a g g

2 n

o 2.

j °' °
(3 In

(I!

Queueing Input FIFO

8

Buffer Router

Inputs

Figure 5.l. The structure of the control buffer.

66

operation occurs, it is to drive out the content of the

accessed instruction cell into the queueing buffer ready

for execution on a neighboring computing element. A read

operation resulting from driving a not-ready instruction

cell is called "aborted.” An aborted read operation will be

forced to reverse its operation; that is, to become a write

operation. An output operation is the result of a terminat-

ed computation. The by-pass operation is requested when the

data item is to seek no more than a pass through the con-

trol buffer and its neighboring computing element.

5.2. Computational Rings

A computational ring is the basic data-flow computing

structure in the MSA. It is formed by connecting control

buffers and computing elements alternately together into a

ring configuration. A computational ring formed with p

pairs of control buffers and computing elements is called a

p-stage computational ring. Fig. 5.2 shows a typical two-

stage computational ring within a hexagonal MSA.

In a computational ring, computations are carried on

in a pipelined fashion with the constraint that each suc-

ceeding computation requires a data item from its previous

computation. In other words, the result of a computation

becomes the driving force to the execution of its succeed-

ing computation. For this reason, the ”driving operation"

is used to describe this computation mechanism. Mathemati-

cally, such computations may be represented by a composite

hexagonal MSA.

Figure 5.2. A typical two-stage computational ring within a

Z-stage

@
O
O
®
O
O
®
O

O
O
®
O
O
®
O
O
®

O
®
O
O
®
O
O
®
O
O

@
O
O
®
O
O
®
O
O
®
O

O
O
®
O
O
®
O
O
®

@
O
O
®
O
O
®
O

67

68

expression of a form

f£(a£,..., fi(ai""’ f2(a2, f1(a1, a0))...), 0 < 1 g 2

in which the 151's denote either the elementary arithmetic

function (+,-,x,/) or the results and the ai's are the

data. In data-flow formation, these composite computations

can be compiled into a. composite cell of data-flow

instructions as

((fllal,a0), (leaz), ... (lea2))

When executed, this composite cell proceeds as

Begin (Composite Cell Computation)

fl := f(al, a0);

For i := 2 to 2 Do

Begin

If Flag (Ai-l) = 1 Then

a. <-- M (Ai);
1 -1

fi := f (fi-l’ ai) Else

M(Ai_1) <-- fi-l;

Flag (Ai-l) := 1;

fi—l <-- M (Ai—l);

fi := f (fi-l' ai)

End

End (Composite Cell Computation)

69

where M denotes a driven memory operation and Ai's repre-

sent the address tags associated to the ai's or the

results of fi's. Obviously, the continuity' of composite

computations depends on the availability of the data

ai's. When the data are not available, the computing

element may stand idle.

In performance, a p-stage computational ring resembles

a p-stage asynchronous circular pipeline. The delay in the

control buffer is referred to as that of latching oper-

ations while the time taken in the computing element is

considered as a stage delay in the pipeline. With execution

<af a composite cell on a stage-by-stage basis, p composite

cells can be put into execution simultaneously on a p-stage

computational ring. Fig. 5.3 illustrates this concurrent

pipelining operation through carrying out a data-flow

directed graph on a two-stage computational ring. Initially,

two sets of data b0, b1, b a and a0, a1, b are loaded

3’ 2 2

into CB(1) and CB(2). Immediately upon the firing, instruc-

tion cells gl(b0,b1) and f1(ao,al) are executed on CE(l) and

CE(Z), respectively. The results of f1 and 91 are then to

drive out a2 and b2 for a new phase of data-flow computa-

tions with f2(a2,fl) on CE(l) and gz(bz,gl) on CE(2).

Following this, f2 is written into CB(2) while 92 is to

drive out b3 for a third round of computation on CE(l). And

one step later, 93 is to drive out f2 from CB(2), and

h(f2,g3) is executed on CE(2).

70

Function CB CE CB CE CB CE CB CE

Stagel b 91030.6.) f2(a2,f]) b3 93(b3,gz) Idle

93 a

can) +csu) 3 2 2

30,31

Stage2 f1(a0,a]] b2 g,(b2,g1) f2 Idle f2 h(f2,gq

b ” '

c3(2) + ce<2> 2

(C)

Figure 5.3.(a) A data-flow directed graph example.

(b) A two-stage computational ring.

(c) The Gantt chart illustrating the

execution of (a) on (b).

71

As can be seen, four computational steps are taken and

the only transfer times taken are mainly from the memory

driving operations, each of which consumes a memory cycle

time. The significance of composite cell execution (”1 a

computational ring is that each instruction is locally

executed. As a result, communication overhead is reduced to

a minimum.

Apparently, the purpose of forming computational rings

within an MSA is to support locality of computation and

data transfer. But this is not all. On a p-stage compu-

tational ring, control buffers are linked like a p-stage

pipeline. This allows data and control codes to be pipelin-

ed into these buffers when the MSA is required for loading.

A savings of a factor of p in the number of I/O pinouts

with the MSA is expected.

5.3. Loading and Scheduling of Composite Cells

As in the pipelining operation, to keep the compu-

tational ring full is essential to its performance. Return-

ing to our previous example (Fig. 5.3), notice that each

CE(l) and CE(Z) is idle once during four computational

steps. It would be more practical if a new composite cell

could be initiated immediately for execution when a discon-

tinuity of a driving operation has occurred. This could be

achieved by reasonably increasing the queueing buffers

size. However, two issues arise: the first relates to how a

data-flow graph can be transformed into a scheduled set of

72

composite cells; the second is concerned with how these

scheduled cells should be loaded on a particular compu-

tational ring. To deal with these two issues, transfor-

mation of a data-flow graph to a simplified time/space grid

representation is applied. In this grid representation, a

data-flow operation is represented by a darkened circle at

a cross point and a data-flow link is represented by either

a vertical arc or a sleped arc. In such a representation,

the vertical axes are marked with the computational steps

and the horizontal axes are measured by the degree of

concurrency. Each computational step represents a stage

delay on the computational ring and is assumed to be a

constant. Concurrent data-flow operations are drawn on

different vertical axes but on a single horizontal axis.

Fig. 5.4 shows a time/space grid representation for a

data-flow graph example.

BasicalLy, a composite cell can be formed by grouping

the circles along a particular vertical line or by grouping

the circles on several different lines. Fig. 5.5

illustrates how particular composite cells can be formed by

grouping the circles in the grid representation of Fig.

5.4. A composite cell which is formed by grouping those

circles on a critical path in the grid representation is

called the critical-path composite cell.

Def: Let C1 = ((fllal), (leaz),...) be a critical-path

composite cell in a grid representation and let

L(Ci) be the length or the number of computational

73

Figure 5.4. (a) A data-flow directed graph example.

(b) The simplified time/space grid

representation for (a)

74

Figure 5.5. An example of vertical grouping of composite cells

on a grid representation graph.

75

steps in Ci' then L(Ci) Z L(Cj), for every compo-

site cell Cj starting at (fllal).

A grid representation may consist of a number of

critical-path composite cells. Cl and C2 in Fig. 5.5

are two such cells, each of which contains six computation-

al steps. If we remove critical-path composite cells from a

grid representation, the remaining grid is called a sub-

grid. Critical-path composite cells formed in a subgrid

contain fewer computational steps than those in the origin-

al grid. Again if we remove those critical-path composite

cells from a subgrid, another subgrid remains. Through

recursively grouping critical-path composite cells and then

removing them from a grid or a subgrid, one can obtain an

ordered set of composite cells with decreased computational

steps. It is easy to see that this conquer-and-divide de-

composition scheme results in a minimum number of composite

cells in a given grid representation.

Scheduling composite cells for execution on a p-stage

computational ring can be considered as a mapping problem.

For a single composite cell, C1 = (Ci,l' Ci,2"°’) with

C = (ftlat), the scheduling is simply a one-dimensional
i,t

one-to-one mapping as

cit --> CB((t+k) mod p), k=0,1,...,p-l

where the offset index k refers to the kth stage in the

computational ring on which the composite cell's first

76

computation Ci 1 is started. However, when more than one

I

composite cell is to be scheduled, we may refer to a

multiple-to-one mapping

C
i
’
t
\

. :CB(rmodp),r=t+k=s+k',

. kl k' = 0,1,...,p-1.

C.

3:5

Computations which are scheduled on a multiple-to-one

mapping are mainly of interaction types such as a fork or a

join. A fork activates concurrent driving operations while

a join implements data-flow firing upon two interacted

composite cells. By grouping circles which represent data-

flow operations either from forks or to joins, the schedu-

ling problem can be extended to a two-dimensional mapping.

In Fig. 5.6, we illustrate the horizontal mapping on the

time/space grid representation example of Fig. 5.4.

5.4. Data-Driven Computations

By considering an MSA as a computing network of m

tightly-linked p-stage computational rings (an example, see

Fig. 4.2, which has m=6, p=3), an MSA is capable of execut-

ing p x m data-flow instructions in one computational step.

The ”block-driven principle" is applied to describe this

77

Join Grouping

f---------

Fork Grouping

Figure 5.6. An example of horizontal grouping

78

phenomenon, which is the firing of a computational block

consisting of an arbitrarily large number of composite

cells [29].

In data-flow notation, a computational block, B, is

represented by an acyclic directed graph of size m by d,

where m is the number of computational rings within the

mixed systolic array, and d is the computation depth or the

critical path in B. When the computation depth d is

constant, the computational block has fixed size; when it

is nonconstant, the computational block has a varied size.

Through data-flow decomposition methodology, any applica-

tive data-flow program can be structured as a sequence of

). Each block transformscomputational blocks (B 82,...,B
l' k

an input data stream into an output data stream [40-41],

with Bi = m x di’ where di is the computation depth

in B.1, lgigk. Any acyclic directed graph of data-flow

computations can be represented by a data record and a

collection of composite cells, which are specified by a

frame of microprogramming control codes. Therefore, a

computational block Bi can be functionally specified by

{FilDi},

where Fi denotes the particular frame associated with

Bi and Di denotes the size of the data record.

The performance based on block-driven computations is

79

measured by the average computational rate, B,

_ -1 k

R = K 2 R , (5.1)
. 1
1=l

where R1 is the frame computational rate for Bi' Let

N1 --the number of computations in Bi'

ai ——the frame set-up time for {Fi'Di}'

di --the critical path in Bi’

Bi --the communication overhead,

T --the execution time for a single computation or

the delay time in a control buffer,

h --the word-length to the pinout number ratio, and

f(m)--the average transfer overhead per compu-

tation in T .

Then

PNi

Ri = (5.2)

a + 8 + d T
1 1

with m-lN. < d. < N. (5.3a)
1 — 1 — 1

a T < B. < d.'r + f(m)d.T (5'3“
— 1 — 1 1

hDiT

— S “i .<_ hDiT (5.3c)

m

Therefore, for a uniform computational block (di = Nim-l)

being executed on an m-input DICO type of MSA, Ri becomes

80

R = pNi
i

N.T _ er hD.T

—l- + [l + f(m)] —$— + 1

m m m

(5.4)

pm

[2 + f(m) + ———]T

N.
1

With block-driven computations, the size of the data record

to be loaded into the MSA (i.e., the input global data) is

usually much less than the total number of computations

(i.e., amount of local data); therefore, we assume

hD.

—l «1.

N.

1

Equation (5.4) thus reduces to

pm

R1 = _ , (5.5)

[2 + f(m)]T

which is quite similar to the performance of the benchmark

hexagonal systolic array since it has a constant computa-

tional rate of (2/3)pm'I‘-l [8]. For the CIDO or CICO type of

MSA's, the frame set-up factor is thiNi-1 , which may become

the bottleneck to the system. As can be seen, the average

transfer overhead coefficient, f(m), plays a significant

role in the overall performance measure. The decreased

computational rate with the MSA, when compared with the

systolic array, represents the primary cost for achieving

81

the flexibility of a reconfigurable multiprocessor struc-

ture that is capable of implementing more than a single

algorithm.

CHAPTER VI

THE HOURGLASS MACHINE

A data-flow machine, based on a modified hourglass

computing model, is presented in this chapter. The hour-

glass machine is loaded with a pair of MSA's, with a DICO

type of MSA at one end and a CIDO at the other. Functional-

ly, the mixed systolic array with a DICO structure is

intended for block-driven computations, while the CIDC type

is used for storing data-flow instruction cells and data-

flow firing. Objectively, the structure of this machine is

not designed for a specific application; rather it is

intended to illustrate the architectural potential of mixed

systolic arrays and the hierarchy of data transfers result-

ing from block-driven computations.

This chapter is organized as follows: First, the hour-

glass computing model is introduced in Section 6.1. Next,

Section 6.2 describes the functional structures of this

data-flow hourglass machine. In Section 6.3, we present a

two-phase data transfer mechanism. This is followed in

Section 6.4 by the analysis of performances measured on

this particular machine. And, finally, Section 6.5 dis-

82

83

cusses some premises of this machine regarding VLSI imple-

mentation.

6.1. Modified Hourglass Computing Model

The modified hourglass computing model takes its name

from the concept of two-dimensional data moving in an hour-

glass. The hourglass model has a (data-moving end and a

data-receiving end with a narrow passage in between. The

data-moving end is loaded with a block of data-flow instruc-

tions. And the execution of these data-flow instructions

can be considered as the moving of data, while the data-

receiving end collects the computational results. Within

the hourglass, a data item moves from point to point with

the guidance of an appended control code. This control code

contains a data type header and a destination address

field. The data type guides the data item either into

transmission paths or into reflection paths (see Fig. 6.1).

The length of the transmission paths is fixed; therefore,

there is no preference for all global data transfers. The

reflection paths vary, ranging from the shortest paths

localized on a computational ring to the logarithmic paths.

The destination address specifies the particular location

the data item is headed for. The hourglass computing model,

as characterized by its structure, provides highly con-

current activities at both ends which gradually decrease

toward the narrow passage.

84

B

I

o

A
i
r
-
.
0
4
0

.

Distribution :ree

Buffer Tree

Instruction FIFO

Computational Block

°acket

Global Data

Local Sata

Transmission Path

Qeflection Path

Figure 6.l. The modified hourglass computing model.

85

6.2. Hourglass Tree Machine

As it was proposed, the novel hourglass computing

model aimed at exploring as much as possible the compu-

tation locality as well as communication locality in block-

driven computations. Based on this model, we synthesize a

data-flow tree machine, or an hourglass tree machine. As

shown in Fig. 6.2, this particular tree machine contains

primarily a pair of "mirrored trees", one is called the

buffer tree and the other is the distribution tree. In this

section, we describe the structure of these two trees and

the functional units associated with the tree machine.

Buffer Tree-~The buffer tree is a DICO type of MSA,

containing m tightly-linked p-stage computational rings

along with a tree linking structure (an example, see Fig.

6.3, a five-level linking structure). It is capable of

computing (m x p) FLP operations concurrently and transfer-

ring the results in logarithmic unit time. In the buffer

tree, there are (m-2) nodes and one root node. Each one of

these nodes is a control buffer, at which arriving data

will either be buffered down or be forwarded out. Associat-

ed with each leaf node is the p-stage computational ring on

which composite data-flow computations are performed.

Besides functioning as the computing power, the buffer tree

plays two other major roles: first, it is an interconnec-

tion network for the m computational rings; second, it is a

buffering channel between the processing power and the

instruction memory cell.

86

O

o

o —__...

a}
. o

. 0

Global
3 .

. Distribution O —»

controller 0

° 0
o
. o

a o

.}

o

o

O
_I

 I Inumqm 1

‘
5

‘
w
“
s

 k
W

Figure 6.2. The structure of the data-flow hourglass

computing machine.

buffer tree.

Figure 6.3. A five-level linking structure in the

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

O
O
O
O
W
a
e
u
a
O
O
O
O

0
0
0
0
0
0
0
0

87

88

Distribution Tree-~The distribution tree is an n-

level pipelined binary switching network of CIDO type. It

provides the basic mechanism for routing or multicasting

streams of global data to a set of data-flow computational

blocks; and. at the same time, supervises the firing of

computational blocks. There are 2n-l computational blocks

of data-flow instruction cells tied. to the lowest-level

leaf nodes of the tree. When a data item enters the root

node, it is pipelined through the n-level distribution tree

based on the appended control code. The address field in

the control code contains two parts: a major address and a

minor address. The major address specifies what computa-

tional blocks the data item is headed for while the minor

address selects the location of the destination instruction

cell in the specified computational block. For providing

proper firing, in each of the 2n-l computational blocks

there is a decremented count. The decremented count is

initially set tx: a number indicating the amount of

dependent data required for block firing. When a data item

is written into an instruction cell in that block the

decremented count is reduced by one. And when the count

reaches zero, the computational block is fired and execu-

tion commences.

Global Controller--The global controller plays two

major roles: first, it distributes composite cells of

data-flow instructions over m computational rings at load

time; second, it monitors the status of each of the m

89

computational rings at execution time. Within the global

controller, there is both a ring count and a decoder array.

The ring count is initially set to 111. Each time the con-

troller receives an acknowledge signal from a released

computational ring, the ring count is reduced by one. As

the ring count reaches zero, the global controller starts

fetching a new computational block of data-flow composite

cells from the Data-Flow Intelligent FIFO if they are

available. The computational block is then decoded on the

decoder array and the resulting composite cells are dis-

tributed over m computational rings for execution.

Intelligent FIFO--The intelligent first-in-first-out

unit is used for queueing the computational blocks which

are fired and ready for execution. Due to the irregular

number of data-flow instructions contained in various compu-

tational blocks, each FIFO is designed to manage a fixed

number of data-flow instructions.

6.3. Two~Phase Data Transfer Mechanism

Because there are two types of data to be transferred

in the same buffer tree network, each node of the buffer

tree, a control buffer, is designed to work on a two-phase

basis. In the push mode, data are pushed forward from the

lower-level nodes to the higher-level nodes; whereas, in

the pull mode, data are pulled backward in an opposite way.

Each data item is tagged with a destination address field

and a one-bit data type header. The width of the address is

90

determined by the tree height-~the higher the tree height,

the wider the field. Specifically, a locally dependent data

item has a relative displacement address and a one-bit

direction header, while a globally independent data item

has an absolute address. The relative displacement address

is determined by the distance in which the two communicat-

ing leaf nodes are apart and by the relative position in

which the two nodes are located (see Fig. 6.4). Data to be

pushed forward or pulled backward depend on a one-bit mode

control by ORing the one-bit data type header and selected

bits in the address field. With a tree height of m, this

mode control at the ith level, Mi' is given by

m-l

U (U a

k>i

M.=1 a0), 0 < 1 < m-l (6.1)
k _ _

where the notation U stands for the logic OR operation and

a1 are the binary value in the address. If the mode con-

trol is ”1", data will be pushed forward; otherwise, they

will be buffered at the node at which they last visited and

be ready to be pulled backward.

Global data, which carry a "l" in the data type

header, a0, will allow themselves to be pushed forward

through the buffer network. However, local data which carry

a "0" in the data type header can never be pushed forward

beyond the root level, because the mode control at the root

level is always "0" for these data. Data which have already

been buffered down to a node at some level will be pulled

91

address

.-

data 0 o o a] 30

global absolute 1

data address

local d relative . 0

isp acement

data address

a0 : data type header

am-a.l : address field

a0 = l

am-a1 : absolute

address

a0 = 0

am : direction header

am_]-a.l : relative

displacement

address

Figure 6.4. The data address syntax.

92

backward by one of the two son nodes. The decision is deter-

mined by a left-right control, LRi’ at that level, with

1 g i 5 m-l (6.2)

where an is the direction header which determines whether

the data to be directed to their right or to their left. If

the left-right control is "l", the data will be pulled

backward by the right son node, and if it is '0", they will

be pulled backward by the left son node.

6.4. Hourglass Machine Performance Measures

The modified hourglass computing machine is character-

ized by its distributed computing structure and its hier-

archical communication geometry. The distributed computing

structure, as described in Section 5.4, provides a poten-

tial computing power of p x m. And utilization of this

computing power provides a direct measure on the hourglass

machine's computational rate. The hierarchical communi-

cation geometry is integrated with a linear intra-ring data

path structure and a logarithmic inter-ring data path

structure with a combined data transfer bandwidth of

(p+l)m-l of which ;>):In is the intra-ring bandwidth and m-l

is the inter-ring bandwidth. Since there exists a consider-

able difference in the bandwidth as well as the data trans-

fer times between these two types of data transfers, the

93

ratio (us the data transfer rate (the number of data trans-

fers in a given computational block) between these two

types will have a great impact on the hourglass machine's

overall performance.

Let ui be the data transfer rate corresponding to a

data path of 1 unit times and let

logzm

V = 2: ui

i=1

then the average transfer overhead f(m) in Equation 5.4 can

be evaluated as

logzm

2: i x u.

1

f(m) 1:2 (6.3)

v .

Here vue assume each intra-ring transfer is merely a memory

driving operation and is taken in a unit time. This can be

accomplished with the construction of fast pipelined data

paths within the computational rings. In the case that each

computational ring has an equal number of inter-ring data

transfers with every other ring, ui can be expressed as

u. = , i = 2, 3, ..., logzm (6.4)

94

Thus, f(m) becomes

_ (v - ulw'1 logzm

f(m) = 2: i

(logzm -1) i=2

V - u1

= -l (2 + 3 + ... + logzm)

V 1092(2 m)

V - u1

= -—-——-—— (log2m + 2)

2V

5

——— (logzm + 2) (6.5)

2

where E is the ratio of the inter—ring data transfer rate

to the intra-ring transfer rate. Algorithms which support

uniform inter-ring data transfers show a low degree of

locality. However, the data flow of these algorithms

usually has a very regular and simple pattern.

In another case, each computational ring interacts in

a weighted manner, more frequently with rings on shorter

data paths. For example, the data transfer rate, 1.11, has

an exponentially decreased funciton of

V - u

1 21

1

For such an example, the average transfer overhead, f(m),

becomes

_ -1 1092m (v — ul)i

f(m) = V :2

i=2

21

95

V - ul logzm i

= —— z ,

l

2 3 4 logzm

= E (_+- +_+ 000 +)

4 8 16 m

3

= —£ ' for I“ >> 1.
(6'6)

2

As evaluated, algorithms which support an exponential

decay inter-ring data transfer rate show a high degree of

locality and have a constant average transfer overhead.

6.5 Implementation Considerations

The feasibility of constructing a large hourglass

machine relies on the assumption that a. great deal of

computing elements and control buffers can be integrated

onto a single chip. Two issues which concern us most are

the I/O connections issue [8-9] and the on-chip intercon-

nections issue [22]. In its structure, the hourglass

machine shows some promising aspects on these two issues.

It is observed that (l) the I/O activities take place only

at the two ends of the hourglass; the number of I/O pinouts

grows only proportionally with the number of computational

rings and (2) the regular, simple and short communication

geometry inside the hourglass helps reduce substantially a

large amount of om-chip interconnections. Yet, the follow-

ing premises make the hourglass computing machine attrac-

tive to us.

(l)

(2)

(3)

(4)

96

The hourglass machine supports asynchronous compu—

tations based on data-driven principles. This allows

the use of fast asynchronous logic or self-timing

logic circuitry which, as being studied, represents a

considerable speed-up over synchronous logic [421.

The use of the boundary control buffer as the I/O

communication center relaxes some constraints imposed

on the systolic array architecture. The most signifi-

cant one is that the I/O pipelined rate must be kept

at the same as that of an inner-product computation.

In the hourglass the I/O idata can be fed into or

pumped out of the hourglass at a rate independent of

the computing element's computational speed.

The DICO and CIDO combination inside the hourglass

allows different IC technologies to be used. For

example, the centralized region is grown from a basis-

mixing density of one and this region can be construct—

ed from a fast IC technology such as ECL logic 'as

separated from the other decentralized region. By this

approach, the computational results from the DICO tree

can be swept across the narrow passage at a much

higher rate than the I/O data rate taking place at the

two ends of the hourglass.

The high degree of locality in the structure of the

hourglass machine promises the use of a local clocking

discipline for data transfer. This avoids using a more

complex system-wide clock discipline on a VLSI chip.

CHAPTER VII

CONCLUSIONS

7.1. Summary

VLSI defines a technology which promises to provide

for the future development of a chip with a circuit density

of three orders of magnitude greater than today's state-of-

the-art 32-bit microprocessor [2-3]. This promise, coupled

with the increased ability to design multiprocessor sys-

tems, has spawned an extensive research in computational

paradigms that differ from the conventional von Neumann

paradigm--the paradigm, which, as pointed out by Meyer

[43], has dominated the computer industry in the past two

decades. In fact, except for a few commercial machines

(e.g., some made by Burroughs Corporation), there have been

no significant advances in computer architecture since the

1950's. Some so-called advances that might come to mind

(e.g., Cache memories, instruction pipelining, the micro-

programming concept) are not really computer architecture

advances; they are improvements in the implementation of a

particular computer architecture.

It has become increasingly apparent that, even with

this upgrading, the von Neumann paradigm does not provide

97

98

the computational structure necessary to efficiently imple-

ment solutions to many problems [9,10,41]. Kung's systolic

array paradigm [8-9], and Dennis's data-flow paradigm

[24-28] are both examples of computational alternatives to

the von Neumann model--alternatives that promise to be more

cost-effective, when implemented, through using VLSI tech-

niques than the von Neumann paradigm.

Data-flow machines are built to take advantage of

parallelism inherent in data-flow programs. Systolic arrays

are special-purpose, high-performance data-flow structures

which are characterized. by having’ a simpleq regular' and

short communication geometry. But a principal drawback to

these special—purpose arrays is that they lack flexibility

in implementation; a given systolic array only implements

one specific algorithm (e.g., matrix multiplication, where

the size of the matrices are fixed for a particular array).

Another drawback is that an algorithm to be executed

efficiently (M: a systolic array must possess a very simple

and regular data-flow pattern. What's more, due to the I/O

constraint of pinouts on the chip, it is questionable that

the systolic array can be applied broadly as a coprocessor

for practical algorithm implementations.

The purpose of this research ‘was 11) investigate a

class of modified systolic array architectures known as

mixed systolic arrays which broaden the scope of appli-

cations executable on systolic arrays while retaining much

of the simplicity and regularity‘ of the systolic array

99

architecture. Specifically, we investigated a class of

array architectures which can be reprogrammed, can be

implemented with a reasonable amount of I/O pinouts, can

self-execute after the arrays have been loaded, and can

implement both asynchronous and synchronous computations.

To carry out this goal, our research efforts were based

upon four tasks: (1) development of the mixed systolic

array architectures, (2) modeling of the mixed systolic

array architectures, (3) development of a classification

scheme and evaluation model for these array architectures,

and (4) development of a sample implementation for these

array architectures.

In the development phase, we first focused on the

design of a small-scale mixed systolic array or a program-

mable systolic array in Chapter III. The structure, the

components, and the functional behavior of this program-

mable systolic array were described, and the execution of a

second-order recursive equation with nonconstant coef-

ficients on this array was illustrated. It was observed

that this programmable systolic array accomplished a

dynamic problem-solving capability without degrading its

performance as compared to Kung's nonprogrammable systolic

array. In Chapter IV, our research next centered upon the

development of the more generalized mixed systolic arrays.

We applied the mixing profile concept to construct mixed

systolic arrays from a building block as a basis. A case

study was made by developing mixed systolic arrays from a

100

number of hexagon bases with different basis-mixing densi-

ties. We also identified the mixing density function and

the boundary condition function--the two parameters which

characterize a mixed systolic array. The mixing density

function (Eq. 4.1) suggested that a particular MSA be used

for algorithms supporting a complexity ratio between data

routing and computing. The boundary condition function (Eq.

4.2) related a particular implementation to the ratio of

the global and local data bandwidth requirements of the

algorithms for which the MSA was intended. We further deve-

loped four different types of mixed systolic arrays, CICO,

CIDO, DICO, DIDO, based on a two-region mixing strategy,

and specified their potential uses.

In the modeling phase described in Chapter V, our

research advanced to studying how mixed systolic arrays

functioned. We began by forming a local computational ring

within a mixed systolic array. A computational ring was

formed to support both local computation and local communi-

cation, as well as to execute data-flow composite cells

based on data-driven principles. We then developed methods

to map a two-dimensional directed graph on a particular

computational ring for effective execution. In vertical

mapping, data-flow composite cells were formed along cri-

tical paths; while in horizontal mapping, the fork type of

data-flow instructions and the join type of data-flow

instructions were grouped together. By overlapping these

two mappings, we were able to load or schedule data-flow

101

instructions from a directed graph on computational rings

for local executions.

In the evaluation phase, we developed a general evalu—

ation model for measuring the performance of the mixed

systolic array based on an average load time and an average

transfer overhead measure in Equation 5.4. The average load

time reflects the I/O structure of a particular MSA imple-

mentation, and the average transfer overhead measures the

locality in algorithms executed on the mixed systolic

array. A case study was made with a DICO type of MSA based

on block-driven computations. This study showed that, when

most of the computations were uniformly distributed over

the computational rings, a DICO type of MSA had a per-

formance similar to a hex-connected systolic array. The

necessary locality represents the primary cost for achiev-

ing the flexibility of a reconfigurable multiprocessor

structure that is capable of implementing more than a

single algorithm.

In the sample implementation phase discussed in

Chapter VI, we developed a modified hourglass computing

model by using a DICO type of MSA and a CIDO type of MSA.

The hourglass computing model showed some promising aspects

in both VLSI computations and VLSI implementation. Based on

block-driven computations, the hourglass model provides a

programmable communication path hierarchy for fast data

transfer while at the same time achieving very high levels

102

of concurrency. Performance measures showed that the hour-

glass had a low constant average transfer overhead for

algorithms which support a high degree of locality in data

transfer.

7.2. Future Research

The mixed systolic array architecture under investi-

gation here represents a new approach which applies the

data-flow concepts to the execution of parallel algorithms

on a modified systolic array. It fits nicely into the

mainstream of architecture studies reported elsewhere [24-

28,34-36]. Moreover, the investigation of this architecture

points toward several important areas for additional study.

An investigation could be made into the system design

of matching parallel algorithms for a certain type of mixed

systolic array, or a combination of different types. With a

hierarchical system design facility, one is able to charac-

terize algorithms based on a fixed set of parameters (e.g.,

computational demands, control structures, and global data

vs. local data bandwidth requirements). And through a one-

to-one mapping, the matching processes can be carried out

in an iterative manner until a prespecified precision level

is reached. As an example [44], a class of algorithms can

be evaluated in terms of the size of its component modules,

the ways in which they can communicate or interact, and how

these interactions are controlled. Candidate MSA's are then

each evaluated in terms of their relative abilities to

103

support these algorithms' demands. A second investigation

that could. be pursued is the development of an on-chip

communication model for various MSA's structures. With an

on—chip communication model, the communication cost can be

evaluated in terms of computing power and queueing size and

I/O bandwidth when the algorithms are executed on a support-

ing MSA architecture. As an example, consider Kung's sys-

tolic algorithms on VLSI computations. The argument, ”compu-

tation is cheap while communication costly”, can be evaluat-

ed when such a model is available. And, finally, further

investigation that could be taken is the on-chip scheduling

problem. Since communications are likely to be the dominant

cost factor on future VLSI chips, on-chip scheduling metho-

dologies must be developed to minimize these costs. As an

example, the scheduling problem discussed in Section 5.3

can be extended to the algorithm or system level so as to

minimize the total communication cost.

10.

REFERENCES

Keyes, R.W., ”The Evolution of Digital Electronics

towards VLSI , " IEEE Journal of Solid-State Circuits ,

Vol. Sc-14, No. 2 (April 1979), pp. 193-201.

Mead, C.A., and Rem, M., "Cost and Performance of VLSI

Computing Structures," Technical Report 1584, Calif.

Institute of Technology Computer Science Dept. (1978).

Johnson, R.C., "32-Bit Microprocessors Inherit Main-

frame Features," Electronics, Vol. 54, No. 4 (Feb.

1981), pp. 138-140.

Patterson, D.A., and Sequin, C.H., "Design Consider-

ations for Single-Chip Computers of the Future," IEEE

Trans. oanomputers, Vol. C-29, No. 2 (Feb. 1980),

pp. 108-115.

Chang, T.L., and Fisher, P.D., "Programmable Systolic

Arrays," to be presented at the IEEE Compcon, Spring

1982.

Gajski , D.D. , Kuck , D.J. , and Padua, D.A. , "Dependence

Driven Computation , " Digest of Papers , IEEE Compcon

Srping 81 (Feb. 1981), pp. 168-172.

Kuck, D.J., The Structure of Computers and Compu-

tations, Vol. I, John Wiley & Sons, New York, 1978.

Kung, H.T., and Leiserson, C.E., "Algorithms for VLSI

Processor Arrays," Introduction to VLSI Systems, by

C.A. Mead and L.A. Conway, Addison-Wesley, 1980, pp.

271-292.

Kung , H.T . , "Let ' 3 Design Algorithms for VLSI Sys-

tems , " Proc . Caltech Conf . on VLSI (Jan . 1979) , pp .

65-90 .

Backus, J., "Can Programming be Liberated from the von

Neumann Style? A Functional Style and its Algebra of

Program,” CACM, Vol. 21, No. 8 (Aug. 1978), pp. 613-

641.

104

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

105

Ferrari, D., Computer Systems Performance Evalu-

ation, Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1978, pp. 245-255.

Barnes , G. , et a1 . , "The Illiac IV Computer , " IEEE

Trans. Comp., Vol. C-l7, No. 8 (Aug. 1968), pp. 746-

777.

Robinson, A.L., "Array Processors: Maxi Number Crunch-

ing for a Mini Price," Science, Vol. 203, No. 12

(Jan. 1979), pp. 156-160.

Gostick, R.W., "Software and Algorithms for the Distri-

buted-Array Processors," ICL Technical Journal (May

1979), pp. 116-135.

Kruse, B., ”A Parallel Picture-Processing' Machine,"

IEEE Trans. Computers, Vol. C-14 (April 1975), pp.

424-433.

Narendra, P., ”VLSI Architectures for Real-Time Image

Processing," Digest of Papers, IEEE Compcon Spring

1981, (Feb. 1981), pp. 303-306.

Flanders, P.M., et al., ”Efficient High Speed Comput-

ing with the Distributed Array Processor,” in High

Speed Computer and Algorithm Organi_zation, edited by

D.J. Kuck et al., Academic Press, 1977, pp. 113-128.

McCormick, B.H., "The Illinois Pattern Recognition Com-

puter," IEEE Trans. on Computers (Dec. 1963), pp.

Stone, H.S., "An Effective Parallel Algorithm for the

Solution of a Tridiagonal Linear System of Equations,"

Thurber, K.J., and Wald, L.D., "Associative and Paral-

lel Processors,” Computing Surveys, Vol. 7, No. 4

(Dec. 1975), pp. 215-255.

Seitz, C.L., ”Self-timed VLSI Systems," Proc. Caltech

Conf. on VLSI (Jan. 1979), pp. 345-355.

Franklin, M.A., and Warm, D.F., "Pin Limitations and

VLSI Interconnection Networks,” Proc. 1981 Intl.

Conf. on Parallel Processing (Aug. 1981), pp. 253-

258.

Karp, R.M., and Miller, R.E., "Properties of a Model

for Parallel Computations: Determinacy, Termination,

Queueing," SIAM J. Appl. Math., Vol. 14 (Nov. 1966),

pp. 1390-1411.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

106

Dennis, J.B., "Data Flow Supercomputers," Computer

Magazine, Vol. 13, No. 11 (Nov. 1980), pp. 48-56.

Dennis, J.B., and Misunas, D.P., "A Computer Architec-

ture for Highly Parallel Signal Processing," Proc. of

the ACM 1974 National Conf. (Nov. 1974), pp. 402-409.

Watson, I., and Gurd, J., "A Prototype Data-Flow Com-

puter with Token Labeling," AFIPS Conf. Proc., Nation-

al Computer Conf. (June 1979), pp. 623-638.

Davis, A.L., ”A Data-Driven Machine Architecture Suita-

ble for VLSI Implementation,” Proc. Caltech Conf. on

VLSI (Jan. 1979), pp. 479-494.

Rumbaugh, J.E., "A Parallel Asynchronous Computer

Architecture for Data Flow Programs," Project MAC TR-

150, M.I.T., Cambridge, Mass. (May 1975).

Chang, T.L., and Fisher, P.D., "A Block-Driven Data-

Flow Processor," Proc. 1981 Intl. Conf. on Parallel

Processing (Aug. 1981), pp. 151-155.

Davis, A.L., Denny, W.M., and Sutherland, I., ”A Char-

acterization of Parallel Systems," Technical. Report

108, Computer Science Dept., University of Utah (Aug.

1980).

Palmer , J. , "The Intel 8087 Numeric Data Processor , "

Proc . Seventh An_nua1 Symp . on Computer Architecture

Chen. T.C., ”Parallelism, Pipelining, and Computer

Efficiency," Computer Design, Vol. 10 (Jan. 1971),

pp. 69-740

Davidson, E.S., and Larson, A.G., "Pipelining and

Parallelism in Cost-Effective Processor Design," Res.

Report, Digital System Lab, Stanford University,

Stanford, Calif. (1973).

Leiserson, C.E., "Systolic Priority Queues," Proc.

Caltech Conf. on VLSI (Jan. 1979), pp. 199-214.

Guibas, L.J., Kung, H.T., and Thompson, C.D., ”Direct

VLSI Implementation of Combinatorial Algorithms , "

Proc. Caltech Conf. on VLSI (Jan. 1979), pp. 509-

525.

Gannon, D., and Snyder, L., "Linear Recurrence Systems

for VLSI: The Configurable, Highly Parallel Approach,”

Proc. 1981 Intl. Conf. on Parallel Processing (Aug.

1981), pp. 259-260.

37.

38.

39.

40.

41.

42.

43.

44.

107

Chang, T.L., and Fisher, P.D., ”Mixed Systolic Ar-

rays," submitted for presentation at Ninth Annual

Symp. on Computer Architecture, Texas, 1982.

Song, S.W., "A Highly Concurrent Tree Machine for Data-

base Applications," Proc. 1980 Intl. Conf. on Paral-

lel Processing (Aug. 1980), pp. 259-268.

Weng, K., "Stream Oriented Computation in Recursive

Data-Flow Schemes," Project MAC TM-68, M.I.T.,

Cambridge, Mass. (Oct. 1975).

Bergland, G.D., "A Guided Tour of Program Design Metho-

dologies , " IEEE Computer , Vol . 14 (Oct . 1981) , pp .

13-37.

Arvind , "Decomposing of a Program for Multiple Pro-

cessor Systems , " Proc . 1980 Intl . Conf . on Parallel

Processing (Aug. 1980), pp. 7-14.

Bridge, C.L., Fisher, P.D. and Reynolds, R.G., "A Syn-

chronous Arithmetic Algorithms for Data-Driven Ma-

chines, "Proceedings of the 5th Symposium on Computer

Arithmetic, (May 1981), pp. 56-62.

Meyer, G., Advances in Computer Architecture, Wiley,

New York, 1978.

Reynolds, R. G. and Chang, T.L., "The PAL System-A

Parallel Algorithm Design System for VLSI-Based Array

Architectures," to be presented at The 10th IMACS

World. Congress on SYSTEMS SIMULATION AND SCIENTIFIC

COMPUTATION, (Aug. 1982), Montreal, Canada.

