OVERDUE FINES:
25¢ per day per item
RETURNING LIBRARY MATERIALS:

Place in book return to remove
charge from circulation records




INTERACTION OF ELECTROMAGNETIC FIELDS

WITH HETEROGENEOUS BIOLOGICAL SYSTEMS

by

Sutus Rukspollmuang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering and Systems Science

1979



ABSTRACT

INTERACTION OF ELECTROMAGNETIC FIELDS

WITH HETEROGENEOUS BIOLOGICAL SYSTEMS

by

Sutus Rukspollmuang

This thesis presents the theoretical and experimental results
of the induced electric field inside a biological system when it is
irradiated by a non-ionized electromagnetic radiation. This study
was conducted because of the need of quantifying the induced EM
field in a biological body in the study of potential EM radiation
hazards and in the biomedical applications involving EM radiation.

A numerical method based on a tensor integral equation is
briefly outlined. The accuracy of this numerical method is verified
by the exact solution of Mie theory for the induced EM heating
inside the homogeneous spherical models of human and animal heads.
The numerical method is also used to determine the induced EM
heating in a realistic model of human or animal head that consists
of a brain of realistic shape and eyes surrounded by a bony
structure.

The induced electric fields in irradiated, electrically small
cubes filled with phantom material were measured by an electric
field probe. The measured results were in good agreement with

theoretical results obtained from the tensor integral equation



method. An implantable electric field probe with an interference-
free wire system was constructed at a nominal cost for the purpose
of measuring the induced electric fields in a phantom model when it
is irradiated by EM waves of various frequencies. A phantom model
of man which was constructed with thin plexiglass filled with
phantom material, was irradiated by 500 to 3000 MHz EM waves in a
microwave anechoic chamber. The distribution of the measured
electric field was compared with the distribution of theoretical
results obtained numerically from the tensor integral equation
method. A quanlitative agreement was obtained between experiment
and theory.

A study has been conducted to investigate effective methods of
inducing hyperthermia in the tumors embedded in animal and human
bodies by ultilizing EM fields. The distributions of SARs in
biological bodies with embedded tumors induced by various EM fields
are theoretically quantified to assess the effectiveness of various
local EM heating schemes.

The tensor integral equation method is combined with an
iteration process to provide a scheme that extends the tensor
integral equation method to handle a body consisting of a very large
number of cells, while sidestepping the problem of computer storage
limitation. In some medical applications, a local part of a
biological body is magnetized and irradiated by an EM field. To
analyze such a body the existing tensor integral equation method is
generalized to handle a body with an arbitrary permeability in
addition to arbitrary conductivity and permittivity. In addition,
three computer programs used in this study are described along with

their instructions and the program listings.
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CHAPTER 1

INTRODUCTION

In recent years, many researchers have studied the induced
electromagnetic heating inside biological systems because of the
controversy of potential health hazards due to non-ionizing EM
radiation and the applications of EM radiation in biomedical area.
Electromagnetic waves in the frequency range of HF to UHF may cause
adverse effects in biological systems. Some of these effects can
be harmful at high intensities, causing cancer, burns, cataracts,
etc. However, if it is under the controlled condition at lower
intensities, electromagnetic radiation can be used for therapeutic
purpose and to make useful diagnostic measurements. In order to
predict the effects of EM radiation on biological systems, and for
the applications of EM radiation, induced EM heating inside biological
body needs to be determined. The determination of the induced EM
fields inside biological system can be approached from both the
theoretical and experimental viewpoints.

Theoretically, biological systems have been approximated by

simple mathematical models such as plame slabs, spheres or cylinders.
These simple models, however, can provide only very approximate
results. In reality, a biological system is usually a heterogeneous
finite body with an irregular shape, and it is necessary to use a

realistic model for the biological system if accurate results on



the induced EM fields inside the system are needed.

To handle such an irregular geometry, the only potent method is
the numerical method with the help of a high-speed computer. This
research deals with the theoretical and experimental studies of the
induced EM fields inside biological systems irradiated by various
types of EM radiation. The numerical technique called the tensor
integral equation method has been used in this research, and this
method is outlined in Chapter 2.

The accuracy of tensor integral equation method is verified by the
exact solution of Mie theory and the experimental results in Chapter
3 and 4, respectively. 1In Chapter 3, we compare the numerical results
with the exact solutions of Mie theory for the induced EM heatings
inside homogeneous spherical models of human and animal heads at 918
and 2450 MHz. The induced EM heatings inside realistic models of
human and animal heads are also included. Chapter 4 contains numerical
and experimental results for the induced electric fields inside the
cubical phantom models with different sizes.

Chapter 5 is devoted to the theoretical and experimental studies
on the induced electric field inside human body irradiated by EM
waves of various frequencies. A phantom model of man was constructed
with thin plexiglass filled with phantom material. The model was
irradiated by 500 to 3000 MHz EM wave in a microwave anechoic chamber.
Induced electric fields were probed over 28 locations in one side of
the model. The distribution of the measured electric fields was
compared with the distribution of theoretical results obtained from

the tensor integral equation method.



Chapter 6 is devoted to the theoretical study on local EM heating
of tumors in biological bodies. One of the therapies for cancer is
that of hyperthermia in combination with chemotherapy. When the
temperature of a tumor is raised a few degrees above that of surrounding
tissue, accompanying chemotherapy has been found to be effective in
treating the tumor. The purpose of this study is to find a noninvasive
method by which to heat the tumor without overheating other parts of
the body. In order to find such a method, we have theoretically
studied the heating pattern induced inside the body with tumor when
it is irradiated by various EM fields with certain schemes.

The combination of the tensor integral equation method (TIEM)
with an iteration technique is discussed in Chapter 7., When the TIEM
is applied to quantify the induced EM field in an electrically large
body, it is necessary to divide the body into a large number of cells
to obtain accurate results. This will lead to a large number of
unknowns in the numerical calculation and overloading the computer
storage. This method of combining an iteration technique with TIEM
is designed to overcome these problems.

In some biological applications it may be feasible to introduce
nontoxic magnetic powder into a local region so that the absorbed
power at the local region is enhanced when it is irradiated by an EM
field. The generalized TIEM which is designed to handle the bcdywith
arbitrary permeability in sddition to arbitrary conductivity and
permittivity is discussed in Chapter 8.

Chapter 9 includes a description and listing of the computer

programs used in this study. Part 1, program FIELDS is used to quantify



the induced electric field inside an arbitrarily shaped biological
body. Part 2, program ITERATE, is the extension of program FIELDS
with an addition of iteration process. This program is useful for
a large body with a large number of cells. Part 3, program EMFIELD,
is used to quantify the induced electric and magnetic fields inside
an arbitrarily shaped biological body with arbitrary permeability,
permittivity and conductivity. Definitions of input variables, the
construction of data files and the useage instruction are given in

each part.



CHAPTER 2

REVIEW OF TENSOR INTEGRAL EQUATION METHOD

In this chapter the tensor integral equation method is briefly
outlined. Induced electric field inside the irradiated, arbitrary-
shape biological body or system was obtained by this tensor integral
equation method which surved as our theory in this study. The accuracy
of our theory (numerical result) has been checked by comparing with the
exact solution of Mie theory in Chapter 3 and comparing with the

experimental result in Chapter 4.

2.1 Description of problem

The theoretical method used in this study is based on a tensor
integral equation developed by Livesay and Chen (1). When a bio-
logical system is illuminated by an electromagnetic wave, an electro-
magnetic field is induced inside the body and an electromagnetic wave
is scattered by the body in the region exterior to the body. 1In
general the biological system is an irregularly shaped heterogeneous
conducting medium and its electrical parameters are dependent on fre-
quency of incident electromagnetic wave and locations within the body.

Conventionally they are assumed to be

g=90 (w,_f)
€=¢ (W,r)
H =

UO

The 1induced electromagnetic field inside the body, in general,

depends on the body's physiological parameters and geometry, as well as

5



the frequercy and polarization of the incicent wave.

Based opn Maxwell's equaticms, we can obtain a tensor integral
equation vhich relates unknowr induced electric field inside the system
to the incident electric field. After using a pulsec-function expansion
of the unknown induced electric field 2nd point-matching, we employ the

method of moments to sclve the integral equation numerically.

2.2 Tensor Integral Equation for the Induced Flectric Field

Consider a finite biological body of arbitrary shape with permit-
tivity e(?), conductivity of o(¥) ard permeability My illuminated in
free space by an incident electroragnetic wave with an electric field
ﬁif;) and magnetic field ﬁi(;). We car write Maxwell's equations for

this incident FM field in free space as

NI -moﬁ‘(l'{) (2.1)
Ve E@® = jueE@ (2.2)
veE@® = o (2.3)
v-E@d = o (2.4)

where vo and eo are the permeability and permitiivity of free space.
When a biological body is illuminated by the incident electromagnetic
field, it creates a distritution of induced charges and currents
throughout the body. These charges and currents produce a scattered
field. Thus, the total electromagnetic field inside the body is the

sum of the incident field and the scattered field:



B + B0 (2.5)

tm

~

hy
[}

H@G) = i@ + 8@ (2.6)

Combining e~. (21), (2.2), (2.3), (2.4) with eq. (2.5), (2.6)
and Maxwell's equations for the total electromagnetic field we obtain

Maxwell's equations for the scattered field as

VxE(E) = -juw M 15 (1) (2.7)
VxR = {0 + @ - e I E @ + jue B°@  (2.8)
Defining an equivalent volume current density jeq (;) as
Eeq('r’) = 1@ E® (2.9)

where T (;) =0 (;) + jw [E(;)—Eo] is the equivalent complex conductivity.

Eq. (2.8) can be rewritten as
Vx B () = Eeq(¥) + jue E5(D) (2.10)

>
The equation of continuity for Jeq(;) defines an equivalent volume

charge density peq(;) as

v - Eeq(?) + jwpeq(;) = 0 (2.11)

or

Pog@® = 2V .3 & (2.12)

Taking the divergence of eq. (2.10) and using eq. (2.12) gives

NN Py ()
v TE3(T) = —e-::L (2.13)
(o]



+s > &g >
Finally, Maxwell's equations for E"(r) and H (r) can be written

as

Vx E5(® = -1 eu E@ (2.14)

Vx B85(r) = Equ) + j weo'és(?) (2.15)
>3 > _ l >

V.E@E) = . Peq(®) (2.16)

v-aS(E) = o (2.17)

The scattered electric field Es(;) within the body can be deter-

mined from the following equation (2,3) :

> ->
. J_ (r)
5@ = P.V./Eeq(}*) - CE,TY av! -%&e— (2.18)
(0]
v
where
CE,T) = -jue ff+ﬂ] ¥(r,t")
o 2
(o]

- k l->-)'|
e 3 ° r-r

> >
¥(r,r') = T P

0 A AN AN

I = xx+ yy + zz
= w

ko Yu €

>

P.V. symbol means the principle value of the integral, and G(;,?')

is the free space tensor green's function.



By substituding eq. (2.18) in eq. (2.5), rearranging terms,

and recalling that Eeq(;) = T(;) E(;), we can obtain a tensor integral
equation as
-
L+32]2® - rv. [r@nE@)TEina - O (2.19)
o)

>{ - -> > >
E"(r) and T(r') are known quantities and E(r) is the total induced

field inside the body.

2.3 Moment Solution of Tensor Integral Equation

It is very difficult to solve the tensor integral equation by
performing integral which involved unknown g(;) inside the integral.
One simple possibility is to solve the tensor integral equation

numerically by using the method of moments.

If the body is partitioned into N subvolumes or cells and E(;)
and T(;) are assumed to be constant within each cell, tensor integral
equation (eq. 2.19) can be transformed into 3N simultaneous equations
for Ex, Ey’ and Ez at the center of N cells by the point matching

method. These simultaneous equations can be written into a matrix

form as
-~ - r 1 r -
I G I G E gl
XX Xy Xz X X
oo L2 -2 -
| ]
G ' '@ E = | gt (2.20)
S YX_L LYY ov_vEo ||y o _ 1. )
] ]
G 'c e E gl
zZX | 2y | 2z z z
L ! ! - L o L o
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The [G]matrix is a 3N x 3N matrix, while [ E] and[Ei] are
3N column matrices expressing the total electric field and the
incident electric field at the centers of N cells. The elements
of [G ]matrix “ave been evaluated in the next section. Therefore,
with the known incident electric field E‘(;) the total induced electric
field E(;) inside the body can be obtained from eq. (2.20) by

inverting the [ G ] matrix.

2.4 Calculation of Matrix Elements

The expressions for the elements of each NxN submatrix [Gx x ],

Pq
P, 9 = 1,2,3 are given in this section.

Let
x1=x, x2=y and x3=z
The (m,n)th off diagonal element of the [Gx x] matrix is given (1)
b Pq
y
-ja
-jup k t(r_)Av_e ~"mn
G;:nx = =2 n3 : [(a:m -1 - jozmn) §
P q 4o Pq
mn
mn mn 2
+ cos 8 cos 6 3 - a + 3jo¢mn)], m#n (2.21)
P q
where
-+ ->
o =k R 3 R = ]r - T |
mn o mn mn m n
m n m
X - x x7 - xn
cos emn ='_pR“'—R 3y cos emn =9 __ 9
P X
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+> m > n
r = ( 10 %y 0 x3), r (x1 » Xy 5 X )
Av = /dv'
n
v
n

The (n,n)th diagonal element of the [Gx x ] matrix is given by (1)
PqQ

25wy T(r )
™ = -5 (—a—1 [ eIk (14 jka) - 1]
X X Pq 2 on
Pq ‘ o
T(r )
+ [ 3jw€ (2.22)
where
3Av 1/3

2 =[]
n 4m

After all the elements of [Gj] matrix are determined, the total

induced electric field ﬁ(;) inside the body can be obtained by in-

verting the LG matrix as
[ ] [ _ 1 ' ] [ i ]
E G 1 G ' G -1 E
- X - XX _xy b xz X
! |
= | [ i
E G 1 G i G E
y yX oo Yy, vz y
]
- - R -1-
E G 1+ G Vg E
z ZX | zy 1 zz z
A |
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After E(?) field is determined, the absorbed power density is
determined from P = g/2 'EIZ. To verify the accuracy of the tensor
integral equation method, the numerical results generated by this
method were compared with the existing exact solution and experimen-

tal results in the following chapters.



CHAPTER 3

INDUCED EM FIELDS IN SPYERICAL BODIES...

HUMAN AND ANIMAL HEADS

In this chapter the accuracy of the tensor integral equation
method which serves as our theoretical tool is checked. The induced
heating patterns inside a homogeneous spherical brain obtained by
the tensor integral equation method are compared with the correspond-
ing results obtained from the exact solution of Mie theory (4,5).
After the theory was verified it was used to predict the induced

heating patterns inside human and animal heads.

3.1 The Mie Theory (4,5)

Consider a sphere of radius a which is illuminated by a plane
wave, whose electric field is linearly polarized in the x-direction
and propagates in the + z direction. The expression of this incident

field in terms of vector spherical wave functions is:

oo
e —jwt 2n+1 > o
E = E e 0=l n(n+l) (Moln jNoln) (3.1)

where Eo is the amplitude of the incident electric field.

When EM wave is incident upon a sphere, it will give rise to a
forced oscillation of free and bound charges synchronous with the
applied field. This oscillation of charges will set up a secondary

field both inside and outside the sphere.

13
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According to Mie theory, the electric field E induced inside a
conducting sphere by a plane EM wave with an incident electric field
Ei can be calculated from the general vector spherical wave solution

of the wave equation as

[e o]
A § .\ 2n+l > >
E=E nzl (3 n(n+l) (anMoln 3 bn Nolm) (3.2)
where the vector functions ﬁ and ﬁ are defined, and the co-
oln olm

efficients an and bn are obtained in Stratton (5). Numerical results
computed from eq. (3.2) were considered to be the exact solution to

the problem.

3.2 Formulation of the problem

To check the accuracy of the tensor integral equation method
(outlined in Chapter 2), the method was employed to determine the
distributions of the absorbed power density or the EM heating induced
by plane EM waves of 918 MHz and 2450 MHz in the spherical models
of animal and human brains having radii of 3 cm and 7 cm, respectively.
Numerical results obtained from this method were then compared with
the exact solution of Mie theory.

In order to apply the numerical method, a sphere is first
approximated by a "cubic sphere'" which is constructed with a number
of small cubic cells. Figure 3.1 shows an example that one eighth
of a sphere is approximated by one eighth of a "cubic sphere" which is
constructed with 73 small cubic cells. It is evident that a better approxi-
mation can be achieved by a larger number of smaller cubic cells. However,
to economize the computing time, the number of cubic cells or subdivisions

should be compromised.
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In the present study, we subdivide one eighth of the sphere either
into 40 or 73 cubic cells.

A plane EM wave propagating in the + z direction is assumed to
be incident upon the sphere with a vertically polarized electric
field Ei in the x-direction and the associated magnetic field in the

y-direction. The ﬁi field can be expressed as

~ "jk r4
(o]

E- = x Eo e v/m (3.3)

where Eo is the amplitude of the incident electric field and is equal

to

E = 2COP v/m (3.4)

In eq. (3.4), P, is the incident power density in W/m2 and

i
Co is the impedance of free space having a value of 377 ohms. In the

following examples, we used P, = 1 mW/cm2 and E = 66.83 V/m. K in

i
eq. (3.3) 1is the propagation constant of the EM wave in free space.

with eq. (3.3), Ei at the center of each cubic cell of the "cubic
sphere" can be specified. With this information on Ei, electrical
properties of cubic cells and given geometry of the '"cubic sphere",
the induced electric field E in each cubic cell is numerically com-
puted based on the tensor integral equation method. After E is
determined, the absorbed power density or the specific absorption rate
(SAR) of the EM energy is obtained from P = O/ZIEIZ. The average
heating is obtained by averaging out P inside the sphere.

The maximum heating is identified by the maximum value of P at a

certain location inside the sphere. The curve showing the relative
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o
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Figure 3.1 One eighth of a sphere is approximated by one eighth
of a "cubic sphere" which is constructed with 73 small

cubic cells.
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heating as a function of location is obtained by normalizing the
distribution of P with respect to the maximum heating. The dielectric
constant Er and conductivity o of the brain at 918 MHz and 2450 MHz

are obtained from values reported by Schwan (6).

3.3 1Induced EM Field in Homogeneous Spheres

As the first example, we consider the case of a spherical
model of animal brain of 3 cm radius exposed to a plane EM wave of
918 MHz propagating in the + z direction and with a power density of
1 mW/cmz. At this frequency, the dielectric constant €. of the sphere
(brain) is assumed to be 35 and the conductivity 0=0.7 s/m. The brain
is approximated by a "cubic sphere'" and one eighth of it is construct-
ed by 40 cubic cells, The numerical results are shown in Figure 3.2a
where relative heatings along the x, y and z axe¢s inside the "cubic
sphere" are plotted, and the average and maximum heatings are indicated.
The three curves marked X, Y and Z show the distributions of the
relative heatings or the relative SARs along the X, Y and Z axes,
respectively. These curves show strong standing wave patterns with
a peak heating located somewhere in the front half of the brain. The
average and maximum heatings are found to be 0.3202 mw/cm3 and 0.885
mW/cmB, respectively.

To check the accuracy of the numerical results presented in
Figure 3.2a, the induced EM heating was computed in a spherical brain
of the same radius based on the exact solution of Mie theory. The
corresponding results are shown in Figure 3.2b. The relative heating
curves along the X, Y and Z axes based on the exact solution resemble

closely with that shown in Figure 3.2a. It is noted that the curves
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(40 Subdivisions)

Pi =1 mW/cm2

0.3202 mw/cm’
3

Ave. heating

c=0.7 S/m Max. heating = 0.885 mW/cm
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Figure 3.2a.

3.0

cm

Distributions of heating along the x, y and z axes

of a "cubic spherical" brain of 3 cm radius induced

by a plane EM wave of 918 MHZ propagating in the +z
direction with a power density of 1 mW/cm2. Electrical
properties of the brain, the average and maximum
heatings are shown. One eighth of the "cubic sphere"
is constructed with 40 cubic cells.
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(Exact Solution)

. . 2
Brain (3 cm radius) Pi = 1 mW/cm

Freq. = 918 MHz Ave. heating 0.295 mw/cm3

€, = 35, 0 = 0.7 S/m Max. heating = 0.814 mW/cm3

1.0

Relative heating

| | | 1 l ] ] _1 1
-3.0 -2.4 -1.8 -1.2 -.6 O .6 1.2 1.8 2.4 3.0

0

cm

Figure 3.2b. Distributions of heating along the x, y and z axes of a
spherical brain of 3 cm radius induced by a plane EM
wave of 918 MHz propagating in the +z direction with a
power density of 1 mW/cm“. Electrical properties of the
brain, the average and maximum heatings are shown.
Numerical results are obtained from the exact solution
of Mie theory.
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shown in Figure 3.2b are the distributions of SARs along the X, Y and
Z axes while those curves shown in Figure 3.2a are, strickly speaking,
the distributions of SARs along the centers of cubic cells which line
adjacent to the X, Y and Z axes. Therefore, a perfect agreement
between those two sets of curves is not expected. The average and
maximum heatings based on the exact solution are found to be 0,295
mW/cm3 and 0.814 mW/cm3, respectively. These values are in agreement
with the corresponding numerical results shown in Figure 3.2a with a
deviation of less than 97%. The comparison of Figure 3.2a and 3.2b
confirms the accuracy of our numerical method.

In the second example, we consider the same spherical model of
animal brain of the first example exposed to a plare EM wave of 2450
MHz propagating in the + z-direction with a power density of 1 mwlcmz.
At this frequency, €. and 0 of the brain are assumed to be 30.9 and
1.1 S/m, respectively. Figure 3.3a shows the numerical results on
the distributions of relative heating, the average and maximum heating
in the spherical brain that is approximated by a "cubic sphere" with
one eighth of it constructed with 40 cubic cells, The distributions
of heating along the X, Y and Z axes show a strong resonant peak in
the center of the brain. The maximum heating near the center of the
brain is found to be 1.576 mW/cm3 which is about twice the value for
the case of 918 MHz. The average heating is found to be 0.235 mW/cm3
which is about the same as the case of 918 MHz.

The corresponding results for this example based on the exact
solution of Mie theory are given in Figure 3.3b. The distributions of
relative heating along the X, Y and Z ax®s show similar but somewhat

sharper resonant peaks than that shown in Figure 3.3a. The average
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(40 Subdivisions)

Brain (3 cm radius) Pi =1 mW/cm2
Freq. = 2450 MHz Ave. heating = 0.235 mW/cm>

€ =30.9, 0 = 1.1 S/m Max. heating = 1.571 mW/cm>

r

1.0

0.6

0.4}

Relative heating

Figure 3.3a. Distributions of heating along the x, y and z axes of a
"cubic spherical" brain of 3 cm radius induced by a plane
EM wave of 2450 MHz propagating in the +z direction with
a power density of 1 mW/cm“. Electrical properties of
the brain, the average and maximum heatings are shown.
One eighth of the '"cubic sphere" is constructed with 40
cubic cells.
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and maximum heatings are 0.278 mW/cm3 and 1.698 mW/cm3, respectively.
These values based on the exact solution are quite close to the
numerical results given in Figure 3.3a.

In the third example, we consider a spherical model of human brain
of 7 cm radius exposed to a plane EM wave of 918 MHz propagating in
the + z direction with a power density of 1 mW/cmz. At this frequency,
er and 0 of the brain are assumed to be 35 and 0.7 s/m, respectively.
Figure 3.4a shows the numerical results on the induced EM heatings
calculated with the model of a '"cubic sphere'" of 7 cm radius, with one
eighth of it constructed with 40 cubic cells. We observe that a
resonance is induced in the brain and the peak heating occurs in the
central part of the brain. The average and maximum heatings are found
to be 0.1065 mW/cm3 and 0.5937 mW/cm3, respectively.

When one eighth of the same '"cubic sphere" of 7 cm radius is
constructed with 73 smaller cubic cells, numerical results on the
induced EM heating are somewhat modified as shown in Figure 3.4b. The
resonant peak of heating become sharper compared with that of Figure
3.4a and the average and maximum heating become 0.115 mW/cm3 and 0.619
mW/cm3, respectively.

The corresponding numerical results in a spherical brain of 7 cm
radius based on the exact solution of Mie theory are shown in Figure
3.4c. The resonant peaks of heating in Figure 3.4c are somewhat
sharper than that of Figure 3.4b, and the average and maximum heating
are found to be 0.117 mW/cm3 and 0.458 mW/cm3, respectively.

If we compare the results of Figures3.4a and 3.4b with that of

Figure 3.4c, it is clear that numerical results of our numerical
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(Exact Solution)

Brain (3 cm radius) Pi =1 mw/cm2

Freq. = 2450 MHz Ave. heating = 0.278 mw/cm3
e = 30.9, ¢ = 1.1 S/m Max. heating = 1.698 mW/cm>
1.0

0.8

0.6

Relative heating

l | | | ] | | 1 ]
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cm

Fibure 3.3b. Distributionsof heating along the x, y and z axes of a
spherical brain of 3 cm radius induced by a plane EM
wave of 2450 MHz propagating in the +z direction with
a power density of 1 mW/cm“. Electrical properties of
the brain, the average and maximum heatings are shown.
Numerical results are obtained from the exact solution
of Mie theory.
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(40 Subdivisions)

Brain (7 cm radius) Pi =1 mW/cm2
Freq. = 918 MHz Ave. heating = 0.1065 mW/cm3
e_ =35 0=0.7S/m Max. heating = 0.5937 mW/cm>

cm

Figure 3.4a. Distributions of heating along the x, y and z axes of a
"cubic spherical" brain of 7 cm radius induced by a plane
EM wave of 918 MHz propagaEing in the +z direction with
a power density of 1 mW/cm“. Electrical properties of the
brain, the average and maximum heatings are shown. One
eighth of the "cubic sphere" is constructed with 40 cubic
cells.
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(73 Subdivisions)

Brain (7 cm radius) Pi =1 mw/cm2
Freq. = 918 MHz Ave. heating = 0.115 mW/cm3
€. = 35, 0 = 0.7 S/m Max. heating = 0.619 mW/cm3
1.0
0.8-
0.6
0.4pF
0.2
0 1 1 [] [ 1 1
2.0 4.0 6.0

Figure 3.4b.

Distributions of heating along the x, y and z axes of a

"cubic spherical" brain of 7 cm radius induced by a plane

EM wave of 918 MHz propagating in the +z direction with a

power density of 1 mW/cm4. Electrical properties of the

brain, the average and maximum heatings are shown. One

eighth of the "cubic sphere" is constructed with 73 cubic cells.
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(Exact Solution)

Brain (7 cm radius) Pi =1 mw/cm2
Freq. = 9]8 MHz Ave. heating = 0.117 mW/cm3
e, =35 0=0.7 S/m Max. heating = 0.458 mW/cm>

Relative heating

| 1 | | 1 | l | |

0
-7.0 -5.6 -4.2 -2.8 -1.4 0 1.4 2.8 4.2 5.6 7.0

cm

Figure 3.4c. Distributiors of heating along the x, y and z axes of a
spherical brain of 7 cm radius induced by a plane EM
wave of 918 MHz propagating in the.+2z direction with a power
density of 1 mW/cm2. Electrical properties of the brain,
the average and maximum heatings are shown. Numerical
results are obtained from the exact solution of Mie theory.
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method can be improved significantly by increasing the number of
subdivision on the sphere. It appears that when one eighth of a
spherical brain of 7 cm radius is subdivided into 73 cubic cells,
our numerical method is capable of producing satisfactory results
at 918 MHz,

The last example is for the case of the same spherical model
of human brain exposed to a plane EM wave of 2450 MHz propagating
in the + z direction with a power density of 1 mW/cmz. €. and ©
for the brain are assumed to be 30.9 and 1.1 s/m respectively.
Numerical results on the induced EM heatings calculated in a "cubic
spherical" brain of 7 cm radius, and with one eighth of it construct-
ed with 40 cubic cells, are shown in Figure 3.5a. The corresponding
numerical results calculated in the same '"cubic spherical" brain
but with one eighth of it constructed with 73 cubic cells are shown
in Figure 3.5b. Numerical results for a spherical brain of 7 cm
radius obtained from the exact solution of Mie theory are shown in
Figure 3.5c. Comparing the results of Figures3.5a and 3.5b with
that of Figure 3.5c, it 1is observed that when one eighth of the brain
of 7 cm radius is subdivided into 40 cubic cells, our numerical
method produced poor results at 2450 MHz. However, if the subdivision
is increased from 40 to 73, much improved results are obtained. The
main difficulty our numerical method encounted in this case was the
failure in predicting the rapidly attenuating nature of the induced
heating in the front surface of the brain. The reason for this
difficulty is that the skin depth of a 2450 MHz EM wave is quite

shallow in a spherical brain tissue of 7 cm radius, and the numerical
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(40 Subdivisions)

Brain (7 cm radius) Pi =1 mW/cm2
Freq. = 2450 MHz Ave. heating = 0.068 mW/cm3
e, =30.9, 0 = 1.1 8/m Max. heating = 0.141 mW/cm>
1.0
0.8 F
0.6 o

cm

Figure 3.5a. Distributions of heating along the x, y and z axes of a
"cubic spherical"” brain of 7 cm radius induced by a plane
EM wave of 2450 MHz propagating in the +z direction with
a power density of 1 mW/cm“. Electrical properties of the
brain, the average and maximum heatings are shown. One
eighth of the '"cubic sphere'" is constructed with 40 cubic
cells.

N\
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(73 Subdivisions)

. 2
Brain (7 cm radius) Pi = 1 mWw/cm
Freq. = 2450 MHz Ave. heating = 0.094 mw/cm3
€. = 30.9, 6 = 1.1 S/m Max. heating = 1.1 mw/cm3

-6.0 -4.0 -2.0 0 2.0 4.0 6.0

Figure 3.5b. Distributions of heating along the x, y and z axes of a
"cubic spherical"” brain of 7 cm radius induced by a plane
EM wave of 2450 MHz propagating in the +z direction with a
power density of 1 mW/cm2. Electrical properties of the
brain, the average and maximum heatings are shown. One
eighth of the "cubic sphere'" is constructed with 73 cubic
cells.
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(Exact Solution)

Brain (7 cm radius) Pi =1 mW/cm2
Freq. = 2450 MHz Ave. heating = 0.092 mw/cm3
€. = 30.9, 0 = 1.1 S/m Max. heating = 0.396 mW/cm3

Relative heating
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Figure 3.5c.

cm

Distributions of heating along the x, y and z axes of a
spherical brain of 7 cm radius induced by a plane EM wave
of 2450 MHz propagating in the +z direction with a power
density of 1 mW/cm2. Electrical properties of the brain,
the average and maximum heatings are shown. Numerical
results are obtained from the exact solution of Mie theory.
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result on the induced EM heating in each cubic cell is the average
heating within the cell, therefore unless the size of the cubic cell
is small or comparable with the =zkin depth, the rapidly attenuating
nature of the induced EM heating cannot be predicted by our numerical
method. In Figure 3.5a, the rapidly attenuating nature of the induced
EM heating in the front surface is missing because the cubic cell in
this case is relatively large electrically. However, as the size of
the cubic cell is reduced as in Figure 3.5b, the rapidly attenuating
nature of the induced EM heating is recovered in the front surface of
the sphertal brain. The average heatings predicted by the nunerical
method are quite good, especially, for the case of 73 subdivision.
For the maximum heating, numerical results at this frequency are poor.
From this example, it appears that to calculate the internal EM
field induced by a 2450 MHz EM wave inside a typical spherical model
of human brain with our numerical method, the subdivision of one eighth
of the sp':erical brain into 73 cubic cells can only yield fair results.
More accurate results will necessitate the subdivision of the spherical
brain into a larger number of smaller cubic cells. Fortunately, the
case of 2450 MHz is not as important as the case of 918 MHz, because
the latter induces a strong resonance in a human brain. For the fre-
quency of 918 MHz, our numerical method yields satisfactory results
when one eighth of the sphere brain is subdivided into 73 cubic cells.
Table 3.1 shows comparisons of numerical results on the average
and maximum heatings produced by our numerical method with that obtained
from the exact solution of Mie theory. From this table, we can conclude

that our numerical method predicts the average heating very well even
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though the brain is subdivided into a relatively small number of cubic
cells. For the maximum heating, our method can also produce satis-
factory results if the dimension of cubic cell is kept to be electri-
cally small, for example, one tenth of the free space wavelength or

smaller.

3.4 Induced EM heating in Realistic Models of Human and Animal.Heads.

The controversy of potential health hazards due to non-ionizing
electromagnetic radiation has led to many studies on the induced EM
heating in the brain and eyes of humans and animals. Existing theore-
tical studies by many researchers (4, 7-9) on the induced EM heating
in the brain were either based on a homogeneous spherical model or a
multilayer spherical model. It was reported in these studies that a
UHF EM wave can excite an EM resonance and create a hot spot inside
the uman brain, and a microwave can cause a similar phencmenon
inside an animal brain.

In reality, the brain is not spherical in shape and it is
surrounded by other tissues of irregular geometries. Therefore, it
seems important to quantify the induced EM heating inside a realistic
model of a human head or an animal head “hat consists of a brain of
realistic shape and eyes surrounded by a bony structure. To handle
such an irregular geometry, the only potent method is the numerical
method.

After the accuracy of the numerical method was verified in the
case of spherical brains as explained in the preceeding section, the
method was employed to quantify the induced EM heating in a realistic

model of human or animal head that consists of a brain of realistic
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shape and two eyes surrounded by a bony structure as shown in Figure
3.6a, where the brain and eyes are indicated by shaded regions. The
head was subdivided into 180 cubic cells of various sizes in the
numerical calculation. We have also calculated the EM heating induced
in the bare brain without the surrounding bony structure. This case
was considered for the purpose of assessing the effect of the surround-
ing bony structure on the induced EM heating in the brain.

Figure 3.6a shows the distribution of the EM heating or SARs in
mW/m3 inside a human head, with dimensions of 18x18x24 cm, induced by
a plane EM wave of 918 MHz with a vertically polarized electric field
of 1 V/m, incident upon the head from its front surface. The dielectric
constant er and conductivity o for the brain and eyes are assumed to
be 51.0 and 1.6 S/m, respectively, at this frequency. €. and o for
the surrounding bony structure are assumed to be 5.6 and 0.101 S/m,
respectively. Since the human head is in near resonance at the
frequency of 918 MHz, strong induced SARs inside the head are expected.
The distribution of SARs in Figure 3.6a shows that the induced SARs
are generally strong inside the head, with the maximum SAR located
at the central part of the head. The SARs in the brain and eyes are
relatively low compared with that in the surrounding bony structure.
However, the maximum SAR in the brain can reach a value of 21.5 mW/m3.
The total power dissipated in the brain is 3.202x10—6 W and that in
the whole head is 4.522x10™> W. It is noted that if the incident EM
wave has a power density of 1 mW/cmZ, the induced SARs in Figure 3.6a
should be multiplied by a factor of 4.466x103. Tﬁus, the maximum

heating inside the brain is estimated to be 0.096 mW/cm3. This value
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is about one fifth of the value predicted with the model of a spherical
brain as shown in Figures3.4a, 3.4b and 3.4c.

Figure 3.6b shows the distribution of SARs inside a bare human
brain, without the surrounding bony structure, induced by a plane EM
wave of 918 MHz with a vertically polarized electric field of 1 V/m.

Er and 0 of the brain and eyes are assumed to be 51.0 and 1.6 S/m,
respectively. The induced SARs in the central part of the bare brain
are found to be considerably higher than the SARs induced inside the
brain surrounded by the bony structure as shown in Figure 3.6a. The
total dissipated power in the bare brain is found to be 4.591x10_6 W
which 1is about 43% higher than the case of the brain surrounded by
the bony structure. This example implies that the surrounding bony
structure around the brain tends to reduce the induced EM heating
inside the brain.

Figure 3.7a shows the distribution of SARs in the same human head
of Figure 3.6a induced by a plane EM wave of 2450 MHz with a vertically
polarized electric field of 1 V/m. €, and 0 for the brain and eyes are
assumed to be 47 and 2.21 S/m, respectively, while €. and 0 for the
surrounding bony structure are assumed to be 5.5 and 0.15 S/m, respect-
ively. At this frequency, the induced field is mainly concentrated
near the front surface of the head, and thus, induced SARs in the
brain are generally very low. The interesting point to observe is
the SAR induced inside the eyes. Even though the eyes are located in
the front surface of the head and the EM wave is directly incident
upon them, the induced SAR inside the eyes is very small compared with

that in the surrounding bony structure. The total dissipated power in
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7

the brain at this frequency is 1.404x10 ' W and that in the head is

2.179x10 SW. These values are much smaller compared with the case
of 918 MHz.

When the bare brain without the surrounding bony structure is
immersed in the same EM wave of 2450 MHz, the induced SARs inside the
brain are shown in Figure 3.7b. These values are somewhat greater
than the case of Figure 3.7a, but they are still very low compared with
the case of 918 MHz. The total dissipated power in the bare brain is
found to be 4.20x1077 W.

For the last example, we consider an animal head exposed to a
plane EM wave of 2450 MHz because this frequency is known to excite
a resonance in a brain with a radius of about 3 cm., Figure 3.8a shows
the distribution of SARs inside an animal head, with dimensions of
9%x9x12 cm, iﬁduced by a plane EM wave of 2450 MHz with a vertically
polarized electric field of 1 V/m. €, and 0 for the brain, eyes and
the surrounding bony structure are assumed to be the same as the case
of Figure 3.7a. From Figure 3.8a, it is observed that the induced
SARs inside the animal brain are quite high and are in the same order
of magnitude as the induced SARs inside the human brain when it is
exposed to an EM wave of 918 MHz. The SARs in the surrounding bony
structure are even higher than the SARs in the brain. The SAR in the
animal eye is 9.6 mW/m3, which is about 10 times higher than that in
the human eyes when they are exposed to a 918 MHz EM wave of the same
power density. The total power dissipated in the animal brain is

7

6.814x10 ' W and that in the animal head is 9.411x10-6 Ww.

When the bare animal brain without the surrounding bony structure
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is exposed to the same EM wave of 2450 MHz, the induced SARs inside
the brain are shown in Figure 3.8b. It is observed that the induced
SARs in the bare brain is much higher than the case of Figure 3.8a.
The total power dissipated in the bare animal brain is found to be
1.702::10-6 W which is more than twice the value of the case shown in
Figure 3.8a. From this example, it appears that the surrounding bony
structure has a significant effect on the induced EM heating in the
animal brain when the animal head is exposed to 2450 MHz EM wave.

To summarize the findings in this section, it appears that the
bony structure surrounding the brain tends to reduce the induced EM
heating in the brain. The induced EM heating in the brain calculated
on the realistic model of a brain within a head is significantly
different from the results obtained with an idealistic model of a
spherical brain. The induced EM heating in eyes is found to be

relatively low compared with that in the surrounding bony structure.



CHAPTER 4

INDUCED EM FIELDS INSIDE THE CUBICAL BODIES

EXPERIMENTAL VERIFICATION

To confirm the accuracy of the tensor integral equation, a series
of experiments have been conducted to measure the induced electric
field inside the cubic boxes with different size. The phantom materials
of varying conductivity were used to model the biological body (phantom
model). The phantom models were exposed to a maximum electric field and a
maximum magnetic field of a standing EM wave which was created in front of
the reflector.

The accuracy of -the theory has been checked by comparing the induced elec-

tric field inside the phantom cubic boxes with the corresponding experimental
results.

4.1 Experimental Set Up

The set up for this experiment is shown in Fig. 4.1. The experi-
ment was conducted inside a large microwave anechoic chamber in which
a standing EM wave was created by radiating an EM wave upon a metallic
reflector. Standing waves of the electric field Ei and the magnetic
field of ﬁi set up in front of the reflector are depicted in Fig. 4.1.
The electric field of the wave is polarized horizontally and the
magnetic field is vertically polarized.

When the phantom cube is placed at the location of a maximum

electric field, the impressed electric field on the cube is

Bl o 2 el cos ke (4.1)
max
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where z = 0 corresponds to the center of the cube. This symmetrically
impressed electric field will excite a linear electric mode of induced
electric field in the cube.

On the other hand, when the cube is placed at the location of a
miﬁimum electric field, or a maximum magnetic field, the impressed

electric field on the cube is
E- =% E sin kz (4.2)
ax

This impressed electric field is antisymmetrical with respect to
the center of the cube, z = 0, and it will excite a circulartory
magnetic mode of induced electric field in the cube. It is noted that
this magnetic mode can be considered as excited by the magnetic field

of the EM wave, from a different point of view.

4.2 Construction of Probe

The main difficulty in the direct measurement of the induced
electric field in a phantom model or biological body is the availability
of a workable, implantable electric field probe. Although a miniature
electric field probe, capable of measuring the electric field from
0.915 to 10 GHz., has been reported by Bassen et al. (1975), the
frabication of this probe requires thin-film technique and it is not
commercially available. There is a need for an implantable electric
field probe which can be constructed inexpensively and handled
ruggedly for researchers in the bioelectromagnetic area. In this
study such a probe has been developed and used in experiments of

measuring induced electric field inside a biological body.
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A conventional electric field probe for measuring the electric
fields of EM waves consists of a short dipole loaded with a microwave
diode and connected with a pair of very thin, high resistive wires.
This probe can be used to measure the electric field of an EM wave in
space by orientating its lead wires perpendicular to the electric
field vector to minimize the induced current in the lead wires, or to
minimize the interference caused by the lead wires. However, when
implantable electric field probe loaded with a microwave diode is
inserted into a.finite conducting body to measure the internal electric
field, a great difficulty is usually encountered. The situation is
depicted in Fig. 4.2a which shows that the electric field on the body
surface is much higher than the internal electric field and is mainly
perpendicular to the surface, and in parallel with the lead wires.
Thus, whilerthe probe 1is excited by a weak internal electric field,
the strong electric field on the body surface can induce a large
current on the lead wires over the section adjacent to the probe. Unless
the probe system is perfectly symmetrical, the antisymmetrical component
of the induced current on the lead wires will be detected by the diode
and adds a very large noise to the probe output. It is also found that
this noise can not be minimized sufficiently with a pair of very thin,
high resistance wires placed very close or twisted around.

A scheme to overcome this difficulty is shown in Fig. 4.2b. 1In
this scheme, the section of lead wires adjacent to the probe is con-
structed with two series of lumped resistors of 3 KQ. This large
resistance minimizes the current induced in the lead wires by the

strong surface electric field and, consequently, minimizes the noise
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component of the probe output signal. The probe itself is made from a
zero-bias microwave diode (Microwave Associates, MA 40234). The probe
and the lead wire system are encased in a plexiglass stick with the
help of epoxy glue. The probe is very rugged and inexpensive and its

dimension is about 1 cm.

4.3 Theoretical and Experimental Results

The experimental results on the induced electric fields inside
the cubical phantom models are compared with the theoretical values of
the induced électric fields obtained from the tensor integral equation
method.

The cubical phantom model used in the study is depicted in Fig.
4.3. TFor the theoretical analysis, one eighth of the cube is divided
into 27 cubic cells.

Figure 4.4a shows the case of a cubical phantom model of 2x2x2 cm
placed at the location of a maximum electric field of a 750 MHz standing
wave in front of the reflector. The dielectric constant and conductivity
are assumed to be 50 and 4.5 S/m, respectively. The numerical results
on the X-component of the induced electric fields along the Z-axis
inside the cube are plotted in this figure. The results show a linear
electric mode of induced electric field which is rather uniform in the
cube.

In the corresponding experiment, a phantom model of a cubic box
with dimension 2x2x2 cm was constructed with thin plexiglass filled
with phantom material of the same dielectric constant and conductivity
as above (sr = 50, 0 = 4;5 S/m). The X-component of the induced

electric field has been probed at a 2 mm interval along the z-axis.
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By inserting the probe from the back surface along z-axis and taking
the data every increment of 2 mm until the probe reaches the front
surface. The experimental results of the x-components of the induced
electric fields along the z-axis inside the cube were also plotted in
Fig. 4.4a. The experimental results compare very well with the theory
for this linear electric mode of induced electric field inside the
cube.

In Fig. 4.4b, we consider the same cube but now the cube is
located at the location of the minimum electric field. In the theore-
tical calculation, the dielectric constant and conductivity are
assumed to be the same as before and again one eighth of the cube is
divided into 27 cubic cells. The impressed field for this case 1is
Ei =X E;ax sin kz with the minimum electric field located at the
center of the cube. The same experimental procedure was used to
measure the induced electric field. The theoretical and experimental
results are plotted in the same figure for comparison. A good agree-
ment is obtained between theory and experiment and these results show
a circulatory magnetic mode of induced electric field excited in the
cube.

In Fig. 4.5a, we consider a phantom cube with dimensions of
4x4x4 cm, placed at the location of a maximum electric field of 750 MHz
standing wave. In the numerical calculation, the same dielectric
constant and conductivity (er = 50, 0 = 4.5 S/m) are assumed and one
eighth of the cube is divided into 27 cubic celis. In this experiment,
a phantom material with the same dielectric constant and conductivity

was packed in the cubic plexiglass box of size 4x4x4 cm. The x-component
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of the induced electric field was probed along the z-axis. Theoretical
and experimental results show a good agreement for this case. In

Fig. 4.5b, the same phantom cube is placed at the location of a minimum
electric field. For this case a good agreement is again obtained
between experiment and theory.

From these two examples of 2 cm cube and 4 cm tube, it is found
that the magnetic mode becomes much greater than the electric mode in
the larger cube.

Next we will study the effect of the conductivity of the biolo-
gical system on the induced electric field inside the body. We consider
a 2x2x2 cm phantom cubic with the dielectric constant and conductivity
of 50 and 3.0 S/m, respectively. In the numerical calculation, one
eighth of the cube was divided into 27 cubic cells and the induced
electric field inside the cube was calculated. In the experiment, the
field probe was inserted into the body along the z-axis to measure
the x-component of the induced electric field along the z-axis. Fig.
4.6a shows the experimental and theoretical results when the cube was
placed at the location of a maximum electric field of a 750 MHz standing
wave. Fig. 4.6b shows the experimental and theoretical results when
the cube was placed at the location of a maximum magnetic field of the
same standing wave. Both results show a good agreement between theory
and experiment. From these results we observe that when the conduc-
tivity decreases the linear electric mode of the induced electric field
becomes greater than the circulatory magnetic mode of the induced
e;ectric field in the cube.

After three examples have been checked at 750 MHz, we proceeded
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to check the validity of the theory at a high frequency of 1 GHz. The
phantom cube was exposed to 1 GHz standing wave in the experiment.

Figs. 4.7a and 4.7b show the theoretical and experimental results
on the x-components of the induced electric fields along the z-axis of
the phantom cube of 2x2x2 cm when the cube is placed at the maximum
electric field location and the maximum magnetic field location of the
1 GHz sténding wave, respectively. The dielectric constant and conduc-
tivity are assumed to be 50 and 4.5 S/m, respectively. The results show
that the theory agree very well with the experiment.

Figures 4.8a and 4.8b show the theoretical and experimental results
on the x-components of the induced electric fields along the z-axis of
the phantom cube of 4x4x4 cm when the cube is placed at the maximum
electric field location and the maximum magnetic field location of 1 GHz
standing wave, respectively. The dielectric constant and conductivity
are assumed to be 50 and 1.62 S/m, respectively. The agreement between
experiment and theory at this frequency is only fair because the
electrical dimension of the cube becomes larger in this case.

From these two examples we also observe that when the cube
becomes larger the magnetic mode tends to dominate the electric mode,
and when the conductivity decreases the linear electric mode tends to

increase in magnitude.

4.4 Summary

After the accuracy of our theory has been checked with Mie theory
in Chapter 3, it was reconfirmed in this chapter by comparing it with
a series of experimental results on the induced electric field

measured in phantom cubes exposed to EM standing waves. Up to this
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Theoretical and experimental results of the x-components
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point the accuracy of our theory has been established. We will use our
theory to predict the induced electric field inside a human body with
a realistic model in the next chapter. Also in this chapter we observe
that the circulatory magnetic mode of the induced electric field has a

significant effect in a large body at a low frequency.



CHAPTER 5
INDUCED EM FIELDS INSIDE HUMAN BODIES

The theoretical quantification of the induced electric field and
the specific absorption rate (SAR) of EM energy inside a realistic
model of human body irradiated by EM waves has been reported by Chen
and Guru (10,11) and by Gandhi et al. (12). Experimentally, the in-
duced SARs was determined indirectly by measuring the temperature
distribution in an irradiated phantom model of man with a thermo-
graphical method by Guy et al. (14) or by a liquid-crystal temperature
probe by Gandhi et al. (13). The temperature distribution in a
phantom model may not correspond to the true distribution of the
induced SARs because of the heat dissipation. A direct measurement
of the induced electric field inside a phantom model of man should
provide a more accurate distribution of the induced SARs.

The main difficulty in the direct measurement of the induced
electric field in a phantom model of man or in a biological body is
the availability of a workable, implantable electric field probe.

We have described an implantable electric field probe which can be
constructed inexpensively and handled ruggedly in Section 4.2. We
have used this field probe to measure the induced electric field
inside a phantom model of human body. Characteristics of the probe
were checked by measuring the induced electric fields in small phantom
cubes in Chapter 4. The measured induced electric fields with this
probe were confirmed by theoretical results, and, thus, a good working

condition for this probe was assured.

60
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5.1 Experimental set up

The schematic diagram of the experimental set up for measuring
the induced electric field in the phantom model of human body is shown
in Fig. 5.1. The model was placed in a large microwave anechoic chamber
and was irradiated by a travelling EM wave of 500 to 3000 MHz incident
normally from front to back. AN array antenna was used as a radiating
source for the range of 500 to 1000 MHz and a horn antenna was used
as a radiating source for the range of 1000 to 3000 MHz. A phantom
model of man with 1/5 dimension of a typical man was constructed with
thin plexiglass and filled with phantom material of appropriate con-
ductivity and permittivity. Induced electric fields were probed over
28 locations in one side of the model. Detailed dimensions of the
model are depicted in Fig. 5.2. Since the scaling factor of 5 was
used in the model, thus, to simulate the actual human body the conduc-
tivity of the phantom model needs to be five times that of the human
body and, at the same time, the model should have the same permitgvity

as the human body.

5.2 Theoretical and Experimental results

The theoretical and experimental results on the induced electro-
magnetic fields inside the phantom model of human body are shown in
Figs. 5.3 to 5.8.

Figure 5.3 shows the relative distribution of measured induced
electric field inside the phantom model of the human body for the
case of 2500 MHz., conductivity and dielectric constant are 7.4 S/m
and 50, respectively. In this experiment, a field probe was inserted

into the body through the hole in the back surface and measured the
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induced electric field in the back layer first and then front layer
by moving the probe further inside the body. The measurement was
repeated at each of the 28 locations in the body. Figure 5.4 shows
the distribution of corresponding theoretical results obtained from
the tensor integral equation method. The theoretical results were
obtained when the geometry of the phantom model was subdivided into
104 cubic cells of various sizes in the numerical calculation.
Incident EM wave was assumed to be a plane wave travelling in the
+z direction with a vertically polarized electric field.

Comparing Figs. 5.3 and 5.4, a quanlitative agreement is
obtained between experiment and theory: the maximum field is found
in the neck, and other high field regions in the arms, the legs, and
the front part of the head. It is noted that this case simulates the
case of a typical man with o = 1.48 S/m and €. = 50 irradiated by an
EM wave of 500 MHz.

Figures 5.5 and 5.6 show the relative distributions of measured
induced electric field and theoretical induced electric field inside
the phantom model of human body with ¢ = 7.0 S/m and €. = 50
irradiated by a travelling EM wave of 2000 MHz. Theoretical results
were obtained with the 104-cell model as the previous case. A quan-
litative agreement is again obtained between experiment and theory:
the maximum field is found in the lower part of the arm, and other
high field regions are found in the neck, the front part of the head
and the legs.

Figures 5.7 and 5.8 show the relative distributions of experimental

and theoretical results on the induced electric fields in a phantom
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model of human body with ¢ = 4.5 S/m and € = 50 irradiated by a
travelling EM wave of 500 MHz. It is noted that theoretical results
shown in Fig. 5.8 are obtained when the body is subdivided into 246
cubic cells of various sizes. A larger number of cells, or a finer
cell subdivision, was needed to produce a set of theoretical results
which agreed quanlitatively with the experimental results at 500 MHz.
This point will be discussed again in the next section. We observe
a quanlitative agreement between experiment and theory in Figs. 5.7
and 5.8: at 500 MHz., the maximum field point moves to the thigh, and
high field regions are found in the arm and the back side of the
torso. A disagreement between theoretical and experimental results

is found in the neck.

5.3 Discussion

In the course of our study on the induced electric field in a
phantom model of man, it was found that the agreement between
experiment and thory tended to deteriorate as the frequency is lowered.
This phenomenon seemed to contradict the thinking that at a lower
frequency, theoretical results should be more accurate because the
cell size would be electrically smaller. After a careful examination
of this phenomenon we have found the possible reason. When a phantom
body is irradiated by a travelling EM wave with an impressed electric
field,

~

A s . n
=X Ei e Jkz _ X E; cos kz - xj E; sin kz (5.1)

max

an electric mode and a magnetic mode of induced electric field are
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both excited in the body. For the phantom model of man we used in
the experiment, the magnetic mode of induced electric field starts to
dominate the electric mode as the frequency becomes lower than 1000
MHz. The electric mode of induced elctric field is linear in nature,
and its numerical results converge well. On the other hand, the
magnetic mode of induced field is circulartory, and we often encounter
the difficulty of numerical convergence. Thus, for a specific cell
subdivision, the accuracy of the numerical results on the electric
mode of induced electric field is higher than that of the magnetic
mode. If the magnetic mode becomes dominant in the total induced
electric field, a finer cell subdivision is needed to produce accurate
results on the induced electric field. This is the possible reason
for the phenomenon we have observed in the 500 MHz case, in which a
246-cell model is needed to yield a set of theoretical results which
agreed with the experimental results.

To demonstrate this phenomenon further, two examples are given
in Figs. 5.9 and 5.10. Figure 5.9 shows the x-components of the in-
duced electric fields, IEx[, inside a 4-cm phantom cube with o = 4.5
S/m and €. = 50, excited by a symmetrically impressed electric field
of EF = ; cos kz at 750 MHz. With this Ei, an electric mode of electric
fieid is induced inside the cube. In the upper part of Fig. 5.9 is
shown the distributions of |E | within 1/8 of the cube, obtained
when the cube is subdivided into 216 cubic cells. In the lower part
of Fig. 5.9, the distribution of |Ex| within 1/8 of the cube, obtained
with the 512-cell subdivision, is shown. Comparing these two sets of

numerical results, we observe an excellent convergence for the
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numerical results for the electric mode of induced electric field.
Figure 5.10 shows the distribution of the x-components of the
induced electric fields, IEXI, inside the same 4-cm cube excited by
an antisymmetrically impressed electric field of i? = ; sin kz at
750 MHz. Two sets of numerical results for |E | are given in Fig.
5.10 for the 216-cell subdivision and the 512-cell subdivision. It
is observed that the results for the 512-cell subdivision deviate
significantly from that of the 216-cell subdivision, especially at
the outer layer of the cube. This implies a poor numerical conver-
gence, thus, to produce accurate results for the magnetic mode of
induced electric field the cell size should be smaller compared with

the case of the electric mode shown in Fig. 5.9.



CHAPTER 6

INDUCED EM FIELDS IN HETEROGENEOUS BIOLOGICAL

SYSTEM AND APPLICATION TO HYPERTHERMIA CANCER THERAPY

In Chapter 3-5, the induced electric field inside an irradiated
homogeneous biological system has been studied. In this chapter, we
proceede to check the validity of the theory when applied to a hetero-
geneous biological system. We have conducted experiments to varify
the theory, and then applied the theory to the hyperthermia cancer

therapy.

6.1 Comparison of experiment and theory in a heterogeneous biological

system

Two sets of experimental and theoretical results on the induced
electric fields in two different heterogeneous biological systems are
compared. We used the same experimental set up as we did for measuring
the induced electric field in the phantom model of human body. An
array antenna was used as a radiating source at 600 MHz. A phantom
model of rectangular box with dimensions of 6x12x2 cm was constructed
with thin plexiglass and filled with phantom material of appropriate
conductivity and permittivity. A tumor (heterogeneity) was assumed to
be a part of the body (phantom material) that has a conductivity
differs = from that of the body. As this experimental model was
irradiated, induced electric fields were probed over 18 locations in
one side of the body. Detailed dimensions of the model are depicted

in Fig. 6.1.
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Figures 6.2 (a) and (b) show the theoretical and experimental
results of the induced electric field at the tumor inside the phantom
model varying as a function of the tumor conductivity. The tumor
with dimensions of 2x4x2 cm is embedded in the center of the body as
shown in the upper right hand corner of Fig. 6.2. At this frequency,
conductivity and dielectric constant of the body are assumed to be
4.5 S/m and 70, respectively. Four different tumor conductivities
have been considered while the dielectric constant of the tumor is
assumed to be equal to that of the body. In the experiment, each
time a phantom material of 2x4x2 cm dimensions with appropriate tumor
conductivity was packed at the center of the body (box) and then the
rest of the body was filled with a phantom material with conductivity
and dielectric constant equal to that of the body. The induced
electric fields were probed over 18 locations in one side of the body,
nine locations in the front and the back layer, respectively. Only
the induced electric fields at the tumor were plotted as a function of
the tumor conductivity because the induced electric fields elsewhere
were only slightly changed when the tumor conductivity was changed.
Figures 6.2 (a) and (b) show that the induced electric fields at the
tumor in the front and the back layer decrease as the tumor conductiv-
ity is increased from 2.0 S/m to 6.5 S/m. Corresponding theoretical
results on the induced electric fields at the tumor and other parts of
the body were generated. A good agreement between theory and experiment
was obtained.

In Figures 6.3 (a) and (b), the same phantom model is considered
but the location and size of the tumor are changed. Two tumors each

with dimensions of 2x2x2 cm are embedded inside each half of the body
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Figure 6.2. Theoretical and experimental results of the
x-components of the induced electric field, Ex’
at the tumor as a function of the tumor conductivity,
excited by a vertically polarized, travelling EM
wave of 600 MHz at normal incidence.
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as shown in the upper right hand corner of Figure 6.3. Conductivity
and dielectric constant of the body are assumed to be 4.5 S/m and 70,
respectively. Again four different conductivities of the tumor have
been considered. Figures 6.3 (a) and (b) show the theoretical and
experimental results of the induced electric fields at the tumor in
the front and the back layer, respectively, as a function of the tumor
conductivity. A good agreement is again obtained between experiment

and theory for this case.

6.2 Hyperthermia in animal and human bodies induced by EM fields

One of the promising therapies for cancer is that of hyperthermia
in combination with chemotherapy or ionizing radiations. When the
temperature of a tumor is raised a few degrees above that of surrounding
tissues, accompanying chemo- or radio- therapy has been found to be
effective in treating the tumor (15,16,17). In the combined cancer
therapy, the objective is to find a noninvasive method by which to heat
the tumor without overheating other parts of the body.

A convenient means of heating embedded tumors in a biological
body noninvasively is to utilize the EM radiation. When an EM field
of a certain frequency is applied in a particular manner to a biological
body with an embedded tumor, it is difficult to predict the distribution
of the induced field inside the body because the body with the tumor
represents electrically a finite heterogeneous body. Thus, it is a
non~-trivial engineering problem to construct an effective scheme for
local EM heating. In general, an effective local EM heating of embedded
tumor depends on the following factors: (i) the type of EM irradiation,

part-body or whole-body; (ii) the frequency of the EM field; (iii) the
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type of applied field, electric, magnetic or electromagnetic; (iv) the

location of the tumor in thebody; (v) the conductivity and permittivity
of the tumor relative to that of the surrounding tissues; and (vi) the

heat diffusion from the tumor.

The purpose of this study is to theoretically predict the heating
pattern induced inside the body with the tumor when it is irradiated
by various EM fields under certain schemes, some of which are commonly
used for the hyperthermia purpose. From these theoretical results, the
effectiveness of various EM heating schemes can be assessed. We will
theoretically quantify the induced electric field and the specific
absorption rate (SAR) of the EM energy in the theoretical model of a
biological body with an embedded tumor under various schemes of EM
irradiation. The scheme which can induce a localized high SAR in the
tumor while maintaining low SARs in the surrounding tissues is considered
to be an effective scheme. In the present study, the heat diffusion
from the tumor will not be considered. It is well known that the heat
dif fusion from the tumoris poor because of a sluggish blood supply to
the tumor. This phenomenon is advantageous from the viewpoint of
maintaining hyperthermia at the tumor.

We consider, first, the part-body irradiation with HF electric
fields. We found that this scheme is effective for internal tumors,
especially those with lower conductivities. We also found that this
scheme of irradiation cannot selectively heat surface tumor. Secondly,
we consider the irradiation with microwave or UHF EM fields. At these
frequency ranges, application of a localized EM radiation at the tumor
may create hot spots at various locations away from the tumor, instead

of heating the tumor.
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6.3 Theoretical model of a biological body with tumor

In this study, we use biological bodies of simple geometries to
simulate animal and human bodies with embedded tumors. The body is
considered to be homogeneous with certain electrical properties and
the tumor is assumed to be a local region with a conductivity that
differs from that of the surrounding tissue. The permittivity of the
tumor is assumed to be the same as that of the surrounding tissue.
These assumptions are supported by recent in vivo measurements of
electrical properties of tumors in mice by Bordette et al. (18).
Another reason for the assumption of the same permittivity for the
body and for the tumor is that effect of the permittivity on the
induced electric field in the body is insignificant, especially in
the lower frequency ranges.

The body is assumed to be partially or wholly irradiated by EM
energy of various frequency ranges including HF, VHF, UHF, and
microwave.

The first step of our study is to determine the induced electric
field inside a heterogeneous body, consisting of a homogeneous body
with an embedded tumor of different electrical properties, as induced
by the applied EM field. After this quantity is obtained, the SAR of
EM energy in the tumor and at any other point of the body are determined.
An effective EM heating should induce a localized, high SAR in the

tumor and low SARs in the surrounding tissues.

6.4 Part-Body Irradiation with HF Electric Field
The electric fields of the HF range (3 to 30 MHz) maintained

between two capacitor-plate electrodes have been used to heat embedded
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tumor in animals (19) and in human bodies (20). We will analytically
show that this scheme of EM heating is very effective for internal
tumors embedded in the central part of the body, however, this scheme
cannot provide a selective heating for surface tumors. We will also
show that the tumor conductivity relative to that of the surrounding
tissue plays an important role in this type of EM heating.

The first example is a simulated animal body with the dimensions
of 6x6x12 cm having a tumor of 2x2x4 cm located at the center of the
body and under the partial irradiation of a uniform electric field
as shown in Fig. 6.4. A uniform electric field (Ei) of 1 V/m
(max. value) at 15 MHz is applied across the top and bottom of the
body and only over the area of tumor (2x4 cm).

For the numerical calculation of the absorbed power density, the
body is divided into 27 2-cm cubic cells as shown in Fig. 6.4. The
tumor occupies the 13th cell and its image and has a conductivity
(ct) of 0.31 S/m while the conductivity of the body (o) is 0.62 S/m.
The dielectric constant (er) of the tumor and the body is assumed to
be 150.

The distribution of SARs in this simulated biological body is
shown in Fig. 6.5. The SAR in the tumor reaches a maximum value of
lSO.éuW/m3 while the immediate neighboring cells, the 10th and the
16th cell, only have a value of 44.8 uW/m3. If the tumor conductivity
is increased from 0.31 S/m to 0.496, 0.62, 0.744, and 1.24 S/m, the
SAR in the tumor will decrease from 150.0 uW/m3 to 103.7, 84.9, 71.7
and 43.8 uW/m3, respectively. The results for this case are summarized
in Fig. 6.6. The absorbed power density at other parts of the body

is only altered slightly by the change in the tumor conductivity.
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When O, = 0» the SAR in the tumor is about twice that of the surround-
ing tissue. If Op = 0.56, the SAR in the tumor can be about four
times that of the surrounding tissue. The important point not to
overlook is that even the tumor conductivity is considerably higher
than that of the surrounding tissue, the SAR in the tumor is still
higher than that in the surrounding tissues. This result implies

that an electric field of the HF range maintained by a capacitor-plate
applicator can be used to selectively heat the internal tumors of
various kinds as long as the tumor is located in the central part

of the body.

The examples show in Figs. 6.4 to 6.6 are for a simulated animal
body with an internal tumor. The case of a human body with an internal
tumor is considered next. Figufe 6.7 depicts a human body with an
internal tumor of 5x5x5 cm embedded inside the upper torso. A uniform
electric field of 15 MHz with the intensity of 1 V/m maintained by a
capacitor-plate applicator is applied over the tumor area across the
body as shown. For the numerical calculation of the induced electric
field, only a volume of the body with dimensions of 15x15x20 cm
centered around the tumor is considered because the fringe field is
small in other parts of the body. This volume of the body is divided
into 36 5-cm cubic cells stacked in four layers, and with the tumor
occupying the center cell of the second layer. For this particular
example, we assume that Gt = 0.5 o =0.31 S/m, and e, = 150. From
the distribution of SARs shown in Fig. 6.7, it is observed that the
SAR in the tumor reaches a maximum value of 417.8 uw/m3 while that

in the cells immediately above and below the tumor are 98.2 uW/m3
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and 234.1 uW/m3, respectively. The fringe field in the vicinity of
the tumor is insignificantly small. We have also calculated the SAR
in the tumor for different tumor conductivities: when o =0= 0.62
S/m, the SAR in the tumor is 235.9 uW/m3, and if o, = 20 = 1.24 S/m,
the SAR in the tumor becomes 121.9 uW/m3. From these results, one
observes that an embedded tumor inside a human body can also be sel-
ectively heated by a HF electric field produced by a simple capacitor-
plate applicator.

Up to this point, we have demonstrated that a uniform electric
field in the HF range can be used to selectively heat an internal
tumor embedded inside an animal or a human body. We will now show
that this type of electric field can not beutilized to selectively
heat surface tumors because it heats the tissue immediately below the
tumor excessively.

Figure 6.8 shows the distribution of SARs in the simulated
animal body depicted in Fig. 6.4, but with the tumor located in the
middle of the upper body surface, when the same uniform electric
field of 15 MHz with the intensity of 1 V/m is applied over the tumor
area and across the body. For this example, we assume that o, = 0.50

= 0.31 S/m and e, = 150. It is observed in Fig. 6.8 that the SAR
in the tumor is 80.3 uW/m3 while that in the cell immediately below
the tumor is 84.7 uw/m3. If the tumor conductivity is higher than
0.5 o, the SAR in the tumor decreases further while the SAR in the
cell immediately below the tumor remains about 85 uW/ma. This
phenomenon is summarized in Fig. 6.9. It is observed in Fig. 6.9 that

the SAR in the tumor is about the same as that in the neighboring
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Figure 6.7. Distribution of SARs inside a human body with an
embedded tumor when £ = 15 MHz, B = 1V/m x,
o = 0.62 S/m, o, = 0.31 S/m, and e = 150. The
SARs in the tumor for the cases of o, = 0.62 S/m

and o, = 1.24 S/m are also given.
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cell if o, = 0.5 o0, the SAR in the tumor is reduced to about one
half of that in the neighboring cell if ot = g, and if °£> g , the
SAR in the tumor decreases further while the SAR in the neighboring
cell remains relatively unchanged.

From these results shown in Figs 6.8 and 6.9, it is evident that
a uniform electric field in the HF range maintained by a capacitor-
plate applicator cannot be utilized to selectively heat a surface
tumor without severely heating the tissue immediately below the tumor.
This situation may be somewhat improved by increasing the area of
the lower electrode of the applicator in such a way that the induced
current starting from the upper electrode flows through the tumor
and then diffuses into the tissue below the tumor before it reaches
the lower electrode. The reduction of the current density in the

neighboring tissue will cause a decrease in the SAR and the heating.

6.5 Hyperthermia with Microwave or UHF Irradiation

In this section, we aim to show that EM fields of the UHF to
microwave range (e.g. 500 to 4000 MHz) should be carefully applied to
a biological body to induce a local heating at the tumor. An improper
scheme of irradiation may cause severe heating at locations away
from the tumor. This problem is essentially caused by the fact that
electrical dimensions of experimental animal such as rats or mice
are in the "resonance region'" of this frequency range. Thus, hot
spots may be induced at unintended locations inside the body even
though only the tumor region is irradiated. Figure 6.10 shows the
simulated animal body with a surface tumor as considered in Fig. 6.8

being irradiated by a microwave of 2.45 GHz in a waveguide. Assuming
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Figure 6.8, Distribution of SARs inside the simulated body of
Fig. 6.4, but with the tumor located at the body
surface. Parameters are: f = 15 MHz, Ei =1 V/mx,

0 = 0.62 S/m, o, = 0.31 S/m and €. = 150.
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Figure 6.9. SARs in the surface tumor and in the neighboring cells
varying as functions of the tumor conductivity (Ot)'
Other parameters are: f = 15 MHz, Ei =1V/m x,

o = 0.62 S/m and € = 150.
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Figure 6.11. Distribution of SARs inside the simulated body of Fig. 6.10.
Parameters are: f = 2.45 GHz, Ei =lV/my, 0 = 2,21 S/m,
o, = 1.1 S/m and €. = 47. The SARs in the tumor for the

cases of ot = 2,21 S/m and o, = 4,42 S/m are also givern.
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that the tumor is placed in the center of the waveguide so that

the maximum electric field of TE10 mode is incident upon the tumor.
For this arrangement only one third of the middle section of the
body is irradiated by the microwave. The cells being irradiated are
the 1lst, the 4th, the 7th, the 10th, the 12th, the 16th, the 19th,
the 22nd and the 25th, and their image in the other half of the body
(see Fig. 6.4). The incident electric fields to these cells are

assumed to be that of TE,, mode with an intensity of 1 V/m in the

10
y-direction. We also assume that o_ = 0.5 0 = 1.1 S/m and €. = 47

t
at 2.45 GHz. Under this irradiation, the distribution of SARs in
the body is shown in Fig. 6.11. It is surprising to observe that
the SAR in the tumor is, in effect, a minimum value of 0.1 mW/m3
instead of an expected maximum. The highest SARs reaching a value
of 5.8 mw/m3 are induced in the regions not irradiated. Other high
SARs are also induced in various point of the body. We have also
calculated for the cases of o =o0= 2.21 S/m and o, = 2 0=4,42
S/m. The SAR in the tumor for these two cases are still very small
at 0.2 mW/m3 and 0.3 mW/mB, respectively, while high SARs are observ-
ed at regions away from the tumor. This unexpected heating pattern
is due to the resonance phenomenon induced in a 6x6x12 cm biological
body by a 2.45 GHz microwave. This example implies that to irradiate
experimental animals such as rats with a microwave of 2.45 GHz, the
potential resonance phenomenon should be taken into account. To avoid
this phenomenon, the surface tumor may be drawn through a slot on a

shielded animal strainer and the microwave is then applied exclusively

to the tumor (21). It is also noted that mice irradiated by the
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Figure 6.12, Distribution of SARs inside the simulated body of Fig. 6.4
with a surface tumor under the whole-body irragiation.
Parameters are: f = 600 MHz, ﬁi =] e-jkz V/m x, 0 = 1.48 S/m,
o, = 0.74 S/m and €, = 53. The SARs in the tumor for the cases

of o, = 1.48 S/m and o, = 2.96 S/m are also given.
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scheme of Fig. 6.10 at 2.45 GHz (22) will not exhibit an unexpected
heating pattern because mice are electrically much smaller and a
resonance 1is not‘possible at this frequency.

One example is given to show the distribution of SARs in the
same simulated body with a surface tumor induced by a UHF field under
the whole-body irradiation. This example is depicted in Fig. 6.12
where a plane EM wave of 600 MHz with an electric field of 1 V/m in
the x-direction is incident upon the front surface of the body where
the tumor is located. For this example, we assume that ot = 0.50
= . 0.74 S/m and €, = 53 at 600 MHz. From Fig. 6.12, one observes a
rather uniform distribution of SARs throughout the body with higher
SARs induced in the rearside of the body. No peaking of the SAR in
the tumor is observed for this case. The SAR in the tumor is in-
creased to 3.6 mW/m3 if g, =0 = 1.48 S/m. However, when 0t = 2 0=
2.96 S/m, the SAR in the tumor decreases to 3.5 mw/m3. The SARs in
other part of the body are only affected slightly by the change in
the tumor conductivity. From this example, it seems that the maximum
SAR in the tumor is obtained when ot = g, However, this scheme of
irradiation cannot selectively produce a peak SAR in the tumor even
though the electrical properties of the tumor may be significantly

different from that of the surrounding tissue.



CHAPTER 7

TENSOR INTEGRAL EQUATION METHOD COMBINED WITH ITERATION
TECHNIQUE FOR QUANTIFYING INDUCED EM

FIELD IN BIOLOGICAL SYSTEM

7.1 Introduction

The tensor integral equation method has been applied to solve
many problems involving the interaction of EM fields with @&
biological system. Although this method has been powerful in many
problems, it has some difficulties. The major difficulty is on the
numerical convergence when it is applied to an electrically large
body. In order to generate accurate numerical results, it is necessary
to divide the body into a large number of electrically small volume
cells. This, in turn, leads to an unmanageably large number of
unknowns in the numerical calculation. Since a conventional computer
may have difficulty in inverting a matrix larger than 300 x 300 due
to storage limitation, it is desirable to devise schemes to extend
the tensor integral equation method to handle a body consisting of a
very large number of cells, while sidestepping the problem of computer

storage limitation.

7.2 Theoretical Development
We have developed a scheme which combines an iteration process

with the tensor integral equation method. This method is not a simple

numerical average process; it is a process consistant with Maxwell's
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equations. This method is explained here.

1. As the first step, we subdivide an irradiated body as shown
in Fig. 7.1 into N cells,where N is the maximum number of cells which
can be handled by the computer with a reasonable cost. We then quantify
the induced electric field in the body with this N-cell model based on the
tensor integral equation method. The numerical results of this N-cell
model will be considered as the first-order solution for the induced
electric field.

2. Each of N cells will be §ubdivided, one at a time, further into
8 subcells as shown in Fig. 7.1. Let us exclude the mth cell from the

body temporarily and consider its 8 subcells, ml,m
th

2,.. .....

3. Next, in the absence of the m cell, calculate the equivalent

incident electric fields at the centers of the 8 subcells, located at

-+ -r> -
r ® o 0 0 0 00 r L ]
ml’ "m2’ > "m8

center of m subcell, or at ;ﬁi’ is equal to the sum of the original

incident electric field at ;é and the scattered electric field maintained
i
by the first-order induced currents in the N-1 cells (the mth cell

The equivalent incident electric field at the

excluded) at ¥$ . That is

i
>inc > >inc > > >
E = E
eq (rmi) (rmi) + E (rmi) (7.1)
and
>s > > >, & > ->
E (1'm ) = Jf Jeq(r')-G(rm sy ') dv’, 1 =1,2,...8
i i
V-dv_ (7.2)
where
I @Y = @) BEH (7.3)

eq
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total cell no. = N

total subcell no. = 8N

[ S

Fig.7.1l. An irradiated body is subdivided into N cells, and each
of the N cells is then subdivided again into 8 subcells.
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©
G(;Qi' ;') is the tensor green function. Scattered electric

field at ;; can be written as

i

->8

E (rmi) =
V-AVm

(") E(P).‘é(?m , T') dv'

> o
We may represent the inner product E(r') . G(;;i, ;') as

> >,
ze(rm ')
i
¢ (r ,r')
yz i
S
Gzz(rmi,r )

(7.4)

r > b
Ex(r')
;:y?{:)

E,(T")

d

(7.5)

© > >, > >,
where G(rm o') is the 3Nx3N matrix and E(r') is a 3N column matrix

i
with zero values for matrix elements corresponding to the mth
Let
X} = X, Xy = ¥, Ry =z
then G is given by
*p%q
1 2
-»> -+ -»> >
G (r_,r') = -juu [5 + 12 ]‘*’(r ,r')
xpxq my o Pq ko qxq'axp m,
p,qa = 1,2,3

cell,

(7.6)
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<*>g >
Each scalar component of E (rm ) may be written as
i

>8 > _ > 3 > -+ +,

Ex (r ) = f T(r') [ I Gx x (rm »T') Ex (r )] dv'
q=1 “pq i q

V-AVm

p = 1,2,3 (7.7)

We can transform eq. (7.4) into a matrix equation by using the method

of moments. The scattered electric field maintained by the first-order

induced currents in the N-1 cells (the mth cell excluded) at ;m become
i
2>8 - 3 N -> -> -+ ->
Ex (ru1 ) = I I [‘r(rn) Gx . (rln or') dv' Ex (rn)
P i q=1 n=1 P q i q
n#m AV
n i = 1,2,....,8
(7.8)
Let
m,n
i _ T '
Gx x = T(rn) Gx x (rm ,v') dv , m #n (7.9
Pq Pq i
\'J
n
As a first approximation, we have
m,n
G G (r_ ,x) AV (7.10)
X_X T(rn) x x_ m,’*n n *
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where

v = f dv'
n
A"
n
-
By using eq. (7.6) to evaluate Gx x (rm

’;n) gives
Pq i

m,n - 3
6. = =jumk T(r) v exp(-jo_ ) / 4mo
P q i i
m,n m,n
. [(cxf1 n --1—;](!.m n) § + cos Gxi cos exi
1 it P4 P q
e 3-a2 _ + 3ja )] m#n
m,n m,n
i i
where
- >
a = kR ’ R = lr -r I
m,n o mn m,n m, n
m m
n (x i_xn) m,n (x 1.0
cos Gx = __1;_17_ » cos ex = '—'1%—'—&
P min q min
- o T T T n n _n
oy T (x)7s %75 X370 Ey = (xps Xp, X5)
then
5 N m,n
>g >
Ex (rm ) = I 1L Gxix Ex <—;n)
P i q=1 n=1 P q q

nfm i = 1,2,000-,8

(7.11)

(7.12)

(7.13)
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After the first-order solution of the .induced electric field is
-)
obtained in the first step. Then the scattered electric field at r
: i
can be computed by eq. (7.13). And, equivalent incident electric

field at r ~can be written as
i

N _m.n
By =BGy + 2 S0 @) EE) 0.4
1 My 1 n=1 1
nfm

4. After equivalent incident electric fields at the centers of
8 subcells are calculated based on the first-order solution of the
induced current, we can consider the th cell as an isolated body
being irradiated by these equivalent incident electric fields at 8
points inside the mth cell. We have subdivided the mth cell into 8
subcells and the incident electric fields at the centers of these 8
subcells are known, therefore, the induced electric fields in._these 8 sub-
cells can now be readily determined based on the tensor integral
equation method.

5. After each of the N cells is treated seperately following
the above steps, the seéond-order solutions for the induced electric
fields in the body are determined.

6. If more acculate results are needed, each of 8 subcells can
be subdivided further into 8 subcells again and the iteration process
can be repeated.

The important advantage of this technique is that since the
iteration of the induced electric field of eaéh cell is carried out

seperately, it does not require the inversion of a large matrix and,
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then, computer storage problem is sidestepped.

7.3 Example

An example is given here to show interesting results. Figure 7.2
shows the numerical results on the x-components of the induced electric
fields in a muscle layer of 4x2x0.5 cm irradiated by a 1 GHz plane wave.

Due to symmetry, only 1/4 of the body is considered, and it is
subdivided into 8 cells, 64 cells or 8 cells with iteration process in
the numerical calculation. The incident electric field is 1 V/m (max.
value) and the body conductivity and dielectric constant are assumed
to be 1.62 S/m and 50, respectively. It is observed in Figure 7.2
that a significant improvement in numerical results is obtained with
the 64-cell model or the 8-cell model with iteration process over the
8-cell model. It is also noted that numerical results based on the
64-cell model and 8-cell model with iteration process are quite close.
The numerical results based on these three models are graphically
compared in Figure 7.3, in which the x-components of the induced
electric fields along four lines in the body are shown. From Figure
7.3, it is evident that numerical results based on the 64-cell model
and the 8-cell model with iteration process are quite comparable. The
most significant difference, however, is in the computation cost: with
the 64-cell model the computation cost was $40, but it was only $14
with the 8-cell model with iteration process. It is to be emphasized
that saving computation cost is one big advantage with the iteration
technique, but the more important point is that with the iteration
technique the body can now be divided into many more cells without

encountering the computer storage problem.
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It is noted that the method described in this chapter is
particularly useful in the EM local heating of a body where EM energy
is concentrated at a local region and detailed distribution of the
absorbed power density in that local region is needed. For this
problem, only the induced electric fields in that region need to be

iterated and, thus, very accurate results can be obtained.



CHAPTER 8

GENERALIZED TENSOR INTEGRAL EQUATION METHOD

FOR BODIES WITH ARBITRARY ELECTRICAL PARAMETERS

8.1 Introduction

The existing tensor integral equation was formulated for non-magnetic
conducting bodies such as usual biological bodies. In some biological
applications, it may be feasible to introduce notoxic magnetic powder
into a local region of the body so that when the body is irradiated
by an EM field or a magnetic field, the absorbed power density at the
local region is enhanced. To analyze such a system the existing tensor
integral equation can be generalized to handle a body with an arbitrary
permeability in addition to arbitrary conductivity and permittivity.
This generalized method will also be useful in the study of the inter-
action of EM fields with magnetic materials in solid-state electronic

area or in other related fields.

8.2 Theoretical development

Consider a finite biological body of arbitrary shape with arbitrary
electrical parameters characterized by 0(;), e(;) and u(;), illuminated
in a free space by an incident EM wave with an electric field Ei(;)
and a magnetic field ﬁi(;). When a biological body is illuminated by
the incident EM field, it creates a distribution of induced charges and
currents throughout the body. The induced current in the body includes
three types of currents; the conduction current; the polarization

current and the magnetization current. These charges and currents
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produce a scattered field. The total EM field inside the body is the

sum of incident field and the scattered field:

D = B +BO (8.1)
D = @ + 5@ (8.2)

As developed in Chapter 2, the scattered electric field maintained by
the conduction and polarization currents can be determined from the

following equation (2,3):

>g > > >, e > > . je (-{)

E°(r) = PV Jeq(r ) ¢ G(r,r'") dv' - EE%Q:— (8.3)
\'4

where
Jog® - [o + jw(e-eo)] 163
€&, = -jwpo[‘f + :1—2 vv] 6 (Z,2")
(o]
. ~jk|*-1' |

o(r,x") = e

Aﬂlr—r'l

<>
Let's introduce new notations for the equivalent current Jeq and the

tensor green function relating to the electric field as:

Ee(?) = [o+jw (e—eo)] E(D)
@) = gt w]e@
e o K 2 ’
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1.0 = (0@ + juf@-e ]}

The scattered electric field ﬁs(;) in equation 8.3 can then be written
as

re@)ﬁ(?)

—:ﬁ—wr- (8.4)

ES(?) = BV [ re(?') E(T") ‘6: (r,r') dv' -
\Y

The scattered electric field maintained by the magnetization current

can be determined from the magnetic vector potential as

B@ = -1vxA®
= - lf v x [e?f @) ¢(¥,?')] dv' (8.5)
e Jy m
By using a vector identity V x (wK) = ¢VXK + waK and let Y = ¢(;,;')

and 4 = jm(;'),equation 8.5 becomes
E(r) = -[v [¢(?,¥') VxJ (@) + 9(E,T x Em(?)] dv' (8.6)
Since V x 3(;') = 0, equation 8.6 reduces to
ES(r) = -f Vo (r,r') x 3’m(¥') dv' (8.7)
\Y

o
From a tensor identity (I x K) -B=hx E, we let A = V¢(;,;') and
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B = 3&(;'), equation 8.7 then becomes

ES(E) = -f [*1’ X V¢(¥,¥')] « F (@) av' (8.8)
v m
Defining
%;(;,r') = -7 x vo(r,1")
Fm(r') = rm(¥') (")
where

Tm(?) = jw[u(?) - uo]

Equation 8.8 can be rewritten as

E(T) = f T (D AE) - EE,T) av! (8.9)
\
By substituting equations 8.4 and 8.9 in equation 8.1, we obtain

an integral equation for the induced electric field as

e

T(;) > > >0\ 2, e > >, '
[1 + 3552;'] E(r) - PV v Te(r ) E(") . Ge (r,r') dv

m

- /rm(¥') i@y - & v = B@ .10
v |

By induction, the scattered magnetic field maintained by magnetization

current can be obtained as

@) = pvf rm(?) H(z') ° E:G,?') dv' - & (8.11)
v
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where

<Ew=-w%ﬁ+f7wh6?>
(o)

And the scattered magnetic field maintained by the conduction and

polarization currents can be obtained as

»>s >

() =f T (£") E@) + CO(,2") dv' (8.12)
v e e

where

o= T x Ve,

By substituting equations 8.11 and 8.12 in equation 8.2, we obtain an

integral equation for the induced magnetic field as
T (D
[1 +—‘—“—] HE) - PV | T (") HE') - 6B(,TY) dv'
3jwuo y ® m
-f re(¥') EEY - TG vt o= 1D (8.13)
\'

If an incident EM field with an electric field Ei

(;) and a
magnetic field ﬁi(;) are defined, the total induced electric field
E(;) and the total induced magnetic field ﬁ(;) inside the body can

be determined from the following two coupled tensor integral equations.
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Te(;) > > -+ > e, > >
[1 +W]E(r) - e [T, EEY L EBET) av
\"
) f‘m@W B - CEI av' = B@
\'

¢3)
Wl

T
[1 + 3—‘;‘——] H(T) - PV frmG') (") -E:;G,?) v’
v

-[re(?) B - TEE) av' = BLD)

e
\'
where

Te(;) = o(r) + jw [E(r) - € ]

W® = o [ud -]

2§(;,r') = —juu [f + —%—VV ] A(r,r'
k0

‘&‘;‘(F,r' = -jue, [T+?W] 8(z,z")

(o]
‘é‘:G,?') = TxV oG,z

‘é;<¥,¥') = -TxV eI,
-3k _|z-r'|
”(rsr') = &

4m|T-r'|

(8.14)

(8.15)



116

f = jdentity tensor

k = w'/ue
o0

o

PV symbols mean the principle values of the integrals.

These two coupled equations are more complicated than the tensor
integral equation treated in the previous chapter. It is evident that
they can only be solved numerically for a finite body with an irregular
shape. By using the method of momentswe can transform these coupled
integral equations into a matrix equation. After that the induced
electric and induced magnetic fields are obtained by inverting the
matrix. Computer program for this problem is explained in part 3 of
Chapter 9.

Tranformation to matrix equation

We may represent the inner product of .i:.“e: in Eq. 8.14 as

- - .
¢ @iy ¢ @iy o @] [ea)
e e e X
XX Xy Xz
> .
EHEE) =68 @I ¢ &I ¢ @I | £ En|
e e e e y
yx yy yz
¢ (r,r") 6 (r,x) 6 (1) [E,GE"
zxX zy zz J
- Jd &
(8.16)
Let
X, =X ¥, = ¥, X3 = z

Then G: (;,;') is given by

X_X
Pq
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2
A 1 9 ] e
G, (r,r'") Juu [qu t o ox ox P(r,r')
X X k
P 4 o
P,q = 1,2,3 (8.17)
> e
We also represent the inner product H-Gtn as
I e e -> e > > j [ -> |
G (r,r') G_ (r,r') G_ (r,r")| |H (')
m m X
XX Xy X2z
HEDCo@,r) = |6 @) 6 @I 6 @I B GEY
m m m m y
yx yy yz
> > > > > > >
6. (r.r') 6 (r,r") 6 (r,r") Lnzor')
| Zx zy 2z ] )
(8.18)

The scalar components of Eq. 8.14 may be written as
3 e -»> ->' +' '
E Ge (r,r'") Ex (r') dv

T (1)
r
e > >,
[1+3jwe ]Ex (r) - PV f’re(r)
o P q=1 X X q
v Pq

3
-fr @) I ¢ EINH @Y dav' = EL @
m m X X
=1 "x x q P

p=12,3 (8.19)

We can transform eq. 8.14 into a matrix equation by using the method of
moments. We partition the body into N subvolumes and assume that -ﬁ(-lt),

> > > -+
E(r), 're(r), Tm(r) are constant in each subvolume.

Requiring that eq. 8.19 is satisfied at each ;m’ the center of the m

th
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subvolume Vm, we have

o P q=l n=
v P q
n
3 N
‘E. (t)- I z[r ) G (r_,t") dv']
X ''n m
q q=1 n=1 X X
v Pq
n
> i >
«H (rn) = E_ (rm) (8.20)
q P
Defining
mn
- e - -»> e > +' '
Ge Te(rn) PV f Ge (rm,r ) dv (8.21)
X_X X_X
P q v P q
n
and
e mn -> e + >, ' 22)
Gm = ‘rm(rn) Gln (rm,r ) dv (8.
X_X X_X
P q v Pq
n
We can write eq. 8.20 as
3 N ma T (r )
r ¢ {|g® -5 Q+")] - E (r)
e pPqQ mn 3jwe X 'n
q=1 n=1 X X o q
P q
mn
e -+ i~
+ Gmx . qu (rn) -Exp (rm)
P q
m = 1’2’....! N
p =1,2,3 (8.23)
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mn

Let G: be an N x N matrix given by
X_X
P q
mn mn T ()
e = e e’ 'm
G -G -5 6 [1 +-—] (8.24)
®x_x ®x_x pq 0 3jmEo
P q P q

Let [Ex ], [Hx ] , and [E}i{ ] be N-dimensional vectors. As m and p
P P P

range over all possible values in eq. 8.23, we obtain a matrix

equation approximation for eq. 8.14 as

¢t c¢ c® E
e e e X
XX Xy Xz
c® c® c¢ E
e e e y
yx yy yz
c® c¢ . ¢® E
e e e z
zX zy zz
- o L .
O | [l
m m m X X
XX Xy Xz
e e e i
+| ¢ G G H E
m m m == 8.25)
yx vy vz Y y (
¢t ce ce H gl
zZX “zy mz z z J
L JL J L
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Symbolically, we can write eq. 8.25 as

QIORIGIORES

Similarly, for equation 8.15 we may represent the inner products

ﬁ-?andﬁ-‘éﬂnas
m e

¢l (r,x) 6 (r,x) 6 (r,r") [ @)
XX xy Xz
ﬁ(;').‘&m(-* +') - Gm (+ ->') Gm >+ >, Gm >+, H -+,
m (T o (T.r' n (er') G (r,r') g
yx yy yz
¢ (r,t) 6 (r,r) 6 (,rH| |’ GEY
| 2x zy zz J i J
(8.27)
and
r m > m m >0 N
Ge (r,r") Ge (1’,1") G (r, ') Ex(r')
XX Xy X2z
EENE @I = [ &I 6 @I o G| | EGEY
yx yy yz
¢ (£,r) 6 @IH ¢ GI| |E &Y
L zX zy 2z J ]
e
(8.28)

The scalar components of equation 815 may be written as
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3jm"lo q=l1 x x q

->
[1 + == ]Hx (x) - PV f‘rm(r') z G: (?,r') H (r') dv'
P pq

v

3
- f‘r @Y I GEINE @Y av = w @
e e X X
q=1 "x x q p

Pq
v

p=1,2,3 (8.29)

By using the method of moments, we partition the body into N subvolumes
and E(;), Te(;), ﬁ(;), Tm(;) arn assumed to be constant in each sub-

volume. Requiring that equation 8.29 is satisfied at each ;Q, we have

>
T (r) 3 N
142 21|y x)- 3 |t (r)epv e ("{,?')dv']
3jwu X 'm ]l mtn m m
o P q=1 n=1 X_X
v Pq
n
‘H (->) g g > Gm -+ >, v’ -+
< (t) - Te(rn) o (rm,r ) dv Ex (rn)
q q=1 n=1 X_X q
) P q
n
i -»
= Hx (rm)
P
p=1,2,3
(8.30)
Defining
_mmn _ g m -P -P' '
Gm = Tm(rn) PV ‘}f Gm (rm,r ) dv (8.31)
X X , X X
Pa v Pq
n
and
o 0
m
Ce - Te(?n) fGe (t ,7') av' (8.32)
Pq v P q

n
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We can write equation 8.30 as

3 08 [p_ mn T () .
L I [G -8 6 (1+——)]0H(r)
q=1 n=1 L pq mn 3jmu° xq n
P q
mn
m +> i -~
+ Gex . . Exq(rn) - pr(rm)
Pq
m=l’2’ooouoooN
p=12,3
n
Let Gm be an N x N matrix given by
X_X
P q
p B0 _p Tm(rm)
G =G -8 6 1+ )
T x Py x pq mn Sjwuo

(8.33)

(8.34)

As m and p range over all possible valuesin equation 8.33 we obtain

another matrix equation.
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- - 1
c® o ct '1 H
m m m X
XX Xy p34
¢t ¢ ¢ H
m m m y
yx Yy yz
" ¢ ™ H
m m m Z
zX zy zz
ct " e E gt
e X X
XX Xy Xz
+ | ™ ¢t ¢t E |=-| &t (8.35)
e e e y y
yx vy yz
G ™ ¢ E nl
e e e Z YA
zX zy zz J i i ]

Symbolically equation 8.35 can be represented as

2 - (] -] e
(ll=] + [s]le] --[#]
(&lle] + [e]fe] - [

Where [GE]], [G;], [G:], [G:] are 3N x 3N matrices and [ E] , [ H],

[E#l, [H are 3N dimensional vectors. Finally we can write
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p - P ™~
¢¢ ¢t E ] Eﬂ
e m
= - (8.37)
e H t
L e m
Lo L

This matrix equation represents 6N simultaneous equations for 6N
unknowns. If the incident electric field Ei(;) and the incident magnetic
field ﬁi(;) are specified, the total induced electric field E(;) and the
total induced magnetic field ﬁ(;) inside the body can be determined from

equation 8.37 by inverting the [ G] matrix.

8.3 Example

Two examples are given here to show theoretical results of the
magnetic heating inside biological systems which are injected with
magnetic materials and when they are irradiated by a uniform magnetic
field. Figure 8.1 shows the theoretical model of a muscle layer of
12x2x12 cm with a magnetized central part (shaded region) where the
magnetic property was modified to possess an arbitrary permeability.
The body is divided into 36 cells and the incident field is assumed
to be a 30 MHz uniform magnetic field in y-direction.

First example is the case of a muscle layer of 8x2x8 cm irradiated
by a 30 MHz uniform magnetic field. The body is divided into 16 of 2
cm-cubic cells and the permeability of the magnetized, central 4 cells
has been modified by a magnetic powder injection. Figure 8.2 shows
the absorbed power density in cell A located at x = 3, y =1, z = 3 cm
as a function of relative permeability of the magnetized part. At this
frequency the conductivity and dielectric constant are assumed to be

0.62 S/m and 150, respectively, and the relative permeability of the
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Figure 8.1 A simulated muscle layer (12x2x12 cm) with a
magnetized central part irradiated by a uniform
field (ﬁi) of 1 A/m (max. value) at 30 MHz in
y-direction. The body is divided into 36 of 2 cm-

cubic cells.
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Figure 8.2 The absorbed power density in cell A varying as a
function of relative permeability of the magnetized
region inside a muscle layer (8x2x8 cm) for the case

of frequency = 30 MHz, ﬁi = 1 A/my, 0 = 0.62 S/m and

e, = 150.
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unshaded region (unmagnetized region) is assumed to be unity. It is
found that the absorbed power is rapidly increased when 1 < M <10
and slowly increased when 10 < ﬁr < 100, where ur is the relative
permeability of the magnetized region.

These results imply the effectiveness of magnetic heating induced
by a uniform magnetic field in a magnetized body. The distribution of
induced currents inside the body is shown in Figure 8.3. The relative
permeability of the magnetized region is assumed to be Moo= 10. As
expected the induced currents are circulatory on xz-plane around the
direction of the incident magnetic field.

Another example is the case of a muscle layer of 12x2x12 cm with
a magnetized region, excited by a 30 MHz uniform magnetic field as
depicted in Figure 8.1. The body is divided into 36 2 cm-cubic cells
with 16 cells consisting of the magnetized region (shaded region).
Figure 8.4 shows the absorbed power densities in cells A and B located
atx=5,y=1,z=3 cmand x =5, y=1, z = 5 cm, respectively, as
functions of the relative permeability M. of the magnetized region.
This result shows that the absorbed power density increases rapidly
when 1 < Mo < 10 and then start to saturate after Mo > 50. Figure 8.5
shows the current distribution induced inside the muscle layer of
Figure 8.4 when Moo= 10. It is clearly shown in this figure that
circulartory currents are induced inside the body with their magnitudes
increasing with the distance from the center of the body.

A study on this generalized TIEM at this point is not complete.
Further studies on the numerical convergence and the accuracy test

are needed in the future. One may be able to find new distribution
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Figure 8.4 The absorbed power densities in cells A and B varying
as functions of the relative permeability of magnetized
region (shaded region) inside a muscle layer (12x2x12 cm)
for the case of frequency = 30 MHz, -1 A/m ;,

0 =6.2 S/m, and e = 150.
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Figure 8.5 Distribution of induced electric fields (or currents)
inside a muscle layer (12x2x12 cm) with magnetized
region (shaded region, Moo= 10) when frequency = 30 MHz,

#=1A/my, o=0.62S/m and e, = 150.
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functions beside the pulse functions that when combined with the moment
method, will lead to a more efficient solution to these coupled tensor

integral equations.



CHAPTER 9

A USER'S GUIDE TO COMPUTER PROGRAM FOR INDUCED
ELECTRIC FIELD INSIDE AN ARBITRARLLY SHAPED,

FINITELY CONDUCTING BIOLOGICAL BODY

This chapter explains the computer programs used to obtain the
numerical results on the induced EM fields in an irradiated biological
body, based on the tensor integral equation method. There are 3
computer programs used.

First, program "FIELDS" is used to quantify the induced electric
field at various locations of the biological system.

Second, program "ITERATE" is used to quantify the induced
electric fields at the centers of 8 subcells in each cell of the
biological system tased on the first-order solutions of induced
electric fields from program "FIELDS".

Third, program "EMFIELD" is used to quantify both induced
electric field and induced magnetic field at various locations of
a biological system with arbitrary permittivity, permeability and
conductivity.

A listing of the program deck and instructions for their useage
are also provided.

PART I PROGRAM FIELDS

9.1 Description of the program

This program is the modification of the program "FIELDS" developed

132
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by Guru (23). The program is exactly the same mathematically but was
modified to conform with a standard FORTRAN IV . The reason for this
modification is to increase the '"capacity" of the program to be able
to handle a larger number of cells. By using the '"MERIT" network,
this program can handle the maximum size of the matrix up to 300 x 300
(100 cells).

The "MERIT" network (MIS) is the computing facility which combines
*he three host computing facilities located at Michigan State University,
University of Michigan and Wayne State University. The IBM G&H
compilers, waterloo Fortran and interactive FORTRAN (IF) are available
under MTS at the University of Michigan. At Wayne State University
the IBM FORTRAN G&H extended compilers, waterloo Fortran and IF
are available under MTS. CDC FORTRAN extended version 4(FTN4) and
Minnesota FORTRAN are available under scope/Hustler at Michigan State
University.

With this computing facility CPU is ten times faster than CDT
6500 with 250 K 32 bit word real memory and unlimited virtual storage.

A biological system is divided into N small cubic cells with the
side of each cubic cell not exceeding A/4 where A is the wavelength
inside the body. The body is illuminated by an electromagnetic plane
wave. Only normal incidence will be considered and the incident field

is given by
Ei(;) =X e_jkoz

Program "FIELDS" will calculate the induced electric field and

power density at the center of each cell inside the body.
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9,2 Data Structure and Input Variables

The data file for program FIELDS, showing the input variables,
their FORMAT specifications, and their locations within the file, 1is
outlined in Table 9.1. A detailed description of the variables is
given in the next section.

A sample partitioning scheme for an arbitrary biological system
is shown in Fig. 9.1. The biological body is divided into 4 quadrants
and the center of the body is assumed to be the reference point. The
body has two layers in z-direction. The quadrants are numbered in the
clockwise order. In this example we assume that all the cells have the
same physical dimension and electrical parameters. Under the symmetri-
cal conditions, it is always intended to solve for the induced field
in first quadrant and then interpret the result in other quadrant.

It is noted that the body can also be divided into 8 quadrants if
the symmetry conditions for the body and the incident electric field
exist for this division. For example, a plane EM wave in exponential

-jk 2z

form, e “ 0°, can be divided into cos koz and ~j sin koz.

The induced electric fields in the body due to cos koz and -j sin
koz can be determined separately using 8 quadrants symmetry. The total
induced electric fields in the body are then the sum of these two

modes.

9.3 Description of the Input Variables
In this section we describe the function of each input variable

and explain how it is used in PROGRAM FIELDS.
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Figure 9.1. A two-layer biological body illuminated by an EM wave
at normal incidence is shown divided into 4 quadrants

under symmetry conditions.
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File No. Card No. Symbolic name Columns Format
| 1 1 NDIV 1 I1
2 1 COMP 1-3 A3
QJ), J =1,8 11-18 811
FMEG 21-31 F10.0
SCAT 41-45 A5
3 1 NX 1-2 12
NY 6-7 12
NZ 11-12 12
4 1 N 1-3 I3
5 1-N AMX 1-10 F10.3
AMY 11-20 F10.3
AMZ 21-30 F10.3
RLEP1 31-40 F10.3
SIG1 41-50 F10.3
DXCM 51-60 F10.3
DYCM 61-70 F10.3
DZCM 71-80 F10.3
Table 9.1 The symbolic names of input variables and corresponding

specifications for the data files used in the data

structure for the program "FIELDS".
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First data file

NDIV This variable allows the user to control the accuracy
with which the elements of (:G]are evaluated.

Second data file

COMP being the code name for the component of the induced

electric field which may have any one of the following

forms
"XXX"  x-component only
"XAY" x- and y-components

"XYZ2" all three components
Q(J1), 3=1,8 is the symbolic name for the quadrants. Quadrant 1-8
corresponding to column 11-18. If any one of the
quadrants used then punch the quadrant number in

corresponding column otherwise is "0" (zero).

FMEG read frequency of incident wave in Mega Hz.
SCAT being a code name for the incident wave.
EXPKZ,COSKZ,SINKZ ---~ for the exponential, cosine,

sine variation of the incident electric field.

Third data file

NX,NY,NZ defines the maximum number of cells in x-, y- and

z-directions.

Fourth data file

N Total number of cells being considered.

Fifth data file

There are as many as 'N" data cards which help to



AMX, AMY , AMZ

RLEP1,SIGl
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simulate the biological body. Each card contains

maximum boundaries of a cell in x-, y- and z-

directions in cm.

are the codes for relative dielectric constant and

conductivity (S/m).

DXCM,DYCM,DZCM are the dimensions of the cell in x-, y- and z-

9.4 How to Use the Program

directions in cm.

We will construct the data file for the example shown in Fig. 9.1.

Let us assume that the incident field is of exponential form, the

frequency of the incident wave is 2.45 GHz, and the electric parameters

are € = 50 € O

2.21 S/m with a cell volume of 1x1x1l cm. The

sequential order of the data files is as follows.

File No.

1

5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8

2

XYZ 12340000

02 02 02
008

1.0 1.0
1.0 2.0
2.0 1.0
2.0 2.0
1.0 1.0
1;0 2.0
2.0 1.0
2.0 2.0

Information on the File

2450.0 EXPKZ

1.0 50.0 2.21 1.0 1.0 1.0
1.0 50.0 2.21 1.0 1.0 1.0
1.0 50.0 2.21 1.0 1.0 1.0
1.0 50.0 2.21 1.0 1.0 1.0
2.0 50.0 2.21 1.0 1.0 1.0
2.0 50.0 2.21 1.0 1.0 1.0

2.0 50.0 2.21 1.0 1.0 1.0

2.0 50.0 2.21 1.0 1.0 1.0
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The list of the control cards needed for execution of the program in

MERIT network is as follows:

Card No. It's purpose
1 Authorization to use the computer
2 Job card (MSU)
3 Pass word
4 Input to MERIT network
5
6
7 Job card (UM)
8 Pass work (UM)
9

The deck card structure is as follows:
Control cards

Program

SENDFILE

$SET DEBUG=ON

$SDS SET ERRORDUMP=ON

SRUN - LOAD SPUNCH=*PUNCH*

data cards

$ENDFILE
$SIGNOFF

6/7/8/9

Information on the card

PNC
B,CM30000,T100,RG1,JC100.
PW=SUTUS

DISPOSE, INPUT,IN=UM.

7/8/9

7/8/9

$SIG XS2Q T=160 PRIO=D P=300
FIELDS

SRUN *FTN PAR=FORMAT=1BM
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PART 2 PROGRAM ITERATE

9.5 Formulation of the Problem

The numerical method of program "FIELDS" sometimes encounters
difficulties in the numerical convergence when the body is electrically
large. It is evident that in order to generate accurate results and a
good numerical convergence the cell size has to be electrically small,
thus, a large number of cells is needed. This, in turn, leads to an
unmanageably large number of unknowns in the numerical calculation.
The program "ITERATE" is designed to overcome this difficulty.

Program "ITERATE" needs the first-order solutions on the induced
electric fields from program "FIELDS". Starting with a biological
body with N cells (this N-cells model gives reasonably good results and
a reasonable computer cost), the induced electric fields in these N
cells are obtained based on the tensor integral equation method.

In the next step, program "ITERATE" considers any one of N cells
in the body (e.g. mth cell) and divide this cell into 8 subcells. It
then calculates the equivalent incident electric field at the center
of each of the 8 subcells, which is equal to the incident electric
field of the incident plane wave plus the scattered electric field
maintained by the induced currents and charges in the rest of the
cells in the body.

Finally, program "ITERATE" solves the induced electric fields at
the centers of 8 subcells. After repeating each of these N cells; we
determine the induced electric fields in the biological body with 8

N cells.
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9.6 Description of Computer Program

The computer program is coded in standard FORTRAN IV and can be
compiled on any FIN compiler. The main program is symbolically named
as "ITERATE". Program "ITERATE" uses the following complex functions
and subroutines for the numerical evaluation of induced electric fields
inside a biological system.

"GMAT" is a complex function which calculates the elements of
G matrix.

"CMATP" 1is a subprogram which calculates the induced electric
field in each cell by solving a 24x24 matrix.

"ANGLES" This subprogram determines the phase angle between real
and imaginary parts of the induced electric field in
each cell.

A listing for the main program "ITERATE", the complex function
"GMAT", and subprograms "CMATP'" and "ANGLES" is given at the end of

this part.

9.7 Structure of the Data File

The data file for program "ITERATE" showing the input variables,
their FORMAT specifications and their locations within the file, 1is
outlined in Table 9.2. A detailed description of the variables is
given in this section.

A sample partitioning scheme for a biological body is shown in
Fig. 9.2 and we will use this sample to run the program. The bady is
a cube of size 4x4x4 cm and it is divided into 8 subcells with the

size of 2x2x2 cm. The body has two layers in the z-direction and these
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2 layers touch each other. The reference point is shown in the figure
which i1s located at the lower left corner of the body. The location
of each cell is read with respect to the reference point.

After defining the location and electrical properties of each cell,
we find the induced electric field at the center of each cell by using
program "FIELDS" with an incident field of B (%) = x e J%o%. These
results will be considered as the first-order solutions and input
variables for program "ITERATE".

It is important to identify the order of these 8 subcells and
their number system. These subcells are numbered in the clockwise
order beginning with the back layer. In the program "ITERATE", the
center location of each subcell is calculated based on this number

system.

Next, the information in each data file is explained below.

First data file

This data file has only one data card which defines

a symbolic name '"NDIV" under I-format and "FMEG" under F-format.

NDIV This variable allows the user to control the accuracy
with which the elements of [G.]are evaluated.
FMEG read frequency of the incident electromagnetic wave

in MHz under F-format.

Second data file

This data file has only one data card which defines a symbolic

name "NT" under I-format in the first three columns of the data card.
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Table 9.2 The symbolic names of input variables and corresponding
specifications for the data files used in the data
structure for the program "ITERATE".

File No. Card No. Symbolic Name Columns Format

1 1 NDIV 1 I1
FMEG 2-11 F10.0

2 1 NT 1-3 13
3 1-NT AMX 1-10 F10.3
AMY 11-20 F10.3
AMZ 21-30 F10.3
RLEP1 31-40 F10.3
SIG1 41-50 F10.3
DXCM 51-60 F10.3
DYCM 61-70 F10.3
DZCM 71-80 F10.3
4 1-NT E(K) ,K=1,NT 1-24 2E12.5
E (KPN) ,KPN=NT, 2NT 29-52 2E12.5
E(KNN) ,KNN=2NT, 3NT 57-80 2E12.5

5 1 NQ 1-2 I2
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It tells the computer about the total number of cells being considered.

"NT" is also the total number of cell in the body.

Third data file

This data file has as many as NT‘data cards. This set of data
cards helps simulate the blological system and each card contains the
following information.

AMX , AMY ,AMZ These codes correspond to the maximum boundaries of
a cell in the x-, y- and z-directions in cm.

RLEP1,SIGl are the codes for relative dielectric constant and
conductivity of the cell.

DXCM,DYCM,DZCM are the symbolic names for the dimensions of the

cell in x-, y- and z-directions in cm.

Fourth data file

This data file has NT data cards and this set of data defines
the induced electric field at the center of each cell (first-order
solution). Each card contains the x-, y- and z- components of the

induced electric field.

Fifth data file

This data file has only one card which defines a symbolic name
"NQ" under I-format in the first two columns of data card. It tells
the computer how many quadrants have been used. If more than one
quadrant are used only the cells in the lst quadrant are considered.

To get better understanding of how these variables are used,an
example is worked out in the next section for induced electric fields

in a biological body as shown in Fig. 9.2.
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9.8 An example to use the program
We will construct the data files for a sample problem in this
section, to illustrate how the input variables are used. Also we
will discuss some of the important features of the printed output.
A sample problem is a biological body as shown in Fig. 9.2,
The body has 8 cells with a cell volume of 2x2x2 cm. Let's assume
that the frequency of the incident wave is 1.0 GHz and the electrical
parameters of the biological body are € = 50 eo’ and 0 = 1.62 S/m.
The first-order solutions of the induced electric fields at the centers

of 8 cells are punched on the computer cards as

Card no. Ex Ey Ez
1 6.318E-2 2.488E-2 8.373E-3 9.604E-4 8.185E-3 -1,055E-2
2 6.318E-2 2.488E-2 -8.373E-3-9.604E-4 8,185E-3 -1.055E-2
3 6.318E-2 2.488E-2 -8.373E-3-9.604E-4 -8.185E-3 1.055E-2
4 6.318E-2 2.488E-2 8.373E-3 9.604E-4 -8.185E-3 1.055E-2
5 6.513E-2-2.870E~-2 8.505E-3-1.819E-3 -8.693E-3 -9.694E-3
6 6.513E-2-2,870E-2 -8.505E-3 1.819E-3 -8.693E-3 -9.694E-3
7 6.513E-2-2.870E-2 -8.505E-3 1.819E-3 8.693E-3 9.694E-3
8 6.513E-2-2.870E~-2 8.505E-3-1.819E-3 8.603E-3 9.694E-3

After knowing all these induced fields, we can start setting the
data files with the aid of Section 9.7 and Table 9.2. The sequential

order of the data files is as follows:



158

File no. Information on the file
i 2 1000,0
2 008
3.1 2.0 2.0 2.0 50.0 1.62 2.0 2.0 2.0
3.2 2.0 4.0 2.0 50.0 1.62 2.0 2.0 2.0
3.3 4.0 2.0 2.0 50.0 1.62 2.0 2.0 2.0
3.4 4.0 4.0 2.0 50.0 1.62 2.0 2.0 2.0
3.5 2.0 2.0 4.0 50.0 1.62 2.0 2.0 2.0
3.6 2.0 4.0 4.0 50.0 1.62 2.0 2.0 2.0
3.7 4.0 2.0 4.0 50.0 1.62 2.0 2.0 2.0
3.8 4.0 4.0 4.0 50.0 1.62 2.0 2.0 2.0
4 First-order solution (see the previous page)
5 01

The list of the control cards needed for the execution of the

program is as follows:

Card no. Its purpose Information on the card
1 Authorization to use the computer PNC
2 job card B,CM60000,T300,RG1,JC2000.
3 AUTORFL,PART.
4 Pass word PW=SUTUS
5 Identification name HAL ,BANNER, SR,
6 Compile the program FIN(R=3)
7 Execute the program LGO.

8 End of control card 7/8/9
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9.9 Printed Output
Although most of the items in the output are self-explaintory,
a few of them need to be explained. The printed output consist of
4 output files. First, second and third output files are the data
from the input files in order to check on the data used for the input

variables and for further future references.

First output file consists of the maximum boundaries limited of each

cell as read in through the symbolic code names "AMX', "AMY" and "AMZ'
and the dimensions of each cell "DXCM", "DYCM" and "DZCM" in centimeters

in x-, y- and z-direction, respectively.

Second output file, the internally calculated coordinates in the x-,

y- and z-directions for the central location of each call, its volume

and its permittivity and conductivity.

Third output file, the components of the induced electric field in

each cell (the first-order solution).

Fourth output file consists of as many sets as the number of cells

considered. Each set contains:

1. The coordinates in the x-, y- and z-directions for the
central location of each subcell, its volume, permittivity
and conductivity.

2. The equivalent incident electric field at the center of each
subcell,

3. The most needed results for the induced electric field and

the power density in each subcell in addition to the frequency
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of incident wave and total power absorbed by the cell.
4. The real and imaginary parts of each component of the induced
electric field in each subcell along with absolute magnetude

and phase angle.

Listing of the program

A Fortran listing of the PROGRAM ITERATE and its subprogram
begins on the next page. The subprogram is listed in order of their
first appearance in the main program. The program required approxi-

mately 24600 octal words of storage.
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PART 3 PROGRAM EMFIELD

9.10 Formulation of the Problem

In this computer program; we consider the biological body with
arbitrary permeability, permittivity and conductivity. When such a
body is irradiated by an EM wave, both the induced electric field
and the induced magnetic fields need to be determined. Furthermore
these induced electric fields and magnetic fields are coupled together.

We now have to solve the system with 6 unknowns, three components
each for the induced electric and magnetic fields, in each cell., Thus,
the size of[G]matrix increases twice to 6Nx6N, where N is the number of
cells in the body. The formulas used to compute the elements of[G}
matrix become more complicated because of the coupling term between
the electric and magnetic fields.

In this program, the incident electromagnetic wave is assumed to
be a simple plane wave with an electric field polarized in the x-
direction and a magnetic field polarized in the y-direction. The
arbitrarily shaped biological body is divided into N small cubic cells
with the side of the cube not exceeding A/4.

After defining the incident electric and magnetic fields,
electrical parameters and physical dimensions, program EMFIELD then
calculates the induced electric and magnetic fields, and the power

density at the center of each cell in the body.

9.11 Description of the Computer Program
The computer program is coded in standard FORTRAN IV. The main

program is symbolically named as "EMFIELD'". Program EMFIELD uses the
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following complex functions and subroutines for the numerical evaluation
of induced electric fields and induced magnetic fields inside the

biological body.

GMAT1 and GMAT2 are 2 complex functions which calculate thé
elements of G matrix.

GMATP is a subprogram which calculates the induced
electric and magnetic fields in each cell.

RFN is a subprogram which calculates the distance
between one cell and another.

ANGLES This subprogram determines the phase angle
between real and imaginary parts of the induced

electric and magnetic fields.

A listing for the main program "EMFIELD", the complex function
GMAT1 and GMAT2, subprogram CMATP, RFN and ANGLES is given at the

end of this part.

9.12 Structure of the Data File and Input Variables

The sequential structure of the data files, the format specifi-
cations and the symbolic names of the variables appearing in each
file are outlined in Table 9.3.

Figure 9.3 shows a sample biological body with one layer which
consists of 4 cells in the lst quadrant (there is no symmetry condition
which exists in general). The body is a block of size 20x20x10 cm
with each cell size of 10x10x10 cm. The féference point 1is located
at the lower left corner of the body. We will show how to construct

the data file in the next section. The information in each data file
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> X

Figure 9.3 A layer of biological body illuminated by Electromagnetic

wave at normal incidence is shown divided into 4 cells.
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Table 9.3 The symbolic names of input variables and corresponding
specifications for the data files used in the data
- structure for the program EMFIELD. -
File No. Card No. Symbolic Name Columns Format
1 1 NDIV 1 I1
2 1 COMP 1-3 A3
Q1 11 I1
FMEG 21-30 F10.0
SCAT 41-45 A5
3 1 NX 1-2 12
NY 6-7 I2
NZ 11-12 12
4 1 N 1-3 I3
5 1-N AMX 1-10 F10.3
AMY 11-20 F10.3
AMZ 21-30 F10.3
RLMU1 31-36 F6.3
RLEP1 37-42 F6.3
SIG1 43-50 F8.3
DXCM 51-60 F10.3
DYCM 61-70 F10.3
DZCM 71-80 F10.3
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is as follows:

First data file This data file has one card which defines a symbolic

name NDIV. This variable allows the user to control the accuracy

with which the elements of [G ]are evaluated.

Second data file consists of one data card which defines the compon-

ents of induced electric and magnetic fields, quadrant, frequency of

the incident wave and type of the incident field.

Third data file consists of one data card which defines the maximum

number of cells in the x-, y- and z-direction. The symbolic names for

these numbers are NX, NY, and NZ, respectively.

Fourth data file has only one data card which defines a symbolic

name "N" under I-format in the first three columns of the data card.

"N" is the total number of cells being considered.

Fifth data file This data file has as many as "N" data cards. This

set of data cards helps simulate the biological system and each card
contains the following information.
AMX, AMY ,AMZ These codes correspond to the maximum boundaries
of a cell in the x-, y- and z- direction in cm.
RLMU1,RLEP1,SIGl are the codes for permeability, dielectric constant
and conductivity of the cell.

DXCM,DYCM,DZCM are the symbolic names for the dimension of the cell

in x-, y- and z-directions in cm.
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9.13 An Example to Use the Program

Let us now try to determine the electric and magnetic fields

induced inside a biological system as shown in Fig. 9.3 by an incident

EM wave.

Let's assume that the frequency of the incident wave is 500

MHz and the electrical parameters of the biological body are u = 1.2u°,

€ = 536° and 0 = 1.45 S/m with the cell volume of 10x10x10 cm. We use

"EXPKZ", an exponential variation for the incident EM wave.

From

section 12 and Table 9.3, the sequential order of the data files is as

follows.

File No.

1

5.1
5.2
5.3
5.4

9.14 Printed output

2

XYZ 1

02 02 01
004

10.0 10.0
10.0 20.0
20.0 10.0
20.0 20.0

Information on the File

10.0

10.0

10.0

1n.0

500.0 EXPKZ
1.2 53.0
1.2 53.0
1.2 53.0
1.2 53.0

The printed output consists of 2 parts.

of the data from the input files in order to check on the data needed

1.45
1.45
1.45

1.45

First part is the echo

for the input variables and for further references.

the required output.

explained as follows.

10.0

10.0

10.0

10.0

10.0
10.0
10.0

10.0

Second part is

The information on each output file can be

10.0
10.0
10.0

10.0
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First output file consists of the maximum boundary limits of each

cell as read in through the symbolic code names AMX, AMY and AMZ and

the dimensions of each cell DXCM, DYCM and DZCM in cm.

Second output file consists of the central location of each cell in

the x-, y- and z-directions, its permeability, dielectric constant and

conductivity.

Third output file The components of the incident electric and magnetic

fields in each cell and the type of its wvariation.

Fourth output file The results for the induced electric field and the

power density in each cell in addition to the frequency of the incident
field and the total power absorbed in the biological system. Following
these results are the real and imaginary parts of each component of

the induced electric field in each cell along with its absolute magne-

tude and phase angle.

Fifth output file The results for the induced magnetic fields in each

cell in addition to the frequency of the incident wave in the body.
Also the real and imaginary parts of each component of the induced

magnetic field along with its absolute magnetude and phase angle.

Listing of the program

A Fortran listing of the program EMFIELD and its subprogram
starts on the next page. The program requires approximately 12000

octal words of storage.
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