“ ‘13 7 $1131. ‘1“ Wuunm‘x. " II.IW-WWL uKLL-gg- %‘I~$\%}r~hflai\4§:¢‘3~ L ”A LL L ‘31, ”12131.1‘31-31‘1“ .1*\‘K¢L:::1 “mug-LL 1“‘x 1‘3? ““41“,.“ 1.2%? 1‘: p.51 ‘aux gm - E‘- It I11 L‘, ’KLILX‘ AL‘aL . . 'I 0&3th ; fl ,- 3-1 L“ 111%.. I: . I I 113'54I‘IL LLiLi‘L‘I 5534c; i‘jL‘m'L :l. 1‘. 1” I I am“ ‘ v L I 'l 1-! ILL LL“ 1‘ L L . 111141 «“51“ 11111.1: 1 1111‘ 1 ‘1. I 9 3.. 1“. LL LLLLL ‘1'}: I III m "0‘ L‘ (“‘1‘ ‘1‘ M. I 1' ': muwfimfigm SFQWRFjEL . Eva-11111111111 gm I390 ngl‘i‘i‘LI‘LN" “ L: 3424-4 IL L‘L ‘1'L‘ld 1111111111111 “111311 1:511! "M1 121?: 1111111111111 , LL1111L1LLLLL Vi“: I . H11111111‘1‘1111L:II1‘1111:§I.II "I1"11 I“,I1ILL.§hI L1111111111k1§1§111 ‘1}; 11111161111 1 ,Ihlfin! ,.L;I.\L ILLLLILLLLH! LII,l ,f - "' ' . ‘ ‘111'1I1'5‘19LI131HI' ”11171111 111111111111 LngILLEImLLILLLIL =1 411‘ ngngI‘IIII' ..1 1111-3 111111“ 1% 1111' IL LLLIILL LII; 14161:. 1 ,. 1‘11I11‘111‘IIWI‘: @115; «‘1‘ : t-IIII11II‘113111‘I.,1IIIl‘I'rJII1111" I“ 111 1* 1111‘; I_ 11 . F (3,19; I11L.IL 11‘11I1111111’1111a1qgiw1 I‘lq‘fifit £233 I 11 W11 L 11111 111111111111111111111111111111111111111111111111111L411€""1L'}‘L3LL¢‘1§11I1:1"1- LI.I_'11L"-1“ . - L.I:Ir‘HI* 1111 :1119‘if amt 11111113.: I.1}I~I111§1}¢111M$L1I'1§L11‘111t ,‘L .. #11 “LE?“ LLLL’L L LILL LL I10 . 11E 'L-LLLML LLLLLIMILLLILL LEILIILLLLW I911 31:1 LILLLLJL‘IEIILL I ".111. n"! 1;?“le ‘3#1J11C1LI‘(11195‘{§‘11 ”149;: M11 11 ‘11'I 1&1 111% 1 . 1 ELI 3. 3:“"“/'II‘.: III I‘5‘1111111LI‘1111‘ ”‘1 Sing“? 1111 1111;011:111 I 2 I .'II:.:": I‘ISII" ‘111113I111a1é11111‘11t11111‘1 1M1 1111m21i ‘1 111II11111 -‘ 5| L ,1 11(F11111W11113111111 1121111111.;111111111111111111111111111 1mg; 11.111111111111111, i” 1.11 ' "‘1 I II II III IIIIII I 11111111111. LLLLL I £29111 13:3”: ”111.1“ 111:3 5%" ‘39:; ”LEE-1;; EL: 2% f I’S rife $118,311 11111: Lv1'11I1IL'IL11‘fi11E 111F111Z14i§11111111111 11111“: 1' I‘i-I‘WLL - , III: 151' III1. “ 'I i‘AIIlL, .- ‘52- ?“ F - EV _ :39 N ‘A ‘ "2r. :5;- ; JZJL-Ib” ‘ '1 =E:3Lj ‘1 ”.5“? ”4.2-3? “w 1325—. .‘ug -‘ A 75.9%.? A's-921.. W- ,. .0.- II $111111‘I11111111111'3' L I1 11"!“1111111 111% 13-. .— fifiWVMH III 11:11 - .. “ '7 3.12:” __A ’wu—E- .zxefl:; v 111: ‘ 1:: 8122:: .. .‘111111' , 1W1} E5 ‘ 9.15.1 1L: 12.11111 LILIfI W a, ’ iLalh’I‘I' IE1 at. _ LIL‘.‘ 115‘ 1111‘ ' 1 ‘_ .L 5L 11‘1” ~ wa.’ I H: w '1‘ ‘2‘ ' 11'.- 1 111111 1.11111. 1111 1113 '1 11311111111: 1111111114111 111‘11111511‘111111115'''11a LLL L L Ll L -LLLILH:L L "I LI-IILL L LaLL'L; 13' 1h I 11L} )1- L.,‘I1;~:I‘-‘II§II1I,3:I’II 1:9"...931u11 I 1-5111 , 11111 I I , 111:1?‘1‘I111 1W ‘L-4 H114 hum 411' i "11'; L .ILIII 11‘1111111-111111111131‘1:11111131111111111:11 IL . 111‘ 1m I ‘ ‘ 131111 It IILIII‘ L‘. ~‘ '.‘ 31‘}: ,. 1 1 . L I 1L 1:1 111:1; In)? AILLLU£I§IG1I5LLISIEL2 I- 1II1I;:L!11111~11111I I. ' 1,1 . “ 1.31135, 1:135,- ‘Q‘I 11‘1‘ '- I _, 2‘ LI -. ‘11? :LLLL £4111: 131111131111: Kw» 7518 L5? - r1 «.2; M an #3 #4131?" J._'=‘-“..:I,Ix* . _ 3% 35¢“ ' _v N L ' - ‘1' .“ «(I I.» .' '_ .- :- " L‘A-d’"" - ~ * - 1‘ . , TA 3‘ AL. ' ‘aoéwcp‘FTW-‘rwg? _ ,L w“ ’53,. _.. ~43va c = I. .r _.... ”51344 W 7:. .523:— w -u—m— w ”IL-4 ”1" w ‘ - I-..PA’ #352,: 4‘.” ~v~ ""J 55:. "E? _ 1—.- :15): 1%? a» 75,, I (2‘. ‘ 1' 11?" H1? 1111 $1111] ”5'1? 1111II_LL1 7 L)? '-'n-;.:}._._: .. ' éS-érlwc' - .4 ”N... .4‘ .E . xv.“ I" 1 1 agh. " 1 4 ‘i’ "as 111111 ’ "wavgh I ‘I I; I - LIE I H 12-1 : MI I 11‘ .12.“? W; W“- «Ti/'- —r~—A W __.——. A L _ A A g‘?‘ 15:6“; ‘ ‘ ~.- 1 u A ‘ -"t -A ..‘. A—A-.-I.'A.‘ . -'. .- . t’ ’ "~4 1 < “‘4 I ' «9* v.1 L 9‘ ‘ ‘ w ' m~‘,:‘;-;_ — 13?“ A} .. _ A ~44:- _ Am- . A 2:525:52: , < ,: .5 L if. .‘C ’ .. - f w 15;“ _ V .1: 4‘ ~' :3 J: :1;_:;:. ‘ L A: A1 __ 1'1:- :5. . » u. t _-:z:v-_::> 3.7:- - ‘ ' ‘ .{5 L'7*2. , ~ '1 . 71;: E? I _ a». . "07.; .... _ “n. .. A t : 0" :2:~ 3:: .M‘ ... ' ‘ 5‘ ...' 47m ‘g‘i‘; 4 _ 3m; _.... A . . . . . .r'¢"_v _L ‘3: {‘“1’E: .32.: , "‘3 ' ' ' A ' A‘ . — :3: 1‘ A _ “bf-"m - 9: Lr.~< .._ . y“ ‘ _- v > ' I ‘u. y - ' ‘ . - "fiwu _:: . . . (=éf' -1 ‘ z ‘3. ,A . A .. 3:”. J“... . .A. WA. I:. 41.4.}: .. .. ‘ . . ;: ‘2: . '14—} L. r< -: . L _ .. 4 3'; :7. .. . “,3 .. A. —-. Ytg‘z_,';w A ' A ~ 1- i ' V ‘ .ae'gp '3" ‘1’ .. ‘5 . : _ g It} ”I _ r‘ 3%.: 1 - r~. - .mEflos LI B R A R Y Michigan State University This is to certify that the thesis entitled Spatial Distribution of Aphis omi (Degeer) and the Predator Aphidoletes Ap i imyza (Rondani) Relative to Apple Tree Growth presented by Duane Paul J okinen has been accepted towards fulfillment of the requirements for M. S . degree in Entomology fl Major pro e40): Date (0/30 80 I I 0-7 639 , llllllllllfllllllllllllll\lzlllllllllll m; 25¢?" rrdwne item RE:URNING LIBRARY MTERIALS: Wm“ Chm from circuaonjti ”nah SPATIAL DISTRIBUTION OF APHIS POMI (DEGEER) AND THE PREDATOR APHIDOLETES APHIDIMYZA (RONDANI) RELATIVE TO GROWTH IN THE APPLE TREE BY Duane Paul Jokinen- A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Entomology 1980 onnytw ABSTRACT SPATIAL DISTRIBUTION OF APHIS POMI (DEGEER) AND THE PREDATOR APHIDOLETES APHIDIMYZA (RONDANI) RELATIVE TO APPLE TREE GROWTH BY Duane Paul Jokinen Development of an integrated pest management (IPM) program for the apple aphid, Aphig 29ml requires knowledge of host plant-pest-natural enemy relationships. In this study, growth of the apple trees and colonization by A. omi and the cecidomyid predator Aphidoletes aphidimyza were measured on leaves by population surveys made in 1976 and 1977 in an orchard near Grand Rapids, Micigan. Stratified samples of these two species from terminals in the tree canopy (in three divisions: directional, level and inner— outer) were taken weekly. Host tree growth measurements including the number of terminal leaf primordia and leaves/ terminal were also taken from each sample quadrant. Analysis of data, using analysis of variance and linear regression indicated that g; pgmi responded to actively growing terminals especially in the inner and upper quadrants of the apple crown. The distribution and relative abundance of A. aphidimyza, was closely coincidental with the aphid population distribution in the apple tree. Duane Paul Jokinen Results of these experiments are discussed in relation to the physiological characteristics of apple crown growth. The potential role of g, aphidimyza in an IPM program for the control of the apple aphid is discussed as well as several potential research objectives for further studies. ACKNOWLEDGEMENTS I would like to thank Dr. Brian Croft, my Graduate Adviser for his perserverance and his continual support on this thesis project. I would also like to extend my appreciation to the members of my Graduate Committee, Drs. James E. Bath, Angus Howitt, Peter Murphy, and Mark Whalon for their help in obtaining this degree. I wish to acknowledge my peers, whose constant interaction helped form my perception of the field of Entomology and in particular Drs. Patrick Logan and Alan Sawyer, Emmett Lampert, Frank Drummond, and Matt Michels. This study was supported in part by a grant from the National Science Foundation and the Environmental Protection Agency. Financial support was also obtained through the Department of Entomology at Michigan State University. Finally, I would like to acknowledge Drs. Dean Haynes and Thomas Edens for their contributions. By providing a source of intellectual challenge in a multitude of areas they have contributed significantly to my development. ii Preface The appendices included at the end of this thesis are to facilitate the reconstruction of the data summaries provided in this thesis as well as document other associated research efforts initiated.on A. pomi and A. aphidimyza. They were generated from computer files made of the taken in 1976 and 1977. These files are maintained magnetic tape at Michigan State University Computer facility. Throughout this thesis the term "apple canopy" to describe the upper foliage area of an individual However, "canopy" is correctly defined as the upper data on laboratory is used tree. most ‘foliage level of a forest, and in retrospect "crown" would_ be a more appropriate term to designate this area of the tree. iii Table of Contents Page IntrOductiODOOOOOOOOO ..... O ..... ......OOOOOOOOOOOOO 1 Literature Review........... ................... .... 3 The Biology of Aphis pgmi....................... 3 Biological and Environmental Regulators of Aphis pomi.................................... 7 The Biology of Aphidoletes aphidimyza........... ll MethOdSOOOOOOOOOOOO. ..... .....OOOOOOOOOO... ..... 0.. 15 Sampling Procedures ............................. 15 Methods of Analysis.... ....... ...... ...... ...... 19 Results ....... . .................................... 20 Discussion......................................... 46 Appendix A. Weather records for Graham Experiment Station, Grand Rapids, Michigan. April - August 1976 and April - September 1977....... ....... ... 50 Appendix B; Techniques utilized for establishing laboratory colonies of Aphidoletes aphidimyza (Rondani). ..... ..... ..... ....... ........... ..... 57 Appendix C. Frequency class distribution of Aphis omi and Aphidoletes aphidimyza in 1976 and ‘ 1977 ..... ‘ ............... . ....................... 61 Appendix D. Sample site means and variances for 1976 and 1977.......................... ......... 66 Appendix E. Aphid and predator biological observations............................... ..... 89 iv Table of Contents (Cont'd) Page Appendix F. Sample Size Estimation............... 102 Literature CitationSOOOO......OOOOOOOOOOOOOOOOOOO. 127 Table 2a List of Tables Spray schedule for Gibson experiment orchard block at Graham Experiment Station, Grand Rapids, Michigan, 1976 and 1977 ....... . ..... Results from the ANOVA for determining differences in mean aphid densities in three canopy divisions, l977........... ..... ...... Results from the ANOVA for determining differences in mean predator densities in three canopy divisions, 1977...... ..... ..... ANOVA results from testing for mean aphid differences in the classes of Leaf Primordia (0-4) and Leaf Classes (1-6), 1977 .......... Results of modified - LSD tests for sample dates with significant differences between aphid densities in leaf primordia classes... Results of modified — LSD tests for sample dates with significant differences in aphid densities in leaf classes.... ............... Results of curve fitting for leaf primordia decline and leaf addition: 1976 and 1977.... vi 16 32 41 42 43 44 45 List of Figures Figure Page la Leaf primordia mean densities in canopy levels (1976).......... ..... ......... ..... ... 21 lb Leaf mean densities in canopy level (1976)... 22 lc Aphid mean densities in canopy level (1976).. 24 2a Leaf primordia mean densities in canopy level (1977) ........ ......................... 25 2b Leaf primordia mean densities in canopy position (1977).............................. 26 2c Leaf primordia mean densities in canopy directions (1977)............................ 27 2d Leaf mean densities in canopy levels (1977).. 29 2e Leaf mean densities in canopy positions (1977)....... ................... . ....... ..... 30 2f Leaf mean densities in canopy direction (1977)Octcooooovoucovoooohoooooooo. ...... 0.0- 31 3a Aphid mean densities in canopy level (1977).. 34 3b Aphid mean densities in canopy position (1977) ............... . ...... ................. 35 3c Aphid mean densities in canopy direction..... 36 3b Cecidomyiidae mean densities in canopy level (1977) ........... ..... ...... . ............ .... 37 3e Cecidomyiidae mean densities in canopy position (1977) ..................... ......... 38 3f Cecidomyiidae mean densities in canopy direction......... ........................... 40 ’ INTRODUCTION Integrated pest management (IPM) systems for primary and secondary pests of apple utilize a variety of control tactics (Croft 1975, Huffaker and Croft 1976). Currently, biological control of primary pests is limited (Hagley 1974) and apple IPM systems use monitoring to predict activity of these species. For example, adult male codling moth (Laspereysia pomonella Linn.) activity can be assessed using traps baited with synthetic sex phermones and adult apple maggot (Rhagoletis ppmonella Walsh) population activity can be assessed by bait and color attractants (Howitt and Conner 1964, Prokopy 1972). Population from these sampling tools when coupled with computer based phenology models (e.g. Riedl and Croft 1978, Welch et a1. 1978) provide forecasts of critical temporal relationships between pest-plant stages which assist in the implementation of control procedures. As chemicals are the primary control method for these pests, improved timing of tactics eliminates unnecessary sprays, reduces costs and limits the amount of pesticides placed into the environment. Secondary pests of apple, primarily the foliar feeding species such as Aphis pom; Degeer (the apple aphid) Panonychus— ulmi (koch) (the European red mite), and Typholoyba pomaria McA. (the white apple leafhopper), often reach damaging population levels in the orchard. These species with intrinsically high reproductive rates can develop resistance 1 2 rapidly to most conventional pesticides. They are, there- fore, difficult to control by chemical means alone, and IPM programs have stressed development of alternative cultural or biological controls. Use for control of natural enemies attacking secondary pests becomes feasible when the pesticides applied for control of primary (or direct) fruit pests are minimally disruptive to these beneficial insects. This can be accomplished by the use of physiologically selective com- pounds or by minimizing the temporal and/or spatial contact of pesticides with these natural enemies. Distribution studies and sampling procedures for secondary pests and their natural enemies provide population estimates from which the potential for biological control or the need for chemical control can be determined. In this study, the spatial and temporal occurances of A. 29m; and the cecidomydiid predator Aphidoletes aphidimyza relative to growth features of the apple tree were investigated. LITERATURE REVIEW The Biology of ApAi§_pgmi The biological characteristics of A. 29m; have been reported in several early publications (i.e. Baker and Turner 1916, Lathrop 1923 and 1928, Matheson 1919, Peterson 1918). The aphid overwinters as a diploid egg (black in color 0.5mm in length), primarily on shoots or one year old terminal growth in the apple canopy. Eclosion varies with latitude from the first week in April in Virginia (Baker and Turner 1916) to mid or late April in New York (Matheson 1919). Peterson (1916) correlated increased egg to nymph survival with increased humidity at the time of eclosion. In their study the average survival through egg hatch was roughly 25%. A. REA; has four nymphal instars, the morphology of each is described in Baker and Turner (1916). The mature fifth instar female is Wingless, parthenogenic, and vivi- parous. This stem mother produces nymphs that as adults are apterous (without wings) or alate (with wings). The ratio of apterous to alate forms varies throughout the summer; the environmental and biological factors regulating this process in aphids has been discussed in Lees (1961) and Johnson (1960, 1965, 1966). Alate production provides a ready source of migrant aphids throughout the season within and between orchards. 4 Lathrop (1923) estimated 5°C. (41°F) to be the develop- ment threshold for A. pgmi. In 60 experiments during a single season, he followed the development of aphid nymphs, 24 hours old or less, to maturity and recorded first nymphal reproduction. From the max-min temperatures reported by Lathrop (1923), and using the method of Baskerville and Emin (1969) for calculating cummulative degree days, a mean generation development time is 230.0 degree days (Jokinen, unpublished analysis). Adult longevity was estimated to be 19.4 days (Standard Error = 4.6) for aphids in the second to 12th generations (Matheson 1919). The mean daily reproduction capability is 2.96 nymphs for the same generations (Matheson 1919). A total of 12-17 generations were observed in New York (Matheson 1919). In late September haploid (X0) males and diploid females (XX) are produced in the orchards. Following mating ovi- position of overwintering eggs occurs about 5 to 7 days later. Little information has been collected on the longevity of these adult forms, however, one early study (Baker and Turner 1916) indicated that it is ca. 25 days. Specht (personal comm.) noted the survival of both sexes of the aphid until November in Nova Scotia. Baker and Turner (1916) report a mean of 4.75 eggs laid per female. Westigard and Madsen (1964) reported that 90.9% of all eggs observed _on 40 terminals were laid in the top 20.0 inches of the terminals. 5 Nutritional and varietal differences of the apple host in relation to infestations of A. REA; have been described. Takeda et. a1. (1968) reported on the nutritional quality of leaves infested by A. 222$! and noted that leaves with high nitrogen content, low carbohydrate levels, and young leaves having particular amino acid contents were the most sus- ceptible to aphid attack. Briggs and Alston (1968) noted resistance to A. 29m; in the apple cultivars McIntosh, Baldwin, Northern Spy and Courtland. Wildbolz (1964) suggested that resistance or susceptibility in apple cultivars to A. 22m; may be related to the changing practices of pruning and fertilization which influence growth patterns. He suggested that temporal differences between aphid egg eclosion in the spring and varietal variation in the initiation of tree growth could influence population levels. Specht (1970, 1972) studied A. 22m; populations on one year old trees in environmental cabinets. Growth and decline of aphid numbers correlated well with the growth activity of the trees. The distribution of aphids on terminal leaves varied throughout the study which he hypothesized was a result of the changing physiological condition of the leaves. Westigard and Madsen (1965) in studying three and ten year old apple trees in California, noted that the physiological condition of the tree foliage was a major factor in influencing aphid densities. 6 Damage to apple from aphid populations includes de- creased terminal growth, extensive leaf curl, and copious honeydew accumulation on leaves and fruit (Oatman and Legner 1961). 'A. pgmgiby intercellular penetration,feeds directly on the leaf phloem removing plant nutrients. Each nymphal inStar makes a minimum of five feeding punctures (Heriot 1944). The collapse of surrounding cells and subsequent leaf curl reduces photosynthetic capabilities of the leaf. Quantification for the rate of plant nutrient removal has not been completed for A. p223, however, a methodology for estimating such parameters has been developed for Drepanosiphum platanoides (schr.), the Sycamore aphid (Dixon 1971). Much of the previous literature on economic thresholds and control of A, pgmi, as for many other orchard pests, emphasizes preventive or scheduled chemical control methods (Forsythe and Hall 1973, Glass and Chapman 1955, Pielou and Williams 1961). Madsen et. a1. (1961) controlled damaging aphid populations (where aphid honeydew was found on fruit) when aphid densities greater than 5.0 were found on the seventh leaf of rapidly growing terminals. This indice was revised (Madsen et. al. 1975) and chemical control imple- mented when 50% of sampled leaves were infested; these samples contained the third, seventh, and fifteenth leaves from ca. 20 rapidly growing terminals. Biological and Environmental Factors Influencing 'AphiSipomi-- Assessment of mortality factors influencing the population dynamics of aphids i's notably difficult due to their unique biological features. Specifically, overlapping viviparous generations, the telescoping of generations within individuals, varying production of alates, and their short developmental times limits the ability to separate or quantify the impact of mortality agents (van Emden 1963). Several studies, reviewed below, have contributed the identification and quantification of environmental or biological factors influencing A. ESTE- LeRoux (1959) evaluated the effect of frosts, heavy rainfall, and aestival temperatures greater than 9OOF on aphid populations in Quebec. He indicated a single heavy frost in late May killed 96.5% of aphids populations in two separate orchards. Five rainfalls caused an average of 54.2% mortality. A three day period with maximum temperatures averaging 90.00F in mid-June reduced populations an average of 71.5%. The natural enemies of A. pgmi have been studied in both Europe and the United States. Bonnemaison (1972) identified two non-specific fungi attacking A. pgmi_in France-~Entomophorales aphidus (Hoffman) and A. planchonina Cornu. .Both required dense host populations and favorable 7 8 environmental conditions to reach epizootic proportions and exert biological control. The only known specific parasite of A. pomi is Trioxys angelicae Hal. (Hymenoptera: Braconidae) which is found in Europe and Asia Minor (Evenhuis 1963, Stary 1966, and Cierniewskii 1973). Parasitism of A. omi in the U.S. has only been reported from California (Oatman and Legner 1961, Westigard and Madsen 1965) by an Aphidus sp. (Hymenoptera; Braconidae) that parasitized less than'l% of the aphids. Parasitism appears to be of minor significance in regulating A. pgm£_populations worldwide. 2 Apple aphid predation by species of the families Coccinellidae (Coleoptera), Chrysopidae (Neuroptera), and Syrphidae (Diptera) is well documented (Hodek 1966, Niemcyzk 1977, Setti 1973, etc.). Although effective predators, these natural enemies often are general feeders and require large numbers of hosts to develop, have few generations per year, and often experience high mortality from orchard. pesticides (Croft and Brown 1975). Thus, pesticides usually limit their effectiveness in controlling aphid populations in commercial orchards. Setti (1973) evaluated the effectiveness of syrphid predation in Italian orchards and noted a complete absence of these predators where sprays were applied. The effective- ness of aphid control in non-sprayed orchards varied as the syrphid species were irregular in their occurance and abundance. The presence of Chrysopa carnea (Steph) 9 (Chrysopidae) in orchards in Poland was related more to the occurance of spider mite populations than eitherA. pomi or Dysaphis plantegina (Passerini) (the rosy apple aphid) populations (Niemcyza 1977). Further he concluded that the limited control of the apple aphids by g. carnea, in com-.: parison with its effective control of field crop aphids, may be related to differences in the apple canopy microclimate, orchard pesticide use, and the high mobility of the adult predators allowing dispersal to other crops. Holdsworth (1970) studied the predators of A. pgmi_ in Ohio, citing the species Metasyrphus weidemanni Johnson (Diptera: Syrphidae), Leucopis sp. (Diptera: Chamaemyiidae), Anatis quindecimpunctata Oliver (Coleoptera: Coccinellidae), Chrysopa sanquinea (L.) and g. nigricornis Burmeister (Neuroptera: Chrysopidae) as occasional- predators of A. pom'. Primary predatores were Orius insidious Say (Hemiptera: Anthocorridae) and Aphidoletes cucumeris (Lintner) (Diptera: Cecidomyiidae). Holdsworth did not evaluate the control potential for any of these species. In summary, the literature contains substantial biological information on A. BEBE! the description of associated natural enemies, and some information of the environmental factors regulating aphid populations. Relation— ships between A. 222i and the apple host have been identified, however, detailed information on the spatial and temporal 10 distribution of A. pomi and its natural enemies are limited. The Biology of Aphidoletes aphidimyza Recent taxonomic revisions of the aphidophagous species in the family Cecidomyiidae (Harris 1966 and 1973, Gange 1973) have reduced species synonymy aiding in the identifi- cation of their biologies and prey hosts. Specifically, Aphidoletes aphidimyza (Rondani) is the accepted name for Cecidomya sp., Phaneobremia sp. and A. cucumeris which have been reported as predators of A. pomi (Bonnemaison 1972, Evenhuis 1961, and.Holdsworth 1970). The prey range of A. aphidimyza is exclusively limited to aphids; a list of over 60 host species was provided.by Harris (1973). Utilization of A. aphidimyza for control of glasshouse aphids has been extensively developed in western and eastern Europe (Markkula 1973, Bondarenko 1975). This use of A. aphidimyza has required study of its life cycle to facilitate rearing and mass release of pupae and adults. Studies of aphid-A. aphidimyza interaction have contributed to improving glasshouse aphid control (El-Titi 1973 and 1974, Uygun 1971). The life cycle of this predator in glasshouse crops has been reviewed by Markkula et. a1. (1976). Adams (1977) discussed limited aspects of its life cycle in Massachusetts apple orchards. A. Aphidimyza overwinters as pupae in the upper soil layer (1.0-2.5cm) beneath the host plant, emerging from May 11 , 12 to June in appleiorchard of Massachusetts (Adams 1977). In glasshouses, emergent males live approximately 7.0 days and the females 9.25 days (El-Titi 1974). Following copulation the adult female lays 50-70 orange eggs (0.3 x 0.09mm) singly or in clusters from the third to the ninth days. Egg development under laboratory conditions (21.00C : 10 and 85-95% RH) is about 2.5 days (Uygen 1971). Egg survival rates have not been determined, however, Uygun (1971) noted improved egg maturation when females had previously been provided with aphids and.honeydew. El-Titi (1973) evaluated ovipositional responses to varying host densities in glass- houses. He reported that the mean number of eggs laid per female was proportional to the number of aphids per plant (Brassica oleracea). There are reported to be three larval instars of A. aphidimyza which are orange in color and range from 0.4 to 3.4 in length (Harris 1973). Development of larvae at 21°C when supplied with 25.0 hosts per leaf averaged 4.0 days, survival was estimated to be roughly 75% and the mean number of aphids killed/larvae during development was 22.5 (Uygun 1971). In feeding the larvae inserts its mouthparts into interstitial membranes on the aphid's abdomen or legs. After injecting a paralyzing enzyme (phenoloxidase) from the salivary glands, the aphid gut contents are liquified and removed (Mayr 1975). The number of aphids consumed or killed per predator larvae varies with prey size and density. 13 Increasing the prey size (age) decreases the number of prey required for development; i.e. 5.4 Myzus persicae adults vs. 21.1 numphs (at 21.00C) (Uygun 1971). Several authors (Dunn 1949, George 1957, Nijveldt 1969) have reported that the number of aphids killed per larvae ranges from 5.0 to 100.0. Wildbert (1972) has studied larval searching and has related mortality to prey density. Larval mortality is also influenced by the ability of the adult females to effectively find hosts and oviposit eggs close to the colonies (El-Titi 1974). The final larval instar drops to the soil and forms a small (1.8 x 0.7mm) puparium; emergence of the adults in the laboratory occurs from 12 to 14 days later (Wildbert 1972). A total generation development time in the laboratory is 22.5 days at 21°C (Uygun 1971). Populatiions of A. aphidimyza have been tested for tolerance to insecticides and acaracides (Adams 1977, Markkula and Tittanen 1976). Adams (1977) reported high egg mortality from the carbamate carbaryl and the organophosphate (OP) phosphamidon. Larval mortality was greatest from the OPS, phosphamidon and demeton-methyl and least from endosulfan. Differential mortality to the O—P azinphosmethly in population from an unsprayed orchard (highest) and from a commercial orchard (lowest) was also detected. Low mortality to six acaracides for a laboratory colony A. aphidimyza was reported by Markkula (1977). 14 In summary, the biology and life cycle of A. aphidimyza have been studied extensively. .Most experiments were conducted primarily to facilitate use of the predator for biological control of glasshouse aphids. Detailed assessments of orchard populations feeding on A. peg; have not been made. This information is required to utilize A. aphidimyza more effectively as a biological control agent for aphids on apple. METHODS Sampling Procedures Populations of A. pomi and A. aphidimyza were sampled weekly in a single orchard.block during the summers of 1976 and 1977 at the Graham Experiment Station, near Grand Rapids, Michigan. The block sampled contained 40 Red Delicious trees. These trees were bound by a 30 tree block of Northern spys to the north and by a 60 tree block of Rome and Jonathan trees to the south. Cultural practices used in the block were similar tox those applied in commercial orchards. Pruning during the dormant season included the removal of the previous season's shoot growth in the inner portion of the tree and limited pruning of weakened or non-bearing limbs. Spray schedules and the pesticides applied for control of pests other than aphids for 1976 and 1977 are given in Table l. The pesticides applied were selected on the basis of their minimal toxicity to populations of the European red mite predator Ambleysius fallacis (Garman) (Croft 1976) and Aphidoletes aphidimyza (Adams 1977). The plant sample unit chosen was an entire terminal shoot. These were defined as terminals with axilary or terminal buds formed in the previous season with approxi- mately 10 leaves or more (Vyvyan and Evans 1932). The base 15 Table l. 1976 Date 4-15 4-19 4-30 5-07 5-19 5-27 6-02 6-14 6-29 7-13 7-26 8-10 8-24 1977 Date 4-14 4-19 4-25 5-06 5-16 5-25 6-07 6-24 7-05 7—19 8-03 8-17 8-31 16 Spray schedule for Gibson experimental orchard block at Graham Experiment Station, Grand Rapids, Michigan 1976 and 1977. Chemical compounds per loo/gal water Benlate 2 oz. and 1 gal. Superior oil Benlate 2 oz. and 1 gal. Superior oil Cyprex . Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex Cyprex % lb. % lb. 3/8 lb. and 8 lb. Guthion and 2 oz. Plictran 1b. a % 1b. and % 1b. Guthion % 1b. and % 1b. Guthion % 1b. and 8 1b. Guthion % 1b. and % lb. Guthion % lb. and % lb. Guthion % 1b. and % lb. Guthion % lb. and % 1b. Guthion 3/8 lb. and 1 gal. Superior oil Cyprex 1 % lbs. and % lb. Karathane and 1/3 lb. Systox Cyprex % lb. Cyprex 3/8 lb. and 2 pts. flowable Sulfer Cyprex 3/8 lb. and % b1. Guthion and 1% pts. Flowable Sulfer Cyprex 3/8 lb. and % 1b. Guthion Cyprex 3/8 lb. and g 1b. Guthion Cyprex 3/8 lb. and % lb. Guthion Cyprex 3/8 lb. and % lb. Guthion Cyprex 3/8 lb. and % 1b. Guthion Cyprex 3/8 lb. and % lb. Guthion Cyprex 3/8 lb. and % lb. Guthion Cyprex 3/8 lb. and 8 1b. Guthion 17 of these terminals are demarcated by a whorl of leaves or by growth rings (Pool 1973). Secondary terminals, from axil leaf buds of the current season's growth were few in number and not sampled in this study. From each terminal the number of leaves, leaf primordia, aphids, and cecidomyiids were recorded. Leaf primordia were defined as the number of unopened immature leaves clustered at the apex of the terminal. Visual counts of primordia ranged from 0-4, which corresponds to increasing terminal growth activity. The number of leaves per terminal was recorded from the top of the shoot to either the first growth rings or to the whorl of leaves. During 1976 10 randomly selected trees in the orchard were chosen on June 3rd and in each a total of 20 terminals were tagged for repeated observation throughout the season. In each tree 5 actively growing terminals from 2 directional axis (N-S or E-W) and in lower and upper tree canopy levels were sampled per tree. In each axis terminals were selected from the inner most of the tree canopy to the outer periphery of the tree. The lower canopy ranged from 4 to 7 feet high and the upper canopy from 7 to 12 feet high. At each site on each date the number of leaf primordia, leaves and terminal length was recorded. Aphid and predator numbers on each leaf were recorded from the shoot apex to the base. Five of the 10 trees were sampled on alternate weeks. 18 The sampling design for 1977 was expanded and improved by randomly choosing up to 10 trees in the block on each sample date. In each tree, counts from 3 terminals located in the inside, middle and outer region of the canopy, in 4‘ directions and in the lower and upper tree canopy levels were sampled. As in 1976, the plant variables measured in 1977 included leaf primordia and leaves. Aphid counts in each subsample included all stages found on leaf primordia, lower and upper leaf surfaces, petioles and on stems between leaves. While aphids were counted cecidomyiid larval locations were noted, and upon completion of the aphid counts, the entire terminal was again viewed to count cecidomyiid larvae. Several factors influencing cecidomyiid larval population sampling should be noted. Because of first instar larval size and their tendencies to be hidden beneath larger aphids, primarily second and third instar larvae comprised the counts. Uygun (1971) has shown limited movement of larvae (from eclosion to third instar) from the site of oviposition, and as such the counts and distribution studies made in this study were considered to be representative of all instars even though counts of first instars were limited. Excessive apple leaf curl can also bias counting methods, however, in this study aphid densities were not exceedingly high and only few apple leaves were curled in 1976 or 1977. 19 Methods of Analysis For data analysis the influence of tree growth on the pattern of insect infestation was compared in 1976 and 1977. Mean values per terminal for leaf primordia and leaves relative to canopy direction, canopy position (inside to outer periphery) and canopy level were compared on a degree day (dd) scale (Baskerville and Emin 1969, 5°C base threshold). Corresponding aphid and cecidomyiid densities per terminal in each of the quadrats were tested for significant differences on each sample date by analysis of variance (ANOVA). Prior to ANOVA, insect counts were transformed by log (X+l) counts. This is an adequate transformation for populations which follow a negative binomial distribution (Taylor 1970, Appendix F). To determine the type of terminal growth prefered by aphids, 2 growth features were eValuated and compared. On each sample date aphid counts in classes of terminals separated first by leaf primordia (0-4) and then by 6_leaf classes (10 leaves/class) were tested by ANOVA. On dates where significant differences were detected, a modified least significant difference test was used to rank means. To compare growth characteristics between 1976 and 1977 leaf primordia and leaves per terminal for both years were plotted against dd and fit to log and power curves by least squares analysis. RESULTS In 1977 as estimated 279 i 80.3 (i i_SE) terminals and 379 : 141.6 terminals per tree were present in the lower and upper apple canopy quadrats in the study orchard respectively. From gross observations there appeared to be no difference between 1976 and 1977 in terminal growth densities in the orchard. The preliminary data taken in 1976 is described first to show the general features of tree growth and aphid population activity. Figures la-c summarize the 1976 data, showing means per terminal for leaf primordia, leaves and aphids in the various quadrats of the apple canopy. Leaf primordia per terminal declined reapily in early season in the upper and lower quadrants. However, the mean for the upper quadrat was initially greater than the lower quadrant by ca. 1.0 leaf primordia/terminal and remained greater through the season (Figure la). The appearance of new leaf primordia ceased at approximately 2400 dd in the lower quadrat, while in the upper quadrat at ca. 2800 dd. Leaf numbers were roughly equal in both canopies on the first sample date, thereafter leaves were added more rapidly in the upper.quadrat (indicated by the slope in Figure 1b). The rate of leaf addition slowed at 1900 dd in the lower canopy and at 2550 dd in the upper canopy. Roughly 7.0 and 18.0 leaves were added per terminal in the lower and upper quadrats over the entire season. 20 menu LEHF PRIHORDIH/TERNINRL 21 O ‘2- 0) . CRNUPY HEIGHT O 9- tsunamuwtera N q ”PER canon (*1 d D 9- d 1 4 b a ‘ ‘5' ‘ o _ . O. T I I fi— I T I r T T I l——T"— 900 . 1400 1900 2400 Figure 1a. DEGREE oars > 41 (F°J 1976 LEAF PRIMORDIA MEANS IN CANOPY LEVELS (1976). HERN LERVES/TERI‘I I NHL 22 35.00 I 25.00 30.00 1 20.00 CRNOPY LEVEL 16.00 L . LONE! b9?! .. UPPER (*1 10.00 1 T 1 U i 900 p ' 1150 2000 ZSSO ‘ DEGREE oars > 41 (F°J 1976 Figure 1b. LEAF MEANS IN CANOPY LEVEL (1976). 3100 23 Aphid densities in 1976, were greater in the upper quadrat of the tree at all sample dates (Figure 1c). A single peak of the population was observed at 1400 dd. At peak density the mean number of aphids/terminal in the lower quadrat was 186.54 and in the upper quadrat 433.02. (Figure 1c) . ' Figures 2a-f illustrate the 1977 mean densities per terminal for leaf primordia and leaves from 3 stratified sample types. Means per terminal in the lower and upper canopy levels, in the inner, middle, and outer canopy positions, and in the four directional axis_are depicted. These three stratifications are also used in the presentation of the spatial distributions of both A. pomi and A. gphidimyza (Figures 3a-f). The mean number of leaf primordia per terminal greatest in the upper quadrat of the tree until 22 dd; thereafter, the upper and lower levels were about equal in numbers (Figure 2a). The decline of upper canopy leaf primordia began 200 dd later than in the lower canopy. Decreasing numbers of leaf primordia were recorded from the inner to outer periphery of the apple tree (Figure 2b) at all sample dates in 1977. Little difference was noted in the number of leaves/terminal for each directional component (Figure 2c). Leaf addition to terminals was most rapid during early season in all canopy division (Figure 2d—f). Lower canopy growth, as observed through increase in mean leaf numbers, HERN HPH I DS/TERH I NHL 24 O 9 D 5— ID canon LEVEL m {-8-} urm {-‘4 O D. C'__ .——-——-— ,A t r I r U I — °soo . 1450 2000 2550 3100 DEGREE oars > 41 (F°) 1976 Figure 10. APHID MEANS IN CANOPY LEVEL (1976) MERN LERF PR I NORD I H/TERMINHL 3.00 2-00 0.00 .25 CRNOPY LEVEL MFG-)1 UPPER Ii—J L 1000 l 1500 j I 2000 V I I 2600 DEGREE oars > 41 (F°J 1977 Figure 2a. “LEAF PRIMORDIA MEANS‘IN CANOPY LEVELS HEHN LEHF PRIHORDIH/TERNINRL 26 O ‘1’- 0 i a -' . cnuorv POSITION . rm («e-1 O 9- amour (+1 N . aura (+3 4 D 9.. fl 4 . "\ D /_: O I i — o. 1 fir I 1 1 j fl 0 l U I —' 1000 - 1500 2000 2500 3000 DEGREE cars > 41 tF°J 1977 Figure 2b. LEAF“PRIMORDIA MEANS IN CANOPY POSITION MERN LERF PRINORDIR/TERHINRL 27 CHNOPY DIRECTION umuurgsa our oa-a omnut~sa ”EST (*1 .00 1 U 1600 2000 S— 2600 3000 DEGREE DRYs > 41 IF°J 1977 °1DDD Figure 2C. LEAF PRIMORDIA MEANS IN CANOPY DIRECTIONS 28 terminated at roughly 1600 dd. .Upper canopy growth continued until roughly 2500 dd (Figure 2d). The relative numbers of leaves added during the season in these two regions were 6.28 and 10.03 per terminal. The inner, middle, and outer canopy positions showed cessation of growth at 2700, 1900, and 1700 dd (Figure 2e),respective1y. The numbers of leaves added in these positions over the growing season were 12.20, 7.40, and 3.76. As with leaf primordia, directional differences in leaf addition were not observed in 1977 (Figure 2f). Figures 3a-f summarize the data on aphid and cecidomyiid population densities in all canopy divisions on each sample data. ANOVA procedures were used to test significant differences in populations within each division. Where differences ( w.01) existed the largest mean is starred (note: there were no significant differences in canopy directions) (see Table 2). Two population peaks were observed in 1977 for A. pomi and A. aphidimyza. In relation to the previously described growth patterns of the tree, there was a highly correlated aphid response. Four of the ten sample dates showed a significant difference in aphid means for lower and upper canopy divisions. These four dates also correspond with peaks of growth of the apple host in these levels and the magnitude of the peaks reflect the differences in growth activity. The first peak of aphid NERN LEHVES/TERH INHL 20.00 26.00 80.00 15.00 29 1 - CHNOPY LEVEL . Ixmmtq£1 . m c-a-x I U ‘ ' U ' U f l 1000 1000 2000 2500 3000 Figure 2d. DEGREE DRYs > 41 (F°) 1977 LEAF MEANS IN CANOPY LEVELS HERN LEHVES/TERHINRL 30 > o 9 o- G) J J o 9 w- ‘ N o 9 Our N s l CRNOPY POSITION 3‘ . mullfikl -‘ RIDDLE (+1 J :wnm 9+4 a 9 o . j r j g l a l ' I . ' IR 1000 - 1800 2000 2600 3000 DEGREE DHYS > 41 (Fol 1977 Figure 2e. LEAF MEANS IN CANOPY POSITION HERN LERVES/TERHINHL 31 O ‘2 3% O ‘9 ‘0‘ N J O ‘3 o—A N ‘ cauorv DIRECTION ‘ NORTH {-6-} c, . ‘3 ID— 8881’ (+1 OI! . 8001’" (*fi-J .1 "£87 (*3 O c.’ S T r 7 V T T j —‘r V V I 1000 1500 2000 2600 3000 Figure 2f. DEGREE oaYs > 41 (F°) 1977 LEAN MEANS IN CANOPY DIRECTIONS 32 mmHQEwm HHm How HmcHEump umm HEOQ .MH ch. NMN.m N cHh. cmv. m Ncc. HHm.m H mm.>H chN nnlmcnc cvc. ch.m N mcc. cmv. m mvh. ccH. H cn.cH mNcN whthnh Hcc. mvm.cH N cch. mhv. m ccc. vNH.h H cc.H> cmvN hnlchn Hcc. th.HH N cwc. NBN. m Ncc. va.> H cc.mm vcHN nhlmHnb Hcc. cNm.vm N cmv. Hcc. m nvc. HHN. H cc.mv NcmH nnlccnn Hcc. mmm.cN N chm. vmc.H m Ncm. ccm. H wm.mv HchH whllec cNH. qu.N N ch. mvc.N m mcm. ccc. H mm.cN cmmH wthNac ccv. cmc. N cam. ch. m Ncc. bbv.m H vc.c cme whlmch mmc. cc>.m N Hbc. chm.N m ncc. hHm.> H mN.m mnNH nnchlc mcc. vmc.v N NHN. cmv.H m cmc. ncc.m H NN.H mmHH hhlmcuc m .cmHm m mm m .38 m mm m :58 m mo 582 no mama CONuHmom mmocmu coHuomHHo hmocmu Hm>mH mmocmo Ucmuw H .hbmH .mconH>wQ wmocmu wwune :H meUHmch anmfl :mwz CH wmocmnmmmHo mchHEHmumo How 4>Oz< msu scum muHSmmm .N mHnt 33 numbers showed means of 45.20 and 46.98 for both lower and upper canopies. The second peak showed the greatest number of aphids in the upper quadrat, 91.12 versus 42.55 aphids per terminal in the lower quadrat. This coincided with the same period of rapid growth in the upper tree canopy (Figure 3a and Figure 2a). Mean aphid densities in the three canopy positions were not significantly different on the first four sample dates. On the remaining dates (Table 2), significant differences between canopy positions ocurred, with the highest aphid densities found in the inner canopy position followed by progressively fewer aphids in the middle and outer periphery of the apple canopy (Figure 3b). Directional differences shown in Figure 3c were not significant. 5. aphidimyza populations showed two peaks which were closely synchronized with the temporal, spatial, and numerical ldistribution of its prey. Predator populations for the lower and upper canopies peaked at ca. 1900 dd and at 2400 dd (Figure 3d) respectively. The means for the first peak were roughly equal at 0.33 and 0.28 cecidomyiid larvae per terminal. The second peak showed greater numbers in the upper canopy than the lower at 1.35 and 0.85 larvae per terminal respectively. Of the three canopy positions the inner canopy contained the largest number of predators for six of the ten sample dates, similar to the aphid densities described (Figures 3b and 3e). Directional differences in NEHN RPHIDS/TERHINRL 34 D 9 O O— " ‘ 4 O ‘ Q :2— CRNUPY LEVEL . LOWER ('8') . 00m (*3 D a: 9 D— ID O C 9 m- N . ¥ ¥ '. O O. t r 1 T U I r r I 1000 1800 2000 2500 Figure 3a. DEGREE DHYS > 41 (F0) 1977 APHID MEANS IN CANOPY LEVELS 1 3000 . v 1 , ,H,‘ MERN HPH I DS/TERH I NHL 50.00 75-00 100.00 125.00 150.00 1 l l l l l l l l l L l l l l 25.00 00 unmnrxqra GNU! h+-) 35 CRNOPY POSIIIBN aunt‘s?) '4 °1000 Figure 3b. I I j I 1000 2000 DEGREE oaYs > 41 (F°1 1977 APHID MEANS IN CANOPY POSITION I 2500 1 8000 HEHN RPH 103/ TERM [NHL 36 O 9 D a- n a J . CflNOPY DIRECTION O J mm (‘6') . ~ °. F a 000m “*3 J an: (*1 a O 9 Dc- ‘0 J J o 1 ‘3 m.- N J O 0 5‘1 ' I . T I ‘ ' I I ' I 1000 , 1500 2000 2500 3000 DEGREE DaYs > 41 (F°J 1977 Figure 3C. APHID MEANS IN CANOPY DIRECTION MERN CECIDOHYI IDHE/TERHINHL 37 2.00 CRNOPY LEVEL um I-e-I ME! 1*) 1.00 0.00 V j *1 j I 2500 3000 2300 DEGREE URYS > 41 (F°) 1977 000 1500 Figure 3d. CECIDOMYIIDAE MEANS IN CANOPY LEVELS HEHN CEO I DONY I IDHE/TERM I NHL 38 2.60 2.00 l I l I l CHNOPY POSITION o d “3 ..." INNER I-s-I d . RIDDLE («A») o .. 00m (+1 O 0-4 CI. d " 4 .. ,. 4 D " u “2 :3 4¥ « 4 . ¥~ ; “ T 1 "—'——'l 2500 3000 T I l' I 0.00 L 1000 - 11500 ‘2000 » DEGREE DHYS > 41 (F°) 1977 Figure 3e. CECIDOMYIIDAE MEANS IN CANOPY POSITION 39 the mean counts of cecidomiids were not observed (Figure 3f). As in the aphid figures, where significant ( «.01) differences in any canopy quadrat occurred, the dates are starred (refer also to Table 2a). The results of ANOVA comparisons between aphid densities per terminal for leaf primordia classes (0-4) on each sample date in 1977 are given in Table 3. For seven dates where significant differences occurred modified LSD tests showed terminals with the greatest number of leaf primordia to have the larger aphid populations (Table 4). Results from ANOVA comparison of aphid densities in six leaf classes of terminals / showed almost identical results (Table 3). Table 5 presents the ranking of leaf class means for each sample date with significant differences. Again, higher aphid densities were associated with the larger leaf classes, which are indicative of more vigorously growing terminals. Table 6, presents the equations derrived to describe growth activity in canopy level and canopy position. Leaf primordia decline and leaf addition rates, indicated by their slopes in 1976 and 1977, show little difference between years. Comparison of these growth rates although influenced somewhat by sampling differences, showed 1977 leaf addition in the lower canopy to be roughly twice the rate of 1976 and nearly one and a half times the rate of the 1976 in the upper quadrat. HEHN CEO I DOMYI IDHE/TERHINHL 2.00 1.00 Figure 3f. 40 CHNOPY DIRECTION mm («B-1 m? {-4-} mm (+1 180‘! 1*) 1500 2000 2000 DEGREE DRYS > 41 IF°I 1977 CECIDOMYIIDAE MEANS IN CANOPY DIRECTIONS 41 mmHmem HHm new HmCHEHmu Com MNMEHCHCQM .< H ch. Hmm.H N mmv. Hcc. m mmc. hcm.v H cmH.c mHmN hhlmclm ch. hMN.v N nmm. mnc. m mmm. Nmm. H mmm.c MNcN NBINNIN ccc. mc>.mH N mcm. NNN.H m mmm. Hcv.H H NMH.c cmvN thchn Hcc. bNH.h N NcN. NmN.H m mnc. ch.m H NvN.c vcHN thMHIh Ncc. mmc.m N mmn. cam. m cmc. mmc. H HNc.c NcmH bblccln Hcc. mmh. N 5mm. NvN. m ccm. Nvm. H cmc.c HcNH nhlmNIc vcm. cmm. N HNm. mmh. m cNm. mHv. H mNc.c cmmH thNNIc mcm. ccc.H N vmm. ccc.H m mHm. ccc.H H eccsc can nuImHIc m .33 .m mo m .chme a an C :83 m mo :00: on mama CoHuHmom hmocmo COHuomuHo NQOCMU Hm>mH >m0Cmu HUCMHU .bhmH .mConH>HQ NQOCmU mmHCB CH mmHuHmCmo uoumcmum Cmmz CH mmoCmeHMHQ mCHCHEHmqu Mom <>Oz< Eonm muHCmmm .mN OHQMB 42 HMCHEku Hmm HEOQ .m H Hoo. oaa.wm a Hoo. mum.om m mm.>H mHmN Enumoum Hoe. HNN.bm m Hoo. mom.mn m mH.mH mmem Hnsnmnn Hoo. mHH.om m Hoo. mo>.mH N oo.HH mmam unuomnn Hoo. mmo.mm m Hoo. amm.om m om.mm vaN huannn Hcc. oHa.om N Hoo. mmw.mH m mm.ma NmmH nnuoonn Hoo. HmH.aN N Hoo. mom.vm a am.ma HmHH nnnmmum Hoe. mmn.NH N Hoo. Nmo.HH a mm.om ommH hnummum an. ccc.H N mcH. Nmm.H v vc.c cNmH nuImHIc mmh. mcm. N Hcc. Ncm. a mN.m MhNH thcHIc mob. mom. N Ham. Nos. 4 NN.H mmHH hunmouo m .CmHm m mo .m .cmHm . m mo saw: no mumo mmmmeu mmmH mmmmMHU MHUCOEHHC mmmH UCCHU H .HHmH .AmIHc mmmmmHo mama cam Avuoc MHouosHum mama mo mommMHU 059 CH mmoCmumMMHo CHCQC Cmmz Mom mCHumme Eoum muHmem C>Oz< .m wHCmB 43 Hmmch #0: Op umHHomnCm wEmm ms» >2 omsoHHow mmez muCCoo HHH+xV moH Hc cmEHOMmCmup Eonm mum wommMHo 0:» How Umqummum mCmmE HMCHEnwu “mm HEOQ awH nmmv.H nvmm.H Qcmm.H MmmH. hm.hH mHmN hblmclm £55m.H vam.H QhNN.H mmmc. mh.mH mmwm hhlhmlh ncmm.m thc.m vav. cc.Hh mmvm chlomlw QHmm.N nwmv.N nmmm.H mHhm. cm.mm vaN thMHIh QmN0.H ammo.H thh.H mhbc. mm.m¢ NcmH hhlwclh nmmc.m Qme.H chm.H Qva.H mmvm. wm.mv HwhH chlmmlw ammmm. Qmmc. ammm. nbvm. vaN. mc.ON cmmH bcINNIm v m N H c C002 no mama mommmHu wHUHOSHHm mme UCmuw mmmmeo MHUHOEHHC mmmH CH mmHuHmCmo pHCmd Cmm3umm mDOCmummmHQ . HCMOHuHcmHm CHH3 wmuma meEwm Mew mumwa QmH CDHMHUOZ mo mpHCmmm .v oHnme 44 HmHMHp HOC Op HmHuomme 08mm map an pmonHom N mCmmz .muCCoo HAH+xV mOHV meHOHmCmuu Eoum UmCkuno mum Umqummum owwz HCCHEHDH Hmm.mmmm .mH an.N mom.H ma~.o 04H.o moo.o mm.HH mHmm Hhumoum moo.o oom.~ nma.H mH~.o 00H.o moo.o mH.mH mmmm HHIHNIH DHN.H nom.o mvH.o woo.o oo.HH mmam HHIONIH coo.~ nmm.o ROH.o moo.o om.mm amHm HkImHIH ammm.o nmv.H «Ha.o mm.ma mmmH HHIEOIH nHm.H EMH.H mam.o am.ma HmHH Hkummsw nmm.o mam.o .mmH.o mm.o~ ommH Hknmmsm m m a m m H cam: on mama mamz mwMHU mmmH N . mmmWMHU NMOQ CH mmHuHmCmQ pHCmd C003Hmm DamonHcmHm nqu mmuma wHasmm Moo mummeHomu amHmHooz mo muHsmmm .m mHnma 45 Table 6. Results of Curve Fitting For Leaf Primordia Decline and Leaf Additionwl976‘and 19771 ' Logarthimic Leaf Primorida Decline (y = a(log dd) + b) . . . Slope Intercept 2 Year DlVlSlon a . b r 1976 Lower -1.98 15.66 0.90 Upper -3.08 24.75 0.92 1977 Lower -2.46 19.38 0.90 Upper -3.09 24.38 0.91 Inner -3.13 24.96 0.89 Middle -3.02 23.70 0.90 Outer -2.14 16.77 0.91 Power Curve Fit of Leaf Addition (1n y = a 1n (dd) + 1n b) Slope Intercept Year Division a b r2 1976 Lower 0.31 1.75 0.82 Upper 0.38 1.04 0.73 1977 Lower 0.70 0.12 0.91 Upper 0.53 0.40 0.93 Inner 0.67 0.14 0.93 Middle 0.41 0.86 0.82 Outer 0.22 3.51 0.66 DISCUSSION Total apple tree growth includes the subcomponents of leaf and terminal shoot production, woody tissue enlargement in both the tree canopy and root zone, bud and fruit formation and carbohydrate storage. In total, these proceSses are greatly influenced by the past and current cultural and environmental conditions to which an orchard tree has been and is exposed. More specifically growth of terminal leaf primordia and subsequent new leaves is regulated by the rate of movement of soluble carbohydrates and amino acids from roots, bark and leaves to these sites (Zimmerman 1961). As observed in this study, these features of tree growth showed yearly variation over time (Table 6), but varied little in distribution between years at the same time period dd (Figure 1a, lb, 2a, 2b). This indicated that similar management and environmental conditions were occurring annually and also that a relatively controlled process of tree growth was being maintained by the orchard manager from year to year. Probably due to the particular prunning practices used, the inner and upper quadrants of the tree consistently experienced the greatest amount of growth activity (Figures la, lb, 2a, 2b). Several workers have observed that aphids distribute themselves in close association with active plant growing 46 47 sites (Kennedy et al. 1950, Kennedy 1958, Dixon 1979). These responses are related primarily to their ability to. assimilate and utilize soluble carbohydrates and amino acids present at these locations of the plant host (Way and Cammell 1970). Takeda et al. (1968) and Specht (1970-72) have clearly shown that mature growth of apple, which includes primarily insoluble carbohydrates and amino acids and is made up of leaves with hardened cuticles, does not support reproduCing populations of g. pgmi. In this study 5. pgmi showed little directional preference for terminal colonization, but as with the distribution of terminal growth and correspondingly nutrients, the most dense populations were found in the inner and upper level quadrants of the trees. Similar relationships (host-plant- aphid) have been reported for the sycamore inhabiting aphid Drepanosiphum platanoides (Dixon 1971) and the lime tree species Eucallipterus tiliae (Dixon 1971a). The methods utilized in Dixon's studies to obtain information of the aphid-host nutrient and energetic cycles could aid description of 5. pgmi impact on tree growth. Effective natural enemies require a temporal or spatial distribution that is closly associated with their host. In this study the distribution of g. aphidimyza larvae relative to that of A. pomi reflected such an association (Fig. 3a- f). Predator larvae were most commonly found on inner and upper terminal growth of the apple tree and were always associated with aphid populations. The delayed colonization 48 and numerical response of the cecidomyiid to the increasing host density in the upper quadrat were indicative of its relatively immobile larval state (Wildbert 1972) and the hoSt searching capacity of the female adult (El-Titi 1978). Thus, dispersion of this cecidomyiid-in response to changing host distribution is controlled primarily by adult movement. In summary, there are several factors which indicate that g. aphidimyza may be an effective natural enemy for control of 5. Egg; which can be incorporated with existing IPM systems on apple. 1) It is closely attuned to the spatial distribution of g. pgmi_and seems to occupy all components of the habitat used by the aphid. 2) It appears that pesticide resistant or tolerant strains of this natural enemy commonly occur in orchards (Adams 1977, Warner, unpublished data). 3) g. aphidimyza has a variety of alternate hosts (Harris 1973) which will support predator populations in the absence of the pest. 4) It has proven to be a very effective predator of other aphid species occurring in greenhouses (Markkula 1973). Based on these data, there is further need to continue research on this species, to evaluate its potential for 49 controlling apple aphids in Michigan and to implement an effective management program compatible with existing apple IPM stratigies. APPENDICIES APPENDIX A This appendix contains environmental parameters for Graham Experiment Station for April - August 1976 and April - September 1977. Provided are the maximum and minimum temperatures (OF), the percipitation, and the accumulated degree days (Base 41°F) estimated for‘A,'pgmi development (Jokinen unpublished analysis). 50 51 mam wH.c mm mm Hmm 5mm mm.c mm mm cmm HmN vm cc cmm hmc hh.c mm mm mNm th Hm mm va NHc mm mm cNm ch . cm he va mmm mv cm mNm ch . mN cm va Nmm mv cm cNm ch Nm.c 5N mm cNm Ncm Hc.c Nv mc mNm ch Nm.H cm we va cmm mm mm va ch vH.c mv Hm va mvm mm mm mNm NmN Nch mm mm qu mmm mm on NNm cam cc.c mm Nu NNv HNm Nc.c mm mm HNm mNN mc.c mm mm HNv Hcm he Nc cNm vHN mm Nc ch hmv «m cm mHm ch mc.c cm Nc mHv mum (mm mm mHm th mm mm ch va mH.c mv Nh SHm mvH mm mm th va mm.c mm mm ch hHH cm.c mm cm ch va Hm mm mHm mm cc mm me HHv mc.c Hm mm va Hc . we Hc vHv cmm mm Nc mHm me oN he mHv Hmm .Hm Hm . NHm mu cN Hm NHv mmm mH.c Nv Hm HHm mm mH.c SN Hm HHv Ncm mm mm ch Hm Hm vm ch cwm mm mm com um wN mv mcv cmm mN cm mcm mm vN mm mcv mmm mm.c mN He now Hm Nm mm mcv mmm mv.H mm mm wcm mN Nc.c mm mm ccv hHm cw cm mcm cN mN mm mcc «cm Hc.c mN Nv vcm cH Nc.c mm cc com com mm.c Nm mv mcm m mm mm mcv Ncm mm Hc Ncm H , «c.c Hm cw ch qu Hv vc Hcm H mc.c mm me How m Hv CH ... m,. m . mumo m He , CH. m m. muma mmmo mmowum Cmm xmm mwoo mmomum CHm xmm mHmH mm: mHmH HHumm mumo Hmnumwz CoHumum Emcmuw 52 SHSN SH.S NS SS HSN SSSN SS SN SSN SSSN SN.S SS SN SNN HSSN SS SS SNN NSNN SS.S SS SS NNN NSNN HS NS SNN SNNN SS SS SNN SSHN HS.S NS SS SNN SSHN SS.S HN SS SNN NNHN HS NS NNN NSSN NH.S NS SS HNN SSSN SN SS SNN SNSN NS SS SHN SSSH SS NN SHN SNSH SS SN NHN SSSH SS SS SHN SNSH SS NS SHN SSSH SS NS SHN NSSH SS NN SHN NSSH SS SS NHN NSSH NN SS HHN NSNH NS.S NS SS SHN NSNH SS SS SSN NSNH HS.S SS SS SSN NNSH SS SS NSN SSSH SS SS SSN HHSH SS SS SSN NSSH NS SN SSN SSSH HS SN SSN SSSH SS NN NSN NHSH SN.S HS HS HSN MOHv .QH ho. ho OHMQ m.oo mHomum H: mm: SNSH >HSS GUGQ Hmfluwmz COflflmum EMEMHU NSSH NS SN SSS SNSH SS SS SNS NSSH NS.S NS SS SNS SHSH HS SS NNS SSSH NS SN SNS NSSH SH.S SS SS SNS SSSH SS.S SS NS SNS SSSH SS HS SNS SNNH HS SN NNS HSNH SS SN HNS SNNH SS NS SNS SHNH NS.S SS SS SHS NSHH SS SS SHS SSHH SS SS NHS SSHH SH.S NS SS SHS SSHH SN SS SHS HNSH SS NS SHS SSSH SS SS SHS SSSH SS SS NHS SSS SS SS HHS SSS SS SS SHS SSS SS SS SSS SNS SS SS SSS SSS NS HS NSS NNS NS NS SSS SSN SS SS SSS SSN HS SN SSS SSN SS SN SSS SNN SS SN NSS NSN NS SN HSS moHS SH we no mama Span mHomum cm: xmz . ‘ SNSH Scan 53 chm mm Hm cmS Ncm mN mm mNS cmm hm SN cNS mSm Sm HS NNS mmm Nc.c Nm mm SNS Hmm NS.c Nm mm mNS cNm mm Sm SNS mHm SS mm mNS mcm NN.c Nm HN NNS mmN Sc.c cc SN HNS NmN HS.c mm SN cNS HmN cm Sc mHS NcN cm cN SHS cNH Hc.c cm SN NHS mmH SS cm SHS NmH mS Sc mHS mNH mS HN SHS NcH mm mN mHS Hm .mS cm NHS Nm mm mN HHS Hm NS mm cHS NN HN mm mcS NN SH cm mcS cN cc.c NN Sm NcS cN mc.c SH Sm ScS cN mS.c cm NS mcS SH mm cm ScS mH SH.c Hm mm mcS m NS.H mm mm NcS c mN NS HcS m HS CH ,m h mumo mwao CHbmHm CHm xmm NNmH HHHmd mama Hmzummz CoHumum EmanU NSNS SS NN HSS SHNS SS NS SSS SSNS SS.S NS SN SNS HSHS SS NS SNS SSHS SS.S SS NS NNS SSHS SS NS SNS NNSS HS SS SNS SSSN SS SS SNS SHSS HS SS SNS HSSN SS NS NNS SSSN NS SS HNS NHSN SS SS SNS NSSN NS SS SHS NSSN SS HS SHS SSSN SS. SN NHS SHSN SS SN SHS SSNN NS.S SS NS SHS SSNN SS.S NS SS SHS SSNN HS.S SS SS SHS SHNN SS.S SS NS NHS SNSN SS SS HHS SHSN HS HS SSS SSSN SS SN SSS SNSN NS SN NSS NSSN SN.S NS SS SSS mNmN mH.o ow om mom SSSN SS SN SSS SNSN SS SN SSS SSSN SH.S SS SN NSS SSSN SS SN HSS m HS CH C m . Sumo Swan cHomum ch xmm SNSH DSSSSS 54 mcHH Nm SN HmS SSNH SS SN cmS NScH SS SN cmS HSNH cH.c SS Sm SNS mScH NS Sm SNS cmNH cS cS SNS SNcH HS Sm SNS SSSH SS SS NNS mccH . SS SN NNS SSSH cS SS SNS NNS SS SS SNS cSSH Nc.c HS SS SNS SSS HS SS SNS ScSH . mS Nm SNS SHS mS NS SNS SNSH SS cm mNS cSS HS.c cS Sm mNS cSSH SS NN NNS SSS SH.H HS cS NNS cmSH SS HN HNS SHS NS NS HNS NHSH mc.c SS NN cNS SNN . SS cS cNS SSSH NS NN SHS. SSN _ cS SS SHS SSSH Nm.c mS NS SHS mHN NS SS SHS cmSH cS SS NHS mSS cS SS NHS mSmH SS HS SHS cSS NS Sm SHS cNmH HS NN SHS cNS HS NS SHS NSmH HS SS SHS SSS SS NS SHS SNmH SS NS mHS SSS NS SN mHS SHmH SH.c NS SS NHS SSS cS NN NHS SSNH SH.c .NS SN HHS SNS Nm SS HHS mNNH Sm NS cHS SHS mm SS cHS HSNH NH.c mm HS ScS mHS SN mS ScS NSNH NS SS ScS ScS Hm SS ScS mmNH cS SS NcS SSS cS SN NcS NNNH SN.c mS NN ScS SNS SS SN ScS ScNH Sm.c NS SS ScS NSS cS.c SS mS ScS mNHH SS NN ScS SmS cS cN ScS SSHH Sm SS mcS cNS mS NN mcS mSHH HH.c SS SS NcS ScS cS mN NcS NmHH SN.c mS SN HcS Smm HS SS HcS m HS CH .H .H mumo EH HS CH .H ..u. “...me Swan mmomum cmm xmm Swan mmomum CHm xmm. NNSH SSSS NNSH Sm: mumo Hmsummz COHumum Emnmuo 55 SNSS HS NN HSS HSSS SS NN SSS SNSS SS.H SS SS SNS SSSS NN SS SNS SSSS NS NS NNS HNSS NS SN SNS SSSS SS HN SNS HSSS SS.S SS SS SNS SHSS SS SN SNS HSNS SS.S NS SS NNS SNNS SS SN HNS HSNS SS HN SNS SSNS NS SS SHS SNNS SS NN SHS SSNS NS.S SS SN NHS SSHS SS SN SHS SSHS NS SN SHS HSHS SS.S NS HS SHS SSHS HS u.SN SHS HSSS SS.S NS NS NHS SSSS SS HS HHS NSSS SS.S SS SN SHS SSSS HH.S SS SN SSS SNSN SS.S NS SN SSS SSSN SS SN NSS SHSN SH.S SS NS SSS SSSN SN.S SS SS SSS SSSN SH.S NS NS SSS SHSN SS.S SS SN SSS SSNN NS SN NSS SSNN HS.S SS SS HSS S HS SH S S .mumo Swan SHSSHS :Hm xmm NNSH DSSSSS mumo Hanummz CoHumum EmCmHO NmNN Sc.c HS Sm HmN ScNN NN.c cS NN cmN NNSN cH.c NS Hm SNN NSSN NS SN mNN mNSN SS SN NNN ScSN . SS SN SNN SSSN Sm.c SS SN SNN NSSN SS NS SNN mNSN SS HS mNN NcSN Hm.c SS Nm NNN SNSN SS cS HNN SmSN cN HS cNN SSmN Sc.H NS cm SHN SSmN SH.c SS mm SHN SNmN SH.c SS mm NHN NSNN Sc.c NS NS SHN NSNN SN NS SHN NHNN SS mm SHN SSHN mc.c SS Sm mHN SSHN NS NS NHN cNHN cS Hm HHN cScN NS NS cHN NScN cS Sm ScN cch HS Nm ScN cch Hc.c SS HS NcN NSSH cN cS ScN mNSH Hc.c SS SS ScN SSNH Sc.N NS SN ScN SSmH SS cc ch SNSH SS SN NcN NcmH SS.c NS SN HcN moHS CH mo mo mama m.oo mmomnm CH2 xmz NNSH SHSS 56 MS MS SSS NS SS SNS NS HS SNS NS SS NNS SS SN SNS SS.S HS SS SNS SN.S SS SS SNS SS.S SS SS SNS No.0 SS NS NNS SH.S SS SS HNS HS SS SNS SS.H NS NN SHS SN.S SS HN SHS SS NN NHS SS.S NS SS SHS SS SN SHS NSSS SS.S NS HS SHS NSSS NH.o NS SS SHS SHSS SS SN NHS ooSm SS SS HHS SSNm SS HN SHS SSNm SS SN SSS SSNS SS NN SSS NHNm NS SN NSS SSSS SS SS SoS SSSm No.0 SS SS SSS SSSS No.0 SS SN SSS SHSS Sc.c SS NN SSS SSSm SS.S SS SN NSS SSSm Sm.c NS SS HSS m HS CH m m mumo Swan mmomum cwm xmm NNSH umnswummm mumo ngnmmz coHumum Emnmno APPENDIX B Techniques Utilized for Establishing Laboratory Colonies of Aphidoletes Aphidimyza (Rondani) This appendice provides a description of the techniques and equipment used in the establishment of the aphidophagous cecidomyiid gphidoletes aphidimyza. The ease with which field samples were collected and laboratory colonies established facilitates use of £3 aphidimyza to develop information on predator-prey interaction. A review of literature on rearing methods reported for g. aphidimyza reveals that several studies describing mass rearing and effective release rates of 5. aphidimyza have been conducted (Bandarenko 1975, Markkula 1973, and Ushchekov 1975). These and studies describing the life cycle (e.g. Uygun 1971) provide a fairly complete outline of its biology to initiate development of rearing programs. Methods Difficulty in the removal of small cecidomyiid larvae (0.4 - 3.4mm) from field colonies of the apple aphid, éEEiE pgmi (Degeer) necessitated development of techniques to obtain sufficient numbers of predators for experimentation and rearing. This is in part a modification of the techniques developed by Markkula and Tittanen (1976). It is not intended to provide a complete rearing methodology but rather methods 57 58 to combine and manipulate unique populations of'§.'aphidimyza. Prior to field collection of the cecidomyiid, rearing units were prepared. These units were ca. 23cm x 30cm x 10cm deep plastic containers filled with approximately 7.0cm of slightly moistened white sand. Placed upright in the sand were three rows of five 15cm long test tubes. Each tube was two thirds full with equal parts of water and Hoaglands nutrient ' solution. Perma—seal ®, and celluloid film material, was used to cover the test tube top. These units were easily prepared, reusable, and of minimum cost. Field colonies of 5. pgmi_on apple terminals were observed for the presence of g. aphidimyza. The upper 30.0 - 50.0cm of reapidly growing terminals found with aphid and predator were removed and placed into plastic bags. These bags were immediately set into a chilled polyurethane cooler for transfer to the laboratory. Upon return to the laboratory, the terminals were sectioned to ca. 15.0 - 18.0cm and lower leaves without or with few aphids removed. These sections, each with leaf primordia, immature leaves, an aphid colony, and predators were inserted singly into the test tubes. A 6.0cm diameter cage about 20.0cm in height was placed over each terminal and test tube. The test tube solution provided sufficient water and nutrients to maintain leaf turgor and the aphid colony for approximately four days at 25°C and 60—80% relative humidity. This was 59 sufficient time for the development of larval cecidomyiids and provided adequate host numbers. At the completion of the larval development, roughly five days later, the larvae dr0pped to the sand below and formed the pupariums. Puparium were found at a depth of ca. 1.0cm below the sand surface and encased in sand, they were easily recognized by their size (1.0 x 1.5mm). The puparium were removed with forceps and placed in petri diShes. The confinement of the predator within the circumfrence of the cage further aided the recovery of puparium. Once in the petri dishes the number of puparium were recorded and the dish placed at either room temperatures or at 8°C (in a refrigerator). é. aphidimyza in the petri dishes held at room temperature emerged in roughly twelve days. Survival of the cecidomyiids following cold storage was noted at periods up to six weeks later, when dishes placed at room temperature for twelve days were found to have adult cecidomyiids. To determine if these rearing methods were adequate, the emergent adults were released in screened cages containing aphid colonies (Acrosiphum pisum) On broadbean plants. Following three days of development and oviposition the confined adults were removed with an aspirator. In the next four days aphid colonies were observed for egg and larval develOpment. The experiment was concluded when second and third instar larvae were observed. The methods presented here allowed the establishment of laboratory colonies of Aphidoletes aphidimyza from field colonies of the apple aphid Aphis pomi on apple terminals. The relative ease with which predators were manipulated using these methods could aid in mass rearing programs, determining pesticide tolerances of field populations by limited sprays to individual terminals, and in manipulating colonies in the laboratory to describe the predator-prey interaction. Finally, use of these methods to obtain accurate density and survival information of the predator is recommended. 60 APPENDIX C 7 . S Frequency Class Distribution of Aphis pomi and Aphidoletes Aphidimyza for 1976 and 1977 The following provides the frequency distribution of aphid and predator counts for 1976 and 1977 on each sample date. The sample dates are coded as: A 6-10-76 A 6-03—77 B 6-18-76 B 6-10-77 C 6-25-76 C 6-15-77 D 7—02-76 D 6-22-77 B 7-09-76 B 6-29-77 F 7-16-76 F 7-06-77 G 7-23-76 G 7-13-77 H 7-30-76 H 7-20-77 I 8-06—76 I 7-27-77 J 8-13-76 J 8-03-77 K 8-20-76 K 8-10-77 L 8-27-76 L 8—l7-77 61 62 OH H S S N N S S H S HS SNS u HSS H H SS SSS u HSS S . H N SN SSS . HSS S H S SN SSS u HSS S H N H NN SSS n HNS N H H SN SNS u HSS N H SN SSS u HSS S_ S N SN SSS u HSS S H N SN SSS u HSS S S H NN SSS u HNS N H H HN SNS a HSS S H S SN SSS u HSS N H S H SH SSS : HSS S H S N SH SSS s HSS S H H N H NH SNS u HNS S N S SH SNS : HSS S H N H N SH SSS u HSN S H S S H SH. SSN u HSN HH S S S SH SSN . HSN S N N S H NH SSN : HNN SH . N N S S HH SNN : HSN SH S H S N SH SSN r HSH S H N N S S SSH n HSH NH S S S S H S SSH . HSH SH H S S S S N N SSH s HNH NN H S S H N S SNH n HSH SN . H S S S S N S SSH u HS SS H N N N S N S S SS a HS SN H H S S N S S S SS s HS HN N N H H NH S S SN SN N SS a HN SSH H H S S SH SH NH SH HH S. HN HS H SN u H LEN PS E SN Sm NN SS N NH S SN S S Houoa a x S H = o S S S o S < «SSHS SSSHo .Soum SHSSS Sumo oHdEuS scam you m:0HuanuuSHo SSSHU Socwsvoum SH£Q< SNSH 63 1976 Predator Frequency Class Distribution Predator Frequency ‘ 'Sample‘Date Count‘ Class ' D E F G Total 0 0 96 39 90 94 320 l 1 3 l4 2 20 2 2 1 ll 1 3 3 3 6 3 9 4 4 6 3 l 9 5 5 3 l 3 6 6 3 4 7 7 5 6; 8 8 4 4 9 9 1 l 3 10 10 2 2 11 ll 3 3 12 12 1 l 13 13 2 2 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 N :5: N J) 64 S H H H H H H H H H H N H H H H N N N H N H H S N N H H H H H H S H N H N H H H H S H H H H H S H H H S H S H N H N H S H H N N S S H S S S S S S N H H H S H N S OH S H S N N S N HH H S H N N N N H N S S S S H N H H S S H S S HH SH HH S S H NH S N S N SH SN SN S S H S S 0N SH SH SH SS NN SN HS SN SS HH SSN SSN SSN NSH NSH SSN SNH SSH OS NS SoH SON SSH SNN Z 2 H x S H m U k m G U m < mmumo mHmEmm HS HSS SS SSS SN SSS SN SSS NN SSS SN SNS SN SSS SN SSS SN SSS NN ISS HN SNS 0N SSS SH SSS SH SSS NH SSS SH SNS SH SSS SH SSN SH SSN NH oSN HH SNN SH SSN S SSH S SSH N oSH S SNH S SSH S SS S SS N SS H . H o mmmHU .vmum mmuma mHmEmS HHS mom mcoHuanHumHo Scamsvmum mucsou UHnmd NNSH I HSS I HSS I HSS I HNS I Hom I HSS I HSS I HSS I HNS I HoS I HSS I HSS I HSS I HNS I HOS I HSN I HSN I HSN I HNN I HON I HSH I HSH I HSH I HNH I HSH I HS I HS I HS I HN I H o mucsoo SHsm< 65 H H S H H H H S H S H S N H N N N H S S S H H H N S N S H S . S S S N N S S H S N S SNN NHH NNN SSN SSN b H m 0 h m D U mmumo mHmEmw coHuanHumHo Nocmsvmum Houmwwum NNSH chanLnuiNcnc\Serq HIHr4r4Hr4r4~thvoaN O QHNMQ‘LOUDI‘mar—I wmeU Nocmsvmum Or-‘IN NNN Or-levlnkcbmm OHNMVmWPmer-{HHHHHHHH unsou uoumwmnm APPENDIX D Sample Site Means and Variances for 1976 and 1977 Appendix D contains the means and standard deviatidns for the variables observed for 1976 and 1977. The variables in 1976 were length of each shoot, number of leaf promordia, leaves, and g, pomi. counts, an in 1977 leaf primordia, leaves, a, pomi and g, aphidimyza counts. The results are sorted by sample site in a tree, thus, for each date 10 site means are shown for 1976 and 24 in 1977 (refer to the methods section of this thesis). 66 7 6 o chcmmm¢ SS.SS 0S.ON SS.N oo.SH NS.S SS.N OS.N SH.SH ON OH SS.NH SS.S 0S.N SS.SH SN.S OS.N SS.N SS.S ON S SN.SN SS.SH NS.N SN.NH SS.S HH.S SSo.S SN.SH SN S No.0S SS.NN NS.SH SS.SH SS.S SH.S NS.S SS.SH ON N SH.SN SN.HH SSWN SO.SH HS.S SS.S HS.S SS.SH SN S SN.NS OH.MN SS.H SN.NH SS.S So.N NS.H SH.S SN S NS.NH OS.OH SN.S OS.NH SS.S SS.N SS.S SS.S SN S SS.OH SH.N SS.W SN.SH SN.O OS.N SN.S SS.HH ON S SN.HH SS.S SS.H SS.HH HS.S SS.N SS.N SS.S ON N SHH.SH SH.S HH.N SS.NH SN.S ON.N NS.N SH.SH SN H .>09 .Cum Cmmz .>00 .Gum EGGS .>®D .fium cam: .>mD .Gflm cam: Z QUHm HEOQ mHSQS mm>mmq MHSHOEHum Smog AZHV numcmg SN\SH\S oumo 68 a xHScomm< SH.NN SS.SS SS.N SH.NH NS.H SS.N SS.N SS.SH SH SH SH.SS SS.HS SS.N SS.SH SS.S SN.N HH.S SS.SH SH S NS.SSS SH.SSS SS.N SN.NH SH.H SS.N SN.S SS.SH SH S SH.SS SS.NSH SN.S SS.SH NS.S SN.S SS.S SN.SH SH N SS.NS SS.SHH SH.S SN.SH SS.S SS.S NS.S SS.SH SH S HS.SH SS.N SS.N SN.SH SS.S SS.S SS.N SS.NH SH S HS.SH SH.SN SS.S SS.SH SS.H SS.H SS.S SS.SH SH S HS.SN SS.NS SS.N SN.NH SN.S SN.N SS.N SS.NH SH S SS.NSH SS.NS NN.N SS.SH SS.H SS.N NS.S SS.NH SH N SN.SS SS.Hm NH.S SN.SH SN.S SN.N SS.S SS.SH SH H .>GQ .fium Emmi .Gum cam: .>wD .Quw :mm: .>@Q .Cum cum: 2 wUHm HEom mHzm< mm>mmq MHSHOEHHS mama AZHS. zumcoq SN\SH\S wumo 69 NS.SNS SS.SSS NS.S SS.SH NS.H SS.H NS.S SS.NH SH SH SH.NSN SH.HNS SS.N SH.SN NS.S SS.N SH.S SH.SN SH S SH.NSH SS.NSS NS.H SS.SN SN.S SS.S NS.N SH.SH SH S .HS.SSS SS.SHS NS.N SS.SN SS.S SS.S HNwS SS.NN SH N NS.SSN SN.NSS SN.N SN.SN SN.S SH.S SS.S SS.NN SH S SS.NS SS.NS” NH.S SS.SH SS.S SN.S SS.S SS.HH SH S HSNSS SNWSS. NS.N SS.SH NS.S SH.S .SN.S SS.S SH S SS.SSS SS.SNN NS.S SN.SH NS.H SS.H SS.S SS.SH SH S SN.NSN SS.NSS SN.S SS.SH SH.SH SH.N SS.S SS.SH SH N SS.SSSH SS.SSS SH.S SS.NH SH.H SH.N SS.S SN.SH SH H .>mO .fium cam: .>mo .Gum cmwz .>mO .mum :mwz. .>mo .Sum :mm: 2 mun HEom mHnm< wo>wmq menoeHum Smog AZHS zumcmq SNNSN\S came a xHScmeQ< 70 Q wacwmm< NS.SSH SS.SHN SS.S SN.HN SN.H SS.H SS.S SN.SH SH SH SS.SSN SH.HSS SS.N SS.NN SS.H SS.N SH.S SS.HN SH S SS.SSN SH.HSS SS.N SS.NN SS.H SS.N SH.S SS.HN SH S NS.SSN SN.SNS SS.S SS.SN SN.S SS.N NS.S SS.SN SH N HS.SSN SH.SSS SH.S SH.SN. SS.S SS.N .SS.S SS.SN SH S SS.SS SS.NH_ SS.N SN.SH SS.S SS.S SS.S SS.NH SH S HS.SS SS.SS NS.S SS.NH SS.S SS.S SN.S SS.SH SH S NS.SSH SS.SSH NS.S SS.SH NS.S SS.S SS.S SS.SH SH S SN.SNNH SS.NSS SSSN SS.SN SS.S HH.H SS.S SH.SH SH N SS.HNN SS.SSN SH.S SS.SH SS.H SS.H SN.S SS.NN SH H .>ma .fiuw cmwz lu>wc .Uum :60: .>mC .Guw cmmz, .>mQ .Qum 26m: z maHm HEOQ mHzm< mm>woa MHSHOEHHS mama AZHS. :pmcoq SN\NS\N mama 71 o XHccmmm< mo.Nm mm.mm Nm.m mN.NN NN.H NN.H No.N NN.ON NH OH ov.HOH Nm.NOH NH.S NH.mN NN.H NS.H mm.N mc.mN NH N mN.NHH No.OHH NN.N Nm.mN NS.H mN.H mm.s om.vN NH m Hm.mNH NH.mmH om.m om.SN SS.H oo.N mm.m mm.NN NH N Nm.mm Nm.HHH HH.N mN.NN NH.H mm.N NS.S om.mN NH 0 HN.NS Nm.mH HN.N NH.SH oo.o oo.o om.m mo.HH NH m mo.v4 mN.H mo.m om.SH oo.o oo.o sv.m oo.HH NH S wH.mm Nm.mm HS.S NS.oN NN.H Sm.c NS.OH SH.ON NH N NN.wOH Nm.mN_ mo.m NS.HN NN.H mN.H NS.N NN.HN NH N SN.SN om.om NN.ON NN.SN NN.H .mm.H SN.N NS.HN NH H .>ma .cum cam: .>mo .ouw :moz .>mo .oum cam: .>mn .cum saw: 2 mHHm nHeom mHgm< mm>mmH «chomwum SmmH HzHc. zumcmH SN-NOIN .. mama 72 O chcmmma mm.H OO.O OO.O OO.ON NN.H ON.H OO.N OO.HN OH OH OO.O OO.N ON.O OO.ON mm.H OO.H NO.O Om.HN OH O OO.OOO OH.HOH OO.O ON.ON mm.H Om.H OO.O OO.NN OH O HO.OO OO.ON Nm.N OO.NN ON.H OH.N -HONOH OH.ON OH N OO.ON ON.NH Om.N ON.Hm OO.O ON.N Nm.N ON.NN OH O OO.O OO.O HO.N OO.OH OO.O OO.O mH.O OH.NH OH O O0.0. OO.O. ON.N ON.OH OO.O OO.O ON.O NN.OH OH O OO.O ON.O ON.O ON.ON OO.O ON.O mm.N OO.ON OH O OO.O OO.H. OO.O OH.ON OH.H OS.O OO.O OO.ON OH N NH.NN OH,OH OO.O OO.HN OO.O ON.O Oq.HH OH.ON OH H .>mO .Oum cam: .>mo .oum cam: .Owa .num cam: .>ma .cum saw: 2 mHHw «Eon mHzm< mm>mmg MHSHOEHHS mqu. AZHV zumcoq SNISHIN .. mama 73 o XHScmmm< NS.H SS.S NH.N SS.SN SS.S SS.S HS.S SS.SN SH SH NS.H SS.S SN.S SS.SN SS.S SS.S SS.S SN.SN SH S SS.N SS.H SH.N SS.SN SS.S SS.S NH.S SN.NN SH S HSSSS SS.SH SN.S SS.HS NS.S SS.S SS.S SS.NS SH N SS.SS SN.NN SH.S SH.SS SS.H SS.H HS.N SS.SS SH S SS.S .SS.S SS.S SS.SH SS.S SS.S SS.S SS.HH SH S SS.S SS.S NN.N SH.SH SS.S SN.S, SS.S SH.S SH S SS.S SS.S NH.S SH.HN HS.S SH.S SN.HH SN.SH SH S SS.S SS.S SS.N SH.SS SS.S SS.S SN.HH SS.SN SH N SS.N SS.N NN.N SS.SN SSS.S SS.S NS.S SN.SN SH H .>mo .wum cam: .>m0 .cum :mmz .>mo .cum cmwz .>mo .vwm cum: 2 auHm HEom mH£m< mm>mmq meuoEHHm Smog. Hsz :umcmH SNISNIN .. mama 74 Q XchQO< SN.SH SS.S NS.N SS.SN SH.H SN.S NN.SH SS.SN SH SH NN.S SN.S SS.NH SS.SN SS.S SN.S SS.N SS.NN SH S HS.N SN.H SS.S SS.NS SN.S SS.S SS.S SS.SS SH S SN.NN SS.HH NS.S SS.SS SS.S SS.H SS.NH SS.NS SH N NN.H SS.S SS.N SS.NS NS.S SS.S SS.HH SN.SS SH S SS.S SS.S NS.S SH.SH SS.S SS.S SH.S SN.NH SH S SS.S SS.S. SH.S SSNSH SS.S SS.S HS.S SH.NH SH S SS.SS SS.HH HS.S SS.SN SS.S SS.S SS.S SS.HN SH S SS.S SS.S NS.N SN.HN SS.S SP.S SN.S SS.SH SH N SS.S SN.S HS.S SS.SN SS.S SN.S SN.SH SN.SN SH H .>mO .cum cam: .>oo .vum 2mm: .>mo .cum :mmz .>mo .cum saw: 2 msHm HsommHnm< mm>mmq MHSKOEHHQ Smog Hsz. numcwq SNISSIN ; mama 75 o xHSCmmm< SS.S SS.S SS.S SS.SN NS.S SH.S SN.S SS.SN SH SH SS.S SS.H HS.N SN.SN SS.S SS.S SS.S SN.SS SH S SS.S SS.S SS.N SH.SN NS.S NN.S NN.S SS.NN SH S SS.S SS.H SS.S SN.HS SS.S SS.S SS.S SS.NS SH N SN.S .SS.N SS.N SS.SS MS.H SS.S SN.S SS.NS SH S SS.S .SS.S SS.S SS.SH \SS.S SS.S SS.S SS.HH SH S SS.S SS.S NN.N SH.SH SS.S SS.S SS.S SH.S SH S SS.S SS.S SS.S SN.HN SS.S SS.S SS.NH SS.SH SH S SS.S SS.S. SH.S SN.SN SS.S Sfl.S SS.NH SN.SN SH N SS.S SS.S SN.S SS.SN SS.S SS.S SQ.S. SS.SN SH H .>oc .Sum cmoz .>oS .Sum :mmz .>oo .Suw 2mm: .>mo .Suw saw: 2 muHm _HEom mHzm< mo>wmq mHSEOEHum Smog. Asz. sumcmq SNISSIS _. wbwo 76 o prcmmm< SS.SS SS.NN SN.SH SS.SN SS.S SS.S SS.HH SN.SN SH SH SS.S SS.S NS.N SS.SN SS.S SS.S HS.N SN.NN SH S Sm.S SN.H HSNN SS.SS NS.S SH.S NS.N SS.NS SH S NN.SS SS.NH SS.S SN.SS SN.S SS.S HH.SH r SHWSS SH N SS.S HH.S SN.S SS.SS SS.S SS.S SHNS SS.SS SH S SS.S SS.S NS.S SH.SH SS.S SS.S SH.S SN.NH SH S SS.S SS.S HN.S SN.SH SS.S SS.S HS.S SH.NH SH S SS.S SS.S SS.N SS.HN SS.S SS.S SS.SH SS.SN SH S SS.S SS.S NS.N SN.HN SS.S S¢.S SS.S SS.SN SH N SS.S SS.S SS.S SH.HN SS.S SS.S HSuSH. SH.NN SH H .>wo .Sum cwoz .>mo .Sum :mmz .>wo .Sum :mwz .>mo .Suw 2mm: 2 muHS HEom mHzm< mm>mmq SHSECEHHS mama. HzHS :umcmH SNISHIS _. obmo 77 SS.S SS.S SN.N SH.SN NS.S SH.S SN.S SS.SN SH SH SS.S SS.S SS.N SS.SN NS.S SN.S SS.S SN.SN SH S SS.S SS.S SN.N SS.SN NS.S SN.S SS.S SS.SN SH S SS.S SSrS SS.S SN.HS SS.S SS.S SS.S SS.NS SH N NS.S SH.S SS.N SS.SS NS.S SN.S SHqSH SN.SS SH S SS.S -SS.S NS.S SN.NH SS.S SS.S SS.S SS.SH SH S O0.0 OO.O ONLN OH.OH OO.O O0.0 OO.S SH.N OH O SS.S SS.S SS.S SN.HN SS.S SS.S SSSNH SS.SH SH S SS.S SS.S SS.S SS.SN NS.S SH.S SS.SH SH.SN SH N SS.S SS.S NS.N SS.SN NS.S SH.S SNuSH SH.SN SH H .>wo .Sum cmoz .>mc .Uum :mmz .>mD .Sum cam: .>wQ .Sum :00: z ouHm HEom mHsm< mm>mmq SHSHOEHHS Squ. HZHS :uSCGH SNISNIS . muco Q chchm< ‘78 SS.S SS.S SS.SH SS.SN SS.S SS.S SS.HH SN.SN SH SH SS.S SS.S NS.S SS.SN SS.S SS.S SN.S SS.SN SH S SS.S SS.S NS.N SS.SS NS.S SH.S SS.S SS.HS SH S SS.S SS.S SN.SH SN.SS NS.S SN.S HS.SH SS.SS SH N NS.S SH.S NH.S SS.SS SS.S SS.S SS.S SS.SS SH S SS.S SS.S NS.S SH.SH SS.S SS.S SH.S SN.NH SH S SS.S SS.S HNVS SN.SH SS.S SS.S SS.S SH.NH SH S SS.S SS.S HS.S SS.SN SS.S SN.S SS.S SS.HN SH S SS.S SS.S NS.N SN.HN SS.S SS;S SS.S SS.SN SH N SS.S SS.S SSJSH SS.NN SS.S. SS.S SS.SH SS.NN SH H .>mO .uum cam: .>mo .Sum cam: .>mo .Oum cam: .>oO .cOm saw: 2 oSHm Hsom mHnm< . mm>mmq MHSHOEHMS Smog. HzHS. cumcma SNINNIS . came a Xchomm< 79 o .o SN.SN ON.S SSS.N .ow.SH mo.H ON.N OH SN 6 o SH.N om.m SSS.“ ON.NH Sm.c OS.N 0H SN 0 o . o o SSS.N ON.mH ON.O OS.N OH NN o O SS.H ON.O SSS.N CH.NH NS.O o.N OH HN o o o O SSM.N om.mH mm.o om.N OH ON C. o o o SNN.H OS.SH Nm.c om.N OH SH 0 o o o NSN.H ON.NH mm.o om.H OH SH 0 o O o SmS.N OO.SH Nm.c OS.N OH NH o o o O NSS.N om.SH SO.H OS.N OH SH 0 o Sm.cm OS.NH NSN.H om.NH Sm.c OO.N OH SH 0 o o o mmm.H oo.mH mo.H oo.N OH SH 0 o o o HHo.N OS.SH ON.O OS.N OH SH 0 o Sm.c ON.O OHN.N ON.mH SH.H cm.H OH NH o o NN.H OS.O oom.N om.SH SH.H oo.N OH HH o o o o OMS.H OS.SH NS.O OS.N OH OH o o o o NSS.H OS.SH Sm.c ON.H OH S o o. O o SHS.H OS.SH Nm.c Om.N OH S o O HH.S om.H NSS.H ON.SH Sm.c om.N OH N o o o o NHm.H OS.SH NS.H om.H OH S o o .o o mSm.H om.SH Sc.c OS.N OH m o o o o oom.H om.mH Sm.c om.N OH S o o SS.N o¢.o SHN.H omth ON.H OH.H OH S o o o o HHN.m om.MH mfi.o. ON.N OH N O O .O O HHO.N ON.OH Nm.O OH.O OH H .>ma .Sum cam: .>mo .Sum :mmz .>mo .Sbm any: 2 wme mNmNUHnmm mmumHQUHAES HEom chm¢ mm>moH MHSHOEHHS mama NNISSIS oumo S chcwam< O O VS.HH OS.v HS.N ON.hH hS.O OS.N OH VN O O NS.S ON.H SN.N OO.mH SS.O Oh.N OH SN O O SS.O ON.O NS.H Ob.SH ON.O OV.N OH NN O O SS.N OS.O SS.N OS.SH hH.H OS.H OH HN O O O0.0 O0.0 SN.H ON.SH NS.O OS.N OH ON O O SQ.H ON.O SS.S OS.SH NN.H O¢.N OH SH O O HQ.SH OS.H NS.N OV.SH SH.H OH.N OH SH O O bv.v OS.H SH.N OS.bH SS.O OS.N OH hH O O O0.0 O0.0 SN.S OS.SH SO.H OS.N OH SH O O SS.O OS.O OS.H Oh.hH ON.H OH.N OH SH O O SS.S OS.O SS.Q ON.hH VS.O O¢.N OH VH O O SV.SN OO.S SN.N OH.SH ON.H OH.N OH SH O O Sv.SH OS.S hO.N OS.¢H SS.H OV.H OH NH O O HN.SH OS.NH NS.S OO.mH SS.O OS.N OH HH O O SN.N Ob.H SS.N Oh.SH NS.H ON.N OH OH O O SmuH OS.O HS.H SS.SH SN.H ON.H OH S .0 O OH SSaN OO.H SS.N OH.¢H NS.H OS.H OH S 8 O O Oh.m ov.v hH.N OS.mH hm.O OS.N OH 5 O O SN.SH ON.¢ VS.S OS.VH NN.H OS.O OH S O O HN.HH OS.S HO.N OS.VH NS.H OH.N OH S O O SS.HH ON.S vH.S OS.SH SS.O OS.N OH v O O SH.S OO.H SN.N OS.dH SS.H ON.O OH S O O SN.SH OH.S SS.N OO.¢H VHtH. OS.H OH N O O HSJSH ON.S SS.S OS.SH ON.O OV.N OH H .>wC .vaw me2 .>00 .6»@ cam: .>mD .Cum Emmi .>00 .Ouw com: 2 oun anecwmmm‘qumdwvflnmw HEOQ mwnmfi mm>mmA mficuofiflnm wweq ONIQHIS QuwD D xficcmmmd Q XHocmmm< O .O SS.SN ON.S SN.N OS.SH NN.H OO.N OH ON O .O SS.v VS.N vv.S .Om.hH hS.O OS.N OH SN O O O0.0 O0.0 SN.N OH.hH S¢.O Oh.N OH NN O O OSsH OS.O vN.S OS.NH SN.H OS.H OH HN O O O0.0 O0.0 HN.S OH.bH SS.O OS.N OH ON O O hH.Oh OS.NN NN.N OS.SH v5.0 OS.N OH SH O O O0.0 O0.0 mv.N OO.SH Sv.H OS.H OH SH O O Hh.hH OS.S SN.S ON.SH VH.H OS.N OH NH O O SquN OS.S NN.S OS.SH hH.H Ov.N OH SH O O SS.H OS.O vm.N Oh.mH SN.H OS.N OH mH O O O0.0 OOuO vS.S OS.NH bH.H O¢.N OH «H O O O0.0 O0.0 OH.S. OS.hH SO.H OSwN OH SH O O SS.N OS.S ON.S OV.QH SH.H OS.H OH NH O O QN.HH Oh.m SS.N OH.SH O¢.H ON.N OH HH O O OS.VH OS.v NN.N Ov.hH hm.O OS.N OH OH O O HN.h OS.N SS.N OmeH NS.H OS.H OH S O O Sv.m OH.H NN.N OH.mH NS.H OS.H OH S O O VSOSN OV.OH SO.S OS.SH NS.O ON.S OH 5 M O O SS.O OH.O Sv.S OO.VH NS.H OS.O OH S . O O SS.SH OS.H OS.S O¢.mH SN.H OS.H OH m NS.O OH.O SH.vSH OS.v HS.S OS.SH NS.H ON.N OH v O O O0.0 O0.0 SS.N OO.mH SS.O OS.O OH S O O .ON.S ON.v OS.N ON.SH SN.H Oh.H OH N O O OO.SN OS.SH Hh.N Oh.mH HW.O. OS.N OH H .>00 .fium cam: .>wO .vuw :mwz .>wD .Cum C662 .>wO .Gum cum: 2 muHm mnwscwnmm mmwmmvcflnmfl HEom mflnmm mm>wmq .wHUHOEHHm Mdmn hhlmalm mama 82 O .O OO.OHH OO.OO ON.O ON.OH O~.H OH.~ OH ON O O OH.OO Om.HO OO.O OO.OH OO.H OO.H OH OH O O mOsmm OO.OO OO.O OH.ON OO.H OO.~ OH NH O O OO.Om OO.Hm OH.O OO.OH ON.H OO.H OH HO O O OO.OOH OH.OO OO.O OO.ON OO.O OH.~ OH OH mO.O OO.O OO.HO OO.OH OO.O O~.H~ mm.H Om.m OH OH O O OO.OH OH.OO OO.H OO.OH OO.H OO.H OH OH O O ON.OH OO.O OH.O OO.OH Nm.H OO.H OH OH O O OO.OH ON.OH OO.O OO.OH OO.O OO.~ OH OH O O ON.OH OO.O OO.O OO.ON m~.H OO.O OH OH O O OO.O OO.O OO.O OO.OH OH.H ON.O OH OH OO.O OH.O OO.OH OO.ON ON.O OO.- OO.O OH.O OH OH O O OO.HH OO.O OO.O ON.OH OO.H OO.O OH NH OO.O OO.H OO.OH OH.ON OO.O OO.OH OO.H OO.H OH HH O O ON.OO OO.- OO.O OO.ON OO.H OO.O OH OH O O OO.OH OO.O OH.O ON.OH OO.H Om.H OH O O O OO.O OO.O OO.O OH.OH m~.H O~.H OH O O O OH.ON OO.OH OO.O OO.OH ~O.H O~.~ OH O O O OO.O OO.H OH.O OH.OH OO.O OO.O OH O O O OO.ON OO.OH OO.O ON.OH HO. Om.H OH O O O OO.OO OO.OO OO.O OO.OH OO.O OO.~ OH O OO.O OH.O mO.O OO.O OH.O ON.OH mO.O OO.O OH O O O OO.ON OO.OH OO.O OO.OH OH:H Om.H OH H O O .OO,~O OO.HH HO.O OO.OH O~.H Om.H OH H .>mO .Oum cum: .>mO .cum cam: .>mO .cum cams .>mo .Oum cum: 2 mHHm quangmm mmumHocHgmH Haom mHOOH mm>mmH .mHOHoEHum ummH OnummuO . mama O chcmmmd r w w 83 Q Xchmmm< O .O HS.vS OS.NV SS.S .OS.SH hS.O OV.O OH «N Nv.O ON.O bH.vv ON.Sv HN.m OS.NH SO.H OS.O OH SN SS.O ON.O S¢;vh O0.00H hv.v OO.SN SS.H OS.H OH NN O O SS.SS OO.vN SS.S ON.SH SN.H OS.O OH HN SS.O ON.O HS.SOH ON.SS NS.v OH.SN SN.H OS.H OH ON O O S0.0h OS.Sm SS.S OO.hN SS.H OS.H OH SH O O SS.S ON.OH Nm.v OS.SH SH.H OO.H OH SH SS.O ON.O OS.Sm ON.SS NH.S OS.ON SO.H OS.O OH NH O O SN.HS ON.NS SH.v ON.SN NS.H OS.H OH SH NS.O OH.O OS.NS OS.SH h¢.v ON.HN SO.H OS.O OH SH O O NS.Sh OH.mS Oh.m OS.SN NS.H OS.H OH VH SS.O OS.O HS.SS OS.SS SH.S OO.mN hS.H OH.N OH SH O O SS.S OO.S HS.S OS.SH O0.0 O0.0 OH NH O O SS.OS OS.Sv NN.¢ OS.ON db.O OS.O OH HH bh.H OS.O SS.SS OS.SB NS.S OS.NN SS.H OS.H OH OH O O OS.N Oh.H Nv.N OH.HN ON.O O¢.O OH S O O. vHsHv O¢.¢N OS.S OS.SH Sv.O OS.O OH S Hh.O m.O SH.SvH OS.OSH Sh.N O¢.SN Sh.O ON.N OH 5 O O HN.m OS.N Hh.S OS.ON NS.O OH.O OH S O O SS.SN OS.NS HO.S ON.ON SS.O ON.O OH m vS. Ov. SS.SS OS.SS SS.S ONJVN SH.H OS.H OH H O O HN.N OO.H NS.S ON.ON O0.0 O0.0 OH S O O SS.SS OB.SN SS.S OO.HN SN.H. ON.O OH N SS.O ON.O S0.00H OS.Sh hv.S ON.HN Hv.H OO.H OH H .>ma .cum cam: .>mo .cum 2mm: .>mo .cum cam: .>mo .Oum cum: 2 muHm mumewflamwzmmumwoonmfi _HEom mflsmd wm>mmq .wHOHOEHHm Mqu hulmmlm oumo 84 a wacmmm¢ o o SS.SH om.NH Sh.o om.mm mv.o ON.O m vm Hm.o OH.O mo.mm oo.mv H¢.~ om.m~ om.o OH.O m mm vm.H OS.O mn.m¢H OO.HvH NS.H OS.SN OO.H OO.H m mm o o mmna ON.O SS.H om.o~ mv.o ON.O m Hm o o om.mH ov.mH mo.m om.m~ mm.o OH.O m cm 0 o mm.hv o~.m> mm.m om.hm Nm.H ov.H m mH o o Nm.c OO.H NS.H OH.ON vw.o OS.O m mH o o mv.SH oo.~H Hm.m OS.NN om.o OH.O m OH m>.H om.o ~m.om oo.mm om.o om.mm mm.o OS.H m SH 0 o mm.w OO.H NS.H om.- mm.o OH.O m mH o o mm.H~ O0.0H Sc.c om.m~ mm.o OH.O m «H mm.m OS.H Sm.o5 oo.mOH mo.e om.- OO.H OO.H m MH o o Nm.cm oo.mH mm.v ov.mH O0.0 O0.0 m NH o o mm.m~ ON.OH m~.m OS.SH oo.o oo.o m HH mv.o ON.O Hm.mm oo.mmH H~.m o¢.m~ OH.H om.H m OH O o mo.mm oo.vH mm.m ON.ON vm.H OS.O m m o o Hm.mH oo.mH mm.v OS.SH mm.o ov.o m m SS.N o~.H ov.mm OO.HHH vh.v oo.m~ Hb.o OO.H m h o o oo.o oo.o OS.H ow.mH oo.o oo.o m m mm.m OS.H «m.SOH ov.mm H~.m OS.NN mm.o OH.O m m mh.H om.o oo.mm oo.mOH Sw.m ON.HN OO.H OO.H m w o o oo.o O0.0 Nm.H OS.HH oo:o oo.o m m o o vm.mH ON.O so.m om.mH O0.0 O0.0 m N mv.o om. Nm.o> ow.mm mH.m ov.v~ Hm.o cS.c m H .cum cam: .>wo .oum :mm: .>mo .Oum :mmz .>mo .Uum saw: 2 muHm mumEOHnmm mmumHOUHSQ< HEom mH£m< mw>mmq MHOHOEHHm mama thSOIO mama 85 O O O0.0 O0.0 MN.m Om.OH O0.0 O0.0 OH ON O O OH.mN O0.0 OO.m ON.OH O0.0 O0.0 OH mN m0.0 ON.O Om.HOH O0.0HH OH.O OO.HN O0.0 Om.O OH NN O O mm.mm om.NH mm.m om.mH O0.0 O0.0 OH HN Nm.c OH.O mm.mOH O0.0m OH.H OO.NN O0.0 O0.0 OH ON O O mN.HHN OO.MMH OH.O OO.mN O0.0 OH.O OH OH O O NO.HH om.m NN.H Om.OH O0.0 O0.0 OH OH O O mm.mN om.NH O0.0 Om.NN Nm.O OH.O OH NH m0.0 ON.O OH.OOH O0.00 ON.O om.vN m0.0 ON.O OH OH O O HO.mv ON.NN OO.H OH.mN O0.0 O0.0 OH mH O O Hm.NHH OO.NH Hm.m om.HN Nm.O OH.O OH OH Nm.c O mHanH ov.hm NO.» .ON.ON SH.H O0.0 OH mH O :O O0.0 O0.0 OH.m OO.mH O0.0 O0.0 OH NH Om.H om.O ON.HN O0.0 mH.O ON.ON O0.0 O0.0 OH HH OO.H O0.0 OO.HO OH.Om mm.v om.NN Nm.O OH.O OH OH O O O0.0 O0.0 SH.N om.HH O0.0 O0.0 OH O O O Nm.c OH.O NN.H O0.0H O0.0 O0.0 OH O Nm.H O0.0 mm.mm O0.00 NH.m ON.HN HbuO om.O OH O O O Om.vOH OO.mm ON.O ON.OH m0.0 ON.O OH O O O O0.0 OH.O ON.m OO.mH O0.0 O0.0 OH m O O OH.ONH ON.mO O0.0 om.NN O0.0 OM.O OH O O O O0.0 O0.0 mv.N om.mH O0.0 O0.0 OH m O O OO.H OOuHH mO.m O0.0H O0.0 O0.0 OH N Om.H om.O Hv.mm O0.0H OO.m om.HN Nm.O OH. OH H .>mo .wum cam: .>ma .Uum‘ cmwz .>ma .cum 2mm: .>mo .Uum 2mm: 2 muHm mustcHnmm mmumHowH£m< HEOQ‘OHnmm mm>me mHOHOEHHm mama hptMth mama a xHOnmmm< 86 O0.0 O0.0 O0.0 ON.O. HH.m O0.0N O0.0 O0.0 m «N ON.N OO.H O0.00 O0.0H O0.0 O0.0N O0.0 O0.0 m mN ON.O O0.0 OO.Nmm O0.00H OO.H ON.ON O0.0 O0.0 m NN ON.N OO.H O0.0HH O0.00 O0.0 O0.0N O0.0 O0.0 m HN OH.O ON.O O0.00H OO.HO NO.m O0.0N O0.0 O0.0 m ON O O O0.00H O0.00 NO.m O0.0N O0.0 O0.0 O OH O O O0.0 O0.0 HN.O O0.0H O0.0 O0.0 O OH OO.H O0.0 NN.OHN O0.00H O0.0 O0.0N O0.0 ON.O O OH OH.O O0.0 OH.OOH ON.OOO O0.0 ON.Nm O0.0 O0.0 O OH O0.0 ON.O OH.N OO.H Hm.v O0.0N O0.0 O0.0 O OH HO.m OO.N ON.Om O0.0N OO.N O0.0N O0.0 O0.0 O OH O0.0 OO.H NH.OON O0.00H NO.H ON.HO O0.0 O0.0 O OH O O OH.HOH OO.NO Nm.m O0.0H Nm.O OH.O OH NH O O O0.00 O0.0H O0.0 O0.0H O0.0 O0.0 OH HH HH.¢ OO.H O0.0HH OO.HO O0.0 OO.NN O0.0 O0.0 OH OH O O O0.0 O0.0 O0.0 ON.OH Nm.O OH.O OH O O0.0 O0.0 OO.NO O0.0H OH.O .Nm.OH Nm.O OH.O OH O OO.N OO.H OH.OO OO.HO OH.O OO.NN Nm.c OH.O OH O Nm.O OH.O O0.00H OO.NO O0.0 O0.0H O0.0 O0.0 OH O O O O0.0 O0.0 O0.0 O0.0H O0.0 O0.0 OH O OO.N O0.0 HO.HOH ON.Om O0.0 ON.NN NN.O OH.O OH H O O O0.0 O0.0 O0.0 O0.0H O0.0 O0.0 OH O O O O0.0 O0.0 O0.0 O0.0H O0.0 O0.0 OH N ON.O O0.0 O0.00N ON.OOH O0.0 O0.0N Nm.c OH.O OH H .>ma .Oum 2mm: .>mo .cum cum: .Oum :mmz .>ma .Oum cmmz z oaHm MOOEHUHQQO mmumHocHamd HEom mHnm< mm>me MHOHOEHHO wmmH OOIONIO O xHUcmmmd mama O0.0 O O O0.0 O0.0 O0.0 O0.0N O0.0 OH ON Nm.c OH.O OO.NOH OO.NO O0.0 O0.0N O0.0 ON.O OH ON OO.H O0.0 OO.HHH OH.OH O0.0 O0.0N O0.0 O0.0 OH NN O O O0.0 O0.0 O0.0 ON.OH O0.0 O0.0 OH HN OO.H O0.0 O0.00 O0.0m O0.0 O0.0N O0.0 O0.0 OH ON OO.H O0.0 O0.0v O0.0N OO.HN O0.0m O0.0 O0.0 OH OH O O O0.0 OO.H O0.0 O0.0H O0.0 O0.0 OH OH O O O0.0 ON.O HN.O OO.NN O0.0 O0.0 OH OH O O Hv.mHH O0.0m ON.O OH.ON Nm.c OH.O OH OH O ..‘O O0.0 OO.H O0.0 OH.ON O0.0 ON.O OH OH O0.0 O¢.O H0.0m OO.HN O0.0 ON.ON O0.0 ON.O OH OH Nm.O OH.O O0.0m O0.0H NN.O O0.0N O0.0 O0.0 OH OH Nm.c OH.O O0.0 O0.0 O0.0 O0.0H O0.0 O0.0 OH NH O O O0.00 OO.NN NH.O .O0.0N Nm.O OH.O OH HH W O0.0 ON.O OH.HOH O0.00 O0.0 OH.ON OO.H O0.0 OH OH O O O0.0 ON.O O0.0 O0.0H O0.0 ON.O OH O O O O0.0 O0.0 O0.0 O0.0N O0.0 ON.O OH O O O O0.0H O0.0H O0.0 O0.0N O0.0 O0.0 OH O O O O0.0 O0.0 Hv.m O0.0H O0.0 O0.0 OH O O O O0.0 O0.0 HO.N O0.0H O0.0 O0.0 OH O N0.0 OH.N NO.mNH OH.OO Nm.O O0.0N O0.0 O0.0 OH H O O O0.0 O0.0 NO.N O0.0H O0.0 O0.0 OH O O O O0.0 O0.0 OO.H O0.0H O0.0 O0.0 OH N OO.H O0.0 HN.OO O0.00 O0.0 O0.0N O0.0 O0.0 OH H .>wD Auw .. :mmz .>0Q .Oum 2mm: .>ma .Oum :mmz. .>mo_.wum saw: 2 muHm mumaHOHnmm mmumHOOHsm< HEOQ wH£m< mw>me MHUHOEHHm mmmH OOIONIO Q xHUcwmmd u- .1 J“ 88 O0.0 O0.0 ON.OO O0.0N OO.N O0.0H O0.0 O0.0 OH ON O O O0.0 O0.0 OO.H O0.0N O0.0 O0.0 OH ON O O O0.0m O0.0H O0.0 O0.0N O0.0 O0.0 OH NN O O Nm.OH O0.0 O0.0 O0.0N O0.0 ON.O OH HN O O OO.HO O0.0H ON.O O0.0N O0.0 ON.O OH ON O0.0 O0.0 O0.0v O0.0m O0.0 O0.00 OO.H O0.0 OH OH O0.0 ON.O OO.HOH O0.00 O0.0 OO.HN O0.0 O0.0 OH OH O O OO.vv O0.0H O0.0 O0.0N O0.0 O0.0 OH OH O O OO.HO OO.HH O0.0 O0.0N O0.0 ON.O OH OH O O O0.0 O0.0 ON.O O0.0N O0.0 O0.0 OH OH O0.0 ON.O O0.0HH OO.NO ON.O O0.0N O0.0 O0.0 OH OH ON.H O0.0 O0.00H OO.NO O0.0 O0.00 OO.H O0.0 OH OH O O ON.O OO.H O0.0 O0.0N O0.0 O0.0 OH NH O O O0.0 O0.0 OH.O OO.HN O0.0 O0.0 OH HH O O ON.OH O0.0N N0.0 ON.HN OO.H O0.0 OH OH O O NO.¢¢ .O0.0N OH.O .O0.0H O0.0 ON.O OH O O O O0.0 O0.0 O0.0 ON.ON OO.N O0.0 OH O O O ON.OOH OO.HO O0.0 O0.0N Nm.H O0.0 OH O Nm.c OH»O H¢.ON OO.NH OO.H O0.0H Nm.O OH.O OH O O O NH.O ON.O O0.0 O0.0H O0.0 O0.0 OH O Nm.c OH.O HOO.mN O0.0 vH.m OO.NN O0.0 OH.O OH O O O ON.H O0.0 OH.O O0.0H O0.0 O0.0 OH O O O O0.0 O0.0 O0.0 O0.0H O0.0 O0.0 OH N O NO.v OO.H HN.O OO.HN OO.H O0.0 OH H .>mo .cum 2mm: .>wa .ouw :mmz .>mo .Oum :mmz .>mo .Uum cum: 2 muHm w~>EH©Hzmm mmumHocHnmm Heom‘mH£m< mm>mmH MHOHOEHHm wmmH OOIOOIO muma Q wacmmmd APPENDIX E APHID AND PREDATOR BIOLOGICAL OBSERVATIONS In the following appendice "four tables are presented. The first is the raw counts of terminals in several quadrats of the tree (see also Results). The second are the results from the examination of the 200 terminals, from 1976 sampling, for A. pgmi_eggs.' The data also shows the seasonal growth total for each terminal. The third table provides the aphid mean/terminal for each tree sampled in 1976 and 1977. The final table presents results of emergence cage trapping of adult Aphidoletes aphidimyza. 89 Table E1. Estimated for Lower and Upper Quadrat Terminal Numbers, 90 Taken at Graham Station 1977; Tree UlH U1KOkD\)\IUI Tree # ' Lower 2 107 3 68 4 68 6 37 10 73 12 78 15 66 17 47 29 93 33 54 34 47 if 67 . 09 S 20.75 N 11 Quadrat NE NE SW NE SW NE SW SW ‘Upper 116. 71 108 32 100 86 82 63 129 165 90 94.73 35.40 11 Canopy Level Lower Upper 57 64 25 36 28 36 41 38 50 41 53 57 52 56 52 46 91 The following table presents the results from -examining the terminals used in 1976 sampling for A, pomi eggs. In all a total of 5 eggs were found, suggesting limited oviposition occurred within the Red Delicious block. .1 J1. 92 Table E2. Egg Deposition and shoot length on red delicious trees.. Samples taken in February 1977 prior to pruning and egg hatch. Most terminals were those observed in 1976. Terminal Length Code In’ Status Eggs 0111 22 0 0121 26.5 0 0131 9.5 0 0141 16.5 0 0141 14 0 0112 35.5 0 0122 50 0 0132 31.5 0 0142 30.5 0 0152 37 O 0311 28 0 0321 35 0 0331 26 0 0341 13 0 0351 8 0 0312 33.0 New 0 0322 33 0 0332 35.5 0 0342 38.5 0 0352 25 0 1111 69 0 1121 5.5 O 1131 17 0 1141 17 0 1151 12 0 1112 16 New 0 1122 30 0 1132 18 0 1142 ll 0 1152 19.5 0 93 _ Table E2. (Cont'd) Terminal Length Code ‘ 'In’ Status 1311 26.5 1321 24.5 1331 20.5 1341 6 Broken 1351 31 New 1312 39 1322 58 1332 30.5 1342 35 1352 39 2111 22 2121 24 2131 11.5 2141 10 2151 9 2112 33 2122 31 2132 15.5 2142 22 2152 15 2311 23.5 2321 17 2331 20.5 2341 9 2351 19 2312 39.5 2322 32 2332 35 New 2342 4 Broken 2352 31 3111 38 3121 11.5 3131 5 3141 9.5 3151 7.5 New 3112 20 F5 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOOOO Table E2. Terminal Code 3122 3132 3142 3152 3311 3321 3331 3341 3351 3312 3322 3332 3342 3352 4111 4121 4131 4141 4151 4112 4122 4132 4142 4152 4311 4321 4331 4341 4351 4312 4322 4332 4342 4352 5211 5221 5231 (Cont'd) Length In’ 17 16 23.5 14 29.5 11 14 6 7.5 26 28 25 24 21 94 42 9.5 9 15 39 38 23.5 27 28 18 38.5 31 18 15 48.5 37 38 23 33 28.0 28.5 20 Status New New New New New New New 1% Table E2. Terminal Code 5241 5251 5212 5222 5232 5242 5252 5411 5421 5431 5441 5451 5412 5422 5432 5442 5452 6211 6221 6231 6241 6251 6212 6222 6232 6242 6252 6411 6421 6431 6441 6451 6412 6422 6432 6442 (Cont'd) Length . In . 23.5 15 33.5 44 34 34.5 36.5 29 25 24 20.5 12 13 11 24 17 21.5 25 'Status New New m OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO ‘ U) 96 Table E2. (Cont'd) 11:53 Terminal Length Code In Status 6452 23.5 7211 33 7221 11 7231 43 7241 18 New 7251 9.5 7212 19 7222 18 7232 28 7242 28.5 7252 30.5 New 7411 6.5 7421 8 7431 10.5 7441 11 7451 27.5 7412 18 7422 27 7432 27.5 7442 17 7452 11.5 8211 20 8221 32.5 8231 27.5 8241 12.5 8251 13.5 8212 47.5 8222 43.5 8232 23 8242 37 8252 35.25; 8411 15.25 8421 17.75 8431 21.5 8441 '21 8451 11.5 OOOOOOOOHOCOOOOOOOOOOOOOOOOOOOOOOOOO 97 Table E2. (Cont'd) t1: LO. S m Terminal Length Code In Status 8412 35 8422 4.8 8432 44 8442 30 8452 27 9211 37.5 9221 10 9231 3.5 Broken 9241 7.5 9251 4.5 - Broken 9212 32 9222 14.5 9232 27 9242 19.5 9252 8.75 9411 52 9421 25 9431 19 9441 12.5 9451 12 9412 20 9422 17 9432 33.5 9442 23.5 9452 34 200 Terminals Mean Length = 23.93 S = 11.98 Total Length 4786.5 Inches (398.88 Feet) COOOOOOOOOOOOOOOOOOOOI—‘OI—‘N 98 O0.0V NS.SS OO.nv ON.HO ON.OO H0.0N O0.0H O0.0 O0.0H OH.O «N.S SN.H. N.OO OS0.0v N.ON OHv.N m.NH mOS.H n.O mNS.O N.v SS0.0 O.mO OSH.NO O.SS NvO.Sm m.NH NON.O 0.0N OSS.S O OO0.0 0.00 OON.OS O.NO OH0.0N 0.0H mNH.S 0.0N NOO.N S.O OON.H .O.SS OHO.HS 0.0m NQ0.0 0.0N OHO.S 0.0N ONS.m S.S Nvm.O m.NO ONO.SN m.O nnm.o 0.0H NO0.0 0.0S OOO.¢ m.O NvO.H 0.00_ OHS.NS n.SO OHO.HO O.NO mO0.0H S.O NON.O m.NH OOS.v m.O SOO.H m.NS OSH.Om 0.00 SOO.Sn n.nO NON.OH N.ON NOO.N m.NH OO0.0 O.NH OOv.O O.mh mNH.NS N.OO NOO.mm m.NO OOO.SH N.ON OOO.NN n.O ONS.O N.¢ OOH.O n.Om mNH.vm N.vO OO¢.SN 0.00 OH0.0N 0.0 OO0.0 O.mm OOH.S N.v ONH.O .S.Om Nvm.Nn 0.00 OO0.0S 0.00 SOO.Hv O.NH mOm.HH 0.0H OOH.N O OO0.0 fl C602 & 6mm: v flflwz w flmwz fl cmwz w CSO: h m o OOOH nouns onEmm «HacHEuoa coummucH uo unmouom can HON u zv owns 20mm Hem memo: oHsma .Sm wHQmB mama: mama OH “1th O owns 99 NH.ON O0.0H NH.OH O0.0H H0.0v HS.NO OO.HO OH.HO N.¢O OO0.0¢ O.NH OHv.O 0.0H OOH.OO O.NO OON.HO O O 0.0H OOH.¢O 0.0N SOO.mm 0.0N NvO.m O O m.O Nv0.0H O.Hv OH0.00 N.v Nv0.0 O.NH mmm.v m.O OOH.H O O 0.0N OO0.0m m.O OOO.H O O 0.0N OH0.00 0.00 mmm.ON N.O ON0.0 O.NH NON.O O.NH .ONH.O N.OO OO0.00 0.0m OOS.HS O.mN OHv.mH N.¢m NO0.0SH O.Hv mNS.OS O.NH OH0.0H O.Hv OON.OO O.mm OON.NN O.NH OOO.v 0.0N OH0.00 0.0H OOO.mH 0.0N OO0.0H 0.0m ON0.00 0.0m NOO.N¢ O.NH ONH.O 0.00 OOH.NNH O.mm OO0.0N w cme w cmmz O cmmz O com: O m U mama mHmEmm wand: mama OH O mmHB mHmcHEume OmpmmmcH mo unmoumm cam mammz ©H5m< Hw.ucouv .Sm anma 100. In 1977 emergence cages were distributed singly at the base of ten trees. Cages were examined weekly and the number of Syrphidae, Cecidomyiidae, and Chrysopidae adults counted. These are the total catches each Week. On every third sample date.the traps were moved in close proximity to the prior site under the tree. This was to capture Cecidomyiidae which had dropped to pupate in the soil area around the trap, in the previous two weeks. 101 Hmumumousmzv mmeQOmmuno AmumuOHOO mmOHHOeowHomo HmumumHQO mMOHnmuwm O ON S OHS v SS ON SOS S NS OH _ ONO S SN O ONO O OH N SHO H OH O SOO O Sm _ S SNS O OH OH NNS O HS OH OHS H SN S OHS O S O NOS O OHH OS SNS H SS ON SHS O OH O HHO O O OH OOO mmoHQOmhunu wmcHHNEOUHowU mmcHnmuhm GHmQ :ovaum Emnmuu um OOOH CH muoumwmum uHsod mo monoumu mmua mocmmumfim .vm mHnt APPENDIX F Sample Size Estimation IntroductiOn The organization of the following appendices is to show the steps involed in taking raw sample data through several distributional analyses. The distribution coefficients estimated were “ and B of the mean crowding-meanrelationship (Iwao and Kuno 1968), k and kc of the negative binomial (Bliss and Fisher 1953, Elliott 1971) and a and b for the mean-variance relationship (Taylor 1961). Using the appropriate formulas sample size estimates of several sample designs are computed. In the analysis which follow the results are shown primarily for the 1977 data. Samples were not taken randomly in 1976 and these initial attempts at defining the habitat. sample unit and the sample universe are occasionally included in an analysis as a general index only. Loss of randomness makes interpretation of the 1976 data difficult and further analysis unwarrented. The sample universe chosen was the tree, with in which the habitat sample unit, the apple terminal, was located. Stratified sampling conducted in 1977 (see Methods, main text) allowed several sample designs to be tested. Four sample designs were selected and distribution analysis using 102 103 both A. pomi and §.'aphidimyza performed for designs where sufficient data existed. Throughout all analysis, the total tree sampling scheme (N - 24) is presented for both A. pomi and A. aphidimyza. Analysis is also presented for the lower and upper canopy sampling quadrats. These were chosen for accessibility and host growth-high aphid density charac-a teristics, respectively. Finally, data from the four lower— inner canopy positions (at the center of the lower canopy) in analyzed and presented where sifficient information existed. The analysis were preformed using the estimates per tree from each sample date. These were also used as estimates when combining all dates. Thus, results presented include each sample date and the combination of all dates for a sample design. Mean Crowding and the Mean Calculation of Iwao and Kuno's (1968)a:and 8 required obtaining estimates of mean and m*, a mean crowding index proposed by Llyod (1967). Using the estimates, linear least squares regression was performed to obtain a and 8 for each sample date and for the total season. Tables F1 and F2 present the 1976 and 1977 values of a, B and r2 for A. pomi on each sample date and for the total season. 104 Using the total season values (1977) sample size -estimates in the three sample design for A. pomi are presented in Table F3. The formula used in their computation was q = t2/D2 («+1 +3-1) 32 where q = sample size, corrected for error relative to the mean t = students modified t statistics D = error relative to the mean O and B: Iwao and Kuno's regression coefficients i = desired mean value Table F4 shows the regression coefficients for A. aphidimyza on each sample date and for the combined sample date. Table F5 provides the total tree sample size estimates for the predatOr using the combined seasonal estimates of‘xandB . 1‘) 105 ucmHonmsmcH on an: I mucHom N no HO¢.OS «O0.0 OSS. SS.H NS.Nv «SO. O0.0H OS.H OOO. ON.OH O0.0: OOO. ON.OH HN.O: SOO. O0.0H O0.0H: SOS. SO.N OS.SH: OHO. NH.N ON.Nmu OOO. OO.H NN.HO SHO. OO.N O0.0H OOO. OO.N NH.O H O a wth. HMHHOH. N mHmNHma< Mom H NHCO :Hmucou H O O mmuma umucmso HmBOH mpoz SO0.0 SNH.v OOO. ON.H Nv.SS NOO. OO.O N0.0- HOO. O0.0 O0.0! OOO. O0.0 O0.0t OOO.H HH.O O0.0: NSO. OS.H O0.0N ONO. O0.0 HO.NOH HOO. SH.H NH.SSI NOO. OS.H N0.0N ONO. SS.N O0.0 NH _O a umuomsa Momma HON.OH HIO mocmHHm> OOO.O HIO uom msmmz OOO. OO.N OO.NH mmumo HHS OO.H O0.0 OO.O H OOO. OO.OH OO.N: m OO.H OO.O OO.O o HOO. O0.0H Hm.O O OHO. OO.H NO.NO m ONO. NO.O OO.HON: o OOO. OO.H OO.HO o HOO. NO.N OO.ON m HOO. OO.N OO.OH .4 NH O a OOOO umncmso umBOH .mucsoo cOHHMHsmom OHSQO Mom mpHSmmm :onmmummm Sadx Sam omzH OOOH .Hm mHQMB NE... -.....“ ...»:ch “O..— suntan sob. H ..... .. : 106 O0.0H «HH.S ONO. SOO.S OOS.SS SSH. OOH.¢ SHO.vm SSS. HNS.v SS0.0S SOS. OSS.S SOS.Sm SSS. SON.S «ON.OH! OOO. OOO.H HS0.0m SSO. OSS.m SSN.SHI SSS. NOS.VH SSS.¢HI NNO. OSS.O «SO.N SOS. OSS.HH SN0.0 NH m 8 OOHB HM#OB HNS.S OSS.v OHS. OOH.S OSv.SH SSS. SSS.S NON.mN SHS. vvm.S SSS.HS OSS. SHS.S th.OH HSN. HSv.S SOS.¢HI HHS. OSv.H HNS.SS SNS. SmH.v SSm.HHI OSS. OO0.0H SSS.vl SSS. OHS.S NOS.SI SSS. SSS.S NNS.H H 8 N O umummao Hmaaa OO0.0 Nm Omm.O M. HOO. HO0.0 OOO.NH mmuma HH< OOO. OO0.0 OO0.0 5 OOO. NN0.0 OOO.SN H OOO. OON.O OON.ON 0 OOO. OOO.N OOO.OI a OOO. OOO.N OO0.0N m ONO. OOH.m OOO.N a OOO. ON0.0 OOO.v| 0 OOO. OO0.0 NOO.H: a OOO. ON0.0H OON.OI < NH O 8 mama pmummso Hm3oa mumaou :oHumHmaoa OHaa< How muHsmmm GOHmmmHOmm ocsx mam om3H OOOH .Nm mHQmB 107 HO.S OS.SS S 8 SS SNH SSS SS OSH SOS HS OSH HOS Sv NHH NOS mv SSH OSS Sv OOH HOOH Sm SOH SSHH Sm SSH SONH NS SON SSSH SO HON OOSH SS OHS vSHN OOH NSS OvSv SHSN NSOOH SSSSSH S. N. H. mmHB Hmvoa mmmmm mcoHumHsaoa Han .< ScHumEHumm Mom Humafiaz mmHBO mmNHm mHaEmm SN SN OS HS NS SS SS OS OS mv vm OS .SOOH m. SH.S OS SS SS NOH OOH SOH OHH SNH NSH SSH SSH SOS OSSv N. SS.SH SNS SSS OSS SOS OOO OSO OSO SNS SSS OHOH SONH SSNN SHOSO H. umnmmso Hmaaa OH OH HO Nv SS «V OH OH om Sm NS SS SNS S. O0.0 HSH SSH OSH SSH OOH SOH HSH SSH «SH SOH .SON SHS HSSS N. SO.NH OOS HSS OOS SHS SSS SSS HHOH HOOH SHHH SHNH SOvH SSSN NHOOS H. umHUmaO Hm30H .monsz oasm mam szH mconH>Ha ancmo mmune :0 ONH OOH SO OS Om OS OS ON ON OH OH 2mm: .Sm mHnt 108 Table F4. 1977 Predator Linear Regression Values From Iwao and Kuno Analysis Date _. _ a. V 3. .5 . ._ r2 6-22-77 -.259 19.955 .982 6-29-77 .311 . 2.832 .144 7-06-77 -o.088 6.552 .972 7-13-77 .344 6.895 .446 *7-20-77 2.549 3.361 .626 7-27-77 -0.869 13.923 .929 8-03-77 -o.022 7.184 .966 Combined .222 7.014 .637 * Does not include lower canopy level of last five trees sampled. 109 Table F5. 1977 Predator Sample Sizes (Trees) Estimated. Using Iwao and Kuno's Method Error Relative to Mean““ 7.014 Mean .1 ".2 ".3 1.0 28847 1714 397 1.5 14556 1052 260 2.0 5649 589 160 2.5 4522 499 140 3.0 3555 431 122 3.5 3198 400 115 4.0 2872 371 107 4.5 2704 356 104 5.0 2541 241 100 6.0 2347 322 95 7.0 2222 310 92 8.0 2133 301 90 . 9.0 2066 294 88 10.0 2015 289 86 11.0 1976 284 85 12.0 1942 281 84 13.0 1916 278 84 14.0 1892 276 83 15.0 1873 274 82 20.0 1807 267 81 a = 0.222 110 Negative‘BinOmial The estimates of the negative binomial k obtain was derived with formulas presented by Elliott (1971). Difficulties in estimation of the negative binomial coefficient by other methods (e.g. Bliss and Fisher 1953) limits the _study to perhaps a bit less regorous methodology. Tables F6-F8 present the eStimates used to obtain.k values on each sample date for lower, upper and total tree sample designs. To determine if computation of c common K (Kc) was applicable, linear regression of l/k and i was performed (see lower portion of each table). If the computed slopes were not significantly different from a horizontal line, the common K was computed. Using the formula 11 = t2/132 (1/2’ + l/Kc) tree sample number estimates were computed (Elliott 1971). These are presented in Table F9 for A. pOmi. Similarly the,approaches used in calculation of K values for A. aphidimyza are presented in Table F 10. The sample size estimates (trees) for the total tree sample design are presented in Table F10. 111 .acmvcmamSGH ma oa mESmmm SmE maaHoa mna mcHH HmaGONHao: m ana acmamaaHHO OHammaS a0: mH maon mm . O " H OH N HMO va.OI + HHS.SN H S :OHamaSm GOHmmmaSmm X m> M\H mo aoHa “moamwcmamwcH How Homau o mSH. H M u OO0.0 n ox\H mS0.0 SSS.SH OOO.SSvH SNS.SS ONH SS.vaH SN.OH mm0.0 SSH.SH OOS.OSSS SNS.SNS ONH OS.SSSS OS.SH SOH.O SSN.S OOH.SmSmH NOO.SmSH ONH NS.SSSSH SN.NO OV0.0 SON.HN OSS.SSSS OSS.OSH ONH O0.0HOO SS.VH OSm.O SNO.H OSS.SNOS OHN.mSSH OS SO.SSOS ON.S¢ SHS.O NvH.S OSH.OSSm NOO.HOSH ONH SS.SNSS SS.SV SSH. SOS.S OSS.SSNH SHv.va . ONH OS.NHSH SS.SH OSO. SHH.SS . SS.OSSH SSS.SO ONH OS.SSSH SS.O SOH. OmS.S OSN.¢VH OSO.HN ONH SS.SwH NO.v ONO. vSm.Hv HNO.N SO0.0 ONH SN.N 7 SN.O >ao:mu.am3oa . o .xa\.Ow u x\H h H Hx\H H\M Wm .... NW I. . :\NO I NM u _x ..Eom.am HOS M :OEEOU mo COHamHSOHmU OOOH SOIS ONIO ONIO SHIO SOIO SNIS NNIS SHIS OHIS SclS mama mHaEmm .Sm mHQmB mHamoHHaam & aoafioo HO.H.O maonO moamcamamm oz 112 ONS. u Na HMO SOH.O + NSO.OS n O :OHamaUm COHmmmaSmm m m> M\H mo aOHm "mocmoamamvcH a0m_xomau o OON.O n M o OOO.O + O\H OHH.O NS0.0 OS0.000H OON.OOO ONH ON.ONOv NS.SN SOIO NO0.0 NHH.SH OOS.ONNO OHS.NSN ONH OO.HONO ON.OH ONIO OOS.O OOO.N ONO.HOHON OO0.0000 ONH SH.NONON NH.HO ONIO HOH.O OSS.O OON.OHONH OOO.HvHN ONH SS.SSONH .Sv.Ov SHIO ONS.O SSO.S OOH.OONO OO0.0SOH OS ON.HNSO . OO.NO SOIO SOH.O HOH.N OSS.SSOO OOS.OOHN ONH O0.000H O0.0H ONIO ONH.O OO0.0 OON.OHOv NOH.OmS ONH OH.HHOO H0.0N NNIS SN0.0 OOO.Nv OOS.OSO «SS.NH ONH O0.0SO OH.O OHIO ON0.0 OOS.vS O0.00 NHS.N ONH OO.HO OO.H OHIO ON0.0 OON.Ov OOO.NHH «O0.0 ONH OO.HHH SH.N mOIS O OxH .O x c m m mama . N mHaEmm Smocmo amaaa Han am How M £05800 ao.aoHamH50HmU;.OOOH .Om mHame 113 mHamoHHaad M GOEEOU " SOH. u NH HMOSO.OI SO.SN n O COHamSSm GOHmmmaSmM M m> M\H So aOHa "mocmccmamSGH How Momau 0 OON.O H M 0 NOO.O u O\H SO0.0 SOH.OH .OHO.SHNO OS0.00S . OHN OO.HSNS O0.0H ONO OHN.O OOO.H OOO.HOHNN NO0.0000 OON O0.0SNNN OO.HO ONO SOH.O SO0.0 OHH.OHSO OO0.00HH OHN H0.0va O0.0S SHO OHH.O OON.N ONv.OHmv OO0.000H ONH O0.0SSH O0.0H OOO NO0.0 HOO.N OH0.00HO HHO.mmON OHN O0.0SNO O0.0H ONO OSH.O NNm.O ON0.0HHO ON0.0NH OHN O0.0SHO O0.0N NNS ON0.0 OOH.HS OS0.000H OHO.Hm OHN O0.000H. O0.0 OHS OO0.0 OOH.HH OOO.SHH OH0.0 OON OH.OHH SN.S OHS OH0.0 OOO.HO OOO.NO. OOH.H OON OO.HO NN.H SOS M O\H _O .x 2 NO m 11:11:. , mama mmaa HmaOB mHaEmm .som am How O Oossoo mo OoHamHsono OOOH .OO_6HQOO 114 H0M\H + M\HO Na\Na u a mHSEHom o o o OON. u M OON. u M OOH. n M HS OON «NSH OH OOH SNOH OO OON OOOH OOH HO HON OOOH. OH OOH OOOH OO OON OOOH OO HS NON HHOH OH SOH OOOH OO OON OOOH OO NO SON OHOH OH OOH OHOH OO OON HHOH OO NO OON «SSH OH OOH OOOH OO OON SNOH OH OS OON OOmH Ov OOH OOOH OO HON OOOH OS SO OON OOOH OH NSH NOOH OO OON OOOH ON HS NHN OmvH OO OOH OHHH HO . OON OHOH ON OS OHN HOOH HO OOH OOHH SO OON OOOH OH OS ONN VOSH vO OOH OHNH OO OON SNON OH OO HON «NON 7 NS SHN OOOH OOH HHS NOON O OHm OOOH NOOmN OON HHHH NOOOH OOO. NOOH OHHON H m. N. H. m. N. H. m. N. H. cmmz mmaanHmaoa Smocmo Hmmaa maoamo amBoa :mmz maa oa m>HamHmM maoaam mcHOam> am Hmmmaa mo amafiscv M :0 Ummma OCOHamHsaom Han .¢.aom mmamEHamm mNHm mHaEmm OOOH .Om_mHamB O 115 NH.OH Hm.O O0.0H ON.OH O0.0 O0.00N MammO M\H NNOHm.O MNNO0.0 NOOH0.0 OOHO0.0 OOOOH.O OOHOH.H. h NHmNo. NOOMOO. NOOHO. OOOHO. OOmHo. Ommoo. X OHN OOH OHN ONH OHN OHN U M\H OOOOH.O ONHom.O NOOOH.O OHOOH.H OOMNN.O OHOON.H Mumm. .x\.m u mxH . n O m mm 2\NO u mm H .x HmOmo.o u 0M acHOm.OH n .xw\.O w mmmmH. moum ammmm. ONIO . omOmH. ON-O OOHHN. MHIO mmomH. OO-O MOOOO. mNIO m mama mHmEmm .mcHHOEMO mmua Hmpoa How AHOmHuuoHHHm 0» umwmmv munsoo mNmEHwOnm< mm#mHowH:mm.OOOH Mom .M :08800 mo COHumusmEoo .OHm.mHQme NHH 116 Table F11. 1977 Sample Size Estimates for g, _ Aphidimyza Using Kc (number of Trees) "‘Total'Tree Mean .1 .2 .3 1.0 45294 2691 626 1.5 23509 1698 420 2.0 9261 . 966 262 2.5 7483 '826 231 3.0 5921 757 203 3.5 5352 -670 192 4.0 4823 623 180 4.5 4553 .599 174 5.0 4288 575 168 6.0 3975 545 161 7.0 3772 525 156 8.0 3628 512 152 9.0 3519 501 149 0.0 3435 492 147 5.0 3205 469 141 0.0 3098 457 138 Kc - .09651 n = t2 ( 1 1 “'2' 27+? I) X c 117 Mean Variance Relationship The computation of Taylor's (1961) coefficients from the mean-variance relationship involved obtaining individual tree estimates for‘g.‘pomi and §.@aphidimyza in three sample designs. The results, from log-log regression, for total tree, lower canopy and lower inner canopy sampling designs of'g. pomi and g. aphidimyza populations are presented in Table F11. The formula for sample size estimation using Taylor's coefficients was presented by Croft, Welch and Dover (1975). It is: n='_1_:_2_ (H1 + (m+'-]%—)‘V(5<') +l/k) D2 .9X f2 where n = number of samples t = students modified t statistic (mH Hound owHMHommm map OGHummE mo OuHchn—Hmo OOO H OO OON OOHN OO OON HHHN HO OON OOOH 0.0N HO HON OHON OOH HON OOON OO OHN OONN 0.0H OOH HOO OHON ONH HHO OOOO OHH HNO OOON 0.0H OHH OHO OOON ONH OOO NHNO ONH OHO OOHO 0.0 OHH NOO OOON OOH OOO OOOO OOH OOO OOHO 0.0 ONH HOO OOHO OHH NOH OHOO HOH HNH OOOO 0.0 OOH HOO NOHO OOH OOH ONOO NOH OOH OOOH 0.0 HOH ONH OOOO OOH OOH (NOOH OON OOO OOOO 0.0 OOH HOH OOHH OOH ONO OOOH ONN NOO OOOO O.H HOH OOO HNOH OON OOO OOHO OON OOO OOOO O.H OON NOO OHHO OON NOO OOOO NOO OHO NOOO 0.0 OON NOO NOOO OON NHO OOOO HOO NOOH OHOO 0.0 OOO NOO HOOO OHO OOO HNOO OOH OOOH OHHNH O.N OOO OOOH OOOO OHH OHNH ONNHH OOO OOOH OOHOH O.N OOOH HOON OOOON HOHH OHOO OOOON OOOH ONOO OOOOH O.H e .. .u . .. .u,. . . . .... . .... O.H O. O. .H. O. O. H. O. O. H. cam: OH H zv oOHmCH um3oq “NH u 2O mmocmo um3oq OHNH MO owns Hmuoa mmmeHumm mNHm mHmEmm meB cam :OHmelmmmEmm OHO OOO ONOO OOHH ONNO HOOON OOOH HOOH NOOHH 0.0N OOO OHOH OOOO OONH OOOO OOOHO OHHN OOOO HOONO 0.0H HOH OONH HHOOH HOHH OOOH HHOOO HOON OOOO OOOOO 0.0H OOH OONH ONOHH NHOH NONH OOOOO HOON OHOO OOHOO 0.0 OOH ONOH OOOHH ONOH OHOH OOOOH OONO HOOO OHOHO 0.0 OOO HHHH ONONH OOOH HNOH OHHOH OOOO OOOOH OOOOO 0.0 NNO HOOH OOOOH OOOH OONO HOHOH HOHH OOHHH NOOOOH 0.0 OHO OHOH HNHOH .OOHN OOOO NOONO HOOH OOOOH NOONNH 0.0 OOO OOOH NOOOH HONN HHOO OOOOO OOHO NOHOH HOHOOH O.H HNO OHON HOOOH HOHN HOOO NOOHO ONHO NNOOH OOHOOH O.H HNO OONN OOOON OHON HNOO OOOOO OONO HOHON OOHHOH 0.0 OOO OOON OHHON OONO OOOO ONHOO OOOO OHOHN OHHOHN 0.0 OONH OOHO OOOOO OOHH ONOHH OOOHOH OHOHH OOHOO OOOOON O.N HOOH OOOH OHOOO OOOO OOOHH NHOHOH OOHOH OONOO HONHHH O.N ONNH ONOHH OOOOOH NOOHH OHOOO OONOOO OOOOH OOONOH OOm+N.H .OwH .Mbw HNHHN OHHWH HOHO OmOHO ONNOO OOHOHH OHHOON momwO.m :OeH O. O. H.. O. O. H. O. O. H. cmmz .OH H 2O wmemm uo30H HNH u 2O mmocmu Hw3OH AHN u zv mmua Hmuoe . . .HmmpwEHumm muHO mHmEmm HmcHEnma can cOHmmo mHmEmm MOOObHv Hm>oo cam .AOHmz .umouo mo oMHoEHom OGHmD mcoHumHsmom wuweHOHnmw .< How mmquHumm muHO mHmsmO owns Ocm HmcHEuwe .OHm 0Hnms 124 Ho>oH Houuo OoHMHoomm on» OcHuooE mo Ouchuuoo OOO HN OO OOO ON HO OOO NN NO OOO ON HO OOO NO OO OOO ON OO HHO HN OO HHO HO OO NOO ON OO OOO ON OO HOO OO OOH HOO ON OO OOO ON OO HOO OO OOH OOO OO OO NOO OO NO OOO OH OHH _OOOH HO HO OHO HO OO OOO OH ONH OOHH OO HOH OHO HO OO OOO OH OOH OONH OH HHH OOO OO OOH OOO OO HOH OOOH OH ONH HOHH OH OOH OOHH OO OOH OOOH OO OOH OOOH OO OON OOOH HOH OON ONON OO OON OHHN OOHH OOOO NOOOO NOO HOH OOOOH OOH HOOO HHOOO O. O. H. O. O. H. O. O. H. AH u 2O oUHmcH Ho3OH ANH u zv Omocoo Ho3OH AHN u zv ooua Houoa OO OON NHHN NOO OOO OOOO OOO OOHH OOOOH NO HON OONN OOO OOOH HOOO OOO OOOH ONOHH OO OON OHHN OOH OOHH ONNOH HOO HOOH OHOOH HOH NON OHON HOH OONH OHOOH OOO OOOH OOOOH OOH OOO OOON OOH NONH HOOHH HOO NOON OONOH OHH ONO OOON NHO ONHH HOONH HHO HONN OHOON ONH OOO OHHO OHO OHOH OOOOH HOO ONHN OOOHN OOH OOO HNHO HOO OHOH HHOHH OOO OOON OHOON HOH ONH HOOO OOO OOOH OHOOH OOOH OHOO HOHON OOH NOO HHOH . OOO HNNN OOOOH ONOH OOOO OOOOO OON HOO HOHO HHNH OOOO HNOOO HOON OOOO OOOHO OOO OHOOH OOHOHH ONNOH HHHOO OOOOOH .HOHOO NOOOm‘ OOONOO O. O. H. O. O. H. O. O. H. OH I 2O HoBOH oOHmcH “NH u.zv Omocoo HosoH OHN u zv ooue Houoe H .AOOOHO Ho>oo Uco muonfisz oneom HocHEHoB mo mouoEHpmm "cmHmoQ onEom .:0Ho3_.umouu mo moHGEuom OchD OOOHuoHsmom .HEom .m mom moquHumm oNHm onEmm ooHH coo HmcHEHoB H OOH OO OO OO OH OO ON ON OH OH O H coo: OOH OO OO OO OO ON ON OH OH coo: .OHm oHnoB APPENDIX F 3 Pertinent Literature Bliss, C. I. and R. A. Fisher, 1953. Fitting the negative bionomial distribution to biological data. Biometrics June: 176-200. Croft, B. A., Welch S. M. and M. Dover. 1976 Supresseion statistics and sample size estimates for populations of the mite species Panonychus ulmi. and Amblyseius fallocis on apple. Env. Ent. 5(2): 237-234. Elliott, J. M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates, Freshwater Bio.Ans. Sci. Pub. 25 Iwao, S. 1968. A new regression method for analyzing the aggregation pattern of arrival populations. Res. Pop. Ecol. 10: 1-20. Iwao, S. 1975. A new method of sequential sampling to calssify populations relative to a critical density. Res. Pop. Ecol. 16: 281-288. Iwao, S. and E. Kuno, 1968. Use of the regression of mean crowding on mean density for estimating sample size and the transformation of data for the analysis of variance. Res. Pop. Ecol. 10: 210-214. Karandinos, M. G. 1976. Optimum sample size and comments on some published formula. Bull. Ent. Soc. of Amer. Vol. 1. 417-421. Kuno, E. 1969. A new method of sequential sampling to obtain the population estimates with a fixed level of precision. Res. Pop. Ecol. 11: 127-136. Kuno, E. 1976. Multi-stage Sampling for population estimation. Res. Pop. Ecol. 18: 39-56. Lloyd, M. 1967. Mean Crowding. J. Animal Ecol. 36: 1-30. Iwao, A. 1976. A note on the related concepts 'Mean Crowding' and 'mean concentration' Res. Pop. Ecol. 17: 240-242 125 126 Hagihara, A. 1976. The time sequence of the relation between mean crowding and mean density with some population processes. Res. Pop. Ecol. 17: 244-239. Sekita, N. and.M. Tamosa 1973. Applicability of a new sequential sampling method in the field population surveys. Appl. Ent. 2001. 8(1): 8-17. LITERATURE CITATIONS Adams, R. A. 1977. Role of the predator Aphidoletes aphidimyza (Rondani) (Diperta: CecidomyiidaéT in the management of the apple aphid. Aphis pomi, Degeer (Homoptera: Aphididae) Ph.D. digsertation. Univ. of Mass. 55 pp. Baker, A. C. and W. F. Turner. 1916. Morphology and Biology of the Green Apple aphis, Jour. of Agric. Res. 5(21): 955-94. Baskerville, G. L. and P. Emin. 1969. A rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50(3): 514-7. Bondarenki, N. V. 1975. Use of aphidiophages for control of aphids in hot-houses. From VII International Plant Protection Congress; Moscow 1975 (in papers at Sessions v-vii: Moscow U.S.S.R. 221 p.) p. 24-29. Bonnemaison, L. 1973. (Integrated control of aphids in apple orchards). Revue de Zoologie Agricole et de Pathology vegetale. 72(2): p. 48-64. Briggs, J. B. and F. H. Alston. 1968. Sources of pest resistance in apple cultivars. Rep. of E. Malling Res. STN. 56: 159-162. Cierniewkii, B. 1973. (Parasites of aphids occuring in the orchards near Pozan (Hymenoptera: Aphidiidae) Polskie Pisom Entomologicyne. 43(3): 837-9. Croft, B. A. and A. W. Brown. 1975. Response of arthropod natural enemies to insecticides. Ann. Rev. of Ent. 20: 285-335. Croft, B. A. 1975. 'Integrated control of apple mites: Bull. E825 Mich. State. Coop. Ext. Ser. 12 p. Croft, B. A. 1976. Establishing insecticide-resistant phytoseiid mite predators in deciduous fruit orchards. 21(4): 383-399. Dixon, A. F. G. 1971. I. The effect of the sycamore aphid, ‘ Drepanosiphum platanoides (Schr.) (Aphididae), on the growth of sycamore, Acer pseudoplatanus (L.) J. Appl. Ecol. 8, 165-79. 127 128 Dixon, A. F. G. 1971a. The role of aphids in wood formation. II: The effect of the lime aphid, Encallipterus tiliae 1. (Aphididae) on the growth of lime, TElis x vulgaris Hayne. J. Appl. Ecol. 8(2): 393-399. Dunn, J. A. 1949. The parasites and predators of the potato aphid Brevicoryne brassicae. Bull. Ent. Res. 40: 97-122. El-Titi, a. 1973. Influence of prey density and morphology of the host plant on the egg distribution of the aphidophagous gall midge, Aphidoletes aphidimyza (Rond.) (Diptera: Itonididae). A. Ang. Ent. 72: 4-0-415. El-Titi, A. 1974. Effect of the predacious gall midge Aphidoletes aphidimyza (Rond.) on aphid populations under glass. A. Ang. Ent. 76: 406-417. Evenhuis, E. H. 1963. (The green apple aphid and its parasite complex). Meded. Lan. Gent. 28: 784-91. Forsythe, H. Y. and F. R. Hall. 1973. Summer control of the apple aphid in Ohio. Res. Cir. 196. Ohio Agr. Res. and Dev. Center. 19 pp. Gange, R. J. 1973. A generic synopsis of the nearctic Cecidomyiidi (Diptera: Cecidomyiidae: Cecidomyiina) Ann. Ent. Soc. Amer. 66: 857-89. George, K. S. 1957. Preliminary investigation--on the: biology and ecology of the parasites and predators of Brevicoryne brassicae (L.) Bull. Ent. Res. 48: 619-29. Glass, E. H. and P. J. Chapman. 1955. Summer control of the apple aphid. Jour. Econ. Ent. 48(6): 695-7. Hagen, K. S. and R. van den Bosch. 1969. The impact of pathogens, parasites, and predators on aphid populations. Ann. Rev. Ent. 13: 325-384. Hagley, E. A. C. 1974. The arthropod fauna in an unsprayed apple orchard in Ontario II. Some predacious species. Proc. Ent. Soc. of Ont. 105: 28-40. Harris, K. M. 1966. Gall midge of economic importance (Diptera: Cecidomyiidae) Part II: Introduction and subfamily Cecidomyiinae: Super tribe Cecidomyiidi. Trans. Royal Ent. Soc. Lon. 118(10): 313-58. 129 Harris, K. M. 1973. Aphidopagous Cecidomyiidae (Diptera), taxonomy, biology, and assessment of field populations. Bull. Ent. Res. 63: 305-25. Heriot, A. D. 1944. Comparison of the injury to apple caused by scales and aphids. Proc. Ent. Soc. Brit. Columbia. 41: 113-5. Hodek, I. ed. 1966. Ecology of aphidophagous insects. Proc. Symp. Liblice near Prague. D. W. Junk pub. 360 pp. Holdsworth, R. P. 1970. Aphids and aphid enemies: Effect of integrated control in an Ohio apple orchard. Jour. Econ. Ent. 63(2): 530-5. Howitt, A. J. and L. J. Conner. 1964. The response of Rhagoletis pomonella Walsh. and other insects to trap boards baited with protein hydrolyase. Proc. Ent. Soc. Ont. 95: 134-6. Huffaker, C. B. and B. A. Croft. 1976. Integrated pest management in the U.S.: Progress and promise. Env. Health Pers. Vol. 14, pp. 167-183. Johnson, B. and P. R. Birks. 1960. Studies on wing polymorphism in aphids: I. The development process involved in the production of the different forms. Ent. Exptl. et. Appl. 3(4): 327-339. Johnson, B. 1976. Wing polymorphism in aphids.: II. Interaction between aphids. Ent. Exptl. er. Appl. 8(1): 49-64. Johnson, B. 1966. Wing polymorphism in aphids III. The influence of the host plant. Ent. Exptl. et. Appl. 9(2): 213-222. Lathrop, F. H. 1923. Influences of temperature and evaporation upon the development of Aphis pomi. Degeer. Jour. Agric. Res. 23(12): 969-87. Lathrop, F. H. 1928. The biology of apple aphids. The Ohio Jour. of Sci. 28(4): 177-204. Lees, A. D. 1961. The environmental control of polymorphism -in aphids. From The Ontogeny of Insects. I. Hrdy ed. Academic Press Inc. (New York, N. Y.) PP. 305-7. 130 LeRoux, E. J. 1959. Effects of frost, rainfall and aestival 4 temperatures on populations of the apple aphid, Aphis pomi Deg. (Hemoptera: Aphididae) on apple in Quebec. Ann. Ent. Soc. Quebec. 5:49-52. Madsen, H. F., Westigard, P. H., and L. A. Falcon. 1961. Evaluation of insecticides and sampling methods against the apple aphid, Aphis pomi. Jour. Econ. Ent. 54(5) 892-894. A Madsen, H. F., H. F. Peters, and J. M. Vakenti. 1975. Pest Management: Experiences in six British Columbia apple orchards. Can. Ent. 107: 873-7. Mansour,.M. H. 1975. The role of plants as factors affecting oviposition by Aphidoletes aphidimyza (Diptera: Cecidomiidae). Ent. Exp. et. Appl. 18(2): 173-179. Matheson, R. 1919. A study of the plant lice injuring the foliage and fruit of the apple. Cornell Univ. Agric. Exp. Sta. Memoir. 24: 683-730. Mayr, L. 1975. (Investigations on the function of the salivary glands of predacious larvae of gall midges (Aphidoletes aphidimyza (Rond.) Zeits. fur Ange. Ent. 77(3): 270-3. Markkula, M. 1973. Biological control of pests in glass- houses in Finland. OILB/NPRS Bull. 4: 7-12. Markkula, M. and K. Tittanen. 1976. Mortality of Aphidoletes aphidimyza Rondani (dipt. Itonididae) larvae treated with accracides. Annales Agriculturae Fenniae. Vol 15: 86-8. Markkula, M. and K. Tittanen. 1976. A method for mass rearing of Aphidoletes aphidimyza (rond.). O.I.L.E. Group on Integrated control in galsshouses. Antibes, France. 5.-7.5. Niemczyk, E., Miszczak, M., and C. R. Olszak. 1977. The effectiveness of some predacious insects in control of phytophagous mites and aphids in apple trees: Final Report 1973-76. Research Institute of Pomology, Skierniewice, Poland. 32 pp. Nijveldt, W. 1969. Gall Midges of Economic Importance. Vol. VIII. Gall. Midges-Miscellaneous. Crosby Lockwood and Son. Ltd. London 191 pp. 131 Oatman, E. R. and E. F. Legner. 1961. Biomics of the apple aphid, Aphis pomi. on young non-bearing apple trees. Jour. Econ. Ent. 54(5): 1034-7. Peterson, A. H. 1918. Some studies on the eggs of important apple plant lice. New Jersey Agric. Exp. Sta. Bull. 732. 61.p. Pielou, D. P. and K. Williams. 1961. The effectiveness of residues of insecticides in preventing reinfestation of apple leaves by apple aphid, Aphis pomi. DeG. l. Diazinon and Sevin. Can. Ent. 93: 93-101. Poll, D. 1973. The relationship between internode length and shoot length in apple. Hort. Res. 13: 83-8. Prokopy, R. J. 1973. Response of apple maggot flies to rectangles of different colors and shapes. Envir. Ent. 1(6): 720-726. Reidl, H. and B. A. Croft. 1976. A study of phermone trap catches in relations to codling moth damage. Can. Ent. 106: 525-537. Reidl, H. and B. Ac. Croft. 1978. Management of the codling moth in Michigan. Mich. State. Univ. Agric. Exp. Sta. Res. Report: 337. Setti, M. 1973. (Investigations on the activity of some species of Syrphidae (Diptera) predators of aphids on apple). Bollettino dell Instituto di Entomologiz della Universita delgi Studdi Bologna. 30: 103-132. Specht, H. B. 1970. The apple aphid, Aphis pomi. (Hemoptera: Aphididae), populations on apple under autumal conditions in a controlled environmental cabinet. Can. Ent. 102: 623-7. Specht, H. B. 1972. The apple aphid, Aphis pomi. (Hemoptera: Aphididae), populations on apple under summer conditions in a controlled environmental cabinet. Can. Ent. 104: 105-11. Stary, P. 1966. Aphid parasites of Czechoslovakia: A . review of the CzechoslovakIE'Aphidiidae (Hymenoptera). . Czech. Acad. Sci. Dr. W. Junk. pub. 242 pp. 132 Takeda, S., Hukusima, S. and S. Kawada. 1967. Reproduction of Myzus malisuctus and Aphis pom'. Degeer on apple seedlings supplied with different rates of nitrogen, phosphorous, and potassium. (Homoptera: Aphididae) . Res. Bull. of the Faculty of Agric. Gifu Univ. Konty 26: 127-139. Takeda, S. Hukusima, S. and S. Kondo. 1968. Leaf preferences of Myzus malisuctus and Aphis pomi. Degeer, with relation to vegatitive growth of an apple tree (Homoptera: Aphididae). Res. Bull. of the Faculty of Agric. Gifu Univ. Konty U. 27: 76-84. Takeda, S. and S. Hukusima.’ 1969. An identification of larval instars in Aphis pomi. Degeer and Myzus Malisuctus Matsumura and their growth ration (Homoptera: Aphididae) Res. Bull. of the Faculty of Agric. Gifu Univ. Konty U. 28: 97-109. Uygun, N. 1971. (The effect of amount of food on fecundity and length of life of Aphidoletes aphidimyza (Rond.) (Diptera: Itonididae)). Zeits. fur Ange. Ent. ' 69(3): 234-58. Van Emden,-H. F. 1963. A field technique for comparing the intensity of mortality factors acting on the cabbage aphid Brevicornye brassicae (L.) (Hemiptera: Aphididae) in different areas of the crop. Ent. Expt. Appl. 6: 53-63. Vyvan, M. C. and H. Evans. 1932. The leaf relations of fruit trees. I. A. morphological analysis of the distribution of leaf surface on two nine year old apple trees (Laxton Superb). Jour. Pomo. and Hort. Sci. 10: 228-270. Way, M. J. and M. E. Cammell. 1970. Self regulation in aphid populations, in Dynamics of Populations: Proc. Adv. Study Inst. Dynamics Numbers Popul. pp. 232- 242. Welch, S. M., B. A. Croft, J. F. Brunner, and M. F. Michels. 1977. PETE: An extension phenology modelling system for management of a multi-species pest complex. Envir. Ent. 6( ): Westigard, P. H. and H. F. Madsen. 1965. Studies on the bionomics of summer generations of the apple aphid, Aphis pomi. DeGeer (Homoptera: Aphididae) Can. Ent. 97: 1107-14. 133 Westigard, P. H. and H. F. Madsen. 1964. Oviposition and egg dispersion of the apple aphid with observations on related mortality factors. Jour. Econ. Ent. 57(4): 497-600. Wilbert, H. 1972. (The influence of prey density on mortality of the larvae of Aphidoletes aphidimyza (Rond.) (Cecidomyiidae). Zeits. fur Angew. Entomol. 70(4): 347-52. Wildbolz, T. 1964. On the influence of horticultural practices on apple aphids. Proc. XII Inter. Cong. of Ent. p. 589. Zimmerman, M. H. 1961. Movement of organic substances in trees. Science 133: 73.79. "I711111111211111“