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ABSTRACT

I. ROLE OF ENDOGENOUS OPIOID PEPTIDES IN REGULATION
OF PHASIC AND PULSATILE RELEASE OF GONADOTROPINS

II. RELATION OF HORMONES AND FOOD INTAKE TO DEVELOPMENT AND
HORMONE DEPENDENCY OF CARCINOGEN-INDUCED MAMMARY TUMORS

By

Paul William Sylvester

I. In ovariectomized (OVX) rats given estradiol benzoate (EB),
morphine (MOR) prevented, whereas naloxone (NAL) enhanced the surge of
LH and FSH on the day of treatment (day 1). On the next day (day 2),
whereas NAL-treated rats showed no surge. In EB-progesterone (P)
treated rats, MOR blocked, whereas NAL had no effect on the gonadotropin
surge on day 1. On day 2, MOR-treated rats showed a large gonadotropin
surge, whereas NAL-treated rats showed no surge. Ovx rats were given a
subcutaneous (sc) injection of EB or EB-P 3 days prior to experiment-
ation. The rats were then given injections of NAL, MOR or saline every
hour for 3 hours. Pulsatile LH release was suppressed by EB or EB-P.
Naloxone was able to counteract inhibition of pulsatile LH release by
these steroids. These results suggest a possible role for the
endogenous opioid peptides (EOP) in modulating steroid regulation of
gonadotropin secretion.

I1. Food restriction for 7 days before and either 7 or 30 days
after 7,12-dimethylbenz(a)anthracene (DMBA) administration resulted in a
significant reduction in average tumor number and size. Treatment for 8
days with EB produced a significant increase in mammary tumor incidence
despite underfeeding, whereas underfed rats given haloperidol (HAL, an

anti-dopaminergic drug), EB and GH showed development and growth of



Paul William Sylvester
mammary tumors equal to that of full-fed controls. These results
indicate that reduced food intake Jjust prior to and after DMBA
administration can produce inhibition of mammary tumor development, and
that EB or the combination of EB, HAL and GH can counteract the
inhibition produced by underfeeding.

Sixteen weeks after DMBA administration, animals were OVX to
determine hormone-dependency of mammary tumors. Tamoxifen (TAM, an
anti-estrogen) given during the first week after DMBA injection resulted
in a significant reduction of mammary tumor incidence, but in a 3-fold
increase in the number of autonomous ¢tumors in the total tumor
population. Rats treated with the combination of TAM and CB-154 (a
dopaminergic agonist) also showed suppressed mammary tumor incidence,
but a 5-fold increase in the appearance of hormone-independent tumors.
Rats given either EB, CB-154 or HAL showed the same tumor incidence and
hormone-dependency as controls. These results indicate that suppression
of estrogen, but not PRL at the time of tumor induction not only reduced
the incidence and number of mammary tumors, but the tumors that

developed show less hormone dependency.
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" INTRODUCTION

I. Role of Brain Opiates in Regulating Pituitary Gonadotropic Function

In order for an individual to survive under natural condictions, he
must be able to regulate his internal environment to adapt to the
challenges and stresses from the external environment. This ability to
adapt reflects the activity of complex regulatory mechanisms which
integrate the many body systems to insure adequate homeostasis of the
internal environment. These regulative and intergrative mechanisms are
co-ordinated by both the endocrine and nervous systems. The fusion of
endocrinology and neurobiology has occurred over the last half-century
or so, and has created the hybrid field of neuroendocrinology.

The hypothalamus appears to serve as the center, whereby
information from all parts of the central nervous system (CNS) is
funnelled to regulate the secretion of anterior pituitary (AP) hormones.
Hypophysiotrophic hormones synthesized in specialized neurosecretory
cells of the hypothalamus and other brain regions are released into the
hypophysial portal circulation and travel to the pituitary to affect
hormone secretion.

Target organ hormones feed back to modulate the action of the
hypothalamic-pituitary system by altering the magnitude of the CNS
neural signal and/or the responsiveness of the pituitary to the

releasing hormone. Negative feedback regulation of the neuroendocrine



system is mediated via hormones from target organs feeding back to
inhibit the AP hormone secretion. This is demonstrated by the
observation that removal of a target organ results in increased AP
hormone secretion, such as the post-castration rise of gonadotropins.
In contrast, the enhancement of pituitary hormone secretion by target
organ hormones can occur in the form of positive feedback regulation,
and is 1illustrated by the estrogen-induced preovulatory surge of
gonadotropins.

In the past the modulatory role of the hypothalamic biogenic amines
on the neuroendocrine system has been intensely investigated. With
regard to the hypothalamic-pituitary-gonadal axis, the noradrenergic
system has been found to be primarily stimulatory, whereas central
dopaminergic and serotonergic systems have been reported to be either
inhibitory and stimulatory to luteinizing hormone (LH) release (Krieg
and Sawyer, 1976; Vijayan and McCann, 1978). Since the discovery of the
endogenous opioid peptides (EOP) 1less than a decade ago, many
investigators have been interested in the involvement these substances
in the regulation of the neuroendocrine system. Acute administration of
EOP or morphine (MOR) has been shown to inhibit, whereas naloxone (NAL),
a specific opiate receptor antagonist, stimulates gonadotropin release
(Bruni et al., 1977). These results suggest that the EOP tonically
inhibit basal LH release. Because the opiates and NAL do not act
directly on the pituitary to alter hormone secretion, their action
appears to be mediated through a hypothalamic mechanism (Cicero et al.,
1977).

Therefore, it was of interest to determine the involvement the EOP

have 1in the regulation of gonadotropin secretion during dynamic



physiological states and their interactions with the ovarian steroids.
To examine the involvement of EOP during positive feedback of ovarian
steroids on LH, I administered MOR and NAL during the "critical period"
for gonadotropin release in estrogen on estrogen-progesterone treated
long-term ovariectomized rats. It has been demonstrated that LH in
ovariectomized rats 1is released in a pulsatile manner, and ovarian
steroids act to suppress this release. Since NAL has been shown to
counteract the negative feedback action of gonadal steroids (Cicero et
al., 1979; Van Vugt et al., 1982), it was of interest to examine the
effects of MOR and NAL had on the pulsatile release of LH in
ovariectomized rats treated or not treated with ovarian steroids.

II. Endocrine and Nutritional Relationships to Mammary Tumors

The complex neuroendocrine control systems, such as negative and
positive feedback 1loops, depend on highly efficient cell ¢to cell
co-ordination within the tissues of the organism. The growth and
differentiation of each cell is normally well-controlled to guarantee
homeostasis of the individual. Occasionally however, genetic mutation
occurs and cells can lose their vital communication with other cells,
and populations of malignant cells develop. The endocrine environment
of the rat has been shown to be critically important during the in-
duction of mammary cancer. The majority of mammary carcinomas found in
rats are dependent on hormones for growth. Estrogen and PRL are
essential for mammary tumorigenesis in the rat, and in general, treat-
ments which increase secretion of these hormones stimulate tumor growth,
whereas treatment which inhibit secretion of these hormones inhibit

growth (Meites, 1972).



Recently, there has been a growing awareness of the important
association between nutrition and cancer, both as a means of prevention
and treatment. Previously it has been demonstrated that underfeeding
significantly inhibits the incidence of spontaneous mammary tumors in
mice (Tannenbaum and Silverstone, 1950). Inhibition of mammary
tumorigenesis by caloric restriction does not appear to be due to the
lack of essential dietary components since underfed animals appear to be
in good general health and live longer than full-fed controls. While
the mechanism(s) by which underfeeding induces tumor suppression in rats
is not completely understood. There is evidence to suggest that the
endocrine system is involved. Severe food-restriction in animals
results in pituitary insufficiency similar to that seen in hypo-
physectomized rats and leads to a condition referred to as
"pseudohypophysectomy"” (Mulinos et al., 1940). Recently, underfeeding
was shown to decrease secretion of 5 AP hormones as measured by
radioimmunoassay (RIA) (Campbell et al., 1977).

It has been established that the first week after carcinogen
administration is critical for induction of mammary tumors in Sprague-
Dawley rats (Dao, 1962). Since food-restriction results in decreased AP
and ovarian function, and because PRL and estrogen are essential for
mammary tumorigenesis, hormonal deficiencies during the first week after
carcinogen administration may be responsible for the inhibition of
mammary tumor development seen in underfed rats. It was of interest
therefore to determine whether administration of PRL and estrogen during
the critical first week after carcinogen administration could overcome

the inhibition produced by restricted or chronic underfeeding on mammary



tumorigenesis. In addition, we also wanted to determine if food-
restriction limited to the week before and the first critical week after
carcinogen administration was as effective in inhibiting mammary tumor
development as chronic underfeeding.

While the majority of carcinogen induced mammary tumors in rats are
dependent on PRL and estrogen, a small percentage of these tumors
display hormone-independency on autonomous growth. The mechanisms
involved in establishment of autonomous tumors are not well understood.
Since the hormonal milieu at the time of tumor induction greatly
influences mammary tumor development, I was interested in determining
whether the hormonal-dependency or independency that subsequently
develops in carcinogen induced mammary tumors, was related to their
initial hormonal dependency or independency during the critical first

week after carcinogen administration.



LITERATURE REVIEW

I, The Hypothalamic-Hypophysial Axis

A. Classical Observations of Functional Relationship Between

Hypothalamus and Adenohypophysis

The pituitary gland lies beneath the hypothalamus and is connected
to the hypothalamus by a thin stalk. The functional interrelationship
between the pituitary and hypothalamus has been firmly established over
the last 60 years. The first evidence of pituitary control by the CNS
was discovered by Erdheim (1909), when he noted that gonadal atrophy was
correlated with 1lesions of the hypothalamus. Aschner (1912) 1later
showed that gonadal atrophy could be induced by placing a lesion in the
anterior hypothalamus, while leaving the pituitary intact. Subsequently,
investigators have demonstrated that hypothalamic 1lesions induced
atrophy of the thyroid (Cahane and Cahane, 1938), adrenal cortex
(deGroot and Harris, 1950), and blocked stress induced hypertrophy of
the adrenal glands (Ganong and Hume, 1954). 1In contrast, electrical
stimulation of hypothalamic regions of the brain can induce ovulation
(Harris, 1937), increased thyroid (Harris, 1948a), and adrenal cortex
secretion (deGroot and Harris, 1950). The effects of hypothalamic
stimulation 1is specific since direct electrical stimulation of the

pituitary had no effect (Markee et al., 1946).



Popa and Fielding (1930) demonstrated that the hypothalamus and
pituitary were connected by a group of coiled capillaries termed the
hypothalamic portal vessels. They hypothesized that blood flowed in the
direction of the hypothalamus from the pituitary. Wislocki and King
(1936) later showed that blood actually flowed from the hypothalamus to
the pituitary. This was later confirmed by Green and Harris (1947).
These studies led Harris (1948) to propose that chemical regulatory
substances from the hypothalamus are transported to the pituitary via
the hypothalamic portal vessels.

Classical experiments by Harris further demonstrated the initimate
association between the hypothalamic influence and pituitary function.
Sectioning of the pituitary stalk generally produced only transient
effects on pituitary function due to regeneration of the portal vessels
(Harris, 1949). Removal of the pituitary gland from its original
position in the sella turcica and transplanting it to the anterior
chamber of the eye or underneath the kidney capsule resulted in atrophy
of the gonads, adrenals and thyroid glands, but retention of corpora
lutea function (Harris, 1948b; Harris and Jacobsohn, 1952; Everett,
1954). Pituitary dysfunction as a result of transplantating the same
pituitary back to its original position underneath the median eminence,
where regeneration of the portal vessels occurs (Nikitovitch-Winer and
Everett, 1958). These studies demonstrated the importance of
hypothalamic control over pituitary function.

B. Anatomy of the Hypothalamus

The hypothalamus is a complex network of neurons and neurosecretory
cells lying in the most ventral portion of the diencephalon (Jenkens,

1972). The hypothalamus is bounded rostrally by the 1lamina
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terminalis; caudally by the mammillary bodies; dorsally by the
hypothalamic sulcus; ventrally by the tuber-cinereum and median
eminence, and laterally in part by the internal capsule, basis pedunculi
and subthalamus (Nauta and Haymaker, 1969).

The hypothalamus can be divided functionally and anatomically into
medial and lateral regions. The medial region contains the majority of
neuroendocrine activity, while the lateral region is part of an intri-
cate neuronal system that connects the limbic forebrain with the mesen-
cephalon (Martin et al., 1977). Nuclei are arranged and distributed in
3 major zones within the hypothalamus.

The periventricular zone contains the suprachiasmatic, para-
ventricular and arcuate nuclei. The median zone contains the medial
preoptic, anterior hypothalamic, ventromedial, dorsomedial,
premammillary and posterior hypothalamic nuclei. The 1lateral zone
contains the 1lateral preoptic, supraoptic, lateral hypothalamic and
mammillary nuclei. All hypothalamic nuclei, except the arcuate and the
median eminence are located bilaterally on either side of the third
ventricle (Martin et al., 1977).

Afferent fiber connections to the hypothalamus arise from the
brain-stem reticular formation and limbic forebrain structures. These
inputs include the mammillary peduncle, dorsal longitudinal fasciculus
(DLF) and medial forebrain bundles (MFB) (Nauta and Haymaker, 1969).
The mammillary peduncle and DLF originate in the central gray substance
of the mesencephalon and enter the hypothalamus caudally. The
mammillary peduncle enters the mammillary bodies where it then turns

laterally and terminates in the lateral hypothalamic and preoptic
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nuclei. The DLF terminates primarily in the posterior and dorsal areas
of the hypothalamus.

The MFB 1is the major afferent and efferent conduction system
between the hypothalamus and other brain regions. The ascending
component of the MFB arises from the paraaqueductal gray matter of the
brainstem and terminates in the olfactory-septal regions of the telen-
cephalon. The descending components of the MFB have the opposite origin
and termination sites. Throughout its course, the MFB receives input
from laterally adjacent sources such as limbic and striatial structures.
It traverses the hypothalamus through the dorsal aspects of the lateral
preoptico-hypothalamic region (Nauta and Haymaker, 1969).

Afferents from the limbic system to the hypothalamus include the
fornix, stria terminalis, ventral amygdalofugal pathway, and the
descending branch of the MFB. The fornix takes origin from the
hippocampus, and traverses the septal region where it splits into 2
columns. The columns then turn caudally and terminate in the mammillary
bodies. The striae terminalis arises from the corticomedial amygdala
and terminates in the septum, preoptic area, and the medial hypo-
thalamus. The ventral amygdalofugal pathway originates in the baso-
lateral amygdala and enters the 1lateral hypothalamic regions. The
precise termination of this pathway with the hypothalamus is unknown
(Martin et al., 1977). Evidence for the existence of the
retinohypothalamic tract has also been reported (Riss et al., 1963).

C. Neurosecreton

In general, all neurons have the ability to synthesize and release

specific substances. Impulses are transmitted from 1 cell to another at
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synapses and transmission is primarily chemically mediated. The pre-
synaptic axon liberates a chemical mediator which alters the per-
meability of the post-synaptic neuronal membrane. The chemical
mediators in the process are called neurotransmitters. Neurosecretory
cells are a population of specialized neurons, which along with the
ability to conduct impulses, release specific hormonal substances
(neurohormones) directly into the bloodstream to affect distant target
organs. Neurosecretory cells in the hypothalamus contain proteinaceous
material in axons and cell bodies and Scharrer and Scharrer (1940) first
suggested they have endocrine functions.

Cells specializing in the production of neurohormones often occur
within specific locations in the nervous systems of invertebrates and
vertebrates. They display cytological signs of much more extensive
glandular activity than those of ordinary neurons as evidenced by their
prominent content of membrane-bound granules of varying electron
opacity.

Neurosecretory cells showed the basic morphological features that
were characteristic of the typical neuron with axons, dendrite
neurofibrillae, developed endoplasmic reticulum, Golgi apparati,
axoplasmic transport. The synthesis and transport of neurosecretory
products were also similar to ordinary neuronal mechanisms, with
synthesis of raw protein material 1in the endoplasmic reticulum,
packaging of products into neurosecretory granules in the Golgi
apparatus and movement of the neurosecretory material by axoplasmic flow
from its area of production to the site of discharge (Bern and Knowles,

1966).
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Based on the proposed concept of neurosecretion and the realization
of the crucial role of the portal vascular system in controlling
pitiutary function, Harris (1948b) proposed that the hypothalamus
secretes specific substances into the portal capillaries of the median
eminence. These substances are transported to the AP by the portal
vessels to regulate the AP hormone secretion. This "portal vessel-
chemotransmitter hypothesis™ has continued to serve as a basic model for
the study of neuroendocrinology. During the past few decades, the
search to identify the hypophysiotropic hormones of the hypothalamus has
been intensely pursued.

D. Hypophysiotrophic Hormones of the Hypothalamus

This area of research has had such a large impact on the
scientific community in general that in 1977, Dr. Andrew V. Schally and
Dr. Roger Guillemin shared the Nobel Prize in Physiology and Medicine
for their pioneering work on the identificatiqn and structural analyses
of a number of these hypothalamic hypophysiotrophic factors.

Saffran and Schally (1955) and Guillemin and Rosenberg (1955) were
the first to demonstrate that the hypothalamus contained a substance
that regulates AP activity. By using an in vitro system involving the
incubation of hypothalamic and pituitary tissue, they demonstrated that
after the addition of norepinephrine (NE), ACTH was released from the
AP, They named this hypothalamic substance corticotropin releasing
factor (CRF). CRF has eluded definitive structural analysis until just
last year when Vale and his co-workers (1981), identified a U4l-residue
hypothalamic peptide that appears to be CRF,

Using a similar hypothalamic-pituitary coincubation system, others

have demonstrated both releasing and inhibitory activity of the
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hypothalamus on AP function. Shibusawa et al. (1956) reported
hypothalamic releasing activity for TSH. Thyrotropin releasing hormone
(TRH) was purified and synthesized independently 14 years later by the
laboratories of Guillemin (Burgus et al., 1969) and Schally (Boller et
al., 1969), and shown to be a simple cyclic tripeptide containing
residues of glutamic acid, histidine and prolamine.

Releasing factors have also been found in the hypothalamus for LH
(McCann et al., 1960) and FSH (Igarashi and McCann, 1964; Mittler and
Meites, 1964). It was subsequently found that the same substance
stimulates the release of both FSH and LH and is now called
gonadotropin-releasing hormone (GnRH) and is identified and synthesized
as a linear decapeptide (Matsuo et al., 1971a; 1971b).

Hypothalamic releasing activity for GH was first demonstrated by
Deuben and Meites (1964). Later, it was demonstrated that GRF activity
was localized in the ventromedial hypothalamic nucleus (Krulich et al.,
1972). Purification and synthesis of GRF has not yet been demonstrated.
Hypothalamic inhibitory activity for GH has also been demonstrated
(Krulich et al., 1968). Growth hormone inhibitory hormone (GIF or
somatostatin) was subsequently isolated, and structure was characterized
as a tetradecapeptide containing a single disulfide bridge (Brazeau et
al., 1973).

Meites et al. (1960) were the first to demonstrate a stimulatory
influence of the hypothalamus on PRL release from the AP, but few
attempts have been made to purify and isolate PRF thus far. An
inhibitory influence of the hypothalamus on release of PRL has been

demonstrated (Pasteel, 1961; Talwalker et al., 1961, 1963). The
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structural sequence of a PRL-inhibiting factor (PIF) has eluded
detection thus far.

With the advent of specific RIAs for LRH, TRH, and somatostatin,
and the development of a micropunch technique for isolation of discrete
brain areas, the regional distribution of these three hypothalamic
peptides has been described. Within the hypothalamus, the arcuate
nucleus and median eminence contained the bulk of TRH (Brownstein et
al., 1974), and 5-HT (Brownstein et al., 1975). These 2 hypothalamic
areas corresponded to the hypophysiotropic area described earlier by
Hal‘asz et al. (1962). GnRH is found in the preoptic-suprachiasmatic
area and neurons in the preoptic area are believed to be the only source
of median eminence GnRH in the rat (Baker et al., 1975). Both TRH and
somatostatin have been 1localized in extra-hypothalamic brain regions
(Brownstein et al., 1974; Brownstein et al., 1975). Somatostatin has
also been isolated outside the CNS in pancreatic islet cells (Patel and
Reichlin, 1978) and gastric and intestinal mucosa (Arimura et al.,1975).

Besides specific influences on their respective AP hormones, GnRH,
TRH, and somatostatin were found i',o influence the release of other AP
hormones. GnRH was reported to increase GH release in some patients
with active acromegaly (Faglia et al., 1973). TRH stimulates both PRL
(Jacobs et al., 1971) and GH (Kato et al.,1975) release. Somatostatin
was found to inhibit TRH induced TSH release (Vale et al., 1974) and
inhibits the secretion of both glucagon and insulin (Koerher et

ﬁo '197u)i
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II. Localization of Biogenic Amines and Opiates in the

Brain and Hypothalamus

A. Norepinephrine (NE)

Norepinephrine terminals are derived from fibers originating in the
pons and reticular tegmentum of the mesencephalon. The ascending NE
fibers in the midbrain reticular area are separated into dorsal and
ventral bundles. The dorsal NE bundle arises from cell bodies in the
locus ceruleus and innervates the cortical brain regions. The ventral
NE bundle innervates the hypothalamus and preoptic area via the medial
forebrain bundle (Fuxe and Hokfelt, 1968).

Lesions of the MFB resulted in a decrease in hypothalamic NE
content (Kobayashi et al., 1974). In addition, hypothalamic
deafferentation resulted in a 1loss of both dopamine- -hydroxylase
activity and decreased hypothalamic NE levels (Brownstein et al., 1974).
This suggests that the cell bodies which produce NE 1lie outside the
hypothalamus and that only their axons enter the hypothalamus,

Within the hypothalamus, NE is for the most part, uniformly
distributed in all nuclei. The highest concentrations of NE were found
in the retrochiasmatic area, dorsomedial nucleus, periventricular
nucleus, and median eminence (Palkovits et al., 1974).

B. Dopamine (DA)

The majority of DA neurons in the hypothalamus originates from an
intrahypothalamic system, known as the tuberoinfundibular DA pathway.
In this system cell bodies located in the arcuate and periventricular
nuclei send their axons to terminals in the external layer of the median

eminence (Fuxe and H8kfelt, 1968), and possibly other areas (Renaud,
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1976). Within the hypothalamus, DA is highly concentrated in the median
eminence and arcuate nucleus (Palkovits et al., 1974).

Weiner et al. (1972) demonstrated that there was no significant
decrease in hypothalamic DA content following total hypothalamic
deafferententation. This suggests that extra-hypothalamic dopaminergic
cell bodies provide little input to the hypothalamus. Brownstein et al.
(1976) however, showed that 1lesions in the substantia nigra reduced
medial hypothalamic DA levels. This, in contrast to the work of Weiner
et al. (1972), indicates that the nigrastriatal dopamine pathway may
provide significant input to the hypothalamus.

c. Serotonin (5-HT)

Serotoninergic neurons originate in the raphé complex in the
mesencephalon. The cell bodies send their axons midline in the MFB in 2
main ascending bundles, called the medial and lateral ascending 5-HT
pathways. These pathways terminate in the forebrain regions, including
the hypothalamus (Palkovits et al., 1977). It is believed that both the
dorsal and median raphe nuclei innervate the hypothalamus. The median
raphe nucleus appear to be the primary source of 5-HT fibers innervating
the suprachiasmatic nucleus, anterior hypothalamic area, and medial
preoptic area. The arcuate nucleus appears to receive equal innervation
from both the dorsal and median raphe nuclei (Van DeKar and Lorens,
1979). Decreased hypothalamic 5-HT levels were observed following
lesioning of the raphé complex, lesioning the MFB, or total hypothalamic
deafferentation (Weiner et al., 1972; Saavedra et al., 1974).

D. Opiates

Using receptor binding assays and bioassays with mouse vas deferens

and guinea pig ileum, evidence suggesting the existence of opiate-like
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substances in the brain were discovered by Terenius and Wahlstrd8m (1974;
1975 and Hughes (1975). Hughes and co-workers (1975) later isolated and
characterized two opiate-like pentapeptides, called methionine-
enkephalen (MET-ENK) and leucine-enkephalin (LEU-ENK). Li and Chung
(1976) subsequently isolated a 3l-amino acid peptide with opiate
activity from the pituitary, called beta-endorphin (B- END). In the
next few years, a number of other endogenous opiates have been isolated
and characterized, including alpha-endorphin, gamma-endorphin, and
dynorphin. B -END contains the amino acid sequence of MET-ENK in its
N-terminus and it was initially thought that the enkephalin was a
breakdown product of B -END. However, now this appears unlikely since
both synthesis and release of enkephalins and endorphins occurs
independently of 1 another and in different areas of the brain and
pituitary.

It appears that ¥ -lipotropin, VW-END, and ACTH share a common
precursor molecule called pro-opiocortin. Pro-opiocortin has been
identified as the precursor for ACTH in the AP and B -END in the
intermediate pituitary and -lipotropin is an intermediate step between
the precursor and B-END (Fratta et al., 1979). MET-ENK appears to be
cleaved from a 1larger hexapeptide molecule (Huang et al., 1979).
Dynorphin contains within its amino acid sequence, LEU-ENK. Whether
LEU-ENK is a breakdown product of this larger molecule is unknown, but
because of the different 1location of these opiates in the brain and
pituitary, this seems unlikely (Goldstein et al., 1979).

The regional distribution in brain of the opiate receptors and the

endogenous enkephalins closely parallel each other, with the highest
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concentrations of both MET-ENK and LEU-ENK (Smith et al., 1976; Adler,
1980). It appears that the enkephalin neurons do not send axons in
large fiber tracts to distant brain areas, but rather function as local
short-fiber interneurons. The enkephalins are in highest concentration
in the striatum, anterior hypothalamus, mesencephalic central gray,
amygdala, accumbens nucleus and medial hypothalamus. Moderate levels
are found in the thalamus, cortex, and brainstem areas and low
concentrations are found in the central white matter, cerebellum and
spinal cord. Concentrations of enkephalins in the pituitary are
minimal. MET-ENK in any given area of the brain is found in two to 8
times higher concentration than that of LEU-ENK (Smith et al., 1976;
Adler, 1980).

The endorphins are primarily concentrated in the pituitary, and
specifically in the intermediate lobe. The posterior pituitary has not
been shown to contain endorphin (Bloom et al., 1977). Concentrations of
the endorphins in the brain are small compared to those found in the
pitiutary. In the brain, the highest concentration of B-END is found in
the medial hypothalamus. Lesser amounts are found in the peri-
ventricular thalamus, substantia nigra, mesencephalic central gray,
medial amygdaloid nucleus, locus ceruleus and zona incerta. ¥~ END
containing cells in the arcuate nucleus of the hypothalamus send axons
in the form of a major fiber bundle to the locus ceruleus.

III Control of Gonadotropin Secretion

A. Profile of Serum Gonadotropin and Steroid

Hormones During the Estrous Cycle

Estrous cyclicity in the female rat is dependent in part on

environmental patterns of light and darkness. Everett (1961) found that
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rats on a daily regime of 14 hours light /10 hours dark, with lights on
at 0500 hours and off at 1900 hrs, showed regular Ud-day vaginal
cyclicity. However, a small percentage of rats display 5-day cyclicity
with an additional day of diestrus. Under these conditions rats ovulate
at approximately 0100-0300 hours on the day of vaginal estrus. The
method of assessing changes in vaginal cytology consists of swabbing the
vaginal lumen and examining the cells under a microscope (Stockard and
Papanicolaou, 1917).

Arbitrarily, the first stage of the estrous cycle can be considered
as estrus. Estrus lasts 36 hours and is characterized by the presence
of cornified epithelial cells in the vaginal lumen. However, the time
of heat and copulation (behavioral estrus) is not the same as vaginal
estrus. Behavioral estrus begins and is most intense during 1late
vaginal proestrus and ends during the period of vaginal estrus. The
next stage of the estrous cycle is called metestrus and vaginal smears
show progressively 1less and less cornified cells and the increased
presence of leucocytes. Metestrus lasts approximately 10-14 hours and
mating is usually not permitted. Diestrus is the third stage of the
estrous cycle and 1lasts about 36 hours. Vaginal smears are
characterized almost entirely by leukocytes. This is followed by the
last stage called proestrus. Proestrous vaginal smears contain
nucleated epithelial cells and this stage lasts approximately 12 hours.
The patterns of hormone secretion by the ovaries, pituitary, and hypo-
thalamus during the course of the estrous cycle will now be discussed.

On the day of estrus, 12 hours after ovulation, estrogen, P, LH,
and PRL levels in the blood are low (Butcher et al., 1974). At this

time, serum FSH levels are declining but have not reached basal levels
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yet. During the early afternoon of metestrus, blood estrogen,
progesterone (P), PRL, LH, and FSH are at basal levels. At the this
time, new follicles, under the stimulation of basal gonadotropin levels,
begin to grow as does the theca interna of these follicles. The theca
interna is believed to be the major source of ovarian estrogen
production (Turner and Bagnara, 1976). Plasma P levels at this time are
slightly elevated as a result of corpora lutea secretion. On the
morning of diestrus, PRL, LH, and FSH levels in the blood are still low,
but follicles continue to grow and estrogen production is increased.
The pre-dominate estrogen secreted by the ovary is 17 -estradiol. It is
believed that follicular production of estrogen at this time prevents
follicle atresia (Harman et al., 1975) and sensitizes the ovary to the
action of the gonadotropins by increasing LH receptors in the theca
interna and FSH receptors in the granulosa cells (Richards and Midgley,
1976; Louvet and Vastukaities, 1976). At this time, P levels are low,
as a result of corpora 1lutea 1lysis. If P levels, however, remain
elevated, there is slower follicle development and estrogen production
in the ovary (Schwartz, 1969). Elevated P levels are believed to be the
principal reason why some rats have 5-day versus M4-day estrous cycles
(Buffler and Rosen, 1974).

Estrogen levels in the blood continue to rise during the afternoon
of diestrus. At this time, LH, FSH, PRL, and P levels are 1low.
Estrogen 1levels peak on the morning of proestrus. This surge of
estrogen is essential to bring about the subsequent surges of PRL, LH,
and FSH on the afternoon of proestrus. If ovariectomy (Schwartz, 1964),
injections of P (Brown-Grant, 1967), anti-estrogen drugs (Callantine et

al., 1966) or antisera to estrogen (Neill et al., 1971) are administered
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to rats before the surge of estrogen occurs, no surge of LH, FSH, or PRL

results. However, if similar treatments are administered to rats after

the surge of estrogen occurs, there is no effect on the surge of
gonadotropins. The surge of estrogen also increases the sensitivity of
the pitiutary to the action of GnRH (Turgeon and Barraclough, 1977).
Estrogen levels decline during the early afternoon of proestrus.

Between 1400 and 1800 hours of proestrus, there occurs a sharp
surge of LH that lasts approximately 30 min, and the exact timing of
this surge is variable between individual rats. This surge of LH is
induced by a surge of GnRH in the hypophysial portal blood (Sarkar et
al., 1976). FSH levels in the blood also surge at the same time as LH,
but in constrast to LH, FSH continues to rise until it peaks during the
morning of estrus. There is a surge of PRL at the same time as the
gonadotropins, but the physiological significance is not entirely clear.
Prolactin is not needed to induce ovulation (Barraclough et al., 1971)
and if the PRL surge is blocked, there is little effect on the estrous
cycle (Neill and Smith, 1974). The surge of PRL acts to induce
regression of corpora lutea from previous cycles (Wuttke and Meites,
1971) and increases preovulatory P secretion (Gelato et al., 1976).

By 2100 hours of proestrus serum levels of LH, PRL, and estrogen
have reached basal levels, as does GnRH in the portal blood. Only FSH
and P levels at this time are elevated. On the morning of estrus
between 0100 and 0300 hours, ovulation occurs. Serum LH, PRL, estrogen
and P are low, but FSH is still high.

B. Negative Feedback

Ovariectomy in female rats results in the removal of the target

organs for gonadotropins and results 1in increased release of
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gonadotropins (Ramirez and McCann, 1963; Gay and Midgley, 1969).

Similar results occur if female rats are exposed to 1long-term
administration of an anti-estrogen (D8cke, 1969). Administration of
gonadal steroids to ovariectomized rats causes a decrease in
gonadotropin levels in the blood (Ramirez and McCann, 1963; Ramirez et
al., 1964). Ovariectomy in rats also results in enlarged gonadotrophs
in the pituitary. However, if the pituitary is removed and transplanted
to other sites in the body not adjacent to the hypothalamus, these
enlarged cells do not develop (Hohlweg and Junkmann, 1932). These
results indicated that regulation of gonadotropins is under tonic
inhibition by the ovaries in female rats and is dependent upon central
input, from the hypothalamus. This hypothalamo-pituitary-gonadal
feedback 1loop, can be both inhibitory and stimulatory in nature.
Positive feedback will be discussed in the following section.

Secretion of gonadotropins, following castration differs in male
and female rats. In the male, a significant increase in LH levels can
be detected within 8 hours after orchidectomy (Gay and Midgley, 1969).
In the female rat, however, a significant rise in LH levels in not seen
until 2-3 days following ovariectomy. Estrogen is the most potent
steroid for the inhibition of LH, and decreases in serum LH levels can
be detected within 2 hours after estrogen administration (Blake, 1977a).
Progesterone (except in very large doses) has no effect in suppressing
elevated gonadotropin levels after castration (McCann, 1962; Chen et
al., 1977).

Estrogen demonstrates a biphasic effect on LH secretion at the
level of the pitutiary. Pituitary responsivness to GnRH is suppressed

initially after estrogen administration (Libertun et al., 1974), then
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after a period of 8-12 hours there is a facilitated responsiveness
(Henderson et al., 1977). Estrogen also has a negative feedback action
on gonadotropin release at the 1level of the hypothalamus. This
inhibitory action is restricted to the MBH, since surgical isolation of
the MBH does not abolish the negative feedback action of estrogen
(Blake, 1977b). Progesterone has also been shown to exert negative
feedback control on LH release at both the pituitary and hypothalamic
level. In the hypothalamus, progesterone acts directly to inhibit
release of GnRH into the portal blood (Sarkar and Fink, 1979), and
synergizes with estrogen to acutely suppress pituitary responsiveness to
GnRH (Chen et al., 1977).

C. Positive Feedback

Unlike males, female rats display a spontaneous preovulatory surge
of gonadotropins on the afternoon of proestrus, which is dependent on a
preceeding surge of estrogen. This positive feedback effect on LH
secretion was first demonstrated by Hohlweg (1944) when he induced
ovulation in prepubertal rats by administration of gonadal steroids.
Estrogen, when injected during diestrus also can advance the time of
ovulation (Everett, 1948). No surge of LH occurs if the preceeding
surge of estrogen is blocked by surgical or pharmacological methods
(Schwartz, 1964; Brown-Grant, 1967; Callantine et al., 1966; Neill et
al., 1971).

Various models have been developed to simulate the changes in
plasma steroid concentrations that occur before and during the
spontaneous LH surge, in order to investigate the mechanism of positive
feedback. The first model involves giving multiple injections of EB or

implanting EB containing silastic capsules s.c. in 1long-term
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ovariectomized rats (Caligaris et al., 1971). In this experimental
model, elevated 1levels of estrogen in the blood induce a daily
proestrous-like surge of LH between 1700 and 1800 hours. This diurnal
rhythm of LH release will persist indefinitely as long as elevated blood
estrogen levels are maintained (Legan et al., 1975). A second model
used to study the stimulatory effects of ovarian steroids on LH
secretion, consists of injecting P 72 hours after EB administration in
long-term ovariectomized rats (Caligaris et al., 1968). Unlike the LH
surge which results every afternoon in ovariectomized rats treated only
with EB, EB-P primed animals display an LH surge about 5 hrs after
injection of P, and no surge occurs the next day.

While the EB or EB-P primed ovariectomized rat may be
physiologically less relevant than the normal cycling rat, these
experimental models provide a convenient method for studying positive
feedback by providing a large, predictable, synchronized surge of LH,
and eliminates the need of obtaining daily vaginal smears in rats. The
LH surge in the normal cycling rat on the afternoon of proestrus
displays great variation between individual animals in the timing and
magnitude of the surge, but is generally between 200 and 400 ng/ml. In
contrast, the LH surge is 3-4 times larger in the EB-primed and up to 10
times larger in the EB-primed ovariectomized rat models when compared to
the intact rat on proestrus (Fink, 1979).

Sarkar et al. (1976) demonstrated that GnRH 1levels in the
hypophysial portal blood remain low throughout the estrous cycle until a
surge occurs on the afternoon of proestrus at the same time as the
spontaneous surge of LH. This was the first demonstration that the

afternoon surge of LH on proestrus results from an increased release of
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GnRH from the brain. Because of the large surge of LH induced in EB and
EB-P primed ovariectomized rats, it was suspected that these steroids
stimulate greater release of GnRH into the portal blood than during the
estrous cycle. It was discovered, however, that portal blood at the time
of the LH surge of EB-primed ovariectomized rats, showed only a small
increase of GnRH and this increase was slight compared to the GnRH surge
found in the proestrus rat (Sarkar and Fink, 1979). In addition, GnRH
levels in the portal blood of EB-P primed ovariectomized rats during the
surge of LH was not significantly different from that of oil treated
controls which did not show a surge of LH (Sarkar and Fink, 1979). The
paradox as to why little or no increase of GnRH is seen in the portal
blood of steroid- primed ovariectomized rats, even though these animals
displayed a massive surge of LH, was shown to result from the effects
these steroids have on pituitary responsiveness to GnRH.

It was shown that on the afternoon of proestrus between 1700 and
1800 hours, pituitary responsiveness in the rat increased 50 times over
that seen at the same time on diestrus and this was dependent on
estrogen (Aiyer et al., 1974). These investigators also found that
pituitary responsiveness to GnRH at 1700 hours is 2-3 times greater in
EB-primed and 7 times greater (4 hours after P injection) in EB-P primed
ovariectomized rats as compared to the proestrus rat at 1700 hours.

The above studies demonstrated that ovarian steroids increased
pituitary sensitivity to GnRH released into the portal blood. Other
studies indicate that the positive feedback action of estrogen also is
‘mediated by centrally stimulated GnRH release from the brain. Deaffer-
entiation of the preoptic area from the MBH blocked the proestrus surge

of LH (Blake et al., 1972) and ovulation (Halasz and Gorski, 1967).
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Similar deafferentiation or anterior hypothalamic lesions also blocked
the steroid-induced LH surge in ovariectomized rats (Neill, 1972; Blake,
1977b). Most evidence now suggests that the preoptic area is the same
site at which estrogen enhances GnRH release. It has also been shown
that GnRH release, as a result of electrical stimulation of the preoptic
area, 1is enhanced in the presence of estrogen, but estrogen has no
effect on GnRH release when electrical stimulation is applied to the MBH
(Sherwood et al., 1976). Lesion studies have also shown that the supra-
chiasmatic nucleus is important for maintenance of regular estrous
cycles (Clemens et al., 1976). Lesions of the suprachiasmatic nucleus
result in persistent failure of ovulation and produces abnormalities in
estrogen cyclicity associated with the light-dark patterns.

The surge of GnRH and subsequently of LH as a result of estrogen
stimulation supports the idea of the daily neuronal signal for LH
release (Everett and Sawyer, 1949). Estrogen is believed to "turn on"
this daily surge signal as evidenced by the fact that estrogen increases
the firing rate of hypothalamic and preoptic area neurons (Fink and
Geffen, 1978). Progesterone is believed to "shut off" this
estrogen-induced daily surge signal, because P reduced the firing rate
of hypothalamic and preoptic neurons (Fink and Geffen, 1978). This
suggestion is supported by the finding that in EB-primed ovariectomized
rats, a daily surge of LH continues until estrogen levels in the blood
are reduced (Legan et al. 1975). Estradiol-benzoate primed ovari-
ectomized rats show an enhanced LH surge on the day of P injection, but
subsequent surges of LH do not occur (Freeman et al., 1976; Legan and
Karsch, 1975). Similarly, in the normal cycling rat, a surge of P

follows the afternoon surge of LH on proestrus (Barraclough et al.,
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1971). It is believed that this rise in blood P is responsible for pre-

venting a subsequent surge of LH the following day (Freeman et al.,
1976; Blake, 1977a).

D. Concept of the "Critical Period" of Gonadotropin Release

The "critical period" of LH release defines a time period before
and during which the administration of a variety of neuropharmacological
drugs (barbiturates, atropine, MOR, chlorpromazine, etc.) inhibits the
preovulatory release of gonadotropins (Everett, 1964). The existence of
a "critical period" was first demonstrated by Everett et al. (1949).
Rats maintained under a 14 hour 1light /10 hour dark schedule, with
lights on at 0500 hours and off at 1900 hours, show the "ecritical
period" between 1400 and 1600 hours on the day of proestrus. Blake
(1974) has since demonstrated that the length of the "critical period"
is actually much longer and lasts approximately 7 hours (1400-2200 hours
on proestrus). Blake suggested that administration of central acting
drugs during the "critical period" interferes with the expression of the
estrogen induced daily surge signal which is responsible for the init-
iation of the proestrous surge of LH, thus blocking the LH surge and
ovulation.

E. Biogenic Amines and Opiate Involvement in

Gonadotropin Release

A role of central neurotransmitters in the regulation of AP hormone
secretion was first postulated by Tabrenhaus and Sosken (1941). These
investigators demonstrated that application of acetylcholine to the AP
gland resulted in pseudopregnancy. Sawyer et al. (1947) 1later
demonstrated that administration of «-adrenergic blockers is able to

prevent the reflex release of LH in rabbits, and injection of NE induces
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ovulation (Sawyer, 1952). Similar results were also shown in rats
(Markee et al., 1952; Everett, 1961). The localization and mapping of
aminergic, peptidergic and opioid neuronal systems of the brain further
illustrates the close association of these neurotransmitters with GnRH
containing neurons in the preoptic-suprachiasmatic area and their
terminals in the median eminence (Elde and Hokfelt, 1978).

Numerous reports in the literature demonstrate that the central
catecholamines are an important activator of LH secretion. Brain
monoamine depletors, such as reserpine, block LH release induced by
pregnant mare serum (PMS) in immature rats (Barraclough and Sawyer,
1957). This inhibitory effect of reserpine on ovulation was prevented
when animals were pretreated with the monoamine oxidase (MAO) inhibitor,
pargyline, presumably by blocking the metabolism of the catecholamines
in the synapse. Likewise, «-methyl-p-tyrosine (a-mpt) which depletes
central catecholamine stores by competitively inhibiting the activity of
the rate 1limiting enzyme in catecholamine synthesis, tyrosine
hydroxylase, blocked PMS-induced ovulation in immature rats (Lippman et
al.,1967) and the proestrus or estrogen-induced LH surge in adult rats
(Kalra et al., 1972; Kalra and McCann, 1974). Administration of
catecholaminergic neurotoxic drugs, such as 6-hydroxydopamine (6-OH-DA)
into the 1lateral ventricle of rats, was also shown to block the
proestrous or estrogen-induced surge of LH (Martinovic and McCann, 1977;
Simpkins et al., 1979).

Central noradrenergic neurons have been shown facilitate the
release of LH from the pituitary. Intraventricular injections of NE
stimulate LH release (Krieg and Sawyer, 1976; Vijayan and McCann, 1978).

Infusion of hypothalamic fragments in vitro with NE causes the release
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of GnRH into the surrounding medium (Negro-Vilar and Ojeda, 1978).
Evidence for the involvement of the NE system in the induction of the
proestrous LH surge is also convincing. Pharmacological studies using
drugs which lower NE 1levels in the hypothalamus, such as «-mpt or
dopamine- -hydroxylase inhibitors, such as diethyldithiocarbamate (DDC)
and 1-phelyl-d4-(2-thiazolyl)-thiourea (U-14,624), when administered to
rats, block the proestrus surge of LH (Kalra and McCann, 1974). The
effect of these drugs was reversed by treatment with
dihydroxyphenylserine (DOPS), which selectively increases NE. Treatment
with L-dopa in these animals, which mainly increases dopamine (DA), was
without effect.

Administration of 6-OH-DA in low doses, selectively depletes only
NE and leaves hypothalamic DA stores unchanged (Breese and Traylor,
1971). A low dose of 6-OH-DA was shown to block the LH surge during
proestrus (Simpkins et al., 1979). The PMS-induced surge of LH was
inhibited by phenybenzamine administration, but was not affected by
phentolamine, yohimbine, DL- or D-propranolol or clonidine (Sarkar and
Fink, 1981). Phenoxybenzamine also inhibited the PMS-induced surge of
GnRH in the portal blood (Sarkar and Fink, 1981). These results suggest
that the GnRH, and subsequently the LH surge, depends upon the
functional integrity of central noradrenergic neurons, which facilitate
the GnRH release through «-adrenergic receptors. This is supported by
the finding that NE turnover and NE concentrations in the median
eminence, increase prior to the LH surge (Lokstrom, 1977). Barraclough
and co-workers (Raune et al., 1981) have also demonstrated that at the
time of the LH surge, median eminence GnRH content declines and median

eminence NE turnover rates greatly increase. The decline of median
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eminence GnRH 1levels in this study was interpeted to represent the
relase of GnRH into the portal circulation. Conversely, the proestrous
surge of LH is abolished by electrical 1lesioning of the central NE
pathway (Martinovic and McCann, 1977).

In contrast of the central NE system, the role of the dopaminergic
system in the regulation of LH secretion 1is controversial.
Intraventricular injections of DA in ovariectomized EB-P-primed rats
stimulated LH secretion (Kamberi et al., 1969; Vijayan and McCann,
1978), and DA also was shown to stimulate GnRH release from hypothalamic
fragments in vitro (Rotszstein et al., 1976), which is blocked by
pimozide, a specific DA receptor blocker.

There is considerable evidence however, that the central DA system
also inhibits GnRH secretion. Fuxe and co-workers (1967) demonstrated
that DA turnover in the median eminence is negatively correlated with
gonadotropin release. Likewise, infusion of DA, DA agonists, or L-dopa,
reduced LH levels in intact or ovariectomized rats (Drouva and Gallo,
1977; Mueller et al., 1976). It also has been shown that intraventri-
cular infusion of DA does not stimulate LH release, but actually blocks
LH secretion induced by NE (S;wyer et al., 1974). In contrast to the
finding of Rotszstein et al. (1976), others have demonstrated that DA
inhibits GnRH release from rat hypothalamus incubations (Mizachi et al.,
1973). Implantation of pituitaries under the kidney capsule, leads to a
lasting elevation of serum PRL levels which in turn stimulates activity
of the tuberoinfundibular DA system (Gudelsky et al., 1976), and
prevents the post-castration rise of LH (Grandison et al., 1977).
Similar pituitary transplants decrease LH levels in castrated rats (Beck

et al., 1977; Vijayan and McCann, 1978). Blockade of DA receptors
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either had no effect on LH levels or caused further elevation of blood
LH (Gnodde and Schuiling, 1976; Drouva and Gallo, 1976).

Dopamine receptor agonists have also been shown to inhibit the PMS-
induced surge of LH in premature rats, while chlorpromazine, a DA
receptor blocker has the same effect (Agnati et al., 1977). Sarkar and
Fink (1981) showed that the surge of GnRH in the portal blood is
inhibited by DA acting on receptors that are blocked by pimozide and
domperidone, but facilitated by DA acting on receptors that are blocked
by haloperidol. The existence of 2 different types of dopaminergic
receptors may explain the conflicting reports as to the role of the
central DA system in LH release. The stimulatory effect of DA on LH
release may be due to an action on DA receptors that are blocked by
haloperidol, while the inhibitory effect of DA on LH release is mediated
by its action on receptors blocked by pimozide or domperidone. These 2
types of DA receptors are probably influenced by te steroid millieu of
the rats since systemic injection of DA stimulates LH release in
steroid-primed ovariectomized rats, whereas high doses of DA suppressed
serum LH in ovariectomized unprimed rats (Vijayan and McCann, 1978).

In general, the serotonergic system is inhibitory to LH secretion.
Intraventricular administration of ©5-HT suppressed the release of
gonadotropins in intact and castrated rats (Kamberi et al., 1971;
Schneider and McCann, 1970). Pulsatile release of LH was inhibited in
ovariectomized rats when the mid-brain dorsal raphe nucleus was
electrically stimulated (Arendash and Gallo, 1978). Systemic injection
of 5-hydroxytryptophan (5-HTP), the immediate precursor of 5-HT, has
been shown to block ovulation (Kordon et al., 1968; Kamberi, 1973).

Administration of p-chlorophenylalamine (PCPA) during the "ecritical
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period" of LH release, enhances ovulation in PMS treated immature rats
(Kordon et al., 1968). Electrical stimulation of the raphe nuclei
increased 5-HT turnover and blocked ovulation in rats (Carrer and
Taleisnik, 1970). The inhibitory action of 5-HT on LH release appears
to be mediated by the medial basal hypothalamus, since microinjection of
serotonergic drugs blocked ovulation only when administered in this
brain region (Kordon, 1969; Domanski et al., 1975). Fuxe et al. (1974)
showed that estrogen increased 5-HT turnover in ovariectomized rats
whereas P reduced 5-HT turnover back to basal levels. It has also been
shown that the increased turnover of 5-HT during suckling may be
responsible for the suppression of LH release in to the blood (Mena et
al., 1976).

The serotonergic system also appears to have a stimulatory role on
LH release. The afternoon surge of LH in ovariectomized estrogen-primed
rats is abolished by pretreatment with PCPA and restored by subsequent
administration of 5-HTP (Hery et al., 1976). Destruction of 5-HT
terminals with 5,7-dihydroxytryptamine reduced serum LH in male rats and
the return of LH to normal values coincided with the regrowth of the
serotonergic nerve fibers (Wuttke et al., 1977). Chen et al. (1981)
demonstrated that administration of PCPA or parachloroamphetamine (PCA)
bldcked the LH surge in ovariectomized steroid primed rats, and 5-HTP
not only reversed this effect, but greatly potentiated the LH surge.
These results indicate that 5-HT has a stimulating role on LH release
during the estrogen-induced preovulatory surge.

Since the discovery of the EOPs a few years ago, many reports have
indicated that the EOP play a role in the regulation of gonadotropin

release. Morphine and EOP have been shown to inhibits basal LH release,
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while NAL, a specific opiate receptor antagonist, increases LH secretion
(Bruni et al., 1977). These results indicate that the EOP tonically
inhibits the basal release of LH. This effect of the opiates and NAL on
basal LH release has been shown to be both sex and age-related, since in
prepubertal females, NAL increased LH levels, but is ineffective in
males until approximately 30 days of age (Ieiri et al., 1979; Blank et
al., 1979).

Recent evidence also indicates that the EOP are involved in the
negative feedback action of gonadal steroids on LH release. Naloxone
has been shown to block the inhibitory effect of testosterone on LH
release in castrated male rats (Cicero et al., 1979; 1980). Likewise,
NAL blocked the feedback inhibition of estrogen or the combination of
estrogen and P in ovariectomized female rats (Van Vugt et al., 1982).
Thus, the EOP are involved in gonadal steroid inhibition of LH secretion
in male and female rats.

Early studies also indicated that the EOP play a role during the
proestrus surge of LH. Morphine blocked ovulation (Barraclough and
Sawyer, 1955) and the LH surge during proestrus (Pang et al., 1977) when
administered during the "critical period" for LH release. This action
of MOR was reversed by NAL (Pang et al., 1977). The effects of MOR or
NAL administered on the afternoon of proestrus also alters the surges of
LH, FSH and PRL (Ieiri et al., 1980). These investigators showed that
MOR delayed and suppressed the surge of LH and this effect was reversed
by NAL. Administration of NAL alone did not alter the magnitude of the
LH surge on the afternoon of proestrus, but significantly extended the
duration of the surge. Hypothalamic and pituitary content of MET-ENK is

very high on the morning of proestrus, but decreases significantly on
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the afternoon of proestrus (Kumar et al., 1979). These investigators
speculated that decreased MET-ENK levels on the afternoon of proestrus
may contribute to the surge of gonadotropins, whereas the high levels
during the morning could be involved in the surge of PRL.

The mechanism(s) by which NAL and the opiates exert their effects
on LH release are not entirely clear, but appear to be mediated via the
hypothalamus since opiates do not exert their effects directly on the
pituitary (Cicero et al., 1977; 1979). Morphine does not block the
effect of GnRH on secretion of LH by the pituitary and has no effect on
LH release from pituitary explants. In addition, hypothalamic content
of GnRH is increased by acute administration of MOR, and this was
interpreted as indicating a decrease of LHRH release into the portal
blood (Muraki et al.,1978).

Considerable evidence indicates that hypothalamic norepinephrine is
involved in mediating the inibitory effect of EOP on LH release.
Opiates depress hypothalamic DA turnover in the median eminence (Ferland
et al., 1977; Van Vugt et al., 1979), and reduce DA concentrations in
the portal blood (Gudelsky et al., 1979). Morphine also has been shown
to decrease NE concentration in the hypothalamus (deWied et al., 1974;
Kalra and Simpkins, 1981). Also, depletion of hypothalamic NE with
either «-mpt or DDC, or blocking the action of NE with the «-adrenergic
receptor blocker, phenoxybenzamine, inhibited NAL-induced LH release
(Van Vugt et al., 1981). It appears therefore, that hypothalamic NE is
involved in mediating the stimulatory effects of NAL on LH release.

Hypothalamic 5-HT activity is increased by MOR and the opiates
(Ieiri et al., 1980; Van Loon and DeSouza, 1978). Since 5-HT generally

acts to inhibit LH release, the inhibitory effects of the opiates and
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the stimulatory action of NAL on LH release may involve a serotonergic
mechanism. Other brain neurotransmitters also may be influenced by the
opiates to alter LH release. These data strongly suggest that the brain
opiates are important intermediaries in the regulation of LH release by
interacting with biogenic amines or directly on GnRH hypothalamic
neurons.

F. Control of Pulsatile LH Release

Luteinizing hormone 1in ovariectomized rats is released in a
pulsatile manner (Gay and Sheth, 1972). The mechanism which generates
this episodic secretion appears to be mediated by the hypothalamus and
not the AP gland itself. Incubations of pituitaries have shown that
release of LH occurs in a non-pulsatile manner when the medium was
perfused with constant levels of GnRH (Osland et al., 1975). However,
when GnRH was administered in a pulsatile manner, LH release also was
also pulsatile. Sarkar and Fink (1980) recently demonstrated that GnRH
is released in a pulsatile fashion in ovariectomized rats, and these
pulses of GnRH correlated with the LH pulses seen in systemic blood. 1In
addition, central acting barbiturates, such as pentobarbital were shown
to inhibit pulsatile LH release (Arendash and Gallo, 1978b).

Deafferentation of the MBH in rats resulted in non-pulsatile LH
release in ovariectomized rats (Blake and Sawyer, 1974; Arendash and
Gallo, 1978). Thus, it appears that different input to the MBH is
required for stimulation of pulsatile LH secretion. Brain neurotrans-
mitter involvement in the regulation of pulsatile LH release has
recently undergone active investigation.

Hypothalamic NE has been shown to stimulate pulsatile LH release in

ovariectomized rats. Drugs which block NE synthesis (Drouva and Gallo,
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1976; Grodde and Schuiling, 1976) or block «-adrenergic receptors
(Weick, 1977), inhibit pulsatile LH release. The effect of NE infusion
into the third ventricle of the brain, however, appears to have a
biphasic effect on pulsatile LH release. Prolonged infusion inhibits,
while slow acute infusion of NE into the third ventricle of ovari-
ectomized rats stimulates pulsatile LH release (Gallo and Drouva, 1979).
The explanation for these findings is unknown, but high NE levels in the
third ventricle may activate other inhibitory neuronal systems that can
influence pulsatile LH release.

Third ventricle infusion of DA (Gallo and Drouva, 1979) or
administration of dopaminergic agonists (Grodde and Schuiling, 1976)
have been shown to inhibit pulsatile LH release. However,
administration of dopaminergic antagonists do not alter episodic release
of LH (Drouva and Gallo, 1976). These results indicate that hypo-
thalamic DA activity is not involved in the tonic inhibition of
pulsatile LH release in ovariectomized rats.

Evidence also indicates that brain 5-HT is involved in suppression
of pulsatile LH release in ovariectomized rats. Electrical stimulation
of the arcuate nucleus suppresses pulsatile LH release and this effect
is blocked if animals are pretreated with 5-HT synthesis inhibitors
(Gallo and Moberg, 1977). Electrical stimulation of the midbrain dorsal
raphe nucleus also results in suppression of episodic LH secretion
(Arendash and Gallo, 1978). When rats are pretreated with 5-HT
synthesis inhibitors or 5-HT receptor blocks, stimulation of the dorsal
raphe nucleus had no effect (Arendash and Gallo, 1978c). Administration
of B-END has also been demonstrated to inhibit pulsatile secretion of LH

in castrated rats (Kinoshita et al., 1980).
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The ovarian steroid environment of an animal has also been shown to
be critically important in determining the magnitude and direction of
pulsatile LH release in response to neurotransmitter stimulation.
Estrogen exerts negative feedback effects on pulsatile LH release in
ovariectomized rats (Blake et al., 1974), as does P administration alone
in ovariectomized rats (Blake et al., 1974). Injection of NE into the
third ventricle at a dose which inhibited or had no effect on pulsatile
LH release in unprimed ovariectomized rats, significantly stimulated
episodic LH release in EB-P-primed ovariectomized rats (Gallo and
Drouva, 1979). Injection of DA into the third ventricle had no effect
on steroid suppression of pulsatile LH release in these animals (Gallo
and Drouva, 19Y79).

IV. Hypothalamic Control of Prolactin Release

Many reports on regulation of PRL secretion have appeared since
development of the first RIA for this hormone. Prolactin is essential
for 1lactation and mammary growth, and is involved in mammary and
pituitary tumors, reproduction and many other physiological functions.

The control of PRL secretion differs from that of most other AP
hormones, in that it has no negative feedback inhibition from any target
tissue it stimulates. The primary control of PRL comes from the com-
munication between the hypothalamus and pituitary via the hypothalamo-
hypophysial portal blood vasculature. This hypothalamic regulation of
PRL is both stimulatory and inhibitory, with the latter predominating
under basal conditions. Hypothalamic control is mediated by peptidergic
hormones and neurotransmitters. Estrogens and adrenal cortical steroids

can act directly on the pituitary to regulate PRL secretion.
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A. Inhibition of Prolactin Release

Prolactin release 1is 1increased after removal of hypothalamic
influences. Destruction of the median eminence, the final common neural
pathway to the pituitary or transplantation of the pituitary
underneaththe kidney capsule, result in continuous PRL secretion but
decreased secretion of all other AP hormones (Everett, 1954).
Hypothalamic extract, when added to pituitary incubations (Meites et
al., 1981; 1963; Talwalker, 1963), cultures (Pasteels, 1961), or
injected into rats (Grosvenor et al., 1964), produce a decrease in PRL
release. The chemical identity of this PRL-release-inhibiting-factor
(PIF) is unknown, but it may be mainly dopamine. Many hypothalamic
substances have been shown to have PIF activity.

Most evidence indicates that hypothalamic biogenic amines are the
primary regulators of PRL secretion. Removal of catecholamines from
hypothalamic extracts results in 1loss of PIF activity (Shaar and
Clemens, 1974). Hypothalamic extracts contain high concentrations of
catecholamines (Schally et al., 1976). Agents which increase
catecholamine activity in the brain, such as L-dopa, the (immediate pre-
cursor of catecholamines), or monamine oxidase inhibitors which
interfere with the degradation of catecholamines, (Lu and Meites, 1971),
decrease PRL secretion.

Dopamine appears to be the primary substance in the hypothalamus
which inhibits PRL release. Dopamine injected into the third ventricle
of rats (Kamberi et al., 1970), or added directly to pituitary
incubations (MacLeod, 1969), inhibits release of PRL. Dopaminergic
agonists such as apomorphine or piribedil (Mueller et al., 1973) or

various ergot alkaloids (Nicoll et al., 1970; Wuttke et al., 1971), also
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decrease PRL secretion. Conversely, blood PRL levels are increased by
the DA antagonists, pimozide (Clemens et al., 1971), sulpiride (Meites
et al., 1972), haloperidol (Dickerman et al., 1972), and reserpine and
chlorpromazine (Lu et al., 1970).

Anatomical evidence indicates that an intimate association exists
between hypothalamic dopamine and pituitary PRL function. Dopaminergic
neurons originate in the arcuate nucleus, and terminals of these tubero-
infundibular neurons in the median eminence are in close association
with the hypophysial portal vasculature (Fuxe et al., 1975). Dopamine
receptors have been localized on pituitary membranes (Brown et al.,
1976). Disruption of this pathway by median eminence lesions (Meites et
al., 1963; Welsch et al., 1971) elevates PRL levels.

Tuberoinfundibular DA exerts tonic inhibition on the release of PRL
from the AP. This is supported by the finding that hypophysial portal
blood contains DA in concentrations sufficient to inhibit PRL secretion
(Ben-Jonathan et al., 1977; Plotsky et al., 1978). The release of DA
from the tuberoinfundibular neurons into the hypophysial portal blood is
dependent upon the continued synthesis of DA, Inhibition of DA
synthesis by «-methyltyrosine, which blocks the rate limiting enzyme in
DA synthesis, tyrosine hydroxylase, causes a marked reduction in DA
concentration in pituitary stalk blood and increases systemic blood PRL
levels (Gudelsky and Porter, 1979).

The evidence that DA accounts for most of the hypothalamic PIF is
very strong, but there is some evidence that DA does not account for all
PIF activity in the hypothalamus. After incubation of rat pituitaries
with haloperidol (Quijada et al., 1974) or pimozide (Vale et al., 1976),

to block DA receptors, addition of rat hypothalamic extracts can still
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inhibit PRL release. In addition, when all catecholamines are removed
from hypothalamic extracts, they still contain PIF activity (Takahara et
al., 1974).

The involvement of norepinephrine in regulation of PRL secretion is
controversial. Norepinephrine and epinephrine, have been shown to
inhibit PRL release in vitro (MacLeod, 1969). When smaller doses of
these neurotransmitters were used however, PRL release was shown to be
enhanced (Koch et al., 1970). Administration of norepinephrine
synthesis inhibitors (Clemens and Meites, 1977) decreases, while
addition of DOPS, a precursor of norepinephrine, increases PRL release
in vivo (Donoso et al., 1971). Injection of norepinephrine into the
third ventricle causes release of PRL in ovariectomized or
ovariectomized steroid-primed rats (Vijayan and McCann, 1978).
Clonidine, an &-receptor agonist, was found to inhibit the proestrus
surge of PRL (Vijayan and McCann, 1978). Thus, the physiological
significance of norepinephrine on PRL release is difficult to assess at
this time.

Intraventricular injections of acetylcholine or systemic
administration of cholinergic drugs have been shown to inhibit PRL
release (Grandison et al., 1974; Grandison and Meites, 1976).
Cholinergic agonists and cholinesterase inhibitors also have been shown
to block the surge of PRL on the afternoon of proestrus (Libertum and
McCann, 1974; Blake et al., 1973) and the estrogen induced afternoon PRL
surge in ovariectomized rats (Subramarian et al., 1976). Low doses of
cholinergic antagonists, such as atropine and scopolamine, have not been
shown to increase PRL levels, but block cholinergic inhibition (Ruiz de

Galarreta et al., 1981). Cholinergic inhibition of PRL can also be
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blocked if animals receive prior treatment with a dopaminergic
antagonist (Grandison and Meites, 1976). It appears therefore, that
cholinergic inhibition of PRL is mediated by increasing hypothalamic
dopaminergic activity.

Adrenal glucocorticoids also have been found to be important in the
regulation of PRL secretion. When glucocorticoids were added to
pituitary incubations, PRL release was reduced (Clemens and Meites,
1977). Low doses of corticosterone were also found to inhibit PRL
release in hypophysectomized rats carrying a pituitary graft under the
kidney capsule (Leung et al., 1979) and to inhibit the stress-induced
release of PRL (Euker et al., 1975). Adrenalectomy increased whereas
administration of glucocorticoids inhibited PRL release (Chen et al.,
1976). It appears that adrenal glucocorticoid inhibition of PRL release
is mediated by direct action on the AP.

B. Stimulation of Prolactin Secretion

Injection of crude hypothalamic extracts in estrogen-primed female
rats initiated mammary secretion and indicated that the hypothalamus
contains a PRF (Meites et al., 1980). Many substances found in the
hypothalamus have since been found to contain PRF activity. It has been
shown that TRH can stimulate release of both TSH and PRL in humans
(Bower et al., 1971) and rats (Tashijan et al., 1971; Lu et al., 1972).
It seems unlikely, however, that TRH is a physiological PRF. TRH can be
separated chromatographically from hypothalamic PRF extracts (Szabo and
Frohman, 1976). There are also many physiological conditions in which
TSH and PRL secretion do not coincide. Rats placed in cold temperature
show an increased TSH release, but a marked reduction in serum PRL

levels, and the opposite is seen when animals are placed in a warm
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environment (Mueller et al., 1974). Restraint stress results in
increased PRL but decreased TSH levels in the blood (Mueller et al.,
1976).

Serotonin has been shown to be a powerful agent for stimulating PRL
release. Administration of 5-HT to estrogen-primed female rats
stimulated milk secretion (Meites et al., 1967). Intraventricular
(Kamberi, 1971) and systemic (Lawson and Gala, 1975) injections of 5-HT
increased PRL levels in the blood of rats. Systemic injections of 5-
hydroxytryptophan (5-HTP), the precursor of 5-HT caused a significant
increase in blood PRL levels in estrogen primed rats (Caligaris and
Taleisnik, 1974), and this was blocked by pre-treatment with para-
chlorophenylalanine (PCPA), a serotonergic neurotoxin. Intravenous
infusion of L-tryptophan, the substrate for 5-HT synthesis, increased
human PRL release (MacIndoe and Turkington, 1973). Treatment with PCPA
and methysergide (a 5-HT receptor antagonist) blocked the suckling
induced rise of PRL. The serotonergic agonist, quipazine, also
stimulated PRL release (Krulich et al., 1975; Clemens et al., 1976).

Restraint stress was shown to be associated with increased turnover
of 5-HT in the hypothalamus (Mueller et al., 1976) and is believed to be
responsible for elevated PRL levels under this condition. Stimulation
of serotoninergic neurons in the raphé complex of the midbrain, the
ultimate source of hypothalamic 5-HT, increased, whereas destruction of
this brain area decreased serum PRL levels (Advis et al., 1979). The
mechanism by which 5-HT stimulates PRL is not known, but evidence
suggests that its action is mediated indirectly by other hypothalamic
agents. Intraventricular administration of 5-HT produced a reduction of

DA concentration in the hypophysial portal blood, but co-infusion of
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dopamine did not block 5-HT stimulation of PRL (Pilotte and Porter,
1981). It appears that 5-HT stimulation of PRL release may not only be
mediated by decreasing dopamine activity, but also by stimulating PRF
activity as well.

Recently, the EOP have been shown to increase PRL release (Bruni et
al., 1977). Morphine had previously been shown to initiate lactation in
estrogen primed rats (Meites, 1962) and stimulate PRL release (McCann et
al., 1974). Injection of NAL, a specific opiate antagonist, inhibited
basal PRL release and blocked opiate-stimulated secretion (Bruni et al.,
1977). Opiates do not appear to act directly on the AP to stimulate PRL
release. Pituitaries incubated with MOR, EOP, or NAL, did not alter the
release of PRL (Grandison and Guidotti, 1977; Shaar et al., 1977). This
suggests that the EOP act via a hypothalamic mechanism to stimulate PRL
release. The EOP have been shown to decrease median eminence DA
turnover (Ferland et al., 1977; Van Vugt et al., 1979), and to decrease
DA concentrations in the hypophysial portal blood (Gudelsky and Porter,
1979). If animals are pretreated with drugs which inhibit 6-HT
activity, opiate stimulation of PRL release is blocked (Demarest and
Moore, 1981). These results, together with the findings of Pilotte and
Porter (1981), indicate that the EOP stimulates 5-HT neurons and
inhibits hypothalamic DA activity, resulting in an increase in serum PRL
levels.

Other hypothalamic substances, such as gamma-aminobutyric acid,
substance P, neurotensin, prostaglandins and histamine all have been
shown to stimulate PRL release (Meites, 1979). However, the
physiological significance of these neuropeptides has not been fully

evaluated.
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Estrogen has also been found to be an important regulator of PRL
synthesis and release. Estrogen was shown to increase pituitary PRL
content and induce lactation in rats (Reece and Turner, 1937). This was
later confirmed in rabbits (Meites and Turner, 1942), and in vitro
studies (Meites and Nicoll, 1966) by bioassay of PRL. A dose-dependent
increase in PRL release by estrogen in ovariectomized rats was first
demonstrated by RIA a few years 1later (Chen and Meites, 1970).
Hypophysectomized rats with pituitary implants underneath the kidney
capsyle, also showed elevated PRL levels in response to estrogen admin-
istration (Meites et al., 1972). These studies demonstrate a direct
stimulatory effect of estrogen on the pituitary.

Prolactin levels are found to be higher in females than male rats,
and this 1is believed to be due to the influence of estrogen. In
general, estrogen always stimulates and never inhibits PRL release. The
proestrus afternoon surge of PRL is preceded by a surge of estrogen
(Meites and Clemens, 1972). Removal of estrogen by ovariectomy (Meites
et al., 1972), or by administration of estrogen antiserum (Neill et al.,
1971) on the morning of proestrus, blocked the afternoon surge of PRL.
Rats that contain PRL secreting pituitary tumor implants, responded to
estrogen treatment with increased PRL release (Mizuno et al., 1964).

Estrogen also appears to influence hypothalamic activity in its
regulation of PRL secretion. Estrogen-primed rats showed decreased
hypothalamic PIF activity as compared to non-estrogen primed controls
(Ratner and Meites, 1964). Implantation of estrogen into the median
eminence increased serum PRL levels (Nagasawa et al., 1969). The exact
mechanism by which estrogen acts centrally to stimulate PRL secretion is

not known. However, it has been shown that acute injections of estrogen
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decrease DA concentrations in the hypophysial portal blood, and this was
associated with elevated PRL levels in the circulation (Cramer et al.,
1979).

It is well understood that dopamine inhibits PRL release, but PRL
also has been shown to feed back and influence DA activity. Elevated
PRL levels have been shown to decrease endogenous pituitary PRL release
(Meites and Clemens, 1972; Advis et al., 1977). Rats bearing PRL
secreting tumors have higher concentrations of DA in the hypophysial
portal blood than non-tumor bearing rats (Cramer et al., 1979).
Prolactin and PRL-releasing drugs produced increased activity of
tuberoinfundibular dopaminergic neurons (Fuxe and H8kfelt, 1970). This
autoregulatory mechanism for PRL release is termed "short-loop-
feedback," but a physiological role for this mechanism has not been
established.

Acute exposure to estrogen decreased DA in the portal blood,
whereas chronic exposure increased DA concentrations (Gudelsky and
Porter, 1979). It has also been demonstrated that females have higher
DA 1levels in the portal blood than males, and female 1levels vary
throughout the estrous cycle (Ben-Jonathan, 1977). It thus appears that
estrogen acts acutely on the tuberoinfundibular neurons to alter
secretion of DA into the hypophyseal portal blood directly. Chronic
estrogen stimulation of PRL secretion elicits elevated PRL 1levels
increases DA activity. The reason serum PRL remains elevated in the
presence of increased DA activity is that estrogen inhibits DA action on

the pituitary (Lu and Meites, 1972).
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V. Role of Hormones in Murine Mammary Tumorigenesis

The endocrine environment of the rat mammary gland is of critical
importance in the induction of mammary cancer. When intact female rats
were fed 3-methylcholanthrene (MC), all animals developed mammary
cancer, but no tumors developed in their hypophysectomized litter-mates
(Huggins et al., 1959a). When hypophysectomized rats fed MC were
treated with estrogen, P and growth hormone (GH), and exposed to a
carcinogen, mammmary tumor development occurred (Young et al., 1961).
Hormonal status has 1little or no influence on hormone-independent
mammary tumors, but the majority of mammary carcinomas found in the rat
are hormone-dependent. Changes in hormone levels can either accelerate
or retard mammary tumor growth, depending on the magnitude and direction
of the change.

Reduction or even complete extinction of mammary tumor growth
occurred after ovariectomy (Huggins et al., 1959b). Stimulation of
mammary cancer growth was seen in pregnancy and pseudopregnancy when
steroid lactogenic hormone levels are high (Dao and Sunderland, 1959).
It is clear that AP and gonadal steroid hormones are of primary
importance in the initiation and growth of mammary carcinomas.

A. Prolactin

Prolactin alone is not considered tumorigenic, but its presence
favors the development of mammary tumors in rats. Physiological
conditions and treatments that increase serum PRL 1levels, stimulate
mammary tumorigenesis, whereas conditions and treatments which reduce
serum PRL inhibit mammary tumorigenesis (Welsch and Nagasawa, 1977).
However, an excess of PRL can inhibit development of carcinogen-induced

mammary tumors.
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Injections of PRL into intact female rats stimulated mammary tumor
growth (Kelly et al., 1974). Neuroleptic drugs increased endogenous PRL
secretion (Welsch and Meites, 1970). Haloperidol (Quadri et al., 1973),
perphenazine (Bodger et al., 1974), and sulpiride (Pass and Meites,
1976) and increased mammary tumorigenesis. Prolactin secretion stimu-
lated by TRH, estrogen or adrenalectomy, also increased the number and
size of 7,12-dimethylbenz(a)anthracene (DMBA) induced mammary tumors
(Chen et al., 1977; Meites et al., 1972; Chen et al., 1976). Pituitary
grafts underneath the kidney capsule increased blood PRL levels and
stimulated mammary tumor growth (Welsch et al., 1968). Lesions in the
median eminence, which disrupted tuberoinfundibular DA influence on the
AP (Clemens et al., 1968), or estrogen implants in the median eminence
(Nagasawa and Meites, 1970), stimulated PRL release and mammary
tumorigenesis.

Reduction of PRL 1levels in the blood by hypophysectomy reduced
hormone-dependent mammary tumor growth (Clifton and Sudharan, 1975) and
PRL replacement reinitiated growth of these tumors. Dopaminergic
receptor agonists or drugs which increased hypothalamic DA activity,
such as ergot alkaloids, L-dopa, parayline, piribedil, alpha-methyl-p-
tyrosine, decreased serum PRL and inhibited mammary tumor growth
(Cassell et al., 1971; Quadri et al., 1973; Hodson et al., 1978).
Administration of anti-PRL antiserum also caused regression of mammary
tumors (Butler and Pearson, 1971). Naltrexone and NAL, specific opioid
receptor antagonists, recently were shown to inhibit growth of mammary
carcinomas in rats, and this was attributed to their suppression of PRL

release (Aylsworth et al., 1979).
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B. Estrogen
Besides PRL, estrogen has been established to be important for

growth of hormone-dependent mammary tumors. Chronic administration of
estrogen in rats has been shown to result in development of mammary
tumors (Noble and Collip, 1941). Estrogen in small doses also has been
shown to stimulate growth of established mammary tumors (Huggins, 1962).
In contrast, removal of estrogen influence by ovariectomy (Dao, 1962) or
by TAM, an anti-estrogenic drug (Jordan, 1976), prior to or shortly
after carcinogen administration, significantly inhibited mammary
tumorigenesis. These treatments produced similar effects on established
mammary tumors (Huggins et al., 1959; Jordan and Jaspar, 1976). Mammary
tumor regression as a result of ovariectomy was reversed by estrogen
administration (Huggins et al., 1962).

Estrogen stimulates mammary tumors directly, and indirectly by
stimulating PRL release (Meites and Nicoll, 1966). Estrogen had no
effect on mammary tumorigenesis in the absence of the pituitary
(Sterental et al., 1963). Evidence that estrogen plays more than an
indirect role in tumor growth is demonstrated by the fact that tumor
regression in ovariectomized-adrenalectomized rats was only temporarily
reversed by PRL (Nagasawa and Yanai, 1970). In addition lesions of the
median eminence stimulated PRL release and mammary tumor growth in rats
(Sinha et al., 1973). However, when the ovaries were removed from these
rats, mammary tumor regression occurred. Others have reported that PRL
only slightly stimulates mammary tumors in ovariectomized
adrenalectomized rats, but if PRL was administered in combination with

only 0.01 ug of estradiol, the tumors responded with significant growth
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increases (Leung and Sasaki, 1975). These results suggest that both
estrogen and PRL are necessary for mammary tumor growth and development.

C. Progesterone

It has been reported that progesterone administration to rats prior
to or shortly after carcinogen administration, significantly inhibits
mammary tumorigenesis (Jabara and Harcourt, 1970; Welsch et al., 1968;
Kledzik et al., 1974). Progesterone treatment after carcinogen, how-
ever, shortened the latency of mammary tumor appearance and increased
tumor yield (Huggins et al., 1962). In the same study, these
investigators also showed that induced pregnancy 15 days after DMBA
administration significantly increased mammary tumorigenesis (Huggins et
al., 1962). They concluded that elevated secretion of progesterone
during pregnancy was responsible for stimulated mammary tumor growth.
Thus, P treatment given prior to carcinogen administration inhibits,
whereas, P treatment after carcinogen administration, stimulates mammary
tumorigenesis in rats.

Studies with established mammary tumors have shown that P alone
does not support tumor growth (Jabara, 1967; Horwitz and McGuire, 1977).
It has been shown that P shortens the latency period and stimulates
growth of DMBA-induced mammary carcinomas in androgenized female rats in
the presence, but not in the absence of ovaries (Yoshida et al., 1980).
Since estrogen is necessary for the synthesis of P receptors, these
authors suggested that the lack of tumor stimulation by P in ovari-
ectomized rats was due to the absence of P receptors. Their studies
indicated that P, together with estrogen and PRL may be involved in

supporting growth of hormone-dependent mammary tumors in rats.
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D. Growth Hormone

The role, if any, of GH in mammary tumor development is uncertain.
Long-term injections of GH were reported to result in increased
incidence of mammary tumors in rats (Evans and Simpson, 1931; Moon et
al., 1950). However, no increase in tumor incidence was seen in
hypophysectomized rats given GH (Moon et al., 1951). Talwalker et al.
(1964) reported that GH acted synergistically with PRL in promoting
DMBA-induced mammary tumor development in ovariectomized rats. Growth
hormone also was found to cause slight stimulation of mammary tumor
tissue in vitro, but this stimulation was much less than that by PRL
(Iturri and Welsch, 1976). These effects of GH should be viewed with
caution, since the GH used was not completely pure and many have been
contaminated with some PRL.

Administration of GH in rats with established mammary tumors had
little effect on tumor growth (Nagasawa and Yanai, 1970; Li and Yang,
1974). Median eminence 1lesions have been shown to increase PRL and
decrease GH secretion, but mammary tumor growth was markedly enhanced by
such lesions (Clemens et al., 1968). The involvement of GH in rat
mammary tumorigenesis does not appear to be critical and may only
provide a supportive role.

E. Insulin

Insulin is known to be important for milk production in the
lactating mammary gland. Injection of small doese of insulin to
lactating rats can increase milk production (Kumareson and Turner,
1965), whereas induction of diabetes results in a sharp reduction of
lactogenesis (Martin and Baldwin, 1971). Large doses of insulin can

decrease lactation. Mammary gland explants in vitro have also been
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shown to require insulin for maintenance and cell DNA synthesis in the
normal mammary gland and it appears to be essential for mitosis to occur
(Hallowes et al., 1973).

In the DMBA-induced mammary tumor, insulin stimulated DNA synthesis
and tumor growth both in vivo and in vitro (Henson et al., 1967; Heuson
and Legros, 1970). 1Insulin did not prevent mammary tumor regression as
a result of ovariectomy (Heuson et al., 1972). However, diabetes-
induced tumor regression was not prevented by injections of estrogen
(Heuson and Legros, 1972). Insulin and PRL stimulated mammary tumor
growth more than PRL treatment alone in hypophysectomized rats (Heuson
et al., 1972). Induction of diabetes in tumor bearing rats resulted in
significant reduction of tumor size (Heuson and Legros, 1972), and this
was reversed by insulin replacement (Cohen and Hilf, 1974). Thus,
insulin is of some importance for growth of mammary tumors and appears
to play a facilitative or permissive role in the actions of other
hormones.

F. Adrenal Glucocorticoids

Administration of adrenal glucocorticoids in rats inhibited the
growth of mammary tumors (Hilf et al., 1965). Glucocorticoids inhibited
mammary tumor growth directly, since breast tissue response depends on
the presence of glucocorticoid receptors (Lippman et al., 1976).
Adrenal glucocorticoid also inhibited mammary tumor growth indirectly by
reducing AP secretion of PRL (Schwinn et al., 1976). Adrenalectomy in
rats stimulated mammary tumor growth and increased serum PRL levels, and
this was reversed by glucocorticoid replacement (Chen et al., 1976).

Aylsworth et al. (1979) demonstrated that elevated blood

glucocorticoid 1levels were responsible for regression of DMBA-induced
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mammary tumors in post-partum lactating rats. When tumor bearing rats
were adrenalectomized immediately after parturition, regression did not
occur and mammary tumor growth increased similarly to non-lactating
intact controls (Aylsworth et al., 1979). Dexamethasone, a synthetic
glucocorticoid, also has been shown to inhibit growth of established
mammary tumors, even in the presence of elevated PRL levels (Aylsworth
et al., 1980). These data strongly suggest that the mechanism by which
glucocorticoids inhibit growth, is via direct action on the mammary
tumor.

G. Concept of "Critical Period" After Carcinogen Administration

Acute changes in endogenous hormone levels in the rat play a
critical role in initiation and development of carcinomas induced by
aromatic hydrocarbons. Mammary tumors arise in undifferentiated,
rapidly proliferating epithelial terminal end buds and terminal ducts,
present in the mammary gland of young virgin females (Russo and Russo,
1978). The highest incidence of DMBA-induced mammary tumors arise at
50-55 days of age and are reduced markedly in younger and older animals
(Huggins et al., 1961).

Dao (1962) established that there is a "critical period" for about
1 week after carcinogen administration in Sprague-Dawley rats. If the
ovaries were removed prior to carcinogen treatment and then replaced by
donor ovarian grafts 30 days later, no mammary tumors developed. If
ovaries were removed 7 days after carcinogen treatment and 30 days later
rats received ovarian grafts, a full complement of tumors developed.
This experiment suggests that neoplastic transformation in the cells of
the mammary gland cannot take place in the absence of ovarian hormones

and PRL, since ovariectomy reduces PRL levels.
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Estrogen and PRL induced mitosis in mammary epithelial cells
(Huggins, 1965). By promoting cellular replication and DNA synthesis,
these hormones sensitize the mammary gland to maximal carcinogen binding
and subsegent tumor incidence at 55 days of age. Removal of estrogen
and PRL by ovariectomy blocks hormone-dependent mitotic activity and
renders the gland refractory to carcinogen action.

Numerous experimental studies have shown that increased or
decreased estrogen and PRL levels prior to carcinogen administration
result in significant inhibition of mammary tumorigenesis (Meites, 1972;
Kledzik et al., 1974; Welsch et al., 1969; Dao, 1962; Clemens and
Scharr, 1972; Cohen, 1981). Elevation of these hormones after
carcinogen administration, however, results in a significant stimulation
of mammary tumor growth. The decreased susceptibility of tumor in-
duction by these hormones is attributed to acceleration (the state of
elevated hormone levels) of mammary gland maturation during puberty. As
stated earlier, mammary gland development before or after 55 days of age
was refractory to tumor induction (Huggins et al. 1961). Thus,
alterations of the hormonal millieu of the rat at the time of initiation
establishes long-lasting and apparently permanent effects on mammary
tumorigenesis, even when hormone levels return to normal shortly after
this "critical period."

VI. Effects of Caloric Restriction

A. On Mammary Tumorigenesis

Early studies by Tannenbaum (1940) were the first to show that
caloric-restriction decreased the incidence of spontaneous mammary
tumors in mice. Animals subjected to chronic food-restriction not only

had fewer mammary tumors, but tumor appearance also was later than in



animals fed ad libitum (Tannenbaum, 1940). Underfed animals appear to
be in good general health, do not show signs of clinical nutritional
deficiencies, and 1live 1longer than full-fed controls. Thus, the
mechanism by which caloric-restriction inhibits mammary tumorigenesis
does not appear to be due to the lack of some essential dietary
component (Tannenbaum, 1942).

The relationship of the inhibition of tumor formation to the degree
of caloric restriction is not linear. As caloric intake is reduced,
there is only gradual inhibition of tumor formation. However, when
dietary restriction reaches a critical 1level, there is a sharp
inhibition of tumor formation (Tannenbaum, 1945a). Inhibition of
mammary tumorigenesis by underfeeding was greatest when underfeeding was
begun prior to tumor appearance (Tannenbaum, 1944). Ross and Bras
(1971) demonstrated that early caloric-restriction at the time of tumor
induction resulted in long-term inhibition of mammary carcinoma in rats.
Thus, the timing, as well as the severity of underfeeding, are important
determinants for the inhibition of mammary tumorigenesis. Recently, it
was shown that as little as a 20% reduction in food intake over a 2 year
period can significantly inhibit the development of spontaneous mammary
tumors in rats and mice (Tucker, 1979).

Intermittent caloric-restriction, as in animals that are fasted
twice a week for 24 hours, followed by ad libitum feeding between
fasting, does not inhibit the incidence or growth of spontaneous mammary
carcinoma, even though these animals consumed significantly less food
over time, as compared to full-fed controls (Tannenbaum and Silverstone,
1950). These investigators also demonstrated a correlation between body

weight and tumorigenesis in mice with varying degrees of caloric
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restriction. They showed that larger animals are more susceptable to
spontaneous mammary tumors than smaller animals, and food restriction
was more effective for the inhibition of tumorigeneous in the large mice
(Tannenbaum and Silverstone, 1953).

Caloric-restriction also inhibits the development of carcinogen
induced mammary tumors. Underfeeding inhibits diethylstilbesterol
(Dunning et al., 1949) and DMBA (Welsch and Meites, 1978) induced
mammary tumors. Food-restriction also inhibited the growth of estab-
lished mammary tumors, regardless of whether the tumors were chemically
induced (Welsch and Meites, 1978; Leung et al., 1980), spontaneous
(Tannenbaum, 1942), or transplanted (Tarnowski et al., 1955). Whereas
restricted caloric intake decreased the incidence of spontaneous and
carcinogen-induced mammary tumors, administration of 1large doses of
carcinogen overcame this inhibition, regardless of the 1level of
underfeeding (Tannenbaum and Silverstone, 1957).

Moderate chronic underfeeding has been shown to increae the cell-
mediated immune response in rodents (Good et al., 1976). This
heightened immune response in underfed animals may partially explain
their lower tumor incidence. However, when food-restriction is severe,
T- and B-cell function also is depressed (Good et al., 1976).

B. On Endocrine Function

The mechanisms by which underfeeding induces tumor suppression is
not completely known, but it appears to involve the endocrine system.
In studies with mice, normal mammary gland development was inhibited by
food-restriction, and some investigators concluded this was the result
of suppressed hormone stimulation (Huseby et al., 1945). Pituitary

insufficiency as a result of underfeeding, leads to decreased estrogen
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production as indicated by regression in size of the ovaries, uterus,
and mammary gland, similar to that seen in hypophysectomized animals
(Mulinos et al., 1940). This condition has been referred to as
"pseudohypophysectomy" (Mulinos et al., 1940).

Additional evidence that the underfeeding causes a suppression of
AP function was reported by Campbell et al. (1976). These investigators
demonstrated that food-restriction resulted in decreased secretion of AP
hormones, including PRL and gonadotropins, as measured by RIA,
Underfeeding also reduced secretion of ovarian steroids, as indicated by
initial irregularities and final loss of estrous cycles in rats (Piacsek
and Meites, 1967).

Estrogen and PRL stimulated mitotic activity in mammary epithelial
cells (Huggins, 1965), whereas underfeeding suppressed mitosis of this
tissue, reflecting decreased secretion of these hormones (Bullough,
1950). A 50% reduction in food intake reduced the growth of established
mammary tumors in rats, and this reduction was reversed by injections of
estrogen and, haloperidol (the latter, to increase serum PRL levels), or
the combination of estrogen and haloperidol (Welsch and Meites, 1978;
Leung et al., 1980).

In addition to suppression of pituitary hormones, severe food-
restriction can increase adrenocorticoid activity (Boutwell et al.,
1948; Tannenbaum and Silverstone, 1957). Adrenal hyperfunction in food-
restricted rats may also inhibit mammary tumorigenesis, since
glucocorticoids have been shown to directly inhibit mammary tumor growth

(Hilf et al., 1965).
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VII. Development of Hormone-Dependent Versus Hormone-Independent

Mammary Tumors

A. Hormonal Responses of Mammary Tumors

Most mammary tumors found in rats are hormone-dependent and regress
after removal of the pituitary or ovaries. Hormone-dependent tumors may
undergo histological changes characterized by carcinoma cell death,

flattening of epithelium and large acumin lumina (Young et al., 1963).

A small percentage of mammary tumors in rats are hormone-independent and

are not influenced by changes in hormone levels.

Regression of hormone-dependent tumors as a result of ovariectomy
or hypophysectomy can be reversed by estrogen and PRL replacement
(Pearson et al., 1969). However, the degree and duration of mammary
tumor growth, stimulated by hormone replacement, show great variability.
Initially, it was suggested that PRL was the primary hormone needed to
maintain mammary tumor growth (Pearson et al., 1969). Later, it was
demonstrated that tumor growth maintained by PRL alone was only
temporary in ovariectomized-adrenalectomized rats (Nagawawa and Yanai,
1970). Prolactin was found to maintain tumor growth in ovariectomized
rats in only a few cells and estrogen was required for 1long-term
stimulation of tumor growth (Sinha et al., 1973).

Studies which attempted to classify DMBA-induced mammary tumors as
either estrogen or PRL dependent, indicated that few tumors can be
placed in either category. Rather, hormone-dependent DMBA tumors are
dependent on both estrogen and PRL (Bradley et al., 1976; Leung et al.,
1975). Progesterone has recently been shown to have a primary role in
maintaining growth of hormone-dependent mammary tumors. Progesterone

alone can maintain static tumor growth in ovariectomized-
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adrenalectomized rats (Minasian-Batmanian and Jabara, 1981). When
perphenazine (which stimulates PRL release), at a dose low enough to
only maintain static tumor growth, combined with P, significantly stimu-
lated tumor growth (Minasian-Batmanian and Jabara,1981). These investi-
gators also showed that in the absence of perphenazine, P was able to
maintain static growth in the presence of low PRL levels. Thus, the
mechanism by which P maintains static tumor growth is not dependent on
the presence of PRL.

Hormone-dependency in DMBA-induced mammary tumors was shown to
decline with increased age and increased size of tumors (Griswald and
Green, 1970; Bradley et al., 1976). It was also shown by Griswald and
Green (1970), that approximately 94% of the mammary tumors found in rats
3 months after DMBA administration can be classified as adenocarcinomas.
At 5-6 months, this percentage drops to 80% and by 9 months only 40% of
the tumors were adenocarcinomas. The majority of tumors found in rats 9
months after DMBA administration were classified as adenomatous
hyperplasia, fibroadenomatous hyperplasia, or ™"mixed." Dao (1964)
reported that while most DMBA induced tumors initially regress following
hormone ablation, many of these tumors show growth after 2 months.
These tumors showing renewed growth, however, were found to be entirely
different tumor types from the original adenocarcinomas that regressed
after ovariectomy.

It appears that DMBA-induced tumors are heterogeneous in cell
population hence respond to hormonal manipulation differently. Hormone-
dependent and hormone-independent tumors are found on the same animal.
The growth rate of a tumor in response to a particular hormone may

reflect the number of hormone-dependent versus hormone independent cells
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within the tumor. A tumor which contains only hormone-dependent cells
responds to hormone stimulation or ablation to a greater extent than a
tumor with a small population of hormone-dependent cells. Tumor
dependency on hormones changes with time and may indicate that cell
populations are in a dynamic state and undergo differentiation with
time.

B. Hormone Receptor Involvement

Hormone action is mediated by interactions with specific receptors
found on or within the cell. Thus hormone receptors on mammary tumors,
as in normal mammary tissue, may reflect the hormonal responsiveness of
a tumor. This relationship of hormone receptors to hormone
responsiveness has been the subject of extensive investigation.
Estrogen and PRL binding is generally lower in hormone-independent than
in hormone-dependent mammary tumors (McGuire et al., 1971; Turkington,
1974). However, because of the large variability of receptor
concentration found in both types of tumors, it is impossible to make an
accurate prediction of hormonal responsiveness based solely on estrogen
or PRL binding sites (DeSombre et al., 1976; Holdaway and Friesen,
1976).

Tumor regression in ovariectomized rats results in a sharp decline
of estrogen receptors, and estrogen or PRL replacement can only
partially reverse this loss of estrogen receptors (Vignon and Rochefort,
1976). Estrogen replacement, however, does not restore receptor levels
if serum PRL levels are suppressed in these rats. Prolactin has been
shown to restore estrogen receptor levels in ovariectomized rats (Leung
and Sasaki, 1975). By contrast, large doses of estrogen result in

marked reduction of PRL binding in DMBA-induced mammary tumors in rats
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(Kledzik et al., 1976). Prolatin binding is 3 times higher in DMBA-
induced mammary tumors than in normal mammary tissue (Smith et al.,
1976). Administration of PRL decreases PRL receptor number, but in-

creases growth of the tumor, whereas decreasing serum PRL levels, result

in reduced tumor growth but have no effect on receptor content (Smith et
al., 1976). These investigators also found that low doses of estrogen
increase tumor growth, but do not alter PRL receptor number. Others
have shown that PRL administration will increases its own receptor
number, but this results from an increase in the number of tumor cells
(Lesneak and Roth, 1976).

When DMBA-induced mammary tumors were ranked according to their
growth response to PRL administration, PRL receptor levels were highest
in tumors that responded the most to PRL treatment (Kelly et al., 1974).
Costlow and McGuire (1977) identified PRL receptor sites in DMBA-induced
mammary tumors by using autoradiography. They found that in some tumors
all cells contained PRL receptors, whereas in other tumors up to 50% of
the cells remained unlabelled. These results demonstrate that mammary
tumors contain heterogeneous cell populations, and tumor hormonal
responsiveness may be directly related to the number of cells within
that tumor that contains hormone receptors.

While it is impossible to predict hormone-dependency of mammary
tumors on the basis of estrogen on PRL binding sites, when both hormone
receptors are taken into account, a 90% accuracy of prediction is
possible (DeSombre et al., 1976). In addition, c-AMP binding within a
tumor has been shown to be inversely proportional to tumor growth
(Bodwin et al., 1978). A very accurate prediction of hormone-dependency

is demonstrated if estrogen, PRL, and c¢-AMP binding are all assessed
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(Bodwin et al., 1980). Why certain mammary tumors that contain PRL and
estrogen receptors continue to grow after ovariectomy remains unknown.
Further understanding of hormonal involvement in the biochemical events

that control mammmary tumor cell growth is needed.



MATERIALS AND METHODS

I. Research Animals

Animals used in studies described here were female Sprague-Dawley
rats obtained from Harlan Research Facilities (Indianapolis, IN), and
were housed in a temperature (25%0.5°C) and 1light controlled (14 hr
light, 0500-1900 hr /10 hr dark) room. All rats were provided Ralston
Purina Rat Chow (Ralston Purina Co., St. Louis, MO) and water ad
libitum, unless specified otherwise, throughout the periods of
acclimation and experimentation.

II. Blood Sampling

Biood was collected by decapitation, by orbital sinus puncture
under light ether anesthesia, or by a chronically implanted right atrial
cannula. Saline (0.87% NaCl) filled intracardiac venous cannulae were
implanted under ether anesthesia. Each silastic cannula (Dow Corning,
Midland, MI, 0.025 in ID, 0.047 in OD) was inserted into the right
external jugular vein 32 mm from the right atrium. The free end was
brought underneath the skin to the back of the neck and exited 2 cm
posterior to the base of the skull. Upon securing the cannula in place,
it was flushed with 0.5 ml sterile saline and the free end was closed
with a smooth wire plug. Immediately after surgery the animals were in-
jected with 0.2 ml penicillin (30,000 U) and transferred to individual

cages. On the day of experimentation, the wire plug was removed and a
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silastic tubing extension 30 cm long, filled with sterile saline was
attached to each cannula and placed outside each animal's cage. At this
time, the cannula was again flushed with 0.5 ml saline. At no time was
heparin used. The cannula extension was attached 2 hrs prior to the
experiment so the animals could adapt to this new condition without
removing the rats from the animal room. Blood was stored overnight at
4°C and serum was separated and frozen at -20°C until assayed for
hormones.

ITI. Drug and Endocrine Manipulations

Drugs and hormones were administered by several different routes.
The diluent, concentration and route of administration are stated in the

Materials and Methods section of each experiment.

IV. Tumor Induction

Mammary tumors were reduced in animals by the method of Huggins et
al. (1965). Virgin female rats, 55-60 days of age, were given a 1 ml
lipid emulsion containing 5 mg of 7,12-dimethylbenz(a)-anthracene (DMBA)
by tail vein injection under light ether anesthesia. The DMBA emulsion
was kindly provided by the Upjohn Co., Kalamazoo, MI. Most tumors
became palpable 1-3 mo after DMBA injection.

V. Tumor Measurements

Tumors were palpated and measured at weekly intervals, beginning 1
month after administration of DMBA. Palpable mammary tumors were
measured with a vernier caliper and the 2 largest perpendicular
diameters were recorded and averaged. Weekly tumor measurements were
totaled for each rat, and expressed as "summation of average tumor
diameter per rat" for each treatment group. Average period of tumor

appearance was calculated for all tumors in each treatment group. A
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tumor which had decreased by 5 mm or more in average tumor diameter was
classified as regressing. A tumor that had increased by more than 5 mm
in average tumor diameter was classified as growing, and a tumor that
had changed less than 5 mm in average tumor diameter was considered
stable. To determine hormonal-dependency of mammary tumors, tumor-
bearing rats were bilaterally ovariectomized and tumor growth was
followed during the subsequent weeks.

VI. Radioimmunoassay (RIA) of Hormones

Serum PRL, LH and FSH were measured by a double antibody technique
of Niswender et al. (1968; 1969) or as described in the NIAMDD RIA kits.
These are non-equillibrium assays which used a specific antibody to
rat-PRL, rat-LH, and rat-FSH. Rat-PRL, LH and FSH were iodinated using
chloramine-T, followed by separation on a P-60 bio-gel column (Bio-Rad
Laboratories, Richmond, CA). Antibody-antigen complexes were precip-
itated by addition of rabbit gamma globulin antiserum produced in sheep.
Serum samples were run in either duplicate or triplicate. Only serum
volumes which gave hormone values which corresponded to the linear
portion of the standard curve were used. Hormone concentrations were

+

expressed as the mean = standard error of the mean (S.E.).

VII. Statistical Analysis

Statistical differences between group means for serum LH, FSH and
PRL 1levels, average number of LH pulses per 3 hr period, mean pulse
amplitude, average latency period in tumor appearance, number of tumors
per rat, average tumor diameter, summation of average tumor diameter and
body weight were determined by one-way analysis of variance and Student-
Newman-Keuls' tests for multiple comparisons among groups. Statistical

differences in tumor incidence between treatment groups were determined
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by X2 with Yates' correction. The results were considered to be

significant if p<0.05 when compared to controls.



EXPERIMENTAL

I. Effects of Morphine and Naloxone on Phasic Release of Luteinizing

Hormone (LH) and Follicle-Stimulating-Hormone (FSH)

A. Objectives

Several recent studies have indicated that the EOP can influence

the secretion of gonadotropic and other pituitary hormones. Acute in-
Jjections of MOR or MET-ENK were reported to inhibit, whereas NAL, a
specific opiate receptor antagonist, stimulated LH and FSH release
(Bruni et al., 1977; Cicero et al., 1976). The EOP also have been
implicated in the regulation of the proestrus LH surge in cycling female
rats (Muraki et al., 1979) and in LH release in prepubertal rats (Ieiri
et al., 1979). Morphine and EOP were shown to block ovulation and the
preovulatory gonadotropin surge on the afternoon of proestrus
(Barraclough and Sawyer, 1955; Pang et al., 1977) and these effects were
reversed by NAL (Packman and Rothchild, 1976). The rise in LH produced
by castration of male rats was partially prevented by MOR and enhanced
by NAL (Van Vugt et al., 1982).

It previously was demonstrated that ovariectomized rats treated
with EB showed a daily proestrous-like surge of LH, and that estrogen is
the stimulus which "turn-on" the daily neural signal for LH release
(Caligaris et al., 1971; Legan et al., 1975). It also was shown that

injection of P to ovariectomized EB-primed rats enhanced the LH surge on
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the day of P injection, but abolished subsequent LH surges (Legan and
Karsch, 1975; Freeman et al., 1976). It is believed that P "turns-off"
the expression of the daily LH surge induced by estrogen. The purpose
of the present investigation was to examine the effects of MOR and NAL
on the EB-induced daily surge signal for LH and FSH release in
ovariectomized rats, and their effects on the ability of P to block
expression of these daily neural signals.

B. Materials and Methods

Animals: Female rats, weighing 250-300 g, were ovariectomized for
at least U4 weeks before treatment with ovarian steroids to induce daily
gonadotropin surges.

Drugs: Morphine sulfate (MOR, Mallinkrodt Laboratories, St. Louis,
MO), and naloxone hydrochloride (NAL, Endo Laboratories, Garden City,
NY), were dissolved in 0.87% NaCl solution (SAL). Estradiol benzoate
(EB) and progesterone (P, Sigma Chemical Co., St. Louis, MO), were
dissolved in corn o0il. Synthetic gonadotropin releasing hormone (GnRH)
was kindly provided by Dr. K. Folkers (Inst. for Biomedical Research,
University of Texas, Austin, TX), and was dissolved in saline. All in-
jections were given subcutaneously (sc).

Experiments: In Experiment 1, 24 ovariectomized rats were given
two injections of 20 ug EB at 1000 hours with an interval of 72 hours.
On the day following the second injection, the animals were divided into
3 groups and given 4 injections to insure effective drug levels during
the entire critical period for phasic gonadotropin release, of either
MOR (5 mg/kg), NAL (0.2 mg/kg), or SAL, at 1300, 1500, 1700, and 1900

hours). Blood was collected via orbital sinus puncture under light
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ether anesthesia at 1000, 1700, and 2000 hours on the day of drug
treatment (day 1) and the following day (day 2).

In Experiment 2, 24 rats were treated with EB and drugs in the same
manner as in Experiment 1. However, starting at 1500 hours on day 1,
the animals were given 6 consecutive injections of either SAL or GnRH
(50 ng /100 g B.W.) sc every 30 min. Blood was collected at 1000, 1800
and 2000 hours for 2 days, as in Experiment 1.

In Experiment 3, 24 rats were injected first with EB, followed 72
hours later by a 2.5 mg P injection at 1100 hours. On the day of P
injection, drug treatments and blood sampling were performed in a manner
similar to Experiment 1.

Experiment 4 was conducted in the same manner as Experiment 3,
except that a 10 mg dose of P was used. Blood was taken at 1000 and
1700 hours on days 1 and 2.

Hormone Assays and Statistical Analysis

Serum levels of LH and FSH were assayed by standard RIA procedures
with NIAMDD kits, kindly provided by Dr. A.F. Parlow. The LH results
were expressed as ug/ ml in Figures 1 and 2 and ng/ml in Table 1, in
terms of the respective reference preparation. Analysis of variance and
Student-Newman-Keuls' test for multiple comparison among groups were
used to analyze the data for the significance of differences among
means.

C. Results

Effects of MOR and NAL on the LH and FSH

Surges in EB- EB-Treated Ovariectomized Rats

EB treatment of control (SAL) rats induced an afternoon surge of LH

on day 1 and 2 (Figure 1). The LH surge was blocked by MOR on day 1,
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FIGURE 1.

Serum LH concentrations in estradiol benzoate (EB, 20 ug) primed
ovariectomized rats on day 1 and day 2. Rats were given 4 sc injections
of morphine (MOR, 5 mg/ kg), naloxone (NAL, 0.2 mg/kg), or saline (SAL,
0.87% NaCl) at 1300, 1500, 1700, and 1900 hours on day 1. Each point
represents the mean and vertical bars represent the S.E. #p<¢0.05, as
compared to SAL controls at 1700 h.
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FIGURE 2.

Serum FSH concentrations in estradiol benzoate (EB, 20 ug) primed
ovariectomized rats on day 1 and day 2. Rats were given 4 sc injections
of morphine (MOR, 5 mg/ kg), naloxone (NAL, 0.2 mg/kg), or saline (SAL,
0.87% NaCl), at 1300, 1500, 1700, and 1900 hours on day 1. Each point
represents the mean and vertical bars represent the S.E. #p«¢0.05, as
compared to SAL controls at 1700 h.
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whereas the NAL-treated group showed a significantly greater LH surge
than the SAL-treated controls on day 1. On the next day, the trend was
reversed, with the MOR group showing a large rebound LH surge and the
NAL group showing no significant surge. Serum FSH showed a surge in the
control rats similar to that of LH. MOR blocked, but NAL had no
significant effect on the FSH surge on day 1 (Figure 2). On day 2, MOR-
treated rats showed no effect, whereas NAL treatment suppressed the FSH
surge.

Effects of GnRH on the LH and FSH Release in

MOR and NAL-Treated Ovariectomized Rats Given

EB-EB

Table 1 shows that the SAL and SAL controls displayed a surge of LH
on days 1 and 2. The MOR and SAL group showed a block of the surge on
Day 1 and a large rebound surge on day 2. The rats given MOR and GnRH
showed a large LH surge on day 1 equal to that of SAL and GnRH-treated
group and also showed a large surge on day 2. The SAL and GnRH group
showed a very large LH surge on day 1 and day 2 surge equal to that of
SAL and SAL controls. The NAL and SAL treated rats showed a
characteristic potentiated LH surge on day 1 and on day 2, again showed
a loss of the LH surge. The FSH response to the different treatments
produced similar trends to that of LH. However, the effects of the
treatments on serum FSH were of lesser magnitude than on LH (Table 2).

Effects of MOR and NAL on the LH and FSH

Surges in EB-P Treated Ovariectomized Rats

The LH surge on day 1 in EB-P treated controls reached a peak about
3 times as high as in the EB-EB treated rats (Figure 3). MOR blocked

the LH surge on day 1, but NAL had no effect on the LH surge. On day 2,
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FIGURE 3.

Serum LH concentrations in estradiol benzoate (EB, 20 ug)-
progesterone (2.5 mg) primed ovariectomized rats on day 1 and day 2.
Rats were given 4 sc injections of morphine (MOR, 5 mg/kg), naloxone
(NAL, 2 mg/kg), or saline (SAL, 0.87% NaCl), at 1300, 1500, 1700, and
1900 hours on day 1. Each point represents the mean and vertical bars
represent the S.E. #p«0.05, as compared to SAL controls at 1700 h.
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FIGURE 4.

Serum FSH concentrations in estradiol benzoate (EB, 20 ug)-
progesterone (2.5 mg) primed ovariectomized rats on day 1 and day 2.
Rats were given 4 sc injections of morphine (MOR, 5 mg/kg), naloxone
(NAL, 0.2 mg/kg), or saline (SAL, 0.87% NaCl), at 1300, 1500, 1700, and
1900 hours on day 1. Each point represents the mean and vertical bars
represent the S.E. #p<¢0.05, compared to SAL controls at 1700 h.
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the NAL and SAL treated groups showed no LH surges in the EB-P treated
rats. Surprisingly, however, the MOR treated group showed a large LH
surge on day 2. Similar trends were observed on serum FSH after
treatment with MOR or NAL (Figure 4).

To determine if the LH surge on Day 2 in MOR treated rats could be
blocked by a higher dose of P, 10 mg/rat was given in Experiment 4. The
NAL and SAL treated groups showed similar surges on LH on day 1, whereas
the LH surge in the MOR group was blocked (Figure 5). On day 2, the LH
surges were blocked in all groups. FSH responded similarly to LH
(Figure 6).

D. Discussion

These observations show that MOR and NAL can alter expression of
EB-induced daily surge signal in ovariectomized rats, not only on the
day of drug treatment, but also on the next day. Previous observations
demonstrated that MOR could inhibit the preovulatory surge of LH and
ovulation in cycling rats (Barraclough and Sawyer, 1955; Pang et al.,
1977), but subsequent events were not followed. In EB-EB treated rats,
MOR blockade of the gonadotropin surge on day 1 resulted in a large
rebound surge of LH on the afternoon of day 2. In contrast, NAL
treatment potentiated the gonadotropin surge on day 1, but inhibited
expression of the daily surge on day 2.

It seems unlikely that the unique effects of MOR and NAL on LH
release on day 2 were due simply to the amount of hormones available for
release by the pitutiary. MOR blockade of the LH surge on day 1 could
have permitted a buildup of gonadotropin stores so that a rebound surge

was seen on day 2. However, since rats given MOR and GnRH showed large
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FIGURE 5.

Serum LH concentrations in estradiol benzoate (EB, 20 wug)-
progesterone (10 mg) primed ovariectomized rats on day 1 and day 2.
Rats were given U4 sc injections of morphine (MOR, 5 mg/kg), naloxone
(NAL, 0.2 mg/kg), or saline (SAL, 0.87% NaCl), at 1300, 1500, 1700, and
1900 hours on day 1. Each point represents the mean and vertical bars
represent the S.E. #p<0.05, compared to SAL controls at 1700 h.
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FIGURE 6.

Serum FSH concentrations in estradiol benzoate (EB, 20 ug)-
progesterone (10 mg) primed ovariectomized rats on day 1 and day 2.
Rats were given 4 sc injections of morphine (MOR, 5 mg/kg), naloxone
(NAL, 0.2 mg/kg), or saline (SAL, 0.87% NaCl), at 1300, 1500, 1700, and
1900 hours on day 1. Each point represents the mean and vertical bars
represent the S.E. #p«¢0.05, compared to SAL controls at 1700 h.
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increases of LH on day 1 and demonstrated the same rebound surge of LH
on day 2, it is reasonable to conclude that these surges seen on day 2
in MOR treated rats were not due merely to an increase in releasable
gonadotropin stores on day 1. Likewise, the NAL potentiated surge on day
1 could have depleted the stores of gonadotropin and rendered the
pituitary unable to respond with a normal gonadotropic surge on day 2.
However, rats given SAL and GnRH did not show a suppression of the LH
surge on day 2, as in the NAL and SAL-treated rats, even though the day
1 surge in the SAL and GnRH-treated rats was many times larger than that
of the NAL and SAL-treated rats. Thus, the action of MOR and NAL on the
gonadotropin surges are not believed to be due to alterations in
capacity of the pituitary to secrete hormones, but rather to their
central effects on the daily surge signal.

The EB-P induced LH surge in ovariectomized rats differs from that
of EB-EB-treated animals, as previously reported, in that the surge was
many times greater, and a subsequent LH surge did not occur. Estrogen
is believed to turn on the daily surge signal, whereas P potentiates the
LH surge on day 1, but turns it off subsequently (Freeman et al., 1976).
Evidence also suggests that P may not inhibit the neural signal for the
estrogen-induced LH surge, but rather render the hypothalamus unable to
respond to the signal with sufficient GnRH release to induce a
gonadotropin surge (dePaolo and Barraclough, 1979). NAL had no effect
on the high LH surge in the EB-P-treated animals on day 1 or on the
blockade of the gonadotropin surge on day 2. However, MOR blocked the
EB-P-induced LH surges on day 1, but a large surge of LH was seen on the
afternoon of day 2. This LH surge on day 2 in MOR-treated rats is in

direct contrast to control rats in which P exposure inhibited the LH
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surge on day 2. Nembutal blockage of the day 1 LH surge has also
recently been shown to result in a 1large LH surge on day 2 in
EB-P-treated ovariectomized rats (dePaolo and Barraclough, 1979). These
results show that MOR injection on day 1 can antagonize the inhibitory
effect of P on the gonadotropin surge induced by EB on day 2. This
antagonism was found to be dose-related, since a higher dose of P (10
mg/rat) overcame the central action of MOR and prevented an LH surge on
day 2.

The neural signal for the preovulatory gonadotropin surge in rats
originates in the preoptic-anterior hypothalamic area (Goodman, 1978),
where GnRH-containing neurons have been found (Flerkd et al., 1978).
Under the appropriate estrogenic conditions, this signal results in the
discharge of GnRH into the portal circulation (Fink et al., 1977; Sarkar
and Fink, 1979). Estrogen also enhances the preoptic area stimulated
release of GnRH (Sherwood et al., 1976) and increases the firing rate of
the preoptic neurons (Fink and Geffen, 1978). Stimulation of the
preoptic area by estrogen 1is believed to "turn-on" the daily
preovulatory surge signal, whereas P decreases the firing rate of these
neurons (Fink and Geffin, 1978) to possibly "turn-off" the surge signal.

Localization of ENK-containing neurons has been 1investigated
immunohistochemically, and the distribution of these terminals was found
to be adjacent to the cell bodies of the steroid-concentrating neurons
in the preoptic and other areas of the hypothalamus (Sar et al., 1977).
These observations suggest that the action of MOR and NAL occur at the
preoptic-anterior hypothalamic areas of the brain, and that the opiates

modulate steroid regulation of GnRH release. An alternate explanation
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is that MOR and NAL act via other neurotransmitters in the brain to

regulate GnRH release.



81

II. Effects of Morphine (MOR) and Naloxone (NAL)

on Inhibition by Ovarian Hormones of Pulsatile

Release of LH in Ovariectomized Rats

A, Objectives

Endogenous opioid peptides have been shown to inhibit secretion of

LH, whereas NAL, a specific opioid antagonist, stimulates gonadotropin
release (Bruni et al., 1977). The opiates also may participate in regu-
lating the negative feedback of testosterone (Cicero et al., 1979) and
estrogen (Van Vugt et al., 1982) on LH release, since NAL was able to
counteract the inhibitory feedback by these steroids on LH release. The
opiates and NAL have been shown not to alter GnRH-stimulated release of
LH by the pituitary in vivo or in vitro (Cicero et al., 1977; 1979),
indicating that their effects are mediated via hypothalamic mechanisms.
Luteinizing hormone in ovariectomized rats is released in a
pulsatile manner (Gay and Sheth, 1972). Several hypothalamic
neurotransmitters, as well as electrical stimulation of hypothalamic and
other brain regions (Drouva and Gallo, 1976; Gallo and Osland, 1976;
Gallo and Drouva, 1979; Gnodde and Schuiling, 1976; Weick, 1978) have
been shown to greatly alter pulsatile LH release in ovariectomized rats.
The ovarian steroid environment was shown to be of critical importance
in determining the magnitude and direction of the LH response to these
stimuli (Vijayan and McCann, 1978). The purpose of the present
investigation was to examine the effects of MOR and NAL on the pulsatile
release of LH in ovariectomized rats, with or without treatment with

ovarian steroids.
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B. Materials and Methods

Animals: Adult female Sprague-Dawley rats ovariectomized under
ether anesthesia 4-5 weeks prior to use and weighed 350-400 g at the
time of experimentation.

Blood Collection: Saline (0.87% NaCl) filled intracardiac venous

cannulae were implanted under ether anesthesia. Drugs were injected via
cannula every hour for the entire 3-hour experiment, starting 15 min
prior to the first blood sampling. Blood samples in all experiments
were taken at 15 min intervals for 3 hours (1000-1300 hours). An 0.1 ml
sample of blood was first removed via a syringe. A second syringe was
then used to withdraw 0.3 ml of blood, after which the contents of the
first syringe were injected into the animal, followed by an injection of
0.3 ml of sterile saline. During the 3-hour period hematocrits
decreased not more than 20%.

Drugs: Morphine sulfate (MOR, Mallinckrodt Laboratories, St.
Louis, MO) and naloxone hydrochloride (NAL, Endo Laboratories, Garden
City, NY) were dissolved in sterile saline (0.87% NaCl, USD, Cutter
Laboratories, Berkeley, CA) and injected iv via an intra-atrial cannula.
Treatment doses of MOR and NAL were selected based on their ability to
effect changes in serum LH levels, as shown by time course and dose-
response studies of these drugs in our laboratory (Bruni et al., 1977).
EB and P (Sigma Chemicals, St. Louis, MO) were dissolved in corn oil and
injected sc. A modification of the method of Ramirez and McCann (1963)
was used in our study to examine the LH-releasing activity of MOR and

NAL in steroid-primed ovariectomized rats.
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Experiments: Each of the 3 experiments (1-3) contained 7 rats per
treatment group. In Experiment 1, the day after cannula implantation,
ovariectomized rats were given iv injections of MOR (5 mg/kg), NAL (2
mg/kg), MOR and NAL together, or saline, once every hour, starting at
1000 hours.

In Experiment 2, ovariectomized rats were given a sc injection of
20 ug EB at 1000 hours 3 days prior to drug treatment. Drug treatments
and blood samplings were performed in a manner similar to Experiment 1
on the day following cannula implantation.

In Experiment 3, ovariectomized rats were given a sc injection of
20 ug EB and 10 mg P at 1000 hours days prior to drug treatment. Drug
treatment and blood samplings were performed in the same manner as in
Experiment 1 on the day after cannula implantation.

Hormone Assays and Statistical Analysis

Serum was separated by centrifugation and stored at -20°C until
assayed for LH. Serum levels of LH were assayed by a standard RIA
procedure with an NIAMDD kit, The serum LH values were expressed as
ng/ml in terms of the NIAMDD rat LH-RP-1. Each experiment was assayed
for LH separately and unknown serum samples were assayed in triplicates
of 20 wul. An LH pulse was defined as occurring when serum LH
concentrations rose in successive 15-min samples by at least 200 ng/ml.
A pulse was considered to have terminated at a point before serum LH
levels fell by at 1least 200 ng/ml. Analysis of variance and
Student-Newman-Keuls' test for multiple comparisons among groups were

used to determine if differences among means were significant.
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C. Results

Experiment 1.
Effects of MOR and NAL on Pulsatile Release of

LH in Ovariectomized Rats

SAL-treated ovariectomized rats showed episodic LH release, and
amplitude and frequency of the pulses remained stable for the entire
3-hour sampling period (Figure 7). MOR treatment resulted in a signifi-
cant decrease in LH pulse frequency, but did not alter the amplitude of
pulsatile LH release when it did occur (Table 3). MOR treatment
significantly reduced mean serum LH values when compared to SAL-treated
controls. NAL treatment significantly increased the mean amplitude of
LH pulses and slightly, but not significantly, increased the frequency
of pulsatile LH release. NAL treatment also significantly increased
mean serum LH levels. Rats treated with the combination of MOR and NAL
displayed pulse frequency, amplitude and mean serum LH levels similar to
values of SAL-treated controls.

Experiment 2.
Effects of MOR and NAL on the Pulsatile Release of LH in

Ovariectomized-Estrogen-Treated Rats

Pretreatment with 20 ug of EB 3 days prior to drug treatment
resulted in elimination of episodic LH release (Figure 8). MOR did not
alter estrogen inhibition of pulsatile LH release, whereas NAL treatment
reversed the inhibitory effects of estrogen on pulsatile LH release and
the pulses were restored in all 7 animals tested. The average number of
LH pulses for the 3-hour sampling period in NAL-treated rats was

4.,1420,26, while the mean pulse amplitude was 445%33 ng/ml. NAL treat-
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FIGURE 7.

Effects of morphine (MOR) and naloxone (NAL) on
pulsatile LH release in 2 representative animals in each
treatment group of ovariectomized rats.
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ment almost tripled mean serum LH levels when compared to serum LH
levels in controls (Table 4).

Experiment 3.
Effect of MOR and NAL on the Pulsatile Release of LH in

Ovariectomized-Estrogen-Progesterone-Treated Rats

Pretreatment with 20 ug EB and 10 mg P 3 days prior to blood
sampling resulted in the elimination of pulsatile release of LH (Figure
9). NAL treatment blocked the inhibitory effect of the steroids and
pulsatile LH release was observed in 6 of 7 animals. The average number
of LH pulses for the 3-hour sampling period in NAL-treated rats which
showed pulses, was 3.42%0.48, and mean pulse amplitude was 306%46 ng/ml.
NAL treatment more than doubled mean serum LH levels when compared to
serum values in the steroid-treated ovariectomized rats (Table 5).
Morphine had no effect on steroid inhibition of pulsatile LH release.

D. Discussion

These results demonstrate that in estrogen and
estrogen-progesterone-treated ovariectomized rats, NAL blocked the
inhibitory effects of these steroids on pulsatile LH release.
Previously, NAL was shown to block testosterone inhibiton of LH release
in castrated male rats (Cicero et al., 1980) and to block estrogen in-
hibition of LH release in ovariectomized rats (Van Vugt et al., 1982).
Naloxone treatment has also been found to enhance pulsatile LH release
in women during both the late follicular phase (Quigley and Yen, 1980)
and luteal phase (Ropert et al., 1981) of the menstrual cycle. These
reports, together with the present findings, are believed to indicate
that the EOPs participate in mediating the negative feedback exerted by

gonadal steroids on the hypothalamic-hypophysial-LH system.
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Table 4,

Effects of Morphine (MOR) and Naloxone (NAL) on Mean
Serum LH Levels in Ovariectomized Rats Treated 3 Days

Earlier with 20 ug Estradiol Benzoate Per Rat

Treatment N ng LH / ml
Controls (0.87% NaCl) 7 159 + 8%
Morphine (5 mg/kg) 7 190 + 11

Naloxone (2 mg/kg) 7 459 + 30%%

* Mean + S.E.
**p<0,05 as compared to saline treated controls.
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FIGURE 9.

Effects of morphine (MOR, 5 mg/kg), naloxone (NAL, 2 mg/kg), and
saline (SAL, 0.87% NaCl) on pulsatile release of LH in 2 representative
animals (top and bottom) in each treatment group of ovariectomized rats
treated 3 days earlier with 20 ug estradiol benzoate (EB) and 10 mg
progesterone (P).
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Table 5.

Effects of Morphine (MOR) and Naloxone (NAL) on Mean
Serum LH Levels in Ovariectomized Rats Treated 3 Days

Earlier With 20 ug EB and 10 mg Progesterone per Rat

Treatment N ng LH / ml
Control (0.87% NacCl) 7 144 + 5%
Morphine (5 mg/kg) 7 189 + 7

Naloxone (2 mg/kg) 7 357 * 18%%

* Mean + S.E.
**p¢0.05 as compared with saline treated controls.
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After injection, estrogen acts directly on the pituitary to inhibit
LH release in ovariectomized rats, followed 6-9 hrs by a facilitatory
action (Henderson et al., 1977). It has also been shown that
ovariectomized estrogen-P-treated rats demonstrate a high sensitivity
for LH-releasing activity three days following steroid treatment
(Ramirez and McCann, 1963). Thus, NAL was administered after the acute
direct inhibitory effects of estrogen or EB-P treatment on serum LH
levels had occurred in ovariectomized rats, permitting us to study the
LH-releasing activity of NAL.

The mechanism by which MOR, the EOPs, and NAL exert their effects
on LH release is not entirely clear. They do not appear to exert their
effects directly on the pituitary (Cicero et al., 1977; 1978),
suggesting that their actions are mediated via hypothalamic mechanisms.
There is considerable evidence that the noradrenergic system is a major
promoter of GnRH release. Intraventricular injections of NE have been
shown to increase serum LH levels (Krieg and Sawyer, 1976; Van Vugt et
al., 1980) and to stimulate pulsatile LH release (Gallo and Drouva,
1979) in steroid-treated ovariectomized rats. The opiates apparently
inhibit hypothalamic NE activity, since our laboratory recently found
that NAL-stimulated LH release was associated with an increase in
hypothalamic NE turnover (Van Vugt et al., 1981), and increased GnRH
release from the hypothalamus (Van Vugt et al., 1980). Shortly after
injection, MOR increased GnRH concentration 1in the hypothalamus
(Simpkins and Kalra, 1980), probably reflecting inhibition of GnRH
release. MOR also was reported to block catecholamine-induced GnRH
release from hypothalamic tissue in vitro (Rotsztejn et al., 1978).

Intraventricular infusion of NE, however, suppressed or had no effect on
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pulsatile LH release in ovariectomized rats not treated with ovarian
steroids (Gallo and Grouva, 1979). NAL treatment in ovariectomized
rats, however, significantly enhanced pulsatile LH release and therefore
the stimulatory action of NAL on LH release in ovariectomized rats may
not be due entirely to activation of a hypothalamic noradrenergic
mechanism.

MOR and the brain opiates have been shown to reduce hypothalamic DA
activity (Ferland et al., 1977; Van Vugt et al., 1979), and to increaes
5-HT activity (Ieiri et al., 1980; Van Loon and deSouza, 1978), whereas
NAL was reported to decrease 5-HT activity (Ieiri et al., 1980) and may
increase DA activity. Dopaminergic and serotonergic mechanisms also
Wwere reported to be involved in the regulation of pulsatile LH release
(Arendash and Gallo, 1978; Drouva and Gallo, 1976; Gallo and Drouva,
1979; Guoddi and Schuiling, 1976). Opioid-containing neurons have been
found to be located in high concentrations in the hypothalamus and
median eminence, the terminals of these neurons to be intimately assoc-
iated with steroid concentrating and GnRH-containing neurons (Sar et
al., 1977; Tramus and Leonardelli, 1979). These observations suggest,
therefore, that the actions of NAL and MOR on pulsatile LH release in
ovariectomized rats, treated or not treated with ovarian steroids, are
mediated via hypothalamic neurotransmitters that in turn alter GnRH

release.
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III. Relationship of Hormones to Inhibition of Mammary

Tumor Development by Underfeeding During the

"Critical Period" After Carcinogen Administration

A. Objectives

Chronic restriction of food intake inhibits development of mammary

tumors in mice and rats (Dunning et al., 1949; Tannenbaum and
Silverstone, 1950). Food-restricted animals not only showed fewer
mammary tumors, but tumor appearance also was later than in animals fed
ad libitum (Tannenbaum, 1942). The mechanisms by which food restriction
influences mammary tumorigenesis are not entirely clear. However, it
has been shown that food restriction results in decreased secretion of
AP hormones, including PRL and gonadotropins (Campbell et al., 1977).
Mammary tumors induced by DMBA have been shown to be mainly dependent on
PRL and estrogen stimulation (Meites, 1979), although PRL may be some-
what more important than estrogen in the rat (Meites et al., 1971;
Pearson et al., 1969). Estrogen acts directly on the mammary tissue, as
well as indirectly by stimulating pituitary PRL release (Meites, 1979).
No definite role for GH has been established on mammary tumor
development in rats (Evans and Simpson, 1931; Moon et al., 1951).

Dao (1962) established that there is a "critical period" of about
one week after carcinogen treatment of Sprague-Dawley rats for
establishment of mammary tumors. He reported that, if the ovaries were
removed immediately after carcinogen treatment, no mammary tumors
developed; but, if the ovaries were removed seven days after carcinogen
treatment, a full complement of mammary tumors developed. it was of
interest, therefore, to determine whether administration of PRL,

estrogen, GH, or all three together, given during the "ecritical period"
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after carcinogen administration, could overcome the inhibition produced
by underfeeding on development and growth of mammary tumors in rats.

B. Materials and Methods

Treatments: Seven days prior to DMBA administration, 50-day old
virgin female rats were divided into 6 groups (A to F), with 17 to 18
rats /group. Group A was fed rat chow (Ralston Purina Co., St. Louis,
MO) ad libitum and served as full-fed controls. They consumed an average
of about 20 g daily. Food-restricted rats were given 10 g of food once
a day between 1000 and 1200 hrs; and it was noted that the entire ration
was quickly consumed by the hungry rats.

At 57 days of age, the rats were each given a single iv injection
of 1 ml lipid emulsion containing 5 mg 7,12-dimethylbenz(a)anthracene
(DMBA, Huggins et al., 1959). Starting 1 day prior to and continuing
for 7 days after DMBA injection, animals were subjected to various drug
and hormone treatments. Groups A and B received a daily 0.1 ml sc
injection of each vehicle (1 injection of corn oil and 2 injections of
0.87% NaCl solution). Group C received a daily sc injection of
haloperidol (HAL, McNeil Laboratories, Ft. Washington, PA), at a dose of
0.5 mg/kg, suspended in 0.1 ml 0.87% NaCl solution, plus a 0.1 ml
injection of both corn oil and 0.89% NaCl solution. HAL, a DA receptor
blocker, was administered to increase pituitary PRL release. Group D was
given a daily s.c. injection of bovine GH at a dose of 0.5 mg, suspended
in 0.1 ml 0.87% NaCl solution to increase serum GH levels, plus a 0.1 ml
injection of both corn oil and 0.87% NaCl solution. Group E received a
daily sc injetion of EB (Sigma Chemical Co., St. Louis, MO) at a dose of
1 ug dissolved in 0.1 ml corn oil, to raise serum estrogen levels, plus

2 injections of 0.1 ml 0.87% NaCl solution. Group F was given a daily
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0.1 ml sc injection of HAL (0.5 mg/kg), EB (1 ug/kg), and GH (0.5
mg/kg).

After 8 days of treatment, injections were terminated, but
restricted food intake was continued until 30 days after DMBA
administration. At this time, the caloric-restricted groups B to F were
returned to ad libitum feeding for the remainder of the experiment.

Tumor Measurements: Tumor measurements and body weights were

recorded at weekly intervals from the beginning until termination of the
experiment. Average tumor diameter for each palpable tumor was
determined by using the mean of the two largest perpendicular diameters
as measured with vernier calipers. Tumor size was expressed as the
summation of average tumor diameter of all tumors found in a treatment
group. Average latency period was calculated for all tumors in a group.

Blood Collection and Hormone Assays: Blood was collected under

light ether anesthesia by orbital sinus puncture on the last day of drug
and hormone administration (7 days after DMBA administration) and on
the last day (37th) of food restriction. The final blood sample was
collected upon termination of the experiment (26th week) by
decapitation, and mammary tumors were examined by gross dissection. 1In
all three sampling periods, blood was collected between 1000 and 1100
hours, when PRL levels in female rats are approximately equal throughout
the estrous cycle. Serum was separated by centrifugation and stored at
-20°C until assayed for PRL by a standard RIA method.

Statistical Analysis: Statistical differences in tumor incidence

between treatment groups were determined by X2 with Yates' correction

(1934). Statistical differences in serum PRL levels, average latency
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period in tumor appearance, number of tumors per rat, and average tumor
diameter between groups were determined by analyses of variance and
Student-Newman-Keuls' test, used for multiple comparisons among groups.
The results were considered to be signifiant if p<0.05 when compared to
food-restricted controls.

c. Results

The effects of the different treatments on mammary tumor incidence
are shown in Table 6. Tumor incidence in the full-fed controls (Group
A) was T75%, and the average number of tumors per rat was 2.69. Average
tumor latency period was 106.6%6.5 days. Food restriction for 7 days
prior to the 30 days after DMBA administration (Group B) decreased the
incidence of tumors to only 29%, and average latency was 140.8%7.8 days.
These values were significantly different from those in the full-fed
controls. The food-restricted rats, which received daily injections of
HAL for one day prior to and 7 days after DMBA administration (group C),
showed a slight but nonsignificant increase in incidence of tumors (60%)
and a decrease in average latency period to 125.5%6.6 days, when
compared with food-restricted controls not given HAL (group B).
However, the differences between groups C and B were not statistically
significant. The food-restricted rats, which received daily injections
of GH one day prior to and 7 days after DMBA administration (group D),
showed no differences in tumor development when compared with the
food-restricted controls (group B). Only 1 tumor appeared early in this
group which resulted in a reduced average latency of 105.9%8.8, as
compared with the food-restricted (group B), and this difference was not
found to be significant. Underfed rats, which received daily injections

of EB for one day prior to and 7 days after DMBA administration (group
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E), showed a significant increase in tumor incidence (71%). The
decreased average latency period of 126.2%3.0 days was not found to be
significantly different from that in the food-restricted controls (group
B). Underfed rats, which received daily injections of HAL, GH, and EB 1
day prior to and 7 days after DMBA administration (group F), showed a
significant increase in tumor incidence (86%) and in average number of
tumors per rat (2.75). The average tumor latency period of 131.3%3.9
days was not significantly different from that in food-restricted
controls (group B).

The effect of drug and hormone injections on mammary tumor size in
the different treatment groups are shown in Figure 10. Tumors first
appeared in the full-fed controls (group A) approximately 9 weeks after
DMBA administration, and tumor size continued to increase for the
duration of the experiment. Three tumors in the full-fed group were
found to show regression after a period of growth. This regression was
not complete. These tumors were included in determining average tumor
diameter for the full-fed group (group A) in Figure 10. All the
food-restricted groups, except the half-fed rats given GH (Group D),
showed a delayed appearance of tumors which first appeared 13 to 14
weeks after DMBA administration.

The control rats restricted to underfeeding for 7 days prior to and
30 days after DMBA administration (group B) showed severe suppression of
tumor size that persisted throughout the entire 26-week experiment (Fig.
9). Food-restricted animals in group C, which received daily injections
of HAL one day prior to and 7 days after DMBA administration, showed a
slightly earlier onset of mammary tumors, but no differences were seen

in average tumor size, as compared with that of the food-restricted
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FIGURE 10.

Summation of average tumor diameter per week after DMBA
administration in under-fed rats with or without drug and
hormone treatment during the "critical period." p<0.05, as
compared to under-fed controls.
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controls (group B). The food-restricted animals in group D, which
received daily injections of GH one day prior to and 7 days after DMBA
administration, showed no differences in tumor size as compared to tumor
size in the underfed controls (group B). Only 1 rat in this group
showed early appearance of a single mammary tumor. Food restricted
animals in group E, which received a daily injection of EB one day prior
to and 7 days after DMBA administration, showed increased tumor size
when compared to the food-restricted controls (group B), but tumor size
was lower than in the full-fed controls (Group A). Food-restricted
animals in Group F given daily injections of HAL, GH, and EB one day
prior to and 7 days after DMBA administration showed significant
increases in tumor incidence and size of tumor when compared with the
food-restricted controls (Group B). These rats reached an average tumor
size equal to that of the full-fed controls.

Serum PRL for each treatment group is shown in Table 7. The first
blood sample was collected on the last day of treatment (7 days after
DMBA administration) and showed that serum PRL levels were suppressed in
the food-restricted controls (Group B), as compared with the full-fed
controls (Group A). The food-restricted rats given HAL showed a
significant increase in serum PRL, as did the food-restricted rats given
EB. The food restricted rats given the combination of HAL, GH, and EB
showed significantly greater serum PRL levels than any of the other
groups. The serum PRL 1levels of all groups of half-feeding were
significantly lower on the last day of food restriction (37th day) than
full-fed controls (Group A). On the day the experiment was terminated
(26th week) and when all animals had long since returned to ad libitum

feeding, assays showed no differences in serum PRL levels amoung groups.
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The effects of food restriction on average body weight can be seen
in Figure 11. The full-fed controls (Group A) continued to gain weight
throughout the entire experiment, when the animals reached approximately
300 g each, at which time further weight gains were minimal. All groups
(B to F) on restricted food intake initially showed a reduction in body
weight. At the end of 1 week, these food-restricted animals established
a lower steady-state body weight which persisted for the duration of the
period of restricted food intake. When placed on ad libitum food intake
30 days after DMBA-treatment, these rats gradually reached body weight
equal to that of the controls fed ad 1libitum. Drug and hormone
treatment given to the various food-restricted groups had no significant
effect on average group body weight.

D. Discussion

This study demonstrates that the inhibitory effect of half-feeding
on the formation of DMBA-induced mammary tumors in rats was largely the
result of a hormonal deficiency state at the time of tumor initiation
and could be counteracted by administering estrogen, HAL, and GH.
Animals subjected to food restriction for 7 days before and 30 days
after exposure to DMBA showed a significant (and perhaps a permanent)
reduction in incidence and growth of mammary tumors during the 26 weeks
after DMBA administration. The reduction in body weight of the underfed
rats was significant, but body weight increased rapidly after the rats
were returned to ad libitum feeding. Treatments that raised serum PRL
and estradiol levels in these food-restricted animals for only one day
before and 7 days after DMBA injection prevented the decrease in mammary
tumor incidence and growth. In fact, underfed groups given the

combination of HAL, EB, and GH showed as high an incidence of mammary
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FIGURE 11.

Average body weights of under-fed rats given different
drug and hormone treatment during the "critical period."
The control fed ad libitum initially grew at a faster rate
than any of the under-fed rats, whether or not they received
hormones or haloperidol (HAL). When underfeeding was
terminated 30 days after DMBA-treatment all rats grew
quickly and reached ad libitum control values after about 3
weeks.
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tumors as controls fed ad libitum. This indicates that PRL and estrogen
are particularly important for mammary tumor induction during the
"eritical period" following the first 7 days after DMBA-injection.
These 2 hormones were shown previously to be essential for carcinogen-
induced mammary cancer development and growth in rats (Meites, 1972).

Both HAL and EB injections in food-restricted rats increased serum
PRL 1levels and mammary tumor incidence. Haloperidol, a dopamine
receptor blocker, is known to be a potent stimulator of PRL release in
rats (Grandison and Meites, 1976). It is also well established that
estrogen can increase PRL secretion (Chen and Meites, 1970) and that
both estrogen and PRL act directly on the mammary tissue to promote
mammary tumor development in rats (Meites, 1972). Estrogen cannot
stimulate or maintain mammary tumor growth in the absence of PRL
(Meites, 1972), but PRL alone apparently can promote limited development
and growth of DMBA-induced mammary cancers in rats after ovariectomy
(Meites et al., 1971; Pearson et al., 1969). Therefore, stimulation of
mammary tumor development and growth by estrogen administration in food-
restricted rats probably resulted from the additive effects of elevated
serum PRL and estrogen. In addition, both PRL and estrogen receptors
have been shown to be present in mammary tumors (DeSombre et al., 1976),
and it is possible that underfeeding reduced these receptors in the
mammary tissue. PRL was reported to increase estrogen receptors (Leung
et al., 1975), and PRL was shown to increase its own receptors in rat
mammary tissue (Kelly et al., 1974).

Treatment of underfed rats for 8 days with the combination of HAL,
EB, and GH produced mammary tumor incidence and growth equal to that of

full-fed controls. The greater mammary tumor incidence in the underfed
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rats given the combined treatment may in part result from enhanced PRL
secretion by the estrogenized pituitary in response to HAL stimulation
(Grandison and Meites, 1976). This is indicated by the significantly
higher serum PRL levels in these animals as compared with rats given HAL
or estrogen alone.

GH did not appear to stimulate mammary tumor development in the
rats in this study. One rat given GH showed early appearance of a
single mammary tumor, but this was of doubtful significance in view of
lack of tumor development in the remaining animals of this group. A
definite role for GH in mammary tumor development and growth in rats has
not been demonstrated previously (Evans and Simpson, 1931; Moon et al.,
1951), although it was reported to act synergistically with PRL in
promoting DMBA-induced mammary tumor development in ovariectomized rats
(Talwalker et al., 1964), GH had no effect on growth of existing
DMBA-induced mammary tumors in rats (Nagasawa and Yanai, 1970; Iturri
and Welsch, 1976).

It is well established that caloric restriction can reduce the
incidence of many types of tumors, including non-endocrine-related
tumors (Tannenbaum, 1942). The delays in development of tumors by
restricted food intake generally have been assumed to be due to the
reduced availability of nutrients to the potentially tumorous tissues
(Bullough, 1950; Stragard et al., 1979). However, it is clear that
reduced food intake also results in a reducted secretion of AP hormones
and hormones of their target organs (Campbell et al., 1977). Such a
"pseudohypophysectomy” condition can have ©profound effects on
development of endocrine-related tumors, as shown in this study. The

reduction in pituitary hormone secretion produced by underfeeding also
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may 1influence development of non-endocrine-related tumors, since a
decrease of these hormones results in changes of many metabolic

processes.
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Iv. Influence of Underfeeding During the "Critical

Period" or Thereafter on Carcinogen-Induced Mammary

Tumors in Rats

A. Objectives

Previously, we demonstrated that animals subjected to a 50%

reduction in food intake 7 days prior to and 30 days after DMBA
administration showed a significant and apparently permanent reduction
in the incidence and growth of mammary tumors, even though the rats were
returned to ad libitum feeding for the subsequent 26 weeks of the
experiment. These observations also provided direct evidence for
endocrine involvement in inhibition of mammary tumorigenesis by food
restriction. Treatments that increased PRL and estrogen levels, the 2
hormones essential for mammary tumorigenesis (Meites, 1972), for only 1
day before and 7 days after DMBA administration, prevented inhibition of
mammary tumorigenesis despite food restriction .

It has been established that the first week after carcinogen
administration to Sprague-Dawley rats is critical in terms of hormonal
requirements for development of mammary tumors (Dao, 1962). Since food
restriction results in decreased secretion of AP hormones (Campbell et
al., 1977; Mulinos and Pomerantz, 1940) and inhibition of normal estrous
cycles (Piacsek and Meites, 1967), the hormonal deficiencies that
develop during the first week after DMBA administrationmay be respon-
sible for the inhibition of mammary tumorigenesis.

The purpose of the present study was to determine Iif
food-restriction begun 1 week before and during the first "critical"
week after DMBA administration was as effective for inhibiting mammary

tumorigenesis as underfeeding for 1 week before and 30 days after DMBA
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administration as shown previously. It also was of interest to
determine whether food-restriction imposed for 2 or 4 weeks after the
first critical week following DMBA administration had any effect on
development of mammary tumors.

B. Materials and Methods

Forty-day old virgin female Sprague-Dawley rats were divided into 5
groups (A to E). Rats were housed in single cages and allowed to drink
water ad libitum. All rats were fed laboratory rat chow ad libitum
until individual groups were placed on half-feed. Vaginal smears were
taken every day and only rats with regular U4-day estrous cycles were
used.

At 50 days of age, rats in group A served as full-fed controls, and
remained on ad 1libitum feeding for the entire 21 weeks of the
experiment. Rats in Group B were given 10 g of food once daily between
1000 and 1200 hours. This was determined to be approximately 50% of the
average daily food consumed by ad libitum rats, as described previously.
Rats in group B were placed on this restricted food intake for 1 week
before and 1 week after DMBA administration. These rats were begun on
half-feeding for 1 week before carcinogen administration to ensure that
the effects of underfeeding already were manifested by the first day
after DMBA injection. Groups C through E remained on ad libutum food
intake, but at progressively lengthened periods of time after carcinogen
administration they were placed on half-feed for 2 or 4 weeks, and
subsequently were returned to full- feeding.

At 57 days of age, all rats were given a single i.v. injection of 1
ml lipid emulsion, containing 5 mg DMBA. It was noted that in each

treatment group, approximately equal numbers of rats were found to be in
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each stage of the U-day estrous cycle at the time of DMBA
administration, with the exception of the underfed rats in Group B,
which displayed irregular cyclicity. One week after DMBA administration,
rats in Group B were returned to full-feed. Rats in Group C were placed
on half-feed for 2 weeks, beginning 1 week after DMBA administration,
and were then returned to full-feeding. Rats in Group D were placed on
half-feed for 2 weeks beginning 3 weeks after DMBA administration, and
then returned to ad libitum feeding. Rats in Group E were placed on
half feed for U4 weeks, beginning 5 weeks after DMBA administration, and
then were returned to full-feed.

Tumor Measurements

Tumor measurements and body weights were recorded at weekly
intervals from the beginning until termination of the experiment.
Average tumor diameter for each palpable tumor was determined by using
the mean of the 2 largest perpendicular diameters measured with vernier
calipers. Tumor size was expressed as the summation of average tumor
diameter per rat for all tumors found in a treatment group. Average
latency period was calculated for all tumors in a group.

Blood Collection and Prolactin Assay

Blood was collected under light ether anesthesia by orbital sinus
puncture on the last day of each food- restricted period 1, 3, 5, and 9
weeks after DMBA administration. Blood was collected between 1000 and
1100 hours, when PRL levels in female rats were similar throughout the

estrous cycle (Butcher et al., 1974). Serum was separated by
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centrifugation and stored at -20°C until assayed for PRL by a standard
RIA method.

Statistics

Statistical differences in tumor incidence between treatment groups
were determined by X2 with Yates' correction. Statistical differences in
serum PRL levels, average latency period in tumor appearance, number of
tumors per rat, differences in average tumor diameter and average body
weight between groups were determined by analysis of variance and
Student-Newman-Keuls' test for multiple comparisons among groups. The
results were considered to be significant if p<0.05 when compared to
full-fed controls in Group A.

C. Results

The effects of the different periods of underfeeding on mammary
tumorigenesis after DMBA administration are shown in Table 8. Mammary
tumor incidence in the full-fed controls (Group A) was 80.9%, and the
average number of tumors per rat was 3.2. Average tumor latency period
was 103%3.6 days. Food restriction for 1 week prior to and 1 week after
DMBA administration (Group B) significantly decreased the incidence of
tumors to only 27.8%. Average latency period was increased over that of
full-fed controls to 125%7.0 days, but this difference was not
signficant. Rats underfed for 2 weeks beginning 1 week after DMBA
administraton (Group C) showed only a slight reduction in mammary tumor
incidence and tumor number, and this was not found to be significantly
different from tumor incidence in the full-fed controls (Group A).
Similarly, rats underfed for 2 weeks beginning 3 weeks after DMBA
administration (Group D), or underfed for 4 weeks starting 5 weeks after

DMBA administration (Group E), did not show significant differences in
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any of the parameters used to evaluate mammary tumor development when
compared with full-fed controls (Group A). The number of tumors per
tumor bearing rat were not significantly different among these groups.

The effects of food-restriction at different periods of time on
summation of average mammary tumor diameter after DMBA administration
are shown in Figure 12. Tumors first appeared in the full-fed controls
(Group A) approximately 8 weeks after DMBA administration, and tumor
size continued to increase for the 21 weeks of the experiment. Four
tumérs in the full-fed group were found to show regression after a
period of growth, although regression was not complete. A tumor was
considered to display spontaneous regression only when average tumor
diameter decreased by more than 0.5 cm. These tumors were included in
determining average tumor diameter.

Rats underfed 1 week prior to and 1 week after DMBA administration
(Group B) showed a significant reduction in tumor size that remained
small for the entire 21 week of the experiment (Figure 12). None of the
12 tumors which appeared in this group showed regression. Rats underfed
for 2 wWeeks starting 1 week after DMBA administration (Group C)
displayed a slight but not significant inhibition of average tumor
diameter. Four tumors in this group exhibited spontaneous regression.
Rats underfed for 2 weeks starting 3 weeks after DMBA administration
(Group D), and rats underfed for 4 weeks starting 5 weeks after DMBA
administration (Group E), did not show significant differences in
average tumor diameter when compared with full-fed controls (Group A).
Three tumors in Group D and 2 tumors in Group E displayed spontaneous

regression during the course of the experiment.
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SUMMATION OF AVERAGE TUMOR DIAMETER [cm]

FIGURE 12.

Summation of average tumor diameter per week for all tumors found
in the underfed treatment groups, for the weeks following DMBA
administration. Group A = full-fed controls. Group B = half-fed 1 week
prior to and 1 week after DMBA. Group C = half-fed 2 weeks starting 1
week after DMBA. Group D = half-fed 2 weeks starting 3 weeks after
DMBA. Group E = half-fed 4 weeks starting 5 weeks after DMBA. #p 0,05,
as compared to under-fed controls (Group A).
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Serum PRL 1levels for each treatment group are shown in Table 9.
The first blood samples were collected on the last day of underfeeding
in Group B (7 days after DMBA administration), and serum PRL levels were
significantly 1lower than in full-fed controls (Group A) or other
treatment groups (C through E). In Group C , when the second blood
sample was collected 3 weeks after DMBA administration and on the last
day of food-restriction, serum PRL values were significantly lower than
in all other groups. Similarly, on the last day of food-restriction for
Group D (5 weeks after DMBA admin- istration), and Group E (9 weeks
after DMBA administration), serum PRL levels were significantly reduced
as compared with full-fed controls. Thus, all treatment groups showed a
significant reduction in serum PRL levels at the end of their respective
underfeeding period.

Irregularities in cycles occurred both as a result of
food-restriction and DMBA administration. Full-fed rats in Groups
A,C,D, and E, displayed typical U4-day estrous cycles prior to DMBA
administration. After injection of DMBA, most rats (81.3%) showed
elongated estrous cycles of 5 to 6 days, characterized by an additional
1 or 2 days of estrus. Food restriction in Groups B through E initially
resulted in irregular cycles followed by cessation of cycling.
Irregular cycling rats in Group B, upon administration of DMBA, showed
continuous diestrus for the remaining 7-day of underfeeding. When
Groups B through E were returned to full-feed, prolonged cycles returned
in 5 to 7 days. Rats in Group A through D returned to 4-day estrous
cycles between 5 to T weeks after DMBA administration. Group E rats
returned to normal Ud-day estrous cycles approximately 2 weeks after

being placed on full-feed (11 weeks after DMBA administration).
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The effects of food restriction on average body weight can be seen
in Figure 13. The full-fed controls (Group A) continued to gain weight
throughout the entire experiment. The animals reached a plateau in
average body weight about 300 g. Rats underfed 1 week prior to and 1
week after DMBA (Group B) showed a significant reduction in body weight
of about 50 g, but at the end of 1 week, no further weight loss
occurred. When these rats were returned to full-feeding, average body
weight increased quickly and reached the level of full-fed controls in
only 2 weeks. Rats in Groups C through E also lost body weight quickly
after being placed on half-feed, but after these rats were returned to
ad libitum feeding, average body weights soon returned to those of
full-fed controls.

D. Discussion

This study provides further evidence that inhibition of mammary
tumor development by underfeeding that encompasses the "critical" first
week after DMBA administration (Group B) is associated with a reduction
in hormone secretion. These rats showed a significant decrease in serum
PRL levels and a probable decline in ovarian steroids as indicated by
initial irregularity and ultimate loss of estrous cycles. These rats
showed a significant and perhaps permanent reduction in mammary tumor
incidence, number, and growth rate, even though they were returned to ad
libitum feeding beginning 1 week after carcinogen treatment. Thus, a
30-day period of food restriction after DMBA administration not inhibit
mammary tumorigenesis.

Animals in treatment groups subjected to similar periods of
food-restrictions (Group C through E) for consecutive periods of time

following the "critical™ first week after DMBA injection, also showed
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FIGURE 13.

Average body weights of rats subjected to different periods of
underfeeding after DMBA administration. Full-fed controls (Group A)
continued to gain weight throughout the 21 weeks of the experiment.
Animals in treatment groups B - E showed reduction in body weight after
being placed on food-restriction, but quickly regained normal weight
when returned to ad libitum feeding.
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reduced levels of serum PRL and disruption of regular estrous cycles,
but this did not result in inhibition of mammary tumorigenesis. This
further demonstrates that only the first week after DMBA administration
is critical for 1long-term inhibition of mammary tumor development by
underfeeding.

Underfeeding previously was shown to decrease the incidence and
growth rate and to increase the average latency period for development
of many types of spontaneous, transplanted, and carcinogen-induced
mammary cancers in mice and rats (Tannenbaum, 1942; Tannenbaum and
Silverstone, 1950; 1953; Tarnowski and Stock, 1956; Welsch and Meites,
1978; White, 1961), whereas food-restriction inhibits the growth of
established mammary tumors but once these animals are returned to
full-feed, mammary tumor growth resumes (Stragand et al., 1979). The
mechanism(s) by which underfeeding inhibits mammary tumorigenesis has
not been fully established, but it has been shown that underfeeding
depresses secretion of AP hormones (Campbell et al., 1977; Mulinos and
Pomerantz, 1940), inhibits normal mammary gland development (Huseby et
al., 1945), and results in cessation of normal estrous cycles (Piacsek
and Meites, 1967). In the present study, rats underfed for 1 week prior
to and 1 week after DMBA administration (Group B) displayed irregular
estrous cycles during the first week of food-restriction and showed
continuous diestrus during the week after DMBA injection. Thus, during
the "critical" week after DMBA administration, cyclic surges of PRL and
estrogen did not occur in these animals (Butcher et al., 1974; Nequin et
al., 1975; Smith et al., 1975). These hormones have been shown to be
essential for the establishment and growth of DMBA induced mammary

tumors in rats (Meites, 1972). Abnormalities in estrous cycles
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previously were reported to result from DMBA administration (Kerdelhue
and El1 abed, 1979; Stern et al., 1968). The earlier demonstration by us
that administration of estrogen and a prolactin release stimulating drug
(haloperidol) during the first week after DMBA administration overcame
the effects of underfeeding, suggests that the inhibitory effects of
underfeeding on mammary tumorigenesis in rats are exerted by decreasing
secretion of these hormones. It also is possible that the ACTH-adrenal
cortical system is involved, since severe underfeeding has been reported
to increase ACTH-adrenal cortical secretion in rats (Tannenbaum and
Silverstone, 1957), and glucocorticoid hormones can inhibit growth of

mammary tumors in rats (Hilf et al., 1965).
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V. Hormone Dependency and Independency During Development and Growth

of Carcinogen-Induced Mammary Tumors in Rats

A. Objectives

Development and growth of mammary tumors induced in female rats by

administering DMBA are primarily dependent on the presence of hormones,
particularly PRL and estrogen (Meites, 1972). A small percentage of
DMBA-induced mammary tumors become hormone-independent or autonomous, as
indicated by continued growth after ovariectomy. Ovariectomy not only
removes the major source of estrogen in the body, but also results in a
significant reduction in PRL secretion by the pituitary (Bradley et al.,
1976). Estrogen 1is a potent stimulator of PRL secretion. The
mechanism(s) involved in establishment of hormone-independent mammary
tumors are not understood. Up to 20% of DMBA-induced mammary tumors in
Sprague-Dawley rats show hormone-independency shortly after their
appearance, and the incidence of autonomy increases with the age and
size of the tumor (Bradley et al., 1976; Griswald and Green, 1970). It
has been established that the first week after carcinogen administration
to Sprague-Dawley rats is critical for development of mammary tumors
(Dao, 1962), and suppression of secretion of estrogen or PRL or both
during the "critical period" apparently results in inhibition of mammary
tumorigenesis (Experiment III). These observations suggest that the
hormonal milieu at the time of tumor induction greatly influences
mammary tumor dynamics. The purpose of the present study was to
determine whether the hormonal dependency or independency that is
observed in DMBA-induced mammary tumors during their growth phase is
related to their initial hormonal dependency or independency during the

"eritical" first week after DMBA administration.
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B. Materials and Methods

Tumor Induction and Drug Treatment

Virgin female Sprague-Dawley rats, 55 days old, were given a single
i.v. injection of 1 ml lipid emulsion containing 5 mg of DMBA, The rats
were housed in plastic cages and fed rat chow and water ad libitum.
Rats were divided into 6 groups (A-F) and starting 1 day prior to and
continuing for 7 days after DMBA administration, animals were subjected
to various drug and hormone treatments.

Group A received a daily 0.1 ml s.c. injection of each vehicle
(0.3% ethanol and 0.87% NaCl solution). Group B received a daily 0.1 ml
s.c. injection of 0.3% ethanol and a daily s.c. injection of HAL (McNeil
Labs, Ft. Washington, PA), at a dose of 0.5 mg/kg, suspended in 0.1 ml
0.87% NaCl solution. HAL, a DA receptor blocker, was administered to
increase pituitary PRL release. Group C received a daily s.c. injection
of EB (Sigma Chemical Co., St. Louis, MO), at a dose of 1 ug dissolved
in 0.1 ml 0.3% ethanol, to raise serum estrogen and PRL levels, together
with an injection of 0.1 ml 0.87% NaCl solution. Group D was given a
daily s.c. injection of bromocryptine (CB-154) (Sandoz, Ltd., Basal,
Switzerland) at a dose of 5.0 mg/kg, suspended in 0.1 ml 0.87% NaCl
solution, and an 0.1 ml s.c. injection of 0.3% ethanol. Bromocryptine,
an ergot drug and DA agonist, was used to reduce PRL release from the
pituitary. Group E received a daily s.c. injection of 20 ug tamoxifen
(TAM, ICI, Rotterdam, The Netherlands) suspended in 0.1 ml 0.3% ethanol,
together with an 0.1 ml s.c. injection of 0.87% NaCl solution. TAM, an
anti-estrogenic drug, was administered to inhibit estrogen action during
tumor induction. Group F received a daily 0.1 ml s.c. injection of TAM

(20 ug/rat) and CB-154 (5.0 mg/kg) to inhibit both estrogen and PRL
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faction. All injections were performed in the morning between 0800 and
1000 hours. After 8 days of treatment injections were terminated.

Tumor Measurement and Classification

Tumor measurements and body weights were recorded at weekly
intervals from the beginning until termination of the experiment.
Average tumor diameter for each palpable tumor was determined by using
the mean of the 2 largest perpendicular diameters as measured with
vernier calipers. Average latency period was calculated for all tumors
in a group.

A tumor which had decreased by 5 mm or more in average diameter was
classified as regressing. A tumor that had increased by more than 5 mm
in average diameter was classified as growing, and a tumor that had
changed less than 5 mm in average diameter was considered stable. Upon
termination of the experiment, tumors were removed for routine
histological examination.

Evaluation of Hormone-Dependency of Mammary Tumors

Sixteen weeks after DMBA administration, all animals were
bilaterally ovariectomized to determine hormonal-dependency of the
mammary tumors. This period of time after DMBA administration was
chosen because at least 94% of the tumors have been classified as adeno-
carcinomas at this time (Griswald and Green, 1970). The percentage of
mammary adenocarcinomas decreases progressively 16 weeks after
carcinogen administration. Tumor growth was followed for 4 weeks after
ovariectomy.

Blood Collection and Hormone Assay

Blood was collected under light ether anesthesia by orbital sinus

puncture on the last day of drug and hormone treatment (7 days after
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DMBA administration), prior to ovariectomy (16 weeks after DMBA
administration) and upon termination of the experiment (4 weeks after
ovariectomy).

In all 3 sampling periods blood was collected between 1000 and 1100
hours, when serum PRL levels in female rats are approximately equal
throughout the estrous cycle. Serum was separated by centrifugation and
stored at -20°C until assayed for PRL by a standard RIA method.

Statistical differences in tumor incidence between treatment groups
were determined by X2 with Yates' correction. Statistical differences
between treatment groups were determined by analysis of variance and
Student-Newman-Keuls' test used for multiple comparisons among groups.
The differences were considered to be significant if p«¢ 0.05 when
compared to vehicle treated controls.

C. Results

The effects of the various hormone and drug treatments given to
rats during the "critical" first week after DMBA administration on
mammary tumorigenesis are shown in Table 10. Tumor incidence in vehicle
treated controls (Group A) 16 weeks after DMBA administration was 72.2%
and the average number of tumors per rat was 3.8. Spontaneous
regression was found in 4 tumors in the control animals (Group A). Rats
which received daily injections 1 day prior to and 7 days after DMBA
administration of either HAL (Group B), EB (Group C), or CB-154 (Group
D), showed slight alterations in mammary tumor development. However,
these differences were not significant when compared to controls (Group
A).

Animals injected during the "ecritical" period after DMBA

administration with TAM (Group E) showed significant reductions in
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incidence (22.2%), as compared with controls (Group A). Similarly, rats
given the combination of TAM and CB-154, 1 day prior to and 7 days after
DMBA administration (Group F), showed significant reductions in tumor
incidence (23.4%) and number of tumors per rat (2.0), as compared with
controls (Group A). This combined treatment was no more effective for
inhibiting mammary tumor development than TAM treatment alone (Group E).
Animals in Groups E and F had no tumors that displayed spontaneous
regression.

Sixteen weeks after DMBA administration, tumor-bearing rats in all
treatment groups were ovariectomized to determine mammary tumor hormone-
dependency. During the 4 week period after ovariectomy, one rat in
Group A, 3 rats in Group B, 1 rat in Group C, 2 rats in Group D, 1 rat
in Group E, and no rats in Group F died. Rats which died during this
time were not 1included in calculations of mammary tumor hormone-
dependency in their respective groups.

The effects of ovariectomy on mammary tumor growth in rats of the
various treatment groups are shown in Table 11. Ovariectomy resulted in
regression of 75% of the mammary tumors in control rats (Group A),
whereas 13.9% were stable and 11.1% showed continued growth. Over 80%
of the tumors found in rats treated with HAL (Group B) and EB (Group C)
during the first M"eritical" week after DMBA administration showed
regression 4 weeks after ovariectomy, while less than 10% of the tumors
were stable or showed autonomous growth. Rats treated with CB-154
during the "eritical" period (Group D) showed little differences in
tumor response to ovariectomy as compared with controls (Group A). Rats
injected with TAM during the "critical" period (Group E) showed a 1/3

reduction in the incidence of mammary tumors that regressed after ovari-
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ectomy (52.4%) and a 3-fold increase in the number of autonomous tumors
(33.3%) as compared to controls (Group A). Rats treated with the
combination of TAM and CB-154 during the "critical" period (Group F)
showed regression of only 27.3% of the mammary tumors after ovariectomy.
This is nearly a 2/3 reduction in the incidence of hormone-dependent
tumors as compared to controls (Group A). Interestingly, the incidence
of autonomous tumors found in these rats (Group F) was 54.5% or a 5-fold
increase over controls (Group A).

The percentage change in average tumor diameter in the 4 week
period after ovariectomy in rats of the various treatment groups is
shown in Figure 14, Ovariectomy significantly decreased average tumor
diameter by 50% in control rats (Group A) as compared to initial
preovariectomy values. A significant reduction of average mammary tumor
diameter was also found in rats treated during the "critical period"
with HAL (Group B), EB (Group C), and CB-154 (Group D). Ovariectomized
rats treated with TAM during the T"ecritical period" (Group E)
demonstrated a reduction in average tumor diameter from that of
pre-ovariectomy values, but this was not found to be significant. 1In
contrast to all other groups, rats treated with the combination of TAM
and CB-154 (Group F) during the "critical"™ period demonstrated a
significant increase in average tumor diameter over that of pre-
ovariectomy values and ovariectomized control rats (Group A).

Serum PRL levels for each treatment groups are shown in Figure 15.
The first blood sample collected was on the last day of drug and hormone
treatment (7 days after DMBA administration). Serum PRL levels were
significantly elevated by daily injections of either HAL (Group B) or EB

(Group C), as compared to controls (Group A). Daily injections of
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FIGURE 14,

The percentage change in average tumor diameter in the U4 week
period after ovariectomy in rats of the various treatment groups. Group
treatments during the "critical period" after DMBA administration. A =
vehicle treated controls; B = haloperidol (HAL, 0.5 mg/kg); C =
estradiol benzoate (EB, 1 ug/rat); D = bromocryptine (CB-154, 5.0
mg/kg); E = tamoxifen (TAM, 20 ug/rat). F = TAM, 20 ug/rat plus CB-154
(5.0 mg/kg). ®p<0.05 as compared to initial pre-ovariectomized values.
#%#5¢0.05 as compared to initial pre-ovariectomized values and with

controls (Group A).
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Serum prolactin (PRL) levels for each treatment group at various
time periods. 3Blood collected on the last day of drug and hormone
treatment (7 days after DMBA administration). PBlood collected just
prior to ovariectomy (16 weeks after DMBA administration). ©Blood
collected upon termination of the experiment (20 weeks after DMBA

administration and 4 weeks after ovariectomy). *®p<¢0.05 as compared to
controls (Group A).
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CB-154 resulted in significant reductions in serum PRL when given alone
(Group D) or in combination with TAM (Group F). Rats treated with TAM
alone (Group E) showed no significant changes in blood serum PRL levels
from that of controls (Group A).

The second blood sample was taken 16 weeks after DMBA
administration, Jjust prior to ovariectomy. At this time, when all
animals had long since been removed from drug and hormone treatment, no
differences in serum PRL 1levels were found among treatment groups
(Figure 15). The last blood sample was taken upon termination of the
experiment, 20 weeks after DMBA administration and 4 weeks after
ovariectomy. All rats showed suppressed PRL 1levels in response to
ovariectomy and no differences appeared among treatment groups (Figure
15).

Histological examination of tumor samples taken from all rats at
the end of the experiment showed that 98% of the tumors were
adenocarcinomas. These tumors contained characteristic columns of
epithelial cells many cell layers thick. Little fibrosis was present
and only 1 carcinosarcoma was found in Group E and 1 sebaceous cell
carcinoma in Group B.

D. Discussion

This study demonstrates that suppression of estrogen and PRL at the
time of tumor initiation in rats not only reduces the incidence and
number of mammary tumors, but tumors that developed in these animals
were less dependent on estrogen and PRL for subsequent growth. Control
animals which received injections of vehicle 1 day prior to and 7 days
after DMBA administration (Group A) had a 75% incidence of mammary

tumors and only 11% of these tumors showed hormone-independent growth
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after ovariectomy. In contrast, rats which received daily injections of
the combination of CB-154 and TAM during the "critical" first week after
DMBA administration (Group F), while showing significantly 1lower
incidence of mammary tumors(23%), exhibited about a 5-fold greater
number of autonomous tumors (54%) after ovariectomy than control rats
(Group A). In general, these results indicate that autonomy of
carcinogen-induced mammary tumors is determined by the hormonal
environment during the first week after DMBA treatment. It has been
shown that at 3 months after DMBA administration, 94% of the mammary
tumors found in rats are adenocarcinomas (Griswald and Green, 1970). At
5 months this percentage drops to 80% and by 9 months only 40% of the
tumors are adenocarcinomas. We chose to examine tumor response to
ovariectomy 16 weeks after DMBA administration because tumors at this
early stage of development are nearly all frank adenocarcinomas and
highly hormone-dependent (Bradley et al., 1976).

Our results are in agreement with previous reports showing that
removal of estrogen influence by anti-estrogenic drugs (Jordan, 1976) or
ovariectomy (Dao, 1962) shortly after carcinogen administration in rats
results in significant inhibition of mammary tumorigenesis. Suppression
of serum PRL for several weeks prior to and after carcinogen
administration, also was reported to inhibit mammary tumorigenesis
(Clemens and Shaar, 1972; Kledzik et al., 1974). These investigators,
however, did not determine the subsequent response of these tumors to
ovariectomy. The reason I was unable to suppress mammary tumor
development in rats given daily injections of CB-154 during the
"eritical™ period after DMBA administration may have been due to the

experimental model used. Previous investigators induced
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hypoprolactinemia for 1 week prior to, as well as after DMBA
administration (Clemens and Shaar, 1972; Kledzik et al., 1974), and this
probably delayed maturation of the mammary glands, rendering them less
succeptible to the carcinogen (Cohen, 1981). My results show that
increased circulating levels of estrogen and PRL produced by estrogen
and HAL administration did not greatly alter mammary tumor development
or hormone-dependence.

Early removal of the estrogen influence by TAM during the first
"critical" week after DMBA-administration was more effective than
similar early removal of the PRL influence by CB-154 in determining
subsequent autonomy of the mammary tumors. Daily injections of CB-154
during the "critical period" after carcinogen administration (Group D)
caused significant reductions in serum PRL levels, but mammary tumor
incidence and hormonal-dependency did not significantly differ from
controls (Group A). Treatments with TAM 1 day prior to and 7 days after
DMBA administration (Group E) significantly decreased mammary tumor
incidence without altering basal PRL values. These tumors, however,
failed to show significant regression in average tumor diameter in
response to ovariectomy. The combined treatment of TAM and CB-154
(Group F) was no more effective in inhibiting mammary tumor development
than TAM treatment alone (Group E), but these tumors displayed the
greatest autonomy. These results suggest that during the early events
of tumor initiation, estrogen rather than PRL is the more importanat
influence in development of hormone-dependent tumors. This is supported
by the observation that inhibition of mammary tumor development by
underfeeding 1s reversed by treatment with estrogen, but not by PRL

treatment during the "critical period" after DMBA administration.



137

The majority of established DMBA induced mammary tumors regressed
after ovariectomy. Both hormone-dependent and independent tumors were
found in the same animals, regardless of the treatment given. It is
know that mammary gland susceptability to carcinogen induction of tumors
is highest when the mammary gland contains the 1largest number of
undifferentiated mitotically active terminal end-buds (Russo and Russo,
1978). This occurs in the female rat at approximately 55 days of age
(Huggins et al., 1961; Janss and Hadaway, 1977). Estrogen and PRL
stimulate mitotic activity in normal and neoplastic mammary tissue (Lee
et al., 1975; Welsch et al., 1977). DMBA-induced tumors contain a
heterogeneous cell population and it has been suggested that within a
single tumor, growth in response to stimulatory hormones depends on the
rate of cell division of the hormone-dependent cells within that tumor
(Leung et al., 1975; Minasian-Batmanian and Jabara, 1981). It has been
found that at the time of DMBA administration, the greater the rate of
mitotic activity in the terminal end-buds, the greater the rate of DNA
synthesis. This has been correlated positively with carcinogen binding
and tumor incidence (Janss and Ben, 1978).

Suppression of mitotic activity by combined TAM and CB-154
treatment at the time of mammary tumor initiation could decrease the
number of hormone-dependent cells affected by DMBA action and may
reflect the variability in hormone-dependency of DMBA induced mammary
tumors. This could be responsible for the differences in concentrations
of hormone-dependent versus hormone-independent cell populations in the
tumors. A cell's response to a hormone is mediated by interactions of
that hormone with a specific receptor found on or within the cell.

Estrogen and PRL binding has been found to be generally lower in



138

hormone-independent than hormone-dependent mammary tumors (McGuire et
al., 1971; Turkington, 1974). Identification of PRL receptor sites in
DMBA-induced mammary tumors by autoradiography showed that in some
tumors, all cells contained PRL receptors, while in other tumors up to
50% of the cells remained unlabelled (Costlow and McGuire, 1977). Thus,
within a given mammary tumor, individual cells display wide variability
in hormone binding and dependence. These heterogeneous cell populations
appear to be in a dynamic state, since mammary tumor responsiveness to
ovariectomy declines with increased age and size of the tumor (Bradley
et al., 1976; Griswald and Green, 1970).

In conclusion, I have demonstrated that the hormonal milieu in rats
at the time of initiation of mammary tumorigenesis determines not only
tumor incidence, but also hormone-dependency in these animals. Animals
deficient in estrogen and PRL at the time of DMBA administration develop
fewer tumors, but these tumors are less dependent on these hormones for
subsequent growth. In other words, the mammary tumors that develop in
response to DMBA initially may contain a 1large percentage of
hormone-independent cells and hence apparently remained

hormone-independent during their subsequent growth phase.



GENERAL DISCUSSION

I. Role of Endogenous Opioid Peptides in Regulation

of Phasic and Pulsatile Release of Gonadotropins

The data presented in the first part of the thesis indicate that
the EOP are involved in the regulation of both phasiec and pulsatile
release of gonadotropins. Previously it was demonstrated that
administration of MOR or the EOP inhibits, whereas NAL or naltrexone
stimulates basal secretion of LH and FSH in normal male rats (Bruni et
al., 1977). Naloxone and naltrexone are specific opiate receptor
antagonists. Thus, it can be concluded that the EOP acts to tonically
inhibit basal release of LH and FSH. Our results demonstrate that the
EOP also are involved in modulating the secretion of gonadotropins
during dynamic physiological states.

Previously it was shown that MOR or EOP block ovulation an the
preovulatory gonadotropin surge on the afternoon of proestrus
(Barraclough and Sawyer, 1955; Pang et al., 1977). Our laboratory
recently demonstrated that MOR when, administered once during the
"eritical period" for LH release, at 1400 hours on the afternoon of
proestrus, delayed the surge of serum LH by approximately 2 hours and
lowered the peak LH values (Ieiri et al., 1980). This effect of MOR was
reversed by NAL., Administration of NAL alone did not alter the peak of
the surge on proestrus, but maintained serum LH at significantly higher

levels than that seen in control rats (Ieiri et al., 1980).
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In experiment I, the effects of MOR and NAL on the estrogen-induced
gonadotropin surge in long-term ovariectomized rats was examined. 1In
ovariectomized rats injected with EB followed 3 days later by a second
injection of EB or P, MOR completely blocked the LH and FSH surges on
the day of drug treatment. However, on the following afternoon, a large
rebound surge of these hormones occurred. In contrast, NAL treatment
resulted in a potentiated gonadotropin surge on the day of drug
treatment, but no subsequent surge of LH or FSH occurred on the
following day. These effects of MOR and NAL were found not to be the
result of a build-up or depletion of pituitary stores of gonadotropins,
since administration of GnRH released similar amounts of LH and FSH from
drug or saline-treated rats. Thus, it can be concluded that the EOP are
involved in modulating the neural surge signal for the release of
gonadotropins during ovarian steroid induced positive feedback.

The effects of the opiates and their antagonists does not appear to
result from a direct action on the pituitary. Incubations of MOR, EOP
or NAL with hemi-pituitaries or pituitary cell cultures does not alter
the release of LH and FSH into the surrounding medium (Shaar et al.,
1977; Grandison and Guidotti, 1977). 1In addition, analogs of opiates or
opiate antagonists which do not cross the blood brain barrier produce
characteristic changes in hormone release when administered intra-
ventricularly, but not systemically (Panerai et al., 1981). Thus, the
action of opiates and their antagonist appear to be mediated via
hypothalamic mechanisms.

Ovariectomized rats release LH in a pulsatile manner and
administration of ovarian steroids abolish this episodic release of LH

(Gay and Sheth, 1976). 1In experiment II, the effects of MOR and NAL on
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pulsatile LH release and the interaction of these drugs with ovarian
steroids was examined. Morphine treatment significantly decreased the
frequency of LH pulses and decreased mean serum LH levels in non-primed
ovariectomized rats. Naloxone treatment in non-primed ovariectomized
rats significantly increased the magnitude of LH pulses and mean serum
LH levels, but did not alter pulse frequency when compared to saline
treated controls. The combination of MOR and NAL showed LH pulses
similar in frequency and amplitude as saline treated controls.

Administration of EB in 1long-term ovariectomized rats abolished
pulsatile LH release and significantly decreased mean serum LH
concentrations. Naloxone treatment reversed this inhibitory effect of
EB on episodic release of LH. Similarly, suppression of pulsatile LH
release in EB-P treated ovariectomized rats was reversed by NAL
administration. These results demonstrate that MOR, like the ovarian
steroids, can inhibit the pulsatile release of LH. Administration of
NAL blocks this inhibitory effect of MOR, EB or EB-P on pulsatile LH
secretion. This suggests that the EOP can modulate the inhibitory
effects of ovarian steroids on pulsatile LH release. This suggestion is
supported by the finding that NAL increases the frequency and amplitude
of LH and FSH pulses during the luteal and late folliculary phase of the
human menstrual cycle (Quigley et al., 1980; Ropert et al., 1981). 1In
addition, NAL has been shown not only to block the inhibitory effects of
testosterone on the post-castration rise of LH in male rats (Cicero et
al., 1980), but also can block the negative feedback inhibition of
estrogen or the combination of estrogen plus progesterone in castrated

female rats (Van Vugt et al., 1982).



142

The EOP are highly concentrated in hypothalamic and preoptic areas
of the brain, and their neurons are in close association with steroid
concentrating, aminergic and GnRH containing neurons (Sar et al., 1977).
Previously it was demonstrated that opiates decrease hypothalamic
turnover of catecholamines (Van Vugt, 1977) and increase the turnover of
serotonin (Ieiri et al., 1980), resulting in the inhibition of serum LH
release. It is possible that during positive feedback, ovarian steroid
reduced brain opioid activity to stimulate LH release, whereas during
negative feedback ovarian steroids stimulate brain opioid activity and
inhibit LH release.

In conclusion, the observations in experiment I and II demonstrate
that the EOP are intimately involved in the regulation of both phasic
and pulsatile gonadotropic hormone secretion. Furthermore, the
hypothesis that gonadal steroids and the EOP inhibit GnRH release in the
hypothalamus by a common mechanism is supported by the finding that
opioids mimic, whereas NAL antagonizes the effects of gonadal steroids
on gonadotropin release. It is possible that both EOP and gonadal
steroid receptors are present in GnRH containing neurons and that the
EOP tonically regulate the activity of these cells. Thus changes in
activity of GnRH neurons in the brain could represent interactions among
EOP, neurotransmitters, and gonadal steroids. Whether the action of the
EOP is exerted directly on GnRH secreting neurons, or on brain
neurotransmitters, or on a combination of these, remains to be

determined.
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ITI. Relation of Hormones and Food Intake to Development

and Hormone-Dependency of Carcinogen-Induced

Mammary Tumors

The role of diet in mammary tumorigenesis has been investigated for
many years, and it is well established that caloric-restriction inhibits
the formation of spontaneous and carcinogen-induced mammary tumors in
laboratory rodents (Tannenbaum, 1940; Dunning et al., 1949). The exact
mechanism by which underfeeding inhibits mammary tumor development,
however, has not been firmly established. The subject of the research
reviewed in the second part of this thesis, focused upon the involvement
of the endocrine system and nutrition at the time of tumor induction on
the subsequent development of mammary tumors and on their hormone
dependency.

It had been suggested that the effects of caloric-restriction on
mammary tumor development result from the reduced intake of some
essential nutrients for the growth of potentially tumorous mammary
tissue (Bullough, 1950). However, underfed rats and mice may 1live
longer than full-fed animals and remain in good health (McCoy and
Crowell, 1934). Most of the previous work dealing with the effects of
caloric-restriction on mammary tumor development utilized hormone-
dependent tumors. Therefore, it was important to determine the effects
of food-restriction on hormone secretion in rats with carcinogen-induced
mammary tumors.

Animals on restricted food intake have shown changes in ovaries,
uterus, and mammary tissue analogous to that seen in hypophysectomized
animals (Huseby et al., 1945). Food-restriction has also been shown to

decrease secretion of AP and ovarian hormones (Campbell et al., 1976;



144
Piacsek and Meites, 1967). In addition, food-restricted animals display

adrenal hyperfunction which could contribute to inhibition of mammary
tumor development (Boutwell, 1948).

It has been established that the first week after carcinogen
administration to Sprague-Dawley rats is critical in relation of
hormonal requirements for development of mammary tumors (Dao, 1962). In
general, physiological or pharmacological treatments that increase
estrogen and PRL levels at this time promote, whereas treatments that
inhibit the circulating levels of these hormones reduce mammary
tumorigenesis (Meites, 1972). Thus hormonal deficiency in food-
restricted rats at the time of tumor induction may be responsible for
the inhibition of tumor development.

In experiment III, we investigated the effects of hormone
replacement given during the critical first week after carcinogen
administration in food-restricted rats on development of mammary tumors.
We showed that food-restriction for 7 days prior to and 30 days after
DMBA exposure significantly reduced mammary tumorigenesis. Treatment
for 8 days after DMBA with EB produced a significant increase in tumor
incidence in the half-fed rats, while the combination of HAL, EB and GH
returned tumor incidence to that of full-fed controls. These results
suggest that the underfeeding induced suppression of AP function during
the critical first week after DMBA administration was responsible for
inhibition of mammary tumorigenesis.

In experiment IV, we examined whether food restriction begun 1 week
before and 1 week after DMBA administration was as effective for
inhibiting mammary tumor development as underfeeding for 1 week before

and 30 days after DMBA, as shown in Experiment III. Rats in different
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treatment groups subjected to underfeeding for 2 or U4 weeks, at
consecutive periods of time before and /or after DMBA administration,
all showed reduced serum PRL levels and ovarian function (as indicated
by cessation of estrous cycles) at the end of their respective
underfeeding periods. However, only rats underfed during the week
before and the critical first week after DMBA treatment showed
significant reduction in mammary tumor development. The suppression of
mammary tumors that resulted from food restriction during the early
period after DMBA administration apparently resulted in permanent
suppression of mammary tumorigenesis both in experiments III and 1IV.
This further emphasizes the importance of hormones and nutrition during
the critical early period after DMBA tumor induction.

It must be stressed however, that in these experiments, a 50%
reduction in calories during the time of tumor induction was necessary
for the inhibition of mammary tumorigenesis. The severity of such a
restricted diet produces drastic alterations in the basic physiology of
these animals. While it is possible that the inadequate calories or
undernutrition in many developing countries of Asia and Africa may
explain their low incidence in breast cancer, it is obvious that severe
caloric restriction is not a practical method for the prevention of
human breast cancer. Our studies however, do provide a mechanism by
which underfeeding inhibits breast cancer and firmly establishes and
clarifies the involvement of the endocrine system.

The majority of DMBA-induced rat mammary tumors are dependent on
estrogen and PRL for development and growth, but a small percentage of

tumors that develop are hormone independent. We were interested in
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determining whether hormonal dependency during a tumor's growth phase
was related to hormonal-dependency during the first critical week after
carcinogen administration. Our results indicate that suppression of
estrogen and PRL at the time of tumor induction not only significantly
reduced tumor incidence and number, but the tumors which developed were
less dependent on these hormones for their growth, as tumors develop and
grow in size, more of them become independent of hormones. This could
be due in part to loss of hormone receptors. It is possible that the
early hormone-independent tumors dealt with in the present study were
autonomous because they had few hormone receptors at the initiation of
tumor development of DMBA.

In contrast to the rat, approximately 30-50% of human breast tumors
respond to endocrine therapy and predictability for a particular breast
cancer hormone-dependency is low (Costlow and McGuire, 1978). Whereas
PRL and estrogen both have been shown to be essential for mammary tumor
development and growth in rats, PRL has not been shown to be important
in human breast cancer, even though a small number of PRL receptors have
been shown to be present in human breast cancer tissue (Holdaway and
Friesen, 1977). On the other hand, estrogen is of definite importance
in human breast cancer. The observation in Experiment V that estrogen
is more important than PRL in determining hormone dependency in early
development of rat mammary tumors, suggests that in both rat and human
breast cancer, estrogen may be more important than PRL in determining

autonomy.
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