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ABSTRACT

BIFURCATION THEORY WITH APPLICATIONS
TO CHEMICAL REACTION EQUATIONS

By

Nancy Theresa Waller

This thesis concerns families of nonlinear differential
equations in a Banach space which depend on one or more para-
meters. At certain critical values of the parameters, non-
trivial equilibrium states may bifurcate from the trivial
solution. We consider two cases.

In the first case, the generalized null space of the
linear part of the system is one-dimensional at the bifur-
cation point, and the system depends on a single parameter.
We determine the number and magnitude of the bifurcating
solutions and their stability properties.

The second case involves dependence on two parameters.
We consider the situation where there are two "bifurcation"
curves in the parameter plane which intersect transversally.
The linear part of the system which corresponds to these
curves has a one-dimensional generalized null space, except
at the intersection where it is two-dimensional. We develop
analytical methods which can be applied to study the number

and magnitude of the bifurcating solutions as a function of
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the parameters near the bifurcation point. We then apply
these techniques to a system of partial differential equa-

tions which arises in the study of chemical reactions.
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CHAPTER 1

PRELIMINARIES

$§1. Bifurcation

As a simple example of bifurcation, consider what is
observed experimentally when a compressive axial thrust
is applied to a thin elastic rod [12]. As the thrust T
is gradually increased from zero, the rod first becomes
thicker and shorter, but its center line remains straight.
The classical linear theory of elasticity predicts this
straight state to be the unique equilibrium state of the
rod for all values of T. However, when T reaches a

certain critical value T the rod is observed to buckle

o’
into a bent state which becomes more pronounced as T in-
creases. The classical theory is inadequate to describe

the phenomenon of buckling. When nonlinear effects are no
longer neglected, one may construct a model which predicts
both the straight state and the bent state as possible equi-
librium states for T greater than Tb.
straight state "loses its stability" to the bent state at

Intuitively, the

this critical value.
Let X, Y, and )\ be Banach spaces, and let F: A xXaY

be continuous. We will say that x

o is an equilibrium



state corresponding to %y in A\ 1if X5 is a solution
of F(ao,x) = 0. We will say that (ao,xo) is a bifur-

cation point for T if and only if

(1) Flag,x5) =0

(ii) For every neighborhood V of (ao,xo), there exist
a in A and Xq15%, in X with Xy # X, such that
(a,xl) and (a,x2) are in V, and F(a,xl) = F(a,xz) = 0.
That is, we can always find a arbitrarily close to a5
such that there is more that one equilibrium state near
Xq that corresponds to a.
§2. Differential Equations and Stability

First we shall mention some standard results, from the
theory of ordinary differential equations [ 8]. Let
A: R" 2 R" be a continuous linear map, and let N: R 4 R"
be continuous, with N(0) = O, DN(O) = O [where DN(O) de-
notes the Fréchet derivative of N at x = 0]. Consider

the ordinary differential equation

(2.1) %%= Ax + N (x)

and the associated linear differential equation

dx _
(2.2) 3t - Ax.
Definition 2.1. The zero solution of (2.1) (or of
(2.2)) is said to be uniformly asymptotically stable if

and only if there exists ¢ > O such that 'xb‘ < e



implies |x(t)| + 0 as t 4 «» where x(t) is the solu-

tion of (2.1) (or of (2.2)) with x(0) = Xq-

and sufficient condition that the system (2.2) be uniformly

A necessary

asymptotically stable is that all the eigenvalues of A
have negative real parts. If this is the case, there exist

positive constants, K and a, such that

-a(t-to)
|x(t)\ < |x0] Ke
where x(t) is the solution of (2.2) with initial condition

x(to) = x If N(x) 1is 0(|x|2) as x approaches zero,

o
the asymptotic stability of (2.2) implies that the zero
solution of (2.1) is asymptotically stable.

We will now consider differential equations in a Banach
space X. Let A be a closed linear operator whose domain
is a dense subspace D(A) contained in X. It is useful
to consider D(A) as a Banach space Y with the so-called
graph norm: |z|Y = |z|x + |Az|x. The injection j: Y 4 X
is continuous with dense range, and A: Y 4+ X is then a
continuous linear map. Let N: Y 4 X be continuous, with

N(O) = 0 and DN(0) = 0. Consider the differential equa-

tion

dz _
(2.3) at = Az +N(z)

and the associated linear differential equation

dz _
(2.4) at = Az,



Here

z(t+h)-z (t)
h

dz _
dt

lim
h40
where the limit is taken in the norm |-|x.

Motivated by the results for ordinary differential

equations, we make the following definition.

Definition 2.2. We shall say that the system (2.4)
is stable if there exists a § < O such that whenever
% 1is in the spectrum of A, Re) < §. We shall say that
the system (2.4) is unstable if part of the spectrum lies
to the right of the imaginary axis.

In many cases, given that (2.4) is stable in this
sense, it is possible to prove stability results analogous
to those for ordinary differential equations [1l0], [13],
[14]. That is, if the linear system (2.4) is stable in the
sense of definition (2.2), then the zero solution of the
nonlinear system (2.3) is stable. These results depend on
the particular properties of the operator A, and we will
not go into them here. 1Instead we make the following hy-

pothesis.

Principle of Linearized Stability. Let 2z = z, be

an equilibrium solution of (2.3). If the linearization of

(2.3) about =z given by

O,



dz _
(2.5) gt = Az +DN(zo)z

is stable in the sense of definition (2.2), then the solu-

tion z = z of (2.3) is stable.

(0]

In what follows, we shall say that 2, is stable, if
(2.5) is stable in the sense of definition (2.2), and that

z is unstable, if (2.5) is unstable. Statements about

o

stability of =z will actually be statements about the

(0]
location of the spectrum of the operator A-fDH(zo).

§3. Analytic Functions and the Implicit Function Theorem
For the sake of completeness, we mention the following

results, which may be found in Dieudonne's Foundation of

Modern Analysis [ 5].

Definition 3.1. Let D be an open subset of KP,
where K= R or €. We say that a mapping £ of D into
a Banach space E over K 1is analytic if, for every point
a € D, there is an open polycylinder P = {z € KP[]zi-ai|<<ri,
1 <i<g p}, such that in P, £(z) is equal to the sum of
an absolutely summable power series in the p variables

(zk-ak), 1 <k < p. The following are true:
(3.2) The power series in (3.1) is unique.

(3.3) Let AC c® be an open connected set, f and g
two analytic functions in A with values in a com-

plex Banach space E. If there is a nonempty open



subset U of A such that £(x) = g(x) in U,
then f(x) = g(x) for every x in A. Let U
be an open subset of A, b a point of U, and
suppose that f£(x) = g(x) in the set UN (b +]Rp),

then f£(x) = g(x) for all x in A.

(3.4) Let E Dbe a complex Banach space, A an open sub-
set of nf’, f an analytic mapping of A into BE.
Then there is an open set B cC c® such that BNRP=
A and an analytic mapping of B into E into which

extends f.

(3.5) A continuously (Fréchet) differentiable mapping f
of an open subset of c® into a complex Banach
space is analytic. [Henceforth, differentiable will

mean Frechet differentiable],

Implicit Function Theorem. Let RB, F, G be three
Banach spaces, f a continuously differentiable mapping
of an open subset A of B xF into G. Let (xo,yo) be
a point of A such that f(xo,yo) = 0 and the partial de-
rivative sz(xo,yo) be a linear homeomorphism of F onto
G. Then there is an open neighborhood Ub of X5 in E
such that, for every open connected neighborhood V of
Xq5 contained in Ub, there is a unique continuous mapping
V into F such that u(xo) = Yqo (x,u(x)) e & and

f(x,u(x)) =0 for any x € V. Furthermore, u is contin-

uously differentiable in V, and its derivative is given by



(3.6) u(x) = -[D,£(x,u(x))] T [D £ (x,u(x))].

If £ is p times continuously differentiable in a neigh-

borhood of (xo,yo), then u 1is p times continuously
differentiable in a neighborhood of Xy The following
also hold

(3.7) If B, F, G are finite dimensional and £ is an-
alytic in A, then u 1is analytic in a neighborhood

of Xq- (Here A c c® or ac RP).

(3.8) If B = ¢p, then u: B « F 1is continuously differ-

entiable, hence analytic by (3.5).

§4. Remarks
In this thesis we will be interested in two special
cases of the following problem which we briefly outline

here. Given a family of differentiable equations

Qu

a% = A(a)z +N(a, z) (as in §2),

which depend on a parameter @ in Cn, describe the set
of equilibrium solutions near a bifurcation point (ao,o)
of the operator F(a,z) = A(a)z +N(a,2). In particular,

we shall be interested in the number of real equilibrium
solutions which correspond to a in IJ‘. We shall intro-
duce the hypotheses we need and make our notions more pre-

cise in the chapters that follow.



In Chapter II, we use the Liapunov-Schmidt method [ 7 ]
to reduce the problem to a finite system of "bifurcation
equations" on a finite dimensional space. We shall then
specialize to a case where a is in C and generalized
null space of A(ao) is one dimensional, and determine the
set of bifurcating solutions along with their stability
properties. This situation arises in fluid dynamics and has
been studied by Kirchgassner and Sorger [13] in the context
of the Taylor problem, and by Kirchgdssner and Kielh&fer
[14] in a general survey of bifurcation in fluid dynamics.
Sattinger [17] has used Leray-Schauder degree to study the
stability of bifurcating solutions, and has obtained results
which overlap those of Chapter II. The technique which we
employ is different, and shows how the sign of the critical
eigenvalue is related to the leading terms in the bifurca-
tion equations.

Chow, Hale, and Mallet-Paret [ 4 ] have studied a two
parameter bifurcation problem which concerns the buckling
of a rectangular plate. 1In one of the situations they -
studied, the generalized null space is two-dimensional. 1In
Chapter III, we shall develop methods for analyzing the bi-
furcation set in a different general setting where the gen-
eralized null space is two-dimensional and the system depends
on two complex-valued parameters. We apply these results to

a system of chemical reaction equations in Chapter 1V.



CHAPTER II

BIFURCATION AND STABILITY-ONE DIMENSIONAL
NULL SPACE

§1. Preliminaries

This chapter is divided into two parts. The first two
sections are largely introductory; we consider the problem
of determining nontrivial equilibrium states which bifurcate

from the trivial solution of

%% = A(a)z +N(a,z),

and give basic hypotheses under which this problem can be
reduced to a finite-dimensional problem. In §3, we consider
the case where the generalized null space of A(0O) is one-
dimensional. We shall assume that for real a, A(a) has
a simple real eigenvalue \*(a) which crosses the imaginary
axis as a moves through zero. The number of bifurcating
solutions and their dependence upon a will be discussed.
In §4, we shall study the stability properties of these
solutions and show how stability is related to the leading
terms of the bifurcation equation.

We now give our basic hypotheses and discuss their con-

sequences.
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(Hl) Let A Dbe an open set in G:n, and let X be
a complex Banach space with dense subspace D(A). Let
A: AxD(A) » X be a closed linear operator with domain
D(A) for each o in A, and let A be analytic in A
in the sense that A(a)z has a Taylor expansion at each
% in A which converges in a disc |a -ao| < r indepen-
dent of z. Assume the origin is in .

It follows from (Hl1), that if Y is the Banach space

consisting of D(A) endowed with the norm
|z|Y = |z|x + |A(0)z|x,

then for some neighborhood U of the origin in d:n, we
may regard A: UxY-+X as a continuous map for each «a

in U.

(H2) Let N: UxY-<X be a continuous map such that
N(a,0) = O and DZN(a,O) =0 for all o in U; [i.e.,
N has zero linear part at (o,0) ]. We assume that N
is continuously Fréchet differentiable in a neighborhood

vV of (0,0).

According to Nachbin [15], this implies that for every

Vo in V, there is a p > O and a power series

?IJMB

1 m
ar Dp (Vv -vg)

that converges to N uniformly for |v—v0] <p. D, is a
M 1In fact, D is the

symmetric m-linear form on [cn x Y] -



11
th . . M
m Frédchet derivative of N at v,., denoted by D (vo).
In most applications, this series is finite.
In most physical problems, we deal with real spaces

and real parameters. Thus we assume

(H3) A and N are extensions of "real" operators

in the sense that A(a)z = A(a)z and N(a,z) = N(a,z).

Now consider the differential equation

(1.1) g—f__ = A(a)z +N(a, z)

and the steady state equation
(1.2) O = A(a)z +N(a,z).

The trivial solution is always an equilibrium state for

a near a =0, If A(0) is a linear homeomorphism of Y

onto X, then the implicit function theorem guarantees that
the only solution of (1.2) in a neighborhood of (0,0) is

the trivial solution. Thus we may expect nontrivial equi-

librium solutions to bifurcate from the trivial solution

at (0,0) only if A(0) 4is not a linear homeomorphism;

i.e., » = 0 is in the spectrum of A(0). We now assume

(H4) A = O is an isolated eigenvalue of A(0) with
finite dimensional generalized null space. For our purposes,
we shall assume that the null space is equal to the gener-

alized null space.
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$§2. Reduction to the Finite~dimensional Problem

We shall show that the problem of determining equilib-
rium solutions of (2.1) corresponding to a near a = O,
can be reduced to a finite system of equations on the gen-
eralized null space of A(0). In our case the generalized
null space is the null space and is finite-dimensional.
Let Py denote this null space.

By standard results from theory of closed operators we

have

Proposition 2.1. There is a continuous projection
P: X.+Px which commutes with A(0) in the sense that

A(O)Pz = PA(O)z for =z in D(A) = Y.

By means of this projection, X may be decomposed
into two complementary subspaces, Px and Qx = range (I -P).
Each element 2z in X can be written uniquely as a sum

z=b+w where b 1is in Py and w is in Qx. By setting

P, = er\Y = P and QY = QXIWY, we have a corresponding

Y X
decomposition for Y c X. These spaces are invariant under

Ao in the sense that A(0): PY--»Px

Furthermore, the spectrum of the restriction of A(O)

and A(0): Qy +Qy-

to Q. does not contain ) = 0, and we have

Proposition 2.2. The restriction A(0): Qy ~4Qy is

a linear homeomorphism.
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The Liapunov-Schmidt method [ 7 ] consists in using
the projections P and I -P given by proposition (2.1)

to decompose the equation
(2.1) 0 = A(a)z +N(a, z)

into an equivalent system of two equations as follows. Let
z in Y bDbe rewritten as z =w+b where w is in QY

and b is in Py: b may be considered as a point in "
where m is the dimension of Py. Equation (1.2) is then

equivalent to the system

(I -P){Aa(0) +[A(a) -A(0)]Uw +b) + (I -P)N(a,w +D)

o

(2.2)
P{A(0) +[A(a) -A(0)]}w +b) +PN(a,w +Db)

o
]

Since P and (I -P) commute with A(O), we have

(2.3)(a) © = F)(a,b,w) = Ay(W) + (I-P)[Aa(a) -A(0)] (w+b)
+ (I -P)N(a,w+Db)
(2.3) () O = 15‘2 (a,b,w) = P[A(a) =A(0O)] (w+D) +PN(a,w +D)
where
Fl: Ume )(QY - QX
and

F2: chmeY -oCm

are continuously differentiable. Since
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D3F1(O,O,O)[a,b,w] = A(O)w-+(I-P)D2N(O,O)[w] = A(O)w,

and the restriction A(0): QY - QX is a linear homeomor-
phism, the implicit function theorem allows us to solve
(2.3) (a) for a unique w(a,b) for (a,b) near (0,0),

such that Fl(a,b,w(a,b)) =0 and w(0,0) = 0. The func-
tion w(a,b) is analytic in some neighborhood of (0,0)

in c® xmm and may be expanded in a convergent power series
in that neighborhood.

We will refer to (2.3) (a) as the auxiliary equation and

(2.3) (b) as the bifurcation equation. Upon substitution of

w(a,b) into (2.3) (b) we have

Proposition 2.3. Under the hypotheses (Hl) - (H4), the
problem of finding equilibrium solutions of (1.1) near the
trivial solution for o close to zero, is equivalent to

solving the finite dimensional problem
(2.4) O = F(a,b) = Fz(a,b,w(a,b))

for (a,b) near (0,0). [F(a,b) is analytic in a neighbor-

hood of (0,0).]

The simplest case occurs where a 1is in €, and the

subspace P is one-dimensional. It is this case which we

Y
shall consider in the remainder of the chapter. 1In the
following chapter we shall discuss a case where Py is

two dimensional.
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§3. Bifurcation [One Dimensional Null Space]

Let A and N satisfy the hypotheses (Hl) - (H4),
with A an open subset of €. A and N are to be thought
of as extensions of "real" operators defined for a real par-

ameter. Let

_ 2
A(a)z = Aoz-+aAlz-+a A2z'+--. .

Recalling the example of the elastic rod in chapter I,
we see that we intuitively expect bifurcation to occur when
the trivial solution "loses its stability". In keeping with

this intuition we make the following assumptions

(H5) ) = O 1is a simple real eigenvalue of A(0O)

with eigenfunction -

By results from analytic perturbation theory, (H5)

implies that A(a) has a simple isolated eigenvalue
A¥(@) = Aqga+a,al 4o
1 2

which is an analytic function in a neighborhood of zero.
Since A(a)z = A(a)z, A*(a) is real for real a. 1In order
to assure that )\*(a) actually crosses the imaginary axis

as o passes through zero, we assume

(56) Ay 7 O.

Thus in the case where the remaining spectrum of A(a)

initially lies to the left of some line Re) =§ (5§ < 0)
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and \*(a) < O for a < O, the trivial solution is stable

for a < O and becomes unstable for a > O.

Example (3.1). Let A(n) =L+uB for u in C,

where L and B are densely defined closed linear operators
on a Banach space X, with D(L) <« D(B). Suppose that L
has a continuous compact inverse and that L-lB has a con-
tinuous compact extension to all of X. The spectrum of A
then consists of isolated eigenvalues with finite multipli-
cities. Suppose )\ = O is a simple eigenvalue of A at

Mo # 0, with eigenfunction 95° Then we have analytic ex-

pansions for the eigenvalue

Ap) = xl(p-p.o) +x2(u-uo)2+---
and the eigenfunction

®(@) = 8+ (=) *oplu-ug)® + -

which are valid, in a neighborhood of y = Mo [11]. We
claim that (H6) is satisfied.
. 1 -1
Since O = (L-—uOB)wo, we have O = [G; I-L B]¢b, and
%o is an eigenfunction for L-lB corresponding to the simple
eigenvalue L . As in proposition 2.1, there is a projection

P: X = span{wo} that commutes with L™ 'B. Then

AMweolw = (L-uB)ep(u),
and

x(u)PL-lcp(u) = PL'l(L-pB)w(u).
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Differentiating with respect to y gives

1

- -1 -1 -1
A (O)PL "oy +%PL ", = PL " (L -y, B)e; +PL "By,

-1 R |
or llPL wo =L B¢O.
. -1 -1
Since 0= (I -L B)cpO and % # 0, L B@O # 0. Thus

Xy 7 O.

Many of the linear operators encountered in mathematical
physics fall into this category.
The aim of this section and its successor is to prove

the following

Theorem 3.1. Let A and N satisfy (Hl1) - (H6). 1In
addition, suppose that the remaining spectrum of A satisfies
|Rex| > &6, for some § > 0. Then one of the following occurs

(i) There is an infinite number of real nontrivial
solutions of (2.2) near the zero solution for a =0 "ver-
tical bifurcation"]

(ii) For each real a near O, there is a real non-
zero solution 2z (a) of (2.2) which may be expanded in a
fractional power series about o = 0. z(a) is the only
nontrivial solution such that zl(a) tends to zero with a.

(iii) There are two real nonzero solutions zl(a) and
zz(a) for (2.2) for a> 0 (a < O0) and none for a < O
(@ > 0). These solutions may also be expanded in fractional

power series.
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Theorem 3.2. Let L(a) denote the linearization of

(2.2) about zl(a) [or zz(a)] given by
L(a) = A(a)-szN(a,zl(a)).

Under the hypotheses of Theorem 3.1, the spectrum of L(a)
remains near that of A(0). For o near zero there is a
simple real eigenvalue )\*(a); A*(a) and \*(a) have oppo-

site signs in a neighborhood of a = O.

Corollary 3.3. If the spectrum of A(a) (with the
exclusion of )A*) satisfies Re) < § < O for a near zero
and )\*(a) < O for real a < O, and there is no vertical
bifurcation, then real nontrivial solutions are unstable

for a ¢ 0O and stable for a > O.

Sattinger [17] has proven a similar result using Leray
Schauder degree when the linear operator A(a) is given as
in Example 3.1, Gavalas [ 6] has also applied degree theory
to the stability of bifurcating solutions. In some cases the
stability for particular systems which arise in fluid mechan-
ics has been determined by perturbation methods t13], (18],
[19]. The proof we give here is different and directly re-
lates the sign of )\*(a) to the derivative of the bifurca-

tion equation.
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We now return to the analysis of the system

(3.1)(a) 0 = Fl(a,b,w) = A(O)w+ (I -P)[A(a) —A(O) ] (w +Db)
+ (I-PO)N(OL,w +b)
(3.1) (b) O = F2 (a,b,w) = P[A(a) -A(0)] (w+Db) +PN(a,w +b)

where Flz UxC xQY - QX’ F2: UxC xQX -+ C. We have already
shown that for (a,b) near (0,0), there is a unique analytic

w(a,b) such that Fl(a,b,w(a,b)) = 0. Let w(a,b) = bloa-+

2

b +b 0b +b, a +-~-+bk£akb!'.

b01

11

Since w =0 1is a solution for (a,b) = (a,0), and
w(a,b) is unique in a neighborhood of (0,0), we must have
w(a,0) = 0. Thus bko = 0 for all k.

We now determine b = %% (0,0). Since F(a,b,w(a,b)) =

10
O and D2N(O,O) = 0, implicit differentiation shows that

aw = ; is i v =
A(0) 3b (0,0) 0. Since bOl is in Qy, 3D (0,0) o,
and we have

Proposition 3.1. There exists an analytic function
w(a,b) which solves (3.1) (a) in a neighborhood of (0,0).

This function has the form

2

w(a,b) = bllab-+bo b -fO(azb-+b2a-+b3).

2

Upon substitution of w(a,b) into (3.1) (b), the bi-

furcation equation becomes
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(3.2) O = F(a,b) = aPAlb-kaPAlw(a,b)

+ P[A(a) - oA, —Ao](w(a,b) +b) +PN(a,b +w(a,b)),

where PN(a,b +w(a,b)) is analytic and has a power series
expansion in a neighborhood of (a,b) = (0,0). Recall that
N(a,0) = O and DZN(a,O) = 0 for all a in a neighborhood

of zero. Thus D];.N(a,o) = 0 and D]{DzN(a,O) 0 for all

"

a near zero, and we have PN(a,b+w(a,b)) = szl(a,b)

where Ny (a,b) 1is analytic in a neighborhood of (0,0).
It is useful to calculate the term PAlb. Let ¢(a) =

+agp +a2 + ... Dbe the eigenfunction corresponding to
%o 172 P
A¥(a) = ax +a2x +ooee
1 2

Then P[A*(a)I -A(a)]gp(a) = 0. Differentiating with respect

to o at a = 0 gives
P[AI -2 ], +P[-Ajlp, = O

or )\lwo = PAltpo .
Thus PAlb = )‘lb' The bifurcation equation then becomes

0 = X;0b +aPyA, [b,,ab +b02ab2 Foen ]

2 3
+ Py[a”Ay +a"Ay + -+ ] (w(a,b) +D)

+ szl(a,b).

Thus o and b are related by a power series in two vari-

ables with real coefficients:
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2

_ 2
(3.3) 0 = b[xla-+clob-+c a” +0(ab +b7) ].

02

The trivial solution b = 0 1is a solution for all a near

1

zero. One may calculate to be EPDgN (0,0) < ®g> ch>

€10
where 95 is the eigenfunction corresponding to A = O,

with |¢b\ =1. 1If is not zero, the implicit func-

€10
tion theorem gives a unique solution b(a) of (3.3) which
depends on a analytically in a neighborhood of zero.
b(a) 1is real for real a and Db(0) = O.

A more general analysis of (3.6) may be carried out
by using Newton's polygonal method [ 1]. Consider a power

series in two complex variables that converges in a neigh-

borhood of (0,0).

_ 2, ... id,...
G(a,b) = a-+c20b + -+cijb '+ .. .

clob-+c

ol

Suppose the coefficients are real. We wish to find real
solutions of G(a,b) = O corresponding to real a in a
neighborhood of a = 0. Let ko be the first of the co-
efficients %o that do not vanish. The following two
lemmas [ 1] apply:

Lemma 3.7. Let k be even, o1 # O. Then if
co]_/cko <0 (co]_/cko > 0), the equation G(a,b) = O has
two different real roots bl(a), bz(a) for o> 0 (a < 0)
which are simple real roots, and has no real roots for

a< 0 (a> 0).
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Lemma 3.8. Let Xk be odd and o1 # 0. Then
G(a,b) = 0 has precisely one real root for both a > O

and a < 0 and this root is simple.

Under the above conditions, these solutions are given
by fractional power series in %/_—. The leading coeffients
are given by j—_k lcg1/%ko!| for k even, and by m
for k odd.

Since A # 0, these lemmas apply to (3.6). The number
and nature of the real roots b(a) will be determined by
the first term %o # 0, the sign of Xl/bko and the parity
of k.

We now conclude the proof of Theorem 3.1.

(i) If no c,

10
tion of (3.3) for arbitrary b, and "vertical bifurcation"

is nonzero, then (0,b) 1is a solu-

occurs.
Therefore, we assume that Cok is the first such non-
zero coefficient and apply the lemmas:

(ii) If k is odd,

I
<

(3.4)  by(w =¥ A /5, u+ -, where y

and zl(a) = w(a,bl(p))-+bl(u)

(iii) Let X be even. 1If —xl/bko > 0

bl(p) = %/—xl;cko u+ -, where y = +]<a
(3.5)
k k
bz(u) = “A\/Cxo Mt " where = -/a .
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If -xl/bko < 0, replace a by -a, and use Xl/bko under

the radical sign. In either case,

zl (a) = w(a’bl(u)) +b1(u)

and
z,(a) = w(a,by(u)) +b, (W).
In fact, the analytic function
k
(3.6) z(u) = w(u ,b(u)) +b(p)

is a solution of
(3.7) 0 = a(f)z +N (K, 2)

for all (complex) u in a neighborhood of zero. Here
b(u) is any of the functions given by (3.4) - (3.5) and
dk = a. [In the case Uk = -a, we replace U? by —uk

in (3.6) - (3.7)]. For each a near zero, there correspond
k distinct zi(a) (1 =1,...,k) corresponding to the k
roots of a. These zi(a) form a cyclic system of solutions
of the system (1.2). If a moves along some Jordan curve
about zero, the values zi(a) undergo a cyclic permutation

when we return to the starting point. We also note that

z(u) may be expanded in a power series with real coefficents.

§4. Stability
In this section we give the proof of Theorem 3.2. Re-

call the differential equation
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(4.1) g—f:= A(a)z +N(a,z)

and the stationary problem
(4.2) 0O = A(a)z +N(a,z).

We have shown that real nontrivial solutions z(a) of
(4.2) bifurcate from the trivial solution for real a
near zero. These solutions may be found by substituting
an appropriate real kth root of a (or =-a) into an
analytic function z(u) = Ylu-+Y2u?-+-~- where vy, is
given in (3.4) - (3.5). For all y in a neighborhood of

zero, z(u) is an equilibrium solution of

(4.3) 2 - Az +nF,2) if (K =a
or
(4.4) LAz enF, 2 1 F = -a

We wish to discuss the stability of the equilibrium solu-
tions z(u) where u is a real kth root of a (or -a).
Without loss of generality, we shall use uk = a in our
calculations.

Consider the linearization of (4.3) about z(y) for

fixed u:

(4.5) X = Ay +0,N (S, z )y = L.

For each 4, L(u): Y 4 X is a continuous linear map. L(w

depends on u analytically, and Lluiy = L(ﬁ)?. For u
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sufficiently close to zero, L(u) may be regarded as a
closed operator with dense domain D(A) in X; thus we
may refer to Kato [11l] for information about the dependence
of its spectrum on . Since L(0O) = A(O), the spectrum
of L(y) satisfies the following when |4 is sufficiently

close to zero.

(4.6) There is a simple eigenvalue \*(u) such that
k+(0) = 0 and x+(p) is analytic in a neigh-
borhood of zero. x+(p) is real for real

near zero.

(4.7) The remainder of the spectrum satisfies

|Rex| > 8/2 > o.

Oour aim is to relate the sign X+ to that of )\*
when a 1is real and close to zero.

Let y in Y be written as y = x+§E where x € Qy
and € € PY
z = x+§g. The eigenvalue problem for L(y) may be written

and consider N(a,z) as N(a,x,E) where

as the system

r

(4.8) (a) A\x

[a(0) + (1 -P)[A(WS) -a0) +D N (L5, 2 (W) Ix

+ (1-By) [AG) -A(0) +D N (X, 2 () T8

(4.8) () AE
L + P[A () -A(0) +D N (5,2 () 18

P[A (W) -a(0) +DxN(pk,z(L1) ) Ix

or more simply
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(4.9) (a) o

[B(u) =a]x + C(Q)E

(4.9) (b) o

D(u)x + [E(u) -A\]E

where B(u), C(u), D(u), and E(u) are linear maps for
each y, and depend on | analytically in a neighborhood

of the origin.

Lemma 4.1. For )\ and y sufficiently small, B(u)

and )\ -B(u) are invertible and

1 1.2 ~-1.n+1

B -0 =B T +aB@ 2 P M

converges uniformly in the operator norm for A and gy

in a neighborhood of the origin.

Proof. Since the set of linear homeomorphisms in
L(Qy,Qx) is open [ 5] and B(0) = (I-P)A(0O) is a linear
homeomorphism, by proposition 2.1, B(u) and B(a) -\
are invertible for yu and A sufficiently small. Also
B(u) is close to A(0) in norm. The rest follows from
the fact that if Tn are elements of Banach space and

(-] (-]
}i}!lTn“ < =, then .Zl;Tn converges.[]

We may now solve (4.9)(a) for x in terms of € and

substitute into (4.9) (b) to get

0 = [E(u) -D(w) (B(w - n) Tc(w - e

or
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E (W) - D(wB (W Te(w -
-1]2

(4.10) O

3

- D(W) [A[B () 0B 10

£(w) =2 -9 (s 2)

where £ is an analytic function | in a neighborhood of
zero, and g is an analytic function of |4 and 2\ near
the origin. A Newton's polygon argument shows that for
real |y there is a real solution A (p) = dlpp-+d2p2p-+-»-
where 4, is the coefficient of the lowest power of .
in £(u) = E(W -D(WB(W lc(yw and p is that lowest
power.

We now make the following observation. Recall that

z(u) = w(X,b(u) +b(y) satisfies

0 = (1-2)[A(F) [w+b] +N(F,w,b)] = F, (uw,b)
(4.11)

(o)

(A (5) [w+b] +N (L, w,0)] = F, (4w, D).

Let u near O be fixed. Differentiating F,(u,w,b) with
respect to b at b(y) gives
(4.12)  P[AGF) +D N (X, w (W, (W), b (W]

+ PIAGIZE + 0,8 (0, w (5,0 (), b () B GE, b ().
Since by I (3.6),

B o —[D,Fy (W (B (), (W 1 TSR (W (W, B (W), bW
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(4.12) is exactly E(u) -D(wB(w) C(u). We have proved
Lemma 4.12. For  sufficiently close to zero, we may
determine the leading term of X+(l~l) by differentiating
F2 (u,w,b) with respect to b at b(y). The leading term
of this derivative will be the leading term of x+(p).

[Note that Fz(p,,w,b) = 0 1is the bifurcation equation.]

Recall that the bifurcation equation may be written

in the form

_ 2 2
(4.13) F(a,b) = X\ 0b +Cyp0 +clob +
where a = p.k. Let cokbk+l be the first term of the form
ciob1+1 that does not vanish, In this case

k . .
,/")Jckol g+ if k 1is even

b(u)=

N /erg w if k is oad, f = a.

[For k even, uk =q if -x/cko> 0 and pk = ~-q if
-)\/cko < 0.] Thus

M@ g o e+ (K +1)cko[b(u)]k+...

g%(a,b(un

. .k
A@ - (k +1)3;0 + higher order terms in Vo

-k, 0 +higher order terms in ]\(/E

Thus dl = -k)\, p =k, and k+(u) is actually an analytic

function of a: )\+(a) = -kx1a+--- . Recall that
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A*(a) = xla-+x2a2-+~-- . Thus for real @ near zero,

At and A* have opposite signs. This completes the

proof of Theorem 3.2.



CHAPTER III
A TWO-DIMENSIONAL NULL SPACE

$1. Introduction
Our aim in this chapter is to develop tools which will
allow us to describe the set of nontrivial equilibrium so-

lutions which bifurcate from the trivial solution of

22 - A(a,B)z +N(a,B, 2)

at (0,0), where (a,B) is in Cz. Part of the problem
will be to choose suitable hypotheses so that the dependence
of the bifurcating solutions on the parameters may be studied
in a full neighborhood of (a,B) = (0,0).

In the case which we shall study, A(0,0) has a two-
dimensional null space, and A(a,B) has two eigenvalues
A(a,B) and u(a,B) which pass through zero as (a,B)
passes through the origin. The curves )\ (a,B) = O and
u(a,B) = 0, defined for (a,B) in ]Rz, are assumed to cross
transversally at the origin. This last assumption will allow
us to change coordinates to t = A(a,B), n = u(a,B). We will

formalize these hypotheses and discuss their implications at

the end of this section.

30
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In §2 we discuss the bifurcation equations and the
coordinate change mentioned above. In §3 we give a simple
example which demonstrates that the behavior of the bifur-
cation set depends on the ratio Y = n/1t (or «t/n). Moti-
vated by this observation, we make a change of scale which
allows us to introduce the ratio Y in place of one of
the parameters t,nm. Section 4 -6 discuss methods for
analyzing the scaled equations and the interpretation of
these results in the (7, n)-space.

We now list the basic hypotheses of this chapter.
(H1) - (H3) are from chapter II and are repeated for conve-

nience

(Hl) Let A Dbe an open set in ¢2 that contains the

origin and let X be a complex Banach space with dense sub-

space D(A). Let A: A xD(A) - X be a closed linear operator
with domain D(A) for each (a,B) in A, and let A bDe
analytic in A in the sense that A(a,B)z has a Taylor
expansion at each (ao,Bo) in A which converges in a disc

|(b,a)'-(bb,ao)| < r independent of z.

It follows from (H1l), that if Y 1is the Banach space
consisting of D(A) endowed with the graph norm, then for
some neighborhood U of ¢2 we may regard A: UxY 4 X

as a continuous linear map.

(H2) Let N: UxY + X be a continuous map such that

N(a,B,0) = 0 and D,N(a,B,0) = 0 for all (a,B) in U.
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We assume that N is continuously Fréchet differentiable

in a neighborhood V of (0,0,0).

(H3) A and N are extensions of "real" operators
in the sense that A(a,P)z = A(a,B)Z and N(a,B,z) =

N(a,B,z).

In addition, we make the following additional assump-

tions about A(a,B) = Aoz-FaAlz-fﬁAzz-+---

(H7) Zero is an isolated eigenvalue of AO’ and the
generalized null space is two-dimensional. In addition,
we assume that there are two distinct branches of eigen-
values that depend on the parameters analytically and take

on the value zero at (0,0).

A(@,B) = Ajo@+Ag P

and

“(G,B) uloa"'p,olﬁ"""

are eigenvalues of A(a,B). Moreover, there are two dis-

tinct eigenfunctions %o and Y corresponding to 1 (0,0) =

(o)
O = u(0,0), and we have the expansions

wla,B) = 9o * ¥10% +¢p01f3+...
¥Y(a,B) = YO+Y100+‘1’OIB+---

which converge in some neighborhood of (0,0).
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(H8) For real values of the parameters, )\ and p
are simple real eigenvalues (except when u(a,B) = A(a,B)),
and ¥(a,B) = v(a,B), ®(a,B) = gwla,f). Furthermore, the
curves A (a,B) = 0, u(a,B) = 0, defined for real a and

B, cross transversely at the origin (see Fig. 1l); i.e.,

[ 2 2A |
3a )
det #0 at (0,0)
ol au
3o ab
adir

MaﬁZ?O

Figure 1. Transversal crossing of zero eigencurves.

This last assumption is important as it will allow us
to make a local change of coordinates about the origin in
:m? in which the curves )\ (a,B) = 0 and u(a,B) = 0O be-

come the axes.
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Example 1.2. The hypothesis (H7) is necessary as
the analytic dependence of the eigenvalues and eigenfunc-
tions upon the parameters does not necessarily follow from

that of A. Let

map C2 into cz. The eigenvalues are

A= a2-+62 and = -/ 2-+52

which are not differentiable at (a,B) = (0,0). The problem
is that the eigenvalues are given by different branches of
the same multivalued function a2'+62 and (0,0) 1is the

branch point.

§2. The Bifurcation Equations

Let P Dbe the projection given by proposition II 2.1,
and Px, Py, Q. QY be the subspaces described in §2 of
chapter II. In our case Py = Py = span{wo,Yo} and is

homeomorphic to ¢2. The projection P: X 4 P is the sum

X
. . 1
of two projections, P, and P,. P;: X 4 span(¢o} = Py
_ a2 _ ol 2 .
and P2. X < span{wo} = Px where Px = Px ® Px. If z is
in X, we may rewrite 2z as 2z =w+x+y where w € Qx,

X € P; and y ¢ Pi. As in §2 of chapter II, the equation

(1.3) is equivalent to the system
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((2.1)(a) O AW + (I-P)[Ay~A(a,B)] (W+x+y)

+ (I - P)N(G,B:X:Y:w)

(2.1) (b) O = Py[aA; +PA, +---](w+x+y) +P N(a,B,x,y,wW)

(2.1 () o

P,[aA; +PA, +---](w+x +y) +P N(a,B,X,y,W)

Furthermore, we have shown in chapter II, §2, that there

is a unique w(a,B,x,y) such that w(0,0,0,0) = O and
(a,B,%x,y,w(a,B,%x,y)) is a solution of (2.1) (a) for
(a¢,B,x,y) near (0,0,0,0); w(a,B,x,y) can be expanded

in a power series in some neighborhood of the origin. Also
w(a,B,x,y) = w(a,B,x,y).

As before, we may show that
gﬁ(o,o,o,o) = g%(o,o,o,o) = 0.

Moreover, since w(a,B,0,0) = 0 for all values of (a,B)
near (0,0), the uniqueness of w 1implies that this power
series will contain no terms which contain only a or B.

Thus w(a,B,x,y) is of the form

w(a,B,x,y) = cjax + czﬁx +cyay + c4By + csx2

+ c6xy-+c7y2-+higher order terms in x,y,q,B.
We may substitute this expression for w into the bi-

furcation equations (2.1) (b) and (2.1) (c), and obtain two

power series in 4 variables:

(o)

Pl[aAl +5A2]x +: Pl[azs.1 +BA2]y +oee
(2.2)
o}

Pz[aAl-+BA2]x + Pz[aA1-+BA2}y-+-o- .
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We now determine the terms listed in (2.2). Differ-

entiating the expression

0 = Py[A(a,B) -A(a,P) ]o(a,P)

; i QA =
with respect to a at (0,0) gives aq(O,O)ch P1A1945.

A similar argument shows that

QA =
aB(O,O):po P20,

aH 1% =
25(0,0)¥y = Pyaj ¥, and £5(0,0)¥, = Pya,Y,

Also PyA19, = PyArp, = P1A Y, = P1A Y, = O. Thus the bi-
furcation equations become

(

0=allx+p2hx+p [an) +pA)Iw
+ P[A(0,B) Ay -aA) -BA)][w+x +y] +PN(a,B,X,y,W)
(2.3) ¢ "
o= a-g%x +B-§-6x +P,[aA; +BA, Jw
+ Py[A(a,B) =Ay -aA; -PA,)[w+x +y] +P,N(a,B,x,y,W)

Henceforth, we will seek real solutions (x,y) of (2.3)
corresponding to real parameters (a,B). We may as well
assume that the norm is Euclidean.,

It is convenient to make a change of variables in the
parameter plane so that the curves A (a,8) =0 and u(a,B)=0
become the axes. Define the transformation T: (a,B) -+ (t,n)

by 1 =2r(a,B), = pl(a,B). Since r(a,B) = 0 and u(a,B) =0
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cross transversely at (0,0), T 1is a homeomorphism in a

neighborhood of (0,0). Then

aa a1t
o 3 B T )
= + Ol (T; 'n) | .
ou au
P 30 2B n

Thus terms which are first order in o and B, are first
order in 1 and r; terms which are second order in a
and B, are second order in Tt and n1; etc. The bifurca-

tion equations take the form

O
(2.4) + order terms in x,y,T,n

TX 2nd order terms in x and y + higher

(0]

nw

There are no terms which contain only powers of ¢ and
n- Terms which contain only powers of x and y are de-

rived from the nonlinear term which we refer to as

N(T: T]:x:Y:w(XJY: Ty ‘n))~

$§3. An Appropriate Change of Scale
As motivation for what we are about to do, consider

the following.

Example 3.1. Consider the system

T™X + %y2+x2

(0]

(3.1)

0O = ny+%x2+y2.
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The numbers of nontrivial solutions of (3.1l) corresponding

to each (71,n) are given schematically in Figure 2.

t

Figure 2. Dependence on (71,m) of the number

of nontrivial solutions of (3.1).

As we can see, the number of nontrivial solutions depends
on the ratio 1/n or (n/7r). Also note that it is impos-
sible to apply the implicit function theorem to obtain
solutions of (3.1) of the form (x(r,n),y¥(t,7n)>7,n) in a
neighborhood of (x,y,r,n) = (0,0,0,0).

Now consider the following change of scale. Let 11 =

Yn, and replace x by mx and y by mny in (3.1). After

division by nz, (3.1) becomes
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0O = YX"'%YZ"‘XZ
(3.2)
0=y+%x2+y2

Sectors in the (1, n)-plane and the corresponding re-
gions in the (m,y)-plane are represented in Figure 3. Points
on the Y-axis correspond to different slopes through the

origin in the (1,n)-plane.

/
/)

/ *\\\\\\-
Sl

&

Figure 3. Correspondence between (r,n)-plane

and (m,Y)-plane.

The numbers of nontrivial solutions of (3.2) correspond-

ing to each (n,Y) are given in Figure 4.
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PO O s

A
3
N

A

Figure 4. Dependence on (n,Y) of the number

of nontrivial solutions of (3.2).

It is easy to check that at most of the solutions (xo,yo,yo)
of (3.2), the implicit function theorem applies. The points
at which it fails correspond to the lines in Figure 4 which

indicate a change in the number of solutions.

In what follows we shall give hypotheses under which
a similar scaling may be determined for the bifurcation
equations (2.4). Solutions (x,y) of (2.4) which tend to
(0,0) with (1,11) will correspond to solutions of the
scaled equation which remain bounded as (1,n) approaches
(0,0). In order to accomplish this, we shall require the

bifurcation equations to be of a certain form so that we
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can obtain an a priori estimate of the magnitude of solu-
tions of (2.4) which tend to (0,0) with (1,n). This a
priori estimate will determine the scaling we choose.

Let 1 = n = 0, and suppose that the first terms of
(2.4) in x and y which do not vanish have the same de-

gree g in each equation. The terms of degree g form a

continuous g-linear form Mq: Iqu-o ]R2

i n n-1 n-1 n
(3.3) aqnX +a;x y + +an_1xy +ay
Mq((x,y),..., (x,y)) =

n n-1 n-1 n

L‘box +blx y +e-+ bn_lxy +bny |
We say that M.q is nondegenerate if
(3.4) Mq((X,y),...,(x,Y)) # (0,0) for all

(x,y) # (0,0) 1in 1R2 .

Since the unit ball in JR2 is compact and Mq is contin-

uous, (3.4) implies there are positive constants cy and

cy such that

(3.5) o | (x5, |T <M ((x,y) (x,9)) < ¢, |(x,y) |2
. 1 K] q 3 F L A ] B 2 3

for (x,y) in IRZ.

(H9) We assume the bifurcation equation has the form

+S(7,n,X,Y) +Mq((x,y),..., (X,¥)) +R(1,n,X,Y)
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where §8(0,0,x,y) = 0, S(7,1,%X,Y) contains terms in x
and y of order less than q and there is a positive con-

stant cy such that

(3.7) IS(T,T],X,Y)| $c3\(7,ﬂ)|'l(xJY)|

when (7,n,X,y) is sufficiently close to (0,0,0,0). We

also assume that

lR(Tk: nk’x-k’yk) I

(3.8)
| (%5930 |2

-+ O for all sequences

{Tk}, {nk}, {xk}, {yk} that tend to zero with |(xk,yk)‘ # 0

for all k, and that Mq is a nondegenerate g-linear form.

Proposition 3.1. Let (H9) be satisfied. Then for any
(t,my%,y) sufficiently close to (0,0,0,0), such that
(x,y) is a solution of (3.6) corresponding to (r,n) # (0,0),

we have

|y | < m TYTmmT

where m is a constant independent of 171,n,x,y.

Proof. Suppose not. Then there exist sequences {Tk},

{nk}, {xk}, {yk} that converge to zero, with (xk,yk) # 0,
(Tyom) 7 (0,0) and

| e, v5) |70
1 (Tk: T}k) |

> k.
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We may assume that T Mo Fio and Yy are small enough

so that the estimates (3.5) and (3.7) hold. Consider

.
1 %

ICBIER N ESA

(o) + S(Tk, ""k’xk’yk)

. M (g,v),. . .,;xk, W) . R (7, nk,xk;yk)
‘ (x-k: Yk) l lxk’ Yk) ‘

As (Tk,nk) and (xk,yk) approach the origin, so does the
last term. Estimate (3.5) implies that there are positive

constants ml and m2 such that

| (5 73 ) |2
m —_— Lm
1 < vrkxk 2

'nkyk + S (Tk, 1']k: xk’ yk)

for k sufficiently large. Thus by (3.7),

| (s 13 |4
m
2 2 Tr Ko m¥i) | +C3 1m0 md) |- | 0 Yy |
| Goe ) 12
2 THcy) [(romd) |- 150 vy |
and
-1
| Geyes v3) |
(resdmg 2 T omd ]

which is a contradiction.O
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Using the a priori estimate of proposition (3.1), we
will now exhibit appropriate scalings of the system (3.6)
for different sectors of the (1, n)-plane near (0,0).

Let Qp ={ton): |n] > p]TI} for p > 0. Let (x,v)
be a solution of (3.6) corresponding to (r,n), that-tends

to (0,0) with (7,7n). Then

X and —a—

YTl =TT

remain bounded as long as (r,n) remains in Qp. Thus
none of the bifurcating solutions corresponding to (r,n)

in Qp are lost if the following changes of scale are made.

case 1. If q is even, let n=¢g37%, ¢ = ysTh gor
Iyl £ %- and replace x and y by €x and Ey respec-

tively. Then (3.6) becomes

(o] YX

(3.9) (a) = M (% y),. .., (X,¥)) +ER(X, Y, Y, E)
o Yy

where R is analytic in (x,y,Y,E). [The transformation of

the sector Qp in the parameter plane under this change of

scale was given in Figure 3].

Case 2. g 1is odd. 1In this case, we must distinguish

between n > O and n < O.
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To study solutions corresponding to n > O, we use
the same change of scale as in case 1. Here, however, we
must keep in mind that each nr corresponds to +§g, and
there will be an "extra set of solutions" for g < O.

To study solutions corresponding to n < O, we let

71=—§q-1, = qu_l, and replace x by Ex, and y by

gy for |v| K %-. Then (3.6) becomes
Yy olfx _

(3.9)(b) O = - M (0,0, (X,¥),..., (x,¥)+ER(X,Y,Y,§)
o 1 y q

where R is analytic in (x,y,Y,§). Again, we will disregard
the extra branch of solutions corresponding to g < O.
To study solutions of (3.6) for (1,m) near the r-axes,

the roles of 1 and 17 are reversed.

In all cases, we must now determine the behavior of
real solutions (x,y) corresponding to real (y,g) for
systems of the form

n-1

n n
o) Yx+anx +a X y+-~-+aoy +§Nl(x:y,Y)§)

n-1
(3.10)

n-1

n n
O =y+b X +b X “y+--: +byy +EN,(x,v,Y,8).

§4. Solutions of Type I - Fold curves

Consider the system

(4.1)
0

n n
F(x,y,Y,€) =yx+a x +a ;X “y+--++ay +EN;(X,¥,v,€)

)

n n
G(X,y¥,Y,8) =y +b X" +b X" "y +--° +byy +EN, (X,y,Y,8)
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where

n n-1 n
a x -fan_lx y-+---~+aoy
M O((x,¥),..., (x,y)) =

n-1

n n
bnx -+bn_1x y-+~~-'+boy

. . . 2n 2
is a nondegenerate continuous n-linear form, Mh: IR+ R ;

and Ny and N, are analytic in (x,y,v,€). Let

Fx Fy
(4.2) J(x,y,y,8) = det at (x,y,y,8).
Gx Gy

For € = 0, (4.1) and (4.2) become

n -1 n
0 = P(x,y,y) = yx+a X -i-an_lxn y+eor +agy
(4.3)
n n-1 n
0 = Q(x,y,y) = y+bnx +bn_1x y+-o-- +b0y
and
(4.4) 0 =J(x,y,v,0) = Pny -QXPY at (x,y,v,0).

Let (xo,yo,Yo) be a solution of (4.3). 1If J(xo,yo,Yo,0)74
O, the implicit function theorem guarantees a unique solution
(x(y,€),y(y,E),y,E) of (4.1) in a neighborhood of (YO,O)
such that x(yo,O) = X, and y(yo,O) = Yo- J(X,Y,Y,8) #0
for (x,Y,Y,E) near (xo,yo,yo,o). Thus the solution

(xo,yo,yo,o) determines the behavior of nearby solutions

of (4.3).
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In the event that J(xo,yo,yo,o) = 0, we wish to impose
conditions on (4.1) and (4.2) so that we may still determine

the local behavior of solutions near (xo,yo,yo,o):

(H10) We assume that for all (xo,yo,yo) satisfying

(4.3) with (xO’YO’YO) # (0,0,0), we have

rank = 2 at (xo,yo,yo,o).

(H10) guarantees that about each nontrivial solution
(xo,yo,yo,o), there is a neighborhood of solutions to (4.1)
that is homeomorphic to an open set in ]Rz. [ The point
(0,0,0,0) 1is a special case which corresponds to studying
solutions which bifurcate from the trivial solution near

the t or nr axes. This case is banished to section §6. ]

(H1l1l) We assume that for all (xo,yo,yo) which satisfy

both (4.3) and (4.4), the matrix

has rank three at (xo,yo,yo,o).

A solution (xo,yo,yo,o) of (4.1) and (4.2) for which

either
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F F F
X Y Y
4.5 det G G
( ) (a) e G, y Y # 0
J J
| x Y y J

orx
Fx Fy F§
. t
(4.5) (b) de Gx Gy Gg # 0
Ix Iy Je ]

will be said to be of type I. When (4.5) (a) holds, these
solutions have the pleasant feature that local behavior of
nearby equations is completely determined by the polynomials

(4.3) and (4.5), since (4.5) (a) is exactly the condition

= -
Px Py X
(4.6) det Q. Qy o # 0
J
L X ' Qy_

Note that (4.5) (a) implies

Gx Gy
det # 0 and x ¥ O.
Jx Jy

Theorem 4.7. If (xo,yo,yo) is a solution of (4.3)
and (4.4),and (4.6) holds, then there is a curve y(g) and
a solution curve (x(§),y(g)) such that y(0) = Yo:
(x(0),y(0)) = (xo,yb). When y crosses y(g), the number
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of solutions of (4.1) near (x(g§),y(€)) changes by two.

We will refer to y(g) as a fold curve.

If (4.5) (a) fails and (4.5) (b) holds, we may prove a

similar result. 1In this case the solution (xo,yo,yo,

of (4.1) determines curves (x(y),y(y)), E€(y) with

0)

(x(yg)s¥(ygy)) = (xg,¥5) and &(yy) = 0. 1In the following
we shall concentrate our attention on (4.5) (a), as results
corresponding to (4.5) (b) are similar. We isolate a special

case in the following lemma.

Lemma 4.8. 1If (xo,yo,yo) is of type I, the number
of solutions (x,y,y) of (4.3) near (xo,yo,yo) changes

from zero to two as y passes through Yo-

Proof. Without loss of generality, we will assume

that

det b 4 # 0.

Thus PY and Qy are nonzero at (xo,yo,yo), and we may

use the implicit function theorem to guarantee the existence

of y(x), y(x) for x near X5 such that (x,y(x),y(x))

is a solution of (4.3) and y(xo) =Y, and y(xo) = Yo-
We shall show that y may be written in the form

y(x) = yo-!-az(x--xo)z-i-o(x--xo)3

N

where a, = y”(xo)
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(1) Computation of Y’(xo). By the chain rule,

— , = — 1 — -
' (xo) QY —PY P
_ 1
, PyQy ~ By
LY (xo)_ _—QY Py | L.Qxd
QP, - PO
_ 1
P - P
YQY YQY
-—Qny + Pny_
Qpr - PYQx
= 1 at x
PYQY-PYQY (o)
o)

' =
Thus vy (xo) o.

(ii) Computation of y”(xo). Further implicit dif-

ferentiation plus part (i) gives

. 2 2 2
ay ay 4y ay _
Pyx 2Py dx-+pyy(dx +P, dxz-er p”; 0 at (Xy,¥y Yg)-
a’y 1 dy dy\2
R ——— - ’ —4
Also dx2 = Qy [Qxx Zny ax t ny(dx) ]. Thus vy (xo) o
if and only if
(4.9) o=o9f[p,_ +2p  SL +p Qx)zl
. vl o xx xy dx yy(dx
i, dy dy)?2
Py[Qxx'+2Qxy ax * ny(dx) J.
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By (4.6):

o # Jny-Jny

[Pxey.+Pnyx"Pnyx"Pnyx]Qy

- + - -
[PXYQY PXQYY PYYQX PYQXY]QX

2
= P + 2 - -

2

P Q

+P Q2 - XX
Yy x YY QY

Q, Q, 2
Q10 [Py - Znykﬁ;) + Pyy\b;) ]

Q, Q, 2
- Py[QXX'ZQxyW;) * nykb’;) 13

2
dy dy
QuiQy[Pyx * 2P, ax + Pyylax) !

3

2
- dy
Py[Qxx-i-ZQxy ax ny\dx) 1}.

Thus y”(xo) # 0.0

Proof of Theorem 4.7. Once again, we assume

P b4
det b 4 # 0.
Q (o]

Since (4.6) holds, there is a unique curve

of solutions of (4.1) and (4.2) with x(0) =

(X(E),Y(E),Y(g):é)
xo: Y(O) = YOJ

Y(0) = Yo For E sufficiently close to zero, (4.6) still

holds. Moreover,
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det b4 Y =0

at (x(§€),y(E),y(E),E). Fix E and consider the functions

P(x,y,Y) = F(%X,Y,Y,E)
(4.10) - Q(x,¥,v) = G(x,¥,y,E)
J(x,¥Y,y) = J(X,¥,Y5E)
(4.10) satisfies
5, B, B
(4.11) det | Q_ c‘zy GY #0 at (x(€),y(E),y(E)).
L.'ix 3y EY_J

We now do some calculations similar to those in Lemma 4.8
and use (4.11) in place of Jny-Jny # O to reach the
desired conclusion. Thus for fixed € close to zero,

Y(x,E) has the form
= - =1\ 2 -3
y(x,8) = y(§) +a2(x-x(§)) +0(x -x(€))

where a, depends continuously on € and hence has con-
stant sign for £ near O. Thus there are two solutions
of (4.1) near (x(g),y(€)) on one side of +vy(g) and no

nearby solutions on the other.[
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We have the following local picture when (y,€) is

near (yo,o) [Figures 5 and 6].

AL

—_— N

A
ey

v

Figure 5. Behavior near a fold curve

in the (g, y)-plane.

Figure 6. Behavior near a fold curve

in the (1, n)-plane.
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These pictures are local representations. It is en-
tirely possible to have other solutions (xl,yl) that
correspond to Yo- However, the solutions near (xl,yl)
will correspond to a different branch which does not in-
tersect the branch determined by (xo,yo) in some neigh-

borhood of (yo,o).

§5. Solutions of Type II

Let (H10) - (H1l1l) hold. Solutions (xo,yo,yo,o) of
(4.1) which satisfy neither (4.5) (a) nor (4.5) (b) will be
called solutions of type II. 1In general, the local behavior
near solutions of type II is not as easy to determine as
that near a solution of type I. However, we can give a
complete description of this behavior when the original bi-
furcation equations contain a nondegenerate bilinear form

when 1T = 5 = 0. We shall determine some general properties

of solutions of type II.

If (xo,yo,yo,o) is a solution of type II, we must
have
Px Py
(5.1) det = 0 at (xo,yo,yo).
Q. Qy

Proposition 5.1. 1If Px =P = Qx = Qy = 0 at a solu-

y
tion (xo,yo,yo) of (4.3), then either (xo,yo,yo) =

(0,0,0) or the n-linear form is degenerate.
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Proof. At (xo,yo,yo), we have

_ n n-1 . n
O = xP +YoP, = voXg *n[ajXg +a, 1%, Yot ot +tagyg]
_ n n-1 n
0 = xOQx-+yOQY = yo-+n[bnx0-+bn_1xo yo-+ -+boyo]

Since P(xo,yo,yo) =

and (n-—l)yoxO = 0. Thus

) = 0, we have (n--l)y0 =0
=0. If yy=0 and Xq #

0, then a, = bn = 0 and a degeneracy occurs in the n-linear

form. 1If xo = 0, Px = 0 implies YO = 0.0

Recall that (0,0,0,0) is not considered in (H10) -
(H11), and therefore cannot be a solution of type II. Be-

fore we go on, we shall consider two special cases.

Case 1. Xy = 0. 1If a, #0 1in (4.1), then y =0

and J(O,O,YO,O) = cannot be zero unless = 0. 1If

Yo Yo

ag = O, then
1

YO = (-l/bo)n-l .

(If b, is also zero, the n-linear form M is degenerate].

Suppose yo is real. Then the matrix in (H1ll) becomes

(5.2)| -by/p, -(n-1) o N, (0, ¥5s Y5 0)
T Iy -(n-1) Je

Now J(O,yo,yo,o) = 0 if and only if Yo = al/bo. Case 1

can only occur if ag =0 and bo # 0. 1In this case
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(H1l0) - (H11l) are satisfied if and only if Nl(o,yo,yo,o) #

0. Then
| o 0o N; (0, ¥4 ¥gs O)
det (1 -n) o) N2 (O:YO: YO’O) # 0
J l-n J
y (1-n) 3
and
0 N, (O 0)
1( ’YO’ Yo’ :
det : 0.

Case 2. Qx = QY =0 at (xo,yO,yo) # (0,0,0). As in
the proof of proposition 5.1, we have that Yo = 0. 1If

b # 0, then x = 0 and J(0,0,yo,o) Thus as before,

= YO‘
we assume bn = 0 and a, # 0. Then (xo,yo,yo) # (0,0,0)
implies

1

n-1 .
Xy = (-Yo/hn) with Yo # 0.

The matrix of (Hl1ll) becomes

(5.3)
- B
Yo™™Yo —a,_1Y0/2n *o N; (4,0, Y4,0)
(o} l—yobn_l/én 0 NZ(X ,O,YO,O)
-y (n-1)%b_ ,x272 J l1-y b . /a
LYO n-1"0 Y Yo°n-1/%n JE )

Qy = 0 implies Yo = an/'bn_1 and bn_l # 0. Thus Case 2

occurs only when b = O, a, # O and b -1 # 0. In order
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for (H10) - (H11l) to hold, we must have Nz(xo,o,yo,o) # 0,

X # 0, and Yo # 0.

Example 5.1. Case 2 may be reduced to Case 1 by a
change of variables. We shall demonstrate this in the case
where Mo is d nondegenerate bilinear form. If we recall
the form of the nonlinear term before the scaling of §3,

we may write

0 = yx +a2x2 +a,xy +aOY2 +N, (x,¥,YE, E)
(5.4)
2
0 = y+b1xy +boy +N2(X,Y,Y§: §)
Then
(5. 5) x = - B]_._ y = az/bl’ y = 0O is a solution.
1

Now consider

pu +b0u2 +blvu +Nl (vy,u,0,p0)

(@]
i

(5.6)

v+a v2 +auv +a21:12 +N, (v,u,0,p0)

o 0

If (xo,yo,yo, go) is a solution of (5.4) with vy # O, then
u=y/y, v=x/y, p =1/y, 0 = yE 1is a solution of (5.6).

The solution (5.7) becomes
u=0, V= -l/az, p = bl/aZ’

This correspondence arises from interchanging the roles

of r and mn in the scalings discussed in § 3.
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Proposition 5.2. Let (xo,yo,yo,O) be a solution
of type II with Xq # 0. If Q, =0 and Qy # 0, then

P,=J,=0. If Q #0 and Q, =0, then P =J, =0.

Proof. Pny--QxPy = 0 and (4.5)(a) fails if and only

if Jka'-Jny = 0.0

Since (4.5)(a) and (4.5) (b) both fail for a solution

of type 1II, we have

P, X Fe
(5.7) det | Q. o) G, # 0
L.Jx I, JgJ
or
P, x Fe
(5.8) det | Q, o Ge | # 0.
LJY I, Jga

Proposition 5.4. Let (xo,yo,yo,o) be a solution of
type II. Then oneof the following occurs.

(a) (5.7) holds and

P F P X
det X § # 0 or det ‘— X # 0
Qy Gg L *x

(b) (5.8) holds and

) 4 F P X
det y 5 # 0 or det y # 0.

Qy G € QY o)
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Proof. This follows from Case 1, Case 2 and proposi-

tion (5.2).p

Definition 5.1. Let T: IRZ-. ]R2 be given by (u,v) =+

(£(u,v),v). We say that (uo,vo) is a cusp point for T
if

(1)

(ii) _i_f_(u

(ii1) 2£(u,,v,) # o.

Proposition 5.4. Let (x O0) be a solution of

o’ Yo’ Yo’
type II. Then

(a) The implicit function theorem enables us to solve
(4.1) for at least one of the following in a neighborhood
of (X5,¥5sYg 0): v(X,8), v(¥,8), E(x,v), &(y,v).

(b) At least one of the following maps exists and also

satisfies (i) and (ii) of definition (5.1) at (xo,yo,yo,o)

(x,8) + (y(x,8),8)
(v,8) » (y(y,E),€)
(x,v) » (E(x,y),v)
(¥,v) » (E(y,v),v).

Proof. We will only give the proof in the case that
P X F
Y g

(5.9) det Qy (o] Gg # 0

Jy Y
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Py X
and det 0 at (x

Qy o

0’ ¥or Yo 0)-
All other cases are similar.

Since ony # O, there exist unique real analytic func-
tions y(x,€) and y(x,E) such that (x,y(x,E), y(x,E),E)
satisfies (4.1l) near (xO,O) and y(xo,O) = 0, y(xo,O) = 0.
Recall that Xq # O implies Qny-Qny = 0 for a solution

of type II. As in Lemma 4.8, we have

(a) g-}g(xo,o) = 0 and %-‘é(xo,m = -Q_/0

X'y
3%y
b o) = if d ly if J -QJ =
(b) ax2(xo, ) O if and only i Qx y Qy % (o)
oy Y
(c) ;ﬁﬁs(x 0) = JY az,+ JY Q& + JE
dxa3¢g ‘"o’ 'ony

= JY[XOG;'] -JV[PYGE _zgoy] +Jﬁ[x00y] ]
(xOQy)
22y
Thus (5.9) implies axag(xo,O) # 0.0

Definition 5.2. 1If (xo,yo,yo,o) is a solution of

type I, we will call (xo,yo,yo,o) a fold point. 1If
(xo,yo,yo,o) is a solution of type II, and all conditions
of definition (5.1) are satisfied for one of the maps guar-

anteed by proposition 5.4, we will call (x

O’Yo) VO’O) a

cusp point.
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In general, we shall not be able to verify the third
condition of definition (5.1), as it depends on the order
of contact between the two curves P(x,y,yo) = 0 and
Q(x,y,yo) = 0 at (xo,yo). On the intuition that two
conics cannot "touch too much" without some form of degen-
eracy, we now specialize to the case of a nondegenerate

bilinear form

Ax2-+Bxy-+Cy

Mz[ (x,y), (x:Y)] =

ax2-+bxy-+cy

where A, B, and C are not all zero. Consider the system,

(@]
1

F(x,y,Y,E) yx-fo2-+Bxy-+Cy2-ngl(x,y,y,g)

(5.10)

o
I

G(X,¥,Y,8) =y +ax® +bxy +cy + EN, (X,Y,Y, §)

As an example of what to expect, we will look at Case 1.
In this case C =0, ¢ ¥ 0 and (xo,yo,yo) = (0,-1/c,B/c).

The matrix (5.2) becomes

5

[ o) o) o N, (0,-1/c,B/c,0)
-b/c -1 (o) N2(0,~1/b,B/b,O)

| -2A +Bb/c -B -1 Te _

For a type II solution, we must have -A +Bb/c = 0.
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By the implicit function we may solve (5.10) for
E(x,y) and y(x,y). If we expand §g(x,y), y(x,y) and
the equations in (5.10) in power series and then equate

coefficients, we find that

(5.11) ax(x Yo) = -/
2%y 1 2t 4 g, (3
(5.12) 2 (K05 ¥o) = 0, [Qu * %y 3x + Qylix) ]

2
= - oY
= ZQy[a +Db -g—% + ckax) ]

a’e
(5.13) axz(xo_, YO) =0 if and only if Px-Pny/Qy =
a%e
(5.14) ax2 (xo, yo) =0 if and only if
= ay oY
(o} [Pxx+ny 3X + Pyy\ax) ]
2
- -1 ay Y
PyQy [Qex * Oy 3x * Qylax) ]
2
= oY )4 - - QX
2[A+laax + c\ax) ] 2PyQy [a+Db +CKaX) ]
3
(5.15) 2=2(x,,y,) = O if and only if
dX
-Q, -Q 2
- X _..Y._ —X Y
0 = [Pyy *Pyyl )3 Py0y [0,y +Qyy (5]
2 2
if and only if, J_ = 0 or b—% = 0. However, 2(x sYA) =
\% 3x 3% 0o’ '0

O 1implies that (x,y) = (1,%) is a nontrivial solution of






Since the bilinear form

Jy = 0. Since Qy # 0,
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ax2 +bxy + cy2

2

Ax -!-Bxy--l-Cy2

M

we must have

This gives the following

-B =

o

-2A+B(b/c) =0

and

Hence A = 0 = B.[

Because of example 5.1, we may neglect Case 2.

-A+Bb/c =0

Ix

2 is nondegenerate,

O.

this implies

It

remains to examine the situation where X5 # 0, and one of

r is .
Qx o Qy nonzero

following must hold

P X

Yy
(5.16) det Qy (0]

Jy JY
or

Px b4
(5.17) det Qx (0]

Jx JY

at (xo,yo,yo,o).

G # 0

G # 0

By proposition 5.3, one of the

and det

and det

X
y
#0
v (o)
X
X
#0
o)
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We shall only consider (5.16), as essentially the same
result holds for (5.17). We use the implicit function the-
orem to obtain y(x,€) and y(x,g) such that (x,y(x,E€),
y(x,8),€) 1is a solution of (5.10) in a neighborhood of

(XO,YO,YO,O), and y (XO,O) = Yo Y (x5,0) = Yo- The analogues

3
of (5.11) - (5.15) now hold, and if L%(XO,O) = 0, the system
dxX
2 2
0 = P(x,y,y) = yXx +Ax" +Bxy +Cy
(5.18)
2 2
0 = Q(x,y,y) = y+ax” +bxy +cy

must satisfy J(xo,yo,yo) = Pny_QxPy =0, J, = Jy =0 at
(xo, Yo YO). We will take care of this situation with the

following lemma.

Lemma 5.5. Given A, B, C not all zero, there does
not exist (x,y,y) # (0,0,0), x ¥ 0 and a, b, ¢ such
that M, is nondegenerate and the system in (5.18) satisfies

Proof. We must satisfy the equations

(1) 0 = yx +Ax2+Bxy +Cy2

(ii) y +ax2 +bxy + cy2

o
il

2

@]
I\

(iii) J(x,y,Y) = y +ybx +2ycy + 2Ax + 2Ax

+ 4Acxy + By + 2ch2 - 2an2 - 4aCxy - 2bCy2

(iv) o0 =23

% vyb + 2A + 4Abx + 4Acy - 4aBx - 4aCy

(v) o = Jy

2yc + 4Acx + B + 4Bcy - 4aCx - 4bCy
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We may use the fact that xJk-+yJ

y = O to replace (iii)

by
. 2 2 2 2
(vi) O = y -2Abx" - 4Acxy - 2Bcy + 2aBx~ +4aCxy +2bCy”~.
Since x # 0, we may multiply equations (iv), (v) and (vi)

by x and use (i) to eliminate Y. We now have four equa-

tions which are linear in a, b, and c,

(0 = ax2 + bxy +cy2 +y
0 = a(2Bx> +4Cx%y) +b(-2Ax° +2Cy?x) +c (4Ax%y - 2By*x)
< + (-ax? - Bxy - cy?)
_ 2 2 2 2
0 = a(-4Bx“ - 4Cxy) +b(-Ax" - Bxy - Cy“ +4Ax") + c(4Axy) +2Ax
_ 2 2 2
0 = a(-4Cx™) +b(~-4Cxy) +c(2Ax" +2Bxy - 2Cy~) + Bx.

This system may be reduced by the usual row operations to

the following

(0 = ax2 + bxy -!-cy2 +y
0 = b(Ax3 +Bx2y +0xy2) +Ax2 +BXY-CY2
(5.19) (o = p(3ax® + 3mcly + 3cxy?) +c (amxy + 4By?x + 4cy®)

+ 2Ax2 + 4Byx + 4Cy2

(o) c (2Ax2y + 2Bxy + 2Cy2) + Bx + 4Cy.

.

An appropriate linear combination of the last three equations

shows that
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0o = 3[Ax2 + Bxy -Cy2] +2y[Bx +4Cy]

- [2Ax2 + 4Bxy +4Cy2]

sz + Bxy + Cy2 .

Now (5.19) implies

0 = sz +Bxy-Cy2

0 = sz + 2Bxy -|-2Cy2

o
il

Bx +4Cy.

Thus Cy = O = BX = AX. Since x # O, we have A = B = O.

n
(@]

If C # 0, we must have y = 0. Then (ii) implies a

and

Cy
My[(x,¥) (x,¥)] =
bxy +cy2

has the nontrivial solution (x,0), and therefore is degen-
erate.

We have just proved the following:

Theorem 5.6. If the bilinear form

sz + Bxy + Cy2

My [ (%), (X,¥)] =

ax2 +bxy + cy2

is nondegenerate and A, B, and C are not all zero, then

all solutions (xo,yo, YO’O) # (0,0,0,0) of
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0 = yx + x> +Bxy +Cy’ +EN; (X,¥,Y,E)
2 2
O = y +ax” +bxy +cy” +EN, (x,y,y, E)

(0]

J(x,y, Y §)

are either cusp points or fold points, provided that (H10) -

(H1l) are satisfied.

We shall use the following example to demonstrate be-

havior near a cusp point.

Example 5.2. Consider the system

(5.20) (a) O = yx+xy +1N; (X,y,v,7)

(5.20) (b) o

2 2
yt+x +y +TN2(X,Y,Y,T)

where Nl(o,—l,l,o) # O At the solution (0,-1,1,0), the

matrix corresponding to (5.2) is given by

o o o N, (0,-1,1,0)

(o) -1 (o) N2 (0,-1,1,0)

o -1 -1 J
- g §

and has rank three. By theorem 5.6, (0,-1,1,0) is a cusp

point. If we solve (5.16) (b) for y(x,y,t), we obtain

y(xX,y,7) = —l-+x2-+higher order terms.

Substitution into (5.20) (a) gives

(5.21) o = (Y-l)X+x3+TN1(X’Y(X:Y,'T)JY:'T)-
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We make the change of variables y = -(y-1) 1 =

-TN; (X, ¥ (%X,y,7),y, 1) in a neighborhood of (0,-1,1,0).

Since Nl(o,-l,l,o) is nonzero, this change of variables

is a homeomorphism by the inverse mapping theorem.

(5.21) becomes

The mapping T: IIR2 - ]R2 given by

(5.22)

<l
3
<
I
<1

is the standard form for the cusp singularity [ 3 ].

have the following local picture, [Figure 7]

A

‘e

Figure 7. Behavior near a cusp.

Now

We



69

The number of real solutions (x,y) corresponding to
each (y,1) in a neighborhood of (1,0) 1is given schema-

tically by the following bifurcation diagram [Figure 8]:

Figure 8. Bifurcation diagram in the (r,Y)-plane.

If we change back to the (r,n)-plane by setting =n = yr,

the corresponding diagram is given by Figure 9. The curve

T in Figure 8 has become a curve [ tangent to the line

n=rT

A 4

A

Figure 9. Bifurcation diagram in the (r,n)-plane.
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Note that this is only a local picture, and is valid
only in a neighborhood of the curve T'. The picture can
be completed only when we have analyzed the behavior of

solutions near every (x which is a solution

0o’ YO, Yo.’ To)
of

{:O yX +yx
0=y+x2+y2.

In general, if T: 1R2.. IR2 satisfies definition (5.1),

there are local changes of coordinates in the domain and in
the range of T such that the local picture is given by
Pigure 7 and T has the form (5.22) [ 3].

The hypotheses (H10) - (H1l1l) were chosen to insure that
the set of solutions (x,y,y,r1) of (4.3) is a two manifold
in the neighborhood of (xo,yo,yo,o) # (0,0,0,0). That is,
there is only one solution branch passing through
(xo,yo,yo,o). As we shall see in Chapter IV, this does not
always happen in applications. If two solution branches pass
through (xo,yO,Yo,
§4 are violated. In this case, it is necessary to find a

0), both hypotheses (H10) and (H1l) of

way to "factor out" a branch so that the methods of §4 and

$5 apply. One is then faced with determining how the branches
intersect. We shall demonstrate how this may be done in an
application to chemical reaction equations discussed in

Chapter 1IV.
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§6. Solutions near (xo,yo,Yo,O) = (0,0,0,0)
In this section, we shall informally discuss some ways
of determining the behavior of solutions of (4.1) near

(0,0,0,0). At (0,0,0,0), the matrix

and does not have rank two. Thus the hypotheses (H9) - (H10)

of §4 do not apply. The system

-
(6.1)(a) ©

n -
F(x,Y,Y,E) = Yx+anx +an_lx y oo +a0y

+ gNl (x) Y’ Y’ g)

(6.1)(b) O = G(X,y,Y,E) = Y+bnxn+bn—1x loe.. +boy

L + §N2(X,Y,Y: €)

is similar to the l-dimensional case of Chapter II as y
passes through O at & = O, except for the extra parameter

E.

Example 6.1. Consider the system

2

(0] ny - x

(6.2)

0o = Tx-+nx2-+y2.

After the previous scaling, we have

o Yy-X
(6.3)

0o = yx-+nx2-+y2

=
il

yn -

3
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Solutions near (x,y,y,n) = (0,0,0,0) correspond to solu-
tions which bifurcate from the n-axis near (0,0). 1If
(x,y) is a nontrivial solution, elimination of y shows

that x must satisfy

0o = Y+nx+x3

The discriminant of this cubic is given by -4n3-27Y2.

Thus along the curve 4n3 = -27y2 in the (y, n)-plane
(or 4ﬂ5 = -27T2 in the (r,n)-plane) the number of non-

trivial solutions changes by two.

A

Figure 10. Behavior of nontrivial solutions

of system (6.2).

Figure 10 shows the projection of the "solution space" unto
the (r1,n)-plane. This example shows the advantage of con-

sidering a full neighborhood of (1,7n) = (0,0) in our



73

studies. It does not suffice to fix y and vary 1 to
study solutions which bifurcate from the n-axis.

This example shows that we may expect to find a cusp
on curves tangent to the axes in the (r,n)-plane. These
curves and cusps play a role similar to the fold curves
discussed earlier.

Since FY =1 at (0,0,0,0), we may use the implicit
function theorem to solve for a unique y(x,y,g) such that
F(x,y(x,v,E),y,E) = 0 and y(0,0,0) = 0. Since (0,0,vy,E&)
is a solution for all (y,g) sufficiently close to (0,0),
y(0,Y,8) =0 and y(x,y,g) = xH(x,y,g) where H is ana-
lytic in x, y and g. Substitution of y(x,vy,g) in Fl,

and division by x gives an equation of the form
(6.4) 0= F(X,y,8) = y+[£] (v, 8)]x + (£, (v, 8)]x% + -

and we have successfully "divided out" the solution (x,y) =
(0,0).

At this point we may take the following approach:
solve (6.4) for vy(x,g) and analyze the singularity of the
map T: (x,g) - (y(x,g),g8) at (x,g) = (0,0). We shall

sketch how this may be done for the following special case

yx-+alx2-+blxy-+cly2-+§N1(X,Y:Y,§)

(6.5) (a) o

(6.5) (b) o

2 2
Y +a,%x° +byxy +c,v° +EN, (X,v, Y, §)

We now find that

y(x,y,8) = -a2x2-+b2a2x3-+xH(x,y,g).
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Substitution of y(xX,y,€) in (6.5)(a) and division by x

yields,

0= Y'+[f1(Y:§)]x'*f2(Y,§)X2-Ff3(y,g)x3 + o

where fl(0,0) = a f2(0,0) = -b,a and f3(0,0) =

1’ 172

blbzaz"claZ‘
If a; # 0, we may solve for a unique x(y,g). Since

ala2 = 0 would make the bilinear form

2 2
alx -+blxy-+cly

M((X,Y), (x,y)) =

2 2
ayx -+b2xy-+c2y

degenerate, we now assume that a; = 0, a, # 0. As before,

we may solve for vy(x,€). We find that Y - a; =0 and

X
2
A—% = -2bla2, at (x,g) = (0,0). 1If bl # 0, there is a
-2 3
"fold" [ 3] tangent to the axis. If b, =0, i.% = -6c,a,.
2 X

If ¢ # 0, and in addition, at (x,g) = (0,0),

a7 o
there is a cusp [ 3] at (0,0). The situation is similar
to Example 6.2.

We now outline an alternative approach which is more
analytic in nature and does not simply entail applying class-
ifications from singularity theory. This is useful for
problems which do not f£it the standard classifications.

The main idea is to find curves (x(g),y(gE),y(g),€E) such

that x(0) = y(0) = y(0) = O and the Jacobian of system
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(6.1) has zero determinant along these curves. These curves

are determined by the system

0= F (6,y(Xy,8),y,8) = yx +£, (v, £)%° + £, (v, 8)° +. ..
(6.6)
0= SaiFl(x’Y(x’Y’g)’Y’g) = Y+2f1(Y:€)x+3f2(y,§)x2 .
since
oF JF
—lF (x’Y(x)Y:g),g) -‘—‘-—1--]-——;&2-_-

X1 X Y dx

3F; . aFlI_ ) e
X dy L 3ax’/ 3y

at (x,y(x,v,€),y,E) if and only if

X -)'%
det = 0.
¥, 3F2
L X dY J

One such curve is x(g) = O = y(g). This corresponds
to the g-axis and the trivial solution (x,y) = (0,0). We
are interested in curves where x(g) # O for € # O. Let

XxG (x, Y, §) = Fl (x,y (x, Ys g): Y> g) . G(x, Y> g) = 0 implies

-3-Fl(x,y(x,y,g) Y, &) = X3% G(X:Y,g)

Thus nontrivial solutions of (6.6) are found by studying

(6.7) (a) 0 =G(x,vy,8) = Y-+fl(y,§)x-+-'
(6.7) (b) 0 =326 05y, 8) = £(y,8) +25, (v, §)x +- -
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Since %g # 0 at (0,0,0), we may use the implicit
function theorem to solve for y(x,g) with y(0,0) = O.
y(x,€) is analytic in (x,8) for (x,E) in a neighbor-
hood of (0,0). Substitution of y(x,€) in (6.7) (b) gives
a power series G(x,£€) which converges in some neighbor-
hood of (0,0). The curves x(g) may be determined by

Newton's polygonal method.



CHAPTER IV

APPLICATION TO A SYSTEM OF
CHEMCIAL REACTION EQUATIONS

§1l. Introduction
In this chapter we shall apply the method of the pre-

ceeding chapter to a system of equations that arises in

the study of chemical reactions [ 2 ]:

2
(1.1) %% = A-—(B-+l)x-+x2y-+D h—%, oO<rKl1l, t>o0
or

2
Y — px-x’y+w &Y, o0<r<l, t>o0
ot ar2

with boundary conditions

y(l,¢t)

A,

y(o,t) B/A.

A and D are constants, and D = Dx’ vD = Dy, where

D and Dy are diffusion coefficients for x and y

respectively. B and yy are taken to be the parameters.
For all values of B and v, Xg = A, Yo = B/A is an

equilibrium state. Substitution of x = A+u(r,t), y =

B/A+v(r,t) into (1.1l) gives

77
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2
ou [B=1]u +A2v +p 232 +§u2 + 2Auv +u2v
ot arz A

(1.2)

2
v -Bu-A2v+\)D 9V --2112 -2Auv-u2v
dr

with boundary condition
u(o,t) = u(l,t) =v(o,t) = v(l,t) = 0.

The associated linear system is

2
1 [B-l]u+A2v+D 2y
at arz

(1.3)
-g% = -Bu-a%v +\D 5-2—‘21
dr
with the same boundary conditions.
Since we are interested in steady state solutions, we
will consider u and v as functions of r, and study the
stationary problem

2

O =[B~-1]u +A2v +D Q_.‘zi + %u2+ 2Auv+u2v
dr
(1.4) 2
0O = -Bu-A2v+vD d—; -% 2_ 2Auv-u2v
or

with boundary conditions

(1.5) u(0) = v() =u(l) =v() =0

Let Y be the Banach space of twice continuously dif-

ferentiable functions from [0,1] to R% which satisfy

(1.5) and
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(1.6) u’(0) = v“(0) = u’(l) = v”(1) = 0.

Let | (u,v) |y = fjuj| +|[v|| +[ju’|| +]iv’]| +|u”|| +]v*|] where
||-]] denotes the sup norm. Note that if (u,v) 1is a
solution of (1.4) - (1.5), then (1.6) is automatically

satisfied. Let

2 " r 0
(B-1) +D d—2 Az u
A(v,B)[u,v] = dr 2
-B -A" + D —d-z- v
L ar” j [
and
- =

BI-\mlu2 + 2Auv + uzv

N(B,u,v) =

_.-BA"]'u2 - 2Auv - uzv__

If (u,v) is in Y, then A(v,B)[u,v] and N(B,u,vV)
satisfy (1.5) for all y and B. Let X be the Banach
space of continuous functions from [O0,1] to ]R2 which

satisfy (1.5). Let
| (w,v) | = fjuf| + |Iv]|.

Then A(v,B): Y -« X 1is a continuous linear operator for
each (v,B) in IR2, and N: Rx Y + X is continuous.

The stationary problem (l1l.4) - (1.5) is equivalent to

(1-7) 0o = A(\),B)[U,V] +N(B,u,V).
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If we replace ]R2 by Cz in the above, we see that
A(v,B) and N have continuous complex extensions. A(v,B)
depends on y and B analytically and N depends on B,

u, and v analytically.

$2. Eigenvalues, Eigenvectors and Projections
The spectrum of the linear operator A(y,B) consists

of the eigenvalues

+
(2.1) op = 3{B-1-a% -nr’D (1 +v)

+ [[B-1+a% +n%rD (v -1)]2 - 4a%p)1/?}.

The corresponding eigenfunctions are

sinnrr
+
(2.2) Qn =

+
M;'six1nvr

+
where M; satisfies

1+

<+
(2.3) o, - (B-1) +n21r2D - A2M = 0.

o

+
For real Op » the projection unto the linear subspace spanned

+
by §; is given by
(2.4) Pn[v:]Qn— -——E—Egu81nmrr Nnvsz.nn'rrr r| &,
l-i-MnNn
+
where Nh satisfies
+ 2 2 ha
(2.5) o, - (B-1) +n“7 D+BNn = 0.
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sinnrr

(2.6) +

N_ sinnrr
n T

S|+

is the solution of the adjoint equation

_ -
¥, (B-l)+D—a-2— -B y—\

+ or .
(2.7) o4 =

2
Y, a2 -a% +\D —3—2-

— —

with boundary condition ¥, (0) = y,(0) = ‘i’l(l) = ‘i’z(l) = 0.
+ 4
We can see that P’;[ Q;] = 1.

We shall now determine a curve in the real (v,B)-plane

such that all the eigenvalues of A(B,v) have negative
real part when (v,B) lies below this curve [ 2]. This

curve will be called the curve of neutral stability.

We
can see that Reo; > Rec:l_"l for all n. If of is complex,
then the curve Reo; = 0 1is given by the straight line

(2.8) B = l+A2+n27r2D(l+v)-

If 0; is real, Reo:; = 0 1is given by the hyperbola H.

2
_ 22 A 1
(2.9) B—l+n1rD+v{l+n21r2D}.

A typical curve Reo; = 0 1is given in Figure 11.
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. +
Figure 1l1. The curve Reo = O.

The curve we seek is found by joining portions of the curves
Reoz = 0 which lie lowest for each (v,B). ReoI =0 lies
lowest for sufficiently small y and for sufficiently large
v. For values in between, a finite number of the hyperbolas

lie lowest. A typical curve is "scalloped" and is given by

Figure 12.

Figure 12. A typical curve of neutral stability.
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The intersection of Hn and Hn+l is given by

A2
n? (n+1)2 (r°p) 2

B, = L+n?r?D+n?(n+1) 2 (r?D)% (1 + —15-)
nwTD

2 2

1+n"Tm 2

1

D+ (n +l)21r D +n2(n +1)2(1r2D)2

2

= (1L +n%r%D) (1 + (n +1)2%1%D)

The number of such intersections which lie on the curve

in Figure 12 depends on the values of A and D. We will

study bifurcation in the neighborhood of (VC, Bc) for

n> 1.

Proposition 2.1. 1If c:; # o; for n#m is real,

then it has multiplicity 1. That is, if [A(B,v) -0 I]%g =

+

then 3§ = qun.

Proof. We proceed by mathematical induction. It is
true for k -1. Suppose [A(B,vV) -O’;I]kQ =0. Let &=
+..k-1 - + +, +
(A(B,v) -0 I] § Then §=cp and P [cy e, =

Pn[[A(B,v)-o;:I]k-]'@]Q;. Since P~ commutes with A,

c§: = [A(B, V) -G:;I]k-l[?nf 6]4’;] = 0.

Therefore c

O and the induction hypothesis implies

Thus we have exactly the situation described in Chapter

III.
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$§3. Calcuation of the Bifurcation Equation

Let (u,v) in X be decomposed as follows.

u sin nyr sin (n+l)7r Wy
(3.1) = X + vy +
v Mn sinnrr Mn+1 sin (n+l)7r LY,y
= x§n + Y8 41 + w
where
u u Wy
x=Pn ,y=Pn+1 , and w = is 1in Qx.
v v W,
M N M N rrespond t 0+-O-0+ nd
n’ °n’ ‘n+l’ “n+1 COLresP ° n Y% %+ 2
are given by
_ -2 2 2
(3.2) M, =-A "[B,+1-n"r"D]
_ -2 2 2
(3.3) Mn+1 = -A [Bc+l-(n+l) T D]
_ -1 1.2 2
(3.4) Nn = Bc [Bc 1 -n"7"D]
) § 2 2
(3.5) Nn+l—Bc [Bc-l—(n—l) T DJ.

The subspace Qx is given by

I
(@)
(S

{(wlwz) € len =P
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The auxiliary equation is given by

(3.6) o0 = [I-Pn-Pn+1][Aow+ (B -B_)A,; (u,v) + (\)-\;c)z.b.2 (u,v)]
+ N(B,u,vVv)
where Ao = A(vc,Bc),
1 (0] (o] o
A = ) Ay = 42
-1 0 (o] -3
dr
A-lu2
and N(B,u,v) = N(Bc,u,v) +(B-—Bc) .
-A-lu2

Proposition 3.1. There exists a unique real analytic
function w(x,y,v,B) such that x@n-+y§n+l-+w(x,y,v,B) is
a solution of (3.6) for all (x,y,v,B) in a neighborhood
of (0,0,0,0) and w(0,0,0,0) = O. Moreover, w(x,y,v,B)
can be expressed by a convergent power series in this neigh-
borhood. [This power series contains terms of second order
or higher in x,y,v,B and all terms contain at least an

X or Yy.]
Proof. We need only show that the restriction

(3.7) Aol : Qy 4 Q

is a linear homeomorphism, and then apply the implicit func-

tion theorem. The rest follows from the remarks of I§3 and
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equating coefficients when the power series for w(x,y,v,B)
is substituted into (3.6).

Since there are no eigenvalues of H, in Qy, the map
(3.7) is one-to-one. It is onto by a "Fredholm alternative"

type theorem for boundary value problems [ 9]. Hence by

the open mapping theorem it is a linear homeomorphism.[
The bifurcation equations are given by

(3.8)(a) O

P [(B -Bc)Al(u,V) + (v - Vo)A, (u,v) +N(B,u,v) ]

(3.8) (0) 0 = B_1[(B-B_)A; (u,v) + (v=- v )A,(u,v) +N(B,u,v)].

Substitution of w(x,y,v,B) into (3.8) gives a system

of the form

O = F(x,y,v,B)

0o = G(ny,V)B)

where F and G are power series that converge in some
neighborhood of (0,0,0,0).
From this point on, we shall assume that n is odd.

F and G are actually the coefficients of

sin nrr Q] sin (n+1)7x

3 = ' and § =
n MnsinnmrJ n+l Mnsin U1+1)er

respectively. We shall demonstrate how symmetry properties
can be used to obtain information about the bifurcation

equations.
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Recall the original system for the stationary problem

O = A(B,v)[u,v] +N(B,u,v).

Let ¢ be the transformation given by

g(u(r),v(r)) = (u(l-r),v(l-x)).

It is easy to see that g is an involution and that it
commutes with the operators A(B,vy) and N(B,u,v) for

all y and B. We have

0(x3, +yd 4 twW) = xo -V¥¥ . *ow

and
aw(x,y,v,B) = w(x,-y,v,B).
Thus F and G must satisfy

F(X:Y:V:B)

F(X, =Y, v, B)

G(X:Y: V:B):

-G (X, =Y,V B)

for all x,y,v,B 1in some ball about (0,0,0,0), and we have

the following.

Proposition 3.2, If n is odd, the bifurcation equa-

tions (3.2) can be reduced to the form

(3.9)(a) O

F(x,Y,v,B) = 1x +ax2 +by2 + (higher order terms)

(3.9) () O

G(x,y,v,B) ny + cxy + (higher order terms)
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where n = n(v,B), v = 7(v,B). Here F(x,y,v,B) contains
only even powers of y and G(x,y,v,B) contains only odd

powers of vy.

As in the previous chapter, we may show that the first

terms of (3.9) (a) are

+ +
90, 3o,
ﬁ‘(\’c: BC) (B -Bc)x + —a;)_(vC’BC) (v - \)C)x oo

Those of (3.9) (b) are

+ +
o0 30
D (v B) (B=B)y + —BEL(y ,B) (v- v )y + -+

Thus t(v,B) and mn(v,B) have the same linear part at
+ + ,
(vc,Bc) as that of on and Opn+l respectively.
Since bifurcation can occur at (0,0,v,B) near (0,0,
. . + +
vc,Bc) if and only if o, Oor o .4
only if the jacobian of (3.3) at (0,0,v,B) vanishes, we

is zero, and if and

conclude that 1 = (v,B) = 0 if and only if o;(v,B) =0
. . +

and n(v,B) =0 if and only if on+l(v,B) = 0. Also

t(v,B) will have the same sign as oz(v,B), and n(v,B)

will have the same sign as o:+l(v,B) for (v,B) near

(\)C, BC) .

The second order terms in x and y that appear in
the bifurcation equations and which do not depend on (B-Bc)
or (v-—vc) are easy to compute. For the sake of complete-
ness, we give them both for n-odd and n-even. 1In (3.8) (a)

these terms are given by
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e
x2 sin n21rr +2xy sinnrr sin (n +1)7r 1
B
c
A Pn <
2 .. 2 . .
L (x* sin“ nrr + 2xy sinnmr sin (n +1)7r)
~ TR
y2 sin2 (n+1l)7rr
: )
-y2 sin2 (n+1)7rx
L J
a8 ) ) W ~ h
X Mn sin” nrr +| xy (I‘% +Mn+l)sin mrr sin (n+ 1)7r
+2AP {
n
- (sz sin2 nrr)| +{-xy (M_ +M )sinnrr sin (n+ 1)m
\L n J L n n+l J
g M
sz sinz(n-+1)vr

n+l

sin2 (n+1l)7rx

n+l

—y2M
L J

The coefficient of x2 is

(o] if n 1is even

[1-N_]
1+MN

3mr[BA '*‘2% if n is odd.

The coefficient of xy is

2. 1 1 y . [1-N.] B,
L (n+1) ~ 6n+2 = 2- 2n-'[1+M N_] [A

+ 2A (M +Mn+l)]

if n 1is even
(0] if n is odd,



90

The coefficient of y2 is

(o] if n 1is even

B
2.1 1 1 [1-N_] c
=5 - enea t Tneal——n _ [7 *2AaM ]
[T+ N _]

if n 1is odd.

For (3.8) (b), the coefficient of x2 is

B
2,1 1 1 [1-N ] _c
min+l - 6n+2 2-2n] TTM n’;ql ) (= * 2Mn]
( n+l n+l
if n 1is even
(0] if n is odd.

The coefficient of xy is

o if n is even
2.1 1 1 [1-N_,.] B
== - + ] n+l c
T'n 6n+4 = 2n+4 (= +2a(M_+M__.)]
[1+M N .,] " A& n  “n+l
if n 1is odd.
The coefficient of y2 is
1-N_,.] B
8 [1-Ny41 c . .
[ +2aM__,] if n 1is even
3(n+l)7T [1+Mn+an+l] A n+l
(0] if n 1is odd.

We will carry out the analysis of the bifurcation equa-

tion for n o0dd. The case when n is even is similar. We
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now make the change of variables from (B-—Bc), (v - vc)

+ + .
to 1 = Gn(v,B), n = 0n+1(v,B). The point (Vc’Bc) becomes

the origin and (3.9) now has the form
2 2 . .
(3.10) (a) O = Ttx +ax” +by” +higher order terms in Xx,y,n, 7

(3.10) () o©

ny + cxy +higher order terms x,y,n,r.

We will assume that A and D are such that a, b, and ¢

are nonzero. Then the bilinear form

ax2 + by2

B (x,y), (x,y) > =
cxy
is nondegenerate, and we may use the change of scale given
in III §3. Recalling the consequences of symmetry given in
proposition 3.2., the bifurcation problem is equivalent to

studying the two systems

(3.11) (@) 0 = x+ax® +by? +1F, (x,¥%, v, 1)
(3.11) (b) O = yy +cxy +1yF, (x,yz, YsT)

and
(3.10)(a) 0 = yx +ax® +by? + 6, (x,¥%, v, 1)
(3.10) (b) 0 =y +cxy +nyG, (x, v, v, 1)

where all terms in Fl, F2’ Gl’ 62 are second order or

higher terms in x and vy.
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If (x,Y,y,T) is a solution of (3.1l1l), then
(t%, 7Y, T,y7r) is a solution of (3.10). If (x,y,y,n)
is a solution of (3.12), then (rX,nY,ynn) is a solu-
tion of (3.10). Equation (3.11) will be used to study
solutions of (3.10) corresponding to (1,n) in a set of
the form 8, = {(r,n)| |7| 2 p;|n|} where p, > 0. Equa-
tion (3.12) will be used for sectors S, = {(r,n)| |n| 2

p2|7|}. Sl and 82 are given in Figure 13.

Figure 13. The sectors S1 and 32'

(Of course p; and p, have been chosen so that the

sectors overlap).

§4. Analysis of the Bifurcation Equations
Recall that n is odd and that we assume A and D

are chosen so that a, b and ¢ are nonzero.
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wWhen 1 = 0, (3.11) becomes

0o = x-+ax2-+by2
(4.1)

(o)

Yy +cxy

which has the nontrivial solutions
(4.2) (a) X = -

and

(4.2) (b) X = - %, y =+ — b .

These solutions coincide when vy = c/a.

The matrix of (H10) at a solution (xo,yo,yo,o) is

given by
l+2ax0 2by0 (o] Fl(xo,yo,yo,o)
Yo Y + X, Yo F, (X5, ¥gs Yo20)
The determinant J(xo,yo,yo,o) = (l-+2axo)(y-+cxo)-2bcyg
is zero only for the solution (- %, O,'§, 0) and (0,0,0,0)

at 1 = 0. Thus if (xo,yo,yo,o) is any other real solu-
tion, there are unique x(y,7), ¥Y(y,T1) such that x(yo,o) =
Xy Y(y5:0) =y, and (x(y,7),¥(y,7),y,7) 1is a solution
of (3.11) in some neighborhood of (yo,o). It remains to

determine the behavior of real solutions of (3.1ll) near
1
(-

;’o)-g—) o) and (0,0,0,0).



94

1 c

At the solution (- 3 O,‘;, 0), the matrix given in
(H11) becomes
1
i 1
(0] 0] 0] 0}
J J -1 J
{ X Y T y

and therefore does not satisfy the hypotheses (H10) - (H1l1l)

of Chapter III. However, we shall still be able to decribe

1

the behavior near (- 3’ o, g, O). Recall that the bifur-

cation equations have the form

(4.3) (a) o x-+ax2-+by2'+TF1(X,Y2,Y,T)

(4.3)(®) 0 = yly+ex + 18, (x,v%,y,1))

after scaling.

We may apply the implicit function theorem to (4.3) (a)

to obtain:

Proposition 4.1. There is a unique solution branch

of (4.3) of the form (x(y,7),0,y,7) in a neighborhood of
(- 1

3’ 0,~§, 0), with X(gg 0) = - %-. This branch is deter-
mined by (4.3)(a) and y = O.

We shall refer to this branch as branch I. We shall

see that another branch is determined by

(4.4) (a) o)

2 2
x-+ax2-+by ~+TFl(x,y s Ys T)

(4.4) (b) o)

2
Y+CX+TF2(X:Y :Y:T)
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Let J(x,Y,y,T) denote the Jacobian of (4.4) at
(x,¥,¥, 7). The matrix corresponding to (4.6) in Chapter

III is given by

-1 0 0
o] (o] 1
(0] 2bc (o]
L B

and has nonzero determinant. By Theorem III there is a

unique fold curve y(r), with corresponding solutions

C

S, %@ =-%, 300 =o,

(X(1),y¥ (7)) such that ¥y(0) = =,
0 = J(x(7),y(1),y(1),7), and (4.4) determines a solution
1
a 2
The direction of the fold is determined by the number

branch near (- o, g, 0).
of real solutions of (4.4) for 1 =0 and y near §.
These solutions are given by (4.2) (b). We have the follow-

ing.

Proposition 4.2, The system (4.4) determines a solu-
tion branch of (4.3) which satisfies

(a) If Dbc > 0, there are two real solutions of (4.4)
for y < y(r) and none for Y > y(7).

(b) If Dbc < O, there are two real solutions of (4.4)

for vy > y(r) and none for vy < y(7).

Note that this result is local and only holds in a

neighborhood of (x,y,y,r) = (-'%, o, gu 0).
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We shall refer to these solutions as branch II. Branch
II is determined at ¢ = 0 by (4.2) (b) and in this sense
is distinct from branch I which is determined by (4.2) (a).

1 c

At ("3’ 0,7, 0), branch I and branch II coincide.

Proposition 4.3. The only intersection of branches I

and II is the set of solutions (X(7),y(7),y(1), 7).

Proof. For any (X,y,vy,0), we have

1+2ax+7?£- 2by+1'-g
3(x, Y,Yy,0) = det an an =0
et "

when y = 0O, because

oF an

1
TY-(X’O’Y’T) =0 = W(X:O:Y.’ ) = O.

Since (4.4) determines x(t) and y(7) uniquely when
y = O, the solution corresponding to the unique fold curve
(1) has the form (x(1),0) with x(0) = - %. Hence
(x(7),y(1),¥(7), 1) is part of branch I.

Secondly, the two branches can intersect only when the
Jacobian J(x,y,y,7) of the system (4.3) is zero and y = O.
We have

1+2ax+'r—a? 0

J(x,0,y,7) = det

2
(o] Y-+cx-+¢F2(x,y ’Y’T)d .
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We see that J(x,0,y,71) = O at a solution (x,0,y,7) of
(4.3) (for T sufficiently small), if and only if (x,0,vy,T)
is also a solution of (4.4). There is a unique solution
of (4.4) of this form and it is the one corresponding to

the fold curve.

The situation just studied is completely different
from that considered in Chapter III. We may view branch
II as bifurcating from the solution (X(t),0) of branch I
at  (y(r),1).

We now determine the behavior of real solutions of

(4.3) near (0,0,0,0).

Proposition 4.4.(a) If cb > O, and t and vy are
sufficiently small, there are two nontrivial real solutions
(x(y,7),¥(ys7)) of (4.3) for y > O such that x and vy
tend to zero with y. There are none near (0,0,0,0) for
y < O.

(b) If cb < O, there are two nontrivial real solutions
for y < O, and none for y > 0. At 1 = O, these solutions

are given by (4.2) (b).

Proof. We may apply the implicit function theorem to
(4.3) (a) to obtain x(y,y,T) such that (x(¥,y,T),¥Y,¥y,>T)
is a solution of (4.3) (b) in a neighborhood of (0,0,0)
and x(0,0,0) = 0. Substitution into (4.3) (b) gives an

equation of the form
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3 3
O =Yy-cby +yg(y,Y,rT)

where g(0,0,0) = O [Terms in g(y,Y,rt) which do not con-
tain ¢ or Yy as a factor will be at least first order

in y]. Division by y takes care of the trivial solution
that exists for all y. The results follow from a consider-

ation of

2, .2
(4.5) 0 =y-cby +ygl(y,Y,7)
for + and y sufficiently small.(

In fact, the curve y(r) = 0 is a fold curve for the
system consisting of (4.3)(a) and (4.5), and the solution
corresponding to this fold curve is (x(7),y(71)) = (0,0).
The line Y(r1) = O corresponds to the T-axis in the T1-q
plane. Thus branch II bifurcates from the trivial solution
at the T-axis, and disappears at the curve of solutions
(trx(7),0) of branch I when vy reaches ¥(7); i.e., (1,n)
reaches (7,¥(7r)7) in the 1-n plane. 1In the (71,n)-

coordinates, branch II solutions have the form

_n/c 4 oo
/y (1 -a/cy) /M'f_:z&n)
*T cb + -0 =+ cb + e

All that remains is to determine the behavior of solu-

I

X = -TY/C 4 e o

y

tions for Y near zero in (3.12). [This corresponds to
Y near "o" in (3.11); or the n-axis in the T-m plane].

When T = 0, (3.12) becomes
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0 = Yx +ax2 +by2

(4.6)

(o) y + cxy

Nontrivial solutions of (4.6) are given by

(4.7) x=-§, y =20
and

S!-c(a!
(4.7) (b) x=-%, y=4% e .

The solutions (4.7) (b) are real for y near O if
and only if bc and c/a have opposite signs. The solu-

tion (4.7) (a) approaches the origin as Y tends to zero.

Proposition 4.5. There is exactly one nontrivial
solution (x(Y,n),y(y,n)) of (4.6) in a neighborhood of the
origin, such that x(y,n) and y(y,n) tend to zero with

y. This solution is given by (4.7) (a) when n = O.
Proof. As in proposition (4.4), y(x,Y,n) is deter-
mined by (3.12) (a) and the problem reduces to

(4.8) 0 = ¥x +ax2 +x2h(x,Y,n)

where h(0,0,0) = O. Since a #¥ O, the result follows

from the implicit function theorem.[D

Thus branch I bifurcates from the trivial solution at

the n-axis. In (1,r)-coordinates branch I solutions have
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the form
X=—Y'n/a+°"=-'r/a+'°', y:o.

We now choose the sectors 5, and S, mentioned in
§3. Let S; = {(r,m)| |7| 2 py|n|} where 0 < p; < |a/e].
P is chosen so that it overlaps S:5 but does not contain
the line n = (c/a)rT.

We summarize our results by the following bifurcation
diagrams in the (r,n)-plane (Figure 14). The numerals de-
note the number of nontrivial solutions of (3.10) which
correspond to (1,m) in each sector. The curve ¥(r7)
given by proposition (4.2) has become the curve T (g) =

(T,y(t)r) which passes through the origin with slope c/a.
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Case 1. bc > 0, c/a> O Case 2. bc > 0, c/a< O

N

n

r
€ g T
1y

~

Ccase 3. bc <O, c/a> o0 Case 4. bc < 0, c/a< O

Figure 14. Bifurcation diagrams for the system

(3.10) in the (7, n)-plane.

Figure 15 is an attempt at a more geometrical repre-
sentation of the situation. We are only considering Case

4 in Figure 15.
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Figure 15.

when bc < O

Intuitive representation of bifurcation

and c/a < O.

%
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Figure 15 is meant more as an aid to the intuition
rather than an actual representation of the solutions
(X,¥,7T,m). One must interpret the drawing in the following
spirit.

Let Tz-bnz = ¢ be a sufficiently small circle in the
7-n Pplane. As we pass through point A, solutions of branch
I (broken line) bifurcate from the trivial solution at the
n-axis. As we move around the circle counterclockwise the
corresponding solution of branch I passes through branch II
at B, proceeds to bypass the trivial solution at the T-axis,
and finally passes through the trivial solution when it
reaches the n-axis again at C; etc. Solutions of branch
II (double valued) bifurcate from the T-axis and continue
until they disappear into branch I at the solution (rx(7),0)

corresponding to T.
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