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ABSTRACT

LEADING INDICATORS IN STRUCTURAL ECONOMETRIC MODELS
WITH APPLICATIONS IN MULTIVARIATE TIME SERIES
ANALYSIS ABOUT THE COMMERCE DEPARTMENT LEADING

INDICATORS AND A PROPOSED MONETARY LEADING INDICATOR

By
Paul Koch

The Commerce Department leading indicator approach has
been criticized as being void of economic theory.

In this study a leading indicator approach is formu-
lated which is firmly embedded in an economic theoretical
framework expressed as a dynamic, structural econometric model.
A time series model in which leading indicators play a
special role is derived directly from this structural model.
In this context forecasts of the objective variable can be
made with the current information provided by the leading
indicator. The variance of the forecast errors can also be
obtained in the analysis.

The current state of the art of forecasting with
econometric models uses the Final Form approach. The
forecasting ability of this approach is compared with that
of the proposed leading indicator approach.

In light of the proposed approach, the Commerce
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Department's leading indicators are evaluated. Bivariate time
series models are built, describing the empirical relation-
ships between economic activity and certain economic time
series which the Commerce Department deems as useful leading
indicators (components of their Composite Index of Leading
Indicators). This examination reveals some possible flaws
with the Commerce Department approach. Most of the Commerce
Department leading indicators examined display no significant
lead over economic activity. Furthermore, one of the few
Commerce Department leading indicators which displays a
considerable lead, is seen to have a relationship with
economic activity that is contrary to the way it is employed
by the Commerce Department.

These flaws cast more doubt on the usefulness of the
Commerce Department leading indicator approach, and possibly
provide some insight as to why the approach has performed so
poorly in the past.

Finally, Money is considered as an alternative leading
indicator. A multivariate time series model is developed,
describing the empirical, dynamic relationship between Money
and economic activity. This model is expanded at length to
account for various problems with the sample period reviewed.
The empirical results are discussed with their implications

toward some considerations in Monetary Theory.
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CHAPTER I

INTRODUCTION

With the advent of the Great Depression in the 1930's
came the assigned task of the NBER of developing a leading
indicator approach to forecasting, in the hope of helping
to prevent another such catastrophe. Wesley Claire Mitchell
and Arthur Burns collected data on various economic time
series and set up criteria for choosing leading indicators
from among these. Over the years the Commerce Department
leading indicator approach has evolved into its present
state, the current Composite Index of Leading Indicators
(CLI).

This approach has been criticized as being void of
economic theory (Koopmans, 1947), It is argued that theory
should be used in choosing leading indicators, or the under-
lying structural relationships are unknown, and thus the
leading indicators cannot be used for policy decisions.
Promoters of the Commerce Department approach have responded
to this criticism by claiming that a theoretical foundation
is present, since many of the series in the CLI reflect
either direct or indirect measures of demand for various
components of output, or reflect factors which have an impact

on demand. In any case, it is further argued that if a



method without underlying theory predicts better, then for
certain uses it should be preferred.

The record of the Commerce Department approach,
however, has been less than satisfactory. The CLI has
displayed two major faults: 1t has indicated many false
downturns, and has displayed a highly variable lead time at
true turns. These faults cast much doubt on the usefulness
of this approach in the role of forecasting.

This study develops a leading indicator approach
which is built upon an economic theoretical foundation, as
expressed in a dynamic, structural econometric model. Time
series models in which leading indicators play a special
role are derived directly from this theoretical framework.
In this context, current observations of the leading
indicators can be used to forecast the objective variable,
and the variance of the forecast errors can be obtained.

The current state of the art of forecasting uses the
Final Form of an econometric model. The forecasting ability
of this approach is compared with that of our leading
indicator approach. Two examples are presented illustrating
the approach, and this comparison of forecasting abilities.

In light of our proposed leading indicator approach,
we evaluate the Commerce Department leading indicators by
building bivariate time series models describing the empirical
relationships between the level of economic activity and
eight of the components of the CLI. TFive of the "leading

indicators" examined display no significant lead over



economic activity. The other three components exhibit the
kind of relationships with economic activity that a good
leading indicator is expected to have. However, the
component which shows the greatest lead (the Producer Price
Index of Crude Materials) is seen to have a negative rela-
tionship with economic activity, while it is used in a
positive role in the CLI. This analysis sheds light on some
potential reasons for the poor record of the Commerce
Department approach.

Finally, Money is considered as an alternative
leading indicator. The dynamic, empirical relationship
between Money and real GNP is examined in the context of a
multivariate time series model. The model is expanded to
account for two kinds of supply shocks occurring in the
sample period: the energy price shocks of the early 1970's,
and strikes in the LaBor Force. At all stages of its
development, the model indicates a stable relationship
between Money and real GNP, suggesting that Money may be

quite useful in the role of leading indicator.



CHAPTER II

LEADING INDICATORS IN STRUCTURAL ECONOMETRIC MODELS

Introduction

A leading indicator can be defined loosely as an
economic time series whose movements in some sense consist-
ently lead economic activity. More formally, a leading
indicator can be defined in the following context. We have
some presumed knowledge of the joint distribution of IPt+k

and LIt’ f(IPt+k’LIt)’ where

IPt+k = some measure of economic activity in

period t+k (e.g. the index of industrial
production),
LIt = some leading indicator which we define, in
period t.
In period t we know the value of LIt' The leading

indicator approach to forecasting suggests that we can use

this knowledge of LIt to tell us more about the distribution

of IPt+k‘ Thus we are interested in:
f(IP LI,)
_ t+k?> 7t
(2.1) f£(IP_,, |LI) = £, (LI,)

This is the context in which leading indicators can

be useful. We presumably know more about the distribution



of IPt+k given LI than without that information. That is,

.t,

we can provide better forecasts of IP by using the condi-

t+k

tional distribution, f(IP lLIt)’ than by using the

t+k

unconditional distribution, f(IPt+ ). Box and Jenkins

k
present an example showing the improvement in forecasting
using the conditional distribution over that using the
unconditional distribution.l The amount of uncertainty in
forecasting a time series using their leading indicator
(measured as the standard error of the forecasts) is sub-
stantially less than the uncertainty present in the appro-
priate model without the information provided by the leading
indicator. This, as well as the record of the leading
indicator approach, establishes the usefulness of leading
indicators in forecasting.

In their pioneering work with leading indicators,
Mitchell and Burns originally analyzed 487 different time
series and finally selected 71 by the criteria listed below.2
This collection has been updated periodically, and now
contains 70 indicators: 30 leading, 15 coincident, and 7
lagging (and 28 of less importance). In general the series
considered must lead at no less than 2/3 of the reference
cycle turning points as defined by the NBER, to be considered
a leading indicator.3

Mitchell and Burns listed the following criteria to
select the better indicators (the NBER uses roughly the same

criteria).u A series is a better leading indicator:



1. The longer are its average leads at past revivals.

2. The more uniform are these leads in occurrence
and length.

3. The closer its specific cycles come to having a
one-to-one correspondence to the reference cycles.

4. The more clearly defined are its specific cycles.
5. The less intense are its erratic movements in
comparison with the amplitude of its specific

cycles.

6. The fewer are the changes in the direction of its
month-to-month movements.

7. The smaller and more regular are the seasonal
variations that have to be eliminated before the
specific cycles can be studied.

8. The larger is the number of past revivals covered
by the series.

8. The farther back in time any irregularities in
conformity to business cycle revivals have
occurred.

10. The broader is the range of activities represented
by the series.

11. The more stable is the economic significance of
the process represented.

Koopmans5 criticized the work of Burns and Mitchell
as choosing indicators to predict business cycle peaks and
troughs without any apparent economic theory behind their
methods. He argued that economic theory is useful in
choosing those indicators which will best predict, and if
theory is not used, the findings and results can not be used
for policy decisions or other useful tasks because the under-
lying structural relationships are unknown.

Vining6 later argued against Koopman's criticism.

Vining suggested that the usefulness of alternative methods



should be evaluated by the results achieved by each. If a
method without underlying theory (i.e. pure forecasting)
predicts better, then for certain uses it should be preferred.

Since this exchange, promoters of the leading
indicator approach have been concerned with its theoretical
background. Today there is general agreement that there is
in fact a theoretical framework underlying the leading
indicator approach.7 The series included in the Composite
Index of Leading Indicators reflect either direct or indirect
measures of demand for various components of output, or
reflect factors which have an impact on demand. Changes in
these components of demand tend to lead changes in output in
the near future.

To date, this appears to be the main argument of
proponents of the leading indicator approach in defending

their use of leadihg indicators.

The Framework

We wish to explicitly formulate an economic
theoretical background for the leading indicator approach to
forecasting.

Consider a dynamic simultaneous equation model incor-
porating leading indicators, in the context of a general
linear multiple time series process. As Zellner and Palm8
indicate, a multiple time series process can be represented

as.



(2.2) H(L) z, = F(L) e, t=1, ... , T

pxp pxl pxp pxl

where zt = a vector of random variables measured as

deviations from their means:

H(L) and F(L) are matrices whose elements are poly-

1]
nomials in L, the lag operator (h.. = J h.. L* and
Qs s 1] g% 3%
1] 2
I PRV RO
1] 220 1348
e, = a vector of disturbances with E(et) = 0 and

' =
E(etet ) Ip.

Given prior information suggesting that some elements

of z, are endogenous and some are exogenous, the above

system can be rewritten:

Hll(L) le(L) Y F__(L) F,, (L) e

(2.3) =

(L) X F ,(L) F,, (L) e

(L) Hpp ()| %4 21

Hoy

where yt and e . are of dimension plxl,

Xy and e,, are of dimension ple, with p; + p, = Pp;

and the Hij and Fij submatrices are of the appropriate
dimensions.

If Yt is endogenous and x, 1s exogenous, these restrictions

t
are implied:

H21(L) =0, FlZ(L) = 0, and F,, (L) = 0.



Hence the above system becomes:

Hll(L) Ve + H12(L) X, = Fll(L) e

plxpl plxl plxp2 p2xl plxpl plxl
(2.4)

H22(L) X, = F22(L) oy

p2xp2 p2x1 p2xp2 p2xl

This is in the form of a dynamic structural system of
simultaneous equations, with the exogenous variables, Xy
generated by an ARMA process.

In our model, both IPt and LIt will be endogenous to
the system. Let LIt = Yigo IPt = Youo and y: = the (pl-2)xl
vector of remaining endogenous variables. Then [Hll(L) yt]

in (2.4) can be rewritten:

b1 | Y1t .
where H,, (L) is the last
2.5 |2 | H, (L) X%E p -1 columns of H, (L)
: . 11 1 : 11 ’
. Yt
| Pyl )
. L I
Write hil as h., = i1 hil ’
where hii is of order k (highest exponent is Lk-l),
4 h** gk g AR
an I S
ij 2%
. ek _ Z h. L 3
with hil = gk i1

Consider the first column of H,,(L):

11
( ’ (1 * k%)
hiy 11 ¥ by
% %
(2.6) P21 | = |21 * Py
h: h *, h *
" P11 | Pl Pl )
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We can now rewrite our structural system in (2.4).

(2.7)

(2.8)

r

hyy

I
|
|
. |
I
I
I

11

11

11

(L)

(L)

(L)

)

+ le(L) X

t

12

12

F1

(L)

(L)

l(L) e

1t

= Fll(L) ey

t

=F11(L)el

This expresses our structural system in terms of our

endogenous variables Yo and a vector of exogenous variables

Xt

k

L™ yi¢

Xt

= X

and a lagged endogenous (predetermined) variable Lk AP

*
Solving for Yt in terms of Xy, we get a system of

equations which we could call the "partial" final form.g

t



11

Y KON}
, o N , aaew 3\

hy, | -1 Lo
' xan |
* l " & l
hoy | 21
% *
(2.9) y_ = -|: : Hy (L) : : H (L) x,
F3 XX
h o1 h |
Pyl ) Pyl J
A ,
hy, | -1
1
hoy :
%
+ o
: : H, (L) Fl (L) e,
ho
\ pll P,

This expresses the current endogenous variables in terms of
the current and lagged exogenous and one lagged endogenous

(predetermined) variable. This is in the form of a transfer
function with input x*

t

We have now derived a set of Py transfer functions

and output Vo

from our economic theoretical foundation, expressed in our
dynamic structural system of simultaneous equations. Given
our assumptions regarding e,» We can fit a transfer function
model about the specific time series we wish to examine.

The second equation in the set of Py equations in
(2.9) gives us the transfer function model for IPt implied

by our structural system:



11

h11 : -1 11 :
* S
hyy : hy :

(2.9) = -1 H. YW : | H..(L) *
. Ve ° S : |12 Xt
ho n O

\ pll J \ pll J
( % 3 1
11 : -
n
21 |
P A eh F. (L) e
Do, 1 11 1t
hoF
\ Pll J

This expresses the current endogenous variables in terms of
the current and lagged exogenous and one lagged endogenous

(predetermined) variable. This is in the form of a transfer
function with input x*

t

We have now derived a set of Py transfer functions

and output Yo

from our economic theoretical foundation, expressed in our
dynamic structural system of simultaneous equations. Given

our assumptions regarding e,, we can fit a transfer function

t
model about the specific time series we wish to examine.
The second equation in the set of P equations in

(2.9) gives us the transfer function model for IPt implied

by our structural system:



12

([, % \ T 3 )
Py | “lihyy
*® AR |
21 : hyy : ,
(2.10) y = 1IP = {1 . * .
2t t Dol Hp (W) : | Hy (L) | px
h *: s |
| p,1 p1 | J
\ P, \
‘2.
1x(py*h) (p,*l)x1
, \ 2
4 * 3 l
hiy : -
%
hoy |
+ . ogt ) F.. (L)}
1] . v Hp @ 11 €1t
x|
h |
| Pyl )
\ J2 . .
lxpl P X

We have thus derived a transfer function model
expressing the relationship between our leading indicator of
economic activity and our measure of economic activity. This
model is firmly embedded in economic theory, as it is derived
from a dynamic structural system of simultaneous equations

describing the world. It is also amenable to empirical

testing, using Box and Jenkins time series methods.10

After identifying and fitting the model, we can

obtain optimal (minimum mean square error) forecasts for

IP given LIt’ and the variance of the forecasts errors.ll

t+k’

That is, we can extract the first two moments describing the

conditional distribution of IP given LI f(IP

t+k t? t+k
This is the object of our analysis of the leading indicator

ILIt).

approach.
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Hence we have a theoretically sound and empirically
testable framework in which we can study and use leading

indicators.

Comparing the Forecasting Abilities of the Final Form and
the Proposed Leading Indicator Approach

The Final Form

The current state of the art of forecasting uses the
Final Form of the structural model expressed in equation

(2.4):
_ -1 -1
(2.15) Ye = - Hll(L) H12(L) X, + Hll(L) Fll(L) €

To forecast Vidx? the appropriate ARIMA models for the Xy

are fitted, and X is projected k periods into the future.

Then the forecast for Ytk is produced as follows:

-1 -1
Y4k - Hll(L)le(LJ Xigp ¥ Hll(L) Fll(L) €4k

[}
~
o]

(2.16) -1 () - tewy u, Ll
: Yi+k 11 (L) Hyp X4k ~ Hpg 12 Xtk

-1
+ Hll(L) Fll(L) €] r+k

- %
where the (i,j)th element of [Hli(L) H12(L)] is of order < k
(highest term is Lk-l); and the (i,j)th element of
- *k
[Hli(L) HlZ(L)] is of order > k, and is equivalent

- fh%k
to the (i,5)™ element of [HJI(L) H (L)1 +(LY).

. -1 % _ kg L
That is; [H7(L) Hy,(L)] ij ° 220 hisg L"; and
=1 Ll Keo.=1 - fdk
[H, 7 (L) H12(L)]ij = L[H]7(L) H12(L)]ij
z,,
= p¥ 3 n,, Ltk
ijR

2=k
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Using this notation, we can work with (2.16):

-1 *
Yi4x - [Hll(L) le(L)] X%

-1 Sk k -1
- [Hll(L)H12(L)] L'x + Hll(L)Fll(L)e1

t+k t+k

o’

-1 sk %
- [Hll(L)H12(L)] %,

-1 %
- [Hll(L) le(L)] Xe4k

+

-1
Hll(L) Fll(L) €] t4k

Forecasts of Xy for periods t+1 through t+k are used in the

first term of the above expression, and the past history of

Xy is used in the second term, to get the forecast for Yeek!

~ -1 t e -1 PR
(2.17) yt(k) - [Hll(L) H12(L)] xt(k)-[Hll(L)le(L)] X

t

+

-1 ~
Hi(L) Foq(L) {eg .}

-1 &~
- [Hll(L) le(L)] x, (k)

-1 k% -1 Sk
[H]7(L)H,,(L)] x._+ [H l(L)Fll(L)j e

t 1 1t

Here yt(k) is the vector of Py forecasts in period t,
of ¥i4ye Note that xt(k) refers to the vector of forecasts

for the P, inputs, xjt(k)’ J o= 1y ce. P,- It is understood

that in this context, [bejt(k)] = xjt(k'b) if b <k

Xj(t+k-p) ~ f P2k

. . -1
Further note that in this forecast, Hll(L) Fll(L) €l t+k

- k% .
effectively reduces to [Hli(l) Fll(L)] e since E(e )=0

1t 1t+k
for any k = 1, 2, ... Here the three asterisks imply the same
reconstruction of the matrix [HI%(L) Fll(L)] as is used

regarding other matrices throughout the paper.



15

After identifying and fitting the appropriate ARIMA
models for the P, inputs in Xy minimum mean square error

forecasts, xt(i), are made for i = 1, 2, ... , k.

The forecast error for the jth input 1is:

(2.18) exjt(l) = xjt(l) T OX5(t+i)
iil
= ¥y, a. .
neg Jn j(t+i-n)
. - +
since xj(t+i) Q41 * wjlat+i—1 Wj2 At4i-2 e
th(l) = Et(xj(t+i)|past X, J
= Yysa P Yoy qec Y Yy 22

where the an are the weights of the ARIMA process for the

jth input, written in pure moving average form;
and where ajt is white noise;
. _ ' 2 2 _
i.e. E(ajt) = 0, E(ajt) = cja’ and E(ajtajt—n)_ 0,
for any input j, for any t, and for any n # 0.
) i‘z'l
Note that Ele (i)l = E Y. a. .
xjt n=p Jn j(t+i-n)
iil
= Y. E(a. . ) 0
+i-
nog Jm j(t+i-n)

The variance of the forecast error is:

(2.19) var [e. (i)1 = Ele. ()12 = IEI v, 2 5. 2
*3t *jt n=0 J° J@

Now consider the forecast error of the Final Form

model, from equations (2,16) and (2,17):
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2.20) e (k
( ) ey (k)

v. (k)
t t

-~ Yiax

_ -1 ~ -1 S sk
= '[Hll(L)le(L)] xt(k)+ [Hll(L)Fll(L)] et

-1 -1
+ [Hll(L)le(L)J Xy -Hll(L)Fll(L) e

+k l1t+k

~
3

_ -1 fs -1 ek
= -[Hll(L)Hl2(L)] xt(k)-[Hll(L)H12(L)] Xy

dedek

-1
+ [Hll(L) Fll(L)] o

-] * -1 . ek
+ [H]J(LYH (T %, + [H (L) E ()] x

k t

-1 sk o
[Hll(L)Fll(L)] ey

-1 %
- [Hll(L)Fll(L)] e N

1t+k ~
_ _1 % A
= -[H]J(LYH (LT Ix () -x ]

-1 dededk

- [Hll(L)le(L)]* (x, -x.)
-1

- [H] (L) Py (L)1 ey

-1 nhk
+ [Hll(L)Fll(L)] (e,.-e..)

1t "1t

. gl ko
= -[H]7(L)H,(L)] [ext(k)]
-1 *
- [H]J(LF (L)1 ey 0

~ _ -1 % A~
Note that E[eyt(k)] = -[Hll(L)le(LJ] E[ext(k)]

1 .
- R (LF) (W ECey )

= 0
since the parameters in our matrices are fixed;
since E[ex (k)] = 0 as shown in (2.18); and

t
since E(elt+k) = 0 from our assumptions.

It should be clear that in this context,
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e (k-b)
X

b” _ t
(L ext(k)] =

xt(k-b)-—xt+k_b if b < k

xt+k-b-xt+k—b if b > k.

Observe that the forecast error of each endogenous
variable reduces to a function of the forecast errors of all
inputs, and the noise associated with all P, endogenous
variables occurring over the forecast period.

Assuming that
(1) the input series are mutually independent,

(ii) each input is independent of each disturbance term, and
(iii) the parameters of our model are known with certainty;

consider the variance of the forecast errors.

(2.21) Var [e (k)] Ele (k)12
Y Yt

1 oo
E{_[Hll(L)le(L)] [ext(k)]

-1 *
- [Hll(L)Fll(L)] )

2
1t+k}

-1 F 7 2
E{-[Hll(L)Hl2(L)][ex ()1}

+ “Lwyr, o ay1® ?
E[[Hll L Fll L) elt+k]

-1 x_A 2
E{-[H,7(L) H, ,(L)] [ext(k)]}

-1 ] *
+ [[Hll L) Fll(L) ] Var (elt+k)

by (ii) and (iii) above and our assumptions as to ey

- *
Here [Hli(L) Fll(L)]] is the transformation made by

- *
squaring each element of the matrix [Hli(L) Fll(L)] . See

footnote (12) for a convincing argument that this is the

appropriate transformation.
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In this context, the variance of the forecast error
of each endogenous variable is a function of the variances
of the forecast errors of all inputs, the various covariances
between forecast errors of different time horizons implied
by [Hi%(L) le(L)]* (see footnote (12)), and the variances of
the disturbances associated with all endogenous variables.
From our initial assumptions regarding e,y on page 4,
we have Var(elt) = Var(elt+k) = 1. Thus equation (2.21) can
be rewritten:
(2.22) Vartéyt(k)] = E(-[H]3(L) Hy )] [éxt<k>]}2 +

-1 ®
+ ([H11<L) Pll(L)J] 1

(1

J

The Proposed Leading Indicator Approach

Consider the forecast errors of our leading indicator

approach.

We can rewrite equation (2.9) from our previous work

on the leading indicator approach, in order to examine Ytk

* -1 Bik
P11 | hyy |
% %
: : Hy, (W) : : Hyp (W X *
- & L XX
Py P
% -1
hyy :
+ ; *: Hy, (L) P (L) e
h



Thus, Yitk =

(2.24) §t<k) -

k
_ B Vit
Xt+k
L % =1
hyp |
| *
| s : H) (W)
&%
h .|
Pyl
( *
hyy |
' %
L4 0 1 H W
o
Pyl
|
(h * |
11
%
-l : Hy 1 (L)
ho
P11y
( *
hyy :
F-3
Pl Ew
ho o
U Pyt

Y1t
t+k
X | \
11
' Y1t ]
. | H,.(L)
. | 12
***I xt+kJ
Pl
Pll(L)L elt+k
J
h fekk | |
11
) ' Y1t
: ! Hy (L)) 1o
***I x, (k)
1 t
Re! | )
Y ek
FipL ey

Here again, xt(k) refers to the vector of forecasts

for the p, exogenous inputs, xjt(k)’ j o= 1, 2, ... sPy -

Further, the simplification of the disturbance structure in

this forecast is analagous to that in the Final Form

forecast in equation (2.17)

After identifying and fitting the appropriate ARIMA
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models for the P, inputs in Xy minimum mean square error
forecasts, ;t(i), are made for i =1, 2, ... ,k. The

related forecast errors and their variances are expressed
in equations (2.18) and (2.19). From equations (2.23) and

(2.24) we get the forecast error of our model:

(2.25) ey (0 = 7,00 = 5y
( % -1 EE T ] )
hy, ! hy, |
o | Y1t
= s rEW| [ T H W)
T | T onan! Xt(k)
h g | ho, |
P1+ P1+
{ )
f % -1 EXT}
hyy :
R I (L)
Al s B Fpp(Ldeeqy
h I
Pyl
{ )
[ % =1 Sk )
hyq | hyq |
b . ' Y1t
LY HW : 1H, (L) ||
x| xak | itk
h I h o 1|
4 * \—l 3\
(h; :
. * {
- : : Hll(L) Fll(L) €14k
*
h .|
[Pty ‘ )

To work with this, we will again use our conventional
notation (%, #*%*, #*%%) to break up these matrices into those

containing parameters with lags < k, and those containing
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Rewriting (2.25):

parameters with lags > k.

(x)

—— ——
¥ %
+ +
— + — — 4+
> b3 ~ > X
% — + +
& >R 4%
< — & ~
- — ~ L] +
—= . — 5
L \\IJJ ”~ —~ \ t el
~v ~ i | —
o - ~ v
— ~ (3] +® *®
oo o~ - «* .
|||||| nnl = L3 R PN
« T = 3
*® L e * [ —
< L | L *® —~ L] *® ~ ~ —
L | ~ ® o~ Ko~ ® r~ L | —~ [
— . [V L | * A L BN Ay —~
< < < < Q < M _
T N —_ o —
— — — !
1 | ‘I___ ! P
—— —ee\ ————
~~ ~~ A —————————— ~ {L\
— [ | ~ [ £
~ ~ [ At —
# ~ ® C N ® —~ as]
— —~ *® ~ —
e o] fa o) —~ = o
llllllllll o o] —_—— e —
® ~ I = #® % —
® —~ ® o~ ~ ® —~ ® —~ ® ~ ~ #® o~ —
~ s e Q, ~ see p — oo p ~ oo p — Q
= o] = = ~ = o o o o
e — N —————— [ —— D —————=a— —_——
[} + + + |
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+
—~ ~ +
> ~
i ~ ~
+ + ~
— kY ~ ~
> <o t o +
— — »x
*® R 4 mv <o
+ ——— *® ~ + &
— ~ *® R + — P —_
(o)) 1 C——" + (W) - ~
~r \..M — ~ ~
< o~ = [} +* —
- —i o~ L3 ~
L3 ooy — R *® o~
- — ~ e ——— e - A ~ Ve —A —
~ e e e = = — ~ ~ ja o]
1 +® -+ ~ - ===
~ Lt ® ® — ~— ~ &
— L | *® ~ ® < — — — L3 ®
—~ R e Ay L | . A, — —~ ® L3 —
P = Ko e = by ey K o e (a¥
~ — ~ 7 h h
~ — — — —~ ——
! ] I | | —
 Ee— la N la ) r ™ L ¥ —
~ ~ ~ ~ ~
— — — — — ~
~r ~ N ~ ~r -
® ® | ® % ~
— — — —~ — ®
oy st ot ot et —
|||||| o
*® ® ~ * ® —~ ® —~ ®
® — % — | —~ € — — ® — ® —~
~ e (oW .o —~ e e [a ¥ —~ e e [a N — e o ~ e e o Q, —~ s o
< < v £ < < < s < £ < & <
— - ) o - -~ _ N ~ . ~ ) N -~ - ~—
Q
1] 1 [} | + |
! o n 1]
Ko ~
+ ~
N
b0 +
= >
sl < Q
>~
4y
o ~
— w
(¥ o
m .
o N
wn ~
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% -1 %
hll ]
I %
- : :Hll(L) Fll(L) elt+k
%
h |
Pl

Observe that in this model, the forecast error of
each endogenous variable is a function of the forecast
errors of all inputs, and the noise associated with all Py
endogenous variables occurring over the forecast period.
Compare equation (2.26) with equation (2.20).

Again, we wish to consider the variance of the
forecast errors, given these assumptions:
(1) the exogenous input series are mutually independent,
(ii) each exogenous input is independent of each disturbance,
and

(iii) the model parameters are known with certainty.

~ ~ 2
Var[ey (k)] E[ey (x)1]

t t
— h * -1, %% | *
11 | hiy 0
*
= E |- : :Hll(L) : :le(L) 0
* kkk €x
h 1I | t
Pyl Pl
L
(. & -1 % -2
hyy
%
- :
il : | Hll(L) Pll(L) €y 4k
h |
k\ plll _




f %
I %
- pl-{| + 1H;;(L)
L] *|
h |
AR
-
[ ( *
f )
hll |
(S
+ E|¢ . :Hll(L)
*
|
LU P2t

[by (ii) abovel

[ ( *

( I
M1

= |-{| : "1
h *

*
(L)

-1 PR 153
hiy |
E |H12(L) {
xxkl
Pyl :

-1 " 2
Fll(L)> €114k
y-1(, ®%% k.

11
. |
W L
N ***|
1
J \pl I J
-1 ) )%
Fll(L) ++ E(e

e

(k)

[by (iii) above and our assumptions as to e,_]

1t

Note that as before, double brackets around a matrix,

{{

}}*, refer to the transformation of the original

matrix with single brackets, in which each element is

squared.

Again refer to footnote (12).

Thus our forecast error variance finally reduces to

the following:



[ % —Y . W 2
P11 | " | .
%
- . 1H (L) . |H, , (L) by
= E|-9 : 12
o saal e, (X)
[ [ t
LR Pyl J
- P,
rr' & -1 * 0«2
hll |
S
. .
Ef : :Hll(L) Fll(L)» €1 t+k
*
[
Pyl
L ) J
[by (ii) abovel
[ (.. * N=1, *%% k. j
[ |
M1 M1 .
- gt : H LW | —m—
= g|l-{| : [P ST =
* xRk e, (k)
h ! h ", ! Xt
Lk pl I J \ pl l J J
. J
r( * I -1 \i*
M1,
o s omYa|  FLw ) oEe,,, )2
* o1 11 1t+k
]
h |
LU Pt J)
[by (iii) above and our assumptions as to elt]

Note that as before, double brackets around a matrix,

{{

}}*, refer to the transformation of the original

matrix with single brackets, in which each element is

squared.

Again refer to footnote (12).

Thus our forecast error variance finally reduces to

the following:



" ( % -1 B ¥ "2
By o hip
n T [ 0
(2.27) V[ey (x)1 = E[-{| : | 11(L) . H LW |~
t Tl Txxal e, (k)
hp 1! p, 1 | t
\ 17 1 J /
\e
plx(p2+l) (p2+1)xl
fr * .-1 AN *
hll |
R |
+ {{ : :Hll(L) Fll(L)> V(elt+k)
%
h ]
\ Plll J 7
plxpl plxl

In this context, the variance of the forecast error
of each endogenous variable is a function of the variances
of the forecast errors of all exogenous inputs, the
appropriate covariances between forecast errors of different

time horizons implied by

( % -1, %% )%
)
b | s 1
1l - |Hll(L) . lH12(L) *
no M Tl
plll pll |

(again see footnote (12))., and the variances of the
disturbances associated with all endogenous variables.

Compare equation (2.27) with equation (2.21).
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Examgle 1

Consider an IS-LM model,

Commodity Market

(1) Ct = a + blYt-l + bZrt-l + €t
(2) It = It + b3rt_l + €t
(3) Yt = Ct + It

md
t
— = + +
M) P, byYi 1 * PePry * e3¢
s
(5) M{ = M_ +ber + e
s _ d
(6) Mt = Mt
(7) Pt = Pt
where Ct = consumption, It = investment, Yt = output,
r, = "the" interest rate, Pt = commodity price
level
a = autonomous consumption, Tt = autonomous
investment
and the e., are disturbances with E(e., ) = 0,
it it
- 2 2 . .
E (eitejt) = 0, and E(eit) = 0., for i = 1,2,3,4;
i# 3.

The model consists of seven equations and seven unknowns:
d
t’ Pt’ Pt’ .t’ .t’

Note thatour dynamic formulation simply says each

Y MY, M3, c., and I,.

right hand side endogenous variable affects the left hand
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side variable with a lag of one period, with one exception.
The exception is the Money Supply equation. This equation
reflects the likelihood that banks will react quickly and
efficiently in adjusting their excess reserve positions, in
response to changes in the interest rate.

I wish to assume that a Keynesian aggregate supply
curve corresponds to this world, That is, assume:
(1) whatever output is demanded can be produced, and

(ii) P, = P_, as expressed in equation (7).

Note that we can express the system as two equations in two

unknowns. These are the IS and LM relationships.

IS: Yt = C_t + It
= oatby¥y ) by teye Y I Pyt
t et
(7) (l-blB) Yt = a + It + (b2+b3)B r,+ (elt+e2t)
where B = the backshift operator, or lag operator
(previously specified as L).
d _ s
LM Mt = Mt
byP Yy g ¥ bgPry ) ¥ Pegy = My tbgry +oey
(8) (—b6+b5PB) r, = MO - quB Yt + (eut_PeBt)
Let elt+e2t = egyo and eut-—Pe3t = eet?
noting that E(e5t) = E(eﬁt) = 0, and E(eSt-th) = 0.

We now have two equations [(7) and (8)] in two

unknowns Yt and Ty This is the classic IS-LM problem, in
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a linear structural model framework.

The candidate for a leading indicator of Yy in this

context 1is ry- Observe that r, affects Yt+l through 1ts

effect on Ct+1 and It+l in the commodity market, and

affects Y through its effect on Yt+l’ which is involved

t+2

in the IS equation for Y . Further, r_ affects Y
t+2 t+l

t
through its effect on the LM relationship in period t+l. 1In

short, r, is a factor in the determination of the locations

of both the IS and LM relationships in period t+1.

Consider equations (7) and (8) in matrix form.

—(b2+b3)B (l—blB) r, a 1 1 ecy

(3) - .

-b.+b P P T
( b.+b PB) b PB Y, My O I, €ct

This is our structural model with endogenous

variables Ty and Yt’~

our transformation, we'll separate the polynomials in B

and exogenous variable, Tt' Applying

multiplying r into a component with lags, k < 1, and a

.t’

component with lags, k > 1.

0 (l—blB) r, (b2+b3)B a 1 r. ecy
— = _ 1 +
-b, b, PB Y, -b PB My O I, C
or:
0 (1-b;B)} (r, (b,+b,) a 1I'Brt 'eSt
- = - 1 +
-b,  b,FB Y, -bP Mg O Tt 26t

rtW
Now we can solve for our endogenous variables, v |°
t

s
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Br
t
in terms of our predetermined variables, 1
h -1 Tt
- +
r, | 0 (1 blB) (b2 b3) a 1 B;t
Yt \-b6 bHPB J —bSP MO 0 It
’ v -1
0 (l—blB) €cy
+
-b b,FB | egt
-1 -
0 (l-blB) 1 quB —(1—blB)
Substitute: =
_ b (1-b B
—-b6 buPB b6 0
(b PB -(1-
r, N quB (1 bP) (b2+b3) a 1 Brt
© b (1-b;B ~ 1
Y, | bg 0 -b,P M, O I,

* 76

Multiplying through the matrices:

Tt
Yt
[buPB(b2+b3)+b5P(l-blB)] [abuPB—MO(l—blB)] buPB B
1
b, (1-b;B) 1

bs(b2+b3) ab6 bs I,c
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1 buPBe5t - (1-blB)e6t)

- - .
bs(l b185

+

| bgest

This is the transfer function model implied by our
dynamic structural system of simultaneous equations.
Explicitly, the two transfer functions are:

[buPB(b2+b3)+b5P(1—blB)]

r = (const) + (Br,)
t r. be(l—blB) t
buFB _
+ (I.)
b (1-b;B t
+ 1 [b, PBe.. - (1-b.Ble, ]
bstl-blBi L 5t 1 6t
b (b,+b.) b
_ 6 2 3 6 =
Y = (const) + 5 (I-5-BY (Br,) + 5 (1= B) (1)
t Y, b (I-b; t b (1-b,B t
1
+ [b.e..]
-
bsll blB5 6°5t

From the second transfer function, it is clear that
Yt is a function of lagged values of our leading indicator,

r Thus we can fit this transfer function for Yt’ and

p
come up with the estimated mean and variance of Yt given

past Ty And more importantly, we can come up with an

estimate of Yt+1 given r That is, we can estimate the

oy
mean and variance of the conditional distribution,f(Yt+1|rt).
This is the object of our analysis of the leading indicator
approach to forecasting. Consider the relative forecasting

abilities of the Final Form (FF) approach and our leading

indicator (LI) approach, in the context of example 1.
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In the form of equation (2.4), we have:

Hj(B) y, + H ,(B) x, = F, (B) e},
-(b2+b3)B (l—blB)> r, -a =1 1 ecy
+ =
(-b+b PB) b, PB Y, -My 0 || T, S

The Final Form:

r 3\

r, (b, +b 0B (1-b B} 'fa 1)[ 1
Y, (-bgrbePB)  bFB | My 0 (T,
(~(b.+b.)B  (1-b.B)) 1fe

2*P3 1 5t
+
. PB) 3
((-bg*bgPB)  BPB | e,

Call the matrix to be inverted, A.

. 2 5
det A = =-b F(b,y+b;)B® + (1-b B)(by-b PB)
= b. - b.PB - b.b.B + b.b_PB2 - b P(b.+b,)B>
6 ~ Ps 1Ps 1Ps yP(by+by
) — — 2
= by - (bgP+b b)B + F(b bo-b, (b,y+b;))B
b, PB ~(1-b,B)
adjoint A =
(bg-b FB) ~(b,*b,)B
At - _
b,PB -(1-bB)

1
bs-(b5P+blb6)B+P(blb

2
-bu(b2+b3))B

5 (bs-bsPB) —(b2+b3)B
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Substituting this into the FF and moving the determinant to

the left hand side, we get the following.

[be-(b5P+blb6)B+P(blb

,

b, PB
(b -DPB
( b, PB
+ n
\bs-bSPB
Tt
[det A]
Yy

r

2 t
s'bu(b2+b3))B ] v
t
-(1-b,B) l (a 1 1
~(b,+b)B) (Mg 0] (T,
—(l—blB) eg
-(b2+b3)BJ Le6t

(

Thus we have the Final Form transfer functions:

[det A] r.

(i)

[det A] Yt

(const)P + buPB[It] + buPBe

t

(l-blB)est

(const)Yt + (bs_bSPB)[It]

(bs-—bSPB)eSt - (b2+b3)Be6t

[abuPB—MO(l—blB)] b
L[a(bs—bSPB)—Mo(b2+b3)B] b6

buPBeSt - (l—blB)e6t
L(bs-bSPB)e5t - (b2+b3)BeGt

qPB 1
—bSPB It
5t

These are to be compared with the transfer functions of our

leading indicator approach which we derived in the example:
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(ii) bG(l-blB)rt (const)r + [buPB(b2+b3)+b5P(l-blB)[Brt]

t
+ buPB[It] + buPBeSt - (1-13113)eGt

(iii) bs(l-blB)Yt (const)Y + be(b2+b3)[Brt]+ bs[lg +b6e5t

t

We are interested in the models for Yt' Consider the
forecasts of Yo implied by each of the approaches above,
in turn.

The Final Form:

From equation (i), we get the model for period t+1:

- — 2
[bs_(b5P+b1b6)B+P(b1b5_bu(b2+b3))B ]Yt+l

(const)y +(b6-b5?B)[T

1+ (b-b PB)e
t+1 & 5

t+1l 5t+1l

- (b2+b3)Be

6t+1
Y.,, = (comst), + g}-(b5?+blb6) Y,
t+1  DPg
- X P(b,b_-b, (b,+b.)) Y ¢ L (b.-b.PB)IT,..]
By 1P5 7Py (Pp*Py ) Yoy * 5o (PP £41
+ X (b.-b.PB) e - X (b.+b,) Be
b, (P67Ps st+1 ~ b, (P2*P3 6t+1

Now expand the remaining Final Form coefficients on
the right hand side into the values corresponding to the
various lags of the right hand side variables and distur-

bances.
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- 1 =
Yt+l = (const) + Bg (b5P+b1b6) Yt
l = —
" b P (b b -b (b +bs))Y, ; + [T, ]
- ES_F: [T ] + e - l_)i e - b2+b3 e
b6 t 5t+1 b6 5t b6 6t

From this, the Final Form forecast is made:

A _ 1 —
Yt(l) = (const) + Eg (bSP + blbs) Yt
1 = 2
- BE P (blbs'bu(b2+b3)) Yt-l + [It(l)]
P P +
- = [T, - 25P €5t ~ bi>b3 €6t
6 6 6

From the above two expressions we get the Final Form

forecast error:

A

(iv) ey

(1) = Y. (1) - Y
+ t

t+l

[It(l) - it+1]- = [ef (1) -

t

€5t41 €ot+l

The variance of the Final Form forecast error follows:

A A 2
Varle, (1)] = El[e, (1)]
Yt Yi
— - 2
= E{[eft(l)] - e5t+l}
_ - 2 2
= E[ef (1)1° + E(e5t+l)

t
(given the assumption that Tt and 35t are uncorrelated)

The Leading Indicator Approach:

From equation (iii) we get the model for period t+1l:
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(l-blB) Y4y = (const) + (b2+b3)[Brt+1] + [Tt+1]
toesea
Y41 = (const) + b,Y + (b2+b3)[rt] + [Tt+1]
toesin

From this model our forecast is made:

Yt(l) = (const) + blYt + (b2+b3)[rt] + [It(l)]

And from these two expressions we get the forecast

error:

>

(v) ey (1) Yt(l) - Yt+

1

= [ef (1)] - 85t+1

- [T.(1) -T...7 -
t t

t+17 T S5+l

Comparing equations (iv) and (v), we see that our
leading indicator approach and the Final Form approach yield
the same forecast errors in this example. Our leading
indicator model, however, appears in a much simplier form

in this case.

Example 2

Consider a stochastic model which is an extension of
Samuelson's Multiplier-Accelerator Model combined with

Metzler's Inventory Model.

(1) Ct = a + bYt-l + et

(a short run consumption function)
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(2) It z It + c(Ct-Ct_l) te,,
(an investment model with ¢ = the accelerator
_ coefficient, and
I, = autonomous investment)
(3) V= A€ 4-Upg) * ey
(Vt = production for inventory purposes)
Identities:
(W) U = C
(Ut = production to meet anticipated sales in period t)
= +
(5) Yt Ut Vt + It

(income accounting identity)
= G Vet T
(ej,ep, and e3 are disturbances with E(ei) = 0 and

E(eiej) =0 for 1 # j.)
Equation (3) says that inventories are rebuilt

according to the difference between previous consumption and

sales.

Substituting for Yt in (1), and for Ut in (3)3; the

system becomes:

Co = a+D(C , + Vi g * I 9) + ey
(6) I, = I, +c(C-Ci )+ ey,
Vt = d(Ct_1 - Ct-Z) + €34

Rewriting this system, with B = the backshift

operator:
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2 -
(1-bB7) Ct = a + bB Vt + bB It + ey
7 = T -
(7) It It + c(1-B) Ct + €sy
V. = d(B-B2) c_ + e
t t 3t
In matrix form:
-bB (l—bBQ) -bB Vv a 0 1 e
t 1t
(8) 0 -c(1-B) 1 Ct =0 1 It + e?t
2 .
1 -d(B-B°) 0 It) 0 0 e3t

Note that this system consists of three equations and

three endogenous variables. Tt is exogenous.

Production for inventory purposes, Vt’ is the
candidate for a leading indicator. Increases in Vi affect
increases in Yt directly, as production for inventory
purposes is included in Yt' Increases in Vt also affect

increases in C and thus affect increases in Yt+l through

t+1?
the effect of Ct+1 on I

and affect increases in Y

t+1° t+2

through the effect of Ct+l on Ut+2'

should be consistently followed by movements in Ct+l’ It+l’

Hence movements in Vt

and Yt+l'
We can apply our transformation to the system in (8)

by separating the polynomials in B which multiply Vt, into a

component with lags k < 1, and a component with lags k > 1.

Note that since the period under consideration in this model

is one year, a lead of one period is relatively substantial.
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2
0 (1-bB") -bB Vt bB a 0 Vt et
(9) 0 -c(1-B) 1 Ct - |0 0 1 11, €t
2 -
1 -d(B-B") 0 It 0 0 0 It €34

or equivalently:

2

0 (1-bB°)  -bB v, b a O BV, (e

0 -c(1-B) 1 Cel=10 0 1 1 fyley,
2 —

1 -d(e-B%) 0 | T, 0 0 0 T, ey,

Solving the system for the endogenous variables in

terms of the predetermined variable, [B Vt], and the exogenous

variable, Tt:

2 -1
Vt 0 (1-bB7) -bB b a O B Vt
(10) Ct = |0 -c(1-B) 1 0 0 1 1
2 -
I, 1 -d(B-B°) o |o o of |T,
2 -1
0 (1-bB7) -bB elt
+ |0 -c(1-B) 1 €sy
2
1 -d(B-BY) o €34

Call the matrix we wish to invert, A.

det A = (1-bB?) - bc(B-B?) = 1 - beB + b(c-1)B2

d(B-B2) ba(B2-B3) [1-beB+b(c-1)82]

[adjoint A] 1 bB 0

c(1-B) (1-bB2) 0
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Thus,
2 2 3 2
d(B-B“) bd(B“-B”) [1-bcB+b(c-1)B"]
A"l - 1 . 1 bB 0
1-beB+b(e-1IB" | (1 By  (1-bB2) 0
With this substitution, (10) becomes:
Ve
c,| =
Ie
2 2 .3 2
d(B-B?) bd(B%-B%) [1-bcB+b(c-1)B*1) (b a O
1 : 1 bB 0 001
1-beB*b(e-IB™ o (1.5)  (1-bBY) 0 00

a(B-B2?) bd(B%-B3) [1-beB+b(c-1)B%]
1

. 5 1 bB 0
1-beB+b(c-1)B| .1 5y  (1-b82) 0

Multiplying out the coefficient matrices, and moving

determinant to the left hand side:

Vi

(11) [1-beB+b(c-1)B2] c,

Lt

bd(B-B%) ad(B-B?) bd(B2-B%) BV
b a bB 1 +

be(1-B)  ac(1-B)  (1-bB?) I,

1t
2t

0]

the

3t
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Thus,
2 2 3 2
d(B-B“) bd(B“-B”) [1-bcB+b(c-1)B"]
A"l - 1 5 1 bB 0
1-bcB+b(e-1)B" | (1 gy  (1-bB2) 0
With this substitution, (10) becomes:
Ve
c,| =
I
2 2 3 2 .
d(B-B%) bd(B°-B%) [1-bcB+b(c-1)B 1) (b a 0)(BV,
1 : 1 bB 0 001l
1-beB+b(c-1)B"| (1 By  (1-bB2) 0 00 I,

a(B-B2) bd(B2-B3) [1-beB+b(c-1)B21)(e..)

L 1t
+ -l 1 bB 0 e,
1-beB+ble-LIB" 1 (1.8)  (1-bB%) 0 ey,

Multiplying out the coefficient matrices, and moving the

determinant to the left hand side:

Ve

(11)  [1-beB+b(e-1)B%1|cC,

I,
bd(B-B%) ad(B-B?) bd(B2-B%) BV,
b a bB 1 +
be(1-B)  ac(1-B)  (1-bB%) T
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(11) (cont'd.)

¢

- + - - - )
delt-l delt-Z bdth_2 bdezt_3+e3t bce3t_l+b(c l)e3t_2
e1¢ * Py q
L Cerp ~ Ceyp g * € ~ beyi )

This is the transfer function model implied by our
dynamic structural system of simultaneous equations. Our
inputs are the leading indicator, Vis and the exogenous

variable, I,. Explicitly, the three transfer functions are:

t
[l-ch+b(c—l)B2] \Y = (const) + bd(B-Bz)(BV )
t Vt t
+ bd(B2-B3)(T.) + [ae - de + bde
t 1t-1 1t-2 2t-2
- bdeZt-S + e3t - bceat_1 + b(c-1) e3t_2]
(12) ) -
[1-bcB+b(c-1)B“] C = (const) + b(BV,) + bB(I,)
t Ct t t
+ [elt + be2t_1]
[1-bcB+b(c-1)B2] I, = (const). + bc(1-B)(BV,)
t It t
2. _
+ (1-bB )(It) + [celt - cejyq
* eyp -~ beyy 5]

Finally, we can aggregate our transfer function models
to yield the time series model for Yt’ implied by our dynamic

structural system of simultaneous equations.
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From equation (5) we have:

-
"

+
U Vt + 1

t t t

= + +
C Vt I

t-1 t

From this identity and the transfer function models for the
components in (12), it is clear that Yt is a function of
lagged values of our leading indicator, Vt'

Hence, using time series methods, we can fit these
transfer functions and come up with the estimated mean and
variance of'Yt+l given values of our leading indicator in
previous periods. That is, we can estimate the first two
moments of the conditional distribution of Yt+1 given Vt,

f(y This is the object of our analysis of the

1V
leading indicator approach to forecasting.

With this knowledge we can produce optimal forecasts
of Yt’ which are presumably better than forecasts produced
without the incorporation of our knowledge of the structural

relationships between our leading indicator and the other

variables in our model.

Consider the relative forecasting abilities of the
Final Form approach and our leading indicator approach, in

the context of example 2.

In the form of equation (2.4), we have:



Hll(B) ye * H12(B) P

_bB  (1-bB%)  -bB
0 -c(1-B) 1
1 -d(B-B%) o0

The Final Form:
2

v.)[(-bB (1-bB%) -b

cl] 0o -e-B) 1

I 1 -d(B-B?) o
t)

2
-bB  (1-bB?)
+ 0 -c(1-B)
1 -d(B-B?Y)

Call the matrix to b

4?2

t 1t
Vt -a 0
Ct + 10 -1
It 0 0
B)"L(a o0)( 1
0 1 It
0 0
-1
-bB elt
1 e2t
0 e3t

e inverted, A.

1 e1t
e 1= ]e2¢
€3¢

+ bdpd

(1-bB%)-bc (BB)
bB

be(B-B2)

det A = (1-bB2) - be(B-B?) - bd(B2-B%)
= 1 - bB% - beB + beB? + bdB?
2 3
= 1 - beB + (be-b-bd)BZ + bdB
a(s-8%2)  pa(s?-8%)
adjoint A = 1 bB
c(1-B) (1-bB2)-bd(B2-B3)
N [adjoint A]

det
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

(
Vt
[det A] Ct =
Iy
(a(B-B?)  bd(B?-3%) 1-bB%-bc(B-B2)) (a 0)
1
= 1 bB bB 01 [— ]
I
2 2 3 2 t
lc(1-B) 1-bB®-bd(B“-B®)  bc(B-B°)  J{0 0]
(a(B-B%)  ba(sZ-8%) l—sz-bc(B-Bz)\'elt’
+ 1 bB bB e2t
lc(1-B) 1-bB*-ba(B*-B%)  be(B-B%)  Jley)
Multiplying through the matrices:
, 2 2 3
Vt ad(B-B°) bd(B“-B”) 1
[det A] Ct = a bB T
2 2 .3 t
‘It ac(1l-B) 1-bBR"-bd(B“=B")
; 2 2 _3 2 2
d(B-B )e1t+bd(B -B )e2t+[1-bB -bec(B-B )]e3t
+ e+ + bBe2t + bBe3t

2 2 53 2
c(l-B)e1t+[1-bB -bd(B“-B )]e2t+bc(B-B )e3t

\

Consider each of the three Final Form transfer functions in
turn. First;
[1-beB+(be-b-bd)BZ+baB®] V., = (const),
t
2 .3 = 2 2 .3
+ [bd(B“-B) [It] + 4d(B-B )elt + bd(B“-B )e2t

2 2
+ [1-bB“-bc(B-B )]e3t
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

(vt
[det A] C, =

g

(a(B-B%)  bd(B?-B%) 1-bB?
= 1 bB

lc(1-B)  1-bB%-ba(B%-B%) b

(a(e-B%)  ba(s?-8%) 1-bB?
+ 1 bB

lc(1-B)  1-bB%2-ba(B?-B%) b

Multiplying through the matrices:

-bc(B-B2))

bB

B-B2)

-bc(B-B2))

bB

B-B%) |
{l ]

3 Tt

BY)

2

2
-bc(B-B )]e3t

v, ad(B-B?) bd(B2-B3)
[det A] Cel = a bB
1, ac(1-B)  1-bB%-bd(B’-
(4(B-B?)e,  +bd(B%-B3)e, +[1-bB
1t 2t
+ e+ + bBe2t + bBe3t
Lc(1-B)e1t+[1-b82-bd(Bz-B3)Je2t+bc(B-52)e3t

Consider each of the three Final Form transfer functions in

turn. First;
[1-beB+(be-b-bd)B2+bdB3] V., = (const
2 .3, = 2
+  [ba?-B%) [T,1 + d(B-BY)e,,

2 2
+ [1-bB“-bec(B-B )]e3t

Vy

t
+ bd(B?2

3
-B )e2t
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

Le3t1

Ve
[det Al Ct =
(I
(4(B-B%)  bd(B?-8%) 1-bB%-be(B-B?))
= 1 bB bB
c(1-B) 1-bB%-bd(B%-B%)  be(B-B?) |
(a(B-B%)  bd(B?-B%) 1-bB%-bc(B-B?))
+ 1 bB bB
c(1-B) 1-bB%-ba(BZ-B%)  be(B-B?)
Multiplying through the matrices:
, 2 2 3
v, ad(B-B?) bd(B%-83) 1
[aet Al |c,| = a bB f
2 2 3 t
1, ac(1-B) 1-bB%-bd(B?-B%)
, 2 2 .3 2 2
d(B-B’)e, +bd(B’-B’)e, +[1-bB’-bc(B-B ) Je,,
+ e+ + bBe2t + bBe3t
2

c(l-B)e1t+[l-bB

\

2 53 2
-bd(B“-B )]e2t+bc(B-B )e3t

Consider each of the three Final Form transfer functions in

turn. First;

[1-bcB+(be-b-bd)BZ+bdB3] v,

+

2

2
+ [1-bB“-bc(B-B )]e3t

(const)v

t

2 .3 - 2 2 .3
[bd(B“-B”) [It] + d(B-B )e1t + bd(B"-B )e2t



(1)

Second;

(ii)

Third;

(iii)

yields

Ly

Ve = (const)vt + cht_l+(b+bd-bc)Vt_2--det_3
+ bdlT,_,] - DbdlI,_,)1+[de;, ,-de;, ,+bde,, ,
- bde,, 5 + es - bceg , + b(c_l)e3t—2]

[1-beB + (be-b-bd)B” + baB I C, = (const) + bBIT, ]
+ et + bBe2t + bBe3t

Cy = (const)ct-+bcct_l-+(b+bd—bc)Ct_2-det_3+-b[Tt4]
tlepy * beyy g *obegi ]

[1-bcB + (be=b-bd)B2 + bdB° ] I, = (const);
t

2

+ [1-bB“ - bd(Bz-B3)][Tt] + c(1-B>e1t

2

2 .3 2
+ [1-bB° -bd(B“-B )]e2t + bc(B-B )e3t

I, = (const)It-+bcIt_1-+(b+bd-bc)It_2-det_3'*[It]

- b(1+d)[It_2]+bd[It_3]+[celt-celt_l+e2t

- ) -
b(1+d)e +bde tbce,, j-bces. o]

2t-2 2t-3

Note here that It is endogenous and Tt is exogenous.

The aggregation of equations (i), (ii), and (iii)

the Final Form transfer function of Yt = Vt + Ut + It

= Vt + Ct_1+I

This is done on the following page.

t-
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Y, = (const)vt + beV,_, *+ (b+bd-be)V, , - baV, _,
+ bdlI,__,1 - bdlI__,] + [de; ,-de;. ,
+ bde,, ,-bde, 5 *+ e; - bce, , + b(c-l)est_zl
+ (comst)  +beCy , + (b+bd-bc)C,_, - bdC,_,
+ bII p1 + Lejy ) * beyy p * begy y)
+ (const)It + beI, , *+ (b+bd-bc)It_2 - bdI _,
+ [I.] - b(1+d)[TI, _,] + balI,_,]
+ [celt-celt_l+e2t—b(l+d)82t_2+bde2t_3+bce3t_1
- bcest_2]
= (const) + bc[Vt_1+Ct_2+It_1]
+ (b+bd-be) [V, _,+C,_+I. ,1-bdlV, ,+C,_ +I,  .]

+ [It] + [ce1t+(l+d—c)elt_l-delt_2+e2t+e3t]

(iv) Y, = (const) + bc[Yt_ll + (b+bd-bc)[Yt_2] - bd[Yt_3]
+ [It] + [celt te, teg t (l+d-c)elt_l-de1t_2]
Note that (const) = (const) + (const) + (const). .
Ve Ceoa T
Our initial assumptions as to these disturbances were:
- 2 _ 2 -
E(eit) = 0, E(eit) = 0.7, E(eiteit—k) =0 ¥k #£0,

and E(eitejt

We see that the disturbance structure of our aggregation of °

) =0 for i, j=1,2,3 and i # j.

Yt is a second order autoregressive model about white noise.
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From equation (jiy) we get the Final Form forecast.

Y

41 (const) + belY, ] + (b+bd-be)lY, ;1 - bdlY,  ,]

]

+ [I +1] + [ce 1t-1

+ +(l+d-c)elt-de

1t+17€2¢+17 3641

(v) Yt(l) (const)-*bc[Yt]'*(b+bd—bc)[Yt_1]-bd[Yt_2]

~

+ [It(l)]+ (l+d—c)elt - delt—l

Yt(l) -Y

~~

(]

-t
n

t+1

A

[It(l) -1

£417 7 CC1p41 T Cop41 T C3p41

[eft(l)] - Celi41 T Cop+1 T ©€3t41

A

Var[eY (1)1

Ele, (1)7°

t t
- P 2
= Var[eft(l)]+-c Var(e1t+1)-+Var(e2t+l)
+ Var(e3t+1)

Now consider our leading indicator approach. Our
leading indicator is Vt’ and we have our three transfer
functions from equation (12) in the example. Consider each
in turn.

First:

[1-bcB+b(e-1)B’]V, = (const)y + bd(B-BX)[V, ;]

+ ba(B®-B3)[T 1 + [de, j-de , ,+bde, ,-bde, ,

+ e - bce + b(c-1) e ]

3t 3t-1 3t-2
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(vi) Vt = (const)Vt + cht_l —b(c—l)Vt_2 + bd[Vt_z]

- bdlV,_,] + bd[T__,] - bdlT,_,] + [de . ,-de, ,

*bde,, ,-bde,  j*e, -bce,, ,+b(c-1le,, ,]
Second;
[1-bcB+b(e-1)B] ¢, = (const)o + BIV, 3] + BIT, ;)
+ [elt+be2t-lj
(vii) C_ = (conmst), + beC,_; - blc-1)C _, *+ b[vt-l]

t

+ b[It-l] + [elt+b82t—1]

Third;
[1-bcB+b(c-1)B2] I, = (const)It + belv,_ ;1 - belv, _,
+ [I.7 - bII _,1 + [ce; ~ce;, ;*e, -be,. .1
(viii) I, = (const)y + bel,_; - b(e-1)I,_, + bclV, ;]

t

- belVy_,1 + [T, ] -b[Ty_,] + [cej -cepy jtey,

- be ]

2t-2

The aggregation of equations (vi), (vii), and (viii)
yields the transfer function for Yt implied by our leading

indicator approach.
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= (const)Vt + cht_1 - b(c-l)Vt_Q-fbd[Vt_QJ

- bdlv,_,7 + bdlT__,1-bdlT,_,1+ [de;, j-dej  ,

+ bdeZt-2 - bdeZt-3 + €3¢ ~ bce3t_1
*+ ble-1) ey, 1+

+ (CO“St)ct_l'+bcct-2"b(c'l)ct-a'+b[vt-2]'+b[T£-£
t lej g *bey o1+

+ (const); -+bcIt_1-b(c-1)It_24—bc[Vt_1]-bc[Vt_£

t
]

-ce te,, -be

1t-1 "2t 2t-2

+ [T.1 - bIT,_,1 + [ce,

+C

Y, = (const) +belV,_,+C _,

*I,_11-Dble-1IIV  _,+Cy 5

+ I, _,1 + belV__;1+ b(1+d-e)[V,_,T-bdlV,_,]

+ [T.J + balT, _,1 - bdlT _,]+[ce

2 1t
v (1rd-cleyy g-dejy p*epytbdeyy pmbdeyy g
+ ej -bees , + ble-ley, 5]
(ix) Yt = (const) + cht_l-b(c-l)Yt_z+-bc[Vt_l]
+ b(1+d-c) [V, _,1-1bdlV,__ 1+ [T 1+bdlT,_,]
- bd[It_3] + [celt+e2t+e3t]
+ [(l+d—c)elt_1-bce3t_l]
+ [-dey, ,*bde,, ,th(c-lle, ,1+ [-bde,. I

Note that (const) = (const)V + (const)C

+(const)I.
t t-1 t



(ix)

2 1t
+(l+d—c)elt_l-delt_2+e2t+bde2t_2-bde2t_3
+ eat—bce3t_1 + b(c-l)e3t_2]
Y (const) + beY, , -ble-1)Y, _, +belV _,]
+ b(1l+d-c) [V, _,1-bdlV, .1+ [T J+bdlT _,]
- bd[It_3] + [Celt+e2t+e3t]
+ [(1+d-c)elt_l-bce3t_1]
+ [-de;, ,*bde,, ,#blc-lley, o1+ [-bde,, ]
Note that (const) = (const)V + (const)C +(const)I
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(const)vt *+ beV, , - b(c-1)V, _, +bdlV, _,]

- bdlV,_5] + balT__,1-bd[T, ,1+[de;, j-de;. ,

- bde + e - bce

* bde 2t-3 3t 3t-1

2t-2

+ b(c-1) e ]+

3t-2

(const), -+bcCt_2-b(c—1)Ct_3-Fb[Vt_z]'+b[It_§

t-1

] +

*legp g + beyy o

(const)I +bcIt_l-b(c—l)It_2-fbc[Vt_l]-bc[%}ZJ

t
]

-ce te,, -be

+ [1,1 - blI_,1 + [ce 1t-1"%2¢t7°%2¢-2

1t

(const) + belV, _;+C £

1 t_2+It_1]-b(c—l)[Vt_2+C 3

+ I, ,1 + belv,_;3+D(1+d-c)[V, _,]T-DbdlV, _,]

+ [T, 3 + bdlT, _,1 - bdlI _,]1+[ce

t t-1

t



(ix)

Note that (const) = (const)V + (const)C

L8

(const)vt *+ beV,_; - ble-1)V _, +DbdlV,_,]

- bdlV,_,1 + bdlT__,1-bdlT,_,]+[de;, ,-de;, ,

- bde + e - bce

* bde 2t-3 3t 3t-1

2t-2

+ b(c-1) e ]+

3t-2

(const)ct_l-*bcCt_Q-b(c—l)Ct_3-*b[Vt_z]'+b[It_£

+ be ]+

+ [e

1t-1 2t-2

(const)It'PbcIt_l-b(c-l)It_Q-*bc[Vt_l]-bc[Vt_g

]

te, -b

+ [It] - b[It-ZJ + [ce —ceq _qte,~be, o

1t

(const)'Fbc[Vt_ +C ]-—b(c—l)[Vt_2+C -3

1*C oty t

+ I ,1 + belV,_ 11+ b(1+d-c)[V,_,T-bdlV,_,]

+ [I.3 + bdlI,_,]1 - bdlT, _,1+ [ce,,

+ (1+d- - -
(1*d-cleyy_y-degp_p*epytbde,yy p-bdeyy 3

+ e t-bce + b(c-1l)e

3 3t-1 3t-ZJ

(const) + bCYt- -b(c-l)Yt_ + becl[V ]

1 2 t-1

+ b(1+d-c) [V, ,T-bdlv, 1+ [T, J+balT__,]

2
]

+
€3¢

]

- bdlT,_,1 + [cey *e,,

+ [(1+d-c)elt_l—bce3t_1

+ [-de;, _,*bde,. ,#b(c-1l)e 1+ [-bde,, ,]

+ (const)I.
t

3t-2

t t-1



Also, given our assumptions regarding the disturbances, e.

(%)
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it?
the noise structure of Yt is seen to be a third order auto-
regressive scheme.
From equation (ix) we get the forecast of our
leading indicator approach.
Yt+l = (const) + cht - b(c-1) Yt—l + bc[Vt]
+ b(1+d-c)V, ;] - bdlV,_,] + [T, + palT__,]
- bdlI, o] + [eepyqte i g¥egyy, ]
+ [(l+d—c)elt—bce3t] + [_delt—l+bd82t-l
+ b(c-l)e3t_l] + ['bdeZt-ZJ
Yt(l) = (const) + cht-b(c—l)Yt_l-Fbc[Vt]
+ b(l+d-c)[V,_,1 - balv,_,1 + [T (1) + bdlI _,]
- bd[It_2] + [(1+d-c)e1t-bce3t] + [-delt_._1
+bde2t_l +b(c-l)e3t_1] + [-bde2t-2]
ey (1) = Yt(l) - Yt+l
t
= [It(l) - It+1]+ [Celt+1+e2t+l+e3t+1]
= [eft(l)J t leejisrterrertesesnd
Varle, (1)1 = Ele, (1)1°
Y Y
t t
~ 2
= Varler (1)1+c"Varle,, 1+ Varle,, ;]

+

t
Var[e3t+1]
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Also, given our assumptions regarding the disturbances, eips
the noise structure of Yt is seen to be a third order auto-
regressive scheme.

From equation (ix) we get the forecast of our

leading indicator approach.

Y

(const) + cht - b(c-1) Yt- + bc[Vt]

t+1 1

+ b(1+d-c)V, ;1 - balvy_,1 + [T,y + balT ;]

1

- bAlI o1 + [eejiyq*reriir*esisr ]

+ [(l+d-c)elt—bce3t] + [-delt_l+bde2t_1

+ b(c-1)e ] + [-bde ]

3t-1 2t-2

(x) §t(l) = (const) + cht-b(c-l)Y -+bc[Vt]

t-1

+ b(l+d-c)[V, ;1 - bdlV, ] + [I (1) + bdlT _,]

1

bd[It_QJ + [(1+d—c)elt-bce3t] + [-deltel

t+bdey, , +blc-l)e,, ;] + [-bde ]

2t-2

;Y (1)

Y (1) - Y
+
t t t

1

]

]+ [ce

[I,(1) - I,y 1t+17€2¢c+1%%3¢41

[;f (1)] + [ce ]

. 1t+11€2t+1% 3141

~ ~ 2
Varle, (1)1 Ele, (1)]
Yt Yt

~ 2
Var[eft(l)]*-c Var[e1t+1]-+Var[e2t+l]

Var[e3t+1]

+



Also, given our assumptions regarding the disturbances, e,
the noise structure of Y

regressive scheme.

L9

t

From equation (ix) we get the forecast of our

leading indicator approach.

(x)

Yt+1

Yt(l)

>

(1

Varle

)

Y

t+bde,, ; +blc-lle, ;1 + [-bde

t

(const) + cht - b(ec-1) Yt—

b(1+d-c)[Vt_

bd[ft_zl + [ce

[(1+d-c)elt-bce3t] + [-de

b(c—l)e3t_1] + [-bde

(const) + cht-b(c-l)Y

b(1l+d-c)[V,_;1 - bdlv, _,1 + [T (1)) + bdl

= [It(l) -1

- [éf (1)1 + [ce

(1)]

+

Yt(l) - Yt+

t

1

1t

21:-2:l

t-1

1

t+l]+ [ce

~ 2
Ele, (1)]
Yt

Var[ef (l)]'*c2Var[e
t

Var[e3t+1]

1t+17%2t+1% %3141

1

-1

+bde

+ bc[Vt]

]

2t-1

+bc[Vt]

bd[It—ZJ + [(1+d—c)elt-bce3t] + [-de

1t+17€2t+1% %341

1t+1t€0¢+1% %3142

1t+1

2t-2

]

]

]

]+ Varle

1 - bdlv,_,1 + [T, ,J + bdlT _

1t-1

2t+1

.t,

is seen to be a third order auto-

1

t-1

]

]

]
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Note that the one step ahead forecast error for the leading
indicator approach is identical with that of the Final Form
approach.

Hence we have outlined an approach with an explicit
theoretical background in which leading indicators can be
studied and used, and which performs as well as the Final
Form approach.

It is not surprising that the two approaches yield
the same forecast errors for forecasts within the horizon
of our leading indicators' lead. They are obtained from
essentially the same information set. They are just

different algebraic manipulations of the same model.
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Well known fact:
If z, is a vector of mutually independent random

variables with E(Zt) = 0 and E(zt Zt-i) =0, 1= 1,2, ... ,

and if H is a matrix with known coefficients,
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then
var{[Hlz,} = E{[Hlz_}* = [[H]] Var(z);

where [[H]] is the transformation of [H] made by squaring

each element in [H].

A simple example:

Let 1 -2 e
[H] = ; VA =

with the e's having properties identical to those in examplel.

1 -2 €11t
Var{[H]zt} = Var
3 0 €51t
First, with our Second, the straightforward
transformation; development;
1ot €11t e11t72€21¢
= Var = Var
3 0 €1t 3€11¢
( + ( - 3
Var(ellt) uVar(ezlt) Var [ellt 2e21t]
9Var(ellt) k Var[Bellt] J
Var(ellt)+HVar(e21t)
{ 9Var(e,,.)

It should be noted that in our model, each element
in [H] is a polynomial in L, the lag operator. In this
context, to transform [H] into [[H]] we need to square the

coefficient of each different power of L appearing in every

polynomial comprising an element in [H].
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A less simple example:

Let (B-38%) 282
[(H] = 5
3B3 0
B—3B2 2B2
Var{[H]z. } = Var
t 3
3B 0
First, with our transformation;
¢ 2 2_2 2_2
(1)°B+(-3)’B* (2)°B 11t
= \Y
2.3
¢ 2 2
(B+9B°) uB ellt
= \Y
| 8% o eyt
[ BV(e... )+9B%V(e., )+4B%V(e,..)
11t 11t 21t
3
L 9B V(ellt)
( +
V(ellt-l) 9 V(ellt_2)+u V(e21t_2)
| 9 V(ejq4_3)

Second, the straightforward development;

r 2 2
(B-3B )ellt + 2B €31+
v 3
\ 3Bet
( 2 2
Bej  "3Beyyp * 2BTeyyy
v
L 3B3e

11t

11t

€21t

11t

€21t



5y

3 +2e

€11t-17°%11t-2"%%21t-2

v

3€717¢-3

(V(e -3e

11t-1"3€11¢-2%2

€21t-2

| V(3ey;, 3)

(V( Y+9V(e Y+uv(e )

€11t-1 11t-2 21t-2

\ QV(ellt_3)

Clearly, for this to be a valid transformation, not
only must our disturbances be mutually independent, but

they must not be autocorrelated as well. 1i.e. E(zt Zt—i)= 0,

i=1,2, ...
This assumption holds concerning our error structure,

€4 but it does not hold in general concerning our inputs,

X, In particular, consider equation (2.21). We cannot

: - *

apply the same transformation to the matrix [Hli(L)Hl2(L)]
- %

as we apply to [Hli(L) Fll(L)] because the elements in the

vector of forecast errors, e, (k), are autocorrelated.

A ~ t

e.g. Ele, (k-1)ee_ (k-2)]
X1t X1t

k=2 k-3
= E nZO ¥1nt+(k-1)-n ngo Y1n%t+(k-2)-n

(by substituting from equation (2.18))

kES 2
= Vi V1130 £0 .
n=1 Ain 1(n-1)"1a
This point becomes obvious in our less simple example,
e exq4 (k)
if we replace z = 11t with z,.' = |[|© it .
t t exn4s (k)
€51t 2t
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We will find in taking the variance that this transformation

(k) is autocorrelated

of [H] will be inappropriate since e

1t
with past forecast errors.
Let B-382 282 e, (X
*1t
[H] = 5 zt' =
3p3 0 e, (k)
2t

with the forecast errors having properties like
those in equation (2.18).

B-382  2B%)(e. (X)
X1t
Var{[H]zt'} =V
383 0 e, (x)
2t
First, with our transformation;
(B+9B®  4B2 e, ()
- v 1t
| 98® 0 e, (X
. 2t
(Vle, (k-1)+9V[le — (k-2)]+4Vle  (k-2)]
. 1t 1t 2t
\ 9vle, —(k-3)]
1t
(inappropriate)
Second, the straightforward development;
(V[ (B-3BZ)e, (X) + 2B%e_ (K)]
*1t 2t
Var{[H]zt'} =
L visB®e, (1]
1t
. A A ~
Vie (k-1)-3e (k-2)+2e (k-2)]
N *1t *1t *2t
| V[3ex (k-3)1

1t
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—

Vle. (k-1)] + 9V[e. (k-2
X1t X1t

= ||+ wvle. (k-2)] - 6E[e. (k-1)+e.  (k-2)]
X2t X1t X1t

9V[; (k-3)1]
| X1+ _

The difficulty is due to more than one power of B
appearing in any polynomial which is a single element in
[H]. 1In the variance, the presence of these different
powers of B requires consideration of the given variable's
autocorrelation.

Although we cannot make a transformation of
[Hi}(L) HlQ(L)]*, we can still calculate the variance of
the forecast errors as expressed in equation (2.21) in a
relatively straightforward manner. See the examples

for applications.
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APPENDIX 1

FITTING THE TRANSFER FUNCTION IN EQUATION (2.10)

How do we fit the transfer function in equation (2.10)?

ka

We can prewhiten the input, xt* = [ 1t]
X

t

To do this, first consider the bottom p, elements of xt*;

namely x,. From (2.4) we have:
H22(L)xt = F22(L) €t
or 1
X, = Hy, (L) F22(L) e,

This is the appropriate ARIMA model for Xy We can substitute

this into xt* for the bottom P, elements, and these inputs

will be "prewhitened." Then the transfer function will be
in terms of the predetermined variable input, Lk Y1t and the

. . _ -1 .
P, prewhitened 1£puts, X, = H22 (L) F22(L) €hyt That is,
x ®* = L ylt
- -1
(L) F22(L) e

t
Hyo

2t

We still need to prewhiten Yygs OUr leading indicator,
in order to work with the system in (2.10) in terms of all
prewhitened inputs, We must therefore fit Y1t with its
appropriate ARIMA model.

The first equation in the set of P equations in
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(2.9) gives us the time series model for Y1t implied by

our dynamic structural system of simultaneous equatjons:

y-1 ¢ s A
% P
(1), : hiy : «
h % | h fa sk I L yl‘t
(2.11) y), = 41 H._*(L) 2t Pa _wy| | *t
| 11 . ] 12
I : I
1*’ J h %kl J
P! Pt | )
r 1x(p2+1) W 1.
'hll* | 1-1 (p,y+1)x1
I
h,.* |
21
+ 4 *
: Hyq (L) Fll(L)L ey
: I
(h_ ! J
\ pll I Jl-
1xp, p 1

This is a transfer function for Y1t with input xt*. This
equation is interesting in that lagged Y1t is an input to
the transfer function model for Yit®

The first element of the 1x(p2+1) vector,

( % y-1¢ LR )
hyy : hyy |
L3 R R
| haoy : hyq :
%
. | Hll (L) . | H21(L) y
. I I
h L B EEE

multiplies L y . in (2.11). Call this first element of the
vector, g(L). The first term in the sum on the right hand
side of (2.11) can thus be written: [g(L) LK ylt]' This

can be moved to the left hand side of (2.11) in order to

collect all the terms in Yit*



(2.12)

(

\

k

Yi¢ * 8L L7y,

59

(1 + g(L) L) Y1y

11

LI
ok l
L
|
| H12(L)
ofe ofe l
llb'l*l
3
(L)} LI
Jq.

Note that this vector multiplying Xy

vector as in (2.11), without the first element, g(L).

can now be solved for Yqit©

(2.13) y . = -(L+gLIL ™

+ (1 + gL

1

\—l(

is the same

This

(L)}

This gives us the transfer function for our leading indicator,

Y1t

» implied by our structural model, in terms of exogenous
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variables only. This can be fitted by prewhitening the

input, substituting [H ‘l(L) F,, (L) e,, ] for x_:
22 22 2t t

(2.18) y . = -(1+g(L)Lk)'1{ } [H,, (L) F,,(Lle,.]
10_

+ (g7t { } €1+t

1-
: : . L Y1t
We can now substitute this model for y into x *= |——
1t t Xy
Hence we have x_* entirely prewhitened, and can now work

t

with our model for the measure of economic activity in

(2.10):
' |
k k.-1 -1
{ L (1+g(L)L) {}1._H22 (L)F,,(L)e,
. + Lk(1+g(L)Lk)‘1{} e ]
x," = 1.51t
-1
H22(L) F22(L) €,
'r * 1-1¢ k% ‘
P’ hy ™ ! W
% STy
4 hyy : hoy : |
= - % %
(2.10) y,, . [ Hy *(L) : lle(L) [xt ]
o . I
h L% h %%
" pq1 J Up,l )
{ 17 1 | Jo.
( 9
( & "’1
hiy :
+ 4 h21 | %
] : Hll (L) Fll(L)r et
. I
h_ %] J Ja.
I
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Note that equation (2.13) is the same equation as is implied
in the structural system in equation (2.4).

The Final Form for the system is:

- -1 -1
(2.15) Yy % -Hll(L) le(L) x, + Hll(L) Fll(L) e

t 1t

The first equation of the Final Form is the same as equation

(2.13).
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A USEFUL CONVENTION OF ZELLNER AND PALM

At this point let me interject a useful convention
which Zellner and Palm point out, when working with this
kind of model transformation (see footnote 8).

In both the Final Form and leading indicator
approaches, our model is expressed as a vector of endogenous
variables in terms of a set of linear combinations of
predetermined variables and disturbances, in a dynamic
framework. In matrix form, our coefficient matrix 1is the
product of two known matrices (say A and B), one of which
is in inverse form. That is, our model is of the form;

y, = [A71BIx, + [A71Cle,.

From our presumed knowledge of A, B, and C, we can
compute A7t = HE%—K [adjoint A], and thus we know (a”1B]
and [A-IC]. Note that in our context, each element of
[A-lB] will be the ratio of two polynomials in L, with the
denominator being the determinant of A; i.e. [a~1s]
= EE%_K [adj AJI[B]. A distributed lag which is the ratio
of two polynomials in L implies a lag of infinite order.

Hence we have a quite complicated system.

We can simplify this system by multiplying both sides

62
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of the equation of our model by [det AJ;

i.e. [det A]yt = [adj A][B]xt + [adj A][C]et

Here our system is in the form of a transfer function
with current and lagged yt's in terms of current and lagged
xt's and disturbances. An interesting aspect of this system
is that the order and parameters of the autoregressive part
of each equation will be the same. This is true because
the determinant multiplying the vector, Yis is a single
polynomial in L.

Note that with this manipulation of our models,
equations (2.16), (2.17), (2.23), and (2.24) will be changed

as follows.

Final Form approach;

(2.16)" det[Hll(L)] Ytk -[adj Hll(L)][H12(L)] X

t+k

+ladj Hy{(LYIIF ()] eq

(2.17)" det[Hll(L)]yt(k) -[adj Hll(L)][HIZ(L)] xt(k)

+ {[adj Hy (LYILF (L e

Leading Indicator approach;
hll'.:

|
' ] % =
(2.23) det l Hll (L) Y +k
%
|
Pyl
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( o, ( DROR)
hyp™ ! M !
- daas| :om ] | LT
= adlyt . : 11 : : 12 f —
* L ) t+k
*
\ 1 1 J
( ( 3 )
hllcf :
+ 4 s : | %
adj : | Hll (L) Fll(L)> €1t 4k
h %l
\ ¥ pll J J
hyy :
' ) :': _
(2.24) det : : Hll (L) yt(k)‘
h L)
Pyl !
r rh ] I . h o 3
11 11 !
= _ . l " . ' ylt
= - {adj : : Hll"(L) : :H12(L) |-
L) Lo ot oV (k)
h | h I Xt
(s ~ |
hig :
J . :':
+ adj : : Hll (L) Fll(L)> €1+
h oo
| ' pql l J J

In this form the forecasts of yt(k) in equations
(2.17)' and (2.24)' will not only be in terms of the history
and forecast profile of Xis but will also depend on the past
history and forecast profile of Yy itself. This is due to
the determinant multiplying the vector of endogenous
variables. Furthermore, the autoregressive part of all
of the P forecasts in ;t(k) will be identical.

The presence of these "lagged" forecasts of Y will
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cause complications when we consider the variance of the
forecast errors, since forecasts of yt(l), yt(2), cee
yt(k—l) will be correlated with each other, with forecasts
of xt(l), xt(2), cee s Xt(k)’ and with €y

This is obvious in the examples, in which this

convention 1s used.



CHAPTER III

THE PROBLEM OF SPECIFICATION ERROR

Introduction

In Chapter II we proposed a framework for studying and
using leading indicators. We outlined a procedure for
building transfer function models by setting up a structural
model, and deriving the time series models directly from
this explicit theoretical background.

In Chapters IV and V we will consider multivariate
time series models which describe various empirical relation-
ships between "established" leading indicators and economic
activity. We will build the transfer functions empirically
by following the procedures outlined in Box and Jenkins'

Time Series Analysis.l This procedure is chosen over the

framework formulated in Chapter II.

The transfer functions we examine in Chapter IV
consist of economic activity (Industrial Production) as the
output, and as a single input, the leading indicator under
consideration.. In light of Chapter II, it may be argued that
there is an econometric problem of omitted variables in this
approach. At the outset, our single-input transfer functions
will appear to reflect a belief that the level of economic

activity is adequately "explained" by the use of just one

CA
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input. The framework in Chapter II shows that the number of
inputs in the transfer function implied by any given econo-
metric model will be equal to the number of exogenous vari-
ables plus the number of leading indicators in that model.
Even the simplest structural econometric model will imply a
transfer function with more than one input.

It is important to emphasize that our work is not
done with the presumption that a single input is sufficient
to explain the movements in economic activity. We follow
the Box and Jenkins procedure because we are interested in
the dynamic relationships which exist empirically between
economic activity and each of the leading indicators under
consideration.

Furthermore we argue in this chapter that the bias
introduced in the parameter estimates of our single input
transfer functions through the omission of variables, does
not present a serious problem if the following conditions
characterize the model being studied.

(i) The main objective of building the model is forecasting.

(ii) The variables in the underlying econometric model are

drawn from a joint distribution which is covariance

stationary.

A Discussion of the Problem

Suppose that the true model describing the world we

are examining is

= + e 8 e + +
.1y Bi¥1¢ * BoXpt Bi*ke ¥ St



or

(3.2)
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Y = XB + €

where Y is a Txl vector of observations on the endogenous

We use only x

(3.3)

variable, expressed as deviations from the meanj; X is
a TxK matrix of explanatory variables expressed as
deviations from their respective means, which are
drawn from a multivariate Normal distributionz;

B is a Kx1 vector of true model parameters; and

€ is a Txl vector of disturbances, with eNN[O,OZIT].

1t Thus

E(ytlxlt) = lelt + BZE(XZtlxlt) + ... 4 BKE(XKtlxlt)

Under our assumptions,

(3.4)

where 0. .

and o

%12
E(X2tlxlt) = ;—5 X1p T CoXpg
1
g
_ 13 _
Elxgylxyy) P VR S
1
g
_ 1K _
Elxyp %) = e RIS G
1
13 = Cov (xlt’xjt) for j = 2, 3, ... , K.
2 3
1 = Var (xlt)'

Note that the cj are constants, for j = 2, 3, ... , K.
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Thus

(3.5) E(ytlxlt) = OB Xyt BCoX L ..l 4 Bioyx,
= (Bl P By, bl BKCK) X4
=BT x4

Hence we can write the model as

(3.8) y. = B* x; + v, where E(thxlt) = 0.

Ordinary Least Squares will yield a consistent estimate
of B*. Furthermore, given stationarity, Vi has other nice
properties like homoskedasticity (since the diagonal of
the covariance matrix of the conditional density given in
footnote (3) does not depend on t).

It is obvious that bias is present since B* # Bl
unless x is uncorrelated with other x., (in which case the

1t jt

13 would be zero for j = 2,3, ... ,K). However, if condi-

tion (i) on page 2 characterizes our study, we do not care

o

about the economic interpretation of Bl. In this case, we

are concerned with forecasting, and B* is appropriate for

that. Indeed, [B%* t] is a much better forecast of Y than

X1
J, since it is exactly E(ytlxlt)’

The second condition of page 2 is important because

[8) %14
it implies that the cj; j = 2, 3, ...y K, will remain stable
over time. If all the variables in the underlying econo-
metric are drawn from a joint distribution which is

covariance stationary,q then the correlation between the
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Thus

(3.5) E(ytlxlt) = OByXpp tB,CoXq ... b Biox.
= O(Bp * Bpey t e b By X
=BT Xy

Hence we can write the model as

(3.6) y, = B* x; *+ v, where E(vtlxlt) = 0.

Ordinary Least Squares will yield a consistent estimate
of B*. Furthermore, given stationarity, Vi has other nice
properties like homoskedasticity (since the diagonal of
the covariance matrix of the conditional density given in
footnote (3) does not depend on t).

It is obvious that bias is present since B* # Bl
unless x is uncorrelated with other x., (in which case the

1t Jjt

0,. would be zero for j = 2,3, ... ,K). However, if condi-

13
tion (i) on page 2 characterizes our study, we do not care
about the economic interpretation of Bl. In this case, we

are concerned with forecasting, and B* is appropriate for

that. Indeed, [B%* xlt] is a much better forecast of v, than

L8, 1, since it is exactly E(ytlxlt)°

*1t
The second condition of page 2 is important because
it implies that the c¢.3 j = 2, 3, ..., K, will remain stable

over time. If all the variables in the underlying econo-

metric are drawn from a joint distribution which is

covariance stationary,u then the correlation between the
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the single input included in our model and each variable
which is omitted, will remain stable in the future. That

is, the variances and covariances in the constants, cj, will
not vary over time. Hence, in E(thlxlt) (3 =2, ..., K) we
have incorporated the way that the X514 (3 = 2, ..., K) change

on average when X] 4 changes. We still miss the information

in [xjt

serious problem over time.

- E(xjtlxlt)]’ but given condition (ii), this is not
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lBox, George and Jenkins, Gwilym, Time Series Analysis,
Holden Day, 1976.

2This assumption that the xj¢3 1 = 1, ... ,K are drawn
from a multivariate Normal distribution, is consistent with
the notion expressed in ChapterII that the explanatory
variables follow ARIMA processes. That is, each explanatory
variable can be expressed as an infinite order Moving
Average process about a white noise series which 1is assumed
to be Normally distributed.

3Dhrymes, Phoebus J., Introductory Econometrics,
Springer-Verlag, New York Inc., 1978, pp. 364-66.

Consider his Propositions 7 and 8, restated: Given
the set of K random variables, X (Kx1l), expressed as devia-

tions from their means.
Y. [O] i1 I
9

X 0 z z

Let X ~ N[0,Z], or equivalently,

2 21 22
. . _ - 2 .
where Xl is (1x1), X2 is (K-1)x1, le 01 is (1x1),
. _ ' .
222 is (K-1)x(K-1), and 212 = 221 is 1x(K-1).
Note that 212 = 221' is the vector of (K-1) covariances:
olj = Cov(xlt,xjt); J = 2, 3, ... ,K.

Under these conditions,

X, ~ N[Q, Z 13

1 1; X, ~ N[aQ,

11 22

and the conditional density of X2 given X1 is

1 L. - r..t.. "tz

N[Z,.Z 292

21711 1°
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The first moment of this conditional distribution is the
set of K-1 conditional expectations:

[0}

12 )
E(x2t|xlt) o2 *1ie T 21t
1
[e)

_ 13 _
E(x3t|xlt) = 7 *1t T %3%1t
1
(o)
_ 1K -
E(thlxlt) T 7 X1t T “k*1t
1

qu the joint distribution is Normal, then covariance
stationarity implies strict stationarity.
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APPENDIX 3

PROOF THAT ORDINARY LEAST SQUARES ESTIMATION
YIELDS THE APPROPRIATE ESTIMATE

Here we will show that Ordinary Least Squares
estimation of the misspecified system yields a parameter
estimate with an expected value identical to R* in equations
(3.5) and (3.6).

Let X and B be partitioned as follows,

X = [Xl X2] B = El 1x1
TxK  Tx1 Tx(K-1) kx1 | B2 (K-1)x1

In this case, equation (3.2) becomes

Y = XB + ¢
B
} 1
- [Xl X2] [32]*’ €
= XiBy * XoBy toe

We estimate the following misspecified system.

= % * =
Y X131 + € where € X282 + €

Ordinary Least Squares estimation yields the following.

A ' -1 U
81 (Xl Xl) lY

-1 -
(Xin) Xi[XIBl + X282 + €]
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i TV -1
= + ! ! ! '
Bl (xlxl) X1X262 + (Xle) X]e
E[g.] = B, + (X!IX)7'xIX B
1 1 11 17272
T
Note that 012 - 1 z x1t2
t=1
- Loy
= T(Xle)

Thus (X!'X.)"1 = [70,2171 - _1_

171 1 T 2

a
1
1 T
Furthermore, olj = COV(Xlt’th) = 7 t§1 xltxjt
-1 '
= 7 [X1X2] 3

! =

Thus X;X, T[o12 Tig +n- olK]

Substituting these into the expected value of our least

squares estimate, we get the following.

[a) _l —
= t [}
E(B,] B, *+ (X]X) 7X]X,B,
_ %12 913 O1x
= By ¢ 7 7 ° 7| [By]
(0] g g
1 % 1
= Byt coBy t Byt t ocyBy



CHAPTER IV

AN EVALUATION OF THE COMMERCE DEPARTMENT
LEADING INDICATORS

Introduction

The huge amount of effort exerted toward developing
the Commerce Department leading indicators has resulted in
the current Composite Index of Leading Indicators (CLI).
This index represents the fifth complete reworking of the
indicator selection. The first was compiled by Burns and
Mitchell in 1938, the second and third by G.H. Moore in
1956 and 1960, the fourth by Moore and Shiskin in 1967, and
the fifth by the Commerce Department in 1975 (see references
(171, [47], and [75].

The CLI is constructed from the following twelve
series which have been evaluated as the "most useful"
leading indicators, given the Commerce Department's scoring
procedure.

Business Conditions Digest Series 1 (BCDl): Average

Workweek of Production Workers, Manufacturing

BCD3: Layoff Rate, Manufacturing

BCD8: Value of Manufacturers!'! New Orders for
Consumer Goods and Materials

BCD12: Index of Net Business Formation

75
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BCD19: Index of Stock Prices

BCD20: Contracts and Orders for Plant and Equipment
BCD29: Index of Housing Starts

BCD32: Vendor Performance

BCD36: Change in Inventories on Hand and on Order

BCD32: Percent Change in Sensitive Prices (PPI of
Crude Materials)

BCD104: Percentage Change in Total Liquid Assets (M7)

BCD105: Real Money Supply, Ml

First the monthly data is standardized so that each
series displays the same average absolute monthly change.
This makes it possible to combine series with different
units of measurement.

Next these standardized series are combined into a
weighted average, with the weights reflecting the overall
performance scores of each component series as a cyclical
indicator. The score for a given series depends on its
economic significance, statistical adequacy, cyclical timing,
conformity to business cycles, smoothness, and currency
(how quickly the data are available), The weight given to
each series is the ratio of the performance score of that
series to the average of the scores of all series in the
CLI ([5], [33]).

Finally this weighted average is subjected to a
"reyerse trend adjustment." Here the trend of the weighted
average is made to equal the trend of the Composite Index

of Coincident Indicators (CCI). This trend can be viewed
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as a linear approximation to the secular movement in
economic activity. The rationale for this reverse trend
adjustment is as follows. Many of the twelve series listed

above relate to changes or percent changes in output, prices,

or monetary aggregates rather than levels, and thus display
no significant trend. Hence the weighted average of leading
indicators constructed in the first two steps displays many
small declines which are not indicative of a coming drop in
the CCI. Reverse trend adjustment is intended to overcome
this difficulty ([33], [34], [37]1, [681]).

The series resulting from these three steps 1is the
CLI.

Critique of the Commerce Department Approach to Leading
Indicators

In Chapter II we developed a theoretical framework
for leading indicators. It is important to examine whether
the leading indicator approach of the Commerce Department
outlined above, is appropriate in the context of our work
in Chapter II.

Is there a theoretical framework justifying the
above construction of the CLI?

This point was examined empirically as early as
1957 by John E. Maher [40] and again in 1973 by Saul Hymans
[37]. They each ran a multiple regression of the CCI on
the components of the CLI, to see if the resulting coeffiw

cients resembled the weights imposed on the twelve series
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in the Commerce Department construction. Their results
showed three leading indicator series with insignificant
coefficients, and five more with coefficients of the wrong
sign.

In all fairness to the Commerce Department approach,
it should be noted that this regression equation does not
represent a behavioral relation. Hymans clearly states
that it is "merely an exercise in curve-fitting, or - at
best - some kind of pseudo reduced form equation." Hence,
this exercise is not an appropriate test for the existence
of a theoretical framework underlying the Commerce Depart-
ment approach.

A further criticism which has been used in defense
of the Commerce Department approach, is that such a
regression equation examines the relationship between leading
indicators and the measure of economic activity at all

points in time. It is claimed that the Commerce Department

is only concerned about the lead of an indicator just prior
to true turning points in the economy, and does not worry
about the interim periods ([30], [371]).

Hence, '"the CLI is alleged to be constructed so as to
maximize the use of the turning point information contained
in the component leading indicator series. The statement
that a turning point in economic activity is typically
preceeded by a turning point in many of the component series
of the CLI, is not meant to imply direct causality. If it

did, one would attempt to estimate a behavioral or
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technological relation that could be expected to hold outside
the sample, that would have directly interpretable coeffi-
cients, and so on. Rather, the statement implies something
about the process through which those forces that do lead

to turning points operate within the structure of the U.S.
economy" ([37)].

If these statements constitute the best defense of
the Commerce Department leading indicator approach, then it
seems that there is no explicit, quantifiable theoretical
framework underlying the approach. Instead, promoters of
the approach rely on stories about the trade cycle which
suggest reasons why many of the component leading indicator
series might turn down before economic activity.

These arguments would not justify the Commerce
Department approach in the light of our Chapter II. There
must be an explicit theoretical framework, expressable in
terms of a system of structural dynamic equations, for our
approach to be applicable.

Furthermore, the common argument that these series
should only be expected to consistently lead economic
activity at true turning points, suggests a significant
weakness in their value as forecasters. If we had an
indicator or an index of indicators which was successful at
predicting true turning points and of no predictive value
at any other time, it would be useful. However, it is
difficult to imagine relying on such an indicator to predict

a downturn which has not yet occurred! It seems that at
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best, this indicator would be useful in an expost role,
verifying that a downturn has already occurred. In fact,
Julius Shiskin and G.H. Moore have admitted that the
Commerce Department approach has only been useful in such
an ex post role ([17]1, [2u], [37], [us8], [ug], [50]1, [52],
(651, [68]).

In any case the existing CLI has not met with great
success, nor has any of its components alone, nor has any
of the other eighteen series classified as leaders by the
Commerce Department ([12], [17]1, [18], [211, [22], [24],
(28], [29], [30], [31]1, [33], [3u4], [37], [39], [43], [59],
[67], [72]). The leading indicators have displayed small
average leads (only two of the thirty leading indicators
have an average lead at true turns of more than five months
[22]), and their lead times have varied greatly from cycle
to cycle. In addition, they have often signalled false
downturns. Understandably, the CLI has exhibited the same
problems. Though it has not failed to signal a true down-
turn since World War II, it has displayed lead times which
have varied greatly, and it has signalled many false down-
turns ([3]1, [22], [3u4]1, [37], [uul, [70]1). These problems
make the Commerce Department leading indicator approach
quite unreliable as a useful predictor of business cycle

turns.
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Empirical Evaluation

Given the above arguments in the ongoing debate
concerning the Commerce Department leading indicators, a
more extensive examination of the relationships between
these indicators and the level of economic activity is in
order.

Here we consider eight single-input transfer function
models with the Industrial Production Index (I.P.) as output,
and with one of the leading indicator series used in the CLI
as input. This technique allows the data to inform us about
the extent and the form of the relationship between each
leading indicator and I.P., as well as the average lead
involved in the relationship at each point in time.

The first step in this analysis is to identify and
fit the univariate ARIMA model appropriate for each leading
indicator. These models are used to prewhiten the time
series in each transfer function. This prewhitening
procedure transforms each input into a series of innovations
which presumably contains the information relevant to that
leading indicator that is not "explained" by previous
observations of the indicator. This series of innovations
is compared with the corresponding series of innovations
created by applying the same prewhitening transformation to
the output, I.P. The cross-correlation between these two
series provides us with information describing the relation-

ship between the input and the output, and hence, the form
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of the transfer function.

In working with this technique, data which is not
seasonally adjusted is required on all the time series
involved. The time series methods applied, effectively do
theor own seasonal adjustment in building the transfer
function models.

This has presented a problem in collecting our data
on the leading indicators. Though the numbers are readily
available in the Business Conditions Digest, all but two of
the twelve series we need appear in seasonally adjusted form.
The search for the numbers in unadjusted form has produced
just eight of the twelve leading indicators. Consequently,
our analysis centers on these eight leading indicators.

The univariate models for these eight leading
indicators are reproduced in Table IV-1.

To examine the stability of these models, we split
the sample of each model into two relatively equal sub-
samples, and re-estimate. In most cases the new parameter
estimates remain within one standard deviation of the
original estimate from the model with the entire sample.
The new x2 statistics and Residual Standard Errors (RSE's)
also generally remain close to the corresponding figures
from the model with the entire sample. Furthermore, the
sum of squared residuals (SSE) for the estimated models in
each subsample, generally amount to approximately 50 percent
of the SSE of the model with the entire sample. All these

observations suggest a high degree of stability!
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TABLE IV-1l

UNIVARIATE MODELS FOR THE COMMERCE
DEPARTMENT LEADING INDICATORS

[The number below each parameter estimate is its standard
error. ]

BCD1l: Average Workweek

Sample: 1947 - September, 1978: n = 393,

(4.1) (1-B12)(1-B)log(zt) - (l—.2118B)(1e.82089B12)at
(.05) (.033)
2 _ -
X28 = 34,7 RSE = .0074
2 2
2 - 1. :£§§El__ . q . _L.007w) = LusTy
Uoutput (.0100u46)

N

where o is the standard error of

oufput
(1-812)(1-B)log(z,).

BCD3: Layoff Rate

Sample: 1947 - August, 1979: n = 392,

(4.2) (1-%)(1-B) 1og(z,) = (1-.710968%%) a,
(.037)
2 - -
Xyq = 33.5 RSE = 1674
=2 ( 167'4)2
R = ] - = .3157

(.20236)°2
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TABLE IV-1 (cont'd.)

BCD8: Value of Manufacturers' New Orders

Sample: 1958 - May, 1979: n = 257
12

(4.3) (1-B'%)(1-B) 1og(z,) = (1-.6959uB %)a,
(.048)
2 - _
X2q = 26.3 RSE = .0356
—2 (.0356)2
R = 1 - : 5 = .3107
(.042878)

BCD19: Index of Stock Prices

Sample: 1947 - October, 1979: n = 394.

(4.4) (1-.2186B) (1-B* %) (1-B) log(z,) = (1-.82168 %),
(.051) (.030)
xgs = 30.7 RSE = .0353
=2 ( 0353)2
R = 1 - - > = .4113
(.046007)
BCD29: Index of Housing Starts
Sample: 1959 - August, 1979: n = 248,
(4.5) (1-B'%)(1-B) Log(z,) = (1-.24912B+.3047857
(.ou) (.0u47)
+ .19372B° - .59528'7)a,
(.0u45) (.0u48)
2 -
Xog * 47.1 RSE = .0895
=2 (.0895)2
R = 1 - —= = .,3629

(.11213)2
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TABLE IV-1 (cont'd.)

BCD32: Vendor Performance

Sample: 1947 - October, 1979: n = 394,

(4.6) (1-.2992B + .0692B" + .1559B1")(1-B12X1-B)10g(2.)
(.050)  (.050) (.048) t
= (1-.66u01312)at
(.0u40)
2
X - .
o6 39.2 RSE .125
2 (.125)2
R = 1 - L1250 . 4995
(.17211)2

BCDY2: Percent Change in PPI of Crude Materials

Sample: February, 1947 - August, 1979: n = 391.

(4.7) (1-.3756B - .24058°)(1-B'?)(1-B) log(z,)
(.043)  (.0u8)
= (1-.1468B% - .7331B%2 + .099131”)at
(.056)  (.037) (.055)

2
X = =
25 38.5 RSE .0157

2
(.021631)

BCD105: Real Money Supply (M1l)
Sample: 18947 - September, 18979: n = 393,

(4.8) (1-.2035B) (1-B'?)(1-B) log(z,)
(.052)
= (1 + .19058B° - .56297312)at
(.043) (.0u44)

2 }

X2, = 33.4 RSE = .0059
2

2 o, _Goose)? o

(.00702)°
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Two mild exceptions to the stability described above
appear in the models for Housing Starts (BCD29) and
Producer Prices (BCD92). Observe that these models are
more complicated than the surprisingly simple models which
describe the other leading indicators. The problem with
both of these series is that the model parameter estimates
vary somewhat more in the subsamples. Though some of the
parameter estimates remain within one standard deviation
of the estimate for the entire sample, others move outside
this band of one standard deviation, and a few move outside
the (28) confidence band. However, both of these models
have the redeeming qualities that the X2 statistics and the
RSE's are quite robust, and the SSE's for the subsamples
constitute close to 50% of the SSE for the entire sample.
Furthermore, the form of each of these models remains
appropriate in all subsamples considered.

It is not surprising that these two models are the
least stable. Housing starts have been subject to the whims
of Regulation Q enforcement; and the PPI since 1973 has
been subject to some degree to the whims of OPEC pricing.
In light of these facts, it is remarkable that these series
behave as well as they do.

The extent of the stability of these eight models
is fairly amazing, given their simplicity, the length of
the sample period, and the volatility of many of the leading
indicator series.

With these univariate models established, we can
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examine the cross-correlation function between the pre-
whitened input and the prewhitened output of each of our
eight transfer functions. In so doing we obtain information
about the form of the transfer functions under considera-
tion. With this information, we proceed to the estimation
stage and finish building our eight models, which are
displayed as equations (4.9) through (4.16) in Table IV-2.

To examine the stability of these models, we split
the sample of each into two relatively equal subsamples and
re-estimate. The resulting parameter estimates appear
directly beneath those for the entire sample, for each of
our eight models in Table IV-2. Examination of the para-
meter estimates of these subsamples indicates that our
models are quite stable. A study of the diagnostic checks
for each model supports this finding.

We conclude that the models adequately represent the
bivariate relationships between each of the eight leading
indicators under consideration and Industrial Production,

We are interested in the impulse response function
implied by each of our models. These eight functions are
listed and plotted in Figures (4,1) through (4,8), We
would like to compare these eight functions in order to
make some evaluation about the strengths and weaknesses of
each in the role of leading indicator. However since the
inputs are not all measured in the same units, and since
each input behaves differently (in particular, since each

input has a different standard error), this comparison
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TABLE IV-2
BIVARIATE MODELS FOR THE COMMERCE
DEPARTMENT LEADING INDICATORS

Yy = BCD47 Index of Industrial Production

(1) x, = BCDl: Average Workweek

Sample: January, 1947 - September, 1979 (n= 393)
W

12 o 12
(4.9) (1-B )(l-B)log(yt) i-—él_B (1-B )(1-B)log(xt)
12
+ (1-6128 )at
w_ = 1.0260 61 = .6777 612 = 7462
°  (.079) (.036) (.035)
2 _ -
Xyq = eu.7 RSE = .0117
( 2 3
§2 - 1 - AgRSE)
ooutput
2
\ (.019846) )
Sample: January, 1947 - April, 1963 (n = 196)
w_ = 1.2599 61 = .6088 612 = .7670
(.133) (.056) (.053)
2 _ -
Xyq = 40.0 RSE = .0136
_2 (.0136)2
R = 1 - - =  .5304

(.019846)°2
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TABLE IV-2 (cont'd.)

Sample: May, 1963 - September, 1979 (n = 197)
© = .7493 &, = .7499 6., = .7012
°© (.092) 1 (lous) 12 (loss)
x§7 = 57.8 RSE = .0096
_2 (.0096)2
RO = 1 - = = .7660
(.019846)
(ii) X, = BCD3 Layoff Rate
Sample: January, 1947 - August, 1979 (n = 392)
w_-w,B
(4.10) (1-B1%)(1-B)logly,) = 21 (1-B1?)(1-B)1log(x,)
t 2 t
1-6,B
12
+ (1-612B )at
w = -.0344  w = .0315 &, = .5927 @, = .7565
©  (.003) (.003) (.045) (.036)
XZ, = 56.4 RSE = .0116
R = .e58u
Sample: January, 1947 - April, 1963 (n = 196)
w = -.0381 w, = .0331 &, = .5569 6., = .76U49
°© (.005) 1 (.005) 2 (.065) 2 (.053)
xﬁ7 = 48.5 RSE = .0139
R? = .5094
Sample: May, 1963 - August, 1979 (n = 196)
w, =-0299 w, = .0261 8, = .6597 6,, = .7096
(.00u4) (.004) (.062) (.058)
Xt; = u2.9 RSE = .0096
RZ = .7660
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TABLE IV-2 (cont'd.)
(iii) X, = BCD8 Value of Manufacturers' New Orders
Sample: January, 1958 - May, 1979 (n = 257)
12 w,~w B 12
(4.11) (1-B7°)(1-B)log(y,) = ——— (1-B"“)(1-B)log(x,)
t 2 t
1-628
12
+ (1-6128 )at
w_ = .2396 w, = -.0865 §, = .3471 0 = .6954
© (.019) Y (.o1e) 2 (.062)  t? (.ou9)
2 _ -
Xpg = 39.1 RSE = .0103
ﬁQ = ,7306
Sample: January, 1958 - December, 1969 (n = 1uilu)
; = .2306 ; = -.0731 8 = .3175 6 = .649Y
°© (l027) 1 (.028) 2 (.102) Y2 (Lo72)
2 _ -
Xog = 42.2 RSE = .0116
RZ = .6584
Sample: January, 1970 - May, 1979 (n = 113)
w, = -2616 w, = -.1024 &, = .3852 6,, = .7353
(.026) (.025) (.076) (.079)
2 -
Xpg = 25.2 RSE = .0091
RZ = .7897
(iv) x, = BCD19 Index of Stock Prices
Sample: January, 1947 - October, 1979 (n = 394)
w
(4.12) (1-B*2)(1-B)logly,) = —2—B2(1-B1?)(1-B)log(x,)
t l—GlB t
1-912B12
¥ I-¢,8 %t
w = .0674 &, = .8155 6., = .7942 ¢, = .2739
°© (.015) Y (.059) 1?2 (.o32) 1 (.o51)
2 _ -
Xyg = 45.6 RSE = .0132
RZ = .uu2y
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TABLE IV-2 (cont'd.)

(v)

(4.13)

Sample January, 1947 - May, 1963 (n = 197)
®_ = .0961 §, = .6943 6,, = .8u07 ¢, = .2931
(.031) (.141) (.046) (.074)
Xge = 35,8 RSE = .0159
RZ = .3581
Sample: June, 1963 - October, 1979 (n = 187)
o Tty 1o 12 TCosny o)
Xeg = 38.6 RSE = .0103
R = .7306
Xy = BCD29 Index of Housing Starts
Sample: January, 1959 - August, 1979 (n = 2.u8)
(1-B'%) (1-B)logly,) = w_B®(1-B1?)(1-B)log(x,)
1-6,,8%2
' 12 .
1-¢,B t
© = .0172 812 = .5908 ¢, = .3797
(.007) (.056) (.064)
Xig = 37.2 RSE = .0124
R = .6096
Sample: January, 1959 - April 1969 (n = 124)
w, = 0278 @, = .4452 §, = .2569
(.012) (.094) (.100)
Xig = 32.7 RSE = .0134
R2 = .suul
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TABLE IV-2 (cont'd.)

(vi)

(4.1y)

Sample: May, 1969 - August, 1978 (n = 124)
w = .0125 912 = .6539 ¢1 = .5031
(.096) (.082) (.090)
2 _ _
xu6 = 39.0 RSE = .0121
RZ - .6283
xt = BCD32 Vendor Ferformance
Sample: January, 1947 - October, 1979 (n = 394)
12 % 2 12
(1-B"")(1-B)log(y,) = =——= B (1-B “)(1-B)log(x,)
t l-dlB t
12
heE
1-¢,B t
w = .0180 61 = .7651 912 = .7811 ¢1 = .2774
(.004) (.078) (.033) (.052)
xﬁs = us.y RSE = .0133
R2 = .5509
Sample: January, 1947 - May, 1963 (n = 197)
w = .0163 %_= .8625 %2 = .8061 %.z .28uyYy
(.005) (.072) (.050) (.074)
2 _ _
qu = 34.9 RSE = .0160
RZ = .3500
Sample: June, 1963 - October, 1979 (n = 197)
w = .0279 % = .4870 612 = .7775 ¢l = .?138
(.008) (.176) (.051) (.079)
2 _ _
Xng = 43.2 RSE = .0106
RS = .7147
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TABLE IV-2 (cont'd.)

(vii) x, = BCDS2 % Change in PPI of Crude Materials
Sample: January, 1947 - August 1979 (n = 392)
l1-9,,B
12 _ o 10 12 12
(4.15) (1-B )(l—B)log(yt) = ']:S—I—B B~ (1-B )[Xt]"’——l—_—(p;g—'—
o. ==.1062 &, = .7792 g, = .7747 4. = .2886
© (.033) % (.083) 12 (.o3uw) 1 (.os1)
Xﬁs = 37.7 RSE = .0136
R? = .5304
Sample: January, 1947 - April, 1963 (n = 196)
w = -,0700 §. = .8596 B _ = .8061 9. = .3101
°©  (.os0) Y (.o98)  1? (.os2)  t (.o7w)
v -
X,g = 30.5 RSE = .0168
R? = .2834
Sample: May, 1963 - August, 1979 (n = 1896)
w, = -.1965 61 = 6452 912 = .6689 ¢l = .1595
(.049) (.105) (.060) (.079)
- ) .
Xog = uu.7 RSE = .0107
R? = .7093
(viii) X, = BCD10S Real Money Supply - M,
Sample: January, 1947 - September, 1979 (n = 393)
w,
(4.16) (1-B12)(1-B)logly.) = —2_ B°(1-B1?)(1-B)log(x,)
t 1-8.B t
1-8,,B%°
I E 0 %t
w, = +3267 § = .6511 g, = .7960 ¢ = .3429
(.109) (.153) (.033) (.050)
2 -
Xyg ° U46.8 RSE = .0136

R = .5304
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TABLE IV-2 (cont'd.)

Sample: January 1947 - May, 1963 (n = 197)

w_ = .3455 &, = .5018 6,, = .8455 ¢. = .3717
° (.177) L (l333) 12 (ous) 1 .o72)

Xﬁs = 36.8 RSE = .016Y4

R = L3171

Sample: June, 1963 - September, 1979 (n = 196)

w_ = .3378 6, = .7123 6.. = .6881 6. = .2578
°© (.143) Y (.151) 1?2 ¢lose) 1 (.076)
2 i}

Xig = 35.5 RSE = .0111

2

R = .6872
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FIGURE 4.1
GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]

Xy = BCDl1 Average Workweek
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0 D 0:0:0.0.0:0:0.0:0°0:0:0:0:0 0.00.0:0.0:0:0.0.0.0.6.0.0.0.0.0.0.0.0.0.0.0.6.0.0. .102605E+01
1 .0.0°6:070:0.0.0:0:0:0:0:0.0:0.0.0:0:0.0:6.:6.0.6.4 .695345E+00
2 XOOTOOOOOTOOTKK .471231E+00
3 .6,0:0.:0.:0:6.:0:0.¢:0.0:0:0.:¢ .319351E+00
y )00/0°0°00000¢ .216422E+00
5 001050004 .146668E+00
6 XXX .993961E-01
7 XXX .673602E-01
8 XXX .456496E-01
9 XXX .309365E-01

10 XX .209655E~-01

11 XX .142082E-01

12 X .962880E-02

13 X .652538E-02

1y X LL4Y42222E-02

15 X .299691E-02

16 X .203099E-02

17 X .137639E-02

18 X .932771E-03

19 X .632134E-03

20 X .428393E-03

21 X .290320E-03

22 X .196748E-03

23 X .133335E-03

24 X .903604E-0U4

25 X .612367E-0U4

26 X .414998E-04

217 X .281242E-0u4

28 X .190596E-04

29 X .129166E-04

30 X .875348E-05

31 X .593215E-05

32 X .402021E-05

33 X .272447E-05

34 X .184636E-05

35 X .125127E-05

36 X .847977E-06

37 X .574669E-06

38 X .389450E-06

39 X .263928E-06

40 X .178862E-06

4] X .121214E-06

42 X .821461E-07

43 X .556699E-07

Ly X .377272E-07

45 X .255675E-07

46 X .173269E-07

47 X .11747 N7

48 X » .79¢
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FIGURE 4.2
GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
X, = BCD3 Layoff Rate
_ -.5 -.25 0. .25

(k) ++++++4+4 444444444 tH+H44+++  FHH4H44 44 4+ TS VALUEs[vk]
0 XXX -.343560E-01
1 XXX -.315098E-01
2 XX -.203628E-01
3 XX -.186759E-01
4 X -.120691E-01
5 X -.110692E-01
6 X -.715335E-02
7 X -.656075E-02
8 X -.423980E-02
3 X -.388856E-02
10 X -.251294E-02
11 X -.230476E-02
12 X -.148942E-02
iz X -.136603E-02
1s X -.882781E-03
1t X -.809649E-03
1 X -.523226E-03
18 X -.479880E-03
19 X -.310116E-03
20 X -.284425E-03
1 X -.183806E-03
22 X -.168579E-03
23 X -.108942E-03
o X -.999172E-04
2% X -.645702E-04
26 X -.592210E-04
27 X -.382709E-04
58 X -.351004E-0U4
29 X -.226832E-04
30 X -.208040E-0Ou
31 X -.13u444E-0Y
32 X -.123306E-0U4
33 X -.796849E-05
34 X -.730835E-05
36 X -.472293E-05
36 X -.433167E-05
37 X -.279923E-05
38 X -.256739E-05
39 X -.165914E-05
40 X -.152169E-05
41 X -.983375E-06
42 X -.301909E-06
43 X -.582848E-06
Ly X -.534563E-06
45 X -.345455E-06
s X -.316836E-06
47 X -.204751E-06
48 X -.187783E-06
X -.121356E-06
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FIGURE 4.3
GRAPH OF IMPULSE RESPONSE WEIGHTS [v,]
X = BCD8 Value of Manufacturers' New Orders
t -.25 0. .25 .5
() +++++bdtd tbtttttt bbb 44ttt ttttttttt ++4+44444VALUES [v ]
0 XXXXXXKKXKX .239582E+00
1 XXXXX .864858E-01
2 XXXXX .831554E-01
3 XXX .300180E-01
4 XXX .288621E-01
5 X .104188E-01
6 X .100176E-01
7 X .361623E-02
8 X .347697E-02
S X .125514E-02
10 X .120681E-02
11 X .435642E-03
12 X .418866E-03
13 X .151205E-03
14 X .145383E-03
15 X .524812E-0U4
16 X .504602E-0u4
17 X .182155E-04
18 X .175140E-0U4
19 X .632233E-05
20 X .607877E-05
21 X .219439E-05
22 X .210989E-05
23 X .761643E-06
24 X .732313E-06
25 X .264355E-06
26 X .254176E-06
27 X .917540E-07
28 X .882208E-07
29 X .318465E-07
30 X .306202E-07
31 X .110535E-07
32 X .106278E-07
33 X .383650E-08
34 X .368876E-08
35 X .133159E-08
36 X .128031E-08
37 X .462175E-09
38 X .444377E-09
33 X .160414E-09
40 X .154237E-09
41 X .556773E-10
42 X .535332E-10
43 X .193248E-10
by X .185806E-10
45 X .670734E-11
46 X .644904E-11
47 X .232802E-11
X

N =4
(o]

.223837E-11
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FIGURE 4.4
GRAPH OF IMPULSE RESPONSE WEIGHTS [v,]
X, = BCD19 Index of Stock Prices
-.25 0. .25 .5

(K)+++++++++ +++++++++ ++++++++4+ _ +++++++++, ++++++++4 VALUES [Vk]

0 X 0.

1 X 0.

2 XXXXX .673801E-01

3 XXXX .549504E-01

4 XXXX : .448136E-01

5 . XXX .365468E-01

6 XXX .298049E-01

7 XX .243068E-01

8 XX .198229E-01
-9 XX .161661E-01
10 X .131839E-01
11 X .107519E-01
12 X .876844E-02
13 X .715091E-02
1k X .583177E-02
15 X .475538E-02
16 X .387863E-02
17 X .316313E-02
18 X .257963E-02
19 X .210376E-02
20 X .171567E-02
21 X .139918E-02
22 X .114107E-02
23 X .930576E-03
24 X .758911E-03
25 X .618914E-03
26 X .504742E-03
27 X .411631E-03
28 X .335697E-03
29 X .273770E-03
30 X .223267E-03
31 X .182081E-03
32 X .148492E-03
33 X .121100E-03
34 X .987601E-04
35 X .805417E-04
36 X .656840E-04
37 X .535672E-0U4
38 X .436856E-04
39 X .356268E-0U4
40 X .290547E-0Y4
41 X .236949E-04
42 X .193239E-04
+3 X .157592E-0U
by X .128520E-04
45 X .104812E-04
46 X .854772E-05
47 X .697091E-05
48 X .568497E-05
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FIGURE 4.5
GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
X, = BCD29 Index of Housing Starts
-.25 0. .25 .5

(x) +++++++++.+++++++++.+++++++++.+++++++++,+++++++++VALUES[vk]
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L . . . . . .
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FIGURE 4.6
GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
X, = BCD32 Vendor Performance
-.25 0. .25 .5

(K F+++++4+4 FHt+++++4 b+ 44444+ 444444 ++++++4++4 VALUEs[Vk]

0 X 0.

1 X 0.

2 XX .180084E-01

3 X .137775E-01

4 X .105405E-01

5 X .806408E-02

6 X .616947E-02

7 X .4719398E-02

8 X .361105E-02

9 X .276265E-02
10 X .211358E-02
11 X .161701E-02
12 X .123710E-02
13 X .946459E-03
1y X .724087E-03
15 X .553967E-03
16 X .423815E-03
17 X .324242E-03
18 X .248063E-03
19 X .189782E-03
20 X .145194E-03
21 X .111081E-03
22 X .849833E-04
23 X .650169E-04
24 X .497415E-04L
25 X .380550E-04
26 X .291142E-04
27 X .222740E-04
28 X .170408E-04
29 X .130372E-04
30 X .997416E-05
31 X .7630739E-05
32 X .5837397E-05
33 X .446637E-05
34 X .341702E-05
35 X .261421E-05
36 X .200002E-05
37 X .153012E-05
38 X .117063E-05
39 X .895596E-06
40 X .685181E-06
4] X .524201E-06
y2 X .401043E-06
y3 X .306820E-06
Ly X .234734E-06
45 X .179585E-06
46 X .137392E-06
y7 X .105113E-06
48 X .804170E-07



101

FIGURE 4.7
GRAPH OF IMPULSE RESPONSE WEIGHTS [v, ]
X, = BCDY2 % Change in PPI of Crude Materials
-.5 -.25 0. 25
(K)+++++++++ , +++++++++  F+++++4++ 44+ ++++++++4 VALUES[vk]
0 X 0.
1 X 0.
2 X 0.
3 X 0.
b4 X 0.
S X 0.
6 X 0.
7 X 0.
8 X 0.
9 X 0.
10 XXXXX -.106213E+00
11 XXXX -.827565E-01
12 XXXX -.644800E-01
13 XXX -.502397E-01
14 XXX -.391LL44E-01
15 XX -.304995E-01
16 XX -.237638E-01
17 XX -.185156E-01
18 X -.1u44265E-01
19 X -.112405E-01
20 X -.875803E-02
21 X -.682384E-02
22 X -.531682E-02
23 X -.414262E-02
24 X -.322773E-02
25 X -.251490E-02
26 X -.195949E-02
27 X -.152674E-02
28 X -.118956E-02
29 X -.926853E-03
30 X -.722160E-03
31 X -.562673E-03
32 X -.438409E-03
33 X -.341587E-03
34 X -.266149E-03
35 X -.207371E-03
36 X -.161573E-03
37 X -.125890E-03
38 X -.980879E-0U4
39 X -.764254E-0U
40 X -.595471E-04
41 X -.463963E-04
42 X -.361498E-0uL
43 X -.281662E-04
by X -.219458E-04
45 X -.170991E-04
L6 X -.133228E-0u4
47 X -.103805E-0u4
L8 X -.808802E-05
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FIGURE 4.8
GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
X, = BCD105 Real Money Supply - Ml
-.25 0. .25 .5

(k) +++++++++ F++++++++  tHH++HH+4 b AR H R E S VALUEs[vk]
0 X 0.

1 X 0.

2 X 0.

3 X 0.

4 X 0.

5 XXXXXXXX XXX XXX .326655E+00
6 XXX XXX XXX .212692E+400
7 XXX XXX .138u488E+00
8 XXXXX .901725E-01
9 XXXX .587132E-01
10 XXX .382294E-01
11 XX .248920E-01
12 XX .162077E-01
13 X .105532E-01
1y X .687138E-02
15 X .L447410E-02
16 X .291318E-02
17 X .189683E-02
18 X .123507E-02
13 X .804177E-03
20 X .523616E-03
21 X .340937E-03
22 X .221991E-03
23 X .144543E-03
24 X .941151E-0U4
25 X .612803E-04
26 X .399009E-04
27 X .259803E-04
28 X .169163E-04
29 X .110146E-0U4
30 X .717181E-05
31 X .466971E-05
32 X .304055E-05
33 X .197976E-05
34 X .128907E-05
35 X .839337E-06
36 X .546510E-06
37 X .3558uUL4E-06
38 X .231697E-06
39 X .150863E-06
40 X .982301E-07
41 X .639596E-07
42 X .416455E-07
43 X .271162E-07
bh X .176559E-07
45 X .114961E-07
46 X .748538E-08
47 X .487389E-08

X

.317348E-08
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cannot be made with the functions listed in Figures (4.1)
through (4.8). We need to transform the impulse response
weights in each function into beta coefficients in order

to make this comparison.

Comparison With Beta Coefficients

To illuminate this requirement, consider an illustra-
tion. The impulse response weights in these figures are
analagous to regression coefficients, such as "g" in the
following model.

Suppose the true model is

Y = a+ bX + ¢

Then suppose the line minimizing the sum of squared errors

(the Ordinary Least Squares regression line) is

Y = a t+ bX
Then Y = a+ bX + e

where e represents the residuals of the regression.

The regressed line will pass through the point, (X,Y).

i.e. Y = a + bX

From this it follows that

Y-Y = b(X -X) +e
or o [L=2| = bo XA' L
or YA- Y - b :5 X’: X + ;L
Oy % | 9% ] %




l0u

In this last equation the input and the output are

. ~ Oy
standardized. |b =—

p ] is the beta coefficient, which measures
the relationship btheen the standardized input and the
standardized output. Observe that it is obtained by
multiplying the regression coefficient, g, by the ratio of
the standard deviation of the input to the standard
deviation of the output. It can readily be compared with
the beta coefficient of any other similar regression in
which the input and output are standardized.

We can transform the impulse response weights in
each of our functions listed in Figures 4.1 through 4.8
into beta coefficients, by simply multiplying each
coefficient in each impulse response function by the ratio,
SE, relevant to that particular model. This is done in

y
Figures 4.9 through 4.16. In these eight figures the

Q>

magnitude of the relationship between each leading indicator

and Industrial Production can be readily compared.

Implications

Upon examining these figures, we are immediately
struck by a distinct fault which characterizes five of the
relationships: the lack of any substantial lead. These
series are hailed by the Commerce Department as leaders,
which suggests that current movements in each indicator
should be consistently followed by movements in economic
activity after some lag. They are developed with the

expressed purpose of providing information about future
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FIGURE 4.9
GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

Xy = BCD1 Average Workweek
The figures are obtained by multiplying the 49 weights in
Figure 4.1 by .010046 .

.019846

The standard error of the series, (1—B12)(1-B)10g(x ), 1is
.010046. t

The standard error of the series, (l-Blz)(l—B)log(y ), is
.019846. . t

- .25 0. .25 .5
) +++++++++ +++++++++  ++ 4444444 +++++++44 . +++++++++ VALUES
0 )9:9:9,0.0.9.0.9.0.9:0.0.0:0.9.0:9.9.0.0.0.4 .519384E+00
1 XXXXXKXXXKXXXXKXXX .351982E+00
2 XXXKXXXXXXX .238536E+00
3 XXXXXXX .161655E+00
y XXXXX .109522E+00
5 XXX .742430E-01
6 XXX .503141E-01
7 XX .340976E-01
8 XX .231077E-01
9 XX .156600E-01
10 X .106127E-01
11 X .712916E-02
12 X .487408E-02
13 X .330263E-02
1y X .223852E-02
15 X .151703E-02
16 X .102808E-02
17 X .696725E-03
18 X .472167E-03
19 X .319985E-03
20 X .216852E-03
21 X .146959E-03
22 X .995934E-04
23 X .674939E-04
24 X .457402E-04
25 X .309979E-04
26 X .210071E-04
27 X .142364E-0U4
28 X .964793E-05
29 X .653835E-05
30 X .443099E-05
31 X .300284E-0S
32 X .203502E-05
33 X .137912E-05



3y
35
36
37
38
39
40
41
4?2
43
4y
45
46
47
48

-.25

FIGURE 4.9 (cont'd.)

0.
(K) +H++++4+4 b+ttt 4 44444+ 4+ttt +4++ +4+4+4+4++ VALUES

e olile e e T e e e e e e e i e

106

.25

.5

.934623E-06
.633390E-06
.429244E-06
.290896E-06
.197139E-06
.133600E-06
.905395E-07
.613583E-07
.415822E-07
.281800E-07
.190974E-07
.129422E-07
.877084E-08
.594398E-08
.402819E-08
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FIGURE 4.10
GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]
X = BCD3 Layoff Rate

t
The figures are obtained by multiplying the 49 weights in
Figure 4.2 by -20236 .

.019846

The standard error of (1-B (1-B)log(x,) is .20236, and
the standard error of (1—B12)(1-B)log(yt) is .019846

12)

-.5 -.25 0. .
(k)+++++++++.+++++++++,+++++++++,+++++++++?f+++++++++ VALUES
0 XAXXXKXXXKXXKKXXKX -.350311E+00
1 AXXKXXXX XXX XXKX -.321290E+00
2 XXXXXXXXX -.207630E+00
3 XXXXXXXX -.190429E+00
b XXXXX -.123063E+00
5 XXXXX -.112867E+00
6 XXXX -.729392E-01
7 XXXX -.668968E-01
8 XXX -.432312E-01
9 XXX -.396498E-01
10 XX -.256232E-01
11 XX -.235005E-01
12 XX -.151869E-01
13 X -.139287E-01
1y X -.900129E-02
15 X -.825560E-02
16 X -.533508E-02
17 X -.489310E-02
18 X -.316210E-02
19 X -.290014E-02
20 X -.187418E-02
21 X -.171892E-02
22 X -.111083E-02
23 X -.101881E-02
24 X -.658391E-03
25 X -.603848E-03
26 X -.390230E-03
27 X -.357902E-03
28 X -.231290E-03
29 X -.212128E-03
30 X -.137086E-03
31 X -.125729E-03
32 X -.812508E-0Uu
33 X -.745197E-04
34 X -.481574E-0u
35 X -.441679E-0u4
36 X -.285430E-04
37 X -.261784E-0U
38 X -.169174E-0U4
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FIGURE 4.10 (cont'd.)

-.5 0.

(K)+++++++++ +++++++++  ++++++44+ +++++++++ +++++++++ VALUES

39 X -.155159E-0u
40 X -.100270E-0Y4
43 X -.919633E-05
42 X -.594302E-05
43 X -.545068E-05
0l X -.352244E-05
Ne X -.323062E-05
Ne % -.208775E-05
e % -.191479E-05
4 X -.123741E-05
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FIGURE 4.10 (cont'd.)
-05 0

(K)++++++++4 +++++++++ bttt b+ +++4 +4+++++44

39
40
41
42
43
Yy
45
46
47
48

HKAHIXXHKAHIKX XX XX
|

VALUES

.155159E-04
.100270E-04
.919633E-05
.594302E-05
.545068E-05
.352244E-05
.323062E-05
.208775E-05
.191479E-05
.123741E-05
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FIGURE 4.11

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

Xy = BCD8 Value of Manufacturers' New Orders

These figures are obtained by multiplying the 49 weights in
Figure 4.3 by -042878
.019846

The standard error of (l-Blz)(l-B)log(xt) is .042878, and
the standard error of (l-Blz)(l-B)log(yt) is .0198u46 .

-.25 0. .25 .5
K)+++++++++ ++++4+4++4+4  +++++4+++4 4+ +H++++  HH+H+HH++++ VALUES
0 0.0.0.0000.0.000000000000 .517626E+00
1 XXXXXXXX .186856E+00
2 XXXXXXXX .179660E+00
3 XXXX .648550E-01
4 XXX .623576E-01
5 XX .225102E-01
6 XX .216434E-01
7 X .781300E-02
8 X .751212E-02
9 X .271178E-02
10 X .260736E-02
11 X .941220E-03
12 X .904975E-03
13 X .326684E-03
14 X .314105E-03
15 X .113388E-03
16 X .109021E-03
17 X .393552E-04
18 X .378396E-04
19 X .136596E-04
20 X .131334E-04
21 X .474106E-05
22 X .455849E-05
23 X .164556E-05
24 X .158219E-05
25 X .571149E-06
26 X .549156E-06
27 X .198238E-06
28 X .190604E-06
29 X .688055E-07
30 X .661560E-07
31 X .238815E-07
32 X .229617E-07
33 X .828890E-08
34 X .796970E-08
35 X .287695E-08
36 X .276616E-08
37 X .998546E-09
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FIGURE 4.11 (cont'd.)

-.25 0. .25 .5
(K)+++++++++  +++++++++  +++++++4+ _ +++++++4++ +++++++++ VALUES

38 X .960093E-09
39 X .346580E-09
40 X .333235E-09
41 X .120293E-09
42 X .115660E-09
43 X .417519E-10
by X L4014L41E-10
45 X .144915E-10
46 X .139334E-10
47 X .502977E-11
48 X .483608E-11
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FIGURE 4.12
GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

Xy = BCD19 Index of Stock Prices

These figures are obtained by multiplying the 49 weights in
Figure 4.4 by - 046007 |

.01398u6

The standard error of (1-B12)(1-B)1og(xt) is .0u46007, and

the standard error of (1-B12)(1-B)log(yt) is .019846 .

-.25 0. . .5
Uo+++++++++,+++++++++,+++++++++?§++++++++,+++++++++ VALUES

X 0.

X 0.

XXXXXXX .156201E+00
XXXXXX .127386E+00
XXXXX .103887E+00
XXXX .847228E-01
XXXX .690937E-01
XXX .563480E-01
XXX .459534E-01
XX .347672E-01
XX .305629E-01
XX .249251E-01
XX .203269E-01
XX .165772E-01
XX .135192E-01

.110253E-01
.899144E-02
.733277E-02
.598010E-02
.4B87694E-02
.397727E-02
.324358E-02
.264523E-02
.215726E-02
.175931E-02
.143477E-02
.117009E-02
.954243E-03
.778213E-03
.634654E-03
.517578E-03
.422100E-03
.344234E-03
.280734E-03
.228946E-03
.186712E-03
.152269E-03
.124179E-03

b g e e R R e R e R e e R e e K e R e e Re e Ko R o e’
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FIGURE 4.12 (cont'd.)

0.

112

.25

.5

UO+++++++++.+++++++++.+++++++++.+++++++++.+++++++++ VALUES

38
39
L0
41
4?2
43
Ly
45
46
47
48

KKK XXX

.101272E-03
.825901E-04
.673546E-0U4
.548295E-04
.Lu47967E-04
.365330E-0u4
.297935E-04
.242975E-0U
.198153E-04
.161600E-0U4
.131789E-0Uu
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FIGURE 4.13
GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

X, = BCD29 1Index of Housing Starts

These figures are obtained by multiplying the 49 weights

in Figure 4.5 by 211213
.019846 12

The standard error of (1-B )(l—B)log(xt) is .11213, and

the standard error of (1-812)(1—B)log(yt) is .0198u46 .
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FIGURE 4.13 (cont'd.)
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FIGURE 4.1u4
GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]
X = BCD32 Vendor Performance

t
These figures are obtained by multiplying the 49 weights
in Figure 4.6 by -17211 |

.019846

The standard error of (1-B12)(1-B)log(xt) is .17211, and
the standard error of (l-Blz)(l—B)log(yt) is .019846
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FIGURE 4.14 (cont'd)
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FIGURE 4.15

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

X = BCD92 % Change in PPI of Crude Materials

t

These figures are obtained by multiplying the 49 weights in

Figure 4.7 by -021631
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FIGURE u4.16

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta Coefficients]

X, = BCD105 Real Money Supply - Ml

These figures are obtained by multiplying the 49 weights in
Figure 4.8 by 00702 |
.019846

The standard error of (1-B'°)(1-B)log(x,) is .00702, and
the standard error of (1-B12)(1-B)log(yt) is .0198u6.
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FIGURE 4.16 (cont'd.)
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movements in economic activity. Furthermore, they are
deemed useful in forming and implementing monetary and
fiscal policy decisions aimed at stabilizing economic
activity.

To be truly useful in such a role, a leading
indicator should show a consistently long lead over
Industrial Production. How long should this lead be? There
are various decision rules about evaluating when a turning
point occurs in any of these series. A common rule
"accepted" at this time states that a series has experienced
a turning point if a succession of increases (or decreases)
is followed by three successive decreases (or increases).
With this decision rule, a leading indicator must certainly

show a consistent lead of more than three months over economic

activity, if it is to be of any value in forecasting a
turning point in economic activity.

According to this rule, the recognition lag of a need
for stabilization policy action will be three months
(provided that the decision rule is followed). After this
lag there will be an action lag and an outside lag before
policy actions actually have a desired effect on economic
activity. The action lag could be extremely long itself
if fiscal policy is the desired tool, given the inertia of
the Congressional decision-making process. The action lag
could be relatively short if monetary policy is implemented.
There has been much debate about the length of the outside

lag in our economic system, though there is general
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agreement that it extends at least over several months.

In this light we see the need for leading indicators
to display leads which are several months longer than the
three months necessary to recognize a turning point. From
Figures 4.9 throught4.16 we see that BCD1l, BCD3, and BCDS8
show no lead at all over Industrial Production. BCD19 and
BCD32 display leads of just two months each. BCD105, the
Real money supply, has a lead of five months, which may not
be long enough to be very useful in the role desired, though
it is much better than zero or two months. BCD29, the Index
of Housing Starts, has a lead of nine months, which
suggests that it may supply useful information as a leading
indicator.

Finally, the leading indicator with the longest lead
of the eight considered is BCD92, the % change in the PPI of
Crude Materials. Its impulse responée function implies that
a sustained 1% increase in (the seasonal difference of) the
growth rate of the PPI will be followed by a decrease of
about one tenth of 1% in (the seasonal difference of) the
growth rate of Industrial Production after ten months, and
further decreases in the following months. This negative
relationship could reflect a movement along some demand curve,
and thus follows our economic intuition. It is remarkable
to note, however, that the Commerce Department uses this
leading indicator in a positive role in the CLI [See the

Handbook of Cyclical Indicators, pages 2, 3, 61.]. That is,

BCDY92 is used by the Commerce Department as if an increase
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in the PPI were consistently followed by increases in
Industrial Production. Our model in equation (4.15) and
Figures 4.7 and 4.15 suggests that this is an inappropriate
use of BCD92!

It is important to note that this same negative
pattern is implied by the estimated coefficients for the
sample period ending in 1963 [See Table IV-2, (vii)]. This
indicates that the negative relationship is quite stable,
rather than just a phenomenon of the "supply shocks" in the
early 1970's.

Given all these considerations, we are left with just
two of these eight leading indicators which should contribute
positively to the CLI, as constructed by the Commerce
Department: BCD29, the Index of Housing Starts, and BCD10S5,

the Real money supply - Ml.

Conclusions

The Commerce Department construction of the CLI is not
backed by an appropriate theoretical framework, as outlined
in Chapter II.

Furthermore, our study indicates that five of the
eight leading indicators considered display empirical
relationships with Industrial Production which do not reflect
the characteristics of a good leading indicator. They show
no significant lead time. This suggests that these five
series may not merit the status given them by the Commerce

Department. Their qualifications for the role of leading
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indicator appear to be lacking.

Three of the eight series considered display empirical
relationships with Industrial Production which do reflect the
characteristics of a good leading indicator: BCD29, BCD92,
and BCD105. However, BCD92, the % change in the PPI of Crude
Materials, proves to have a negative empirical relationship
with Industrial Production, while the Commerce Department
uses it in a positive role in the CLI. This leaves BCD29 and
BCD105 which appear to be the only leading indicators of the
eight considered, which might contribute positively to the
Commerce Department's CLI.

Given these observations, it is not surprising that
the Commerce Department's leading indicator approach has been
so unreliable. The question that remains is why so much
effort has been, and continues to be, spent on its development
and use in a predictive role. It seems clear that it will
continue to be relied upon in its ex post role of verifying
that turning points in economic activity have already taken
place. Our study suggests that at best, it should be limited

to this role.



CHAPTER V

MONEY AS A LEADING INDICATOR

Introduction

A huge literature exists on the role of Money in an
economy, and its relationship to real GNP. Under the current
state of thought toward Monetary Theory, what kind of
relationship might we expect to see between Money and real
GNP?

Friedman describes the adjustment of nominal income
to Monetary shocks in the context of a system of simultan-
eous differential equations.1 This system is an attempt
to explain (a) the short run adjustment of nominal income
to a change in autonomous variablesj; (b) the short run
division of a change in nominal income between prices and
real output; and (c) the transition between this short run
situation and long run equilibrium.

In this framework it is suggested that anything
which produces a discrepancy between the nominal quantity
of Money demanded and the quantity supplied, or between
their rates of change, will cause the rate of change in
nominal income to depart from its anticipated (permanent)

value. In general form,

125
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* s d
dy _ dy dM dM s d
(a) it f[(a{) > gt ° dat ° M ’ M7]
where Y = Py = nominal income,
P = the price level, y = real GNP,
M5 = Money Supply,
Md = nominal amount of Money demanded,

and a * denotes the anticipated (or "permanent")
value of that variable.

A linearized version of (a) might be:

* s d
' dlogY¥ _ dlog¥Y dlogM _ dlogM
(a) at = ( at ) + V[ at at ]
+ ¢(logM® - logMd)

Next, the division of a change in nominal income
between prices and output depends on two major factors:
anticipations about the behavior of prices, and the current
level of output compared with its full employment (permanent)

level. We can express this in general form as:

& %
dP dy dP d
at = elge @@ - @GP > v vH]
(b)
dy ay dap\"  dyy"
= = = Pl =) %
dt My (@ » G » v v

where the form of g and h must be consistent with the
identity, Y = Py.

A linearized version of (b) might be:
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» *
dlogP _ dlogP dlog¥ _ ,dlog¥
at ) teltg (dt)]
+ v [logy - logy*]
(b)'
* *
dlogy _ dlogy dlogY _ (dlogY
It (_?ﬁT—) + (1-0)( ( at ) ]

y [logy - logy*]

In their general form, the equations in (b) do not by
themselves specify the path of prices or output beginning
with any initial position. In addition we need to know how
anticipated values are formed. Presumably these are
affected by the course of events so that, in response to
a disturbance which produces a discrepancy between actual
and anticipated values of the variables, there is a feedback
effect that brings the actual and anticipated values

together again. To put this in general terms, we must have:

[Mm] = j192eR ey
[Qliglct)] = x[2og(n1
(e)
y®¥(t) = mly(T)],
P*(t) = nl[P(T)],

where t stands for a particular point in time, and T for
a vector of all dates prior to t.

A disturbance of long run equilibrium introduces

discrepancies in the two final terms in parentheses on the
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right hand side of equation (a)'. This will cause the rate
of change in nominal income to deviate from its permanent
value, which through the equations in (b)', produces
deviations in the rate of price change and output change
from their permanent values. These will, through the
equations in (c), produce changes in the anticipated values
that will eventually eliminate the discrepancies between
measured and permanent values.

In the context of the above system, consider as such

a disturbance of long run equilibrium, a permanent increase

dlogM®
dt

frame in Figure 5.1 shows the time path of the money stock

in , the growth rate of the Money Supply. The first
before and after such a shock. The second frame shows the
equilibrium path of nominal income.

The slopes of the time paths in these two frames
must be equal, since in equilibrium nominal income wili grow
at the same rate as the money stock, given the framework of
Friedman's model. However, the equilibrium path of Y after

this shock will be at a higher level than that of the Money

Stock. This is because part of the increase in d{ﬁgY will
consist of an increase in diﬁgp. With this increase in

inflation fully anticipated in equilibrium, it is now more
costly to hold money. As a result there will be a decline
in the real quantity of money demanded relative to income;
i.e. a rise in desired velocity. This rise will be
achieved by a rise in nominal income over and above that

required to match the rise in the nominal quantity of money.
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FIGURE 5.1

TIME PATHS OF NOMINAL INCOME AND ITS COMPONENTS,
AFTER A MONETARY SHOCK
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The equilibrium path of nominal income will be like the
solid line in the second frame of Figure 5.1 rather than the
dashed 1line.

We are interested in the adjustment process involved
in the above scenario. It is apparent that in order to
produce the shiftin the equilibrium path of nominal income
from the dashed line to the solid line, nominal income must
rise over some period at a faster rate than the final
equilibrium rate. That is, there must be an overshooting,
or a cyclical reaction in the rate of change in nominal
income. The third frame in Figure 5.1 summarizes the
various possible adjustment paths of Q%%%X consistent with
the theory presented above. The one common feature of all
possibilities is that the area above the (g%%gzi line must
exceed the area below.

This chapter is concerned with the composition of the

path of diﬁgy describing the adjustment to a change in

(Ql%%ﬁi) . We want to know how this time path is broken up
into the time paths of g%%%l and d%ﬁgp, as expressed in the
equations in (b)'. The time path of 9%%§X will reflect the

usefulness of the nominal quantity of Money as an indicator
of real GNP.

One such possible set of time paths consistent with
the equations in (b)' is displayed in the last two frames
of Figure 5.1. Note that the vertical sum of these two time
paths is the resulting path of Q%%gz, Further note that in

this picture, the time path of Q%ﬁgl initially rises,
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following an increase in 9%%§ﬂ, but eventually this rise is

crowded out so that in the long run there is no rise in
dlogy

dt °
in the long run.

This reflects a situation in which money is neutral

The remainder of this chapter will examine the

empirical relationship existing between é%%gz and diﬁ?“.

Empirical Examination of the Relationship Between Money and
Industrial Production

The Money Stock Data

In this role, we are concerned with the ability of
money to promote spending in the economy. Hence, an
appropriate definition of money to consider is:

MlB = Currency + Demand Deposits at commercial
banks + Other Checkable Deposits at all
depository institutions including NOW accounts,
ATS, Credit Union draft shares, and Demand
Deposits at Mutual Savings banks.

It is worth noting that this is not the definition which
Friedman would choose, since it excludes most Time Deposits.
However, we feel it is appropriate for the work in this
chapter.

Data on My (= Currency + Demand Deposits) is
available beginning with January, 1947. 1In 1960 and again
in 1962 the Fed changed the definition of Demand Deposits
at commercial banks. In 1960 the data were altered to

include Demand Deposits due to mutual savings banks and
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foreign banks, and to exclude float as well as CIPC.2

These numbers were published from 1947 to 1962, when the
data were further amended to include foreign Demand Deposits
with Federal Reserve Banks and Demand Deposits that banks

in U.S. territories and possessions have at U.S. commercial
banks.3 The data on this definition of Ml were then
published beginning with 1947, and continued to be published
until 1980, when the definition was changed once again.

The data on this latest definition of Ml (namely MlB) have
been published beginning with January, 1959.

There is obviously a discrepancy between the old and
new definitions, since they measure different things. Table
V-1 displays the components of the old Ml series as published
in the 1960 definition, and the new MlB series as published
in the 1980 definition. The last two columns show the
discrepancy for the twelve monthly observations in 1958.

We are interested in comparing these two definitions since
the definition of Demand Deposits in 1960 is closer to the
definition of Demand Deposits in 1980, than is the 1962
definition. Note that the currency component is identical
in the two definitions in Table V-1. The discrepancy

arises in the Demand Deposit component (noting that Other
Checkable Deposits are zero for the observations in 1959).
The Demand Deposit component in the 1960 definition exceeds
the Demand Deposit component in the 1980 definition by the

amount of Demand Deposits due to foreign official institu-

tions.
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We can construct a "complete" time series on the
money supply by using the 1960 definition of My from January,
1947 through December, 1958, and the 1980 definition of MlB
from January, 1959 to the present. Call this series MlB*.
MlB* still contains the discrepancy shown in Table
V-1, due to the change in the definition of the Demand Deposit
component of Ml. This will appear as a jump of approximately
1% in MlB*, between December, 1958 and January, 1959. We

can correct this fault by building an intervention model for

MlB*. The intervention term will be defined as follows.

1.0 for January, 1947 - December, 1958

0.0 for January, 1959 - December, 1978

This will operate as a dummy variable which should account for
the change in the definition of the Demand Deposit component
beginning in January, 1959. We anticipate a coefficient of
about (.01) for this intervention term, reflecting the 1%
jump in the series shown in Table V-1.

We proceed by first building the model for MlB* for

the sample, January, 1947 - December, 1979 (n = 396).

3 12 13

12 . )
(5.1) (1-B )(l—B)log(MlB t) = (1-63B -912B -elsB )a_t

. 2

- - 2 (.0043)
6, - -.1688 6., = .4697 6.. = .1478 TRZ=1- y
3 (.osy) 12 (ousy 13 (.ous) ~ 7 C00u77w)

= .1887
2 39,y RSE = .0043

X27
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From the form of this model, we build the interven-

tion model for MlB*.

12 i 3 2 13
(5.2) (1-B*)(1-B)[log(M;B* )-p T .1 = (1-§B -elzﬁ-_el33 ya,

p_ = .0110 63 =-.1709 912 = 4633 913 = .1499
(.0036) (.0uL) (.046) (.046)
2 3
Xog = 51.3 RSE = .0042
=2 . 4 . (.00u2)?
R —
(.00477)
= L2247

It is interesting to note that the coefficient of our
intervention term follows the information in Table V-1 in
suggesting a shift of about 1% in MlB*, in January, 19589.

We can now utilize the information provided by this
intervention model to splice our data and obtain a
"continuous" series from January, 1947 through December,
1979. The transformation of MlB* indicated in the interven-

tion model is following.
= * -
log(Mt) log(MlB t) poIt

We are interested in levels of the money supply. That is,
we are really interested in Mt’ which we obtain by

exponentiating the above expression.

clog(My)) - e[log(MlB*t) + (—po)It]

[1ogtB* )1 _(-p DI,

(5.3) M (MlB*t)e(Po)It
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A

where P, .0110
and T = 1.0 for January, 1947 - December, 1958
t 0.0 for January, 1959 - December, 1979

Note that
{(MlB*t)e-'0110 for January, 1947 - December, 1958
M =
t

(MlB*t) for January, 1959 - December, 1979

This spliced series simply shifts the first 12 year segment

by 1.1%, to eliminate the jump in the series.

The Identification Stage

We can now proceed to examine the relationship between

A

the growth rate of Money, Mt’ and the growth rate of GNP,

Vs discussed earlier. We wish to build a transfer function

of the following form.
(5.4) (1-B"9)(1-B)log(y.) = w1 (B) (1-8*2)(1-B)1log(M.) + N
. EiY¢l = 5, (BY - g M 1t

(l-Bl‘?);lt is stationary, and

Note: (l—Blz)(l—B)log(yt)

(1-B12)(1-B)log(Mt) (l--Bl2)M_t is stationary,

where Yy * the Index of Industrial production,

and Mt is as defined in equation (5.3).

This relationship will give us the impulse and step response

functions describing the reaction of §t to changes in Mt'
The first step in building this transfer function
model is to establish the univariate model for the input,

M This model is given in equation (5.2).

t.
We now proceed to the second step, and move to

identify the form of the impulse response function,
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vl(B) = ml(B)/sl(B), by calculating the cross-correlation
function between the prewhitened input and the prewhitened
output in the transfer function, (5.4). This function is
listed and plotted in Table V-2 and Figure (5.2). Note that
the prewhitening model used is that in equation (5.2).

Note that at the identification stage, the impulse
response weights are calculated directly from the cross-

correlation coefficients as follows.

~ r (k) s
a
v, = 22~ 8 K =0, 1, 2, ...
a
e.g.
A~ (.189)(.015823) _
Vo = 0041893 = .5628

Note the remarkably smooth pattern of this unrestricted

cross-correlation function. This suggests an impulse

response function between Mt and Yy which might follow either

of the following patterns:

(i) a damped cosine wave with a period of 48 months.

lag in months

17~—____ 24 36

(ii) a damped "V" pattern which reverses according
% P

to a similar time period.

lag in months

l 17— 28 __—73¢6

What does vl(B) suggest about the monetarist

proposition outlined at the beginning of the chapter? To
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TABLE V-2
Sample: January, 1947 - November, 1979; n = 385
Cross Correlations [raB(B)]

Series 1 - Prewhitened Money Stock{at}
Series 2 - Prehitened BCD47 Index of Industrial Production{Bt}

Mean of Series 1 = .17720E-03
St. Dev. of Series 1 = .41893E-02 = S
Mean of Series 2 = -.72954E-0QU4 @
St. Dev. of Series 2 = .15823E-01 = SB
Number of Lags Cross Number of Lags Cross
On Series 1 Correlation On Series 2 Correlation
(k) raB(k) (k) rBa(k)
0 .149 0 .149
1 .119 1 .194
2 .082 2 .052
3 .154 3 .051
L .052 y -.062
5 .120 5 -.024
6 .093 6 -.080
7 .021 7 .017
8 .096 8 .062
g .0u8 9 .007
10 .020 10 .01y
11 .003 11 -.090
12 .023 12 -.047
13 -.049 13 -.098
14 -.018 1y .003
15 -.086 15 -.085
16 -.076 16 -.000
17 -.090 17 -.065
18 -.036 18 .022
19 -.072 19 -.020
20 .019 20 .057
21 -.083 21 .089
22 -.065 22 .043
23 -.091 23 -.018
24 -.086 24y .025
25 -.058 25 -.064
26 -.102 26 .00Y4
27 -.104 27 .001
28 -.126 28 .006
29 .039 29 .070
30 -.073 30 .008
31 .079 31 -.051
32 -.0u8 32 -.057
33 -.024 33 .01y
34 -.088 34 -.037
35 -.013 35 .007

36 -.001 36 -.104
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TABLE V-2 (cont'd.)

Number of Lags Cross Number of Lags Cross

on Series 1 Correlation on Series 2 Correlation
(k) raB(k) (x) rB (k)

o]

37 .097 37 .108
38 .108 38 -.038
39 .050 39 .028
40 -.003 40 -.010
41 .003 1 .0u8
y2 .057 Y2 -.068
43 ~ -.069 43 .036
Ly -.082 4y -.071
u5 -.0u40 45 -.037
46 .018 46 .0us
y7 .032 47 .023

L8 .032 48 .005
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FIGURE 5.2

GRAPH OF IMPULSE RESPONSE WEIGHTS (vl(B)

-1.5 -.75 0. .75 1.5
R e I SR T R T R S R R TS T T L VALUES (vk)
XXXXXXXX .56397E+00
XXXXXXX .44946E+00
XXXXX .30840E+00
XXX XXXXXX .58296E+00
XXXX .19458E+00
XXXXXXX .45406E+00
XXXXXX .34995E+00
XX .79714E-01
XXXXXX .36108E+00
XXX .17989E+00
XX .76150E-01
X .12550E-01
XX .88438E-01
XXX -.18333E+00
XX -.67643E-01
XXXXX -.32399E+00
XXXXX -.28546E+00
XXXXX ~-.33941E+00
XXX -.13598E+00
XXXXX ~-.27075E+00
XX . «71382E-01
XXXXX -.31407E+00
XXXX -.24658E+00
XXXXXX -.34273E+00
XXXXX ~.32583E+00
XXXX ~.21741E+00
XXXXXX ~.38682E+00
XXXXXX ~.39283E+00
XXXXXXX -.47486E400
XXX .1u4836E+00
XXXXX -.27446E+00
XXXXX .29997E+00
XXX -.18314E+00
XX -.91287E-01
XXXXX -.33277E+00
XX -.47375E-01
X ~-.53849E-02
XXXXXX .36524E+00
XXXXXX .40658E+00
XXXX «19046E+00
X ~-.10152E-01
X .12349E-01
XXXX .21611E+00
XXXX ~-.26086E+00
XXXXX ~-.30944E+00
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FIGURE 5.2 (cont'd.)

-105 -075 00 175 1'5
(k) .++++++444 444444444 ++4++++4+,+++++++++, VALUES (vk)

45 XXX -.15067E+00
46 . XX .67507E-01
47 XXX .12172E+00

48 XXX .12231E+00
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discuss this question, we must consider the Step Response
Function, Vl(B), implied by this impulse response function,
since the monetarist proposition illustrated in Figure 5.1
shows the presumed reaction of ;t to a sustained (step)
change in ﬁt'

We obtain this Step Response Function by summing

over the impulse response function:

th

Y = k element of V(B)

V. where v = ith element of v(B).

"
1o %

i=0
Vl(B) is listed and plotted in Figure (5.3).

Note the strong resemblance between Figure 5.3 and
the bottom left frame of Figure 5.1. We emphasize that
Vl(B) is obtained from the identification stage of our time
series model building, with no restrictions imposed.

Immediately the question arises as to what Vl(B)
might converge to, if allowed to follow the pattern shown.
In particular, will Vl(B) converge to zero, as suggested
by the monetarist proposition? To answer this question, we

must proceed to the estimation stage and finish building this

transfer function model.

Estimation of the Single Input Transfer Function

Consider equation (5.4) and Figure (5.2), describing

the transfer function between Mt and Yo This presents a

problem in that a damped cosine wave with such a long period
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GRAPH OF STEP RESPONSE WEIGHTS Vl(B)

(-2.0)
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FIGURE 5.3

0. (2.0)

XXXX

XXXXXX

XXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

XXX XXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXX XXX XX XXXKXXX
XXX XX XX XXX XX XXXXXXX
XXXXX XXX XXX XXXXXXXX
XXXXXXXXXXXXXXXXXXX
XXXXXX XXX XXX XXX XXXXX
XXXXXXXXXXXXXXXXXXX
XX XX XXX XXX XX XXXXXX
XXX XXXXXXXXXXKXXX
XXXXXXXXXXXXKXXX

XXX XX XXXXXXXXX
XXXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXXX
XXXXXXXXXX
XXXXXXXXX

XXXXXXX

XXXXXX

XXXXX

XXX

X

XXXX
XXX
XXXX
XXX
XXXX
XXXX
XXXXXX
XXXXXX
XXXXXX
XXXX

XX
X
X
X
XX

XX

XXX
XXXX

VALUES [vk]

.56397
1.01343
1.32183
1.90479
2.09938
2.553L4y
2.90338
2.98310
3.3u4418
3.52407
3.60022
3.61277
3.70121
3.51788
3.45024
3.12625
2.84078
2.50138
2.36540
2.09u465
2.16603
1.85196
1.60538
1.26265

.93682

.71941

.33259
-.06024
-.53510
-.38674
-.66120
-.36123
-.54437
-.63566
-.96843

-1.01581
-1.02119
-.65595
-.24937
-.05891
-.06906
-.05671

.15940
-.101u46
-.41090
-.56157
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FIGURE 5.3 (cont'd.)

(-200) 00 (2.0)
(k) . +++++++++ , +++++++++  +++++++++  ++++++4+4+4, VALUES [VkJ
46 XXX -.43406
47 XXX -.37234

48 XX -.25003
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cannot be represented parsimoniously as a ratio of two

polynomials in B. Furthermore, we must operate within an

upperbound of eight or nine total parameters in our model,

due to the limitations of our time series computer program.
We have overcome these difficulties by filtering

the data on Mt prior to estimation, in a 24-month moving

average which follows one half of the period of the cosine

function. This 1s done as follows.

1 period = 48 months = 27 radians
1 month = %% radians
Z3 imyoi 12
Filtered Mt = FMt = [ )) COS(fﬁ)B }(l-B Xl-B)log(Mt)
i=0

We then use FMt as our input series in the following

transfer function.

, W
(5.5) (1-B'*)(1-B)logly,) = ——2—0 [FM] + N,

1-$,,B

The ZMth order polynomial in the denominator will work with
our 24-month moving average of Mt to make an impulse
response function, vl(B), which resembles the damped cosine
wave we desire. If -1 < qu < 0, then this impulse response
function will appear as follows.

lag in

| I%\\\\\ii_—///GG L8 60~——1*—

FIGURE 5.4
= -05)

(5 7y
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This picture is still not ideal, as it implies an
impulse response function which is discontinuous at all
lags which are multiples of 24. We can eliminate these
discontinuities by altering our filter slightly:

23

: Ly i 12
(5.6) Filtered M_ = FM_ = [izo[A]cos(;—S)Bl](l—B ) (1-B)log(M)

1.0 for i=0, 1, ... ,12
where A =

—62u for i=13, ... ,23

Note that this filter will change the appearance of Figure

5.4 as follows.

r\\\\\\ T~ lag in

I 12 24 36 48 60 72
FIGURE 5.5
(6oy = -.5)

We can arrive at a model of this form by first
choosing a value of qu, and filtering Mt according to (5.6)
with this value. Then we can estimate the transfer function,
(5.5), and check the value of 32u, to see if it differs
substantially from our initial choice used to filter Mt'

'If it does, we can use the new value of 62& to filter Mt
again with (5.6), and then re-estimate (5.5). We can
continue this iterative procedure until the estimate of

J does not vary appreciably from the value used to filter

24

M Using this procedure will give us a transfer function

_to

between M, and Yt with a "smooth" impulse response function,

t
as in Figure 5.5.



147

In the following work we iterate on 52u until the
estimate remains within a band of (1.005) from the value
used to filter M, . Since the estimate of wo is in all
cases less than (.2), this will result in a discontinuity
at lag 24 in Figure 5.5 of less than (.001)[=(.2)*(.005)].

We are now ready to estimate this model. But we
must first consider some problems with our sample period:
January, 1947 - December, 1979. Does the transfer function,
(5.5), adequately describe a stable relationship throughout
this entire period? We suspect that the o0il crunch of 1873
represents an episode for which (5.5) is inadequate. There
is a substantial literature on this topic, concerning the
supply shock to the economy resulting from the increase in
energy prices.5 This literature dwells on the change in the
structure of the world economy after this shock, and the
presumed impact on real and potential output. Tatom states
that "the large increase in the cost of energy resources
from 1972 to 1977 has had profound effects on productivity,
investment, and the long term growth path of the U.S.
economy." The study of Rasche and Tatom produced empirical
results which "support the argument that the new energy
regime imposed in 1974 permanently reduced potential output,"
and suggests that "failure to account for energy prior to
1973 is not critical, but that serious inconsistencies
arise when the sample period is extended to include recent
years."

It is apparent that the supply shock of 1973 changed
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the world we are studying. This phenomenon enters our

model as outlined in the beginning of the chapter in equation
(b), as a sudden change in anticipated potential output, y*.
For example in equation (b)', (log y*) will have changed
drastically during this episode. This will result in
alterations in the time paths of prices and real output.

These considerations move us to believe that the
presumed stable relationship between ﬁt and ;t should not be
expected to hold during this o0il crunch of 1973, and should
not be expected to account for the change in the world since
then. The transfer function in equation (5.5) would likely
overpredict Y during the o0il crunch, and subsequently prove
to be inadequate.

We can examine this possibility by first estimating
the single-input transfer function in (5.5) over the sample
period May, 1950 - September, 1973, the period prior to
the 0il crunch. The following model is the result.6

BCD47 Index of Industrial Production

Ye =
x, = FM_ = Tiltered M as in equation (5.6) with
$ = -.5207
24
12 “o 1-0,,8"7
(5.7) (1-B )(l-B)log(yt) = TW [Xt] + —3I-¢0.B at
1- ZHB 1
; = .1877 3 = -.5251 8 = .8046 ¢, = .2776
0 (.os9) 2% (l252) 1?7 (lo39) 1 (.062)
X2 = 37.7 RSE = 0135
46 ' -
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We are interested in how this model will forecast
over the next 18 months outside the sample, during the oil
crunch. Table V-3 shows the 18 one-step-ahead forecasts
obtained from this model by including an additional
observation on FMt and Y at each step. The forecast errors
show that the model drastically overpredicts Y in late
1974, though it performs fairly well for most of the other
18 months considered. Thus our suspicions as to the
adequacy of this single-input transfer function during the
0il crunch are possibly well-founded.

Expanding the Model to Account for the Energy Price Supply
Shocks of the Early 1970's - BCD92

We can correct this situation by considering a second
input which might capture the effect of the o0il crunch in
1973, and thus enhance our model's ability to predict Y
during this period.

One such possible input is BCD392: the percent change
in the PPI of Crude Materials. Recall that this series
represents one of the three Commerce Department leading
indicators examined in Chapter IV, which displays the
characteristics a good leading indicator is expected to have.
The second to last column of Table V-3 shows the monthly
observations of BCD92. This series displays a noticeable
increase in late 1973 and early 1974. Recall from Chapter
IV that this leading indicator has a lead of approximately

ten months over Industrial Production. This suggests that
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BCDY2 may be successful in capturing the effect of the oil
crunch, and thus improve the poor forecasting performance

of our model in equation (5.7) during late 1974,

The Identification Stage of Building the Two Input Transfer
Function

In building this two-input transfer function, it is
interesting to consider the cross-correlation function
between the two inputs, FMt and BCD92. In particular, we
are interested in the cross-correlation coefficients between
certain transformations of the two inputs. If these
coefficients are extremely small, then it will imply that the
cross-correlation function between each prewhitened input
and the similarly transformed output, can be used separately
to identify the respective impulse response function. This
implication is developed below.

After differencing to achieve stationarity, our two-

input transfer function can be written as:

+

(5.8) yo = vigXpe * ViiXgpo1 t Vio¥1te2 F V13¥1¢-3

VooXot t Vo1Xoe-1 Y VooXot-2 t Vo3Xog-z t --- *t D

Then, on multiplying throughout in (5.8) by X4y for k > 0,

we obtain

+

(5.9) X943 ¥¢ % VigX¥1e—k®1t * Vir¥1e-k¥1t-1 T Vi2X1t-k¥1t-2

toeee T Vp0¥ear®oe Y Var¥it-k®ot-1 t
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+

P oVvooXie—x¥ot-2 X1 e-x"t

If we make the assumption that x;4j is uncorrelated with n,

for all k, taking expectations in (5.9) yields the set of

equations
(5.10) E[Xlt-kyt] = leE[Xlt—kxlt] + VllE[xlt-kxlt—lj + ...+
VooPlX eoxXoed * Vo BIx g Xop ] e
- or Y (k) = v .Y (k) + v .Y (k-1) + v.,Y (k=2)
X,y 10 Xy%y 11 xlx1 12 XqX%q
+ e o o +
VoY (k) + v,.Y (k-1) + v,,Y (k-2)
20 XX, 21 X%, 22 X X,
+
for k = 0, 1, 2,
where Yab(k) is the cross-covariance at lag k between

series a and b.
This is the set of cross-covariances between our first input,
X409 and the output, Yo Suppose that the weights, vlj and
Voss are effectively zero beyond some lag, k=K. Then the

first K+1 equations in (5.10) can be written

Yxly = Drpxpaxgx,Y
where rYxly(O) ’
Yy
Yy .
LYxly(K) J

(K+1)x1
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.
<
~~
o
Nt

Y . (K) vy K-1)... v (0) (X) K-1) - -
1 1% *1% Y"lxz Yxlxz( b 1

(K+1)x(2K+2)

This system of equations can normally be used at the
identification stage of the Box and Jenkins modeling
procedure.7 If Xy and X, are not significantly cross-

correlated, then the Yx % (k) terms drop out, and we can
172

substitute estimates of the autocorrelation function of
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1° Yxlx (k), and the cross-correlations between Xq and y,
1
Yx y(k), and solve the system for the top half of v, which
1
is the transfer function between x, and y, vl(B).

X

However, it will be a rare case when the two inputs
are not significantly cross-correlated! Since the Yxlxz(k)
are not generally zero, the system in (5.10) cannot be
solved. We have K+1 equations in 2K+2 unknowns in v, and the
system is not identified.

The problem is changed slightly when we first prewhiten

the series in our model. Suppose that the univariate models

for Xq+ and X, appear as follows.

-1
8 =
(5.11) ¢X (B) % (B)[Xlt] %1t
1 1
p-1 -
(5.12) ¢ (B)8 “(B)[x,,] PP
2 2
a o . . .
where 11t and 2ot are white nolise series,
with standard deviations sy and s, respectively.

1 2

Further, define the following.

(5.13) ¢x1(B)e;1'(B)[x2t] = a1t
(5.14) ¢xl(B)e;1(B)[yt] = Bqt
(5.15) ¢x1(B)9;]1'(B)[nt] = ey
(5.16) ¢x2(B)e;2(B)[xlt] = 6t
(5.17)¢x2(B)e;2(B)[yt] = B ot
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-1 _
(5.18) ¢x2(B)9X2(B)[nt] = €

Note that equations (5.13) through (5.15) are just
transformations of Xops Yo and n, where the transformation
is the prewhitening model for Xyyo Likewise equations (5.16)
through (5.18) are transformations of X1 Yo and n, with
the prewhitening model for Xy

In order to identify the impulse response function

between x and y., vl(B), we apply the prewhitening

1t
transformation of our first input to the model in equation

(5.8). This yields the following model.

(B0~ 1(B)[x. ]
X 1

-1
(5.19) ¢ (B)6x (B)[yt] vl(B)¢x .

1 1 1 1

+

-1
v2(B)¢x1(B)0xl(B)[x2t]

N (B)G;I(B)[nt]
1 1

or Byg = Vy(Blagqp + vo(Blaj o, + €y

On multiplying through this by @1t We obtain

(5.20) a33kBre 7 ViBIO k1t * V2 B0k %12t
Y %1e-kf1t
If we make the assumption that %1tk is uncorrelated with

€1¢ for all k, taking expectations in equation (5.20)

yields the following.
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(5.21) Ela 1 = v (B)Elay , j0y74] tv,(B)E[a ]

11t-k51t 11t-k%12¢

Y (k) = wv,(B)Yy (k) + v,(B)Y (k)
%8 1 N1%1 2070,

Since %1t is white noise, the first term on the right hand

or

side of equation (5.21) reduces to [Vkoa 2]. Finally, if
11

(k) is zero for all k, then equation (5.21) reduces

Y%lﬁz

to the following.

Y (k)

(5.22) v (k) = o ? Rt Lo
. a B = Vk all or Vk - 5 2
@11

where Y, 11Bl(k) = E[a 11tk lt] is the cross-covariance at
lag k between %1t and Blt

Therefore,

(k)o Y (k)
B B
(5.23) v = 011 1 since [P, 8 (k) = Bgllgl___
% 111 B
11 %1 R

Hence the cross-correlation function between the
prewhitened first input and the correspondingly transformed
output is directly proportional to the impulse response
function, vl(B). We can thus identify the form of the first

impulse response function by estimating the cross-correlation

function, r (k), and the standard errors of the pre-
a1181
whitened first input and the similarly transformed output,

and then substituting into equation (5.23).

(k)s
1181 B

Sa
11

(5.24) Ve T
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It is important to emphasize that this procedure

rests on the assumption that v, , (k) is zero for all k.
11 12
We can estimate this cross-correlation function between the

prewhitened first input and the correspondingly transformed
second input, in order to evaluate the applicability of
this assumption. If the coefficients of r, , (k) are not
significantly different from zero, then we iinigt reject
the hypothesis that the assumption holds.

Note that to identify v2(B), we will use the cross-
correlation function between the prewhitened second input
and the similarly transformed output, Y, g (k). The use
of this procedure will rest on the assumgiign that Yo o (k)
is zero for all k. The applicability of this assumptgczm21
is testable in the same way we test the assumption regarding
the identification of Vl(B)‘

In summary, this analysis shows us that if r (k)

12

and r (k) display coefficients which are not signifi-

%22%1

cantly different from zero, then the cross-correlation
function between each prewhitened input and the correspond-
ingly transformed output can be used separately to identify
the respective impulse response functions.

In continuing our empirical analysis, we now wish
to build the two-input transfer function, with FMt and
BCD92 as our two inputs. In order to be able to identify
the two impulse response functions separately, we are

interested in the two cross-correlation functions, r, , (k)
11 12
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and rq o (k). These are presented in Table V-u.

22 21

The standard error of any given cross-correlation
coefficient, rab(k), is approximated by l//n-E.8 With

n = 352 in the sample of the transfer function we are

building, the standard error of r (0) = the standard
“11%12
error of r (0) = 1/V/352 = .0533. To test the hypothesis
22721

that the estimated coefficients are not significantly
different from zero, each coefficient (at lag zero) should

be compared with (1.96)*(.0533) = .10u45.

In the estimated cross-correlation function,

Ty & (k), all the coefficients are less than .1045 except
11712
the coefficient at lag 16; Ty« (16) = -.111.
11712

The standard error of this coefficient = 1

n-k

= 1 __ - .osus.
v352-16

and (1.96)*(.0546) = 1.07.

Therefore, r (16) is "significantly different from

®11%12

zero" at the 95% confidence level. However, if we consider
the whole set of 49 coefficients in the cross-correlation
function, we would expect about 2 1/2 coefficients to be
"significantly different from zero" at the 95% confidence
level. Hence the cross-correlation function, L (x),

11 12
supports our assumption which implies that we can use the

cross-correlation function between prewhitened X1 (= Filtered

Money Supply) and the similarly transformed Y (= Industrial

Production Index), to identify Vl(B)'
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TABLE V-4
Cross Correlations
Series @y, - Prewhitened Filtered Money Supply’h%q_=-.5600)
Series ayp = Prewhitened BCD92 Percent Change in PPI of
Crude Materials
n = 352
Mean of Series ayq = .42260E-03
St. Dev. of Series ayq = .44205E-02
Mean of Series a5 = .93668E-04
St. Dev. of Series Ay, = .21824E-01
Number of Lags Cross Number of Lags Cross
on Series a4 Correlafi?n on Series o ” Correla?i?n
() r k r
®11%12 () ®12%11
0 -.023 0 -.023
1 .018 1 .023
2 -.042 2 .008
3 -.026 3 -.025
y .090 y .0u8
5 .010 5 -.004
6 -.064 6 .0u2
7 -.005 7 -.055
8 -.027 8 -.064
9 .077 9 ..060
10 -.063- 10 -.0u41
11 -.004 11 .059
12 -.051 12 .019%
13 .057 13 -.005
1lu .080 1y -.068
15 -.020 15 -.016
16 -.111 16 -.021
17 .062 17 .020
18 .030 18 -.047
19 -.022 19 .126
20 -.019 20 -.0u8
21 .021 21 -.060
22 .003 22 .032
23 .0us 23 -.038
24 -.079 24 -.032
25 -.005 25 .060
26 .005 26 .068
27 -.037 27 -.030
28 -.002 28 -.051
29 -.035 29 .021
30 -.003 30 -.016
31 .030 31 -.056
32 .015 32 .095

33 -.035 33 .015
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TABLE V-4 (cont'd.)

Number of Lags Cross Number of Lags Cross
on Series a1 Correlations on Series a5, Correlations

(k) L N (k) (k) r, (x)

11%12 12%11

34 .006 34 -.048

35 -.012 35 -.027

36 077 36 .052

37 -.039 37 -.018

38 -.046 38 -.031

39 -.032 39 .030

40 .070 L0 .093

L1 .004 U1 -.105

Lu2 -.025 y?2 .073

43 -.033 43 -.029

by .025 Ly -.020

us5 .012 us5 -.007

46 -.010 ) .0u48

u7 -.037 L7 .031

48 -.016 ug -.055

Prewhitening:

(l—.8673B)(1—.2197B—.3052B3)(1+.6109812)[FMt] =

(1+.1173B-.1343B0-.18198%3)a

t
- same model on (1—812)[BCD92].



161

TABLE V-4 (cont'd.)

Cross Correlations:

Series 0,, - Prewhitened BCDS2 Percent Change in PPI of Crude
Materials
Series ayq = Prewhitened TFiltered Money Supply (62u= -.5600)

n = 352

Mean of Series Oono = .80105E-03
St. Dev. of Series Opy = .14037E-01
Mean of Series anq = .39340E-02
St. Dev. of Series any = .93074E-02

Number of Lags Cross Number of Lags Cross

on Series %y Correlation on Series P Correlation
(k) r (x) (x) Ty & (k)

®22%21 21%22

0 -.015 0 -.015

1 .049 1 .029

2 .061 2 .024

3 .026 3 .081

y .021 y .0u46

5 -.002 5 .064

6 .004 6 .061

7 -.043 7 .037

8 -.055 8 .025

9 .001 9 .018

10 -.069 10 .008

11 -.050 11 .006

12 -.107 12 .006

13 -.122 13 .053

1y -.139 14 .030

15 -.131 15 .058

16 -.117 16 -.021

17 -.078 17 .012

18 -.031 18 .011

19 -.015 19 -.002

20 -.036 20 -.015

21 -.003 21 -.023

22 -.029 22 -.007

23 -.029 23 -.015

24 -.011 24 -.054

25 .04l 25 -.004

26 .080 26 -.019

27 .029 27 .0u3

28 -.005 28 -.002

29 .007 29 .017

30 .029 30 .034

31 .002 31 .021

32 .033 32 .008
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TABLE V-4 (cont'd.)

Number of lags Cross Number of Lags Cross

on Series a,, Correlation on Series Ay Correlation
(k) Ty & (k) (k) Ty o (k)

22721 21722

33 .083 33 -.002
34 .024 34 .042
35 -.006 35 .009
36 .019 36 .027
37 -.002 37 -.005
38 .030 38 -.038
39 .034 39 .010
L0 .053 40 -.029
4l .016 L] -.035
y?2 : .069 y?2 -.009
L3 .027 L3 -.027
4y .011 Ly -.042
U5 .056 5 -.045
46 .0u8 46 -.025
u7 .004 47 -.045
48 .011 48 -.034

Prewhitening:

(1-.3850B-.2658B%) (1-B12)[BCD32] = (1-.1542B%-.8120B%?

+ .1975B™) a_

= same model on the levels of PMt’
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The estimated cross-correlation function, ry, (k)
displays five coefficients which are "significantly2§i§%erent
from zero." Furthermore the tendency of positive coefficients
to be followed by positive coefficients and of negative
coefficients to be followed by negative coefficients, seems
to indicate that there is some correlation inherent in the
relationship between these two series which is not
effectively eliminated by the prewhitening model for BCD92.
This is somewhat disturbing. However we are reassured by
the fact that 43 of the 48 coefficients are not significantly
different from zero. This is the key characteristic in our
analysis of the applicability of the assumption that all
coefficients in Yy 4 (k) are zero. Hence we anticipate
that the cross-coriglgiion function between the prewhitened
input, Xo4 (= BCDY92), and the correspondingly transformed

output, yt(=Industrial Production Index), will be instrumental

in identifying VQ(B).

Estimating the Two Input Transfer Function

We have already identified and estimated separately,
the two transfer functions with each of these inputs as the
single input. Thus we know what to expect as the form of
the two impulse response functions, vl(B) and v2(B), in our

two-input transfer function.

With this in mind, we build the following model.g

Ve = BCD47 Index of Industrial Production
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X FMt = Filtered Mt as in (5.6), with 8oy = -.5231

1t
BCD92 % change in PPI of Crude Materials

X2t

Sample: May, 1950 - September, 1973 (n = 281)

W
(5.25) (1-BY?)(1-B)log(y.) = —2 _ [x..]
t s plfF CIt
24
w'
o) 10 12
1-912312
1-¢,B at
w = .1835 8, = -.5208 w! = -.0614 &1 = .7805
(.058) (.260) ©  (.ous) (.176)
612 = .7926 ¢1 = .2540
(.040) (.061)
2 _ =2
Xyg = U40.u RSE = .0134 R = .54u1

A comparison of the coefficients in this equation with
those of equation (5.7) on page 148 shows that the
addition of the second input, BCD92, does not change the
appearance of the first transfer function much. In

A A A ~

particular, the coefficients W 624’ 912, and ¢l are quite
insensitive to the addition of this second input. It is also
interesting to compare the coefficients aé and gi in equation
(5.25) with the coefficients ;o and Sl of the single-input
transfer function with BCD92 as the input, which appears

in Table IV-2 in Chapter IV. These coefficients are also

quite insensitive to the addition of the second variable,

FMt.
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We are now interested in how this model will
forecast over the next 18 periods. Table V-5 shows the
18 resulting one-step-ahead forecasts. We see improvement
in reducing the large forecast errors in late 1974 that
appear in Table V-3. Furthermore, the Theil Decomposition
statistics show marked improvement. In particular, the
RMSE is reduced to 1.75846 from 2.053285. These character-
istics suggest that our second input, BCD392, is useful in
the role desired.

Our third step in building this model is to re-
estimate the two-input transfer function in equation (5.25)
over the sample period May, 1950 - March, 1975, the period

through the oil crunch. The resulting model follows.10

Ve = BCD47 Index of Industrial Production
X4 = FMt = Filtered Mt as in (5.6), with qu = -.5520
Xpp = BCD92 % change in PPI of Crude Materials

Sample: May, 1950 - March, 1975 (n = 299)

12 _ Wo
(5.26) (1-B )(1~B)log(yt) = ———y [xlt]
l_GQHB
ws 10 12
+ T:EIﬁ (1-B )[XZt]
1og L2
. 12 N
1-¢1B t
w_ = .1772 §,, = -.5568 o' = -.0943 g! = .7707
© (.060) 2% (.2m0) °  (.o43) 1 (.123)
8., = .7699 ¢. = .2827
12 w2y Y (losl)
Xﬁs = 39.6 RSE = .0134 RZ = .syyl
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Note that the coefficient estimates are extremely
stable as we increase the sample size from n = 281 to
n = 299, in moving from equation (5.25) to (5.26), even
though these eighteen additional periods represent a shock
to the economy.

We are now interested in how this model forecasts

over the next 4 1/2 years. Table V-6 displays 53 one-step-
ahead forecasts for the 4 1/2 years after the sample used
to estimate equation (5.26).

Examination of the Theil Decomposition statistics
in Table V-6 indicates that our model in equation (5.26)
performs remarkably well over this extremely long forecast
horizon. The RMSE is reduced to 1.334221 from 1.75846 in
Table V-5, and from 2.053285 in Table V-3. We conclude
that our model is appropriate, and proceed to the last step

of estimating over the entire sample period.11

Yy = BCD47 Index of Industrial Production
X1 ° FMt = TFiltered Mt as in (5.6), with 62u = -.5600
Xpp = BCD92 % change in PPI of Crude Materials

Sample: May, 1950 - August, 1979 (n = 352)

(5.27) (1—B12)(1-B)log(yt) = 20 Ix,.]
l-quB

w 1
+ l—_°—i§ B10(1-8%)[x,, ]

12
1-912B

¥ 1-¢,B %t
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A A ~

O >

w = .1726 624 = ~-,5583 wé = -.,1036 i = .6842
(.052) (.196) (.0u2) (1148)
6., = 7776 &, = .2777
12 ¢037) 1 (.ose)
2 _ _ =2 _
XUS = uy .1 RSE = .0129 R = .5775

Again, note that the coefficient estimates are

extremely stable as we increase the sample size from n = 2989

to n = 352, from equation (5.26) to (5.27).

Implications of the Final Model

This is our model for the entire sample period,
describing the relationships between My and Yy and between
BCD92 and Y+ We are especially interested in the impulse
and step response functions between &t and ;t’ in order
to examine in more detail the empirical evidence regarding
the monetarist proposition outlined at the beginning of
this chapter. This impulse response function is developed
below.

Let m, = (l-Blz)(l-B)log(Mt)
Then the impulse response function is:

wl(B) W
(5.28) vl(B)[mt] = W [mt] = w [FMt]
U2y

where FM, is defined as in equation (5.6), as follows:

23 P 1.0 for i = 0, ... ,12
FMt = [ )) (A)cos (57)B )mt; with A =

i=0 -8, for i = 13, ... ,23

2y



171

FM, = [1.0 + .99B + .966B + .924B% + .ge6B" + .793B°
+ .7078% + .s09B” + .58% + .383B% + .2508%0 + .13B'!
13 1y 15
- —6 . - - - -
(-§,,) .13B (-8,,) .259B (-6,,) -383B
. 16 17 18
(-8,,) .5B (-6,,) 6093 (-8,,) .707B
19 20 21
- (-6,,) .7938% - (-6,,) 866870 - (=6,,) .92uB
22 23
- (=8, .966B%% = (=6,,).998%%] m_
Thus wl(B), the polynomial in B comprising the numerator of

vl(B), is simply w
polynomial in B.
23

s |3

1=0

(5.29) w,(B) = (A)cos (%%)Bi]

When combined with 61(B), the denominator of vl(B),

the

multiplying the above twenty-third order

resulting impulse response function is of the following form.

~ ~ | 23

23
w |} (A)cos( )B -*(6
ol.
1=0

(5.30) vl(B)

fw [ X (A)cos( )B ][BuSJ

+
+ (8,,) )30 { ) (A)cos(——)B ][872] + ...
i=0
From equation (5.27) we have wy = .1726, -6

and qu = -.5583.

24

Z (A)cos(

mlt 24

.5600,

Using these estimates in equation (5.30)

yields the infinite order polynomial in B comprising vl(B).

The first 48 coefficients of this impulse response function

are listed and plotted in Figure 5.6, as well as those of

the associated step response function.
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We know that the impulse response function will
converge to zero (see Figure 5.5), and thus that the step
response function will also converge. In light of the
Monetarist proposition under consideration, we are interested
in what this step response function will converge to. We
can pinpoint this number as follows.

Beginning with the sum of the first twelve impulse
response weights, we can sum over the next 24 weights to get

a single figure which will be subtracted in the step response

function during the next 24 periods. We can then multiply
this same figure by (—52u) to get another figure describing
the total amount which will be added to the step response
function in the following 24 months. Multiplying this figure

by ( -324)2 will then yield the total amount to be subtracted

again in the following 24 months.

Continuing this procedure indefinitely would give us
the exact number to which Vl(B) converges. Continuing for
a few iterations will closely approximate this number.

The sum of the first 12 impulse response weights

= Vyp, = 1.4027.
The sum of the next 24 impulse response weights
= 1.4719.
Thus, V36 = 1.4027 - 1.4719 = -.0692.
The sum of the following 24 impulse response weights
= (1.4719)(.5583)
= .8218 .
Thus, V = -.0692 + .8218 = .7526 .

60
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The sum of the following 24 impulse response weights
= (1.4719)(.5583)2

= .4588.

Thus, Vg, = .7527 - .4588 = .2938
Continuing:

(1.4719)(.5583)° = .2561
Vg = -2938 + .2561 = .5499
(1.4719)(.5583)% = .1u430
Vi,, = .5499 - .1430 = .4069
(1.4719)(.5583)° = .0798
Vigg = -4069 + .0798 = .ug67
(1.4719)(.5583)% = .ouus
Vige = 4867 - .04 = .uu2l
(1.4719)(.5583)7 = .02u49
Voo T 4421+ 0248 = L4670
(1.4719)(.5583)% = .o0139
Vypg = 4670 - .0139 = 4531
(1.4719)(.5583)° = .0078
Vo, = 4531 + .0078 = 4608

Hence we see that the step response function converges

to approximately .u4570. This suggests that money is not
neutral, but that a sustained increase in the growth rate of
the money stock will produce an increase in the growth rate
of Real GNP in the long run.

Finally we are interested in the impulse and step

response functions for the second input, BCD92, implied by
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our model in equation (5.27). These are listed and plot*ed

in Figure (5.7).

Expanding the Model to Account for the Energy Price Supply
Shocks of the Early 1970's - Fuel Prices

In equations (5.25), (5.26), and (5.27), we included
a second input to account for the effect of the o0il crunch
in 1973, and the subsequent change in the world. We used
as our second input, BCD92, the percent change in the PPI
of Crude Materials. This is interesting, since BCDS2 is one
of the leading indicators which constitute the subject of

discussion of Chapter IV. However, much of the supply shock

literature listed in footnote 5 uses Fuel prices in this role.

Thus we now re-examine the relationships discussed in the
last section, with Xy~ Fuel prices.

We must first consider the relationship between Fuel
prices and Industrial Production. The bivariate model

describing this relationship is presented below.12

Y BCD47 Index of Industrial Production

P4 PPI of Fuel, Power, and Related Products

t
Sample: May, 1950 - November, 1979 (n = 355)

w
12 : Yy g 12
(1-B )(l-B)log(yt) = T:Ezﬁ B (1-B )(l-B)log(xt)
1-9. . Bl2
N 12 .
T8 %t
® = -.1573 6. = .6410 0., = .8159 ¢. = .3204
©  (.065) 1 (.189) 12 (.033) 1 (.053)
2 _ 52 _
= u1.1 RSE = .0129 RZ = .5775
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FIGURE 5.7

GRAPH OF IMPULSE RESPONSE WEIGHTS [v,(B)]
BCDY92 in equation (5.27)

for Xot =
-.1 0.

KKK

XXX KXXXXXXX
XXXXXXXX
XXXXXX

XXXX

XXX

XXX

XX

XX

b e R e R e R e R e e R e e R e Ko e Re e e R e Ko e R e R R Ko o R e

.1

VALUES [vk]

N eoleolololoNoNoNoNoNe]
. . * o . . . . . .

.103629E+00
.708052E-01
-.485147E-01
-.331947E-01
-.227125E-01
-.155403E-01
-.106330E-01
-.727529E-02
-.497789E-02
-.340597E-02
-.233043E-02
-.159453E-02
.109101E-02
.746487E-03
.510761E-03
.349472E-03
.239116E-03
.163608E-03
.111944E-03
.765939E-04
.524070E-04
.358579E-04
.245347E-04
.167871E-04
.114861E-0U4
.785898E-05
.537727E-05
.367923E-05
.251740E-05
.172245E-05
-.117854E~05
-.806377E-06
-.551739E-06
-.377510E-06
-.258300E-06
-.176734E-06
-.128925E-06
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FIGURE 5.7 (cont'd.)
-.1 0. .1
(K) .4 ++++++4+ +++++++4+ +++++++++ ++++++++4+, VALUES [vk]

47 X -.827390E-07
L8 X -.566116E-07
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FIGURE 5.7 (cont'd.)
GRAPH OF STEP RESPONSE WEIGHTS [VZ(B)] for Xop T

-.25 0.

.25

BCD92

(K) . 4++++++++ +++++++++ ++++++++4 4 +++4+++4++ ++++++4+++ VALUES

OCoONOTDNMFWNHO

EEE P EF P E FFETWWWLWOWWWWWWWRNRNRNNNNNNNNNHEHEEHERFREHEEFERFRRERFR
ONONETWNHFHFOWOWONOOUNMNEFEFWNHOWOWONOODONMEWNRMFOWOWONOOOUMEWNKHFO

Egieelie i i e e R e R e

XXXXX

XXXXXXXX
XXXXXXXXXX

XX XXX XXXXXX
XXXXXXXXKXXXX
XXX XXX XXXXXXX
XXXXXXXXXXXKX
XXXXXXXXXXXKXX
XXXXXXXXXXXXXX
XXX XXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXKXXX
XXX XXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXKXX
X XXXXXXXXXXXXX
XXXXXXXXXXXXXX
X XXX XXX XXXXXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXXXX
X XXX XXXXXXXXXX
X XXX XXXXXXXXXX
X XXXXXXXXXXXXX
X XXX XXXXXXXXXX
X XXXXXXXXXXXXX
X XXX XXXXXXXXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXKXXX
X XXXXXXXXXXXXX
X XXXXXXXXXXXXX
X XXX XXXXXXXXXX
X XXXXXXXXXXXXX
X XXX XXX XXXKXXX

[ eolololeoNoNoNoNoNeNe)
. . . . [ ] . L]

.1036289
174534
.223048
.256244
.278956
.294497
.305130
.312405
.317383
.320788
.323119
.324713
.325804
.326551
.327062
.327411
.327650
.327814
.327926
.328002
.328055
.328091
.328115
.328132
.328143
.328151
. 328157
.328161
.328163
. 328165
.328166
.328167
.328168
.328168
.328169
.328169
.328169
.328169
.328170



-.5

182

FIGURE 5.7 (cont'd.)
GRAPH OF STEP RESPONSE WEIGHTS [VZ(B)] for Xop T
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This model shows that the Fuel PPI displays a
substantial lead over Industrial Production. The last
column of Table V-3 shows the monthly observations of the
first log difference of the Fuel PPI, during the o0il crunch
of 1973. This series displays a large increase in late
1973 and early 1974. Since the Fuel PPI has a lead of eight
months over Industrial Production, it may be successful in
capturing the effect of the o0il crunch, and thus improving
the poor forecasting performance of our model in equation

(5.7) during late 1974.

The Identification Stage

As before, with our two inputs, FMt and BCD92, we are
now interested in the cross-correlation functions between the
two inputs, PMt and Fuel Prices; first transformed by the
prewhitening model for FMt’ and seéond, transformed by the
prewhitening model for Fuel prices. These two cross-
correlation functions, r (k) and r (k), are listed

91%1 A2 @21

in Table V-7.

Examination of r (k) shows that two coefficients

%11%21

are "significantly different from zero." Since we expect
about 2 1/2 coefficients to vary from zero at the 95%
confidence level, this cross-correlation function supports
the assumption that these cross-correlations are zero. Hence
the cross-correlation function between prewhitened FMt and

the similarly transformed output series can be used to

identify the first impulse response function in this
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TABLE V-7
Cross Correlations:
Series ayq - Prewhitened Filtered Money Supply (62Ll = -.5520)
Series Ay, - Prewhitened PPI of Fuel Power and Related
n = 355 Products
Mean of Series agq = ,38159E-03
St. Dev. of Series ayq = L4Y4258E-02
Mean of Series 0q5 = .78262E-0U4
St. Dev. of Series ayp = .13782E-01
Number of Lags Cross Number of Lags Cross
on Series ajq Correlation of Series g9 Correlation
(k) r, o (K (k) o oo (KD
11712 12722
0 .0u46 0 .0u46
1 .031 1 .054
2 -.053 2 -.067
3 -.037 3 -.016
L .003 y -.061
5 .013 5 .057
6 -.095 6 .04y
7 .064 7 -.055
8 -.054 8 .036
9 .0u40 9 -.197
10 -.058 10 .0u6
11 .1y2 11 ‘ ~-.004
12 -.035 12 -.003
13 .023 13 -.020
1y -.008 14 -.042
15 .021 15 -.102
16 -.059 16 .168
17 .056 17 -.061
18 .005 18 .021
19 -.066 19 .041
20 .109 20 -.041
21 -.072 21 .023
22 .090 22 -.021
23 -.059 23 .018
2y .099 24 -.0u48
25 -.096 25 .010
26 .002 26 .0us8
27 .010 27 -.005
28 .018 28 -.027
29 -.012 29 .107
30 .00Y4 30 -.080
31 .062 31 -.023
32 -.025 32 -.004
33 .026 33 .058

3y -.0L4y 34 .002
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TABLE V-7 (cont'd.)

Number of Lags Cross Number of Lags
on Series a5 Correlation on Series a9 Correlation
(k) o (KD (k) o oo (KD
o 11712 o 12711
35 .033 35 -.053
36 -.060 36 .054
37 .071 37 -.002
38 -.013 38 -.020
39 -.021 39 .085
40 .00y 40 -.026
41 .03y 41 -.074
42 -.019 y?2 .055
43 ~-.068 43 -.023
Ly ' .015 4y .017
45 .021 45 -.062
L6 .018 46 .082
L7 -.051 L7 -.038
48 -.079 L8 .018
Prewhitening:

(l-.8681B)(l—.2190B-.30ulB3)(1+.6101B12)[FMtJ =

10 1y

(1+.1169B-.1347B~ " -.1810B™ a

t
- same model on (1-Bl2)(l—B)1og[Pue1 PPI].
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TABLE V-7 (cont'd.)
Cross Correlations:

Series Ayp = Prewhitened PPI of Fuel Power and Related
Products
Series a,q = Prewhitened Filtered Money Supply (qu: -.5520)

Mean of Series 0o = .77038E-03
St. Dev. of Series Ay, = .96624E-02
Mean of Series asq = .56007E-02
St. Dev. of Series Ay, = .78974E-02
Number of Lags Cross Number of Lags Cross
of Series Uso Correlation on Series Oy Correlation
(k) r. (k) (k) r (k)
®22%21 ®21%22
0 -.000 0 -.000
1 .045 1 -.029
2 -.005 2 -.042
3 -.078 3 -.069
y .04l Yy -.018
5 .005 5 -.021
6 -.041 6 -.031
7 -.032 7 .009
8 .001 8 .070
9 -.088 9 .005
10 -.020 10 .042
11 : -.048 11 .166
12 -.038 12 .057
13 .034 13 .086
14 -.0u8 1y .086
15 -.070 15 .0u8
16 .111 16 .069
17 -.029 17 .096
18 .002 18 .055
19 .022 19 .057
20 .01y 20 .14l
21 -.009 21 .000
22 .018 22 .119
23 -.017 23 .079
2y .024 24 .064
25 .066 25 .031
26 .070 26 .061
27 -.007 27 .039
28 .099 28 .029
29 .050 29 .038
30 .003 30 .059
31 .003 31 .064
32 .063 32 .053
33 .026 33 .022
34 .003 3y .066
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TABLE V-7 (cont'd.)

Number of Lags Cross Number of Lags Cross
of Series Py, Correlat%o? of Series a5y Correlat%o?
(k) r k r k
®22%1 () %21%2
35 -.009 35 .094
36 .06k 36 .027
37 .0u48 37 .075
38 -.006 38 .0u0
39 .029 39 .013
40 .105 40 .008
41 -.045 u] .003
y?2 .033 y?2 .003
43 .018 43 -.034
Ly .021 Ly -.003
L5 -.000 45 -.039
46 .011 ue .035
L7 -.039 7 -.036
ug .048 48 -.0u48
Prewhitening:
(1-.6606B) (1-B12) (1-B)1og[Fuel PPI] = (1-.8423B'%)a

- same model on levels of FMt'
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two-input transfer function.
An examination of r (k) also shows two
®22%21
coefficients which vary from zero. Analagously, we can use
the cross-correlations between prewhitened Fuel prices and
the similarly transformed output series to identify the

second impulse response function in this two-input transfer

function.

The Estimation Stage

We are now ready to redevelop equations (5.25), (5.26),

and (5.27), with Fuel prices as our second input.13
Ye ° BCD47 1Index of Industrial Production
X 4 7 FMt = Filtered Mt as in (5.6),with 52u=-.u920
Xop = PPI of Fuel, Power, and Related Products

Sample: May, 1950 - September, 1973 (n = 281)

w

(5.25)' (1-B12)(1-B)logly,) = —2 — [x.,]
t 77 D24
1-6,,B
we 8, .1
(o]
* 1-gyp B°1-B 3(1-B)1oglx,, ]
1-912312
t ——=—— a
1-6,B ©
w, = .1928 §, = -.4917 w! = -.0840 &! = .8882
(.061) (.260) (.073) (.131)
6., = .8059 ¢. = .2637
12 cCowo) 1 (.063)
Xﬁs = 39.2 RSE = .0135 RZ = .5373

A comparison of these parameter estimates with those

in equations (5.25) through (5.27) shows that the parameters,
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A

wé s qu, 912, and ¢1 are quite stable as we change from

BCD92 as our second input, to Fuel prices. A comparison of

A

the parameters ;é and gi with the coefficients in the single-
input transfer function with input, Fuel prices (on page
179),shows that the form of this impulse response function is
also quite stable when the second input, FMe» is added.

We are interested in how this model will forecast
over the next 18 months, through the o0il crunch. Table V-8
shows these 18 one-step-ahead forecasts. Comparison with
Table V-3 shows much improvement in reducing the forecast
errors appearing in late 1974 in our single-input model.
Comparison with Table V-5 shows that Fuel prices are more
successful in reducing these forecast errors in late 1974
than is BCD92. The Theil Decomposition statistics support
this finding.

We now proceed to re-estimate equation (5.26) with

Fuel prices as our second input.lu

Y BCD47 Index of Industrial Production

X FM, = Filtered Mt as in (5.6), with 62q= -.4600

1t t
PPI of Fuel, Power, and Related Products

Xot

Sample: May, 1950 - March, 1975 (n = 299)

Yo

= ° _[x
24 1t
1-52UB

(5.26)" (l-BlZ)(l-B)log(yt) 1

wl 8 12
O
1-613 B (1-B )(1-B)10g[x2t]
12
1-6,,B
1:$I§‘“

+

+
]
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w, = .1814 6, = -.4582 w! = -.1132 &1 = .8332
(.060) (.280) (.060) (.141)
0.. = .7943 . = .2729
12 clowo) 1 (.os0)
2 _ _ =2 _
xZg = 37. RSE = .0133 R? = .5509

Note again that the parameter estimates are extremely
stable as we increase the sample size from equation (5.25)'
to (5.26)"'.

We want to examine this model's ability to forecast
over the next 4 1/2 years. These 56 one-step-ahead forecasts
appear in Table V-9. The forecast errors indicate that
this model performs quite well over this long forecast
horizon, and the Theil Decomposition statistics show marked
improvement over previous models. Hence we proceed to the

last step and re-estimate equation (5.27) with our new

second input, Fuel prices.15
Ye = BCD47 Index of Industrial Production
X, = M. = %11t?red Mt as in (5.6), with
oy = -.5520
Xgp F PPI of Fuel, Power, and Related Products

Sample: May, 1950 - November, 1979 (n = 355)

w
(5.27)" (1-B"%)(1-B)logly,) = —2 [
l—quB
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wo = ,1659 qu = -,5510 wé = -,1160 Gi = ,7145
(.051) (.209) (.056) (.155)
5] = ,798Yy $ = .280y4
12 o35y 1 (loss)
2 _ _ =2 _
)(u6 = 41.5% RSE = .0128 R = .5840

Again note the stability of the parameter estimates as we
increase the sample size, moving from equation (5.26)' to
equation (5.27)'. This is our model for the entire sample
period with these inputs. We are again interested in the
implied impulse and step response functions between ﬁt and

A

yt.

Implications of the Final Model

Again equations (5.28), (5.29), and (5.30) are
relevant in the development of these functions. From

equation (5.27)' we have w, = .1659, -8, = .552, and

~

8 = -.551. Using these estimates in equation (5.30) gives

24

us the impulse response function of this model, vl(B).

Figure 5.8 shows the impulse and step response functions.
It is not surprising that this figure bears much

resemblance to Figure 5.6.

To examine the convergence of this step response

function we follow the same procedure as before.

The sum of the first 12 impulse response weights

= V12 = 1.3u483.

The sum of the next 24 impulse response weights
= 1.3959.

Thus, V = 1.3483 - 1.3959 = -.0u475.

36
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FIGURE 5.8
GRAPH OF IMPULSE RESPONSE WEIGHTS [Vl(B)J
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FIGURE 5.8 (cont'd.)

GRAPH OF STEP RESPONSE WEIGHTS [Vl(B)]
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The sum of the following 24 impulse response weights
= (1.3959)(.551)

= .7691.

Thus, V60 = -.0475 + .76891 = .7216.

The sum of the following 24 impulse response weights
= (1.3959)(.551)2

= .4238 .

Thus, Vg, = .7216 - .4238 = .2978 .
Continuing:

(1.3959)(.551)3 = .2335
Vi © .2978u+ .2335 = .5313
(1.3959)(.551)% = .1287
V.s, .53135- 1287 = .u4026
(1.3959)(.551)° = .0709
Vieg © .u0266+ .0709 = .4735
(1.3959)(.551)% = .0391
Vigg © .u7357- .0391 = .u3uy
(1.3959)(.551)’ = .0215
v = .u3uy4 + .0215 = L4559
204 6
(1.3959)(.551)% = .o11s
V,,e © .ussgg- .0118 = .uuyl
(1.3959)(.551)° = .0065
Voo, = LBULL + L0065 = .4506

Hence the step response function will converge to
approximately .4480. Of course the implications are
analagous to those of our previous model in equation (5.27),
with Xop = BCD92.

Again, we are also interested in the impulse and

step response functions for the second input, Fuel prices,

implied by our model in equation (5.27)'. These are listed
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and plotted in Figure 5.9.

Expanding the Model to Account for Supply Shocks Due to
Strikes in the Labor Force

At this point we need to consider another potential
fault with our model in equations (5.27) and (5.27)'. 1In
the 33 year sample period reviewed, the Index of Industrial
Production was substantially influenced at various times by
strikes in the Labor Force. We are concerned with the
performance of our models during these times. In this regard,
a list of specific strikes, their dates, and the sectors
of the economy affected, is presented below.

Late 1969: Steel Strike (116 days)

February, 1959: Coal

1970: Teamsters

General Motors (Fall, 134 days)

1974: Coal

1977: Longshoremen

An examination of the residuals of the models in
equations (5.27) and (5.27)' reveals very few outlyers in all
of the time periods listed above. Further, the few outlyers
which do appear near any of these time periods are not
extremely large. This suggests that strikes may not present
a serious problem in our models. However, we are interested
in the possibility of improving the models by including a
third input which accounts for these strike episodes. In

this role we use the number of hours of work stoppage due to
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FIGURE 5.9
GRAPH OF IMPULSE RESPONSE WEIGHTS [Vz(B)J
for x,, = Fuel PPI in equation (5.27)'
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FIGURE 5.9 (cont'd.)
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FIGURE 5.9 (cont'd.)

GRAPH OF STEP RLSPONSE WEIGHTS [VQ(B)] for Xop = Fuel PPI
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strikes. The resulting models are shown below; first with

Xop = BCD92, and following, with Xop = Fuel prices.ls’17
Yy = BCD47 1Index of Industrial Production
X;p = FM_ = Filtered My as in (5.6), with
qu = -.5360
Xy, = BCD92 % change in PPI of Crude Materials
gy F Work Stoppage due to Strikes
Sample: May, 1950 - July, 1979 (n = 351)
12 _ “o
(5.31) (1-B~“)(1-B)log(y,) = ——+ [x,.]
t 24 1t
1-6,,B
Y 10 12
o

+ ! (1-B12)(1—B)log[x3t]

1-6,,B
+t e a
l-¢1B t
w_ = .1969 62# = -.5409 w' = -.0870 Gi = .7100
(.051) (.171)  °  (.038) (.148)
w" = -.0118 6 = .7578 ¢, = .3105
©  (.001) 12 (,039) 1 (.055)
Xﬁs = 56.7 RSE = .0117 ®RZ = .6524
Ve = BCD47 1Index of Industrial Production
X934 = FMt = Filtered My as in (5.6), with 62I+= -.5231
Xop = PPI of Fuel, Power, and Related Products
Xgp ° Work Stoppage due to Strikes

Sample: May, 1950 - July, 1979 (n = 351)
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w
(5.31) (1-BY%)(1-B)log(y.) = —2 _ [x..]
t 24 “X1t
1-§.. B
24
wl g 12
(o]
+ 1-515 B"(1-B"")(1-B)loglx, ]
+ w"(l-Blz)(l-B)log[x ]
o 3t
1-9_ B2
. 12 s
"1-¢.B t
w, = .1881 &, = -.5189 w! = -.1314 &1 = .6600
(.050) (.187) (.058) (.168)
wl = -.0122 0., = .7781 ¢, = .3098
(.001) (.036) (.054)
2 =2
Xy = 59-2 RSE = .0117 R = .6524

A comparison of equations (5.31) and (5.31)' with
equations (5.27) and (5.27)' reveals an apparently substantial
reduction in the RSE when Xay is included, although some
reduction is expected with the addition of any third

variable.

We are especially concerned with the performance of
our new models during the years in which strikes substan-
tially influenced GNP. The residuals of the models in
equations (5.31) and (5.31)' during these strike periods,
show no noteworthy improvement over those in equations
(5.27) and (5.27)'. This suggests that our models in
equations (5.27) and (5.27)' may be considered adequate

with regard to the problem of strikes.
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Tatom, J.A., "Energy Prices and Capital Formation:
1972-1977," Federal Reserve Bank of St. Louis Review, May,
1979.

6Note that we must supply the univariate model for
our input, xt = FMy, as the prewhltenlng model for the
estimation of this transfer function in equatlon (5.7).
Since our input consists of a 24-month moving average of My,
it is not surprising that we find the complicated univariate
model below.

X, = M, = Filtered M, as in (5.6), with
6214 = -05207
Sample: May, 1950-September, 1973: n = 281
' _ 3 _ 12 _ 2 10 13
(1-¢1B)(1-¢1B ¢,4B )(1 ¢,,B )[xt]- (1-6,B°-8,,B""-6,,B da,
¢i = .8618 ¢l = .2633 ¢3 = .3303 ¢12 = -.6333
(.190) (.216) (.147) (.055)
6, = -.1683 6. = .1452 @.. = .1493
2 (.116) 0 (.oemy 1 (.065)
Xyg 61.9 RSE = .00u43

7

op. cit., Box, G. and Jenkins, G., Chapter 11.
802. cit., Box, G. and Jenkins, G., Chapter 11, p. 382.
gfor use in the estimation of equation (5.25), the

univariate models for the two inputs over the sample, May,
1950-September, 1973 (n = 281), are the following.

Xy = M, = Filtered M, as in (5.6), with
qu = =-.5231
Same model as in footnote 6, with:
~ [a) (o) A
¢i = .8669 ¢1 = ,2574 ¢3 = .3267 ¢12 = -.6338
(.194) (.220) (.149) (.055)
A ~ ~
0 = -.1652 G = .1u51 0 = .1u92
2 .117) 0 (loes) 13 (.o065)
2

Xy = 62.1 RSE = .0043
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= BCD92 % change in PPI of Crude Materials

X2t
3 12 _ 2 10 13
El-¢lB-¢3B )(1-f )x,,1 = (1—225 -0,,B -8, B ")a,

o~

¢, = .4133 ¢, = .1856 6, = .0977 g, = .7680
(.063) (.056) (.066) (.0u1)
6,, = -.1586 ng = 19.1 RSE = .0125
(.065)

10por use in the estimation of equation (5.26), the
univariate models for the two inputs over the sample,
May, 1950-March, 1975 (n = 299), are the following.

x = FM = Filtered M, as in (5.6), with

1t t t
qu = -.552
Same model as in footnote 6, with:
A ~ A la)
¢i = .8563 ¢1 = .2752 ¢3 = .3303 ¢12 = -.6080
(.223) (.2u48) (.162) (.051)
A A A
0 = =,1219 0 = .1u419 6 = .1638
2 (.128) 10 (los2y 13 (los1)
2 _ _
xuo = 69.2 RSE = .00u43
Xop = BCD32 % change in PPI of Crude Materials
Same model as in footnote 9, with:
A A A A A
¢ = 4290 ¢, = .2181 @, = .0739 g,, = .7739 g,, = -1317
1 (los0) 3 (.o55) 2 (.o65) 12 (.ou2) *  (Loe7)
X35 = 25.1 RSE = .0130
11

For use in the estimation of equation (5.27), the
univariate models for the two inputs over the sample,
May, 1950 - August, 1979 (n = 352), are the following.

= FM_ = Filtered M_ as in (5.6), with 62u= -.5600

X1t t t
Same model as in footnote 6, with:

$1 = .8673 ¢, = .2197 33 = .3052 ¢, = =-.6109
(.118) (.141) (.105) (.0u8)
6. = -.1173 6.. = .1342 6.. = .1819
2 (.086) 10 (.058) 13 (.osT)
2 . 7.5 RSE = .00u45

Xyo
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Xop = BCD92 % change in PPI of Crude Materials

Same model as in footnote 9, with:
~ la) (a) N -~
¢, = .3850 ¢, = .2658 6, = .1542 @ = ,8120 6 = -,1975
L ocoosw) 3 (.omey % (.os8) 1?2 (.o3w) Y (Losm)

2 _ -
X25 = 42.6 RSE = .0142
12

The univariate model for the input, the Fuel PPI,
is needed in the estimation of this single-input transfer
function. This model is presented below.

12 _ 12
(1-¢f§(1—B )(1-B) log [xt]A = (1-612B ) a,
¢ = .6606 8 =  .8423
L (Low2) 12 (lo31)
x2. = 52.8 RSE = .0098
46 ' *
where Xy © PPI of Fuel, Power, and Related Products, and the

Sample period is May, 1950-November, 1979 (n = 355).

13For use in the estimation of equation (5.25)', the
univariate models for the two inputs over the sample,
May, 1950-September, 1973 (n = 281), are the following.

X1¢ = PMt = TFiltered Mt as in (5.6), with

qu = -.L492

Same model as in footnote 6, with:

¢i = .866u4 ¢1 = .259Y4 ¢3 = .,3230 ¢12 = -.6239
(.195) (.221) (.1u49) (.055)
A A A
0 = -.1633 ] = .1u467 0 = .1u450
2 ¢.118) 10 (loemy ¥ (lose5)
2 -
Xyo ° 59.9 RSE = .00u43
Xop = PPI of Fuel, Power, and Related Products
Same model as in footnote 12, with:
¢ = ,2377 G = .8086
1 (los1) 12 (Loso)
Xog = 3.4 RSE = .0079
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luFor use in the estimation of equation (5.26)', the
univariate models for the two inputs over the sample,
May, 1950-March, 1975 (n = 299), are the following.

Xy = FMt = TFiltered M, as in (5.6), with

qu = -.4600

Same model as in footnote 6, with:

¢7 = .8533 ¢, = .2833 ¢, = .3206 ., = =-.5945
(.249) (.273) (.174) (.052)
) = -.1181 0 = .1lu61 6 = .1537
2 (.137) 0 (oe2)y 13 (losl)
2 -
XUO = 62.0 RSE = .0042
Xpp PPI of Fuel, Power, and Related Products
Same model as in footnote 12, with:
¢ = .6089 0 = .8318
1 (.ous) 12 (.o3M)
2 _ -
Xyg = 55.3 RSE = .0097
15

For use in the estimation of equation (5.27)%, the
univariate models for the two inputs over the sample:
May, 1950-November, 1979 (n = 355), are the following.

Xp¢ = FMt = TFiltered Mt as in (5.6), with

qu = -.5520

Same model as in footnote 6, with

¢i = .8681 ¢l = .2190 ¢3 = .3041 ¢12 = -.6101
(.119) (.143) (.106) (.0u46)
6 = -.1169 g = .1347 8 = .1810
2 c.o87) 0 (lossy 13 (losT)
2 _ -
Xuo = 66.6 RSE = .0045
Xpp = PPI of Fuel, Power, and Related Products

Same model as in footnote 12.
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leFor use in the estimation of equation (5.31), the
univariate models for the three inputs over the sample,
May, 1950-July, 1979 (n = 351), are the following.

X4y T FMt = Filtered Mt as in (5.6), with
8

24

Same model as in footnote 6, with:

¢i = .8627 ¢, = .2238 ¢, = .3132 $1, = -.6151
(.107) (.131) (.101) (.046)
8 = =.1147 8 = .1ug97 8 = .1806
2 (.083) 10 (losey 3 (losm)
2 -
Xyo ° 60.5 RSE = .00u4u
Xpp = BCD92 % change in PPI of Crude Materials

Same model as in footnote 11.

Xgp T Work Stoppage due to Strikes
(1-B'2)(1-B) log [x,,] = (1-6,,B"%) a,
RER
XZ, = 61.5 RSE = .404
17

_ For use in the estimation of equation (5.31)', the
univariate models for the three inputs over the sample,
May, 1950-July, 1979 (n = 351), are the following.

X4 T M, = Filtered M, as in (5.6), with
qu = -,5231
Same model as in footnote 6, with:
~ A ~ A~
¢i = .8637 ¢l = .2227 ¢3 = .3116 ¢12 = -.6136
(.109) (.133) (.102) (.0u47)
la) la) A
0 = -.1140 6 = .1503 6 = ,1792
2 c.osw) 0 (lose) 13 (los7)

2 - =
Xyg ° 59.2 RSE = .004u
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Xop T PPI of Fuel, Power, and Related Products

Same model as in footnote 12.

Xzp ° Work Stoppage due to Strikes

Same model as in footnote 16.



CHAPTER VI

CONCLUSION

The proposed leading indicator approach is supported
by an appropriate theoretical framework in the form of a
dynamic, structural econometric model. In this context,
information is obtained about the first two moments of the
conditional distribution, f(yt+leIt)' This information
is the object of our analysis.

A comparison of the forecasting abilities of the
proposed approach with the Final Form, reveals essentially
that both approaches forecast equally well. That is, both
approaches imply the same forecast error variance for
forecasts within the lead of the leading indicator.

These observations suggest that the proposed
leading indicator approach may deserve more attention as an
alternative to the Commerce Department approach.

As we move from this proposed theoretical approach to
the empirical evaluation of the Commerce Department leading
indicators, justification is needed for the consideration
of only one input in the transfer functions developed. It
is argued that the bias introduced in the parameter

estimates through the omission of relevant variables, is
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not a problem when forecasting is the main objective. 1In
fact the biased estimates are truly appropriate for fore-
casting since they contribute to an exact representation
of the expectation of the objective variable, conditional
on the single input utilized.

With this justification established, bivariate time
series models are built describing the empirical relation-
ships between economic activity and eight of the component
series in the Commerce Department's CLI. Five of these
models show a lack of any significant lead time in the
relationship. The other three models suggest relationships
with a lead worthy of a Yleading indicator". However, the
leading indicator which displays the most significant lead
over economic activity is the Producer Price Index of Crude
Materials, which is seen to have a negative relationship
with economic activity, while the Commerce Department uses
it in a positive role. These revelations present some
possible reasons for the poor performance record of the
Commerce Department approach.

Finally, Money 1is proposed to fill the role of
leading indicator. The cross-correlation functions between
the prewhitened Money series and the correspondingly
transformed Industrial Production series implies an impulse
response function which might follow a damped cosine wave
with a period of four years. The associated step response
at the identification stage bears much resemblance to that

implied by the framework suggested by Friedman (1974). This
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step response function supports a proposition that Money is
neutral after 36 months. The step response function
approaches zero in that time frame, and the impulse response
weights after 36 months, appear to be quite erratic, breaking
from the previous appearance of a smooth cosine wave. This
may indicate that they reflect only random behavior after
that point.

In this light, a bivariate time series model is
built, describing the empirical, dynamic relationship
between economic activity and Money. An infinite lag model
is estimated about the pattern indicated at the identifica-
tion stage discussed above. This model is.expanded to
account for two different kinds of supply shocks occurring
in the sample period reviewed: the energy price shocks of
the early 1970's, and strikes in the Labor Force. At each
stage of the expansion of this model, a stable dynamic
relationship is observed between Money and economic
activity.

After 36 months, the estimated step response
function is seen to approach zero, supporting the
observations regarding the relationship at the identification
stage. However, since an infinite lag relationship is
estimated, the impulse response weights after 36 months are
constrained to continue to follow the damped cosine wave,
even if they truly represent only random movements about
zero. These impulse response weights after 36 months must

be considered in finding the steady state gain, the
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convergence of the step response function. These weights
are seen to converge to approximately (.45) in the various
stages of expansion of the model.

This suggests a nonneutral long run relationship
between Money and real GNP, which is somewhat troubling in
light of the concepts of current Monetary Theory. Never-
theless, the model provides useful insight into the
empirical relationship between Money and real GNP, which is
so important in economic theory. In particular, the stable
relationship found implies that Money may provide useful

information as a leading indicator of economic activity.
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APPENDIX 4

DATA SOURCES

The economic indicator series are available in the

Business Conditions Digest (BCD), but most are seasonally

adjusted.
The Index of Industrial Production (BCD47) appears

not seasonally adjusted in The Survey of Current Business,

and is available from 1947 to the present.

The Composite Index of Leading Indicators consists of
12 components: BCD series 1, 3, 8, 12, 19, 20, 29, 32, 36,
92, 104, and 105. Series 19, the Index of Stock Prices, and
series 32, Vendor Performance, are available not seasonally

adjusted in the Business Conditions Digest from 1947 to the

present.
BCD series 1, the Average Workweek of Production

Workers, appears not seasonally adjusted in The Survey of

Current Business, and is available from 13847 to the present.

BCD series 3, the Layoff Rate, is also available not

seasonally adjusted in The Survey of Current Business from

1947 to the present.
BCD series 8, the Value of Manufacturers' New Orders

for Consumer Goods and Materials, consists of the aggregation
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of three series: (1) new orders for durable goods
industries plus (2) new orders for nondurable goods
industries with unfilled orders minus (3) new orders for
capital goods and defense products. New orders for durable
goods industries is available not seasonally adjusted in

The Survey of Current Business from 1947 to the present.

The latter two series are both available not seasonally

adjusted in the Census Bureau publication, Current Industrial

Reports - Manufacturers' Shipments, Inventories, and Orders,

from 1958 to the present (see call number C3.158/M3-1.6).
These categories are unavailable in this publication for
earlier years. Thus our constructed series BCD8 is
available from 1958 to the present.

BCD series 29, the Index of New Private Housing Units
Authorized by Local Building Permits (not seasonally
adjusted); can be constructed from the month to month
changes in series HS6BR in the Citibank Data Base. This is
available from 1959 to the present.

BCD series 92, the % Change in Sensitive Prices (the
PPI of Crude Materials, not seasonally adjusted), can be
constructed from series PWCMPX in the Citibank Data Base.

BCD series 105, the Real Money Stock, Ml’ not
seasonally adjusted, can be constructed by dividing the
Nominal Money Stock, Ml (available as series FZM1l in the
Citibank Data Base), by the CPI for All Items (available in

The Survey of Current Business). This constructed series is

available from 1947 to the present.
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We have been unable to locate data for BCD series 12,
20, 36, and 104, on a not seasonally adjusted basis.

Data for the unadjusted Nominal Money Stock series
employed in Chapter V is obtained by splicing two different
definitions of the Money Stock. This splicing technique 1is
developed extensively in the Chapter. The two Money Stock
series used are:

M, from 1947.1 - 1958.12: published in the Federal

1
Reserve Bulletin, October, 1960.

MlB from 1959.1 - present: published in "Redefined

Money Stock Measures, Liquid Assets, and Related

Measures," Federal Reserve Release, March 24, 1980,

with recent updates available in "Federal Reserve
Statistical Release H.6," June 20, 1980.
The Producer Price Index for Fuel, Power, and Related

Products is published in The Survey of Current Business, from

1947 to the present. However, the numbers appear under

three different base periods:

1947.1 - 58.12 with base, 1947-49 = 100;
1959.1 - 66.12 with base, 1957-59 = 100;
1967.1 - present with base, 1967 = 100.

These segments are spliced into a complete series with base,
1967 = 100, as follows. The mean of the observations for
1957.1 - 59.12 with base, 1947-u49 =’100, is calculated

[mean = 114.2]. Then the mean of the observations for
1967.1 - 67.12 with base, 1957-59 = 100, is calculated

[mean = 103.6]. Next, the observations for 1947.1 - 58.12
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with base, 1947-49 = 100, are divided by (1.1142%1.036).
And finally, the observations for 1959.1 - 66.12 with base,
1957-59 = 100, are divided by (1.036). These two segments,
together with the remaining segment from 19867.1 to the
present, represent a complete series for Fuel Prices, with
base, 1967 = 100.

Finally, the Number of Hours of Work Stoppage Due to
Strikes in the Labor Force is obtained from the series,

LHSTOP, in the Citibank Data Base.
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