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ABSTRACT

LEADING INDICATORS IN STRUCTURAL ECONOMETRIC MODELS

WITH APPLICATIONS IN MULTIVARIATE TIME SERIES

ANALYSIS ABOUT THE COMMERCE DEPARTMENT LEADING

INDICATORS AND A PROPOSED MONETARY LEADING INDICATOR

By

Paul Koch

The Commerce Department leading indicator approach has

been criticized as being void of economic theory.

In this study a leading indicator approach is formu-

lated which is firmly embedded in an economic theoretical

framework expressed as a dynamic, structural econometric model.

A time series model in which leading indicators play a

special role is derived directly from this structural model.

In this context forecasts of the objective variable can be

made with the current information provided by the leading

indicator. The variance of the forecast errors can also be

obtained in the analysis.

The current state of the art of forecasting with

econometric models uses the Final Form approach. The

forecasting ability of this approach is compared with that

of the proposed leading indicator approach.

In light of the prOposed approach, the Commerce



Paul Koch

Department's leading indicators are evaluated. Bivariate1finm

series models are built, describing the empirical relation—

ships between economic activity and certain economic time

series which the Commerce Department deems as useful leading

indicators (components of their Composite Index of Leading

Indicators). This examination reveals some possible flaws

with the Commerce Department approach. Most of the Commerce

Department leading indicators examined display no significant

lead over economic activity. Furthermore, one of the few

Commerce Department leading indicators which displays a

considerable lead, is seen to have a relationship with

economic activity that is contrary to the way it is employed

by the Commerce Department.

These flaws cast more doubt on the usefulness of the

Commerce Department leading indicator approach, and possibly

provide some insight as to why the approach has performed so

poorly in the past.

Finally, Money is considered as an alternative leading

indicator. A multivariate time series model is developed,

describing the empirical, dynamic relationship between Money

and economic activity. This model is expanded at length to

account for various problems with the sample period reviewed.

The empirical results are discussed with their implications

toward some considerations in Monetary Theory.
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CHAPTER I

INTRODUCTION

With the advent of the Great Depression in the 1930's

came the assigned task of the NBER of developing a leading

indicator approach to forecasting, in the hope of helping

to prevent another such catastrophe. Wesley Claire Mitchell

and Arthur Burns collected data on various economic time

series and set up criteria for choosing leading indicators

from among these. Over the years the Commerce Department

leading indicator approach has evolved into its present

state, the current Composite Index of Leading Indicators

(CLI).

This approach has been criticized as being void of

economic theory (Koopmans, 19u7). It is argued that theory

should be used in choosing leading indicators, or the under-

lying structural relationships are unknown, and thus the

leading indicators cannot be used for policy decisions.

Promoters of the Commerce Department approach have responded

to this criticism by claiming that a theoretical foundation

is present, since many of the series in the CLI reflect

either direct or indirect measures of demand for various

components of output, or reflect factors which have an impact

on demand. In any case, it is further argued that if a



method without underlying theory predicts better, then for

certain uses it should be preferred.

The record of the Commerce Department approach,

however, has been less than satisfactory. The CLI has

displayed two major faults: it has indicated many false

downturns, and has displayed a highly variable lead time at

true turns. These faults cast much doubt on the usefulness

of this approach in the role of forecasting.

This study develops a leading indicator approach

which is built upon an economic theoretical foundation, as

expressed in a dynamic, structural econometric model. Time

series models in which leading indicators play a special

role are derived directly from this theoretical framework.

In this context, current observations of the leading

indicators can be used to forecast the objective variable,

and the variance of the forecast errors can be obtained.

The current state of the art of forecasting uses the

Final Form of an econometric model. The forecasting ability

of this approach is compared with that of our leading

indicator approach. Two examples are presented illustrating

the approach, and this comparison of forecasting abilities.

In light of our proposed leading indicator approach,

we evaluate the Commerce Department leading indicators by

building bivariate time series models describing the empirical

relationships between the level of economic activity and

eight of the components of the CLI. Five of the "leading

indicators" examined display no significant lead over



economic activity. The other three components exhibit the

kind of relationships with economic activity that a good

leading indicator is expected to have. However, the

component which shows the greatest lead (the Producer Price

Index of Crude Materials) is seen to have a negative rela-

tionship with economic activity, while it is used in a

positive role in the CLI. This analysis sheds light on some

potential reasons for the poor record of the Commerce

Department approach.

Finally, Money is considered as an alternative

leading indicator. The dynamic, empirical relationship

between Money and real GNP is examined in the context of a

multivariate time series model. The model is expanded to

account for two kinds of supply shocks occurring in the

sample period: the energy price shocks of the early 1970's,

and strikes in the Labor Force. At all stages of its

development, the model indicates a stable relationship

between Money and real GNP, suggesting that Money may be

quite useful in the role of leading indicator.



CHAPTER II

LEADING INDICATORS IN STRUCTURAL ECONOMETRIC MODELS

Introduction
 

A leading indicator can be defined loosely as an

economic time series whose movements in some sense consist-

ently lead economic activity. More formally, a leading

indicator can be defined in the following context. We have

some presumed knowledge of the joint distribution of Ipt+k

and LIt’ f(IPt+k’LIt)’ where

IPt+k = some measure of economic activity in

period t+k (e.g. the index of industrial

production),

LIt = some leading indicator which we define, in

period t.

In period t we know the value of LIt' The leading

indicator approach to forecasting suggests that we can use

this knowledge of LIt to tell us more about the distribution

 

of IPt+k’ Thus we are interested in:

f(IP LI )

. _ t+k’ t

This is the context in which leading indicators can

be useful. We presumably know more about the distribution



of IPt+k given LIt’ than without that information. That is,

we can provide better forecasts of IP by using the condi-
t+k

tional distribution, f(IP' ILIt)’ than by using the
t+k

unconditional distribution, f<IPt+k)' Box and Jenkins

present an example showing the improvement in forecasting

using the conditional distribution over that using the

unconditional distribution.1 The amount of uncertainty in

forecasting a time series using their leading indicator

(measured as the standard error of the forecasts) is sub-

stantially less than the uncertainty present in the appro-

priate model without the information provided by the leading

indicator. This, as well as the record of the leading

indicator approach, establishes the usefulness of leading

indicators in forecasting.

In their pioneering work with leading indicators,

Mitchell and Burns originally analyzed #87 different time

series and finally selected 71 by the criteria listed below.2

This collection has been updated periodically, and now

contains 70 indicators: 30 leading, 15 coincident, and 7

lagging (and 28 of less importance). In general the series

considered must lead at no less than 2/3 of the reference

cycle turning points as defined by the NBER, to be considered

a leading indicator.3

Mitchell and Burns listed the following criteria to

select the better indicators (the NBER uses roughly the same

criteria).” A series is a better leading indicator:



l. The longer are its average leads at past revivals.

2. The more uniform are these leads in occurrence

and length.

3. The closer its specific cycles come to having a

one—to—one correspondence to the reference cycles.

u. The more clearly defined are its specific cycles.

5. The less intense are its erratic movements in

comparison with the amplitude of its specific

cycles.

6. The fewer are the changes in the direction of its

month-to—month movements.

7. The smaller and more regular are the seasonal

variations that have to be eliminated before the

specific cycles can be studied.

8. The larger is the number of past revivals covered

by the series.

9. The farther back in time any irregularities in

conformity to business cycle revivals have

occurred.

10. The broader is the range of activities represented

by the series.

11. The more stable is the economic significance of

the process represented.

Koopmans5 criticized the work of Burns and Mitchell

as choosing indicators to predict business cycle peaks and

troughs without any apparent economic theory behind their

methods. He argued that economic theory is useful in

choosing those indicators which will best predict, and if

theory is not used, the findings and results can not be used

for policy decisions or other useful tasks because the under-

lying structural relationships are unknown.

Vining6 later argued against Koopman‘s criticism.

Vining suggested that the usefulness of alternative methods



should be evaluated by the results achieved by each. If a

method without underlying theory (i.e. pure forecasting)

predicts better, then for certain uses it should be preferred.

Since this exchange, promoters of the leading

indicator approach have been concerned with its theoretical

background. Today there is general agreement that there is

in fact a theoretical framework underlying the leading

indicator approach.7 The series included in the Composite

Index of Leading Indicators reflect either direct or indirect

measures of demand for various components of output, or

reflect factors which have an impact on demand. Changes in

these components of demand tend to lead changes in output in

the near future.

To date, this appears to be the main argument of

proponents of the leading indicator approach in defending

their use of leading indicators.

The Framework
 

We wish to explicitly formulate an economic

theoretical background for the leading indicator approach to

forecasting.

Consider a dynamic simultaneous equation model incor-

porating leading indicators, in the context of a general

linear multiple time series process. As Zellner and Palm8

indicate, a multiple time series process can be represented

as:



(2.2) H(L) zt = F(L) et t = l, ... , T

pxp pxl PXP pxl

where zt = a vector of random variables measured as

deviations from their means:

H(L) and F(L) are matrices whose elements are poly—

r

1]

nomials in L, the lag operator (h.. = X h.. LQ and

qij 13 2:0 132'

i. = fi°£L£)5

3 2:0 3

et = a vector of disturbances with E(et) = 0 and

' :E(etet ) Ip.

Given prior information suggesting that some elements

of 21: are endogenous and some are exogenous, the above

system can be rewritten:

r w r w r 1

H11(L) H12(L) yt P11(L) F12(L) e

(2.3) =

LH21(L) H22(L)J Xt LF21(L) F22(L) e         

where yt and e are of dimension plxl,
1t

. o ' + : o

xt and e2t are of d1mens1on p2xl, w1th pl p2 p,

and the Hij and Fij submatrices are of the appropriate

dimensions.

If yt is endogenous and x is exogenous, these restrictions
t

are implied:

H21(L) = 0, F12(L) = 0, and F21(L) = 0.



Hence the above system becomes:

Hll(L) yt + H12(L) xt = F11(L) e1t

plxpl plxl plxp2 p2x1 plxpl plxl

(2.u)

H22(L) xt = F22(L) e2t

p2xp2 p2xl p2xp2 p2xl

This is in the form of a dynamic structural system of

simultaneous equations, with the exogenous variables, xt,

generated by an ARMA process.

In our model, both IPt and LIt will be endogenous to

  
  

2':

the system. Let LIt - ylt’ IPt - y2t, and yt = the (pl-2)xl

vector of remaining endogenous variables. Then [H11(L) yt]

in(2-W)can be rewritten:

r ] , l

h11 I ylt *

where H (L) is the last

(2 5) h21 | H *(L) {$3 p -1 colimns of H (L)
' I 11 1 « 11 °

C yt

h’ I L J

L P1l J

. h _ h k + **

Wr1te hi1 as 11 - il hi1 ,

k . . . -
where hi1 18 of order k (h1ghest exponent 1s Lk 1),

d h** _ Lk ***

a“ 11 ' hil ;

ii 2-

with hi** : Z hil£L k ’
11 £=k

Consider the first column of H (L):

11
r W fh * ** \

h11 11 + h11

3% **

(2.6) h21 == h21 + h21

h: h *:+ h **
L p11) L p11 p11 J    
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We can now rewrite our structural system in (2.9).

 

 

 

 
  

 

 

 

    

' 1

h11 I

I

h21 I
I 2':

° + :. I H11(L) yt Hl2(L) x Fll(L) elt

|

hplll

[h i: I . r 1 '1'] 9:9: I .

11 I J’1’: 11 I ylt]

3': in" X

h21 : y2t 21 : t

(2.7) : *: Hll(L) Lyt J + I 9*: 12(L) = Flfld e1t

[hp 1| hp 1 I
l J t l J

* r ‘*+ 1 k

Ih11 : l h11 : [L ylt
* *fifi x

h21 : 21 : t

(2.8) . : Hun.) yt + : : l2(1.) mummyc

h 5%] *z’n‘: I

This expresses our structural system in terms of our

endogenous variables yt, and a vector of exogenous variables

x and a lagged endogenous (predetermined) variable Lk ylt’
t

k

L yl't - 3':

x - xt °
t

*

Solving for yt in terms of Xt’ we get a system of

equations which we could call the "partial" final form.
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h11 : ‘1 h11 :
* *3???

h21 : 21 :
3': k

(2.9) y = - I l H (L) I | H (L) x
t . &I 11 . .,,I 12 t

h I h I
( p11 J ( p11 J

r k . 1

h11 : ‘
2':

h21 : .
+ . -

I : Hll(L) Fll(L) 811:

h *I
L P11 J

This expresses the current endogenous variables in terms of

the current and lagged exogenous and one lagged endogenous

(predetermined) variable. This is in the form of a transfer

function with input x*
t

We have now derived a set of pl transfer functions

and output yt.

from our economic theoretical foundation, expressed in our

dynamic structural system of simultaneous equations. Given

our assumptions regarding et, we can fit a transfer function

model about the specific time series we wish to examine.

The second equation in the set of pl equations in

(2.9) gives us the transfer function model for IPt implied

by our structural system:
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h11 : '1 h11 :

* :‘n'n':

h21 : h21 I

(2 9) - ° I H *(L) ° l H (L) *
' yt ' : I 11 : I 12 Xt

h "I h "I

( p11 J ( p11 J

r 5" j 1

11 I ‘

* I
21 I *

+ O

I : H11(L) F11(L) e1t

h *I

\ p11 J  

This expresses the current endogenous variables in terms of

the current and lagged exogenous and one lagged endogenous

(predetermined) variable. This is in the form of a transfer

function with input x*
t

We have now derived a set of pl transfer functions

and output yt.

from our economic theoretical foundation, expressed in our

dynamic structural system of simultaneous equations. Given

our assumptions regarding et, we can fit a transfer function

model about the specific time series we wish to examine.

The second equation in the set of pl equations in

(2.9) gives us the transfer function model for IPt implied

by our structural system:



l2

      

     

[ z: )_ f ::

h11 : 1 hll l

k z'::'::‘: I

h21 I h21 : *

(2.10) y : IP : 1 . 2': .

2t t : I H11(L) : |H12(L) Ixt

11 33¢: h :‘n‘n‘c I

I p11 p11 ' I
\ J t

J

lx( +1) 2'

p? (p +l)xl

fr :1: I W 2

hll I -l

2':

h21 :
2':

' I+ I I | H11(L) Fll(L) e1t

*l

h I
l

L pl J

I J2.

lxpl plxl

We have thus derived a transfer function model

expressing the relationship between our leading indicator of

economic activity and our measure of economic activity. This

model is firmly embedded in economic theory, as it is derived

from a dynamic structural system of simultaneous equations

describing the world. It is also amenable to empirical

testing, using Box and Jenkins time series methods.10

After identifying and fitting the model, we can

obtain optimal (minimum mean square error) forecasts for

IP given LIt’ and the variance of the forecasts errors.
t+k’

That is, we can extract the first two moments describing the

conditional distribution of IP given LIt, f(IP ILIt).
t+k t+k

This is the object of our analysis of the leading indicator

approach.
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Hence we have a theoretically sound and empirically

testable framework in which we can study and use leading

indicators.

Comparing the Forecasting Abilities of the Final Form and

the Proposed Leading Indicator Approach

The Final Form
 

The current state of the art of forecasting uses the

Final Form of the structural model expressed in equation

(2.9):

_ -1 -1

(2.15) yt - - H11(L) H12(L) xt + H11(L) F11(L) e1t

To forecast yt+k’ the appropriate ARIMA models for the xt

are fitted, and x is projected k periods into the future.
t

Then the forecast for yt+k is produced as follows:

_ -l -1
yt+k - H11(L)E52(La xtIk + H11(L) Fll(L) elt+k

_1 g _l *9:

- [H11(L) H12(L)] xt+k - [H11(L) H12(L)] Xt+k(2.16) yt+k

+

-1
Hll(L) Fll(L) elt+k

_ k

where the (i,j)th element of [HII(L) H12(L)] is of order < k

k 1
(highest term is L — ); and the (i,j)th element of

- kt

[H11(L) H12(L)] is of order 3 k, and is equivalent

- ***

to the (i,j)th element of [HlI(L) H12(L)] °(Lk).

' '1 (L)J* - k'1 L2 d

k 2'0 ***

L [H‘1(L) H (L)]..
ll 12 13

-1 **

[Hll(L) HlZCLHij

2..

k 1] h.. Lk-k

13£

£=k

L



1a

Using this notation, we can work with (2.16):

_ -1 *
- — [H11(L) H12(L)] x

yt+k t+k

-1 :‘::‘::': k -1

[H11(L)H12(L)] 1.x +-Hll(L)Fll(L)e
t+k 1t+k

_ l :'::': z":

t+k — [H11(L)Hl2(L)] XI

-1 a

- [H11(L) H12(L)] x

+

1
H l(L) Fll(L) elt+k

Forecasts of xt for periods t+1 through t+k are used in the

first term of the above expression, and the past history of

xt is used in the second term, to get the forecast for yt+k:

(2.17) §t<k) - [HIi(L) H1H(L)]x (k)- U111(L)Hl2(L)I**)<

}+

l A

H l(L) F11(L) {elt+k

-1 ( 1*.

- [H11(L) H12 L) xt(k)

[H11(L)Hl 2( f**
fikk

L) Xt+ [H11(L)F11(
L)]

e1t

Here yt(k) is the vector of pl forecasts in period t,

of yt+k° Note that xt (k) refers to the vector of forecasts

for the p2 inputs, xj (k), j = l, ... , p2. It is understood

that in this context, [Lbxj t(k)] = x t(k-b) if b < k

xj(t+k-b) if b 3 k

Further note that in this forecast, Hll(L) F11(L) elt+k

effectively reduces to [H1l(l) F11(L)]***e1t since E(e1t+k)= 0

for any k = l, 2, ... Here the three asterisks imply the same

reconstruction of the matrix [H11(L) F11(L)] as is used

regarding other matrices throughout the paper.
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After identifying and fitting the appropriate ARIMA

models for the p2 inputs in x , minimum mean square error
t

forecasts, Xt(i)’ are made for i = l, 2, ... , k.

The forecast error for the jth input is:

A

(2.18) 2X (1)
jt : xjt(l) ’ Xj(t+i)

i—l

‘ n50 wjn aj<t+i-n)

' = . + . . + . .
Slnce xj(t+i) at+i wjlat+1el w]? at+i-2 +

th(l) = Et(xj(t+i)lpa8t Xt]

: +

Wji at wj(i+1) at—l + Wj(i+2) at-2 +

where the W. are the weights of the ARIMA process for the
jn

jth input, written in pure moving average form;

and where ajt is white noise;

. _ ’ 2 _ 2 _
1.e. E(ajt) - O, E(ajt) - Oja’ and E(ajtajt_n)- 0,

for any input j, for any t, and for any n f 0.

A ii].

Note that E[e (i)] = E, W. a. .
xjt “:0 3n j(t+1-n)

iil

: W. E(a. . ) 0

+ _n=0 jn j(t 1 n)

The variance of the forecast error is:

A . A . 2 1:1 2 2

(2.19) Var [eX (1)] = E[ex (1)] = 2 W.n O'a

jt jt n=0 3 3

Now consider the forecast error of the Final Form

model, from equations (2.16) and (2.17):
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(2.20) E (k)
y

§ (k)
t t ’ yt+k

. J.

- _ l A _ l ‘4': 2'. n

— -[Hll(L)Hl2(LJ] Xt(k)+.[H11(L)F11(LJ] e1t

-1 -l

+ [Hll(L)H12(L)]xt+ -'H11(L)f11(LJ el
k t+k

A

0'0 0..

_ - 1 :': _ 1 :': .. ..

- -[H11(L)H12(L)] xtCkf-[H11(L)H12(L)] xt

-1 *k*

+ [H11(L) F11(L)] e1t

J. J.
_1 '2: _1 I :':.. ..

+ [Hll(L)H12(L)] XI, + [H11<L)L12(L)J x
k t

0'.

_. 1 :'::': ..

[H11(L)IHJ(L)] e

-1 a

- [Hll(L)Fll(L)] e lt
1t+k"

.. —1 '3 A

- —[H11(L)Hl2(L)] [xt(k)-xt+ ]
k

-1 *fi*

- [H11(L)H12(L)] (Xt_xt)

-1 a

- [H11(L)fil(LJ] elt+k

-e )

-1 ***

+ [Hll(L)Fll(L)] (e1t 1t

- -1 *A

- -[H11(L)H12(LJ] [ext(k)]

-1 *

[H11(L)F11(L)] elt+k

A - _l 3% A

Note that E[eyt(k)] — -[H11(L)1112(L)]IE[ext(k)]

__1 *

— [H11(L)F11(L)] E(elt+k)

= 0

since the parameters in our matrices are fixed;

since E[ex (k)] = 0 as shown in (2.18); and

t

S1nce E(elt+k) = 0 from our assumpt1ons.

It should be clear that in this context,
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xt(k—b)—x if b < keX (k-b) t+k-b

b“ _ t

[L eX (k)] -

t .

Xt+k—b-Xt+k~b if b 3 k.

Observe that the forecast error of each endogenous

variable reduces to a function of the forecast errors of a11

inputs, and the noise associated with Ell pl endogenous

variables occurring over the forecast period.

Assuming that

(i) the input series are mutually independent,

(ii) each input is independent of each disturbance term,and

(iii) the parameters of our model are known with certainty;

consider the variance of the forecast errors.

(2.21) Var I; (k)] E[e (k)]2
yt yt

-1 k A

E{-[H11(L)H12(LJJ [ext(k)]

-1( ( k 2

- [Hll L)Fll L)] elt+k}

E{—[H-1(L)H (foté (km2
ll 12 x

+ '1( ) ( 1* 2E[[Hll L Fll L) elt+k]

-1 * A 2

E{—[Hll(L) H12(L)1 [ext(k)]}

_1( s

+ [[Hll L) F11(L)]] Var (elt+k)

by (ii) and (iii) above and our assumptions as to elt'

- *

Here [HlI(L) Fll(L)]] is the transformation made by

- *

squaring each element of the matrix [HlI(L) F11(L)] . See
 

footnote(12)ftm'a convincing argument that this is the

appropriate transformation.
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In this context, the variance of the forecast error

of each endogenous variable is a function of the variances

of the forecast errors of ill inputs, the various covariances

between forecast errors of different time horizons implied

by [H;%(L) H12(L)]* (see footnote (12)),and the variances of

the disturbances associated with £11 endogenous variables.

From our initial assumptions regarding e on page n,
It

we have Var(elt) = Var(elt+k) = 1. Thus equat1on (2.21) can

be rewritten:

(2.22) Var[e (k)] = E{—[H'1(L) H (L)]” [e (k)]}2 +
yt ll 12 xt

-1 k r 1

+ [[H11(L) F11(L)1] 1

  

The Proposed Leading Indicator Approach
 

Consider the forecast errors of our leading indicator

approach.

We can rewrite equation (2.9) from our previous work

on the leading indicator approach, in order to examine yt+k°

    

  

r *I “-1 r *** I 1

h11 h11
I , I 1

: : H11CL) : * *: H12(L) Xt+k +
- * *

(2'23) yt+k ‘ ‘ h ll h 1 I
L P1 J L p1 J

fhli‘. I ‘I‘v-l

‘ I * (L)
+ .1 *: H11(L) F11 elt+k

hp 1| JL 1



 

 

    

  
  

 

    

  

ka y
* _ lt+k lt

But xt+k - =

Xt+k Xt+k

r h ._l r *A* I

h11 ' 11 '

' * ' ylt I
Thus, yt+k : _ Z I Hll(L) : I H12(L) X I

* 2'*

h lI h 1‘ I t+k

L pl I J L pl I J

V .t. 1

r “ 1-1

h11 :
k

+ I I Hll(L) Fll(L)I elt+k

h "I

L p11] J

I J

Hence our forecasts are:

I .2 .-l , we: .

hll l hll l

(2 2a) A (k) ' i H * ° I ylt
° yt ‘ ’ : (I 11(L) : * : H12(L) .

. ':§:

h lI h 1: xt(k)

(p1 I . (p1 I .

' k -1 111*

' 1

h11 I
2.

+ I I I H11(L) Fll(L)I e1t

Ih *:

(I pllI . .  

Here again, xt(k) refers to the vector of forecasts

for the p2 exogenous inputs, xjt(k), j = 1, 2, ... ,p2.

Further, the simplification of the disturbance structure in

this forecast is analagous to that in the Final Form

forecast in equation (2.17)

After identifying and fitting the appropriate ARIMA
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models for the p2 inputs in Xt’ minimum mean square error

A

forecasts, Xt(i)’ are made for i = l, 2, ... ,k. The

related forecast errors and their variances are expressed

in equations (2.18) and (2.19). From equations (2.23) and

(2.2”) we get the forecast error of our model:

 

      

  
  

 

      

  

(2.25) eyt(k) = yt(k) - yt+k

I, 3’: ._1, :'::'::': \‘

hll l hll I

. I 5‘: I ylt

= -I : I H (L). : I H (L) I
. l 11 . I 12 x

* 1.1 xt(k)

h 1 l h 1 l

L P1 I J L P1 I .I
L J

frh * I 1"]. ‘0":

11 I

+I : 'H *(L) r (L)» e
' a I 11 11 1t

h I

IL p11 I I

J

(I a I_1I *2: I‘

hll l hll I

. I * . ' ylt
+ I : I HllCL) I IH12CL) I

h *l h 11* l xt+k

LP 1 LP 1I 1 I I 1 I J,

V it -1 ‘

Ih I I
11 I * I

- 4 I I H11(L) F11(L) elt+k

*

h I

1
IL pl I J J  

To work with this, we will again use our conventional

notation (*, **, ***) to break up these matrices into those

containing parameters with lags < k, and those containing
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Rewriting (2.25):parameters with lags > k.
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f :9: "l ‘ v

f \

hll l

I * L

— f . IH11(L) F11(L) elt+k

,I

I
1

LL pl | J J  

Observe that in this model, the forecast error of

each endogenous variable is a function of the forecast

errors of all inputs, and the noise associated with all pl

endogenous variables occurring over the forecast period.

Compare equation (2.26) with equation (2.20).

Again, we wish to consider the variance of the

forecast errors, given these assumptions:

(i) the exogenous input series are mutually independent,

(ii) each exogenous input is independent of each disturbance,

and

(iii) the model parameters are known with certainty.

A A 2

Var[ey (k)] E[ey (k)]

       

  

t t

'"'. * w-lr *** a‘*

h11 : h11 : 0
*

'-' E “i : :H11(L) . :H12(L) ‘ ji—

* *** ex k)

L p1 I J p1 I J,

rrh * w-l 1* _12

ll

*

-< . l H11(L) Fll(L)L e1t+k

*

h I

LL p111 J J _‘   

  



      
  

  

I. r 3': ‘-1r :'::'::‘: , 2

Ihll I hll I

| g; . I 0

= B _, I IH11(L) I |H12(L) } ;*————-

. *I h *v€*I ex (k)

h I I t

b J

rrrh 3‘: | 1"]. .0. ’I2

11

' ° I * (L)
+ B ‘ : {H11(L) F11 I elt+k

a!

I

1
LLL pl I J J

J

    

        

  

r I, a ,_1, *** ,‘a q

I I

h11 I h11 , 0

' I ' I ______= E _‘ . lHun.) : |H12(L) I A

* *** e (k)

h 1' h 1 I xt
P P

LLL ll J I 1 I ‘JI J

fr! *| W-l \wi‘

hlll

+ I ' IH *(L) F (L) II E(e )2
I : . 11 11 lt+k

*
h I

1
LLLplI J J‘    

[by (iii) above and our assumptions as to elt]

Note that as before, double brackets around a matrix,

{{ })*, refer to the transformation of the original

matrix with single brackets, in which each element is
 

squared. Again refer to footnote (12).

Thus our forecast error variance finally reduces to

the following:



      
  

      

 

 

 

 

 

 

  

 

    

  

I I 2': , _ 1 :': :‘: :': 2
I F; 1

h11 ' H11 '
I a . I 0

= E -I : 'H11(L) : 'H12(L) I A
h *I ***| ext(k)

I I

II P11: . I P11 I .J

b I

If * - :1: .12

rh I 1 1

11

I I * (L)I
+ .

E I : :H11(L) F11 e1t+k
*

I

I pll| J

LI 1 J

[by (ii) above]

I Ifh * I 1-1rhfnka' I 1“" 'I

11 I * 11 I 0

' I ’ I ______

= E -I : IH11(L) : IH12(L) I A
* *fi* 3 (k)

h 1' h 1 I xt

P1 I P I

fr * I -l H"

hll I I

+ I ° IH *(L) F (L) II H(e )2
I : I 11 11 1t+k

*
h I

II plll J I;

[by (iii) above and our assumptions as to elt]

Note that as before, double brackets around a matrix,

{{ }}*, refer to the transformation of the original

matrix with single brackets, in which each element is

squared.

 

Again refer to footnote (12).

Thus our forecast error variance finally reduces to

the following:



 

        

      

I. r :‘t , _1 :'::'::‘: , ,‘c ‘2

Ih11 I Ih11 I , 0
A :‘z

(2.27) V[e (k)] = IE -I : I (L) . III (L)I A
O I 1

yt *I ll :‘cs‘n'cI ex (k)

hp 1: hp 1 I t

I. LL 1 I J I l I JJ .I

p1x(p2+1) (P2+1)X1

(If k ‘_1 “«

h11 :
k

+ II : :H11(L) F11(L)II V(e1t+k)

*

h I
l

plxpl plxl

In this context, the variance of the forecast error

of aaah endogenous variable is a function of the variances

of the forecast errors of all exogenous inputs, the

appropriate covariances between forecast errors of different

time horizons implied by

     

', * I‘lr *éé ,‘g

h11 I , h11 I I

I I IH11(L) : IH12(L)

h *I h°***1

1| 1 I
L I pl J I p1 J I 

(again see footnote (12)), and the variances of the

disturbances associated with all endogenous variables.

Compare equation (2.27) with equation (2.21).
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Example 1

Consider an IS-LM model.

Commodity Market

' : + + +

(1) Ct a blYt—l b2rt—l elt

: _ + +(2) It It bBPt—l e2t

: +(3) Yt Ct It

Money Market

M?
_ : +

(u) Pt buYt-l bsrt-l + eat

5 -
(5) Mt - MO + b6rt + eHt

s _ d
(6) Mt - Mt

(7) Pt = Pt

where Ct = consumption, It = investment, Yt = output,

rt = "the" interest rate, P1: = commodity price

level

a = autonomous consumption, ft = autonomous

investment

and the e. are disturbances with E(e. ) = 0,
1t it

B (e. e. = O and E(e. )2 = O. for i = l 2 3 u.
1t 3t 3 1t 1 9 3 3 ’ 9

i f j.

The model consists of seven equations and seven unknowns:

d
Yt’ rt, Pt’ Mt’ M C and It'

s

t’ t’

Note thatcnu~dynamic formulation simply says each

right hand side endogenous variable affects the left hand
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side variable with a lag of one period, with one exception.

The exception is the Money Supply equation. This equation

reflects the likelihood that,banks will react quickly and

efficiently in adjusting their excess reserve positions, in

response to changes in the interest rate.

I wish to assume that a Keynesian aggregate supply

curve corresponds to this world. That is, assume:

(i) whatever output is demanded can be produced, and

(ii) Pt = Ft’ as expressed in equation (7).

Note that we can express the system as two equations in two

unknowns. These are the IS and LM relationships.

IS: Yt = Ct + It

= a + blthl + bZPt—l + e1t + It + bBPt-l

+ e21:

.. : — +(7) (l blB) Yt a + It + (b2 b3)B rt + (e1t+e2t)

where B = the backshift operator, or lag operator

(previously specified as L).

d - 5
LM Mt - Mt

_ + _ _ : +

bup Yt—l bsp rt—l + P eSt M0 be rt + eat

(8) (—b6+b5PB) rt = M0 - buPB Yt + (eat-PeBt)

Let elt+e2t - eSt’ and eat—Fe3t = eSt’

noting that E(e5t) = H(efit) = 0, and E(e5t-e6t) = 0.

We now have two equations [(7) and (8)] in two

unknowns: Yt and rt. This is the classic IS—LM problem, in
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a linear structural model framework.

The candidate for a leading indicator of Yt in this

context is rt. Observe that rt affects Yt+l through its

effect on Ct+l and It+ 1n the commodity market, and
l

affects Y through its effect on Yt+l’ which is involved
t+2

1n the IS equation for Yt+2. Further, rt affects Yt+l

through its effect on the LM relationship in period t+l. In

short, rt is a factor in the determination of the locations

of both the IS and LM relationships in period t+l.

Consider equations (7) and (8) in matrix form.

-(b2+b3)B (l—blB) rt a l 1 e51:

I
I

+(9)

_ + _ — —( b6 bSPB) buPB Yt M0 0 1t eBt

This is our structural model with endogenous

variables rt and Yt’-

ourtransformation,vmflll.separate the polynomials in B

and exogenous variable, It. Applying

multiplying r into a component with lags, k < l, and a
t,

component with lags, k 3 l.

O (l-blB) r (b2+b3)B a l r e

t t 5t

_ = _ l +

-b6 buPB Yt -b5PB M0 0 ‘ft e6t

or:

0 (l-blB) rt (b2+b3) a 1 Brt 'e5t

_ = _ 1 +

-b6 buPB Yt -b5P IQ) 0 I; IeSt

P I

Now we can solve for our endogenous variables, Y: ,
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Br
1:

in terms of our predetermined variables, 1

.—1 It
rt 0 (l—blB) (b2+b3) a 1 Brt

: l

Yt —b6 buPB J —b5P M0 0 It

.-1
0 (l-blB) e5t

+

-b6 buPB , e6t

-1 _

0 (l-b B) b PB

Substitute' l ' l u

' _ b6(l-blB7

--b6 buPB b6

rt 1 buPB -(l-bfn (b2+b3) a l

= b l-bB
6 l —

Yt b6 0 -b5P M0 0

1 buPB -(l-blB) e5t

+

b6 l-blB

b6 0 e61:

Multiplying through the matrices:

I”t

Yt

[buPB(b2+b3)+b5P(l-blB)J [abuPB-MOU-blBfl

1

-b6(l 131—713

L b6(b2+b3) ab6

 

Br

H
I

bPB‘

 

H  
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b PBe - (l-blB)e6t)

This is the transfer function model implied by our

dynamic structural system of simultaneous equations.

Explicitly, the two transfer functions are:

 

[b BB(b +b )+b F(l—b 8)]

r1: = (const)r + u 2b (l bsB) l (Brt)

t 6 ' 1

buBB _

+ (I )
b6 l—blB t

+ 1 [b‘FBe - (l—b B)e J
b6(l-blB) u 5t 1 6t

b6(b2+b3) b6 _

Y : (CODSt) +fl (Br ) + j—T—y (I )

t Yt b6 1-bl t b6 1 blB t

1
+ [b e J

_b6(l blB) 6 5t

From the second transfer function, it is clear that

Yt is a function of lagged values of our leading indicator,

rt. Thus we can fit this transfer function for Yt’ and

come up with the estimated mean and variance of Yt given

past rt. And more importantly, we can come up with an

estimate of Yt+1 given r That is, we can estimate thet.

mean and variance of the conditional distribution,f(Y II‘
t+l t)°

This is the object of our analysis of the leading indicator

approach to forecasting. Consider the relative forecasting

abilities of the Final Form (FF) approach and our leading

indicator (LI) approach, in the context of example 1.
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In the form of equation (2.”), we have:

Hll(B) yt + H12(B) xt = Fll(B) e1t

-(b2+b3)B (l—blB)- rt —a —l l e5t

+ :

(-b6+b5PB) buPB Yt —M0 0 It e6t

The Final Form:

-1
.. + -rt (b2 b3)B (1 blB) a l l

Yt (—b6+b5PB) buPB M0 0 It

-(b +b )B (l-b B) ‘1 e
2 3 1 5t

+

(-b6+b5PB) buPB e6t

Call the matrix to be inverted, A.

- — 2 —
det A — -buP(b2+b3)B + (l-blB)(b6—b5PB)

= b - b FE — b b B + b b BB2 — b F(b +b )62
6 5 1 6 1 5 u 2 3

_ — — 2
— b6 — (b5P+blb6)B + F(ble-bq(b2+b3))B

buPB -(l-blB)

adjoint A =

(be-bSPB) -(b2+b3)B

A‘1 = _

buPB —(l—blB)

1

— — 2

b6-<b5P+blb6)B+P(blb5_bu(b2+b3))B (bB-bSBB) -(b2+b3)B
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Substituting this into the FF and moving the determinant to

the left hand side, we get the following.

r
t

—- — 2
[be-(b5P+blb6)B+P(blb5~bu(b2+b3))B ] :

Y

t

buPB -(l-blB) a l l

bS-bSPB —(b2+b3)B M0 0 It

+ buPB -(l-blB) eSt

bB—bSPB -(b2+b3)B 861:

Pt [abuPB-M0(l-blB)] buPB l

[det A] = _ _ _

Yt [a(b6-bSPB)-M0(b2+b3)B] bB—bSPB It

+ bMPBGSt - (l-blB)e6t

(be—bSPB)e5t - (b2+b3)Be6t

Thus we have the Final Form transfer functions:

[det A] rt = (const)rt + buPBEIt] + buPBe5t

- (l-blB)e6t

(1) [det A] Yt = (const)Yt + (be-bSPB)[It]

+ (bs—bSPB)e5t — (b2+b3)Be6t

These are to be compared with the transfer functions of our

leading indicator approach which we derived in the example:
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(ii) b6(l-blB)rt (const)1n +'[buPB(b2+b3)+b5P(l-blB)[Brt]

t

+ '— _ + _buPBEIt] b PBe
u 5t ’ (l-blB)eBt

+b3)[Brt]+-b6[lg +b6e(111) b6(l-blB)Yt (const)Y + b6(b 5t
t 2

We are interested in the models for Yt' Consider the

forecasts of Yt+l implied by each of the approaches above,

in turn.

The Final Form:

From equation (i), we get the model for period t+l:

— — 2
[bB-(b5P+blb6)B+P(blb5-bu(b2+b3))B ]Yt+l

t + _ ’ _ - _(cons )Y (b6 bSPB)[It+l]+-(b6 bSPB)e

t+1 5t+l

- +(b2 b3)Be
6t+l

Yt+l = (const)Y + bi (6515+blb6) Yt
t+l 6

_ 3; F(b b —b (b +b ))Y’ +-34 (b -b BB)[I ]
b6 1 5 u 2 3 t-l. b6 6 5 t+l

+ l. (b _b fiB) e - —1—(b +b ) Be

b6 6 5 5t+l b6 2 3 6t+l

Now expand. the remaining Final Form coefficients on

the right hand side into the values corresponding to the

various lags of the right hand side variables and distur-

bances.
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- j; —Yt+l - (const) + b6 (b5P+blb6) Yt

l -— _

- —— - +b6 P (blb5 bu(b2+b3))Yt_l [It+1]

b F b _ b +b
5 — 5 2 3

— ——— [I 1 + e - ___ e - e
6 t 6t+l 6 5t b6 6t

From this, the Final Form forecast is made:

A — l _

Yt(l) - (const) + b; (bSP + blb6) Yt

1_ _ 1

- -—— — + +be P (blb5 bu(b2 b3)) Yt-l [It(l)]

_ _ i +

‘ b5? [it] ’ :5? e51: " 1326b3 e6t
6 6 6

From the above two expressions we get the Final Form

forecast error:

A A

(iv) eYt(l)= ‘yt(1) - Yt+l

[It(l) - I
t+l]

= [£- (1)] -

It

"85t+1 e5t+1

The variance of the Final Form forecast error follows:

(1)] E[eY (1)]2

t t

E{[$- (1)]

It

Var[eY

- e }2
5t+l

2
Btéf (1)]2 + F(e )

t

(given the assumption that It and 35t are uncorrelated)

5t+l

The Leading Indicator Approach:

From equation (iii) we get the model for period t+l:
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(l-blB) Yt+l = (const) + (b2+b3)[Brt+l] + [Tt+l]

+ eSt+l

Yt+l = (const) + blYt + (b2+b3)[rt] + [Tt+l]

+ e5t+1

From this model our forecast is made:

Yt(l) '= (const) + blYt + (b2+b3)[rt] + [It(l)]

And from these two expressions we get the forecast

€I‘I‘OI’Z

)

(v) eY (1) §t(1)- Y
t+l

= [It(l) - I ]
t+l : [ef (1)] ’ e5t+1

— e
5t+l t

Comparing equations (iv) and (v), we see that our

leading indicator approach and the Final Form approach yield

the same forecast errors in this example. Our leading

 

indicator model, however, appears in a much simplier form

in this case.

Example 2
 

Consider a stochastic model which is an extension of

Samuelson's Multiplier-Accelerator Model combined with

Metzler's Inventory Model.

(1) Ct = a + bYt—l + e1t

(a short run consumption function)
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(2) It = It + C(Ct-Ct-l) + e2t

(an investment model with c the accelerator

coefficient, and

It = autonomous investment)

(3) Vt = d(Ct—l—Ut-l) + e3t

(Vt = production for inventory purposes)

Identities:

(u) Ut = Ct-l

(Ut = production to meet anticipated sales in periodtfl

(5) Y = U + v + I
t t t t

(income accounting identity)

: Ct-l + Vt + It

(el,e2, and e3 are disturbances with E(ei) = 0 and

E(eiej) = 0 for i # j.)

Equation (3) says that inventories are rebuilt

according to the difference between previous consumption and

sales.

Substituting for Yt in (l), and for Ut in (3); the

system becomes:

Ct = a + b(Ct-2 + Vt-l + It—l) + e1t

(6) It = It + c(ct - Ct-l) + e2t

Vt = d(Ct-l - Ct-Z) + e3t

Rewriting this system, with B = the backshift

operator:
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2 _
(l-bB ) Ct - a + bB Vt + bB It + e1t

(7 : _ + _) It It C(l B) Ct + e2t

V = d(B-B2) C + e

t t 3t

In matrix form:

r_ _ 2 _ 1 I 1 r 1 1 r 1

b8 (1 bB ) bB vt a 0 I 1 elt

(8) O -c(l-B) 1 Ct = 0 1. It + e2t

2 .

l -d(B—B ) 0 I O 0 e

L J k t] k ]( J ( 3t]          

Note that this system consists of three equations and

three endogenous variables. It is exogenous.

Production for inventory purposes, Vt’ is the

candidate for a leading indicator. Increases in Vt affect

increases in Y1: directly, as production for inventory

purposes is included in Yt' Increases in Vt also affect

increases in C and thus affect increases in Yt+l through

t+l;

the effect of Ct+l on I and affect 1ncreases 1n Yt+2
t+l;

through the effect of Ct+l on Ut+2'

should be consistently followed by movements in Ct+l’ It+l’

Hence movements in Vt

and Yt+l°

We can apply OUPtransformation to the system in (8)

by separating the polynomials in B which multiply Vt’ into a

component with lags k < l, and a component with lags k 1 1.

Note that since the period under consideration in this model

is one year, a lead of one period is relatively substantial.



          

 

2 1 r 1 r 1 r 1 r 1

f0 (l-bB ) -bB vt bB a o vt elt

(9) O —c(l-B) 1 Ct : 0 0 l l. +_ e2t

2 ...

.1 -d(B—B ) o I .ItJ .0 0 OJ (ItJ .e3tJ

or equivalently:

2 1 r 1 r 1 r 1 r 1
r0 (l-bB ) —bB vt b a o B v,C elt

o -c(l-B) 1 ct = 0 0 1 1 + e2t

2 _

1 -d(B-B ) 0 I o 0 0 I e

. J ( tJ ( J . t J . 3U         

Solving the system for the endogenous variables in

terms of the predetermined variable, [B Vt]’ and the exogenous

variable, It:

        

Ivt‘ F0 (l-bB2) -bB"1fb a 0‘ [B vt‘

(10) ct = 0 -c(l-B) 1 o 0 1 1

2 _.

I 1 -d(B—B ) o o 0 0 I

I tJ L J . L J I t J

r 2 1-1 1
o (l-bB ) -bB Ielt

+ 0 -c(1-B) l e2t

2
l -d(B—B ) o e

I J . 3’CJ    

Call the matrix we wish to invert, A.

det A (l-bBZ) - bc(B-B2) = l — ch + b(C--l)B2

‘

'd(B-B2) 66(62-63) [l-ch+b(c-l)B2]

1 b8 0[adjoint A]

c(l-B) (l-bB2) o   I



39

 

  

 

Thus,

2 2 3 2

d(B—B ) bd(B —B ) [l—ch+b(c—1)B ]

A'1 = l 2 1 b8 0

_ + _

With this substitution, (10) becomes:

Vt

Ct =

LItJ

r 2 2 3 2 1

d(B-B ) bd(B -B ) [l-bCB+b(C-1)B ] b a th

l 2 1 b8 0 0 0 l l

l‘bCB+b(C'1)B c(1-B) (l-bB2) 0 o o It

L J 

d(B-B2) bd(B2-B3) [l—ch+b(c-1)B2] e

 

 
1 lt

+ 1 b8 0 e

1-ch+b(c-1)B2 2 2t
c(l-B) (l-bB ) 0 e3tJ

Multiplying out the coefficient matrices, and moving the

determinant to the left hand side:

  

t

(11) [l-ch+b(c—1)B2] ct =

LItJ

rbd(B-B2) ad(B-B2) bd(Bz-Bs) th

b a b8 1 +

Ibc(l-B) ac(l-B) (l-bBZ) It 
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Thus,

2 2 3 2
d(B-B ) bd(B -B ) [l-ch+b(c-1)B J

A“1 = l 2 1 b8 0
_ + _.

1 bCB b<c l>B c(l-B) (l-bBZ) 0

With this substitution, (10) becomes:

' 1

Vt

ct =

(ItJ

r 2 2 3 2 1 r 1
d(B-B ) bd(B -B ) [l-ch+b(c-1)B J (6 a 0 th

1 2 1 b8 0 o 0 1 1

I I J I J

d(B-B2) bd(Bz-B3) [l-ch+b(c-1)B2] elt‘

+ 1 1 DB 0 e

1-ch+b(c—1)B2 2 2t
c(l-B) (l-bB ) o e3t

Multiplying out the coefficient matrices, and moving the

determinant to the left hand side:

  

Vt

(11) [l-ch+b(c-1)B2] ct =

IItJ

rbd(B-62) ad(B-B2) bd(B2-B3)‘ 'th)

b a b8 1 +

Lbc(l-B) ac(l-B) (1-662) , LI    
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(11) (cont'd.)

r 1

 

_ + _ + — -delt-l delt-Z bde2t_2 bde2t_3 e3t bce3t_l+b(c l)83t-2

elt + be2t-1

_ + _

I celt ce1t-1 e2t be2t—2 I 

This is the transfer function model implied by our

dynamic structural system of simultaneous equations. Our

inputs are the leading indicator, V and the exogenous
.t,

variable, I Explicitly, the three transfer functions are:t.

[l-ch+b(c—l)B2] Vt = (const)V + bd(B-B2)(BVt)

t

2 3 —

+ bd(B -B )(It) + [delt-l - delt-2 + bde2t_2

- bde + e - bce + b(c-l) e ]
2t-3 3t 3t-l 3t—2

(12)

[l-ch+b(c-1)B2] c = (const) + b(BV ) + 66(I )
t Ct t t

4.
+ [elt beZt-l]

[l-ch+b(c-1)B2] It (const)I + bc(l-B)(BVt)

t

2 _

+ (l-bB )(It) + [ce1t - celt—l

]
+ e2t ' be2t-2

Finally, we can aggregate our transfer function models

to yield the time series model for Y implied by our dynamic
t,

structural system of simultaneous equations.
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From equation (5) we have:

4.
Vt + It

From this identity and the transfer function models for the

components in (12), it is clear that Yt is a function of

lagged values of our leading indicator, Vt'

Hence, using time series methods, we can fit these

transfer functions and come up with the estimated mean and

variance of”Y given values of our leading indicator in
t+l

previous periods. That is, we can estimate the first two

moments of the conditional distribution of Yt+1 given Vt’

f(Yt+l|Vt). This is the object of our analysis of the

leading indicator approach to forecasting.

With this knowledge we can produce optimal forecasts

of Yt’ which are presumably better than forecasts produced

without the incorporation of our knowledge of the structural

relationships between our leading indicator and the other

variables in our model.

Consider the relative forecasting abilities of the

Final Form approach and our leading indicator approach, in

the context of example 2.

In the form of equation (2.u), we have:



 

   

U2

     

   

H11(B) yt + H12(B) xt = Fll(B) elt

r-bB (l-bBZ) —bB‘ 'vt‘ ‘-a 0‘

0 -c(l—B) 1 ct + o -1

2
1 —d(B—B ) 0 I 0 0

L I tJ \ J

The Final Form:

(Vt‘r-bB (l-bBQ) —bB"lfa 0‘ 1

ct: o —c(l-B) 1 o 1. It

2
I 1 —d(B-B ) 0 0 0

I tJ. J . J

-bB (l-bB2) -bB ‘1 e
lt

+ 0 - -
c(l B) l e2t

2
1 —d -(B B ) 0 e3t

Call the matrix to be inverted, A.

det A

adjoint A

A-l l
—_

det

  

1 e11:

It : e2t

.831“)

(l-bB2) - bc(B—BZ) - bd(BQ-Bs)

2
2 + has2 - ch + bCBl - b8

1 - ch + (be-b—bd)B2 + 666

 

rd(B-Bz) bd(Bz-Ba)

: 1 13B

c(l-B) (1-b62)-bd(62-B3

[adjoint A]

+ de3

3

‘

(l-sz)-bc ( 6-62)

bB

 ) bc(B~BZ)
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

Vt

[det A] Ct =

It

d(B-Bz) bd(B2-B3) l—bB2-bc(B-BQ) a 0

1

= 1 bB b8 0 1 [— I
I

2 2 3 2 t
c(l-B) l—bB -bd(B -B ) bc(B-B ) 0 0

d(B-Bz) bd(BZ—B3) l-bBZ-bc(B-B2) e1t

+ 1 b8 bB e2t

c(l-B) l-sz-bd(Bz-B3) bc(B-Bz) e3t

Multiplying through the matrices:

 

2 2 3 1

Vt ad(B-B ) bd(B —B ) l

[det A] Ct = a bB I

2 2 3 t
It ac(l-B) l-bB -bd(B -B ),

r 2 2 3 2 2 1

d(B-B )elt+bd(B -B )e2t+[l-bB -bc(B-B )]e3t

+ elt + bBe2t + bBe3t

2

  
2 3 2

c(l-B)elt+[l-bB -bd(B -B )]e2t+bc(B-B )e3t

I J

Consider each of the three Final Form transfer functions in

turn. First;

[l-ch+(bc-b-bd)B2+bd33] vt = (const)v

t

2 3 — 2 2 3
+ [bd(B -B ) [It] + d(B—B )e1t + bd(B -B )e2t

2 2
+ [l-bB -bc(B-B )]e3t
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

  

  

  

,
(Vt

[det A] Ct =

LItJ

'd(B-62) bd(BZ-B3) l—bBQ-bc(B—BQ)‘ a o

1

= 1 b8 bB o 1 [f I

2 2 3 2 t
Lc(1-B) l-bB -bd(B -B ) bc(B-B ) J o o

d(B-B2) bd(BZ-B3) l-bB2—bc(B-B2)‘ elt‘

+ 1 bB bB e2t

C(l-B) l-bBZ-bd(BZ-B3) bc(B-B2) 1 eat}

Multiplying through the matrices:

    

’v ‘ 'ad(B-B2) bd(BZ-Bs> ‘
t l

[det A] Ct 1' a 138 T

2 2 3 t
LIt, Lac(1-B) l-bB -bd(B -B ),

r 2 2 3 2 2 1

d(B-B )elt+bd(B -B )e2t+[l-bB -bc(B-B )Je3t

+ e1t + bBe2t + bBe3t

2

 
2 3 2

—bd(B -B )]e2t+bc(B-B )e3t Lc(l-B)elt+[l—bB
J

Consider each of the three Final Form transfer functions in

turn. First;

[l-ch+(bc-b—bd)82+bd83] vt = (const)v

t
2 3 — 2 2 3

+ [bd(B -B ) [It] + d(B—B )e1t + bd(B -B )e2t

+ [l-sz-bc(B-B2)]e3t
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Substituting this into the Final Form and moving the

determinant to the left hand side, we get the following:

[det A]

  tJ

'd(B-B2)

l

 LC(l-B)

(d(B-BQ)

l

 {C(l-B)

Multiplying through the matrices:

Vt

C[det A] t

   LItJ

 
_ + _Lc(l B)e1t [1 b8

2

 

 

 

 

bd(Bz-B3) l—bBQ-bc(B-B2)‘ a 0‘

bB bB

l-bBZ-bd(B2-B3) bc(B-B2) J

bd(BZ—B3) l-bB2-bc(B—B2)‘

bB bB

l-sz-bd(B2-B3) bc(B-B2) 1

‘ (ad(B-B2) bd(B2-B3) ‘ 1

a bB [TI]

2 2 3 t
Lac(l-B) l-bB -bd(B -B )J

'd(B-Bz)elt+bd(B2-BB)e2t+[l-sz-bc(B-B2)Je3t

e1t + bBe2t + bBe3t

2 3 2

—bd(B —B )]e2t+bc(B-B )e3t

[
 

 

‘

 J

I

l

1
t

Consider each of the three Final Form transfer functions in

turn. First;

[l-ch+(bc-b—bd)Bz+bd83] vt

+

2
+ [l-bB

2

-bc(B-B )]e3t

(const)v

2 3 — 2
[bd(B -B ) [It] + d(B-B )e1t + bd(B

t 2 3

-B )e2t



an

(i) Vt = (const)vt + cht_l+(b+bd-bc)Vt_2--bdvt_3

+ deIt_2] - bd[It_3]'t[delt_l-delt_2-+bde2t_2

- bde2t__3 + e3t - bce3,t_l + b(c—l)e3t_2]

Second;

[l-ch-t(bc-b-bd)B2+de3]Ct == (const)Ct+ bB[It]

+ elt + bBe2t + bBe3t

(ii) ct = (const)Ct+-bcCt_14-(b+bd-bc)Ct_2-det_3-+b[I$€l]

+ [elt + be2t-l + best-1]

Third;

[I-ch+(bc-b-bd)62+de3]It==(const)It

+ [I-bB2 - bd(B2—B3)][I J + c(l-B)e
t lt

+ [l—sz-bd(B2-B3)]e2t + bc(B—B2)e3t

(iii) It == (const)It4-bclt_l+-(b+bd-bc)It_2-bdlt_3+'[It]

- b(l+d)[It_2]+bd[It_3]+[celt—celt_l+e2t

- 1 _b(l+d,e2t_2+bde2t_3+bce3t_l bce3t_2]

Note here that It is endogenous and If is exogenous.

The aggregation of equations (i), (ii), and (iii)

yields the Final Form transfer function of Yt Vt + Ut + It

vt + ct_1-+It.

This is done on the following page.
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Yt = (const)Vt + cht_l + (b+bd—bc)Vt_2 - det—B

+ deft-Z] - bd[I£_3] + [delt-l-delt-Z

+ bde2t_2-bde2t_3 + e3t - bce3t_l + b(c-l)e3t_2]

+ (conSt)Ct-l + bcCt_2 + (b+bd-bc)Ct_3 — det-u

+ Mic-2J + [elt-l + be2t-2 + best-2J

+ (const)It + bCIt-l + (b+bd-bc)It_2 - det-B

+ [It] - b(l+d)[It_2] + deIt_3J

+ [celt—celt_l+e2t-b(l+d)e2t_2+bde2t_3+bce3t_l

- bce3t_2]

: (const) + bCEVt_1+Ct—2+It-l]

+ (b+bd—bc)[Vt_ +C +1 32 t_3 t_2]-bd[Vt_ +C +1
3 t-N t-3

+ [It] + [celt+(l+d-c)elt_l-delt_2+e2t+e3t]

(iv) Y (const) + bc[Yt_l] + (b+bd-bc)[Yt_2] - deYt-3]

.
.
.

- + + +[It] [cel e et 2t + (l+d-c)elt_ -de ]
3t 1 lt—2

Note that (const) = (const) + (const) + (const) .

Vt Ct-l It

Our initial assumptions as to these disturbances were:

_ 2 _ 2
E(eit) - 0, E(eit) - Oi , H(eiteit-k

and E(eitejt) = 0 for 1, 3=l,2,3 and 1 i 3.

We see that the disturbance structure of our aggregation of'

) = 0 V k i 0,

Yt is a second order autoregressive model about white noise.



1+6

From equation (iv) we get the Final Form forecast.

Yt+l = (const) + bc[Yt] + (b+bd—bc)[Yt_l] - bd[Yt_2]

+ [Tt+l] + [celt+1+92t+1+e3t+l+(1+d-C)elt_delt-I]

(v) 2t(l) = (const) tbCEYt]'t(b+bd-bc)[Yt_l]-bd[Yt_2]

+ [It(l)]+ (l+d-c)e1t - delt-l

2Yt(1) = §t(1) - Yt+l

A

’ [It(l) ’ It+lJ ' ce1t+1 ' e2t+1 ‘ e3t+1

[eft(l)] — celJc+1 - e2t+1 - e3t+l

A

A 2

Var[e (1)] E[e (1)]

Y1: Y‘t

A 2

Var[eft(l)]+ c Var(elt+l)‘+Var(e2t+l)

)+ Var(e3t+1

Now consider our leading indicator approach. Our

leading indicator is V and we have our three transfer
t3

functions from equation (12) in the example. Consider each

in turn.

First:

[l-ch+b(c-1)B2]\Q: = (const)Vt + bd(B-BZ)[Vt_l]

2 3 —

+ bd(B -B )[It] + [delt_l-delt_2+bde2t_2-bde2t_3

+ e3t - beeBt-l + b(c-l) €3t-2]
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(V1) Vt = (const)Vt + bCVt-l -b(c-1)Vt_2 + bd(Vt_2]

- bd[Vt_3] + bd[It_2] - bd[It_3] + [deit—1*“it-2

+bde2t_2-bde2t_3+e3t-bce3t_l+b(c-l)e3t_2]

Second;

[l-ch+b(c-1)B2] Ct = (const)Ct + bEVt-l] + bETt-l]

+ [elt+beZt-l]

(vii) Ct = (const)C + bCCt-l — b(c—1)Ct_2 + bEVt-l]

t

+ bEIt-l] + [elt+be2t_l]

Third;

[l-ch+b(c—l)82] It = (const)It + bc[Vt_l] - bc[Vt_2]

+ [If] - b[I£_2] + [celt-Celt-1+e2t-be2t-2]

(viii) It = (const)I + bCIt-l - b(c-1)I,C__2 + bc[Vt_l]

t

- bc[Vt_2] + [It] -b[It_2] + [ce1t_celt—1+e2t

- be ]
2t-2

The aggregation of equations (vi), (vii), and (viii)

yields the transfer function for Yt implied by our leading

indicator approach.
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(const)Vt + bCVt-l - b(c-1)Vt_2-+bd[Vt_2]

- bd[Vt_3] + bd[1t_2]-bd[lt_33'*[delt_1‘delt-2

+ bde2t_2 - bde2t_3 + e3t - bce3t-1

+ b(c—l) e3t_2] +

(const)Ct-l'tbcCt_2-b(c—1)Ct_3'tb[Vt_2]'*b[T¥_fl

+ [elt-l + be2t-2] +

(conSt)ItI+bCIt-l-b(C-1)It-24-bC[Vt-l]-bC[“F23

]-ce +e -be

lt-l 2t 2t-2
+ [It] - tht_21 + [celt

(const)+bc[Vt_l+Ct_2+It_l]--b(c-1)[Vt_2+Ct_3

+ I ] + bc[Vt_l]+'b(l+d—c)[Vt_2]-bd[Vt_3]
t-2

+ [If] + bd[I£_ J - deIt_3]+-[celt
2

+ (1+d-C)elt- -de 2+e + _

1 lt- 2t bde2t-2 bde2t-3

J+ e -bce + b(c-l)e
3t 3t-l 3t-2

(const) + bCYt- -b(c-1)Yt_ 'tbc[Vt_ ]
l 2 l

+ b(l+d-c) [v ]-bd[Vt_3]+-[It]+-bd[It_ J
t-2 2

- bd[1t_3] + [celt+82t+e3t]

+ [(l+d-c)elt_ -b ]
1 ce3t-1

+ [-delt_2+bde2t_,&xc—1)e3t_2J+-[—bde2t_3]

that (const) == (const)v + (const)C -+(const)I.

t t-l t



(ix) Y =

Note that (const) =

H8

- b(c—1)Vt_ -+bd[Vt_ J
2

(const)V + cht_ 2
t l

— deVt_3] + bd[1t_2]-bd[1t_33'*[deit_1’de1t-2

+ bde - bde + e - bce

2t-2 2t-3 3t 3t-l

+ b(c-l) e3t_2] +

(const)ct_l-+bcct_2-b(c—1)ct_3-+b[vt_2]-+b[II;g

+ [elt-l + be2t-2] +

(const)It'tbcIt_l--b(c-1)It_2

—be ]
+

ezt‘CeIt-I 2t-2
+ [It] - b[It_2] + [ce1t

(const)'tbCEVt_1+Ct_2+It_l]-b(C-1)[Vt_2+ct_3

+ It_,] + bcEVt_l]4-b(1+d—c)[Vt_2]-bd[Vt_3]

+ [If] + deII_ J - bdliI't_3]-+[celt
2

-bde

'de 2t-2 2t-3

+ + -(1 d Ckfitel 1t_2+e2t+bde

]
+ e3t‘bce3t-1 + b(C‘l)e3t-2

1(const) + bCYt- -—b(c-1)Yt_ 4-bc[Vt_
l 2 l

+ b(1+d-c) [v ]-bd[Vt_3]+-[It]+-bd[It_ J
t-2 2

+
e3t]

1

+e- bd[1t_3] + [celt 2t

-b+ [(l+d-c)elt_l ce3t_l

+ [-de +bde +b(c-1ka ]'*[-bde J
lt-2 3t-2 2t-3

+ (const)C

t t-l

2t-2

(const)V

+ bc[Vt_l] - bc[Vt_2]

‘+(const)I.

t



(ix) Y =

Note that (const) == (const)V + (const)C +(const)I.

H8

(const)Vt + bCVt-l - b(c-1)Vt_2+-bd[Vt_2]

- deVt_3] + bd[1t_23-'bd[1t-3]'*[981t-1‘delt-2

+ bde2t-2 ‘ bde2t-3 + e3t ’ bce3t-1

+ b(c-l) e3t_2] +

(conSt)ct_l'+bCCt-2"b(c_l)Ct-3'+b[Vt-2]'+b[jt49

+ [elt-l + be2t—2] +

(const)I 'tbcIt_l-b(c-l)It_2'tbc[Vt_l]-bC[fl}2]

t

1-ce +e —be

+ [It] ' b[It-2] + [Ge lt—l 2t 2t-2lt

(const)'tbc[Vt_l+Ct_2+It_l]-b(C-1)[Vt_2+ct_3

+ It-2] + bc[Vt_l]4'b(l+d—c)[Vt_2]-bd[Vt_3]

+ [If] + deI£_2] - deI’t_3]-+[ce1t

+ + - - + -(l d exit-l delt-2+e2t bde2t_2 bde2t_3

+ e -bce + b(c-l)e
3t 3t-l 3t-2J

](const) + bCYt— -b(c-1)Yt_ 4-bc[Vt_
l 2 l

+ b(l+d-c) [vt_2]-bd[vt_3]+-[It]+-bd[It_2]

- deIt_3] + [celt+82t+83t]

+ [(l+d-c)elt_ -b J
1 ce3t-1

+ [-de +bde +b(c-lk3 ]'t[-bde ]
lt-2 2t-2 3t-2 2t-3

t t-l t
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Also, given our assumptions regarding the disturbances, eit’

the noise structure of Yt is seen to be a third order auto-

regressive scheme.

From equation (ix) we get the forecast of our

leading indicator approach.

(x)

t+l

Yt(l)

)

(l

Varfe

)

Y

+-bde

t

(1)]

(const) + cht - b(c-l) Y + bCEVt]
t-l

b(l+d-c)[Vt_ J — devt_2] + [Ith + deIt_ I
l l

bd[It_2] + [celt+l+e2t+l+e3t+l]

[(l+d-c)elt-bce3t] + [—delt-l+bde2t-l

b(C—l)e3t-l] + [-bde ]
2t-2

(const) + cht-b(c-1)Y -+bc[Vt]
t-l

b(l+d-c)[Vt_ J - bd[Vt_2] + [It(1X1+ deIt_ ]
l l

deIt_2] + [(l+d-c)elt-bce3t] + [-delt?1

+b(c—l)e3t_1] + [-bde ]
2t-l 2t—2

Yt(l) - Yt+l

[It(l) - It+l]'+[celt+l+e2t+1+e3t+1]

[ef£(l)] + [celt+1+e2t+l+e3t+l]

HEY (1)]2

t

A 2

Var[eft(1)]‘I c Var[e1t+l]'+Var[e2t+l]

Varfe3t+l]..
.



Also, given our assumptions regarding the disturbances,

us

e 0

1t’

the noise structure of Yt is seen to be a third order auto-

regressive scheme.

From equation (ix) we get the forecast of our

leading indicator approach.

(x)

t+l

Yt(1)

>

Var[e

(1)

Y

+bde2t_l +b(C-l)e3t-l] + [-bde

t

(1)]

(const) + cht - b(c—l) Y + bc[Vt]
t-l

b(l+d-c)[Vt_l] - deVt_2] + [It+g + deIt_ 3
l

bd[It_2] + [celt+l+e2t+l+63t+l]

[(1+d-c)elt—bce3t] + [-delt-l+bde2t—l

b(C-l)e3t-l] + [-bde ]
2t-2

(const) + cht-b(c-1)Y ~+bc[Vt]
t-l

A

b(l+d-c)[Vt_ J - deVt_2] + [It(lfl + deIt_ I
l l

deIt_2] + [(l+d—c)elt-bce3t] + [-deltvl

2t-2:I

Yt(1) - Yt+l

[It(l) ' It+l“[ce1t+1+e2t+1+e3t+1J

[2f (1)] + [ce ]
t lt+l+82t+l+e3t+l

E[e
2

(1)]

Yt

VarEQT (1)]4-c2VarEe ]'+Var[e ]

t

+ Var[e3t+l]

lt+l 2t+l
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Also, given our assumptions regarding the disturbances, eit’

the noise structure of Y is seen to be a third order auto-

t

regressive scheme.

From equation (ix) we get the forecast of our

leading indicator approach.

(x)

t+l

Yt(l)

)

(l

Var[e

)

Y

-+bde

t

(1)]

(const) + cht — b(c—l) Y + bc[Vt]
t-l

b(l+d-c)[Vt_ J - .bd[vt_23 + [I£+g + deIt_ 3
l 1

deIt_2] + [ce ]' +

lt+l+e2t+l e3t+1

[(1+d—c)elt-bce3t] + [-delt_l+bde2t_l

b(c-l)e3t_l] + [—bde J
2t-2

(const) + cht-b(c-1)Y -*bc[Vt]
t-l

b(l+d-c)[Vt_ l] - bd[Vt_2] + [It(1xl+ deIt_l]

deIt_2] + [(l+d—c)elt-bce3t] + [-deltvl

+b(C-l)eBt-l] + [-bde ]
2t-l 2t-2

Yt(l) - Yt+l

[It(l) - It+l].+[celt+l+92t+l+83t+l]

[ef£(1)] + [celt+l+e2t+1+83t+1]

BE;Y (1)]2

t

J]'+Var[eVarEeT (l)]+'c2Var[e

t

Var[e3t+l]

lt+l 2t+l

..
..
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Note that the one step ahead forecast error for the leading

indicator approach is identical with that of the Final Form

approach.

Hence we have outlined an approach with an explicit

theoretical background in which leading indicators can be

studied and used, and which performs as well as the Final

Form approach.

It is not surprising that the two approaches yield

the same forecast errors for forecasts within the horizon

of our leading indicators' lead. They are obtained from

essentially the same information set. They are just

different algebraic manipulations of the same model.
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Well known fact:

If Zt is a vector of mutually independent random

variables with E(zt) = O and E(zt zt-i) = 0, i = 1,2, ... ,

and if H is a matrix with known coefficients,
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then

Var{[H]zt} = E{[H]zt}2 = [[311 Var(zt);

where [[H]] is the transformation of [H] made by squaring

each element in [H].
 

A simple example:

Let 1 -2 e

  

llt

[H] : ; zt :

3 0 e21t

with the e's having properties identical to those in examplel.

1 -2 ellt

Var{[H]zt} = Var 1 I

I 3 0 e211;

First, with our Second, the straightforward

transformation; development;

1 u e11t e11t'2821t

= Var = Var

9 0 e21t 3e11t

+ ..
Var(ellt) HVar(e21t) Var [ellt 2e21t]

9Var(ellt) Var[3e11t]

Var(ellt)+HVar(e21t)

9Var(ellt)

It should be noted that in our model, each element

in [H] is a polynomial in L, the lag operator. In this

context, to transform [H] into [[H]] we need to square the

coefficient of each different power of L appearing in every

polynomial comprising an element in [H].



53

A less simple example:

Let (B-3B2) 2B2 ellt

[H] = 3B3 0 ; zt = e

21t

I B—3B2 2B2 e ‘

llt

Var{[H]zt} = Var 1 3 I

I 3B O e2lt J

  

First, with our transformation;

2 2 2 2 2

(1) B+(-3) B (2) B ellt

: V

2 3

(3) B 0 ezlt

2 2

(B+QB ) HB ellt

= V

3

9B 0 eth

' BV(e )+9B2V(e )+HB2V(e )
llt llt 21t

3

I 9B V(ellt)

' +V<ellt—l) 9 V(ellt_2)+H V<e2lt-2)

I 9 V<ellt-3) 
Second, the straightforward development;

 

r 2 2

(B-3B )ellt + 28 ealt

: V 3

( 38 ellt

’ 2 2
- +

Be11t 3B ellt 23 e21t

= V

I 3B3e

llt



5H

3 2

eilt—f'e11t-2+ e21t-2

= V

3e1112-3

V(e ~3e

llt-l 11t-2+2 e21t—2

V(3ellt_3)

)+9V(e )+HV(e )
V< 11t-2 2lt-2e11t-1

9V(ellt-3)

Clearly, for this to be a valid transformation, not

only must our disturbances be mutually independent, but

they must not be autocorrelated as well. i.e. E(zt Zt-i): 0,

i = 1,2,

This assumption holds concerning our error structure,

elt’ but it does not hold in general concerning our inputs,

Xt' In particular, consider equation (2.21). We cannot

. - *

apply the same transformation to the matrix [H1I(L)H12(L)]

- k

as we apply to [H11(L) F11(L)] because the elements in the

vector of forecast errors, eX (k), are autocorrelated.

A A t

e.g. E[ex (k-1)~ex (k-2)]

1t 1t

k-2 k-3

= 3 DEC wlnat+(k—1)-n ngo wlnat+(k-2)-n

(by substituting from equation (2.18))

k-3

‘ 2
I1

2

wlnwl(n-l)ola ( 0
1

This point becomes obvious in our 1ess simple example,

e ex (k)

if we replace 2 = llt with z ' = “ 1t(k) .
t eth

t e
21t
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We will find in taking the variance that this transformation

of [H] will be inappropriate since e (k) is autocorrelated

It

with past forecast errors.

Let 6—3132 2132 e (k)

xlt
[H] = ; zt' =

BB3 0 eX (k)

2t

with the forecast errors having properties like

those in equation (2.18).

B—3B2 2B2 e (k)

Var{[H]zt'} = v 1t

363 0 eX (k)

2t

First, with our transformation;

B+gB2 us? ex (k)

= v 1t

983 0 ex (k)

A 2t

V[e (k-l)+9V[eX (k—2)]+HV[eX (k-2)]

xlt 1t 2t

9V[; (k-3)]

x1t

(inappropriate)

Second, the straightforward development;

vim—362);x (k) + 232; (k)]

lt x2t
Var{[H]zt'}

V[3Bae (k)]

xlt

V[e (k-1)-3ex (k-2)+2ex (k-2)]

xlt 1t 2t

V[3; (k-3)]

xlt
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F—

v[; (k-1)] + 9vtéx (k-2)

 

Xlt 1t

= + uvt; (k-2)] - 66E; (k—1)-éX (k—2)]

X2t Xlt 1t

9V[; (k-3)]
_ Xlt J 

The difficulty is due to more than one power of B

appearing in any polynomial which is a single element in

[H]. In the variance, the presence of these different

powers of B requires consideration of the given variable's

autocorrelation.

Although we cannot make a transformation of

[H1%(L) H12(L)] , we can still calculate the variance of

the forecast errors as expressed in equation (2.21) in a

relatively straightforward manner. See the examples

for applications.
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APPENDIX 1

FITTING THE TRANSFER FUNCTION IN EQUATION (2.10)

How do we fit the transfer function in equation (2.10)?

 

X

ka
We can prewhiten the input, xt* = I 1t]

1:

To do this, first consider the bottom p2 elements of xt*;

namely Xt' From (2.H) we have:

H22(L)xt = F22(L) e2t

or -1

Xt = H22 (L) F22(L) e2t

This is the appropriate ARIMA model for Xt' We can substitute

this into x * for the bottom p2 elements, and these inputs
t

will be "prewhitened." Then the transfer function will be

in terms of the predetermined variable input, Lk ylt’ and the

. . _ -1 .
p2 prewhltened ifiputs, xt - H22 (L) F22(L) e2t. That 18,

x ... = L ylt

t -1

H22 (L) F22(L) e

 

2t

We still need to prewhiten ylt’ our leading indicator,

in order to work with the system in (2.10) in terms of all

prewhitened inputs, We must therefore fit y1t with its

appropriate ARIMA model.

The first equation in the set of pl equations in
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(2.9) gives us the time series model for y1t implied by

our dynamic structural system of simultaneous equations:

 

      

    

* ‘-l [ fififi ‘

Ihll I h11 I k

h * I h *A* I L ylt

(2.11) y = —J 21 | . 21 | x
1t I Hll“(L) 'H12(L) r t

I I I

II 1 A
h h ..a’:..

I

( lx(p2+l) ‘ 1-

F 3 1‘1 (p +1)xl

h11 I 2

h * |
21

+ *J : H11 (L) F11(L)I e1t

I l

h 3 I I

It p11 I J1.

1x
pl p1X1

This is a transfer function for y1t with input xt*. This

equation is interesting in that lagged y1t is an input to

the transfer function model for ylt'

The first element of the 1x(p2+l) vector,

1

      

,

r * 1-1r 31* ‘

h11 I h11 I

* ***

I h21 I h21 I
a

I l Hll’(L) I H21(L) )

' l I

h a h ***|

multiplies Lk y1t in (2.11). Call this first element of the

vector, g(L). The first term in the sum on the right hand

side of (2.11) can thus be written: [g(L) Lk ylt]' This

can be moved to the left hand side of (2.11) in order to

collect all the terms in ylt'
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k _ k

(2.12) ylt + g(L) L ylt - (1 + g(L) L ) y1t

If 1"].r 1‘
5': :‘::':‘:

h11 I h11 . I

3': :‘n‘n":

J h21 I h21 I
: .. 3':: l Hll (L) : l H12(L) > xt

o I o I

h a" h :‘c:'::':l

. P 1 J . P 1 J
I l 1 J10-

I 9 1"]. ‘

Ih11 I

I 1121:: :

+ 3': '
Z lHll (L) Fll(L)) e1t

' l

h 3': I

1I. p, J J1.  
Note that this vector multiplying xt is the same

vector as in (2.11), without the first element, g(L). This

can now be solved for ylt:

      

 

r 2’: ‘-l[ :‘:':‘: “

h11 I h11 "I

2': :‘n’n‘:

h21 I h21 I

(2.13) ylt = -(1+g(L)Lk)‘1< : .Hll='=(L) : IH12‘L’ )xt
. I . I

h :‘al h :‘fil

\L p11 J I p11 J11“-

r 1

f 1-1

h11 I

k -1 h21* '
+ (1 + g(L)L ) J . Hll*(L) F11(L)) e1t

1 l

h. "

   

This gives us the transfer function for our leading indicator,

ylt’ implied by our structural model, in terms of exogenous
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variables only. This can be fitted by prewhitening the

input, substituting [H22_1(L) F22(L) €2t] for xt:

(2.1a) y1t = —(1+g(L)Lk)‘1I I [H22‘1(L> F22(L)e2t]
10—

+ (1+g(L)Lk)'l I I elt
1.

- - Lk ylt
We can now substitute this model for y into x *== ——————

lt t xt

Hence we have X * entirely prewhitened, and can now work

t

with our model for the measure of economic activity in

 

  

      

    

(2.10):

- k k -1 -1 I

[‘L (1+8(L)L ) {}1._H22 (L)F22(L)e2t

* + Lk(1+g(L)Lk)‘lI} e I
Xt = 1. 1t

-1
H22(L) F22(L) e2t

rrh ":l l-lfh '.'.J. I I‘

11 I 11 I

a fi‘*

I h21 I h21 I I .

(2.10) y2t - - : IHll«(L) : [H12(L) [Xt"I

' I ' I

h *I h "* I
1 1

LL Pl I J L pl I 1J2.

r! .3. "'l W
hlldb :

I h21 I *

+ . I H11 (L) F11(L)+ e1t

' I

*l J J2.

I



61

Note that equation (2.13) is the same equation as is implied

in the structural system in equation (2.”).

The Final Form for the system is:

_ -1 -l
(2.15) yt - -H11(L) H12(L) x + H11(L) F11(L) e

t 11:

The first equation of the Final Form is the same as equation

(2.13).
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A USEFUL CONVENTION OF ZELLNER AND PALM

At this point let me interject a useful convention

which Zellner and Palm point out, when working with this

kind of model transformation (see footnote 8).

In both the Final Form and leading indicator

approaches, our model is expressed as a vector of endogenous

variables in terms of a set of linear combinations of

predetermined variables and disturbances, in a dynamic

framework. In matrix form, our coefficient matrix is the

product of two known matrices (say A and B), one of which

is in inverse form. That is, our model is of the form;

yt = [A'1131xt + [A—lCJet.

From our presumed knowledge of A, B, and C, we can

compute A-1 = HE%—A [adjoint A], and thus we know [A—lB]

and [A—lC]. Note that in our context, each element of

[A-lB] will be the ratio of two polynomials in L, with the

denominator being the determinant of A; i.e. [A-lB]

= 35%f3 [adj A][B]. A distributed lag which is the ratio

of two polynomials in L implies a lag of infinite order.

Hence we have a quite complicated system.

We can simplify this system by multiplying both sides

62
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of the equation of our model by [det A];

i.e. [det Aly,C = [adj A][B]Xt + [adj A][C]et

Here our system is in the form of a transfer function

with current and lagged yt's in terms of current and lagged

xt's and disturbances. An interesting aspect of this system

is that the order and parameters of the autoregressive part

of each equation will be the same. This is true because

the determinant multiplying the vector, yt, is a single

polynomial in L.

Note that with this manipulation of our models,

equations (2.16), (2.17), (2.23), and (2.2”) will be changed

as follows.

Final Form approach;

(2.16)‘ det[Hll(L)] yt+k —[adj H11(L)][H12(L)] x
t+k

+[adj H11(L)][F11(L)] elt+k

-[adj H11(L)][Hl2(L)] xt(k)(2.17)' det[Hll(L)]yt(k)

+ {[adj H11(L)][F11(L)J}***e1t

Leading Indicator approach;

h11* l
' ' I :': :(2.23) det : I Hll (L) yt+k

h *,

p11
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f f WI

:': ‘ r ‘

hll J . 11 I y= _J . . . lt
adj : I H11 (L) I :H12(L) I x

* . t+k

h I J h '*I JL l k

f (h :1 W ‘

11 I

+4 ' : I 2':adj . I H11 (L) F11(L)I elt+k

Rh ' I

hllz: I

' ° :': _
(2.2M) det I I H11 (L) yt(k)..

h '

p11 '

f {h ' I ‘ Ih u I 1‘

11 I 11 l y

:_ J . . * . 1t

adj : I H11 (L) : [H12(L) I A

h .I h ...I xt(k)

L L p11 J L p11 J J

I Ih . ‘

11 I

+ ' 2':Jad] : J Hll (L) F11(L)> e1t

h *I

L L P11 J

In this form the forecasts of yt(k) in equations

(2.17)' and (2.2M)‘ will not only be in terms of the history

and forecast profile of Xt’ but will also depend on the past

history and forecast profile of yt itself. This is due to

the determinant multiplying the vector of endogenous

variables. Furthermore, the autoregressive part of all

of the pl forecasts in yt(k) will be identical.

The presence of these "lagged" forecasts of yt will
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cause complications when we consider the variance of the

forecast errors, since forecasts of yt(l), yt(2), ... ,

yt(k-l) will be correlated with each other, with forecasts

of xt(l), Xt(2)’ ... , Xt(k)’ and w1th elt'

This is obvious in the examples, in which this

convention is used.



CHAPTER III

THE PROBLEM OF SPECIFICATION ERROR

Introduction
 

In Chapter II we proposed a framework for studying and

using leading indicators. We outlined a procedure for

building transfer function models by setting up a structural

model, and deriving the time series models directly from

this explicit theoretical background.

In Chapters IV and V we will consider multivariate

time series models which describe various empirical relation-

ships between "established" leading indicators and economic

activity. We will build the transfer functions empirically

by following the procedures outlined in Box and Jenkins'

Time Series Analysis.1 This procedure is chosen over the
 

framework formulated in Chapter II.

The transfer functions we examine in Chapter IV

consist of economic activity (Industrial Production) as the

output, and as a single input, the leading indicator under

consideration.. In light of Chapter II, it may be argued that

there is an econometric problem of omitted variables in this

approach. At the outset, our single—input transfer functions

will appear to reflect a belief that the level of economic

activity is adequately "explained" by the use of just one

RR
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input. The framework in Chapter II shows that the number of

inputs in the transfer function implied by any given econo-

metric model will be equal to the number of exogenous vari-

ables plus the number of leading indicators in that model.

Even the simplest structural econometric model will imply a

transfer function with more than one input.

It is important to emphasize that our work is not

done with the presumption that a single input is sufficient

to explain the movements in economic activity. We follow

the Box and Jenkins procedure because we are interested in

the dynamic relationships which exist empirically between

economic activity and each of the leading indicators under

consideration.

Furthermore we argue in this chapter that the bias

introduced in the parameter estimates of our single input

transfer functions through the omission of variables, does

not present a serious problem.:tfthe following conditions

characterize the model being studied.

(i) The main objective of building the modeliésforecasting.
 

(ii) The variables in the underlying econometric model are

drawn from a joint distribution which is covariance
 

stationary.
 

A Discussion of the Problem

Suppose that the true model describing the world we

are examining is

: +...+ 1’

(3'1) yt lelt + B2X2t BKth et
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or

(3.2) Y = X8 + e

where Y is a Txl vector of observations on the endogenous

variable, expressed as deviations from the mean; X is

a TxK matrix of explanatory variables expressed as

deviations from their respective means, which are

drawn from a multivariate Normal distribution2;

B iSéinl vector of true model parameters; and

2
8 iSéiTxl vector of disturbances, with €%N[0,0 IT].

We use only Xlt' Thus

(3.3) E(yt|xlt) = lelt + B2E(x2t|xlt) + ... + BKE(th|xlt)

Under our assumptions,

0

- 12 -

E("2tlxlt) ' "E Xlt ' C2Xlt
o
l

o
_ l3 _

H(XBtIXlt) ‘ 2 Xlt ” C3Xlt
o
l

(3.”)

o
_ 1K -

E<XKtlxlt) ‘ 2 Xlt " Clet
0
l

where Olj = Cov (xlt’xjt) for j = 2, 3, . . , K

2 _ 3
and 01 - Var (xlt)'

Note that the cj are constants, for j = 2, 3, ... , K.
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Thus

(3'5) B<ytixlt) z lelt + 82°2x1t + "' + BKClet

= (81 + 82c2 + ... + BKCK) xlt

= 8" Xlt

Hence we can write the model as

) = 0.(3.6) yt = 8* x + v where E(vt|xlt
1t t

Ordinary Least Squares will yield a consistent estimate

of 8*. Furthermore, given stationarity, vt has other nice

properties like homoskedasticity (since the diagonal of

the covariance matrix of the conditional density given in

footnote (3) does not depend on t).

It is obvious that bias is present since 8* ¢ 81

unless x1t is uncorrelated with other xjt (in which case the

0 would be zero for j = 2,3, ... ,K). However, if condi—

13'

tion (i) on page 2 characterizes our study, we do not care

about the economic interpretation of 81. In this case, we

are concerned with forecasting, and 8* is appropriate for
 

that. Indeed, [8* t] is a much better forecast of yt than
x1

[81 xlt], since it is exactly E(ytlxlt).

The second condition of page 2 is important because

it implies that the cj; j = 2, 3, ..., K, will remain stable

over time. If all the variables in the underlying econo-

metric are drawn from a joint distribution which is

covariance stationary,u then the correlation between the
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Thus

: +(3.5) E(ytlxlt) lelt 82c2x1t + ... + BKCKXlt

= (81 + 82c2 + ... + BKCK) x1,t

: ‘1"

8 x11:

Hence we can write the model as

(3.6) yt = 8* x + v where E(vtl ) = 0.
1t t xlt

Ordinary Least Squares will yield a consistent estimate

of 8*. Furthermore, given stationarity, vt has other nice

properties like homoskedasticity (since the diagonal of

the covariance matrix of the conditional density given in

footnote (3) does not depend on t).

It is obvious that bias is present since 8* ¢ 81

unless x1t is uncorrelated with other xjt (in which case the

0 would be zero for j = 2,3, ... ,K). However, if condi—

lj

tion (i) on page 2 characterizes our study, we do not care

about the economic interpretation of 81. In this case, we

are concerned with forecasting, and 8* is appropriate for
 

that. Indeed, [8* t] is a much better forecast of yt than

).

x1

[81 1, Since it 18 exactly E(yt|x1t

The second condition of page 2 is important because

xlt

it implies that the cjs j = 2, 3, ..., K, will remain stable

over time. If all the variables in the underlying econo-

metric are drawn from a joint distribution which is

covariance stationary,” then the correlation between the
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the single input included in our model and each variable

which is omitted, will remain stable in the future. That

is, the variances and covariances in the constants, cj, will

not vary over time. Hence, in E(xjtlxlt) (j = 2, ..., K) we

have incorporated the way that the xjt (j = 2, ..., K) change

on average when xlt changes. We still miss the information
 

in [xjt - E(xjtl

serious problem over time.

xlt)]’ but given condition (ii), this is not
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Consider his Propositions 7 and 8, restated: Given

the set of K random variables, X (le), expressed as devia—

tions from their means.

X1 N [0} 2:11 212
’

Let X m N[0,E], or equivalently,

X 0 X X
2 21 22

. . _ z 2 .
where X1 is (lxl), X2 18 (K l)xl, Ell 01 18 (lxl),

. _ I .

£22 18 (K-l)x(K-l), and £12 - 221 IS lx(K-l).

Note that 212 = 221' is the vector of (K-l) covariances:

Clj = Cov(xlt,xjt); j = 2, 3, ... ,K.

Under these conditions,

X m NEG, 2 l;l 1; X2 m NEG, 2
ll 22

and the conditional density of X2 given X1 is

-1 —1

N[221211 X1’ 2:22 ’ 221211 212] ‘
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The first moment of this conditional distribution is the

set of K—l conditional expectations:

C12

H(thlxlt) : O 2 Xlt = C2X11-

1

C

_ l3 -

E<x3tlxlt) ’ 2 Xlt ' C3Xlt

1

C

_ lK _

E<XKt|Xlt) ’ O 2 Xlt ‘ Clet

1

uIf the joint distribution is Normal, then covariance

stationarity implies strict stationarity.
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APPENDIX 3

PROOF THAT ORDINARY LEAST SQUARES ESTIMATION

YIELDS THE APPROPRIATE ESTIMATE

Here we will show that Ordinary Least Squares

estimation of the misspecified system yields a parameter

estimate with an expected value identical to 8* in equations

(3.5) and (3.6).

Let X and 8 be partitioned as follows.

8

TxK Txl Tx(K-l) le B2 (K'1)X1

In this case, equation (3.2) becomes

Y = x3 + e

B
_ 1
- [X1 X2] [-52]+ E

: X181 + X282 + 5

We estimate the following misspecified system.

: 5': 3'; =

Y X18l + e where 6 X282 + 8

Ordinary Least Squares estimation yields the following.

A -1
' '

-1 _
' t + +(Xle) Xl[xlBl X282 5]
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-1 — -1
: + ' ' + ' '81 (Xle) XlX282 (Xle) Xle

E[8 J = a + (x'x )‘lx'x E
l l l l l 2 2

T
2 _ 1 2

Note that Cl — T 2 x11:

t-l

_ l '
- T(X X1)

Thus (x'x )'1 = [To 21'1 = _l.
l l l T 2

o

l

T

Furthermore o . = Cov(x x ) = l X x x.
’ lj lt’ jt T t=l lt jt

_ l '
- T [X1X2]lj

I = -
Thus XlX2 T[ol2 013 ... 01K]

Substituting these into the expected value of our least

squares estimate, we get the following.

A

-1 _
: I v

E[Bl] 81 + (xlxl) x1x282

_ 012 °13 O11<

‘ 81 + 2 2 ' 2 [82]
C U U

1 1 1

: 81 + C2B2 + C383 + + CKBK



CHAPTER IV

AN EVALUATION OF THE COMMERCE DEPARTMENT

LEADING INDICATORS

Introduction
 

The huge amount of effort exerted toward developing

the Commerce Department leading indicators has resulted in

the current Composite Index of Leading Indicators (CLI).

This index represents the fifth complete reworking of the

indicator selection. The first was compiled by Burns and

Mitchell in 1938, the second and third by G.H. Moore in

1956 and 1960, the fourth by Moore and Shiskin in 1967, and

the fifth by the Commerce Department in 1975 (see references

[17], [H7], and [75].

The CLI is constructed from the following twelve

series which have been evaluated as the "most useful"

leading indicators, given the Commerce Department's scoring

procedure.

Business Conditions Digest Series 1 (BCDl): Average

Workweek of Production Workers, Manufacturing

BCD3: Layoff Rate, Manufacturing

BCD8: Value of Manufacturers' New Orders for

Consumer Goods and Materials

BCD12: Index of Net Business Formation

75
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BCD19: Index of Stock Prices

BCD20: Contracts and Orders for Plant and Equipment

BCD29: Index of Housing Starts

BCD32: Vendor Performance

BCD36: Change in Inventories on Hand and on Order

BCD92: Percent Change in Sensitive Prices (PPI of

Crude Materials)

BCDlOH: Percentage Change in Total Liquid Assets (M7)

BCD105: Real Money Supply, Ml

First the monthly data is standardized so that each

series displays the same average absolute monthly change.

This makes it possible to combine series with different

units of measurement.

Next these standardized series are combined into a

weighted average, with the weights reflecting the overall

performance scores of each component series as a cyclical

indicator. The score for a given series depends on its

economic significance, statistical adequacy, cyclical timing,

conformity to business cycles, smoothness, and currency

(how quickly the data are available). The weight given to

each series is the ratio of the performance score of that

series to the average of the scores of all series in the

CLI ([5], [33]).

Finally this weighted average is subjected to a

"reverse trend adjustment." Here the trend of the weighted

average is made to equal the trend of the Composite Index

of Coincident Indicators (CCI). This trend can be viewed
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as a linear approximation to the secular movement in

economic activity. The rationale for this reverse trend

adjustment is as follows. Many of the twelve series listed

above relate to changes or percent changes in output, prices,
 

or monetary aggregates rather than levels, and thus display

no significant trend. Hence the weighted average of leading

indicators constructed in the first two steps displays many

small declines which are not indicative of a coming drop in

the CCI. Reverse trend adjustment is intended to overcome

this difficulty ([33], [3M], [37], [68]).

The series resulting from these three steps is the

CLI.

Critique of the Commerce Department Approach to Leading

Indicators
 

In Chapter II we developed a theoretical framework

for leading indicators. It is important to examine whether

the leading indicator approach of the Commerce Department

outlined above,is appropriate in the context of our work

in Chapter II.

Is there a theoretical framework justifying the

above construction of the CLI?

This point was examined empirically as early as

1957 by John E. Maher [H0] and again in 1973 by Saul Hymans

[37]. They each ran a multiple regression of the CCI on

the components of the CLI, to see if the resulting coeffia

cients resembled the weights imposed on the twelve series



78

in the Commerce Department construction. Their results

showed three leading indicator series with insignificant

coefficients, and five more with coefficients of the wrong

sign.

In all fairness to the Commerce Department approach,

it should be noted that this regression equation does not

represent a behavioral relation. Hymans clearly states

that it is "merely an exercise in curvevfitting, or — at

best - some kind of pseudo reduced form equation." Hence,

this exercise is not an appropriate test for the existence

of a theoretical framework underlying the Commerce Depart—

ment approach.

A further criticism which has been used in defense

of the Commerce Department approach, is that such a

regression equation examines the relationship between leading

indicators and the measure of economic activity at all

points intime. It is claimed that the Commerce Department
 

is only concerned about the lead of an indicator just prior

to true turning points in the economy, and does not worry

about the interim periods ([30], [37]).

Hence, "the CLI is alleged to be constructed so as to

maximize the use of the turning point information contained

in the component leading indicator series. The statement

that a turning point in economic activity is typically

preceeded by a turning point in many of the component series

of the CLI, is not meant to imply direct causality. If it

did, one would attempt to estimate a behavioral or
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technological relation that could be expected to hold outside

the sample, that would have directly interpretable coeffi—

cients, and so on. Rather, the statement implies something

about the process through which those forces that do lead

to turning points Operate within the structure of the U.S.

economy" ([37)].

If these statements constitute the best defense of

the Commerce Department leading indicator approach, then it

seems that there is no explicit, quantifiable theoretical

framework underlying the approach. Instead, promoters of

the approach rely on stories about the trade cycle which

suggest reasons why many of the component leading indicator

series might turn down before economic activity.

These arguments would pp: justify the Commerce

Department approach in the light of our Chapter II. There

must be an explicit theoretical framework, expressable in

terms of a system of structural dynamic equations, for our

approach to be applicable.

Furthermore, the common argument that these series

should only be expected to consistently lead economic

activity at true turning points, suggests a significant

weakness in their value as forecasters.‘ If we had an

indicator or an index of indicators which was successful at

predicting £323 turning points and of no predictive value

at any other time, it would be useful. However, it is

difficult to imagine relying on such an indicator to predict

a downturn which has not yet occurred! It seems that at
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best, this indicator would be useful in an expost role,

verifying that a downturn has already occurred. In fact,

Julius Shiskin and G.H. Moore have admitted that the

Commerce Department approach has only been useful in such

an ex post role ([17], [2H], [37], [H8], [H9], [50], [52],

[65], [68]).

In any case the existing CLI has not met with great

success, nor has any of its components alone, nor has any

of the other eighteen series classified as leaders by the

Commerce Department ([12], [17], [18], [21], [22], [2H],

[28], [29], [30], [31], [33], [3H], [37], [39], [H3], [59],

[67], [72]). The leading indicators have displayed small

average leads (only two of the thirty leading indicators

have an average lead at true turns of more than five months

[22]), and their lead times have varied greatly from cycle

to cycle. In addition, they have often signalled false

downturns. Understandably, the CLI has exhibited the same

problems. Though it has not failed to signal a true down-

turn since World War II, it has displayed lead times which

have varied greatly, and it has signalled many false downv

turns ([3], [22], [3H], [37], [HH], [70]). These problems

make the Commerce Department leading indicator approach

quite unreliable as a useful predictor of business cycle

turns.
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Empirical Evaluation
 

Given the above arguments in the ongoing debate

concerning the Commerce Department leading indicators, a

more extensive examination of the relationships between

these indicators and the level of economic activity is in

order.

Here we consider eight single—input transfer function

models with the Industrial Production Index (I.P.) as output,

and with one of the leading indicator series used in the CLI

as input. This technique allows the data to inform us about

the extent and the form of the relationship between each

leading indicator and I.P., as well as the average lead

involved in the relationship at each point in time.

The first step in this analysis is to identify and

fit the univariate [UKDMX model appropriate for each leading

indicator. These models are used to prewhiten the time

series in each transfer function. This prewhitening

procedure transforms each input into a series of innovations

which presumably contains the information relevant to that

leading indicator that is not "explained" by previous

observations of the indicator. This series of innovations

is compared with the corresponding series of innovations

created by applying the same prewhitening transformation to

the output, I.P. The cross-correlation between these two

series provides us with information describing the relationv

ship between the input and the output, and hence, the form
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of the transfer function.

In working with this technique, data which is not

seasonally adjusted is required on all the time series

involved. The time series methods applied, effectively do

theor own seasonal adjustment in building the transfer

function models.

This has presented a problem in collecting our data

on the leading indicators. Though the numbers are readily

available in the Business Conditions Digest, all but two of

the twelve series we need appear in seasonally adjusted form.

The search for the numbers in unadjusted form has produced

just eight of the twelve leading indicators. Consequently,

our analysis centers on these eight leading indicators.

The univariate models for these eight leading

indicators are reproduced in Table IVPl.

To examine the stability of these models, we split

the sample of each model into two relatively equal sub—

samples, and reeestimate. In most cases the new parameter

estimates remain within one standard deviation of the

original estimate from the model with the entire sample.

The new x2 statistics and Residual Standard Errors (RSE's)

also generally remain close to the corresponding figures

from the model with the entire sample. Furthermore, the

sum of squared residuals (SSE) for the estimated models in

each subsample, generally amount to approximately 50 percent

of the SSE of the model with the entire sample. All these

observations suggest a high degree of stability!
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TABLE IV—l

UNIVARIATE MODELS FOR THE COMMERCE

DEPARTMENT LEADING INDICATORS

[The number below each parameter estimate is its standard

error.]

 

BCDl: Average Workweek

Sample: l9H7 - September, 1979: n = 393.

 

(u.1> (l-B12)(l-B)log(zt) = (l-.21188)(1v.82089812)at

(.05) (.033)

X28 = 3u.7 RSE = .007u

—2 (RSE)2 ( 007H)2
R = 1 "' 7-2—— = 1 " ‘ 2 = .1457”

Goutput (.0100H6)

where o is the standard error of
output

(1-812)(l-B)log(zt).

BCD3: Layoff Rate

Sample: 19H7 — August, 1979: n = 392.

12

 

(u.2) (l-Bl2)(l-B)log(zt) = <1-.710953 ) at

(.037)

2 _ _
x29 - 33.5 RSE — .167H

—2 ( 167H)2
R = l n '° .3157

(.20236)2



8H

TABLE IV—l (cont'd.)

 

BCD8: Value of Manufacturers‘ New Orders

Sample: 1958 ~ May, 1979: n = 257

 

(0.3) (l-Blz)(l-B)log(zt) = (1..09590312)at

(.0H8)

2 _ _
x29 — 26.3 RSE - .0355

—2 < 0350)2
R = l - ' 2 = .3107

(.0H2878)

BCD19: Index of Stock Prices

Sample: 19H? - October, 1979: n = 39H.

 

 

(0.0) (l-.2186B)(l-Bl2)(l-B) log(zt) = (l—.8216Bl2)at

(.051) (.030)

X28 2 30.7 RSE = .0353

—2 ( 0353)2
R = 1 — ' 2 = .0113

(.0H6007)

BCD29: Index of Housing Starts

Sample: 1959 — August, 1979: n = 2H8.

(0.5) (1-B12)(1-B)log(zt) = (l-.2H912B+.30H7882

(.005) (.007)

+ .19372135 — .5952512)at

(.0H5) (.0H8)

2 - _
X26 _ 07.1 RSE - .0895

—2 ( 0895)2
R = 1 - ‘ = .3529

(.11213)2
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TABLE IV-l (cont'd.)

 

BCD32: Vendor Performance

Sample: 19H7 — October, 1979: n = 39H.

 

(0.6) (l-.2992B + .069287 + .1559B1u)(l-B12Xer)log(z )

(.050) (.050) (.008) t

= (1—.6600812)at

(.0H0)

2
x = z26 39.2 RSE .125

—2 ( 125)2
R = l — ° = .H725

(.17211)2

BCD92: Percent Change in PPI of Crude Materials

Sample: February, l9H7 - August, 1979: n = 391.

(0.7) (l-.3756B — .2H0583)(l-812)(l-B) log(zt)

(.0H9) (.0H6)

= (l-.1H68B2 — .7331812 + .099Blu)at

(.056) (.037) (.055)

X2 = 38.5 RSE = .0157

2
R2 = l _ (.0157) 2 : .H732

(.021631)

 

BCD105: Real Money Supply (Ml)

Sample: 19H? - September, 1979: n = 393.

(0.8) (l-.20358)(l-812)(1-B) log(zt)

(.052)

= (1 + .1905883 _ .56297812)at

(.003) (.000)

2
x = =27 33.0 RSE .0059

2
R2 = 1 _ (.0059) = .2936
 

(.00702)2
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Two mild exceptions to the stability described above

appear in the models for Housing Starts (BCD29) and

Producer Prices (BCD92). Observe that these models are

more complicated than the surprisingly simple models which

describe the other leading indicators. The problem with

both of these series is that the model parameter estimates

vary somewhat more in the subsamples. Though some of the

parameter estimates remain within one standard deviation

of the estimate for the entire sample, others move outside

this band of one standard deviation, and a few move outside

the (23) confidence band. However, both of these models

have the redeeming qualities that the X2 statistics and the

RSE's are quite robust, and the SSE‘s for the subsamples

constitute close to 50% of the SSE for the entire sample.

Furthermore, the £23m of each of these models remains

appropriate in all subsamples considered.

It is not surprising that these two models are the

least stable. Housing starts have been subject to the whims

of Regulation Q enforcement; and the PPI since 1973 has

been subject to some degree to the whims of OPEC pricing.

In light of these facts, it is remarkable that these series

behave as well as they do.

The extent of the stability of these eight models

is fairly amazing, given their simplicity, the length of

the sample period, and the volatility of many of the leading

indicator series.

With these univariate models established, we can
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examine the cross-correlation function between the pre—

whitened input and the prewhitened output of each of our

eight transfer functions. In so doing we obtain information

about the form of the transfer functions under considera-

tion. With this information, we proceed to the estimation

stage and finish building our eight models, which are

displayed as equations (H.9) through (H.16) in Table IVw2.

To examine the stability of these models, we split

the sample of each into two relatively equal subsamples and

re-estimate. The resulting parameter estimates appear

directly beneath those for the entire sample, for each of

our eight models in Table IV—2. Examination of the parav

meter estimates of these subsamples indicates that our

models are quite stable. A study of the diagnostic checks

for each model supports this finding.

We conclude that the models adequately represent the

bivariate relationships between each of the eight leading

indicators under consideration and Industrial Production.

We are interested in the impulse response function

implied by each of our models. These eight functions are

listed and plotted in Figures (H.l) through (H.8). We

would like to compare these eight functions in order to

make some evaluation about the strengths and weaknesses of

each in the role of leading indicator. However since the

inputs are not all measured in the same units, and since

each input behaves differently (in particular, since each

input has a different standard error), this comparison
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TABLE IV—2

BIVARIATE MODELS FOR THE COMMERCE

DEPARTMENT LEADING INDICATORS

 

 

  

 

yt = BCDH7 Index of Industrial Production

(i) xt = BCDI: Average Workweek

Sample: January, l9H7 — September, 1979 (n: 393)

12 mo 12
(H.9) (l-B )(l-B)log(yt) I:EI§ (l-B )(l—B)log(xt)

12

+ (1-812B )at

w = 1.0260 61 = .6777 012 = .7H62

O (.079) (.036) (.035)

2 _ -
x”, — 60.7 R58 _ .0117

r 2 1

R2 = l _ AéRSE)

0output

2

= l _ (.0117) 2 : .652H

L (.0198H6) ,

Sample: January, 19H7 — April, 1963 (n = 196)

w = 1.2599 61 = .6098 012 = .7670

(.133) (.056) (.053)

2 - _
x“, — 00.0 RSE — .0136

—2 ( 0136)2
R = l — ° = .530H

(.0198H6)2
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TABLE IV—2 (cont'd.)

 

 

Sample: May, 1963 — September, 1979 (n = 197)

mo = .7093 51 = .7099 812 = .7012

(.092) (.008) (.055)

x37 = 57.8 R58 = .0096

—2 ( 0096)2
R : l — ° 2 3 .7660

(.019805)

(ii) xt = BCD3 Layoff Rate

Sample: January, l9H7 - August, 1979 (n = 392)

w -w B

(0.10) (l-Blz)(l-B)log(y ) = —O—l—(l-B12)(l-B)log(x )
t 2 t

1-62B

12
+ (1-012B )at

w = -.0300 ml = 0315 52 = .5927 912 = .7565

O (.003) ( 003) (.005) (.035)

x37 - 56.0 RSE = .0116

R2 = .6580

Sample: January, 19H? - April, 1963 (n = 196)

w = -.0381 w = .0331 5 = .5569 e = .7609

O (.005) l (.005) 2 (.065) 12 (.053)

X07 = 08.5 R58 = .0139

R2 = .5090

Sample: May, 1963 - August, 1979 (n = 196)

w =-.0299 ml = .0261 52 = .6597 912 = .7095

(.00H) (.00H) (.062) (.058)

X07 2 02.9 R58 = .0096

R2 = .7660
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TABLE IV-2 (cont'd.)

 

(iii)

(0.11)

(iv)

(H.12)

xt = BCD8 Value of Manufacturers' New Orders

Sample: January, 1958 - May, 1979 (n = 257)

w -w B

(1-812)(l-B)log(y ) = —9—4l— (1-812)(l-B)log(x )
‘t 2 ‘t

1-62B

12

+ (1-8128 )at

w = .2396 w = —.0865 6 = .3H71 0 = .695H

0 (.019) l (.018) 2 (.062) 12 (.009)

x39 = 39.1 R58 = .0103

R2 = .7306

Sample: January, 1958 - December, 1969 (n = lHH)

w = .2306 ml 3 -.0731 62 = .3175 012 = .6H9H

(.027) (.026) (.102) (.072)

x39 = 02.2 R58 = .0116

R2 = .5580

Sample: January, 1970 - May, 1979 (n 113)

w = .2616 ml = -.102H 62 = .3852 012 = .7353

(.026) (.025) (.076) (.079)

x39 = 25.2 R58 = .0091

R2 = .7897

Xt = BCD19 Index of Stock Prices

Sample: January,l9H7 - October, 1979 (n = 39H)

(1-812)(1-B)log(y ) = ——9——82(1—812)<1-8)1og(x )
t 1-618 t

1-0 B12
+ 12 a

l-¢lB t

w = .0670 51 = .8155 812 = .7902 *1 = .2739

(.015) (.059) (.032) (.051)

x35 = ”5.6 R58 = .0132

R2 = .0020
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TABLE IV-2 (cont'd.)

 

(v)

(0.13)

Sample January, 1907 - May, 1963 (n = 197)

6 = .0961 31 = .6903 812 = .8007 $1 = .2931

(.031) (.101) (.006) (.070)

2 _ _
X06 35.8 R58 — .0159

R2 = .3581

Sample: June, 1963 - October, 1979 (n = 197)

w = .0537 5 = .8919 8 = .7830 g = .1831

O (.012) l (.036) 12 (.051) l (.076)

2 _ _
X06 38.5 R58 — .0103

R2 = .7306

xt = BCD29 Index of Housing Starts

Sample: January, 1959 - August, 1979 (n = 208)

(l-Blz)(l—B)log(yt)
2

wOB9(1-Bl )(l—B)log(xt)

 

1-8 812
+ 12

at
l—¢lB

w = .0172 812 = .5908 *1 = .3797

(.007) (.056) (.050)

X06 = 37.2 R58 = .0120

I R2 - .6096

Sample: January, 1959 - April 1969 (n = 120)

w = .0278 012 = .0052 61 = .2569

(.012) (.09H) (.100)

2 _ _

XL,6 — 32.7 RSE - .0130

R2 = .5001
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TABLE IV-2 (cont'd.)

 

 

(vi)

(0.10)

Sample: May, 1969 - August,l979 (n = 120)

A A A

w = .0125 612 : .6539 $1 = .5031

(.096) (.082) (.090)

2 _ _
X06 — 39.0 R58 - .0121

R2 = .6283

xt = BCD32 Vendor Performance

Sample: January, 1907 - October,l979 (n = 390)

(L)

(1-812)(l-B)log(y ) = ~—9—— 82(1—812)(1—B)log(x )
t 1-618 t

1—0 812

+ _11121__

1-¢ B at
1

w = .0180 61 = .7551 912 = .7811 ¢1 = .2770

(.000) (.078) (.033) (.052)

x36 = 05.0 R58 2 .0133

R2 = .5509

Sample: January, 1907 - May, 1963 (n = 197)

w = .0163 61 = .8625 912 = .8061 ¢3 = .2800

(.005) (.072) (.050) (.070)

2 _ -
x£46 - 30.9 R58 - .0160

R2 = .3500

Sample: June, 1963 - October, 1979 (n = 197)

0) = .0279 §_= .0870 812 = .7775 01 = .2138

(.008) (.176) (.051) (.079)

2 _ -
X06 - 03.2 R58 - .0105

R‘ = .7107
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TABLE IV—2 (cont'd.)

 

 

(vii) xt = BCD92 % Change in PPI of Crude Materials

Sample: January, 19H? - August,l979 (n = 392) 12

1-9 B
12 _ mo 10 12 12

(14.15) (l-B )(l-B)log(yt) - ITO? B (1-B )[Xt]+ 1—¢1B at

w =‘.1062 51 = .7792 912 = .77H7 $1 = .2886

(.033) (.083) (.030) ( 051)

2 _ _
X06 — 37.7 RSE - .0136

R2 = .5300

Sample: January, 1907 - April, 1963 (n = 196)

w = -.0700 61 = .8596 612 = .8051 91 = .3101

(.000) (.096) (.052) (.070)

2 _ _
X05 - 30.5 RSE - .0168

R2 = .2830

Sample: May, 1963 - August, 1979 (n = 196)

A A A

w = -.1965 6 = .5052 8 = .6689 0 = .1595

O (.009) 1 (.105) 12 (.060) l (.079)
2 _ - .

X06 - 00.7 R58 — .0107

R2 = .7093

(viii) xt = BCD105 Real Money Supply - M1

Sample: January, 1907 - September, 1979 (n = 393)

(L)

(0.16) (1-812)(1-B)log(y ) = —°— 85(1-812)(1—B)log(x )
t 1-618 t

1-812812

+ ———————— a

1-018 t

Q = .3267 31 = .6511 612 = .7960 ¢1 = .3029

(.109) (.153) (.033) (.050)

2 _ _
X05 - 06.8 R58 - .0136

R = .530H
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TABLE IV-2 (cont'd.)

 

Sample: January 1907 - May, 1963 (n = 197)

w = .3055 01 = .5018 012 = .8055 01 = .3717

(.177) (.333) (.008) (.072)

X36 = 36.8 R58 = .0160

R2 = .3171

Sample: June, 1963 — September, 1979 (n = 196)

w = .3378 6 = .7123 0 = .6881 ¢l = .2578

O (.103) l (.151) 12 (.059) (.076)

2 _ - _
X06 - 35.5 R58 - .0111

—2
R = .6872
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FIGURE 0.1

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
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FIGURE 0.2

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
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FIGURE H.3

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]

= BCD8 Value of Manufacturers' New Orders
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FIGURE 0.0

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]

xt = BCD19 Index of Stock Prices
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FIGURE 0.5

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]

xt = BCD29 Index of Housing Starts
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FIGURE 0.6

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]

xt = BCD32 Vendor Performance
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FIGURE 0.7

GRAPH OF IMPULSE RESPONSE WEIGHTS [vk]
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5 XXXXXXXXXXXXXX .326655E+00
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31 X .066971E-05
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”1 x .639596E-07

”2 x .016055E-07

”3 x .2711628-07
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”5 X .110961E-07

”5 X .708538E-08

“7 X .087389E-08

”8 X .317309E-08
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cannot be made with the functions listed in Figures (0.1)

through (0.8). We need to transform the impulse response

weights in each function into beta coefficients in order

to make this comparison.

Comparison With Beta Coefficients
 

To illuminate this requirement, consider an illustrae

tion. The impulse response weights in these figures are

analagous to regression coefficients, such as "6" in the

following model.

Suppose the true model is

Y = a + bX + 8

Then suppose the line minimizing the sum of squared errors

(the Ordinary Least Squares regression line) is

Y = a + bX

Then Y = a + bX + e

A

where e represents the residuals of the regression.

The regressed line will pass through the point, (X,Y).

i.e. Y = a + bX

From this it follows that

 

 

Y .. Y : b(X -- Y) + e

or O Y,: Y = bO XA- X + e

 

 

_ A0 _

or [Y-Y] : bl[XA'X]+X€3—

C
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In this last equation the input and the output are

A O

standardized. [b :3] is the beta coefficient, which measures

0

the relationship btheen the standardized input and the

standardized output. Observe that it is obtained by

multiplying the regression coefficient, 6, by the ratio of

the standard deviation of the input to the standard

deviation of the output. It can readily be compared with

the beta coefficient Of any other similar regression in

which the input and output are standardized.

We can transform the impulse response weights in

each of our functions listed in Figures 0.1 through 0.8

into beta coefficients, by simply multiplying each

goefficient in each impulse response function by the ratio,

Q

75, relevant to that particular model. This is done in

O
y

Figures 0.9 through 0.16. In these eight figures the

, magnitude of the relationship between each leading indicator

and Industrial Production can be readily compared.

Implications
 

Upon examining these figures, we are immediately

struck by a distinct fault which characterizes five of the

relationships: the lack of any substantial lead. These

series are hailed by the Commerce Department as leaders,

which suggests that current movements in each indicator

Should be consistently followed by movements in economic

activity after some lag. They are developed with the

expressed purpose of providing information about future
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FIGURE H.9

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

Xt = BCDl Average Workweek

The figures are obtained by multiplying the 09 weights in

Figure 0.1 by ~0100”5 .

.019806

The standard error of the series, (l—Blz)(l-B)log(x ), is

.0100H6. t

The standard error of the series, (1-812)(1-B)log(y ), is

.019806. . t

' .25 . 0. .25 .5

(k)+++++++++,+++++++++.+++++++++,+++++++++,+++++++++ VALUES

0 XXXXXXXXXXXXXXXXXXXXXX .519380E+00

l XXXXXXXXXXXXXXX .351982E+00

2 XXXXXXXXXX .238536E+00

3 XXXXXXX .161655E+00

H XXXXX .109522E+00

5 XXX .7H2H30E-01

6 XXX .503101E-01

7 XX .300976E-01

8 XX .231077E-01

9 XX .156600E-01

10 X .106127E-01

11 X .712916E-02

12 X .087008E-02

13 X .330263E-02

10 X .223852E-02

15 X .151703E-02

16 X .102808E-02

17 X .696725E—03

18 X .072167E-03

19 X .319985E-03

20 X .216852E-03

21 X .106959E-03

22 X .995930E-00

23 X .670939E-00

20 X .057002E-OH

25 X .309979E-OH

26 X .210071E-0H

27 X .1H236HE-0H

28 X .960793E-05

29 X .653835E-05

30 X .003099E—05

31 X .300280E-05

32 X .203502E-05

33 X .137912E—05
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FIGURE H.9 (cont'd.)

-.25 0. .25 .5

(k) +++++++++ .+++++++++ ,+++++++++ , +++++++++ ,+++++++++ VALUES

30 X .9306238-06

35 X .5333908-06

36 X .0292008-06

37 X .290896E—06

38 X .1971398-05

39 X .1336008-06

00 X .9053958-07

01 X .613583E-07

02 X .015822E-07

03 X .281800E—07

00 x .190970E-07

05 x .1290228—07

05 X .877080E-08

07 X .5903988-08

08 x .002819E-08
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FIGURE 0.10

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

x = BCD3
t

Layoff Rate

The figures are obtained by multiplying the 09 weights in

Figure 0.2 by -20235 .

.019806

The standard error of (1-812)(1—B)log(xt) is .20236, and

the standard error of (l-B12)(l-B)1og(yt) is .019806
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.658391E-03
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.390230E-03
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FIGURE 0.10 (cont'd.)

-.5 0.
(k)+++++++++,+++++++++,+++++++++,+++++++++,+++++++++ VALUES

39 x -.155159E-00

00 X -.1002708-00
01 x -.919633E-05

”2 x -.590302E-05

”3 X -.505068E—05

00 x -.352200E—05

”5 X -.323062E-05

”6 x -.208775E-05

07 X -.191079E-05

08 X -.1237018-05
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FIGURE 0.10 (cont'd.)

-.5 0.

(k)+++++++++,+++++++++,+++++++++,+++++++++,+++++++++ VALUES

39 x —.155159E—00

00 x -.100270E-00

01 x -.919633E-05

02 X -.590302E-05

03 X -.505068E-05

00 X -.352200E-05

”5 x -.323062E-05

06 X -.208775E—05

07 X -.191079E-05

08 X -.l23701E-05
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FIGURE 0.11

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

xt = BCD8 Value of Manufacturers' New Orders

These figures are obtained by multiplying the H9 weights in

Figure 0.3 by .

.019806

The standard error of (1-812)(1—B)log(xt) is .002878, and

the standard error of (l-Blz)(l-B)log(yt) is .019806

—.25 0. .25 .

QJ+++++++++,+++++++++.+++++++++,+++++++++,+++++++++ VALUES

6 XXXXXXXXXXXXXXXXXXXXX .5176258+00

l XXXXXXXX .1868568+00

2 XXXXXXXX .179660E+00
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5 XX .225102E-01

6 XX .216030E-01

7 X .7813008-02

6 X .751212E-02

9 X .271178E-02

10 X .260736E-02

11 X .9012208-03

12 X .900975E-03

13 X .326680E-03

1” X .3101058-03

15 X .1133888-03

16 X .10902lE-03

17 x .393552E-00

18 X .3783968-00

19 X .1365968-00

20 X .131330E-00

21 X .0701058—05

22 X .055809E-05

23 X .l60556E—05

2” X .1582198-05

25 X .5711098-06

26 X .5091568-06

27 x .1982388-06

23 X .190600E-06

29 X .6880558-07

30 X .6615608-07

31 X .2388158—07

32 X .229617E-07

33 X .8288908-08

3” X .7969708-08

35 x .287695E-08

36 X .2756168-08

37 X .998506E-09
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FIGURE 0.11 (cont'd.)
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FIGURE 0.12

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

Xt = BCD19 Index of Stock Prices

These figures are ogtained by multiplying the 09 weights in

Figure 0. 0 by _______

.019806

The standard error of (l- 81:)(1- B)log(xt ) is .006007, and

the standard error of (1-812)(l— B)log(y:) is .019806
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FIGURE 0.12 (cont'd.)
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FIGURE 0.13

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

xt = BCD29 Index of Housing Starts

These figures are obta§ned by multiplying the 09 weights

in Figure 0. 5 by ________

.019806 12

The standard error of (1-B )(1—B)log(xt) is .11213, and

the standard error of (1-812)(l—B)log(yt) is .019806
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FIGURE 0.13 (cont'd.)

-, 0. .25 .5

G<)+++++++++,?+§L+++++++,+++++++++ . +++++++++ , +++++++++ VALUES

38 X 0

39 X 0

00 X 0

01 X 0

02 X 0

03 X 0

00 X 0

05 X 0

06 X 0

07 X 0

08 X 0
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FIGURE 0.10

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficientS]

xt = BCD32 Vendor Performance

These figures are obtained by multiplying the 09 weights

in Figure 0.6 by ~17211 .

.019806

The standard error of (l-Blz)(l-B)log(xt) is .17211, and

the standard error of (l-B12)(l—B)log(yt) is .019806
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FIGURE 0.10 (cont'd)
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FIGURE 0.15

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta coefficients]

xt = BCD92 % Change in PPI of Crude Materials

These figures are obtained by multiplying the 09 weights in

Figure 0.7 by -021531 .

.019806

The standard error of (1-812)[xt] is .021631, and

the standard error of (l-Bl2)(l-B)log(yt) is .019806
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FIGURE 0.15 (cont'd)
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FIGURE 0.16

GRAPH OF IMPULSE RESPONSE WEIGHTS [Beta Coefficients]

xt = BCD105 Real Money Supply - Ml

These figures are obtained by multiplying the 09 weights in

Figure 0.8 by 2

.019806

The standard error of (l- 81:)(1-B)1og(xt ) is .00702, and

the standard error of (1-812)(1-B)log(y:) is .019806.
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FIGURE 0.16 (cont'd.)
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movements in economic activity. Furthermore, they are

deemed useful in forming and implementing monetary and

fiscal policy decisions aimed at stabilizing economic

activity.

To be truly useful in such a role, a leading

indicator should Show a consistently long lead over

Industrial Production. How long should this lead be? There

are various decision rules about evaluating when a turning

point occurs in any of these series. A common rule

"accepted" at this time states that a series has experienced

a turning point if a succession of increases (or decreases)

is followed by three successive decreases (or increases).

With this decision rule, a leading indicator must certainly

show a consistent lead of more than three months over economic

 

activity, if it is to be of any value in forecasting a

turning point in economic activity.

According to this rule, the recognition lag of a need

for stabilization policy action will be three months

(provided that the decision rule is followed). After this

lag there will be an action lag and an outside lag before

policy actions actually have a desired effect on economic

activity. The action lag could be extremely long itself

if fiscal policy is the desired tool, given the inertia of

the Congressional decision-making process. The action lag

could be relatively short if monetary policy is implemented.

There has been much debate about the length of the outside

lag in our economic system, though there is general
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agreement that it extends at least over several months.

In this light we see the need for leading indicators

to display leads which are several months longer than the

three months necessary to recognize a turning point. From

Figures 0.9 througthlB we see that BCDl, BCD3, and BCD8

show no lead at all over Industrial Production. BCD19 and

BCD32 display leads of just two months each. BCD105, the

Real money supply, has a lead of five months, which may not

be long enough to be very useful in the role desired, though

it is much better than zero or two months. BCD29, the Index

of Housing Starts, has a lead of nine months, which

suggests that it may supply useful information as a leading

indicator.

Finally, the leading indicator with the longest lead

of the eight considered is BCD92, the % change in the PPI of

Crude Materials. Its impulse responSe function implies that

a sustained 1% increase in (the seasonal difference of) the

growth rate of the PPI will be followed by a decrease of

about one tenth of 1% in (the seasonal difference of) the

growth rate of Industrial Production after ten months, and

further decreases in the following months. This negative

relationship could reflect a movement along some demand curve,

and thus follows our economic intuition. It is remarkable

to note, however, that the Commerce Department uses this

leading indicator in a positive role in the CLI [See the

Handbook of Cyclical Indicators, pages 2, 3, 61.]. That is,

BCD92 is used by the Commerce Department as if an increase
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in the PPI were consistently followed by increases in

Industrial Production. Our model in equation (0.15) and

Figures 0.7 and 0.15 suggests that this is an inappropriate

use of BCD92!

It is important to note that this same negative

pattern is implied by the estimated coefficients for the

sample period ending in 1963 [See Table IV-2, (vii)]. This

indicates that the negative relationship is quite stable,

rather than just a phenomenon of the "supply shocks" in the

early 1970's.

Given all these considerations, we are left with just

two of these eight leading indicators whicfilshould contribute

positively to the CLI, as constructed by the Commerce

Department: BCD29, the Index of Housing Starts, and BCD105,

the Real money supply - M1.

Conclusions
 

The Commerce Department construction of the CLI is not

backed by an appropriate theoretical framework, as outlined

in Chapter II.

Furthermore, our study indicates that five of the

eight leading indicators considered display empirical

relationships with Industrial Production which do not reflect

the characteristics of a good leading indicator. They Show

no significant lead time. This suggests that these five

series may not merit the status given them by the Commerce

Department. Their qualifications for the role of leading
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indicator appear to be lacking.

Three of the eight series considered display empirical

relationships with Industrial Production which do reflect the

characteristics of a good leading indicator: BCD29, BCD92,

and BCD105. However, BCD92, the % change in the PPI of Crude

Materials, proves to have a negative empirical relationship

with Industrial Production, while the Commerce Department

uses it in a positive role in the CLI. This leaves BCD29 and

BCD105 which appear to be the only leading indicators of the

eight considered, which might contribute positively to the

Commerce Department's CLI.

Given these observations, it is not surprising that

the Commerce Department's leading indicator approach has been

so unreliable. The question that remains is why so much

effort has been, and continues to be, spent on its development

and use in a predictive role. It seems clear that it will

continue to be relied upon in its ex post role of verifying

that turning points in economic activity have already taken

place. Our study suggests that at best, it should be limited

to this role.



CHAPTER V

MONEY AS A LEADING INDICATOR

Introduction
 

A huge literature exists on the role of Money in an

economy, and its relationship to real GNP. Under the current

state of thought toward Monetary Theory, what kind of

relationship might we expect to see between Money and real

GNP?

Friedman describes the adjustment of nominal income

to Monetary shocks in the context of a system of simultan-

eous differential equations.1 This system is an attempt

to explain (a) the short run adjustment of nominal income

to a change in autonomous variables; (b) the short run

division of a change in nominal income between prices and

real output; and (c) the transition between this short run

situation and long run equilibrium.

In this framework it is suggested that anything

which produces a discrepancy between the nominal quantity

of Money demanded and the quantity supplied, or between

their rates of change, will cause the rate of change in

nominal income to depart from its anticipated (permanent)

value. In general form,

125
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* s d
dY _ dY dM dM s d

(a) aft- - f[(a{:‘) , —(—1_'E— , dt , M , M]

where Y = Py = nominal income,

P = the price level, y = real GNP,

M8 = Money Supply,

M(:1 = nominal amount of Money demanded,

and a * denotes the anticipated (or "permanent")

value of that variable.

A linearized version of (a) might be:

* s d
dlogY _ dlogY dlogM dlogM

' —_—_— _

(‘3) dt ' ( dt ) + W dt dt ]

 

+ ¢(logMS - logMd)

Next, the division of a change in nominal income

between prices and output depends on two major factors:

anticipations about the behavior of prices, and the current

level of output compared with its full employment (permanent)

level. We can express this in general form as:

,7, it

dP _ dY dP dy ,

at ‘ gE'd—F’(EF)’(EF)’Y’YJ

(b)

dy dY dP * dy *

at = “a? (at) 3 (a) ’Y’ V”

where the form of g and h must be consistent with the

identity, Y = Py.

A linearized version (If (b) might be:
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difigP : (difigP) + “Edifigy _ (dlwogY) ]

+ Y [logy - logy*]

(b)'

A

  

dlogy : dlogy _ dlogY _ dldoth

dt (—?fiT—) + (1 a)[ dt ( ) *1

Y [logy - logy*]

In their general form, the equations in (b) do not by

themselves specify the path of prices or output beginning

with any initial position. In addition we need to know how

anticipated values are formed. Presumably these are

affected by the course of events so that, in response to

a disturbance which produces a discrepancy between actual

and anticipated values of the variables, there is a feedback

effect that brings the actual and anticipated values

together again. To put this in general terms, we must have:

 [Mm] = jtdldtogpmn ,

[91,12,61hn* = kEMWH ,

(c)

y*(t) = m[y(T)],

P*(t) = n[P(T)],

where t stands for a particular point in time, and T for

a vector of all dates prior to t.

A disturbance of long run equilibrium introduces

discrepancies in the two final terms in parentheses on the
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right hand side of equation (a)'. This will cause the rate

of change in nominal income to deviate from its permanent

value, which through the equations in (b)‘, produces

deviations in the rate of price change and output change

from their permanent values. These will, through the

equations in (c), produce changes in the anticipated values

that will eventually eliminate the discrepancies between

measured and permanent values.

In the context of the above system, consider as such

a disturbance of long run equilibrium, a permanent increase

dlogMS

dt

frame in Figure 5.1 shows the time path of the money stock

in , the growth rate of the Money Supply. The first

before and after such a shock. The second frame shows the

equilibrium path of nominal income.

The slopes of the time paths in these two frames

must be equal, since in equilibrium nominal income will grow

at the same rate as the money stock, given the framework of

Friedman's model. However, the equilibrium path of Y after

this shock will be at a higher level than that of the Money

Stock. This is because part of the increase in dtfiEY w111 

consist of an increase in §%%§E. With this increase in

inflation fully anticipated in equilibrium, it is now more

costly to hold money. As a result there will be a decline

in the real quantity of money demanded relative to income;

i.e. a rise in desired velocity. This rise will be

achieved by a rise in nominal income over and above that

required to match the rise in the nominal quantity of money.
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FIGURE 5.1

TIME PATHS OF NOMINAL INCOME AND ITS COMPONENTS,

AFTER A MONETARY SHOCK
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The equilibrium path of nominal income will be like the

solid line in the second frame of Figure 5.1 rather than the

dashed line.

We are interested in the adjustment process involved

in the above scenario. It is apparent that in order to

produce the shiftimmthe equilibrium path of nominal income

from the dashed line to the solid line, nominal income must

rise over some period at a faster rate than the final

equilibrium rate. That is, there must be an overshooting,

or a cyclical reaction in the rate of change in nominal

income. The third frame in Figure 5.1 summarizes the

various possible adjustment paths of difigY consistent with

 

the theory presented above. The one common feature of all

possibilities is that the area above the (difing line must

 

exceed the area below.

This chapter is concerned with the composition of the

 

path of difigY describing the adjustment to a changeixx

s

(Ql285_) . We want to know how this time path is broken up
dt

into the time paths of 9%figx-and difigp, as expressed in the

 

equations in (b)'. The time path of g%%§X-will reflect the

usefulness of the nominal quantity of Money as an indicator

of real GNP.

One such possible set of time paths consistent with

the equations in (b)' is diSplayed in the last two frames

of Figure 5.1. Note that the vertical sum of these two time

paths is the resulting path of difigY. Further note that in

 

this picture, the time path of gAggy-initially rises,
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following an increase in dififm, but eventually this rise is 

crowded out so that in the long run there is no rise in

9%figl. This reflects a situation in which money is neutral

in the long run.

The remainder of this chapter will examine the

empirical relationship existing between Q%%§l and 9%figfl.

Empirical Examination of the Relationship Between Money and

Industrial ProductIon

The Money Stock Data

In this role, we are concerned with the ability of

money to promote spending in the economy. Hence, an

appropriate definition of money to consider is:

MlB = Currency + Demand Deposits at commercial

banks + Other Checkable Deposits at all

depository institutions including NOW accounts,

ATS, Credit Union draft shares, and Demand

Deposits at Mutual Savings banks.

It is worth noting that this is not the definition which

Friedman would choose, since it excludes most Time Deposits.

However, we feel it is appropriate for the work in this

chapter.

Data on M1 (= Currency + Demand Deposits) is

available beginning with January, 1907. In 1960 and again

in 1962 the Fed changed the definition of Demand Deposits

at commercial banks. In 1960 the data were altered to

include Demand Deposits due to mutual savings banks and
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foreign banks, and to exclude float as well as CIPC.2

These numbers were published from 1907 to 1962, when the

data were further amended to include foreign Demand Deposits

with Federal Reserve Banks and Demand Deposits that banks

in U.S. territories and possessions have at U.S. commercial

banks.3 The data on this definition of M1 were then

published beginning with 1907, and continued to be published

until 1980, when the definition was changed once again.

The data on this latest definition of M1 (namely MlB) have

been published beginning with January, 1959.

There is obviously a discrepancy between the old and

new definitions, since they measure different things. Table

V-l displays the components of the old Ml series as published

in the 1960 definition, and the new MlB series as published

in the 1980 definition. The last two columns show the

discrepancy for the twelve monthly observations in 1959.

We are interested in comparing phese two definitions since

the definition of Demand Deposits in 1960 is closer to the

definition of Demand Deposits in 1980, than is the 1962

definition. Note that the currency component is identical

in the two definitions:h1Table V-l. The discrepancy

arises in the Demand Deposit component (noting that Other

Checkable Deposits are zero for the observations in 1959).

The Demand Deposit component in the 1960 definition exceeds

the Demand Deposit component in the 1980 definition by the

amount of Demand Deposits due to foreign official institu-

tions.
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We can construct a "complete" time series on the

money supply by using the 1960 definition of M1 from January,

1907 through December, 1958, and the 1980 definition of M18

from January, 1959 to the present. Call this series M1B*.

MlB* still contains the discrepancy shown in Table

V-l, due to the change in the definition of the Demand Deposit

component of M1. This will appear as a jump of approximately

1% in M1B*, between December, 1958 and January, 1959. We

can correct this fault by building an intervention model for

MlB*. The intervention term will be defined as follows.

1.0 for January, 1907 - December, 1958

0.0 for January, 1959 - December, 1979

This will operate as a dummy variable which should account for

the change in the definition of the Demand Deposit component

beginning in January, 1959. We anticipate a coefficient of

about (.01) for this intervention term, reflecting the 1%

jump in the series shown in Table V-l.

We proceed by first building the model for M1B* for

the sample, January, 1907 - December, 1979 (n = 396).

3 12 1312 * _

A 2

9 = -.1688 9 = .0697 0 = .1078 R ==l— 2

3 (.000) 12 (.006) 13 (.006) _ CONN”)
— .1887

X2 = 32.0 RSE = .0003
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From the form of this model, we build the interven-

tion model for MlB*.

12 _ 3 2 13
(5.2) (l-B )(l-B)[1og(MlB*t)-pOIt] - (l—%B -81281—0138 )at

E = .0110 93 =—.1709 912 = .0633 913 = .1099

(.0036) ( 000) ( 006) (.006)

2 -
X06 — 51.3 RSE = .0002

,2 _ 1 (.0002)2

' ' ——_‘—_“2
(.00077)

= .2207

It is interesting to note that the coefficient of our

intervention term follows the information in Table V-l in

suggesting a Shift of about 1% in MlB*, in January, 1959.

We can now utilize the information provided by this

intervention model to splice our data and obtain a

"continuous" series from January, 1907 through December,

1979. The transformation of M1B* indicated in the interven-

tion model is following.

log(Mt) = log(MlB«t) - poIt

We are interested in levels of the money supply. That is,

we are really interested in Mt’ which we obtain by

exponentiating the above expression.

0 -elog(Mt) : e[log(MlB t) + ( po)It]

e[logOfiB*t)]e(-po)lt

*(5.3) Mt (MlB t)e o t
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A

where po = .0110

and I = 1.0 for January, 1907 - December, 1958

t 0.0 for January, 1959 - December, 1979

Note that

{(M1B*t)e-'0110 for January, 1907 - December, 1958

M :

t

(M1B*t) for January, 1959 - December, 1979

This spliced series simply shifts the first 12 year segment

by 1.1%, to eliminate the jump in the series.

The Identification Stage

We can now proceed to examine the relationship between

A

the growth rate of Money, Mt’ and the growth rate of GNP,

yt, discussed earlier. We wish to build a transfer function

of the following form.

(5 0) (l-Bl2)(l-B)log(y ) = (01(B) (1-812)(1-8)1og(M ) + N
t 61(B) t It

Note: (l-B12)(l-B)1og(yt) = (1—B12)yt is stationary, and

(1-B12)(l-B)log(Mt) = (1-B12)Mt is stationary,

where yt = the Index of Industrial production,

and M is as defined in equation (5.3).
t

This relationship will give us the impulse and step response

functions describing the reaction of §t to changes in Mt.

The first step in building this transfer function

model is to establish the univariate model for the input,

Mt' This model is given in equation (5.2).

We now proceed to the second step, and move to

identify the form of the impulse response function,
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vl(B) = wl(B)/5l(B), by calculating the cross-correlation

function between the prewhitened input and the prewhitened

output in the transfer function, (5.0). This function is

listed and plotted in Table V-2and Figure (5.2). Note that

the prewhitening model used is that in equation (5.2).

Note that at the identification stage, the impulse

response weights are calculated directly from the cross-

correlation coefficients as follows.

(k) s

 

 

I"A as

vk = S B k = 0, 1, 2, ...

0L

e.g.

2 _ <.109)(.015823) _

vo ‘ .0001893 ‘ “5628

Note the remarkably smooth pattern of this unrestricted

cross-correlation function. This suggests an impulse

response function between Mt and yt which might follow either

of the following patterns:

(i) a damped cosine wave with a period of 08 months.

[——‘\\\\\\\A 4” lag in months
I 1W6

(ii) a damped "V" pattern which reverses according

to a similar time period.

1...———- lag in months

What does vl(B) suggest about the monetarist

proposition outlined at the beginning of the chapter? To
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TABLE V-2

Cross Correlations [raB(B)]

Series 1 - Prewhitened Money Stock{at}

Series 2 - Prehitened

Mean of Series 1

St. Dev.

Mean of Series 2

St. Dev.

Number of Lags

On Series 1

(k)

 

(
O
C
D
Q
C
D
U
'
i
-
I
T
O
J
N
F
-
‘
O

of Series 1

of Series 2

January, 1907 - November, 1979; n =

Industrial Production{8t}

  

BCDH7 Index of

= .l7720E-03

= .01893E-02 = SO

= -.72950E-00

= .15823E-01 = SB

Cross Number of Lags

Correlation On Series 2

ra8(k) (k)

.109 0

.119 l

.082 2

.150 3

.052 0

.120 5

.093 6

.021 7

.096 8

.008 9

.020 10

.003 11

.023 12

—.009 13

-.018 10

-.086 15

-.076 16

-.090 17

-.036 18

-.072 19

.019 20

-.083 21

-.065 22

-.091 23

-.086 20

—.058 25

-.102 26

-.100 27

—.126 28

.039 29

-.073 30

.079 31

-.008 32

-.020 33

-.088 30

-.013 35

—.001 36

395

Cross

Correlation

r8a(k)

 

.109

.190

.052

.051

—.062

—.020

-.080

.017

.062

.007

.010

-.090

-.007

-.098

.003

-.085

-.000

-.065

.022

-.020

.057

.089

.003

-.018

.025

-.060

.000

.001

.006

.070

.008

-.051

-.057

.010

-.037

.007

-.100
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TABLE V-2 (cont'd.)

    

Number of Lags Cross Number of Lags Cross

on Series 1 Correlation on Series 2 Correlation

(k) raB(k) (k) r (k)
Ba

37 .097 37 .108

38 .108 38 -.038

39 .050 39 .028

00 -.003 00 -.010

01 .003 01 .008

02 .057 02 -.068

03 _ -.069 03 .035

00 -.082 00 -.071

05 -.000 05 -.037

06 .018 06 .008

07 .032 07 .023

08 .032 08 .005
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FIGURE 5.2

GRAPH OF IMPULSE RESPONSE WEIGHTS (v1(B)
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FIGURE 5.2 (cont‘d.)
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discuss this question, we must consider the Step Response

Function: Vl(B), implied by this impulse response function,

since the monetarist proposition illustrated in Figure 5.1

A

shows the presumed reaction of yt to a sustained (step)

change in Mt'

We obtain this Step Response Function by summing

over the impulse response function:

V = kth element of V(B)

.th
k

= E v. where v. = 1 element of V(B).

i=0 1 1

V1(B) is listed and plotted in Figure (5.3).

Note the strong resemblance between Figure 5.3 and

the bottom left frame of Figure 5.1. We emphasize that

Vl(B) is obtained from the identification stage of our time

series model building, with no restrictions imposed.

Immediately the question arises as to what V1(B)

.might converge to, if allowed to follow the pattern shown.

In particular, will V1(B) converge to zero, as suggested

by the monetarist proposition? To answer this question, we

must proceed to the estimation stage and finish building this

transfer function model.

Estimation of the Single Input Transfer Function

Consider equation (5.0) and Figure (5.2), describing

the transfer function between Mt and yt. This presents a

problem in that a damped cosine wave with such a long period
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FIGURE 5.3

GRAPH OF STEP RESPONSE WEIGHTS Vl(B)

(-2.0) 0. (2.0)

(k).+++++++++.+++++++++.+++++++++.+++++++++.

(
D
C
D
Q
O
V
U
'
l
-
C
'
l
e
-
‘
O

.
c
i
r
x
w
p
t
r
:
(
o
u
a
w
c
u
u
u
w
o
a
w
c
u
o
a
M
F
O
K
>
M
6
0
K
J
M
F
Q
K
J
N
F
A
P
J
H
F
A
F
J
H
F
A
P
J
H
F
A

U
h
r
u
J
N
F
J
C
D
O
C
D
\
J
m
(
fl
I
?
w
W
O
F
J
O
L
D
G
D
Q
C
D
U
L
C
Q
J
N
F
J
C
D
Q
C
D
\
J
O
C
D
i
f
w
r
o
k
J
O

XXXX

XXXXXX

XXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXXXXXXXX

XXXXXXXXXXX

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXXXXX

XXXXXXX

XXXXXX

XXXXX

XXX

X

XXXX

XXX

XXXX

XXX

XXXX

XXXX

XXXXXX

XXXXXX

XXXXXX

XXXX

XX

X

X

X

XX

XX

XXX

XXXX

VALUES [Vk]

.56397

1.01303

1.32183

1.90079

2.09938

2.55300

2.90339

2.98310

3.30018

.52007

.60022

.61277

.70121

.51788

.05020

.12625

.80079

2.50138

2.36500

2.09065

2.16603

1.85196

1.60538

1.26265

.93682

.71901

.33259

-.06020

-.53510

-.38670

-.66120

-.36123

-.50037

-.63566

—.96803

-1.01581

-1.02119

—.65595

-.20937

-.05891

-.06906

-.05671

.15900

-.10106

-.01090

-.56157

w
w
w
w
w
w
w
w



100

FIGURE 5.3 (cont'd.)
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cannot be represented parsimoniously as a ratio of two

polynomials in B. Furthermore, we must operate within an

upperbound of eight or nine total parameters in our model,

due to the limitations of our time series computer program.

We have overcome these difficulties by filtering

the data on Mt prior to estimation, in a 20-month moving

average which follows one half of the period of the cosine

function. This is done as follows.

1 period = 08 months = 2Tr radians

- 1L ‘
1 month - 2” radians

. 23 in i 12
Filtered M = FM = Z cos(——)B (l-B )(l-B)log(M )

t t 1:0 20 t

We then use FMt as our input series in the following

transfer function.

(5.5) (l-Bl2)(l-B)log(y£) =

The 20th order polynomial in the

O
.________ +1-6 B,” [FMt] N

0.)

1t

20

denominator will work with

our 20-month moving average of Mt to make an impulse

response function, vl(B), which resembles the damped cosine

wave we desire. If -1 < 6
20

function will appear as follows.

FIGURE 5.0

 

(520

/——\

= -.5)

< 0, then this impulse response

lag in

months
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This picture is still not ideal, as it implies an

impulse response function which is discontinuous at all

lags which are multiples of 20. We can eliminate these

discontinuities by altering our filter slightly:

23 . .

(5.6) Filtered M = FM = [ X [A]cos(££)Bl](l—B12)(l-B)log(Mf)
t t 1:0 20

1.0 for i=0, 1, ... ,12

where A =

‘520 for 1:13, ... ,23

Note that this filter will change the appearance of Figure

 

5.0 as follows.

r\\\\\\ ,,/"'_—-‘“‘~\\ lag in

12 20 36 08 60 72

 
FIGURE 5.5

(520 C -.5) .

We can arrive at a model of this form by first

choosing a value of 62”, and filtering Mt according to (5.6)

with this value. Then we can estimate the transfer function,

(5.5), and check the value of 62”, to see if it differs

substantially from our initial choice used to filter Mt'

'If it does, we can use the new value of 62” to filter Mt

again with (5.6), and then re-estimate (5.5). We can

continue this iterative procedure until the estimate of

6 does not vary appreciably from the value used to filter
20

M Using this procedure will give us a transfer functiont0

between Mt and y1: with a "smooth" impulse response function,

as in Figure 5.5.
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In the following work we iterate on 52” until the

estimate remains within a band of (:.005) from the value

used to filter Mt' Since the estimate of mo is in all

cases less than (.2), this will result in a discontinuity

at lag 20 in Figure 5.5 of less than (.001)[=(.2)*(.005)].

We are now ready to estimate this model. But we

must first consider some problems with our sample period:

January, 1907 - December, 1979. Does the transfer function,

(5.5), adequately describe a stable relationship throughout

this entire period? We suspect that the oil crunch of 1973

represents an episode for which (5.5) is inadequate. There

is a substantial literature on this topic, concerning the

supply shock to the economy resulting from the increase in

energy prices.5 This literature dwells on the change in the

structure of the world economy after this shock, and the

presumed impact on real and potential output. Tatom states

that "the large increase in the cost of energy resources

from 1972 to 1977 has had profound effects on productivity,

investment, and the long term growth path of the U.S.

economy." The study of Rasche and Tatom produced empirical

results which "support the argument that the new energy

regime imposed in 1970 permanently reduced potential output,

and suggests that "failure to account for energy prior to

1973 is not critical, but that serious inconsistencies

arise when the sample period is extended to include recent

years."

It is apparent that the supply shock of 1973 changed

I
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the world we are studying. This phenomenon enters our

model as outlined in the beginning of the chapter in equation

(b), as a sudden change in anticipated potential output, y*.

For example in equation (b)', (log y*) will have changed

drastically during this episode. This will result in

alterations in the time paths of prices and real output.

These considerations move us to believe that the

presumed stable relationship between Mt and §t should pp: be

expected to hold during this oil crunch of 1973, and should

pp: be expected to account for the change in the world since

then. The transfer function in equation (5.5) would likely

overpredict yt during the oil crunch, and subsequently prove

to be inadequate.

We can examine this possibility by first estimating

the single-input transfer function in (5.5) over the sample

period May, 1950 - September, 1973, the period prior to

the oil crunch. The following model is the result.6

BCDH7 Index of Industrial Productionyt =

xt = FMt = Filtered Mt as in equation (5.6) with

6 = -.5207
20

(5 7) (1-812)(l-B)lo ( ) - ~———m£——— [x 1 + 1-612312 a
’ g yt ' 1 5 B20 t 1-618 t

7 20

6 = .1877 3 = -.5251 6 = .8005 0 = .2776

0 (.059) 2” (.252) 12 (.039) l (.052)

2 _ _
Xus - 37.7 RSE — .0135

—2
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We are interested in how this model will forecast

over the next 18 months outside the sample, during the oil

crunch. Table V-3 shows the 18 one-step—ahead forecasts

obtained from this model by including an additional

observation on FMt and yt at each step. The forecast errors

show that the model drastically overpredicts yt in late

1970, though it performs fairly well for most of the other

18 months considered. Thus our suspicions as to the

adequacy of this single-input transfer function during the

oil crunch are possibly well-founded.

Expanding the Model to Account for the Energy Price Supply

Shocks of the Early 1970's - BCD92

We can correct this situation by considering a second

input which might capture the effect of the oil crunch in

1973, and thus enhance our model's ability to predict yt

during this period.

One such possible input is BCD92: the percent change

in the PPI of Crude Materials. Recall that this series

represents one of the three Commerce Department leading

indicators examined in Chapter IV, which displays the

characteristics a good leading indicator is expected to have.

The second to last column of Table V—3 shows the monthly

observations of BCD92. This series displays a noticeable

increase in late 1973 and early 1970. Recall from Chapter

IV that this leading indicator has a lead of approximately

ten months over Industrial Production. This suggests that
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BCD92 may be successful in capturing the effect of the oil

crunch, and thus improve the poor forecasting performance

of our model in equation (5.7) during late 1970.

The Identification Stage of Building the Two Input Transfer

Functlon

In building this two-input transfer function, it is

interesting to consider the cross-correlation function

between the two inputs, PMt and BCD92. In particular, we

are interested in the cross—correlation coefficients between

certain transformations of the two inputs. If these

coefficients are extremely small, then it will imply that the

cross-correlation function between each prewhitened input

and the similarly transformed output, can be used separately

to identify the respective impulse response function. This

implication is developed below.

After differencing to achieve stationarity, our two-

input transfer function can be written as:

. : + 4‘ ...

(5 8) yt Vloxlt v11X1t-1 + Vl2xlt-2 VlBXlt-3 + +

v20X2t + V21X2t-l + v22X2t-2 + V23X2t-3 " + n

Then, on multiplying throughout in (5.8) by Xlt-k for k i 0,

we obtain

4.

(5'9) Xlt-kyt = VlOXlt-kxlt Vllxlt-kxlt-l + V12x1t-kxlt-2

+ "° + V20Xlt—kx2t + Vlelt-kx2t-l +
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+

+ V22xlt-kx2t-2 + "° Xlt—knt

If we make the assumption that Xlt4<is uncorrelated with nt

for all k, taking expectations in (5.9) yields the set of

equations

(5.10) E[Xlt-kyt] = VlUEEXlt-kxlt] + VllEEXlt-kxlt-l] + ...+

V20E[x1t-kx2t] + V21EEX1t-kx2t-l] +"’

-or Y (k) = v Y (k) + v Y (k-l) + v Y (k-2)
xly 10 Xlxl 11 xlxl 12 xlxl

+ 0.. +

v Y (k) + v Y (k-l) + v Y (k-2)
20 xlx2 21 X1X2 22 xlx2

.3.

for k = 0, 1, 2,

where Yab(k) is the cross-covariance at lag k between

series a and b.

This is the set of cross—covariances between our first input,

Xlt’ and the output, yt. Suppose that the weights, vlj and

v2., are effectively zero beyond some lag, k=K. Then the

first K+l equations in (5.10) can be written

 

_ F v

Yxly ' x1X1’X1X2

r 1

where Yxly(0)

Yxly<1)

Y :

le :

.(K)

kaly J 
(K+l)xl
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(2k+2)x1

F -

xlx1,xlx2

 Y . (K) Y (K—l)". Y (0) (K _ ...

1 1 xlxl Xlxl Yx1X2 ) YX1X2(K l) Yxl 2(0) J

(K+1)x(2K+2)

 

This system of equations can normally be used at the

identification stage of the Box and Jenkins modeling

procedure.7 If x1 and x2 are not significantly cross-

correlated, then the 7x x (k) terms drop out, and we can

1 2

substitute estimates of the autocorrelation function of
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, Y (k), and the cross-correlations between x and y,
l xlxl l

Yx y(k), and solve the system for the top half of v, which

1

is the transfer function between x1 and y, vl(B).

X

However, it will be a rare case when the two inputs

are not significantly cross-correlated! Since the yxlx2(k)

are not generally zero, the system in (5.10) cannot be

solved. We have 1(+1 equations in 2K+2 unknowns in v, and the

system is not identified.

The problem is changed slightly when we first prewhiten

the series in our model. Suppose that the univariate models

for Xlt and x2t appear as follows.

-1
8 :(5.11) ¢x (B) x (B)[X1t] allt

1 1

3’1 = ’(5.12) ¢X (B) X (B)[x2t] a22t

2 2

a a . . .
where llt and 22t are wh1te n01se series,

with standard deviations s1 and s1 , respectively.

1 2

Further, define the following.

(5,13) ¢X1(B)e;:(B)[x2t] : (1th

(5-1”)¢x1(3)9;:(8)[yt] = Blt

(5.15) ¢xl(B)9)-(:(B)[nt] = 611:

(5.16)<px2(B)e;:(B)[xlt] = (lglt

(5-17)¢x2(B)9;:(B’[Yt] = th
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-1 _

(5.18) ¢X2(B)9X2(B)[nt] - E2t

Note that equations (5.13) through (5.15) are just

transformations of X2t’ yt, and nt where the transformation

is the prewhitening model for Xlt' Likewise equations (5.16)

through (5.18) are transformations of Xlt’ yt, and nt with

the prewhitening model for x2t°

In order to identify the impulse response function

between x and yt, vl(B), we apply the prewhitening
1t

transformation of our first input to the model in equation

(5.8). This yields the following model.

5-1 '1(5.19) ¢X1(B) Xl(B)[yt] vl(B)¢Xl(B)8xl(B)[xlt]

-1
+ v2(B)¢X (B)8x (B)[x2t]

1 1

+ ¢X (B)9;1(B)[nt]
1 1

OP Blt = vl(B)allt + V2<B>al2t + Elt

On multiplying through this by allt-k’ we obtain

(5°20) allt-kBlt = v1(B)°‘11t-k°‘11t + V2(B)allt-kal2t

+ allt-kglt

If we make the assumption thatallt_k is uncorrelated with

alt for all k, taking expectations in equation (5.20)

yields the following.
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1(5.21) REG 8 J = vl(B)E[allt_kallt1'+v2(B)E[o
llt-k 1t llt-Ka12t

(k) = v (B)Y (k) + v2(B)Y (k)or Y

0‘11 B1 1 011011 O‘11"‘12

Since allt is white noise, the first term on the right hand

side of equation (5.21) reduces to [Vkoa 2]. Finally, if

11

(k) is zero for all k, then equation (5.21) reduces

Y%1%2

to the following.

(5 22) (k) - o 2 -Y10118 (k). Ya B - Vk all OI‘ Vk - O 2

a 11

 

where Ya B (k) = E[011t_k81t] is the cross- covariance at

 
 

0L11 1

lag k between allt and Blt

Therefore,

pull 81(k)081 YO‘ll 81(k)

(5.23) v = since 0 (k) =

k 09 0"1181 ° 08
11 . “11 1

Hence the cross-correlation function between the

prewhitened first input and the correspondingly transformed

output is directly proportional to the impulse response

function, vl(B). We can thus identify the form of the first

impulse response function by estimating the cross-correlation
 

function, r (k), and the standard errors of the pre-

o‘11‘31

.whitened first input and the similarly transformed output,

and then substituting into equation (5.23).

(5.20) v =
k 5a

ll
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It is important to emphasize that this procedure

rests on the assumption that Ya a (k) is zero for all k.

11 12

We can estimate this cross-correlation function between the

 

prewhitened first input and the correspondingly transformed

second input, in order to evaluate the applicability of

this assumption. If the coefficients of r (k) are not

significantly different from zero, then we iinigt reject

the hypothesis that the assumption holds.

Note that to identify v2(B), we will use the cross-

correlation function between the prewhitened second input

and the similarly transformed output, Ya B (k). The use

22 2

of this procedure will rest on the assumption that Ya a (k)

is zero for all k. The applicability of this assumpticzm21

is testable in the same way we test the assumption regarding

the identification of vl(B).

In summary, this analysis shows us that if r (k)

:912

and r (k) display coefficients which are not signifi-

“22“21

cantly different from zero, then the cross-correlation

function between each prewhitened input and the correspond-

ingly transformed output can be used separately to identify

the respective impulse response functions.

In continuing our empirical analysis, we now wish

to build the two-input transfer function, with FMt and

BCD92 as our two inputs. In order to be able to identify

the two impulse response functions separately, we are

interested in the two cross—correlation functions, ra a (k)

11 12
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and rd 0 (k). These are presented in Table V-0.

2Thilstandard error of any given cross-correlation

coefficient, rab(k), is approximated by 1//fi:k.8 With

n = 352 in the sample of the transfer function we are

building, the standard error of ralla12(0) = the standard

error of ra22a21(0) = l//352 = .0533. To test the hypothesis

that the estimated coefficients are not significantly

different from zero, each coefficient (at lag zero) should

be compared with (1.96)*(.0533) = .1005.

In the estimated cross-correlation function,

 

ra a (k), all the coefficients are less than .1005 except

11 12

the coefficient at lag 16; r (16) = -.111.

“11a12

The standard error of this coefficient = l

n-k

: ————l = .0506.

{352-16

and (1.96)*(.0506) = 1.07.

Therefore, r (16) is "significantly different from

“11312

zero" at the 95% confidence level. However, if we consider

the whole set of 09 coefficients in the cross-correlation

function, we would expect about 2 1/2 coefficients to be

"significantly different from zero" at the 95% confidence

level. Hence the cross-correlation function, ra a (k),

11 12

supports our assumption which implies that we can use the

cross-correlation function between prewhitened x1t (= Filtered

Money Supply) and the similarly transformed yt (= Industrial

Production Index), to identify v1(B).
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TABLE V-0

Cross Correlations

Series all - Prewhitened Filtered Money Supply (62” = -.5600)

Series a12 - Prewhitened BCD92 Percent Change in PPI of

Crude Materials

  
  

n = 352

Mean of Series all = .02260E-03

St. Dev. of Series all = .00205B-02

Mean of Series 312 = .93668E-00

St. Dev. of Series 0112 = .21820E-01

Number of Lags Cross Number of Lags Cross

on Series a Correlation on Series a Correlation

11 12

(k) ra a (k) (k) re a (k)

11 12 12 11

0 -.023 0 -.023

1 .018 l .023

2 -.002 2 .008

3 —.026 3 -.025

0 .090 0 .008

5 .010 5 -.000

6 -.060 6 .002

7 -.005 7 -.055

8 -.027 8 -.060

9 .077 9 ..060

10 -.063- 10 —.001

11 —.000 11 .059

12 -.051 12 .019

13 .057 13 -.005

10 .080 10 -.068

15 -.020 15 -.016

16 -.111 16 -.021

17 .062 17 .020

18 .030 18 -.007

19 -.022 19 .126

20 -.019 20 -.008

21 .021 21 —.060

22 .003 22 .032

23 .005 23 -.038

20 -.079 20 -.032

25 -.005 25 .060

26 .005 26 .068

27 -.037 27 —.030

28 -.002 28 —.051

29 -.035 29 .021

30 -.003 30 -.016

31 .030 31 -.056

32 .015 32 .095

33 -.035 33 .015
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TABLE V-0 (cont'd.)

 
 

  

 

Number of Lags Cross Number of Lags Cross

on Series all Correlations on Series al2 Correlations

(k) ra a (k) (k) ra a (k)

11 12 12 11

30 .006 30 —.008

35 -.012 35 -.027

36 .077 36 .052

37 -.039 37 -.018

38 -.006 38 -.031

39 -.032 39 .030

00 .070 00 .093

01 .000 01 -.105

02 -.025 02 .073

03 -.033 03 ‘ —.029

00 .025 00 -.020

05 .012 05 -.007

06 -.010 06 .008

07 -.037 07 .031

08 —.016 08 -.055

Prewhitening:

(l-.8673B)(l-.2197B-.3052B3)(1+.6109B12)[FMt] =

10 13
(1+.1173B-.1303B -.1819B )at

" same model on (1-B12)[BCD92].
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TABLE V-0 (cont'd.)

Cross Correlations:

Series a22 - Prewhitened BCD92 Percent Change in PPI of Crude

    

Materials

Series a21 - Prewhitened Filtered Money Supply (62u=-.5600)

n = 352

Mean of Series a22 = .80105E—03

St. Dev. of Series a22 = .10037E-01.

Mean of Series a21 = .39300E-02

St. Dev. of Series a21 = .93070E-02

Number of Lags Cross Number of Lags Cross ,

on Series a22 Correlation on Series a2l Correlation

(k) r (k) (k) r a (k)

“22“21 0‘21 22

0 -.015 0 —.015

l .009 1 .029

2 .061 2 .020

3 .026 3 .081

0 .021 0 .006

5 -.002 5 .060

6 .000 6 .061

7 -.003 7 .037

8 -.055 8 .025

9 .001 9 .018

10 —.069 10 .008

11 -.050 11 .006

12 -.107 12 .006

13 -.l22 13 .053

10 -.139 10 .030

15 ~.13l 15 .058

16 -.117 16 -.021

17 -.078 17 .012

18 -.031 18 .011

19 -.015 19 -.002

20 -.036 20 -.015

21 -.003 21 -.023

22 -.029 22 -.007

23 -.029 23 -.015

20 -.011 20 -.050

25 .001 25 -.000

26 .080 26 -.019

27 .029 27 .003

28 -.005 28 -.002

29 .007 29 .017

30 .029 30 .030

31 .002 31 .021

32 .033 32 .008
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TABLE V—0 (cont'd.)

 
  

 

 

Number of Lags Cross Number of Lags Cross

on Series a22 Correlation on Series a21 Correlation

(k) Pa a (k) (k) ra a (k)

22 21 21 22

33 .083 33 -.002

30 .020 30 .002

35 -.006 35 .009

36 .019 36 .027

37 -.002 37 -.005

38 .030 38 -.038

39 .030 39 .010

00 .053 00 -.029

01 .016 01 -.035

02 ' .069 02 -.009

03 .027 03 -.O27

00 .011 00 -.002

05 .056 05 —.005

06 .008 06 -.025

07 .000 07 -.005

08 .011 08 -.030

Prewhitening:

(1-.3850B-.265833)(1-B12)[BCD92] = (1-.1502B2-.8120812

+ .1975B1u) at

" same model on the levels of FMt'
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The estimated cross-correlation function, ra a (k)

displays five coefficients which are "significantly2gifferent

from zero." Furthermore the tendency of positive coefficients

to be followed by positive coefficients and of negative

coefficients to be followed by negative coefficients, seems

to indicate that there is some correlation inherent in the

relationship between these two series which is not

effectively eliminated by the prewhitening model for BCD92.

This is somewhat disturbing. However we are reassured by

the fact that 03 of the 08 coefficients are not significantly

different from zero. This is the key characteristic in our

analysis of the applicability of the assumption that all

coefficients in Ya22a21(k) are zero. Hence we anticipate

that the cross-correlation function between the prewhitened

input, x (= BCD92), and the correspondingly transformed
2t

output, yt(=Industrial Production Index), will be instrumental

in identifying v2(B).

Estimating_the Two Input Transfer Function

We have already identified and estimated separately,

the two transfer functions with each of these inputs as the

single input. Thus we know what to expect as the form of

the two impulse response functions, vl(B) and v2(B), in our

two-input transfer function.

With this in mind, we build the following model.9

yt = BCD07 Index of Industrial Production
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x FMt = Filtered Mt as 1n (5.6), With 620::-°5231
1t

BCD92 % change in PPI of Crude Materials
X2t

Sample: May, 1950 - September, 1973 (n = 281)

-(1)

(5.25) (1-B12)(1-B)log(yt) = ———°—,¢ [xlt]
1-3 B

20

(.0,

o 10 12
+ l—6iB B (l-B )[x2t]

1-012912

+ 1-¢lB at

w = .1335 520 = -.5203 0' = -.0610 51 = .7305

(.058) (.250) O (.005) (.175)

912 = .7925 ¢1 = .2500

(.000) (.051)

‘2 _ _ —2 _
X05 _ 00.0 RSE - .0130 R - .5001

A comparison of the coefficients in this equation with

those of equation (5.7) on page 108 shows that the

addition of the second input, BCD92, does not change the

appearance of the first transfer function much. In

particular, the coefficients 00, 62”, 012, and 01 are quite

insensitive to the addition of this second input. It is also

interesting to compare the coefficients 0; and Si in equation

(5.25) with the coefficients 00 and 61 of the single-input

transfer function with BCD92 as the input, which appears

in Table IV-2 in Chapter IV. These coefficients are also

quite insensitive to the addition of the second variable,

FMt'
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We are now interested in how this model will

forecast over the next 18 periods. Table V-5 shows the

18 resulting one—step-ahead forecasts. We see improvement

in reducing the large forecast errors in late 1970 that

appear in Table V-3. Furthermore, the Theil Decomposition

statistics show marked improvement. In particular, the

RMSE is reduced to 1.75806 from 2.053285. These character-

istics suggest that our second input, BCD92, is useful in

the role desired.

Our third step in building this model is to re-

estimate the two-input transfer function in equation (5.25)

over the sample period May, 1950 - March, 1975, the period

through the oil crunch. The resulting model follows.lo

yt = BCD07 Index of Industrial Production

: : ° ° ° 6 : ..x1t FMt F11tered Mt as in (5.6),w1th 20 .5520

x2t = BCD92 % change in PPI of Crude Materials

Sample: May, 1950 - March, 1975 (n = 299)

m

(5.26) (1-B12)(l-B)log(y ) = ————9——— [x J
t 1- B20 1t

520

(A).

O 10 12

+ W B (l-B )[X2t]

1_612B12

+ ———————— a
1—¢1B t

w = .1772 5 = -.5568 3' = -.0903 3' = .7707

O (.060) 2” (.200) O (.003) 1 (.123)

0 = .7699 3 = .2827

12 (.002) 1 ( 061)

2 = 39.6 RSE = .0130 02 = .5001
x06
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Note that the coefficient estimates are extremely

stable as we increase the sample size from n = 281 to

n = 299, in moving from equation (5.25) to (5.26), even

though these eighteen additional periods represent a shock

to the economy.

We are now interested in how ihig model forecasts

over the next 0 l/2 years. Table V—6 displays 53 one—step-

ahead forecasts for the 0 1/2 years after the sample used

to estimate equation (5.26).

Examination of the Theil Decomposition statistics

in Table V-6 indicates that our model in equation (5.26)

performs remarkably well over this extremely long forecast

horizon. The RMSE is reduced to 1.330221 from 1.75806 in

Table V-S, and from 2.053285 in Table V—3. We conclude

that our model is appropriate, and proceed to the last step

11
of estimating over the entire sample period.

BCD07 Index of Industrial ProductionYt 3

x11: = FMt = F11tered Mt as in (5.6), With 62u=«-.5600

x2t = BCD92 % change in PPI of Crude Materials

Sample: May, 1950 - August, 1979 (n = 352)

(L)

 

O

20[Xlt]
(5.27) (1-B12)(l-B)log(yt)

l-quB

w '

+ i:91§-Blo(l-Blz)[x2t1

1-912B

l-¢1B t

12

+ D
J
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w = .1726 620 = -.5583 wé = -.1036 6i 3 .6802

(.052) (.196) (.002) (.108)

8 = .7776 6 = .2777

12 (.037) 1 (.056)

2 _ _ —2 _
X06 - 00.1 RSE - .0129 R - .5775

Again, note that the coefficient estimates are

extremely stable as we increase the sample size from n = 299

to n = 352, from equation (5.26) to (5.27).

Implications of the Final Model

This is our model for the entire sample period,

describing the relationships between Mt and yt and between

BCD92 and yt. We are especially interested in the impulse

and step response functions between Mt and yt, in order

to examine in more detail the empirical evidence regarding

the monetarist proposition outlined at the beginning of

this chapter. This impulse response function is developed

below.

Let mt = (l-Bl2)(1-B)log(Mt)

Then the impulse response function is:

wl(B) wo

(5.28) vl(B)[mt] : W [mt] 3 W [FMt]

‘ 20

where FMt is defined as in equation (5.6), as follows:

23 i“ i 1.0 for i = 0, ... ,12

FMt = [ Z (A)cos(§E)B )mt; with A =

i=0 -6 for i = 13, ...,23
20
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PMt = [1.0 + .99B + .96682 + .92083 + .8668” + .79385

+ .707B6 + .60987 + .5B8 + .38389 + .259810 + .13811

- (—62u) .13813 - (-62u).259Blu — (—62u) .383815

- ('520) .5816 - (-52u).609Bl7 - ("520) .707818

- (”520’ .793919 — (-62u).866B20 - (’520’ .920921

- (-62u) .966822 - (-62u).99B23] mt

Thus wl(B), the polynomial in B comprising the numerator of

vl(B), is simply mo multiplying the above twenty-third order

polynomial in B.

A 23 in i
(5.29) 81(8) = mo .2 (A)cos (§H)B

1-o

When combined with 61(8), the denominator of vl(B), the

resulting impulse response function is of the following form.

(5.30) vl(B) ”o 2 (A)cos(L“)3 -+(62u) Z0 (A)cos(L8(810

i=0 i=

+ wfwO[:X (A)cos(LM1][8::J

A A 23 o o

3 in 1 72

(620)Swo[i:0(A)COS(:fi)B ][B J +

+

A

From equation (5.27) we have wo = .1726, -620 = .5600,

and 820 = -.5583. Using these estimates in equation (5.30)

yields the infinite order polynomial in B comprising vl(B).

The first 08 coefficients of this impulse response function

are listed and plotted in Figure 5.6, as well as those of

the associated step response function.
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We know that the impulse response function will

converge to zero (see Figure 5.5), and thus that the step

response function will also converge. In light of the

Monetarist proposition under consideration, we are interested

in what this step response function will converge to. We

can pinpoint this number as follows.

Beginning with the sum of the first twelve impulse

response weights, we can sum over the next 2” weights to get

a single figure which will be subtracted in the step response
 

function during the next 2H periods. We can then multiply

this same figure by (-52u) to get another figure describing

the total amount which will be added to the step response

function in the following 2H months. Multiplying this figure

2 will then yield the total amount to be subtracted

(\

by (-62u)

again in the following 2H months.

Continuing this procedure indefinitely would give us

the exact number to which Vl(B) converges. Continuing for

a few iterations will closely approximate this number.

The sum of the first 12 impulse response weights

= V12 = 1.u027.

The sum of the next 2” impulse response weights

= 1.H719.

Thus, V36 = 1.H027 - 1.u719 = -.0692.

The sum of the following 2H impulse response weights

= (1.H719)(.5583)

= .8218

Thus, V = -.0692 + .8218 = .7526
60
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The sum of the following 2H impulse response weights

= (l.u719)(.5583)2

= .u588.

Thus, v8” = .7527 - .u588

Continuing:

<1.u719)(.6583>3 = .2561

v108 = .2938 + .2561 =

(1.0719)(.5583)” = .1030

v132 = .5099 - .1030 =

(1.8719)(.5583)5 = .0798

v156 = .0069 + .0798 =

<1.u719>(.6683)6 = .OHHB

v180 = .8867 - .0086 =

(1.u719)(.5583)7 = .0209

v20” = .uu21 + .0209 =

(1.14719)(.5583)8 = .0139'

v228 = .U670 - .0139 =

(1.H719)(.5583)9 = .0078

v252 = .u531 + .0078 =

Hence we see that

to approximately .H570.

.5u99

.M069

.H867

.MM21

.H670

.9531

.U609

.2938

the step response function converges

This suggests that money is not

neutral, but that a sustained increase in the growth rate of

the money stock will produce an increase in the growth rate

of Real GNP in the long run.

Finally we are interested in the impulse and step

response functions for the second input, BCD92, implied by
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our model in equation (5.27). These are listed and plotted

in Figure (5.7).

Expanding the Model to Account for the Energy Price Supply

Shocks of the Early 1970's - Fuel Prices

In equations (5.25), (5.26), and (5.27), we included

a second input to account for the effect of the oil crunch

in 1973, and the subsequent change in the world. We used

as our second input, BCD92, the percent change in the PPI

of Crude Materials. This is interesting, since BCD92 is one

of the leading indicators which constitute the subject of

discussion of Chapter IV. However, much of the supply shock

literature listed in footnote 5 uses Fuel prices in this role.

Thus we now re—examine the relationships discussed in the

last section, with x2t=Fuel prices.

We must first consider the relationship between Fuel

prices and Industrial Production. The bivariate model

describing this relationship is presented below.12

BCDH7 Index of Industrial Production
yt

x PPI of Fuel, Power, and Related Products
t

Sample: May, 1950 - November, 1979 (n = 355)

(A)

12 ° _ O 8 12

(l-B )(l-B)log(yt) - Fé—i—B- B (l-B )(l-B)log(xt)

1-9 B12
+ 12 a

1-¢1B t

O (.065) 1 (.169) 12 (.033) 1 (.053)

2 —2 _

= ”1.1 RSE = .0129 R - .5775
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FIGURE 5.7

GRAPH OF IMPULSE RESPONSE WEIGHTS [v (B)]

BCD92 in equation (5.27)

.1

VALUES [vk]

I
O
O
O
O
O
O
O
O
O
O

O
O
.
0

O
O

O
O

C
O

.103629E+00
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-.785898E-05

-.537727E-05
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FIGURE 5.7 (cont'd.)

"ol 0. cl

(k),+++++++++,+++++++++,+++++++++,+++++++++, VALUES [vk]

U7 X -.827390E-07

#8 X -.566116E—07
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FIGURE 5.7 (cont'd.)

GRAPH OF STEP RESPONSE WEIGHTS [V2(B)] for x2t = BCD92
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FIGURE 5.7 (cont'd.)

GRAPH OF STEP RESPONSE WEIGHTS [V2(B)] for x2t =

-.25 0. .25

BCD92
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This model shows that the Fuel PPI displays a

substantial lead over Industrial Production. The last

column of Table V-3 shows the monthly observations of the

first log difference of the Fuel PPI, during the oil crunch

of 1973. This series displays a large increase in late

1973 and early 1979. Since the Fuel PPI has a lead of eight

months over Industrial Production, it may be successful in

capturing the effect of the oil crunch, and thus improving

the poor forecasting performance of our model in equation

(5.7) during late 1979.

The Identification Stage

As before, with our two inputs, FMt and BCD92, we are

now interested in the cross-correlation functions between the

two inputs, FMt and Fuel Prices; first transformed by the

prewhitening model for FMt, and second, transformed by the

prewhitening model for Fuel prices. These two cross-

correlation functions, r (k) and r (k), are listed

o‘11"‘21 “22921

in Table V-7.

Examination of r (k) shows that two coefficients

“11921

are "significantly different from zero." Since we expect

about 2 1/2 coefficients to vary from zero at the 95%

confidence level, this cross-correlation function supports

the assumption that these cross-correlations are zero. Hence

the cross-correlation function between prewhitened FMt and

the similarly transformed output series can be used to

identify the first impulse response function in this
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TABLE V-7

Cross Correlations:

Series a11 - Prewhitened Filtered Money Supply (<521+ = -.5520)

Series a12 - Prewhitened PPI of Fuel Power and Related

n = 355 Products

Mean of Series all = .38159E-03

St. Dev. of Series all = .HH258E-02

Mean of Series a12 = .78262E-09

St. Dev. of Series a12 = .l3782E-Ol

Number of Lags Cross Number of Lags Cross

on Series all Correlation of Series a12 Correlation

(k) Pa a (k) (k) ra a (k)

11 12 ‘12 22

0 .096 0 .096

l .031 l .059

2 -.053 2 -.067

3 -.037 3 -.016

9 .003 u -.061

5 .013 5 .057

6 —.095 6 .099

7 .069 7 -.055

8 —.059 8 .036

9 .090 9 -.l97

10 -.058 10 .096

11 .192 11 . -.00M

12 -.035 12 -.003

13 .023 13 -.020

1a —.008 19 -.092

15 .021 15 -.102

16 -.059 16 .168

17 .056 17 -.061

18 .005 18 .021

19 -.066 19 .091

20 .109 20 -.091

21 -.072 21 .023

22 .090 22 -.021

23 -.059 23 .018

29 .099 29 -.098

25 -.096 25 .010

26 .002 26 .098

27 .010 27 -.005

28 .018 28 -.027

29 -.012 29 .107

30 .009 30 -.080

31 .062 31 -.023

32 -.025 32 -.009

33 .026 33 .058

an -.ouu 34 .002
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TABLE V-7 (cont'd.)

 

 

Number of Lags Cross Number of Lags

on Series all Correlation on Series al2 Correlation

(k) Pa d (k) (k) ra a (k)
., ..,. 11 12 ., . ,. 12 ll

35 .033 35 —.053

36 -.060 36 .059

37 .071 37 -.002

38 -.013 38 -.020

39 -.021 39 .085

90 .009 90 -.026

91 .039 91 -.079

92 —.019 92 .055

93 -.068 93 -.023

99 ' .015 99 .017

95 .021 95 -.062

96 .018 96 .082

97 -.051 97 -.039

98 -.079 98 .018

Prewhitening:

(l-.8681B)(l—.219OB-.309183)(l+.6101B12)[FMt] =

(1+.1169B-.1397B10-.1810B1u)a
t

-. same model on (1-B12)(l—B)log[Fuel PPI].
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TABLE V-7 (cont'd.)

Cross Correlations:

 

Series a22 - Prewhitened PPI of Fuel Power and Related

Products

Series a21 - Prewhitened Filtered Money Supply (629:'-’5520)

Mean of Series a22 = .77038E-03

St. Dev. of Series a22 = .96629E-02

Mean of Series a21 = .56007E-02

St. Dev. of Series a21 = .78979E-02

Number of Lags Cross Number of Lags Cross

of Series a22 Correlation on Series a21 Correlation

(k) r . (k) (k) r (k)

“22821 o‘21"‘22

0 -.000 O -.000

l .095 l -.029

2 -.005 2 -.092

3 -.078 3 -.069

9 .091 9 -.018

5 .005 5 -.021

6 -.091 6 -.031

7 -.032 7 .009

8 .001 8 .070

9 -.088 9 .005

10 -.020 10 .092

ll ' -.098 11 .166

12 -.038 12 .057

13 .039 13 .086

19 -.098 19 .086

15 -.070 15 .098

16 .111 16 .069

17 -.029 17 .096

18 .002 18 .055

19 .022 19 .057

20 .019 20 .191

21 -.009 21 .000

22 .018 22 .119

23 -.017 23 .079

29 .029 29 .069

25 .066 25 .031

26 .070 26 .061

27 -.007 27 .039

28 .099 28 .029

29 .050 29 .038

30 .003 30 .059

31 .003 31 .069

32 .063 32 .053

33 .026 33 .022

.0660
0

4
‘
:

39 .003
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TABLE V-7 (cont'd.)

 

 

Number of Lags Cross Number of Lags Cross

of Seriesa22 Correlation of Series a21 Correlation

(k) ra a (k) (k) Pa a (k)

22 21 21 22

35 —.009 35 .099

36 .069 36 .027

37 .098 37 .075

38 -.006 38 .090

39 .029 39 .013

90 .105 90 .008

91 -.095 91 .003

92 .033 92 .003

93 .018 93 -.039

99 .021 99 -.003

95 —.000 95 —.039

96 .011 96 .035

97 -.039 97 -.036

98 .098 98 -.098

Prewhitening:

(l-.6606B)(1-B12)(l-B)log[Fuel PPI] = (l-.8923B12)at

- same model on levels of FMt'
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two-input transfer function.

An examination of r (k) also shows two

“22921

coefficients which vary from zero. Analagously, we can use

the cross-correlations between prewhitened Fuel prices and

the similarly transformed output series to identify the

second impulse response function in this two-input transfer

function.

The Estimation Stage

We are now ready to redevelop equations (5.25), (5.26),

and (5.27), with Fuel prices as our second input.13

yt = BCD97 Index of Industrial Production

x1t = FMt = F11tered Mt as in (5.6),w1th 62u=-.9920

x2t = PPI of Fuel, Power, and Related Products

Sample: May, 1950 - September, 1973 (n = 281)

(0

(5.25)' (l-Blz)(l-B)log(yt) ° 2” [xlt]

1—6 B
29

w' 8 1O

+ 1-61B B (l-B 3(1—8)1og[x2t]

1-8 812
+ 12 a

‘1:$IE“ t A

w = .1928 62l+ = -.9917 w; = -.0890 6i = .8882

(.061) (.260) (.073) (.131)

8 = .8059 6 = .2637

12 (.090) l (.063)

X36 = 39.2 RSE = .0135 P2 = .5373

A comparison of these parameter estimates with those

in equations (5.25) through (5.27) shows that the parameters,
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A

and 01 are quite stable as we change from

A, A

“o ’ 529’ 12’

BCD92 as our second input, to Fuel prices. A comparison of

6

the parameters 85 and Si with the coefficients in the single-

input transfer function with input, Fuel prices (on page

179Lshows that the form of this impulse response function is

also quite stable when the second input, FMt’ is added.

We are interested in how this model will forecast

over the next 18 months, through the oil crunch. Table V-8

shows these 18 one-step-ahead forecasts. Comparison with

Table V—3 shows much improvement in reducing the forecast

errors appearing in late 1979 in our single-input model.

Comparison with Table V-5 shows that Fuel prices are more

successful in reducing these forecast errors in late 1979

than is BCD92. The Theil Decomposition statistics support

this finding.

We now proceed to re-estimate equation (5.26) with

Fuel prices as our second input.lu

BCD97 Index of Industrial Production

 

 

yt :

x1t = FMt = F11tered Mt as in (5.6), With 62u=«-.9600

x2t = PPI of Fuel, Power, and Related Products

Sample: May, 1950 - March, 1975 (n = 299)

, 12 “o
(5.26) (l-B )(l—B)log(y ) [x 1

t 29 1t

1-5 B
29

w' 8 12o

+ 1_61B B (1-B )(l-B)log[x2t]

1—0 812
+ 12 a

tl-¢1B
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mo 3 .1819 (52,4 = -.9582 w; = -.1132 6i = .8332

(.060) (.280) (.060) (.191)

9 = .7993 ¢ = .2729

12 (.090) 1 (.060)

2 _ _ —2 _

X96 - 37.9 RSE - .0133 R - .5509

Note again that the parameter estimates are extremely

stable as we increase the sample size from equation (5.25)'

to (5.26)‘.

We want to examine this model's ability to forecast

over the next 9 1/2 years. These 56 one-step-ahead forecasts

appear in Table V-9. The forecast errors indicate that

this model performs quite well over this long forecast

horizon, and the Theil Decomposition statistics Show marked

improvement over previous models. Hence we proceed to the

last step and re-estimate equation (5.27) with our new

second input, Fuel prices.15

yt = BCD97 Index of Industrial Production

x1t = FMt = Eiltered Mt as in (5.6), With

- -.5520
29

x21: = PPI of Fuel, Power, and Related Products

Sample: May, 1950 - November, 1979 (n = 355)

(D

(5.27)' (1—B12)(l-B)log(yt) = O zu [

1-62uB

1 

xlt

“6 8 12
I:XI§ B (l-B )(l-B)1og[x2t]+

12
1-8128

1-¢1B t
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w = .1659 629 = -.5510 wé = -.1160 5i 3 .7195

(.051) (.209) (.056) (.155)

0 = .7989 ¢ = .2809

12 (.035) 1 (.055)

2 _ _ —2 _

X96 - 91.5 RSE - .0128 R - .5890

Again note the stability of the parameter estimates as we

increase the sample size,moving from equation (5.26)' to

equation (5.27)’. This is our model for the entire sample

period with these inputs. We are again interested in the

A

implied impulse and step response functions between Mt and

yt.

Implications of the Final Model
 

Again equations (5.28), (5.29), and (5.30) are

relevant in the development of these functions. From

equation (5.27)' we have mo = .1659, “629 = .552, and

A

629 = —.551. Using these estimates in equation (5.30) gives

us the impulse response function of this model, vl(B).

Figure 5.8 shows the impulse and step response functions.

It is not surprising that this figure bears much

resemblance to Figure 5.6.

To examine the convergence of this step response

function we follow the same procedure as before.

The sum of the first 12 impulse response weights

= Vl2 = 1.3983.

The sum of the next 29 impulse response weights

= 1.3959.

Thus, V = 1.3983 - 1.3959 = -.0975.
36
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FIGURE 5.8

GRAPH OF IMPULSE RESPONSE WEIGHTS [vl(B)J
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FIGURE 5.8 (cont'd.)

GRAPH OF STEP RESPONSE WEIGHTS [V1(B)]
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.6956

.6092

.5137

.9259

.3909

.2617

.1892

.1295

.0688

.0231

-.0119

-.0356

-.0975

-.0975

-.0909

-.0278

-.0085

.0157

.0979

.0831

.1231

.1668

.2139

.2621

.3121

.3626
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The sum of the following 29 impulse response weights

= (1.3959)(.551)

= .7691.

Thus, V60 = -.0975 + .7691 = .7216.

The sum of the following 29 impulse response weights

= (1.3959)(.551)2

= .9238 .

Thus, v8” = .7215 — .9238 = .2978

Continuing:

(1.3959)(.551)3 = .2335

v108 = .2978u+ .2335 = .5313

(1.3959)(.551) = .1287

v132 = .53135- .1287 = .9025

(1.3959)(.551) = .0709

V155 = .90256+ .0709 = .9735

(1.3959)(.551) = .0391

v180 = .97357- .0391 = .9399

(1.3959)(.551) = .0215

v20” = .93998+ .0215 = .9559

(1.3959)(.551) = .0118

v228 = .95599- .0118 = .9991

(1.3959)(.551) = .0055

v252 = .9991 + .0055 = .9505

Hence the step response function will converge to

approximately .9980. Of course the implications are

analagous to those of our previous model in equation (5.27),

With x2t = BCD92.

Again, we are also interested in the impulse and

step response functions for the second input, Fuel prices,

implied by our model in equation (5.27)‘. These are listed
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and plotted in Figure 5.9.

Expanding the Model to Account for Supply Shocks Due to

Strikes in the Labor Force
 

At this point we need to consider another potential

fault with our model in equations (5.27) and (5.27)‘. In

the 33 year sample period reviewed, the Index of Industrial

Production was substantially influenced at various times by

strikes in the Labor Force. We are concerned with the

performance of our models during these times. In this regard,

a list of specific strikes, their dates, and the sectors

of the economy affected, is presented below.

Late 1969: Steel Strike (116 days)

February, 1959: Coal

1970: Teamsters

General Motors (Fall, 139 days)

1979: Coal

1977: Longshoremen

An examination of the residuals of the models in

equations (5.27) and (5.27)‘ reveals very few outlyers in all

of the time periods listed above. Further, the few outlyers

which do appear near any of these time periods are not

extremely large. This suggests that strikes may not present

a serious problem in our models. However, we are interested

in the possibility of improving the models by including a

third input which accounts for these strike episodes. In

this role we use the number of hours of work stoppage due to
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FIGURE 5.9

GRAPH OF IMPULSE RESPONSE WEIGHTS [V2(B)J

for x = Fuel PPI in equation (5.27)‘
2t
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FIGURE 5.9 (cont'd.)
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FIGURE 5.9 (cont'd.)

GRAPH OF STEP RESPONSE WEIGHTS [V2(B)] for x21: 2 Fuel PPI
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Xlt ’
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BCD97
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BCD92

t
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= Fuel prices.

The resulting models are shown below; first with

15,17

Index of Industrial Production

Filtered Mt as in (5.6), with

6
29

%

-.5360

change in PPI of Crude Materials

Work Stoppage due to Strikes

May. 1950 -

(5.31) (l—B12)(1-B)log(yt)

1t

2t

3t

BCD97

FMt

(.

July, 1979 (n =

wo
= [x J

29 It

1'6298

Y

+ mo B10

1-6iB

+

1-812B12

+———a
l-¢1B t

.5909 w' = -.0870

.171) (.038)

7578 61 = .3105

.039) (.055)

RSE = .0117

351)

12

(l-B )[X2t]

" 12

mo (l-B )(l—B)log[x3t1

7

1 (.196)

R2 = .5529

Index of Industrial Production

Filtered Mt as in (5.6), with 629: -.5231

PPI of Fuel, Power, and Related Products

Work Stoppage due to Strikes

Sample: May, 1950 - July, 1979 (n = 351)
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(.0

12 _ o

(5.317 (l-B )(l-B)log(yt) - —__—_—29 [xlt]

1-6298

i

+ mo B8(1-Bl2)(1-B)lo [x J
1-5i5 3 2t

n 12
+ wo(l-B )(l—B)log[x3t]

1-812B12

+-—————-—— a
1-¢lB t

w = .1881 529 = -.5189 05 = -.1319 51 = .5500

(.050) (.187) (.058) (.158)

w" = -.0122 e = .7781 ¢ = .3098

O (.001) 12 ( 035) 1 (.059)

2 _ 2
59 2 RSE = .0117 R = .5529

X95

A comparison of equations (5.31) and (5.31)' with

equations (5.27) and (5.27)‘ reveals an apparently substantial

reduction in the RSE when X3t is included, although some

reduction is expected with the addition of any third

variable.

We are especially concerned with the performance of

our new models during the years in which strikes substan-

tially influenced GNP. The residuals of the models in

equations (5.31) and (5.31)‘ during these strike periods,

show no noteworthy improvement over those in equations

(5.27) and (5.27)‘. This suggests that our models in

equations (5.27) and (5.27)‘ may be considered adequate

with regard to the problem of strikes.
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Tatom, J.A., "Energy Prices and Capital Formation:

1972—1977," Federal Reserve Bank Of St. Lonis ReView, May,

1979.

6Note that we must supply the univariate model for

our input, xt = FMt, as the prewhitening model for the

estimation of this transfer function in equation (5.7).

Since our input consists of a 29-month moving average of Mt,

it is not surprising that we find the complicated univariate

model below.

x = PM = Filtered M as in (5.6), with
t t t

629 = -.5207

Sample: May, 1950—September, 1973: n = 281

_ , _ _ 3 _ 12 _ 2 10 13
(1 ¢lB)(l ¢1B ¢3B )(l ¢12B )[xtl- (1-82B ~810B -8138 )at

¢i = .8618 ¢l = .2633 03 = .3303 ¢12 = —.6333

(.190) (.216) (.197) (.055)

8 = -.1683 6 = .1952 6 = .1993

2 (.115) 10 (.067) 13 (.055)

x30 = 61.9 RSE = .0093

7

op. cit., Box, G. and Jenkins, G., Chapter 11.

80p. cit., Box, G. and Jenkins, G., Chapter 11,;n 382.

9For use in the estimation of equation (5.25), the

univariate models for the two inputs over the sample, May,

1950-September, 1973 (n = 281), are the following.

x1t = FMt = F11tered Mt as in (5.6), w1th

52” = -.5231

Same model as in footnote 6, with:

(5 A A A

¢i = .8669 ¢l = .2579 ¢3 = .3267 ¢12 = -.6338

(.199) (.220) (.199) (.055)

A A A

0 = -.1652 0 = .1951 0 = .1992

2 (.117) 10 (.065) 13 (.055)

2

X90 = 52.1 RSE = .0093
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= BCD92 % change in PPI of Crude Materials
x2t

3 12 _ 2 10 13
(1-918-935 )(1-5 )[th] - (1-625 ~8128 -61uB )at

11 = .9133 ¢3 = .1855 82 = .0977 612 = .7580

(.053) (.055) (.055) (.091)

614 = —.1586 x35 = 19.1 RSE = .0125

(.055)

10
For use in the estimation of equation (5.26), the

univariate models for the two inputs over the sample,

May, 1950-March, 1975 (n = 299), are the following.

x1t = FMt = F11tered Mt as in (5.6), w1th

629 = -.552

Same model as in footnote 6, with:

A. A A A

¢i = .8563 21 = .2752 ¢3 = .3303 212 = -.6080

(.223) (.298) (.162) (.051)

0 = -.1219 0 = .1919 0 = .1638

2 (.128) 10 (.052) 13 (.051)

2 _ -
X90 - 69.2 RSE — .0093

x21: = BCD92 % change in PPI of Crude Materials

Same model as in footnote 9, with:

A A A A A

¢ = .9290 ¢ = .2181 8 = .0739 e = .7739 9 = -1317

1 (.050) 3 (.055) 2 (.055) 12 (.092) 1” (.057)

x35 = 25.1 RSE = .0130

11

For use in the estimation of equation (5.27), the

univariate models for the two inputs over the sample,

May, 1950 — August, 1979 (n = 352), are the following.

xlt = FMt = F11tered Mt

Same model as in footnote 6, with:

as in (5.6), with 629:‘-'5600

1i = .8573 91 = .2197 93 = .3052 ¢12 = -.5109

(.118) (.191) (.105) (.095)

5 = -.1173 6 = .1392 5 = .1819

2 (.085) 10 (.058) 13 (.057)

2 = 57.5 RSE = .0095
X90
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x2t = BCD92 % change in PPI of Crude Materials

Same model as in footnote 9, with:

A A A A A

¢ = .3850 ¢ = .2658 8 = .1592 0 = .8120 8 = -.1975

1 (.059) 3 (.099) 2 (.058) 12 (.039) 1” (.057)

2 _ ..
X25 - 92.6 RSE - .0192

12

The univariate model for the input, the Fuel PPI,

is needed in the estimation of this single—input transfer

function. This model is presented below.

12 _ 12

(l-¢lBXl~B )(l—B) log [xtJA - (1-812B ) at

¢ = .6606 8 = .8923

1 (.092) 12 (.031)

x2 = 52 8 RSE = 0098
96 ' '

where xt = PPI of Fuel, Power, and Related Products, and the

Sample period is May, 1950-November, 1979 (n = 355).

13For use in the estimation of equation (5.25)‘, the

univariate models for the two inputs over the sample,

May, 1950-September, 1973 (n = 281), are the following.

x1t = FMt = F11tered Mt as in (5.6), With

62” = -.992

Same model as in footnote 6, with:

A

¢i = .8669 01 = .2599 $3 = .3230 812 = -.6239

(.195) (.221) (.199) (.055)

A A A

8 = -.1633 8 = .1967 8 = .1950

2 (.118) 10 (.057) 13 (.055)

2 _ _
x“0 - 59.9 RSE — .0093

x2t = PPI of Fuel, Power, and Related Products

Same model as in footnote 12, with:

0 ' .2377 8 = .8086

1 (.051) 12 (.090)

2 = 93.9 RSE = .0079
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ll*For use in the estimation of equation (5.26)', the

univariate models for the two inputs over the sample,

May, 1950—March, 1975 (n = 299), are the following.

x1t = FMt = F11tered Mt as in (5.6), w1th

62” = -.9600

Same model as in footnote 6, with:

¢i = .8539 21 = .2833 03 = .3206 ¢12 = —.5995

(.299) (.273) (.179) (.052)

8 = -.1181 8 = .1961 8 = .1537

2 (.137) 10 (.052) 13 (.051)

2 _ _
X90 — 62.0 RSE - .0092

x2t = PPI of Fuel, Power, and Related Products

Same model as in footnote 12, with:

6 = .5089 8 = .8318

1 (.098) 12 (.037)

2 _ _
X96 - 55.3 RSE - .0097

15
For use in the estimation of equation (5.27)‘, the

univariate models for the two inputs over the sample:

May, 1950-November, 1979 (n = 355), are the following.

xlt = FMt = F11tered Mt as in (5.6), w1th

62” = -.5520

Same model as in footnote 6, with

1i = .8581 91 = .2190 ¢3 = .3091 912 = -.5101

(.119) (.193) (.106) (.096)

0 = -.1169 6 = .1397 6 = .1810

2 (.087) 10 (.055) 13 (.057)

2 _ _
X“0 — 66.6 RSE - .0095

x2t = PPI of Fuel, Power, and Related Products

Same model as in footnote l2.
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16For use in the estimation of equation (5.31), the

univariate models for the three inputs over the sample,

May, 1950—July, 1979 (n = 351), are the following.

xlt = FMt = F11tered Mt as in (5.6), With

6 -
2” _ 9.5360

Same model as in footnote 6, with:

0i = .8627 ¢l = .2238 03 = .3132 ¢12 = -.6151

(.107) (.131) (.101) (.096)

8 = -.1l97 6 = .1997 8 = .1806

2 (.083) 10 (.059) 13 (.057)

2 _ _
X90 - 60.5 RSE - .0099

x = BCD92 % change in PPI of Crude Materials
2t

Same model as in footnote 11.

x3t = Work Stoppage due to Strikes

(1-812)(1-B) log [xst] = (1-812B12) at

512 1:82:

x37 = 51.5 RSE = .909

17
‘ For use in the estimation of equation (5.31)‘, the

univariate models for the three inputs over the sample,

May, 1950-July, 1979 (n = 351), are the following.

x1t = FMt = F11tered Mt as in (5.6), With

629 = -.5231

Same model as in footnote 6, with:

h A A A

¢i = .8637 ¢1 = .2227 ¢3 = .3116 ¢l2 = -.6136

(.109) (.133) (.102) (.097)

A A A

82 = -.ll90 8 = .1503 8 = .1792

(.089) 10 (.059) 13 (.057)

2 - -
X90 - 59.2 RSE - .0099
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x2t = PPI of Fuel, Power, and Related Products

Same model as in footnote l2.

x3t = Work Stoppage due to Strikes

Same model as in footnote 16.



CHAPTER VI

CONCLUSION

The proposed leading indicator approach is supported

by an appropriate theoretical framework in the form of a

dynamic, structural econometric model. In this context,

information is obtained about the first two moments of the

conditional distribution, f(yt+k|LIt). This information

is the object of our analysis.

A comparison of the forecasting abilities of the

proposed approach with the Final Form, reveals essentially

that both approaches forecast equally well. That is, both

approaches imply the same forecast error variance for

forecasts within the lead of the leading indicator.

These observations suggest that the proposed

leading indicator approach may deserve more attention as an

alternative to the Commerce Department approach.

As we move from this proposed theoretical approach to

the empirical evaluation of the Commerce Department leading

indicators, justification is needed for the consideration

of only one input in the transfer functions developed. It

is argued that the bias introduced in the parameter

estimates through the omission of relevant variables, is

211
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not a problem when forecasting is the main objective. In

fact the biased estimates are truly appropriate for fore-

casting since they contribute to an exact representation

of the expectation of the objective variable, conditional

on the single input utilized.

With this justification established, bivariate time

series models are built describing the empirical relation-

ships between economic activity and eight of the component

series in the Commerce Department‘s CLI. Five of these

models show a lack of any significant lead time in the

relationship. The other three models suggest relationships

with a lead worthy of a “leading indicator". However, the

leading indicator which displays the most significant lead

over economic activity is the Producer Price Index of Crude

Materials, which is seen to have a negative relationship

with economic activity, while the Commerce Department uses

it in a positive role. These revelations present some

possible reasons for the poor performance record of the

Commerce Department approach.

Finally, Money is proposed to fill the role of

leading indicator. The cross-correlation functions between

the prewhitened Money series and the correspondingly

transformed Industrial Production series implies an impulse

response function which might follow a damped cosine wave

with a period of four years. The associated step response

at the identification stage bears much resemblance to that

implied by the framework suggested by Friedman (1979). This
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step response function supports a proposition that Money is

neutral after 36 months. The step response function

approaches zero in that time frame, and the impulse response

weights after 36 months, appear to be quite erratic, breaking

from the previous appearance of a smooth cosine wave. This

may indicate that they reflect only random behavior after

that point.

In this light, a bivariate time series model is

built, describing the empirical, dynamic relationship

between economic activity and Money. An infinite lag model

is estimated about the pattern indicated at the identifica-

tion stage discussed above. This model is expanded to

account for two different kinds of supply shocks occurring

in the sample period reviewed: the energy price shocks of

the early 1970‘s, and strikes in the Labor Force. At each

stage of the expansion of this model, a stable dynamic

relationship is observed between Money and economic

activity.

After 36 months, the estimated step response

function is seen to approach zero, supporting the

observations regarding the relationship at the identification

stage. However, since an infinite lag relationship is

estimated, the impulse response weights after 36 months are

constrained to continue to follow the damped cosine wave,

even if they truly represent only random movements about

zero. These impulse response weights after 36 months must

be considered in finding the steady state gain, the
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convergence of the step response function. These weights

are seen to converge to approximately (.95) in the various

stages of expansion of the model.

This suggests a nonneutral long run relationship

between Money and real GNP, which is somewhat troubling in

light of the concepts of current Monetary Theory. Never—

theless, the model provides useful insight into the

empirical relationship between Money and real GNP, which is

so important in economic theory. In particular, the stable

relationship found implies that Money may provide useful

information as a leading indicator of economic activity.
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APPENDIX 9

DATA SOURCES

The economic indicator series are available in the

 
Business Conditions Digest (BCD), but most are seasonally

adjusted.

The Index of Industrial Production (BCD97) appears

not seasonally adjusted in The Survey of Current Business,
 

and is available from 1997 to the present.

The Composite Index of Leading Indicators consists of

12 components: BCD series 1, 3, 8, 12, 19, 20, 29, 32, 36,

92, 109, and 105. Series 19, the Index of Stock Prices, and

series 32, Vendor Performance, are available not seasonally

adjusted in the Business Conditions Digest from 1997 to the
 

present.

BCD series 1, the Average Workweek of Production

Workers, appears not seasonally adjusted in The Survey of
 

Current Business, and is available from 1997 to the present.
 

BCD series 3, the Layoff Rate, is also available not

seasonally adjusted in The Survey of Current Business from
 

1997 to the present.

BCD series 8, the Value of Manufacturers' New Orders

for Consumer Goods and Materials, consists of the aggregation
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of three series: (1) new orders for durable goods

industries plus (2) new orders for nondurable goods

industries with unfilled orders minus (3) new orders for

capital goods and defense products. New orders for durable

goods industries is available not seasonally adjusted in

The Survey of Current Business from 1997 to the present.
 

The latter two series are both available not seasonally

adjusted in the Census Bureau publication, Current Industrial

Reports - Manufacturers' Shipments, Inventories, and Orders,

from 1958 to the present (see call number C3.158/M3-l.6).

These categories are unavailable in this publication for

earlier years. Thus our constructed series BCD8 is

available from 1958 to the present.

BCD series 29, the Index of New Private Housing Units

Authorized by Local Building Permits (not seasonally

adjusted), can be constructed from the month to month

changes in series HSBBR in the Citibank Data Base. This is

available from 1959 to the present.

BCD series 92, the % Change in Sensitive Prices (the

PPI of Crude Materials, not seasonally adjusted), can be

constructed from series PWCMPX in the Citibank Data Base.

BCD series 105, the Real Money Stock, Ml’ not

seasonally adjusted, can be constructed by dividing the

Nominal Money Stock, M1 (available as series FZMl in the

Citibank Data Base), by the CPI for All Items (available in

The Survey of Current Business). This constructed series is
 

available from 1997 to the present.
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We have been unable to locate data for BCD series 12,

20, 36, and 109, on a not seasonally adjusted basis.

Data for the unadjusted Nominal Money Stock series

employed in Chapter V is obtained by splicing two different

definitions of the Money Stock. This splicing technique is

developed extensively in the Chapter. The two Money Stock

series used are:

Ml from 1997.1 - 1958.12: published in the Federal

Reserve Bulletin, October, 1960.
 

MlB from 1959.1 - present: published in "Redefined

Money Stock Measures, Liquid Assets, and Related

Measures," Federal Reserve Release, March 29, 1980,
 

with recent updates available in "Federal Reserve

Statistical Release H.6," June 20, 1980.

The Producer Price Index for Fuel, Power, and Related

Products is published in The Survey of Current Business, from
 

1997 to the present. However, the numbers appear under

three different base periods:

1997.1 - 58.12 with base, 1997-99 = 100;

1959.1 - 66.12 with base, 1957-59 = 100;

1967.1 - present with base, 1967 = 100.

These segments are spliced into a complete series with base,

1967 = 100, as follows. The mean of the observations for

1957.1 - 59.12 with base, 1997-99 = 100, is calculated

[mean = 119.2]. Then the mean of the observations for

1967.1 - 67.12 with base, 1957-59 = 100, is calculated

[mean = 103.6]. Next, the observations for 1997.1 — 58.12
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with base, 1997—99 = 100, are divided by (1.1192*l.036).

And finally, the observations for 1959.1 - 66.12 with base,

1957-59 = 100, are divided by (1.036). These two segments,

together with the remaining segment from 1967.1 to the

present, represent a complete series for Fuel Prices, with

base, 1967 = 100.

Finally, the Number of Hours of Work Stoppage Due to

Strikes in the Labor Force is obtained from the series,

LHSTOP, in the Citibank Data Base.
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