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ABSTRACT

PARAMETER ESTIMATION AND MODEL CONSTRUCTION

FOR RECURSIVE CAUSAL MODELS WITH

UNIDIMENSIONAL MEASUREMENT

BY

David Wayne Gerbing

Two kinds of linear models often used in the social sciences are

measurement models and causal models. Measurement models specify the

relation of latent variables to observed variables and causal models

relate latent variables to each other so that their ordering in the

model specifies the outcome of an underlying causal process. The

purpose of this paper is to compare the utility of two distinct

estimation procedures which are embodied in two separate computer

programs: PACKAGE and LISREL. The comparison is limited to recursive

models with unidimensional measurement models.

LISREL is based on the more recently developed procedures of "full

information maximum likelihood". LISREL simultaneously estimates the

parameters of both the measurement and causal models. PACKAGE is based

on least squares techniques. The parameters of the measurement model

are estimated with centroid factor analysis with communalities in the

diagonal, and then, in a separate step, the estimated correlations

among the latent variables are subjected to an ordinary least squares

(OLS) path analysis.

The results of this paper show PACKAGE to be a superior technique.



David Wayne Gerbing

If the model is correctly specified, then both PACKAGE and LISREL

recover the underlying structure, although LISREL does so at a much

greater cost in computer time than does PACKAGE. If the model is

misspecified, then LISREL spreads the errors related to the misspeci-

fied equations throughout the entire system so that all of the

parameter estimates tend to be affected by the misspecification. In

particular, even if the measurement model is correctly specified, a

misspecification of the causal model precludes the correct recovery of

the correlations among the latent variables. 0n the other hand,

PACKAGE not only separates the estimation of the parameters of the two

models, it is based on single equation techniques which localize the

errors.

Some authors have claimed that the use of the LISREL first deri-

vatives for detecting misspecification is superior to the use of

residuals. Instead, the use of derivatives was shown to be misleading

in certain cases, and under none of the circumstances investigated in

this paper did the derivatives provide more information than the

residuals.

One of the claimed advantages for LISREL was the capability of

allowing for correlated disturbance terms and correlated measurement

errors. Yet counter-examples were constructed in which the use of

correlated errors was misleading. In particular, these examples

demonstrate that, contrary to the current literature, omitted variables

do not lead to correlated errors. False indication of correlated

errors can be produced by (a) ad-hoc composites and (b) missing paths.

In certain cases the covariance of "correlated disturbances" is exactly

the OLS residual for a misspecified model defined by the deletion of a

path.
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CHAPTER I

INTRODUCTION

Causal Models
 

The primary goal of science is theory construction. Most theories

are descriptions of the causal processes among a set of variables. The

direct study of the underlying causal processes, i.e., the study of the

system dynamics, requires the construction of mathematical models of

these processes expressed in terms of differential or difference equa-

tions (e.g., Hunter & Cohen, Note 1; Hunter, Nicol & Gerbing, Note 2).

A model of dynamics allows one to construct a developmental sequence of

the variables in the system--a trajectory--which can be compared to the

actual behavior of the system.

Within the social sciences, however, the causal processes are

usually not studied directly. Instead a causal theory, most often

expressed qualitatively, is used to predict the relations among the

variables. The model is tested by observing these relations §f£g£_the

operation of the causal processes. Thus the distinction is drawn

between (a) the underlying causal processes and (b) the effect these

processes have on the relations between the system variables. And the

outcome of the process, not the process per se, is usually the object

of study within the social sciences.

The statistical methodology employed to test a causal theory by

studying the outcome of the causal processes is, in part, provided by



regression analysis. For example, if a model identifies variable X as

a causal antecedent of variable Y, then it follows that variables X and

Y are related. If this relation is linear, then (a) the variables

should be correlated, and (b) the slope parameter of the regression of

Y on X, which indicates the linear relation between Y and X with the

other predictor variables in the equation held constant, is interpreted

as the indicator of the causal impact X has on Y.

A "complete" system involves a set of variables such that many of

the variables are consequent to some variables and antecedent to other

variables. A causal theory which predicts such a network of relations

can be tested by the analysis of a set of simultaneous regression

equations. But the distinction should always be maintained between

this model of relations among the variables following the outcome of

the causal processes and the model of dynamics which is tested by the

outcome model, even if the process model exists only in the form of

verbal relations.

An example of a causal model. Consider a theory which predicts
 

that X1 causes X2 and that X2 causes X3 but X1 does not directly

influence X3. The implications of this theory for the relations among

the variables can be represented in either diagrammatic or equation

form. If the relations among the variables are linear, the equations

which define the model are:

X2 ’ lex1 + U2

X + U

X3 7 p32 2 3

The equivalent representation of the model in diagrammatic form appears

in Figure 1. X1 is the single exogenous variable of the system (i.e.,

no antecedents Specified) and X2 and X3 are the two endogenous



variables of the system. No constant term appears in the equations

since the variables are mean deviates. The error terms, also called

residuals or disturbances and denoted by U indicate that the speci-
i,

fication of the causal influences of the variables X2 and X3 is

incomplete. Each disturbance is also specified to be uncorrelated

with the predictor variables in the corresponding equation and with

the other disturbances. That is, the disturbances are specified as

random influences.

1’21

Figure l. A path diagram.

p32

The model illustrated above is called a recursive model. For some

authors (e.g., Duncan, 1975) a model is recursive if all of the causal

linkages or paths form a hierarchy, i.e., the paths flow so that a path

never leads back to the same variable from which the path began. Other

authors (e.g., Heise, 1975) require that a recursive model be both

hierarchical and that the disturbance terms across equations be inde-

pendent. In this paper, the latter definition will be used to aid the

distinction between hierarchical models with correlated disturbances

and recursive models.

Structural equations. The regression equations are called

structural equations and the regression weights are called structural

parameters or path coefficients. The diagram is called a path diagram.

The structural equations and/or the path diagram define a causal model



which is a specific interpretation of the underlying causal processes

described by the theory. Since the relations between the variables are

linear, the expected differences (denoted by "A") would be given by:

AX AX and AX

2 a p21 1 3 = p32sz

For example, if manipulation or natural processes changed the value of

X1 by one unit for all of the individuals in the population, then the

theory specifies that the mean difference in X2 would be:

sz = 921(1) = p21

and predicted mean difference in X3 would be:

Ax3 = p32AX2 = p32921

Thus the path coefficients indicated the amount of change that can be

expected in the system variables given a change in antecedent variables

following the operation of the underlying causal processes.

The distinction between structural equations and regression

equations which are not structural equations is the distinction between

theory and blind prediction. If the variables can be measured, any

variable can be regressed on any other variable or set of linearly

independent variables without consideration of causality. For example,

consider the situation in which two variables, Y2 and Y3, share a

common antecedent Y1 but are not causally related in any other way.

The variable Y3 can be mathematically expressed as a function of Y2

even though this relationship does not mirror an existing causal

relationship. From a purely mathematical perspective, the equation

Y3 = YY + U implies AY = YAYZ, but this derived relationship among

2 3

the changes in the two variables has no counterpart in physical

processes. That is, a manipulation of a unit change in Y2 independent



of Y will not cause a change in Y

1 3'

The covariance structure of a causal model: An example. The key
 

to the evaluation of causal models is the calculation of the covari-

ances among the variables predicted by the model. The central idea is

that the model imposes constraints on the covariances among the

variables and it is these constraints on which the test of the model

is based. For example, consider the causal model presented at the

beginning of this paper in which X1 causes X2 and X2 causes X3.

Multiplying both sides of the equation for X by X yields:

3 1

x3X1 = p32X2X1 + x1U3

Taking expected values,

E(X3X1) = p32E(X2X1) + E(X1U3)

Since the variables are mean deviates,

0(X3X1) = p320(X2X1) + 0(X1U3)

But 0(X1U3) = 0. And if the variables are standardized,

r31 = p32‘21

Finally, r since there is only a single predictor in the

p32 = 32

equation for X3, so

r31 = r32’21

Thus the model imposes a structure upon the correlations among the

variables. In this simple example it is this single constraint which

provides a test of the model by comparing the observed value of r31

with the predicted value E obtained by multiplying the observed

31

values of r32 and r21.

This test of the model that r

A

= r is equivalent to tests based

31 31

on partial correlation coefficients and multiple regression



coefficients. Since

r = r31 ' r32r21 r31 ' r31

31-2 2 a 2 a = 2 3 2 k

(1 ‘ r32) (1 ‘ r21) (1 ' r321) (1 ' r21)

the model implies r

 

 

31.2 = 0. If X3 is regressed on X1 and X2 and 831.2

is the corresponding multiple regression weight, then:

A

 

B = r31 ' r32r21 = r31 ’ r31

31-2 1 _ r 2 1 _ 2

21 r21

Thus, the model implies 831.2 = O. The variables X3 and X1 are related

since r31 # 0, but only through the intervening variable X2.

The general principle of constructing a model defined by regres-

aion equations and then using this model to derive the constraints

imposed by the model on the covariances among the variables has been

known for over 50 years. In 1921, Wright introduced "path analysis" as

a test of recursive causal models, though it was not until Simon's

(1957) work, followed by Duncan (1966) and Blalock (1964) that path

analysis began to be used by social scientists other than econometri-

cians. The computation of the predicted correlations of a causal model

is covered extensively in the literature on causal models. Standard

references are the texts by Heise (1975), Duncan (1975), Asher (1976),

and the article by Lewis-Beck (1974).

Measurement Models

Latent variables. Before the variables can be related by a set of
 

regression equations, they must be measured. The variables of

interest, the variables in the causal model, are called the latent

variables since they are not directly observed. The observed variables

are the indicators of the latent variables. The relation between the



indicators and the latent variables is specified by the measurement or

factor model. The measurement model is a set of simultaneous regres-

sion equations of the indicators regressed on the latent variables.

Each measure is an imperfect indicator of a latent variable

because of random response error and invalidity. The problem of

measurement error for the analysis of causal models is more serious

than simply the lack of precise measures of the latent variables. The

analysis of a causal model based on fallible data yields biased

parameter estimates (e.g., Wiley, 1973). For a regression equation

with a single predictor, measurement error in the independent variable

attenuates the slope coefficient in proportion to the reliability of

the independent variable. However, for multiple regression equations

the effect of measurement error of the independent variables on the

estimates of the regression coefficients is usually unpredictable.

Wiley (1973) presented an example of a two-predictor multiple

regression equation in which the presence of measurement error reversed

the magnitude of the sample parameter estimates from the values of the

population parameters. The problem of measurement error can be

countered by providing multiple indicators of each latent variable.

The use of multiple indicators improves the precision of the estimates

of the latent variables and allows reliability estimates of the

composite scores to be computed. Traditionally, these reliability

estimates are used to correct for attenuation the correlations among

the latent variables computed from the observed composites.

The covariance structure of unidimensional measurement models.

The testing of measurement models in which the measures are partitioned

into clusters such that the measures in each cluster are postulated to



be alternate indicators of only a single common latent variable is

called Spearman factor analysis or oblique multiple groups analysis

(Tryon, 1939; Holzinger, 1944). The original conceptualizations were

provided by Spearman in 1904. The computations of a multiple groups

analysis involve any factor analytic method by which a single factor

is extracted from each group. The computations provide estimates of

the factor loadings of each indicator on the group factors.

An extensive discussion of the construction and evaluation of

unidimensional measurement models, an example of a procedure called

confirmatory factor analysis, is provided by Hunter (Note 3) and Hunter

and Gerbing (Note 4). Measurement models are evaluated according to

the same principles which underlie the evaluations of causal models.

The basic idea is to derive the covariances among the observed

variables predicted by the model. The covariance structure of

unidimensional measurement models is given below.

As presented in Figure 2, let the observed variables X1 and X2 be

indicators of latent variable (or true score or factor) F and let Y be

an indicator of G. The errors of measurement are specified as random.

The curved double-headed arrow in Figure 2 represents a correlation

without the specification of causality.

9% O

6% a

Figure 2. A two-factor multiple groups measurement model.



In equation form,

X = 81F + e

l 1

X2 = 82F + e2

and Y = BYG + eY

where r(F,ei) = r(G,ei) = r(ei,ej) = 0.

The covariance structure of the indicators can be described by

considering (a) the covariances among indicators of different factors,

and (b) the covariances among indicators of the same factor. Consider

first the relation between X1 and Y. The model implies:

XlY = BIBYFG + BlFe1 + BYGeY + eleY

E(X1Y) = BIBYE(FG) + BlE(Fe1) + BYE(GeY) + E(e1eY)

Standardizing the observed and latent variables,

8 B
r11! 2 1 YrFG

where 81 and 82 are standardized regressions weights. Since

B=r1 and BY = r

1F YG

by substitution,

rlY = rlrrrcrcr

Thus one test of the measurement model is the comparison of the

observed value of rl with the value predicted by the model rlY’ which

Y

is the product of the observed values of r rFG’ and r

1F, GY'

Hunter and Gerbing (Note 4) call the expression r1Y = rlFrFGrGY

the product rule for external consistency of items. By similar logic,

they also derive the product rule for external consistency of items and



10

factors, which is,

r19 = rlrrrc

If X1 and X2 are both indicators of the game factor F, an

equivalent test based on these covariance restrictions can be used to

test the unidimensional measurement model. The product rules imply

that the correlations of X1 and X2 with other items or other factors

are proportional to their respective factor loadings on their own group

factors. That is, for some other factor C,

These proportionality rules are equivalent to the tetrad difference

criterion, which is usually written as

r1Gr2F = rZGrlF 0r rerZF = rZleF

They were presented in the context of factor analysis by Spearman in

1907 and first illustrated in the context of data analysis by Burt

(1909) and Spearman (1914).

The stability of this proportionality of the correlations of two

indicators of the same factor across other indicators and/or factors is

indexed by the following formula, originally used as a measure of the

similarity of two factors.

k§1r(xixk) 11(ijk)

(2n{r(XiXk)} 2)L5 (:12 {r<xjxk)} 2)
k=l
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Hunter (1973) called this index a "similarity coefficient".

Conceptually, the "intercolumnar criterion" is an "unadjusted correla-

tion . . . a product-moment coefficient based on absolute deviations,

instead of on the deviations about the means" (Burt, 1940, p. 343). If

communalities are placed in the diagonal of the correlation matrix, the

value of ¢ ranges from -1 to 1 with ¢ equaling 1 or -1 if the two

items, X and Xj’ have correlations that are perfectly proportional.

i

The product rules for external consistency and the implied propor-

tionality rules specify the relations between indicators of a factor

with variables external to the factor. The constraint imposed on the

correlations between indicators of the same factor is called the rule

for internal consistency. The internal consistency product rule is a

special case of the external consistency product rule in which rFG = 1.

That is,

1:12 = rlFrFZ

where X1 and X2 are both indicators of F. This product rule is

Spearman's (1904) general factor equation and is a special case of

Thurstone's (1931) "fundamental theorem of factor analysis" for the

single factor solution.

Other authors have independently discovered these properties. For

example, Tryon called indicators which meet these constraints

"collinear" (Tryon & Bailey, 1970). J6reskog (1971) called the latent

variables "congeneric measures" and Burt (1976) called the latent

variables "point variables" if the indicators of the latent variables

satisfy these constraints. Kenny (1979) called the product rules for

internal and external consistency the rules for "homogeneity within

constructs" and "homogeneity between constructs".
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Evaluation of the Full Causal Model

The analyses of the regression equations which define the measure-

ment and causal models are similar. The analysis begins with the

construction of the model, either a measurement model or a causal model

or both. Estimates of the parameters of the regression equations which

define the model are computed from the observed sample correlation

matrix. Given the model and the parameter estimates, the covariance

matrix among the variables implied by the model can be computed. The

comparison of implied and actual covariance matrices provides an

evaluation of the fit of the model to the data. Since the fit of the

model can usually be improved by constructing a revised model, the

previous steps are repeated until the investigator has obtained a good

fitting model or abandons the project. The steps involved in such an

analysis are illustrated in the flow chart in Figure 3.

Competing statistical procedures exist for computing parameter

estimates. Should the measurement and causal models be analyzed

separately or simultaneously? Should least squares or maximum

likelihood methods be used? Should single equation or full information

methods be used? The central issue of this paper is a comparison of

these competing techniques.

OLS and centroid factor multiple groups analysis. Hunter has

argued that testing the full causal model can be accomplished in two

separate steps: test the multiple indicator measurement model using a

multiple groups analysis, and then submit the estimated correlation

matrix between latent variables from the multiple groups analysis to a

path analysis. Examples of this procedure are found in Hunter, Hunter

and Lopis (in press) and Hunter, Gerbing, and Boster (Note 5).
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Figure 3. A flow chart of the model building process.
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The initial computations of a multiple groups analysis are

presented in Holzinger (1944), Hunter (Note 3), and Hunter and Gerbing

(Note 4). The method consists of extracting a first centroid factor

from each cluster of indicators. The extraction of this group factor is

accomplished by computing the correlations of the indicators with the

factors and the correlations among the factors. If communalities are

not used in the analysis, then the first centroid factor is simply the

sum of the indicators which define the group, i.e.,

F=X1+X2+X3+...+Xn

where X X

1’ 2’ '°" Xn are the indicators of factor F. The multiple

groups analysis is based on the repeated application of the rule "the

covariance of a sum is the sum of the covariances" to the following

correlational formulas:

 

 

o(X ,F.)

_ ii

r<x1’Fj) ' o(Xi)o(Fj)

o(F ,F )

= 11

r(Fi’Fj) o(Fi)o(Fj>

The remaining step in the analysis is the computation of the communality

estimates which is accomplished with an iterative procedure outlined in

Hunter (Note 3) and Hunter and Gerbing (Note 4). The communality of

interest for each observed variable is the communality of the indicator

across the remaining indicators in the corresponding group. As Hunter

(Note 3) demonstrated, if these communalities are inserted in the

diagonal of the correlation matrix, then the observed correlation matrix

among the indicators is transformed to the covariance matrix of true

scores. Hunter (Note 3) also demonstrated, by example, that factoring
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a covariance matrix of true scores implies that the computed factor

loadings and factor-factor covariances are corrected for attenuation

(Spearman, 1907) due to the measurement error in the composite (i.e.,

factor) scores. At the same time, the use of communalities also

eliminates the Spuriously large "part-whole" correlations between

indicator and factor, i.e., communalities eliminate the upward bias of

correlating an indicator with a composite of which it is a part.

However, if the indicators can not be measured without error,

communalities must be used in the multiple groups analysis if parameter

values are to be correctly estimated. The convergence of this iterative

process for these data is discussed in Appendix A.

The input to the multiple groups analysis is the correlation

matrix of the observed variables. The input to the path analysis is the

correlation matrix among the latent variables. Parameter estimates of

recursive models have traditionally been accomplished with ordinary

least squares (OLS). That is, the estimated parameter values are those

values that minimize the sum of the squared errors of the sample data

points about the sample regression surface for each equation in the

model.

Both centroid factor multiple groups analysis and OLS path

analysis are called single equation estimation procedures. That is, the
 

computations of these analyses are accomplished "equation by equation";

only the variances and covariances of the variables which appear in a

particular equation are used in the computations of the estimated para-

meters of that equation. The general equation for a multiple indicator

measurement model is

Xi = 11F + ei
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since each indicator or observed variable is a function of only a single

factor plus measurement error. In a recursive model, the factors can be

ordered so that all variables causally antecedent to a given factor are

listed ahead of it. If the variables are so listed, then the general

equation for a recursive path analysis is

i—l

F=£PF+U

1 k=1 ik k 1

The computation of both the centroid factor multiple groups

analysis and the OLS path analysis may be accomplished with PACKAGE

(Hunter & Cohen, 1969). The use of the multiple groups subprogram is

explained by Hunter and Cohen (Note 6) and Hunter and Gerbing (Note 4).

The path analysis subprogram is explained by Hunter (Note 7).

LISREL. Based on the work of Lawley (1943) and Bock and Bargmann

(1966), J6reskog (e.g., 1967, 1978) has developed an alternative

analysis of causal and measurement models which differs from the OLS

with correction for attenuation strategy along two different dimensions.

J6reskog has also developed a computer program, LISREL, which contains

the computational algorithms (J6reskog & SSrbom, 1978). Both analytic

methods, OLS with correction for attenuation and LISREL were developed

to account for the biasing effects of measurement error. However,

LISREL simultaneously estimates the parameters of the measurement and
 

causal models. LISREL also is not restricted to testing multiple

indicator measurement models in which each indicator is an indicator of

only a single factor, i.e., multiple groups measurement models. Nor

does LISREL require the measurement errors to be uncorrelated. In terms

of the causal model, LISREL is not restricted to the analysis of

recursive path models. The causal model may be nonrecursive in that the
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disturbances may be correlated and/or "feedback loops" may appear in

the model.

The complexity of the general LISREL model requires the use of

matrix algebra in its representation. Since J6reskog's parameteriza-

tion of the model includes an explicit distinction between exogenous

and endogenous variables, there is also a much greater notational

complexity. Many of these symbols are defined in Table 1. Other

symbols include ny for the covariance matrix of the exogenous and

endogenous observed variables and Z for the covariance matrix of all of

the indicators.

The LISREL model. Joreskog has parameterized the general measure-
 

ment model in separate equations for the exogenous latent variables and

a model for the endogenous latent variables.

y Ayn +_e and E(fl_€')‘-"O

pxl pxm mxl pxl

X Ax; +6 and E(§§') = 0

qx1 qxn nxl qxl

The 1th row of the factor pattern matriceslly andllx corresponds to the

ith endogenous or exogenous indicator. The jth column of each of the

matrices refers to the jth endogenous or exogenous factor. Thus if the

scalar equations take the form of

y1 = Ky n + Ei or xi = Ax g + 61

i i

as is the case for the multiple indicator models with one indicator per

factor, then each rowofAyandAx will contain a single A with the

remainder of the elements in the row equal to zero.

The parameterization of the causal model is best understood by

beginning closer to the more traditional path analytic parameterization,
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Table 1

LISREL Notation

 

Variables

Number

Variable of such Covariance

psymbol variables matrix
 

 

 

 

Observed x q 2

xx

Exogenous Unobserved 5 n ¢

Measurement error 6 q 96

Observed 2

y p yy

Unobserved n m C

Endogenous

Measurement error e p 08

Disturbance c m w

Parameters

Scalar Matrix Function

Ax

Ax A x 54x1

Measurement

A
model

Y
A A i

y y E ——v-yi

F Y
Y

Causal g n

model Bji
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N

F.=£P F +U,

1 k=1 ik k 1

where there are N latent variables, designated by F. In matrix form,

£= PE +9

le NxN le le

If a distinction is made between exogenous and endogenous factors, then

the model can be rewritten as

n=An+I§+£

mxl mxm mxl mxn nxl mxl

For recursive models, A is a lower triangular matrix with 0's down the

main diagonal and U) E E(5__c_') is a diagonal matrix with the disturbance

variances down the main diagonal.

However, J6reskog's parameterization of the causal model is based

on the following transformation of the above equation.

(I - A)fl = P §_+ C

B3=F§+£ andEgg')=0

where B E I - A. Thus B has 1's down the main diagonal and the path

coefficients are reversed in sign. For recursive models, B is still

lower triangular.

The LISREL covariance structure. Given the three equations which
 

define the model, it is now possible to derive the covariances among

the indicators predicted by the model. The derivation is based on the

partitioning of 2 shown in Figure 4.

 

I

I

Z = - - - -I -----

I

I 

Figure 4. The LISREL partitioning of Z.
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For example, to compute the implied covariances among the indicators of

the exogenous variables,

Xxx; E(xx') = E{(l\x_€_+_6_)(Ax§_+_6_)'}

MAX; g'AX') + meg 53') + E(§§'Ax') + E(§_6_')

=AXE(§§_')AX' +AXE(_§') + E(§§_')Ax' + E(_<_5_§)'

__ '

AX¢AX + 96

which is the usual expression for the correlation of the observed

variables expressed as a function of the factor pattern matrix, the

correlation matrix among the oblique factors, and the communalities.

Similar derivations lead to

X E Egyxf) =

yx E{(Ayn+_€></\x§+ 9'}

= AyE(fl_€_') A)"

and

yy: E(Xy) = E{(Ay_r_1_+_e_)(l\y3_+_§)}

A (3A ' + O

Y Y "5

But, the covariances among the endogenous factors, C55 E(fllf) , can be

decomposed according to the causal model. Since

B11 = P §_+'£,

So

, . —1 -1 -1 -1 ,
Egg) =E{(B r§_+3 3;)(3 £§_+B 5)}

= 3'1 r ¢B"1 + B.1 ws"1

Similarly,

E(3§') = B’lrcp

So

2 = AB'1r¢A'

yx y x
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1-1 - -1 -1
=11 B I" B' +3 3' A'+0yc <1 1 )y _E2

YY

And, from before,

2: =A¢A'+o
XX x X —5

Thus the predicted covariance matrix of the indicators, 2, has been

parameterized in terms of the estimators of the four covariance

A A A A

matrices, ¢, w, GE, 96’ and the four parameter matrices, P, B, Ay,

A

A .
x

In the two-step strategy of OLS preceded by centroid factor

analysis, (a) the correlations among the indicators are parameterized

only in terms of the factor pattern, the factor correlations, and the

communalities, and (b) the covariances among the factor correlations

are parameterized only in terms of the causal model. In contrast,

J6reskog simultaneously parameterizes the covariances among the

indicators in terms of both the measurement and causal models. The

complexity of the algebra varies greatly across the two strategies, but

the key ideas remain the same: (a) construct a model, (b) derive the

implications of this model for the covariance structure of the

variables, i.e., compute E, and (c) test the model by comparing E to

the observed sample covariance matrix S.

The metric of the latent variables in a simultaneous LISREL

analysis. A potential source of confusion in the interpretation of the

simultaneous LISREL analysis is the metric of the latent variables. If

the variance of each latent variable is not set by the user, the model

is underidentified. The classic solution to this problem is to set the

variance of the factor to 1, i.e., to standardize the factors. Instead,

Jbreskog and Sfirbom (1978) chose to fix the factor loading of one of
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the indicators of each latent variable at 1.00. Jfireskog does not

clearly indicate the effect of this specification on the parameter

estimates other than that "the scales for [the latent variables] have

been chosen to be the same as for [the corresponding indicators whose

factor loadings were set at 1.0]" (1978, p. 468). The phrase "the

scales [areJ the same as" is often interpreted to imply that the metric

of the latent variable is set at the metric of the corresponding indi-

cator with a fixed factor loading of 1.0, though this is not true.

The implications of this practice can be derived by beginning with

the basic relationship

5

Y=An+e or o§=A20§+02€ or 02=-—L——

It follows that, for the specific case a: = oi = 1 in which the true

value of A is used,

_ 2 2 2_ _ 2

l-ATRUE+OE 0" Ge’l ATRUE

That is, the value of 0% computed by LISREL is determined by the actual

value of A if the value of 0% is not fixed a priori by the user. But

if A is fixed at 1.0 while oi remains free,

2 2

o - 08 1 - (l - A )

_JL_____ TRUE = A2

2 1 TRUE

 

Q

II II

Fixing the value of a factor loading at 1.0 determines the

variance of the corresponding latent variable for computational

purposes, but this variance is an arbitrary and meaningless metric

which is neither the variance of the observed variable nor is it the

actual variance of the latent variable. Consequently, the computed

covariance matrices of the latent variables and of the latent and

observed variables are expressed in a metric which does not correspond
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to the parameters of the model used to generate the data.

Moreover, the maximum likelihood estimates (and the corresponding

standard errors) of the regression parameters of the measurement model

do not correspond to the parameters of the model used to generate the

data because the relation

2

o = A302 + 06

Y1 1

must be satisfied. If the factor loading A of the first indicator of

n is fixed at 1.0, then obviously A1(TRUE) # A1(LISREL)° But consider

the ith indicator. The value of o; = 1 is given. LISREL computes the

2 2

values of on and 0E as

i

2 = A2

on 1(TRUE)

2

Oei ’ 1 " A1(TRUE)

Thus, 2 2

Cy ' OE

A1(LISREL) = i 2 1

2

1 ‘ (1 " Ai(TRUE))

12

1(TRUE)

 

2

iigTRUE)

A2

1(TRUE)

For example, if the true or actual factor loadings of the indicators of

a given latent variable were .80, .60, and .40, and if the factor

loading of the first variable was set at 1.0, then the computed factor

loadings would be 1.00, .75, and .50. The sets of factor loadings are

equivalent except for the constant of proportionality, .80.
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If the variance of the latent variables is 1.0, the covariance

matrices and the measurement model parameters happen to correspond to

the correct values in the standardized solution. Unfortunately, LISREL

prints only the factor pattern matrix and the covariance matrix of the

endogenous variables (in addition to the causal parameter matrices) in

the standardized solution. If the full factor loading matrix, the full

matrix of covariances among latent variables, or the covariances among

latent and observed variances is desired in which the latent variables

are expressed in variances chosen by the user, then the following

procedure is suggested.

Use an arbitrary metric such as that obtained with fixing an

indicator of each latent variable at 1.0. Take the value of 0:

provided by LISREL and substitute it into the following formula in

which a; is given by the data and the value of oi is chosen by the

user.

2 2

o - OE

A=l___2_

0‘n

The LISREL program can then be rerun with a single factor loading for

each latent variable set at the corresponding value of A as determined

by the formula. If the metric of the observed variable is to match the

metric of the latent variable, the formula simplifies to

If the observed variables have variance 1.0 and the latent variables

are chosen to have variance 1.0 also, then

A = 1 - oe
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which is just the value of A computed by LISREL in the standardized

solution.

LISRELgparameter estimation. LISREL estimation is based on a
 

method called "full information maximum likelihood" (FIML). Instead of

estimating the value of each parameter from a different subset of the

covariances, LISREL uses all of the data in the computation of each

parameter estimate (unless particular restrictions are placed on the

model).

LISREL assumes that the latent variables and the measurement

errors are generated by a multivariate normal distribution with a mean

vector_g and covariance matrix X. Wishart (1928) has shown that the

observed sample covariance matrix S has what is now called a Wishart

density, which is expressed in terms of the covariance matrix 2 and the

sample size n. The parameter estimates of LISREL are given by the set

of values which maximizes the value of the corresponding multivariate

likelihood function. The effective log likelihood function of the

Wishart density, i.e., the logarithm of the density function with

constant terms deleted, is

log L(Z) = -1/2 n [log IZI + tr(Z-IS)]

In practice, however, LISREL minimizes a transformation of log L called

F where

F(Z) = log IX] + tr(SZ-1) - log ISI - (p + q)

Since log IS] and p and q are constants for a given 8, and since the

sign of F is the opposite of the sign of log L, maximizing log L is

equivalent to minimizing F. In terms of computations, J6reskog has

chosen to minimize F since this transformation of log L is directly

related to the likelihood ratio test of the fit of the model--a topic
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which will be examined in more detail later.

F is minimized by computing the partial first derivatives of each

of the free parameters with respect to F, setting the resulting set of

simultaneous equations to zero, and solving for the values of the para-

meters. Unfortunately, an analytic solution is not available for most

models, so the function is minimized with an iterative procedure from

numerical analysis. The method of Fletcher and Powell (1963) is "a

rapidly converging iterative procedure for minimizing a function of

several variables when analytical expressions for the first-order

derivatives are available" (Jfireskog, 1969, p. 187). The procedure is

based on an approximation of the inverse of the matrix of second

derivatives. As the program iterates, the approximation improves until

it converges to the best approximation of the inverse at the minimum of

F. Details of the method as applied to LISREL are provided by Gruvaeus

and Jareskog (Note 8). As with most iterative procedures, there is the

problem of local minima: "If there are several minima of F there is

no guarantee that the method will converge to the absolute minimum"

(Jareskog & sorbom, 1978).

LISREL two-step analysis. Although most studies in the literature
 

have used LISREL to simultaneously estimate the parameters of the

causal and measurement models and provide the test of fit for the model

as a whole, LISREL could also be used in a two-step analysis (e.g.,

Kohn & Schooler, 1978). LISREL could be used instead of centroid

factor multiple groups analysis to perform a FIML multiple groups

analysis to test the measurement model and estimate the factor corre-

lations. LISREL could then be used instead of OLS to do the path

analysis on the estimated factor correlations. However, for a



27

recursive model with independent disturbances, Land (1973) has demon—

strated that "FIML reduces to equation by equation least squares

regression provided that there are no cross-equation constraints on the

coefficients" (p. 42).

Detecting,Misspecification
 

The actual vs. the specified model. The goal of the investigator
 

is to build a properly specified model. Ordinarily, the interpretation

of the parameter estimates would not be of interest unless the model

was a valid representation of the outcome of the underlying causal

processes. The problem is that typically the initial model specified

by the investigator does not fit the data as well as a competing model

composed from the same set of variables. That is, the initial

specified model is usually not the actual model of the relations
  

between the variables which exist following the operation of the under-

lying causal processes.

The most important task facing the researcher after a model has

been constructed is the detecting and subsequent correction of misspec-

ification. Thus the first two questions the researcher usually asks

after the first computer run are (a) how badly did the model fit? and

(b) how can the model be revised to improve the fit? Both OLS and

LISREL offer several indices of the fit of both_the model as a whole

and for specific equations of the model.

The residual matrix (OLS and LISREL). The residual matrix is

defined by the difference of the predicted covariances implied by the

equations of the model and the observed covariances, i.e., E - S in the

notation of LISREL. The OLS program contained within PACKAGE (i.e.,

PATHPAC) prints the residual matrix and the sum of the squared
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residuals which indicates the fit of the model as a whole. If desired,

this sum may be tested for significance. Although LISREL does not

print the sum of the squared residuals, the residual matrix is printed

from which the sum of squared residuals could be computed.

The residual matrix is also used to pinpoint specification errors.

Residuals which exceed the boundaries of sampling error indicate lack

of fit. In terms of a causal model, large residuals may indicate the

addition or deletion of a path or a reordering of the variables. The

residuals of a unidimensional measurement model may indicate the

necessity of repartitioning the variables into a new set of clusters.

The residuals from a LISREL simultaneous analysis of measurement and

causal models are less interpretable since a large residual may imply

misspecification in either or both models. An assessment of LISREL in

this regard is one of the goals of this study.

Confidence intervals about parameter estimates (OLS and LISREL).

In path models, a proposed path may be deleted if the corresponding

structural parameter is small. The usual standard error for a regres-

sion weight underestimates the correct standard error for an OLS

estimated parameter since the factor correlations have been implicitly

corrected for attenuation. The usual test for the significance of a

correlation coefficient may be applied to the factor loadings

uncorrected for attenuation. LISREL prints the asymptotic standard

error of each parameter estimate which can be used to construct a

confidence interval about the parameter estimate. Since these standard

errors are based on the large sample properties of maximum likelihood

estimators, their validity for small samples is in question.

First derivatives (LISREL). LISREL prints the values of the first
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partial derivatives of F with respect to all the parameters--fixed,

free or constrained. The purported usefulness of these derivatives for

detecting a specific source of misspecification is based on their

relation to the iterative procedure used in the search for the minimum

of F(E). At convergence, the values of the partial derivatives for the

free parameters will be zero by construction. The derivatives of the

free parameters should be approximately zero according to the model

assumptions. If LISREL does not converge, the non-zero derivatives

should indicate the misspecified free and constrained parameters.

The test for locating a potential misspecification for a solution

which has converged is based on the values of the derivatives of the

fixed parameters. If the model does not fit the data well, some of the

derivatives of the parameters fixed at constant values should differ

from zero. LISREL prints the first derivatives of all the elements in

the eight matrices which define the parameterization of 2. Even if the

model is specified as a recursive model with uncorrelated measurement

errors, LISREL still prints the values of the complete B matrix, i.e.,

the derivatives of all the possible paths including those in the

"opposite" direction, and the values of the complete w matrix and the

O8 and 06 matrices including the covariances of the disturbances and

the covariances of the measurement errors respectively.

SBrbom (1975) recommends the use of the first derivatives of the

parameters over the use of the residual matrix (i.e., E - S) in

detecting misspecification. He advises that "we should relax the . . .

restriction for that element which gives the largest decrease in F(E)"

(p. 143). That element is the element with the largest partial deriva—

tive. However, the use of the partial derivatives for detecting
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misspecification has not been adequately studied nor has the usefulness

of this information been compared to the usefulness of the information

supplied by the residual matrix.

Likelihood ratio test (LISREL). The likelihood ratio test can be
 

used as a test of the fit of the model as a whole. The null hypothesis

H0 is that the observed covariances S conform to the constraints

imposed on the covariances of the observed variables by the model,

i.e., that S = E to within sampling error. The alternative hypothesis

H1 is that Z is not described by E, i.e., that "Z is any positive

definite matrix" (Jareskog & Sfirbom, 1978, p. 14) with no restrictions

placed on its structure.

The test is based on the comparison of the value of the likelihood

function. Since 3 is the unconstrained maximum likelihood estimator of

log L, log L is obtained by the substitution of S for 2. The value of

1

Log L becomes the value of log L with Z substituted for 2. The values

0

of log L evaluated at S and E are compared by the statistical test

based on the likelihood ratio or its logarithm, Ll — L0. That is,

under H0,

2 Lo
x ~—-2 log'i—- with df = %(p + q)(p + q + l) - t

1

where t is the number of independent parameters to be estimated.

Since

< log L unless E - S = 0log L 1

0

the question addressed by the likelihood ratio test is, how large a

discrepancy between the observed S and the predicted E is required for

a given sample size to indicate that the model which was used to

generate Z is false?
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The x2 statistic (Long, 1976) can be expressed as

Lo
-2 log —-

L
1

-2 log L + 2 log L

0 1

n[log IS] + tr(SE—1) - log‘SI- (p + q)]

n F(E)

In order to directly obtain the X2 value, Jareskog has chosen to find

the value of the parameters which maximize the value of the likelihood

function by minimizing F (since F(§) and log L differ only by a

constant).

Jareskog warns that "the values of x2 should be interpreted very

cautiously because of the sensitivity of x2 to various model assump-

tions such as linearity, additivity, multinormality, etc., but also for

other reasons" (1978, p. 448). The primary "other reason" is the

sensitivity of any significance test to sample size. No model is

perfect, so any model will be rejected by the x2 test given sufficient

sample size.

A potentially more useful application of the x2 statistic is the

test of specific parameters by comparing the x2 values for nested

models. A model M1 is nested within the more general model M2 if M1 is

defined by "constraining one or more of the free parameters in M2 to be

fixed" (Long, 1976, p. 170). Under the null hypothesis that the para-

meter is zero, the difference in the x2 values of the two models is

also distributed approximately as x2 with one degree of freedom for

large sample sizes. J6reskog (1978) does not discuss the formal

comparison of values in terms of significance tests. He suggests that

a model may be "relaxed" by introducing more constraints. "If the drop

in x2 is large compared to the difference in degrees of freedom, this
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is an indication that the change made in the model represents a real

improvement. If . . . the drop in x2 is close to the difference in

number of degrees of freedom, this is an indication that the improve-

ment in fit is obtained by capitalizing on chance and the added para-

meters may not have any real significance or meaning" (p. 448).

"Reliability" of the model (LISREL). Tucker and Lewis (1973) have
 

noted some of the problems with the x2 statistic as a test of fit of

the model and have proposed an alternative indicator of global fit

which was originally developed for maximum likelihood confirmatory

factor analysis.

"amount of covariation explained by

C0 - C9 the proposed model"

0 — C ' E(C ) _ "total amount of covariation available

0 q n
to be explained

 

C0 is the sum of squares of the off-diagonal elements of the sample

covariance matrix divided by the degrees of freedome-the number of

unique elements in the matrix, (n)(n + 1)/2 where n is the number of

variables. Cq is the sum of squared covariances not explained by the

model and is approximately equal to the ratio of sum of squares of

the partial correlations of the variables with the group factors

partialed out to the degrees of freedom of the model--the same degrees

of freedom for the x2 test of fit. E(Cq) is the expected value of the

sum of squared covariances not explained by the model.

This "reliability" coefficient indicates the extent that a

measurement model explains or accounts for the covariation among the

observed variables. Burt (1973) notes that "Tucker and Lewis's

statistic is sensitive to sample size in its computation of the

expected value of explained covariance (sampling variability), but it

is much less subject to large sample sizes than is the likelihood ratio



33

since it focuses on covariation rather than on total variation

(p. 148). The sampling distribution of the coefficient is unknown, but

Tucker and Lewis (1973) indicate that "any accepted solution should

have a high coefficient of reliability" (p. 9) which, from their

examples, apparently means at least somewhere about .9.

Tucker and Lewis (1973) also noted that the sum of the correla-

tions among the observed variables with the factors partialed out is

approximately equal to the value of the function F minimized by LISREL.

Since the value of F(2) at its minimum given the model and the observed

covariances is simply the obtained X2 statistic multiplied by the

sample size, Burt (1973) recommends using this "reliability" coeffi-

cient for the more general simultaneous analysis of the causal and

measurement models.

Miscellaneous oddities (LISREL). Anecdotal evidence gathered from

previous experience with LISREL indicates that certain misspecified

models never converge, even after hundreds of (expensive) iterations.

Concomitant with the lack of convergence is the existence of some

"strange" parameter values which continue to become stranger as the

program continues to iterate. Also, as the program iterates, the

residual matrix can become almost completely flat at zero even though

the program never converges and some of the parameter estimates are

nonsense values.



CHAPTER II

OVERVIEW AND PROCEDURE

PACKAGE vs. LISREL
 

There are at least three competing strategies for the analysis of

fully recursive causal models: (a) the PACKAGE analysis, i.e., a

centroid factor multiple groups analysis with communalities followed by

an OLS path analysis, (b) the LISREL analysis, a FIML simultaneous

analysis of the measurement and causal models, and (c) a separate FIML

confirmatory factor analysis (Jareskog, 1966, 1967, 1979), followed by

a FIML analysis of the factor correlations to test the causal model.

However, Land (1973) has noted that in a recursive model, the FIML

analysis of the factor correlations is identical to OLS. Thus the only

difference between methods (a) and (c) is in the method of factor

analysis for the measurement model. The contrast of greatest interest

is between (b), the one—step LISREL procedure, and (a), the two-step

analysis. That is, one main objective of this paper is to assess the

utility of analyzing the measurement and causal models separately.

Hunter's strategy of separately analyzing the measurement and

causal models has not received much attention. Some social scientists

still seem content with the more traditional OLS estimation procedure

without considering the need for good measurement. Those who recognize

the biasing effect of measurement error on the parameter estimates of

the causal model have used the one-step LISREL analysis. Jareskog has

34
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never suggested the possibility of a separate analysis in his writings

even though he has used LISREL for confirmatory factor analyses (e.g.,

J6reskog & Sfirbom, 1978) in other contexts. Duncan (1975) has written

chapters on specification error, measurement error, and multiple indi-

cator models (which include the biasing effects of measurement error on

OLS estimators), but the possibility of preceding OLS with correction

for attenuation is not discussed. Duncan even concludes that "the

contribution of multiple indicators should not be exaggerated" (1975,

p. 137) in reference to some of the problems involved in estimating the

parameters of both models simultaneously. Burt (1976) identified some

of the undesirable properties of the effects of misspecification of the

measurement model on the estimation of the parameters of the causal

model, but he never considered the possibility of a separate analysis.

Does the additional cost, the potential problems with local minima

characteristic of such iterative procedures, and the potential sensi—

tivity to misspecification justify the use of LISREL over the strate-

gies embodied in PACKAGE? In what situations do both approaches do

equally well and in what situations do the approaches give poor

results, or worse yet, results which look good but are, in fact, wrong?

Which combination of strategies best leads the investigator to uncover

the original structure with the most accurate set of parameter esti-

mates given the inevitable sampling error and initial misspecification

of the causal and measurement models?

The analysis strategies are evaluated in terms of both the

validity of the statistical estimates and the usefulness of the program

in providing information for the construction of revised, better-

fitting models. Parameter estimates are usually not interpretable
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unless the model fits the data. But if the model is misspecified, what

is important is not the validity of the parameter estimates, but the

information provided on how to correctly specify the model. It is

precisely this kind of information which rarely appears in the

literature.

What patterns of errors are associated with various specification

errors such as variable deletion? Which set of misspecification

indices allow one to most accurately pinpoint specification error: OLS

and centroid factor multiple group residuals, LISREL simultaneous

analysis residuals, or LISREL first derivatives? Which is the better

indicator of the overall fit of the model: sum of the squared OLS

residuals, the x2 test of fit, or the "reliability" of the model?

The issue is this: One reason for the recent popularity of LISREL

is its ability to account for the influence of measurement error, to

analyze nonrecursive models, and to allow for the possibility of

specifying constraints on the equality of parameter estimates.

However, if_measurement error is accounted for in an independent

confirmatory factor analysis, if_only recursive models are considered,

and if_no constraints are placed on the parameter equalities, is there

still an advantage to using LISREL? And how can either approach,

LISREL or OLS, best be used to recover underlying structure?

The Equivalence of MGRP and OLS with LISREL Given Correct Models

If the specified model is correct, then the OLS preceded by

correction for attenuation strategy, the one-step LISREL analysis, and

the two-step LISREL analysis all provide correct parameter eatimates

and indicate a perfect fit of the model. The primary difference

between the approaches is cost. The total execution time in seconds is
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approximately one second for the PACKAGE subprograms MGRP and PARTIAL

for the analysis of the measurement model and PATH for the OLS

parameter estimates of the causal model. For the simultaneous LISREL

analyses, all free parameters were initialized at 0.6 except the

causal parameters relating the latent endogenous variables which were

initialized at -0.5. For the LISREL confirmatory factor analyses, the

start values for the factor loadings, error variances and factor corre—

lations were arbitrarily set at 0.5, 0.8, and 0.3 respectively. Either

of the LISREL analyses used 64 seconds of execution time for a 18 x 18

correlation matrix. Thus for models of the size considered in this

paper, LISREL is 64 times as expensive as PACKAGE. For larger models,

the difference increases more than proportionately.

The MGRP analysis is equivalent to a LISREL confirmatory factor

analysis when the measurement model is defined by the partitioning of

the observed variables into mutually exclusive clusters. This is some-

what surprising in view of the attention the maximum likelihood

approach has recently received. For example, a chapter on confirmatory

factor analysis in a factor analysis text by Mulaik (1972) is a chapter

on Jdreskog's work. The centroid factor analysis multiple groups

alternative is not mentioned. Mbreover, in an early section of the

text on the history of factor analysis, Spearman (1904) is given credit

for developing "the first common-factor-analysis model" (p. 6), but the

section closes with "more recently Bock and Bargmann (1966) and

J5reskog (1969) considered hypothesis testing from the point of view of

fitting a hypothetical model to the data . . . . The author expects, as

a consequence, factor analysis will be more fruitfully used in the

future in the development of structural theories in psychology and in
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other areas of study as well" (p. 10). What Mulaik (1972) has

perceived as linear development is in actuality circular! Finally,

Jareskog (1966, 1967, 1969, 1970, 1971, 1978) has never mentioned the

multiple groups method. He has even introduced the terms "congeneric

measurement" and "the hypothesis of congenerism" (1971, p. 132) to

describe what traditionally has been called "unidimensional measure-

ment" or "the hypothesis of unidimensionality" which has been tested

empirically with Spearman (1904) factor analysis using the centroid

method. There is no necessary reason for tying the conceptual approach

of a confirmatory factor analysis to the computational method of FIML.

The critical differences between OLS and LISREL emerge if the

model is not correctly specified. The two methods will be shown to

diverge widely in response to such errors. In summary, the OLS and

multiple groups method localizes errors whereas LISREL spreads the

error over the entire matrix. Thus LISREL is much harder to use in

generating a more appropriate revised model.

The focus of this paper is on specification error, so sampling

error is ignored throughout. However computations done along these

lines suggest that sampling error adds further problems for LISREL

since it tends to capitalize more on chance than do the OLS methods.

Procedure

It seems reasonable to expect that some consistent patterns can be

captured and described if either PACKAGE or LISREL are valid approaches

for data analysis and theory construction. The chief restrictions in

this paper are that only recursive, causal models and unidimensional

measurement models free from correlated errors of measurement are

considered. All variables, latent and observed, are standardized.
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(1) "Arbitrarily" construct a model. Begin with a full model

which is complete with all parameter values in both the causal and

measurement models. Four causal models are illustrated in Figure 5.

If necessary, the regression coefficients can be varied in either the

causal or the measurement models, but in this paper, all latent

variables will have three indicators with the following factor

loadings: .8, .6, and .4.

(2) Compute 2. Given the rules of path analysis, the causal and

measurement models and the parameter values of both models imply the

correlations among the observed variables. The correlations among the

latent variables are also computed as a prerequisite to computing the

correlations among the observed variables.

(3) Model misspecification for observed data. Three kinds of

misspecifications are possible, depending on what part of the model, if

any, is misspecified.

(a) Misspecify causal model only.

(b) Misspecify measurement model only.

(c) Misspecify both measurement and causal models.

(4) Estimategparameters and evaluate fit. Estimate parameters
 

with:

(a) a LISREL simultaneous measurement and causal analysis;

(b) separate measurement and causal analyses:

(i) a PACKAGE analysis with centroid factor multiple

groups followed by OLS path analysis.

(ii) a LISREL analysis with FIML multiple groups

analysis followed by a OLS path analysis with

LISREL and/or a FIML path analysis.
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Figure 5. Four actual causal models used in this study.
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The fit of the model can be evaluated with Z - S, the x2 test of fit,

and the "reliability" coefficient.

(5) Revise the model. Describe how the model would be modified
 

given the output of the programs and compare the revision to the

correct model.



CHAPTER III

TWO-STEP vs. ONE-STEP ESTIMATION: PACKAGE vs. LISREL

Single Equation vs. Full Information Methods
 

Since a single equation method such as MGRP or OLS estimates the

parameters of each equation separately, the effect of the misspecifi—

cation of a single equation or just a few equations would be confined

to those equations. The source of the misspecification should thus be

relatively easy to locate. Errors in estimating one parameter are

somewhat independent of errors in estimating parameters in other

equations. However, the use of a full information procedure such as

LISREL implies that the effects of a misspecification in one part of

the model will be absorbed by the entire set of computations so that

the errors in different parameters may be intimately interwoven. A

full information procedure assumes that the entire specified model is

the correctly specified model and simultaneously computes all the para-

meter estimates gizgp_this assumption. If the model is misspecified,

the diffusion of the specification error throughout the model may

hinder the location of the source of misspecification. WOrse yet, a

detected misspecification may appear in the wrong place. The use of

LISREL for the simultaneous estimation of both measurement and causal

models would presumably exacerbate these potential problems since

misspecification in the measurement model would influence the compu-

tations of the causal model and vice versa.

42



43

Burt (1976) is one of the few authors who has studied the effects

of misspecification and the resulting consequences for the interpre-

tation of the parameter estimates computed by LISREL. He is particu-

larly concerned with the effects of misspecified measurement models on

the estimated causal parameters. He cites problems in interpretation

that result from the possible confusion of two potential sources of

"empirical meaning" of a latent variable or factor. The empirical

meaning of a factor is the meaning assigned to that variable in terms

of its relations to the observed variables. Since each parameter

estimate in a full information technique is based on all of the

observed covariances, empirical meaning is potentially assigned to an

unobserved variable both in terms of its own indicators ("epistemic

criteria") gpd the indicators of the remaining unobserved variables

("structural criteria"). "Interpretational confounding occurs when an

individual assumes that an unobserved variable is assigned empirical

meaning in terms of epistemic criteria when in fact it is assigned

empirical meaning in terms of structural criteria" (Burt, 1976, p. 14).

In computational language, what Burt has stated is that the

correlations of a given factor with other variables are not only based

on the correlations of its indicators with those other variables (as in

multiple groups), but depend also on the correlations between the other

variables. In multiple groups analysis, the estimated correlation

between factors A and B depends only on the observed correlations

between the indicators of A and B. But in LISREL, the estimated corre-

lation between A and B also depends on the correlations between

indicators of A and C, of B and C, and even C and D! This problem is

compounded in simultaneous LISREL by dependence on the postulated path
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model.

The problem results from the characteristic of a FIML method to

force the parameter estimates to maximize the fit of the entire model

to the data. If a unidimensional measurement model is specified, then

the program will attempt to satisfy the product rules of internal and

external consistency in the computation of the parameter estimates.

But if the measurement model is incorrectly specified, the lack of
 

external consistency in the observed correlations implies that the

misspecified indicators will differentially correlate with other

factors and the indicators of those factors (e.g., Hunter, Gerbing &

Boster, Note 5). The estimated correlations of the misspecified indi-

cators vary as a function of the strength and type of causal relations

in the particular model.

Consider the problem opposite to that considered by Burt (1976),

i.e., a perfectly specified measurement model but a misspecified path

model. How might errors in the causal model affect the parameter

estimates of the measurement model? Two analytic strategies will be

compared, a one-step and a two-step analysis:

(a) a LISREL simultaneous analysis of the indicator correlations.

(b) an OLS path analysis of the estimated factor correlations

from a multiple groups factor analysis or from a LISREL

confirmatory factor analysis.

The comparison is evaluated in terms of the accuracy of the estimated

parameters and the usefulness of the information provided for detecting

the misspecification in the causal model. The strategy is to examine a

particular model in detail and then to determine how well the results

from the comparison applied to a particular model generalize to a
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variety of models and misspecifications.

An Example of a Misspecified Causal Model

Consider the following causal model and the associated misspeci-

fied causal model defined by the deletion of the path from n2 to n3.

These models appear in Figure 6. The misspecified model was subjected

to MGRP, LISREL CFA, OLS, and a simultaneous LISREL analysis.

 

 
Misspecified model

Figure 6. Actual model (a) from Figure 5 and an accompanying

misspecified model.

The parameters of the causal model in Figure 6 were set at

Y = .30, 821 = B = .35, and B .40. The four variables of the

31 32 =

model were given three indicators apiece with factor loadings of .80,

.60, and .40. Using the product rules for internal and external

consistency and the implied correlations among the factors, the 2

matrix was generated for the actual model and analyzed under the

constraints of the misspecified model.

Analysis of the measurement model. Since the measurement model
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was perfectly specified, both the multiple groups confirmatory factor

analysis with the PACKAGE subprogram MGRP and the full information

maximum likelihood confirmatory factor analysis with LISREL recovered

the factor loadings and factor correlations perfectly. Thus the OLS

path analysis was performed on the actual factor correlations.

OLS path analysis. As calculated in Appendix B, the OLS estimates
 

of the parameters of the misspecified model are:

A

Y = Y

821 = 821

831 = 831 + 821832

Since Y = r(n1, g) and 821 = r(nl, n2), the values of Y and 821 are

equal to the corresponding parameter values in the properly specified

model. The value of €31 differs from 831 since the actual correlation

between n1 and n3 is determined by the direct effect DE and the

31 ' B31

indirect effect IE (see Lewis-Beck, 1974). In the misspeci-

31 = 821332

fied model, the indirect influence of n1 on n3 has been eliminated by

the deletion of the path, i.e., by fixing 832 = 0. Thus the parameter

estimate for 831 must "absorb" this indirect effect. Although the

value of B31 is biased since B31 # 831, OLS made the "rational" adjust-

ment to the misspecification since 831 is the total effect of n1 on n3

831 = TE31. Given this "adjustment",

although the paths from g to n3 and from n1 to n3 are different in the

in the actual model. That is,

actual and misspecified models, the total influence of g on n3 and n1

on n3 remains unchanged.

The OLS residuals of the misspecified model are calculated in

Appendix B. Since the decomposition of r(€, n1), r(£, n2), and
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r(nl,n2) according to the misspecified model involved only terms

consisting of Y and B the predicted values of these correlations

31’

equaled their actual values. Since the total effect of g on n3 and n1

on n3 remained unchanged, their residuals were also zero. Thus all the

residuals were zero except for:

ReS(n2,n3)

= B32(1 ‘ 821)

The residual matrix of the OLS solution provided useful information

regarding the correct specification of the model. The positive

residual between Hz and n3 correctly indicated that the relation

between n2 and n3 had been underpredicted by the model, although it

does not indicate the direction of the missing path. Since the remain-

ing residuals were equal to zero, they correctly indicated that the

rest of the model had been correctly specified.

LISREL simultaneous analysis. The factor loadings of the measure-
 

ment model were almost perfectly recovered despite misspecification of

the causal model. The only error larger than .003 was for the first

indicator of n1 where an estimate of .76 was obtained instead of the

correct .80.

However, the simultaneous LISREL analysis has a very damaging

problem as shown in Table 2: the estimated factor correlations are

wrong. Even though this run was made without sampling error, the

estimated correlation between n2 and n3 is off by .29. Thus even

though the measurement model was correctly specified, the simultaneous

LISREL analysis generated large errors in the estimated correlations of

the latent variables. Moreover, there is nothing in the LISREL
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Table 2

Correct and Estimated Factor Correlations

from OLS and LISREL and the Residuals

n1 n2 n3 E

 

n1 1.00 .35 .49 .30

 

n2 .35 1.00 .52 .11

n3 .49 .52 1.00 .15

E .30 .11 .15 1.00

a) The correct factor correlations.

  

  

  

  

n1 n2 n3 E n1 n2 n3 E

ml 1.00 .43 .55 .30 n1 .00 -.08 -.06 .00

Hz .43 1.00 .23 .13 n2 -.08 .00 .29 -.02

n3 .55 .23 1.00 .17 H3 -.06 .29 .00 -.02

E .30 .13 .17 1.00 E .00 -.02 -.02 .00

b) The factor correlations c) The error in the estimated

computed from a LISREL factor correlations from the

simultaneous analysis. simultaneous analysis.

n1 n2 n3 E n1 n2 n3 E

n1 1.00 .35 .49 .30 ml .00 .00 .00 .00

n2 .35 1.00 .17 .11 n2 .00 .00 .35 .00

n3 .49 .17 1.00 .15 n3 .00 .35 .00 .00

E .30 .11 .15 1.00 E .00 .00 .00 .00

d) The factor correlations e) The error in the estimated

computed from an OLS factor correlations from an

analysis. OLS analysis.
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printout to suggest that these estimates are wrong.

The estimated factor correlations from LISREL have values such

that an OLS path analysis of the estimated correlations would result in

an indication of perfect fit. That is, LISREL placed all of the error

into the estimated factor correlations and maintained perfect consis-

tency between the factor correlations and the path coefficients. Since

the misspecification occurred in the causal model only, this is the

exact reverse of reality. Thus the residual correlations in LISREL

suggest that the location of error is in the measurement model even

though the measurement model is perfect. The residual correlations are

zero for the causal model even though it is quite wrong.

Thus most of the estimates of the causal parameters of the mis-

specified causal model were different from the corresponding OLS

estimates. The parameter estimates for the OLS and the simultaneous

LISREL analyses are presented in Table 3 along with the actual values

of the parameters from the properly specified model. Computational

details are presented in Appendix C. The OLS estimates are closer than

the LISREL estimates; the LISREL estimate of 821 deviates from the

correct value by .08 whereas OLS deviates by 0, and the LISREL devia—

tion of 831 is .20 while the OLS deviation is only .14.

Table 3

Parameter Values and Estimates

 

 

Actual

value OLS LISREL

Y .30 .30 .30

821 .35 .35 .43

B .35 .49 .55

31



50

In terms of pinpointing misspecification, the information provided

by the LISREL analysis added nothing to the information inferred from

the OLS residuals. Analysis of the full causal model yielded nine

times as many residuals, i.e., a 12 x 12 matrix of indicator residuals

instead of a 4 x 4 matrix of factor residuals. Each factor correlation

in the 4 x 4 matrix is replaced by a 3 x 3 block of nine residuals in

the 12 x 12 matrix. The six blocks of residuals formed approximately

the same pattern as the six OLS factor residuals except that the

pattern in the LISREL analysis was more blurred than the pattern of the

OLS residuals. All of the residuals between the indicators of the

single exogenous factor and the indicators of the endogenous variables,

except between n2 and n3, were only approximately zero since they

varied in magnitude from .002 to .037. The residuals between the indi-

cators of n2 and n3, which replaced the single OLS factor residual of

.352, are presented in Table 4.

Table 4

The Residuals of the Indicators of n2 and n3

 

Indicators of n2

 

l 2 3

Indicators 1 .18 .14 .09

2 .14 .10 .07

of n3

3 .09 .07 .05

In Appendix C, it is demonstrated that the indicator residuals

from the simultaneous analysis are a function of the estimated factor

correlations. The sizes of the indicator residuals in each block of
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nine residuals correspond to the size of the corresponding factor

residual except that each indicator residual is proportionately

diminished by the measurement error in the corresponding indicators.

A comparison of OLS and LISREL. The similarities and differences
 

between OLS and LISREL observed in the analyses of the model presented

in Figure 6 are presented in Table 5. The crucial difference between

OLS and LISREL is that, for the OLS path analysis, the factor correla-

tions were estimated at their correct values by the confirmatory factor

analysis. However, for the LISREL simultaneous analysis, the factor

correlations were adjusted to match the estimated path coefficients and

yield a model of apparent perfect fit--regardless of the amount of

error in the estimated path coefficients.

Analysis of a variegy of models and specifications. The conclu-
 

sions above were supported in many other models. These additional

examples misspecified the given model in at least four distinct ways:

(a) deletion of a causal path;

(b) deletion of a latent variable;

(c) addition of a causal path;

(d) reversal of the direction of a causal path.

The correct models were those of Figure 5 and Figure 6. The factor

correlations and the factor loadings were perfectly reproduced by

multiple groups analysis in each misspecified model. The information

provided by the derivatives was redundant with the information provided

by the residuals in either the LISREL analysis of the path model or the

full simultaneous analysis. The full LISREL analysis always correctly

recovered the factor loadings of the measurement model to within a

reasonable degree of error, but the parameter estimates of the causal



T
a
b
l
e

5

C
o
m
p
a
r
i
s
o
n

o
f

P
A
C
K
A
G
E

v
s
.

L
I
S
R
E
L

 

C
r
i
t
e
r
i
o
n

F
a
c
t
o
r

l
o
a
d
i
n
g
s

F
a
c
t
o
r

c
o
r
r
e
l
a
t
i
o
n
s

P
a
t
h

c
o
e
f
f
i
c
i
e
n
t
s

D
e
t
e
c
t
i
n
g

m
i
s
s
p
e
c
i
f
i
c
a
t
i
o
n

M
G
R
P
+

O
L
S

N
o

e
r
r
o
r

N
o

e
r
r
o
r

E
r
r
o
r

i
n

o
n
l
y

o
n
e

p
a
t
h

c
o
e
f
f
i
c
i
e
n
t
,

8
3
1

V
i
s
i
b
l
e

d
i
s
c
r
e
p
a
n
c
y

b
e
t
w
e
e
n

t
h
e

p
r
e
d
i
c
t
e
d

a
n
d

a
c
t
u
a
l

f
a
c
t
o
r

c
o
r
r
e
l
a
t
i
o
n
s

L
I
S
R
E
L

N
o

e
r
r
o
r

(
a
f
t
e
r

t
r
a
n
s
f
o
r
m
a
t
i
o
n

t
o

s
t
a
n
d
a
r
d

m
e
t
r
i
c
)

E
r
r
o
r

i
n
m
o
s
t

f
a
c
t
o
r

c
o
r
r
e
l
a
t
i
o
n
s

(
s
o
m
e

l
a
r
g
e
)

E
r
r
o
r

i
n
m
o
s
t

p
a
t
h

c
o
e
f
f
i
c
i
e
n
t
s

(
s
o
m
e

l
a
r
g
e
)

F
a
l
s
e

c
o
n
s
i
s
t
e
n
c
y

i
n

r
e
l
a
t
i
o
n

o
f

a
c
t
u
a
l

f
a
c
t
o
r

c
o
r
r
e
l
a
t
i
o
n
s

t
o

t
h
e

e
s
t
i
m
a
t
e
d

p
a
t
h

c
o
e
f
f
i
c
i
e
n
t
s

52



53

model were farther off than the estimates provided by the OLS analysis.

In all cases, the one-step LISREL procedure matched its estimated

factor correlations to the erroneous path coefficients. Thus whereas

the multiple groups analysis always correctly reproduced the factor

correlations, the LISREL one-step procedure was always way off. This

is a crucial difference since it is discrepancies between observed and

reproduced correlation coefficients which provide the best guide to the

detection and remediation of errors in the causal model. LISREL always

falsely suppressed these discrepancies.

In summary, if the measurement model is correct, then the two-step

procedure will correctly estimate the correlations between the latent

variables. However the LISREL one-step analysis will be correct only

if the causal model is algp correct. Thus for LISREL, a correct

measurement model provides no clues as to the correct causal model.



CHAPTER IV

SPECIFICATION ERROR IN BOTH CAUSAL AND MEASUREMENT MODELS:

AD-HOC COMPOSITES

A composite score may be defined as the sum over 3px set of

component measures, irrespective of the content or statistical behavior

of the components. If all of the component measures are indicators of

the same latent variable, though perhaps with varying degrees of

reliability, then the observed composite score is an estimate of the

score for that construct. Whether or not the component measures are

indicators of a construct is determined by the procedures of construct

validity. The correlations of the indicators of a construct satisfy

one product rule for internal consistency in terms of their correla-

tions with each other, and a second product rule for external consis-

tency in terms of their relations with other variables.

A composite defined by a set of measures which are not indicators

of a construct is called an "ad-hoc composite", i.e., an ad-hoc

composite is an aggregation of related but conceptually and statis-

tically distinct constructs. Such composites are usually constructed

according to the procedures of content validity and have been useful in

applications in education and industrial psychology where empirical

prediction is the primary objective. As Cronbach (1970, p. 44) wrote,

"Nothing in the logic of content validation requires that the universe

or test be homogenous in content." However, a misspecification occurs

when the indicators of distinct constructs are collapsed together and

54
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specified as alternate indicators of a single latent variable.

The embedding of such an amorphous measure in a causal model

insures that both the measurement and causal models are misspecified.

The lack of external consistency of the indicators of the misspecified

construct implies that the component constructs of the ad-hoc composite

tend to differentially relate with the other latent variables in the

model. Thus the component constructs would occupy different positions

in a properly specified model. This is illustrated in the Hunter,

Gerbing and Boster (Note 5) analysis of the Christie and Geis (1970)

Mach IV measure of Machiavellianism.

Unfortunately, the most common statistical analysis for the con-

struction and evaluation of measurement scales is not a confirmatory

factor analysis. Instead, the usual analysis, such as that provided by

the SPSS subprogram RELIABILITY, is based primarily on (a) itemrtotal

correlations, and (b) coefficient alpha or some other index of

"internal consistency" reliability. The use of item-total and relia-

bility statistics as indices of unidimensionality can lead to crude,

nebulous measures. Following Hunter (Note 3), consider a scale defined

by 10 items which breaks into two clusters of five items each. Items

within each cluster intercorrelate .7 with each other, but all corre-

lations between items in different clusters are only .2. Although the

scale is clearly two dimensional, coefficient alpha is .88. The

uncorrected item-total correlations are .69, and itemrtotal correla—

tions calculated with communalities are .67. Thus an examination of

only item-total correlations or coefficient alpha can lead to the

acceptance of a scale as unidimensional when it is actually an ad-hoc

composite.
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The problem with coefficient alpha as an indicator of dimension-

ality was noted by Green, Lissitz and Mulaik (1977) and by Hunter

(Note 3). The amount of measurement error in a composite score is a

concept which is logically independent of the dimensionality of the

scale. If each component is perfectly measured, then the reliability

of the composite score is also 1.0 no matter what the relations between

the components might be. The problem with itemrtotal correlations

(even if corrected for upward bias by the use of communalities) is that

although an indicator will correlate most highly with its own properly

specified construct, it can have a substantial correlation with any

other correlated factor. Thus the item-total correlation is only

meaningful on a comparative basis; there is no absolute size criterion
 

for unidimensionality.

The Pattern of Residuals from an Ad-hoc Composite Misspecified as a

Construct

Consider the actual and misspecified models illustrated in Figure

7. The misspecification was defined by the pooling of the indicators

of n1 and n2 into a composite which is misspecified as the "construct"

a; The purpose of this section is to identify a characteristic pattern

of the residuals of such a misspecification. The residuals among the

four indicators as computed by LISREL are presented in Table 6. The

dotted lines in Table 6 indicate the partitioning of the indicators

into their respective sub-clusters based on the actual model.

The first consideration is the relative sizes of the factor

loadings in the actual and misspecified models. The actual construct

of an indicator is causally antecedent to the indicator, so the corre-

lation of the indicator with other variables is mediated by the

construct. That is, according to the product rule for external
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Actual model

 

 

Misspecified model

Figure 7. The actual and misspecified models from Costner and

Schoenberg (1973) with parameter estimates computed by LISREL.
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Table 6

Residuals from the Endogenous Indicators in Figure 7

 

 

Y1 y, y3 y4

I

y1 .oo .17 . -.04 -.04

I

y2 .17 .00 . - 04 -.04

_________ 1 - _ _ _ _ - _ _ _

y3 — 04 -.04 . oo 05

I

- 04 -.04 . .05 .oo
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consistency,

r(i.2) = r(i.n) r(n.2)

where n is the actual construct of indicator 1 and z is some other

variable. In classical reliability theory, this result is expressed as

"the maximum value of the validity coefficient . . . is equal to the

reliability index . . ." (Magnusson, 1967, p. 150) where the relia-

bility index is the correlation between the indicator and the

construct. If 2 E E, i.e., if

r(i,?1’) = r(i.n) r013)

then

r(i,n) > r(i,'fi) or A > L
n. D

1 i

For example, A11 = .45 and Afi. = .30, as shown in Figure 7.

1

In terms of predicting the pattern of residuals for the misspeci-

fied model, consider first the correlations among the indicators of the

same properly specified construct. The correlation among these indi-

cators adheres to the product rule for internal consistency, i.e., for

h
the it and jth indicators of n,

r(i.j) = r(i.n) r(n,j)

But for the misspecified model,

£ua>=flnmflmp

And, from above,

I). A |>|A~A~|

Di nj Hi nj

If the residual is defined as

Res(1.j) s r(1.j) - £(1.j)

then the expected residuals of an ad-hoc composite misspecified as a

construct should be positive for the indicators of the same construct
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in the correctly specified model, as they are in this example in which

Res(y1,y2) = .09 and Res(y3,y4) = .11.

Now consider the residuals among the indicators of different

constructs in the ad-hoc composite. The observed correlations for the

indicators were computed with the product rule for external consistency.

For example,

r(y1.y3) = r(y1.nl)r(n1.n2) r(nZJZ)

(.45) (.48) (.55) = .119

But the predicted correlations among these indicators which have been

falsely placed in the same cluster will again be computed using the

product rule for internal consistency. For example,

(.30) (.53) = .159

So the residual is .119 - .159 = .040.

Thus there are two competing influences on the relative sizes of

r(i,j) and r(i,j), where i and j are indicators of different constructs

in the actual model. As shown before, the actual factor loadings are

larger than the computed factor loadings. This discrepancy is large

and the residual is positive, to the extent r(nl,n2) is small. What

is new for this situation is the presence of r(nl,n2) in the expres-

sion for the actual correlation r(i,j). The smaller r(n1,n2), the

smaller the product r(i,rh)‘r(nl,n2):r(n2,j). Let the value of

r(n1,n2) decrease, but let the remainder of the actual model be

unchanged. If the value of this product decreases faster than the

discrepancies between the actual and computed factor loadings, the

residuals could even become negative, as they are in this example. But
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these residuals should at least tend to be smaller than the residuals

of indicators of the same construct. This result is proved in Appendix

D for the special case of equal factor loadings in the actual model.

A Re-interpretation of the Costner and Schoenberg Analysis
 

Costner and Schoenberg (1973) investigated the effects of misspec-

ification with the strategy utilized in this paper. One of their

models, which is presented in Figure 7, was misspecified to form what

is here labelled an ad-hoc composite. Costner and Schoenberg (1973)

predicted the pattern of residuals resulting from the analysis of this

model without any formal justification. They simply indicated that

"our intuition is that . . . we might expect large residuals between

. . . the indicators of [E] on the one hand and the indicators of [n1]

on the other, or between indicators of [E] and [n2]" (p. 175).

Following an analysis of the misspecified model with LISREL, the

authors noted that "the actual pattern of residuals . . . does not

conform to this pattern at all" (p. 176).

How should the model be respecified given the residual matrix?

Costner and Schoenberg (1973) believed that the respecification of a

model when confronted with a matrix of nonzero residuals among the

indicators should be to allow the error variables for indicators with

the largest residual to be correlated. They respecified the model by

relaxing the r(sl,sz) = 0 constraint and noted that (a) the respeci-

fied model fits relatively well, and (b) this result was misleading

since the respecified model was not the correct model. The authors

then concluded on the basis of this example and others that "the

respecification suggested by an intuitive appraisal of the pattern of

residuals may be grossly misleading" (p. 177). Rejecting the
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information provided by the residuals, the authors go on to devise a

laborious procedure for detecting misspecification which involves

separately testing all possible combinations of two-indicator models

and then testing specified combinations of three-indicator models.

However, the obtained pattern of residuals does conform to the

predictions of the previous section. The residuals between indicators

of the same construct in the correctly specified model are positive.

The residuals between indicators from different constructs are not only

smaller but negative in this example. Contrary to the conclusion of

Costner and Schoenberg (1973), the residuals do appear to provide

useful information for the respecification of this misspecified model.

The incorrect assumption is that positive residuals imply correlated

errors.

Does the use of PACKAGE provide information not provided by

LISREL? The application of the multiple groups analysis to the Costner

and Schoenberg (1973) example generated the residuals and partial

correlations presented in Table 7.

Table 7

MGRP Residuals and Partial Correlations

 

 

  

Residuals Partial Correlations

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

y1 .00 .09 ' —.06 -.07 y1 1.00 .14 ' -.07 -.06

I I

y 09 000 I -006 7.001 y .14 1000 ' -008 -007

2 _______, _______ 2 ______ L _______

y3 -.06 -.06 ' .00 .11 y3 -.07 -.08 ' 1.00 .17

I I

y4 -.07 -.01 ' .11 .00 y4 -.06 -.07 ' .17 1.00

I I
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The residuals derived from PACKAGE follow exactly the same pattern as

the LISREL residuals. However, since the specified model contains only

two factors, the LISREL simultaneous analysis is equivalent to a

confirmatory factor analysis.

Alternate residuals can be obtained by partialling out a single

factor at a time-—a straightforward operation with the PACKAGE

subprogram PARTIAL following the use of the MGRP subprogram. In the

actual model r(n1,n2) can be decomposed entirely into the spurious

influence of an exogenous variable E, i.e., r(n1,n2-E) = 0. This

same relationship among the factors is mirrored by the indicators of

the factors, as illustrated in Table 8. Again, contrary to the con-

clusion of Costner and Schoenberg (1973), the residuals provide

directly usable information for locating specification errors.

Table 8

Correlations of the Endogenous Indicators with E Partialled Out

 

 

Y1 y2 Y3 Y4

yl 1.00 .21 : .oo .oo

y2 .21 1.00 : .oo oo

y3 .oo .oo : 1.00 .21

y4 .oo .00 z .21 1.00

Finally, Costner and Schoenberg (1973) could have applied a test

suggested by Spearman in 1914 that would also have unambiguously deter-

mined that the misspecified model contained an ad-hoc composite.

Spearman noted that the proportionality constraint which follows from

the product rule for external consistency implies that the correlations
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of two indicators of the same construct across other variables are

"perfectly correlated" (1914, p. 109). These "intercolumnar" or

"second order" correlations may be computed by correlating the corre-

lations of each pair of indicators with the diagonal value of 1.00

defined as missing data. The resulting matrix of second order corre-

lations is presented in Table 9. Actually, similarity coefficients

(e.g., Hunter, 1973) should be used instead of the second order corre-

lation coefficients since proportionality is a stricter criterion than

linearity. Second order correlations were computed because of the

availability of the computer program with a missing data provision.

Table 9

The Second Order Correlations of the Endogenous Indicators

 

 

I

I

yz 1.00 1.00 1 .26 08

__________ '_ _ _ — ._ _ _ _ _

y3 .05 .26 . 1.00 1.00

I

y4 —.02 .09 , 1.00 1.00

A More Complicated Model
 

Since the misspecified model analyzed by Costner and Schoenberg

(1973) contained only two latent variables, a simultaneous LISREL

analysis is equivalent to a LISREL CFA analysis. Consider the actual

and misspecified models in Figure 8. The factor loadings of the

correctly specified factors were correctly recovered while the factor

loadings of the ad-hoc composite were attenuated from their true values.

The simultaneous and CFA solutions in terms of factor loadings,
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residuals, and derivatives were identical. The LISREL residuals among

the six indicators and the derivatives for the measurement error corre-

lations between the six indicators of the ad-hoc composite are presen-

ted in Table 10. The pattern is redundant between the two matrices.

Contrary to the assertion of Costner and Schoenberg (1973), the

residuals clearly indicate subdivision of the indicators into two sets.

Contrary to S6rbom (1975), the derivatives falsely suggest correlated

errors .

 

 

 

Actual model

 

Misspecified model

Figure 8. Actual model (a) from Figure 5 and a second misspecified

model.

The partial correlations of the indicators of the ad-hoc composite

from the PACKAGE analysis are presented in Table 11. This pattern
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Table 10

LISREL Residuals and Derivatives

 

 

 

 

Residuals

Y1 y2 y3 Y4 y5 Y6

.00 .23 .14 : -.11 -.11 .08

23 .00 .09 : -.11 -.11 .08

14 .09 .00 : -.08 —.08 .06
____________1“ - _ _ _ _ _ - _ _ _ _

-.11 —.11 -.08 1 .00 .17 .11

—.11 -.11 -.08 : .17 .00 .06

I

-.08 -.O8 -.06 I .11 .06 .00

Derivatives

VI 22 Y3 Y4 ys Y6

I

.00 -.41 -.23 , .24 .21 .13

I

-.41 .00 -.13 I .22 .18 11

I

-.23 —.13 .00 , .14 .12 .07
____________'- _ _ _ _ _ _ _ _ _ _ _

.24 .22 .14 , .00 -.37 .20

I

.21 .18 .12 , —.37 .00 .09

I

13 .11 .07 , -.20 -.09 .00
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Table 11

Partial Correlations

 

 

 

V1 2, Y3 Y4 ys Y6

y1 .00 .28 .16 : -.19 -.15’ -.11

y2 .28 .00 .10 : - 15 -.12 -.08

y3 .16 .10 .00 : -.11 -.08 -.06

y4 -.19 -.15 -.11 : .00 .28 .16

y5 -.15 - 12 —.08 : .28 .00 .10

y6 -.11 -.08 -.06 : .16 .10 .00

Table 12

Second Order Correlations

y1 y2 y3 y4 y5 y6

yl 1.00 1.00 1.00 : .04 .11 .08

y2 1.00 1.00 1.00 : .11 .14 .10

y3 1.00 1.00 1.00 : .10 11 .07

y4 .04 .11 .10 : 1.00 1.00 1.00

y5 11 .14 .11 : 1.00 1.00 1.00

.08 .10 .07 : 1.00 1.00 1.00
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the partial correlations was again similar to the pattern of the

residuals and/or derivatives from the LISREL analysis. The matrix of

second order correlations is presented in Table 12.

In practice, the indicators of the ad-hoc composite might not be

listed in subclusters as they are in the examples presented here. Use

of the PACKAGE subprogram ORDER on the matrix of partial or second

order correlations would reorder the variables so that the indicators

which define the component constructs are listed consecutively.

The Use of Derivatives in Detecting Misspecification in Ad-hoc

Composites

 

 

A re-analysis of previous studies. SSrbom (1975) was interested
 

in models with correlated errors. He accepted Costner and Schoenberg's

(1973) conclusion regarding the problems with the residual matrix for

detecting misspecification, but he sought a less troublesome alterna-

tive than the procedure outlined by Costner and Schoenberg. SBrbom

(1975) advocated the use of the first derivatives as an alternative to

the residuals for locating misspecification. "We should relax the

zero-restriction for that element which gives the largest decrease in

F" (p. 143), i.e., the element with the largest first derivative. He

demonstrated that the procedure worked for an actual model with corre-

lated errors which was misspecified as a model with uncorrelated

errors.

However, Sfirbom's (1975) procedure would lead to false conclusions

in the case of the collapsed indicator model or ad-hoc composite. For

the Costner and Schoenberg (1973) example, the matrix of first deriva-

tives for the covariance matrix of measurement errors is given in

Table 13. The pattern of first derivatives is redundant with the
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Table 13

Derivatives of the Measurement Errors of the Endggenous Indicators

 

y1 y2 Y3 Y4

y1 .00 -.23 I .07 .09

l

y2 - 23 .00 I .07 10

________ 4_-______.

y3 .07 07 I .00 - 12

I

y4 .09 10 I -.12 .00

I

information supplied by the matrix of residuals. The only difference

between the patterning of the derivatives and the residuals is that the

derivatives have opposite algebraic signs. If the model were respeci-

fied by falsely assuming correlated measurement errors for Y1 and y2

and for Y3 and y4, then the actual structure would not be recovered, as

Costner and Schoenberg (1973) have already noted.

Saris, Pijper and Zegwaart (1978) also noted that the Costner and

Schoenberg (1973) procedure for detecting misspecification was "quite

time-consuming and not completely clear as to how one should proceed in

all circumstances" (p. 152). Following Sbrbom (1975), they were

concerned only with first derivatives, but they sought to improve

SBrbom's procedure by considering the correlations among the deriva-

tives. For each of the m fixed parameters, they computed the function

In. A

W1 7 jflrij 1

where 91 is the estimated first derivative of the ith parameter, and

$11 is the estimated correlation between the derivatives of the 1th and

th
j parameters. They proposed "a stepwise procedure . . . where at
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each step the restriction is dropped with the highest 3_in absolute

value" (Saris et al., 1978, p. 158).

Saris et al. (1978) began with two-factor models which contained

(a) correlated measurement errors and/or (b) observed variables which

were indicators of both factors. The misspecified model was always the

corresponding two-factor model with unidimensional measurement, i.e.,

no correlated error variances and all indicators were indicators of

only a single factor. They concluded that "the Saris procedure per-

forms better than Sfirbom's" (p. 163). However, like SBrbom, these

authors never began with a recursive model with unidimensional measure-

ment. Like Sorbom, they never considered residuals.

Thus the "improvement" suggested by Saris et al. (1978) leads to

the same error of the Sarbom (1975) method when applied to the Costner

and Schoenberg (1973) example. Since all derivatives except the

derivatives of the measurement errors of the endogenous indicators

shown in Table 13 were zero, the application of the Saris et al. method

to these data would also lead to a false respecified model which con-

tains correlated measurement errors. The only potential difference

between the procedures is that the correlated measurement errors might

be added in a different order.

An extrapolation of the Sarbom_procedure. As constraints of the
 

model are relaxed, the apparent fit of the model continually improves.

In the ad-hoc composite example, the suggestion of SBrbom (1975) to

assume correlated measurement errors does improve the apparent fit of

the model though the respecified model is false. The question

addressed in this section is, what is the end result of allowing

increasingly more measurement error covariances?
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The largest residual from the LISREL analysis of the misspecified

model in Costner and Schoenberg (1973) was between the indicators of

y1 and y2. The largest derivative was between the measurement error

covariances of the corresponding error terms. If this error covariance

is freed, it assumes the value of .198, the fit of the model improves

since F(§) decreases from .588 to .142, and the factor loadings of the

two indicators decrease about .04. The largest residual is now between

y3 and y4 and the largest derivative is between the corresponding

covariance between their error terms. If the model is respecified

again by adding this second measurement error covariance, the model

fits perfectly, i.e., F(§) = 0.000. The estimated regression para-

meters continue to change with each respecification since the factor

loadings of y3 and y4 decrease about .09 and, more interestinly, the

coefficient relating the latent variables becomes equal to 1.00.

The generality of this result can be checked by examining the more

complicated model which appears in Figure 8. The misspecified model

was successively respecified by freeing a new measurement error covar-

iance on each respecification. The chosen covariance on each round

corresponded to the largest derivative or, equivalently, the largest

residual. The model was respecified until perfect fit was obtained.

In general, as more measurement error covariances are added, the

factor loadings decrease in magnitude while the estimated regression

parameters of the causal model increase in magnitude. The fit of the

model continues to improve until six covariances have been included,

at which point F(§) - .014. Yet in this "perfect" model, B is equal to

the nonsense value of .911. And this "perfect" model is, in actuality,

a misspecified ad-hoc composite.
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The pattern of correlated errors reveals the nature of the

misspecification. The misspecified model fit the data perfectly if all

the covariances between measurement errors of indicators of the same

construct were unconstrained. For the Costner and Schoenberg (1973)

model this criterion was achieved after only two measurement error

covariances were freed since the ad-hoc composite contained the indi-

cators from only two factors and each factor had only two indicators.

The present model required six free error covariances since there were

three indicators for each factor.

The apparent fit of a model with correlated measurement errors

means only that the model is misspecified. If the model fits poorly

without correlated errors, but fits very well with correlated errors,

and if the indicators can be partitioned into clusters with positively

correlated errors within clusters and zero or negative covariances

between clusters, then at least one of the latent variables is an

ad-hoc composite. The indicators should be partitioned accordingly.

However as was shown earlier, the same analysis can be performed

directly on the original model residuals. There is no need to obtain

an intermediate solution with "correlated errors".

Summary

In contemporary path models, a construct is defined as a latent

variable whose indicators form a unidimensional set in the sense of

Spearman (1904). To use such models, one must "reduce" composites

which are measured by a conglomerate of constructs into component

variables. Such an ad-hoc composite can be regarded as a model which

has been misspecified by collapsing the indicators of distinct

constructs into a single latent variable. Moreover, the recognition of
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such a misspecification can be accomplished by the examination of the

residuals--although previous work has claimed that the residuals were

not helpful in detecting misspecification. Contrary to previous

claims, the derivatives from a LISREL analysis were shown not to add

any more information than the residuals. Indeed the recommendations

of Sgrbom (1975) and Saris et al. (1978) were shown to lead to the

false assertion of correlated errors.



CHAPTER V

MISSING VARIABLES, MISSING PATHS, AND CORRELATED ERRORS

No existing path model contains all the relevant causal factors.

If only complete models were capable of analysis using OLS, then there

would be no situations in which OLS could be used. This is precisely

the claim of a number of contemporary authors. They argue that missing

variables always result in correlated disturbances and hence the use of

OLS is never justified in real data sets. The following examples show

this claim to be false. On the contrary, these examples suggest that

most recommendations for correlated disturbances are misguided

responses to data sets which call for the addition of missing paths in

the misspecified models.

The Effect of 3 Missing Variable on the Fit of the Model

Previous assumptions. The traditional estimation procedure used
 

in path analysis is OLS, which assumes that the disturbance terms

across equations are uncorrelated. However, several authors have

argued that correlated disturbances could be produced by missing

variables. These arguments are important since the complete specifi-

cation of all of the variables in a causal process is impossible.

Presumably, if a common antecedent of some of the endogenous

variables is omitted, the omitted variable will "appear" in the corre-

sponding disturbance terms since the disturbance represents the

influences which operate on the "dependent variable" of the equation

74
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which are not described in the set of predictor variables in the

equation. For example,

"[The realism of] the assumption that the disturbance

terms are mutually uncorrelated in any given instance will

depend upon the completeness of the causal system . . . .

Whenever common causes of the disturbance terms for two or

more equations can be located or measured, they should be

explicitly introduced into the equations as additional

variables" (Namboodiri, Carter, & Blalock, 1975, pp. 446

and 448).

"If the same explanatory factor is excluded from.more

than one equation, the effect of that factor will be present

in more than one error term and will cause the error terms

to be somewhat correlated . . ." (Hanushek & Jackson, 1977,

pp. 230 and 231).

"The uncorrelated residuals assumption is basically

equivalent to the assertion that there is no confounding

variable impinging upon both X1 and X2 where by a confounding

variable is meant any unmeasured factor that directly

influences two or more of the measured variables" (Asher,

1976, p. 16).

"Correlated error terms arise when omitted variables

simultaneously influence different observed variables"

(Saris, Pijper, & Zegwaart, 1978, p. 161).

A test of the assumptions: Deletion of an endogenous variable.
 

The authors cited above believe that a missing variable results in

correlated errors. The example in Figure 9, which was presented by

Duncan (1975), appears to contradict this principle, although this

example did not appear in a discussion of correlated errors. Duncan

(1975) noted that "the OLS estimator of Y in [the respecified model]
31

estimates Y without bias. The principle is that insertion of an
21832

"intervening variable" into one path of an initial model does not

inValidate that model, but merely elaborates it" (p. 109). The

following discussion is an elaboration and extension of these

principles.
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Actual model

 

 

Respecified model

Figure 9. The actual and respecified models presented by Duncan

(1975).
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Consider the more complex model presented in Figure 10 where the

misspecification is defined by the deletion of n The parameter3.

estimates presented in the misspecified model were computed with OLS.

The residuals of the misspecified model are presented in Table 14.

The pattern of residuals is that which would be produced by the

deletion of a path. If the misspecified model is respecified by the

inclusion of a path from n to n4 with 841 = .09, then (a) the other

1

parameter estimates remain unchanged and (b) the respecified model fits

perfectly, i.e., all residuals are zero. The difference between the

two models is that in the misspecified model, the elimination of the

path from n1 to n3 to n4 was not replaced by a direct path from n1 to

n4. Thus the causal impact of n on 114 was not accounted for in the

1

misspecified model.

Any model is incomplete in the sense that there are missing

variables. Otherwise all multiple correlations in the model would be

1.00. What is crucial is not that variables are missing, but that the

causal effects of the missing variables are represented by paths

connecting the variables which are observed. If paths corresponding to

indirect causation are present, then any subset of a recursive model

can also be fit by a recursive model. Deleted endogenous variables

will not affect the fit of the model if the direct antecedents of the

deleted variable directly influence the direct consequents of the

deleted variable. If this conditiOn is met, the total effects of the

antecedent variables on the consequent variables are the same in both

models. That is, deletion of an endogenous variable does not lead to

a misspecification unless paths are incorrectly deleted in the reduced

model. Thus the deletion of an endogenous variable does not imply that
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Actual model

.30 0 .30

 

.30 a .30

Misspecified model

Figure 10. Actual model (d) from Figure 5 and an accompanying

misspecified model.
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Table 14

Residuals of the Misspecified Model of Figure 10

 

 

E 01 02 04 05

E .00 .00 .00 .03 .01

01 .00 .00 .00 .09 .03

n2 .00 .00 .00 .00 .00

n4 .03 .09 .00 .00 .03

.01 .03 .00 .03 .00
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the disturbance terms of any of the variables remaining in the model

should be correlated.

A test of the assumptions: Deletion of an exggenous variable. If
 

a single variable is the only consequent of a block of variables and

this variable is antecedent to another block of variables, then the

deletion of the first block of variables implies that the specified

model will fit the data perfectly. This general situation is illus-

trated in Figure 11. The variables in the deleted block of variables

do not directly influence the correlations of the variables in the con-

sequent block of variables. Thus, the result of deleting these varia-

bles is similar to the result from deleting an endogenous variable.

The deletion of the variable(s) does not affect the fit of the model

and so does not lead to correlated disturbance terms between any of the

remaining variables in the model.

The deletion of an antecedent variable or block of antecedent

variables becomes salient, however, if the deleted variable(s) directly

influence variables within the consequent block of variables. For

example, the misspecified model presented in Figure 12 which is defined

by the deletion of E does not fit the data generated by the correct

model because E directly influences n2 and n as well as n1. The

3

misspecified model could be "fixed" by adding a path from n1 to n3, but

this respecification amounts to replacing the spurious effect of E on

and n by a direct effect. However, even though the respecified

n1 3

model is conceptually incorrect, it fits the data perfectly, so there

are no correlated disturbance terms in the respecified model.
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Figure 11.

Actual model
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CONSEQUENT

BLOCK OF

VARIABLES

 

Specified model

Deletion of a block of exogenous variables which affects

only a single endogenous variable.

 

Misspecified model

Figure 12.

 

 

Actual model

 

Respecified model

Actual model (d) from Figure 5 and misspecified and

respecified versions of this model.
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Correlated Errors in Practice: The Use of Derivatives to Respecify a

Model

 

Given a maximum likelihood estimation procedure such as that used

by LISREL, a test for locating a potential misspecification for a

solution which has converged is based on the values of the first

partial derivatives of the likelihood function with respect to each of

the fixed parameters. If the model fits the data poorly, some of the

derivatives of the parameters fixed at constant values should differ

from zero. S5rbom (1975) recommends that a misspecified model may be

respecified by using these derivatives. He advises that "we should

relax the . . . restriction for the element which gives the largest

decrease in F(E)" (p. 143). That element is the element with the

largest partial derivative.

Consider the actual and misspecified model in Figure 6. Since 832

was falsely fixed at zero in the misspecified model, the derivative

with respect to 832 should not be zero in a LISREL solution of the

misspecified model given the data generated by the actual model.

However there were three nonzero first derivatives in the LISREL

analysis of the path model in Figure 6 and these derivatives appeared

in both the B and 0 matrices. The corresponding derivatives were also

nonzero in the LISREL simultaneous analysis of the model in Figure 6 in

which each of the latent variables was measured with three indicators

with factor loadings of .80, .60, and .40. These derivatives appear in

Table 15.

In both the two-step and simultaneous LISREL solutions, the

largest derivative was for o(E2,C3). In the simultaneous analysis the

value of this derivative was almost twice the size of the next largest

derivative over all the parameters, which is the derivative for 832.
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Table 15

Derivatives for the Model in Figure 6 Computed by LISREL

 

 

 —— 6.-....

0(E2,E3) ‘-53 -.34

B32 ‘-46 -.18

8 ‘-40 -.15
23
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If the model were respecified by relaxing the constraint which yielded

the largest derivative, the fit of the respecified model would be

improved, but the respecified model would not be the model which

generated the data. Thus for this model, SSrbom's (1975) advice is

false. Moreover, it was the deletion of a path--not the deletion of a

variable--that led to the generation of correlated disturbances. The

rules for models with correlated disturbances are just the rules for

models with missing paths.

The equivalence between correlated disturbances and a misspecifi-

cation defined by a missing path is even clearer in the following

example. The actual and misspecified models in Figure 13 are the same

models presented in Figure 6 except that the three disturbance covar-

iances are ppp_constrained at zero in the misspecified model. These

disturbance terms are included in Figure 13 for heuristic purposes

only. The parameter estimates of the misspecified model are computed

in Appendix B.

The estimated regression parameters of the two misspecified models

are equal. Of particular interest, however, is the comparison between

the single nonzero OLS residual and the single nonzero disturbance

covariance: they are equal. That is,

The correlated disturbance term in the nonrecursive misspecified model

is simply the lack of fit in the corresponding recursive misspecified

model. The use of correlated disturbances provides no more information

than was available from the information provided by the traditional OLS

solution. If the disturbance covariances are fixed at zero as they are

for the OLS solution, the model does not fit. If the disturbance
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Actual model

8<c1.c,_>

 

   
Misspecified model

Figure 13. Actual model (a) from Figure 5 and a third misspecified

model with correlated disturbance terms.
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covariances are free parameters whose values are to be computed from

the data, then the model fits the data perfectly. But to say that this

model with free disturbance covariances fits the data is to say nothing

at all given that the OLS solution does not fit the data.

Correlated Errors: Summary
 

There are situations such as the analysis of longitudinal data

(Hunter, Coggin, & Gerbing, Note 9) in which an analysis with corre-

lated errors is appropriate. But the results of this paper suggest

that there are at least two situations in which the use of correlated

errors is inappropriate or at best misleading: (a) correlated measure—

ment errors as a substitute for decomposing ad-hoc composites, and

(b) correlated disturbances as a substitute for addition of a path.

To propose a model with correlated errors in either of these two

circumstances is to do nothing more than propose a misspecified non-

recursive, unidimensional model. To claim that "OLS is biased if there

are correlated disturbances in the presence of a deleted path" is to

say nothing more than that the parameter estimates from OLS are wrong

because the model is false. If LISREL with correlated disturbances is

used instead of OLS to estimate the parameters, the model is still

false. The parameter estimates are different but equally misleading.

Although the apparent fit of the respecified model with correlated

errors may be dramatically improved, the model is still wrong.

Most of the simulation studies which examine the properties of the

statistical procedures for simultaneous equation models begin with a

model or models which contain correlated errors, e.g., Hanushek and

Jackson (1977) or Cragg (1968). Hanushek and Jackson (1977) concluded

that "there is a noticeable increase in the bias in the ordinary least
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squares estimator as the correlation between the error terms in the two

equations increases" (p. 237), which is only to say that as the model

becomes more and more false, the OLS estimators become less and less

useful. 0r consider the studies by Costner and Schoenberg (1973),

SBrbom (1975), or Saris et al. (1978) in which they attempted to deter-

mine useful indices for locating misspecification. These authors, with

but the one exception in Figure 7, used a given model with correlated

errors to generate the data and then attempted to fit a recursive,

unidimensional model to this data. Under these conditions it is not

surprising that all of these authors have failed to realize that the

residuals may contain some very useful information for detecting

misspecification.

Contemporary use of correlated errors and correlated disturbances

has led to erroneous models in most cases. Perhaps the fact that

LISREL permits correlated errors should be regarded as a flaw in the

program instead of an advantage.
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APPENDIX A

COMMUNALITIES IN A MULTIPLE GROUPS ANALYSIS

Unlike most contemporary authors, Kenny (1979) recognizes that the

classical multiple groups analysis is a confirmatory factor analysis.

However he completely abandons multiple groups in favor of LISREL.

A "factor analytic solution to [a multiple indicator model] . . . is

the multiple group solution . . . which is rarely used. Like most

factor analytic solutions, it . . . suffers from the communality

problem; that is, communalities must be specified in advance" (p. 138).

This is a serious misunderstanding of the factor analysis literature

since communalities, like any other parameter, must be estimated. This

is true of LISREL as well. The LISREL estimate of the communality of

2
the ith observed variable is A1.

Nunnally (1978) is one of the strongest contemporary advocates of

the classical multiple groups approach, but he argues that "the

diagonal unities in a centroid factor multiple groups analysis can

make the loadings seem spuriously high . . . . In a sense, there is

nothing wrong with this, because it is the correct mathematical

solution. The illusory appearance of large loadings could be reduced

by . . . the use of SMCs as communalities . . . . However, this is not

really necessary" (p. 420). Nunnally (1978) not only fails to

recognize the possibility of iterating for the communality values, he

88
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does not recognize the need.

However, Hunter (Note 7) has shown that except in certain unusual

cases, the communalities in a multiple groups analysis will converge to

their correct values on successive iterations. The convergence for

each indicator of the measurement model used in this study is graphed

in Figure 14.

The 0th iteration for each indicator is the initial computation

obtained before the first iteration, i.e., the value Nunnally (1978)

recommends. If "the correct mathematical solution" implies that the

underlying structure is recovered with perfect accuracy in the absence

of sampling or specification error, and if the indicators are measured

with error, then communalities must be inserted into the diagonal of

the correlation matrix.
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APPENDIX B

ANALYTIC SOLUTION FOR THE PARAMETER

ESTIMATES OF MISSPECIFIED MODELS

The parameter estimates and consequently the residuals of the

misspecified causal models can be solved analytically by the following

algorithm developed for this paper:

(1) Generate the predicted correlations of the correctly

specified model, 2.

(2) Generate the predicted correlations of the misspecified

model, 2.

(3) Solve for the parameters of the misspecified model in

terms of E.

(4) Express the solution of the parameters of the misspecified

model in terms of the parameters of the correctly specified

model.

This procedure is illustrated for the misspecified models which appear

in Figure 6 and Figure 13 and the corresponding actual model, which is

the same in both figures. For the models in Figure 6,

r(E.nl) = Y £(a.n1) = I

91
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r(n1,n2) = 821 r(nl’nz) = 821

r(nl.n3) = 831 + 821832 r(nl,n3) = 831

r("2"”3) = 832 + 831821 r("2’”3) = 31821

Given these correlations, the OLS parameter estimates and the

residuals of the misspecified model may be computed. The OLS estimates

of the parameters of the misspecified model are

A

Y = r(nl.E) 821 = r(02.nl) 831 = r(n3.nl)

which can be expressed in terms of the parameters of the actual model.

A

Y = r(n19g) = Y

831 = r("3’“1) = 831 + 821832

The OLS residuals of the misspecified model are defined by S - 8.

Since theilmatrix is the observed matrix for these examples, the

residuals are defined by Z - 2.

I

.
4 I

4
)

ll

.
4 l

.
4 II

Cr(€,nl) - £(53n1) —

r(E.02) - £(a.n2) = 1321 — 1821 = 1321 - 1321 = o

I

4 '
m

r(E.n3) - £(E.n3) -

YB B B 0+ .
4

'
m

u
:

h
) '
m

h
)

[
—
0

I

31 ’ Y 21 32 =

831 + 821832 " B31 ’ 821832 = 0

r(02.n3) - r(nz.n3) = 832 + B31821 - 831821

2

’ 832 + 831321 ‘ B31521 ’ 821832

I

‘
m
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Consider the misspecified model in Figure 13 which is identical to

the misspecified model in Figure 6 except that the disturbance covar-

iances are unconstrained. The covariance structure of the misspecified

model is presented below.

r(E.nl) = i

A

r(nl.n3> = 331 + 0(cl.c3)

r(n2.n3) = 831821 + 8318(61.62) + 8210(61.c3) + 0(E2:E3)

The parameters of the misspecified model appear to be just identified

since there are six equations in six unknowns, Y, 821, 831, 6(E1,C2),

0(cl,c3), and 6(c2,c3). (The disturbance variances are functions of

these six parameters.)

Since there are as many equations as there are unknowns, the

parameters of the misspecified model can be expressed in terms of the

predicted correlations. Moreover, a just identified model fits any

data set perfectly since there are no overidentifying restrictions or

degrees of freedom to test the fit of the model. So each predicted

correlation r equals the corresponding actual correlation r Since

ij ij '

the actual correlations can be expressed in terms of the parameters of

the actual model, solving for the parameters of the misspecified model

in terms of the correlations implied by the misspecified model is

equivalent to expressing the parameters of the misspecified model in

terms of the parameters of the actual model for a just identified

model. That is, the FIML solution computed by LISREL can be obtained
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heuristically for the just identified model. These computations for

this example are presented below.

Y = E(§.n> = r(E.nl) = Y

r(nz.E) r(02.E) B

 

A 21
B =———-—— =—————=—-——=B

21 Y Y Y 21

g = r(n3.E) = r(n3.E) = Y831 + Y832821 = B + B B

31 y Y Y 31 32 21

A

= r(nlinz) - 821

= B - B
21 21

= 0

= (831832821) (88+31 832 821)

= 0

= (832+ 831821) (831+ 832 821)(821)

2

’ 1332'l ’ 821)



APPENDIX C

COMPUTATIONAL DETAILS OF A SIMULTANEOUS LISREL ANALYSIS

The Relation Between the Indicator Residuals and Factor Residuals
 

Consider the model in Figure 6 such that each latent variable has

three indicators with factor loadings .80, .60, and .40, and Y = .30,

821 = 831 = .35, and 832 = .40. Also consider the residuals from the

simultaneous LISREL analysis between the indicators of n2 and 03 which

appear in Table 4. Since the residuals are defined as the difference

of the corresponding observed and predicted correlations, these

residuals may be computed by first computing the observed and predicted

correlations.

The observed indicator correlations were generated by the product

rule for external consistency. For example, since the actual correla-

tion between NZ and n3 reported in Table 2 is .523,

(.8) (.523) (.8)

= .334

LISREL computed the corresponding predicted correlations according to

the same product rule. The difference is that the estimated values of

the factor correlations were substituted for the actual values. That

is,

r(3'21’3’31) = A21r("2’”3) A31

95



96

Since the factor loadings were correctly recovered by LISREL,

A

A21 = A31 = .80

The LISREL estimate of r(n2,n3), reported in Table 2, was .234.

£(y21.y31> = (.8) (.234) (.8)

= .150

Thus the residual of the indicators y21 and y31 is

Res(y21’Y31) E r(Y219Y31) — r(y21!Y3l)

.334 - .150

= .184

So,

And .184 is the same value computed by LISREL as listed in Table 4.

The keys to reconstructing the residuals between indicator corre-

lations are the residuals among the factor correlations and the

respective factor loadings. This can be more explicitly stated by

first recomputing the residual between y21 and y31.

RES(y21,y31) E r(Y213y31) - r(y21’y31)

= A21"”2’”3)A31 ' A21"“2’”3)A31

[Res(n2,n3)] (A21A31)

That is,

Res(y21,y3l) = (.523 - .234) (.8) (.8)

II (.289) (.8) (.8)

= .184

This result can be generalized to any Factors F and G with indicators

1 and j respectively,

Res (yFi’yGi) = Res (F,G) AFi AGJ.
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The entire block of residuals for the indicators of factors F and

G can be described as

_ I

(‘11 rFG) AFAG

where;F is the vector of factor loadings for the NF indicators of F

and A is the vector of factor loadings for the N factor loadings of

-G G

G. The resulting "block" of residuals is a matrix of order NF x NG'

For example, let n23; F, n3 3 G, A% = Aé E [,8 .6 .4]. Then

I- 1 p

.18 .14 .09 .64 .43 .32.1

.14 .10 .07 (.289) .48 .36 .24

.04 .07 .05 .32 .24 .16

L J - L a    
For this example in which each factor in the model had the same

number of indicators with an identical pattern of factor loadings, the

entire residual matrix of indicator correlations can be expressed as a

Kronecker product of (a) the entire residual matrix of the factor

correlations and (b) the factor loadings. That is,

(BIND " 2311111)) = (ZFAC ' iF.II.(:)® (AA')

12x12 4x4 3x3

The Kronecker product, designated by(3> is defined as the matrix formed

by justaposing the scalar products of every element of the first matrix

with the entire second matrix. That is, every element of (ZFAC - EFAC)

is "replaced" by the multiple of that element with the matrix (AAf).

Thus the complete 12 x 12 matrix of residuals defined by Z - E

where 2 is computed in a LISREL simultaneous analysis can be expressed

as a function of the actual and estimated factor loadings and factor

correlations. The actual factor loadings and factor correlations are

given and the estimated factor loadings are approximately equal to the
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actual factor loadings. The problem of reconstructing the residuals of

the indicator correlations has been reduced to reconstructing the

residuals of the factor correlations.

Computation of the Parameter Estimates of the Causal Model
 

LISREL selects those parameter estimates which minimize a function

F(E) of the residuals among the indicator correlations. But minimizing

the residuals among the indicator correlations is just minimizing the

residuals among the factor correlations. Since LISREL is a full infor-

mation technique, the parameter estimates are computed to

simultaneously minimize the factor correlation residuals across the
 

entire model.

Given the present example in which the misspecification is defined

by the deletion of the path from n2 to n3, there are two conflicting

"pressures" which must be simultaneously resolved. First, the only

source of the correlation between and in the misspecified modelT12 03

is the common antecedent n1, i.e.,

but the actual correlation between n2 and n3 is decomposed as

r(nz.n3) = 832 + 821831

To the extent 832 is large, B and 832 must be biased upward to

31

minimize Res(n2,n3). That is, LISREL "would like" to increase the

and 8 untilvalues of B 32

31

A

But, as a second consideration, LISREL cannot adjust both 831 and 832

without affecting the residuals Res(nl,n2) and Res(nl,n3). To the
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extent that

8>B and 8
31 31 > B32 32

the values of Res(n1,n2) and Res(n ) will increase.

2’"3

The resulting parameter values computed by LISREL are a compro-

mise. The values of 831 and 832 are increased over their OLS counter-

parts, which reduces Res(n2,n3) for the LISREL solution compared to the

A

corresponding OLS residual. However, this increase in B and 832
31

increases Res(nl,n3) and Res(n2,n3) over their OLS counterparts, which

are equal to zero. Thus the simultaneous LISREL solution provided

incorrect factor correlations and obscured the detection of the

misspecification in terms of the residuals.



APPENDIX D

RELATIVE SIZES OF THE INDICATOR RESIDUALS WITHIN

AND BETWEEN CONSTRUCTS IN AN AD-HOC COMPOSITE

IF ALL THE INDICATORS HAVE EQUAL FACTOR LOADINGS

The examination of the residuals from a misspecified ad-hoc

composite should reveal a pattern in which the largest residuals were

between the indicators of the same construct. The residuals of the

indicators of different constructs may be negative, but they should at

least tend to be smaller than the residuals of indicators of the same

nconstruct. For example, let yi and yj be indicators of nF and yk be

an indicator of nG. Let all of the actual factor loadings be equal.

If yi, yj, and yk are pooled together and misspecified as a construct

n, then Resij - Res1k = (rij - rij) - (rik - rik)

= rij ' r13 ' r1k + rik

= riFer ' rifirjfi'- rirrrcrck + rifirkfi

If riF = er = rkG’

R s - Res = r2 - r r - r2 r + r r

8 ij ik 12 ffi jfi iF FG ffi kfi'

2 2

r1F ' riFrFG

So if rFG < 1 and if the actual factor loadings are equal, then the

residual for y1 and yj, indicators of the same construct, will always

be larger than the residual for yi and yk, indicators of different

constructs.
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