BIODIVERSITY,,CLIMATE,CHANGE,AND,LIVELIHOODS:,A,STUDY,ON,ECONMOIC,AND, ECOLOGICAL,SUSTAINABILITY,AMONG,COFFEE,PRODUCERS,IN,THE,HIGHLANDS,OF, NICARAGUA,, By, Aniseh,Sjona,Bro,, ,                           A  DISSERTATION   Submitted  to   Michigan  State  University   in  partial  fulfillment  of  the  requirements   for  the  degree  of     Community  Sustainability  –  Doctor  of  Philosophy     2016           ABSTRACT   BIODIVERSITY,  CLIMATE  CHANGE  AND  LIVELIHOODS:  A  STUDY  ON  ECONMOIC  AND   ECOLOGICAL  SUSTAINABILITY  AMONG  COFFEE  PRODUCERS  IN  THE  HIGHLANDS  OF   NICARAGUA     By   Aniseh  Sjona  Bro   Efforts  to  slow  down  and  eventually  reverse  the  trend  of  climate  change  will  take  time,  and   in  some  cases,  its  negative  impacts  will  be  felt  long  before  long-­‐‑term  solutions  to  this   problem  can  bear  fruit.    Adaptation  and  mitigation  strategies  constitute  the  front  line  of   attack  for  rural  households  in  low-­‐‑income  countries  that  rely  on  agricultural  production   and  natural  resource  use  as  their  main  sources  of  income  and  growth,  and  whose   livelihoods  are  threatened  by  climate  change.       Coffee  in  Nicaragua  is  the  main  source  of  income  for  thousands  of  smallholder  producers,   and  is  the  country’s  primary  agricultural  export.    Given  the  vulnerability  of  coffee  to  the   impacts  of  climate  change  there  is  a  growing  consensus  among  development  practitioners   and  policy  makers  that  adaptation  strategies  are  necessary  and  in  some  cases  urgent  for   those  producers  who  depend  on  coffee  production  as  their  main  source  of  income.   In  this  dissertation,  comprised  of  three  empirical  papers,  I  study  the  coffee  sector  in  the   Matagalpa  region  of  Nicaragua  and  explore  potential  pathways  for  climate  change   adaptation  among  its  coffee  producers  by  studying  their  options  for  building  adaptive   capacity  and  the  necessary  conditions  to  help  them  adopt  technologies  and  practices  that   promote  successful  adaptation.   The  focus  of  the  first  paper  is  on  the  characteristics  of  coffee  producers  in  northern   Nicaragua  and  their  capacities  for  climate  change  adaptation  and  vulnerabilities  its  shocks,   including  an  exploration  of  their  attitudes  towards  risk  through  the  use  of  experimental   risk  games.  An  important  finding  from  this  study  is  that  household  food  insecurity  is  a  key   determinant  of  risk  aversion,  and  that  income  is  relevant  insofar  as  it  results  in  greater   food  security.   In  the  second  paper,  I  use  choice  experiments  to  elicit  farmers’  preferences  for  shade   incorporation  into  coffee  farms.    Shade  is  an  important  farm  management  practice  in  coffee   production  because  it  helps  to  protect  soils,  promote  biodiversity,  and  helps  to  mitigate  the   impacts  of  higher  temperatures  induced  by  climate  change.  I  find  that  for  a  small  premium   farmers  are  willing  to  incorporate  additional  shade  into  their  farms.  An  unexpected  finding   from  this  study  is  that  farmers  are  not  willing  to  give  up  any  coffee  income  to  have  access   to  pesticides  for  their  farms,  a  likely  reflection  of  the  recent  leaf  rust  outbreak  in  the   country  and  the  poor  institutional  response  to  the  outbreak.   Finally,  I  analyze  the  degree  to  which  cooperatives  can  help  farmers  adopt  a  set  of  ten   production  practices  that  can  help  farmers  build  adaptive  capacity  to  climate  change.   Results  show  that  coffee  farmers  who  belong  to  cooperatives  have  already  adopted  these   practices  at  higher  rates  than  non-­‐‑members,  and  econometric  analyses  confirm  this  result.   A  factor  analysis  is  also  conducted  to  determine  the  underlying  structural  differences   among  the  ten  practices,  and  from  this  analysis  three  factors  emerged  and  are  modeled.     Cooperative  membership  emerges  as  a  significant  determinant  of  adoption  of  practices  that   promote  water  conservation.         To  my  mom  and  dad.  Mis  dos  pilares.     To  Jason.  My  love.       iv   ACKNOWLEDGEMENTS           This  work  would  have  not  been  possible  without  the  support,  both  academic  and  personal,   that  my  advisor  and  mentor,  Dr.  Daniel  Clay,  has  given  me  during  these  past  years.  Dan  has   taught  me  the  value  that  good  mentorship  can  bring  to  a  relationship,  from  helping  me  with   my  professional  and  academic  development  to  giving  me  instructions  on  how  to  build  a   bench  for  my  dining  room;  from  giving  me  the  opportunity  to  be  closely  involved  in  his   projects,  while  encouraging  me  to  pursue  my  personal  research  interests.    Dan,  working   with  you  and  learning  from  you  has  truly  been  the  highlight  of  my  tenure  as  a  PhD  student,   and  I  hope  to  someday  be  as  good  a  mentor  to  others,  as  you  have  been  to  me.     I  would  also  like  to  thank  my  advisory  committee:  Dr.  Maria  Claudia  Lopez,  thank  you  for   helping  me  stay  focused  on  the  long  term  goals,  and  for  allowing  me  to  go  to  you  whenever   I  felt  too  overwhelmed  with  the  task  ahead.  Dr.  Robert  Richardson,  thank  you  for  pushing   me  to  think  more  critically  about  my  work  and  for  all  of  your  encouragement  and  advise   through  the  years.  Dr.  David  Ortega,  thank  you  for  the  countless  hours  that  you  dedicated   to  helping  me  with  the  research;  the  time  that  you  dedicated  to  teaching  me  new  methods   has  been  invaluable.     The  friendships  forged  at  Michigan  State  University  have  made  this  journey  an  adventure   that  I  would  gladly  take  again,  being  away  from  home  often  means  looking  outside  our   blood  relations  to  get  the  companionship  and  support  that  we  all  need  when  we  are  far,   and  I  trust  that  the  friendships  that  I  have  made  here  will  last  through  the  years.     v   My  mom,  dad,  brother,  sister,  and  nephews  accompanied  me  and  kept  me  motivated  in  the   distance,  and  I  thought  of  them  every  day.       Finally,  I  have  to  thank  my  husband,  Jason  Snyder,  without  whom  I  do  not  know  how  all  of   this  would  have  been  possible.    Thank  you  for  encouraging  me  to  push  myself  and  to   pursue  my  dreams,  for  the  many  hours  that  you  spent  proofreading  my  papers,  for  hugging   me  when  it  all  felt  like  too  much,  for  never  doubting  in  me,  and  for  never  losing  your  sense   of  humor  that  helped  me  navigate  this  PhD  labyrinth.  I  love  you.  Every  day.             I  would  also  like  to  acknowledge  the  financial  support  of  the  United  States  Agency  for   International  Development  through  the  Borlaug  Fellows  in  Global  Food  Security  at  Purdue   University,  the  support  of  the  Graduate  School  at  Michigan  State  University  through  its   Dissertation  Completion  Fellowship,  and  the  financial  support  of  the  Department  of   Community  Sustainability  at  Michigan  State  University.                   vi   TABLE  OF  CONTENTS   LIST  OF  TABLES  ...............................................................................................................  ix   LIST  OF  FIGURES  ...............................................................................................................  x   KEY  TO  ABBREVIATIONS  .............................................................................................  xi   Chapter  1:  Introduction  .................................................................................................  1   REFERENCES  ..........................................................................................................................................  8     Chapter  2:  Climate  Change  Adaptation,  Food  Security  and  Attitudes   Toward  Risk  among  Smallholder  Coffee  Farmers  in  Nicaragua  ................  10   Introduction  ..........................................................................................................................................  10   Background  ...........................................................................................................................................  14   Coffee  in  Nicaragua  ...........................................................................................................................  14   Explaining  Farmer  Behavior  under  Conditions  of  Scarcity  ..............................................  16   Description  of  the  Study  Site  and  Sample  ................................................................................  18   Description  of  the  Framed  Field  Experiments  .......................................................................  22   Experiment  Mechanics  in  the  Field  .............................................................................................  24   Results  and  Discussion  .....................................................................................................................  26   Descriptive  Analyses  ..........................................................................................................................  27   Experiment  Results  ............................................................................................................................  32   Conclusion  ..............................................................................................................................................  37   REFERENCES  ........................................................................................................................................  41   Chapter  3:    Adaptive  Capacity  to  Climate  Change:  Coffee  Farmer   Preferences  for  Crop  Diversification  in  Nicaragua  ...........................................  47   Introduction  ..........................................................................................................................................  47   Background  ...........................................................................................................................................  49   Coffee  Leaf  Rust  in  Nicaragua  .......................................................................................................  52   Theoretical  Framework  ...................................................................................................................  54   Data  and  Choice  Experiment  Design  ..........................................................................................  56   Data  and  Sample  Characteristics  ................................................................................................  56   Choice  Experiment  ..............................................................................................................................  59   Results  and  Discussion  .....................................................................................................................  66   Conclusions  ...........................................................................................................................................  72   REFERENCES  ........................................................................................................................................  77   Chapter  4:  Determinants  of  Adoption  of  Sustainable  Production   Practices  among  Smallholder  Coffee  Producers  in  Nicaragua  ....................  81     vii   Introduction  ..........................................................................................................................................  81   Coffee  in  Nicaragua  ............................................................................................................................  87   Methodology  and  Data  ......................................................................................................................  88   Results  and  Discussion  .....................................................................................................................  95   Conclusion  ...........................................................................................................................................  104          REFERENCES  .............................................................................................................  107   Chapter  5:  Conclusions  ..............................................................................................  111           viii   LIST  OF  TABLES     Table  1.  Characteristics  of  Game  Participants  and  Non-­‐‑Participants  .............................................  19   Table  2.  Sample  Characteristics  .......................................................................................................................  21   Table  3.  Risk  Experiment  Payoffs  and  Risk  Coefficient  .........................................................................  23   Table  4.  Gender  Differences  ..............................................................................................................................  32   Table  5.  Distribution  of  Risk  Choices  ............................................................................................................  33   Table  6.  Results  from  Ordered  Probit  Model  for  Risk  Aversion  ........................................................  34   Table  7.  Sample  Characteristics  .......................................................................................................................  59   Table  8.  Coffee  Production  Attributes  Used  in  Choice  Experiments  ...............................................  62   Table  9.  Parameter  Estimates  from  a  Random  Parameter  Logit  Model  ........................................  67   Table  10.  Cholesky  and  Correlation  Matrix  for  RPL  Model  .................................................................  68   Table  11.  Willingness  to  Change  Estimates  ................................................................................................  69   Table  12.  Sample  Characteristics  ....................................................................................................................  89   Table  13.  List  of  Coffee  Farming  Practices  ..................................................................................................  90   Table  14.  Comparison  of  Adopted  Practices  by  Cooperative  Membership  ..................................  91   Table  15.  Ordered  Probit  Model  Results  .....................................................................................................  96   Table  16.  Characterization  of  Production  Practices  ...............................................................................  98   Table  17.  Ordered  Probit  Model  Results  for  Disaggregated  Practices  ........................................  100   Table  18.  Marginal  Effects  of  Significant  Variables  on  Adoption  Intensity  ...............................  101           ix   LIST  OF  FIGURES     Figure  1.  Research  Conceptual  Framework  ..................................................................................................  4   Figure  2.  Map  of  Study  Area  ..............................................................................................................................  20   Figure  3.  Risk  Experiment  ..................................................................................................................................  26   Figure  4.  Perceptions  About  Climate  Change  ............................................................................................  28   Figure  5.  Responses  to  Climate  Shocks  ........................................................................................................  29   Figure  6.  Member  Satisfaction  with  Cooperative  .....................................................................................  30   Figure  7.  Percentage  of  Household  Vulnerable  to  Climate  Change  Shocks  ..................................  31   Figure  8.  Game  Choices  by  Households  with  Food  Insecurity  ...........................................................  34   Figure  9.  Map  of  Study  Area  ..............................................................................................................................  57   Figure  10.  Example  of  Choice  Set  ....................................................................................................................  65           x   KEY  TO  ABBREVIATIONS     DCE   Discreet  Choice  Experiments   CIAT   International  Center  for  Tropical  Agriculture   RPL   Random  Parameter  Logit   WTC   Willingness  to  Change   WTP   Willingness  to  Pay   IPCC   Intergovernmental  Panel  on  Climate  Change   SLM   Sustainable  Land  Management       xi   Chapter  1:  Introduction   “Let  us  not,  however,  flatter  ourselves  overmuch  on  account  of  our  human  conquest  over   nature.  For  each  such  conquest  takes  its  revenge  on  us.  Each  of  them,  it  is  true,  has  in  the  first   place  the  consequences  on  which  we  counted,  but  in  the  second  and  third  places  it  has  quite   different,  unforeseen  effects  which  only  too  often  cancel  out  the  first.  The  people  who,  in   Mesopotamia,  Greece,  Asia  Minor,  and  elsewhere,  destroyed  the  forests  to  obtain  cultivable   land,  never  dreamed  that  they  were  laying  the  basis  for  the  present  devastated  condition  of   these  countries,  by  removing  along  with  the  forests  the  collecting  centres  and  reservoirs  of   moisture.  When,  on  the  southern  slopes  of  the  mountains,  the  Italians  of  the  Alps  used  up  the   pine  forests  so  carefully  cherished  on  the  northern  slopes,  they  had  no  inkling  that  by  doing  so   they  were  cutting  at  the  roots  of  the  dairy  industry  in  their  region;  they  had  still  less  inkling   that  they  were  thereby  depriving  their  mountain  springs  of  water  for  the  greater  part  of  the   year,  with  the  effect  that  these  would  be  able  to  pour  still  more  furious  flood  torrents  on  the   plains  during  the  rainy  seasons.  Those  who  spread  the  potato  in  Europe  were  not  aware  that   they  were  at  the  same  time  spreading  the  disease  of  scrofula.  Thus  at  every  step  we  are   reminded  that  we  by  no  means  rule  over  nature  like  a  conqueror  over  a  foreign  people,  like   someone  standing  outside  nature—but  that  we,  with  flesh,  blood,  and  brain,  belong  to  nature,   and  exist  in  its  midst,  and  that  all  our  mastery  of  it  consists  in  the  fact  that  we  have  the   advantage  over  all  other  beings  of  being  able  to  know  and  correctly  apply  its  laws.”       Frederick  Engels,  1883       1   Human  influence  on  the  climate  system,  driven  by  economic  and  population  growth,  is   clear,  and  has  caused  global  greenhouse  gas  emissions  to  reach  the  highest  levels  in   recorded  history.    As  a  result,  these  changes  have  had  a  significant  impact  on  human  and   natural  systems.    Water  resources  have  been  affected  by  changes  in  precipitation  and  to   melting  snow  and  ice.    Some  studies  have  found  a  shift  in  crop  suitability1  in  many  regions   of  the  world  (Laderach  et  al.,  2011;  Fischer  et  al.,  2002).  At  this  rate,  the  planet  will  see   long-­‐‑lasting  changes  in  all  components  of  the  climate  system,  and  the  likelihood  of  severe   and  irreversible  impacts  on  people  and  ecosystems  will  increase.    The  latest  IPCC  report   paints  a  dark  future  for  our  planet.  The  authors  state  that  “it  is  virtually  certain  that  there   will  be  more  frequent  hot  and  fewer  cold  temperature  extremes  over  most  land  areas  on   daily  and  seasonal  timescales,  as  global  mean  surface  temperature  increases.  It  is  very   likely  that  heat  waves  will  occur  with  a  higher  frequency  and  longer  duration.  Occasional   cold  winter  extremes  will  continue  to  occur”  (IPCC,  2014).     Climate  change  impacts  will  be  felt  worldwide,  yet  the  scale  and  intensity  of  these  impacts   will  differ  by  region.    Urban  areas  will  experience  a  loss  of  assets,  increased  air  pollution,   and  water  scarcity,  while  rural  areas  will  be  at  greater  risk  of  food  insecurity,  changes  in   agricultural  incomes,  and  shifts  in  production  areas  for  food  and  non-­‐‑food  crops.   Displacement  of  people  will  occur  in  both  sectors,  rural  and  urban,  with  poor  households   being  affected  disproportionately.       1  Crop  suitability  refers  to  the  agro-­‐‑ecological  suitability  of  a  region  for  the  production  of   particular  crops  or  types  of  crops.     2   The  IPCC  (2014)  states  that  for  the  world  population  to  adapt  to  climate  change,  effective   decision-­‐‑making  and  policy  implementation  are  necessary  and  that  they  should  be   informed  by  a  range  of  analytical  approaches  that  evaluate  the  risks  and  benefits  of   interventions,  while  considering  the  significance  of  institutions,  equity,  economic   implications,  and  the  diverse  perceptions  and  response  to  risk  and  uncertainty.     Nicaragua  is  one  of  the  poorest  countries  in  Latin  America  with  more  than  42%  of  the   population  living  under  the  poverty  line  and  most  in  rural  areas  (World  Bank,  2016).     Coffee  in  Nicaragua  is  by  far  the  most  important  crop  in  the  economy,  and  is  its  highest   source  of  agricultural  export  revenues.  There  are  more  than  48,000  coffee  producers  in   Nicaragua,  producing  mostly  Arabica  coffee,  and  the  majority  of  them  farm  on  plots  of  less   than  3.5  hectares  (Valkila  and  Nygreen,  2010).       Climate  change  is  expected  to  affect  a  large  proportion  of  coffee  growing  areas  in   Nicaragua.  Overall,  the  climate  will  be  marked  by  greater  seasonality  in  terms  of  the   variability  in  temperatures  and  precipitation.    Areas  of  Nicaragua,  including  Matagalpa-­‐‑-­‐‑   where  this  research  takes  place-­‐‑-­‐‑  will  see  a  loss  in  agro-­‐‑ecological  suitability  for  coffee  of   up  to  60%  due  to  climate  change  (Laderach  et  al.,  2011).     Efforts  to  slow  down  and  eventually  reverse  the  trend  of  climate  change  will  take  time,  and   in  some  cases,  the  negative  impacts  of  climate  change  will  be  felt  long  before  long-­‐‑term   solutions  to  this  problem  can  take  hold.    Adaptation  and  mitigation  strategies  for  rural   households  constitute  the  front  line  of  attack  for  rural  households  in  developing  countries     3   that  rely  on  agricultural  production  and  natural  resources  use  as  their  main  source  of   income  and  growth,  and  whose  livelihoods  are  threatened  by  climate  change.  Among  these   strategies,  the  adoption  of  sustainable  and  “climate  smart”  production  practices  has  been   identified  as  critical  for  smallholder  producers,  but  it  is  uncertain  how  best  they  should  be   promoted  (Laderach  et  al.,  2013).           The  research  presented  in  the  following  chapters  explores  the  implications  of  climate   change  on  the  livelihoods  of  coffee  producers  in  Nicaragua.  It  examines  the  pathways  to   climate  change  resilience  for  coffee  producers  in  the  region  along  three  main  dimensions:   livelihoods,  biodiversity  conservation,  and  climate  change  adaptation  (Figure  1).     Figure  1.  Research  Conceptual  Framework   Livelihoods Climate   Change Biodiversity     Throughout  this  dissertation  I  make  use  of  the  terms  resilience  and  adaptive  capacity  on   numerous  occasions.  For  purposes  of  this  research,  I  define  adaptive  capacity  as  the     4   capacity  of  coffee  producers  in  Matagalpa  to  adopt  technologies  and  practices  that  help   them  become  more  resilient  to  climate  change,  while  resiliency  is  defined  as  the  capacity  of   coffee  farmers  to  recover  from  climate  change  shocks  and  minimize  the  losses.     This  dissertation  is  divided  into  three  main  empirical  chapters,  each  one  meant  to  stand  on   its  own  as  a  publishable  manuscript.    It  is  for  this  reason  that  sections  presenting  a   description  of  the  data  and  the  study  appear  partially  repetitive  across  the  three  empirical   chapters.     Chapter  2,  Climate  Change  Adaptation,  Food  Security  and  Attitudes  Toward  Risk  among   Smallholder  Coffee  Farmers  in  Nicaragua,  paints  a  broad  picture  of  the  coffee  sector  in  the   region,  and  it  explores  the  incentives  and  the  capacities  of  coffee  producers  in  Nicaragua  to   adopt  technologies  that  will  help  them  be  resilient  to  climate  change.  Adaptation  to  climate   change  is  essential  for  poor  rural  households  that  choose  to  make  a  living  from  coffee   production,  and  the  strategies  that  they  can  adopt  are  multiple.  I  explore  these  questions   through  the  use  of  descriptive  analyses  and  experimental  economic  methods.  I  find  that   producers  in  the  region  have  already  experienced  environmental  shocks  and  have  had  to   respond  to  some  of  these  shocks  through  various  coping  mechanisms,  some  of  which  leave   them  even  more  vulnerable  to  future  shocks.    I  also  explore  coffee  farmer  attitudes  towards   risk  by  analyzing  data  from  lottery  games  with  real  pay-­‐‑offs  that  were  implemented  in  the   field.  This  study  helps  us  understand  the  options  for  building  adaptive  capacity  and  the   vulnerabilities  to  climate  change  experienced  by  coffee  farmers;  an  important  first  step  in     5   exploring  the  best  way  to  help  the  sector  become  more  resilient  to  the  impacts  of  climate   change.     Chapter  3,  Adaptive  Capacity  to  Climate  Change:  Coffee  Farmers’  Preferences  for  Crop   Diversification  in  Nicaragua,  is  focused  on  the  conditions  under  which  coffee  producers   diversify  their  coffee  production  with  additional  shade  crops  to  help  protect  the   biodiversity  of  the  regions  where  coffee  is  produced.  Shade  incorporation  into  coffee  fields   is  important  because  it  promotes  biodiversity  conservation,  it  helps  with  climate  change   adaptation  by  lowering  the  temperatures  of  fields  and  by  protecting  the  soils,  and  it  has  the   potential  to  generate  income  and  food  for  consumption.  I  employ  choice  experiments  to   elicit  farmers’  willingness  to  change  their  production  practices  to  include  shade  in  their   coffee  farms.  In  a  choice  experiment,  respondents  are  asked  to  choose  between  bundles   containing  a  series  of  different  attributes  (of  varying  levels)  from  hypothetical  choice   scenarios.  By  controlling  the  variation  in  the  levels  of  the  attributes,  I  am  able  to  analyze   the  choices  made  by  the  respondents  and  to  estimate  marginal  values  for  the  attributes   presented  in  the  choice  sets.  Results  from  this  paper  highlight  how  some  of  the  institutional   responses  to  the  leaf  rust  epidemic  in  Nicaragua  have  affected  the  preferences  of  farmers   and  I  discuss  its  impacts  on  the  level  of  trust  that  farmers  have  in  the  ability  of   organizations  to  provide  help  under  stressful  conditions.     Chapter  4,  Determinants  of  Adoptions  of  Sustainable  Production  Practices  among   Smallholder  Coffee  Producers  in  Nicaragua,  models  the  determinants  of  adoption  of  ten   different  production  practices  that  can  help  producers  become  more  resilient  to  climate     6   change.    I  explore  the  extent  to  which  farmer  cooperatives  affect  the  adoption  of  improved   production  practices  and  I  create  an  indicator  for  these  ten  practices  and  explore  the   degree  to  which  membership  affects  adoption.  Not  all  technologies  are  equal,  some  may  be   more  important  than  others,  so  a  factor  analysis  was  conducted  to  determine  the   underlying  structural  differences  among  the  ten  practices,  and  from  this  analysis  three   factors  emerged  and  were  modeled,  to  measure  the  degree  to  which  membership  affects   adoption  of  each  set  of  practices.  Results  from  this  study  help  inform  more  efficient  and   effective  pathways  to  help  farmers  to  adopt  practices  that  aid  them  in  building  adaptive   capacity  to  climate  change.     The  goal  of  this  dissertation  is  to  generate  findings  that  are  valuable  for  policy  makers,   donors  as  well  as  development  and  extension  practitioners  in  the  coffee  sector  as  they   endeavor  to  forge  future  courses  of  action  and  guide  policy  toward  more  effective   solutions.                           7   REFERENCES       8   REFERENCES           Engels,  Friedrich.  Engel,  F.  Dialectics  of  Nature.  (1883).       Fischer,  GĂźnther,  Mahendra  Shah,  and  Harrij  Van  Velthuizen.  "Climate  change  and   agricultural  vulnerability."  (2002).     Intergovernmental  Panel  on  Climate  Change.  Climate  change  2014:  mitigation  of  climate   change.  Vol.  3.  Cambridge  University  Press,  2015.     Laderäch,  Peter,  et  al.  "Predicted  impact  of  climate  change  on  coffee  supply  chains."  The   Economic,  Social  and  Political  Elements  of  Climate  Change.  Springer  Berlin   Heidelberg,  2011.  703-­‐‑723.     Laderäch,  Peter,  Carlos  Zelaya,  Oriana  Ovalle,  Samuel  Garcia,  Anton  Eitzinger,  and  Maria   Baca.  "Escenarios  del  Impacto  del  Clima  Futuro  en  Areas  de  Cultivo  de  Cafe  en   Nicaragua."  CIAT  Blog.  13  Mar.  2013.  Web.  http://dapa.ciat.cgiar.org/wp-­‐‑ content/uploads/2012/03/Informe-­‐‑Nicaragua-­‐‑final.pdf     Valkila,  Joni,  and  Anja  Nygren.  "Impacts  of  Fair  Trade  certification  on  coffee  farmers,   cooperatives,  and  laborers  in  Nicaragua."  Agriculture  and  Human  Values  27.3   (2010):  321-­‐‑333.     World  Bank.  (2016)  Retrieved  from  http://data.worldbank.org/data-­‐‑catalog/gdp-­‐‑ppp-­‐‑ based-­‐‑table           9   Chapter  2:  Climate  Change  Adaptation,  Food  Security  and  Attitudes  Toward  Risk  among   Smallholder  Coffee  Farmers  in  Nicaragua     Introduction   The  earth’s  climate  is  changing  rapidly.  Climate  scientists  forecast  higher  temperatures  and   significant  changes  in  precipitation  patterns,  that  in  turn  will  alter  crop  suitability  and  land   use  in  many  agricultural  regions  of  the  world  (IPCC,  2014).  Farmers  will  see  changes  in   their  agricultural  productivity,  their  farm  income,  and  their  food  security  (Laderach  et  al.,   2011).    Poor,  rural  households  in  developing  countries  that  depend  directly  on  natural   resources  for  income  generation  and  their  own  food  consumption  will  be  burdened   disproportionately  by  the  adverse  impacts  of  climate  change;  because  their  livelihoods  are   so  closely  tied  to  the  local  agroecology  they  will  be  among  the  most  vulnerable  to  sudden   shocks  like  droughts,  floods,  famine,  fires,  epidemics,  and  potentially  violent  conflict  (Ellis,   2000).  For  farmers,  especially  vulnerable  smallholder  farmers,  the  adoption  of  new   practices  and  technologies  that  help  them  become  more  resilient  to  these  changes  will  be   one  of  the  most  important  paths  for  protecting  their  livelihoods.    Their  willingness  to  adopt   these  improved  practices  and  technologies,  their  level  of  risk  tolerance,  and  the   institutional  response  mechanisms  will  go  a  long  way  in  determining  their  success  in   adapting  to  these  changes.         Policy  makers,  non-­‐‑governmental  organizations  (NGOs),  and  other  organizations,  but   especially  vulnerable  smallholder  farmers,  will  need  to  understand  how  their  livelihoods   will  be  impacted  by  climate  change  and  must  take  the  necessary  actions  towards  increased   resiliency.  Stakeholders  in  the  agricultural  sector  will  need  to  provide  vulnerable  farmers     10   with  the  support  needed  to  transition  toward  more  resilient  livelihoods.    Among  those   most  vulnerable  to  the  impacts  of  climate  change  are  women  and  the  elderly,  so  adaptation   strategies  must  incorporate  equitable  coping  mechanisms  that  will  enhance  resiliency  even   among  the  most  disadvantaged  groups  (Tompkins  and  Adger,  2004).    For  the  purposes  of   this  research  I  draw  on  the  IPCC  (2001)  definition  of  vulnerability,  which  hinges  on  the   sensitivity  of  agriculture  to  changes  in  climate,  the  adaptive  capacity  of  the  ecosystem,  and   the  degree  of  exposure  to  climate  hazards.     Smallholder  farmers’  attitudes  and  incentives  towards  new  technology  adoption  or   alternative  production  practices  have  long  been  documented  in  the  literature  (Duflo  et  al.,   2009;  Laderach  et  al.,  2011).    Schultz’s  (1964)  “poor  but  efficient”  hypothesis  that  small   farmers  in  traditional  agricultural  settings  respond  positively  to  price  incentives  by   efficiently  allocating  their  resources  has  been  an  enduring  theme  in  agricultural   development  economics  for  many  decades.    But  beyond  price  incentives,  successful   adaptation  will  also  depend  on:  (a)  farmer  attitudes  and  preferences  and  (b)  their  binding   constraints  to  investment.     Climate  change  will  intensify  already  existing  vulnerabilities,  and  although  farmers  in   developing  economies  have  shown  that  they  can  respond  to  short-­‐‑term  changes  in   environmental  conditions,  they  may  not  have  the  ability  to  cope  with  events  of  a   transnational  nature  without  support  (Challinor  et  al.,  2007).      For  this  reason,  the   development  of  institutions,  both  formal  and  informal,  play  an  instrumental  role  in   influencing  the  livelihoods  and  the  resiliency  of  rural  households.  These  institutions  can     11   help  to  determine  whether  climate  change  adaptation  responses  are  organized  collectively   or  individually,  the  emergence  of  leadership  in  different  contexts,  and  the  mediation  of   external  interventions  into  a  local  context  (Agrawal,  2010).         Even  when  farmers  are  willing  improve  their  adaptive  capacity  by  adopting  (potentially   risky)  new  technologies  and  practices,  they  may  face  binding  constraints  that  will  make  it   hard  or  impossible  to  do  so,  such  as  high  transaction  costs,  poor  physical  infrastructure,   lack  of  access  to  inputs  and  seeds,  and  low  levels  of  institutional  support  and  capacity   (Hazell  et  al.,  2010).      For  example,  although  crop  diversification  can  help  to  mitigate  the   impacts  of  climate  change,  Bradshaw  et  al.  (2004)  find  that  farmers  increasingly  specialize   their  production  systems  when  faced  with  economic  factors  such  as  high  start-­‐‑up  costs  and   economies  of  scale.     Risk  aversion  and  barriers  to  investment  can  both  be  lowered  by  improving  farmer  access   to  information  and  knowledge  (related  to  production,  marketing,  etc.).    Often  this   knowledge  already  exists  within  the  farming  communities  in  the  form  of  local  knowledge   about  seasonal  patterns  that  determine  how  and  when  to  plant  and  apply  inputs;  but  some   of  this  knowledge  will  have  to  come  from  outside  the  local  communities,  such  as  through   trainings  on  climate  smart  practices  or  through  other  extension  services  (Challinor  et  al.,   2007).           Moreover,  institutional  capacity  is  needed  to  produce  long  term  strategic  interventions  that   facilitate  networking,  information  sharing,  and  the  creation  of  safety  nets.  The  formation  of     12   agricultural  cooperatives,  for  example,  has  been  successful  in  helping  smallholder  farmers   to  overcome  barriers  associated  with  access  to  inputs,  financial  services  and  market   participation,  through  the  dissemination  of  inputs,  loans,  and  training  opportunities   (Abebaw  and  Haile,  2013).  Community-­‐‑based  natural  resource  management  strategies  can   also  enhance  the  adaptive  capacity  of  farmers  by  creating  social  networks  that  are  essential   for  coping  with  extreme  events  and  by  retaining  the  resilience  of  ecological  systems   (Tompkins  and  Adger,  2004).       Among  crops  that  will  see  a  shift  in  suitability,  coffee  has  received  much  attention,  given  its   importance  in  the  global  market  and  the  large  number  of  smallholder  producers  worldwide   that  depend  on  it  as  a  main  source  of  income.    Coffee  has  long  been  known  as  a  commodity   product  with  a  large  footprint  in  poor  countries  in  the  tropics,  and  as  a  leading  source  of   economic  growth  for  many  of  them.    At  a  global  scale,  it  is  considered  one  of  the  most   traded  commodities  (Ponte,  2002).  As  the  climate  changes,  coffee  regions  will  be   characterized  by  seasons  marked  with  higher  temperatures,  erratic  and  severe  rainy   seasons,  and  longer  periods  of  drought.    All  of  these  changes  will  impact  coffee  production   and  the  farmers  that  depend  on  it,  as  the  coffee  tree  is  vulnerable  to  droughts,  excessive   rain,  and  temperature  extremes  (Conde  et  al.,  2013).     This  study  presents  results  of  an  analysis  of  the  vulnerabilities  of  smallholder  coffee   producers  in  Nicaragua  to  climate  change;  and  I  study  their  capacities  to  build  adaptive   strategies  in  response  to  these  changes.  In  this  study  I  use  descriptive  analyses  and   experimental  economic  methods  –  risk  games  -­‐‑  to  evaluate  the  preferences,  attitudes,  and     13   capacities  of  coffee  producers  in  Nicaragua  to  build  adaptive  capacity  to  climate  change.  I   show  that  food  insecure  households  are  more  risk  averse  than  those  that  are  not  food   insecure  and  that  much  improvement  is  needed  in  the  sector  in  terms  of  equity  and   institutional  development.     The  remainder  of  this  chapter  is  organized  as  follows:  in  Section  2  I  discuss  the  coffee   sector  in  Nicaragua  and  how  it  is  expected  to  change  as  a  result  of  climate  change,  and  I   provide  a  brief  literature  review  of  farmers’  behaviors  under  conditions  of  scarcity.  In   Section  3  I  describe  the  study  site  and  data  collection  methods.  Section  4  focuses  on  the   economic  games  that  are  used  to  assess  attitudes  towards  risk.  Section  5  presents  the   results  and  a  discussion  about  the  findings.  I  conclude  with  a  review  of  policy  implications   and  recommendations  for  future  research.     Background   Coffee  in  Nicaragua   Nicaragua  is  one  of  the  poorest  countries  in  Latin  America  with  more  than  42%  of  the   population  living  under  the  poverty  line  and  most  in  rural  areas  (World  Bank,  2016).     Coffee  in  Nicaragua  is  by  far  the  most  important  crop  in  the  economy,  and  is  the  highest   source  of  agricultural  export  revenues  in  the  country.  There  are  more  than  48,000  coffee   producers  in  Nicaragua,  producing  mostly  Arabica  coffee,  the  majority  of  them  farm  on   plots  of  less  than  3.5  hectares  (Valkila  and  Nygreen,  2010).  The  economic  dependence  of   smallholder  farmers  on  coffee  cannot  be  overstated.         14   Climate  change  is  expected  to  affect  a  large  proportion  of  coffee  growing  areas  in   Nicaragua,  which  will  be  marked  by  greater  seasonal  variability  in  temperatures  and   precipitation.    Areas  of  Nicaragua,  including  Matagalpa,  will  see  up  to  60%  decrease  of  area   suitable  for  coffee  production  (Laderach  et  al.,  2011).     For  vulnerable  households  suffering  from  food  insecurity  and  at  the  mercy  of  market  and   climatic  fluctuations,  finding  a  pathway  to  resilience  and  adaptability  is  urgent  and  the  only   way  forward.    Earlier  research  by  Laderach  et  al.  (2011)  has  identified  the  potential   pathways  for  these  farmers  to  improve  their  income  potential;  they  include:  (a)  the   adoption  of  coffee  production  practices  that  will  improve  their  adaptive  capacity  to  climate   change,  or  (b)  moving  from  coffee  production  altogether  to  a  different  high  value  crop,  such   as  cocoa,  which  can  maintain  or  increase  their  current  income,  or  by  (c)  dropping  out  of   agricultural  production  and  finding  non-­‐‑farm  employment  (perhaps  still  related  to   agriculture).       The  search  for  adaptation  strategies  within  agricultural  systems  has  mostly  focused  on   technical  and  productivity  interventions  –  such  as  the  development  of  forecasting  systems,   and  changes  in  the  location  of  production  (Perfecto  and  Vandermeer,  2015).    Less  common,   however,  is  the  recognition  that  farm  management  practices  can  significantly  contribute  to   improved  adaptation  by  producers  through,  for  example,  the  adoption  of  integrated  pest   management  and  through  the  incorporation  of  shade  into  coffee  farms.  Evidence  has   shown  that  agro-­‐‑ecological  management  practices  can  significantly  improve  resiliency  to   climate  change  (Perfecto  and  Vandermeer,  2015;  Philpott  and  Dietsch,  2003).     15   For  example,  in  a  study  of  880  paired  experimental  plots  in  Nicaragua,  Holt-­‐‑Gimenez   (2002)  found  that  after  Hurricane  Mitch  hit  the  country  in  1998,  plots  that  had  been   following  Sustainable  Land  Management  (SLM)  practices  were  able  to  recover  more   quickly  than  plots  conventionally  managed.    SLM  includes  a  variety  of  soil  conservation,   agro-­‐‑ecological  and  agroforestry  practices  that  generally  avoid  external  inputs.    The  study   finds  that  farms  following  SLM  practices  had  more  topsoil,  higher  field  moisture  measures,   more  vegetation  within  the  system  and  lower  economic  losses  than  the  conventional  plots.     Explaining  Farmer  Behavior  under  Conditions  of  Scarcity     Farmers  may  have  attitudes  and  preferences  that  prevent  them  from  taking  steps  that  will   ensure  their  long  run  viability.  Among  these,  we  know  it  is  known  that  their  attitudes   toward  taking  risks  are  paramount.  Poor  households  are  living  at  the  margin  and  are  often   highly  risk  averse  –  and  for  good  reason.  They  can  be  one  exogenous  shock  (e.g.  climate   shock  or  market  fluctuation)  away  from  losing  most  or  all  of  their  assets  (Tanaka  et  al.,   2010).  With  each  sequential  shock,  compounded  upon  previous  shocks  and  vulnerabilities,   these  household  are  at  risk  of  spiraling  downward  and  falling  into  a  poverty  trap  from   which  they  cannot  easily  emerge  (Carter  and  Barrett,  2006).         The  question  of  uncertainty  and  risk  in  the  adoption  of  new  agricultural  technologies  has   been  explored  extensively  in  the  literature.  Risk  aversion  –  argued  to  be  a  direct  result  of   socio-­‐‑economic  conditions  (Yesuf  and  Bluffstone,  2009)  -­‐‑  has  often  been  considered  a   major  factor  in  reducing  the  rate  of  adoption  (Wossen  et  al.,  2015;  Duflo  et  al.,  2009;  Marra   et  al.,  2003;  Feder  et  al.,  1985).  In  a  study  by  Ayenew  et  al.  (2015)  the  authors  find  that  risk   behavior  is  significantly  and  positively  associated  to  on-­‐‑farm  diversification  in  Ethiopia,  in     16   other  words,  that  farmers  who  are  willing  to  take  risks  are  more  likely  to  also  incorporate   additional  crops  into  their  farms.    In  Peru,  Engle-­‐‑Warnick  et  al.  (2007)  find  that  risk  averse   farmers  are  less  likely  to  adopt  new,  higher  yielding,  potato  varieties.  In  a  large  study   across  multiple  countries  in  Latin  America,  Cardenas  and  Carpenter  (2013)  find  that   women  are  more  risk  averse  than  men  and  the  older  participants  are  more  willing  to  take   risks  than  younger  participants.  Understanding  attitudes  towards  risk,  therefore,  can   provide  important  insights  into  why  and  when  farmers  may  choose  to  adopt  new   technologies  and  production  practices.     Much  of  the  literature  about  risk  aversion  has  been  motivated  by  the  proposition  that   poverty  can  be  explained  by  risk  aversion,  or  that  people  remain  poor  due  to  preferences   and  attitudes  that  are  incompatible  with  growth  (Thaler,  1997),  or  that  people  are  too  risk   averse  to  take  the  opportunities  and  chances  needed  to  increase  their  resources  and   improve  their  wellbeing  (Cardenas  and  Carpenter,  2008).  Yet  in  an  extensive  review  of  the   experimental  literature,  Cardenas  and  Carpenter  (2013)  find  that  the  literature  does  not   support  this  proposition,  in  fact,  they  find  very  little  evidence  that  poor  people  in   developing  countries  are  more  risk  averse  than  others.       On  the  one  hand,  some  studies  have  found  that  there  is  a  relationship  between  income  and   risk  aversion,  mainly,  that  lower  income  households  are  more  risk  averse  than  higher   income  households    (Tanaka,  2010;  Hartog  et  al.,  2002;  Donkers  et  al.,  2001;  Moscardi  and   De  Janvry,  1977).    On  the  other  hand,  another  set  of  similar  studies  have  been  unable  to     17   show  this  relationship,  and  do  not  find  that  poor  households  are  more  risk  averse  than   other  households  (Bosch-­‐‑Domènech  and  Silvestre,  2006;  Henrich  and  McElreath,  2002)     A  related  and  important  area  of  research,  therefore,  also  studies  how  scarcity  affects   behavior  and  attitudes.  In  a  study  of  behavior  under  scarcity  Haushofer  and  Fehr  (2014)   state  that  material  scarcity  detrimentally  changes  people’s  allocation  of  their  attention,   affecting  their  behavior  and  decision-­‐‑making.  Agarwal  (2000)  finds  that  households  facing   the  most  financial  constraints  would  steal  wood  from  a  protected  forest,  and  risked  getting   caught  and  getting  a  fine,  in  order  to  provide  cooking  fuel  for  their  homes,  exhibiting  riskier   behavior.  While  Levy  et  al.  (2013)  find  that  a  person  who  on  average  tends  to  be  risk   tolerant  (willing  to  take  risks)  when  he/she  is  not  deprived  of  food,  will  shift  towards  high   risk  aversion,  when  they  experience  hunger  and  deprivation.         This  study  contributes  to  this  body  of  research  by  examining  the  risk  perceptions  of  coffee   farmers  in  Nicaragua  who  are  suffering  from  severe  food  insecurity.    I  use  experimental   games  to  measure  risk  aversion,  and  use  the  results  of  these  experiments,  with  a  series  of   descriptive  analyses  to  analyze  the  capacities  and  incentives  of  coffee  producers  to  seek   adaptive  strategies  to  address  climate  change.       Description  of  the  Study  Site  and  Sample   This  study  was  conducted  in  the  department  of  Matagalpa  in  northern  Nicaragua  between   June  and  July  2015.  The  department  of  Matagalpa  is  divided  into  13  municipalities  that   contain  one  or  more  communities,  the  smallest  administrative  unit.    A  sample  of  236     18   households  was  selected  using  a  two  stage  stratified  random  selection  strategy.    First,   communities  in  Matagalpa  were  stratified  by  level  of  vulnerability  to  climate  change.     Vulnerability  was  determined  by  the  average  elevation  in  which  the  community  was   located.  Higher  elevation  (above  1000  meters  above  sea  level)  had  a  lower  vulnerability   index  than  those  at  lower  elevations,  as  households  in  higher  elevations  will  be  less   affected  by  increased  temperatures.  In  this  first  stage,  a  random  sample  of  communities   was  selected  based  on  their  vulnerability  index.    In  the  second  stage,  households  in  each  of   the  selected  communities  were  drawn  from  a  census  listing  of  coffee  producers  in  the   region.    The  households  surveyed  in  this  study  form  part  of  an  ongoing  project  on  climate   change  and  food  security  conducted  by  the  International  Center  for  Tropical  Agriculture   (CIAT).  From  the  sample  of  236  households,  88  households  were  randomly  selected  to   participate  in  the  risk  experiment.2    Table  1  compares  the  two  groups  (participants  and   non-­‐‑participants)  across  a  set  of  key  demographic  and  farm  characteristics.  The  data  show   that  there  are  no  statistically  significant  difference  between  the  two  groups,  confirming   that  the  subsample  introduces  no  measurable  bias  to  the  risk  experiment  analysis.         Table  1.  Characteristics  of  Game  Participants  and  Non-­‐‑Participants    Variable   HH  Size   Education     Table  1(Cont’d)     Age   Total  Income   Non-­‐‑Participant   5.34   3.49   Participant   5.59   4.22   p-­‐‑value   0.39   0.14   45.41   157,879   48.11   238,415   0.19   0.19   2  Due  to  budget  constrains  it  was  not  possible  to  conduct  the  experiments  with  236   households.       19   Table  1  (cont’d)   Area     Coffee  Experience   Male   8.86   16.12   66.2%   10.95   16.93   64.7%   0.19   0.63   0.82     After  eliminating  households  for  which  data  were  missing  or  incomplete,  the  data  set  for   this  analysis  was  reduced  to  221  households  for  the  surveys  overall,  and  82  for  the  risk   experiments.  Nine  out  of  13  municipalities  are  represented  in  the  data;  municipalities  not   sampled  were  in  regions  of  Matagalpa  where  coffee  is  not  grown.  A  map  of  the  study  area  is   presented  in  Figure  2.   Figure  2.  Map  of  Study  Area   Matagalpa Lake Nicaragua   Producer  information  was  collected  on,  among  other  things,  demographic  and  socio-­‐‑ economic  characteristics,  agricultural  production,  and  experiences  with  economic  and     20   climatic  shocks.    Table  1  summarizes  some  of  the  characteristics  of  the  producers  in  the   sample.    The  average  age  of  the  respondents  is  46  years  with  an  average  of  3.8  years  of   formal  education  completed.    The  mean  area  under  production  is  4.85  hectares  and  the   mean  annual  coffee  production  is  9.7  quintales  (312.8  kg)  of  wet  parchment3  per  hectare.     Forty-­‐‑six  percent  of  the  sample  are  members  of  a  coffee  cooperative  and  65%  are  male-­‐‑ headed  households.       Table  2.  Sample  Characteristics   Variable   Means   (%  where   noted)     Male   65.4%     Age     46.4   (15.28)   Household  Size   5.4   (2.12)   Years  of  Education   3.8   (3.48)   Years  in  Coffee   16.5   (12.48)   Total  Coffee  Income  (USD)  per  ha   821.8   (875.11)   Total  income  (USD)   5,648.3   (7,377.11)   Total  area  under  coffee  production  (ha)   4.8   (5.38)   1 Total  Coffee  Production  (quintales )  per  ha     9.7   (120.59)   Cooperative  membership   45.5%     11  Quintal=  46kg;  Standard  deviations  are  presented  in  parentheses     In  addition  to  these  primary  data,  I  use  data  for  two  variables  provided  by  the  International   Center  for  Tropical  Agriculture  (CIAT):  (1)  an  indicator  of  household  vulnerability  to   Wet  parchment  is  a  state  of  the  coffee  in  its  transformation  from  cherry  to  bean.    After   harvesting,  the  freshly  harvested  cherries  are  passed  through  a  pulping  machine  to   separate  the  skin  and  pulp  from  the  bean.    After  depulping,  the  bean  is  transported  to water  filled  tanks  for  fermentation  where  they  remain  from  12  to  48  hours.  When   fermentation  is  complete,  the  beans  are  rinsed  and  are  ready  for  drying.  Coffee  at  this  stage   of  the  wet  milling  process  is  known  as  wet  parchment.   3     21   climate  change  which  takes  into  consideration  predictions  of  temperature  changes  in  2020   and  2050  in  combination  with  the  elevation  at  which  the  household  is  located.;  (2)  an   indicator  of  household  food  insecurity  that  is  based  on  whether  households  have  had  to   compromise  the  quality  and  quantity  of  the  food  consumed  by  the  adults  and  the  children   in  the  household.         Description  of  the  Framed  Field  Experiments   Economic  experiments  were  used  to  measure  attitudes  towards  risk  by  observing  the   behavior  of  farmers  in  a  set  of  one-­‐‑period  lottery  games  with  real  pay-­‐‑offs.  The   experiments  were  designed  with  gains-­‐‑only  payoffs;  farmers  playing  these  experiments  are   very  poor  and  should  not  be  to  put  in  a  situation  in  which  the  worst  possible  loss  exceeds   their  current  cash  holdings.         Following  Binswager’s  (1980)  design,  I  conducted  one  lottery  choice  experiment  intended   to  assess  participants’  attitudes  towards  risk.  In  the  game,  the  participant  was  shown  a   lottery  choice  on  a  laminated  card  with  six  different  possible  binary  payoffs  and  asked  to   pick  one  to  play.  To  avoid  problems  that  might  arise  if  participants  had  a  hard  time   understanding  probabilistic  outcomes,  a  simple  50-­‐‑50  chance  scenario  was  presented  to   the  producer.     The  risk  experiment  was  framed  as  a  situation  in  which  the  farmer  makes  a  decision  about   his/her  coffee  production  given  uncertain  future  climate.  Interviewers  told  farmers  that   due  to  uncertain  weather,  the  yield  from  the  upcoming  coffee  season  would  be  affected  in     22   such  a  way  that  the  likelihood  of  crop  failure  and  crop  success  were  the  same  (equal   probability).  Farmers  had  the  choice  to  follow  one  of  six  paths  of  action,  given  this   uncertainty.     Table  2  describes  the  parameters  of  the  experiment  and  method  employed.  Holt  and  Laurie   (2002)  suggest  that  a  good  starting  point  to  determine  the  payoff  levels  is  to  use  the  daily   pay  rate  of  a  farmer  in  the  region  where  the  study  will  be  conducted.    At  the  time  of  the   study,  a  farmer  in  the  regions  earned  an  average  of  C$100  a  day  (100  Nicaraguan  CĂłrdobas,   or  approximately  3.77USD).    Once  the  starting  point  was  determined,  the  remaining  payoff   options  were  determined  following  recommendations  from  Yesuf  and  Bluffstone  (2009).     Table  3.  Risk  Experiment  Payoffs  and  Risk  Coefficient   Choice   1   2   3   4   5   Payoffs   Bad   Harvest   (p=0.5)   100   80   60   40   20   Good  Harvest   (p=0.5)   100   150   190   240   300   Expected   payoff   Risk  Aversion   Class   Coefficient  of   Relative  Risk   Aversion   100   115   125   140   160   Extreme   r  >  2.96   Severe   2.96  ≥  r  >  0.78   Intermediate   0.78  ≥  r  >  0.62   Moderate   0.62  ≥  r  >  0.49   Slight   0.49  ≥  r  >  0.23   Neutral  to   6   0   350   175   0.23  ≥  r   Preferring   *1USD  =  26.5  CĂłrdobas  in  July  2015    when  the  experiments  were  conducted     The  constant  relative  risk  aversion  utility  function,  𝑈 𝑥 = $ (&'() *+, ,  is  used  to  measure  the   risk  attitudes  at  which  people  should  be  indifferent  between  any  two  neighboring  lotteries.     For  example,  the  relative  risk  aversion  r  that  would  make  one  indifferent  between  the  first     23   and  second  lotteries  (or  in  other  words,  the  utility  of  any  lottery  does  not  exceed  the  utility   of  getting  the  average  monetary  payoff  of  the  lottery  with  certainty)  is  calculated  as   follows:         𝑈 100 = 𝑈 80 + 𝑈(150)     100(*+,) 1 80 *+, 1 150 *+, = ∗ +   ∗ = 0, 𝑟 = 2.96   1−𝑟 2 1−𝑟 2 1−𝑟   (1)        Experiment  Mechanics  in  the  Field   The  experiments  were  conducted  at  the  farmer’s  house,  preceding  the  survey  and  they  took   close  to  thirty  minutes  to  complete.  The  information  from  the  surveys  and  experiments   were  registered  in  tablets  by  the  enumerator.       I  started  the  experiment  by  describing  the  task  as  a  situation  in  which  the  farmer  had  to   make  a  decision  regarding  his  coffee  production  that  would  involve  some  risk  of  crop   success  or  crop  failure.  All  possible  outcomes  were  described  before  the  farmer  had  to   make  a  decision.    Farmers  were  shown  a  laminated  card  (Figure  3)  containing  the  risk   lottery  that  had  6  possible  alternatives.  Farmers  had  to  choose  one  of  the  6  different   alternatives,  which  in  turn  had  two  potential  outcomes  (depending  on  the  crop  success  or   crop  failure).  The  alternatives  were:  with  alternative  (1)  the  farmers  simply  received   C$100,  in  other  words,  the  payoff  was  the  same  regardless  of  the  outcome  of  the  game;     24   with  alternative  (2)  the  farmer  could  receive  either  C$80  or  C$150,  in  other  words,  by  not   choosing  (1)  the  individual  stood  to  lose  C$20  but  could  also  gain  C$50.  The  payoffs  for   alternatives  3,  4,  and  5,  were  60/190,  40/250,  and  20/300,  respectively.  Finally,  by   choosing  (6)  an  individual  could  either  receive  no  money  at  all  or  get  C$350.    Each  choice  is   associated  with  a  classification  of  a  risk  class,  from  risk  averse  in  alternative  (1)  to  risk   neutral-­‐‑to-­‐‑preferring  in  alternative  (6)  as  shown  in  Table  2.  The  payoffs  for  each  lottery   choice  were  chosen  so  that  the  expected  payoff  and  the  variance  of  each  lottery  increases  in   clockwise  order.     In  addition,  the  enumerator  had  a  bag  with  equal  number  of  white  and  orange  balls,  and   once  the  farmer  decided  on  the  lottery  that  he/she  wanted  to  play,  he/she  randomly  drew   a  ball  from  the  bag  to  determine  the  payoff  for  the  activity.  If  the  farmer  withdrew  an   orange  ball  they  received  the  low  payoff,  if  he/she  withdrew  a  white  ball  they  received  the   high  payoff.         25   Figure  3.  Risk  Experiment   100 100 100 100 100 0 0 100 80 350 150 80 350 150 0 350 80 150 20 300 60 190 20 300 20 300 40 240 40 240 40 60 190 60 190 240         Payoffs  from  the  experiment  were  paid  in  cash.  In  average  I  paid  farmers  150.25   Nicaraguan  CĂłrdobas  (or  5.77USD),  an  amount  consisting  of  the  average  wages  for  1.5   days.     Results  and  Discussion   In  addition  to  results  from  the  experiments,  in  this  section  I  present  a  series  of  descriptive   analyses  that  help  us  understand  Nicaraguan  coffee  producers’  perceptions  about  climate   change  and  to  shed  some  light  on  the  capacities  that  they  have  to  mitigate  its  impacts.         26   Descriptive  Analyses   I  begin  this  section  by  examining  how  all  farmers  in  the  sample  have  perceived  changes  in   the  Matagalpa  climate  over  the  past  ten  years.  Overall,  most  farmers  have  perceived  major   changes  in  regional  climate  patterns;  over  90%  of  households  stated  that  they  have  seen   changes  in  overall  climate,  and  in  temperatures  specifically,  over  the  past  ten  years.  A   majority  of  famers  have  also  perceived  temporal  changes  in  the  rainy  season  (74%)  as  well   as  changes  in  the  frequency  of  rainfall  (58%).    Furthermore,  65%  of  households  believe   that  the  frequency  of  extreme  events  has  changed  over  the  past  10  years  (Figure  4).  The   direction  of  these  changes  are  estimated  based  on  field  observation  during  field  visits  and   data  collection,  many  farmers  talked  about  recent  droughts  that  had  destroyed  their  maize   and  bean  plantations  (changes  in  the  frequency  of  rainfall  -­‐‑  fewer),  and  of  early  rains  that   caused  their  coffee  trees  to  flower  early  (temporal  changes  in  the  rainy  season).  Farmers,   due  to  the  nature  of  their  work,  have  their  finger  on  the  pulse  of  the  weather  and  the  land   they  work,  and  although  they  may  not  be  aided  by  computerized  tools  and  models  to   measure  or  estimate  climatic  events,  their  experience  has  taught  them  to  recognize   patterns  and  changes  that  affect  the  production  of  their  crops.  As  seen  with  the  households   from  this  study,  the  vast  majority  of  them  have  concluded  that  there  have  been  changes  in   the  climate,  both  in  frequency  and  in  the  timing  of  those  events.       27   Figure  4.  Perceptions  About  Climate  Change   Percentage  of  HH 100% 96% 94% 74% 80% 65% 60% 58% 40% 20% 0% Climate  has   Temperatures   Rainy  Season   Frequency  of   Frequency  of   Changed have  Changed has  Changed Extreme   Rain  has   Events  have   Changed Changed Perceived  Changes     Despite  the  high  proportion  of  farmers  reporting  changes  in  weather  patterns,  a  smaller   proportion  of  them  reported  experiencing  losses  due  to  these  changes  over  the  past  5  years   (Figure  5).  Of  the  surveyed  households,  75%,  43%  and  17%  reported  experiencing  pests,   droughts,  and  floods  (respectively)  in  their  coffee  fields.    The  most  common  overall   response  to  these  shocks  is  for  producers  to  increase  the  number  of  household  labor  hours   and  to  spend  their  savings  to  cope  with  losses.    In  addition,  40%  of  farmers  who   experienced  pests  switched  to  a  different  crop  or  to  a  new  coffee  variety  and  29%  of  them   changed  their  production  practices  to  respond  to  the  pest  (e.g.,  applying  more  pesticides,   pruning,  or  stumping  coffee  trees).  Fifteen  percent  of  households  experiencing  droughts   had  to  decrease  their  food  consumption.  It  is  likely  that  these  are  households  that  grow   subsistence  crops,  such  as  beans  and  maize  in  addition  to  coffee.  Overall,  farmers  respond   to  pests  at  a  higher  rate  than  to  droughts  and  floods,  most  likely  due  to  the  institutional   response  and  support  in  the  area  to  the  recent  leaf  rust  epidemic.           28   Figure  5.  Responses  to  Climate  Shocks   Percent  of  HHs  Responding  to  Shocks 50% 40% 30% 20% 10% 0% Worked   More  Hours Spent   Savings Changed   Crops Pests  (75%) Changed   Practices Drought  (43%) Fell  into   Debt Searched   Consumed   for  Work Less  Food Flood  (17%)     Cooperatives,  through  the  support  that  they  can  provide  in  the  provision  of  inputs,   trainings,  and  other  extension  services,  can  play  an  important  role  in  helping  farmers  to   transition  towards  more  resilient  livelihoods.  The  sample  in  this  study  is  evenly  split   between  cooperative  members  and  non-­‐‑members,  with  45.5%  of  farmers  belonging  to  a   coffee  cooperative.    Of  these  cooperative  members,  however,  60%  have  expressed  being   dissatisfied  with  their  cooperatives,  and  a  paltry  6.4%  of  them  stated  that  they  were  very   satisfied  with  their  cooperatives  (Figure  6).  Issues  of  trust,  transparency,  lack  of  support,   and  corruption  have  all  come  up  in  the  literature  on  cooperatives  in  Nicaragua  (Bacon,   2010),  and  these  results  confirm  that  to  some  extent  these  are  lingering  issues  for  coffee   farmers  in  the  country.         29   Figure  6.  Member  Satisfaction  with  Cooperative   70 Percentage  of  Cooperative  Member 60 60 50 40 30 20 20 10 13.64 6.36 0 Very  Satisfied Somewhat  Satisfied Not  Satisfied Very  Unsatisfied Satisfaction  with  Cooperative     Moving  beyond  farmer  perceptions  and  preferences,  I  focus  on  an  indicator  of  climate   change  vulnerability  (developed  by  CIAT)  that  allows  us  to  examine  the  degree  to  which   respondents  in  this  sample  are  currently  living  in  areas  that  are  at  risk  of  suffering  losses   due  to  climate  change  impacts.  I  find  that  by  2020,  16%  of  households  located  in  Matagalpa   will  not  see  any  significant  impacts  due  to  climate  change,  while  47%  of  them  will  see   medium  impact,  and  37%  will  see  high  impacts  induced  by  climate  change.    The  situation   becomes  even  more  dire  in  2050,  by  which  time  everyone  in  this  sample  will  be  located  in   regions  estimated  to  be  impacted  by  climate  change,  with  the  majority  of  them  (62%)   experiencing  high  impacts  (Figure  7).           30   Figure  7.  Percentage  of  Household  Vulnerable  to  Climate  Change  Shocks   Vulnerability  to   Climate  Change  in   2020 37% 16% Vulnerability  to   Climate  Change  in   2050 No  Impact 38% Medium   Impact   47% 62% Medium   Impact   High  Impact High  Impact In  addition  to  vulnerability  to  climate  change,  data  from  this  study  indicates  that  88.6%  of   households  in  the  sample  are  severely  food  insecure,  and  have  had  to  lower  the  amount  of   food  consumed  and  also  compromise  the  quality  of  the  food  they  consume  at  home.     Men  and  women  respond  to  shocks  differently,  and  their  vulnerability  to  these  shocks  is   also  different.    Women,  in  addition  to  restrictions  that  they  face  due  to  cultural  norms  (such   as  not  being  able  to  own  land,  or  responsibilities  as  homemakers  and  primary  caregivers  of   children  and  the  elderly),  often  have  lower  access  to  extension  services  and  fertile  land   (Ruben  and  Zuniga,  2011;  Bacon,  2010).    When  I  standardized  yield  and  income  in  the   sample  by  the  amount  of  land  operated  by  the  household,  I  find  that  women  heads  of   households  hold  significantly  less  land  (1.66ha  vs.  2.77ha),  which  produces  less  coffee   (10.02  quintales  vs.  13.03  quintales),  in  turn  generating  less  income  (568.9USD  vs.   952.3USD).  Additionally,  women  are  significantly  more  food  insecure  than  men.  Of  the   survey  respondents,  96%  of  female  headed  households  suffered  from  food  insecurity   versus  85%  of  male  headed  households  (Table  3).         31     Table  4.  Gender  Differences       Male   Average  Area  Under  Coffee  Production  (ha)   2.77   1.66   0.002   Average  Yield  per  Hectare  of  Coffee  (kg)   599.38   460.92   0.086   Average  Income  Per  Hectare  of  Coffee   952.30   568.90   0.001   85%   96%   0.019   Percentage  of  Farmers  Suffering  from  Food  Insecurity   Female   p-­‐‑value     Experiment  Results   I  use  an  ordered  probit  model  to  examine  the  determinants  of  farmer  risk  preference.  The   econometric  specification  for  this  model  is  presented  below:       𝑅𝑖𝑠𝑘? =   𝛽* 𝐻𝐻𝑆𝑖𝑧𝑒? + 𝛽E 𝑆𝑒𝑥? + 𝛽F 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛? + 𝛽O 𝐴𝑔𝑒? + 𝛽R Income? +   𝛽Y 𝐼𝑛𝑐𝑜𝑚𝑒?E +   𝛽\ 𝐴𝑟𝑒𝑎? + 𝛽] 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒? + 𝛽_ 𝐹𝑜𝑜𝑑  𝐼𝑛𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦1? (2)   + 𝛽*b 𝐹𝑜𝑜𝑑  𝐼𝑛𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦2? + 𝜀?       𝑅𝑖𝑠𝑘?  represents  individual  i’s  choice  from  1  to  6  in  the  risk  activity,  and  where  a  higher   value  represents  higher  riskiness.    𝛽?  represents  the  estimated  coefficient  for  each   regressor  and  𝜀?  is  stochastic  component  of  this  model.    The  model  includes  household   demographics,  farm  characteristics,  and  a  dummy  variable  indicating  level  of  food   insecurity  experienced  by  households.   I  begin  the  analysis  of  risk  preferences  by  looking  at  the  distribution  of  risk  choices  among   the  different  variables  in  the  model  (Table  4).    On  average,  smaller  households,  older     32   people,  and  farmers  with  less  land  under  coffee  production  are  more  likely  to  choose  the   less  risky  option,  while  more  educated  households  and  men  tend  to  choose  the  riskier   options.  There  is  no  clear  trend  of  risk  choices  for  different  income  levels,  the  average   income  for  the  less  risky  choice  is  the  highest  in  the  group,  yet  it  decreases  after  the  first   option  and  then  goes  back  up  for  the  riskier  choice.     Table  5.  Distribution  of  Risk  Choices       HH  Size   Male   Education   Age   Total  Income  (USD)   Total  Area  (ha)   Coffee  Experience   Low  Risk←-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑-­‐‑→High  Risk   Choice     Choice   Choice   Choice   Choice      Choice     1   2   3   4   5   6   6.2   5.1   6.2   5.4   4.4   5.0   57%   75%   68%   56%   63%   80%   3.3   4.2   3.6   4.5   6.4   5.0   51.8   43.9   47.5   47.9   47.4   47.6   18,807   5,721   3,162   6,896   6,925   10,371   11.4   4.6   4.6   9.1   6.4   7.6   13.5   14.0   20.3   17.2   18.6   19.3       When  the  lotteries  are  numbered  in  increasing  riskiness  from  one  to  six,  clockwise,  the   average  choice  in  the  risk  game  is  3.1  which  puts  the  average  close  to  the  60|90  gamble.       A  quick  look  at  the  distribution  of  choices  and  food  insecurity  helps  us  understand  how   these  households  made  their  choice  selections  (Figure  8).  Households  with  no  food   insecurity  tend  to  make  riskier  choices,  while  households  suffering  from  severe  food   insecurity  consistently  select  the  less  risky  options.  Not  a  single  household  in  the  sample   that  belonged  to  the  highest  food  insecurity  category  chose  option  6  in  the  game.  Table  5   presents  the  results  from  the  econometric  model.     33     Figure  8.  Game  Choices  by  Households  with  Food  Insecurity   Percentage  of  Houeholds 40% 30% 20% 10% 0% Choice  1 No  food  insecurity  (n=16) Choice  2 Choice  3 Choice  4 Moderate  Food  Insecurity  (n=46) Choice  5 Choice  6 Severe  Food  Insecurity  (n=26)     Table  6.  Results  from  Ordered  Probit  Model  for  Risk  Aversion       Coefficient   HH  Size   Male   Education   Age   Income   Income2   Total  Area   Coffee  Experience   Moderate  Food  Insecurity   Severe  Food  Insecurity   Log  Likelihood   Chi-­‐‑square   n   -­‐‑0.258   -­‐‑0.069   0.027   -­‐‑0.017   0.005   -­‐‑4.28e-­‐‑6   -­‐‑0.027   0.036   -­‐‑2.436   -­‐‑2.237   -­‐‑127.56   28.50   82       ***         *   **     *   ***   ***         Std.  Error   0.106   0.444   0.064   0.017   0.003   1.92e-­‐‑6   0.020   0.022   0.765   0.838             Note:  ***,  **,  and  *  represent  significance  at  the  0.01,  0.05,  and  0.1  confidence     level  respectively         34   From  the  probit  model  a  number  of  important  findings  can  be  seen:    Men,  higher  educated   respondents,  and  younger  respondents  tend  to  have  a  higher  likelihood  of  selecting  the   riskier  options.    Households  with  more  land,  however,  have  a  higher  likelihood  of  choosing   the  less  risky  option,  although  the  differences  are  not  statistically  significant.     Larger  households  with  more  members  are  significantly  more  likely  to  “play  it  safe”  in  their   choices.  With  each  additional  household  member,  the  likelihood  of  selecting  the  riskier   C$0|C$350  choice  decreases  by  14.7%.    Larger  households  face  constraints  that  might   explain  this  choice,  for  example,  larger  households  may  have  a  higher  proportion  of   dependents  (children  and  elderly)  and  are  not,  therefore,  willing  to  take  the  risks  that  they   would  take  if  they  did  not  have  any  dependents.  Any  risks  that  they  take  could  affect  a   higher  proportion  of  vulnerable  household  members,  as  explained  in  findings  from  a  study   of  risk  attitudes  and  preferences  of  agricultural  households  in  Ethiopia  (Yesuf  and   Bluffstone,  2009),  where  large  households  with  a  higher  proportion  of  elderly  and  young   children  showed  higher  risk  aversion  than  other  households.     As  household  income  increases,  so  does  the  likelihood  of  the  selection  of  riskier  options  in   the  game.    The  significance  of  the  square  term  in  the  model  points  toward  a  curvilinear   relationship  between  risk  and  income.  In  other  words,  although  there  is  a  higher  likelihood   of  selecting  a  riskier  option  for  higher  income  households,  this  positive  trend  occurs  at  a   decreasing  rate.       35   Finally,  severely  food  insecure  and  moderately  food  insecure  households  are  158%   and127%  less  likely  to  select  a  risky  choice,  respectively,  than  households  that  do  not   suffer  from  food  insecurity.  This  result  can  be  interpreted  in  two  ways:  on  the  one  hand   these  results  are  encouraging  because  it  means  that  households  that  are  already  vulnerable   are  less  likely  to  risk  exacerbating  their  vulnerabilities  by  engaging  in  risky  behavior.  On   the  other  hand,  this  risk  aversion  could  mean  that  vulnerable  households  will  be  less  likely   to  engage  in  activities  that  they  may  deem  risky  but  that  could  potentially  have  great   benefits  to  their  wellbeing,  for  example,  the  adoption  of  new  technologies  or  practices  that   could  help  them  become  more  resilient  to  climate  and  market  shocks.     Given  that  there  is  still  no  consensus  about  the  relationship  between  risk  aversion  and   poverty  (Cardenas  and  Carpenter,  2008),  the  results  from  this  study  can  contribute  to  this   body  of  research  in  the  literature.  In  agreement  with  several  previous  studies  (Tanaka,   2010;  Hartog  et  al.,  2002;  Donkers  et  al.,  2001;  Moscardi  and  De  Janvry,  1977),  the  present   research  shows  that  poor  households  are  more  risk  averse  than  non-­‐‑poor.    An  important   contribution  from  this  study  is  that  even  when  income  is  controlled  for,  the  degree  of   household  food  security  emerges  as  a  significant  determinant  of  risk  aversion,  in  other   words,  the  household’s  capacity  to  provide  nutritious  food  without  uncertainty  about  food   access  and  availability  in  the  future  helps  to  determine  whether  the  household  may  be   more  or  less  risk  averse.         Not  many  studies  that  measure  the  effect  of  food  insecurity  on  risk  attitudes  have  been   found,  but  these  results  are  consistent  with  similar  studies  that  have  accounted  for  food     36   insecurity  and  hunger  and  their  relationship  with  risk  (Levy  et  al.,  2013;  Onyemauwa  et  al.,   2013)     Conclusion   How  will  coffee  farmers  in  Nicaragua  face  the  growing  threat  of  climate  change?  Will  they   be  prepared?  Will  they  know  what  to  expect?    In  this  paper  I  examined  the  perceptions,   capacities,  and  attitudes  (including  risk  aversion)  of  coffee  producers  towards  climate   change  and  the  mitigation  of  its  impacts.         The  situation  in  which  coffee  producers  in  Nicaragua  find  themselves  is  dire.    There  is   already  a  high  level  of  food  insecurity;  compounding  this,  they  live  in  a  region  of  the   country  that  is  experiencing  climate  change  and  will  see  medium  to  severe  impacts  from   weather  and  climatic  events  in  the  coming  decades.    The  suitability  of  their  coffee  farms  to   the  changing  environment  will  continue  to  decline,  threatening  their  income  potential  and   food  security  even  further.       Farmers  are  already  experiencing  droughts,  floods,  and  pests  and  some  have  had  to   respond  by  increasing  the  number  of  work  hours  that  they  dedicate  to  their  fields.    This   additional  physical  labor  (mostly)  can  result  in  potential  health  loss  due  to  accidents,   longer  exposure  time  to  chemical  inputs,  and  lack  of  proper  nutrition  to  support  their   increased  physical  exertion.  Adding  to  this  vulnerability,  some  of  these  farmers  have  also   responded  by  decreasing  their  food  consumption  as  a  coping  mechanism,  a  response  that   further  jeopardizes  their  health  and  productive  capacity.       37     This  danger  is  especially  acute  for  women.    I  find  that  women  are  significantly  more  food   insecure  than  men,  they  own  less  land,  produce  less,  and  have  lower  income  than  their   male  counterparts.    Policies  designed  to  improve  the  adaptive  capacity  of  farmers  in  the   region  must  account  for  these  differences  by  introducing  interventions  that  directly   address  the  barriers  (cultural  and  economic)  that  women  face  (e.g.,  by  developing   interventions  that  depend  on  the  participation  of  women).    Further  research  is  needed  to   examine  specifically  how  gender  differences  affect  adaptive  capacity,  and  to  guide  the   development  of  strategies  that  will  be  responsive  to  these  differences.     My  literature  review  suggests  that  institutions  play  an  important  role  in  providing  services   to  smallholder  producers  through  access  to  training  opportunities  and  financial  services.   Yet,  in  this  region,  farmers  have  expressed  high  rates  of  dissatisfaction  with  their   cooperatives  and  the  services  they  provide.  There  is  need  for  more  research  -­‐‑  and  in   particular  participatory  research  –  that  systematically  takes  farmers  reported  experiences   and  attitudes  into  account  in  promoting  equitable  and  efficient  adaptive  strategies.     Despite  studies  that  have  found  that  poorer  agrarian  households  tend  to  be  more  risk   averse  than  higher  income  households  (Tanaka,  2010;  Hartog  et  al.,  2002;  Donkers  et  al.,   2001;  Moscardi  and  De  Janvry,  1977),  many  other  studies  have  found  the  opposite  (Bosch-­‐‑ Domènech  and  Silvestre,  2006;  Henrich  and  McElreath,  2002).    The  literature  on  this  issue   is  inconclusive.  Furthermore,  in  a  review  of  the  literature,  I  find  little  research  that  explores   risk  aversion  among  households  that  are  already  highly  vulnerable,  especially  households     38   who  are  suffering  from  food  insecurity.  These  results  provide  an  important  contribution  to   this  debate.  While  holding  income  level  constant,  I  find  that  households  that  are  severely  and   moderately  food  insecure  are  significantly  less  likely  to  make  riskier  choices  than  are  those     not  suffering  from  food  insecurity.     The  implications  of  these  results  should  not  be  taken  lightly,  climate  shocks  can  destroy   crops,  livestock,  and  other  household  assets;  for  households  in  chronic  poverty,   conventional  risk  management  strategies  simply  may  not  be  enough  (Barrett  et  al.,  2007).     The  challenge  lies  in  the  development  and  provision  of  services,  institutions  and   interventions  that  enable  the  accumulation  of  productive  assets  and  the  adoption  of   improved  agricultural  production  technologies  that  will  be  instrumental  to  building  the   capacity  of  households  in  their  struggle  to  adapt  to  climate  change.   Interventions  that  intend  to  reduce  vulnerability  to  shocks  should  consider  how   households  that  are  severely  food  insecure,  perhaps  already  trapped  in  poverty,  will   respond  to  possible  adaptation  pathways  and  the  inherent  risks  associated  with  them.    An   important  recommendation  for  programs  focused  on  helping  the  most  vulnerable   populations  to  adopt  technologies  and  practices  that  can  help  with  climate  change  emerges   from  this  study.  These  programs  must  first  address  issues  of  food  insecurity  among  poor   households;  by  doing  so,  there  is  a  non-­‐‑negative  likelihood  that  the  targeted  farmers  will  be   more  open  to  taking  the  risks  associated  with  the  adoption  of  new  practices  and   technologies.         39   While  the  results  reported  from  this  analysis  help  us  to  assess  how  risk  and  food  security   combine  to  affect  potential  farmer  decisions  concerning  the  adoption  of  climate  change   friendly  practices,  I  must  acknowledge  that  the  research  is  not  without  limitations.  First,   the  number  of  participants  in  the  experimental  games  is  small,  information  from  only  82   farmers  is  used  in  the  econometric  analysis.  Future  research  on  a  larger  sample  of   participants  will  help  to  validate  the  results  of  this  study.    Second,  food  security  data  on  the   study  households  was  collected  a  year  earlier  than  other  data  presented  in  this  analysis.   This  lag  loses  any  changes  in  the  food-­‐‑security  related  conditions  surrounding  these   households.    In  other  words,  households  identified  as  food  insecure  in  this  study,  may  not   have  been  food  insecure  at  the  time  of  the  risk  activity,  thus  potentially  diluting  the   strength  of  the  coefficients  reported  and  the  relationships  they  represent.  Finally,  although   these  experiments  attempt  to  emulate  real  life  behavior  and  measure  how  farmers  respond   to  risks,  farmers  may  not  feel  the  same  way  about  taking  a  relatively  small  risk  presented   to  them  by  the  enumerators  of  the  study  as  they  would  about  a  decision  that  could  lock   them  into  poverty  in  real  life,  or  help  them  rise  from  poverty.    To  further  explore  the   relationships  revealed  in  this  study  between  risk,  food  security  and  climate  change   adaptation  I  see  the  need  for  a  more  qualitative  approach,  one  that  will  provide  deeper   insight  into  how  coffee  producers  evaluate  the  potential  risks  and  rewards  of  adopting   alternative  practices  and  how,  in  turn,  cooperatives  and  other  institutions  can  work  more   effectively  to  support  them  in  their  decisions.         40       REFERENCES   41   REFERENCES           Abebaw,  Degnet,  and  Mekbib  G.  Haile.  "The  impact  of  cooperatives  on  agricultural   technology  adoption:  Empirical  evidence  from  Ethiopia."  Food  policy  38  (2013):  82-­‐‑ 91.     Agrawal,  Arun.  "Local  institutions  and  adaptation  to  climate  change."  Social  dimensions  of   climate  change:  Equity  and  vulnerability  in  a  warming  world(2010):  173-­‐‑197.     Agrawal,  Arun.  "Common  resources  and  institutional  sustainability."  The  drama  of  the   commons  (2002):  41-­‐‑85.     Agarwal,  Bina.  "Conceptualising  environmental  collective  action:  why  gender   matters."  Cambridge  journal  of  economics  24.3  (2000):  283-­‐‑310.     Araral,  Eduardo.  "What  explains  collective  action  in  the  commons?  Theory  and  evidence   from  the  Philippines."  World  development  37.3  (2009):  687-­‐‑697.     Ayenew,  Habtamu  Yesigat,  Johannes  Sauer,  and  Getachew  Abate-­‐‑Kassa.  "On  Smallholder   Farmers'  Exposure  to  Risk  and  Adaptation  Mechanisms:  Panel  Data  Evidence  from   Ethiopia."  89th  Annual  Conference,  April  13-­‐‑15,  2015,  Warwick  University,  Coventry,   UK.  No.  204223.  Agricultural  Economics  Society,  2015.     Bacon,  Christopher  M.  "A  spot  of  coffee  in  crisis  Nicaraguan  smallholder  cooperatives,  fair   trade  networks,  and  gendered  empowerment."  Latin  American  Perspectives  37.2   (2010):  50-­‐‑71.     Bardhan,  Pranab.  "Analytics  of  the  institutions  of  informal  cooperation  in  rural   development."  World  Development  21.4  (1993):  633-­‐‑639.     Barrett,  Christopher  B.,  et  al.  "Poverty  traps  and  climate  risk:  limitations  and  opportunities   of  index-­‐‑based  risk  financing."  (2007).     Barrett,  Christopher  B.,  and  John  G.  McPeak.  "Poverty  traps  and  safety  nets."  Poverty,   inequality  and  development.  Springer  US,  2006.  131-­‐‑154.     Barrett,  Christopher  B.,  Barry  J.  Barnett,  Michael  R.  Carter,  Sommarat  Chantarat,  James  W.   Hansen,  Andrew  G.  Mude,  Daniel  Osgood,  Jerry  R.  Skees,  Calum  G.  Turvey,  and  M.   Neil  Ward.  "Poverty  traps  and  climate  risk:  limitations  and  opportunities  of  index-­‐‑ based  risk  financing."  (2007).       42   Blanco,  Esther,  Maria  Claudia  Lopez,  and  Sergio  Villamayor-­‐‑Tomas.  "Exogenous   degradation  in  the  commons:  Field  experimental  evidence."Ecological   Economics  120  (2015):  430-­‐‑439.     Bosch-­‐‑Domènech,  Antoni,  and  Joaquim  Silvestre.  "Do  the  wealthy  risk  more  money?  An   experimental  comparison."  Institutions,  Equilibria  and  Efficiency.  Springer  Berlin   Heidelberg,  2006.  95-­‐‑116.     Bradshaw,  Ben,  Holly  Dolan,  and  Barry  Smit.  "Farm-­‐‑level  adaptation  to  climatic  variability   and  change:  crop  diversification  in  the  Canadian  prairies."Climatic  Change  67.1   (2004):  119-­‐‑141.     Cardenas,  Juan  Camilo,  and  Jeffrey  Carpenter.  "Risk  attitudes  and  economic  well-­‐‑being  in   Latin  America."  Journal  of  Development  Economics  103  (2013):  52-­‐‑61.     Cardenas,  Juan  Camilo,  and  Jeffrey  Carpenter.  "Behavioural  development  economics:   Lessons  from  field  labs  in  the  developing  world."  The  Journal  of  Development   Studies  44.3  (2008):  311-­‐‑338.     Carter,  Michael  R.,  and  Christopher  B.  Barrett.  "The  economics  of  poverty  traps  and   persistent  poverty:  An  asset-­‐‑based  approach."  The  Journal  of  Development   Studies  42.2  (2006):  178-­‐‑199.     Challinor,  Andrew,  et  al.  "Assessing  the  vulnerability  of  food  crop  systems  in  Africa  to   climate  change."  Climatic  change  83.3  (2007):  381-­‐‑399.     Conde,  Cecilia,  Marta  Vinocur,  Carlos  Gay,  Roberto  Seiler,  and  Francisco  Estrada.  "Climatic   threat  spaces  in  Mexico  and  Argentina."  Climate  Change  and  Vulnerability  and   Adaptation:  Two  Volume  Set  (2013):  279.     Ellis,  Frank.  Rural  livelihoods  and  diversity  in  developing  countries.  Oxford  university  press,   2000.     Engle-­‐‑Warnick,  Jim,  Javier  Escobal,  and  Sonia  Laszlo.  "Ambiguity  aversion  as  a  predictor  of   technology  choice:  Experimental  evidence  from  Peru."CIRANO-­‐‑Scientific  Publications   2007s-­‐‑01  (2007).     Donkers,  Bas,  Bertrand  Melenberg,  and  Arthur  Van  Soest.  "Estimating  risk  attitudes  using   lotteries:  A  large  sample  approach."  Journal  of  Risk  and  Uncertainty  22.2  (2001):   165-­‐‑195.     Duflo,  Esther,  Michael  Kremer,  and  Jonathan  Robinson.  Nudging  farmers  to  use  fertilizer:   Theory  and  experimental  evidence  from  Kenya.  No.  w15131.     FAO,  ComitĂŠ  CientĂ­fico  de  la  ELCSA.  "Escala  Latinoamericana  y  CaribeĂąa  de  Seguridad   Alimentaria  (ELCSA):  Manual  de  uso  y  aplicaciones."  Roma:  FAO(2012).     43   Feder,  Gershon,  Richard  E.  Just,  and  David  Zilberman.  "Adoption  of  agricultural  innovations   in  developing  countries:  A  survey."  Economic  development  and  cultural   change  (1985):  255-­‐‑298.     Hartog,  Joop,  Ada  Ferrer-­‐‑i-­‐‑Carbonell,  and  Nicole  Jonker.  "Linking  measured  risk  aversion  to   individual  characteristics."  Kyklos  55.1  (2002):  3-­‐‑26.     Haushofer,  Johannes,  and  Ernst  Fehr.  "On  the  psychology  of  poverty."  Science  344.6186   (2014):  862-­‐‑867.     Hazell,  Peter,  Colin  Poulton,  Steve  Wiggins,  and  Andrew  Dorward.  "The  future  of  small  farms:   Trajectories  and  policy  priorities."  World  Development  38,  no.  10  (2010):  1349-­‐‑1361.     Henrich,  Joseph,  and  Richard  McElreath.  "Are  Peasants  Risk-­‐‑Averse  Decision  Makers?   1."  Current  Anthropology  43.1  (2002):  172-­‐‑181.     Holt-­‐‑GimĂŠnez,  Eric.  "Measuring  farmers’  agroecological  resistance  after  Hurricane  Mitch  in   Nicaragua:   a   case   study   in   participatory,   sustainable   land   management   impact   monitoring."  Agriculture,  Ecosystems  &  Environment  93.1  (2002):  87-­‐‑105.     Holt,  Charles  A.,  and  Susan  K.  Laury.  "Risk  aversion  and  incentive  effects."American   economic  review  92,  no.  5  (2002):  1644-­‐‑1655.     Intergovernmental  Panel  on  Climate  Change.  Climate  change  2014:  mitigation  of  climate   change.  Vol.  3.  Cambridge  University  Press,  2015.     Intergovernmental  Panel  On  Climate  Change.  "Climate  change  2007:  impacts,  adaptation  and   vulnerability."  Genebra,  Suíça  (2001).     Laderäch,  Peter,  et  al.  "Predicted  impact  of  climate  change  on  coffee  supply  chains."  The   Economic,  Social  and  Political  Elements  of  Climate  Change.  Springer  Berlin   Heidelberg,  2011.  703-­‐‑723.     Levy,  Dino  J.,  Amalie  C.  Thavikulwat,  and  Paul  W.  Glimcher.  "State  dependent  valuation:  the   effect  of  deprivation  on  risk  preferences."  PloS  one8.1  (2013):  e53978.     Marra,  Michele,  David  J.  Pannell,  and  Amir  Abadi  Ghadim.  "The  economics  of  risk,   uncertainty  and  learning  in  the  adoption  of  new  agricultural  technologies:  where   are  we  on  the  learning  curve?."  Agricultural  systems  75,  no.  2  (2003):  215-­‐‑234.     Moscardi,  Edgardo,  and  Alain  De  Janvry.  "Attitudes  toward  risk  among  peasants:  an   econometric  approach."  American  Journal  of  Agricultural  Economics  59.4  (1977):   710-­‐‑716.     Onyemauwa,  C.  S.,  et  al.  "Risk  aversion  among  farmers  of  the  national  program  for  food   security  in  Imo  State  Southeast  Nigeria."  Risk  4.10  (2013).     44   Ostrom,  E.  "Ostrom,  E.  1990.  Governing  the  Commons:  The  Evolution  of  Institutions  for   Collective  Action."  (1990).     Perfecto,   Ivette,   and   John   Vandermeer.   Coffee   Agroecology:   A   new   approach   to   understanding   agricultural   biodiversity,   ecosystem   services   and   sustainable   development.  Routledge,  2015.     Philpott,  Stacy  M.,  and  Thomas  Dietsch.  "Coffee  and  conservation:  a  global  context  and  the   value  of  farmer  involvement."  Conservation  Biology  17.6  (2003):  1844-­‐‑1846.     Ponte,  Stephano.  “The  ‘Latte  Revolution'?  Regulation,  Markets  and  Consumption  in  the   Global  Coffee  Chain”.  World  Development,  30(7),  pp.1099-­‐‑1122.     Prediger,  Sebastian,  BjĂśrn  Vollan,  and  Benedikt  Herrmann.  Resource  scarcity,  spite  and   cooperation.  Department  of  Economics  (Inst.  fĂźr  Wirtschaftstheorie  und   Wirtschaftsgeschichte),  2013.     Ruben,  Ruerd,  and  Guillermo  Zuniga.  "How  standards  compete:  comparative  impact  of  coffee   certification   schemes   in   Northern   Nicaragua."   Supply   Chain   Management:   An   International  Journal  16.2  (2011):  98-­‐‑109.     Santos,   Paulo,   and   Christopher   B.   Barrett.   "Informal   insurance   in   the   presence   of   poverty   traps:  Evidence  from  southern  Ethiopia."  Available  at  SSRN  998541  (2006).     Schultz,  Theodore  William.  "Transforming  traditional  agriculture."    (1964).     Tanaka,   Tomomi,   Colin   F.   Camerer,   and   Quang   Nguyen.   "Risk   and   time   preferences:   linking   experimental   and   household   survey   data   from   Vietnam."   Behavioral   Economics   of   Preferences,  Choices,  and  Happiness.  Springer  Japan,  2016.  3-­‐‑25.      Thaler,  Richard  H.  "Irving  Fisher:  modern  behavioral  economist."  The  American  economic   review  87.2  (1997):  439-­‐‑441.     Tompkins,   Emma   L.,   and   W   Neil   Adger.   "Does   adaptive   management   of   natural   resources   enhance  resilience  to  climate  change?."  Ecology  and  society  9.2  (2004):  10.     Uphoff,  Norman,  M.  Wickramasinghe,  and  C.  Wijayaratna.  ""  Optimum"  participation  in   irrigation  management:  issues  and  evidence  from  Sri  Lanka."Human   Organization  49.1  (1990):  26-­‐‑40.     Valkila,  Joni,  and  Anja  Nygren.  "Impacts  of  Fair  Trade  certification  on  coffee  farmers,   cooperatives,  and  laborers  in  Nicaragua."  Agriculture  and  Human  Values  27.3   (2010):  321-­‐‑333.     World  Bank.  (2016)  Retrieved  from  http://data.worldbank.org/data-­‐‑catalog/gdp-­‐‑ppp-­‐‑ based-­‐‑table     45   Wossen,  Tesfamicheal,  Thomas  Berger,  and  Salvatore  Di  Falco.  "Social  capital,  risk   preference  and  adoption  of  improved  farm  land  management  practices  in   Ethiopia."  Agricultural  Economics  46.1  (2015):  81-­‐‑97.     Yesuf,  Mahmud,  and  Randall  A.  Bluffstone.  "Poverty,  risk  aversion,  and  path  dependence  in   low-­‐‑income  countries:  Experimental  evidence  from  Ethiopia."  American  Journal  of   Agricultural  Economics  91.4  (2009):  1022-­‐‑1037.               46   Chapter  3:    Adaptive  Capacity  to  Climate  Change:  Coffee  Farmer  Preferences  for  Crop   Diversification  in  Nicaragua     Introduction   Coffee  is  grown  in  some  of  the  most  important  biodiversity  hotspots  in  the  world  (Perfecto   and  Vandermeer,  2015)—environments  also  known  for  their  susceptibility  to  the  negative   impacts  of  climate  change.    Higher  temperatures,  droughts,  and  extreme  and  erratic   rainfalls  will  all  affect  the  suitability  of  these  and  other  coffee  producing  regions,  and   intensification  of  farming  systems  compounds  this  effect  by  diminishing  biodiversity  which   could  otherwise  help  to  mitigate  some  of  these  impacts.    Moreover,  coffee  is  produced  by   millions  of  farmers  in  the  tropics,  the  majority  of  which  are  smallholder  producers  who   depend  on  this  crop  as  a  main  source  of  income.      These  three  aspects  of  coffee  production   (biodiversity,  climate  change,  and  livelihoods)  are  intrinsically  connected,  and  the  study  of   any  one  must  be  carried  out  with  an  appreciation  for  its  dynamic  relationships  with  the   others.  Shade-­‐‑grown  coffee  production  management  systems  help  to  promote  these  three   aspects  of  the  human-­‐‑environmental  relationship  in  important  ways:  by  preserving  and   promoting  biodiversity  richness,  by  helping  coffee  producers  to  build  adaptive  capacity  to   the  negative  impacts  of  climate  change,  and  by  providing  alternative  sources  of  food  or   income.  Understanding  the  conditions  under  which  producers  are  willing  to  adopt  shade   grown  coffee  production  is  of  paramount  importance  given  the  overwhelming  evidence   that  our  climate  is  changing  and  that  coffee  producers  are  among  those  most  vulnerable  to   its  effects.           47   Farmers,  households,  and  communities  that  are  most  prone  to  the  negative  impacts  of   climate  change  must  take  steps  that  will  help  them  to  mitigate  these  shocks.    Yet  adoption   of  mitigation  strategies  is  not  always  simple;  farmers  often  are  forced  to  make  difficult   economic  trade-­‐‑offs  under  risky  conditions  and  in  an  uncertain  climate.    Implicit  in  this   problem  is  the  fact  that  the  impacts  of  climate  change  are  compounded  upon  already   existing  vulnerabilities,  so  not  only  is  their  capacity  to  adapt  lower,  but  the  barriers  that   farmers  face  can  be  even  more  pronounced.    For  example,  high  rainfalls  due  to  El  NiĂąo  in   1998,  followed  by  two  years  of  erratic  rainfall,  forced  farmers  in  Tanzania  to  give  up  maize   production  and  instead  sell  their  labor  to  more  productive  areas.    Although  in  the  short   term  this  was  a  good  coping  mechanism  for  households,  their  dependence  on  labor  as  their   sole  endowment  increased  their  long  term  vulnerability,  since  the  resulting  disease  and   malnutrition  reduce  their  capacity  for  manual  labor  (ADB,  2003).       Farmers  intensify  when  the  value  generated  by  the  land  is  higher  from  a  crop  grown  in  it   than  from  the  forest  that  would  otherwise  occupy  it  (Tittonell  and  Giller,  2013).    Unless   farmers  value  the  ecosystem  services  (such  as  biodiversity  conservation)  that  shaded   coffee  farms  provide  over  the  value  of  their  crop,  they  will  be  unwilling  to  adopt  practices   that  help  promote  biodiversity  conservation.  Rural  poverty  is  intertwined  with  biodiversity   conservation,  and  different  conservation  programs  and  policies  must  deal  with  the  threat   of  poverty  and  of  economic  tradeoffs  required  to  mitigate  that  threat.    At  no  time  has  this   issue  been  more  glaring  than  it  is  today,  a  time  when  farmers  who  depend  on  coffee  as  their   main  source  of  income  are  experiencing  increased  vulnerability  to  the  impacts  of  climate     48   change,  and  when  the  planet  is  seeing  its  highest  rates  of  biodiversity  loss  in  modern   history.     In  this  research  I  use  discrete  choice  experiments  (DCEs)  to  study  the  preferences  and   behaviors  among  producers  regarding  the  adoption  of  shade  into  coffee  fields.  DCEs  allow   the  ex-­‐‑ante  analysis  of  the  drivers  of  adoption,  which  in  turn  help  to  inform  programs  and   other  interventions  designed  to  build  farmer  adaptive  capacity  in  the  face  of  growing   climate  threats.    I  use  choice  experiments  in  this  study  to  examine  the  conditions  under   which  farmers  will  be  willing  to  diversify  their  coffee  farms  with  shade  crops.    Given  the   vulnerability  of  coffee  producers  to  pests,  changes  in  market  prices  and  climate  shocks,   understanding  their  incentives  to  adopt  practices  that  will  help  them  build  better  adaptive   capacity  to  these  shocks  is  of  paramount  importance.  This  study  examines  the  tradeoffs   that  Nicaraguan  coffee  producers  face  as  they  consider  alternative  production  strategies   that  will  help  them  build  that  adaptive  capacity.     Background   The  coffee  tree,  especially  the  Arabica  variety,  grows  at  elevations  ranging  from  1300  to   1500  meters  above  the  sea  level  and  needs  ample  and  consistent  rainfall  within  a  narrow   temperature  range.    Coffee  is  prized  by  ecologists  because  it  grows  well  under  a  canopy  of   shade  trees,  allowing  for  the  development  of  rich  biodiverse  ecosystems.    The  value  of   shaded  coffee  lies  in  its  capacity  as  a  refuge  for  biodiversity;  the  push  towards   intensification  of  coffee  production,  however,  has  had  dramatic  impacts  on  the  biodiversity   composition  of  these  traditional  coffee  farms  (Perfecto  et  al.,  2007).     49   In  the  1970s  and  1980s  Latin  America  saw  a  rapid  shift  from  polycultures  to  monocultures   in  the  coffee  sector  in  response  to  higher  demand  for  coffee  and  to  trade  policies   encouraged  by  the  Global  North  (Perfecto  and  Vandermeer,  2015).    In  an  effort  to  intensify   coffee  production,  farmers  radically  reduced  the  number  of  shade  trees  in  their  farms,   planting  higher  densities  of  new  coffee  varieties  and  intensifying  the  use  of  chemical  inputs.     An  immediate  effect  of  these  practices  was  seen  in  the  precipitous  decline  of  migratory  bird   populations  in  North  America  and  a  decline  in  the  richness  of  bird  diversity  in  Latin   America  (Borrero,  1986).    Despite  the  push  towards  intensification,  studies  have  found  a   positive  relationship  between  planned  biodiversity  in  farms  (such  as  farms  with  greater   density  of  shade  trees)  and  their  richness  of  flora  and  fauna  (e.g.,  vertebrates,   invertebrates,  plants  and  fungi)  (Hernandez  et  al.,  2013;  Murrieta  et  al.,  2013;  SaldaĂąa  et   al.,  2013).  Armbrecht  et  al.  (2004)  find  that  while  it  is  generally  beneficial  to  incorporate   shade  trees  into  coffee  plantations,  it  is  even  better  when  there  is  a  diversity  of  shade  trees   planted  rather  than  just  one  variety.      When  diverse  trees  drop  leaves  and  twigs  onto  the   ground  they  find  that  there  is  a  significant  impact  on  consequent  biodiversity  of  the  flora   and  fauna  in  the  fields.      The  importance  of  coffee  production  in  enhancing  biodiversity   conservation  is  clear,  but  how  coffee  is  grown  also  matters.    Studies  have  found  that  shade-­‐‑ grown  coffee  farms  in  Mexico  contain  almost  as  much  biodiversity  as  native  forests,  while   sun  coffee  monocultures  in  Brazil  are  reported  to  be  “biodiversity  deserts”  (Perfecto  et  al.,   2009).  As  such,  the  authors  find  that  in  monoculture  systems  the  most  important  physical   factor  contributing  to  the  loss  of  species  diversity  is  the  direct  effect  of  sunlight.       50   The  incorporation  of  shade  into  coffee  farms  plays  another  important  role  besides   biodiversity  conservation.    Shade  systems  also  help  store  carbon  from  the  atmosphere,  and   protect  the  watershed  by  reducing  run-­‐‑off  and  soil  loss  (Perfecto  et  al.,  2007;  Valkila,   2009).    Moreover,  planting  trees  on  the  farm  can  contribute  to  household  livelihoods  by   generating  products  for  human  consumption  (food  security)  and  sales  (income  generation)   (Mendez  et  al.,  2010).  A  third  advantage  to  shade-­‐‑grown  coffee  is  that  it  is  known  to  be  of   higher  quality  (in  the  cup)  and  thus  draws  higher  prices  from  coffee  buyers,  particularly   those  at  the  higher  end  of  the  specialty  coffee  market.       In  addition  to  the  ecosystem  services  that  traditional  coffee  farms  provide,  farmers  have   yet  another  incentive  to  incorporate  shade  into  their  farms.    Climate  change  scientists   predict  that  tropical  regions  where  coffee  grows  will  be  increasingly  impacted  by  the   changing  climate,  and  as  a  result  their  suitability  for  coffee  production  will  decline  rapidly.         The  adoption  of  climate  change  adaptation  strategies  is  necessary,  indeed,  urgent,  in  some   coffee   growing   areas.     Regions   that   have   already   experienced   periods   of   seasonal   droughts   will  see  a  rise  in  the  frequency  of  these  droughts.  Similarly,  some  areas  will  experience  severe   flooding   due   to   increased   and   more   intensive   rainfall.     In   addition,   changes   in   global   temperatures   will   result   in   areas   that   will   no   longer   be   suitable   for   agricultural   production   at  all  (Fischer  et  al.,  2002).    No  other  population  is  more  vulnerable  to  these  changes  than   poor  agrarian  households  that  depend  on  agricultural  production  for  their  livelihoods.    As   the  intensity  and  frequency  of  these  events  increase,  the  affected  households  will  experience   a  loss  of  household  assets  and  crops,  declining  access  to  water,  and  challenges  to  health  and     51   nutrition.   Moreover,   they   will   be   left   with   less   time   to   recover   from   the   previous   shocks,   resulting  in  severe,  potentially  chronic,  food  insecurity  (Laderach  et  al.,  2013;  Vermeulen  et   al.,  2012;  Fischer  et  al.,  2002).       In  this  paper  I  use  choice  experiments  to  study  the  conditions  under  which  coffee  farmers   would  be  willing  to  diversify  their  coffee  farms  with  additional  shade  crop.    This  method   has  been  used  widely  in  the  environmental  and  development  economics  literature.  Birol  et   al.  (2009)  used  choice  experiments  to  estimate  how  Mexican  maize  growers  valuate  three   components  of  traditional  maize  production  practices  (milpa):  crop  species  richness,  maize   variety  richness,  and  maize  landraces.    They  find  that  while  conservationists  derive  the   highest  value  from  traditional  milpa  production  and  the  highest  economic  loss  from  GM   maize  adoption,  marginalized  maize  producers  receive  little  economic  value  from  maize   and  crop  diversification,  and  experience  the  smallest  negative  impact  from  the  adoption  of   GM  maize.    Similarly,  Ortega  et  al.  (2016)  use  choice  experiments  to  examine  farmers’   preferences  for  groundnut,  soybean,  and  pigeon  pea  crop  diversification  in  maize  fields  in   Malawi.  They  find  that  farmers  have  significant  labor  constraints  that  limit  their  uptake  of   new  crops  to  diversify  their  maize  with,  and  that  the  uptake  of  legume  and  maize  intercrop   systems  would  increase  if  practitioners  focus  on  legumes  that  have  better  marketability.     Coffee  Leaf  Rust  in  Nicaragua   The  coffee  leaf  rust  problem  in  Nicaragua  and  the  rest  of  Mesoamerica  has  been   devastating  and  merits  special  attention.  Coffee  in  Nicaragua  is  grown  mostly  by  small  scale     52   coffee  farmers  within  the  central  mountains  in  Jinotega  and  Matagalpa,  which  are  known   for  their  rich  volcanic  soils  and  humid  tropical  climate.    Farmers  in  this  region  depend  on   coffee  production  as  their  main  source  of  income.  In  recent  years,  however,  coffee  in   Nicaragua  has  been  devastated  by  the  coffee  leaf  rust  fungus,  and  farmers  have  suffered   large  yield  losses.     The  leaf  rust  is  caused  by  a  fungus  (Hemileia  vastatrix)  and  although  it  originates  from  Sri   Lanka,  in  Latin  America  it  was  first  reported  in  1970.  The  disease  attacks  Arabica  coffee   more  severely  than  other  varieties  and  it  causes  leaves  to  fall  off  and,  when  acute,  can  cause   branches  to  die,  resulting  in  heavy  crop  losses.  The  most  significant  outbreak  of  the  disease   in  Latin  America  occurred  during  the  closing  months  of  2012,  with  other  outbreaks  in  the   late  1980s,  mid  1990s,  and  early  2000s.    Some  studies  reported  as  much  as  50%  reduction   of  yields  over  a  region  that  extends  from  southern  Mexico  to  Colombia,  during  this  latest   outbreak  (Cressey,  2013).  Researchers  surmise  that  a  lack  of  proper  economic  incentives  to   invest  in  their  farms  (e.g.,  better  credit,  higher  cherry  prices,  and  lower  input  prices)  as   well  as  meteorological  factors  (such  as  earlier  rainy  seasons  and  rainy  seasons   interspersed  with  bright  periods)  have  led  to  the  string  of  coffee  rust  epidemics  in  Latin   America  (Avelino  et  al.,  2015).    This  disease  has  impacted  the  coffee  sector  in  Nicaragua   beyond  simple  crop  losses;  it  has  resulted  in  wholesale  changes  in  farmers’  perceptions  and   behaviors,  and  much  is  still  unknown  about  how  these  changes  will  affect  the  future  of   coffee  production  in  the  region.         53   Theoretical  Framework   The  empirical  framework  of  this  study  is  based  on  experimental  choice  modeling  methods   to  analyze  farmers’  preferences  for  different  coffee  production  strategies.  In  a  choice   experiment,  respondents  are  asked  to  choose  between  option  bundles  containing  a  series   of  different  attributes  (of  varying  levels)  from  hypothetical  choice  scenarios.  By  controlling   the  variation  in  the  levels  of  the  attributes,  researchers  areI  am  able  to  analyze  the  choices   made  by  the  respondents  and  to  estimate  marginal  values  for  the  attributes  presented  in   the  choice  sets.     The  theoretical  foundation  of  choice  experiments  is  based  on  random  utility  theory,  and   relies  on  the  assumptions  of  economic  rationality  and  Lancastrian  utility  maximization   (Lancaster,  1966).    In  the  context  of  the  present  study,  a  coffee  farming  system  is  described   as  a  collection  of  its  physical  and  managerial  characteristics,  including  the  inputs  applied   and  the  crop  diversity  within  the  farm.  By  stating  a  preference  for  a  specified  farming   system,  faremrs  are  assumed  to  have  chosen  the  alternative  that  will  yield  the  highest   utility  or  value  to  them.    Random  utility  can  be  characterized  by  the  following  function:     𝑢?de = 𝛽?f 𝑥?de + 𝜀?de   (1)       Where  𝑢?de  is  the  utility  derived  by  farmer  i  choosing  alternative  j  in  choice  task  s,  𝑥?de  is  a   vector  of  observable  attributes,  𝛽?  is  a  vector  of  estimated  parameters  and  𝜀?de  is  the   random  error  component  of  the  model.  The  error  terms  are  assumed  to  be  independent     54   and  identically  distributed  with  a  Gumbel  distribution,  which  captures  variations  in   preferences  and  errors  in  individuals’  perceptions.       Since  I  cannot  directly  observe  the  vector  of  utilities  for  each  individual,  I  observe  the   sequence  of  choices  that  the  individual  makes,  and  estimate  the  conditional  probability  of   this  observed  sequence  as  follows:       𝑃 𝑦? 𝑥?*e , 𝑥?Ee , … , 𝑥?de , 𝜑 = exp 𝛽?f 𝑥?lmn e 𝑓 𝛽 𝜑 𝑑𝛽   f o exp 𝛽? 𝑥?oe   (2)       Equation  2  represents  a  random  parameter  logit  model  (RPL).  In  it  I  assume  that   producers’  preferences  for  different  farming  management  systems  are  heterogeneous,  or  in   other  words,  that  not  every  farmer  has  the  same  preference.  This  model  is  used  to  allow  a   random  preference  variation,  it  relaxes  the  limitation  of  a  traditional  logit  model  by   allowing  these  random  preferences  to  come  from  a  sample  with  a  specified  distribution   (McFadden  and  Train,  2000).    Allowing  for  free  correlation  of  the  random  parameters  in   the  RPL  model  also  allows  us  to  study  the  preference  relationship  between  attributes.  For   the  analysis  in  this  study,  I  let  the  coefficients  corresponding  to  each  attribute  to  take  a   normal  distribution  to  allow  for  both  positive  and  negative  preferences  for  each  of  the   attributes.       55   Individual  coefficients  estimated  in  the  random  parameter  logit  model  have  limited   economic  interpretation  due  to  the  non-­‐‑cardinal  nature  of  utility.    However,  attribute   trade-­‐‑offs  can  be  calculated  using  a  relative  combination  of  selected  coefficients  from  this   model  to  provide  meaningful  insights  into  producer  behavior.    I  follow  Nahuelhual  et  al.   (2004)  and  Rigby  and  Burton  (2005)  to  estimate  how  willing  are  producers  to  change  their   production  practices.     𝑊𝑇𝐶 = 𝑀𝑈   𝑀𝑈𝐼 (3)     where  MU  is  the  marginal  utility  of  the  various  production  attributes  and  MUI  is  the   marginal  utility  of  profit,  which  is  proxied  with  the  premium/discount  coefficient.  The  term   willingness  to  change  (WTC)  captures  both  the  willingness  to  pay  (WTP)  and  the   willingness  to  accept  (WTA)  terms.    A  negative  WTC  reflects  a  premium  that  producers   would  have  to  receive  to  change  their  behavior,  and  a  positive  WTC  reflects  a  discount  that   they  are  willing  to  accept  when  providing  a  given  attribute.     Data  and  Choice  Experiment  Design   Data  and  Sample  Characteristics   Data  for  this  research  were  collected  in  the  department  of  Matagalpa  in  northern  Nicaragua   between  June  and  July  2015  using  a  two  stage  stratified  random  sample  of  236  coffee   producing  households.    First,  communities  in  Matagalpa  were  stratified  by  level  of   vulnerability  to  climate  change.    Vulnerability  was  determined  by  the  average  elevation  in   which  the  community  was  located.  Higher  elevation  (above  1000  meters  above  sea  level)     56   had  a  lower  vulnerability  index  than  those  at  lower  elevations,  as  coffee-­‐‑growing   households  in  higher  elevations  will  be  less  affected  by  increased  temperatures.  In  this  first   stage,  a  random  sample  of  communities  was  selected  based  on  their  vulnerability  index   score.    In  the  second  stage,  households  in  each  of  the  selected  communities  were  drawn   from  a  census  of  coffee  producers  in  the  region.    The  households  surveyed  in  this  study   form  part  of  an  ongoing  project  on  climate  change  and  food  security  conducted  by  the   International  Center  for  Tropical  Agriculture  (CIAT).  After  eliminating  households  for   which  data  were  missing  or  incomplete,  the  data  set  for  this  analysis  was  reduced  to  221   households  in  the  department  of  Matagalpa,  with  9  out  13  municipalities  being   represented;  municipalities  not  sampled  were  in  regions  of  Matagalpa  where  coffee  is  not   grown.    A  map  of  the  study  area  is  presented  in  Figure  9   Figure  9.  Map  of  Study  Area   Matagalpa Lake Nicaragua     57   Household  surveys  enable  us  to  collect  information  on  demographic  and  socio-­‐‑economic   characteristics,  agricultural  production,  and  experiences  with  economic  and  climatic   shocks.    These  additional  sources  of  information  help  us  to  understand  the  preference   heterogeneity  of  survey  respondents,  and  to  examine  the  determinants  of  farmer   preferences  and  behavior.  Table  6  summarizes  some  of  the  characteristics  of  the  producers   in  the  sample.    The  average  age  of  the  respondents  is  46  years  with  an  average  of  3.8  years   of  formal  education  completed.    The  mean  area  under  production  is  4.8  hectares  and  the   mean  annual  coffee  production  is  9.7  quintales  of  wet  parchment4  (312.8kg)  per  hectare.     Forty-­‐‑six  percent  of  the  sample  are  members  of  a  coffee  cooperative  and  65%  are  male-­‐‑ headed  households.    Among  study  households,  30.9%  and  32.2%  of  have  access  to   subsidized  pesticides  and  fertilizers  respectively,  while  only  38.5%  of  farmers  report   having  had  access  to  on-­‐‑farm  extension  services  in  the  year  prior  to  data  collection.  The   majority  of  farmers  grow  only  one  variety  of  coffee  (Catimor)  (59.8%)  and  45.7%  of   farmers  intercropped  their  coffee  with  two  additional  shade  crops  (banana  and  citrus   trees).     Wet parchment is a state of the coffee in its transformation from cherry to bean. After harvesting the freshly harvested cherries are passed through a pulping machine to separate the skin and pulp from the bean. After depulping, the bean is transported to water-filled tanks for fermentation where they remain from 12 to 48 hours. When fermentation is complete, the beans are rinsed and are ready for drying. Coffee at this stage of the wet milling process is known as wet parchment.   4   58   Table  7.  Sample  Characteristics   Variable   Means   (%  where   noted)     Male   65.4%     Age     46.4   (15.28)   Household  Size   5.4   (2.12)   Years  of  Education   3.8   (3.48)   Years  in  Coffee   16.5   (12.48)   Total  Coffee  Income  (USD)  per  ha   821.8   (875.11)   Total  income  (USD)   5,648.3   (7,377.11)   Total  area  under  coffee  production   4.8   (5.38)   (ha)   Total  Coffee  Production  (quintales1)   (120.59)   9.7   per  ha     Cooperative  membership   45.5%     Access  to  Pesticides   30.9%     Access  to  Fertilizers   32.2%     Extension  Services   38.5%     Farms  with  1  variety  of  coffee   59.8%     Farms  with  2  varieties  of  coffee   32.7%     Farms  with  1  additional  shade  crop   18.2%     Farms  with  2  additional  shade  crop   45.7%     1  1  Quintal=  46kg;  Standard  deviations  are  presented  in  parentheses     Choice  Experiment   The  choice  experiment  in  this  study  was  designed  to  compare  the  producers’  management   of  their  current  coffee  field  to  other  hypothetical  coffee  fields.  To  make  this  comparison,   information  about  their  farm  characteristics  were  collected  during  the  implementation  of   the  survey.     To  identify  relevant  coffee  production  attributes,  interviews  with  key  informants  and   coffee  producers  were  carried  out  in  March  and  April  2015.    Six  attributes  were  selected  to   for  inclusion  in  the  choice  experiment:  input  provision,  access  to  extension  services,  labor     59   requirements,  coffee  diversification,  crop  diversification,  and  income  generated  from  the   farm.  These  attributes  are  reviewed  below.       Input  Provision.  Unless  coffee  production  is  profitable  for  farmers,  they  will  not  invest  in   their  farms.  Input  constraints,  such  as  lack  of  access  or  high  costs,  induce  farmers  to  adjust   their  preferences  for  characteristics  associated  with  their  production  (Wale  et  al.,  2005).     From  preliminary  interviews  with  farmers,  I  learned  that  the  cost  of  commercial  inputs   (notably  fertilizers  and  pesticides)  is  a  high  barrier  to  their  adoption,  and  that  most  rely  on   the  distribution  of  these  from  organizations  in  their  region.    Many  studies  assert  that  unless   inputs  are  subsidized,  farmers  with  income  constraints  will  not  use  them  (Duflo  et  al.,   2011;  Dugger,  2007).  A  recent  study  of  smallholder  coffee  producers  in  Rwanda  highlights   this  issue,  where  71%  and  45%  of  households  surveyed  cited  low  and  unstable  cherry   prices,  respectively,  as  their  main  barrier  to  investment  in  their  coffee  (Clay  et  al.,  2016).    In   the  same  study,  the  majority  of  farmers  who  did  not  apply  any  inputs  stated  that  a  lack  of   access  to  free  or  subsidized  inputs  was  their  main  reason  for  non-­‐‑use.    It  is  clear  that  access   to  inputs  plays  an  important  role  in  farmers’  on-­‐‑farm  investment  decisions;  in  this  study  I   test  how  highly  farmers  value  this  access.  Four  levels  of  input  distribution  are  specified  in   the  choice  experiment:  No  access  to  subsidized  inputs,  access  to  subsidized  pesticides  only,   access  to  subsidized  fertilizers  only,  and  access  to  subsidized  pesticides  and  fertilizer.     Access  to  Extension  Services.    Extension  services  have  the  potential  to  influence  farmers’   decisions  to  change  their  production  practices  in  response  to  climate  change  (Maddison,   2007).  Indeed,  a  lack  of  training  and  information  was  an  issue  frequently  raised  by  coffee     60   producers  during  the  piloting  period  of  the  study.  Farmers  expressed  a  deep  dissatisfaction   with  the  low  level  of  on-­‐‑farm  support  provided  by  government  agencies  and  by  their  own   cooperatives,  especially  during  and  after  the  devastating  leaf  rust  outbreak.    These  services   were  included  as  a  binary  variable  that  captured  whether  the  field  received  on-­‐‑farm   extension  services.     Labor  Requirements.  Similarly,  practices  that  require  high  levels  of  labor  investments  need   to  be  considered  in  this  study.    Maintaining  proper  shade  in  farms,  mulching,  and  pruning   all  are  labor  labor-­‐‑intensive  practices,  and  while  better-­‐‑endowed  coffee  producers  may  be   able  to  overcome  some  of  these  labor  requirements  by  hiring  outside  labor,  smallholder   producers  mostly  rely  on  household  labor  for  these  tasks.  Two  levels  of  labor  requirement   are  used:  high  and  low,  which  correspond  to  a  50%  increase/decrease  of  their  current   person-­‐‑day  requirements.       Coffee  Diversification.    The  importance  of  coffee  diversification  derives  from  two  main   factors.  On  the  one  hand,  farmers  can  adopt  varieties  that  are  resistant  to  droughts  and   higher  temperatures  to  cope  with  the  impacts  of  climate  change,  and  on  the  other  hand,   new  varieties  of  coffee  are  being  developed  that  keep  the  quality  of  Arabica  varieties  but   take  the  physical  attributes  of  lower  quality  coffee  varieties.  Two  levels  were  included  in   this  attribute,  corresponding  to  the  establishment  of  one  or  two  coffee  varieties  in  the  field.     Crop  Diversification.    The  incorporation  of  shade  into  coffee  fields  cannot  be  overstated.  As   reviewed  earlier  in  this  article,  shade  helps  to  protect  biodiversity  and  soils,  lowers  farm     61   temperatures,  and  provides  alternative  food  sources.  Shade  crops  can  also  expand  the   income  potential  of  the  farm  and  help  to  retain  water  in  the  soils.  Four  levels  were  included   in  this  attribute  corresponding  to  a  field  containing  coffee  alone,  coffee  plus  one  additional   shade  crops,  coffee  plus  two  additional  shade  crops,  and  coffee  plus  three  additional  shade   crops.  The  additional  crops  that  were  used  as  examples  in  the  choice  experiment  were   identified  from  the  climate  change  literature  that  looks  at  successful  coffee  crop  pairings,   and  they  are  banana,  citrus,  and  cacao.     Income.    Finally,  an  additional  parameter  capturing  the  percentage  change  in  income   generated  from  coffee  fields  was  included  to  help  estimate  farmers’  willingness  to  change.     Four  levels  were  included  and  correspond  to  a  25%  and  50%  increase  or  decrease  in   income  generated  from  their  coffee  fields.  A  percentage  specification  was  used  since  it  is   difficult  to  estimate  the  exact  income  generated  from  a  field  due  to  differences  in  cropping   intensities,  farm  sizes,  and  productivity  levels.     Detailed  information  on  the  selected  attributes  and  their  levels  is  presented  in  Table  8.     Table  8.  Coffee  Production  Attributes  Used  in  Choice  Experiments   Attribute   Input  Provision     Extension   Services         Levels   None,  Pesticides  only,  Fertilizer   only,  Pesticide  and  fertilizers   together     Yes,  No     62   Definition   Producer  access  to  subsidized   inputs.       Producer  access  to  on  farm   extension  services.       Table  8  (Cont’d)       Labor   High,  Low   Requirements   Coffee   Diversification   1  variety,  2  varieties   Crop   Diversification   1  (sole  coffee),  2  (coffee  and   banana,  coffee  and  citrus,  coffee   and  cacao),  3  (coffee  and   banana/citrus,  coffee  and   banana/cacao,  coffee  and   citrus/cacao),  4  (coffee  and   banana/citrus/cacao)       -­‐‑50%,  -­‐‑25%,  +25%,  +50%       Income   Labor  requirement  defined  as  a   50%  increase  in  labor  (high)  or  a   50%  decrease  in  labor  (low).     The  number  of  established  coffee   varieties.     Total  number  of  crops  established   with  the  coffee.         Percentage  change  of  expected   coffee  income  relative  to  the   farmer’s  coffee  income  for  the   previous  year.       Given  the  above  attribute  selection,  the  econometric  specification  of  the  choice  experiment   takes  the  following  functional  form:     𝑢?de = 𝛽?* 𝐼𝑛𝑝𝑢𝑡𝑠?de + 𝛽?E 𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛?de + 𝛽?F 𝐿𝑎𝑏𝑜𝑟?de + 𝛽?O 𝐶𝑜𝑓𝑓𝑒𝑒𝐷?de   (4)   +𝛽?R 𝐶𝑟𝑜𝑝𝐷?de + 𝛽?* 𝐼𝑛𝑐𝑜𝑚𝑒?de + 𝜀?de     Where  𝑢?de  is  the  utility  derived  from  mapping  the  coffee  farming  system  into  utility  space,   𝐼𝑛𝑝𝑢𝑡?de  is  the  level  of  input  subsidy,  𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛?de  is  a  binary  extension  service  provision,   𝐿𝑎𝑏𝑜𝑟?de  is  a  binary  for  labor  requirement,  𝐶𝑜𝑓𝑓𝑒𝑒𝐷?de  is  a  binary  variable  for  coffee     63   diversification,  𝐶𝑟𝑜𝑝𝐷?de  is  the  level  of  crop  diversification,  and  𝐼𝑛𝑐𝑜𝑚𝑒?de  is  the  level  of   income  change.    The  indices  i,  j,  and  s,  represent  the  individual,  the  choice  alternative,  and   the  choice  set,  respectively;  and  𝛽  is  the  coefficient  associated  with  each  attribute   preference.     Following  the  selection  of  the  attributes,  a  pretest  was  conducted  in  early  June  2015  to  test   the  comprehension  and  suitability  of  choice  experiment  parameters.     A  D-­‐‑optimal  design  (one  which  optimizes  the  model  fit  while  minimizing  the  covariance  of   the  parameter  estimates)  with  null  priors  was  used  for  the  choice  experiment.5  The  design   resulted  in  three  choice  tasks  which  were  blocked  into  six  groups  to  help  alleviate  response   fatigue.  Each  coffee  producer  was  presented  with  five  different  choice  tasks  consisting  of   two  alternative  coffee  farming  operations  containing  the  study  attributes.  A  third   alternative  included  in  the  design  allowed  the  respondents  to  opt-­‐‑out  of  the  hypothetical   scenarios  and  choose  to  continue  producing  coffee  under  their  current  management   practices,  defined  as  the  “status-­‐‑quo  option.”  Data  for  this  alternative  were  collected  as  part   of  the  household  questionnaire.  To  avoid  issues  of  comprehension  and  to  accommodate   different  levels  of  farmer  literacy,  the  choice  sets  were  illustrated  and  presented  to   producers  on  laminated  cards.       5  Null  priors  were  used  in  the  design  due  to  a  lack  of  information  on  farmer  valuations  of   the  attributes  selected,  as  well  as  time  and  logistical  constraints  associated  with  conducting   a  representative  pilot  study.     64   After  gathering  information  from  the  farmers  about  their  current  production  practices  and   farm  characteristics  (status  quo),  enumerators  introduced  the  choice  experiment  to  the   respondents  and  asked  them  to  answer  the  following  question:  “Considering  the  current   amount  of  land  that  you  dedicate  to  coffee  production,  would  you  be  willing  to  change  that   land  to  one  that  takes  the  following  characteristics?”  at  this  point,  farmers  were  presented   the  laminated  card  depicting  the  choice  sets  and  each  option  was  explained.  An  example  of   a  choice  set  is  presented  in  Figure  10.           Figure  10.  Example  of  Choice  Set             65   Results  and  Discussion   Maximum  likelihood  estimates  for  a  random  parameter  logit  model  are  presented  in  Table   9.    The  significant  standard  deviation  coefficients  in  Table  8  in  the  RPL  indicate  that  coffee   farmers  have  heterogeneous  preferences  with  respect  to  the  production  practices,  and  do   not  derive  the  same  level  utility  from  the  same  attributes.       The  following  conclusions  are  presented  in  terms  of  the  utility  that  these  choices  generate   for  the  respondents.    Utility  is  here  defined  as  the  value  or  the  satisfaction  that  a  producer   gains  from  the  attributes  in  the  choice  experiment.  I  find  that  pesticide  provision  has  a   negative  effect  on  utility  for  farmers  in  Matagalpa,  but  that  when  it  is  provided  together   with  fertilizer  the  effect  on  utility  is  positive  and  significant,  as  is  the  provision  of  fertilizer   alone.  I  also  find  that  extension  services  have  a  positive  and  significant  utility  for  farmers   and  that  labor  requirements  have  a  negative  and  significant  effect  on  utility.    I  did  not  find  a   significant  effect  on  utility  from  the  diversification  of  their  fields  with  alternative  coffee   varieties  or  crops.  However,  as  seen  in  the  distribution  of  the  standard  deviations,  the   preferences  on  crop  and  coffee  diversification  are  heterogeneous  in  the  sample,  confirming   the  hypothesis  that  preferences  are  not  homogenous  across  coffee  producers  in  the  region.     I  also  find  evidence  of  preference  heterogeneity  (significant  standard  error  coefficients)   regarding  input  subsidies,  extension  services,  and  labor  requirements.         66   Table  9.  Parameter  Estimates  from  a  Random  Parameter  Logit  Model     Income   Pesticide   Fertilizer   Pesticide/Fertilizer   Extension   Labor   Coffee  Div.   Crop  Div.   Coefficient   Random  parameter  means   0.031   -­‐‑0.632   0.300   0.800   0.422   -­‐‑0.002   0.169   -­‐‑0.114   Std.  Error   0.003***   0.146***   0.126***   0.130***   0.187***   0.001**   0.158   0.067**     Random  parameter  standard  deviations   Income   0.021   0.003***   Pesticide   0.383   0.219**   Fertilizer   0.078   0.250   Pesticide/Fertilizer   0.036   0.257   Extension   1.465   0.296***   Labor   0.003   0.003   Coffee  Div.   1.028   0.257***   Crop  Div.   0.513   0.084***   N   1,100     Log-­‐‑Likelihood   -­‐‑891.9     Adjusted  Pesudo  R-­‐‑Squared   0.262     AIC   1,872     Standard  errors  are  provided  for  each  coefficient:  *,  **,  ***  denotes  statistical  significance  at  the  0.10,  0.05,  and   0.01  levels,  respectively.    Income  represents  the  profit  variable,  Pesticide,  Fertilizer,  and  Pesticide/Fertilizer  are   binary  variables  indicating  access  to  subsidized  pesticides,  fertilizers,  and  pesticides  and  fertilizers,  respectively,   Extension  is  a  binary  variable  indicating  access  to  on  farm  extension  services,  Labor  is  a  binary  variable  that   indicates  high  or  low  labor  requirements,  Coffee  Div.  is  a  binary  variable  that  indicates  the  presence  of  1  or  2   coffee  varieties,  and  Crop  Div.  indicates  level  of  crop  diversity  richness.       Allowing  for  free  correlation  of  the  random  parameters  in  the  RPL  model  allows  us  to   interpret  their  correlations.      The  correlation  matrix  presented  in  Table  9  shows  a   significant  correlation  between  income  and  coffee  diversification  (0.45),  income  and   pesticide  subsidies  (0.59),  and  income  and  labor  (0.84),  implying  that  farmers  who  value   coffee  diversification,  pesticide  provision,  and  higher  labor  investments  are  also  motivated   by  higher  returns  from  their  farms.  Similarly,  I  find  that  access  to  fertilizer  and  access  to     67   fertilizers  and  pesticides  together  are  negatively  correlated  with  income  (-­‐‑0.54  and  -­‐‑0.57   respectively).    There  was  no  significant  correlation  between  income  and  extension  services,   and  income  and  crop  diversification.    Although  correlation  does  not  ensure  causality,  I  can   attempt  to  explain  some  of  these  relationships.    For  example,  it  is  likely  that  lower  farm   income  as  a  result  of  low  yields  leads  farmers  to  place  greater  value  on  the  provision  of   yield-­‐‑boosting  fertilizers.  Similarly,  farmers  with  higher  incomes  appear  to  be  more  likely   to  value  the  work  from  paid  labor.     Table  10.  Cholesky  and  Correlation  Matrix  for  RPL  Model   Cholesky  Matrix     Income  (1)   Pesticide  (2)   Fertilizer  (3)   Pesticide/Fertilizer  (4)   Extension  (5)   Labor  (6)   Coffee  Div.  (7)   Crop  Div.  (8)   (1)   0.287     Correlation  Matrix     Income  (1)   Pesticide  (2)   Fertilizer  (3)   Pesticide/Fertilizer  (4)   Extension  (5)   Labor  (6)   Coffee  Div.  (7)   Crop  Div.  (8)       (2)   (3)     (4)     (5)   (6)   (7)   (8)                                         0.022   1.018     -­‐‑0.011   -­‐‑0.849   0.301     -­‐‑0.017   -­‐‑0.959   0.330   0.302     -­‐‑0.006   -­‐‑1.145   0.873   -­‐‑0.176   0.177     0.000   0.007   -­‐‑0.004   -­‐‑0.005   0.001   0.001     0.017   1.230   -­‐‑0.596   -­‐‑0.779   -­‐‑0.885   0.004   0.310     -­‐‑0.002   0.193   -­‐‑0.101   -­‐‑0.106   -­‐‑0.126   0.000   -­‐‑0.199   0.253       (1)     (2)       (3)     (4)     (5)       (6)   (7)   (8)   1     0.599   1     -­‐‑0.541   -­‐‑0.912   1     -­‐‑0.571   -­‐‑0.749   0.447   1     -­‐‑0.012   -­‐‑0.548   0.725   -­‐‑0.106   1     0.837   0.560   -­‐‑0.576   -­‐‑0.569   0.083   1     0.427   0.681   -­‐‑0.572   -­‐‑0.544   -­‐‑0.379   0.287   1     -­‐‑0.084   0.242   -­‐‑0.221   -­‐‑0.168   -­‐‑0.122   -­‐‑0.049   -­‐‑0.223   1     68                                           The  derived  WTC  estimates,  presented  in  Table  10,  put  these  results  in  a  context  that  is   easier  to  interpret.    A  negative  WTC  coefficient  represents  the  income  premium  that   farmers  would  need  to  receive  to  make  a  change,  while  a  positive  WTC  coefficient   represents  how  much  income  a  farmer  would  be  willing  to  give  up  to  receive  a  good  or   service.    Non-­‐‑significant  coefficients  represents  changes  that  farmers  are  willing  to  make   without  needing  any  incentives.     Table  11.  Willingness  to  Change  Estimates   Attribute   Mean   Confidence  Interval   Pesticide   Fertilizer   Pesticide/Fertilizer   Extension   Labor   Coffee  Div.   Crop  Div.   -­‐‑27.93   13.33   35.66   21.87   -­‐‑0.10   4.25   -­‐‑5.19   [-­‐‑35.43,  0.75]   [-­‐‑2.64,  17.35]   [19.31,  35.88]   [-­‐‑18.79,  34.59]   [-­‐‑0.14,  -­‐‑0.08]   [-­‐‑9.82,  58.78]   [-­‐‑8.86,  3.81]   Pesticide,  Fertilizer,  and  Pesticide/Fertilizer  are  binary  variables  indicating  access  to  subsidized  pesticides,   fertilizers,  and  pesticides  and  fertilizers,  respectively,  Extension  is  a  binary  variable  indicating  access  to  on   farm  extension  services,  Labor  is  a  binary  variable  that  indicates  high  or  low  labor  requirements,  Coffee  Div.  is   a  binary  variable  that  indicates  the  presence  of  1  or  2  coffee  varieties,  and  Crop  Div.  indicates  level  of  crop   diversity  richness.     Our  model  results  reveal  that  coffee  producers  from  Matagalpa  require  a  premium  of   42.65USD  per  hectare  of  coffee  (5.19%  of  their  annual  coffee  income)  to  introduce  an   additional  shade  crop  into  their  coffee  fields,  but  they  are  willing  to  accept  a  34.9USD   discount  (per  hectare  of  coffee)  to  introduce  an  additional  coffee  variety  in  their  fields.   These  results  suggest  that  while  farmers  are  willing  to  give  up  part  of  their  income  to  adopt   new  coffee  varieties  in  their  fields,  they  would  require  a  premium  before  introducing  an   additional  shade  crop  into  their  fields.       69   These  results  are  consistent  with  observations  made  by  the  researchers  in  the  field,  where   they  note  farmers  actively  seeking  out  newer  coffee  varieties  resistant  to  the  leaf  rust  pest,   which  suffered  a  major  outbreak  in  the  region  2012  and  farmers  reported  yield  losses  of  up   to  60  percent.    Leaf  rust  attacks  mostly  Arabica  varieties  and  farmers  have  been   systematically  uprooting  their  Arabica  coffee  and  replacing  them  with  varieties  of  coffee   that  are  resistant  to  the  leaf  rust.  These  big  losses,  compounded  with  recent  droughts  that   have  impacted  food  crops  (bean  and  maize),  have  meant  that  farmers  have  been  looking  for   coping  mechanisms  that  help  to  mitigate  some  of  these  shocks  (income  loss  from  coffee   failures,  and  food  loss  from  droughts).    Included  in  this  coping  strategy  is  the  establishment   of  varieties  of  coffee  resistant  to  the  leaf  rust,  the  Catimor  coffee  tree  is  the  most  commonly   cited  hybrid  variety  that  farmers  are  planting.       Why  do  farmers  require  a  premium  to  establish  new  shade  trees?  It  is  commonly  assumed   that  shaded  plantations  are  less  profitable,  but  this  is  an  assumption  that  is  often  based  on   incomplete  cost-­‐‑benefit  data.    For  the  most  part,  the  productivity  of  coffee  is  used  as  an   indicator  for  profitability,  which  is  assumed  to  be  lower  for  shaded  coffee  fields.    These   calculations,  however,  do  not  account  for  the  different  costs  of  production,  the  quality   differential,  nor  for  the  direct  and  indirect  benefits  that  shaded  trees  provide.  (Jezeer  and   Verweij,  2015).  Although  many  farmers  in  the  sample  express  that  they  liked  having   additional  crop  trees  in  their  coffee  fields,  they  mostly  spoke  of  only  needing  a  handful  of   these  trees,  and  do  not  wish  to  have  a  coffee  system  with  managed  shade,  which  would   optimize  their  field  (economically  and/or  environmentally).         70   I  find  that  farmers  are  willing  to  accept  a  179.7USD  discount  per  hectare  of  coffee  in  order   to  have  access  to  on  farm  extension  services.    This  brings  to  light  how  important  these   services  are  for  smallholder  farmers.    Extension  services  can  play  a  pivotal  role  in  helping   farmers  build  adaptive  capacity  to  climate  change  by  holding  trainings,  providing  on-­‐‑farm   recommendations,  and  by  sharing  information  about  markets  (Agrawal  and  Perrin,  2009).     Additionally,  many  farmers  rely  on  these  services  for  recommendations  on  farm   management  and  to  learn  about  climatic  and  market  forecasts.    Farmers  in  the  sample   require  a  premium  of  8.21USD  per  person  per  day  before  they  will  double  their  labor   dedicated  to  coffee.  Smallholder  producers  often  rely  on  their  household  labor  to  manage   their  farms;  in  Nicaragua,  hired  labor  for  coffee  production  is  very  common  (Valkila  and   Nygreen,  2010).  Unless  coffee  farms  yield  higher  returns  households  may  choose  to  sell   their  labor  instead  of  investing  it  in  their  own  farms.     Finally,  regarding  the  provision  of  inputs,  I  find  that  farmers  are  willing  to  accept  110USD   and  293USD  discounts  in  exchange  for  subsidized  fertilizers  and  fertilizers  and  pesticides   together  respectively.  Yet,  they  would  require  a  premium  of  229USD  to  accept  pesticides   provided  through  a  subsidy.  The  premium  associated  with  subsidized  pesticides  can  be   explained  by  the  failure  of  organizations  to  adequately  respond  to  the  leaf  rust  epidemic.    A   large  segment  of  farmers  in  this  study  expressed  their  discontent  with  the  effectiveness  of   the  pesticides  provided  by  private  and  public  extension  officers;  they  experienced  even   greater  coffee  losses  when  they  applied  pesticides  that  were  ineffective  at  treating  leaf  rust,   because  their  coffee  trees  became  even  weaker  and  were  still  vulnerable  to  the  rust.,  in   some  cases  with  complete  crop  failures.  Following  a  season  of  devastating  losses,  many     71   farmers  in  the  sample  pulled  out  their  coffee  trees  (Arabica  variety)  and  replaced  them   with  hybrid  varieties  that  they  believed  would  be  more  resistant  to  leaf  rust.    This  premium   for  pesticides  suggests  that  farmers  are  seeking  compensation  for  yield  losses  in  previous   years  induced  by  the  failures  of  proper  pesticides  to  prevent  the  treatment  and  the  spread   of  the  leaf  rust.     Although  farmers  indicate  they  would  need  a  premium  to  accept  pesticides,  this  effect  is   erased  when  pesticides  are  offered  together  with  fertilizers.    Fertilizers  play  an  important   role  in  the  production  cycle  of  the  coffee  tree  as  they,  together  with  other  practices  (such  as   pruning),  help  with  the  healthy  development  of  the  fruit  (Van  der  Vossen,  2005).       Conclusions   The  earth’s  climate  is  changing  at  an  alarming  rate,  and  these  changes  will  not  only  result  in   biodiversity  loss  but  will  also  have  dire  consequences  for  the  livelihoods  of  people  around   the  world  (Cardinale  et  al.,  2012).    In  particular,  these  changes  have  a  direct  impact  on  the   livelihoods  of  rural  coffee  producing  households,  many  of  which  will  surely  witness  a   future  decline  in  the  suitability  of  their  agroecology  for  coffee  production,  and  will   experience  additional  shocks  to  their  food  security  and  wellbeing  as  a  result  of  these   climatic  events.    Expediency  is  needed  in  responding  to  these  impacts  by  protecting  and   improving  the  conditions  under  which  biodiversity  can  flourish.     How  farmers  in  Nicaragua  will  adapt  to  climate  driven  changes  in  the  country’s  suitability   for  coffee  production,  is  a  top  priority  for  policy-­‐‑makers.    This  study  provides  an  innovative     72   approach  to  studying  the  incentives  of  coffee  farmers  to  adopt  practices  that  will  help  them   to  build  adaptive  capacity  in  response  to  these  changes.  Discrete  choice  experiments  are   used  to  examine  farmers’  preferences  for  crop  diversification  in  coffee  farming  systems,   and  to  estimate  these  preferences  using  a  random  parameter  model  that  captures  the   heterogeneity  of  farmer  preferences  at  the  individual  level.       Unless  farmers  value  the  services  that  shade  grown  coffee  provides  they  will  be  unwilling   to  incorporate  it  into  their  farms.  I  find  that  farmers  in  Nicaragua  would  need  a  premium  to   add  additional  shade  to  their  farms,  so  an  important  question  to  explore  in  future  research   is  how  and  for  what  reasons  farmers  value  the  services  that  shade  provides?  Do  they  value   it  for  the  ecosystem  services  that  they  provide  or  do  they  value  its  potential  for  alternative   sources  of  food  and  income?    In  this  research,  we  explore  the  benefits  of  shade  in  light  of  its   potential  to  help  farmers  become  more  resilient  to  climate  change,  yet,  we  know  that  there   are  other  benefits  that  shade  trees  can  provide,  giving  farmers  other  reasons  for  choosing   to  use  shade,  and  understanding  the  benefits  that  shade  provides  to  the  farmers  an   important  question  to  explore.     The  devastating  impacts  of  leaf  rust  in  Nicaragua  and  the  rest  of  Central  America  have  led   farmers  to  respond  in  unexpected  ways.  Farmers  are  not  willing  to  give  up  income  to  have   access  to  subsidized  pesticides  from  the  government  or  other  stakeholders  in  the  coffee   value  chain.  To  the  contrary,  they  require  a  price  premium  before  they  will  accept  such   subsidies.    This  speaks  to  potential  issues  of  trust  between  farmers  and  organizations   supporting  farmers  in  Nicaragua.    Coffee  producers  expressed  frustration  and  mistrust  of     73   organizations  that  were  not  able  to  properly  support  them  when  the  rust  outbreak   occurred.  Climate  change  science  is  a  somewhat  new  field  of  study,  and  adaptation  to   climate  change  an  emerging  field  of  research.    There  is  no  doubt  that  the  path  towards   adaptive  capacity  will  be  marked  with  false  starts,  and  as  new  interventions  are  introduced   organizations  must  take  into  consideration  the  possibility  of  failure  and  be  transparent   with  farmers  about  the  inherent  risks  of  such  failure.         An  important  area  for  future  research  lies  in  the  question  of  how  relationships  are  built  and   where  markets  and  organizations  are  failing  farmers  when  they  experience  natural  shocks,   such  as  pest  and  disease  outbreaks  or  extended  periods  of  drought.    This  research  will  be   particularly  germane  given  the  likelihood  that  such  shocks  will  occur  at  higher  rates  and   with  potentially  higher  intensities  as  the  grip  of  climate  changes  tightens.    To  prepare  for   these  events,  all  stakeholders  in  the  coffee  sector,  and  beyond,  need  to  understand  how  and   when  farmers  react  to  these  shocks  and  how  to  build  effective  pathways  for  their  solution.       This  study  also  highlights  the  need  for  support  and  collaboration  among  coffee  sector   stakeholders  and  other  groups  that  wish  to  promote  biodiversity  conservation  and   environmental  sustainability.  Stakeholders  in  both  groups  must  heed  coffee  producers’  call   and  understand  that  unless  farmers  have  the  proper  incentives  to  invest  in  production   practices  that  will  conserve  the  ecological  integrity  of  coffee  fields  (through  shade  and   other  practices),  they  will  make  decisions  based  entirely  on  the  financial  utility  of  their   coffee  plantations,  which  often  means  intensifying  their  production  by  increasing  the  use  of     74   chemical  inputs  and  monocultural  production,  or  in  the  worst  case  scenario,  abandon  their   coffee  fields  altogether.     Study  findings  also  demonstrate  that  there  is  significant  heterogeneity  of  preferences   amongst  farmers,  and  organizations  that  wish  to  help  farmers  build  adaptive  capacity  to   climate  change,  while  also  promoting  biodiversity  conservation,  must  take  this  into   consideration  when  designing  interventions  that  promote  crop  diversification,  and   measures  that  help  farmers  build  adaptive  capacity  to  climate  change.         Although  I  employ  in  this  research  a  quantitative  method  for  studying  producers’   preferences  for  crop  diversification,  I  recognize  that  a  qualitative  approach  to   understanding  the  implicit  tradeoffs  involved  in  the  decisions  farmers  make,  as  well  as  the   barriers  and  contexts  in  which  they  make  those  decisions,  is  needed  to  confirm  and   validate  the  initial  interpretations  of  the  data.    Additionally,  providing  tools  to  enhance   farmers’  understanding  of  the  ecological  complexity  of  shaded  coffee  fields  and  the  diverse   ecosystem  services  that  they  provide  may  prove  to  be  useful  for  researchers  and   practitioners  committed  to  incentivizing  coffee  farmers  to  adopt  practices  that  will   promote  greater  sustainability  in  the  sector.       The  livelihoods  of  hundreds  of  thousands  of  coffee  producers  around  the  world  are  at  risk   due  to  the  threat  climate  change  poses  to  the  suitability  of  coffee  producing  regions  to   continue  to  grow  coffee.  At  the  same  time,  biodiversity  richness  is  decreasing  in  coffee   regions  that  are  transitioning  towards  more  intensive  production.  While  this  study     75   provides  new  insights  into  how  coffee  producers  value  key  attributes  related  to  coffee   production  in  Nicaragua,  this  approach  and  the  insights  from  this  study  can  be  easily   adapted  for  use  in  other  coffee  growing  regions  of  the  world  and  even  to  other  crops,  such   as  cacao,  which  grown  under  similar  agro-­‐‑ecological  conditions.                 76       REFERENCES     77   REFERENCES           Agrawal,  Arun,  and  Nicolas  Perrin.  "Climate  adaptation,  local  institutions  and  rural   livelihoods."  Adapting  to  climate  change:  thresholds,  values,  governance  (2009):  350-­‐‑ 367.     Armbrecht,  Inge,  Ivette  Perfecto,  and  John  Vandermeer.  "Enigmatic  biodiversity   correlations:  ant  diversity  responds  to  diverse  resources."  Science  304.5668  (2004):   284-­‐‑286.     Avelino,  Jacques,  et  al.  "The  coffee  rust  crises  in  Colombia  and  Central  America  (2008– 2013):  impacts,  plausible  causes  and  proposed  solutions."Food  Security  7.2  (2015):   303-­‐‑321.     Baca,  MarĂ­a,  Peter  Läderach,  Jeremy  Haggar,  GĂśtz  Schroth,  and  Oriana  Ovalle.  "An   integrated  framework  for  assessing  vulnerability  to  climate  change  and  developing   adaptation  strategies  for  coffee  growing  families  in  Mesoamerica."  PloS  one  9,  no.  2   (2014):  e88463.     Bennett,  Jeff,  and  Ekin  Birol,  eds.  Choice  experiments  in  developing  countries:   Implementation,  challenges  and  policy  implications.  Cheltenham:  Edward  Elgar,   2010.     Birol,  Ekin,  Eric  Rayn  Villalba,  and  Melinda  Smale.  "Farmer  preferences  for  milpa  diversity   and  genetically  modified  maize  in  Mexico:  a  latent  class  approach."  Environment  and   Development  Economics  14.04  (2009):  521-­‐‑540.     Borrero  H,  JosĂŠ  Ignacio.  "La  substituciĂłn  de  cafetales  de  sombrĂ­o  por  caturrales  y  su  efecto   negativo  sobre  la  fauna  de  vertebrados."  Caldasia(1986):  725-­‐‑732.     Cardinale,  Bradley  J.,  et  al.  "Biodiversity  loss  and  its  impact  on  humanity."Nature  486.7401   (2012):  59-­‐‑67.     Cressey,  Daniel.  "Coffee  rust  regains  foothold."  Nature  493.7434  (2013):  587.     Duflo,  Esther,  Michael  Kremer,  and  Jonathan  Robinson.  "Nudging  farmers  to  use  fertilizer:   Theory  and  experimental  evidence  from  Kenya."  The  American  Economic   Review  101.6  (2011):  2350-­‐‑2390.     Dugger,  Celia  W.  "Ending  famine,  simply  by  ignoring  the  experts."  New  York  Times  2.12   (2007):  07.     78   Feder,  Gershon,  Richard  E.  Just,  and  David  Zilberman.  "Adoption  of  agricultural  innovations   in  developing  countries:  A  survey."  Economic  development  and  cultural   change  (1985):  255-­‐‑298.     Hernandez,  Sonia  M.,  et  al.  "Coffee  agroforests  remain  beneficial  for  Neotropical  bird   community  conservation  across  seasons."  PloS  one  8.9  (2013):  e65101.     Jezeer,  Rosalien,  and  Pita  Verweij.  "SHADE-­‐‑GROWN  COFFEE."  (2015).     Laderach,  Peter,  Jeremy  Haggar,  Charlotte  Lau,  Anton  Eitzinger,  Oriana  Ovalle,  MarĂ­a  Baca,   Andy  Jarvis,  and  Mark  Lundry.  "Mesoamerican  coffee:  building  a  climate  change   adaptation  strategy."  (2013).     Laderach,  Peter,  Mark  Lundy,  Andy  Jarvis,  Julian  Ramirez,  Emiliano  Perez  Portilla,  Kathleen   Schepp,  and  Anton  Eitzinger.  "Predicted  impact  of  climate  change  on  coffee  supply   chains."  In  The  Economic,  Social  and  Political  Elements  of  Climate  Change,  pp.  703-­‐‑ 723.  Springer  Berlin  Heidelberg,  2011.     Lancaster,  Kelvin  J.  "A  new  approach  to  consumer  theory."  The  journal  of  political   economy  (1966):  132-­‐‑157.     Maddison,  David  J.  "The  perception  of  and  adaptation  to  climate  change  in  Africa."  World   Bank  Policy  Research  Working  Paper  4308  (2007).     McFadden,  Daniel,  and  Kenneth  Train.  "Mixed  MNL  models  for  discrete  response."  Journal   of  applied  Econometrics  15,  no.  5  (2000):  447-­‐‑470.     Mendez,   V.   Ernesto,   et   al.   "Agrobiodiversity   and   Shade   Coffee   Smallholder   Livelihoods:   A   Review  and  Synthesis  of  Ten  Years  of  Research  in  Central  America*."  The  Professional   Geographer  62.3  (2010):  357-­‐‑376.     Murrieta-­‐‑Galindo,  Rene,  et  al.  "Coffee  agrosystems:  an  important  refuge  for  amphibians  in   central  Veracruz,  Mexico."  Agroforestry  systems  87.4  (2013):  767-­‐‑779.     Nahuelhual,   Laura,   Maria   L.   Loureiro,   and   John   Loomis.   "Using   random   parameters   to   account   for   heterogeneous   preferences   in   contingent   valuation   of   public   open   space."  Journal  of  Agricultural  and  Resource  Economics  (2004):  537-­‐‑552.     Ortega  D.L.,  Waldman  K.B.,  Richardson  R.B.,  Clay  D.C.,  Snapp  S.S.,  Sustainable  Intensification   and  Farmer  Preferences  for  Crop  System  Attributes:  Evidence  from  Malawi’s  Central   and  Southern  Regions”.  World  Development  (2016)     Ovalle-­‐‑Rivera,  Oriana,  Peter  Läderach,  Christian  Bunn,  Michael  Obersteiner,  and  GĂśtz   Schroth.  "Projected  Shifts  in  Coffea  arabica  Suitability  among  Major  Global   Producing  Regions  Due  to  Climate  Change."  (2015):  e0124155.       79   Perfecto,  Ivette,  and  John  Vandermeer.  Coffee  Agroecology:  A  new  approach  to   understanding  agricultural  biodiversity,  ecosystem  services  and  sustainable   development.  Routledge,  2015.     Perfecto,  Ivette,  Armbrecht,  I.,  Philpott,  S.  M.,  Soto-­‐‑Pinto,  L.,  &  Dietsch,  T.  V.  "Shaded  coffee   and  the  stability  of  rainforest  margins  in  northern  Latin  America."  Stability  of   Tropical  Rainforest  Margins.  Springer  Berlin  Heidelberg,  2007.  225-­‐‑261.     Perfecto,  Ivette,  John  Vandermeer,  and  Angus  Wright.  Nature's  matrix:  linking  agriculture,   conservation  and  food  sovereignty.  Earthscan,  2009.     Ponte,  Stefano.  "The  latte  revolution'?  Regulation,  markets  and  consumption  in  the  global   coffee  chain."  World  development  30,  no.  7  (2002):  1099-­‐‑1122.     Rigby,  Dan,  and  Michael  Burton.  "Preference  heterogeneity  and  GM  food  in  the   UK."  European  Review  of  Agricultural  Economics  32,  no.  2  (2005):  269-­‐‑288.     SaldaĂąa-­‐‑VĂĄzquez,  Romeo  A.,  et  al.  "Population  composition  and  ectoparasite  prevalence  on   bats  (Sturnira  ludovici;  Phyllostomidae)  in  forest  fragments  and  coffee  plantations   of  central  Veracruz,  Mexico."  Biotropica  45.3  (2013):  351-­‐‑356.     Tittonell,  Pablo,  and  Ken  E.  Giller.  "When  yield  gaps  are  poverty  traps:  the  paradigm  of   ecological  intensification  in  African  smallholder  agriculture."  Field  Crops   Research  143  (2013):  76-­‐‑90.     Valkila,  Joni,  and  Anja  Nygren.  "Impacts  of  Fair  Trade  certification  on  coffee  farmers,   cooperatives,  and  laborers  in  Nicaragua."  Agriculture  and  Human  Values  27.3   (2010):  321-­‐‑333.     Valkila,  Joni.  "Fair  Trade  organic  coffee  production  in  Nicaragua—Sustainable  development   or  a  poverty  trap?."  Ecological  Economics  68.12  (2009):  3018-­‐‑3025.     van   Rikxoort,   Henk,   GĂśtz   Schroth,   Peter   Läderach,   and   Beatriz   RodrĂ­guez-­‐‑SĂĄnchez.   "Carbon   footprints  and  carbon  stocks  reveal  climate-­‐‑friendly  coffee  production."  Agronomy  for   Sustainable  Development  (2014):  1-­‐‑11.     Van  der  Vossen,  H.  A.  M.  "A  critical  analysis  of  the  agronomic  and  economic  sustainability  of   organic  coffee  production."  Experimental  agriculture  41.04  (2005):  449-­‐‑473.     Vermeulen,   Sonja   J.,   et   al.   "Addressing   uncertainty   in   adaptation   planning   for   agriculture."  Proceedings  of  the  National  Academy  of  Sciences  110.21  (2013):  8357-­‐‑ 8362.     Wale,  Edilegnaw,  et  al.  "Economic  analysis  of  farmers'  preferences  for  coffee  variety   attributes:  lessons  for  on-­‐‑farm  conservation  and  variety  adoption  in   Ethiopia."  Quarterly  Journal  of  International  Agriculture  44.2  (2005):  121-­‐‑140.     80   Chapter  4:  Determinants  of  Adoption  of  Sustainable  Production  Practices  among   Smallholder  Coffee  Producers  in  Nicaragua     Introduction   Efforts  to  slow  down  and  eventually  reverse  the  trend  of  climate  change  will  take  time,  and   in  some  cases,  the  negative  impacts  of  climate  change  will  be  felt  long  before  long-­‐‑term   solutions  to  this  problem  can  bear  fruit.    Adaptation  and  mitigation  strategies  constitute   the  front  line  of  attack  for  rural  households  in  developing  countries  that  rely  on   agricultural  production  and  natural  resource  use  as  their  main  source  of  income  and   growth,  and  whose  livelihoods  are  threatened  by  climate  change.  Amongst  these  strategies,   the  adoption  of  sustainable  and  climate  smart  production  practices  have  been  identified  as   critical  for  smallholder  producers,  but  it  is  uncertain  just  how  they  should  be  promoted   (Laderach  et  al.,  2013).  Agricultural  organizations  and  cooperatives  have  a  long  history  in   promoting  the  adoption  of  new  technologies  and  practices  among  smallholder  producers   and  could  potentially  play  a  sizable  role  in  helping  farmers  to  build  better  adaptive   capacity,  yet  further  research  is  needed  to  understand  how  and  the  degree  to  which  they   contribute  to  specific  adaptation  and  mitigation  strategies  for  climate  change.     The  impacts  of  climate  change  will  become  more  severe  with  time;  regions  of  the  world   that  have  already  experienced  periods  of  seasonal  droughts  will  see  a  rise  in  the  frequency   of  these  droughts.  Similarly,  some  areas  will  experience  severe  flooding  due  to  increased   rainfall  occurrence.    And  changes  in  global  temperatures  will  also  result  in  certain  areas   becoming  no  longer  suitable  for  agricultural  production  (Fischer  et  al.,  2002).    Perhaps  no   population  is  more  vulnerable  to  the  consequences  of  these  changes  than  poor  agrarian     81   households  that  depend  on  crop  production  to  make  a  living.    As  the  intensity  and   frequency  of  these  events  increase,  households  can  experience  loss  of  assets  (such  as   household  assets,  crops,  access  to  water,  and  loss  of  health)  and  are  left  with  less  time  to   recover  from  the  previous  shocks,  resulting  in  severe  food  insecurity  (Laderach  et  al.,  2013;   Vermeulen  et  al.,  2012;  Fischer  et  al.,  2002).    Given  the  vulnerability  of  smallholder  farmers   to  climate  change,  there  is  growing  consensus  that  the  research  and  development  on   adaptation  strategies  will  become  increasingly  needed  (van  Rikxoort  et  al.,  2014),  and  that   farmer  adoption  of  sustainable,  mitigating  technologies  and  practices  constitute  one  of  the   critical  pieces  to  a  longer-­‐‑term  solution  (Nelson  et  al.,  2009).  Included  in  their  mitigation   strategies  is  how  they  perceive  and  use  collective  organization  and  action  as  a  vehicle  for   their  response.       Smallholder  farmers  are  also  facing  sizable  challenges  and  barriers  to  entering  profitable   markets.  Amongst  these  barriers  are  costs  associated  with  poor  physical  infrastructure,   such  as  a  lack  of  roads  or  transportation  networks,  a  lack  of  market  and  pricing   information,  poor  access  to  inputs,  and  little  access  to  technical  support  and  training   (Barrett,  2008).  Cooperatives  can  help  smallholders  to  overcome  some  of  these  barriers   and  are  widely  recognized  in  agricultural  markets  as  an  effective  mechanism  that  brings   together  smallholder  producers  who  wish  to  work  together  to  overcome  some  of  the  costs   associated  with  market  participation.  In  addition,  cooperatives  have  better  bargaining   power  and  can  extract  more  favorable  terms  of  trade  from  downstream  buyers  (Barrett,   2008).    Cooperatives  help  farmers  not  only  by  increasing  productivity  but  they  can  also  add     82   value  to  agricultural  products  through  processing.    This  is  particularly  true  in  the  coffee   industry  where  coffee  processing  facilities  are  cooperatively  owned  and  operated.       Investments  in  and  adoption  of  improved  technologies  and  production  practices  by   smallholder  producers  require  significant  support  and  investment  from  the  public  and   private  sectors  (Barrett,  2008).    At  no  time  is  this  support  more  critical  than  when   smallholder  farmers  experience  low  yields,  high  production  costs,  relatively  high  labor   requirements  for  production,  and  face  unstable  prices  for  their  agricultural  products   (Donovan  and  Poole,  2014),  all  of  which  are  likely  to  be  exacerbated  by  climate  change.  In   many  instances,  the  formation  of  agricultural  cooperatives  have  been  successful  in  helping   smallholders  farmers  to  overcome  many  of  these  barriers  through  the  dissemination  of   inputs,  loans,  and  training  opportunities  (Abebaw  and  Haile,  2013),  and  can  play  an   important  role  in  helping  farmers  to  transition  towards  production  practices  that  will  help   them  build  adaptive  capacity  against  the  impacts  of  climate  change.     In  a  study  of  agricultural  cooperatives  in  Ethiopia,  Abebaw  and  Haile  (2013)  find  that   cooperatives  membership  has  a  strong  and  positive  effect  on  the  adoption  of  fertilizers  and   that  their  members  have  better  access  to  extension  services.    Cooperatives  can  also  play  an   important  role  in  providing  financial  incentives  to  adopt  new  technologies;  in  a  study  by   (Mounir  et  al.,  2016)  the  authors  find  that  incentives  in  the  form  of  payments  for   agricultural-­‐‑environmental  services  can  increase  the  adoption  of  improved  technologies.   Climate  change  and  increasing  environmental  pressures  are  pushing  demand  for     83   alternative  management  approaches  (Virapongse  et  al.,  2016).  Wollni  and  Zeller  (2007)   find  that  cooperative  membership  has  a  positive  impact  in  income  and  the  adoption  of   specialty  coffee  varieties  amongst  coffee  producers  in  Costa  Rica.    Wollni  et  al.  (2010)  also   find  that  smallholder  farmers  in  Honduras  who  participated  in  cooperatives  were  more   likely  to  have  adopted  a  higher  number  of  soil  conservation  practices  than  farmers  who  did   not  belong  to  cooperatives.  They  conclude  that  in  addition  to  all  the  technical  support  that   cooperatives  offer  their  members,  they  are  also  important  in  increasing  the  odds  of   adoption  of  sustainable  soil  management  practices.    Other  studies  have  also  found  that   cooperative  membership  is  a  significant  determinant  of  farmer  adoption  of  technologies   and  improved  production  practices  (Verhofstadt  and  Maertens,  2014a;  Fischer  and  Qaim,   2012).    Another  set  of  studies  have  found  that  farmers  who  belong  to  farmers’  associations   or  cooperatives  are  more  likely  to  have  higher  incomes  and  receive  higher  prices  for  their   products  than  those  who  do  not  belong  (Verhofstadt  and  Maertens,  2014b;  Jena  et  al.,   2012).     Producers  in  regions  where  Arabica  coffee  is  produced  are  particularly  susceptible  to  a   changing  climate  due  to  the  narrow  band  of  elevation  in  which  Arabica  coffees  can  be   grown  and  the  fact  that  it  requires  3-­‐‑5  years  to  mature  and  that  significant  investment  is   required  to  plant  and  maintain  coffee.  Moreover,  coffee  has  long  been  known  as  a   commodity  product  with  a  large  “footprint”  in  poor,  often  mountainous  countries  in  the   tropics,  and  as  a  leading  source  of  economic  growth  for  many  of  them.  On  a  global  scale  it  is   recognized  as  one  of  the  most  traded  agricultural  commodities  (Ponte,  2002).       84   In  recent  decades,  the  productive  potential  of  the  coffee  growing  regions  has  become   increasingly  compromised  by  the  impacts  of  climate  change  and  is  further  exacerbated  by   the  intensification  of  agricultural  practices,  a  predictable  consequence  of  a  growing  global   demand  for  coffee  and  increasingly  competitive  markets,  particularly  for  specialty  coffees   (Donovan  and  Poole,  2014).  Intensification  often  involves  unsustainable  practices  –  such  as   shifting  coffee  plantations  from  polycultural  to  monocultural  production  (van  Rikxoort  et   al.,  2014)  and  the  overuse  of  toxic  chemical  inputs  that  can  have  dire  consequences  for  the   agro-­‐‑ecological  composition  of  the  tropical  soils  (Perfecto  et  al.,  1996  and  2007).  In   contrast,  there  are  a  number  of  sustainable  practices  that  can  help  farmers  become  more   resilient  to  a  changing  climate.    Shade  grown  coffee  production  helps  to  protect  the  bio-­‐‑ diversity  of  the  tropics,  store  carbon  from  the  atmosphere,  protect  watersheds  by  reducing   run-­‐‑off,  and  prevent  erosion.  Integrated  pest  management  (IPM)  is  conducive  to   minimizing  toxic  chemical  use  (Perfecto  et  al.,  2007;  Valkila,  2009).  Finally,  crop   diversification  not  only  helps  to  protect  the  ecological  diversity  of  the  land  but  also,  as   Mendez  et  al.  (2010)  find,  it  contributes  to  household  livelihoods  by  generating  products   for  consumption  (food  security)  and  sales  (income  generation).   Although  there  is  evidence  that  cooperatives  can  play  an  important  role  in  building   sustainable  market  linkages  between  smallholders  and  intermediary  firms,  in  reaching   quality  standards,  and  providing  training  and  financial  services  to  smallholder  farmers   (Donovan  and  Poole,  2014;  Barrett,  2008),  there  are  important  questions  that  remain   unanswered.  In  particular,  whether  producers  associated  with  cooperatives  are  better   prepared  to  cope  with  the  effects  of  climate  change  is  a  question  of  notable  importance  that   has  implications  for  coffee  sector  planning  and  policies.  And  a  better  understanding  of     85   farmers’  perceptions  of  climate  change,  their  adaptation  strategies,  and  their  decision-­‐‑ making  processes  is  needed  to  inform  policies  aimed  at  promoting  successful  adaptation   strategies  for  the  coffee  sector.         In  the  present  research  I  focus  on  the  decision  making  process  of  farmers  by  studying  the   different  practices  that  they  have  adopted  on  their  farms.  More  specifically,  this  research   aims  to  identify  the  determinants  of  the  adoption  of  sustainable  (adaptive  to  climate   change)  coffee  production  practices  by  producers  in  Nicaragua,  and  to  examine  to  what   extent  cooperative  members  and  non-­‐‑members  differ  in  their  adoption  of  those  practices.     The  hypothesis  that  I  test  in  this  study  is  that  cooperative  membership  is  a  positive  and   significant  determinant  of  adoption  of  sustainable  coffee  production  practices.     This  study  contributes  to  the  research  literature  by  looking  at  the  impact  of  cooperatives   on  the  adoption  of  improved  practices  and  technologies  specifically  in  the  Matagalpa  region   of  Nicaragua.    It  addresses  the  research  question:  “does  cooperative  membership  increase   the  probability  of  adoption  of  sustainable  production  practices  in  Nicaragua?”    This   question  is  not  only  of  crucial  interest  to  policy  makers,  cooperatives,  and  environmental   agencies  that  wish  to  support  the  coffee  sector  in  its  struggle  against  the  potentially   devastating  impacts  of  climate  change,  but  also  in  achieving  sustainable  growth  more   generally.       86   Coffee  in  Nicaragua   In  Latin  America,  coffee  is  the  main  source  of  income  for  more  than  1  million  farmers.   Nicaragua  alone  has  48,000  farmers,  80%  of  which  are  small-­‐‑scale  coffee  producers   (Valkila,  2009).  Moreover,  as  the  largest  national  export,  more  than  30,000  smallholder   farmers  rely  on  its  production  as  their  principal  livelihood  (Laderach  et  al.,  2013).    Arabica   coffee,  the  main  variety  cultivated  in  the  region,  needs  ample  and  stable  rainfall  and  a   narrow  interval  of  average  temperatures  (19-­‐‑22°C),  all  of  which  are  expected  to  change  in   coffee  growing  regions  as  their  climate  changes  (Vermeulen  et  al.,  2013).       Nicaragua  is  one  of  the  countries  in  Mesoamerica  that  will  be  the  hardest  hit  by  the  impacts   of  climate  change,  and  all  eyes  are  drawn  to  the  Matagalpa  coffee-­‐‑growing  region  where  the   challenges  facing  coffee  producers  are  known  to  be  especially  daunting  (Laderach  et  al.,   2011).  How  farmers  there  will  respond  to  a  potential  40-­‐‑60%  loss  of  agro-­‐‑climatic   suitability  driven  by  a  predicted  2.2ÂşC  temperature  increase  and  a  130mm  decline  in   precipitation  by  2050  (Ovalle-­‐‑Rivera  et  al.,  2015)  is  the  source  of  much  consternation  and   debate  among  industry,  policy  and  scientific  circles  (Ovalle-­‐‑Rivera  et  al.,  2015;  Baca  et  al.,   2014;  Laderach  et  al.,  2013)     In  a  study  conducted  by  Baca  et  al.  (2014),  the  authors  find  that  coffee  farmers  in  Nicaragua   have  seen  dramatic  changes  in  rainfall  patterns  over  the  past  20  years,  noting  in  particular   the  longer  and  hotter  dry  seasons  and  shorter  and  more  erratic  rainy  seasons.  The   estimated  income  loss  due  to  lower  suitability  and  production  is  estimated  at  US$74.7   millions  in  2050  alone  (Laderach  et  al.,  2013).     87   The  consequences  of  suitability  loss  can  be  devastating  to  the  livelihoods  of  smallholder   producers,  and  research  on  how  farmers  can  adapt  and  build  resilience  to  the  impacts  of   climate  change  is  urgently  needed.         Methodology  and  Data     This  study  was  conducted  in  the  department  of  Matagalpa  in  northern  Nicaragua  between   June  and  July  2015.    A  sample  of  236  households  was  selected  using  a  two  stage  stratified   random  selection  strategy.    First,  communities  in  Matagalpa  were  stratified  by  level  of   vulnerability  to  climate  change.    Vulnerability  was  determined  by  the  average  elevation  in   which  the  community  was  located.  Communities  at  higher  elevation  (above  1000  meters   above  sea  level)  had  a  lower  vulnerability  index  scores  than  those  at  lower  elevations,  as   households  in  higher  elevations  will  be  less  affected  by  increased  temperatures.  In  this  first   stage,  a  random  sample  of  communities  was  selected  based  on  their  vulnerability  index   scores.    In  the  second  stage,  households  in  each  of  the  selected  communities  were  drawn   from  a  census  listing  of  coffee  producers  in  the  region.    The  households  surveyed  in  this   study  form  part  of  an  ongoing  project  on  climate  change  and  food  security  conducted  by   the  Center  for  International  Tropical  Agriculture.     Structured  surveys  were  conducted  with  236  coffee  producing  households,  and   information  was  gathered  on  main  household  characteristics,  field-­‐‑level  and  production   statistics,  cooperative  information,  and  perceptions  of  climate  change  and  its  impacts.  Of   these  236  households,  14  were  dropped  from  the  analysis  because  the  household  head  was   not  found,  and  the  respondent  (often  a  son  or  spouse)  did  not  provide  complete  or  reliable     88   information.    In  addition,  10  households  were  dropped  from  the  analysis  due  to  missing   data.    After  accounting  for  missing  and  incomplete  data,  I212  cases  served  as  the  basis  for   study.       Table  12.  Sample  Characteristics   Variable   Mean   (%  Where   Noted)   65.4   46.4   5.4   3.8   16.5   821.8   5,648.3   4.8   9.7   Male  (%)   Age     Household  Size   Years  of  Education   Years  in  Coffee   Total  Coffee  Income  (USD)  per  ha   Total  Income     Area  Under  Coffee  Production  (ha)     Total  Coffee  Production  (q1)  per  ha     Cooperative  Member   No   Yes   (n=129)   (n=107)   60.7   39.3***   44.5   48.8***   5.2   5.4***   3.7   3.9***   14.5   16.5***   719.5   944.1***   4,484.7   7,051.1***   2.9   4.1***   6.4   7.2***   11  Quintal=46kg;  Note:  *,  **,  ***,  indicates  significance  at  10%,  5%,  and  1%  level  of  significance       Characteristics  of  the  sample  are  presented  in  Table  11.  The  average  age  of  the   respondents  is  46  years  old  with  an  average  of  3.8  years  of  formal  education  completed.     The  mean  area  under  production  is  3.4  manzanas  (2.4  hectares)  and  the  mean  annual   coffee  production  is  6.8  quintales  of  wet  parchment  (312.8kg).    Forty-­‐‑six  percent  of  the   sample  belongs  to  a  coffee  cooperative  and  65%  are  male-­‐‑headed  households.  I  see  that   there  are  differences  between  the  composition  of  the  sample  with  respect  to  cooperative   membership,  amongst  these  differences  gender  composition  emerges  as  significant,  with  a   higher  proportion  of  female  members.    In  addition,  older  heads  of  household  and  those   with  more  years  of  coffee  experience  are  more  likely  to  belong  to  cooperatives.  Cooperative   members  also  have  significantly  higher  incomes  and  more  land  under  coffee  production   than  do  non-­‐‑members.     89   Table  13.  List  of  Coffee  Farming  Practices   Practice   Definition   Pest   Household  controls  pests  in   Management   coffee  fields.   Mulching       Erosion   preventing   walls   Water   retention   Household  uses  mulch  in  coffee   fields.       Household  has  built  erosion   preventing  walls  such   hedgerows  or  other  types  of  low   walls       Household  has  reforested   around  water  sources.     Water     Household  has  built  ponds  to   Harvesting   collect  rainfall.     Soil  Analysis   Household  has  conducted  soil   analysis  from  their  coffee  fields     Green   Household  has  planted  nitrogen-­‐‑ Manure   fixing  plants  in  their  coffee   fields.     Shade   Household  has  planted  shade   Management   trees  in  their  coffee  fields.       Pruning   Household  has  pruned  their   coffee  trees.   Stumping   Household  has  stumped  their   coffee  trees           90   Benefits   Proper  dosage  of  pesticides  can   help  prevent  pest  outbreaks,  such   as  leaf  rust  and  coffee  borer   beetle.     Mulch  helps  with  water  retention   and  with  weed  control.   Erosion-­‐‑preventing  walls  built  in   steep  hills  help  with  erosion  and   mudslides.     Reforestation  around  water   sources  help  with  water   evaporation  and  loss.     Water  harvesting  will  become   essential  during  droughts   Soil  analyses  help  determine  how   to  properly  fertilize  soils   Green  manure  is  an  organic   practice  that  helps  soil  fertility   Shade  helps  with  water  retention,   with  erosion  prevention,  with   temperature  control,  and   provides  alternative  income   opportunities     Pruning  coffee  trees  helps   improve  yields  and  control  pests     Coffee  trees  need  to  be  stumped   about  every  15  years,  when   productivity  drops.     The  main  purpose  of  this  study  is  to  assess  whether  cooperative  membership  increases  the   likelihood  of  adoption  of  sustainable  coffee  production  practices.  Specific  practices  of   interests  were  guided  by  the  literature  and  interviews  with  key  informants  in  the  coffee   sector  of  Nicaragua,  which  included  agronomists,  extension  officers,  and  researchers.    Ten   practices  emerge  from  these  conversations  and  literature  review:  proper  pest   management,  mulching,  erosion  preventing  walls,  water  retention  techniques,  water   harvesting,  use  of  soil  analysis,  green  manure  application,  shade  management,  pruning,  and   stumping;  a  definition  of  each  of  these  practices,  together  with  their  role  in  helping  build   adaptive  capacity  are  presented  in  Table  12.     Before  turning  to  an  econometric  analysis  of  the  impact  of  cooperative  membership  on   adoption  of  practices,  it  is  useful  to  compare  how  the  rate  of  adoption  of  these  practices   differs  amongst  cooperative  members  and  non-­‐‑members.     Table  14.  Comparison  of  Adopted  Practices  by  Cooperative  Membership     Practice   Pruning   Stumping   Water  Harvesting   Water  Retention   Soil  Analysis   Pest  Management   Mulching   Green  Manure   Shade  Management   Retention  Walls   Cooperative     Member   No                         (%)   86.05   72.09   31.78   80.62   13.95   53.49   58.14   24.81   87.6   51.94   Yes                         n   (%)   (N=236)   91.59   209   84.11   183   38.32   82   87.85   198   32.71   53   73.83   148   63.55   143   40.19   75   91.59   211   71.03   143   Chi-­‐‑Square   Test   Statistic   1.77***   4.85***   1.10***   2.26***   11.81***   10.35***   0.71***   6.38***   0.98***   8.92***   Note:  *,  **,  ***,  indicates  significance  at  10%,  5%,  and  1%  level  of  significance     91   Table  13  reveals  that  the  great  majority  of  the  sample  has  adopted  certain  practices,   notably:  shade  incorporation,  pruning,  stumping  and  reforesting  around  water  sources   (water  retention).  Yet  only  a  small  proportion  of  the  sample  has  adopted  other  practices   such  as  soil  analysis  or  planting  nitrogen  fixating  plants  (green  manure).    Perhaps  most   important  for  the  current  analysis  is  the  finding  that  the  rate  of  adoption  of  cooperative   members  is  consistently  higher  among  members  than  it  is  for  non-­‐‑members,  although  the   differences  are  not  always  significant.  Significantly  higher  rates  of  adoption  by  cooperative   members  are  found  in  stumping,  soil  analysis,  pest  management,  green  manure  application,   and  the  installation  of  retention  walls.     Turning  to  the  potential  economic  impact  of  cooperatives,  assessing  this  relationship  is  a   more  difficult  task  due  to  potential  endogeneity  problems  associated  with  program   placement  and  selection  bias.  Where  farmers  self-­‐‑select  into  producers’  cooperatives,  their   unobserved  household  characteristics  may  systematically  differ  from  non-­‐‑members.    Many   studies  have  chosen  to  treat  cooperative  membership  as  exogenous,  and  a  few  have  used   propensity  score  matching  (Verhofstadt  and  Maertens,  2014a  and  2014b;  Abebaw  and   Haile,  2013),  and  treatment  effect  models  (Weber,  2011),  to  control  for  this  endogeneity.     The  approach  used  in  this  study,  described  below,  is  relatively  new  for  this  type  of  analysis   and  it  offers  a  simple  yet  effective  way  to  control  for  the  potential  endogeneity  of   cooperative  membership  (Wooldridge,  2015).     I  employ  the  control  function  (CF)  approach  to  control  for  systematic  differences  between   cooperative  members  and  non-­‐‑members.  This  approach  is  useful  when  membership     92   participation  is  non-­‐‑linear,  as  CF  estimators  are  more  precise  and  robust  than  two-­‐‑stage   least  squares  (2SLS)  (Rijkers  et  al.,  2010)  estimators.    A  drawback  from  the  CF  method,   however,  is  that  it  forces  us  to  make  implicit  distributional  assumptions  that  are  difficult  to   test  (Rijkers  et  al.,  2010).       I  use  the  control  function  method  to  alleviate  the  self-­‐‑selection  bias  of  cooperative   membership.  This  approach  includes  extra  variables  in  the  empirical  specification  to   condition  out  the  variation  in  the  unobserved  factor  that  is  not  independent  of  the   endogenous  variable  (Petrin  and  Train,  2010).    I  follow  Wooldridge’s  (2015)  approach  for   handling  discreet  endogenous  explanatory  variables  using  the  CF  method.       A  two-­‐‑stage  CF  approach  requires  use  of  instrumental  variables  (IV)  to  test  for   endogeneity.    The  instrumental  variable  is  a  binary  variable  that  indicates  whether  the   producer  was  a  cooperative  member  in  2013  (two  years  prior  to  data  collection).    The  IV   was  tested  and  was  found  to  be  valid;  in  other  words,  it  was  correlated  with  the   endogenous  variable  (current  cooperative  membership  status)  but  was  uncorrelated  with   𝜀,  the  error  term  in  the  explanatory  model.    The  first  stage  involves  regressing  the   instrumental  variable  on  the  suspected  endogenous  variable  in  a  probit  model  (eq.  1).    In   the  second  stage,  the  generalized  residuals  from  the  model  in  the  first  stage  are  introduced   as  an  explanatory  variable  into  the  structural  model  (eq.  3).           93   Stage  1:   𝜋?∗ = α𝑧? + 𝜈, 𝑖 = 1, … . , 𝑛   (1)     Stage  2:   𝑌? = 𝛽𝑋? + 𝛽𝜋? +   𝑣? + 𝜀, 𝑖 = 1, … . , 𝑛   (2)       In  the  first  stage  𝜋?∗  is  a  binary  variable  indicating  whether  individual  i  belongs  to  a   cooperative  or  not  by  the  time  of  the  study,  𝑧?  is  the  instrumental  variable  indicating   whether  individual  i  was  a  cooperative  member  in  2013,  and  𝜈  is  the  error  term  which  will   be  used  in  the  second  stage  of  the  analysis.     In  the  second  stage  𝑌?  represents  the  number  of  practices  adopted  by  the  household   (presented  in  Table  2)  for  farmer  i,  ranging  from  0  practices  to  10,  𝑋?  is  a  vector  of   household  and  farm  characteristics,  𝜋?∗  is  a  dummy  variable  indicating  whether  the  farmer   belongs  to  a  cooperative,  𝛽  and  𝛼  are  a  vector  of  parameters  to  be  estimated  by  the  model,   𝜈  ?  is  the  generalized  error  term  estimated  in  the  first  stage,  and  𝜀  is  the  error  random  term.       The  degree  to  which  cooperative  membership  affects  the  adoption  of  sustainable  coffee   production  practices  is  studied  in  the  second  stage  of  the  analysis,  using  ordered  probit   model  (OPM)6.    Ordered  probit  models  allow  us  to  estimate  discreet  dependent  variables   6  An  OPM  is  employed  in  this  study,  in  lieu  of  multinomial  or  poisson  regressions,  because   it  allows  us  to  make  distinctions  between,  for  example,  farmers  who  adopt  only  one   practice  versus  those  who  adopt  multiple  practices  in  combination,  whereas  the  alternative   models  treat  the  number  of  practices  adopted  as  a  count  variable,  assuming  that  the  events   have  the  same  probability  of  occurrence  (Wollni  et  al.,  2010).    The  probability  of  adopting   the  first  practice,  however,  could  differ  from  the  probability  of  adopting  a  second  or  third   practice.     94   with  multiple  levels  in  which  order  matters  and  it  is  assumed  to  be  incremental  with   unknown  magnitude.       The  econometric  specification  for  this  model,  estimated  in  the  second  stage  of  the  control   function  approach  is  the  following:       𝑦? = β* 𝐶𝑜𝑜𝑝𝑀𝑒𝑚𝑏𝑒𝑟 + βE log 𝐼𝑛𝑐𝑜𝑚𝑒 + βF 𝐴𝑟𝑒𝑎 + βO 𝐻𝐻𝑠𝑖𝑧𝑒 + βR 𝐻𝐻𝑆𝑒𝑥 + βY 𝐻𝐻𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 + β\ 𝐻𝐻𝐴𝑔𝑒 + β] 𝑅𝑎𝑑𝑖𝑜   +  𝑣? +   𝑒?     (3)     Where  𝑦?d  represents  the  number  of  production  practices  adopted  by  producer  i,  and  is   modeled  with  household  characteristics  such  size,  age,  education  level,  and  sex  of   household  head;  farm  characteristics  such  as  area  under  coffee  production;  and  other   forms  of  capital,  such  as  income  and  ownership  of  a  radio.  Radio  ownership  is  included  in   the  model  because  many  rural  households  rely  on  them  to  obtain  news  and  weather   forecasts.  The  significance  of  cooperative  membership  is  explored  by  introducing   CoopMember  in  the  model,  the  binary  indicator  that  established  whether  the  producer   belongs  to  a  cooperative.  The  endogeneity  of  cooperative  membership  is  controlled   through  𝑣? ,  the  generalized  residuals  estimated  in  the  first  stage  of  the  CF  approach.       Results  and  Discussion   Table  14  shows  the  results  from  the  ordered  probit  model,  where  the  dependent  variable   represents  the  degree  of  adoption  of  the  10  practices  described  above.       95   Table  15.  Ordered  Probit  Model  Results   Practice  Intensity   Ln(Income)   Area   HH  Size   Cooperative   Sex   Education   Age   Radio   𝑣?   N   Log  likelihood   LR  chi2(10)     Prob  >  chi2   Coeff.   St.  Error   0.042   0.036   -­‐‑0.092   0.991   -­‐‑0.227   0.076   0.002   0.264   -­‐‑0.318   212   -­‐‑411.53   54.05   <0.000   0.089   0.007   0.035   0.377   0.159   0.022   0.005   0.148   0.241                                                                 ***   ***     ***     *                                   Note:  *,  **,  ***,  indicates  significance  at  10%,  5%,  and  1%  level  of  significance     The  estimated  coefficients  in  Table  14  predict  the  changes  in  the  probability  of  adoption.  I   find  evidence  suggesting  that  the  probability  of  adopting  a  higher  number  of  practices   increases  with  each  additional  year  of  education,  and  for  households  that  own  a  radio;  and   that  the  probability  of  adopting  a  higher  number  of  practices  decreases  with  an  increase  in   the  number  of  household  members.  The  variable  of  interest  is  how  cooperative   membership  affects  the  probability  of  adoption,  and  the  results  provide  strong  evidence   suggesting  that  the  probability  of  adoption  is  higher  for  cooperative  members  than  for  non-­‐‑ cooperative  members.     These  results  support  the  hypothesis  that  farmers  who  belong  to  cooperatives  will  be   better  prepared  to  combat  the  impacts  of  climate  change,  due  to  their  adoption  of  a  higher   number  of  practices  that  give  them  greater  adaptive  capacity.    The  above  model,  however,     96   does  not  differentiate  between  the  quality  or  importance  of  practices,  rather,  it  looks  at   how  intensively,  overall,  farmers  pursue  a  broad  regime  of  sustainable  practices.    A  closer   look  at  the  data  provides  further  insight  on  the  role  of  cooperatives  in  their  support  and   promotion  of  practices  to  coffee  farmers.         Characterization  of  Production  Practices.    Production  practices  can  be  characterized   differently,  from  practices  that  require  high  labor  investments  to  practices  that  require   high  capital  investments.    Households  that  have  access  to  capital  may  be  more  likely  to   adopt  capital-­‐‑intensive  practices,  while  household  with  limited  capital  might  have  access  to   more  labor  and  thus  may  be  more  likely  to  adopt  practices  that  require  a  greater   investment  of  household  labor.    Understanding  how  these  differences  play  out  will  give  us   more  insight  to  whether  and  why  households  adopt  certain  practices  and  not  others.       To  capture  some  of  these  underlying  structural  differences,  a  factor  analysis  was  conducted   using  the  10  sustainable  coffee  production  practices  included  in  the  study.    From  this   analysis,  three  factors  were  extracted,  grouping  the  practices  based  on  common   characteristics  as  presented  in  Table  15.                 97   Table  16.  Characterization  of  Production  Practices   Factor  1:   Input  Application     Practices  that  improve   productivity  of  coffee  through   input  application  and  soil   fertility.   Factor  2:   Field  Management   Practices   Practices  focused  on  better  field   management  and  plant  health.   Factor  3:   Practices  focused  on  improved   Water  Conservation   water  conservation  and   Practices   management   1.  Soil  Analyses  from   samples   2.  Pesticides  procurement            and  application     3.  Mulch  procurement  and   application     4.  Green  Manure   procurement  and   application   1.  Pruning   2.  Stumping   3.  Shade  Incorporation   and  Management   (keeping  it  at  40%)     1.  Reforestation  around   water  sources   2.  Water  Harvesting   (building  ponds  for   irrigation)   3.  Building  retention  walls   or  hedgerows     The  first  factor  consists  of  practices  relevant  to  improved  soil  and  plant  fertility,  through   the  application  of  inputs  and  the  analysis  of  soils.    The  second  factor  consists  of  practices   relevant  to  field  management  through  the  care  of  coffee  trees  and  the  use  of  shade  in  the   field.    The  final  group  consists  of  practices  related  to  the  conservation  and  management  of   water  resources.  The  use  of  retention  walls  to  protect  soils  from  erosion  was  initially   grouped  with  practices  in  Factor  1,  but  given  its  thematic  relevance,  I  moved  it  to  the  third   group  after  ensuring  its  positive  and  high  correlation  with  the  water  conservation  practices   in  the  factor  analysis.         98   Using  this  categorization,  three  separate  ordered  probit  models  were  estimated  to   determine  whether  there  are  differences  in  the  determinants  of  adoption  for  the  different   types  of  practices.    Most  notably,  I  proceed  to  test  whether  cooperative  membership  is  a   significant  determinant  for  any  or  all  types  of  practices.       The  first  model  looks  at  the  determinants  of  adoption  of  input-­‐‑oriented  practices,  where   the  dependent  variable  ranges  from  0  to  4  in  a  scale  of  intensity  of  adoption,  based  on  the   number  of  practices  adopted  in  this  category.    These  practices  are  often  subsidized  by   cooperatives  or  by  public  and  private  agencies  through  the  provision  of  credit,  subsidized   extension  services  and/or  inputs.    I  hypothesize  that  households  with  higher  income  and   higher  education  levels  will  be  more  likely  to  adopt  these  types  of  practices.    Households   with  higher  income  will  have  the  capital  to  do  so,  and  households  with  higher  education  are   more  likely  to  be  literate  and  able  to  access  information  and  other  resources,  giving  them  a   better  understanding  of  the  effects  of  adoption  on  productivity.         The  second  model  measures  the  determinants  of  adoption  of  practices  involving  field  and   plant  management,  the  dependent  variable  measures  the  intensity  of  adoption  of  these   practices  and  it  ranges  from  0  to  3.    These  are  practices  that  often  require  high  labor   dedication.  I  hypothesize  that  bigger  households  and  households  with  higher  income  will   be  more  likely  to  adopt  these  practices  as  they  have  the  means  to  allocate  household  labor   or  to  hire  labor.     Finally,  in  the  third  model  I  measure  the  determinants  of  adoption  of  water  conservation   practices,  which  range  in  intensity  from  0  to  3.    These  practices  are  especially  relevant,     99   given  their  potential  for  climate  change  mitigation  strategies.    I  hypothesized  that   households  with  higher  income  and  higher  education  will  be  more  likely  to  have  adopted   these  practices.    The  overarching  hypothesis  is  that  cooperative  membership  is  positive   and  significant  in  all  three  models,  particularly  in  the  third  one,  because  it  consists  of   practices  that  are  not  yet  commonly  used  in  the  coffee  sector,  and  are  in  the  early  stages  of   adoption.    Results  from  these  analyses  are  presented  in  Table  16.     Table  17.  Ordered  Probit  Model  Results  for  Disaggregated  Practices   Variable   Ln(income)   Area   HH  Size   Cooperative   Sex   Education   Age   Radio   𝑣?   N   Log  likelihood   LR  chi2(9)     Prob  >  chi2   Pseudo  R2   (1)  Input   Practices   (2)  Field   Practices   0.044***   0.019***   -­‐‑0.081***   0.469***   -­‐‑0.121***   0.048***   -­‐‑0.006***   0.226***   0.029***   212***   -­‐‑305.1***   31.90***   0.0002***   0.049***   -­‐‑0.090***   0.074***   -­‐‑0.109***   0.644***   -­‐‑0.241***   0.086***   0.005***   0.367***   -­‐‑0.264***   212***   -­‐‑168.4***   32.97***   0.0001***   0.089***   (3)  Water   Practices   0.079***   0.026***   0.004***   1.183***   -­‐‑0.227***   0.062***   0.004***   0.096***   -­‐‑0.615***   212***   -­‐‑247.5***   31.55***   <0.0002***   0.059***   Note:  *,**,***,  indicates  significance  at  10%,  5%,  and  1%  level  of  significance     Results  from  these  models  provide  further  insight  into  the  role  of  cooperative  membership   in  the  adoption  of  production  practices.  I  find  that  cooperative  membership  has  a   significant  effect  on  adoption  only  in  the  third  model.    But  before  discussing  each  model  in     100   greater  depth,  we  compute  the  marginal  effects  of  the  significant  variables  to  make   interpretation  of  the  coefficients  easier,  these  marginal  effects  are  presented  in  Table  17.     Table  18.  Marginal  Effects  of  Significant  Variables  on  Adoption  Intensity   Intensity   (1)  Input  Practices   of   HH   Practice   Educ   Size   (3)  Water   Practices   (2)  Field  Practices   Area   HH   Size   Educ   Radio   Coop   Educ   0   *0.014   -­‐‑0.008   -­‐‑0.002   *0.004   -­‐‑0.003   -­‐‑0.012   -­‐‑0.148   -­‐‑0.001   1   *0.017   -­‐‑0.011   -­‐‑0.009   *0.013   -­‐‑0.01   -­‐‑0.043   -­‐‑0.249   -­‐‑0.015   2   -­‐‑0.005   *0.003   -­‐‑0.014   *0.020   -­‐‑0.016   -­‐‑0.068   *0.063   *0.005   3   -­‐‑0.015   *0.008   *0.025   -­‐‑0.037   *0.029   *0.123   *0.334   *0.017   4   -­‐‑0.012   *0.066                 Model  1  looks  at  the  determinants  of  adoption  of  practices  that  help  improve  health  and   soil  nutrition  of  coffee  fields  through  the  application  of  inputs.  I  find  that  producers  with   higher  education  levels  are  more  likely  to  adopt  and  that  household  size  is  a  significant  and   negative  determinant  of  adoption.  This  runs  counter  to  our  hypothesis  that  larger   households  are  able  to  allocate  more  household  labor  to  their  farms,  and  hence  are  more   likely  to  adopt  these  types  of  practices.  Further  studies  should  look  at  household   dependency  ratios,  or  the  number  of  active  adults,  as  these  results  could  represent   households  with  a  low  proportion  of  active  members  who  are  able  to  support  farm  efforts.     I  find  that  each  additional  year  of  education  improves  the  odds  of  adoption  of  all  four   practices  in  this  first  model  by  6.6  percentage  points,  and  that  for  each  additional   household  member  the  odds  of  adoption  of  all  four  practices  decrease  by  1.2  percentage   points.           101   Model  2  looks  at  the  determinants  of  adoption  of  field  management  practices,  these  include   the  use  and  management  of  shade,  and  pruning  and  stumping  of  coffee  trees.    In  this  model   I  see  three  variables  that  emerge  as  positive  and  significant:  area  under  coffee  production,   education  and  ownership  of  a  radio.    Household  size  surprisingly,  as  in  the  first  model,  is  a   negative  and  significant  determinant  of  adoption.    The  practices  included  in  this  model  are   practices  that  are  generally  considered  to  require  higher  labor  demands,  and  I  expected   that  larger  households  would  have  more  available  labor  to  allocate  to  these  types  of   practices,  yet  the  results  suggest  something  different.    Households  that  do  not  own  a  radio   are  1.2%  more  likely  to  have  not  adopted  any  of  the  practices  in  this  category.  Each   additional  year  of  education  increases  the  odds  of  adopting  all  three  practices  by  2.9%,  and   each  additional  manzana  of  land  increases  the  same  odds  by  2.5  percentage  points.     In  the  third  and  final  model  I  measure  the  determinants  of  adoption  of  practices  that   improve  water  retention  and  conservation.    This  set  of  practices  is  particularly  relevant  to   agricultural  households  facing  increasing  rates  of  droughts  and  extreme  rainfall.    In  2010,   for  example,  Nicaragua  experienced  intense  and  sustained  rainfall  in  which  entire  crops   were  wiped  out,  this  was  followed  by  a  drought  in  2012  which  saw  historically  low  rainfall,   also  resulting  in  massive  crop  losses  (Gourdji  et  al.,  2014).    The  incidence  of  extreme   weather  events  is  projected  to  increase  with  climate  change,  making  it  critical  to  plan  for   agricultural  adaptation.    Cooperative  membership  and  education  are  the  two  variables  that   emerge  as  significant  and  positive  in  this  model.    I  find  that  non-­‐‑cooperative  members  are   14.8%  more  likely  than  members  to  have  no  practices  adopted  in  this  category,  and  24.9%   more  likely  to  have  only  adopted  one  practice,  in  comparison  with  cooperative  members.     102   By  contrast,  I  find  that  members  are  6.3%  more  likely  to  have  adopted  two  out  of  the  three   practices  and  33.4%  more  likely  to  have  adopted  all  three  practices  in  this  category  than   are  non-­‐‑members.    These  results  are  encouraging,  as  water  conservation  and  harvesting   can  supply  supplemental  irrigation  during  droughts,  and  perhaps  even  more  important,   sufficient  soil  moisture  helps  crops  cope  with  higher  temperatures  through  transpirational   cooling  (Lobell  et  al.,  2011).         Cooperative  membership  does  not  emerge  as  significant  in  models  1  and  2  and  this  is  a   surprising  finding  given  the  overwhelming  literature  that  finds  that  cooperative   membership  to  be  a  significant  determinant  of  adoption  of  new  technologies  and   agricultural  practices.    Three  possible  explanations  are  considered  to  help  account  for   these  differences.    First,  some  studies  that  measure  cooperative  membership  as  a   determinant  of  adoption,  do  not  account  for  the  potential  endogeneity  of  membership,   possibly  misattributing  significance  to  membership  when  none  actually  exists.    Second,   many  studies  that  look  at  the  determinants  of  adoption  of  technologies  and  practices  often   stop  after  modeling  practices  in  an  aggregate  manner.  This  study  is  different  in  that  a  factor   analysis  is  used  to  identify  and  extract  the  underlying  structural  characteristics  that  unify   groups  of  practices  and  give  us  insights  into  the  determinants  and  patters  of  adoption  of   practices.    And  finally,  although  cooperative  membership  is  not  statistically  significant  in   these  two  models,  it  is  important  to  note  that  the  direction  of  the  relationships  are  positive   and  thus  consistent  with  the  literature.  We  expect  that  a  study  replication  with  a  larger   sample  could  find  that  cooperative  membership  does  in  fact  emerge  as  a  significant   determinant  of  adoption  across  all  groups  of  practices.    It  is  important  to  mention  that  this     103   lack  of  significance  could  be  attributed  to  the  already  high  adoption  rate  of  these  practices.   As  shown  at  the  outset,  a  large  proportion  of  farmers  in  Matagalpa  have  already  adopted   the  majority  of  these  practices,  making  it  more  difficult  to  discern  the  effects  of  cooperative   membership.       The  generalized  residuals  variable  used  to  control  for  the  endogeneity  of  cooperative   membership  is  significant  only  in  the  third  model.  This  implies  that  there  are  unidentified   characteristics  that  can  explain  the  adoption  of  practices  that  promote  water  conservation,   variables  that  are  not  modeled  in  this  analysis.     Conclusion   This  study  analyzes  the  determinants  of  adoption  of  sustainable  production  practices  by   coffee  farmers  in  Nicaragua  and  it  looks  at  the  degree  to  which  coffee  cooperatives  play  a   significant  role  in  increasing  the  capacity  of  farmers  to  adopt  these  practices.  Past  research   has  shown  that  farmers  who  belong  to  farmers’  associations  or  cooperatives  are  financially   better  off  than  those  who  do  not  (Jena  et  al.,  2012;  Wollni  and  Zeller,  2007),  and  that   cooperative  membership  is  a  significant  determinant  of  adoption  of  technologies  and   production  practices  (Verhofstadt  and  Maertens,  2014a;  Wollni  et  al.,  2010).        I  find  that   cooperative  membership  is  a  positive  and  significant  determinant  of  adoption  of   sustainable  production  practices  overall,  and  more  significantly,  that  farmers  who  belong   to  cooperatives  have  higher  odds  of  adopting  practices  that  help  with  water  conservation.       104   Amongst  all  the  practices  studied  in  this  research,  the  water  conservation  practices  are   perhaps  the  most  relevant  to  climate  change  adaptation.    Reforestation  around  water   sources  is  one  of  these  practices,  this  practice  helps  to  protect  water  sources,  such  as   streams,  ponds,  and  wells;  it  also  helps  to  prevent  erosion  and  water  runoff,  and  it  helps  to   protect  the  biodiversity  of  the  area.  A  second  practice  is  the  use  of  retention  walls,  these   walls  play  an  important  role  in  preventing  soil  erosion.    With  seasons  marked  with  longer   periods  of  drought  followed  by  short,  erratic,  and  severe  rainy  seasons,  fields  located  on   steep  slopes  are  particularly  susceptible  to  potential  mudslides  and  erosion  and  these  walls   can  help  diminish  some  of  these  risks.    Finally,  water  harvesting  is  a  technology  that  helps   farmers  to  collect  rainwater  and  ground  water  for  irrigation  of  fields,  a  practice  that  will   become  increasingly  important  with  drought  becoming  a  more  common  occurrence  in  the   region.     Future  research  should  develop  an  institutional  framework  to  analyze  the  emergence  of   cooperatives  in  Nicaragua  and  study  how  they  have  shaped  farmers’  perceptions  of   collective  action  and  their  likelihood  of  joining  one.    Further  research,  which  relies  on  both   qualitative  and  quantitative  measures,  could  help  us  evolve  the  understanding  of  how   cooperatives  operate  and  how  they  work  with  their  members.       The  policy  implications  of  this  study  are  relevant  and  applicable  to  many  coffee-­‐‑producing   countries  around  the  world.    In  order  to  meet  the  growing  global  demand  for  coffee  and  to   prevent  the  negative  economic  and  environmental  impacts  of  climate  change  on  coffee     105   producers,  cooperatives  and  other  agricultural  organizations  can  be  instrumental  in   developing  strategies  that  reach  producers  and  helping  them  to  build  adaptive  capacity  in   response  to  these  changes.    Climate  change  will  affect  the  suitability  of  coffee  growing   regions  around  the  world;  indeed  the  pressures  from  climate  change  may  force  some   producers  to  move  out  of  coffee  production  entirely,  but  those  who  remain  will  need   climate  adaptation  support  and  cooperatives  are  strategically  well  placed  to  help  provide   such  support.                                         106         REFERENCES     107   REFERENCES           Abebaw,  Degnet,  and  Mekbib  G.  Haile.  "The  impact  of  cooperatives  on  agricultural   technology  adoption:  Empirical  evidence  from  Ethiopia."  Food  policy  38  (2013):  82-­‐‑ 91.     Baca,  MarĂ­a,  Peter  Läderach,  Jeremy  Haggar,  GĂśtz  Schroth,  and  Oriana  Ovalle.  "An   integrated  framework  for  assessing  vulnerability  to  climate  change  and  developing   adaptation  strategies  for  coffee  growing  families  in  Mesoamerica."  PloS  one  9,  no.  2   (2014):  e88463.     Barrett,   Christopher   B.   "Smallholder   market   participation:   concepts   and   evidence   from   eastern  and  southern  Africa."  Food  Policy  33,  no.  4  (2008):  299-­‐‑317.     Donovan,  Jason,  and  Nigel  Poole.  "Changing  asset  endowments  and  smallholder   participation  in  higher  value  markets:  Evidence  from  certified  coffee  producers  in   Nicaragua."  Food  Policy  44  (2014):  1-­‐‑13.     Fischer,  Elisabeth,  and  Matin  Qaim.  "Linking  smallholders  to  markets:  determinants  and   impacts  of  farmer  collective  action  in  Kenya."  World  Development  40.6  (2012):   1255-­‐‑1268.     Greene,  William  H.,  and  David  A.  Hensher.  Modeling  ordered  choices:  A  primer.  Cambridge   University  Press,  2010.     Gourdji,  Sharon,  et  al.  "Sustainable  Development  Opportunities  at  the  Climate,  Land,   Energy,  and  Water  Nexus  in  Nicaragua."  Center  for  Latin  American  Studies,  Working   Paper  33  (2014).     Jena,  Pradyot  Ranjan,  et  al.  "The  impact  of  coffee  certification  on  small-­‐‑scale  producers’   livelihoods:  a  case  study  from  the  Jimma  Zone,  Ethiopia."Agricultural   economics  43.4  (2012):  429-­‐‑440.     Laderäch,  Peter,  Carlos  Zelaya,  Oriana  Ovalle,  Samuel  Garcia,  Anton  Eitzinger,  and  Maria   Baca.  "Escenarios  del  Impacto  del  Clima  Futuro  en  Areas  de  Cultivo  de  Cafe  en   Nicaragua."  CIAT  Blog.  13  Mar.  2013.  Web.  http://dapa.ciat.cgiar.org/wp-­‐‑ content/uploads/2012/03/Informe-­‐‑Nicaragua-­‐‑final.pdf     Laderäch,  Peter,  et  al.  "Predicted  impact  of  climate  change  on  coffee  supply  chains."  The   Economic,  Social  and  Political  Elements  of  Climate  Change.  Springer  Berlin   Heidelberg,  2011.  703-­‐‑723.   Lobell,  David  B.,  et  al.  "Nonlinear  heat  effects  on  African  maize  as  evidenced  by  historical   yield  trials."  Nature  Climate  Change  1.1  (2011):  42-­‐‑45.     108     Mendez,  V.  Ernesto,  et  al.  "Agrobiodiversity  and  Shade  Coffee  Smallholder  Livelihoods:  A   Review  and  Synthesis  of  Ten  Years  of  Research  in  Central  America*."  The   Professional  Geographer  62.3  (2010):  357-­‐‑376.     Louhaichi,  Mounir,  et  al.  "Financial  incentives:  Possible  options  for  sustainable  rangeland   management?."  Journal  of  Environmental  Management  180  (2016):  493-­‐‑503.     Ovalle-­‐‑Rivera,  Oriana,  Peter  Läderach,  Christian  Bunn,  Michael  Obersteiner,  and  GĂśtz   Schroth.  "Projected  Shifts  in  Coffea  arabica  Suitability  among  Major  Global   Producing  Regions  Due  to  Climate  Change."  (2015):  e0124155.     Perfecto,  Ivette,  et  al.  "Shade  Coffee:  A  Disappearing  Refuge  for   Biodiversity."  BioScience  46.8  (1996).     Perfecto,  Ivette,  et  al.  "Shaded  coffee  and  the  stability  of  rainforest  margins  in  northern   Latin  America."  Stability  of  Tropical  Rainforest  Margins.  Springer  Berlin  Heidelberg,   2007.  225-­‐‑261.     Petrin,  Amil,  and  Kenneth  Train.  "A  control  function  approach  to  endogeneity  in  consumer   choice  models."  Journal  of  Marketing  Research  47.1  (2010):  3-­‐‑13.     Ponte,  Stefano.  "Thelatte  revolution'?  Regulation,  markets  and  consumption  in  the  global   coffee  chain."  World  development  30,  no.  7  (2002):  1099-­‐‑1122.     Rijkers,  Bob,  Caterina  Ruggeri  Laderchi,  and  Francis  Teal.  "Who  benefits  from  promoting   small  and  medium  scale  enterprises?  Some  empirical  evidence  from  Ethiopia."  Some   Empirical  Evidence  from  Ethiopia  (May  1,  2008).  World  Bank  Policy  Research   Working  Paper  Series,  Vol  (2008).     Valkila,  Joni.  "Fair  Trade  organic  coffee  production  in  Nicaragua—Sustainable  development   or  a  poverty  trap?."  Ecological  Economics  68.12  (2009):  3018-­‐‑3025.     van  Rikxoort,  Henk,  GĂśtz  Schroth,  Peter  Läderach,  and  Beatriz  RodrĂ­guez-­‐‑SĂĄnchez.  "Carbon   footprints  and  carbon  stocks  reveal  climate-­‐‑friendly  coffee  production."  Agronomy   for  Sustainable  Development  (2014):  1-­‐‑11.     Verhofstadt,  Ellen,  and  Miet  Maertens.  "Smallholder  cooperatives  and  agricultural   performance  in  Rwanda:  do  organizational  differences  matter?."Agricultural   Economics  45.S1  (2014a):  39-­‐‑52.     Verhofstadt,  Ellen,  and  Miet  Maertens.  "Can  Agricultural  Cooperatives  Reduce  Poverty?   Heterogeneous  Impact  of  Cooperative  Membership  on  Farmers'  Welfare  in   Rwanda."  Applied  Economic  Perspectives  and  Policy(2014b):  ppu021.     109   Vermeulen,  Sonja  J.,  et  al.  "Addressing  uncertainty  in  adaptation  planning  for   agriculture."  Proceedings  of  the  National  Academy  of  Sciences  110.21  (2013):  8357-­‐‑ 8362.     Virapongse,  Arika,  et  al.  "A  social-­‐‑ecological  systems  approach  for  environmental   management."  Journal  of  environmental  management  178  (2016):  83-­‐‑91.     Weber,  Jeremy  G.  "How  much  more  do  growers  receive  for  Fair  Trade-­‐‑organic   coffee?."  Food  Policy  36.5  (2011):  678-­‐‑685.     Wollni,  Meike,  David  R.  Lee,  and  Janice  E.  Thies.  "Conservation  agriculture,  organic   marketing,  and  collective  action  in  the  Honduran  hillsides."  Agricultural   Economics  41.3-­‐‑4  (2010):  373-­‐‑384.     Wollni,  Meike,  and  Manfred  Zeller.  "Do  farmers  benefit  from  participating  in  specialty   markets  and  cooperatives?  The  case  of  coffee  marketing  in  Costa   Rica1."  Agricultural  Economics  37.2-­‐‑3  (2007):  243-­‐‑248.     Wooldridge,  Jeffrey  M.  "Control  function  methods  in  applied  econometrics."  Journal  of   Human  Resources  50.2  (2015):  420-­‐‑445.               110   Chapter  5:  Conclusions     “Saving  our  planet,  lifting  people  out  of  poverty,  advancing  economic  growth...  these  are  one   and  the  same  fight.  We  must  connect  the  dots  between  climate  change,  water  scarcity,  energy   shortages,  global  health,  food  security  and  women's  empowerment.  Solutions  to  one  problem   must  be  solutions  for  all.”       Ban  Ki-­‐‑Moon       From  the  chapters  in  this  dissertation,  a  picture  begins  to  emerge,  describing  a  sector  in   great  peril,  yet  with  high  potential.    Coffee  in  Nicaragua  is  the  main  source  of  income  for   thousands  of  smallholder  producers,  and  is  the  country’s  most  important  agricultural   export.    Given  the  vulnerability  of  coffee  to  the  impacts  of  climate  change  there  is  a   consensus  amongst  scientists,  development  practitioners  and  policy  makers  that   adaptation  strategies  are  imperative  and  in  some  cases  urgently  needed  to  ensure  a   sustainable  future  for  the  coffee  value  chain,  and  especially  for  the  producers  who  depend   on  coffee  production  as  their  main  source  of  income.     The  dissertation  starts  with  a  broad  description  of  the  characteristics  of  coffee  farmers  in   Matagalpa,  exploring  their  capacities  and  incentives  for  climate  change  adaptation,   including  an  exploration  of  their  attitudes  towards  risk.  It  continues  with  an  analysis  of  the   conditions  under  which  farmers  choose  to  incorporate  shade  into  their  coffee  fields;  a     111   practice  that  helps  to  promote  biodiversity  conservation  and  known  to  mitigate  some  of   the  impacts  of  climate  change.    Finally,  I  conclude  by  analyzing  how  and  the  degree  to   which  cooperatives  support  farmers  in  the  adoption  of  improved  production  practices  that   enable  them  build  adaptive  capacity  to  climate  change.     How  will  these  coffee  producers  cope  with  higher  temperatures,  droughts,  and  erratic  and   extreme  rainfall?  There  is  no  doubt  that  the  institutional  capacity  of  organizations  within   the  sector  will  play  an  important  role.    The  research  shows  that  farmer  cooperatives  can   and  do  provide  many  services  to  farmers,  from  input  provision  to  trainings  and  extension   services.    And  I  have  learned  that  farmers  who  belong  to  cooperatives  tend  to  adopt   practices  that  help  them  build  adaptive  capacity  to  climate  change,  in  particular,  through   the  adoption  of  water  conservation  practices.    Yet  I  have  also  learned  that  about  74%  of   farmers  who  belong  to  cooperatives  are  not  satisfied  with  the  services  that  their   cooperatives  provide  and  that  when  the  2012  leaf  rust  outbreak  began  damaging  coffee   trees  and  reducing  yields,  the  response  from  cooperatives  and  other  organizations  within   the  sector,  was  seen  as  woefully  insufficient.    Farmers  reported  that  pesticides  were   provided  that  did  not  work  to  eliminate  the  leaf  rust,  and  that  without  an  effective  solution,   the  leaf  rust  spread  and  resulted  in  a  catastrophic  yield  reduction  and  plant  loss.    Nearly   75%  of  farmers  in  the  sample  reported  losses  due  to  plant  diseases,  many  of  them   uprooting  their  coffee  trees  and  establishing  varieties  reported  to  be  more  resistant  to  leaf   rust,  yet  of  lower  coffee  quality.       112   It  is  for  this  reason,  then,  that  building  better  institutional  capacity  within  the  organizations   that  serve  farmers  must  be  prioritized.    I  know,  from  this  work  and  from  a  review  of  the   literature,  that  organizations  can  help  farmers  in  measurable  ways,  such  as  through  the   provision  of  inputs  and  trainings,  as  well  as  more  indirectly  through  the  creation  of  social   capital  and  safety  nets.    I  have  also  observed  that  in  Nicaragua  issues  of  mismanagement   and  corruption  have  tarnished  the  reputation  of  many  of  these  organizations;  compounded   upon  this  are  problems  arising  from  the  leaf  rust  epidemic.    An  important  task  ahead,  then,   lies  in  strengthening  the  capacity  of  cooperatives  and  other  organizations  to  enable   farmers  to  cope  with  natural  shocks  as  they  become  more  challenging  and  more  frequent.     An  approach  that  incorporates  scientific  knowledge  on  effective  strategies  that  coffee   farmers  can  adopt,  together  with  institutional  capacity  building  for  the  organizations   already  in  place  to  support  improved  management  of  their  resources  must  be  implemented   together.     This  work  also  highlights  the  importance  of  developing  interventions  that  account  for  the   preferences  and  needs  of  marginalized  populations.    In  Nicaragua,  and  around  the  globe,   women  are  disadvantaged  in  their  access  to  goods  and  services.    The  women  in  the  sample   not  only  have  less  land  to  grow  coffee,  but  the  land  that  they  own  is  less  productive  and   yields  less  income.    Additionally,  these  women  are  significantly  more  food  insecure  than   their  male  counterparts.  Food  insecure  households,  defined  as  households  that  lack   sufficient  and  nutritious  food,  are  also  less  prone  to  making  riskier  choices,  I  find.  While   such  choices  may  be  beneficial  for  households  that  cannot  afford  to  compound  their   already  existing  vulnerabilities  with  added  risk,  for  other  households  it  may  mean  missing     113   out  on  potential  opportunities  brought  by  the  adoption  of  improved  technologies  and   production  practices,  opportunities  that  hold  potential  for  building  adaptive  capacity  in  the   face  of  a  changing  climate.     I  believe  that  a  multidimensional  and  customizable  approach  is  needed  in  support  of   farmer  organizations  in  a  position  to  promote  farm-­‐‑level  adaptive  capacity  to  climate   change.    What  works  for  some  may  be  ineffective  for  others,  and  special  attention  must  be   given  to  issues  of  equity  and  access.     Despite  the  vulnerability  of  coffee  growing  regions  to  declining  crop  suitability  due  to   climate  change,  there  is  also  great  potential  in  the  response  of  the  sector  to  this  threat.     During  the  years  in  which  the  demand  for  coffee  was  growing,  many  policies  promoted  the   intensification  of  coffee  production,  endangering  the  biodiversity  richness  that  traditional   coffee  farms  often  enjoyed.    The  results  from  this  research  suggest  that  if  the  price  of  coffee   goes  up,  increasing  coffee  farmer  incomes,  farmers  will  be  more  willing  to  introduce  shade   trees  into  their  farms.    This  is  an  important  innovation  that  helps  at  all  levels  of  the  value   chain  and  beyond.    It  improves  the  suitability  of  the  farms  for  coffee  production,  which  in   turn  protects  the  livelihoods  of  coffee  farmers  (through  income  generation  and  alternative   food  sources).    Additionally,  planting  shade  trees  helps  to  conserve  biodiversity,  protect  the   soils,  and  serves  as  a  refuge  for  migratory  species.  With  an  eye  to  the  longer-­‐‑term  viability   of  the  country’s  coffee  sector,  there  is  good  reason  to  believe  that  even  small  coffee  price   incentives  for  shade  grown  coffee  will  result  in  positive  human  and  natural  synergies  and  a   more  sustainable  future  for  coffee  in  Nicaragua’s  Matagalpa  region.     114 Â