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The installation of supercritical once through boilers

in modern power plants has presented problems of design and

control, due to the high steam pressures and temperatures

of operation. Sudden changes of the electrical load that

occur during normal Operation may cause fluctuations of the

steam conditions, which in turn may result in excessive wear

of metal parts and in losses of thermal efficiency.

The highly non linear and inter-related processes that

take place in supercritical once through boilers require a

non linear mathematical model in order that the system's

dynamic response to various changes in the operating condi-

tions may be adequately described.

The objective of this study is to develop a mathemati-

cal model of general applicability to all supercritical once

through boilers.

The model includes a mathematical formulation derived

from the physical Laws of Conservation and includes thermo—

dynamic relationships and transport properties of the flue



Itzhak Gotlieb

gas and of the working fluid (water or steam).

The system of non linear partial differential equations,

together with a non linear algebraic formulation of the Equa-

tion of State for water and steam, is solved numerically by

the method of Finite Differences with the aid of a digital

computer.

The model includes a computer program which solves for

the variation with respect to both time and space of the

fluid pressure, temperature, velocity, and specific volume,

and of the gas temperature.

The Equations of State, which are presented in this re-

port as subroutines of the computer program, are based on the

1967 IFC Formulation of Thermodynamic Properties of Steam for

Industrial Use.

The open-loop, dynamic response of the system to varia-

tion of the fluid flow rate, temperature and pressure, and to

variation of the fuel firing rate and of the burner tilt are

described. No limitations on the magnitude of the disturban—

ces that may be solved for, or on their functional form, were

found. A CDC-6500 digital computer required 80 seconds for

the computation of 100 seconds of response time. Thus, the

capability of the model to provide rapid solutions of the

system's dynamic was demonstrated.
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INTRODUCTION

In the normal operation of power plants, variations of

load and other types of perturbations may result in undesi-

rable fluctuations of the power output and of the steam con—

ditions at the boiler outlet. This requires effective means

for controlling the power generation process, particularly

where the systems are designed to Operate at high steam pres—

sures and temperatures.

The development of once through boilers for central

power station, operating at supercritical pressures and high

temperatures, has brought about improved thermal efficiencies

and reduced costs. The trend to operate at still higher tem—

peratures and pressures is subject to limitations of present

materials of construction. Fluctuations of the steam tempera-

ture during a transient state, resulting from some perturbation

of the operating conditions, may cause excessive wear in the

tube circuitry and in the turbine, as well as reduced efficien-

cies.

The purpose of this work is to develop a mathematical

model of a supercritical once through boiler. The model should

provide a description of the dynamics of the boiler which is



the most important and the least well understood part of the

power plant.

The model is to be of general applicability to all super-

critical once through boilers, rather than to a specific

design. The model should include: a) A mathematical formu—

lation of the process dynamics; b) A numerical method for

solving dynamic problems, involving various types of distur—

bances; c) A computer program which can perform the numerical

solution.

The mathematical formulation is to be derived from the

physical laws of conservation, from the thermodynamic equation

of state for water and steam, and from correlations of trans-

port properties of the working fluid and of the gas.

Considering the highly non—linear nature of the equation

of state, particularly in the neighborhood of the critical

point, a linearized approach is not expected to provide a use—

ful tool for control. A linearized model is applicable to

small perturbations only, whereas in practice large scale

disturbances are normally encountered. Therefore it is requi—

red that the equations should not be linearized, and that the

numerical method for solving them would allow rapid computa—

tion, so that the model may be used for control purposes.



CHAPTER 1: BACKGROUND

The subject of power generation has been covered exten-

sively in the literature. The reader may find that general

information, describing aspects of design, construction,

Operation, and control of power plantslz, is a useful back—

ground for this work.

This Chapter contains a description of some basic fea—

tures of once through boilers ( §1.1), and a discussion of

factors affecting the rate of combustion in the boiler fur—

nace ( §1.2).

The various modes of heat transfer, and the laws govern-

ing its rate, are discussed in §1.3.

The laws of conservation of mass, momentum, and energy

are stated in §l.4 in the form of the differential equations

of change. Previous work on modeling of once through boilers

is reviewed in §1.5. In each case, the major simplifying

assumptions involved in the simulation are given, and the

applicability of the model is discussed.

A qualitative description of the equations of state for

water and steam is given in §1.6. The explicit formulation

is given in Appendix C, as computer routines.



§ 1.1 The Once Through Boiler

In a once through boiler there is no recirculation of

the working fluid (water or steam) within the unit. In ele-

mental form, the boiler is merely a length of tubing through

which the fluid is pumped. Heat is applied, and the water

flowing through the tube is converted to steam, superheated

to the desired temperature at the outlet. In practice, a

single tube is replaced by a multiplicity of small tubes,

arranged to provide effective heat transfer.17

In modern central station boilers, most, if not all, of

the furnace enclosure consists of waterwalls, which are expo-

sed to high flame and gas temperatures. The walls are made

up Of panels with parallel tube circuits, all arranged in a

single upward pass. They are fed from furnace wall inlet

headers at the lower end, and terminate in the outlet headers

at the upper end.17

The increased thermal efficiencies Obtained by Operation

at higher steam pressures and temperatures, made the elimina—

tion of the steam drum a necessity, and enhanced the develop—

ment of the once through boiler. Rising fuel costs provide

further incentive for operation at still higher temperatures

and at supercritical pressures. This trend is subject to

limitations of tube materials and costs. Thus, Operation at

3500 psi and lOOOOF (steam pressure and temperature at the



Superheater outlet) is widely accepted today in the design

Of central station boilers.

When steam is generated above the critical pressure

(3208 psi), there is no boiling, and the change of phase

occurs in a continuous manner. The corresponding changes in

the fluid properties (e.g., density, heat capacity) are more

moderate than in subcritical operation. As a result, the

distribution of flow in a bank of parallel tubes is not as

strongly influenced by variation in heat absorption. This

provides for further simplification of design by eliminating

the requirement of flow distribution devices.17 Significant

losses in plant efficiency result if the steam temperatures

fall below turbine nominal admission design values.16 Steam

temperature is controlled by desuperheating, gas recircula—

tion, regulation of firing rate, and burner tilting.16

The first two methods involve mixing of fluid or of gas

streams of different temperatures. Thermodynamically, this

results in a net "degradation" of energy, with subsequent

loss in thermal efficiency.

The nature of the combustion process is discussed in

§ 1.2. The flame propagation is considered rapid enough, so

that the dynamics of the fire is not important, and the heat

release in the furnace is taken as proportional to the firing

16

rate.

The change of heat absorption rate along the height of



the enclosure wall, in a typical pulverized—coal—fired fur-

nace, as affected by burner tilt, is shown in Figure 1.1.

average absorption rate

horizontal tilt

  

no tilt

up tilt ——————

   
down tilt -—-~—-—q_

  

 

 

 

Lower -—————a 100 Higher 
per cent average absorption rate

Figure 1.1: Furnace Heat Absorption Pattern, Tangential Firing

§ 1.2 The Combustion Process

Combustion is an exothermic oxidation reaction. In boil—

ers, the reaction vessel is the furnace, which is enclosed by



heat absorbing surfaces, and is provided with means for con-

tinuous discharge of the reaction products; namely, flue

gases and ash.

Fuel and air enter the furnace and are subjected to

rapid heating until the mixture ignites. The heat released

by combustion also serves to ignite the incoming fuel, and

the process sustains itself.

In the case of powdered-coal—fired furnaces, the reac—

tion mixture is heterogeneous. Considering a coal particle

suspended in the gaseous reaction mixture, the reaction may

be described as a three stage process:11

1) Oxygen from the gas phase diffuses towards the sur—

face Of the coal particle.

2) The oxygen adsorbs chemically on the particle's sur—

face and reaction occurs.

3) The reaction products desorb from the solid surface

and diffuse towards the bulk of the gas phase.

Some of the factors affecting the kinetics of this pro—

1,13
cess are: particle size; concentration of oxygen and

other gases (nitrogen, reaction products), in the bulk of

the gas phase and at the surface of the burning particle;

temperature variation from the bulk of the gas towards the

particle's surface, and within the particle; total pressure;

fuel quality and composition; local velocities Of the particle



and of the gas; diffusivities; heat capacities; viscosities;

etc.

The overall rate of combustion in the furnace depends on

11’15’32 the geometrical arrangementsome additional factors:

of the combustion chamber and of the heat absorbing surfaces;

total fuel to air ratio in the feed; fuel quality and parti—

cle size distribution; angle of firing (burner tilt), etc.

Some Of the factors enumerated above are strongly inter—

dependent. For example, the temperature field in the furnace

depends on the relative rates of heat generation by combus—

tion and of heat transfer within and out of the furnace.

This temperature distribution also affects the rates Of

heat transfer phenomena, as well as reaction kinetics para-

meters, and physical properties of the reaction components,

thus determining the rate of heat generation.

The flow characteristics in the furnace exert a profound

effect on the overall rate Of reaction. While it is improba—

ble that a rigorous detailed treatment of the complex flows

of practical furnaces can be carried out, it is essential

that the main features of real flows be taken into account.

Attempts to describe a furnace using "stirred tank"

models (thus neglecting transport resistances), have been

made.26 It was suggested that real furnaces might be repre-

sented by a combination of "stirred tank" and "plug flow"

1 . .

reactors.2 This could also serve as a model for the radiative



19
heat transfer.

Experimental methods, such as smoke table tests and 3—

dimensional water and air models, have been found useful for

. . . . 14

Visualizing flows in furnaces.

In conclusion, a rigorous analytical treatment of the

rate of reaction in a boiler furnace is not feasible at the

present time.

§ 1.3 Heat Transfer

Heat transfer in general, and in boilers in particular,

22,23,28,34
is the subject of many books and articles. The

basic laws expressing the rate Of heat transfer are:

1) Newton's law of convection

q = hAlkT ..... ............. (1-1)

2) Fourier's law of conduction in the x—direction

q=-kA%I 0.0000000000000000 (1-2)

3) Stefan-Boltzmann law of radiation

_ 4
q — e<IAT ... ..... .......... (1-3)

In the boiler, heat is transferred by some or all of

these mechanisms. Heat generated at the surface of a burning

coal particle is transferred by conduction towards the center

of the particle, by conduction and convection to the gas sur—

rounding the particle, and by radiation in all directions.
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Radiative heat flux is absorbed by gases, suspended fuel and

ash particles, and metal surfaces. Heat is carried by the

hot gas flowing in gross circulation, as well as in small

eddies due to turbulence. Heat absorbed at the tube walls'

surfaces, exposed to the hot gas, is transferred through the

metal wall by conduction and into the fluid stream by conduc-

tion and convection. Fresh fuel and air entering the furnace

are heated to the point of ignition by the three modes Of

heat transfer.

In all cases, local temperatures and velocities play a

dominant role in determining the rate of heat transfer.

For the purpose of studying the temperature distribution

in the gas, conduction is usually considered negligible. The

flow in the furnace being highly turbulent, gaseous thermal

conductivity is replaced by eddy thermal conductivity, which

is due to the mixing Of portions of gas of different tempera-

13
tures, by small scale eddies.

1 2

Heat transfer in the furnace is primarily by radiation. 3’ 4

The radiative heat flux from the bulk of the hot gas to the

13
absorbing walls, may be approximated by:

q=CAe(T‘;-Tf;) (1-4)

where A is the absorbing surface area, normal to the radiative

flux; 6 is the combined average emissivity of the cold surface

and of the flame. The emissivity of the flame depends on



ll

temperature, flame luminosity, and composition of the medium.

The emissivity of the metal walls depends on surface proper-

ties, the degree of slag accumulation, and the temperature.

C is the Stefan-Boltzmann constant. The wall temperature,

Tw , may be taken as that of the fluid inside the tube, with-

out introducing an appreciable error.

Whereas the most important radiative effect occurs

between the gas mass and the boundary walls, a significant

interchange of radiant heat occurs between the suspended par-

ticles and the absorbing components of the gas. This may be

accounted for in terms of absorption coefficients of the

gas.13

A treatment of heat transfer within a volume element 5V

Of the gas, which will take into account (i) heat generation

by combustion, and (ii) heat transport by radiation, conduc—

tion, and convection, will result in the equivalent of a

radiation field. An effective method for treating radiative

heat exchange for such elementary volumes is not available.

Approximations with varying degree of validity have been

attempted. It is claimed that furnace performance can be

calculated with fair accuracy by assuming a single uniform

furnace temperature.19 An equation expressing the variation

of furnace temperature along the furnace height is developed

by dimensional analysis, using average overall furnace
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emissivities and gas heat capacities.

Whereas radiation accounts for about 99% of the total

heat transferred from the gas to the walls in the furnace,24

convection becomes relatively important in the boiler sec-

tions where gas temperatures are lower. Value of gas—to-

metal convective transfer coefficients range between 4 and

13 Btu/(hr.)(sq.ft.)(°F), for mass velocity of 6000 lb./

(sq.ft.)(hr.).l3

A simplified dimensional equation for gases flowing nor—

mal to a bank of staggered tubes describes the variation of

hg with the 0.6 power of the mass velocity of the gas.30

The metal-fluid convective film coefficient may be cal-

culated by the Dittus—Boelter or by the Sieder-Tate correla—

. . . . 2
tions for convection ins1de tubes:

 

 

DlttUS‘Boelter £2 = 0.023(Re)0°8(Pr)0'4 .. ......... (1‘5)
kb b b

Sieder-Tate h 2/3 0 14 O 2

W(Pr)b (“w/Ub) = 0°023(Re)b (1’6)

_ DV'g _ 221:.
where Re — and Pr — k

u

a subscript b indicates evaluation of the subscripted variable

at the fluid bulk temperature; a subscript w indicates evalua-

tion of the subscripted variable at the wall temperature.

These correlations are good for: 0.7 < Pr < 120,
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4 5
10 < Re < 1.2°10 , for moderate temperature differences,

and for long tubes.

If the temperature differences are high, a good correla—

tion is obtained by the modified expression:

Y = 0.023x0'8 ............. ..... (1-7)

Dv F3

where Y =‘22 (Pr)_0'4 X = "—2‘_£
kf f “f

a subscript f indicates evaluation of the subscripted variable

at an average temperature

b

f 2

T + T

......J!

§ 1.4 The Equations of Changg

The physical laws of conservation of mass, momentum, and

energy, are formulated mathematically as differential equations,

referred to as the equations Of change. Their explicit form

is given below, with time t, and a single space variable 2,

being the independent variables.

The continuity equation ("C. Eqn.") is an expression of

the principle of mass conservation.

QB. V' a _at+pg_z+v5§_o (1-8)

The velocity v is in the z-direction.
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The motion equation ("M. Eqn.") is an expression of the

principle of momentum conservation.

P T +

v Q! a a
+ =--—__+p 00000000000000 1—(5); vaz) 82 Oz g . ( 9)

The terms-:- expresses the rate of momentum transfer across

the boundaries of the volume element, by a molecular motion

mechanism. 1‘is the normal stress, which is related to the

velocity gradient.

The energy equations are expressions of the principle of

energy conservation. The two forms given below are equiva-

lent.6

The "H. Eqn."

9 (334'1'32) =- (V75) - (1- :VV) + (35+v3-g) (1-10)

The "T. Eqn."

QE_ laT = :9 . ln V a2. 1&2
ocp(at va—z) - (V q) - (T-VV) +(3'Ifi)p(at+vaz) ..

.... (1-11)

Equations 1-8 through 1-11 may be derived by applying

the laws of conservation to an infinitesimal volume element

of fluid. In the case of a l-dimensional, fully developed,

turbulent flow in a tube, it is possible to compute friction

losses from the expression of the friction force F.

F=(xDAz)(-;-pv2)f (1—12)
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The empirical factor f is a dimensionless quantity, de—

fined by equation 1-12. It is found to vary with the Reynolds

Number, and is strongly influenced by the "smoothness" of the

tube wall. As the Reynolds Number increases, f approaches a

constant value, which depends on the "smoothness" of the tube

wall. For example,5 at Re = 106 , f = .003 for "hydraulically

smooth" tube, and increases several fold as the "roughness"

of the tube wall increases.

The term (V753), appearing in the energy equation, is an

expression in vector notation of the heat flowing across the

boundaries of the volume element by conduction.

The term (T :Vv) in tensor notation, is an expression

of the heat produced in the volume element by internal fric-

tion.

§ 1.5 Mathematical Modeling

The representation of the once through boiler by a set

of non-linear differential equations,and the solution of the

equations, requires simplifying assumptions. Most attempts

at simulation of the steam generation dynamics that have

been reported to date have resorted to solution of the problem

using lumped parameter approximations and linearized forms

of the process equations.

The need for the linearized approach is a result of the
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limitations of analog computers, which were used to solve the

equations. Even in the linearized form, the magnitude of the

problem reaches the upper bound of capability of large analog

facilities.

Three attempts at simulation of once through boilers

will be described below, in some detail.

1.5—l Charles P. Crane Unit No. 1

The modeling of a subcritical crushed-coal-fired unit,

with 2475 psig steam pressure, and 1050°F steam temperature

at the superheater outlet, is described.2

The main assumptions are:

1) Fluid prOperties are uniform at any given cross-section.

2) Axial conduction of heat in the fluid, gas, and tube walls

is not significant.

3) Dynamic effects of gas pressure changes are negligible.

4) Balanced flow and uniform heat flux exist at any cross-

section in multitube heat exchange boiler sections.

5) The system's dynamic behavior is adequately described by

small excursions from a series of operating points.

6) The portion of the feedwater loop comprised of high and

low pressure heaters, condenser, condensate pump, and boos—

ter pump, is considered to affect the system only as a

slow disturbance to feedwater temperature.

7) The turbine-generator and air—heater dynamics are assumed
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to be insignificant compared with boiler dynamics.

8) Feed pump dynamics are much faster than those of the boi-

ler and therefore are not included in the simulation.

The system, which includes the boiler, the boiler feed-

pump, and the turbine-generator, was divided into 14 main

sections. In each section, the parameters were lumped. The

process equations were linearized, and the dynamics were view—

ed as small excursions about an Operating point. If wider

changes occurred, the solution required shifting to another

operating point. A digital computer was used to compute the

parameters for each Operating point, and an analog computer

to solve for the dynamic behavior of the system, using those

parameters. The model was field tested for step changes in

throttle-valve position, combustion rate, and fluid flow rate.

The authors report a good fit with the experimental results.

1.5-2 Simulation of Bull Run Super-critical Unit

The modeling of a coal-fired, twin-furnace, supercriti-

cal once through unit, with 3500 psi and 1000°F at the super-

heater outlet, is described.25

The main assumptions are:

1) Fluid flow is assumed to be a one-dimensional, fully deve-

lOped turbulent flow.

2) All gravitational and kinetic energy terms are neglected.
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4)

5)

6)

7)

8)

9)

10)

11)

12)

18

Heat transfer from the tube wall to the working fluid may

be expressed by the Nusselt equation, which theoretically

applies only to constant flow. (This is the Dittus-Boelter

correlation, or Equation 1-5, given in §1.4 above).

There is no heat transfer along the length of the tube, or

along the length of the fluid.

Heat storage of the tube is concentrated at the center of

the tube wall.

Fluid properties are defined by average values over the

cross-sectional area.

Uniform distribution of tubes in parallel is assumed. Thus,

a single fluid flow path was used to represent the multiple

flow paths of the unit.

Fuel flow to air flow ratio is constant.

The dynamics of the gas-side equations are neglected in

the simulation, because they are fast compared to the rest

of the process.

For convective heat transfer on the gas—side, the film

coefficients were assumed to vary as the 0.6 power of gas

flow, corresponding to the usual assumption of cross flow.

For both steam-side and gas-side convective film coeffi-

cients, variation with temperature was neglected.

Gas-side radiative heat transfer was represented by the

usual Stefan-Boltzmann law, with the assumption of a
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constant overall interchange factor.

13) Volumes and metal weights of headers and connecting piping

were considered to be lumped with their adjacent sections.

14) Several of the dynamic equations for each lump are based

on the steam properties at the outlet Of the lump. During

a transient disturbance, the steam properties at the loca-

tion will change, but this variation in properties was

neglected.

15) For all of the work, the steady state operating point has

been the 75% load condition.

16) Equations of state for water and steam were expressed in

linearized form around Operating values.

The system was divided into a total of 36 sections. In

the boiler, the smaller sections were subdivided into two

"lumps" each, and the larger sections into four "lumps" each.

Fewer "lumps" were used in pressure representation, than in

the temperature representation. In each "lump", the equations

were linearized by the standard method (neglecting products

of increments).

Furnace Dynamics

It was assumed that the products of combustion enter the

furnace at a temperature which is below the theoretical (adia—

batic) flame temperature, but above the furnace exit tempera-

ture. This temperature, referred to as the flame temperature,
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was an artifice to develop a dynamic model, and there was no

expectation that it could be measured in the actual boiler.

The assumed furnace model was intermediate between two

limiting cases which have been proposed: 1) The constant fur—

nace temperature model, which assumes that combustion within

the furnace and heat transfer from the furnace are so related,

that there is a uniform furnace temperature; and 2) The theo—

retical flame temperature model, which assumes that fuel and

air are perfectly mixed and burned completely, without energy

loss, before entering the furnace, and that the products of

combustion enter the furnace at the theoretical flame tempe-

rature.

The value selected in the present model was based on

design data supplied by the manufacturer. It was one which

gave the predicted heat transfer rate for reasonable values

of emissivities and overall interchange factors.

It was further assumed that changes in flame temperatu-

res were proportional tO changes in firing rate and not

affected by changes in other manipulated variables.

The model was field-tested, and the authors report a

good agreement between the experimental and the computed re-

sults.
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1.5-3 Canady's Subcritical Once Through Unit NO. 3

The modeling of a 220 megawatt unit, with 2400 psi,

3,8
1050°F throttle steam conditions, is described. A linear—

ized approach is considered inadequate due to the very non-

linear dynamics of once through boilers. Also, for the pur—

pose of designing a control system, large scale disturbances

must be considered in the model.

Some Of the assumptions are:

l) The dynamics of the feedwater heating system are relatively

slow, compared to the remaining parts of the fluid circuit,

and therefore these components were not considered in de—

tail, in the model simulation.

2) Equations describing pressure and mass flow phenomena, may

be solved independently from the equations describing the

temperature phenomena.

3) In each subsection, the continuous flow process is visual-

ized as a sequence of pulsations, whereby the volume of the

subsection is filled up instantaneously with fresh fluid

at inlet conditions; after residing in that volume for a

time equal to the residence time, the fluid is expelled

instantaneously to next subsection.

The fluid path is divided into 30 sections. The differ-

ential equations are solved numerically by a digital computer,

for each solution time interval.
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§ 1.6 The Equations of State for Water and Steam

A set of formulations relating the various thermodynamic

properties was adopted by the International Formulation

Committee (IFC) of the Sixth International Conference on the

Properties of Steam. The formulations, relating enthalpy,

entropy, specific heat, Gibbs function, Helmholz function,

pressure, temperature and specific volume are contained in

the "1967 ASME Steam Tables".31

There are four basic sets of functions. Each represents

one subregion on the pressure-temperature diagram shown in

Figure 1.2. Other formulations define the saturation line,

and the boundary between Regions 2 and 3. The two remaining

boundaries are constant temperature lines.

Region 1 extends from 32°F to 6620F, and from the satu-

ration pressure to 14,500 psia.

Region 2 covers the entire vapor region, with the excep-

tion of a portion near the critical point.

In both regions 1 and 2, the independent variables, or

arguments, are pressure and temperature.

A small area near the critical point is covered by the

two additional sets of formulations, with specific volume and

temperature being the independent variables.
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CHAPTER 2: DESCRIPTION OF THE SYSTEM

In this Chapter the system to be modeled will be des-

cribed, and the major assumptions will be stated. Some of

the assumptions will be discussed in detail, whereas those

of a generally accepted nature (See § 1.5) will merely be

listed. It is usually the gas side which is the least well

understood and requires more simplifying assumptions and a

detailed discussion.

§ 2.1 The System

The system includes the basic elements of a boiler: a

furnace, a waterwall tubing system, and horizontal superheater

tube banks.

The fluid path begins at the bottom of the waterwalls.

It flows upwards and receives heat from the gas side through

the tube's wall. From the upper end of the waterwalls, the

fluid discharges into headers and flows into the superheater

tube banks. The fluid path is shown in Figure 2.1, where a

single tube represents a multiplicity of parallel tubes.

The fluid in the superheater flows along 4 horizontal

passes, the first Of which being the uppermost. This produ-

ces a countercurrent effect in the Superheater Section, where

the hottest fluid is in contact with the hottest gas. The

24
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outlet from the fourth superheat pass is the end point of the

fluid path, or the boiler outlet. The fluid properties (e.g.

temperature, pressure, velocity, etc.) at this point are re—

garded as the outputs of the system. In a power station, the

fluid leaves the boiler outlet as a superheated steam and dis-

charges through a regulating valve (throttle valve) into the

High Pressure Turbine.

The fuel-air mixture is fired into the furnace at a point

approximately 1/3 of the overall height. It undergoes combus-

tion, and the flue gases flow upwards, transferring heat to

the fluid in the tubes. Ash particles flow downwards and are

removed at the bottom of the boiler.

The gas enclosure may be divided conceptually into three

parts, as shown in Figure 2.2: i) The lower furnace, extend-

ing from the bottom up to a (variable) level somewhat below

the firing nozzles; ii) The upper furnace, which extends up

to the waterwall outlet headers; iii) The superheater section,

which encloses the superheater tube banks.

§ 2.2 The Main Assumptions

2.2—1 The Fluid Side

1) Fluid flow is assumed to be a one-dimensional, fully deve-

loped turbulent flow. Flow properties are defined by average



2)

3)

4)

1)

2) Dynamic pressure effects in the gas are negligible.

3)
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values over the cross—sectional area Of the tube.2’25

Uniform distribution of tubes in parallel is assumed.

Thus, a single tube is used to represent the multiple tube

system.2’25

The predominant mode of heat transfer in the fluid is by

convection. Heat transfer by conduction may be neglected.2’25

Resistances to heat transfer of the tube wall, and of the

fluid-side film, are small in comparison to the resistance

of the gas—side film. Therefore, the overall gas to fluid

resistance may be approximated as equal to the gas-side

film resistance. (See Appendix D, § D.3).

2.2-2 The Gas Side

The variation of kinetic and potential energy in an element

of volume 6V of the gas is small compared to energy gene-

rated within ESV by combustion, and to heat transported

into and out of OV'by convection and radiation. (See

Appendix D, § D.4).

2,25 A

result of this and of the previous assumption is, that the

energy phenomena in the gas are independent of pressure

effects. The modeling of the gas may, therefore,be limited

to the energy equation.

Terms of energy input and output, into and out of a volume

element 53V of the gas (including heat generation by
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combustion), are large in comparison to energy contained

in, or accumulated in ESV. Therefore, the variation of

energy in 5V with time, may be described as a sequence

of steady states, over small time intervals. (See Appen-

dix D, § D.4).

4) Gas properties are defined by average values over the

cross-sectional areas of the boiler.2’25

5) Radiation, convection, and turbulent conduction are con-

sidered the predominant modes of heat transfer within the

gas, and from the gas to the cold walls. Molecular con-

duction is assumed negligible.2’25

§ 2.3 Heat Transfer and Generation in the Gas

2.3-1 Heat Generation

Exact determination of the rate of heat generated by com-

bustion would require formulation of the chemical kinetics ex-

pression, and of its functional relationship to the flow pat—

tern, boiler geometry, cooling rate, etc. (See § 1.1). Such

treatment is not considered feasible at the present time.

Therefore, additional simplifying assumptions are necessary.

The combustion process occurs within the volume of the

flame. The location and the boundaries of the flame vary with

the fuel firing rate, burner tilt, and cooling rate. It is

assumed that combustion rate at any cross-sectional area of
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the boiler may be defined as a uniform average value. The

rate of heat generation may be derived from the reaction rate,

and expressed in terms of: (heat generated)/(unit time)(unit

length of furnace). The available data is not sufficient

for formulation of such a function. It may be asserted, how—

ever, that it would reach a maximum at some point near the

geometrical center of the flame and would diminish in the

direction of the flame boundaries. This variation is appro-

ximated by a linear function f(z) in Figure 2.3. The point

of maximum rate will vary with burner tilt.

2.3-2 Absorption Of Radiation within the Gas Volume

Heat transfer from the bulk of the gas to the cold walls

is assumed to occur by convection and by radiation. At a

given height 2, the gas bulk temperature is Tg’ and the cold

wall temperature is T. Heat is exchanged, according to the

Stefan-Boltzmann law of radiation, between the gas envelope

"surface" at Tg’ and the walls' surface at T. Such descrip-

tion assumes a radiative flux in radial (perpendicular to the

cold surface) direction. The radiative flux vector field is,

however, very complex. Hot particles emit in all directions;

the medium, comprising of gases and solid particles, absorbs

and scatters some parts of the radiation that passes through

it; the boundary walls reflect part of the incident flux.
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A rigorous treatment of the radiation field is not con-

sidered feasible (See § 1.3). It is necessary, however, to

compensate for the fact that some of the heat generated with-

in the flame is transported instantaneously to colder regions,

where it is absorbed by the gases and by ash particles.

A pseudo—generation profile, which describes the absorbed

heat as heat "generated" within the gas volume, is proposed.

Qualitatively, radiation absorption is proportional to

the flux intensity, the absorptivity of the medium, the volume

and the density Of the absorbing medium. Thus, the absorption

will decrease in the colder parts of the boiler, where the

radiation intensities are low.

In the Lower Furnace, where the medium is a heavy sus-

pension of ash particles and the fluid in the waterwalls is

at its lowest temperature, the radiation intensities may be

assumed to decrease rapidly, as we move away from the flame.

Assuming a linear variation of the absorption along the

height of the boiler, and superimposing it over the actual

heat-generation function, the resulting effective heat gene-

ration function, f(z), is as shown in Figure 2.4. By the de-

finition of f(z), the integral

b

U/P f(z)dz

a
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is equal to the net rate of heat generation within the gas

volume bounded by z = a and z = b. Therefore, the shaded

area in Figure 2.4 is equal to the total heat released by

combustion, minus heat losses.

2.3-3 Heat Transfer in the Lower Furnace

In the Lower Furnace there is no net flow of gas. How—

ever, the gas cannot be considered stagnant. A certain degree

of turbulence is known to occur, as well as a temperature

gradient in the 2 (vertical) direction.

It is assumed that there exists a downward heat flow as

a result of the temperature gradient, and that the mechanism

is governed by the turbulence, or eddies, rather than by mo-

lecular motion. Such a description is known as a Dispersion

Model. It should be noted that the gas in the Lower Furnace

is a rather heavy syspension of ash particles, the physical

prOperties of which cannot be easily defined. An estimate of

the Dispersion Coefficient would require a better understand-

ing of the flow pattern in the Lower Furnace, as well as a

definition of the physical prOperties of this suspension.

Therefore, the Dispersion Coefficient is taken to be an empi-

rical parameter, to be determined when the model is made to

fit an actual boiler.
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CHAPTER 3: EQUATIONS AND BOUNDARY CONDITIONS

In this chapter, the equations describing the behavior

of the system will be formulated. These include differential

equations (the Eqns. Of Change), based on physical laws of

conservation, equations of state for water and steam, and

other relationships between physical prOperties of the fluid

and the gas.

A detailed discussion of the equations is given in

Appendix A. The equations of state of the fluid and of heat

capacity of the gas are given in Appendix C as computer rou-

tines.

The statement of the mathematical problem is completed

with a discussion of the boundary conditions.

§ 3.1 Equations of the Fluid Side

The equation of continuity ("C. Eqn."):

gs+vgg+pg—:-=o ...... (3-1)

The equation of motion ("M. Eqn."):

p(g%+vg‘§)=-1063§-p°g-2T)§°pv2
..... (3-2)

33
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The equation of energy ("T. Eqn."):

ocp(Q{-+va-T—)=q +0.1 (M) @E+vQB) (3-3)

 

a 82 tr aln T pat 82

where

AA AA 4 4

qtr = U 75/901? - T) + 60 A; [mg/1000) - (T/1000) J..(3-4)

Remarks:

1) The units used are in the CGS system (cm, gram, sec),

unless otherwise stated. Temperature is given in degrees

Kelvin. Energy, heat, and power are given in Joule and

Watt; pressure in bars (1 bar = 14,503 psi = 106 dyn/sq.cm).

2) The acceleration of gravity g in Eqn. 3-2 is taken as zero

in horizontal segments of the tube.

3) The friction factor f (see definition in § 1.4), depends

on the Reynolds Number. At turbulent flow it approaches

a constant value which depends on the smoothness of the

tube wall. In this work, it is taken to be a constant

f = 0.01.

4) The overall convective heat transfer coefficient, U, is

assumed approximately equal to the gas side film coeffi-

cient. This latter quantity is generally assumed to vary

with the 0.6 power Of the gas flow rate, Wg. In this work,

Wg is assumed constant along the gas path. Therefore, U

is taken to be a constant.
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5) The convective heat transfer area, AsAc, is the surface

area of a tube, of length [12. In the waterwalls, where

only one side Of the tube's surface is exposed to the gas,

AAc is one half Of the surface area. The radiative heat

transfer area, ZiAr, is the area of a tube of length Ziz,

normal to the radiation flux. In the waterwalls,1AAr =

D' Az. In the superheater tubes,AAP = 2D- Az.

6) The emissivity e of the cold surfaces, is taken to be a

constant and equal to 1.

7) The inside diameter of the waterwall tube in this model

is different from that of the superheater tube. There is,

however, no expansion or contraction in the fluid path.

The equations are written for one superheater tube, or for

an equivalent number of waterwall tubes, on the basis of

an equal cross—sectional area.

8) The effect of piping bends and connections on the equation

of motion is neglected.

9) The effect Of heat content of the metal parts is neglected.

The Equation of State for Steam and Water ("5. Eqn.")

This is a set of equations covering the range:

0 < T < 800°C , O < p < 1000 bar. The region is subdi-

vided into 4 subregions, with separate formulations for each

subregion. The specific volume, V, enthalpy, H, and entrOpy,

s, are given as explicit functions Of the pressure, p, and
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temperature, T, in subregions 1 and 2. In subregions 3 and

4, p, H, and s, are given as explicit functions of V and T.

The expressions of enthalpy and entropy are not directly

used in this work. However, the derived thermodynamic pro-

perties C and (Ql2_l)p , are also referred to as equations

p (aln T)

of state and are given in Appendix C as computer routines.

Thus, we have:

In subregions 1 and 2:

v = f(p’T) ...... o ........... ooo (3‘53)

Cp = f(p’T) ..... ..... ........... (3-5b)

(gfifi)p=f(p,r) ........... (3-50)

And in subregions 3 and 4:

p = f(;,T) ...... . ...... ........ (3-5d)

Cp = f(;,T) ..................... (3—58)

(3%7‘17'5 =f({'r,'1‘) . .............. (3—5f)

§ 3.2 Equations of the Gas Side

The value of the gas temperature, Tg’ is required in the

fluid side "T. Eqn." (Eqns. 3—3,4). Therefore, the treatment

of the gas side is intended to provide the variation of T

with respect to time and space. The assumptions inherent in
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the gas side model effectively decouple the gas energy equation

from the other equations of change. It is, thus, sufficient

to solve the energy equation, in the form of heat balances, in

order to obtain the gas temperature variation as required.

In the Upper Furnace and in the Superheater Section, the

gas is assumed to be flowing in the "axial" (along the z axis)

direction.

.""' +WCT._WCT :0 00000000000000 3-6

ql qo g g $1 g g $0 ( )

q is the rate of heat "generation" (See § 2.3).

q is the rate of heat transfer from the gas into the fluid.

C is the heat capacity of the gas. (Computer routine SCG,

Appendix C; Derivation in Appendix A, 1§A.4).

 

 

  

C =fT
00000000000000. 3-7

g (g) ( )

T

go

z+Az

z

T .
gi

Figure 3—1: Gas Energy Balance in the Upper Furnace
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In the Lower Furnace, there is no net gas flow in the

axial direction. Axial heat transport is expressed by the

Dispersion Model.

- + - — 00000000000 ooooo '—qi qo qai qao 0 (3 8)

dT

_. J
q -- - D

0000000000000... (3‘9 )

ao c dz z+Az a

q.=_D J
.ooooooooooooooo (3-9b)

ai c: dz

2 
qi, qO are defined as in the Upper Furnace.

DC is the heat Dispersion coefficient; an empirical parame—

ter to be determined when the model is made to fit a real

system. In this work, it is taken to be a constant.

 

 

  

qao

z+Az

q .__.

z

qai

Figure 3.2: Gas Energy Balance in the Lower Furnace
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The explicit form of Equations 3-6 and 3—8 depends on

the numerical method of solution and will be given in § 3.4.

§ 3.3 The Boundarinonditions

At steady state operation, the energy content of the

fluid at the boiler's outlet must be adequate for the requi—

red electrical load. This energy equals the sum Of enthalpy

and kinetic energy of the fluid and is proportional to the

mass flow rate.

The behavior of the system at steady operation can be

described by the temperature, pressure, density, and velocity

profiles of the fluid, and by the temperature profile of the

gas. The term "profile" refers to the variation of the quan-

tity along the fluid's (or gas') path. These profiles can be

seen as solutions to a set of ordinary differential equations,

plus the equations of state of the fluid, and properties of

the gas. The steady state differential equations are Obtained

from the equations of change (Eqns. 3-1,2,3), by omitting the

time derivatives:

 

 

C. Equation 13v = w = constant ....... (3-10)

- dV_ 692 .23;M. Equation w dz - 10 dz -(>g - I) wv ....... (3 11)

23.125.) 92 (3—12)
dT

. — = + .

T. Equation wC qtr 01(a1n T p v dz
p dz

To solve these equations, three boundary conditions are
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required. One boundary condition would be the fluid tempera—

ture at the Superheater outlet (which is also the inlet to

the turbine). This value is usually included in the boiler's

specifications. Similar consideration applies to the fluid

pressure at that point. The fluid velocity determines the

mass flow rate. Thus, these three variables specify the ener—

gy input into the turbine. The pressure and temperature at

steady state operation are those given in the boiler rating,

and the velocity varies with the electrical load. The rela-

tionship between the load and the velocity is outside the

sc0pe of this work. Deviations from steady state, caused by

load variations, are viewed as changes in fluid velocity at

the inlet to the boiler. Similarly, changes of fluid pressure

and temperature at the boiler inlet are considered "inputs"

to the system, in the sense used in Systems Analysis. The

values of the fluid pressure, temperature, and velocity at

the boiler's outlet are the most interesting outputs, in the

same sense, although the method of solution described in

Chapter 4 provides those quantities at all points along the

tube.

It is, thus, possible to solve the steady state equations,

using the boundary conditions at the boiler outlet, and Obtain

steady state profiles. Then, the response of the system to

some disturbance, or input, may be studied. The steady state
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profiles constitute initial conditions for the dynamic problem,

and fluid pressure, temperature, and velocity at the inlet of

the boiler are its boundary conditions.

The gas temperature profile is a result of the interaction

between the rates of heat generation and heat transfer. At

unsteady state, the gas temperature variation will be treated

as a sequence of steady states. (This point is discussed in

§4u4-5). The value of the gas temperature at the bottom of

the boiler is taken to be a constant.



CHAPTER 4: THE NUMERICAL SOLUTION

§ 4.1 The Numerical Method

The fluid dynamics is described by a system of 3 diffe—

rential equation (Eqns. 3-1,2,3), referred to as the Equations

Of Change. The equations are first-order, nonlinear, partial

with respect to time t and distance 2, and include 4 variables.

These variables are the fluid temperature T, pressure p, velo-

city v, and density 0

Using the equations of state, the specific volume 5 = 143,

may be expressed in terms of p and T (Eqn. 3-53), or p in terms

of V and T (Eqn. 3-5d). The number of independent functions

is, thus, reduced (implicitly) to three, and the system is

consistent. The highly complex form of the state equations

does not permit elimination by substitution of any function

from the equations of change. Neither is it deemed feasible

to Obtain an analytical solution Of the system. Linearization

of the equations will impose serious limitations on the model.

Most of the variables and parameters show marked nonlinear

behavior in the vicinity of the critical point. As a result,

the accuracy of linearization will be limited to very small

deviations from steady state.

The technical limitations of analog computers make it

necessary to use a numerical method which a digital computer

42
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can handle in reasonable computing time. The method selected

for this work is the method of Finite Differences, whereby

first—order derivatives are approximated by ratios of finite

increments.

F : éfi F g 9531;-“ , 3: t (4-1)

The t and z coordinate axes are divided into equal in-

crements of time and distance, respectively. The z-t Space

may be mapped by a rectangular grid, as shown in Figure 4.1.

 

 

  
 

     

1+1

)

j+2

j+l

p

g 1
fl At ‘r 3+2

B J

j

1—1 :

1-2 i-l Til—AZ“ i+1 i+2  
Distance z

Figure 4.1: Time-distance Space in a Finite-differences

Rectangular Grid

A point in the z-t space is specified by an index number

i, for the distance z,and by an index number j, for the time

t. Using this notation, Equations 4—1 become:
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Q}; = Fi+1,j+1 ' FiJJ+1 if = Fi,j+1 " Fi,j

az Az ’ at At "°° (4_2)

The differential equations can be written in the Finite

Differences form, which lends itself to algebraic solution.

For example, the C. Equation (Eqn. 3-1):

  

 

01.341 1.3 + v pi+1..-i+1 ‘ pi..j+1 +

At i+§~,j+—§ Az

V. .

1+ILJ+1 1LJ+1 = O (4_3)
pi_*_;’j+% AZ 0000000000

For brevity, a different notation, shown in Figure 4.2,

will be adopted.
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Figure 4.2: Notation for the Time-distance Grid
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Given the values Fy’ F2, and Fx’ the intermediate value

Fj is approximated by linear interpolation:

Pi = (Fx + Fz)/2 ..................... (4-4)

Fm may be expressed in terms of Fx’ Fy, F2, and Fj by

rearranging the differential equation. The physical proper-

ties of the fluid appearing in the differential equation are

evaluated at the point "j".

It may be noted that the equations of change are "coupled";

i.e., each of them involves more than one function. Therefore,

the whole system of equations, which includes: i) The Equations

of Change (Eqns. 3-1,2,3), ii) the S. Equation (Eqns. 3-5),

and iii) the gas energy balances (Eqns. 3-6 and 3-8), must be

solved simultaneously. The thermodynamic and transport proper-

ties are computed at each point along the fluid and gas paths

by theoretical or empirical formulae, given as computer sub-

routines.

Initial conditions for the dynamic problem will be the

steady state profiles. Their computation is described in §4.2.

The solution of the dynamic problem is described in §4.3, and

the computation of the gas tenperature profiles is discussed

in §4.4.
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§ 4.2 The Steady State Solution

4.2-1 The Equations of Changg

The steady state equations (Eqns. 3—10,11,12), are first-

Order, nonlinear, ordinary differential equations. By the

Finite-differences method, a derivative is approximated as

 

follows:

it;éi=Fi+1‘Fi=__Fm‘Fx
dz Az A z 412

Using the above notation and rearranging, the Equations

Of Change become:

C. Equation

p v = w = constant ................... (4-5)

M. Equation

 

 

6

_ 10 _ -
_

Vm " Vx ‘ 34"" (Pm PX) AZlig/vx + (2f/D)vxl (4 68)

_ -6

pm - px - 10 {w(vm - vx) +Az[ pg + (2f/D)wvx]}.... (4—6b)

T. Equation

T = T + Az q +0 l(aln v) vx ( _ ) (4_7)

m X WCpx t!‘ . m px Cpx pm Px ....

The term qtr is the combined radiative and convective

heat transfer rate across the tube wall per unit of fluid



[
‘
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volume. It may be recalled (§'3.1) that the superheater tube

is different from the waterwall tube. As a result, the ratios

AA

._2

AV

AA

and 23% , which appear in the expression of qtr (Eqn.

3-4), are different. It is desired, however, to maintain the

expression of qtr unchanged throughout the boiler. This is

done by defining Deq as the equivalent diameter (see Appendix

A, §A.3), and we obtain:

qt

1)

2)

3)

D

= ._ea 4 _ 4 .33. _
Acx {UHTgx/IOOO) (TX/1000) J + 2 U(Tgx TX)

..... (4-8)

Remarks:

By the notation used in Equations 4-5 through 4—8, Fx = Fi ,

Fm = Fi+l ; i being the index number of the z (distance)

coordinate.

Physical properties of the fluid and the gas temperature

T , are evaluated at point i, the "entrance" to the volume

element.

The emissivity,e , taken to be equal to 1, is omitted from

the expreSSion of qtr'

4.2-2 The Computational Procedure

The simultaneous solution Of Equations 4-5 through 4-7,

together with the Equations of State (Eqns. 3-5), requires an

iterative computational procedure. This procedure is described
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below for a single volume element of the tube.

an V

1) Given vx, T , p , Tgx’ the values of vx, Cpx’ galn T)px ,
x x

are computed from the S. Equation (Eqns. 3-Sa b C)-

) ,

2) 0x = l/Vx

3) The iterative process:

i) An initial guess is made on the value of pm.

ii) vm is computed from Eqn. 4-6a.

iii);pm is computed from Eqn. 4-5.

v) Tm is computed from Eqn. 4-7.

vi) V5 (sp. volume) is computed from the S. Equation,

(Eqn. 3-53), using the values Of pm and Tm.

vii) If Gm % vs, the difference Gm-GS is used to correct

the initial guess of pm, by linear interpolation or

extrapolation. This is repeated until Gm = GS

The values p , T , 3 , and v are then recorded and used

m m m m

in the computation of the next point along the tube.

When the end of the tube is reached, the steady state pro—

files of p, T, 3, and v are given in tabulated form (i.e., as

numerical values at discrete and equidistant points along the

tube).

An alternative stagewise computation may be used, whereby

the initial guess is made on the value of vm. The value of pm

is then computed from Eqn. 4-6b, F)m and Gm from Eqn. 4-5, and
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Tm from Eqn. 4-7. Using Tm and.ym, the pressure pS is com-

puted from the S. Equation (Eqn. 3-5d). ps is compared to

pm’ and the initial guess of vm is corrected as in the former

method until pm = ps. This procedure is used in subregions

3 and 4 of the state equations, where pressure is expressed

as a function of v and T.

4.2-3 The Gas Temperature

The solution of the gas-side energy balances provides

the gas temperature profiles. This will be described in §4.4.

4.2-4 The Boundary Conditions

Boundary conditions have to be assigned for the problem

to be mathematically defined. The values Of fluid pressure

and temperature are specified at the boiler outlet, and the

value of fluid velocity is relative to the electrical load

(see § 3.3).

It is, therefore, convenient to start the computation at

the~boiler outlet, and proceed "backwards" along the tube.

This does not affect the form of the equations, as lfiz is

given a negative value.
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§ 4.3 The Unsteady State Solution

4.3-1 The Equations of Changg

Using the notation described in §4.l, the Equations of

Change (Eqns. 3-1,2,3) may be written as follows:

C. Equation

 

 

- Az . OX -92 ii

p m _ p x - v. At - v. (vm — vx) (4—9)

3 J

M. Equation

1 vx " VI 106
= _ -— + + ._ _

vm vx Az vjl: At a] (2’f/D)vj pjvj (pm px)

alternatively:

p.v. v - v

= _.Aldl .J. .;£___4K _ _
pm PX 106 AZEVj ( At + g) + (Zf/D)vj] (vm vx}...

 

..... (4—10b)

T. Equation

T - T q

Az x y tr

= +-—- +--—-——- +

Tm Tx v. [ At p.C .3
PJ

V- ‘ P P ' P
ln v y m x

+ _—-— 000 -110.1 A2C .( T)pj[pxAt vj Az J (4 )

PJvJ

where v -l/bj

and

D

=._sa 4 _ 4 1L. _ -
qt {0[(Tgy/1000) Tj/IOOO) J + 2 U (Tgy 15))” (4 12)
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The gas temperature is evaluated at point "y" (point i,j

of the grid). This, and the computation of Tg, will be dis-

cussed in §4.4.

4.3-2 The Computational Procedure

The simultaneous solution of Equations 4-9 through 4—12,

together with the Equations of State (Eqns. 3-5), is carried

out in a similar manner to the steady state problem. The pro—

cedure for a single volume element of the tube, of length 1Az,

is described as follows:

9 px’ P 3 Pz: V y Y a V 2 the
y x y z

1) Given the values T , T ,T

x y 2

intermediate values Tj’ pj, vj, are computed from Equation

4-4.

~ In 3 .
2) v,, C ., €31“ T)pj , are computed from the S. Equation

(Eqns. 3-5 ), using the values Tj’ and pj.
a,b,c

3) pj = 1/5j by definition.

4) The iterative process:

i) An initial guess is made on the value of pm.

ii) vm is computed from Eqn. 4-10a.

iii) pm is computed from Eqn. 4-9.

iv) Tm = l/pm

v) Tm is computed from Eqns. 4—11 and 4-12.

vi) Is (sp. volume) is computed from the S. Equation

(Eqn. 3-53), us1ng the values Tm and pm.

‘n_f

LL-— 
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vii) If Gm f GS, the difference Gm-GS is used (by linear

interpolation or extrapolation), to correct the ini-

tial guess of pm. This process is repeated until

~ _ ~

V — V .

m S

The values of pm, Tm’ vm, and Gm are then recorded and

used in the computation of the next point along the fluid

path. This is continued until the end of the tube is reached,

and the unsteady state profiles of p, T, v, and P, at time t,

are given in tabulated form. The profiles thus obtained, and

the boundary conditions (see §4.3-4), will be used to compute

the profiles at time t +Zkt in the same way.

In subregions 3 and 4, where the pressure p is given as

a function of 6 and T, an alternative computational procedure

is used. The initial guess is made on the value of the velo—

city vm. pm is then computed from Eqn. 4-10 and cm from
b’ pm

Eqn. 4—9, and Tm from Eqn. 4—11. Using Tm and cm, the pres—

sure pS is computed from the State Equation (Eqn. 3-5d). pS

is compared to pm, and the initial guess is corrected as in

the former method, until pm = ps. The process is continued

as described above.

4.3-3 The Gas Temperature

The gas temperature profile is computed simultaneously

with the equations of change, from the gas energy balances
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(Eqns. 3-6,7,8,9), made over each volume element. The method

is described in §4.4.

4.3-4 The Boundary Conditions

The steady state profiles constitute the initial condi-

tions of the unsteady state problem. The variation with res-

pect to time of v, T, and p at the boiler inlet (2 = O) is

chosen to be the boundary conditions of the unsteady state

problem, and this completes the mathematical definition of

the problem.

The physical significance of the boundary conditions has

been discussed in§13.3. Accordingly, the variations with

time of v, T, and p at the boiler inlet are considered "in—

puts" to the system. The dynamic, Open-loop, response Of

the system to various types of inputs will be studied. In

addition to the inputs described above, changes in fuel fir—

ing-rate and in burner tilt, are considered to be inputs.

This will be discussed in §4.4-5.

§4.4 Gas-side Energnyalances

The gas side is divided into 3 parts (see§ 2.1), the Low—

er Furnace, the Upper Furnace, and the Superheater Section.

The differences in gas flow and in tube geometry, result in

different expressions for the energy balances in each Of these
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parts. In all cases, it is assumed that heat accumulation

within a volume element of gas, over a period zAt, is small

relative to heat "generation" (see §2.3) and to heat trans-

port.

As with the fluid, where one tube is taken to represent

the multiple tube system, so in the gas side, a part of the

gas stream, corresponding to a single tube, is taken to re-

present the entire stream.

4.4-1 The Upper Furnace

The gas in the Upper Furnace is assumed to flow axially

upwards, in parallel to the fluid flowing in the surrounding

waterwall tubes. On the basis of a volume of gas, correspond—

ing to a tube Of lengthHAz, the energy balance equations may

be written as follows:

 

_ + _ :: _1

Hgi Hgo A2(qS qrc) 0 (4 3)

where

H . = W °C 'T .
gi g g g z is the enthalpy of the gas evaluated at

point 2

H = W -C -T is the gas enthalpy evaluated at point

go g g g Z+A
z

z +-Az

fmx

q = -——-———- (L - z) is the rate of heat generation
s Lt - zfu t

within the gas, per unit length of the gas column. (See
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Appendix A, §A.5 for definition of the parameters fmx’ zfu,

and Lt’ and for the derivation of the expression).

qrc = qtr-Acx is the rate of heat transport from the gas

into the fluid, per unit length of the gas column. Equations

4-8 and 4—12 give qtr for steady and unsteady states, respec—

tively. Acx is the cross-sectional area of the tube. (Note

that in the Upper Furnace, the length of the gas column coin—

cides with the length of the tube. This also is correct in

the Lower Furnace but not in the Superheater Section.)

H

go
 

z+Az

 

5 PC

 

  H .

g1

Figure 4.3: Energy Balance in the Upper Furnace

Substituting Tg into Equation 4-13 and rearranging, we

have:

= T

z+ Az g

T

g

 

 Z

Cg is the specific heat of the gas, given as a function of Tg’

(Appendix A, §A.4).

The average lepe of the gas temperature profile may also

be computed:

ATg/Az = (qs - qu)/(wgcg) (4—15)
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4.4-2 The Superheater Section

The Superheater Section contains four horizontal passes

of the Superheater tube. The fluid path in these passes is

shown schematically in Figure 4.4. The gas temperature is

assumed constant at each pass. Four energy balances are made:

 

  

  
 

 

  
 

   

 

 

   

one for each pass. 0

T

ge

Pass D _____1

T

v gd

Pass C T .__1.

gc V A

Pass B ____. 1

v Tgb

Pass A ____ WP01ESF

T ) outlet

ga

waterwall

gas )4

Figure 4.4: Schematic View of the Superheater Section

The gas energy balance is expressed as in Equation 4-13,

with: H w c T , H = w c T , T . = T ,
gi g g ga go g g gb g1 ga

Tgo - Tgb for superheat pass A, with similar expressions

for superheat passes B, C, and D, respectively.
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go go
 

 

 

 

gi gi

 

   
gas'flow

Figure 4.5: Energy Balance in the Superheater Section

The value of qrc is obtained by numerical integration of

the terms qtr'A -Az over the entire length of the pass.
cx

The value of qs is Obtained by integration of the heat

generation function over the length of the gas column, contain—

ing the superheat pass. Denote this length by ls, and the

length of the entire Superheater Section by LS, then 1S -

Ls/4 , 4 being the number of superheat passes. The value Of

qs is, thus, the heat generated within a gas column of length

ls. The resulting expressions are:

.7. fmx 2
958:: 2 ' L _ 2 1S ......... .. ..... (4-16 )
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f

__ 5 mx 2

q _ . - 1 0000000000000000000 (4"1‘3 )

sb 2 Lt zfu s b

;§ fmx 2

q = . _ 1 co oooooo o ooooooooo (4—16 )

sc 2 Lt zfu s

f

_ 1 . mx 2

qu 2 L - z ls o ooooooooooooo on (4—16d)

t fu

The derivation of Equations 4-16 is given in Appendix A,

§A.5.

4.4-3 The Lower Furnace

The axial heat transfer in the Lower Furnace is described

by the Dispersion Model (see §2.3 and §3.2).

Consider a volume of gas, corresponding to a waterwall

tube Of lengtthz. The energy balance may be written as

follows:

..qa

Z

+Az(qs - q ) = O ............... (4-17)
a PC

 

z+Az

 

where qa is the rate of axial heat flow.

  

 

dT

qa =- C. dz 0 oooooooooo 0.. (4-18)

z

dT

qa =-Dc°:l-z-g (4-18b)

z+Az z+Az

and

fmx

q8 = z 'z is the rate of heat generation per unit length

fu

Of the gas C01umn 00000000000000. (4-19)
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z+Az
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qa 

Figure 4.6: Energy Balance in the Lower Furnace

The variation of Tg with 2 over the length Az can be ex-

pressed by an ordinary differential equation:

 

dT fmx

Dc'—g’2 =qm~z z (4-20)

dz fu

Assuming that qrc may be taken as a constant over Az, it

is possible to carry out the integration of eqn. (5-20) and

 

 

obtain:

dT dT Az f

Tf = if D— U“; 22‘" <22 +4.” ------ (HI)
z+Az z c fu

dT 2 f

T = T + “—553 A2 + %L [q — 3m): (32 + Az)]..(4—22)

g z+Az g z 2 C zfu

The derivation of Equations 4-19 through 4—22 and the de-

finition of the parameters appearing in the equations are given
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in Appendix A, §A.6.

4.4-4 The Steady State Gas Temperature Profile

The steady state gas temperature profile is a numerical

solution of an ordinary differential equation. It is necessa-

ry to provide a boundary condition. For example, the value of

Tg at some fixed point along the gas path. This, however, is

considered undesirable due to the definition of Tg' It has

been assumed that Tg can be taken as an average over the cross-

sectional area of the gas column. An experimental determina-

tion of this average value would be difficult, both technically

and conceptually. It is possible to circumvent this difficulty

in a way compatible with the general concept which considers

the effects of Tg on heat transfer rather than its "real" phy—

sical significance. Noting that the fluid temperature at the

boiler inlet is a fairly constant value (ca. 600°F), we Can

use this value, denoted by Tin’ as a boundary condition for

the gas equation.

An initial guess is made of Tga’ the gas temperature at

the fourth superheat pass, and the steady state profiles are

computed. Denote the computed value of the fluid temperature

at the boiler inlet by Tic and compare the values of Tin’ and

Tic' If Tic # Tin’ then the difference Tic-Tin is used to

correct the initial guess Of Tga by linear interpolation or
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extrapolation. This is repeated until TiC = Tin' The steady

state profiles, including the gas temperature profile, are

then recorded.

4-4.5 The Unsteady State Gas Temperature Profiles

The gas temperature at any instant is a result of both

the heat generation rate and the cooling rate. At the same

time, Tg determines the cooling rate (Eqn. 4-12). This pre—

sents some difficulty which could be overcome by trial and

error computation. A more serious difficulty arises from the

discontinuity Of the gas path with respect to the fluid path

(or vice versa) at the passage from the waterwalls to the

Superheater.

In real systems there are many such discontinuities, and

it is desired to avoid compounded trial and error computations,

such as would be required for the gas temperature profile at

each discontinuity. Therefore, a simplifying assumption is

made, whereby the variation of Tg with time is seen as a sequen-

ce of steady states. (See Appendix D,§ D.4).

Two boundary conditions are required for the Lower Furnace.

dT

The values T and THE are considered to be

z=0 z=0

boundary conditions, and, in general, "inputs" to the system.

The computation of the unsteady state profile is, thus,

essentially the same as of the steady state. We start at
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z = O, and proceed along the positive direction of z (i.e.,

upwards), following the fluid path. The cooling rate qrc is

based on qtr as defined in Equation 4-12.

Additional "inputs", or disturbances, to the system are

changes in fuel firing rate, and changes in burner tilt.

A change in firing rate will be modeled as a change in

the values fmx and Wg, and a change in burner tilt will be

modeled as a change in the value of 2 (See Appendix A,
fu'

§A.5).



CHAPTER 5: STABILITY AND CONVERGENCE

A numerical solution to a differential equation is an

approximation of its exact solution. It is obtained by neglec—

ting high order terms in the Taylor Series expansion. An addi-

tional source of inaccuracy is the truncation error which de-

pends on the machine's precision and on the amount of computa-

tion involved.

Errors of the first type can be made smaller by reducing

the numerical mesh size, i.e., the magnitudes Of the distance

increment,1Az, and of the time increment,Z§t. It is necessary

to establish that the numerical solutions converge to the

exact solution as the mesh size is reduced. In many cases of

practical importance, as in this case, an exact solution is

not possible. It is proposed, therefore, to test the numerical

solution for convergence by obtaining several solutions of the

problem, using a different mesh size for each solution. If

the solution curves tend to come closer together as the mesh

size is reduced, this would indicate convergence to the exact

solution.

The repetitive computation process may tend to compound

errors of both types. This results in an unstable solution

which tends to oscillate and, eventually, blow up. Error pro-

pagation can be treated analytically in some simple cases, but

this is not considered feasible for the problem in this work.

63
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From both the theory and the practice of numerical analy—

sis we know that stability depends on the increments' sizes.

It is prOposed, therefore, to establish by experiment the

mesh size that would yield a stable solution.

Preliminary tests of stability and convergence were con-

ducted on a simplified system, comprised of an horizontal

superheat pass, in order to study the major effects. The re-

sults are described in §5.l. Further study of the complete

model, as described in Chapters 1 and 2, and the conclusions

are given in §5.2 and §5.3, respectively.

§5.1 Preliminary_Tests

The system under study is a horizontal tube, representing

a superheat pass. At steady state, the fluid mass velocity is

60 g/(cm2)(sec), the outlet pressure is 240.0 bar, and the

outlet temperature is 560°C.

The inputs are step changes of the fluid inlet pressure

and velocity, and a ramp change of the fluid inlet temperature.

The fixed parameters are:

Pressure step change —O.2 bar

Velocity step change -40.0 cm/sec

Temperature ramp change 0.2 OC/sec

Tube length 1200. cm

Tube inside diameter 4.0 cm
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Gas temperature 1200. OC

Overall convective heat

transfer coefficient 6.0 Btu/(hr)(ft2)(°F)

Friction factor 0.01

5.1-1 Tests of Convergence

Four computer solutions to the problem were obtained, with

different mesh sizes. The number of the distance increments

is denoted by n.

a) Az = 60.0 cm At = 5.00 sec n = 20

b) A2 = 30.0 cm At = 2.50 sec n = 40

c) A2 = 15.0 cm At 1.250 sec n = 80

d) Az 7.5 cm At 0.625 sec n = 160

The results are shown in the Figures 5.1 through 5.5.

In Figure 5.1, fluid temperature profiles at various response

times, with mesh size (a), are shown. The profiles are nearly

linear for the system under study, and the variation with res—

pect to time is observed to be largest during the initial 10

seconds of response time. The rate of temperature change le—

vels off shortly afterwards, thus following the input ramp

change. The effects of mesh size variation on the temperature

profiles is shown in Figure 5.2. The profiles, at response

time t = 5 seconds, are markedly convergent.

The effects of mesh size on the outlet steam conditions
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are shown in Figures 5.3, 5.4, and 5.5. The results indicate

poor convergence during the initial 10 seconds of response

time, and good convergence thereafter.

5.1-2 Test of Stability

Seven computer solutions to the problem were obtaired,

with a fixed value A.z = 60 cm, and with different values of

At. The results are presented in Figures 5.6 and 5.7, where

the variation of outlet temperature with time is plotted for

different values of At. In these graphs the time scale is

different for each curve, and therefore the abscissa was

chosen to be j, the time increment index number. The curves

are observed individually for indications Of instability,

such as oscillations.

The curves appear to be stable for At = 5 seconds and for

At = 1 second. Signs of instability are first noticeable when

At = 0.2 seconds and become more pronounced as.At is decreased.

The responsescfifvelocity and specific volume are similar

to those of the temperature. The pressure response reveals

no signs Of instability in the range of values of At under

study.
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§5.2 Determination of the Mesh Size

The results of the preliminary tests indicate that for

.Az = 60 cm and 1§t = 5 seconds adequate stability and con—

vergence are obtained, except for the initial 10 seconds of

response time. Another conclusion is that stability may be

improved by increasing the ratio zSt/Az.

In order to establish the adequate mesh size for the

complete model, which includes the interaction of the gas

temperature with the steam conditions, further studies were

made with the system as described in Chapters 2 and 3, using

the numerical method described in Chapter 4.

The system was disturbed from steady state by a -22%

step input to the fluid inlet velocity. Different combina-

tions of increment sizes were tried, and the variations of

the fluid outlet temperature T0 with time were plotted in

Figures 5.8 through 5.10.

The effects of varying Az, with At being kept constant

at 5 seconds, are shown in Figure 5.8. When le = 60 cm,

some oscillation occurs during the initial 30 seconds of res-

ponse time. The oscillation is reduced when1Az is made small-

er, and none can be observed when the values A2 = 15 cm and

A2 = 7.5 cm are used. Convergence is also improved as Az is

decreased.

The effects of varying At, withmAz being kept constant at
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15 cm, are shown in Figure 5.9. Slight oscillation during

the initial 10 seconds is discernible for A‘t = 1.25 seconds.

All three curves converge at the end of the transient period

at response time 90 seconds and beyond.

The effects of the magnitudes of both Az and At on con-

vergence are shown in Figure 5.10. The ratio AtflAz was kept

constant, and the increments' sizes used were At/Az = 5/15,

2.5/7.5, and 1.25/3.75 sec/cm, respectively. In general,

higher values were obtained for finer mesh sizes with a maxi-

mum deviation of 3.50C.

§ 5.3 Conclusions

For a fixed ratio At/Az, improved convergence is Obtained

for finer mesh sizes as seen from Figures 5.2 through 5.5,

and from Figure 5.10.

From the results shown in Figures 5.6 through 5.9 it ap-

pears that stability is improved as the ratio AtflAz is incre—

ased.

Comparing the response curves corresponding to At/Az =

1.25/15 in Figure 5.9, and At/Az = 5/60 in Figure 5.8, we

see that stability is improved in the finer mesh, (the ratio

At/Az being the same in both cases). One may attribute the

improvement to the reduction of either At, or Az, or both.

However, the Observed stability of some response curves with
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At = 5 seconds, and the Observed instability wheneverlsz = 60

cm, imply that stability is affected by the magnitude of Az,

and not of At, in the range of values under study.

When At is kept constant, the choice of A2 affects the

final value of the variable (reached after approximately 90

seconds of response time), whereas when Az is kept constant,

the final value is not affected by the magnitude of At.

Both stability and convergence are considered satisfac-

tory for Az = 15 cm and At = 5 seconds. With this mesh

size, 80 seconds of computation (not including compilation

time) were required for a CDC-6500 digital computer to solve

the problem and provide the system's response during the 100

seconds after the step change was introduced.
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CHAPTER 6: RESULTS AND DISCUSSION

The mathematical model is designed to provide the dynamic

response of the system to various disturbances or inputs.

The computer solution includes the steady state profiles (va-

riation along the fluid or gas path) of the fluid temperatu-

re T, the fluid pressure p, the fluid velocity v, the fluid

specific volume V, and the gas temperature Tg in tabulated

form. Similar profiles, at time intervals of 5 seconds, des-

cribe the dynamics of the system in response to specified in-

puts. Thus, the computer solution gives the variation of T,

p, v, v, and Tg with respect to both time and distance.

The fluid path is divided into 360 equal distance incre-

ments, .Az = 15 cm. Thus, we have 361 values of each of the

aforementioned variables describing the profile. Up to 26

time increments, Iat = 5 seconds, for a total of 130 seconds

of response time, were found to be needed to describe the

transient response. To include all that information in this

report would require many volumes of tabulated data, and there—

fore this was not done. Rather, selected portions of the data

recorded by the computer were presented in graphical form.

The most important information is the variation with res—

pect to time of the steam conditions at the boiler outlet. In

some cases profiles were also included in order to describe

the variation along the fluid or gas path.

80
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The steady state solution is shown in Table 6.1. The

apparent discontinuity in the Tg profile at z = 3000 cm is

due to the fact that the Tg data follows the fluid path which

runs countercurrent to the gas path in the Superheater Section.

§6.1 Variation of Fluid Inlet Velocity

Changes in the fluid inlet velocity result in changes in

the fluid flow rate, and consequently in the energy output of

the boiler. Such changes are made by manipulating the throttle

valve and the boiler feedpump. The effects of step changes of

-11%, -22%, and +22%, respectively, are shown in Figures 6.1

through 6.4.

The fluid temperature profiles at various response times

are shown in Figure 6.1 for the -11% step input. The lepe

of the curve depends on the local rate of heat transfer as

well as on the heat capacity of the fluid at that point. Thus,

in the neighborhood of the critical point (T = 370 to 390°C),

the slope is almost zero because the specific heat is high.

The variation of the slope at z = 3000 cm corresponds to the

beginning of the Superheater Section where the fluid and the

gas paths are countercurrent. The slope increases in this

Section because the gas temperature increases along the fluid

path.

The fluid velocity profiles for the -22% step input are
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shown in Figure 6.2. The velocity increases sharply in the

zone of transition from a liquid to a vapor state. In the

liquid region the profile is almost flat, and in the vapor

region (above the critical temperature) the velocity is rough-

. 1y proportional to the temperature.

The dynamics of the fluid outlet temperature To’ pres-

sure po, and velocity v0, in response to the -22% step input,

are shown in Figure 6.3. The temperature rises to a new

steady state at a higher level, T = 727°C. This is to be ex—

pected, since fluid flow in the tube is decreased while the

heat absorption remains essentially the same.

The initial drOp of the outlet velocity V0 in response

to the reduced inlet velocity is later offset by the decrease

in the fluid density, associated with the rise in temperature.

The outlet pressure po also rises, presumably as a result

of the reduced flow rate.

The responsestx>the +22% step input, shown in Figure 6.4

are inversely similar to the former case.

§6.2 Variation of Fluid Inlet Pressure

Fluid inlet pressure changes are associated with the boi-

ler feedpump operating conditions. The effects Of a -1 bar

(ca. 14.5 psi) step input to the fluid pressure at the boiler

inlet are shown in Figures 6.5 and 6.6.
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The pressure profiles at various response times are shown

in Figure 6.5. The slope of the curve is steeper along the

vertical section of the tube. A steady state is reached after

5 seconds throughout the length of the tube.

The dynamics of To, p0, and v0, are shown in Figure 6.6.

The transient response of the fluid pressure is terminated

after 5 seconds. The outlet temperature undergoes slow fluc-

tuations before reaching the final steady state value.

§6.3 Variation of Fluid Inlet Temperature

The fluid inlet temperature depends on the feedwater heat—

ing system. This system's dynamics are reported to be slower

than the boiler dynamics, and therefore the disturbances were

described as ramp functions.

The effects of a 0.20C/sec ramp input to the fluid tem—

perature at the boiler inlet are shown in Figures 6.7 and 6.8.

Fluid temperature profiles at various response times are shown

in Figure 6.7. The general shape of the profile at t = 50

seconds is different from that of the steady state profile,

indicating transient changes within the system. The resulting

lag in the To response can be seen in Figure 6.8 in which the

dynamics of To and v0 are shown. It appears that the outlet

temperature response lags approximately 70 seconds behind

the ramp input at the boiler inlet. At t = 100 seconds, the
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rate of change of To becomes steady, and the shape of the pro-

files becomes similar tO that of the steady state profile.

§6.4 Variation Of Firing Rate

Firing rate is a manipulated parameter in the Operation

of power plants. This is simulated as a change in the value

of fmx’ with a proportional change of the gas flow rate (See

Appendix A, §A.5).

The effects of a 20% decrease of the firing rate are

shown in Figure 6.9. As expected, the outlet temperature

drops to a lower level. The outlet velocity drops as a re-

sult of the increase in the fluid density, associated with

the temperature drop.

§6.5 Variation of Burner Tilt

Tilting the burner affects the flow pattern within the

furnace and thus serves as a control parameter in the Opera-

tion of power plants. This is simulated in this work as a

change in the value of zfu ( See Appendix A,§ A.5).

The steady state no—tilt gas temperature profile is com—

pared with the steady state uptilt and downtilt profiles Ob—

tained at t = 100 seconds, as shown in Figure 6.10. An up—

ward tilt is represented by increasing 2 by 240 cm, and a

fu

downward tilt by decreasing z by 240 cm. The upward tilt
fu
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resulted in an upward "shift" of the gas temperature profile,

and vice versa.

The dynamics of T0 and v0 are shown in Figure 6.11. The

response curves appear to be antisymmetric. The transient

response lasts approximately 70 seconds after which a new

steady state is reached.

§6.6 Combination of quuts

A combination of a -22% step input to the inlet velocity

and a 20% decrease of the firing rate may be viewed as a simu-

lated control action, following a reduction in the electrical

load. The dynamics of To and v0 are shown in Figure 6.12.

The initial temperature drop appears to be a result of the

faster dynamics of the gas side. Thus, the effects of the

decrease in firing rate result in the initial temperature drop.

After 30 seconds, the reduced fluid flow rate causes the tem—

perature to rise.
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

The results described in Chapter 6 demonstrate the im-

portance of mathematical modeling for understanding and con-

trolling the power generation process. It is unlikely that

a system of such complexity, represented in this work by 3

non—linear partial differential equations, and by the highly

non-linear State Equations, may be approximated by assuming

overall average values for any of the variables.

The response curves provide the necessary information

for both design and control; namely: the final steady state

values in response to step inputs, the final rates of change

in response to ramp inputs, response time lags, fluctuations,

etc. Of special interest is the observed response of the sys-

tem to pressure inputs. The results (§6.2) indicate that a

pressure step input is transmitted very rapidly and that steady

state is attained within 5 seconds. Similar results have also

3’8 It may be concluded thatbeen reported in the literature.

pressure inputs at the boiler outlet, associated with varia-

tion of the throttle valve position, may be simulated by pres-

sure inputs at the boiler inlet, and thus a time consuming

iterative solution of a split boundary condition problem will

not be necessary.

Also noteworthy is the considerable time lag (ca. 70 se—

conds) associated with the response to the fluid temperature

101
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input (§6.3).

The apparent difference in the response time lags of the

gas and of the fluid sides (§6.6) is significant for the design

of a control system that will eliminate the resulting fluctu-

ations.

An important feature of the model is its versatility with

respect to the nature and functional form of the input. Solu-

tions for inputs of fluid flow rate, temperature, and pressure

and of firing rate and burner tilt were described in Chapter

6. Both step and ramp inputs were tried, and other functional

forms can be treated in a similar manner.

A source of variation in a power plant operation which

has not been accounted for in this work is the changing qua-

lity and conditions of the fuel and air mixture. When the fuel

is pulverized coal, the quality of the coal, the fuel to air

ratio and the thermal conditions of the mixture may be eXpec-

ted to vary under normal operating conditions. It is proposed

to further develop the model by including an additional section

in the gas side. This section, designated the Middle Furnace

and located in the burners area between the Lower and the

Upper Furnace sections, may be modeled as a stirred tank reac-

tor. The fuel-air mixture may then be treated as a variable

input to the Middle Furnace.

The capability of the model to solve for large inputs, in
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excess of 20%, is a marked improvement over linearized models.

It should be noted that disturbances of such magnitude are to

be expected under normal operating conditions. The availabi-

lity of complete and thermodynamically consistent State Equa-

tions for water and steam has been a major contribution to

this work in facilitating the development of the non-linzari—

zed model and in the derivation of additional thermodynamic

relationships as required in the Equations of Change.

In the design of central station boilers, some sections

of the gas often contain more than one section of the fluid

circuitry. For example, the Superheater Section may be en-

closed in a waterwall type circuitry, in addition to the

superheater tube banks contained in it. This would raise

difficulties in the procedure of the numerical solution where

the sequence of computations follows the fluid path and the

gas temperature is calculated from the energy balance.

In such situations, the following iterative procedure

is prOposed: let the two overlapping fluid section be desig—

nated Heat Exchanger A and B, respectively. Let the gas stream

be conceptually divided into two streams, with flow rates Wga

and W respectively. When computing along Heat Exchanger A,

gb’

the gas temperature is calculated from the energy balance using

the value of Wga for the gas flow rate. Denote the gas tempe—

rature at the end point of A by Tga' The computation then
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proceeds along the fluid path until Heat Exchanger B is reach-

ed. In similar manner to A, the gas temperature is computed

using the value of W for the gas flow rate. Let the gas

gb

temperature at the end point of B thus computed be denoted

by T As both T and T refer to the same location in

gb ' ga ah

the gas path, they should be equal. If not, then the diffe—

rence between them may be used in an iterative procedure to

correct the initial guess of the relative magnitudes of W

and ng (the sum of which is the actual gas flow rate).

This may be repeated until Tga = Tgb'

Whereas a rigorous test for the validity of the model

can be made only by applying it to a real system, we may con—

clude that the observed results are qualitatively compatible

with known or predictable behavior. This applies to the ge—

neral shape of the response curves, to the pressure dynamics,

to the observed fast response of the gas side, relative to that

of the fluid side, and to the effects of burner tilting on the

gas temperature profiles.

In summary, the major accomplishments of the prOposed

model, compared to previous models, are: i) Absorption of ra-

diation by the gas and by dust particles is accounted for;

ii) The interaction between the fluid conditions and the

gas temperature in the furnace is expressed by the modeling

of the heat generation function. Thus, it is not necessary



105

to assume that a constant gas temperature exists in the fur—

nace, and that variation of the fluid flow has no effect on

the gas temperature; iii) The proposed model can solve for

inputs that are up to an order of magnitude larger than in

any previously reported work; iv) The computing time required

is well within the practical limits for industrial use; v)

the accuracy of the results, as seen from the convergence

tests (Chapter 5), is highly satisfactory; vi) The introduc—

tion of an accurate and thermodynamically consistent formula-

tion of the equations of state for water and steam.
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APPENDIX A

§A.1 The Equation of Continuity

The general form of the equation of continuity in rectan-

gular coordinates is:

6.9.4.1

at ax(pvx)+§;(ovy)
+5§;(ovz)=o

(A—1)

Assuming variation in the z—direction only, we have

§f+éa§(pvz)=0
(A-2)

write v2 = v

35+93f+vgf=0
(A-3)

Equation A-3 is identical with Equation 3—1.

§A42 The Equation of Motion

Assuming variation in the z-direction only, the equation

of motion is:

 

v av .12 an.z ..
+ — =- - 0000000000. _0% Vaz 62 az +Dg (1 9)

In a horizontal tube, the graviational acceleration E = O;

in a vertical tube with upwards flow E = -g = -981 cm/sec

The normal stress T22 is related to the velocity gradient.
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For Newtonian fluids with constant viscosity u , we have

2

8.52:“avz
(A-4)

32 322

  

This term is small, compared to the other terms in Equation

1-9, and is neglected.

Each term in Equation 1-9 eXpresses rate of momentum

transfer per unit volume or, equivalently, force per unit vo—

lume.

Consider a fluid volume element AV, contained in a tube

segment of lengthMAz and inside diameter D. We have:

nDz “Dz

AV = —-° Az , and cross sectional area A ='--

4 ex 4

Area in contact with the tube wall Af == fiDAz.

The friction force acting on the fluid in AV is given by:

2 2

F = f Af(pv /2) = f(flDAz)(pv /2) ........ ..... (A—5)

Dividing F by AV and including it in the force balance, Equa-

tion 1-9 becomes:

0855+Vg—Z)=-3§-pg-(2f/D)pv2 ............. (A-O)

A factor of 106 multiplies the pressure term in Equation 3-2

6 2

in order that the units will be consistent (1 bar = 10 dyn/cm )-
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§A.3 The Equation of Energy

Assuming variation in the z-direction only, the equation

of energy is:

pep (33+ v37 -(v-a’) - (mm) + (3—17‘1—1)J35" v35)... (1-11)

Each term in Equation l-ll expresses rate of energy trans-

fer or interchange, per unit volume of the fluid.

The term (TfiVV) is a tensor notation representation of the

irreversible transformation of mechanical energy to internal

energy by viscous dissipation. This effect is small, unless

high velocity gradients are encountered.

The term -CV°3) is the rate of heat transfer by conduc-

tion across the boundaries of AV} In this work, this term is

replaced by an expression of heat transfer from the gas into

the fluid through convection and radiation.

Consider a segment of the tube as in §A.2. Convective

heat transfer is given by U(Tg - T)ZSAC, where AAC is the

area of convective heat transfer. Radiative heat transfer

is given by ¢;'c1'(Tg4 - T4)AAr, where AAr is the area normal

to the radiative flux. The combined rate, per unit volume of

the fluid is:

= _ 4 _ 4 _
qtr U(:rg T)AAc/AV + eo'(Tg T )AAr/AV (A 7)

12

Equation 3-4'is obtained from Equation A-7 by using cz= o'°10 .
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In the Superheater Section, we have:

Dh = the inside diameter of the tube

Acx = the cross sectional area of the tube

2

AV ”1tDl z/4 , AAc ‘nDlAz , AAr ZDhAz ,

hence AAc/AV = 4/Dh and AAr/AV = 8/(11Dh)

With ez= 1, Equation A-7 becomes:

__ 8
q ——

tr fiDh

 JL 1 4 4
[2 U(Tg-T) +0 (Tg - T )J (A—8)

The waterwall tube's inside diameter is Dv. There are n

waterwall tubes per one superheater tube, but the total cross

sectional area remains unchanged. Thus, Acx = flDi/4 = nnD3/4,

and n = (Dh/Dv)2' Noting that only one side of the waterwall

tubes is exposed to the gas, we have:

_ 2 =
=AV — nanAz/4 , AAC nanAz/Z , AAr anAz ,

AAC/AV = 2/Dv , AAr/AV = 4/1tDv ,

and the rate expression becomes:

qtr =;—g—;[-12‘-U(Tg - T) + c'(Tg4- T4)] (A-9)

In order to have a uniform formulation throughout the boiler

in the computer program,Deq is defined as follows:

eq/Acx = 8/11Dh for the superheater tube, and Deq/Acx = 4/1rDv

2

for the waterwall tube. ‘With A =1tD /4 , we get D = 2D
cx h eq

and Deq = Di/Dv for the superheater and waterwall tubes,

h
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respectively.

The term (31-12%)1) was obtained explicitly from the

other equations of state as follows:

aln 3 __jL. Gm)p_\7 (g?)p (A-10)

When p is given as an explicit function of $ and T, as in

Equation 4-5d, then we can use the relation:

(3? _ (EDP/8T);

519p _ .. (OP/(WM. (A-11)

The resulting expressions appear in the computer subroutines

(Appendix C), under the variable name DLNT.

§A.4 The Specific Heat of the Gas

Data on the variation of Cg vs. Tg for various fuels is

given in the literature18 in the form of a chart. The curve

corresponding to Bituminous Midwestern coal with 20% excess

air was divided into segments, each of which was approximated

by a straight line. The equations of these line segments are

of the form:

C =aT +b 0.0.0.0.........OOOOOOOOO (AI-12)

g g

The values a, b were obtained from the chart, and given as

data in Subroutine SCG, Appendix C.
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§A.5 The Heat Generation Function

Qualitatively, the form of the heat generation function

f(z) is given in Figure 2.4. The area under the curve is

equal to the total heat absorbed by the fluid in the boiler,

under steady state conditions:

Qf = (Houtlet — Hinlet)W0Acx 9.0000000000090000 (A‘13)

Denote the height of the boiler by Lt' Then the area

under the curve f(z) is L of /2 , where f is the maximum
1: mx mx

value of f(z), occurring at z = zfu' Equating Qf to the

area under the curve we obtain:

2WoA

f =—-——-°" (H

t

outlet-Hial
et) coco-00000000

00000 (A-14)

The function f(z) is given by two straight line equations:

(fmx/zfu)z for O <. z < zfu ... (A-lSa)

f(z)

f

mx

L - 2

'(L - z) for 2 g z < L ... (A-15 )
t b

t fu

fu t

In the Superheater Section of the boiler we have 4 super-

heat passes, designated as pass A, pass B, pass C, and pass D,

respectively. Each pass occupies a volume of gas, correspond-

ing to a length 18 of the gas column. The amount of heat gene—

rated within a gas volume of a superheat pass was calculated
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by integration of Equation A-15b along an interval 15' Thus:

1 l f

s 5 mx

q =—-£f(z)____ +f(z)=_]=-—-(0+ 1)
sd. 2 z Lt z Lt 1S 2 Lt zfu s

_1. fmx 2

— i L - z 1s

t fu

1s 1s fmx

qsc =‘7T'[f(z) z=L -l + f(z) z=L -21 J _’7T' L - z (ls + 21s)

t s s t fu

= 4L”. fmx 12

2 Lt - zfu s

The expressions of qSb and qsa are obtained in a similar

manner. The results are given in Equations 4—16.

The numerical values that were used are:

2

Lt = 3600 cm 18 = 150 cm hence l:/2 = 11,250 cm

153

The gas flow rate Wg is estimated from empirical data,

correlating the heat of combustion, heat losses, and the ratio

of air to fuel in the feed.

When the firing rate is changed, then both fmx and Wg are

changed, in the same proportion.

The value of z u depends on the burner tilt. When the

f

tilt is downwards, zfu is reduced, and vice versa.
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§A.6 Energy Equations in the Lower Furnace

The heat balance in the Lower Furnace is given by the

equations:

  

 

qa - qa +Az(qs - qrc) = 0 ..... ............ (4-17)

2 z+Az

dT

T

qa =-Dc-d-zg , qa =-D dg (4-18)

+Az dz

2 z+Az

qs = (fmx/zfu)z .................. (4-19)

In order to obtain the variation of Tg within the gas volume

element of lengthikz, replace 1A2 in Equations 4-17 and 4-18

by 82 and rearrange Equation 4—17:

q ‘ q

a z+Az a z
- =- + 0.0000000000000000 -1

52 qs qrc (A 6)

   

taking limits as 526:0 , we have

- dqa/dz=-qs+qrc
000.000.000.000... (A-17)

Substituting Equations 4-18 and 4-19, obtain:

dzl‘ fmx
Dc-—-2£=qu—T'z

oooooooooooooooooo (A-18)

dz fu

Equation A-18 is identical with Equation 4-20.

Integrating Equation A-18 twice between 2 and z+Az ,

taking qrc to be constant along the interval Az, we obtain
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Equations 4-21 and 4-22.

At 2 = zfu , the transition from the Lower Furnace to

the Upper Furnace is accounted for by assuming eddy conductance

at z and gas flow upwards at z+Az . The resulting heat ba-

lance is:

- Tg ) = (q - qs) Az ...... (A-19)+w- -

qa g Cg (Tg re
2  z+Az  

Substituting Equations 4-18 and 4-19, and dividing bytAz, we

 

 

 

  
 

have:

T -T

Dc dT gz+Az gz

-—. - C
7 —q -f 0000.. (A-ZO)

AZ dz g g AZ
PC mx

Assuming

T - T

___g_; ‘Z'I'AZ z
. . .

dz Az : and rearranging, obtain.

dT fmx .. q

= rC 0.0.0.00000000000000 (A-ZI)
 

and

dT

T =T +7125!” (A—22)

g z+Az g
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APPENDIX D

§D.1 The Equation of Motion

The term -aTzzflDz = u(azvz/azz) , appearing in Equa-

tion 1-9, is considered negligible. An estimate of the maxi-

mum possible value of this term is presented to justify the

assumption.

From Table 6.1, the average variation of v along the tube

is (av/adave. = (437 - 4s)/(90-60) = 0.0727 (cm/sec)/cm.

Using the approximation

 

 azvz '_' (av/32) z+Az - (av/az)

2 A2

2

 

Q
)

and assuming Gavflaz)
ave

 
z+Az = (EV/32) 2 (av/a2) z = O )

we have azvzfiazz = .0727/60 = 1.21-10-3 (cm-sec)-l.

1

The maximum value of the viscosity encountered is:3

11: 8.90'10-4 g/(cm)(sec). Thus, -erzzflaz) = 1.08-10—6

(dyn/cm3). In comparison, the friction force per unit volume

is (from Table 6.1, at z = 600 cm) 12.8 dyn/cm3 , and the

gravity force per unit volume is 612 dyn/cm3.

§D.2 Heat Conduction in the Fluid

2 .

Heat conduction in the z—direction. kfazTflaz ) is con—

sidered negligible in the fluid energy equation. We shall
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use the approximation

aZT .. (aT/az) z+Az - (aT/az) z
 

az Az

The average variation of T along 2 is (from Table 6.1),

(am/az)ave. = (560 - 320)/(60 90) = .0444 oK/cm.

Taking (aT/az) z = 0 and (ST/32) z+Az = (aT/az)ave.,

we have azTflazz = .0444/60 = 7.41-10-4 oK/cmz. The maximum

31
value of the thermal conductivity encountered is:

k = 0.318 Btu/(hr.)(ft.)(°F) = 0.0055 Joule/(sec.)(cm)(°K)

Hence k(azT/az2) = 4.07'10“6 Joule/(sec.)(cm3).

In comparison, heat transfer by radiation is:

0.34 5.67.(1.24 — .834)

D

Egg-o=[(Tg/IOOO)4
- (T/1000)4]

CX

= 3.08 Joule/(sec.)(0m3)

§D.3 Gas—to-fluid Convective Heat Transfer

The overall resistance to heat transfer from the gas to

the fluid is composed of 3 resistances in series: i) The gas-

to-metal film resistance hgm; ii) The metal wall resistance;

iii) The metal-to-fluid resistance hm

153

f.

Experimental data for hgm ranges from 2 to 20 Btu/

(hr.)(ft.2)(°F). The minimum resistance is l/h = 0.05.
gm
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The thermal conductivity of the tube metal (steel) is:30a

k = 20 Btu/(hr.)(ft.2)(°F). Assuming a wall thickness Ax = 1/4"

we have the wall resistance (xx/k = 1.04-10_3.

The fluid film resistance may be calculated from the

Dittus-Boelter correlation (Equation 1-5), the Sieder—Tate

correlation (Equation 1—6), and from the modified correlation

for high temperature gradients (Equation 1—7). The results

are given in Table D.1. The data31 corresponds to 3500 psi.

Values of hm calculated by Equation 1-7 are invariably high-

f

er than those obtained from Equation 1-5, and therefore were

not included in the table.

The results show a maximum resistance of: 1/(hmf)

1/278 = 3.6 10-3 . We see that the maximum resistance of the

min.

fluid film is 7% of the minimum resistance of the gas film,

and that the tube wall resistance is smaller yet. It is, there-

fore, permissible to ignore the variations of the fluid and

of the wall resistances, and to lump them together with the

gas film resistance as the overall convective coefficient U.
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Table D.1: Calculated Value of Metal-tvaluid Convective Heat

Transfer Coefficient

 

T (OF) 600 700 800 900 1000 1100 1200

 

p.104 (poise) 8.90 4.84 3.35 3.21 3.35 3.49 3.69

kIBISéIIJwat) .318 .155 .088 .063 .060 .062 .064

 

 

CPEBtu/(lb)(°F)] 1.326 4.19 1.563 .941 .775 .701 .666

 

Pr Number 0.92 1.35 1.43 1.23 1.06 0.98 0.93

Re'IO-4 9.0 16.53 23.9 24.9 23.9 22.9 21.7

I h Bt

) mf§f13§f2g§3 775 718 560 390 338 327 318

Bt h
flzftgflog] 618 1335 486 325 290 280 278

 

 

 

2) hm   
1) Calculated by Equation 1-5

2) Calculated by Equation 1-6

§D.4 The Gas Energy Equation

The kinetic and potential energy terms were neglected in

the gas energy balances. Furthermore, an assumption was made

that the energy dynamics may be modeled as a sequence of stea-

dy states.

To demonstrate the validity of these assumptions, consider

a segment of the gas column, corresponding to a tube of length

Az. The volume of the gas is AV. The energy balance over AV

may be written in the following general form:



155

= - + +A +A 000000000 '-AE/At QS Qrc A(wgcg'rg) 13k Ep (D 1)

where,

AE/At = (pgAN)Cg ATg/At = the rate of energy accumulation

within AV

QS = qS'Az = the rate of heat generation within AV

Q = q -Az = the rate of heat transfer out of AV

rc rc

A(W C T ) = W C °(T . - T ) = the net heat carried by

g g g g g g,1n g,out

the gas stream

AB = %W '(vz . - v2 ) = the kinetic energy change

k g g,1n g,out

AB = Wg-g-Az = the potential energy change

Using the values:

Wg = 1800 g/sec .Az = 60 cm 43g = .001 g/cm3

AV'= 2.16 105 cm3 vg = 500 cm/sec

qS = 100 Joule/(cm)(sec) qrc = 50 Joule/(cm)(sec)

Cg = 1.5 Joule/(g)(°K)

We have:

A(WgCng)= -5040 Joule/sec, assuming a variation of —20K

over A z

Qs = 6000 Joule/sec

Q = 3000 Joule/sec

rc

ABk = 11.25 Joule/sec , assuming a 50% velocity change

over A z

Asp = 10.6 Joule/sec

AE/At = 302 ATg/At
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The results indicate that kinetic and potential energy

effects are, indeed, negligible.

The rate of change of Tg’ as obtained from the energy

balance is .ATg/At = -6.7 oK/sec . Such a rapid change would

result in a new steady state within a short period of time.

This justifies the modeling of the gas dynamic as a sequence

of steady states.



NOMENCLATURE

_T_‘e_xt_ FORTRAN

a — a constant parameter

A — area

Acx - ACX - cross sectional area of a superheater

tube

b - a constant parameter

Cg - CGOT — specific heat of the gas

Cp - specific heat at constant pressure

Cpr - CPR - reduced (dimensionless) specific heat

d,a - prefix, indicating differentiation

D - diameter

DC - DIC - dispersion coefficient (See § 3.2)

Deq - DEQ - equivalent diameter (See § A.3)

Dh - DH - inside diameter of the superheater tube

Dv — DV - inside diameter of the waterwall tube

E - energy

f - function

f - F - friction factor

F — function; friction force

fmx — FMX — maximum value of the heat generation

function (See 1§A.5)
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Text

g, g

gm

mf

FORTRAN

GAC

PR

PST

158

— gravitational acceleration

convective heat transfer coefficient

(film coefficient)

enthalpy

gas to tube wall film coefficient

tube wall to fluid film coefficient

distance index number in the Finite

Differences grid

time index number in the Finite

Differences grid

location in the Finite Differences

grid (See Figure 4.2)

thermal conductivity

length of gas column containing one

superheat pass

length of the Superheater Section

total length (height) of the boiler

number of tubes

pressure

reduced (dimensionless) pressure

Prandtl Number

pressure as computed from the State

Equation (See § 4.3)

heat flux

rate of heat absorption by the fluid

in the whole boiler



At

ic

in

FORTRAN

QRAC

TIM

TR

VE

VOL

VR

VST

159

rate of heat transfer per unit length

of the tube

rate of heat transfer by convection

and radiation

rate of heat generation per unit length

of the tube

rate of heat generation

rate of heat transfer per unit volume

of the tube

Reynolds Number

entropy

time

temperature

time increment

computed fluid temperature at boiler

inlet (See § 4.4—4)

fluid temperature at the boiler inlet

(See § 4 4-4)

reduced (dimensionless) temperature

overall convective heat transfer

coefficient

velocity

specific volume

reduced (dimensionless) specific volume

volume

specific volume as computed from the

State Equation (See1§ 4.3)



Text

fu

FORTRAN

W

WAG

EPS

ZFU

suffix A

suffix B

suffix C

suffix D

suffix J

160

— mass velocity of the fluid

- mass flow rate of the gas

distance coordinate

distance coordinate; distance along the

fluid or gas path

- distance increment

— location of the boundary of the Lower

Furnace (See §A.5)

Subscripts

axial

- for superheat pass A

bulk

— for superheat pass B

convective; computed

— for superheat pass C

- for superheat pass D

film; fluid; friction

gas

in; inlet; distance index number in

the Finite Differences grid

time index number in the Finite

Differences grid

- location in the Finite Differences

grid (See Figure 4.2)



Text

11

0,0'

FORTRAN

suffix

suffix

suffix

suffix

M

X

Y

Z

PAI

RO

SIG

161

kinetic

location in the Finite Differences

grid (See Figure 4.2)

outlet; out

potential

radiative; reduced

wall

distance coordinate

location in the Finite Differences

grid (See Figure 4.2)

distance coordinate

location in the Finite Differences

grid (See Figure 4.2)

distance coordinate

location in the Finite Differences

grid (See Figure 4.2)

Greek

increment; interval; difference

Del operator

emissivity

viscosity

a number 3.1416...

density

the Stefan—Boltzmann constant

stress
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