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ABSTRACT

BINARY TREE STRUCTURES FOR MATRIX MULTIPLICATION

By

Abdullah Celik Erdal

Multiple arithmetic processors are interconnected to form a binary

tree structure and then utilized as a high performance special-purpose

co-processor. Such co-processors may be incorporated into a digital

signal or image processing system to perform such tasks as matrix multi-

plication, which is routinely required to compute convolutions or dis-

crete Fourier transforms. Specifically, this research shows that, any

nxn dense matrix multiplication can be performed in [(2n + log(n))] time

steps by using n(2n-l) processing elements, where each processing ele-

ment is designed to be either a multiplier or an adder with some addi-

tional registers.

To demonstrate the utility of this binary tree structure, implemen-

tation of the convolution and the discrete Fourier transform operations

are presented. This binary tree structure may also be applied to other

digital image and signal processing algorithms thus establishing the

flexibility, generality, and the cost effectiveness of this structure.
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CHAPTER I

INTRODUCTION

In many areas of computer application, such as image and signal

processing, the quality of the answer the computer returns is propor-

tional to the amount of computation performed [l]. The use of general

purpose computers has been common for these applications; however,

the high computational throughput and data rate demanded by these

applications make the conventional computers inefficient and thus

impractical for many contemporary applications.

Advances in the design and fabrication of Very Large Scale Inte-

grated (VLSI) circuits will soon make it feasible to implement com-

puters consisting of tens or even hundreds of thousands of computing

elements. For this reason, the tendency is to design cost-effective,

high-performance, special-purpose devices to meet specific application

requirements by employing many processing elements.

Many special purpose devices for applications that require highly

parallel computing have been proposed and built. Systolic arrays,

introduced by Kung [2-4], and the VLSI computing structures, introduced

by Hwang [5], are such devices. Both consist of a set of interconnected

cells, each capable of performing some simple operation, where each

cell rhythmically computes and passes data through the system. They

have simple and regular communication paths and are highly concurrent

modular systems. Both authors emphasize procedures for solving linear



systems of equations and some matrix computations, such as L-U decompo-

sition and matrix multiplication. These computations play a vital

role in numerous computer applications which require high-speed computer

performance. For example, matrix multiplication is an important image

and signal processing operation, and it is the subject of this research.

This research develops and investigates a high performance special

purpose device for matrix multiplication, which works as a co-processor

attached to a host computer. It capitalizes on the properties of VLSI

to achieve high throughput rates and high efficiency. Although the

algorithm and the structure conform to the restrictions of VLSI tech-

nology, they can be easily implemented.with pre-VLSI technology without

significant performance degradation. A binary tree structure is used

to obtain a simple, regular, and short communication geometry, which

are considered as some of the most desired attributes of a VLSI imple-

mentation. One of the main advantages of using the binary tree struc-

ture over either hexagonally or mesh connected structures proposed

by Kung [2-4] and Hwang [5], respectively, is that a tree structure

uses much fewer connections between the processing elements; also,

the longest distance any data must travel is considerably less than

any of the other schemes, leading to higher speeds. Furthermore, only

two different processing elements, namely a multiplier and an adder,

are used for simple, regular, and modular design to yield cost-effective

special-purpose systems.

There are many special and general purpose machines that employ

binary tree-structured interconnections between the processing elements.

For example, the “Inner Product Computer" discussed in a report by

Swartzlander [6], is a special-purpose computational unit intended



to be used as a co-processor to compute the inner product of complex

vectors by using the binary tree structures, which are very similar

to the tree structured arrays investigated in this research. The “X-

Tree,“ University of California, Berkeley, project [7], is a tree

structured general purpose multi-processor computer architecture.

It has the hierarchical structure of a binary tree, but extra links

are employed between the nodes to enhance fault-tolerance and balance

uniform message traffic [7]. The California Institute of Technology

“Tree Machine,“ based on Browning's doctoral dissertation [8], is also

a binary tree structured multiprocessor system for general purpose

applications. However, this machine does not have the extra links

between its processors as in the case of “x-Tree." Both of these

machines are general purpose computers.

Background information is presented in Chapter II in order to

review some alternative highly parallel computing structures for matrix

multiplication. Some examples are also given. The third chapter of

this research introduces the proposed matrix multiplication algorithm

and the structure of the binary tree, where each node of the tree

represents a processing element. The chapter closes with an example

matrix multiplication and compares the proposed algorithm with the

two algorithms introduced in Chapter II, on the basis of speedup and

efficiency. The fourth chapter gives application examples for the

proposed architecture and describes the processing elements, chips,

and the overall system architecture. Lastly, in the concluding chapter,

some of the advantages and drawbacks of this architecture are delineated.

Possible extensions of this work for future research are also included.



CHAPTER II

BACKGROUND

The purpose of this chapter is to review the matrix multiplication

algorithms of the two multiple special-purpose functional units intro-

duced by Kung [2-4] and Hwang [5]. These units employ many tightly

interconnected elements and are designed to be used in a highly par-

allel computing environment for applications such as signal and image

processing. .

Systolic arrays and cellular arithmetic arrays are introduced

in Section 2.l and Section 2.2, respectively. Sample matrix multi-

plication algorithms, which may be implemented on these arrays, are

also included. The chapter concludes with a discussion of some of

the negative aspects of these algorithms.

2.l Systolic Arrays

In a systolic system, data flows from the computer memory in a

rhythmic fashion, passing through many tightly connected processing

elements in a co-processor before returning to memory. Each processing

element, called an inner product step processor, performs a single

operation, namely the inner product step,

C + C + A * 8.

Figure 2.1 shows two types of geometries for this processing element

(PE). Each PE has three registers RA, RB, and RC’ and each register



 

  
 

 

 

Figure 2-l: Geometries for the inner product step

processor [2].



has two connections, one for input and one for output. In each time

step, where one step is defined as the interval of time for any one

of the PE's to complete its computation, the PE shifts the data on

its input lines denoted by A, B, and C into RA, RB’ and RC’ respec-

tively, computes

C+RC+RA*RB
R

and makes the input values for RA and RB together with the new value

of Rc available as outputs on the output lines A, B, and C, respec-

tively [2]. Each processing element is connected to its neighboring

PE's as shown in Figure 2.2. Using these different systolic arrays,

it is possible to design systolic systems or systolic co-processors

for computations for such applications as band matrix multiplication,

L-U decomposition, and for solving triangular linear equations [2-4].

For example, consider the problem of multiplying a matrix A 8 (aij)

with a vector x = (x],...,x0) (see Figure 2.3). The product term,

y = (y],...,yo) can be computed by the following equations [2]:

A

—
‘

v u

‘YT 0:

+ l

yi(k I) ‘ Vim I aikxk’

+

yl = yi(n ])

If A is an nxn band matrix with bandwidth

w = P + Q - 1,

(See Figure 2.4 for the case when P = 2 and Q = 3.), then the above

equations can be evaluated by pipelining the xi and y1 through a lin-

early connected systolic array consisting of w inner product step PE's

in (2n + w) time steps [2].
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Figure 2-2: Mesh-connected systolic arrays [2]-
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Another example is the multiplication of two nxn band matrices

with bandwidth w1 and "2' The matrix product C = Icij) of A = Iaij)

and B = Ibij) can be computed as follows 2 :

c (I)
ij 3 0'

(k+I) a (k)

C13 cij I aikbkj’

= (n+l)

Band matrices A, B, and C, shown in Figure 2.5, are pipelined through

a systolic array of (w1 * "2) hex-connected PE's. The interconnection

network and data flow are shown in Figure 2.6. Each Cij is able to

accumulate all of its terms before it passes through the upper bound-

aries. If A and B are nxn band matrices with bandwidths w1 and "2’

respectively, then a systolic array of (w1 * wz) hex-connected PE's

can compute the result C in [3n + min ("l’ wZX] time steps. If A and

8 are nxn dense matrices, then (3n2 - 3n + l) hex-connected PE's can

compute the result in C in 5(n - 1) time steps [4].

As described, the systolic array architectures provide the capa-

bility for realizing a number of important matrix operations. In

addition to achieving a high computational rate by means of pipelining

and concurrent computation, these arrays are characterized by having

a simple, regular and short communication geometry.

2.2 VLSI Cellular Arithmetic Arrays

Processing elements, as in the case of systolic arrays, compute

the inner product,

C + C + A * B
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multiplication problem in Figure 2-5 [2].

Figure 2-6:



I3

Figure 2-7: The additive multiplication cell [5].
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and have three inputs and three outputs as shown in Figure 2.7. Al-

though it is not specified in [5], presumably each processing element

has a set of three registers that relates to the input and output lines

of A, B, and C. Each processing element is connected to its neigh—

boring PE to form a short communication path.

Consider the problem of multiplying two nxn dense matrices A =

Iaij) and B = Ibij) (see Figure 2.8 for n = 3), where the product

coefficients

n

cij "' kg, (aikbkj)

for all i and j [5]. The elements of matrices A and B are fed from

the lower and upper input lines in a pipelined fashion, one skewed

row or one skewed column at a time, as in Figure 2.9 [5]. Some dummy

zero inputs are interspaced with the matrix elements to ensure correct

results. Multiplying two nxn dense matrices requires n(2n - l) pro-

cessing elements and it takes (4n - 2) time steps to produce the pro-

duct matrix C = Icij)‘

2.3 Discussion

All the PE's for both algorithms are kept busy all the time, either

by performing the inner product computation or by simply passing the

data to their neighbors. Other computations, such as matrix inversion

and L-U decomposition, can also be implemented by using one or two

different PE's and different array architectures. Both of these VLSI

arrays are expandable to allow modular growth. However, they both

have some drawbacks. For example, they need data skewing, and control

of every input and output data, in order to accomplish their correct
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timing. This increases the circuit complexity and introduces additional

delays. One other negative aspect of these arrays is that to accomplish

the multiple use of every element of matrices A and B, the result of

each processing element, as well as the elements of A and B, are pipe-

lined through the array. However, this requires the use of more inter-

connection lines between the processing elements, and hence more chip

area. And the number of required registers also increases for the

same reason .



CHAPTER III

AN ALGORITHM FOR MATRIX MULTIPLICATION

This chapter provides the requisite groundwork and the algorithm

for the development of a highly parallel computing machine. Basically,

this machine is a tree structured array and may be classified as a

multiple special-purpose functional unit. First, the processing ele-

ments are defined and the basic tree structure is outlined in Section

3.1. In the next section, a new matrix multiplication algorithm is

introduced, and a sample matrix multiplication is provided. Section

3.3 concludes with a discussion of the space-time complexity of this

tree structure and compares its speedup and efficiency with those of

the structures reviewed in Chapter 2.

3.1 Functional and Structural Description

* Processing Elements (PE)--As mentioned earlier there are two

types of processing elements, namely, a multiplier and an adder. Each

of these PE's has three connection lines A, B, and C, as shown in

Figure 3.1, where lines A and B are the input lines and the line C

is the output line. Each PE performs only a single operation, either

C‘+ A x B

or

C *-A + B.

18
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Figure 3-1: A processing element (PE).
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In each time step, a processing element takes the data on its input

lines A and B, performs its operation, and latches its result into

register RC’ where RC is directly connected to the output line C.

All outputs are latched and the logic is clocked so that when one PE

is connected to another, the changing output of one during a time step

will not interfere with the input to another during this time step.

* Tree Structure--The tree structure, shown in Figure 3.2, has

seven nodes and three levels. The first node is called the root node,

and it is accepted as the level one of the binary tree. The nodes

4, 5, 6, and 7 are called leaf nodes or input nodes. This tree struc—

ture is redrawn in Figure 3.3 to show the actual data flow. As shown

in this figure, data is pipelined downward from the leaf nodes to the

root node, where the output of the root node is the final result of

the computation. Only the input nodes (leaf nodes) are represented

by the multipliers; the rest of the nodes are all adders.

3.2 An Algorithm for a Dense Matrix Multiplication on Trees

Let A = (aiJI’ B = Ibij)’ and C = (cijI be nxn dense matrices,

where C is the product term, which can be computed in (l + log n) time

steps by using n2(2n - l) PE's, and by employing the type of tree

structures shown in Figure 3.3. (Note: the logarithmic function will

be used in base two throughout this paper.) All the rows of the matrix

A and all the columns of matrix B are multiplied together in one time

step to produce all the partial products of the resultant matrix C.

Then the produced partial products are added in (log n) time steps

to obtain the final result. Consequently, very high speedup is obtained

over the other algorithms. However, it requires too many PE's and
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Figure 3-2: The tree structure.

\/ \,/

Figure 3-3: The tree structure with PE's and data flow shown.
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very large I/O bandwidth even for very small matrix multiplications.

Since this would be an unrealistic assumption, a different approach

will be taken to obtain high speedup with many fewer PE's.

In the remainder of this paper, it is assumed that A, B, and C

are all nxn dense matrices, where n = 2k for k = l,2,3,..., although

this is not an essential assumption. With this assumption, we can

define some terms that will be used throughout this paper as follows:

p = Total number of PE's that will be used for a given nxn matrix

multiplication.

t = Total amount of time it takes for a given nxn matrix multi-

plication to be computed.

Then, it will be shown in this section that

p = n(2n - l);

t = (2n +_log n);

where

n = 2k for k = l,2,3,...

for nxn dense matrix multiplication.

The first modification needed is to reduce the number of input

lines for the input nodes (multipliers) from two to one. This will

not only reduce the I/O bandwidth requirements, but also reduce the

number of pins for a chip implementation. However, the price that

we pay is the reduction of the overall speed. The second modification

is to include one extra register, R3, for each multiplier to use as

a buffer to hold the elements of the matrix B. This register will

be implemented inside the multiplier PE. Finally, it will be assumed

that n-way memory interleaving is incorporated in the host computer.
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With this memory model, one word can be fetched from each of the n

memory units at once in one clock period, then the effective memory

bandwidth is n [9].

With all the given modifications and the assumptions, it is now

possible to load all the elements of the matrix B into the register

2 multiplication PE's in n time steps, one column at a time,R8 of n

where each column has n elements. Note that if the I/O bandwidth is

larger, more data can be accessed in one time step. Also, it is as-

sumed that memory access time is equal to one time step, although it

may be possible to access the memory more than once in one time step,

which will speed up the overall computation time. Furthermore, for

simplicity, it will be assumed that each of the PE's, multiplier or

adder, have equal computation times.

Consider a 4x4 matrix multiplication example to illustrate this

algorithm, where matrices A, B, and C are shown in Figure 3.4. Indi-

vidual elements of the matrix C are shown in Figure 3.5a.

Each row vector will be computed separately. For this reason

n Column Vector Computation Units (abbreviated as CVCU) will be used,

where each CVCU will contain a total of (Zn - l) PE's bringing the

total number of PE's to n(2n - 1). These (2n - l) PE's in CVCU's

consist of n multiplier PE‘s and (n - l) adder PE's. Sepcifically,

for this example, 4 CVCU's have been used. Each CVCU contains 7 PE's,

where 4 of them are multiplier and 3 of them adder PE's. First con-

sider the CVCU-I which produces column vector-I of resultant matrix.

As shown in Figure 3.5a, the equations C1], C2], C3], and C4] have

four elements in common to all of them. For this reason, first these

common elements, namely b1], b2], b3], and b4], are loaded into the
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Figure 3-4: Matrices A, B, and C where

A x B = C.
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first row of matrix C.
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RB registers as shown in Figure 3.6a. Also, for simplicy, C1], C2],

C3], and C4], are redefined as shown in Figure 3.5b.

At time steps 5, 6, 7, and 8, matrix A is pipelined one row at

a time, where each row has n elements, and for an nxn dense matrix

there are n rows. So, it takes n time steps to pipeline all the rows

of nxn dense matrix. After the pipelining of the last row, it takes

(log n) time steps to merge the partial results of each PE. At each

time step each PE takes its operands, does computations on these op-

erands, and stores the result into the RC' Like a systolic array each

PE takes data in and pumps data out at every time step.

Only the CVCU-I is shown in Figure 3.6. CVCU's-II, -III, and

-IV, also perform the same computations at time steps 1 through 10.

Note that the same row elements are needed to do computations on these

CVCU's. For example, at time step 5, the first row of matrix A is

inputted to CVCI-I, -II, -III, and -IV simultaneously. At time steps

6, 7, and 8, row II, III, and IV of matrix A are pipelined through

every CVCU, respectively. From this, it is concluded that, only n

elements are needed at each time step to do all the computations as

shown in Figure 3.7.

Note that band matrix multiplications and matrix-vector multi-

plications can easily be implemented on these tree structures with

the same algorithm. For example, an nxn and n-element vector multi-

plication can be computed using n(2n - l) PE's in (n + l + log n) time

steps.



Figure 3-6a:

a12

Figure 3-6b:

28

Time step 4.

a13

Time step 5.
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Figure 3—6e:

Figure 3-6f:

Time step 8.

Time step 9.
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Figure 3-6g: Time step 10.
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3.3 Discussion and Performance Analysis

As shown in Section 3.2, nxn dense matrix multiplication can be

computed using n(2n - l) PE's in (2n + log n) time steps. Note that

for the algorithm proposed in this paper, there is no need for data

skewing or a data alignment network because the algorithm requires

only row access to the matrices A and B for the matrix multiplication

of AxB.

The number of processing elements and the total time steps required

for a given nxn dense matrix are shown in Figures 3.8 and 3.9, respec-

tively. Figures 3.lOa and 3.lOb show the comparison of this algorithm

with Kung‘s 2-4 and Hwang's [ 5 ] algorithms in terms of number of

required PE's for the range of n = 2 to n = 2048. Figure 3.lla, b,

and c depicts the comparison of these algorithms in terms of time steps

that are necessary for any given nxn dense matrix for the same range.

As shown in Figures 3.10 and 3.ll, the algorithm proposed in this paper

obtains higher speeds with fewer processing elements over the other

two algorithms. Note also, it is possible to use fewer PE's to compute

a given nxn dense matrix, however, this causes an increase in total

time steps. For example, 1 CVCU can be employed instead of n to com-

pute a given nxn matrix using (2n - l) PE's in (2n + n + log n) time

steps, which is still faster than a sequential processor. Combinations

of the number of PE's and the total time steps can be easily arranged

so that the computation rate of the overall system matches with the

I/O bandwidth of the host computer.

Speedup and efficiency provide more insight into the performance

of these algorithms, where speedup S, is defined as the ratio of the

serial computation time to that of parallel computation time; efficiency,
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E, is regarded as the ratio of the actual speedup to the maximum possible

speedup using p processing elements, as shown below [30,11]:

S ts / tp.: 1

m

l
l

5/p_<_1

where t5 and t are serial and parallel computation times, respectively.

Figures 3.12a :nd 3.12b illustrate the speedup of each algorithm for

the range of n = 2 to n = 2048. Percent efficiency of these algorithms

for the range of n = 2 to n = 1024 is depicted in Figure 3.l3a and

3.l3b. As shown in Figures 3.12 and 3.13, higher speedup and higher

efficiency is obtained by the algorithm introduced in this paper.

For example, for n = 32, approximately, (9 / 4) and (9 / 5) times more

speedup, and (10 / 3) and (9 / 5) times more efficiency are obtained

over the Kung's and Hwang's algorithm, respectively. Note that effi-

ciency stays almost constant for n 512 for all algorithms; however,

much higher speedups can still be obtained for larger values of n over

the other two algorithms. One of the reasons that the tree structure

performs better than the other structures is that the longest data

path that one element has to travel is O(log n) instead of 0(n).

Another important reason for higher performance is that the tree struc-

ture makes use of all of its PE's all the time, whereas the other

structures use only half or less than half of their total PE's for

the actual calculation, and the rest of the PE's are used for simply

passing data, most of the time. More detailed performance analysis

of these algorithms can be accomplished by including other performance

criteria such as, utilization and redundancy as defined in [10,11].
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Instead, this research focuses on other important issues such as,

system architecture and system applications as discussed in the fol-

lowing chapter.



CHAPTER IV

APPLICATIONS OF THE TREE STRUCTURES

Many digital signal and image processing applications employ com-

putational tools such as convolution and discrete Fourier transform,

which can be formulated as matrix-matrix or matrix-vector multiplica-

tions. For example, convolution is used to compute auto and cross-

correlation functions, to design and implement finite impulse response

(FIR) and infinite impulse response (IIR) digital filters, to solve

difference equations, and to compute power spectra 12 . For this

reason, it is possible to achieve high performance digital signal and

image processing devices by making use of the tree structures intro-

duced in Chapter III for matrix multiplications.

In this chapter, based on the tree structured approach introduced

in Chapter 111, designs of special-purpose devices that can be used

in digital signal and image processing, to perform convolution and

discrete Fourier transform are proposed and discussed. In Sections

4.l and 4.2, algorithms for l-dimensional (l-D) and Z-dimensional (2-D)

convolution and discrete Fourier transform (DFT) operations are intro-

duced, respectively. Tree structure for l-D computations is also shown

in these sections. In Section 4.3 processor level, chip level, and

system level architectures are proposed to perform convolution and

DFT operations to be used on digital signal and image processing areas.

47
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4.l Convolution

One dimensional noncyclic convolution can be defined as

11-1

y(n) = 2 Mn - k) x (k)

k=0

for n = O,l,...,2N - l

where h(n) and x(n) are input sequences of length N. Output sequence,

y(n), has length (2N - l), and all these sequences are defined to be

zero outside these lengths. The matrix formulation for N = 4 is shown

in Figure 4.1.

Assume that N = 2k, k = l,2,..., and input sequences h(n) and

x(n) both have length N. Then, it is possible to compute the output

sequence y(n) with (2N - 1) processing elements in (2N + log N) time

steps. Figure 4.2 shows the l-D convolution tree with input and output

timing tables.‘ Note that it is assumed that the input sequence h(n)

is preloaded either sequentially or parallel into the RB registers.

Then, at each subsequent time step, elements of the sequence x(n) are

shifted to the right, one element at a time, through the shift registers,

where it is assumed that the shift registers are initially zero. The

operands in registers RB and the operands in the shift registers are

multiplied at each time step following the every shift operation.

This l-D convolution tree can be extended to perform Z-D convolution.

Two dimensional cyclic convolution, y(n], n2), of the two input

sequences h(n], n2) and x(n], n2) can be defined as

N I N I
l

- 2-

y(n], n2) = Ego K2; h(n1 - k], n2 - k2) x (k], k2)

l 2-
K 0
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50

 
Figure 4-2a: I—D Convolution tree.
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Figure 4-2b: Realization of I-D convolution.
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for n] = 0,l,...,Nl - 1

r12 = 0,l,...,N2 - l

with the length of N1 x N2. For 2-D convolution, N l-D convolution

trees are used with additional adder PE's to merge the results of each

l-D convolution tree. The input sequence h(n], n2) is preloaded to

the RB registers, either sequentially or parallel (N elements at a

time). Then, the input sequence x(n], n2) is shifted to the right

one element at a time through the shift registers. After each shifting

operation, the elements in the shift registers are multiplied by the

elements in the RB registers, and the result is shifted down to merge

all the partial products. It is assumed that initially all the shift

registers are cleared. At certain times it is necessary to feed zero

values down to the multiplier PE's without losing the contents of the

corresponding shift registers. For this we may use (log N) bit decoders

to determine which shift registers will provide zero value to the

multiplier PE's to which they are connected. Input to the decoder

can be a simple (log N)-bit counter, which initializes itself every

N counts. Two dimensional convolution, with the length N x N, can

be computed in (N2 + 3 + log N) time steps by using (2N2 - l) PE's

2
and N shift registers, where N2 of the total PE's are multiplier PE's,

and (n2 - l) of them are adder PE's. It is assumed that the input

sequence h(n], n2) is preloaded, which takes (N2 + 1) time steps if

it is loaded sequentially, first by shifting right through the shift

registers, then loading the content of every shift register to the

registers RB's in one time step. The first output appears after (3 +

log N) time steps. Then there will be a new output at each time step.
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4.2 Discrete Fourier Transform (DFT)

A l-dimensional DFT [13] can be defined as

N-l

y(n) = z x(klwm‘
k=0

for n = 0,l,...,N - l

where N = exp(-2TTj/N), (j is imaginary number).

Let X(n) be the input sequence for N = 4, where it is assumed

that x(n) is represented by real numbers. Then, the DFT of the vector

X(n), Y(n), can be calculated as shown in Figure 4.3. Note that this

is a simple matrix-vector multiplication. One way of computing this

l-D DFT is shown in Figure 4.4a. First, all the elements of the vector

X(n) are loaded, in parallel, into the RB registers in one time step.

Then the matrix an , assuming it has already been loaded to a memory,

can be pipelined down through the tree N-elements at a time. Note

that the binary trees shown in Figure 4.4 are only for the real part

or the imaginary part of the overall output. So, for the total imple-

mentation of DFT, we need twice as many PE's than as shown in these

'figures. With this tree structure it takes (1 + N + log N) time steps

to compute N-point DFT's using 2(2N - l) PE's. All the memory units

(MU) can be accessed by one counter, which counts zero through N,

sequentially. Another possibility is to use 2N(2N - l) PE's as shown

in Figure 4.4b. In this case N-point DFT can be computed in (log N + l),

nk
assuming the matrix H is preloaded to the RB registers.

A two dimensional DFT of size N x N can be defined as

y(n]. n2) = 22 E? x (k], k2)N w

k =0 k =0
l 2
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Figure 4-3: DFT for N = 4.
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Figure 4-4: One dimensional DFT trees. (Real or

imaginary part of the overall I-D DFT design.)
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for n1, r12 = 0,l,...,N - l

where w = exp(-2TTj/N).

DFT of the input matrix X(k], k2), Y(n];1 :2), cannb: redefined

as a matrix-vector multiplication, because w 1 I and w 2 2 can be

precalculated for all the values of n1, n2, k], and k2, and can be

loaded into memory before the DFT operation starts. As a result, we

2
obtain a N2 x N matrix. If we visualize the input matrix X(k], k2)

as a vector of length N2 , then the multiplication of the matrix N(z1, 22)

and the vector X(g), where g = 0,l,...,(N2 - l) is the output vector

y(g). First, the input matrix is loaded into the RB registers of the

multiplier PE's in N time steps, N elements at a time. Then the matrix

N(z], 22) is pipelined through the tree (see Figure 4.5) one column

at a time to compute the OFT.

4.3 The Design of a Special-Purpose Device for

l-D Convolution and DFT

The overall design can be divided into three design levels; pro-

cessor level, chip level, and systems level design.

* Processor Level Design-~As introduced in previous chapters,

tree structures employ only two different types of PE‘s. Namely,

multiplier PE's (MPE) and adder PE's (APE). An MPE consists of an

n-bit, signed, 2's-complement, fixed-point multiplier and two registers,

RB and RC (see Figure 4.6a). R8 is an n-bit input register that is

used to store one of the operands for the multiplication, whereas RC

is an 2n-bit output buffer register that is used to store the output

of the multiplication. APE has only one register, RC’ and is used

for the same purpose to store the output of an addition as shown in
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Figure 4.6b. MPE can be implemented, for example, by using the Booth

[l4l]algorithm or the Baugh [l5] array multiplier algorithm. The Baugh

[l5] algorithm is implemented with only full adders, and hence provides

simple and regular layout. Carry lookahead adders [l6,l7] can be used

to implement the APE for fast addition time.

* Chip Level Design--The word length and the integration technology

are the two main factors that basically determine the number of devices

that can be put into a chip. (A device can be defined as a transistor,

gate, processing element, and so on.) One way of implementing the

tree structures is to assume one PE per chip, and use off the shelf

IC's for the overall design. Another approach would be to put more

than one PE's into the chip. If we assume a word length of 8-bits,

then, with VLSI technology it is possible to pack seven PE's into a

single chip (see Figure 4.7). We assume that the multipliers are

implemented by using the Baugh [lSIIalgorithm as described in [l6]

and the adders be implemented by carry lookahead adders as described

in [T7]. Tri-state buffers are used to connect each chip to its neigh-

boring chip to implement shifting operations for large matrices. For

larger word lengths, we either reduce the number of PE's to be planted

on a single chip, or increase the number of pins as long as the tech-

nology permits us to do so. Note that the chip shown in Figure 4.7

can be housed in a conventional 64-pin package.

* System Level Design--One of the important issues that needs

to be resolved is the determination of the largest N for the overall

system that will be implemented in a single pass through the system.

We may need to partition the computations for matrices that are larger

than the given system's size.
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Assume that N = l6. Then the overall design can be implemented

by employing the “Tree-IC's, single chip adders, memory units, and

a counter as shown in Figure 4.8. This system can be used for l-D

convolution, Y(n), where n = 0,l,...,(N - l). If we let N = 8, and

assume sequence x(n) is real, then, the same tree structure shown in

Figure 4-8 can be used for 8-part DFT calculation. The overall system

requires one 4-bit address counter, l6 memory units with l6 words each,

4 Tree-IC's, and three single chip adder PE's.
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CHAPTER V

CONCLUSION

5.l Sumary

The purpose of this research was to develop and investigate a

high performance special-purpose device for matrix multiplication which

works as a co-processor attached to a host computer. This device may

be employed to perform discrete Fourier transform and convolution

operations for digital signal and image processing applications. The

design was constrained by the requirement that basic VLSI rules be

followed; i.e., the overall co-processor has a simple, regular struc-

ture with short, nearest-neighbor communication paths.

Systolic arrays, introduced by Kung [2-4], as well as other VLSI

computing structures, introduced by Hwang [5], were reviewed in Chapter

11. Examples for matrix multiplication algorithms were shown, and

the corresponding space-time complexity of each of these algorithms

were indicated. Specifically, it was indicated that an nxn dense

matrix multiplication can be computed in 5(n - l) and (4n - 2) time

steps by using (3n2 - 3n + l) and n(2n - 1) processing elements by

the Kung‘s [2-4] and the Hwang's [5] algorithms, respectively.

A new binary tree structure matrix multiplication algorithm was

introduced in Chapter III. The algorithm capitalizes on the properties

of the VLSI to obtain high throughput rates and high efficiency. The

algorithm first forms the products of the matrix elements in the leaf
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nodes, and then sums the partial results by merging them as they are

pipelined toward the root node of the binary tree. In this way,

massive parallelism can be achieved to introduce high degrees of pipe-

lining and multiprocessing. Processing elements, which are the nodes

of the binary tree, and the basic tree structures were also defined

in this chapter. It was shown that, the binary tree structures can

be implemented by only a few different types of simple processing ele-

ments, and they have simple, regular, and short communication geometry,

which are considered as necessary attributes of an efficient VLSI imple-

mentation. This in turn yields cost-effective special-purpose devices.

Chapter III concluded with a discussion of the space-time complexity

of this binary tree structure and the comparison of its speedup and

efficiency with those of the structures reviewed in Chapter II. It

was shown that, for any nxn dense matrix multiplication, the binary

tree structures algorithm provides higher speedup and efficiency over

the other algorithms. Specifically, it was shown that any nxn dense

matrix multiplication can be performed in [(2n + log(n))] time steps

by using n(2n - l) processing elements. From this, we can conclude

that the binary tree structures use fewer processing elements than

Kung's [2-4] algorithm but use the same number of processing elements

as compared to the Hwang's [5] algorithm. And the binary tree struc—

ture provides a solution faster for any nxn dense matrix multiplication

than either of the algorithms mentioned above. Note that a processing

element that is used in the binary tree structures is either a multi-

plier or an adder with some additional registers, whereas a processing

element for the other structures contains both a multiplier and an

adder, with some additional registers. Furthermore, each PE in the
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tree structure has only one register as compared to three registers

for the others. The reason for this is that each PE requires only

three input/output ports in binary tree structure as compared to six

input/output ports. All of these advantages yield a smaller chip area

and fewer input/output connection lines per PE for the binary tree

structures.

Some other important advantages of tree structures were also

indicated in Chapter II. For example, in binary tree structures there

is no need for data skewing for matrix multiplication, whereas it is

necessary to skew the data before inputting for the other structures

which introduces additional computation times. For matrix multiplica-

tion, once the matrix B is loaded to the RB registers, matrix A is

broadcasted to all column vector processing units at the same time

one row at a time, which simplifies the data accessing problem. As

the matrix A is pipelined through the binary tree, all the processing

elements are kept busy and utilized to perform the actual calculations,

instead of simply passing data from one PE to another as in the case

of Kung's [2-4] and Hwang's [5] algorithms. The algorithm introduced

in this thesis utilizes the inherent characteristics of the matrix

multiplication, and optimally matches this algorithm to the binary

tree structure.

In Chapter IV, special-purpose devices that can be used in digital

signal and image processing to perform convolution and discrete Fourier

transform were proposed and discussed. Specifically, one dimensional

convolution operation and its binary tree structure chip level and

system level architectures were illustrated. Applicability of the

binary tree structure to many other digital signal and image processing
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applications, which can be represented as matrix-matrix multiplication,

is evident. The use of this binary tree structures can substantially

reduce the amount of computations required for the solution of many

problems in digital signal and image processing.

This binary tree structure is intended to be used in conjunction

with a conventional computer. It can be used to implement a complete

digital signal or image processing device, or can be used as part of

another device. And it can easily be extended to any size because

of its modularity.

Advances in the design and fabrication of VLSI circuits will soon

make it feasible to construct special-purpose devices, such as the

binary tree structures, which are excellent candidates for the VLSI

technology, with their simple, regular, and short communication geometry.

They can be used to obtain very high throughput rates for the problems

which are not amenable to solutions even with the state-of-the-art

conventional computers. The geometry, flexibility, and cost effectiveness

computers. The geometry, flexibility, and cost effectiveness will make

them very valuable tools for many important tasks.

5.2 Further Research

One area that should be investigated in the future concerns the

application of binary tree structures introduced to other signal and

image processing algorithms. Using these structures, it may be possible

to construct complete digital signal and image processing devices with

very high speeds. A second investigation that could be pursued is

the development of single chips with multiple PE's which could result

in a substantial reduction on the time-space complexity of the overall
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system. And, finally, further investigation that could be taken is

the development of fast and large interlieved memories for the tree

structures and their scheduling problems between them, because the

communication line between the host computer and the attached special-

purpose device can present a bottleneck.
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