MSU LIBRARIES RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES wiII be charged if book is returned after the date stamped beIow. MARTENSITIC TRANSFORMATION OF Ni3Sn ALLOY By Soon- Nam Chang A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Metallurgy, Mechanics and Materials Science 1982 ABSTRACT MARTENSITIC TRANSFORMATION OF Ni3Sn ALLOY By Soon- Nam Chang The Martensite of Ni3Sn has been investigated crystallographically by means of transmission electron diffraction as well as optical microscopy. The crystal structure of the martensite was identified as the B-Cu3Ti (2H)-type orthorhombic structure. It was found that the high temperature, parent phase of Ni3Sn was impossible to retain at room temperature. For such a case or for another case where small amounts of parent phases were only retained, a new method was proposed to determine the orientation of the habit plane of martensite plates and the orientation of the specimen surface before martensitic transformation. This method was applied to Ni3Sn martensite and {122} plane was determined as the habit plane of Ni3Sn. The determined habit plane was compared with the habit plane predicted by the strain energy minimization criterion. ACKNOWLEDGEMENTS The author would like to express his deepest appreciation and gratitude his major professors Dr. H—r. Pak and Dr. M. Kato for their advice and guidence in both areas of research work and writing of his thesis. Dr. K. Mukherjee was also very helpful during this investigation along with Mr. D. Chung, and I wish to extend my appreciation to them also. A special thanks goes to his family for their patience and encouragement during his study. ii TABLE OF CONTENTS LIST OF TABLES .................................................. LIST OF FIGURES ................................................. CHAPTER 1 INTRODUCTION .............................................. 2 CRYSTALLOGRAPHY OF Ni3Sn .................................. 2.1 Phase Stability of Ni3Sn Phases ...................... 2.2 Crystal Structure of Ni3Sn Martensites Phase ......... 2.3 Crystal Structure Determination of the Ni3Sn Martensite ........................................... 2.3.1 Experimental Procedure ........................ 2.3.2 Experimental Results .......................... 3 HABIT PLANE DETERMINATION OF Ni3Sn MARTENSITE ............. 3.1 Phenomenological Analysis Based on the Strain Energy Minimization .................................. 3.1.1 Lattice Correspondence of DO3-Type Structure and 2H-Type Structure ......................... 3.1.2 Phenomenological Analysis Based on the Strain Energy Minimization Criterion ................. m Page vi 11 15 24 24 24 29 TABLE OF CONTENTS -- continued CHAPTER Page 3.2 Experimental Determination of Habit Plane by Means of New Method .................................. 34 3.2.1 Pr0posal of New Method ........................ 34 3.2.2 Experimental Procedure ........................ 36 3.2.3 Experimental Results .......................... 37 4 DISCUSSION ................................................ 45 5 SUMMARY ................................................... 49 REFERENCES .................................................... 50 APPENDIX A Interplanar Spacings of Ni3Sn Martensite .......... 52 B Angles between Crystallographic Planes in Ni3Sn Martensite (in degrees) ..................... 54 C Computer Program to get the CrystalIographic Data of Ni3Sn Martensite .......................... 63 iv TABLE 2.1 2.2 2.3 3.1 3.2 LIST OF TABLES Page Lattice Parameters of the Unit Cell of DO3-Type Structure ................................................ 9 Lattice Parameters of the Unit Cell of Cu3Ti(2H)-Type Structure ................................................ 9 Absolute Values [F]2 of Structure Factor Fg Determined by h,k and l .................................. , ........... 12 Observed Angles between Two Traces of NiBSn Martensite Variants on Surface A and B .............................. 39 Example of Angles ¢ Obtained for Two Surfaces by Assuming (122) Habit Plane ............................... 42 FIGURE LIST OF FIGURES Ni-Sn Phase Diagram ..................................... The Detailed Phase Diagram of Ni3Sn Compound ............ The Unit Cell of DO3—type Structure ..................... The Unit Cell of B-Cu3Ti-type Structure ................. The Reciprocal Lattice Planes of B-Cu3Ti-type Structure ............................................... (a) Optical Micrograph of Ni3Sn Martensite. (b) Optical Micrograph of Ni3Sn Martensite Showing Surface Relieves .................................... Typical Transmission Electron Micrograph Showing Microstructures of the Acicular Ni3Sn Martensites ....... Electron Diffraction Pattern of B-Cu3Ti-type Ni3Sn Martensite ........................................ Electron Diffraction Pattern of B-Cu3Ti-type Ni3Sn Martensite ........................................ Electron Diffraction Pattern of B-Cu3Ti-type Ni3Sn Martensite ........................................ (a) Transmission Electron Micrograph of 8-Cu3Ti-type Ni3Sn Martensite ................................... (b) Electron Diffraction Pattern Taken from the Area of (a). ............................................. vi Page 13 16 17 18 19 20 21 21 LIST OF FIGURES--Continued FIGURE 2.11 (c)(d) Dark Field Images in 201 and 201T Reflection, Respectively ..................................... The Atom Positions on (101) Plane in the DOB—type Structure ............................................... The Atomic Positions on (001) Plane in 2H-type Structure ........... I .................................... The 2H-type Structure(" .__" line) Generated from the Tetragonal Lattice in the Unit Cell of the DO3-type Structure ...................................... A pair of Martensite Variants having a Twin-Relationship with Respect to the (110)D03 Plane ...................... Model for the Fundamental Ideas to Obtain the CrystaTlographic Data between Parent and Martensite Phases ....................................... (a)(b) The Optical Micrographs of Ni3Sn alloy Martensite Phase on Surface A and B, Which are Perpendicular to Each Other .................. The Area of the Standard Triangle of Stereoprojection... All Surface Normals 5 Selected by Computer .............. The Surface Normals and Martensite Habit Planes on Two Surfaces A and B on One Grain ....................... Page 22 26 27 28 30 35 38 41 43 44 LIST OF FIGURES--continued FIGURE Page 3.10 Two Habit Planes,(122) and Strain Energy Minimization Criterion, and the Lattice Parameters ................... 47 viii 1» INTRODUCTION The name martensite was originally given to the product of the hardening reaction in rapidly cooled steels, but its use has been extended to similar changes in other alloy systems. The definition of a martensitic transformation is a transformation associated with a lattice-distortive, virtually diffusionless structual change having a dominant deviatoric (shear) component. Any martensite formed by such diffusionless, shear-type atomic motion is mostly embedded in an untransformed phase, so-called parent phase, and bound on a specific plane of the parent phase.1 This specific plane is called the habit plane and is explained phenomenologically as a lattice invariant plane. The habit plane and orientation relationships between the parent and martensite phases are important in understanding the martensitic transformation from a crystallographic aspect. Therefore, many works on martensitic transformation have been involved in abtaining such crystallographic informations. In some cases, however, parent phases can not be retained at room temperature or if any, small amounts of parent phases can be retained. Thus, it is difficult to get crystallographic relationships between the parent and martensite phases. 1 This research is mainly aimed to determine the orientation of - habit planes in cases where no parent phase is retained at room . temperature. For this purpose a new method was proposed. Ni3Sn alloy was employed to apply this method because in this alloy it is theoretically impossible to retain the parent phase. The 1 determined orientation was compared with the orientation of the habit plane predicted by a phenomenological theory based on the elastic strain energy minimization criterion. The crystal structure and internal structures of the martensite of Ni3Sn was examined by means of transmission electron diffraction as well as microscopy so that the phenomenological theory could be applied. 2 CRYSTALLOGRAPHY 0F Ni3Sn 2.1 Phase Stability of Ni35n Phases Figure 2.1 is a phase diagram of Ni-Sn binary alloy [1], and Figure 2.2 shows the detailed phase diagram of Ni3Sn compound [2]. As can be seen in these figures, Ni3Sn has a phase transition at around 950°C. The existence of the phase transition was found by Heumann [3] through DTA measurements and this phase transition was attributed to a disorder-order transition from disordered hcp to MgBCd (0019)-type ordered hcp structure. Schubert et al [4], however, investigated a crystal structure X-ray technique, and found that the crystal structure was not the disordered hcp but Fe3Al (003) -type ordered bcc structure. Recently, Pak and co-workers [5] investigated the relation between the high-temperature phase with the 003-type structure and the low-temperature phase with the DOlg-type strutture in detail, and found that the Dolg-type structure being stable at room temperature was transformed massively from the 003-type structure when quenched slowly. It was also found that when quenched rapidly the 003-type structure was transformed martensitically into the B-Cu3Ti-type (2H) ordered orthorhombic structure. Figure 2.3 shows the unit cell of 003-type structure for the high temperature phase of Ni3Sn alloy and Table 2.1 shows the lattice parameter of the 00 type structure. 3 ‘Figure 2.1 Ni - Sn phase diagram. 1300 c ‘2» 'H 1200 2 Z + 1100 Ni3Sn + (N1) N13Sn 1000 + g 920 \ 900 23.25 g l S \ AL 54 27.25 800 Ni3Sn + (N1) Ni3Sn + Ni3Sn2 700 600 24.15 26.85 20 22 24 26 28 30 ATOMIC PER CENT TIN Figure 2.2 The detailed phase diagram of N13Sn compound. Figure 2.3 The unit cell of DO3-type structure. 2.2 Crystal Structure of Ni3Sn Martensite Phase As mentioned in the previous section, Pak and co-workers [5] determined the crystal structure of the martensite phase as the B-Cu3Ti (2H)-type structure by means of X-ray diffraction. The unit cell of the martensite phase is drawn in Figure 2.4 and atomic positions of Sn and Ni atoms in the unit cell are listed below. Sn (0 0 0) (2/3 1/2 1/2) Ni (0 1/2 0) (1/2 1/4 0) (1/2 3/4 0) (2/3 0 1/2) (1/6 3/4 1/2) (1/6 1/4 1/2). Since the crystal structure of the martensite was determined only by means of X-ray diffraction, the structural determination of the martensite was carried out by means of transmission electron diffraction in order to make sure whether the martensite has the Cu3Ti-type structure or not. This will be shown in the following section. Table 2.2 shows the lattice parameters of this structure. 2.3 Crystal Structure Determination of the Ni3Sn Martensite For the convenience of the structure determination, the crystal structure of the martensite was assumed to be the B-Cu3Ti-type structure. According to the diffraction theory, the structure factor of the crystal is expressed as, Fg = 2 fi exp(2nig - Fi) , i Figure 2.4 The unit cell of B-Cu3Ti-type structure. Table 2.1 Lattice parameters of DO -type structure. 3 lattice parameter (A) remarks author 6.091 Ni-Sn at 950 C Schubert 5.9580 Cu-Al Tarora 5.80.: .05 Cu-Al-Ni Duggin & Rachinger 5.836 Cu-Al—Ni Otsuka & Shimizu 5.8412 1 .0004 Cu-Al-Ni at 21 C Duggin Table 2.2 Lattice parameters of B-Cu3Ti type martensite. a(A) b(A) C(A) alloy author 4.41 5.31 4.22 Cu-Al-Ni Duggin & Rachinger 4.40(i0.52) 5.33(10.SZ) 4.24(i0.5%) Cu-Al-Ni Duggin 4.6011 5.3050 4.3052 Cu-Al Geninger 4.382 5.356 4.222 Cu-Al-Ni Otsuka & Shimizu 4.504 5.304 4.277 Ni-Sn Pak et al 10 where fi is the atomic scattering factor of the i-th atom and in the real lattice unit cell. The vector Fi is expressed by F1 = uia + v16 + wiE where ui, vi, wi are fractional coordinates of the i-th atom, and a, 6 and E are the translations of the real lattice unit cell. * .. .* _* If a , b and c are the translations of the reciprocal lattice unit cell, every reciprocal lattice point can be expressed by the form - -* * _* g = ha + k6 + lc where h,k and l are intrgers. a is normal to the crystal plane with Miller indices hkl. Thus, a - Fi is abtained as 5 . F1 = hui + kvi + lwi . The structure factor for layered structures such as 2H-type structure can be obtained by the simple sum of the structure factor related with each layer. There are one A-atom and three B-atoms on the (001) of the B-Cu3Ti lattice, the coordinates are 0 O O , and 0 1/2 0 , 1/2 1/4 0 , 1/2 3/4 0 , respectively. The cooresponding atoms on the next (001) are all displaced by [2/3 1/2 1/2]. Thus, '11 ll 9 F1 + F2 ’ fA -2wi(h/2 + k/4) + e-2m‘(h/2 + 3k/4) 7: II + fB {e + e-2n1(k/2)} 3 11 and F2 = Fle-Zni(2h/3 + k/2 + 1/2) . Here, F1 is the structure factor on the first (001) plane in unit cell(shown Figures 2.4 and 3.3), F2 the structure factor on the second (001) plane in unit cell(shown Figures 2.4 and 3.3), fA the atomic scattering factor for A atom and fB the atomic scattering factor for 8 atom. Multiplication by the complex conjugate of F9 will give us the square of the absolute value of the resultant wave amplitute F ; that is, 2 [Fl = 4 {fA + fB(2 COth cos«k/2 + COSWk)}2 x coszn(2/3h + 1/2k + 1/21). According to diffraction theory, |F|2 is proportional to the intensity 19 of reciprocal lattice points ; that is, 2 (X . 19 IFgl |F|2 obtained from the above equation are summarized in Table 2.3 and the resulting reciprocal lattice planes are illustracted in Figure 2.5. 2.3.1 Experimental Procedures The NiBSn alloy of 24.6 at % Sn was prepared by melting 99.9% pure nickle(supplied by the International Nickle Co.), and 99.999% tin(supplied by K & K Laboratories,INC.), at 1,190°C in 18mm-diameter 5 quartz capsules which was evacuated up to about 1 x 10' torr and Table 2.3 Absolute values IFI2 determined by h,k and l. h k 1 IFIZ 6n , 4m 2q 4(fA + 3fB)2 6n:l:3 (om-1:2 2q m1 m2 2cm 3 DO3 shear systems followed by a small volume change results in the (001)2H (0001)hcp plane from the (101)003 plane. In addition to this operation, a a/12[IOI]Do suffling on every other (101)Do plane 3 3 is necessary to create the 2H structure as shown in Figure 2.4. To understand this suffling assiciated with the martensitic transformation, atomic positions of the 2H-type structure are illustrated in Figure 3.2. Considering the shearing and suffling operation mentioned above, it can be easily understood that the 2H-type structure is generated from the tetragonal lattice in the 003 structure, drawn as a heavy-lined lattice in Figure 3.3. By using existing lattice parameters of the parent 003-phase and martensite phase, the lattice variant strain(Bain strain) can be calculated. The existing lattice parameter of the parent phase is a = 6.006 A at zé’c [4] and a = 4.504 A , b = 5.304 A , Bl 2H 2H c2H = 4.277 A [5]. From this values, the Bain strains based on the x'-y-z' coordinate system in Figure 3.3 are obtained as 51 = /232H / 381 - 1 = 0.0605 32 b2H / 681 - 1 = -0.1169 63 = “ZCZH / a31 - 0.0071 (3.1) H II and the volume change is -5.68%. —-—--- [010] ——.... [10‘1’] Figure 3.1 The atom positions on (101) plane in the DO3—type structure. .Ni 26 OSn 27 1L0 (1 .Ni OSn Figure 3.2 The atomic positions on (001) plane in 2H-type structure. 28 .Ni -. - l m‘ I . \ ‘. ‘i. I -‘- -- - I I 5. OSn Figure 3.3 The 2H-type structure ("-—" line) generated from the tetragonal lattice in the unit cell of the DO3-type structure. 29 As shown in previous section, the 2H-type martensites contain (121)2H twins. Thus, this twinning is considered to be the lattice invariant shear. From the lattice correspondence of the parent and martensite, the (121)2H twinning plane is found to be parallel to the (110)DO3 plane. In Figure 3.4 a pair of martensite variants having a twin-relationship with respect to the (110)DO3 plane were drawn. 3.1.2 Phenomenological Analysis Based on the Strain Energy Minimization Criterion According to Mura et al [14] and Kato et al's [10] analysis based on the strain energy minimization criterion, if the transformation strain e§j(8ain strain plus lattice invariants strain) in an xl-xz-x3 cartesian coordinate system satisfies the condition of = 0 , (3.2) the strain energy becomes minimum(zer0) and the condition in equation (3.2), with the x3-axis as an invariant plane(habit plane) normal, is equivalent to the invariant plane condition in the phenomenological theory. As shown in equation(3.1), the Bain strain in the martensite becomes (3.3) 30 Figure 3.4 A pair of martensite variants having a twin- relationship with respect to the (110)D03 plane. 31 where the coordinate system is taken along the principle axes of the 003 lattice. As can be seen in equation(3.1), €1.52 > 0 (expansion) 62 < 0 (contraction). Equation(3.3) can be changed by similarity transformation based on the x'-y-z' system in the parent phase as Tel + £3) / 2 0 (-.1 + .3) / é- eij = 0 s3 0 (3.4) (-81 + 63) / 2 0 (£1 + 83) / 2_( B B where Eij is the Bain strain of variant 1. As shown in Figure 2.11 and 3.6, the lattice variant shear for the martensite domonantly occurs by (121)2H twinning. Thus, the twinned variant should have the Bain strain as F.2 0 0 " ETj = 0 (61 + £3) / 2 (£1 - e3) / 2 (3'5) _9 (51 ‘ 53) / 2 (51 + 53) / %_ B by using the x'I —x -2" system in the parent phase where egj is the Bain strain of variant. If the volume fraction of the variant is defined as f(0 < f < 1), which is to be determined, then the total transformation strain in the Bl-system, Eij’ can be written as T _ 1 _ 2 Eij - feij + (1 f)eij (3.6) From equation (3.3) and (3.4), egj can be obtained : 32 ‘Tf(e + e ) -s + e 1 3 1 3 2 + (1-f)e2 0 -*—§—-—- ET = 0 f8 + (1-f)(€1 + a?) (1-f)(el-63) Ti 2 2 2 f(-e1 + £3) (1-f)(el-s3) (81+E3) _. 2 2 2 .1 F'T 0 T'T E11 613 - T T ET ET ET __31 32 33_ By rotating the coordinate system, we can find a new xl-xz-x3 system in which the total transformation strain(3.7) satisfies the habit plane condition of equation(3.2). Since R becomes parallel to the x3-axis in this new system, i.e. H = [sine coso , sine sino , cose]8 (3.8) We have three unknown parameters 6 , o , f which can be solved easily and the results become . tanzo — -e;2 / all (3.9) tane = sin¢(eI1 - €22) / EIBta"¢'€;3 ' (3.10) 1/2 1 /A2+16Ac / 2A (3.11) —h II 15283 where A = 3:2(e1—e3)2 - 2(sl-ez)(62-63)(e3+el). From equation(3.9), (3.10) and (3.11) the habit plane normal and the volume fraction of the variant 1 were calculated by using the eigen strain as following 70.329 -56.17 0.8565 F0.2796' -0.7822 _0.5567J 33 -70.329 -59.27 0.8159 (Lo.289i 0.8094 _0. 51104 34 3.2 Experimental Determination of Habit Plane by Means of New Method 3.2.1 Proposal of New Method As mentioned in the introductory part, it is impossible to retain the high temperature parent phase of Ni3Sn to room temperature. Thus, it would be difficult to get the crystallographic data between parent and martensite phases, unless some special techniques were employed. Here, a new method is proposed to determine not only crystal orientation of parent phase before transformation but also the habit plane of martensites, only by measuring several angles between paired variants. Figure 3.5 shows the fundamental ideas of the method. 6[HKL] is the normal to the specimen surface,i.e.,the normal to the parent phase. Here, habit plane normals are expressed by i and 3, which are assumed to have the same type of indeces. This assumption can be acceptable generally. All vectors 6,3 and 3 are to be determined as follows. If 5 , i and 3 are all unit vectors, a and F can be obtain from vector products of 5 and i , 6 and 3 such as .0! ll '0! X -‘-I \ "C X .1 ”SI II Ul >< L14 \ ”C X L4 Vectors q and F express trace of martensite variants. The angle ¢ij between the two traces of variants(i,j) can be obtained from a dot product of the two vectors a and F as 35 p er13 I-th variant Figure 3.5 Mbdel for the fundamental ideas to obtain the crystallographic data between parent and martensite phases. 36 The angle ¢ij is experimentally measurable from optical micrographs of martensites. Since any vector can be expressed by two independent variables and since it was already assumed that i and 3 have equivalent indices, total independent variables are four. Thus, at least five martensite variants are necessary to determine four independent variables. In other words, knowing independent angles between paired variants, we can determine not only the surface normal of the parent phase 6 before the martensitic transformation but also the habit plane normal 3 or 3 . To find out the desired combination of i and 3 , computer calculation was employed. The following experiments were carried out to obtain independent angles necessary for the computer calculation. 3.2.2 Experimental Procedures A rectangular parallel piped specimen was prepared from the Ni3Sn ingot in order that two surface trace analysis can be done. By the similar processes mentioned in the previous section, acicular martensites were formed. To make surface observation easily, large grains were made by annealing for 40hrs at 10506C. Surface observation was carried out on two surfaces(A and B) in one grain, perpendicular to each other. Angles between paired traces of martensite variants on both surface A and B were measured. 37 3.2.3 Experimental Results Figure 3.6(a) and (b) show the optical micrographs of Ni Sn 3 martensites surface A and B. Angles between two traces of these martensite variants measured, ¢ij’ are shown in Table 3.1. Using values of ¢ij measured, the vectors 5 and i could be determined. In the present research, vector i will be assumed first as the first step in determing vector 5. Three different vectors were chosen as vector i from the following reasons. Recently, the habit plane of the martensite in Cu-Al-Ni alloy was determined by means of transmission microsc0py [15]. The habit plane reported was between {122} and {133}. Since Ni3Sn alloy and Cu-Al-Ni alloy has the same crystal structure for both parent and martensite phases, the habit plane 3 was assumed to be {122} and {133}. {112} was also chosen as a habit plane for extra example of the computer calculation in determing vector 5. The determination of the vector was carried out in a following way. i As mentioned above, firstly the habit plane i was assumed and then actually i was chosen as one of the family of the habit plane. Then 5 was chosen to calculate all angles ¢ij for the other eleven variants of the family. Then, values of angles ¢ij measured experimentally were compared with those of angles ¢ij calculated. If all of measured angles ¢ij are well explained within an allowance of a given angle with reapect to the calculated angles ¢ij’ the computer tells us that this vector 6 might be reasenable as the plane normal of the parent phase. Choice of 6 was carried out systematically in the whole area of the standard triangle of 38 H 4‘ '5‘ a" ‘3'!- JN ‘ .gd. ._, 4. ‘l ,: Figure 3.6 (a)(b) The optical micrographs of Ni Sn alloy martensite phase on surface A and B, which are perpendicular to each other. 39 Table 3.1 The observed angles between two traces of Ni Sn martensite variants. 3 from surface A (1) (2) (3) (4) (5) (1) - 46.5 86 85.5 53 (2) 46.5 - 40 47.5 80 (3) 86 40 - 8.5 40 (4) 85.5 47.5 8.5 - 32.5 (5) 53 80 40 32.5 - from surface B (1) (2) (3) (4) (5) (6) ‘ (1) - 47 63.3 87 66.5 70 (2) 47 - 16.5 45 66 23 (3) 63.3 16.5 - 28.5 49.5 7.0 (4) 87 45 28.5 - 20.5 22.7 (5) 66.5 66 49.5 20.5 - 43 (6) 70.0 23.0 7.0 22.5 43 - 40 stereoprojection, [001]-[011]-[Ill], shown in Figure 3.7. If no vector 6 is informed, the first assumption of vector i is considered to be wrong under a given allowance condition. Apendix C shows an example of the computer programs employed. In this program, vector i was assumed to be (122) and an angle allowance was within :1.5°. In this case, reasonable surface normals 5 were obtained, which will be shown later. On the other hand, when {133} and {112} were assumed to be as the habit plane normals, and when the same angle allowance of 10.50 was permitted, no surface normal 6 was obtained. Thus, in present research it can be conclude that (122) plane is a most probable habit plane. Table 3.2 shows some examples of angles ¢ij obtained for two surfaces by assuming {122} habit plane. As it can be seen from this table, all of the observed angles are in good agreement with the calculated angles. For these two surfaces, all surface normals 5 selected by computer were plotted in Figure 3.8. These two surfaces A and B were from one grain and were perpendicular to each other. Although these two surface normals 6 were independently determined, the angle between these two calculated normals is abdut 90°, which is in good agreement with the directly measured angle. In Figure 3.9 , the surface normals([3 13 17] for A and [952] for B) and habit planes determined were shown. 41 T22 T33 001 011 Figure 3.7 The area of the standard triangle of stereoprojection. 42 Table 3.2 Examples of angles 9 obtained for two surfaces by assuming (122) habit plane audaceA ¢cal :ange beMeen(122)and0ther (1221 11221 (122) (221) (212) (122) (122) (221) Foal” 8477 6397 5867 5633 4704 4513 11221 (2127 (221) (212) (221) (2'12) ¢oai<°> 3229 3196 2559 831 1.07 p”. : measued angles 85. 5. 47. 5.32.5. 8.5 m 56031: angle between (221) and other (221) {221) (221) (221) (122) (212) (122) (221) ¢ca1(°) 8559 8518 7634 6732 0546 4558 1221) (212) (212) (122) (212) (122) gale) 29.71 23.77 21.041959 1.23 51'1” : measured angles 87, 45. 28.5, 22.7, 205 43 A surface normal .1.“ 001 011 B surface normal Figure 3.8 All surface normals 5 selected by computer. 44 m mam < moommusm can no nonmad qumn cam mamauo 28 Se 2va . mmmmu momtsmi .aamuw one do a oommusm 6:9 m.m ouamfim 4 DISCUSSION It was observed that the high temperature 003-structure martensitically when quenched rapidly and to the Mg3Cd(0019)-type structure massively when cooled slowly. Thus, it is obvious that no high temperature phase can be retained in this binary alloy regardless cooling rate. Recently, Kachi and Murakami [16] investigated the phase stability of Ni3Sn high temperature phase by substituting Ni with Cu. They reported that both the parent and martensite phases coexisted at room temperature in a range where Cu composition was between 18 and 21 at%. Since the best way experimentally to determine the orientation of the habit plane of martensites is obviously to retain the parent phase with the martensite phase, trials of getting the retained parent phase were extensively done according to Kachi and Murakami's reports. However, no coexistance of the martensite and parent phases was obtained. Although the DOB-parent phases were able to be retained in a range of Cu of 18 to 24 at%. those 003- phases were found not to transform even if temperature was lowered up to the liquid nitrogen temperature. Instead, it was found that when the 003-phases were cooled slowly(actually furnace-cooled), Nidmannstatten structures were found to be very stable up to around 400°C. The crystal structure of the Nidmannstatten was not determined yet. The new method was proposed to determine the habit plane of martensites by measuring only angles between paired martensite 45 46 variants, without knowing the surface orientation of the parent phase. This method may be called "computer-aided trace analysis method", because without computer it would be almost impossible to determine the habit plane of the martensite. This method is applicable under the following two conditions : (1) all martensite variants in one alloy system have the same type of indeces, and (2) at least five different variants should be observed on a surface within a grain. Using this method, we can also obtain the surface orientation 5 of the parent phase at a same time. By comparing the actual angle between two surfaces( A and B ) with the corresponding angle calculated from the two surface orientations 5 obtained, the validity of the method proposed was examined. As shown in Figure 3.10, the angle calculated from the obtained vectors 6 was about 90° and the angle measured directly from the specimen was also 90°. The results were in very good agreement. In order to make sure of the validity of this method more, however it is necessary to examine whether this method is applicable to other systems, whose habit planes have been known already. This will be carried out in the near future. The phenomenological theory based on the strain energy minimization criterion [13] was employed to predict the habit plane of Ni3Sn martensite. Using this theory, two habit planes and volume fraction of twinning variants were able to be obtained. In Figure 3.10 one of the two habit plane normals obtained was plotted. 47 .soppm F<-_zm=u for m_ .N. .xoppm cm *2 com ma =H= .mcmumsocma mu_uump on» use .cowcmu_cu :o_um~_s_:ws amcmcm :_mcum use ANNHV .mmcmpa u_no: o~.m mczm_m 05 :0 50 8:35 csE_c_E >905 Emzm .mm._...mo NNw. _o A .. N: E was News... 1N6 8mm .32? IE 83 «8.3... IN... was 2.123 .... mono 212-8 . cmmz 0F 48 This was because the plotted habit plane was corresponding to the large volume fraction of twinning variants. The volume fraction calculated was 82%, which was in pretty 900d agreement with that (about 75%) measured from Figure 3.4 and 2.11. In Figure 3.10 another habit plane normal calculated for Cu-Ni-Al alloy [15] was also plotted. As can be seen, this habit plane normal is very close to {122} compared with that of the present alloy. This diffrence between the two alloys may result from the accuracy of lattice parameters for the 003-parent phases ; the lattice parameter of Cu-Ni-Al was measured at room temperature [15], while that of Ni3Sn was measured at 960°C [4] and extrapolated to room temperature by considering thermal expansion. From the habit plane observations on Ni3Sn and Cu-Ni-Al alloys it can be concluded that the habit plane of 2H-type martensites transformed from 003 structure is {122} or close to {122}. 5 SUMMARY Martensites of NiBSn alloy produced by quenching from 1050°C were investigated crystallographically. The results obtained can be summarized as follows : 1. The crystal structure of the martensite Ni3Sn alloy was determined as an ordered orthorhombic structure, B-Cu3Ti-type(2H), by means of electron diffraction. This structure is identical to that determined by means of X—ray diffraction. 2. A new method was proposed to determine the habit plane of the martensite for cases where none or a small amount of parent phase can be retained. This method can be applicable if at least five variants are observed on a surface of one grain. 3. The habit plane of the Ni3Sn martensite was determined as {122} plane using the new method pr0posed. Phenomenological theory based on the strain energy minimization criterion was also employed to determine the habit plane. The angle difference between these two habit plane normals determined is considered to be pretty small. 49 10. 11. 12. 13. 14. REFERENCES Hansen, M. and Anderko, K., Constitution of Binary Alloys, McGraw-Hill, New York, Toronto, London, (1958), 1042. Shunk,F.A., Constitution of Binary Alloys, McGraw-Hill, New York, Toronto, London, (1969), 555. Heumann, T., Zeitschrift Metallkunde, 35 (1943), 248. Schubert, K., Burkhardt, M., Esslinger, P., Gunzel,E., Meissner, H.G., Schutt, H., Wegst, J. and Wilkens, M., " Eigige Strukturelle Ergebnisse an Metallischen Phasen ", Naturwissenschaften, 43 (1956), 248. Pak, H., Saburi, T. and Nenno, 5., " Martensitic and Massive Transformation in NiBSn Alloy ", J. of Japan Institute Metals, 37 (1973), 1128. Shibata, M. and Ono, K., Acta Metallurgica, 23 (1975), 587. Clarke, D.R., Metallurgical Transactions, 7A (1976), 723. Easterling, K.E. and Tholen, A.R., " Acta Metallurgica ", 24 (1976), 333. Shibata, M. and Ono, K. Acta Metallurgica, 25 (1977), 35. Kato, M., Miyazaki, T. and Sunaga, Y., " Re-Examination of the Elastic Energy and the Phenomenological Crystallography Theory in a Martensitic Transformation ",tScripta Metallurgica, 11 (1977), 915. Wechsler, M.S., Lieberman, 0.5. and Read, T.A., " On the Theory of the Formation of Martensite ", Transactions AIME , 197 (1953), 1503. Bowles, J.S. and Mackenzie, J.K., " The Crystallography of Martensite Transactions ", Acta Metallurgica, 2 (1954), 129, 224, 138. Mukherjee, K. and Kato, M., " Lattice Correspondence and Crystallography of Martensites ", ICOMAT-82, Leuven, Belgium, (1982). Mura, T., Mori, T. and Kato, M. " The Elastic Field Caused by a General Ellipsodal Inclusion and the Application to Martensite Formation ", J. Mech. Physics of Solids, 24 (1976), 305. 50 51 REFERENCE 15. 16. Otsuka, K. and Shimizu, K., " Morphology and Crystallofraphy of Thermoelastic y' Cu-Al-Ni Martensite ", Japanese J. Applied Physics. Kachi, S. and Murakami, Y., " Martensitic Transformation and Phase Relation in Ni Cu Sn and Ni Mn Sn Alloys ", Sci. Report RITU A29. Suppl. 1 (i981)§ 73. 3'X x APPENDIX A spacing(A-1) b=5.304 A, c=4.277 A hkl Orthorhombic a=4.504 A, rystal Structure hkl Unit Cell Interplanar Spacings of Ni3Sn Martensite P 392425738315525382075204789961910288342728346274511079731 . 9429119470 7 nwnuumuflnnfl5HNMHMM9275880175.16875371506030696659647530695121614072NONMMHNHHHflnwnnnflflfluwNM .ooo...99999999geqsununnnunmnnuumunuuuunnuunnnunnnnunnnnnnnai.5..2-.....3-..9.....7i.-9.2. ...........................................................saaaasasaasasssaaauannuaoaaaadn Ix‘x‘lll 211223610309001031230113202032323312131029310232130130201221102002122110201031110100 213Q2031130011030223322311010210022210110Ol 0320013 20152‘BOSZ‘BIESSOSESI‘O‘JO‘21‘3320‘033-1150200220‘3 1| 1010 10 10Q03201023310134100001.12423030023223211330011312021030230323121201020121021202010 21210539“05.052833586085901 33‘10896851282‘11‘7997 50265085507860195800.15529 0832207697632632859097 OOOOOOOOOOOOOOOOOOOOOOOI lIl‘l‘ll‘l‘oal‘ololloll‘I‘A‘l‘l‘n 11“}“131xl‘11x04‘111‘1‘11111‘111‘1‘1‘1‘5‘1110111101:11111120111112‘11 1010329305130592500§01352325502215329206520313515411305091902103213003390290122130020541 .77606351135062163504333125492356624501621045? 52.2153120301523150150100231050930310530250052 20‘235552001656330350061.3300233525.}!5520Q 053605050‘0532QZO..235.2 31.5320. 3.230202323 52 53 60536890138363035877604655230955918083351066328BQ23650883129223652507526396657035071. 52309809575.221851960985430852198876310976217329410752188Q32007321073265).93820965532 Q03322211111111000999968838777756556656555550332222111100000009999877766655555000900 55555555555555555500000.0099000059000900QQQQOQQQQQQQQQQQQQQQC03333333333333333333333 coo-000.000.0000..coo.cocooooooooooooooooocoo-cocoooooooooooooooooooooooooooooooocoo 1111111116;111.11111111113111111111111111111111111111111.116111111131111111111111111111.1 150025255353623035913030055013652501.255105900532262612501569252050205311351133050Q 0 Q 46953325120367805277.6561175502706512035520361.3190?170. 1.260572674250321! Q17 05650129 6326516216~50010.DOSBC‘B‘JIZ‘55.212~0656230 5056~15651102630 bzozoB-DDZU60.525650316311236.I). 58907002000382601755317 6812950832037957756598578907810532832161315799037060192905 05397276274657163851065025003910062053321087238653276336521882009872Q26311650970220 709598777559933221100000999.677776665555559QQ033333222211110000090.9988777666555555 39777777777777777777777756566566656666666555566565666.55666666619555555555555555555 oocoooocoo-00.000000...900.000.090.000...-ooooooooo00.00.000.000...cocoon-coco... 1.13111111131111111311111111111111111311.111111.11111111111112111111.1111-31.111311111011511 97557.37 3.375377760235736577 6375.127 550557517550702005523150361.230506016515055. 0632 0210.311300323230331! 10520250212321023030QSISEIOQ 1506105206396052250 6133051171. 0027 035526396347120367752714210604671195723196031605766057575361564734057247273357363 APPENDIX B Angles between Crystallographic Planes in Ni3Sn Martensite Orthorhombic Crystal Structure a=4.504 A , b=5.304 A , c=4.277 A Unit Cell 010 'WI 4917.67147101) -0310 3.09.3761), 9.... :30: 114».on .u 33039601535531r fitted 49.47.20.119 0, 00518.37 .4: o.0.000.000.0000.cocooooooaooaooocoo 000099510. 07703.50hasQID..1¢Cn.5§-DIUR..QIU.Q 521.043.21553.£0 0 113021413320 0 0030111122 11111111111011. 11.116.511.111 11111111511 08600692000092171779719500108023725703C595110000 00.0 0225 90003314035001535.300CL45no: .0 5922009930510 378 .0.0000......0000......OOOOOOOOOOOO0.0.00.000... U01585700u00000499678077003062641819005931554134 62100150 0.933321104321555 20.411110021033290 0000111122 61.111.81.11 111.A11111111 11111111111 1111115611111 024604560500689593363965L09133K73353000557009000 01095795000066964509&544009972051577002009401752 0.0.00.0....0OOOOOOOOOOOOOOQOOOOOOOOO0000.00.00. 0184112900C0909500321922000937558185004568015915 3675b239990«56734562245996b775b3495997777666653 024604680000639893363965009100873853000567994000 010907050000559545984649009“72051577002099“31752 oooooooooocooooo0.0.0.000...-ooooooooooooooooooo 01801129000099Q.5003?.192200693735818500‘568015815 56736239999“56739562245996077563005997777666655 0123131201230123012301231301231301231201953012.3112 111122330000111122223333001111223333001111222233 90000000.11.11.11.11115111111229.222222222333333333333 .JJO; .06... v.,. n._1n...::...flarc .7. .I win. 1100911....5h s..(U1.1 .129 c 74:..04... Q....7.rl.“01t)..u..r.1.c 137.5-.. (.19 2...... 0.1.23.0...6103030c ”1.1.. ocooooooooooooo-oooooooooococo-cocoooooooooooo.so h.....1.u..41.120.n.. bk (.JQLSTUHA 0.31.70 77 0.3.4.31 an.» .234350... 9.311.917...» 1. 0.0 45L.O.r\.l.(95r1.6012450 1340 12.3100 130.190 0.210920 02.30 Lacs). 0.1 11 1111101151 111 111 111. 1111.... 1511111 11.111. 11.1 lull-ill .177 4.90bk202060525030b659n 10:43 ($10....th309 09.0)... r r urn: Illa/5555“WL«.J“ujnu20.tn.rHvrr..1-4 U303. «61.1.th .J‘l? quc 7LQU-‘u: ‘u‘...v.....t. IL 00..o.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.0.. 1.5.019 0.670.101.57011201519b23267 -. unstohu blh50 0.1.1J901 .,..7 J11 )112163,(5C)7“21¢2..J320.038.1...) L.... Q ..... .. i 0..) .4‘01" “763“,?“ “1.4 .Ir 0).- . 902460960 0 00005950200050 TI... tr.1.r7u.r.lqc. .4? UK.“ b.1392... . . n010987450464070401900091760clflh20002300603094391 ocoso.o.no.coooooooooooooOooooooooooono.ooooooooo 00.19.411.8900420891708690 17.. 77 “(491.410.00.590 r)0..ra...JOhI../4 n bu.4..)62.31.293560.205911...Qu,121.149139149023029023903.5bl. 14 11111111 1111 111- 1111 11111 111511 111111 1111 11111 0086406420206052508060520340492310961630962016025 Us»090.2256.0545029503190549.1.591851709975903960055n.n 000000000000.000000000000ooooooooOQOOOOOOoOQOOOoo OC6158.0700357011201310620220950801016504015903h751 9521526594219532964396596.35643.03975975975997547b 1fl0121.13120125C1230.123 UAO..1J.A11.. 15(311J!5193141.{r11123rl11,...313. 0111122341.Unflun~111127~2233~31320311132233353011119.2/.).-J..J .Jfl 0.1.1.4 n0\Jnu.1.1111111l1111111‘flufic).2?29.9a)..(5.“.(555353357J51Jl. 54 55 Ht 1 q 3H at 1! 10.590612744070901}06011#1505523265392 n201022bb1825132050§58721571..2h110658626 nocoo000.000000000000000.00000.0.0.0000. U.. 52405191653017“.31H2970079533725577059900 c1975%Q345045603561345169230250254h2.’123012513 111111 1.1111111111111111 11111111111 111.111.1151 “gnu-)5“ 230:09040913610105735601060563109?19553426$104 3 .3125... 0.73.500 720.280.5517“00120305159010.8025.50.95.50 .000000.0.0....00...OOIOOOOOOOOOOOODOO00...... 11Cu926757469081210931488477367950275h43040397 a ...n .07... 41...). .L 54“....0“5518766397508508767897550b7b o7 l 1 n‘ l 1 ... U“. C 0?.01— 115027 “9.J5055754«Uq 00250Q.u’0130.0.fi$7lfih.“.3945 r 0875602910.0.472720546265687999h400 n. 21.5705Q0359 oococooOOOOOOOcoooooooooo000000.00000000000000 (icon/0 0702b2.3319187890.0851152930320557241560..ch 0.02 5h0.29.00.30.57133791209011980239279010?8012790190 11 1. 1 1.11 1.11. 11 1111. 1111 1 11.11 1511 11 1 014086049491710498360301097206992910508784524I 09235407.00977328175377096551375.025151809301573 .ocooo.oooooooooooooooooocoo-coco.00.00.000.00 n1.b6558073759581366982148171.2592510279622930019 .5 “29432732179216432638593527543755654765464 ..51312012301230123012313012313012512J12351231.2 1122330000111122223333001111223333001111222233 n ...J«1. a... 001111111111111111222222«(a/2222533553333333 1751156925896630790498Dh747¢7791553?1 b.«.11:1J.-...0. «viabq 9.31075727615121n4003 b15.2.)70.c)“22305090.3 oocoo-cocoooooooooooooocoo-0.0.000.tooooooooooo n500.41H0497331.1279155951194511993534690528128OS u 5r)h10r..692531“c..£ 95“S6.£“51h13023~301305019123.U2332.J 11111.11 I.1111.111111111111111111111111 111111111. 045842003207925553351324700590705C96$4008124739 7000193065091577550703178215501520000509209550“ o0..0.00000000000000000000000000000000000000000 7037759Pu5523fl.‘...b?b.tbssgbzbeKubjlc 09375:.1q9520831219 l.£......:n .Wbflbnv. 0.3 1.07820 67.540? he? c. 71.10.77 61.0 h7609070D .A 1A 11 1 11 IL 1. 4672650375131875777597053025603170547600295537? 210th70309(542254925682188910047L5951017901395 o00.0.000OOOOOOOOOOOOOOOOOOOOOOOO0.000.000.0000 2Q62230044769b973114401115b1059550046057516P780 01281799933h91259015790137Q12000790018901780L79 111 11 111 111 11.1 11 1. 111A 1 11 02.929.60.0529}?9954085210.“70310661543636331955789 Us8555506500439292724387689171n9702041776999054 coo.ooooooooooooooo00.00.000.0000000.0.00000... 0639051055266887208“403885595800436530547187133 1211219544532253215321647543436432758654754454 1231312012301230123012313312313L12312r123512312 111.225.500.001.111.)...‘225333001!.110c.¢3535oi ..-011\.1.222231¢ 0300bf3111111111111111122222???2?09353553533333 n21 ufi.5207367770927 0.0.6091402599959635383335706.09 006200 01335200252053).0092091909 0 065815762661. 0.00.9...oooooooooooooooooococo-coocoo.coco. 00020230397075252815069178991377073292059117 35779112233335500565010222333400000112122333 1.11.1 111111111111111111111111111111111111111 060205707900R500 90979.b065.6215155.3780§5574987 ~076055036000~6525781350.“.67399283933907.727226 0..00....00.0.0000...OOOOOOOOOOOOOOOOOO00.0. D65.0071.93510736623765393258.0185692320740073!» 13209665293.73198020976.“...9870831097709 571°951U 1 1111. 111 l 111 115 11. 09690736310027611013140474895955532027536123 65230441630095347721246052600716066192272773 000o.00000.oooooocooooooooooooooo00.00.00000 334102806496265376234606741381430767525552oo 69579.112589046893578017890799678007890678067 111 all 11 l 00000370333628311001950851215007572717530021 09.570.35.55547957“7956756075080001936180238318 coco.cocoo.oococooooooooooooooooooocoo.o.coo 09970719602526737183530821508722926707560882 96655-00221432127675.5450.03337776656550~q 1312012301230123012313012513012312012311.12512 22330000111122223333 001111225333 001111222253 00001111111111111.1112222222229.22533353533.53..) 0500505937500329n310448235644024£nU.L1r550154 08755007Ufi3309706993b7635150275c15700h43d7331 00.0.00..00OOOOOOOOOOOOOOOOOOOOOO0.000000.000 06570000797532099301250p30.5.51810.110..«.50.-..57737H97 85102095055939.605450295140 (3.920.015.4020. 1239 12.312 1111.1. 1.11. 1111111111111. 1111111111] 1.11 11.111 9019505677066507095836224924490:1505999567790 02350052357010 095905125037102570113300 133.8700 0 0.0.00000......OOOOOOOOOOOOO-OOO.0.0.0000..0. 0532505929 1302:). 051.30535503200149 bot/045.1070 060.2 370b69022964307540065639750750665755765988587 1 1 l 1691405453b64793527274P8628662919505172505311 97b950470329809550948761285702088679066622909 cocoo-coo-00000000000000.0000.00.000.000.000. 9667404070065743466346499671986018554h0295557 4039193558134702379121~8023027912028012991290 111.1. 111 loll 111 l 111 11.41 1111 1111‘ 111111 05207056735007812290662874Q662867505192542976 012539529367002930073231184972475339915612668 0.000.00.00.00.00.0.000.000.0000.0.00.0000... 055250592024779006587354911818054165732262152 41539422842174327532638553537643753654805465 3.1312012301230123012311vn.123130123180123012.51? 1.2233000011111222.2033300111122355300111122223.... \ivn! rJOoUllllu-llllll11111122a‘2229.2955.«I «(35555535130513 56 “'5‘ 023 08089SQB518¢91Q6755575892555527339965692b5 0R001578.667952501~281‘6225608926519601.9Q50 coco.o.coco.o.00.00000000000000000.0.0.on. 0206015995215890680819119269§172§1~6755625 8b9011252255Q5Q650001122535~§~900111122255 11. 111.111.111.111...11111111111111. 1.111.111.1111. n.50215~Q01.8989~56357712887375952370~891.55.! 09098671.59705557697111665069667556750895.55 coo.-o.coooooooooooooooooooooooocoo...coo. 570398659221559165911995Q5695§2796947804Hu 519766208d~209Q5107719881952100709881.0091...- 11. .11. 1.1.1. 1.1.1.... 1. 1 11.1.1 1. 1.1.1 1.1. 2Q08966669212167“755593225755178250621957r1. r10001528~0256§625028805569505526555Q91055.5 on...0.oo0.00.o0.00.00.00.00...-0.0.0.0000 9206015607780“085008800650556572550521951a Qb90115?995578546700689968§5679078996778b6 111 ‘1 l 02021.“627926196~3757552186’65832261~2~1825 .U1.39$7621.1520671698571158.5377~391073~8059.6059n. .-oooooocoo...090.000.000.000.cocoon-coco. U7059555007801093191808857355827535526“57Q 1.97.b65‘.55323~3123716655~‘~355877666.DS55Q0 113.0123012501.25012515012515012512012501.25I? .3500001.11...22225555001111225555001.111.222.255 001111.1.11.1.1.1.1.11.111122222222222255535555555I) chQUU./.1.5?b9 R012rJ95259510 5.7570 114 6015659179h v J7b077182450824164620642178874#9“flu68471053 o0.0000000000000000...00.000.00.00.0.0.0000 00709277255907051522480556701.821507555591015 895924000551556155615025“2512454029125Ul5~25 1.11- !11111111111111111111111.11111. 11111111.‘ 909.006950605550557471630230795l§011879Q2729 3360523991909691~18796Q5652565606§82590999b o00o0000.000.000.0000.0.00.0.0...00.000000. b550072714546876597510711711Q09597077384431 7.1),"..5151007501..5.er197bl...“07 b55b19b.b7598550uh7590 1 1 1 l l 1 5020021509027?0555639Q70800317?609923169509 ~25077112819151858120557558156599517#590003 00.000.0.000000000000000000000...00.0.0000. 59109.472854rJ5125‘024H928825859060292.‘615560 280924§7025b9126001157012916891020912790189 1. 1. 1.1.1. 1111 11A 1111. 1.151. 15 1.11. 11 151A 006008958Q1209851787)~96§5§5196Q097#5195120 0210528175‘927585557955782112510651115289Q7 00000000.00.000.00.000.0000.00.000.000...00 092007227415925557751961529817859265“61.0986 5295557522652160216075‘5526552758659760554 5120125012501250125150125150125123125012512 2550000111122225555001111225555001111222255 0001.111111111111111222222222222555555555555 10; 332 OnuQQB3312227676751736b67427fi707281759q7 04$43520547Q531176006598908750821Q560uS? noooooooooooooooocoo-cocoooooooooooooooo .U602055595990055775‘85“01§8595.5077952027 ~679.567566757772525Q5Q6555615125425“c19.9 08044550112227 576.!61.756P,b7§27§707281759n.7 n...§5§55205§79501175006595809750921Q560057 000000.000.cocoooooooooooooooooooo.00000 nu$Q20365939QHO56775Q88§01§85955Q77952037 98,4557565767772525§5~6555615123Q23¢54a 0504“55012227676761756867~27§70728175987 06$455205§7#50117600659880Q750821‘560057 .0000.00.000.000.000....OOOOOOOOOOOOIQOO Ub~zn5b5n501Q8056775QPP§01QR5955§7705203...! 467Q5b756b70777252545“6555615125525§5Q9 0609655012227676761756867Q27§7072817596.! 04591452054745.011760065018808750.621Q5«.0357 9.00.0.coo.coco-0.000.000.0000..0000.coo 069201b595948056775488901Q85955477952027 4676567566767772525Q546555615125¢23Q5“Q 911.150.125.9125912513912515012510.3125....1251.. Ongocllllzzzfis5555U01111225555001.111222.255 1.111.111.11111.1.1.111222232222222555.5555533.).v- 150291.597.“7.89.44575775080592721H.8255“1.2.17n17 80514995265718910255520495685141709330227 o.00.0....OOOOOOOOOOOOOOOOOOOOOOO0.000o.o 0075791511255555272751“95110812125262.1519«u... 891.221.“Q~555555660202555‘246.50101221.2555.) l 111111111111111111111111111111111111111 “OR695‘1029Q04572555175‘52067222378195“ fl n04R59996655181557~56820155253517~l5153.fl o.Coo00.0.0.0.0.0000000000000000000000o 00242993616995609277969507299782992209l «1.9855187650 H7510575087608219876037710 dM IA 1 1.1. 11.1 1. 1 11a 1 11. 11 I. :- lmudq I $0241759081606538777055678045R88952917411 10314050§5§6918562543179867761§825868465a 000.000.00.00.OOOOOOOOOOOOOOOOOOIOOOOOono n075700658500459072205069270021700770051: 7912269011....(90.9679027901.79.568901790067997u 1.1.1. 1.1. 1| 1.1. 11. 1.1. 1.1. 00369711568216655.555702251858922855.6989515 00¢8530Q7562810897§§77950651§858290649772 o.o.oooooooooooooooooooooooo000000000000o 002‘208688756“6672726R.556291.878767576“.Qn19. 965565559222§2117575§§95535276765565Qaaa 9.0125012.) 01.25U125150125150125120125012.1.1.1. 1..On.001.1.112222555500111122555500111122?23.... n1..l11.1.1.1...1.1.1.1.1.11117.2222222222255555.555555.... 57 101 102 0Q2934322§866677520798Q798#73528867883 2090‘1~576922Q3272238065619661‘6067529 oCO0.0.00.00.00.00...00.000.00.00...o. 9708657300005522620119‘156395Q908Q8957 23702570238012926912917901896891689089 11 111 111 111 1 11 1 11 1 1 052713357682443~57932Q01086335Q2826980 08990398019952897Q152369Q825510106866Q OCO0.00000000000000000000000000..0.... 070406716801786661§Q05Q7§§5957218177bQ 7321753286435 64215275Q3Q26§32653254 0Q2934322§866577520798‘798‘73523967383 2090Q1§5769224527223806551966196067529 coco.0.0.0.0...0.0000000000000000...o. 97086573000055226201199156395990848957 25702370238012926912917901896891689089 11 111 111 111 1 11 1 11 1 1 032713357682Q43957932Q5108631592826980 0b9903~B0199528979152369‘8256101068664 o.on.ooooooonocoo-oooQQOQOOOQQoocooooo 070~06716801786661“Q0547§§59572181776Q 7321753286‘33 6Q21527593Q26432653254 23012301230123130123130123120123012312 00111122223333001111223333001111222233 11111111111111222222222222333333333333 682Q653520937695078Q976‘235250971824667 909357959949Q05216287488626855679183730 .000000.000.000000000000000000000000000 218829791655102Q#052372§921518612382213 911590169017901?0579070679068Q68956897Q 11 11 11 11 1 1 1 1 025925357153183187503824553410163880010 019337Q5§8993057165597780281‘572012230fi O00o...OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 08580699996500Q810766069115718071387166 1253226Q3376591152119265432143115322¢3 682Q653520937695Q78Q976423525097182§S67 90935795991Q105216287~88626855679183730 0.0.0.000.to.no.00000000000000.0000...o 2188297916551Q2§90523724921518612382213 91159016901790170579070679068968956897U 11 11 11 11 1 1 1 1 0255253571531831.7503024553410163880010 019357Q5Q8843057165397780281Q5720122304 one...coo...coo00.000000000000000000000 08580699996500581076606‘115718071387166 12532260337659115211426593214311532243 123012301230123130123130123120123012312 000111122223333001111223333001111222233 111111111111111222222222222333333353335 110 ICK 7Q84581903859‘191756095810§406571999 670G867196825931223020850§1159879297 .OOOOOOOOOO0.0000000000000000000.0.0 0256985587427536151§2211§16826902501 88889999mmmm‘66677889999‘55566677788 748Q5Elq00859§§91756095810Q§0b571999 670§86719682593122302085091159879297 0.00...OOOOOOOOOOOOOOOOOOOOOOOO0..O. 025b98658792753615102211~16326902501 888899990000466677889999‘55566677788 1111 0585781039279~3935793876103783255085 07041580267759377282527‘0‘5‘02800691 0..O...OOOOOOOOOOOOOOOOOOOOOOO0.000. 088793908§5Q7570671011§5Q1Q0100033§8 356134623Q5Q613‘525123QQSZ395123QI? o585781.39219Q39357933761.3788255055 070‘1580267759377282527‘0‘5‘02800691 ocococo-ooo-ooooooooooooooooooooocoo 038793908Q5§757067101145Q19010003398 35613.623Q5~61345251239Q523~5123Q12 012301230123130123130123120123u12312 111122223333001111223333001111222233 111111111111222222222222333335333333 797‘09251761200755141652631224577Qfl F?64413376554215569192731751I0375V7 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOI 95432136533900539733595121751734159 47136802386150379129279129079017n01 1 111 111 11111 11 1 11 1 11 11 U“.J~ U iv. o .1 fl 1 CO937990§7625777643515Q7696246572503L U75“)1291650557923Q3329~qo3152070319? ococooooooooooooooo0.000000000000000. d691¢14673337403H095b9176373fi9b9“35?o 732185328643h17h31527fifl35375397595flh 707409261761200755141652591224577QA?P 976“Q1327696421fl569192731751703759755 0.00.00.00.00.oooooooooooooooooooooo. 4645218663300005978959612173173~15bla Q713Q3025891503701292791290700179010L 1 111 111 11111 11 1 11 1 11 11 1 30937940Q76257776&5516~76962Q6572505$ 070451291650567823§5528§905152070510£ o.0.0.0.00.0...00.000000000000-.00... 3891419673587““3909559176575“98“83529 732195328643h170315276Q353753275Q36¢ 3U12301235123130123130123120123012312 01111222£3333001111223333001111222235 1111111111111222222222222333333333533 58 I“ Ion76M599131F2SU9Q€17Q16779313955F a616915b892120846715653085!Q526059 .00.000000000000000000000.0000000. 2n562097032069Q6351597Q92933906678 3391549133927912029012807801790190 11 111 111 1 1111 111 11 11 1 24029b675935894195633fl967a1(138517 02130755502192~56a1356519508502fififi o.0000000000....000.0.00.00.00.00. 05510791781160036915398526~5953Q21 439754QPA3927503069765~37543765§76 0.34572939751930257003215599.!106963 150611255621612993956339233576999? cocooooooooooooooooo0.000.000.0000 b.JU7670L0539209,5540,R86129’16 “5359035. 126RU16E90925801705790896790578078 11 11 1 1 11 1 1 1 1 0741b1~122339801190632965‘11177903 0508012358216~68275925512515786019 000.000.00.00000000000.00..o0.000. 09026022.?8119“79.679065851399817739 5511b“21~2551 3 5‘219364215Q21Q2 .(l1 .1123 .Jlln/gélleflIR-In-letsn1231.‘fll.123 [V1231a/u 1192223333” C111122353359111122"...Z33 1.111.111.111127...42?29~2)~?72233533555353} tr»Q7~94339582051552399C150372670C9 060.65296456415665.0647b4737?.500“7.3026 cooooooooooooooocoo-00000.00...coo. 7717455Ql59b29705b31217Q24799Q55320 J12912£012270bb00310011996769789090 111 1111111 1 11 1 111 1 1 503ac3943hn552919902074105755215110 5225755665511D96§47755flb2??734§?650 .0.000000000000000000.0000000000000 03179624J525293bQ951015929241§3613b 23557L601773365l9659675335544765576 1 1Q0€35239k35592393¢79ga011567160531 Sfl25231$353Q1965350175837Q929069879 oon.coo...cocoooooooooooooooooooooo 76620786501b2169509072392~166060136 700kbb9§bt979§63968§57pb89678457856 1 1 039659300“353952‘9Q7Q4‘1016Q9138270 05651196015118§0385109?h2922?07#075 ono00.0cocooooooooooooooo00.0.0000. 09b29626022521940610300924909031930 12M112932235011211§211350221Q21 21 ,123b123JIZ3 11:1.12315. 1..¢1.I.2,. 1 (1,011.23 ..9 1112.2(2331.3C'.~11112.¢351utv.....au1.1.11.9..«(2n/33 1111.1.11111111ata/)5222’R1LA/3f} fi.,5lo.533533533‘. 120 113 238b5Q62252737379R9?U6137¢277817 033801285252b7.121u271-31.b700125(4 00.0.0.0.00.00000000000000000000 9590859339?5~5961c7515557999999.5 11002211678888991100667777388999 11111111 1111 23688“62252737579F9206107§277n17 03390120.325£6719.l¢9.71-515700J19235 coco-o...cocooooooooooooooOooooo 959§flcJ531u92345961.107515367599999 h 11002211537“8580;91100667777835 599 11111111 1111 020~63012507507d“21105170.80852£.1 01900.b5732r\u6797fl.659,8§~772Q00331b 0.0.0....coo-0.0000000000009090. 06680.2PQ.3465928270 19‘1556390QZQQ.) Zfib 230b73~5625 13‘664§5533§523 UZOQSSU125075078~211061708085261 01900657325679?86588§§772000531S 00.0000000.00.00.00.000000o00000 086392893“63‘282793Q1536390920Q3 245 23§67395625 13§66§§55334523 U123012315012313012312012301231? 22225333Unu1111223333001111222235 1111111127.22?22?21. 9.?33333353335‘J 05481“131519656¢3435524647615Q799 0759915426G03256189097963bQ426723 00000000000.0000000000000000.0000. 9595Q7$1190,..9‘11520710157590231102 491349134928023039023907902891201 1 111 111 1 11111 111 1 11 1111 55.591990J506.17$294495356350161.322 77R.9S1.31;9~50199333?55“66101Q5.3355 000000000000000000000000.0000...- 53701772160009061040099706.526332U 29D5097b§92b5336497655375§356547b 0557953905121512438682QR975711£50 976222919865236379890795915592245 000000000000000000000000.00000000 4E656007b98842397750216973§749075 369127901926912816601906501689189 1 11 1.11 111 111 11 1 06006580850239.8639?6358Q92759270 070872531“5590.519909Q65225895695 00000000000000.000000000000000000 08122093360825~577953§Q9165706529. 69217Q32“2.5-“21915.132536532653253 130123 L191... 11;!n 12313.! 12317.... 19ml? . 1.21310; 1222251031.?....1111223535301111222 :55 11111111129.222099 9..Z)L9.?.33353553353‘V 1c; 5&60.02p..u37§b7n.21 757059055210‘950 000.000.000.000. 861““97543373753 0122787890b90001 1111 1 1111 5122739~29§6?h77 7273bfl073512073u 0000000000000... “90440783091501“ 099855766503779h 1 528§523 Garbqqq‘kutdg 07.575530651509021 oooooooooooooooo q..0129“05~3036.3b0 ?§67785678~5fi7“b 601973591‘956799 03225~396~17115nulfl coco-ooooooooooo 9287“"007HOQ.682Q4 21 1br)fi“v¢3“2229.1 u 1.).5‘0.‘v 1./gu.Jo .ao/ld‘un‘ 5.3.3.3“ 911112 (UL/2.3.5 2....9 9 5535353514131 1 14.3 CSOb-DQQOSaLIhOLZ bs7r’ H.9“81Q828-35 000.00.00.00... 5982255.’9‘~5~3h7 2.0.2,).35579890001 11111101 1111 3.1..259..b01n 01b“ 06 9.063120hbsq070nw53 ooooooooooooooo 870296020325‘79 98520995587bbb7 11 5253““44h5k7303 201~9263183¢J2~32 00......0000000 655Q96799-OQ3U 5782~6779Q0785R 0533531195971~2 o79~511OBQ‘1Q~03 oooooooooooooou ”59.9022140‘25738 12211zrbbhss‘12 123312.312: 12131.: .(..d.‘(31Jlu.3H v1.1.1.1 (,1. 1‘5n11001‘01’OA'L9hA001d1L”I ,n.o 59 123 O5416775450fl C27 31Hvo...9n.u.\uQ..n9.b1baa 80597090973912.1Q695 321.1..DQ87556 coco-c.0000...coco-0.0.0.0... 397o89.57.21.551b.h61529.10935¢.78 ~02Q~9280231301239“08912801"...01 11111 1 111111111 1 11 11111 750095550138028999Po122996621 ?0006760§2§551§69792517~125Q3 .0.....00.0.000.0.000.0.00..0 99054006402b31§2??“25Q5953421 5097653865§7503765¢anQ$7b5h7 1 1 n: 5207727 66976?.u1..r5UP n 0223118 09¢9Q093252QQ333553570570997.... 0...000....0...0....0.0.0.00. 680 579 MQQ 6719":“2121514992921“? 15790Q268019037o.0c U no 90679079 1 1 1 11 1 ‘1 1 .1 1 0980233266247639§06b53326439§ 0%.).397681397SSQ§D799662765537 ooooococoooooooooooooooooooo. 0h710004169838054747079265452 5321536021315h215465326432§3 301231301231301.2312.010555. 12312 23333001111223.5330 01111222233 11111222222229.222333335333333 3K1“ .... 63.71 2699 b‘u6295-06h1135fl557605’ Q60 91895573‘7JSQSBQ18.U93.36705R4 0..........O..............O... 12““1515“3530‘p’~775rfiu7 J5539.119.’5 5“13“~918.U121"u1236989 “1801101 111111 1 111111111 11 11111 96231894Q10095239Q213bu1$31753 15955966951358.“6065505~1500560 0.0..0.0.0.000...00.00.00.00.0 23973396¢6b903fl090550660977015.. 7619L7Q3665h8609775hb655b76557 1 1 047472259b45299834110375256733 a95~P395585895322§184099738220 coo-oooooooo-ooooooooooooooooo 3Q7B§G1Sb°6608750157ru.6993923a‘7 90‘68991579079~659895789.3beg/D7 1 1 1 047869999Q00§88735210§13217390 0158“ Q 665551‘0350933 9Q19786550 o.00.000...0....000000...0.0.0 01761696655593795555055938715Q 1421 43532221421 5~6~52532232 2.... .12313 .12313.» 12312.:123..123...2 «(211.333.13hs11110.23!JJJ$P§.J111126.;225‘.» 11111122,2222?9.9:).29253333314101.31v1. 151 130 27475757otululbb35293a21645 1:.n.29¢1.5 .4021513b7513539868 00.00.00.00.00.0.000.000000 096251959“9995965¢171757925 953099090111222769Q95000011 111 111111111 1 11111 .3... ul....7¢..16.33197356.3.73.9flu c. 1n.“ .uu.1099356k?9..75cu.: 739351;}...EJS 000.000.000.00...00.00.0000 0”$201263v5h91530ab3271511§ ? be9P779dlobib€a7779uJLJ9 1.11 1 7599Q3.J..~i.5u.cr..5252g57545.3 2Q2937Uc455513n5150cJG#0.“). 00.00000...000...00000.00 26.4751bb267935341334J56 594U7837243.b7fl5b7flfibb745 035330723513264562519562286 350092502275C3035fl§529uJCQfi 0....0...0.0.00.00.00.000.. 0.682091%“.66660.71.059893?697G 12554444232112.3654“a9.5.5.522. 12311:." 12313b 1915.1.(P 1.;«31 12‘3105 5.531061111223353nu.-a111.1..(22233 111222222?23.2?93331435351....J}... Q81843723905355630779533959... 1156175§18599812863639573923 00000000.00.00.000....00..0. 7553181110710851921955675585 332177999900211167888899990u 1111 111111 11 4519457?JQO5553b307745939399 1156175‘105391912563559c7a. 92C. .0000...0000.00.00.00000000 7358161110710851924§Sbh7h H 3321779999002111h7bflo6909rU Ill 1111 111.111 0:2.h34.055225“07913.0(..2135.a077.5 005117595517755786709nfr50€0 coco-0.00.00.00.00...coo-oo- 017019509 65564 b.092750 “no ...u 51a 23977Q556551230£7555659«553 0580Q365225007913062155~0773 005111598617735786799H035060 0.0.000000.00.00.00.0.0.0... 0179185096556fifié922594928519 23‘77‘55635123Q67555534“.335 0123130123130123120123012312 3333001111223353001111222253 1111222222222222533333333333 133 1713.51... 41“....hn. .13.Cn.11..t.¢.7 J... v 3n:7U.u.h2r.. 01.21.»...3.“ 63475 2..., 23¢ fl. ......0.00.00.00.00000000 20 U1J21. .35....)50 15%J1W.R.7Q..J...TJ. 592G1221$U25590b011001312 1 1 111111111 1 111 11111 C.d.u51;.n....dfi....,71. ......7922 51.0.7125“ 1:30. 0712151....031531.‘ “45236752 0.....ooooo00..o0.0000..a 5,300,113.}...1 h 23.1».6219rJ2130b 7:31....731._u.. 1579...). H? 9359 5759“ l‘c. 0711.3A....“...(1(‘1.1......1 0539.....“102FHL 9.077233213/17Q Dans-Jflhufibwlk 71¢ 00.0.00......00......0.o0 U8.J9.r)11.u1.1. €1.913b9.t.r\ n “’7" 1 9935n31IH3 . r0 000F909? b0 .... 1 1.. 1 1 l ’ 0851h2929b719746999901859 n.597..u¢/.n (1.1" 1J1.r1".uJ.{0L“.U1I)1VL .0000...coo-0000.00.00... C59221t3r155210611595Q71U 536.453.31.12 1.. 21lar16c1935959uk5 313. 12:21:. 1.3.1.1}. 1......~ .. .../:31: 1......311112.21.5.5.1... [111122 (7.5.). 12222.35 ...... 3..) n. a 1a55553353u1,51 «Pu53v194977nu?1¢fiu0n90234 1).; au1.¢..J1O.7.)..r7u.50 H.rJ-7fi$..Q.DQ£.O r7 o...oooooooooooaoooooooooo $711155u795015585552554950 ““fl.1v¢.01.¢121fiu(¢5“9 59.010.011.12 11 1 111111111 11 11111 7!... .......1....I.JQ5745§53Q1bDnn.24Q a «c.1123 H.,-.7 bl)?.$190605~flb7~9171~ coo...-cocoooooooooooooooo R...D’7Q1R:.Lo..0023100L1~5~606R470¢th v"DQHIAHQT1O9RBSF7669F7704 11 .ru€1.11?“1...;271521QH9327Q1HK 1.58133591567323539750706.h.9\ cocooooooooooooooooooooo.o h11a..h1.J..n.19/ 235.91Q 032..)h7knl u n y I: 157....0ue 9579.0..9E7UO .... h7d5/ 1 1 U2920732¢62395531076243389 t.fi.1.nn.5nu.lp,2u..lk.~52§UJ§.35095.055 oo0.000.000.00000000000000 W177L09585U4441h1929292055 111.4 .4“1.1.9.2“5...111le6~530\¢351~39; 2.3.15 «11.25.13 ...1’2512319130121411... .530 U11112233 $3901111222935 1176...... 9.229 33? 22533333333351 60 A} W“ 5 J? b4......?.1.!.r. ..11‘../5¢U.rt‘.h r a. 7“ 1.137.. $110.1...vslnir37. Lu334‘..9,26301 32 00000000000000000000000 b 353052050072272323259? 165018178017957Q067i070 I. 11 1 11 1 1 ..r.. P U2317u 720 212 56112551 0 S7 591“?“ “2.3537: 522196;? 00000000000000000000000 cbbo...0600424829055263320 ...311427o...h\.1..2.3Q21.h~32..JQ 9(2665217Q013235b6A5899 3rJ75‘u‘.O.79LJ7070“6E25“1E;C 00000000000000000000000 UUSSQD2Ch00720773?92392 1h501817501795790679079 1 1‘0 1 ‘0‘ III 1 0055023178729212661u3‘.0 "Jnoylhflulqfiifl“25S.U?.’520d197.7 .0000000000000000000000 0059.‘6“0~2“829055263320 6511927¢J4332r)~216“325“ .3. 91231.3."12312312331231? r. 1111223535U01111222233 22222232292335533335333 «5.11.133 uh 0.423144955H15r :11.“ UN (b.1nluqalg"19‘uuflu kahIILIQ u. ... 000000000000000000000000 53:5“ 4 )5 1......75h721n593 J...‘ U... .I 58.357 h h n567fl“650h1 3507..-... Ln. I... .... .1... s..:rn91.r.u~ 0...9r)s.fll.l c 0.6%.)...»95 n Rh.» 9.2%.).611. SELFU.“ 9 000000000000000000000000 bu ......ua..¢k.7funh.fih717fl1u ... u... ..C. 2‘..?)..51;1u54~0 311....30.../....r.a. «57105043Q231449C5513w LJQQOQ451BQU221H6565 b11530 u 000000000000000000000000 359n935307h6791959nabxll 5&3“).thbe78“ “339.07.35.53! .0, 09792828820.930422255967.» OHQRA2908§L245619A£cWUQQ 00000000000000.000000000 09504267b840b717kluvfibnb 2.322.314.5500“ 3112.51.73}... 130.100.31.31 .123100n12‘sp 1.4.31.6 0011]]2233559011112??235 2222227?2???553535355555 211 bSUSDZZQfiG ..u 0511062006 1637!#QBHQ74535fl61795 000000000000000000000 b107~b§273fl DQ59665351 69979789956Q577567b78 9.181021QQ.Q98098080122 12~55§027174535930798 000000000000000000000 114735o~12156§6696595 “““firfiE’bDh2‘2“70.3‘05““5§. 2709.89785207799112292 793569099477025656515 000000000000000000000 1910772540565016370'06 5085735575524672§bb§5 0523393098970861~7810 02.05{9:00:3177823679455 000000000000000000000 0 69677769216900607795 1212142222902 1221 111 12313 U 12512912301231). 111223333031111222235 2220.0. 22225143333333.3314 129299736512 12.511 130...... J U$08333632718~78£.Q7337 0000000000000000000000 6.10653057991929624530.u ~5566777772§5§4.355.36 0L. 12929~73651212b12195 can 0308338532718~7QSQ~I$IJ7 0000000000000000000000 b10653“57991829624fli.40 ~5666777772~3§be§9 b ...... 06180260581206921629L..r 08106‘067171297351F975 00000000000000.0000000 050.57?9.32191799.369.322). 2~52523Q524 1‘...“ 13“.)..0 0618026068120602162066 031‘60567171297R519776 0000000000000000000000 05557283219179.05‘82222 2052523452.. 1.34 13h?5 1.1231591231201231.3231? 111122333300111122 2.9.51.0 2222222222333333355331 213 212 27395 8.0.37 u379398137 101059D3L...01Q0b37610 0.0000000000000000. 7‘815357231559§7759 1913.901796990689059 0.0 1 11 10 1 929915h900009323200 512Q700088922826n72 0000000000000000000 51 71657. 0.357.46953522 2.3.3.»...554Q?SQ5.¢A.3§365 555455137Q03Q386479 97,72fl973b7470750199 0000000000000000000 0660712725491527810 17.067907957 60578978 1 1 1 1 0154997909218329550 005253.0067200750660 0000000000000000000 0610301055721580320 31b432425321532143 .3113 n.12312w.1r23 912312 1225335001111222233 27222223333333.5333} 6124C25359t95fl91326§ 29722185859178364505 00000000000000000000 7.57997.20061.525.DQ79922 9.08007901685789673989 1 1 11 92765357519733905993 .31019.C.555H91¢.50.56.D.32 00000000000000000000 21.f.2u1 D7110 511741.67 02 5.5.597.»55315432530555 29.533a085:)7221986175 2.365L4508851Q7437919 00000000000000000000 b5751712619559415613 59.6G568968~b78“07657 07563968317507978003 03920595565152‘65061 00000000000000000000 01631Ca~019“615~73521 121552231421 421 32 2I.130123129123012512 112a‘33330011112227—33 2222222255333333333‘. 61 P25 221 11409995701921576 74116141763293967 00000000000000000 11553329477702055 24.012796890790190 1 111 0.0 10.0 0.0 61100100010390.2019. 545.574913412’.9069 00000000000000000 61766429437743722 49765436541176.3476 0415519967813'J777‘ bu‘hlxoolquszO‘Ang-‘zq 00.0.0.0...0..... 010:3I3Hu24278172558 05b907Qb7H9568967 1 04734106780322714 02596434111014.3731 00000000000000000 01.399424747140052 531 435321532132 31123125123u12312 23333001111222233 .1 0:: 30.133333333330314 ha7 7u4..u7497649297 90: 4606b??33b4914 00000000000000000 2835784874185072 99009656787760 Pa. 110 H9flfi n 0 1 4C44J3437P3761b424 Q5nu3n.47.55440351500 000000000000000000 375050677924011VJ2062 7696679135....7357 06677 46950949109697: 452 71.340906415322218“. 000000000000000000 32416676270040.4560 47245656346724.5635 029025431169618398 04551375427323.5562 0.0000000000000000 084154772340413266 221123332232112 13, .12312.J123....12312 2.23333001111222233 ? 9 29 22333333333333 231 230 c7n5‘.2‘0~736’67.6 0411360709 2 2962 00000000000000. 0.702.323.32317 {Q 6A0 911676769869990 1‘1 1 409732101107047 818994057445744 000000000000000 616633311163173 998446666677788 250566964149399 003137933438984 000000000000000 612329021813347 356673567245634 02.873689310358466 002967185432946 000000000000000 0.366994505140104 12443334222311 123120123012312 333001111222233 222333333333333 3r)». £647....52fi 0:4 634 7nu473660.6.5376619 0000000000000000 3.3194975141100321 0300558677PHRR94 111 u..5>.$647n..52n.b3634 74.473664565376614. 0000000000000000 331.74975141190321 0. up. u. 5.36! .77: 6.4qu 9 111 01441546140519.1904 006.2360094358082 0000000000000000 093440.6075277730 134553445223413 0149646140519124 0002360094368002 0000000000000000 0634496075277730 134553445223413 0123120123012312 3333001111222233 2222333333333333 233 232 3982431421291 5222056506197 0000000000000 7924897359.310 2797690890101 1111 3672463450753 "3522,19..40..13519. 0000000000000 6904116322612 6447654 376557 7964519441690 5226091554012 0000000000000 80.241463054601003 6795790 467867 0874908462908 0526453517295 0000000000000 0904995831608 445322432131 31231003012312 3501111222233 2333333333333 54763966049010 u5r..¢.:4(.34721096 00000000000000 71213122929001.0913 12797499490340 100. 110 1 1.2.1.33 01F “7.6.1.007 52394532773577 00000000000000 ’55.!211526‘3 h235 87447.5er676687 72764245693766 030613119135221 00000000000000 67237254947492 67784678356746 05134622644675 02053292179980 00000000000000 01827590958901 1444323321121 23129123012312 33001111222233 22333333333333 302 434’7169.5390 10767510199 0 0 0 0 0 0 0 0 0 0 0 05501492223 735743457367 0.374260014614100 000509.k30...6039 0 0 0 0 0 0 0 0 0 0 0 081354014414 321143201543 45971825390 107675101015 0 0 0 0 0 0 0 0 0 0 0 96501492223 73578457867 05742896410 0050853603.6 0 0 0 0 0 0 0 0 0 0 0 06135414414 3211432243 20123012312 01111222233 33333333333 5601937733 043L41544 0 0 0 0 0 0 0 0 0 156.4 6.5721 4.56.34.56.56 039534315959 “7793.19.1400 77 000000000000 054009480387 12122.. 22333 319560993775 647043341544 0 0 0 0 0 0 0 0 0 0 0 44 56469721 2 0 1 3.3 4563456036 039534I15908 077931811977 000000000000 054409489387 12122322333 1291023012312 0 011112222033 333333333333 62 311 31' 4018372417 55120307h 0 0 0 0 0 0 0 0 0 590875441 467456767 quboluusu.sq 0 0 0 0 0 0 0 0 0 ”27n32431 (31.444455 304119629 370017444 0 0 0 0 0 0 0 0 0 724381212 3.56235645 081167257 1157017573 0 0 0 0 0 0 0 0 0 056337534 122110222 3210a” '025]'( 333335333 1116243845 6212371745 0 0 0 0 0 0 0 0 0 0 1553573970 334.544.55.56 11.1 6.1.93.0.40 5212371745 0 0 0 0 0 0 0 0 0 0 1653573570 3345445536 0648100507 0603770256 0 0 0 0 0 0 0 0 0 0 0845314480 134123423 0648100607 06.031.702.35 0000000000 08453144 86 134123423 .3 123 2.12312 111122 1.. 233 3333333333 313 312 6071017 9461784 0 0 0 0 0 0 0 4047699 96.78978 9038309 041.5350 0 0 0 0 0 0 0 2077257 2643354 5700324 7968734 0000000 0637 846 94676 67 0726754 0965279 0000000 0607065 431132 11.7 1.2312 1222233 3333333 52615568 2434.10.47 0 0 0 0 0 0 0 0 44465721 70.567 878 0 0 0 0 0 0 0 0 66437637 29.54.3354 “297270.00 04367533 0 0 0 0 0 0 0 0 69626746 673.56756 04922606 03.305627 00000000 01611391 1321122 23812312 1129.2 233 33333333 321 32.30.02 .059753 0000.0 90.37 .02 CI 5 D577 39.3“.52 0.33—7.33 0 0 0 0 0 0 9003702 563677 092010 004540. 0 0 0 0 0 0 0613.80 13413 092010 094540 000000 061280 13413 f. ‘AZ‘J 170 222?33 333333 323 322 310i 233 333 9325 0692 .00. 4119 “9.“. n (756 7426 0 0 0 0 9759 94 05 5356 89.54 0 0 0 0 9.3.70 674 6 0.894 0019 0 0 0 0 0199 11 2.31.2 .../.9533 3333 332 332 331 “”31 bad” {”055 0.00 12 33 APPENDIX C Computer Program to get the Crystallographic Data of Ni3Sn Martensite ! 0 ‘ t K I. ‘. Q \l O O O s, I I on . ) , , '2 U7 9 J “ L 0 X 9 2 0 I. O 0 9 o 3. . O C l ’ l \I .‘l 53 o I L C A I. .2 2 O .’P H ‘12 6 O 9 cl 1.). o I. o 2 I: o (J'- L 22 0° 0 2 J D I o P .- 37 l I J 0’) L 20 .9 Q 3 ( ILL ( Ix 1.. o .1. 9 o o 09 A 13 \a 63 9 n ‘1 )1...) D X 9 'l " 2 K L‘( O 3. U o O . f . OPP .L 91 / n 35 O “f I 30‘ L I r 'I 2 O 2 r. .,, I (I. D 22 U '0 O C a, O P., ) n x U 02 .1 N , cl ‘\IK l. 1.2) 2 $0 0 E A. 0 0L. L ./ x “.3. Z n. A ) 9.. o 2- I / I O o . L _ K V99!- ) a In .4 . .9 9 L. 10.”... ( o (o r. 917. (I I R Q 2 r. 02..“ o ’01 an )ng? ix : “O O a Tofl~ ’ L‘. K 591 l .l o o X n 17,.T7 K 09K I. Q- ._ o 55 . O A... 51.. o 2)“ l. n 2‘ L ' oh 9 X nofioo I (J‘ A I E O u L. c a Y)Y20 I Foo . MIR ) K .lrJ o In 5 .1. o .91) H D a L .1 9 o 2 O :U .07 '- IULK V I 2 Q 9 .... .6 o I 5.550 0 o '0) L Q.X J : 7b 3 l )9 .7 K )1)J . X9? 1 6 ‘1 — O 1),, K L‘L. 59' L l 97 O n 1 0K .50 at 9P 9) 8 nu ) ‘XI 1\ i .o l H OEoUoG o 392L 7 . 2 .21 v n. 92 9 Cu..‘ to, \l ‘1‘ O 5 \r 1| 7 9 \I .n ’72 7. I. .910 0 K P0071. 9 Au 0 In? .5 l)boo . IJL’b o ().(5 2 H a £2 9 01055 ‘ ODD-J2 J .LJP. o O H 2 ‘ 11..) o . 2 E TDJAQI J iv... 7 L T...- : U 0‘69 0 P VOTJ o . K2,! 9 J ... I . 9 ‘ 05-kDa... ‘- U Olin-“0.! J 0(L0’ 0 L 99.] O 1‘99! 0 Kl 5.."15 o ’3‘): ’ ( X93 ’ u.» c .5 ... KC )KIT. . A L(3LH A A 7 v o J h. 0):! o 9 0!: ll ol- ovol K to ( QC 0...» “I E 01- 9 9.13.6.6 2 JP oar-9“" o ( 2)P?ol‘ . N. a 32 K) vi .1. Q). . JD ...-.5050le o O (K“.)~ :1! .r. In L. ‘5“ unto}. cl 9! Lofl.noAn D 0.9VHAS n u L Kn... L. .rj o o 21. layup aloL oCRYI.l K .ia’lsrs‘nu or o n H2 KP. .933 .9 [CL 0 JoFbLOEX.JKJ a JLA.(AC L5) A. a 3 HF IBSbfi 22 I. O?0oD/4F.HH:::1 J .0.)I)£ 01L 1 H! 09- 6(3 ((IO .9 ’0‘ 292RNKo/OTP))’O J ,‘JJ'03 10L 0 ’0 x.' l 1 r LA 09. .l/ : '1 00A .IvIIQ... : inn-11.. .‘IL‘JQ 31’ :3 9 X 9.15)..le; o) 9 CK 7910 I." 1:15. .56. 0))C.L,L: J)OP.1H 0L 1...!) 1. L 101 .5 931.174 .l fiNl. -? 'IH :J..JJ..U «(Tina/.DooL oJ‘oJlacrrL ”Lila .J “I Q/ Q/ 9 I. .. 0!: )/o.7o). O/ l K..CASL99NNVL Acts-0(001LLOI..:u.TNEEO/OIl-IJ0375 w Rush eta/I. 2(3100 IQA'IO oXXIAIvI KIP. Kls 0X. N U1UUIUU2(2I32r. 2(UU «ESP7QP on (TO...UOCL_L:ECIr.C o o o.v?_(l.\)Ko rACPOUI M NN:NN(T(.I 903(1JN KSJ 00 9~\ SFMJIOOOgoAHAHDUl2‘1.(o(L(JA&UL90(OIDIIIIIEA.LA-ZNr..All r LLA57A \ 17.? :IH2E110K177:PHN(((IL:I.. o:J..AN:56H.IYYTTETYTHTH2 157?:qu 11".! o ..l?::::1..l.l U 1((.L!1(11LLL L192».J(L(IP I. NNONNIRIR.1: JRkh... n.1Ao¢LnFIJK:POOdOOOFFHer¢(KKK\:HJH¢HoiFCPUUFLbOfUNb(R)F02.{U L00.13 wIDUQ7U7LIJK9uFDIUDDIIYIPIA‘HHHLLCJCPC)AIALDH.IGCGCCICCAF.uF 910.9fCCSr. on o o .- 1:J {U 0 o 10 CU U0 1. 0 n. In... a 1 .c :1 ‘- 1 ‘.| ‘AH. \l-Ill Ill cl: ‘.«.‘ ...?3Q557 y w 3123456780 (1;.3fi567fl991256567o 9 0123Q5t79 9.9 fl... 123.6...67 c.3123 «EL? : ll‘ll‘ol‘S111222(fl¢2?22235314331’3‘.3~“-~§“an 5.655 5:)er 55f) thbs'fiLJb bra .h.\ 63 ”WMJMWQW