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ABSTRACT

REGRESSION ANALYSIS WITH SECOND-ORDER

AUTOREGRESSIVE DISTURBANCES

BY

Peter J. Schmidt

Autocorrelation is present in a regression

equation when the unobservable random disturbances are

not mutually independent over time. In the presence of

autocorrelation, ordinary least squares will lead to

inefficient estimators of the regression coefficients

and to inconsistent estimators of their variances.

Econometricians have therefore developed testing proce-

dures to test for autocorrelation, and estimation pro-

cedures to alleviate the problems which it causes when

it is present. These procedures must of necessity make

some assumption about what types of autocorrelation

might be present. In particular, it has usually been

assumed that the disturbances follow a first-order auto-

regressive scheme.

This study considers autocorrelation in the more

general form of a second-order autoregressive scheme.

The usual testing and estimation procedures are generalized



Peter J. Schmidt

to this case. Finally, the new procedures are compared

to the original procedures in terms of their performance

in the presence of various types of autocorrelation.

The results obtained indicate that these generalized

testing and estimation procedures may be useful, at least

when one does not have strong a priori reasons for

believing the autocorrelation in the sample to be of

first-order form.
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CHAPTER I

INTRODUCTION

1.1 Statement of the Problem1

Consider the linear regression model

yi = lei1 + Bzxiz + ... + BKXiK + ui' l = 1,2,...IN;

(1.1)

where each Bj is a parameter to be estimated; Xi' is the

ith observation on the jth independent variable (regressor);

yi is the ith observation on the dependent variable in the

regression; and ui is a random disturbance. This model

can be rewritten in matrix form:

y = XB + u; (1.2)

where y, B and u are vectors and X is a matrix, defined by

   

Y1 X11 X12 '°° XlK U1 81

y x x ... x u 8
y = 2 x = 21 22 2K u = 2 B = 2 (1.3)

yN le xN2 "' XNK uN BK     

 

This section closely follows [17], Section 5.4.



This model is said to satisfy the full ideal conditions
 

(FIC)2 if u is stochastically independent of X, if

E(u) = 0,3 if X has rank K i N, and if E(uu') = OZI

(where I is the N-dimensional identity matrix and 02 is a

parameter to be estimated).

On the other hand, autocorrelation is said to be
 

present when Cov(uiuj) # O for some i # j. That is, the

disturbances are said to be autocorrelated if E(uu') = 020,

where 0 is a non-diagonal positive semi-definite matrix.

Autocorrelation is typically considered in the context of

time-series analysis; it is then the case in which the

disturbances are correlated over time. This study will be

concerned with cases in which the non—diagonality of 0 is

the only violation of the PIC; that is, E(u) = 0 and u

is distributed independently of X, but 0 has non-zero

terms off the diagonal.

The ordinary least squares (OLS) estimator of B
 

is defined by

l
E: (x'xf X'y (1.4)

. . 2 .

and an assoc1ated estimator of o is

l .—

52 = X—¥%, where M = I-X(X'X) lN x'. (1.5)

 

2This terminology is due to [6].

3The symbol 0 will be used to denote an appro-

priately dimensioned matrix or vector of zeroes.
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The covariance matrix of 8 under the PIC is equal to

l 2

02(X'X)- , and can be estimated by replacing 02 by 5 .

Now, it is well known that, under the FIC, 8 is best

linear unbiased, consistent, and also asymptotically

efficient if the disturbances are Normally distributed;

52 is unbiased, consistent, and also asymptotically

efficient if the disturbances are Normal. In fact, these

desirable properties of the OLS estimators under the PIC

constitute the chief rationale for the use of the OLS

estimation procedure. Unfortunately, however, these

properties do not hold if the disturbances are autocor-

related. In this case the OLS estimator 8 is still

unbiased and consistent, but it is in general no longer

best linear unbiased or asymptotically efficient. The

estimator 52 is in general biased and inconsistent.

Furthermore, the covariance matrix of 8 is no longer

equal to 02()UX)-l.

It is equally well known that these difficulties

could be avoided through the application of generalized
 

least squares (GLS) if the disturbance term covariance
 

matrix 0 were known. With 0 known, the GLS estimator of

B is

l (1.6)
lX'Q- y.R = (x'n'lx)'

while 02 is estimated by



' 'k _ _

62 = XN¥KXV wherebd* = I—X(X'Q 1X)
1 -l
X'Q (1.7)

The covariance matrix of S is 02(X'0-1X)-1. It is also

sometimes useful to note that since 0 is by assumption

positive semi-definite, 0-1 is also positive semi-definite,

so that there must exist a (not necessarily unique) non-

singular matrix V such that

Q = V'V (1.8)

It should then be clear that if u has covariance matrix

020, Vu will have covariance matrix GZI. Hence if the

regression equation is rewritten

Vy = VXB + u (1.9)

the disturbances now satisfy the FIC, so that the OLS

regression of Vy on VX is appropriate. Indeed, the OLS

regression of Vy on VX is algebraically identical to the

GLS procedure defined above.

The point of using GLS is of course that the GLS

estimators (with 0 known) have the same optimal properties

as do the OLS estimators under the PIC. That is, 8 is

best linear unbiased, consistent, and asymptotically

efficient; 32 is unbiased, consistent, and asymptotically

efficient. It should therefore be clear that autocorrela-

tion is really a problem only in that Q is generally not



known. With 0 unknown, the above GLS procedure cannot be

applied, at least not directly, and the question of what

to do when 0 is unknown (but suspected to be non-diagonal)

is not a trivial one. It is this question to which the

rest of this study will be addressed.

1.2 Types of Autocorrelation
 

When 0 is unknown, an obvious procedure is to find

a consistent estimate of it, and then to use GLS with the

estimate 0 replacing the (unknown) true covariance matrix

Q. The statistical justification for this procedure is

the well-known fact that if GLS is applied with any

consistent estimator 0 used in place of 0, the resulting
 

estimators 8 and 62 will be consistent and asymptotically

efficient.4

Unfortunately, however, it is in general not

possible to estimate 0 consistently. After all, 0 has

%N(N-l) distinct elements, and one can hardly hOpe to

estimate them all from a sample of N observations. It

should therefore be clear that one can hope to proceed

only by putting fairly severe restrictions on 0.

Essentially, what must be done is to make 0 depend on

some fixed number of parameters that does not depend on

the sample size. These parameters can then (hOpefully)

 

4This theorem was proved for a special case in

[52]. However, it holds whenever X is fully independent

of u. For a full discussion see [36].



be consistently estimated, 0 can be constructed, and

GLS can be applied.

In particular, the procedure which has usually

been used is to assume that the disturbances follow a

first-order Markov process:

11- = u. + o i = —m 0.0 N.

1 p1 i-l ei' ’ ’ ’

where —l < pl < l, E(ei) = 0, E(Eiui-s)

_ . . 2 :
E(eiej) — 0 for i # j, and o - Var(ei)

(1.10)

0 for s > 0,

VarIuj)(1 - 012)

E ou2(1 - p12) for all i and j. (This is often referred

to as a first—order autocorrelation scheme.) Then it is

readily verified that Cov(uiuj) = on2 plll_jl. Hence 0

is of the form:

 

N-1

1 01 pl

0 = p l . . pN—Z l

1 1 2

. . l"pi

  

Direct multiplication will verify that 0-1

the tridiagonal matrix

(1.11)

is given by



l -01 O 000 O 0

2
"pl 1+0]. "’01 on. O 0

0 -pl l+p12 ... o 0

-1 . . . . .
n = . . . . (1.12)

o o o .. l+p 2 —p
1 1

O 0 0 .. -pl 1  
As noted in the last section, 9—1 can be decomposed as

-l

  

0 = V'V. V is in this case given by:5

a 0 0 .. 0 0

-pl 1 0 ... 0 0

21/2
V = O -p. 1 ... O O , where a = (l-pl ) .

0 0 0 ... -pl 1 (1.13)

One last fact to note is that the determinant of 0-1 is

equal to a2 = 1-012.

It is clear that in this case 0 depends on only

one parameter, pl. Given a consistent estimator 51, 0

can be formed and GLS can be applied. If the disturbances

are in fact generated by a first—order Markov process, 0

will be a consistent estimator of Q, and the resulting

GLS estimators will thus be asymptotically efficient.

 

5The first explicit statement of 0_1 and its

decomposition is given in [40].



In general, however, there is no reason to suppose

that a first—order scheme is appropriate. First-order

autocorrelation is generally only an approximation to the

(unknown) type of autocorrelation in the sample, and

it is frequently assumed because it is a particularly

simple way to make estimation possible. Iowever, while

it is true that the form of 0 must be restricted to make

it estimable, it seems rather drastic to make 0 depend

on only one parameter. After all, a more general type

of autocorrelation scheme might provide a reasonable

approximation to more different types of autocorrelation,

and this would seem desirable when 0 is not known a

priori to be of any particular form.

This study will be particularly concerned with

the obvious generalization of the usual first-order pro-

cedures to the case of a second—order autocorrelation

scheme:

ui = plui—l + p2ui_2 + Ei’ (1.14)

where loll + I02] < l and the same assumptions about 8i

are made as in the first-order case, except that here

Var(ui) is equal to



2 2

l - pl - p2 - 201 pz/(l - 92)

 

02(1 - 02)

== 1
l - - 2 - 2 _ 2 + 3 (1.3.5)

D2 D1 D291 02 p2

Then the following facts are readily verified:

E(uu )=020/(l-p) (116)
i i-l u 1 2 ’

E(uu )=02[o +02/(l-o)] (117)
i i-2 u 2 1 2 '

E(uiul s) = plE(ui-1ui-s) + sz‘ui-zui-s)'

s > 2. (1.18)

0 can thus be written out, though this becomes rather

tedious since the terms become horrendous as one moves

away from the diagonal. The useful expression in any

case in 0’1, which is given by

1 -01 -02 0 0 0 0

-o 1+0 2 o (o -1) -o 0 o o
l l l 2 2 "‘

-p o (p -1) 1+0 2+9 2 p (o -1) o o o
2 1 2 1 2 1 2

.-1 = _ _ 2 2
fl 0 92 01(02 1) l+pl +02 ... 0 0 0 (1.19)

O O 0 0 1+p 2+9 2 p (p -l) -o

"' l 2 l 2 2

2
0 O 0 O ... pl(pz-l) 1+0l -01
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Note that this is a band diagonal matrix, with five non-

zero bands. One can again decompose 0-1 as V'V, where in

this case V is given by

  

a O O 0 . . 0 O 0

b c 0 0 ... 0 0 0

-9 -0 1 o o o 0

V: 2 1 (1.20)

0 -p2 -pl 1 .. O 0 0

o o o 0 ... -p2 -pl 1

and where

a=[l-*2-02(l+p)/(l-p)]l/2
V2 1 2 2

1

_ _ _ a
b — pl [(1 + 02)/(l 02)] (1.21)

»

c= (l - 022)2

It is also clear

a2C2 = 1 _ pl2

Finally,

considering this

that the determinant of Q-l is equal to

2 2 2 2 4

202 - 201 02 — pl 02 + 02 0

it should be repeated that the reason for

second-order scheme is not that there is

necessarily any a priori reason for believing it to be

common in actual data. The point is simply that the

assumption of first-order autocorrelation may be unduly

restrictive.



CHAPTER II

ESTIMATION IN A LINEAR MODEL

2.1 Introduction
 

Consider the linear model defined by (1.1). Then

it is clear, under the assumption of first-order auto-

correlation, that GLS can be applied to get asymptotically

efficient estimates if one can obtain a consistent

estimator 61 with which to construct 0. Several methods

of getting a consistent estimator 51 have been proposed

in the literature. One method, suggested by Durbin,l

is to use for 31 the OLS estimator of the coefficient of

y_l in the transformed equation

+8 +...+BX

Y1 = p1Yi—1 1x1,1 ' Blplxi-1,1 K i,K

BKplxi—1,K + (ui - plui-l)’ i = 2,3,...,N

(2.1)

This estimator is consistent. Hildreth and Lu2 have

suggested a modification of this procedure in which (2.1)

is estimated subject to the constraints that

 

1[10] and [11].

2[241.

ll
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/\ A

-ijl = -8 pl, j = 1,...,K. (2.2)

Clearly this is a non-linear procedure. The estimators

it yields are in fact the maximum likelihood estimators,

conditional on yl. This procedure gives a consistent

and asymptotically efficient estimate of pl. Finally,

an estimator which will be referred to as the C-0

estimator (after Cochrane and Orcutt3) is the following:

N~~

A g ui i-l

pl = 'EriT:;-— (2.3)

the fii being the OLS residuals from the regression of y

on X. This estimator is consistent.

As noted, if the disturbances do in fact follow

a first-order scheme, each of these estimators is con-

sistent. Hence in this case GLS based on any of the 61

above will yield asyptotically efficient results.

It should also be noted that in actual econometric

practice the usual procedure in applying GLS is not to

actually form 0 or 0-1, but rather to use the equivalent

procedure of forming V and applying OLS to the transformed

3Actually, the estimator defined in their article

differs from the one defined above by a factor of N/(N-l).
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equation Vy = VXB + Vu. Notice that disregarding the

first row of V, this amounts to the following regression:

(Y1 ' piYi-i’ = B1(Xi,1 ' plXi-l,l) T °"

+ BK(Xi,K ‘ plxi-1,K) + (“i ’ plui-l)’

i = 2,3,...,N. (2.4)

Disregarding the first row of V is thus equivalent to

discarding the first observation, and this has commonly

been done. This common "approximation" to the actual GLS

procedure (which would include the first observation with

a "weight" of (l - 512)%)jrsclearly asymptotically

equivalent to GLS.

2.2 Generalization to the

Second—Order Case

 

 

In the case of second-order autocorrelation it is

of course necessary to estimate both p1 and oz in order to

form 0. Fortunately, consistent estimators pl and oz can

be obtained by straightforward generalizations of the

procedures of the last section. Durbin's method can be

generalized to this case4 by applying OLS to the trans-

formed equation:

 

4In fact, it was presented in general qth order

form (q any integer) in [11].
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Y1 7 p1Yi-i + p2Yi-2 + B1xi,i 7 BlplXi-l,l 7 B102X1-2,1 +°°'

+ BKxi,K 7 BKplXi-1,K 7 BK°2X1-2,K

+ (ui - plui-l - QZui—Z)’ i = 3,4,...,N. (2.5)

The maximum likelihood procedure (conditional on yl and

y2) is to estimate the above equation subject to the

constraints

B/\ ’8“ 1 l 2 (2 6)- 0 = '- o . = .0. K; = o o -Jpq qu' J , r q r

The C-O method can be generalized in at least two ways.

The first would be to estimate pl and oz by the OLS

regression of E. on u. and fi. . A somewhat more
1 1-1 i-2

informative way is to note that if one defines

N

* g uiui—l

pl = _Er______ (2.7)

2 {1.2
1 i

N

* gul i‘2

pl = —N—_- , (208)

z {1.2
1 i

* * COV(uiui-l)

then p1 and p2 are consistent estimators of 2

0u

Cov(uiui_2)

and 2 respectively; from (1.16) and (1.17) it

Cu
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is clear that these expressions are not in general equal

to p1 and oz. However, consistent estimators can be

derived by setting p: and p; equal to their probability

limits given by (1.16) and (1.17) and then solving for

pl and p2. That is, solve the following equations for

p1 and p2:

* A A

01 — pl/(l - oz) (2.9)

*—" “2 1 A 210

The solution is

A * *2 *2

A * A

Once again the estimators 61 and 62 are con-

sistent. Hence if the disturbances do follow a second-

order autocorrelation scheme, GLS (using 0 constructed

from 61 and 52) will yield asymptotically efficient

estimates of B and 02.

Finally, it is once again apt to be computationally

simpler to form V (rather than 0 or 0_l) and to apply OLS

to the transformed equation Vy = VXB+-Vu. Disregarding

the first two rows of V, this amounts to the following:



l6

(Y1 7 p1Yi-1 7 pzyi-z) = BlIXi,1 ' 01Xi_1,l - 92X1-2,1) +...

+ BK(Xi,K 7 p1xi—1,K 7 OZXi-2,K)

7'" (ui — 01111-1 - 0211i-2), l = 3,4,...,N.

(2.13)

Clearly this is asymptotically equivalent to the actual

GLS procedure, which would include the first and second

observations with appropriate weights given by the

elements in the first two rows of V.

2.3 Pronerties of the GLS Estimators
 

Let us denote by GLSl the GLS procedure which

assumes first-order autocorrelation. That is, GLSl means

GLS with 0 formed from 61, with 61 calculated by any of

the methods of section 2.1. Similarly, let GLSZ be the

GLS procedure using 0 formed from 61 and 62, with 61 and

62 calculated by any of the methods of section 2.2. In

this section we will compare the efficiency of OLS, GLSl,

and GLSZ under various specifications of the form of 0.

Consider first the asymptotic properties of the

various estimation procedures. These asymptotic compari-

sons can be easily made since, as noted in section 1.2,

estimation based on a consistent estimator of 0 will yield

asymptotically efficient results, while estimation based
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on an inconsistent estimator of 0 will in general give

asymptotically inefficient estimates of B and inconsistent

estimates of oz.

Suppose first that the disturbances satisfy the

full ideal conditions (FIC). Clearly OLS will be

asymptotically efficient. But it is also clear that the

PIC are just the special case of a first-order auto-

correlation scheme corresponding to p1 = 0, so that 61

estimated by any method of section 2.1 will be a consistent

estimator of pl = 0. Hence 0 formed from 61 will be a

consistent estimator of 0, and GLSl will also be

asymptotically efficient. Similarly, 61 and 62 estimated

by any of the methods of section 2.2 will both be con-

sistent estimators of zero, so that GLSZ will also give

asymptotically efficient results. In other words, under

the PIC, OLS, GLSl and GLSZ all give equally asymptotically

efficient results.

Suppose next that the disturbances follow a first-

order scheme with 91 # 0. Then by the same type of

reasoning, it is clear that OLS yields asymptotically

inefficient results, while GLSl and GLSZ are both

asymptotically efficient. Finally, if the disturbances

follow a second-order scheme with p2 # 0, only GLSZ will

be asymptotically efficient; OLS and GLSl will both yield

asymptotically inefficient results.
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This can be summarized by the general statement

that estimation based on the assumption of the "correct"

(true) order or on the assumption of "too high" an order

of autocorrelation (i.e., an order of autocorrelation

greater than the true order) will lead to asymptotically

efficient estimators 8 and 82. On the other hand,

estimation based on the assumption of "too low" an order

of autocorrelation will in general yield asymptotically

inefficient estimates of B and inconsistent estimates of

62. In other words, in infinite samples one should

always prefer a higher order of autocorrelation, since

this will minimize the chance of getting inefficient

estimates.5

Of course, in small samples none of this need be

true. In fact, there are almost no analytic results on

the small sample properties of GLS estimators with an

estimated covariance matrix; questions of this sort are

of necessity usually investigated by Monte Carlo methods.6

The next section will describe a Monte Carlo experiment

which attempts to examine the small sample prOperties of

OLS, GLSl and GLSZ under various specifications of 0. In

particular, the question which we attempt to answer

 

5This discussion has ignored differences in com-

putational costs.

6For an example of an experiment comparing the

small-sample properties of OLS and GLSl, see [20].
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concerns the size of the loss that results in small

samples (if in fact any loss does result) from assuming

too low or too high an order of autocorrelation. The

criteria for choosing the superior estimation procedure

will be the variance of the estimator of B and the bias

of the estimator of Ou2'7

2.4 The Experiment
 

The eXperiment was conducted in the context of the

simple regression model:

yi = a + BXi + ui, (2.14)

with a, B and on2 all being taken equal to one. The

generation of the values of X and u is described below;

given X and u, observations on y were created and (2.14)

was estimated in each of three ways:

A. OLS

B. GLSl, 61 estimated by the C—0 method given

by (2.3) of section 2.1.

C. GLSZ, 61 and 62 estimated by the C-O method

given by (2.7) - (2.12) of section 2.2.8

 

7The bias of 8 2 is considered rather than its

variance or mean squarg error because one is typically not

interested in 6u2 per se, but only to make confidence

statements, tests, etcT— It is therefore most important

that 6 2 not be strongly biased in one direction or the

other.

8This perhaps deserves a comment. Asymptotically

it makes no difference how the p's are estimated, as long

as the estimators used are consistent. However, in small
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In all cases the GLS procedures used were not actually the

true GLS procedures, but rather the common approximation

to GLS of applying OLS to the transformed equations (2.4)

and (2.13), as described above.9 This procedure was

repeated for 100 independent trials under each of a

variety of specifications, and the results of the 100

trials were used to calculate the variance of 8 and the

mean of ouz.

To create observations on X, X1 was taken to be

a N(0,l) deviate from a listing of random deviates pre-

pared by the Rand Corporation.10 The remaining Xi were

generated as follows:

2 h .
Xi = TXi—l + (1.1: ) 5i, l = 2,3,...,N; (2.15)

where 5i is a N(0,1)-deviate independent of X1 and of

previous 6's. T is thus the correlation between successive

 

samples different ways of estimating the 0's may lead

to considerably different results. This is not investi-

gated here because the purpose of this experiment is to

compare OLS and GLS under various types of autocorrela-

tion, and to introduce different versions of GLS based

on different ways of computing the p's would tend to

confuse the issue.

9As just noted, this makes no difference

asymptotically. The approximate procedure is used here

because it is typically used in econometric practice.

1"[42].
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Xi' Two values of I were used, 0.2 and 0.8, since it is

well known that the properties of the estimators may

depend on the correlation between the Xi. Hence this

correlation was held constant at each of the two levels.

Two values of N (sample size) were considered, 20 and 100.

The results for sample size 20 are designed to show small

sample properties; sample size 100 was included so as to

get an idea of the results with a somewhat larger sample,

and to see if the known asymptotic properties of the

estimators begin to emerge.

Observations on u were obtained by reading the

N(0,l)-deviates £1, €2""'§N' independent of each other

and of the X's, from the Rand listing, and applying

the suitable transformation (to be described) for each

specification. Given u, y could be constructed, and the

various estimation procedures could be applied. First-

and second-order autocorrelation schemes were considered,

with pl and p2 taking on all possible values among 0.0,

0.2, 0.4, 0.6 and 0.8, subject to the restriction that

pl + 02 < 1.

To simulate the null hypothesis of no autocor-

relation, the independent N(0,l)-deviates 5i were simply

left untransformed; that is, 111 = ii for all i. To

simulate first order autocorrelation with parameter pl,

the deviates 5i were transformed as follows:



22

1/

2)2 8-, i=2,3,...,N, (2.16)

u' = p1111-1 + (1791 1

where the factor (1-plz)l/2 is included to ensure that the

ui will have a variance of l for all i.

Finally, second order autocorrelation was

simulated by applying the following transformation to the

so:

1

u1 = 6l

u = p u + (l-p 2)2 e
2 1 l l 2

;,

uJ pluj-l + p2uj_2 + aj2 ej, j = 3,4,...,N (2.17)

where

-3

2 2 2 3 r
aj = l - pl - p2 - 2pl pz 2 0 p2. (2.18)

r:

Again the aj are taken so as to ensure that the ui will

. 11

have constant variance.

2.5 Results
 

Table 2.1 gives the variance of the estimates of 8

under the various specifications of the model, and Table 2.2

llNote two things. First, it is ouz which is being

held constant rather than 02. Second, this scheme is not

precisely the same as that defined in section 1.2, as it

does not start at -w. However, all the covariances con-

verge to those of section 1.2 as i increases, and even with

N=20 the difference should be negligible.
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TABLE 2.l.--Variance of 8.

 

  

 

N = 20 N = 100

01 D 2

OLS GLSl GLSZ OLS GLSl GLSZ

0.0 0.0 0.0636* 0.0744 0.0867 0.0105* 0.0113 0.0114

0.2 0 0 0.0711* 0.0787 0.0916 0.0108 0.0108 0.0107*

0.4 0.0 0.0777 0.0720* 0.0820 0.0112 0.0084 0.0083*

0.6 0.0 0.0815 0.0545* 0.0597 0.0117 0.0053 0.0052*

0.8 0.0 0.0712 0.0259* 0.0364 0.0118 0.0023* 0.0023

0.0 0.2 0.0626* 0.0728 0.0817 0.0105 0.0115 0.0102*

T = 0 2 0.0 0.4 0.0610* 0.0710 0.0660 0.0101 0.0111 0.0078*

' 0.0 0.6 0.0580 0.0644 0.0432* 0.0095 0.0103 0.0050*

0.0 0.8 0.0490 0.0460 0.0210* 0.0090 0.0088 0.0023*

0.2 0.2 0.0708* 0.0756 0.0843 0.0107 0.0105 0.0093*

0.4 0.2 0.0771 0.0644* 0.0692 0.0114 0.0074 0.0067*

0.6 0.2 0.0729 0.0373* 0.0381 0.0125 0.0039 0.0036*

0.2 0.4 0.0692 0.0706 0.0658* 0.0108 0.0100 0.0069*

0.4 0.4 0.0722 0.0511 0.0462* 0.0128 0.0065 0.0046*

0.2 0.6 0.0616 0.0580 0.0393* 0.0112 0.0092 0.0042*

0.0 0.0909* 0.1034 0.1179 0.0113* 0.0120 0.0125

0.2 0.1141* 0.1278 0.1450 0.0146* 0.0160 0.0166

0.4 0.1401* 0.1430 0.1614 0.0191 0.0190* 0.0196

0.6 0.1667 0.1359* 0.1553 0.0257 0.0179* 0.0182

0.8 0.1806 0.1011* 0.1187 0.0355 0.0103* 0.0105

0.0 0.2 0.0954* 0.1064 0.1237 0.0136* 0.0143 0.0146

0.0 0.4 0.0983* 0.1075 0.1150 0.0159 0.0166 0.0147*

T = 0.8 0.0 0.6 0.0993 0.1071 0.0929* 0.0181 0.0187 0.0119*

0.0 0.8 0.0891 0.0951 0.0612* 0.0196 0.0201 0.0066*

0.2 0.2 0.1237* 0.1306 0.1482 0.0185* 0.0191 0.0188

0.4 0.2 0.1556 0.1398* 0.1566 0.0261 0.0207 0.0198*

0.6 0.2 0.1818 0.1230* 0.1402 0.0393 0.0146 0.0141*

0.2 0.4 0.1345 0.1329* 0.1372 0.0243 0.0223 0.0176*

0.4 0.4 0.1756 0.1401* 0.1471 0.0414 0.0210 0.0158*

0.2 0.6 0.1412 0.1315 0.1166* 0.0347 0.0248 0.0128*

 



TABLE 2.2.--Mean of an .
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N = 20 N = 100

pl p2 OLS GLSl GLSZ OLS GLSl GLSZ

0.0 0.0 1.0086 1.0015* 0.9578 0.9931* 0.9919 0.9891

0.2 0.0 0.9760* 0.9648 0.9176 0.9886* 0.9860 0.9819

0.4 0.0 0.9236* 0.8969 0.8311 0.9802* 0.9726 0.9631

0.6 0.0 0.8354* 0.7744 0.6835 0.9607* 0.9403 0.9186

0.8 0.0 0.6515* 0.5309 0.4456 0.8982* 0.8436 0.7916

0.0 0.2 0.9759* 0.9629 0.9284 0.9898* 0.9882 0.9826

T _ 0.0 0.4 0.9303* 0.9075 0.8577 0.9814* 0.9792 0.9615

- 0.0 0.6 0.8566* 0.8174 0.7320 0.9608* 0.9576 0.9123

0.0 0.8 0.7181* 0.6493 0.4838 0.9046* 0.8990 0.7828

0.2 0.2 0.9268* 0.9090 0.8748 0.9856* 0.9819 0.9703

0.4 0.2 0.8534* 0.8118 0.7641 0.9906 0.9774 0.9453

0.6 0.2 0.7075* 0.6142 0.5538 0.0101* 0.9666 0.8810

0.2 0.4 0.8616* 0.8333 0.7859 0.9942* 0.9879 0.9428

0.4 0.4 0.7654* 0.6998 0.6419 1.1094 1.0798* 0.9091

0.2 0.6 0.7457* 0.7035 0.6244 1.0398 1.0264* 0.8808

0.0 0.0 1.0220 1.0146* 0.9688 0.9940* 0.9927 0.9897

0.2 0.0 0.9820* 0.9693 0.9218 0.9869* 0.9845 0.9802

0.4 0.0 0.9181* 0.8899 0.8265 0.9750* 0.9685 0.9587

0.6 0.0 0.8115* 0.7545 0.6726 0.9502* 0.9333 0.9109

0.8 0.0 0.5999* 0.5022 0.4230 0.8790* 0.8313 0.7783

0.0 0.2 0.9836* 0.9706 0.9317 0.9886* 0.9871 0.9813

T _ 0.0 0.4 0.9315* 0.9101 0.8532 0.9777* 0.9759 0.9583

_ 0.0 0.6 0.8508* 0.8142 0.7142 0.9543* 0.9518 0.9070

0.0 0.8 0.7080* 0.6394 0.4777 0.8961* 0.8919 0.7771

0.2 0.2 0.9231* 0.9044 0.8671 0.9804* 0.9772 0.9655

0.4 0.2 0.8311* 0.7918 0.7478 0.9794* 0.9687 0.9370

0.6 0.2 0.6564* 0.5813 0.5291 0.9883* 0.9506 0.8703

0.2 0.4 0.8444* 0.8180 0.7661 0.9839* 0.9790 0.9347

0.4 0.4 0.7181* 0.6662 0.6147 1.0862 1.0614* 0.8967

0.2 0.6 0.7117* 0.6777 0.6023 1.0207 1.0104* 0.8688
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gives the mean of the estimates of ouz. For each speci-

fication of the model an asterisk (*) marks the estimated

minimum variance estimator of B and the estimated least

biased estimator of ouz.

Consider first the null hypothesis of no auto-

correlation; that is, the case pl = p2 = O. In terms of

the estimates of B, OLS is clearly best, and GLSl is

better than GLSZ. The differences are considerably larger

at sample size 20 than at sample size 100, as the

asymptotic equivalence of these estimators under the PIC

begins to show at the larger sample size. In terms of

the estimates of on2 there is little difference between

the various procedures, though GLSZ seems to give somewhat

inferior estimates when N = 20. Finally, the value of I

does not seem to make much difference in this case.

The next Specification considered is first-order

autocorrelation. Consider first the efficiency of

estimation of B. GLSl clearly dominates GLSZ at sample

size 20, though the difference is not terribly great; at

sample size 100 they appear to be roughly equivalent,

clearly reflecting their asymptotic equivalence in this

case. Both GLSl and GLSZ gave noticeable gains in

efficiency over OLS, except for "small" values of 01. The

minimum value of pl necessary to result in a gain in

efficiency over OLS was smaller for GLSl than for GLSZ,

and for either GLSl or GLSZ it was smaller with N = 100
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than with N = 20. Also, the efficiency of either GLSl or

GLSZ compared to OLS was greater when r = 0.2 than when

T = 0.8.12 The results were fairly favorable to the use

of GLS in small samples in that QLof roughly 0.4 sufficed

to make GLSl more efficient than OLS, even with a sample

size of only 20, while the "break-even point" for GLSZ

was roughly 0.6.13

In terms of the bias of the estimates of ouz, it

is clear from Table 2 that OLS was markedly superior to

either GLS procedure. It is somewhat troubling that

this was true even with N = 100. It was true that the

OLS estimator of ouz had the expected downward bias, but

it turned out to be actually less biased than the GLS

estimators. In fact, a glance at the rest of Table 2 will

quickly reveal that this was also true for almost all the

other specifications considered.

With respect to these last results, three points

should be made. The first is that they could not hold

asymptotically; apparently even sample size 100 is not

large enough to reveal the asymptotic result in this case.

The second point is that different results might have been

obtained if 62 rather than 6u2 had been considered. The

 

12This should be expected, since it is well known

that the C-0 estimator 61 is more severely biased the

larger the value of I. See, for example, the results in

[20].

l3Asymptotically, of course, either GLSl or GLSZ

would be more efficient than OLS for any 01 # 0, no

matter how small.
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third is that only the bias has been considered here; it

is quite conceivable that the variance or even the mean

square error of the GLS estimators might be smaller than

that of the OLS estimator. We will return to these

last two points in section 5 of the next chapter; for

now the above results will simply be taken as they are.

The third specification considered was second-

order autocorrelation with pl = 0, a special case of the

general second-order scheme. Considering the variance

of the estimators of B, GLSZ is more efficient than OLS or

GLSl except for "small" values of 02, a small value of 02

being 0.4 or less at sample size 20 and 0.2 or less at

sample size 100. As before, the relative efficiency of

the most efficient estimator is greater with the smaller

value of T. Comparisons of OLS and GLSl shows OLS to be

generally superior, with very few exceptions. The dif-

ference was usually quite small, however. The superiority

of OLS over GLSl was slightly more noticeable in the

samples of size 20; this is reasonable since OLS and

GLSl are asymptotically equivalent in this case.14

The last specification considered is second-order

autocorrelation with both pl and 02 non-zero. Consider

the estimates of B. GLSZ was typically most efficient,

as would be expected, though GLSl does quite well when

 

14This is true since pl = 0. Thus plim 61 = 01/
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T = 0.8. With N = 100 GLSZ was always more efficient

than GLSl, and GLSZ was more efficient than OLS in all

cases except one. With sample size 20 GLSZ was more

efficient than OLS in all cases except p1 = 02 = 0.2,

and it was also more efficient than GLSl except when

02 = 0.2 and in a few cases when 02 = 0.4 and T = 0.8.

Again it appears that the relative efficiency of the most

efficient estimator is somewhat less with the larger

value of T. Finally, GLSl is typically more efficient

than OLS, especially when pl is large. This is especially

noticeable at sample size 100.

2.6 Summary
 

One implication of the last section is that GLS

unfortunately does not seem to give less biased estimates

of on2 than OLS, even for fairly large sample sizes. As

noted earlier, this point will be considered again in

section 5 of the next chapter.

In terms of the variance of the estimates of 8,

however, GLS performed quite well. This was true even

for samples as small as 20. In particular, the loss of

efficiency in assuming too high an order of autocorrela-

tion was fairly small, while the penalty for assuming

too low an order was in many cases quite large. These

are of course essentially the asymptotic results, and they

showed through quite well in small samples.
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One implication of these results is that GLSZ might

seem to be a useful procedure, at least if one is primarily

interested in efficient estimation of B. Asymptotically,

there is no loss in using it unnecessarily, and one will

gain by using it if autocorrelation is of second-order

form. Even in small samples the gains from its use may be

substantial, and the loss in using it unnecessarily (for

example, if autocorrelation were of first-order form) is

typically small. This makes the currently almost universal

use of GLSl in cases of suspected autocorrelation seem

perhaps unjustified. After all, there is frequently no

particular reason to suppose that first-order autocorrela-

tion is typically present in real data. The assumption of

first-order autocorrelation is generally just a simplifying

assumption made in order to make estimation possible.

Second-order autocorrelation is a less restrictive

assumption, and a second-order scheme ought to provide a

reasonable approximation to more different types of auto-

correlation than will a first-order scheme. Hence when

autocorrelation is not known a priori to be of first-

order form, GLSZ might be useful.

Finally, it cannot be overemphasized that the

small-sample results obtained here are specific to the

particular model used. Limited evidence is better than

none, however, and these results may at least be useful

in pointing the way for further analytical work in this

area 0



CHAPTER III

ESTIMATION IN A DISTRIBUTED LAG MODEL

3.1 Introduction
 

In the last chapter we have introduced methods of

estimation in a linear model in the context of second-

order autocorrelation of the disturbances, and we

analyzed the properties of the resulting estimators. In

this chapter we will extend these results to the case of

a common type of non-linear model, the distributed lag

model.

The simplest distributed lag model is a model of

the form

yi = 82 xi_j )3 + ui, i = l,2,...,N (3.1)

j—O

where ui, i = 1,2,...,N, is an unobserved random dis—

turbance; Xi is either a fixed (non-stochastic) number

or a random variable independent of the disturbances, with

observed values Xi,...,X B is a parameter to be esti-N;

mated; A is a parameter to estimated, 0 i A i l; and yi

is the observed dependent variable in the model. Clearly

the model in this form is not amenable to estimation; it

30
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is usually rewritten in one of two ways. Lagging (3.1)

by one observation, multiplying by l and subtracting

yields

yi = BXi + Ayi-l + (ui - Aui-l)’ i = 2,3,...,N (3.2)

This is the so~called "Koyck transformation."l Alter~

nately, defining

66 , i i-j.

”0 = 82 x_. 13; wi(1) = 2 x. 1 ' (3'3)

j=o 3 i=1 3

(3.1) can be rewritten as

_ i

yi — BWi(A) + n01 + ui. (3.4)

This transformation was suggested by Klein.2

The model as written in (3.2) has a certain amount

of attractiveness since it can apparently be estimated

directly. However, it has long been realized that

ordinary least squares applied to (3.2) will in general

yield inconsistent results, as the disturbance (ui - Aui-l)

is correlated with the regressor yi-l' Koyck3 suggested

a method for obtaining consistent estimates of B and l;

 

1[32].

2Appendix to [28].

3I321.



this method was reinterpreted by Klein4 in an errors in

the variables framework. Liviatan5 has also suggested a

method for obtaining consistent estimates. His procedure

is essentially an instrumental variable one, with xi—l

serving as the instrument for Yi-l'

Both the Koyck—Klein procedure and the Liviatan

procedure are fairly straightforward; their main dis-

advantage is that the resulting estimates are asymptotic"

ally inefficient. Assuming that the disturbances in (3.1)

are normally distributed and meet the classical condi—

tions (the FIC), asymptotically efficient estimates of

B and 1 can be obtained by maximum likelihood estimation.

Following Klein,6 (3.1) is rewritten as (3.4). Then

the log likelihood function is

L = lg log 20 — g log 02 - —£§

20

, i 2

H
M
Z

Now since the estimator of 02 turns out to be independert

of the estimators of 8 and A (as will be shown in the nex’

section), maximizing L is equivalent to minimizing

 

4[281.

5[341.

6Appendix to [28].
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L* [yill

H
M
Z

- 8wi(x) - noxilz (3.6)

with respect to B, A and n0. Clearly the resulting

normal equations will be highly non-linear. However, it

was noted by Dhrymes7 and by Zellner and Geisel8 that if

one knew A, one could form Wi(1) and Xi and calculate

the maximum likelihood estimates 8 and 00 by a simple

regression of yi on Wi(l) and Ai. When A is unknown, the

procedure is to "search" over the admissable range of A,

picking the value of A which minimizes the sum of squared

errors. The resulting values X, 8, and 30 are then the

maximum likelihood estimators; the maximum likelihood

estimator of 02 is the sum of squared errors divided by N.

It is well known that the estimators 8, I, and 32 are

consistent and asymptotically efficient; their asymptotic

covariance matrix is the inverse of the so-called

"information matrix," which will be written out in the

next section.‘ The estimator 00 is not consistent.

If the errors ui are autocorrelated, the procedure

outlined above must of course be modified somewhat. The

usual case considered in the literature is once again the

case in which the ui follow a first-order autocorrelation

scheme. This paper will treat the case of second-order

autocorrelation; the usual results for the first-order

case can be obtained by letting 02 = 0.

 

7181. 8[531.
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For convenience, define Z1(A)' = [W1(A) ... WN(A)],

22(1)' = [A 12 )3 ... 1”], 2(1) = [zl(1) 22(1)] and

Y' = (8 no). Then the log likelihood function is

L = 2% log 20 - 810g IOZQI- —£§ [y-Z(A)Y]'0-l [y-Z(A)Y].

20

(3.7)

Now letting Z*(A) = VZ(A) and y* = Vy (V defined as in

(1.15)), and recalling that V'V = 0-1, and defining Q =

2. -l _ 2 _ _ 2 _ 2 2 4
determinant of 0 — 1 pl 2p2 2pl p2 pl p2 + p2 ,

the log likelihood function can be rewritten as

log 20 - % log 02 +35log Q - l2[y*-Z*(MY]'

20

:E
2

 L:

Iy*-z*(1)y1. (3.8)

Given A, 01 and 02, it is clear that 9 can be

calculated by the least squares regression of y* on Z*(A);

call this estimator $(A,pl,pz). By searching over A and

choosing the A that minimizes the sum of squared errors,

one gets the maximum likelihood estimators of Y and A,

conditional on pl and p2; denote these by §(pl’p2)

andJRol,pz). Also 82(01’02) can be calculated as the

sum of squared errors divided by N. Now substitute

IIDIIOZ) and 82(91'92) for Y and 02 in (3.8) above to get
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_ _ N _ N .2
L(01.92) - 5 log 2“ 7 log 0 (01.02)

. N82(pl.02)

+ 8 log 0 - (3.9)

262(0 0 )
1' 2

which simplifies to

N N 2 —1 N
L(ol,02) = - 7 (log 26 + 1) - 7 16g [0 (pl,pz)Q / 1.

(3.10)

Finally, to calculate the maximum likelihood estimates

one then searches over 01 and 02 and selects those values

A A . . . "2 ‘l/N

01 and 92 that minimize o (pl,p2) Q .

Several comments are in order here. First, since

32(pl,p2) is itself determined by a search over A, what

is required is a three-dimensional search. That is,

given A, 01, and 02, y* and Z*(A) are formed and y* is

regressed<n1Z*(A). The maximum likelihood estimates are

obtained by choosing those values A, 31, and 82 that

/N
minimize the sum of squared errors divided by Q1 .

N
Secondly, since lim Ql/N = l, the division by Q1/ will

N+oo

not affect the results asymptotically. Hence asymptotically

the estimators obtained by merely minimizing the sum of

squared errors are equivalent to the maximum likelihood

estimators. Thirdly, it would clearly make no difference
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asymptotically if the first two rows of the transforma-

tion matrix V were eliminated.

Finally, this entire procedure is clearly a

straightforward generalization of the usual procedure

for the case of first order autocorrelation, which may

be found in Dhrymes9 or Zellner and Geisel.10

3.2 Asymptotic Properties of

the Estimators

 

 

This section will begin by showing that maximum

likelihood estimators have desirable asymptotic properties

in the case of normally distributed, second-order auto-

regressive disturbances. Ignoring the initial condi-

11
tions, the model can be written

y1 = BWi(A) + ui; ui = plui-l + DZui-Z + ei (3.11)

Now for the moment assume that pl and 02 are known. Then

the log likelihood function (conditional on yl and y2)

can be written in terms of the 6i as follows:

 

_-N _N 2_ 1 *_ * 2
L — —§-log 20 3 log 0 2 Z[yi BWi(A)] , (3.12)

C

9181.

10[531.

11

It is well known that ignoring the initial condi-

tions makes no difference asymptotically. This should be

intuitively clear since the contribution of the initial

value no = E(yo) becomes less and less important as N

increases.
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'k *

where yi = y and Wi(A) = Wi(A)
i 7 p1y1-1 7 p2Y1-2

- plWi_1(A) - 02Wi_2(A). But in this case, with pl and

p2 known, the above transformation has removed the auto-

correlation from the disturbance, so that the likelihood

function is written in terms of mutually independent

variables. If B, A, and 02 are now estimated by maximum

likelihood, the consistency and asymptotic efficiency

of the resulting estimates is thus clear. It is

instructive to write out the information matrix

2
3 L .

-E[§§;§§;] (where the 01 are the parameters to be esti

mated, namely 8, A, and 02), which is as follows:

  

1 * 2 l * A * A 0

(B) gg-ZWi(X) gj'ZWi( )Ri( )

(A 1 z * 1 * 1 —$ * 1 2 3 13) 37 Wi( )Ri( ) 02 XRiI ) 0 ( . I

(02) 0 0 N 4
/20

_ ._ i-2
where Ri(A) - xi-l + 2AXi_2 + ... + (i l)A X1, and

* o

Ri(A) = Ri(A) - lei(A) - szi_2(A). Notice that the

matrix is block diagonal, which shows that the estimator

of 02 is asymptotically independent of the estimators of

B and A, as previously claimed. The covariance matrix of

B and.Acan be found by inverting the upper left hand block.
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We now proceed to the case in which pl and 02 are

not known and must also be estimated by maximum likelihood.

The information matrix is in this case the following:

 

1 * 2 t i
(m zwwi .4

32' 1 I 02 [Wi(A)Ri(A) 0 0 0

l t t l *

( A X W . A . 2
) :7 1‘IKI“ 37zm4M 0 0 0

    

 

'7 f—. 0 (3.14)

0 o 92

l

. 2 2
(02) o 0 Mu 02 Nou 0

02 I-oz ‘32

w% 0 0 0 o 1%
Zo  

The matrix is again block diagonal, and the

blocks corresponding to B and A, and to oz, are exactly

as they were in the case in which 01 and 92 were known.

Hence the estimates of B, A, and 02 have the same

asymptotic variances as if pl and 02 were known, so that

the maximum likelihood estimators 8, A, and 32 are still

asymptotically efficient in the case where 01 and 02 are

unknown.

The fact that the maximum likelihood estimators

8, A, and 62 are asymptotically just as efficient as

they would be if 01 and 02 were known has important

implications for estimation. Consider first the case of

no autocorrelation of any order, and consider the follow-

ing three estimation procedures:
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A. Estimation based on the assumption of no

autocorrelation; i.e., p1 and 02 are set

a_priori to zero.

B. Estimation based on the assumption of first

order autocorrelation; i.e., p is set a

priori to zero but pl is estimgted. '—

C. Estimation based on the assumption of second

order autocorrelation; i.e., p1 and 02 are

both estimated.

(These clearly correspond to the procedures OLS, GLSl and

GLSZ in last chapter's linear model.) Then it is clear

from the discussion above that in terms of the asymptotic

efficiency of the estimates of B, A, and 02, all three

estimation procedures are identical. If the autocorrela-

tion in the sample were of first-order form, then pro-

cedure (A) would yield asymptotically inefficient

results, while procedures (B) and (C) would be equally

asymptotically efficient. On the other hand, if the

autocorrelation in the sample were second-order, then

procedures (A) and (B) would yield inefficient results,

while (C) would be asymptotically efficient. In other

words, there is no loss in asymptotic efficiency in

assuming a higher order of autocorrelation than is in

fact present. On the other hand, assuming a lower order

of autocorrelation than is in fact present leads to

asymptotically inefficient results. (Note the close

analogy to the asymptotic results of the last chapter.)

Finally, it should be noted that the asymptotic

efficiency of maximum likelihood estimation is purchased
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at a cost-~first, because of the large computational

burden, and, second, because of the possibility of

inefficiency if too low an order of autocorrelation is

specified. The second problem can be alleviated by

choosing a very high order of autocorrelation, but this

will only make the computational burden correspondingly

larger. There is, therefore, perhaps something to be

said for an estimation procedure such as Liviatan's,12

which is not only simple computationally but which also

yields results that are at least consistent regardless

fo the covariance matrix of the disturbances. Of course,

Liviatan's estimators are not as efficient as maximum

likelihood;13 if one's criterion for choosing an estimator

is asymptotic efficiency, then maximum likelihood cannot

be beaten.

3.3 Small Sample Properties of the

Maximum Likelihood Estimators

 

 

The conclusion of the last section is that from the

standpoint of asymptotic efficiency one should always

assume a more general type of autocorrelation (e.g.,

second-order rather than first-order); there is nothing

to lose by doing 50,14 and there is possibly much to gain.

 

12[341.

13For an evaluation of the difference in efficiency,

see [2].

4Unless one is concerned with computational costs.
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In small samples, however, this may not be true, if only

because one loses degrees of freedom by estimating

redundant p's. In other words, in small samples one must
 

presumably strike some sort of balance between the

possibility of assuming too low an order of autocorrela—

tion (and hence possibly getting badly biased and ineffi-

cient results) and the possibility of assuming too high

an order of autocorrelation (and hence possibly losing

efficiency). It would therefore be desirable to know how

large a loss there is in small sample efficiency when too

high an order of autocorrelation is specified, as well

as how bad the results are which one gets by assuming too

low an order of autocorrelation. Unfortunately, the

small sample prOperties of the estimators in a distributed

lag model have not proven amenable to analytical solution,

so that questions of this type must at present be investi-

gated by Monte Carlo methods. This section will describe

a Monte Carlo experiment which was performed in an attempt

to discover the small sample prOperties of maximum likeli-

hood estimators which assume no autocorrelation, first-

order autocorrelation, and second-order autocorrelation,

when the true type of autocorrelation in the sample is in

turn each of the three types above. Note that this is

essentially the same question that the experiment of the

last chapter attempted to answer for a linear model.
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The model considered was of the form of equation

(3.4). The values chosen for the parameters were 8 = l,

A = 0.5 and no = 0, so that the structure of the model was

yi wi(0.5) + ui, i = 1,...,N (3.16)

Three values of N were considered--20, 50, and 100.

The sequence Xl,...,X was in each case constructed by

N

reading independent N(0,l) deviates 51,...,€N off a

"random" number generator and then transforming them as

follows:

x1 = 51

2 .

Xi = TXi-l + /l - T 5i, i = 2,3,...,N (3.17)

Each Xi thus has variance one, and the correlation

between successive X's is T. Two values of r were used,

0.25 and 0.75.

Three types of disturbances were simulated—-

classical, first-order Markov, and second-order Markov.

Classical disturbances were simulated by simply taking

independent N(0,l) deviates and leaving them untrans-

formed. Second-order distrubances were simulated by

taking independent N(0,l) deviates $1,...,€N and trans-

forming them as follows:
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L11 7-7- O 61

u = [o /(l-o )] u + o [1-0 2/(l-o )2]15 e
2 1 2 1 u 1 2 2

ui = plui-l + p2ui_2 + 8i, 1 = 3,4,...,N (3.18)

First-order disturbances were simulated in the same way

except that in this case = 0.
02

Given the values of pl, 02, I and N, then, ui

and X1 were generated as above, Wi(A) and Ai were formed,

yi was generated, and the parameters were estimated by

maximum likelihood, assuming in turn no autocorrelation,

first-order autocorrelation, and second-order autocorrela-

tion. For each specification of the model, this pro-

cedure was repeated a number of times, and the observed

means, variances, and mean square errors of the

parameters were calculated. The number of repetitions

was 100 when N = 20 and 50 when N = 50 or N = 100.15

This study will concern itself only with the

resulting estimates of B, A, and 02.

 

15The smaller number of repetitions was used at

the larger sample sizes to economize somewhat on computer

time. A possible justification is that since the esti-

mators should be better behaved at the larger sample

sizes (at least those which are consistent), fewer

observations should be required to characterize their

distribution.
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3.4 Results of the Experiment
 

Tables 3.1 and 3.2 contain the results with

N = 20, with T = 0.25 and 0.75 respectively. Consider

first the case of no autocorrelation; the results are

given in the upper left hand corner of Tables 3.1 and

3.2. (The figures under the headings 0, l, and 2 are

the results obtained by the estimation procedures

assuming no autocorrelation, first-order autocorrelation,

and second-order autocorrelation, respectively. That

is, they correspond to last chapter's headings OLS,

GLSl, and GLSZ.) Note that the estimates of B and A

obtained by each of the estimation procedures are

almost identical. If one loses small sample efficiency

in the estimation of B and A by assuming autocorrela-

tion when none is in fact present, the loss is apparently

very small, even for a sample as small as 20. The

estimates of 02 are all significantly biased downward,

and in the estimation of 02 one does seem to lose some—

what by assuming too high a degree of autocorrelation,

in terms of the mean square error of the estimate.

However, this is apparently due to an increase in the

bias rather than to a larger variance, and the difference,

while statistically significant, is actually numerically

quite small. Finally, the results were rather insensitive

to T, the correlation between successive Xi.
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TABLE 3.1.--N = 20 T = 0.25.

pl = 0 92 = 0 p1 = .4 02 0 pl = .8 Q2 0

9 1 9 9 1 9 9 1 9

B MEAN 1.006 1.010 1.016 0.979 0.982 0.989 0.761 1.034 1.036

VAR 0.054 0.053 0.052 0.084 0.067 0.066 0.221 0.054 0.057

MSE 0.054 0.053 0.052 0.088 0.067 0.066 0.277 0.056 0.059

A MEAN 0.478 0.466 0.459 0.491 0.473 0.471 0.637 0.507 0.513

VAR 0.035 0.038 0.040 0.050 0.051 0.055 0.111 0.058 0.060

MSE 0.035 0.039 0.041 0.050 0.052 0.055 0.130 0.058 0.060

02 MEAN 0.873 0.854 0.835 0.911 0.753 0.736 1.467 0.794 0.782

VAR 0.088 0.089 0.085 0.088 0.057 0.054 0.683 0.103 0.101

MSE 0.104 0.111 0.112 0.096 0.118 0.124 0.901 0.145 0.148

pl = O 02 = .4 01 = 02 .8 pl = .4 02 = .4

2 1 3 9. 1 E 9. 1 2

B MEAN 0.996 1.016 1.019 0.804 0.813 1.028 0.785 0.982 1.027

VAR 0.067 0.060 0.045 0.179 0.173 0.040 0.230 0.083 0.056

MSE 0.067 0.061 0.045 0.218 0.208 0.041 0.276 0.083 0.057

A MEAN 0.475 0.460 0.461 0.574 0.571 0.486 0.649 0.539 0.516

VAR 0.048 0.047 0.040 0.116 0.111 0.036 0.080 0.064 0.048

MSE 0.049 0.048 0.042 0.121 0.117 0.036 0.101 0.066 0.048

02 MEAN 0.984 0.941 0.764 2.178 2.128 0.778 1.215 0.848 0.718

VAR 0.135 '0.l38 0.069 1.334 1.430 0.088 0.359 0.118 0.053

MSE 0.135 0.141 0.124 2.722 2.702 0.137 0.406 0.141 0.132
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TABLE 3.2.--N = 20 I = .75.

pl 0 02 = pl = .4 02 = 0 01 = .8 p2 - 0

2 1 .2 9. 1 3. 9 1 E

B MEAN 0.994 0.994 .995 979 0.972 0.961 0.924 0.990 0.995

VAR 0.036 0.036 .037 073 0.078 0.077 0.139 0.108 0.100

MSE 0.036 0.036 .037 073 0.078 0.079 0.145 0.108 0.100

A MEAN 0.500 0.500 .502 .507 0.512 0.521 0.511 0.493 0.494

VAR 0.011 0.011 .011 .025 0.027 0.026 0.062 0.042 0.040

MSE 0.011 0.011 .011 .025 0.027 0.026 0.062 0.042 0.040

02 MEAN 0.843 0.827 .818 .945 0.830 0.821 1.224 0.684 0.656

VAR 0.092 0.092 .092 .153 0.108 0.106 0.571 0.057 0.054

MSE 0.119 0.121 .125 .156 0.137 0.138 0.619 0.156 0.172

pl 0 02 = .4 01 = 0 02 .8 01 = .4 02 = .4

.0. .1. .2. 9 1 3 9 1 3

B MEAN 0.971 0.969 .977 .948 0.959 1.010 0.745 0.902 0.983

VAR 0.052 0.052 .040 .078 0.074 0.032 0.198 0.190 0.176

MSE 0.053 0.053 .040 .081 0.076 0.032 0.264 0.200 0.177

A MEAN 0.512 0.512 .505 .508 0.498 0.475 0.643 0.525 0.514

VAR 0.017 0.017 .017 .036 0.035 0.014 0.074 0.070 0.076

MSE 0.017 0.017 .017 .036 0.035 0.015 0.095 0.071 0.077

02 MEAN 1.000 0.990 .829 .823 1.764 0.704 1.067 0.853 0.744

VAR 0.152 0.144 .103 .843 0.813 0.059 0.400 0.185 0.093

MSE 0.152 0.144 .132 .521 1.396 0.146 0.405 0.207 0.158
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Consider next the specification of first-order

autocorrelation. Two values of pl were considered, 0.4

and 0.8. The results are given in the two upper right

hand columns of Tables 1 and 2. Notice first that in all

cases the estimators assuming first-order autocorrelation

and those assuming second-order autocorrelation are

extremely close together. Once again there is practically

no real loss in assuming too high a degree of auto-

correlation; the asymptotic equivalence of these two

procedures apparently comes through quite well even at

sample size 20. Next consider the estimators of B and A

only, and compare the estimators which assume no auto-

correlation with tnose which assume either first- or

second-order autocorrelation. With p1 = 0.4 the results

are somewhat mixed, but with 91 = 0.8 the inferiority of

assuming 91 = 0 is apparent. The estimates assuming no

autocorrelation are clearly biased and inefficient.

Finally, consider the estimators of 02. The estimators

assuming no autocorrelation have a considerably larger

variance than those which correctly assume autocorrelation

to be present, expecially when pl is large. Also note

that when autocorrelation is present, estimation assuming

2 16
no autocorrelation leads to an overestimate of o . All

of these conclusions are again true for both values of T.

 

16At least it leads to higher estimates than if

autocorrelation were in fact not present. Since 02 was

somewhat underestimated in the absence of autocorrelation,
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The last specification considered is that of

second-order autocorrelation. The results are given in

the bottom half of Tables 1 and 2. Three cases are

= 0.4; = 0,considered: p1 = O, = 0.8; and
p2 pl p2

= 0.4. As could be expected, estimation91 - oz

assuming second-order autocorrelation leads to the best

(in the sense of mean square error) estimates of B, l,

and 02. (It does not always lead to the least biased

estimates of 02; this will be discussed further in the

next section.) Estimation assuming first-order auto-

correlation seems somewhat better than estimation

assuming no autocorrelation, especially in the case in

which pl is non-zero. Also it is once again true that

assuming too low an order of autocorrelation leads to an

overestimate of 02. Finally, the results are again

rather insensitive to the value of T.

This completes the experiment for the case N = 20.

The salient result is that the known asymptotic properties

of the estimators seemed to hold fairly well even for such

a small sample. In particular, understating the order of

autocorrelation leads to very bad results, while over-

stating the order of autocorrelation is essentially

costless. Apparently the only serious problem with

 

the effect of increasing p is to first push the mean of

62 toward the true value before actually leading to an

overestimate.
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assuming too high an order of autocorrelation is that

the resulting estimate of 02 is apt to be more downward

biased than if the correct order of autocorrelation were

assumed.

As a further check on the rate of convergence of

the results to the known asymptotic results, the experi-

ment was partially duplicated with N = 50. Since the

value of T did not seem to materially affect the results

in the previous case, only one value (0.75) was used at

this sample size. The results are given in Table 3.3.

The asymptotic properties of the estimators are in this

case an extremely good guide to the observed properties.

Under the null hypothesis the estimation procedures

based on all three assumptions gave essentially identical

results, and the downward bias of 02 has largely dis-

appeared. In the case of first-order autocorrelation the

estimation procedures which assumed first- and second-

order autocorrelation gave almost identical results,

while estimation based on the assumption of no autocorrela-

tion gave substantially worse results. In the two cases

of second-order autocorrelation, estimation based on

second-order autocorrelation gave the best results, while

estimation based on the assumption of first-order auto-

correlation generally gave better results than estimation

based on the assumption of no autocorrelation. These are

 



 

  

 

 

  

 

TABLE 3.3.--N = 50 = 0.75.

p1 = 02 = 0 p1 '4 D2 0

9 1 .2. 9. 1 .2.

8 MEAN 1.001 1.000 1.000 1.043 1.059 1.060

VAR 0.026 0.026 0.027 0.032 0.025 0.026

MSE 0.026 0.026 0.027 0.034 0.029 0.029

1 MEAN 0.497 0.497 0.497 0.470 0.463 0.4:-

VAR 0.0086 0.0086 0.0088 0.0101 0.0093 0.0095

MSE 0.0086 0.0086 0.0088 0.0110 0.0106 0.01 9

02 MEAN 0.948 0.946 0.940 1.106 0.963 0.957

VAR 0.030 0.030 0.030 0.062 0.042 0.043

MSE 0.032 0.033 0.033 0.073 0.043 0.045

pl = 02 = .4 pl .4 - .4

9. 1 .2. .9 1 1

B MEAN 0.988 0.987 0.988 0.898 0.974 1.004

VAR 0.032 0.032 0.028 0.128 0.050 0.043

MSE 0.033 0.032 0.028 0.139 0.051 0.043

A MEAN 0.504 0.505 0.500 0.541 0.492 0.483

VAR 0.0106 0.0102 0.0081 0.048 0.029 0.018

MSE 0.0106 0.0102 0.0081 0.050 0.029 0.018

02 MEAN 1.004 1.001 0.869 1.536 0.987 0.831

VAR 0.057 0.056 0.037 0.348 0.076 0.02“

MSE 0.057 0.056 0.054 0.636 0.076 0.05
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essentially the same results as were obtained with N = 20;

the difference is that they hold more distinctly in this

case.

The last specification considered is the null

hypothesis with N = 100. The results are given in Table

3.4. As would be expected, all three procedures give

essentially the same results. This was done primarily

as a check of whether the calculations were performed

correctly, and they do seem to have been.

3.5 Comments and Summary
 

In this chapter we have develOped the maximum

likelihood estimators of a distributed lag model when the

disturbances follow a second-order process. It has also

been pointed out that there is no loss in the asymptotic

efficiency of maximum likelihood estimation when one

assumes an order of autocorrelation higher than the true

order, while assuming too low an order leads to

asymptotically inefficient results. These results

parallel those shown in Chapter II in the context of a

linear model, and the implication is the same--

asymptotically, one should always assume a very general

type of autocorrelation.

A Monte Carlo experiment was then performed to

see how well these asymptotic results hold in small

samples. The experiment suggested that, even with samples
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TABLE 3.4.--N = 100 r = 0.75.

01 = 0 Q2

9. 1 1

B MEAN 1.0003 1.0005 1.0000

VAR 0.0092 0.0093 0.0092

MSE 0.0092 0.0093 0.0092

A MEAN 0.4991 0.4990 0.4991

VAR 0.0028 0.0028 0.0028

MSE 0.0028 0.0028 0.0028

02 MEAN 0.9668 0.9660 0.9632

VAR 0.0230 0.0229 0.0230

MSE 0.0240 0.0241 0.0243

.........
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as small as 20, the asymptotic properties of the estimators

provide a rather good guide to the small sample pr0perties.

That is, even in small samples there is very little loss

in assuming too high an order of autocorrelation, but

there is a considerable loss in assuming too low an

order. This is essentially the same result obtained by

the Monte Carlo experiment of the last chapter, at least

as far as the regression coefficient 8 is concerned.

Recall, however, that in the last chapter it was

found that GLS did not necessarily lead to "better"

estimators of ouz, even when autocorrelation was actually

present. This seemed puzzling, and it was conjectured

at that time that this might have occurred either because

Buz was considered rather than 02, or because the criterion

for choosing the "best" estimator of ouz was just the size

of the bias. It now seems probable that the latter

reason was the cause of the problem. After all, the

experiment of this chapter considered 82, not 6u2, and it

was still common for an estimation procedure which assumed

too low an order of autocorrelation to give the least

biased estimator of 02. However, estimation procedures

which assumed the true order did give the estimators of 02

which typically had the smallest variance and mean square

error. Hence it appears that whether or not estimation

which takes autocorrelation into account (when it is

present) gives "better" estimates of the variance (either
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02 or cuz) depends on whether one considers the "best"

estimators to be those with the smallest bias or those

with the smallest mean square error.

 



CHAPTER IV

TESTING FOR SECOND-ORDER AUTOCORRELATION:

A GENERALIZATION OF THE DURBIN-WATSON

TEST

4.1 Introduction
 

Because GLS procedures are computationally more

complicated than OLS and because there does seem to be

some loss in small sample efficiency involved in using

GLS under the FIC, it is desirable to be able to test the

null hypothesis of the independence of the disturbances

against the alternative of autocorrelation. In the con-

text of a linear model, the test which has been most

often used to test for autocorrelation is the Durbin-

Watson test,1 for which the test statistic is the ratio

(4.1)
 

the ii being the residuals from the OLS regression of y

 

1[14] and [15].
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on X.2 This test was specifically designed to detect

autocorrelation in the form of a first-order scheme. In

fact, the statistic dl can be written

dl é 2(1 - 51), (4.2)

where 61 is the C-0 estimator of 01 given by equation

(2.3). Clearly positive first-order autocorrelation

(p1 > 0) will tend to lead to small values of d1;

negative first-order autocorrelation will tend to lead

to large values. It should also be clear that this test

may not be very effective in detecting types of auto-

correlation other than first-order; an obvious example

of a type of autocorrelation to which it would be

insensitive would be a second—order scheme with 01 = 0.

In order to test for second-order autocorrelation,

we will propose the second-order Durbin-Watson test, to
 

be based on the test statistic

d = (4.3) 

 

2The Durbin-Watson test is not applicable to a

distributed lag model such as the one presented in the

last chapter. A test which is asymptotically valid in

such a model has been recently suggested in [13].
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This test should be able to detect first- and second-

order autocorrelation. It should also be able to detect

more different types of autocorrelation than the ordinary

first-order test, since the second-order scheme on which

it is based should be able to approximate more different

types of autocorrelation than can a first-order scheme.

In the next chapter we will discuss the power of both

tests against various alternatives; the remainder of

this chapter will be devoted to the consideration of the

distribution of the above statistic under the null

hypothesis of the FIC.

4.2 Calculation of Significance

Points

 

The statistics dl and d2 can each be written in

matrix form as

d. = 1 , 1 = 1,2; (4.4) 

where u is the vector of least squares residuals and Al

and A2 are NxN matrices defined as follows:

_
m
m
r
’

I
‘
l
l
"
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1 -l O O O ... O O O O 0

-l 2 -l O 0 ... 0 O 0 0 0

O -1 2 -l O ... 0 0 0 0 O

0 O -l 2 -l . . O O 0 O 0

A1 = 0 0 0 -l 2 ... O 0 O O 0

O O 0 0 0 ... 0 -l 2 -l O

0 0 0 0 0 ... 0 O -l 2 -1

O O 0 O 0 ... 0 0 0 -l l

2 -l -l 0 O O ... O 0 O 0

-l 3 -l -l 0 0 ... 0 0 0

-l -l 4 -l -l 0 ... O O 0 0

A2 = O -l -l 4 -l -l ... 0 0 O 0

O 0 O 0 O 0 ... 0 -1 -l 4 -

O 0 O 0 0 0 ... 0 0 -l -1

O O O O 0 0 ... 0 0 O -1 

This is useful since a number of results have been

established in the literature

~

fi'Au
 test statistic d = , where A is any real, non-

u'fi

singular, symmetric, positive definite matrix. In

particular, define

for the distribution of

 
(4.5)

a
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I-X(X'X)-1X', (4.6)3 II

and let

Z = MA (4.7)

Then Z has N-K real positive characteristic roots (N and‘

K being the dimensions of the regressor matrix X) and

K zero roots; number the positive roots, in increasing

order, "l’fl2""'flN-K' Durbin and Watson have shown3

that d can be rewritten as follows:

 

 

Z v.20

l 1 1

d = N-K , (4.8)

2

Z v.

1 1

where the vi are independent N(0,l) variables. Now,

following Koerts and Abrahamse,4 one can note that

P(d < d*) =

N-K 2 N-K 2 N-K 2

P[ 2 fl.V. < d* 2 v. ] = P[ 2 n.v. < 0], where

1 1 1 1 1
1 1 1

where ni = Ni — d*. Using a result from Imhof,5 Koerts

and Abrahamse note that

 

3(14].

4[301.  
5[25].
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N-K

' 1

N-K . 2 1 Sln [4 i arctan (nir)]

g,

l r N (l + n.2r2)4
1

l

o

(4.9)

Numerical integration is feasible since Imhof has pro-

vided the limit of the integrand as r + 0; it is

5 Z ni. He also provides a bound for the truncation

error caused by integrating over the finite range [0,R];

to hold the truncation error to 8 one must take R equal

to

I11 . (4.10)

Thus the exact probability that d lies below any value d*

can be calculated by numerical integration, even though

the form of the distribution of d is not known. This

procedure was deve10ped by Koerts and Abrahamse6 for the

statistic d1; it clearly can also be applied to d2. All

that need be done is to insert the preper A1 in (4.7);

from there on the procedure is the same in each case.

 

6See [30] or [31]. The same procedure was sub-

sequently but independently developed in [41].
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4.3 Approximations
 

The exact procedure of the preceding section has

the drawback of being rather difficult computationally,

so that one might sometimes wish to resort to an approxi—

mation procedure so as to save computational effort.

Henshaw7 and Durbin and Watson8 have given fairly compre—

hensive reviews of the available procedures, so that

only a few brief comments need be made here.

Given that d has been written as in (4.8), the

moments of d are readily computed. In particular, as

noted by Durbin and Watson,9

 

 

1 N-K _

E(d) = N-K : Ni : N (4.11)

and N-K _ 2

2 2 (Ni- N)

Var(d) = 1 (4.12)

(N-K)(N-K+2).

Now it has been proven that the distribution of d is

10 but it is not known how good aasymptotically normal,

fit the normal distribution would provide in small

samples. In fact, there is some limited evidence to

suggest that the beta distribution may provide a better

 

7[221.

8[16].

9[15].

1°14].

-
.
u

:
-
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approximation to the distribution of d,11 and the beta

distribution has generally been used to approximate the

distribution of d. Since it is clear from (4.8) that the

possible range of d is [01,n and since the betaN_K] .

distribution over a given range is a two parameter dis-

tribution, it is possible to fit a beta distribution

having the same mean, variance and range as the true

distribution of d. This is essentially the procedure of

Henshaw; however, he goes to rather great lengths to

avoid computing the eigenvalues of Z. Where direct

eigenvalue calculation is possible, the following pro-

cedure is somwhat simpler, at least conceptually.

Having calculated Z and its roots, calculate E(d)

and Var(d) from (4.11) and (4.12). Normalize d to the

range [0,1] by defining

 

 

d - 01

x = fl _ N (4.13)

N-K 1

Then clearly

E(d) :- 1T1

E(x) = fl _ n (4.14)

N-K l

and

 

11For some evidence see [43] or [5].
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Var(d)

Var(x) = 2

- 01)

 (4.15)

("N-K

Assume that x is a beta variable; clearly it has range

[0,1]. It is well known that such a variable with

density

 

37%737' xp’l(1 - X)q'l (4.16)

has

E(x) = 5E5 (4.17)

and

Var(x) = (p+q?%(p+q+l) ° (4.18)

Since E(x) and Var(x) are known from (4.14) and (4.15),

(4.17) and (4.18) can be solved for p and q. The results

can be stated as follows:

 

q = ‘ I————

Var(x)(l + h)3 + h

p = qh (4.19)
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Given q and p, one can find the critical values of x in

any table of the incomplete beta function12 and get the

corresponding critical value of d from the relation

d = Na 1 (4.20)+ xa(1TN_K - 01).

This procedure fits a beta variable of the same

mean and variance as d into the exact range of d; the

only element of approximation is the use of the beta

distribution. Durbin and Watson13 and Theil and Nagar14

have also proposed beta approximations, but each makes

approximations about the mean, variance and range of d

that are replaced here by exact results.

Finally, this procedure also clearly applies to

each of the di defined above. Once again all that need

be done is to insert the proper Ai into (4.7) and from

there on the procedure is identical in each case.

4.4 The Bounds Test
 

Because of the substantial computational burdens

involved in the procedures of either of the last two

sections, it would clearly be desirable to avoid them as

often as possible. Durbin and Watson have provided a

partial solution in the case of the first-order test, by

 

12For example, [39].

131151.

1"'[48].
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tabulating the critical points of statistics dL and dU

whose critical points bound the critical points of d1.15

In this section we will provide similar bounds for the

distributions of the higher order tests defined above.

fi'Afi
 Again consider the statistic d = , A being one

fi'fi

of the Ai in (4.5). Then A has N-l positive characteristic

roots; number them in increasing order Al'AZ""’AN-l‘

Recall that 01,...,N are the positive roots, in
N-K

increasing order, of Z = MA. Then the basis for the

present procedure is the fact, proved by Durbin and Watson16

that

A1 i Ni 1 Ai+K" i = l,2,...,N-K (4.21)

where K' = K-l = the number of regressors not including

the constant term (which must be present).

It is then natural to define the variables dL

and dU as follows:

 

 

N-K 2 N-K 2

Z A.v. 2 A. , v.
1 1 1 l 1+K 1 4

dL ‘ N-‘R—z—‘t 90 7 N-K 2 ‘ '22)
2 v. 2 v.

1 1 1 1

151151.
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Comparing these with (4.8), it is evident that the

distribution of d is bounded by the distribution of dL

and dU‘ Now, given the matrix A, the significance points

of dL and dU can be calculated by the methods of section

4.2 and tabulated. Note that they depend on the matrix

X only in that they depend on N and K'.

The critical points of (d1)L and (dl)U have been

tabulated in Durbin and Watson.17 Tables 4.1 - 4.3 of

this paper contain the significance points of (d2)L and

(d To use the tables, simply compute the value of d2’0‘

and compare it to the critical points of dL and dU for

the given values of N and K' and the desired alpha level.

If d is less than the alpha level critical point of dL,

the null hypothesis is rejected at that alpha level.

If d is greater than the critical point of dU, the null

hypothesis is accepted at that alpha level. If d falls

between the critical points of dL and dU, the test is

inconclusive; the critical point of d itself can then

be calculated by the methods of sections 4.2 or 4.3.

This procedure again applies to all of the di defined in

this paper.

 

17[141.
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CHAPTER V

THE POWER OF THE GENERALIZED

DURBIN-WATSON TEST

5.1 Analytical Results
 

It is well known1 that the power of tests of the

Durbin-Watson type depends not only on the alpha level and

the alternative 0 matrix, but also on the regressor matrix

 

X. That is, the power of the test can be calculated

exactly, but this requires knowledge of a, R, and X.

Unfortunately, the fact that the power function is X-

dependent makes an analytical comparison of the power of

the tests rather intractable. It should not be sur-

prising, therefore, that even for the case of the first-

order Durbin-Watson test there has been practically no

analytical work done comparing its power to that of other

tests. Rather, resort has usually been made to Monte

Carlo methods.

One exception is the recent work by Durbin and

Watson2 in which it is shown that if the columns of X are

linear combinations of the eigenvectors of the matrix Al

 

1For example, see [30] or [31].

2[16].
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fi'A a

= -——l—J, then the first-order

fi'fi

(the matrix such that dl

Durbin-Watson test is a uniformly most powerful invariant

test3 against the alternative hypothesis of first-order

autocorrelation. For arbitrary X matrices the first-

order Durbin-Watson test is a locally most powerful

invariant test in some neighborhood of the null hypothesis.

It would clearly be nice to be able to make

analogous statements about the powers of the second-

order Durbin-Watson tests when the alternative hypothesis

is second-order autocorrelation. Unfortunately this is

not possible. Durbin and Watson's proof for the case of

first-order autocorrelation4 begins by considering the log

likelihood function generated by the first-order Markov

normal variables u1,...,u conditional on no; this is
NI

preportional to the following expression:

N N

* _ 2 2 2 2 2 _

Ll — (l + pl ) i ui - 01 (ul_ + uN ) 2pl g uiui-l’

(5.1)

For this they substitute the closely similar expression

** _ l 2
2 2 2

u. - pl(ul + uN ) 2pl u.u. .

1 1 1-1

l
-
‘
M
Z

N
M
Z

(5.2)

 

3For a discussion of invariant tests see [33],

Chapter 5.

4[161.
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Then the key result is the following:

**
2

_ I _

L1 — u [(1 pl) I + plAl]u, (5.3)

where I is the identity matrix and Al is as previously

defined. Now in the case of second-order autocorrelation

*

the log likelihood function is proportional to L
2

defined as follows:

* 2 2 N 2 N N

L2 — (1 + pl + p2 ) Z ui - 291 Z ului_l 292 Z ului_2

l 2 3

N—l
2 2 2 2

+ p1‘32 g u 1-1 ” (91 + D2 )(“1 + uN )

2 2 2

Unfortunately one can not find suitable constants c1

and c2 such that the following is true:

* J. I 5 5

L2 - u (clI + c2A2)u, ( . )

this becomes evident immediately if one expands the above

expression. Hence the line of reasoning of the Durbin-

Watson proof breaks down in this case, so that their

result can unfortunately not be generalized to the

second-order case. Another way to see this is to note

that the following is true:
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L* 1 . 1 2 D192
2 - u [( - pl - 02) I + (01 - —-2-—-)A:L + 02(A2 -Al)]u.

(5.6)

Following the development of Durbin and Watson, one can

now proceed to derive the locally most powerful invariant

test, whose rejection region turns out to be defined as

  

 

follows:

9192 fi'Alfi fi'(A2 - A1)fi
_ 'k *

(pl -7-) ~'~ + 02 ~.~ < d (d some constant).

u u u u

(5.7)

fi'Azfi

Recalling that d2 = , this clearly is not of the form

fi'fi

*

d2 < d , so that the second-order Durbin-Watson test is

not locally most powerful invariant against the alternative

of second—order autocorrelation. Indeed, it is easy to

see that there does not exist a matrix A not containing

 

the parameters 01 and 02 such that the test based on the

. . fi'Afi . . . . .
stat1stic is locally most powerful invariant in this

fi'fi

case.

To summarize these results, there is some

theoretical reason to believe that the first-order Durbin-

Watson test should be more powerful than the second-order

test in the case of first-order autocorrelation, at least
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for small values of 01. At present it is not possible to

make an analytical comparison of the tests in the cases

of autocorrelation of higher orders. From a purely

intuitive point of view, however, it would seem reasonable

to expect that the first- and second-order Durbin-Watson

tests would be most apprOpriate in testing for autocorrela-

tion of first- and second-order, respectively. The next

section will describe a Monte Carlo experiment which was

performed in an attempt to test this admittedly intuitive

hypothesis.

5.2 A Monte Carlo Comparison

of the Tests

 

 

The purpose of this section is to compare by

Monte Carlo methods the performance of the first- and

second-order Durbin-Watson tests in detecting first- and

second-order autocorrelation. Such a comparison could

be made in at least two different ways. The first would

be, given a regressor matrix X and disturbance term

covariance matrix 0, simply to calculate the power of each

of the tests exactly by the methods of Koerts and

Abrahamse.5 The second possible procedure would be to

generate random deviates having covariance matrix Q, to

use them to generate observations on the dependent

variable y, and to regress y on X and actually carry out

the tests. By repeating this procedure many times with

 

5(301.
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independent sets of random deviates one should get a good

idea of the distribution of the test statistics. If one

is simply interested in the power of the various tests,

the first procedure would of course be simpler. The

second procedure, however, should more readily reveal

other features of the distribution of the test statistics

(e.g., mean, variance, shape, etc.) which would be

extremely difficult to calculate by Koerts-Abrahamse

methods. This Monte Carlo experiment was therefore run

along the lines of the second procedure outlined above.

In performing the experiment, three different X

matrices were used, of dimension 20 x 6, 35 x 4, and

50 x 2.6 Each consisted of a constant term plus K-l

columns of random digits taken from a listing compiled

by the Rand Corporation.7 For each x matrix, each test

was set at the 0.01, 0.05 and 0.10 alpha levels by

means of the beta approximation described in the last

chapter. The procedure was then to run 1000 independent

trials under each specification of 0, each time con-

structing observations on y, to calculate the observed

 

6Note that different numbers of regressors were

used at each sample size, so that the results are somewhat

more general than if the same type of X matrix had been

used in each case. The price paid for this added gen-

erality is that it-is now not valid to compare the powers

of the tests as sample size increases; this did not seem to

be a significant cost. Without known asymptotic prOper-

ties, it is not terribly informative to watch the

behavior of the tests as sample size increases.

7[42].
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mean and standard deviation of each test statistic, and

to count the number of rejections by each test at each

alpha level.

Specifically, all elements of the regression

coefficient vector were taken equal to one,8 so that,

given u, y was obtained by

XX.. + u., i = l,2,...,N. (5.8)y.

l . 1 lJ 3

Observations on u were created by suitable transformations

of random N(0,l) deviates taken from the Rand list, as

indicated below.

The first specification considered is the null

hypothesis of the full ideal conditions (FIC). Here the

random deviates were simply left untransformed. Table 5.1

gives the number of rejections by each test in 1000

independent trials. The number of rejections should

average 10, 50 and 100 with standard deviations of 3.2,

6.9, and 9.5. An asterisk indicates that the number of

rejections obtained was significantly different from the

expected number at the 5% level. It will be noted that

the beta approximation performed quite well; it was

therefore judged good enough to be used in the rest of

the experiment as well. Table 5.2 compares the actual

 

8 . .
This was done purely for convenience, and does

not in any case affect the distribution of the residuals,

so that it makes no difference.
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TABLE 5.l.--Number of rejections per 1,000 trials under

the null hypothesis of no autocorrelation.

 

Alpha-Level

 

 

0.01 0.05 0.10

d1 15 52 112

N = 20

d2 20* 61 113

d1 18* 81* 145*

N = 35

d2 17 60 113

d1 15 67* 108

N = 50

d 12 46 95
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TABLE 5.2.--Means and standard deviations of dl and d

under the null hypothesis. 2

 

 

 

Mean Standard Deviation

Actual Predicted Actual Predicted

dl 2.130 2.141 .4365 .4308

N = 20 .

d2 3.953 3.973 .5788 .5800

C11 1.955 1.998 .3165 .3167

N = 35

d2 3.982 3.995 .4585 .4502

dl 1.986 1.986 .2778 .2769

N = 50

d 3.948 3.950 .3841 .3901
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mean and standard deviation of the statistics with the

"predicted" mean and standard deviation used in calculat-

ing the beta approximation. The actual values are in all

cases extremely close to the theoretical correct values,

as would be expected in a sample of 1000 trials.

The next specification considered is that of

first-order autocorrelation. For each trial at each

value of pl, the procedure is to take random N(0,l)

deviates €1,82,...,€N and to transform them as follows:

2 9 .

j pl j-l + (l - pl)2€j, j = 2,3,...,N (5.9)

Values of pl considered were 0.2, 0.4, 0.6, and 0.8.

Table 5.3 gives the number of rejections, as before,

while Table 5.4 gives the means and standard deviations

of the test statistics. In general, the results confirm

our expectations. For any test at any alpha level and

sample size, the expected value of the statistic decreases

and the power of the test increases as 01 increases. The

effect on the standard deviation of the statistics is

ambiguous. Also, for any alpha level and sample size,

the first-order test is almost invariably most powerful.

However, the difference in power is generally not very

large.
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The third specification considered is second-order

autocorrelation. This is constructed by transforming the

N(0,1) deviates 61’ i = l,2,...,N, as follows:

u1 = 6:1

u = u + (1 - 2)»2
2 D1 1 D1 82

‘5 -_
uj — pluj_l + pzuj-2 + aj 8], J — 3,4,...,N,

(5.10)

where

a. = 1 - pi - p: - 20102 ?E 0;. (5.11)

Table 5.5 gives the number of rejections for the

six cases in which both pl and 02 are non-zero, while

Table 5.6 gives the means and standard deviations. Note

that for all alpha levels and all sample sizes, the second-

order test is most powerful. This is true even when 01

is large relative to 02. Also note that the means of all

the test statistics are lower, and the standard deviations

higher, than under the null hypothesis.

Table 5.7 gives the number of rejections for the

four cases in which 01 = 0 but 02 # 0, with Table 5.8

giving the means and standard deviations. As might be

expected, the second-order test is most powerful. In

fact, the first-order test shows very little power.
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Looking at the table of means and standard deviations,

one can see that in this case the mean of the first-order

test statistic actually increases over its value under
 

the PIC. It is only because the standard deviation also

increases as 02 increases that we obtain more rejections

than under the null hypothesis. In fact, if the increase

in the mean predominated over the increase in the standard

deviation, one could actually get less rejections in this

case than under the null hypothesis. Clearly the first-

order test is not suitable when 01 = 0 and 02 ¢ 0.

5.3 Summary
 

To summarize these results, some general patterns

clearly appear. The first-order test appears to be most

powerful for the case of first-order autocorrelation and

the second-order test most powerful for second-order

autocorrelation. Hence if a test is used which is of

higher order than the true order of the autocorrelation

scheme, some loss of power apparently results relative to

the case in which the test of "correct" order is used.

However, the Monte Carlo evidence suggests that this loss

is fairly small. On the other hand, use of a test of

"too—low" order also forfeits power, and this loss can be

very substantial indeed; this is especially true if the

lower order p's are small. All these results agree with

the intuition expressed in section 5.1. Of course, it
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should be clear that these results are dependent on the

particular X matrices used in the experiment. Certain X

matrices may (or may not) exist for which these conclusions

would not hold.

To the extent that these conclusions are generally

valid, however, they would seem to imply that one should

perhaps be wary of using the ordinary Durbin-Watson test

intfluacommon case of testing for autocorrelation which is

not known a priori to be of first-order form. Even if

the autocorrelation in the sample should happen to be of

first-order form, use of d2 rather than (11 would entail

only a fairly small loss of power. On the other hand,

cases do exist for which the use of (11 rather than d2

would entail an almost complete loss of power. To put

the same point somewhat differently, the second-order

Durbin-Watson test is more generally applicable than the

first-order test, and it would appear to be useful in the

general case of testing for autocorrelation of unknown

form.

Finally, it should be noted that other tests have

recently been proposed which are not tied to the idea of

first-order autocorrelation. For example, Durbin9 has

prOposed as test based on the cumulative periodogram of

the residuals which may be useful in detecting auto-

correlation of a general nature; an interesting tOpic

 

9I121.

 



89

for further research would be to compare the power of

this test with the test preposed here.



CHAPTER VI

CONCLUDING REMARKS

As noted in Chapter I, autocorrelation can cause

serious problems in econometric regression analysis.

Econometricians have therefore developed testing pro-

cedures to test for its presence, and estimation pro-

cedures to alleviate the problems which it causes when it

is present. These procedures must of necessity make some

assumptions about what types of autocorrelation might be

present. In particular, the testing and estimation pro-

cedures which have most commonly been used have been

based on the assumption that the autocorrelation in the

sample is of first-order form. If autocorrelation is

present, but not of first-order form, one can only hope

that a first-order scheme is in some sense a reasonable

approximation to the true scheme. If it is not, the

ordinary procedures may not be very appropriate.

Having argued that the usual first-order auto-

correlation scheme is unduly restrictive, this study

then proposed a generalization in the form of a second-

order scheme. The common testing and estimation pro-

cedures were generalized to forms appropriate for this

case. Finally, the new procedures were compared to the
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original procedures in terms of their performance in the

presence of various types of autocorrelation. It was

typically found that the "best" procedures in each case

were those which assumed the true order of autocorrelation.

However, there was a fundamental asymmetry in that the

losses involved in assuming too high an order of auto—

correlation were generally rather small, while the

losses involved in assuming too low an order were often

quite serious. This would seem to imply that when one

does not know a priori what type of autocorrelation is

present, one should proceed under rather general assump-

tions about its form.

Of course, there must be some limit on how general

a process one can assume and still get meaningful results.

(After all, without some restrictions on 0 estimation is

literally impossible.) This study does not claim to have

discovered where that limit might lie. However, it does

seem clear that the assumption of second-order auto-

correlation lies well within the permitted range of

generality. It would therefore seem that testing and

estimation procedures based on the assumption of second-

order autocorrelation might often be more apprOpriate

than those which assume first-order autocorrelation, at

least when one does not have a priori knowledge of the

true form of the disturbance term covariance matrix.
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