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ABSTRACT

ELASTIC BUCKLING OF ARCHES
BY FINITE ELEMENT METHOD

BY

Jose G. Lange

A procedure for the computation of the elastic
buckling load of arches is presented. The arch is
represented by beam finite elements curved in one plane
but deformable in three dimensional space. The curved
axis of the element is represented by a fourth-order
polynomial. The displacement functions are approximated
by cubic polynomials. The expressions for the genera-
lized strains include the linear and quadratic terms of
the displacements. By using these functions the expres-
sion for the strain energy of an element is derived.

This expression consists of three parts: the quadratic,
cubic, and quartic terms. Proper differentiation of these
expressions yields the linear stiffness matrix (X) and

the incremental stiffness matrices (N1l and N2) of the
element.

Assuming that the system is elastic and conserva-
tive, the equilibrium equaticn is obtained from the first
variation of the potential energy. This represents a

set of nonlinear algebraic ecuations. The equatiocon
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governing the linear incremental behavior is obtained
from the second variation of the potential energy. A
basis for obtaining the critical load of a structural system
is the vanishing of the load increment vector corresponding
to a change in the displacement vector. To avoid dealing
with nonlinear equations, an estimate of the buckling load is
obtained by assuming that the displacement increase linearly
with the applied load until buckling occurs. This leads to

a quadratic eigenvalue problem for the buckling loads and
their associated buckling modes. Assuming that at buckling
the displacements are sufficiently small the gquadratic
eigenproblem reduces to a linear one.

The quadratic eigenproblem is solved by the deter-
minant search method in conjunction with the modified
regula falsi iteration technique. Inverse vector itera-
tion is used for the solution of the linear problem.

Eigenvalue problems are also formulated for the
case of tilted loads (for example, due to the horizontal
rigidity of the deck of an arch bridge). 1In addition,
the buckling problem involving interactions between hori-
zontal transverse loading and vertical in-plane loading
is formulated.

A computer program was prepared for the implemen-
tation of the linear equilibrium solution and the buckling
load solutions. Numerical results were obtained involving

arch ribs with in-plane and out-of-plane behavior. The
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influence of the number cf elements on the accuracy of
the results was investigated by considering both linear
equilibrium problems and buckling problems. The types of
buckling problems considered are: in-plane, out-of-
plane, tilted loads, and the effect of out-of-plane
horizontal loads on the in-plane buckling load. Good
agreement was indicated by comparisons of the first three
types of problems with existing analytical solutions
based on the classical buckling theory. Results for the
last type of problems indicated that while a small out-
of-plane horizontal load may have little effect on the
in-plane buckling load, the latter decreases rapidly with

increases in the horizontal load.
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CHAPTER I
INTRODUCTION

1.1 GENERAL

The purpose of this thesis is to develop a procedure
for the computation of the elastic buckling load of arches
in space. In order to achieve this a three-dimensional
beam element curved in one plane that takes into account
the nonlinear effects of geometry changes was formulated.
A computer program has been prepared to implement the analy-
sis of arches under different loading conditions, and the
results of certain numerical problems are presented.

This chapter describes the objective and scope of
the present work, a literature review of related studies,

and the general notation needed in the subsequent analysis.

1.2 OBJECTIVE AND SCOPE

Many engineering structures have components that may
be considered as curved beams. Examples are the ribs of
arch bridges and arch roofs, stiffening rings in aircraft
and naval vessels, and horizontally curved highway bridges.
When such elements are subjected to considerable compres-
sion such as in the case of arch bridges, their stability

becomes a major consideration.



Although a considerable amount of work has been
done (see literature review), there are a number of signifi-
cant problems that have not been solved. Most of the
previous works have dealt with the stability problem in
the plane of the curved element. Past studies that had
considered out of plane buckling have been either limited
to circular or parabolic arches or made with the assumption
that the curved element may be represented by a series of
straight beam elements. The ouf-of-plane behavior of a
truly curved element has not been studied.

The objective of the present study is to develop a
three-dimensional nonlinear curved beam finite element.

The numerical model is applied to the study of the buckling
of arch ribs.

Figure 1-1 illustrates the general deformation
behavior of a symmetrical arch under a symmetrica} load-
ing. It is seen that the buckled shape may be symmetric
or antisymmetric. The curve "OC" represents the "exact"
response which may be obtained by the solution of the (non-
linear) equilibrium equations of the system. It is called
the "fundamental path." Depending upon the properties of
the arch and loading, a point (e.g., point A) of "bifurca-
tion" may occur before the peak point C or after it (i.e.,
point A). Immediately beyond a bifurcation point on the

fundamental path, the structure is unstable; so the behavior



3

would follow the bifurcated path AB or AB. If the bifur-
cation point occurs before C, the buckling shape would be
antisymmetrical (sometimes called "sidesway," generally
occurring for "deep arches"). 1If the bifurcation point
occurs at i, the arch would have buckled at C in a sym-
metric buckling form ("snap-through," generally for "shallow
arches") .

The preceding represents the arch behavior described
by an "exact" nonlinear analysis. The classical buckling
theory would assume that up to the point when buckling takes
place, the structure would maintain its original undeformed
shape (point A'). At buckling, it goes into an adjacent
equilibrium configuration (point B') which is unspecified
in magnitude. The buckling load thus computed is called
the "classical buckling load."”

The approach followed in this investigation is that
outlined by Mallett and Marcal (27)*. The theory is essen-
tially different from either that which follows from the
nonlinear equilibrium behavior or the classical theory of
stability. The system is assumed to be elastic. The strain
energy is written in terms of displacement variables. Geo-
metrically nonlinear effects are considered by including

the quadratic terms of displacements in the expressions for

* Number 1n parantheses refer to entries in the list of
references.



the generalized strains. Thus, the strain energy may be
written as the sum of one part containing quadratic terms,
one containing cubic terms, and one quartic terms. The
first variation of the potential energy (assuming that loads
are conservative, i.e., their direction do not change with
structural displacements) produces the equilibrium equation.
The latter equilibrium equation may be transformed into an
eigenvalue problem by assuming that the displacements
increase linearly with the load parameter that controls the
magnitude of the applied loads, and at the buckling load
the linear incremental stiffness (tangent stiffness)
vanishes. This formulation yields a quadratic eigenvalue
problem; the lowest eigenvalue correspgnds to the lowest
buckling load.

For the finite element developed in this study, the
curved shape of the element is represented by a fourth-
order polynomial. This representation of the geometry can
maintain continuity of position, slope, and curvature at
two adjacent elements. The shape functions describing the
displacements along each of the three coordinate axes and
the twist along the longitudinal axis of the element are
each expressed as cubic polynomials. This requires the
introduction of eight cdegrees of freedom at each end. The
linear and nonlinear stiffness matrices require numerical
integration over the curved domain, for which the Gauss

quadrature method was used.



5

The quadratic eigenvalue problem was established and
solved by the determinant search method (5) in conjunction
with the modified regula-falsi iteration technique (9).

The effect of the quadratic term on the lowest eigenvalue
was found to be small and it seems reasonable to drop that
term. Hence, the problem reduces to that of a linear
eigenvalue. It was solved by using the inverse iteration
method (5).

A computer program was prepared to implement the
linear equilibrium solution and the buckling load solution.
Numerical results included systems with in-plane and out-
of-plane behavior. 1In addition to some linear equilibrium
problems solved to indicate the reliability of the model,
the following types of buckling problems have been consid-
ered: (a) in-plane, (b) out-of-plane, (c) "tilted load,"
and (d) the effect of out-of-plane loads on the in-plane
buckling load. For the first three types, comparisons
were made with existing analytical solutions based on the
classical theory (except in two cases of tilted loading for
which no analytical solutions are available). The agree-
ments are in general good. Results of type (d) indicated
while a small out-of-plane horizontal load may have little
effect on the in-plane buckling load, the latter decreases
rapidly with increases in the horizontal load. As far as
is.known to the writer, this behavior has not been studied

previously.



1.3 LITERATURE REVIEW

Ashwell and Sabir (2) discussed the use and limita-
tions of several typés of shape functions for finite ele-
ments for circular arches. Three types were considered:

(a) polynomial expressions for the radial and circumfer-
ential displacements, (b) polynomial expressions modified
to include certain trigonometric functions so as to make
the circumferential strain and the change in curvature
equal.to zero when the displacements correspond to a rigid
body motion, (c) expressions corresponding to axial strain
and linear curvature. The latter two admit true rigid
body displacement representations. They showed that the
type (c) functions are only slightly inferior to type (b)
when used for shallow arches. They also indicated that
the performance of the shape functions would depend on the
geometry of the arch. Shape functions good for shallow
arches may not be good for deep arches and vice versa.
This work was limited to actions of circular arches in a
plane.

Dawe (13) pointed out the advantage of using higher-
order polynomials for shape functions. His comparison included
models using polynomials of orders quintic-quintic, cubic-
qguintic, quintic-cubic , cubic-cubic to represent the tangen-
tial and normal components of the displacements, and also a

constant strain, linear curvature model for the shape functions.
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Mebane and Stricklin (29) pointed out that rigid body motion
could be considered to be implicitly included in the poly-
nomial form of the shape functions as the number of elements
used to represent the structure increases.

The preceding studies had been undertaken actually
to investigate the optimal approach of using the finite
element method for axi-symmetrical shells. The latter,
like the arch deformed in its own plane, is a two-dimen-
sional problem. For linear equilibrium problems of an
element curved in one plane, the stiffness coefficients of
the "in-plane" degrees of freedom (i.e., axial displacement,
in-plane transverse displacement, and in-plane rotation)
are uncoupled from the "out-of-plane” degrees of freedom.
For circular elements the stiffness coefficients for in-
plane degrees of freedom are well known (see e.g., Reference
37) . For circular elements subjected to out-of-plane
loading exact stiffness coefficients for sections with neg-
ligible warping have been reported by Lee (26). Stiffness
matrices including warping had been reported by El-Amin
and Brotton (16), and by Thornton and Master (40). The
former employed the finite element method using cubic poly-
nomials for the displacement functions and the stiffness
coefficients were given explicitly. The latter presented
expressions from which "exact”" stiffness matrices may be

computed from the inversion of certain component matrices.
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Chauduri and Shore (8) developed a thin-walled curved beam
element that also included warping effects and established
a consistent mass matrix for the element.

The area of classical buckling analysis of curved
structures has been investigated by several researchers.
Austin (3) summarized the state of the knowledge of the
in-plane bending and buckling of arches. His presentation
was concerned with the available experimental and analytical
data and their relations to design applications. Austin
and Ross (4) compared the solution of the in-plane elastic
buckling of arches between the classical buckling theory
and the exact, nonlinear, buckling load analysis. They
found that, except for buckling in the symmetric mode
(snap-through), the buckling load obtained with the class-
ical theory is very close to that obtained with the exact
theory.

I. Ojalvo and Newman (31) reported a basic theoreti-
cal work on the elastic stakility of a curved beam in space.
The governing differential equations of a curved element
in space were derived and a solution procedure akin to the
"shooting method" was outlined. The shooting method is
one that solves a boundary value problem as an initial
value problem (30). If a curved beam is analyzed, the solu-
tion would be carried out from one end of the beam with the
known boundary conditions plus certain assumed boundary con-

ditions there as the "initial conditions." The solution



proceeds toward the other end where, in general, it would
not agree with the prescribed boundary conditions. Modi-
fications would then be made of the boundary conditions
assumed for the "initial end" such that the conditions

at the "final end" would be met.

M. Ojalvo, Demuts, and Tokarz (32) followed the
preceding works to study the out-of-plane buckling of a
member curved in one plane. The theory was also applied
by Shukla and M. Ojalvo (38) to calculate the buckling
loads when they may be tilted such as those which would
result from a horizontally rigid deck of an arch bridge.
Extensive numerical data were presented covering ranges of
parameters involving the ratio of the torsional stiffness
to the out-of-plane bending stiffness and the ratio of the
rise to the span length. Laboratory results that corrob-
orated the theoretical data were presented by Tokarz (41).
As a particular case of the equations presented in Refer-
ence (32), Tokarz and Sandhu (42) developed linear differ-
ential equations that define the lateral-torsional buckling
of a parabolic arch subjected to a uniformly distributed
load. They also made a comparative study with those
results obtained experimentally by Tokarz (41).

Godden (20) studied the buckling load of a tied

arch by use of the Rayleigh-Ritz method. The tilted
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hangers (on account of the assumed horizontal rigidity of
the deck) were replaced by a continuous membrane along the
arch. He verified the solution with experimental results.
In a subsequent work Donald and Godden (14) reported a
numerical procedure of the shooting method type for the
analysis of curved beams (replaced by straight chords
between panel points) subjected to loads normal to the

plane of the structure.

1.4 NOTATION

The notation shown below has been used in this

report:

A = area of cross-sections;

A, B = end nodes of an element;

b,,b,,b, = element geometry coefficients
(Eq. 2-12);

E = Young's modulus of elasticity;

G = shear modulus;

H = rise of the arch;

HD = difference in elevation between crown
of arch and deck;

Ixx, Iyy = moment of inertia of cross-section
(Fig. 2=2);

Ig' I = moment of inertia of cross-section

n (Fig. 2-2);

(k] = structural linear stiffness matrix;

[Km] = modified structural linear stiffness
matrix;

(k] = element linear stiffness matrix;

K = torsion constant of cross-section;

ct



Kx, Ky,Kz

kx,ky,kz

[n1]

(x2]

(n1]

(n2]

11
changes in curvature about x, y, z
axes;

current curvatures about x,y,z
axes;

initial curvatures about x,y,z
axes;

curved length of element;
span or arch;

first order structural incremental
stiffness matrix;

second order structural incremental
stiffness matrix;

first order element incremental
stiffness matrix;

second order element incremental
stiffness matrix;

vector of applied loads;
vector of applied horizontal loads;

a given load, a given load vector
(Eq. 3-2);

critical value of applied loads;

reference load, reference load
vector (Eg. 3-2);

generalized coordinates, displace-
ment vector;

displacement vector due to applied
horizontal (out-of-plane) load;

displacement vector due to applied
vertical (in-plane)load;

reference displacement vector (Eq.

3-1)

.
’



{g,}

R1, R2

X,Y,2

XYy

X, Y2

(XB'YB)

Qa

B
8x,By, Rz
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reference displacement vector
(Eq. 3-2);
radius of curvature

radii of curvature at ends of an
element;

longitudinal axis of curved beam
member;

diagonal transformation matrix
(Eq. 3-14);

diagonal transformation matrix
(Eg. 3-16);

displacements
respectively;

along x,y,z axes,

strain energy of an element;

strain energy due to longitudinal
strain;
strain energy due to torsion;

quadratic, cubic, and quartic parts

of strain energy:;

structure global coordinate system;

relative position of end nodes of
an element (Eg. 2-10);

element coordinate system;

coordinates of node B in element
coordinate system;

angle of opening of circular arch;

twist of cross-section about z-axis;

rotations about x,y,z axes, respec-
tively;
normalized variable (Eg. 2-19);

longitudinal strain;



{1}
L]
]
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angle of tangent at node
(Fig. 2-5);

rotation about x-axis;
rotation about y-axis;
buckling load parameter;
incremental operator;
column vector;

row vector;

rectangular matrix.



CHAPTER II
FINITE ELEMENT MODEL FOR A CURVED BEAM

2.1 GENERAL

In this chapter the displacement-strain relation
and the expression of the strain energy of a curved beam
are first presented. Next, the geometric representation
and the displacement functions of the element are described.
The strain energy expression of a typical curved element is
developed. Finally, the general equations that govern the
equilibrium and the linear incremental behavior of a struc-

ture are derived.

2.2 DISPLACEMENT-STRAIN RELATION

Consider a beam element curved in one plane as shown
in Figure 2-1. The centroidal axis curves in the x-z
plane with radius of curvature R (which may vary). The x,
y, and z axes form a right-handed coordinate system with
corresponding displacements u, v, and w as indicated in
Figure 2-2. The cross-section of the element is taken to
be constant. Assuming that plane sections remain plane
after bending deformation, the expression for the longi-

tudinal strain at a section s, measured along the curved

14
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centroidal axis, may be written as

€) = € + n K - K 2-1
st z)o x "B X (2-1)

in which ez)o is the longitudinal strain and X, and Ky are
the changes in curvature of the centroidal axis.
For the general case of a beam curved in space, the

changes in curvature have been derived by I. Ojalvo and

Newman (31l) as follows:

- - - dB
K =k -k =k B8 -k B8 +
X X X Yy 2z z y s
- - - dg

K =k -k =-%kx B +k B8 +—X (2=2)
y y Y X z z X ds

- T -1 by dBy
Kz—kz-kz—kx By’ky BX+_d_s—

in which ky and kx are the current and initial curvatures

about the x-axis, respectively, similarly for k ky and

k

y'

k and By, By, Bz are the rotations about the x, y, 2z

zr Kzi

axes, respectively. The latter rotations are given by:

- av T = - v
By = u kg = gg + Wk, = ds
B, =3 Lok sk ow= LW (2-3)
y ds z y ds R

in which 8 is the twist of the cross-section about the

z-axis (note that_}'cx = kZ = 0). Substituting Equations
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(2-3) into Equations (2-2),

K =ﬁ_dzv
X R gs?
d’u  aw 1 a1
Ky=*<§2-+—s§+wd—s(§) (2-4)
_ 1 dv as
K, R s T as

The longitudinal strain at the centroidal axis may

be written as:

u ldu 2

dw w. 2 1 dv
€ = (35~ 1 *3 (35t *+ 3 (3T (2-5)

z%

in which the terms in the first parenthesis are the usual
linear hoop strain for a curved element and the next two
terms (which are nonlinear) represent the contribution to
the strain by the rotations of the centroidal axis about
the y- and x-axis, respectively. Substituting Equations
(2-4) and (2-5) into Equation (2-1) the expression for the
longitudinal strain for any point in the cross-section is

obtained, i.e.,

2 2
€,) = (W _yg , ldu  w® , 1ldv
s,&,n ds R 2 ds R 2 ds
8 _dv
+ n(g - 352 (2-6)
d2u 1 dw d |1
“tlgsztrRas *Vas R

in which, it may be noted again that u, v, w, and B are

displacements of the centroidal axis of the beam.
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2.3 STRAIN ENERGY EXPRESSION

The expression for the total strain energy of the
system may be written as:

U=1U. + U (2-7)

where Ue is the strain energy due to the longitudinal
strain and Uy is that due to torsion of the cross-section
along the axis of the beam. They are given by the expres-

sions

2 2
U€=L EZE av = | f Ee anas
ol A 2

(2-8)

Ug >

L Eﬁ (8g + % vs)2 ds

in which ¢ is the longitudinal strain as expressed by Equa-
tion (2-6), A is the cross-sectional area, E and G are the
Young's modulus and shear modulus, and K, is the torsion
constant of the cross-section. 1In the preceding equation,
the common notation of using a subscript to represent a
differentiation has been used, e.g., Bg = dB/dgs. This
notation will also be used subsequently. The total strain
energy becomes

.- |

S

(8g + % vg)? ds (2-9)

2
J E1§— dA ds + J
A s

Equation (2-9) will be used in Section 2.4.4 to obtain the
strain energy of the curved element, and by proper differ-

entiation to obtain its stiffness matrices.
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2.4 FINITE ELEMENT FORMULATION

In the previous section the strain energy expres-
sion for a general three-dimensional beam curved in a
plane has been presented. 1In this section, the geometry
and the strain energy of a finite element model of a

curved beam will be developed.

2.4.1 DEFINITION OF COORDINATE SYSTEMS

Figure 2-3 illustrates an arch with a typical con-
stituent curved finite element AB. Additional coordinates
for the element are described in Figure 2-4. Two coordi-
nate systems are used in the analysis:

1) Structure Global Coordinate System.

This system consists of a single set of cartesian
axes with the origin located at the crown of the arch
(Figure 2-3). The system is oriented with the X-axis hori-
zontal, the Y-axis vertical, and the Z-axis perpendicular
to the plane of curvature. The positions of the nodes of
the total structure are expressed by means of this system.

2) Element Coordinate System.

This system is illustrated in Figure 2-4. It con-
sists of one set of cartesian axeswith itsorigin 1located at
node A, with the x-axis in the radial direction, the y-
axis normal to the plane of curvature, and the z-axis tan-
gent to the curved centroidal axis forming an angle ¢, with
the global X-axis. Node B denotes the end node of.the

element.
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2.4.2 ELEMENT GEOMETRY

Referring again to Figure 2-4, the coordinates of
the nodes A and B with respect to the structure global
system are (Xp, YA) and (XB, YB) respectively. Further-
more, their reiative position is defined by X, = Xg - XA
and Y = Yp - YA.

To represent the element geometry in the x and z
coordinates the element is redrawn in Figure 2-5. The
coordinates (xg zB) of node B in the element coordinate

system are given by:

Xp = =X, simbA + YL cosci)A
(2-10)
zg = XL cosdp + YL sin¢A
in which ¢,, XL and YL are defined in Figure 2-4. The

angle ¢ in Figure 2-5 varies from zero at node A to 0 at
node B, s varies along the longitudinal axis, and the
radii of curvature R at nodes A and B are respectively
R1 and R2.

At any point along the curve the following rela-
tions hold

dz = ds cos ¢

(2-11)

dx = ds sin ¢

The curve will be approximated by a fourth-order polynomial

S=b, +b, ¢ +Db, 6>+ b, ¢ + b, ¢" (2-12)
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the boundary conditions needed to solve for the coefficients
bi are (see Figure 2-5):

(1) at ¢ = 0, S =0

(2) at ¢ = 0, R = R1 (2-13a)
(3) at ¢ = 90, S =1L
where L is the curved length of the element
(4) at ¢ = 9, R = R2
o )
(5) xg = f dx = J sin ¢ R d¢
0 o
(2-13b)
(6) zg = J dz = J cos ¢ R d¢
0 0

From (1) it is found that bo = 0. The curvature is obtain-

ed by differentiating Equation (2-12):

ds
R=3s =Db, +2b,¢+3Db* +4b¢° (2-14)

From condition (2), b, = Rl. When condition (3) is appli-
ed to Equation 2-12, the expression defining the length of
the element is obtained as

L =R19 + b,0% + b;06® + b,0O" (2-15)
Condition (4) yields:

R2 = R1 + 2b,0 + 3b;0% + 4b,0° (2-16)

Assuming that condition (3) is automatically satis-
fied if conditions (5) and (6) are, and that the equation
defining the curve is known (which implies that R1 and R2

are prescribed) a system of three linear equations for
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three unknowns (b,, b,, b,) can be established, i. e.,
Rl + 2b, 6 + 3b,0% + 4b,0° = R2
Rl (1 - cos ©) + 2b, (sin©- 0 cos Q)
+ 3b, (-0% cos © + 20 sin © + 2 cos 0 - 2)
+ 4bu (0% cos 0 + 302%sin 0 + 6 0cos @ - 6 sin @)
= Xp (2=-17)
Rl sin © + 2b, (© sin O + cos © -1)
+ 3b, (0%sin O + 20cos © - 2 sin 0)
+ 4b, (0°sin © + 302 cos©®~- 60sin® - 6 cos @ + 6)
= zp
Once the coefficients b,, b,, and b, are obtained from the
solution of Equations (2-17) the geometry of the finite
element is completely defined by Equation (2-12).
It may be pointed out that the values of b,, b;,
and b, seem to be somewhat sensitive to the solution pro-
cedure used for Equations (2-17). A comparison of the solu-
tion obtained by several procedures is given in Appendix A.
It is also shown that indeed condition (3), i.e., the

length of the element, is satisfied by the procedure used.

2.4.3 DISPLACEMENT FUNCTIONS

As indicated in Equations (2-6) and (2-9), the
strain energy of the curved element considered here depends
on four independent displacement functions, i. e., u, v,

w, and B, the displacements along the x, y, z axes and the

rotation about the z-axis, respectively. For the finite
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element, these functions will be approximated by cubic
polynomials in the variable ¢ (Figure 2-5)
U= a; + a0+ o302 + a,d’

s + agd + a,02 + agd’

v
(2-18)
W= ag + 0,0+ a; 0%+ a,,0°
B = a,; +a;,0 + 0,492 + a,.¢°
Note that ¢ is related to the arc length, s, by ds/d¢ = R =

radius of curvature. For simplicity, the independent

variable ¢ in the preceding equations may be normalized

by defining y ¢/0, and the displacement functions become:

+

- 2 3
u = A ALy + A YT+ ALY
V=, + Ay + A,v? 4+ AR

, (2-19)
w=A_ + Aloy + Ally + Alzy‘

= 2 3
B = x13 + Aqu + AlSY + Ale

2.4.4 ELEMENT STRAIN ENERGY

In terms of the new variable Yy the longitudinal

strain may be rewritten from Equation (2-6) as:

e= (-0 + 2+ D)t +—<—5)

‘LY_Y_
*n R~ Roy2™

(2-20)

vy Yss]
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in which

yg = & =80 _ - L (2-21)

= - 1 L k -

YSS- -WR RS ‘ ‘0 B o l’ (2 22)
1

Ysy = (g)y = RO Ygq (2-23)

Using the sahe‘chénge of variables for Equations (2-8),

2
U = J f E € 4a rody
0 A 2
1 " K
- G Kt
U
. L & (B, ¥

(2-24)

1 2
+ 2 v Ys) RQOdAy

s Y

The expression for the strain energy of an element is now
obtained by substituting Equations (2-20) and (2-24) into

Equation (2-7)

1 v

- E 2 42 1 ’ W 1 vy
U=3 J{[(WYYS) + (R +7 (uyYs +rR Ot g vy ) ]A
0

B

- ) 2 _ 2
I (g7 VyyYs T YyTss)

+ I (u Y2 +uy +
n s y'ss

WoYg + WYg Yg)?
Y y S Sy s

R

v

+ (-2 4w + ¥)2
L= 2w vg 7 Vs (qus Y (2-25)
: w
+w 2 _u + =2
vYs (VYYS) B (UYYS =~
- u 2 1 W2 2 ,
2 (v yg) + 35 (uyyg + 7 (v Yg)"]1A JROM
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Equation (2-25) may be divided into three parts in the
form:
U=U +U +U (2-26)
2 3 [
in which U,, U,;, and U, contain respectively the quadratic,
cubic, and quartic terms of the total strain energy. 1In

explicit form, after some simplifications, they are

1
- E A - 2 ©) - Vyy _ © n2y2
u, > j [ = (wy, = 0u)? + Ig = (RB 7%} vy YgsR?)

I ) 202 ' 2
+ u + R°0° + w_ 0O + wy__RO day
R7eT vy T UyYss Y YR

1

GK
t 1 2 -
5 L i (R8y + v 4y (2-272)
EA ' 1
0= 5 | mer 0w [lay + an? + vl ay (2-270)
0
_ EA _1 2 272 -
v,= J o [, + ow? + v2]? ay (2-27¢)

0
Upon substituting the displacement functions given
by Equaticns (2-19) into Equations (2-27), U,, U;, and U,
become functions of the coefficients Ai in the displacement
functions. These coefficients will be replaced by certain
degrees of freedom related to the displacement variables

at the ends of the element. These degrees of freedom are
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chosen to be:

Up, ug the radial displacement;

va, Vg = the transverse displacement;

War Wp = the longitudinal displacement;
BA’ BB = the twist about the longitudinal axis;
0 (du + W) = the rotation about y-axis;

1 Oy =
YA'"YB ds R A,or B

0, = (-2Y)

0 = = the rotation about x-axis;
Xg = ut x-axis;

Xp'! A, or B

dw dw _ . .
(EE)A,(EE)B = part of axial strain;

<13 das _ .
(ds)A’ (EE)B = rate of twist;

For subsequent analysis the above degrees of freedom

will be represented by the generalized coordinates {g}:
. = dw
[ g, 9,---947 9 --.9,, ] =|uy Va W Bp OYA OXA(HEE\

ds, . dwy, (48 -
(ds)A' ug Vg ¥g Bp Oy Oxp (d—s)B F,1 (2728

The relation between {g} and {)} may be obtained by
use of Equations (2-19) and (2-28). Thus, U,, U,;, and U,
can be expressed in terms of the element nodal degrees of

freedom {q}:

1

= J £, ({g}) avy
0

(@]
|

1 (2-29)
= J £,({gh) av
0

a
|

(@]
]

1
N J £, ({q}) ay
0
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in which fz, fa' and fk are, respectively, quadratic,
cubic, and quartic functions of the gq's.
The linear element stiffness matrix [k] may be

obtained as

1
( 3%f,

32U
k] = [k..] = [—=— = d 2-30

The "incremental stiffness matrices" [nl] and [n2]are

defined to be:

1

2y - 3%f
- 1= [ -712 [ o fs .. _
[n1] = [(n1) ;5] 3, 545 ) 8qiaqjdf] (2-31)
1 2
= ) _r_ 32U, _ S T
(n2] = [(n2) ;5] -[—qiaqj] = [Jo 391345 dy] (2-32)

The expressions for the integrands in terms of the
g's in Equation (2-30), (2-31), and (2-32) are too lengthy
to be presented here. They are, however, explicitly given
in the subroutine NUMINT of the computer program in Appen-
dix C. It may be noted in passing that the integrals them-
selves were evaluated numerically by Gauss gquadrature. It
should also be noted that the elements of the matrices [nl]
and [n2] are respectively linear and quadratic functions

of the displacements.

2.5 EQUILIBRIUM EQUATIONS

The element linear stiffness matrix, [k], and the
incremental stiffness matrices [nl] and [n2] have been de-

rived in the preceding section. The structural linear
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stiffness matrix, [K], and the incremental stiffness
matrices [N1] and [N2] may be obtained by "assembling"
or adding up the corresponding element matrices, provided
that they are all considered to be of the "structure size"
and refer to the same global degrees of freedom.

As mentioned previously, the formulation followed
in this section is that described by Mallett and Marcal (27).
Assuming that the system is elastic and conservative, the
potential energy of the system is:

¢p =U+V (2-33)
in which U is the strain energy and V is the potential of
the external loads. The total potential energy may be
expressed as:

bp = LOIE_zE dyol + V
la) (7 [x] +2m]+ L (2] cq)

(2-34)
- lg] {p}

in which [N1] and [N2] appear on account of the nonlinear
terms in the expression for the longitudinal strain (Equa-
tion (2-6)).

The first variation of the potential energy produces
the equilibrium equation:

[[k] + 3 [M1] + 3 [N2]] {@} = (P} (2-35)

3
This represents a set of nonlinear algebraic equations.
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The equations governing the linear incremental
behavior follow from the second variation of the potential
energy and are given by:

( [x] + [N1] + [N2] ){5} {aq} = {aP} (2-36)

where {q} is the reference equilibrium position. This
equation will be used in the following chapter to develop

the eigenproblem model for the buckling analysis.



CHAPTER III
BUCKLING LOAD ANALYSIS

3.1 GENERAL

The governing matrix equation of the linear incre-
mental equilibrium for a nonlinear elastic structure
(Equation (2-36)) was introduced in Section 2.5. 1In this
chapter, the calculation of the buckling load as a quad-
ratic or linear eigenvalue problem will be discussed. 1In
addition, the formulation required for the computation of
the buckling loads of arch ribs subjected to "tilted loads,"
and the effect of horizontal loads on the vertical buckling
load will be presented. The implementation of the solu-

tion procedures used will also be given.

3.2 FORMULATION OF EIGENVALUE PROBLEMS

A basis for obtaining the critical locad of a struc-
tural system is the vanishing of {AP} in Equation (2-36).
This leads to:

([K] + [N1] + [N2]) o) {aq} = (0) (3-1)

Equation (3-1) may be written for each point on the "fun-
damental path" (Figure 1-2). That path, of course, can be
determined only by a solution of the nonlinear equilibrium
equation, i.e., Equation (2-35). For a given load vector

{P} and displacement vector {g} on the fundamental path,

29
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if a nontrivial solution of {Aq} is obtainable from
Equation (3-1), the load {5} would be the "exact" buckling
load (the bifurcation or snap-through load).

Of course, for a given {P}, {g} can be found only
by the solution of the nonlinear equilibrium equations.
In order to avoid dealing with the nonlinear ecguations,
however, an estimate of the buckling load may be obtained
from Equation (3-1) by assuming that the displacement of
the structure increases linearly with applied load until
buckling occurs. Thus, letting {qo} be some reference
displacement, (e.g., {q,} = [K]'I{PO}, {RQ being some
reference load = pO {PO}), the incremental stiffness

matrices may be computed as:

[ML({@h ] = M {g,h ] (&) (3-2a)
[0}
and
N2({g}h)] = [N2({qo})] (bl'l)2 (3-2b)
(o]

where {q} = [K]—1 P {P,} , and the squared term in Equa-
tion (3-2b) follows from the fact that the elements of
[N2] are quadratic in the displacement variables. At

buckling,

£
[N1] (=X) (3-3a)

1
IN1({q}] (ag) Po

and

P
MN2((gh] = 2], }(pior)z (3-3b)
o]
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Thus, Equation (3-1) may be written as

([k] + A [N1] + A2 [NZ]){q )
(o}

{aq} = {0} (3-4)
where A= pcr/Po' This equation represents a quadratic
eigenvalue problem for estimating the buckling loads and
their associated buckling modes.

If it can be assumed that at buckling the displace-
ments are sufficiently small, then the matrix [N2] may be
neglected. Thus, Equation (3-4) reduces to a linear

eigenvalue problem, i.e.,

K] + A [N1 {Agq} = {0} 3-5
([x] [ ]){qo} q (3-5)

In the following sections the solution procedures
for the quadratic and the linear eigenvalue problems will

be described.

3.3 SOLUTION OF EIGENVALUE PROBLEMS

The determinant search method in conjunction with
a modified regula falsi iteration technique is used to
obtain a solution of the quadratic problem. For the

linear problem the inverse vector iteration is used.

3.3.1 QUADRATIC EIGENVALUE PROBLEM

A solution of the quadratic eigenvalue problem
(Equation (3-4)) may be obtained by finding a value of
A for which,

det | [x] + A [N1] + 2A2[N2] |{q )= 0 (3-6)

o)
For the purpose of this study only the smallest

value of A is of interest as it corresponds to the lowest
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buckling load and higher buckling loads have no practi-

cal significance. Therefore, the solution is carried out
by evaluating the left-hand side of Equation (3-6) with
increasing values of A, starting from zero with small in-
crements as shown in Figure 3-1. It may be noted that
det (A=0)>0. Let )\, be such that det (A = A3)>0 but

det (A = Ag = Ap + AX)<0. Then the solution A = K must
lie in the interval [AA, AB].

A modified regqula falsi iteration technique (9)
was used to obtain a closer estimate of the root A. This
technique is described in Appendix B. The computer imple-
mentation of the solution of the quadratic eigenvalue
problem is given in subroutine NLEIGNP of the computer

program contained in Appendix C.

3.3.2 LINEAR EIGENVALUE PROBLEM

As mentioned in Section 3.2 that the linear eigen-
value problem is obtained from the guadratic problem by
neglecting the matrix [N2] from Equation (3-1). 1In this
thesis the linear eigenvalue problem is solved by using
the inverse vector iteration technique as described by
Bathe and Wilson (5). The technique may be regarded as
a mathematical formulation of the Stodola method (23) in
structural mechanics.

From Equation (3-5) the basic relation for the
inverse vector iteration is

Ag=XBg (3-7)

in which for simplicity the usual symbols [ ] and { }
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used for matrices and vectors have been dropped, and
A = [K] and B = -[N1]. The method assumes that A is posi-
tive definite and B may be a diagonal matrix with or with-
out zero diagonal terms or may be a banded matrix, as is
the case in this report.

A technique suitable for computer implemen-
tation is as follows:

(i) Assume a trial vector x,; for the first eigen-

vector q, and that xT B q, £ 0.

1

(ii) for i =1, 2,..., evaluate

Axi+1 =Y

Yiv1 T B X
_T

_ X. . Y.

PR, ) = i (3-8)
i+l i+l
Y .

= i+l
Yis1 —T

(Xiyy Tis1)?

in which p is the Rayleigh quotient.
(iii) The preceding iterative process is consid-
ered to have converged if

0(Xs,q) = p(x3)
| l+;(§ )l < EPST (3-9)
i+l

2 .
S or smaller when the answer is

where EPSI should be 10
required to 2s-digit accuracy. If "n" is the last itera-

tion, i.e., Equation (3-9) is satisfied for i = n, then
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the smallest eigenvalue will be taken to be:

) (3-10)
and the corresponding eigenvector is

X
= n+l -
q, = T 7 )% (3-11)
n+l “n+l

The computer implementation of the techniques
presented above is described in the subroutine EIGENVL
listed in Appendix C.

In the next two sections two special formulations
of the buckling problem will be described, namely, buck-
ling due to tilted loads, and the effect of horizontal

loads on the vertical buckling load.

3.4 BUCKLING OF ARCHES DUE TO TILTED LOADS

In considering the out-of-plane buckling of the
ribs of arch bridges, researchers (38, 41) were concerned
with the effect of the rigidity of the bridge deck. If
the deck is assumed to be perfectly rigid in the horizon-
tal direction, the vertical load transmitted through the
columns (or hangers) to the rib would be tilted as the arch
undergoes a buckling displacement.

Typical deck, through, and half-through arches are
illustrated in Figure 3-2. Figure 3-3a illustrates a
section A-A of a deck arch bridge. The horizontal compo-

nent of the tilted load is Py =P v/H. This horizontal
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load will enter in the equilibrium equation (Equation
(2-35)) corresponding to the horizontal degrees of freedom
in the out-of-plane direction. 1In this case, the load
vector should be modified to include these horizontal loads
PH.

The incremental form of the equilibrium equation is
given by Equation (2-36) as

(k] + [N1(q)] + [N2(q)]) {aq)l = {aP} (3-12)
in which {AP} represents the change in load during buckling.
The change of the vertical loads are of a higher order of
magnitude and may be neglected. Therefore, the right-hand

side of Equation (3-12) contains only the change in hori-

zontal loads:

{AP} = (3-13)

|’U
ce e IM[> O oo
<

Now Av is a component of the vector {Ag}; or, considering
such loadings from all the columns, {Av} is a subset of
{Ag}. Then Equation (3-13) can be written as

{ar} = [T] {q} (3-14)
in which the transformation matrix [T] is a diagonal matrix
with diagonal terms equal to zero except for those terms
corresponding to the v-components of vector {Agq}, in which
case the diagonal term is equal to Pj/Hj, where Pj is load

in and Hj the height of the column concerned. Similar
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analyses for the through bridge (Figure 3-3b) and half-
through bridge would yield the same equation as Equation
(3-14) provided Hi is computed from H; = Y; - HD in which
HD is the difference in elevation between the crown and
the deck and Y; is the Y-coordinate of the node on the rib
to which the ith column or hanger is connected.

Substituting Equation (3-14) into Equation (3-12)
one obtains:

([x] + [N1(@)] + [N2(q)] + [T]) {2q} = {0} (3-15)
Introducing Equations (3-3) into Equation (3-15) a modified
version of the quadratic eigenvalue problem is obtained:

(k] + x ([N1] + [T D) + XZ[NZ]){q {aq} = {0} (3-16)

}

0
in which [TO] corresponds to the loading {P} = {Po}.
Equation (3-16) defines the quadratic eigenvalue
problem when tilting loads are considered. If matrix [N2]
is neglected, the linear eigenvalue problem is:
([xk] + A ([w1] + [TO])){qO}{Aq} = {0} (3-17)

3.5 EFFECT OF OUT-OF-PLANE LATERAL LOAD ON

IN-PLANE BUCKLING LOAD OF ARCHES

A curved beam may be subjected to a combination of
out-of-plane lateral load and in-plane load. For example,
a rib of an arch bridge may be subjected to a horizontal
wind load normal to the plane of the rib in addition to the

in-plane gravity load.
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The approach used herein to an analysis of this
problem is as follows. The horizontal load {PH}is applied
first. The corresponding displacement {qH}is obtained
from:

(k] {q} = (py) (3-18)

Next the vertical load is applied and additional displace-
ment {q,,} would result. The magnitude of the vertical
load is gradually increased until buckling takes place.
Noting that [Nl1] is linear in {q}, Equation (3-1) may be
written as (dropping the [N2] term):

([k] + [N1({gh]){aq} = ([K] +[N1({ggh) ]+

[N1({q,}]){2aq} = {0} (3-19)

Writing as previously N1l({q,}) = 2 N1({g }) (see Equation
(3-3a)), the above equation may be written as

([Ky] + 2 [NL({g,H D {aq} = {0} (3-20)
in which

[k,] = [X] + [N1({qg})] (3-21)
Thus the vertical buckling load can be calculated from
Equation (3-20), the influence of the horizontal load being

accounted for in [K;] as indicated by Equation (3-21).

3.6 COMPUTER PROGRAM

An outline of the program developed for this study
is presented in this section; the program itself is given
in Appendix C. The major steps in the program are described

in the same order in which they are executed:
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2)

3)
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The basic information concerning the physical
description of the arch is input. This infor-
mation includes the number of elements, the

type of arch, the type of load, and the type of
eigenvalue problem to be solved. The global
coordinates of the nodes are also input with

the parameters defining the boundary condi-
tions of the arch.

The element data is input. The input of ele-
ment properties is general for prismatic members
of any cross-section. These properties include
the modulus of elasticity, shear modulus, den-
sity of the material, area of the cross-section,
moments of inertia about the two principal axes
and the torsion constant of the cross-section.
The program has been prepared such that separate
properties for each element may be used if this
is desired (other types of elements may be
included in the structural system by providing
additional subroutines for their stiffnesses).
Next, the geometry of each curved element is
defined, i.e., radius of curvature at each node,
coordinates of the nodes in the element system.
With these coordinates (xg, zB) the coefficients

bj are computed.



4)

5)

6)

7)

8)
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The applied loads are next input. Their orien-
tation and type of loading (i.e., concentrated,
uniformly distributed) was defined with the
information input in 1.

From the information input in 1, the semiband-
width of the structure stiffness matrix is com-
puted. The element linear stiffness matrices
are computed and assembled into the linear stiff-
ness matrix of the structure. This matrix is
assembled in banded format and due to symmetry
only the upper semibandwidth is constructed.

A linear analysis of the arch is performed to
obtain displacements and forces due to the
applied loads. The displacements so determined
are used to compute, for each element, the
matrices [nl] and [n2] which are assembled also
in banded format into the structure incremental
stiffness matrices [N1] and [N2].

From the information input in 1 the type of
eigenvalue problem that is to be solved is
defined.

The lowest eigenvalue and its corresponding
eigenvector for the specified arch and loading

conditions are computed and output.



CHAPTER IV
NUMERICAL RESULTS

4.1 GENERAL

In this chapter a number of numerical examples of
arch behavior were considered using the computer program
which embodies the solution methods developed in the
previous chapters. 1Initially a comparison of the finite
element solutions of linear equilibrium problems was made
with analytical solutions to test the reliability of the
element.

The program is then used to solve both in-plane and
out-of-plane buckling problems for circular and parabolic
arches under several loading conditions using formula-
tions of both linear and quadratic eigenproblems. Next,
the buckling loads of the deck type and through type para-
bolic arches subjected to tilted loads are calculated.
Comparisons of the numerical solutions obtained with avail-
able analytical data are presented. The effect of an out-
of-plane transverse loading on the in-plane buckling load
is then considered.

It should be noted that in all the numerical solu-
tions presented in this chapter the degrees of freedom

dw/ds and dB/ds have been included since the formulation

40
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of the buckling problem does not allow condensation of

any degrees of freedom.

4.2 LINEAR EQUILIBRIUM PROBLEMS

Two types of problems were solved. They are linear
equilibrium problems for a concentrated load at the crown
applied in the plane of the arch or normal to that plane.
The examples were used to verify the reliability of the
element and to consider the effect of the number of ele-

ments on the accuracy of the solution.

4.2.1 CONCENTRATED IN-PLANE LOAD (VERTICAL) AT CROWN

The solution was obtained for two types of arches,
circular and parabolic. In both cases the symmetry of the
load and of the structure were used to reduce the number
of equations. Figure 4-1 shows, for different.numbers of
elements, for a semi-circular arch the difference between
the computed displacement at the crown and the analytical
solution. Two sets of data are shown in the figure. They
differ in the treatment of the degree of freedom dw/ds at
the support. 1In one case this d.o.f. is restrained, i.e.,
set equal to zero. For the other it is free, i.e., a cor-
responding "equilibrium equation” is formally assembled
and it would generally take on a value different from zero.

It is seen that the two sets of data are the same

except for cases including small numbers of elements.
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Since dw/ds enters in the expression for axial strain
(Equation (2-6)) it seems logical to let it be a free
degree of freedom. The subsequent results presented here-
in all correspond to this specification of the boundary
condition. Table 4-1 shows the numerical data for this
case.

The data indicated that the differences with the
analytical solution decrease rapidly with increase in the
number of elements. However, at larger number of ele-
ments (say, greater than 10) the difference increases (for
example, to 2.5% at 18 elements). It was first thought
that the reason might be the sensitivity of the geometry

coefficients bz, b and b“ (Section 2.4.2). For a circu-

37
lar arch these coefficients should be zero but numerical
calculations would sometimes produce non-zero values.
However, when these coefficients were set equal to zero in
the program, no difference in the results was observed.
Thus, it appears that the sensitivity of these coefficients
was not the cause. Such behavior would seem to be the
result of the round-off errors accumulated from the increas-
ing amount of computation as the number of elements was
increased.

It may be noted that the use of the semi-circular

arch in this case may be considered as a stringent test

on the convergence behavior because it is a "deep arch" (2).
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For shallower arches, the convergence should be better,
and this is illustrated in the following.

Figure 4-2 (see also Table 4-2) shows similar
pattern of results for a parabolic arch. It is observed
that the solutions converge very rapidly from 0.61% for
2 elements to 0.0041% for 10 elements. However, as men-
tioned before, the results for larger number of elements,
say greater than 12, are not as good as those for lesser

number of elements.

4.2.2 CONCENTRATED TRANSVERSE LOAD (HORIZONTAL) AT CROWN

For this case, the solution was obtained only for
the semi-circular arch as described in Figure 4-1. Figure
4-3 shows, for different numbers of elements, the differ-
ence between the computed transverse displacement at the
crown and the analytical solution. For 2 elements the
difference is 2.5% but decreases rapidly as the number of
elements is increased (0.37% for 10 elements). Table 4-3
contains the numerical values for this case.

It may be mentioned in passing that the linear
stiffness matrix, for this case of a circular beam sub-
jected to out-of-plane loads, had been compared with that
given in Reference (16) and found to be essentially the

same.
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4.3 BUCKLING PROBLEMS

The computation of the buckling load was discussed
in Chapter III. It was pointed out that the load may be
computed from the solution of a quadratic eigenvalue prob-
lem, Equation (3-4). 1If the quadratic term that involves
the [N2] matrix is neglected, the buckling load may be

computed from a linear eigenvalue problem, Equation (3-5).

4.3.1 LINEAR VERSUS QUADRATIC EIGENPROBLEM SOLUTIONS

To study the- importance of the matrix [N2] in the
solution of the eigenvalue problem, three types of problems
were considered: first, the in-plane buckling of a 90°
circular arch under a uniformly distributed radial load,
second, the out-of-plane buckling of the same type of arch
under the same loading, and third, the out-of-plane buckl-
ing of a parabolic arch subjected to a uniformly distribut-
ed vertical load. All three arches were simply supported.
For the out-of-plane cases, the rotation degrees of free-
dom about the x-axis (Figure 2-3) at the supports were
restrained.

Table 4-4 shows the values and the ratios of the
critical load as computed from the linear eigenproblem to
that from the quadratic eigenproblem. The number of ele-
ments was kept constant at 12. It is seen that in each
case the ratio is very close to unity. This would indicate

that the inclusion of the matrix [N2] in the eigenvalue
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problem would not give significantly different results from
the case where it is neglected. Since much computer time
can be saved by ignoring [8¥2], this has been done in

obtaining the following results.

4.3.2 IN-PLANE BUCKLING

To illustrate the effect of the number of elements
on the computed values of the in-plane buckling loads, the
critical load of a circular arch under a uniformly distri-
buted radial load was calculated for different numbers of
elements. Figure 4-4 shows the results in terms of percen-
tage differences with respect to the analyticai solution
given in Reference (39). Table 4-5 lists the numerical
values. The buckling mode of all solutions was that of
antisymmetry or sidesway (Figure 1-1b). It is seen from
Figure 4-4 that the results "converge" rapidly. However,
instead of converging to the analytical buckling load they
converge to a value approximately 6% higher than the ana-
lytical value. This discrepancy is thought to be due to
the inherent difference of the methods that produced the

results. This point will be discussed again in Chapter V.

4.3.3 OUT-OF-PLANE BUCKLING

The effect of the number of elements on the out-of-
plane buckling of a simply supported parabolic arch (with
the rotation d.o.f. about x—-axis at supports restrained)

under a uniformly distributed vertical load was considered.
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The critical loads in terms of percentage differences with
respect to the analyticai values given in Reference (24)
are shown in Figure 4-5 (see also Table 4-6). 1In this case,
the symmetry of both the geometry of the arch and loading
were utilized to halve the number of degrees of freedom
for the problem. This can be done because the buckling
mode is symmetric.

Again, as the number of elements is increased, a
fast convergence is seen from 9.04% for 2 elements to 2.42%
for 10 elements, beyond which some oscillation of the

results was encountered.

4.4 BUCKLING OF PARABOLIC ARCHES SUBJECTED TO TILTED LOADS

The analysis for the buckling load of arches under
tilted loads was given in Section 3.4. The numerical data
obtained for this study involved all three cases of arch
ribs: deck, through, and half-through as illustrated in
Figure 3-2. It may be seen that basically, in the case of
buckling the columns and/or hangers rotate about the deck
as the rib undergoes out-of-plane buckling.

Table 4-7 shows for deck (HD = 0) and through arches,
the values and the ratios of the buckling loads obtained
in this research to the analytical values published in Ref-
erence (38). It is seen that the agreement between the two
sets of results are quite good. It should be noted that

the formulation developed in Section 3.4 has an advantage
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in that, for the deck arch, the deck is not required to be
tangent at the crown of a symmetric arch (HD = 0, Figure
3-3). For the case of HD # 0 a lower critical load and a
symmetric buckling mode (contrary to an antisymmetric mode
for HD = 0) would be expected. This was verified by
using one of the arches of Table 4-7 (type 1, 20 elements),
but with HD = 3 in., for which the critical load was found
to be only 54% of that when HD = 0.

In addition, the analysis presented in Section 3.4
is also applicable to half-through arch ribs for which no
analytical data is available. The buckling load for such
a rib (type 1, 20 elements, HD = 2.4 in.) has been calcu-
lated to be 325.81 1lb/in. which, as expected, is in between
the buckling loads of 151 1lb/in. for the deck type (HD = 0)

and 566.39 1b/in. for the through type.

4.5 EFFECT OF HORIZONTAL TRANSVERSE LOAD ON THE

VERTICAL BUCKLING LOAD OF ARCHES

The analysis for this loading case has been given
in Section 3.5. Numerical data are presented here for a
parabolic and a circular arch. Several levels of uniform;y
distributed transverse loads were considered. 1In each
case a given level of transverse load was applied first,
and then a uniformly distributed vertical load was added
and the corresponding critical value of that vertical load

was determined.
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Figure 4.6 shows these results for a parabolic
arch. The same data is also shown in Table 4-8. Since
the dimensions of the arch considered correspond to those
of a realistic arch bridge, it is of some interest to
express the transverse load also in terms of wind velocities
in mph.

For low wind velocity the vertical buckling load is
little affected. As the velocity increases the rate of re-
duction in the vertical buckling load rapidly increases.

A point is reached where the wind load would be enough to
make the arch buckle in tension (at about 150 1lb/ft). Sub-
sequent increases in the wind load will result in negative
vertical buckling load (upward) to keep the out-of-plane
symmetrical buckled configuration. It must be noted, how-
ever, in real arch bridges, the two ribs would be braced
together and the response could be quite different from
that of a single arch.

Figure 4-7 shows similar kind of behavior for a cir-
cular arch. Note again that increasing the transverse load
rapidly decreases the vertical buckling load of the arch.
Once again a point is reached (at about 0.1034 1b/in) at
which buckling would be achieved with tension in the rib.
As in the case of the parabolic arch, the buckling mode was

out-of-plane and symmetric.



CHAPTER V

CONCLUSION

5.1 DISCUSSION

In the preceding chapter results obtained using the
finite element developed for this study were compared with
those of analytical solutions. The differences were of the
order of 6% which should be acceptable, at least for engin-
eering design purposes. However, the fact that the numeri-
cal results did not in all cases converge to the analytical
solution should be considered.

It should be noted that fér all comparisons the ana-
lytical solutions correspond to the classical theory of
elastic stability (39), i.e., at the buckling load an equi-
librium configuration exists adjacent to the original unde-
. formed configuration of the structure. In this sense, the
elastic deformation prior to buckling is neglected.

The numerical method used herein may be regarded as
an offshoot from a nonlinear equilibrium analysis (27).
That is, if one formulates the tangent stiffness of the non-
linear structure (which is a function of the elastic defor-
mation) and makes the assumption that the displacements

increase linearly with the load, an eigenproblem for the

49
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buckling load is obtained as described in Chapter III.

This approach does not appear to be identical to the class-
cal theory, and hence the results should not be expected

to be exactly the same. Although the differences of the
buckling loads calculated certainly are not excessive,in-
asmuch as this method is an approximate one and is applied
here for the first time, as far as is known to the writer,
it should be used only with caution.

Of course, like in most cases of finite elements,
the method developed here may be used for problems intrac-
table by analytical methods. The present method has the
advantage of being able to represent practically any curved
shape with prescribed curvatures as well as slopes at the
ends. In addition the [N1] and [N2] matrices can be used
for the more exact nonlinear equilibrium analysis to deter-
mine the fundamental path (Figure 1-2). Also worthy of
note is that the method can be applied to a structural
system (including more than one type of element) in as
straightforward a manner as in the linear structural analy-
sis so far the assembling of the different matrices
are concerned.

A significant contribution of this work is the
formulation of the tilted load problem as presented. It
would produce buckling loads not only for the deck and

through types arch ribs but the half-through type also.
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Another feature of this study is the formulation of the
problem of the interaction of horizontal and vertical loads
on the stability of arches.

Extension of this study should include an attempt to
gain an in-depth understanding of the role of the matrices
[N1] and [N2] as used herein. Further applications may
include the stability of curved structures under different
types of loading, the stability of ribs in half-through
arch bridges, the stability of bridge systems (in which the
ribs are braced together). More in-depth study should be
made of the interaction of out-of-plane lateral load and
in-plane load on the stability of arches. Finally, the more
exact nonlinear equilibrium behavior may be studied using

the [N1] and [N2] matrices developed herein.

5.2 SUMMARY

In the preceding chapters, the development of a
three dimensional beam element curved in a plane has been
presented. The solution method has been embodied in a gen-
eral computer program written in FORTRAN.

The analysis uses the finite element method. A
nonlinear formulation of the displacement-strain relations
has been employed. Numerical integration was utilized to
obtain the stiffness matrices of the curved element. The
geometrically nonlinear effects are accounted for by the
matrices [N1] and [N2] determined from the cubic and quartic

parts of the strain energy expression, respectively.



The linear equilibrium solution of circular and para-
bolic arches under a concentrated vertical or horizontal
transverse load at the crown was carried out by using the
Gauss elimination procedure. Convergence, with respect to
the number of elements used, was indicated when the results
obtained with the computer program were compared with the
analytical results.

The applications of the computer program have also
included the computation of the buckling load of arches sub-
jected to different loading conditions. Increasing number
of elements were used to obtain a better measure of the
reliability of the element developed in this report and
also to provide guidance for selecting the number of ele-
ments to be used for later applications. It appears that
effective solutions may be obtained with approximately 10
elements.

Comparative studies between the guadratic and the
linear eigenvalue problems were carried out. The solutions
did not differ by more than 0.5% which indicated that the
inclusion of the matrix [N2] in the eigenvalue problem
would not give significantly different results from those
obtained from the linear eigenvalue problem for which the
matrix [N2] was neglected.

The out-of-plane buckling of parabolic arches under
tilted loads Qas also considered. Comparisons with data

published for deck and through arch types in Reference (38)
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indicated reasonably good agreement. While earlier results
were limited to cases in which the deck was tangent to the
crown, it was shown that the formulation developed in this
~investigation could be used to compute the buckling load
for the more realistic case when the deck is not tangent

to the crown (HD # 0, Figure 3-3), and also for the half-
through type arch ribs.

Results on the influence of a uniformly distributed
transverse load (normal to plane of arch) on the vertical
buckling load of a parabolic and a circular arch were pre-
sented. It was found that while a small transverse load
has little effect on the vertical buckling load, the latter

decreases rapidly as the transverse load increases.



54

TABLE 4-1 LINEAR EQUILIBRIUM OF CIRCULAR ARCH SUBJECTED
TO CONCENTRATED IN-PLANE LOAD AT CROWN

NUMBER OF DISPLACEMENT DIFFERENCE**
ELEMENTS AT CROWN* (%)
(in.)

2 0.0137649 6.20
3 0.0135398 7.73
4 0.0143005 2.55
5 0.0143899 1.94
6 0.0146852 0.03
8 0.0146179 0.39
10 0.0146035 0.48
12 0.0149135 -1.63
15 0.0145392 , 0.91
18 0.0142818 2.67
20 0.0144516 1.52

* Analytical Solution = 0.0146740 in.

** 3 Difference = Analytical-Numerical
Analytical
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TABLE 4-2 LINEAR EQUILIBRIUM OF PARABOLIC ARCH
SUBJECTED TO CONCENTRATED IN-PLANE
LOAD AT CROWN

NUMBER OF DISPLACEMENT DIFFERENCE**
ELEMENTS AT CROWN* (%)

(in. x 10™%)

2 0.464243 0.61

3 0.465878 0.26

4 0.466563 0.11

5 0.466852 0.049
6 0.466870 0.046
8 0.466928 0.034
10 0.467066 0.0041
12 0.467152 -0.014
16 0.469314 -0.48
20 0.464965 0.45

* Analytical Solution = 0.467085 x 10~"* in.

** g Difference = Analytical-Numerical
Analytical
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TABLE 4-3 LINEAR EQUILIBRIUM OF CIRCULAR ARCH
SUBJECTED TO CONCENTRATED OUT-OF-PLANE
LOAD AT CROWN

NUMBER OF DISPLACEMENT DIFFERENCE* *

ELEMENTS AT CROWN* (%)
(in.)

2 2.755249 2.50
3 2.783664 1.50
4 2.795598 1.07
5 2.801654 0.86
6 2.806454 0.69
8 2.811643 0.51
10 2.815347 0.37
12 2.812205 0.49
15 2.816225 0.34
16 2.824705 0.04
18 2.822199 0.13
20 2.820483 0.19

* Analytical Solution = 2.825930 in.

** g Difference = Analytical-Numerical
Analytical
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TABLE 4-5 IN-PLANE BUCKLING OF CIRCULAR ARCH
SUBJECTED TO UNIFORMLY DISTRIBUTED
RADIAL LOAD

NUMBER OF CRITICAL LOAD* " DIFFERENCE**

ELEMENTS (1b/in) (%)
3 41.55 -14.91
4 48.43 - 0.82
5 50.95 4.34
6 51.69 5.86
8 51.95 6.39
9 51.85 6.18
12 51.41 5.28
15 52.05 6.59
18 51.25 4.96
20 51.42 5.30

* Analytical Solution = 48.83 1lb/in

** § Difference = Numerical-Analytical
Analytical
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TABLE 4-6 OUT-OF-PLANE BUCKLING OF PARABOLIC ARCH
SUBJECTED TO UNIFORMLY DISTRIBUTED VERTICAL

LOAD

NUMBER OF CRITICAL LOAD¥* DIFFERENCE**

ELEMENTS (1b/in) (%)
2 206.07 9.04
3 197.82 4.67
4 195.59 3.49
5 194.67 3.01
6 194.43 2.88
8 193.79 2.54
10 193.57 2.42
12 189.61 0.33
16 192.79 2.01
20 193.56 2.42

* Analytical Solution 188.99 1b/in

** ¢ Difference = Numerical-Analytical
Analytical
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TABLE 4-8 EFFECT OF HORIZONTAL TRANSVERSE LOAD ON
VERTICAL BUCKLING LOAD OF A PARABOLIC ARCH¥*

HORIZONTAL LOAD VERTICAL BUCKLING
(1b/ft) WIND (mph) LOAD (1lb/ft)

0 0 3957
20 18 3887
40 26 3678
60 31 3330
80 36 2480
100 40 2210
120 44 1436
140 48 518
160 51 -526

* See Figure 4-6

TABLE 4-9 EFFECT OF HORIZONTAL TRANSVERSE LOAD ON
VERTICAL BUCKLING LOAD OF A CIRCULAR ARCH

HORIZONTAL LOAD VERTICAL BUCKLING
(1b/in) LOAD (1b/in)
0 5.44
0.0272 5.06
0.0544 3.91
0.0816 2.00

0.1088 -0.68
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a] SYMMETRICAL BUCKLING

bl ANTISYMMETRICAL BUCKLING

Figure 1-1. In-plane buckling under
symmetrical loading.
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Figure 1-2. Load-deflection relation.
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Figure 2-1. Beam element [curved in
x-z plane].
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Figure 2-2. Cross-section of prismatic
member.
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Figure 2-3. Coordinate systems.

X,Y,Z = STRUCTURE SYSTEM
y4 X,y,Z = ELEMENT SYSTEM

Figure 2-4. Typical element.
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Figure 2-5. Typical element after trans-
formation to element coor-
dinate system.
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Determinant search method.

Figure 3-1.
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COLUMNS

DECK ARCH BRIDGE

HANGERS

HALF-THROUGH ARCH BRIDGE

Figure 3-2. Typical arch bridges.
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Figure 3-3. Tilted loads on ribs of deck and
through bridges.
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APPENDIX A
METHODS FOR COMPUTING bj IN EQUATION (2-17)

Three methods of solution were considered,i.e.,
closed form solution for the coefficients in single and
double precision, and a normal application of the Cramer's
rule method in single precision computation.

The closed form solution is as follows:

D
b; = & (A-1)

in which

D =24 0 [-0%sin 0 - 40%2 cos @ + 1) +
24 0 sin 6 + 24 (cos 6 -1)] (A-2)

D, = 12 (R2 - R1) [- 0% = 2 0% sin 0 - 120% cos O +
24 0 sin O + 24 (cos 6 - 1) ] +
12 (z5 - Rl sin0)[@"sin 0 + 20%2 cos 0 + 1) -
606%sin @ ] + 12 [xg - RL(1 - cos@)] (a-3)
[-0%cos® +40¥sin0+ 6 02 (cos ©0-1)]

D; = 8 [xB-Rl(l - cos0) ][0%(2 cos 6 + 1) -
602sin 6 - 60(cos 6 -1)]+8 (R2 - Rl)
[6%(cos © + 2) =302 sin0] +8[zg- Rl sind]

[- 20%sin 6 - 668%cos® + 69 sinq] (A-4)
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D, = 6[zg - Rl sin 0][0%*sin @ + 20(cos 6 -1)] +
6(R2 - R1)[-0%(cos © + 1) + 4 0 sin 0 +
4(cos @ = 1)] + 6[xg - RL(1 - cos 0)][-
0®(cos @ + 1) + 2 0 sin 6] (A-5)
A comparison of solutions by the methods was made
of a parabolic arch (H = 16.25 in, L = 96 in). The hori-
zontal span L was divided into 16 equal intervals with
element 1 next to the support and element 8 next to the
crown. Table A-1 shows the values of the bj coefficients
and the computed lengths by each of the solution pro-
cedures. It may be seen that the normal application of
the Cramer's rule in single precision gives as good
results as those obtained from the double precision com-
putation of the closed form expressions. Therefore,
Cramer's rule was chosen to compute the coefficients.
It may be seen also that the element lengths based on the
polynomial approximation compare very well with the exact

values.
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APPENDIX B

MODIFIED REGULA FALSI ITERATION TECHNIQUE

The technique used for the determinant search
method (Equation (3-6)) is that described by Conte and
de Boor (9). Figure B-1 illustrates the method graphi-
cally. If the curve f(x) is continuous in the interval
[ag, bo] then the first approximation to the root is b,,
obtained by a straight line from point F, (ao, f(ag)) to
G, (bg, f(bg)). The next approximation, b,, is obtained
by joining G°, (b,, f£(b,)) and F*, (ag, %f(ap)). Next
time F”°°, (ag, %f(agy)) will be used and a, is obtained.
It is seen to lie at the other side of the root. Now the
procedure to approach the root is inversed by joining the
value of the function at a, with G"“/2, (b,, %f(b,)), and
continued until convergence is achieved. The algorithm
is given as follows: Given f(x) continuous on [ag, bg]
and such that f(ag) f(by) < 0.

Set F = f(ag), G =f(b0), Wo = ao

For n 0, 1, 2,..., until satisfied, do:

Calculate w ., = (Gap - Fbp)/(G - F)

n+

G = f(wn+l)
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If also f(wn):f(wn+l)> 0, set F = F/2

Otherwise, set a = w , F = f(w )

n+l n+l n+l

b b

n+1l = n
If also f(wn):f(wn+1)> 0, set G = G/2
Then f£(x) has a root in the interval [a

n+l’

bn+l]
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flx]

ao.a1‘ a2

y

Figure B-1. Modified regula falsi iteration.
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APPENDIX C -

COMPUTER PROGRAM

cC.1 DESCRIPTION OF SUBROUTINES

A general description of the computer program is
given in Section 3.6. A listing of the program is pre-
sented at the end of this appendix with a considerable
amount of "comment cards" to facilitate an understanding
of the program. In the following a brief description
of the subroutines is given.

The computer program consists of a main program
called CONTROL, seventeen subroutines and one function sub-
program. The program CONTROL directs the flow of the com-
putations by calling the appropriate subroutines for each
step of the solution procedure. The subroutine NODDATA
reads data regarding the overall geometry of the arch and
data regarding the nodal degrees of freedom. It generates
the coordinates of the nodes and the equation numbers. The
subroutine LOAD reads the location, magnitude, and direction
of the external loads being applied to the arch. The sub-
routine BAND computes the semibandwidth, MBAND, that the
stiffness matrix of the structure will have. This is done
by obtaining the largest difference between the equation

numbers of the nodes of any element.
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The subroutine CURVED reads and directs all basic
information concerning the curved elements, i.e., material
properties, element and cross-section information, element
geometric properties, and computation of the stiffness
matrices of each element and their assembly into the struc-
ture stiffness matrices. The computation of the geometric
properties of the curved elements is accomplished by the
subroutine GEOMTRY. The subroutine NUMINT performs the
numerical integration to obtain the linear and incre-
mental stiffness matrices of each element. The assembly
of these stiffnesses into the appropriate global stiffness
matrices is accomplished with the subroutine ASEMBLE. The
subroutines LINSOLN and GAUSSOL solve the system of linear
equations by Gauss elimination. The solution of the linear
eigenvalue problem and the gquadratic eigenvalue problem is
obtained by the subroutines EIGENVL and NLEIGNP respec-
tively. The subroutine EIGENVL uses inverse vector itera-
tion with Rayleigh quotient to obtain the lowest eigen-
value and corresponding eigenvector of the linear problem.
For the solution of the quadratic problem, the subroutine
NLEIGNP uses the modified regular falsi method of itera-
tion by calling the subroutine MRGFLS and the function sub-
program DET.

The solution of the buckling problem under tilted

loads for either deck and through arches, is accomplished
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by the subroutine TILTED. For solutions of half-through

arches, modifications should be made as explained in

Section C.4.

c.2 VARIABLES USED IN THE COMPUTER PROGRAM

The variable names used in the program are listed

below in alphabetical order:

Program CONTROL

A (M)

AC =

Al, A2 =

Area of the section of element M;

Coefficient of parabola, Y = (AC)X?,
that defines arch;

Limits of the numerical integration;

B2(M), B3(M), B4(M) = Coefficients defined by geo-

D(I)

DN (J)

D10 =

E(N)

G (N)

IARCH

IA(N, I)

metry of element M, they are used in the
numerical integration;

Displacement vector, found from the
solution of the system Sx*D = R. I varies
from 1 to NEQ;

Vector that identifies the displacements
at the two nodes of an element. J varies
from 1 to 1le;

Dummy Variable;

Modulus of elasticity of element group N;
Shear Modulus of element group N;
Variable that identifies the type of arch
being studied. If EQ. 0, parabolic arch,
if EQ. 1, circular arch;

"Boundary condition code" of node N for
its Ith degree of freedom. Initially it
is defined as follows:

IA(N, I) = 1 1if constrained;



IB(N, I)

ICAL 1

ICAL 2

ICAL 3

ICAL 4

ICAL 5
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0 if free
After processing,

IA(N, I) 0 if initially = 1;
equation number for the d.o.f.

if initially = 0;

"Additional boundary condition code."
IB(N, I) 0 if free;

N if slave to node N;
-1 if to be condensed.

After processing, IB(N, I) is unchanged
except, IB(N, I) = =-(condensation number
for the d.o.f. if initially IB(N, I) =
-1);

Variable controlling print-out.

If EQ. 0, print element weight, nodal
loads due to weight of elements, limits
of integration and number of quadrature
points, linear stiffness of each element,
incremental stiffnesses of each element.
If EQ. 1, skip:;

Variable controlling print-out.
If EQ. 0, print element geometric
properties.

If EQ. 1, skip;

Variable controlling print-out.

If EQ. 0, print uncondensed load vector
and uncondensed structure stiffnesses S,
S1l, and S2.

If EQ. 1, skip;

Variable controlling print-out.

If EQ. 0, print initial and nodal loads
processed into load vector, R(I).

If EQ. 1, skip;

Variable controlling print-out.

If EQ. 0, print load vector R(I) for
linear solution and the displacement
vector, D(I).

If EQ. 1, skip;
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ICAL 6

Variable controlling print-out.

If EQ. 0, print nodal displacements on
each element.

If EQ. 1, skip;

ICAL 7

Variable controlling print-out.

If EQ. 0, print data sent to the sub-
routine GAUSSOL on each iteration of
the linear eigenvalue problem. Also
print the intermediate values after
each iteration.

If EQ. 1, skip;

IDATA = Variable for checking input data.
If EQ. 1, data check only, skip all
computations.

If. EQ. 0, solve problem;

IDIRCN = Variable identifying if uniformly dis-
tributed load is vertical or horizontal.
If EQ. 0, distributed load is vertical.
If EQ. 1, distributed load is horizontal:

IEIGEN = Variable identifying the type of eigen-
value problem that is being solved.
If EQ. 0, linear.
If EQ. 1, quadratic
If EQ. 2, both linear and quadratic;

ILAT = Variable defining if the influence of
initial horizontal load on the vertical
buckling load is going to be computed
(EQ. 1) or not (EQ. 0):;

ILOAD = Variable identifying if the applied load
is uniformly distributed (EQ. 0) or con-
centrated at the nodes (EQ. 1);

IPAR = Variable identifying different stages
of the computation in the subroutine
CURVED;
= 2, assemble and store in tape matrix K;
= 3, assemble and store in tape matrix N2;
= 4, assemble and store in tapematrix N1;

ISTRES = If EQ. 1, compute nodal forces and stresses
in the structure. If EQ. 0, skip:;

ITILT = Variable identifying whether the tilted
load case is going to be studied or not.
If EQ. 1, compute eigenvalue for tilted
case. If EQ. 0, skip;



IXX (M)

KT (M)

L(N,K)

LINEQL

LENGTH (M)

MBAND

MP

NCOND

NE

NE

NODET (M)

NODEJ (M)

NSIZE

NTYPE (J)

NUMEG

NUMEL (I)

NUMND

93

Moment of inertia about the y-axis of
the cross-section of element M;

Torsion constant of element M. Depends
on the shape and dimensions of the cross-
section;

Variable identifying the Kth element in
the element group N;

If EQ. 0, execute complete buckling
problem.

If EQ. 1, compute linear equilibrium
solution only;

Length of element M;

Semibandwidth of structure stiffness
matrix;

Number of points in the Gauss-Legendre
quadrature formula;

Identifies the total number of degrees
of freedom to be condensed out;

Total number of elements in the struc-
ture;

Identifies the total number of equations
that the system has;

Variable identifying the number of node
I of element M;

Variable identifying the number of node
J of element M;

Identifies the total number of degrees
of freedom, condensed and free, of the
system. (NSIZE = NEQ + NCOND);

Total number of elements of type J;

Total number of element groups;

Total number of elements in element
group I;

Total number of nodal points;
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PHII (M) = Angle ¢; that has tangent at node J of
element M, with respect to the horizontal;

PHIJ (M) = Angle ¢35 that has tangent at node J of
element™M, with respect to the horizontal;

PN (N, I) = Load applied at node N, in the I direction;

RAD = Radius of the arch in the case that it
is circular;

R(I) = Load vector of the system;

RI (M) = Radius of curvature at node I of element
M;

RJ (M) = Radius of curvature at node J of element
M;

S(1,J) = I, Jth element of the structure stiff-
ness matrix;

SE(I,J) = I, Jth element of the element stiff-
ness matrix;

TI,...,T8 = vVariables for title of problem being
solved;

TETA (M) = Angle between the radii of curvature at

nodes I and J of element M;

U(N, I) = Variable identifying the displacement
in the direction I of node N;

X (N) = Global X-coordinate of node N;

Y (N) = Global Y-coordinate of node N;

Z (N) = Global Z-coordinates of node N.

Subroutine NODDATA

DI = fTotal number of horizontal intervals in
which the span of the parabolic arch is
to be divided into;

H = Height of the arch;
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Subroutine LOAD

1%

Subroutine CURVED

DM
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Span covered by the arch;

X-coordinate of the left most node of
the arch.

Uniformly distributed load on the arch.

Density of the material

Subroutine GEOMTRY

DY

D2Y

XR, ZR

Subroutine NUMINT

JFIRST
JLAST

KEY

NPOINT

SUM

WEIGHT

First derivative of the curve defining
the arch at a particular node N;

Second derivative of the curve defining
the arch at a particular node N;

Nodal local coordinates of node J, after
the rotation of a particular element M.

Initial value of j, K; :
Final value of j, Kiyy -1

Vector K. Used to locate the roots and
weight factors for the MP-point formula;

Vector P. Used to locate the roots and
weight factors for the MP-point formula;

Accumulated sum to find the area under
the curve;

Vector of weight factors;

Vector of Legendre polynomial roots.
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Subroutine EIGENVL

EIGEN

EIGNVTR

EPSI

MAX

XB

Subroutine NLEIGNP

Eigenvalue found from the inverse
iteration soclution of the linear eigen-
problem;

Eigenvector corresponding to EIGEN;
Variable determining the convergence
criterion to the eigenvalue being
sought;

Maximum number of iterations allowed;

Rayleigh quotient. Used to improve the
inverse vector iteration method;

Vector that stores the approximation to
the eigenvector after each iteration.

A, B

ERROR

FL

FTOL

NTOL

XTOL

Variables defining the interval in which
the eigenvalue is enclosed;

Upper bound on the computation of the
eigenvalue after convergence;

Value of the determinant of the matrix
S =K+ Lx*N1l+LxLxN2 at the converged
value of the eigenvalue;

Convergence criterion for sufficiently
small value of the determinant of eigen-
value;

Converged value of the eigenvalue,
L = (A + B)/2;

Maximum number of iterations allowed;
Convergence criterion for sufficiently

small interval A, B , enclosing the
eigenvalue.
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Subroutine MRGFLS

IFLAG = Variable defining the status of the
iteration. If EQ. 1, convergence was
successful. If EQ. 2, no convergence
after NTOL iterations. If EQ. 3, both
endpoints, A and B, are on the same side
of the root, hence method of iteration
can not be used:

Fa = Value of the determinant of matrix S at
interval endpoint A;

FB = Value of the determinant of matrix S at
interval endpoint B;

W = Weighted value of the root between inter-
val endpoints A and B;

FW Value of the determinant of matrix S at

the weighted value W.

Function DET

DET = Value of the determinant of the matrix
S =K+L * N1 + L * L » N2 at a particu-
lar value of L;

K = Part of element S(I, J) corresponding to
linear stiffness K(I, J);

N1 = Part of element S(I, J) corresponding to
matrix N1(I, J);

N2 = Part of element S(I, J) corresponding to
matrix N2(I, J):

Subroutine TILTED

IDECK = Variable identifying a deck arch, EQ. 1,
or a through arch, EQ. 0;

HD = Distance from the deck to the crown of
the arch;

P = Load on each of the columns or on each

of the hangers of either the through
arch or the deck arch respectively.
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TILTED LOAD SOLUTION FOR HALF-THROUGH ARCHES

In this case statements 32 to 44 in the subroutine
should be replaced by the following:

H(N) = Y(M) - HD
WRITE (61, 2040) N, H(N)

IF (H(N). EQ. 0.) GO TO 100
S(I, 1) = s(I, 1) + P/H(N)

CONTINUE






