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ABSTRACT 

USING TRANSCRIPTOME AND DATA SCIENCE METHODS TO UNCOVER GENE 

REGULATORY AND FUNCTIONAL INFORMATION 

 

By 

Sahra Uygun 

Even in the well-studied model organisms, there are still genomic regions with unknown 

function. These genomic regions include protein-coding genes and regulatory elements that are 

key components of transcriptional regulation. With technological advances, more biological data 

are being generated including spatial, temporal, developmental, and conditional gene expression 

data. Gene expression data, and specifically co-expression analyses have been widely used to 

predict gene function through guilt by association. However, it remains to be seen to what degree 

co-expression is informative, whether it can be applied to genes involved in different biological 

processes, and how the choice of gene expression dataset and clustering algorithms impact 

inferences about gene functions. To answer these questions, I used co-expression to identify novel 

genes that function in a biological process, and the impact of different clustering algorithms on the 

ability to identify genes that function in the same pathway. Apart from the functional associations, 

gene co-expression analyses can also be used to identify the putative cis-regulatory elements that 

are over-represented in co-expressed gene promoters. These elements can be used to build models 

of gene regulation under changing environments and genome-wide models of how different organ 

and cell type gene expression are regulated under changing environments have not yet been built 

in plants. I used Arabidopsis thaliana organ and cell type stress responsive gene expression data 

and co-expression clusters to identify putative cis-regulatory elements. Using these elements and 

machine learning models, I predicted high salinity responsive gene expression in shoots, roots and 

six root cell types. I found that plant organ and cell type transcriptional response to high salinity 



are likely regulated by a core set of elements that we identified and built predictive models of plant 

spatial transcriptional responses to environmental stress. Overall, this research contributes to 

understanding the role of “big data” in biology, provides guidelines for effectively using gene co-

expression in functional associations and shows how computational approaches help in identifying 

gene regulatory information. 
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CHAPTER 1 

INTRODUCTION 

1.1 Omics data and its use in functional genomics 

The term “omics” is commonly used in biological sciences to refer to genome-scale data 

[1]. For example, genomics, first used by Thomas Roderick in 1986, refers to sequencing and 

analyzing the genomes of organisms [2]. Currently 3,808 eukaryotic genomes, including more than 

100 plant species [3], are available in The National Center for Biotechnology Information (NCBI) 

database [4]. Even though genome sequences are useful, they only constitute a “natural coordinate 

system” [5], where the individual components involved in how organisms develop, function and 

respond to the environment are left to be identified. Once a genome has been sequenced, the next 

step is to identify and annotate the functional regions in the genome. This has been the major focus 

of functional genomics approaches, which have the goal of understanding functions of unknown 

genes and other regions in genome to understand how organisms function [5,6]. Annotations are 

descriptions of genomic features, and these descriptions can be structural or functional [7]. 

Structural annotations include specifying the coordinates, splice forms, intron/exon junctions of 

genes and could also include regulatory site information. Structural annotation of genes can be 

considered as the starting point for characterization of gene functions [3]. After structural 

annotation of genes is carried out, cellular function and location of gene products as well as the 

biological processes that the genes are involved in can be characterized. All these biological roles 

can be considered as functional annotations [8]. One of the common approaches towards 

annotating biological roles of genes is using comparative sequence analyses, comparing sequence 
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of unknown genes to known ones [9], particularly through interspecies comparisons. Sequence-

based functional inference relies on high sequence similarity, which might reflect functional 

similarity but not all functionally related genes share sequence similarity [10].  

Genomic sequence alone is not sufficient to pinpoint biologically meaningful regions. To 

uncover gene function, high-throughput data have been generated covering multiple layers of 

biological information involving chromatin, DNA, RNA, proteins and metabolites [11]. For 

example, chromatin level information includes nucleosome occupancy and histone modifications, 

while genome level information includes genomic sequences and genome binding by regulatory 

components like transcription factors (TFs). Gene product information such as quantification of 

transcripts, proteins, and metabolites have been generated at a genome-scale. Different levels of 

biological information contribute to understanding functions of unknown genes that are the goals 

of functional genomics approaches. At the levels of gene products, transcript level information 

i.e. steady-state mRNA levels is the most abundant data type [12] and available from publicly 

data repositories such as NCBI. This facilitates the computational studies to utilize the vast number 

of gene expression data to extract biological information.  

1.2 Abundance and utility of gene expression profiling data 

Gene expression data are useful either alone or in combination with other data for disease 

classification [13–16], marker gene discovery [16], expression quantitative trait loci (eQTLs) 

discovery [17–19], learning about gene evolution [20], and identifying gene co-expression 

networks that can lead to gene regulatory and functional information [9,21,22]. In achieving these, 

publicly available gene expression datasets are useful resources. Gene Expression Omnibus (GEO, 

[23]) is a public functional genomics data repository [24]. Originally, this repository is started for 
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storing microarray and sequencing based high-throughput gene expression data similar to the 

ArrayExpress repository of European Bioinformatics Institute (EBI, [25]). However with 

technological advances, other biological data, such as nucleosome occupancy, are also being stored 

there. Nonetheless, gene expression profiling is the most abundant data type in this repository. 

Gene expression profiles could be obtained by microarray [26] and RNA-seq [27] experiments. 

These methods are the most widely used gene expression measurement approaches. For example, 

48,501 gene expression datasets available in GEO are based on microarray technology. 

Microarrays for detecting gene expression was developed in 1995 [28] and the aim was to monitor 

the expression of many genes quantitatively in parallel [26]. This technique involves fixed DNA 

probes that the cDNA from biological sample can bind to and hybridize [26]. As hybridization is 

involved, using microarrays require prior knowledge of genome sequence, which is a limitation if 

an organism of unknown genome or transcriptome is studied. Also, cross-hybridization and 

saturation of hybridization are additional limitations of array-based approaches in monitoring gene 

expression [29]. To overcome some of these limitations, sequencing-based techniques have been 

developed, where prior sequence information is not required [27]. Currently, 11,338 gene 

expression datasets available in GEO are based on high-throughput sequencing. Different from 

array-based approaches, cDNA sequence can be directly determined using sequencers. Sequencing 

has also been improved from traditional Sanger sequencing and tag-based sequencing (such as 

Serial Analysis of Gene Expression (SAGE) [30]) to next-generation sequencing [29].  

Through the genome-scale expression profiling techniques, it is possible to understand 

which genes are induced/repressed and highly/lowly expressed during a developmental stage, in a 

particular tissue, and under a particular condition. However, the number of genes altered in gene 

expression is not the only information that could be obtained from systems-wide gene expression 
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data, as it is possible to monitor thousands of genes and compare multiple gene expression profiles. 

This has led to substantial efforts in the field of bioinformatics to advance and develop data mining 

strategies to use the accumulating gene expression data to identify functions of genomic regions. 

For example, co-expression analysis relies on the observation that functionally related genes often 

have similar expression patterns and can be useful in reverse genetics approaches for narrowing 

down candidate genes to test for a particular function [10]. In addition, co-expressed genes tend to 

share common regulatory signatures such as similar TF binding sites [31]. This also makes gene 

expression data useful in finding over-represented motifs (potential TF binding sites) from co-

expressed genes. Databases of co-expression gene networks, where expression similarity between 

genes (nodes) are captured in connections (edges), are available for multiple plant species (e.g. 

Arabidopsis thaliana, rice, barley and others [32–35]) as well as other organisms like fruit fly, 

mouse, and humans [36]. 

In the following sections, I discuss the utility of using gene expression data (temporal, 

spatial, and conditional) and co-expression analyses in hypothesizing gene function as well as 

identifying potential TF binding sites. It should be noted that the gene expression data only reflects 

one level of gene regulatory information among multiple levels of biological information 

mentioned earlier. Through integration of different levels of information, it is possible to get a 

more complete picture of inferred “function” compared to using one data type. This type of data 

integration efforts have been carried out in multiple organisms including Arabidopsis thaliana, 

fruit fly, mouse, and humans [37–39] by combining transcriptome with, for example, protein-DNA 

interactions, protein-protein interactions, and literature co-occurrences [40]. However, in data 

integration approaches, transcriptome data remain the most abundant and the most influential in 

capturing gene functional relationships [10,41]. 
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1.3 Assigning functions to genes via computational approaches using gene 

expression data  

 Gene function can be characterized in multiple ways. Function of a protein-coding gene 

can be described by the biological processes and pathways its products are involved in, the 

molecular functions its gene product have, and/or the cellular component the gene product is 

located in. These properties of genes are summarized in controlled vocabulary in Gene Ontology 

(GO), where ~20 organisms have gene annotations to one of the following hierarchical ontologies: 

biological processes, molecular function and cellular component [42]. In the model plant, 

Arabidopsis thaliana, 40% of protein-coding genes have annotations with experimental evidences 

in at least one of the ontologies [10]. However, only ~5% of A. thaliana genes have annotations to 

all ontologies based on experimental evidence [10].  In addition, it is remarkable that only 1% of 

rice protein-coding genes have annotation in at least one of the ontologies based on experimental 

evidence [10]. This leaves over 90% of genes to characterize experimentally. Thus, it is necessary 

to computationally predict gene function and narrow down the candidate genes that would be 

further experimentally tested.  

Gene expression data are useful in hypothesizing and predicting gene function. If a gene X 

with unknown function coordinately expresses over a variety of experimental conditions (co-

expresses) with a gene Y of known function, then it is possible that the gene X has a similar 

function as Y. This is known as guilt by association [43]. The relationship between co-expression 

and function was first demonstrated in Saccharomyces cerevisiae and human transcriptome studies 

[45–48]. This approach has been used in plants as well to identify genes that are involved in 

multiple pathways including fatty acid biosynthesis, specialized metabolism, and secondary cell 

wall biosynthesis [10,49–51]. For example, 71 co-expression modules that were associated with 
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genes that are expressed in specific tissues or in response to pathogen infection, abiotic stress, 

hormone treatments or environmental conditions were identified in Oryza sativa (rice) [52]. 

Importantly, 17% of the 17,298 rice genes that lacked a functional description (GO annotation) 

were found in at least one of the co-expression modules that could be functionally associated to 

other genes in the module [52]. In another recent study, researchers used co-expression to 

hypothesize gene function using guilt by association in Bos taurus (cattle) and they further 

supported their predictions with protein interaction data. Overall, 132 genes with previously 

unknown function were assigned biological roles [53]. 

Although co-expression is useful in predicting gene function, there are limitations to 

consider. First, assessing co-expression is not trivial. How similarity of expression is calculated 

and how high similarity is defined are expected to impact which genes are considered to be co-

expressed. Thus, their definition can change conclusions regarding gene functional associations. 

The second limitation is that, depending on the number and type of gene expression samples used 

in co-expression analysis, the identity of genes defined as co-expressed might change. Current 

studies typically combine multiple datasets for gene function inference [9,25]. Including large 

numbers of samples (e.g. over ~100s) increases the statistical power of calculating expression 

similarity. However, combining gene expression samples from different experiments may result 

in the loss of context-specific relationships [54]. For example, similarities in gene expression 

profiles may depend on the cellular context [55], such as the differences in co-expression groups 

in cancer vs. non-cancer cells [56]. The inclusion of additional data may eliminate the co-

expression signal. The third limitation of using co-expression in functional inference is that the 

genes of interest might be regulated at a level other than transcription, such as post-transcriptional 

regulation. In this case, the gene co-expression relationship might not be informative to pinpoint 
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functionally related genes and data integration methods that incorporate epigenetic and post-

transcriptional information are expected to be more informative compared to using co-expression 

alone. Apart from gene functions, cis-regulatory code can be inferred from analyzing co-expressed 

genes. The knowledge of components of gene regulatory machinery is important for understanding 

how genes are regulated at the transcriptional level. Among the regulatory components, the cis-

regulatory elements (CREs) that the TFs bind to drive gene expression are important for regulating 

temporal, spatial and conditional gene expression. Gene expression data and co-expression 

analyses are useful in identifying CREs. CREs can then be used to form predictive models of gene 

expression. 

1.4 Deciphering key players in gene expression regulation 

 Gene regulation ensures that the gene products are made correctly in a temporal, spatial 

and conditional manner [57,58] and involve multiple levels. The multiple levels of regulation 

leading to the final protein products include epigenetic, transcriptional, post-transcriptional, and 

post-translational level. Steady-state mRNA levels are particularly determined by  transcriptional 

regulation [59]. At the transcriptional level, CREs and the DNA-binding TFs are important 

components that recruit the basal transcriptional machinery including RNA polymerase.  

One way to identify CREs is to use chromatin immunoprecipitation (ChIP) with a given 

TF followed by array hybridization or sequencing, which yields binding site sequences [60]. In 

addition to identifying TF binding sites with ChIP studies, chromatin features such as histone 

modifications can also yield gene regulatory information. For example, ChIP-seq focusing on 

specific histone modifications (e.g. H3K27 acetylation and H3K4 methylation [61]) and open 

chromatin regions identified from DNAse I hypersensitivity [62] can provide information on 
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potential CREs. Another way to identify potential CREs is using computational methods to 

identify over-represented sequences among a given set of sequences. CREs are often found close 

to transcription start site of the genes [63,64] and using genomic sequences, particularly promoter 

regions of the genes that co-express over a variety of conditions [65,66] it is possible to identify 

potential TF binding elements. Other genomic regions, such as the first intron of the gene itself, 

are also found to contain CREs involved in gene regulation [67]. 

It should be noted that the above approaches offer genome-wide information on TF binding 

and/or CREs. However, they do not provide mechanistic details of transcriptional regulation of 

genes. To further complement the genome-wide approaches mentioned above, machine learning 

techniques can be used to predict gene expression based on rules of CREs. The rules can be based 

on presence/absence, copy number, location, combinations of CREs. Machine learning includes 

statistical modelling [68] and has three stages: algorithm design, learning and testing. Potential 

CREs identified from genome-wide approaches can be used to build models for predicting gene 

expression and, based on the performance of prediction models, a set of CREs might be determined 

as drivers of gene expression at the context studied. Thus, these data-driven methods are key tools 

for the identifying CREs by forming predictive models [70]. 

1.5 Thesis chapters 

In this research, I used publicly available high-throughput gene expression data to identify 

functional associations and putative CREs involved in organ and cell type stress responsive gene 

expression. In research described in Chapter 2, I investigated the utilities and limitations of using 

gene co-expression in hypothesizing functional association. Specifically, I assessed to what extent 

Arabidopsis thaliana pathway genes co-express. I also determined what type of pathways tend to 
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form co-expression modules and evaluated the influence of dataset on the co-expressed genes. I 

also evaluated the impact of commonly-used clustering algorithms and their parameters on the 

ability to identify genes that function in the same pathways. In validating co-expression cluster 

memberships, I used an independent phenomics dataset to confirm the potential functional 

associations obtained from clusters. In Chapter 3, I explored what the cis-regulatory code is for 

the organ specific high-salinity responsive gene expression. I asked to what extent the stress gene 

expression is similar among different organs and whether the current knowledge of TF binding 

sites could explain the organ-specific stress gene expression. Through collaboration with 

Alexander E. Seddon, who completed his Master’s study in the Shiu laboratory, we identified 

putative CREs that might be involved in organ high-salinity responsive gene expression and 

formed predictive models of gene up-regulation. I incorporated known TF binding sites, chromatin 

accessibility and evolutionary conservation; Alexander E. Seddon incorporated CRE 

combinatorial relations in machine learning models. Overall, we present a genome-wide view of 

cis-regulatory logic of organ gene expression in response to high-salinity. In research described in 

Chapter 4, I asked whether whole organ associated CREs could explain gene expression at a finer 

resolution to cell type level. I identified root cell type putative CREs and formed predicted models 

for each cell type.  
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CHAPTER 2 

UTILITY AND LIMITATIONS OF USING GENE EXPRESSION DATA TO 

IDENTIFY FUNCTIONAL ASSOCIATIONS1 

 

1The work described in this chapter was published in the following manuscript: 

 

Sahra Uygun, Cheng Peng, Melissa D. Lehti-Shiu, Robert L. Last, Shin-Han Shiu (2016) Utility 

and limitations of using gene expression data to identify functional associations. PLOS 

Computational Biology. http://dx.doi.org/10.1371/journal.pcbi.1005244 
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manuscript.  
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2.1 Abstract 

Gene co-expression has been widely used to hypothesize gene function through guilt-by 

association. However, it is not clear to what degree co-expression is informative, whether it can 

be applied to genes involved in different biological processes, and how the type of dataset impacts 

inferences about gene functions. Here our goal is to assess the utility and limitations of using co-

expression as a criterion to recover functional associations between genes. By determining the 

percentage of gene pairs in a metabolic pathway with significant expression correlation, we found 

that many genes in the same pathway do not have similar transcript profiles and the choice of 

dataset, annotation quality, gene function, expression similarity measure, and clustering approach 

significantly impacts the ability to recover functional associations between genes using 

Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated 

expression profiles and larger data sets are not always better. In addition, to recover the maximum 

number of known pathways and identify candidate genes with similar functions, it is important to 

explore rather exhaustively multiple dataset combinations, similarity measures, clustering 

algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster 

memberships with an independent phenomics dataset and found that genes that consistently cluster 

with leucine degradation genes tend to have similar leucine levels in mutants. This study provides 

a framework for obtaining gene functional associations by maximizing the information that can be 

obtained from gene expression datasets. 
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2.2 Introduction 

With the ease of sequencing, an ever increasing number of genomes from a wide range of 

species are available. One major challenge is to ascribe functions to genomic features. For 

example, while ~70% of Arabidopsis thaliana genes have annotated functions [1], only ~40% of 

these annotations are supported by experimental evidence such as mutant phenotype or 

biochemical assays [2]. To increase functional information, transcriptome data have been used to 

develop hypotheses of gene function based on similarity of expression patterns (co-expression) 

with genes that have known functions [2–4]. The relationship between co-expression and 

functional correlation was first shown with Saccharomyces cerevisiae and human transcriptome 

data [5–8]. Subsequently, a large number of plant studies used co-expression analysis to infer gene 

functions [9–17]. For example, the MYB28 and MYB29 transcription factors are co-expressed with 

the glucosinolate pathway genes that they regulate [9]. Similarly, the transcription factors CRC 

and AP1 co-express with 58 fatty acid biosynthesis genes, and crc and ap1 mutants have altered 

fatty acid compositions [15]. More broadly, methods based on integration of multiple types of 

omics datasets were developed to account for different levels of regulation and to improve gene 

functional inferences [18–21]. In these data integration exercises, transcriptome data remain the 

most abundant and the most effective in capturing gene functional relationships [2,18]. Thus, 

analysis of gene expression results can inform hypotheses of plant gene functions. 

Despite its utility, there are known computational and biological limitations in using co-

expression for gene functional inference, and these usually are not evaluated in co-expression 

based studies [2]. First, genes with similar expression profiles may not necessarily have related 

functions [22]. Second, for those genes that do have related functions, transcription patterns may 

not be coordinated due to post-transcriptional and other levels of regulation [23]. Third, it is also 
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possible that they do in fact co-express, but that the co-expression criteria need to be optimized. 

For example, using an expression coherence (EC) measure, which is the ratio of the number of co-

expressed gene pairs to the total number of gene pairs [24], only 41% of the Gene Ontology 

Biological Process (GO-BP) terms have higher ECs than expected by chance [25]. The 59% of 

pathways with low ECs may contain genes that are regulated beyond transcription. Alternatively, 

a more detailed exploration is required to determine how co-expression should be defined. 

Consistent with this, in most studies, a fixed threshold of expression similarity is used to identify 

pairs of co-expressed genes. Depending on the value of this threshold, the degree of co-expression 

might be over- or underestimated and lead to false positive or negative associations. Therefore, it 

is necessary to optimize the criteria used to define co-expression to increase the utility of 

expression data in guilt-by-association studies. 

One major parameter that impacts co-expression studies is the type of dataset; it is expected 

that not all expression profiling experiments will be informative for revealing functional 

relationships between any given gene pair [26]. Most studies combine multiple datasets for gene 

function inference [9,25]. One advantage of this approach is the increased statistical power for 

establishing correlations. Small number of samples might lead to statistically unreliable 

connections [27]. However, the inclusion of too many samples can result in the loss of information 

[28], and expression datasets that are directly relevant to the underlying biological processes might 

be more useful in functional inference. For example, to uncover drought response pathway genes, 

it would be better to use a more specific, drought stress dataset instead of a collection that includes 

potentially uninformative experiments [13]. Other factors that impact the effectiveness of co-

expression studies include the specific samples used (e.g. stress vs. developmental series), method 

of data transformation (e.g. fold change vs. absolute expression values), and the procedures and 
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parameters used to define co-expression. A comprehensive study evaluating the above is needed 

and would be highly informative for future studies that use co-expression as a means for functional 

inference.  

In addition to inferring functional relationships between two genes, co-expression is useful 

for uncovering groups of genes with related functions (referred to as clusters). Unsupervised 

learning methods, particularly various clustering algorithms, are among the most common 

approaches used to identify co-expression clusters [29]. Once the clusters are identified, functional 

categories such as GO can be used to evaluate what types of genes are over-represented in each 

cluster, and gene functions can be hypothesized based on cluster membership [30]. Although 

clustering and enrichment analyses are straightforward, there is no single best method [31] as there 

are a large numbers of clustering algorithms and the cluster memberships (which genes are in the 

same cluster) depend on many clustering variables (e.g. algorithm, distance measure and number 

of clusters). Because differences in parameter choice strongly influence the types of co-expression 

clusters obtained, it is important to perform clustering with multiple parameters rather than relying 

on a single method. 

In this study, our goal was to maximize the information from co-expression data to improve 

predictions of functional associations between genes. Specifically, we asked to what extent A. 

thaliana genes are co-expressed in each metabolic pathway. We also explored the features of high 

EC pathways. Next, we evaluated the influence of dataset on EC for each metabolic pathway, the 

best practices in using co-expression to identify novel genes that function in a biological process, 

and the impact of different commonly-used clustering algorithms and parameters on the ability to 

identify genes that function in the same pathways. Finally, the biological relevance of cluster 

membership was validated using an independent phenomics dataset. Overall, we demonstrated that 



22 

 

optimizing the use of co-expression based approaches requires considerations of the pathway of 

interest, expression dataset and clustering algorithm. 

2.3 Results and discussion 

2.3.1 The extent to which genes in pathways have correlated transcript profiles  

To evaluate the extent to which genes with similar expression patterns have similar 

functions, we asked whether genes in the same A. thaliana metabolic pathway were co-expressed 

(see Methods). To address this question, Pearson Correlation Coefficients (PCCs) between genes 

in each of the 382 A. thaliana metabolic pathways in AraCyc were calculated using an expression 

dataset consisting of 16 different environmental conditions (referred to as the stress dataset [32]) 

(Figure 2.1A). To broadly examine groups of functionally related genes in addition to metabolic 

pathways, we also calculated PCCs between genes in each of the 1,710 A. thaliana Gene Ontology 

Biological Process (GO-BP). A group of genes in an AraCyc pathway or a GO-BP is referred to 

as a “functional category”. The median PCC values were <0.1 for ~60% of functional categories, 

suggesting that many genes in the same pathway have dissimilar transcript profiles under stress 

conditions. To assess statistical significance and control for false positive expression correlation, 

the PCC values of pairs of genes in the same functional category were compared to PCC values of 

random gene pairs (Figure 2.1A). The 95th percentile PCC value of random gene pairs (referred 

to as PCC95) was 0.41 for the stress dataset. In other words, only 5% of random gene pairs have 

PCC values >0.41. We used PCC95 as the threshold for calling the expression profiles of a gene 

pair as significantly positively correlated with a 5% false positive rate. Based on this threshold, 

only 19% of gene pairs within a functional category have significantly correlated expression 

patterns.  
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To determine whether some functional categories contain more members with highly 

correlated expression than others, we adopted the expression coherence (EC) measure, which 

ranges from 0 to 1 [25]. Here the "pathway EC" is defined as the proportion of pairs of genes in a 

pathway or GO category that have significantly correlated transcript profiles. Note that the median 

ECs in A. thaliana are only 0.11 for GO-BPs and 0.14 for AraCyc pathways, indicating that 50% 

of the functional categories have <11-14% gene pairs with significant expression correlation. 

Consistent with an earlier study [25], we found that genes in functional categories generally have 

higher ECs than groups consisted of randomly selected genes (Mann-Whitney test, p <2.2e-16; 

Figure 2.1B). In particular, 36% of the AraCyc pathways have higher EC values than the 95th 

percentile of the random EC distribution (Figure 2.1B); these are defined as “high EC pathways”. 

Similarly, 32% of the GO-BPs have higher EC values than the 95th percentile of the random EC 

distribution (referred to as “high EC GO-BPs”). One explanation for the slightly higher number of 

high EC pathways than that of high EC GO-BPs may be because metabolism related pathways 

tend to have a more highly coordinated transcriptional regulation compared to other types of 

functional categories. Consistent with this notion, GO-BP categories related to metabolism, 

including metabolic pathways (GO:0008152) and its child terms, have higher median ECs (0.14 

and 0.13) compared to signal transduction (GO:0007165, EC=0.11), cell-cycle (GO:0007049, 

EC=0.10) and response to stress (GO:0006950, EC=0.08) categories. Among metabolic GO-BPs, 

amino acid metabolism pathways (GO:0006520) have the highest median EC (0.21) among the 

categories we compared (Figure S.2.1). Overall, GO-BPs have lower ECs than AraCyc pathways 

(Mann-Whitney Test, p=2.41e-03; Figure S.2.1).  

The ECs for functional categories have a very wide range (Figure 1B, Figure S.2.1). The 

differences in ECs may be due to technical issues such as functional annotation quality or 
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methodological issues such as the similarity measure used to assess co-expression. The EC 

differences can also be due to differences in the biological characteristics of pathways, for 

example, the role of the pathway, presence of common transcriptional regulatory mechanisms, and 

regulation at levels beyond transcription. Finally, the dataset used to calculate EC could also be a 

major factor. In the following sections, we assess the factors influencing ECs and identify ways to 

maximize ECs for functional categories. Considering false positive annotation can have a 

significant, negative impact in further analyses, we examined features of high EC categories and 

the impact of multiple factors on ECs by focusing on AraCyc metabolic pathways in the following 

sections. 
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Figure 2.1 Co-expression of A. thaliana pathway genes under stress. (A) Boxplots of 

expression correlations (Pearson’s Correlation Coefficient, PCC) between pairs of genes in each 

A. thaliana metabolic pathway (left sub-figure) and random gene pairs (right sub-figure). The 

pathways are sorted based on median PCC. Light blue boxes: Interquartile range. Blue line: median 

PCCs. Red dashed line: the 95th percentile PCC value (PCC95=0.41) of the random gene pair PCC 

distribution. Black dashed line: the median PCC of the random gene pair PCC distribution. (B) 

Bar plot indicating ECs for A. thaliana pathways (left sub-figure) and random gene pairs (right 

sub-figure). The pathways are in the same order as in (A). The insert graph shows the number of 

pathways that have significantly higher ECs than randomly expected (black) and those that are not 

significant (white). Different percentile thresholds on the x-axis are based on the random EC 

distribution (right sub-figure). The red dashed line designates the 95th percentile of the random EC 

distribution. 
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2.3.2 Influence of annotation on pathway ECs 

Computational predictions of gene function without experimental evidence can lead to 

false assignments to pathways, resulting in lower pathway EC values. This is particularly important 

because computational annotations in the Plant Metabolic Network are based on sequence 

similarity only [33,34]. Functional annotations made using sequence similarity based methods are 

estimated to have an error rate of 49% [35] and high sequence similarity does not necessarily lead 

to co-expression [36] . To determine whether annotation quality is a major factor influencing 

pathway EC, we separated pathway genes into those with and without experimental evidence. 

Consistent with the hypothesis that annotation quality can significantly impact pathway EC, 

pathways with lower ECs tended to have proportionally fewer genes with experimental evidence 

(PCC=0.20, p=1.53e03; Figure S.2.2A). Pathway ECs calculated using genes with experimental 

evidence were substantially higher (Mann-Whitney test, p=5.44e-12, median EC=0.26) than those 

calculated using genes assigned to pathways solely based on computational predictions (median 

EC=0.10; Figure 2.2A). This is consistent with the hypothesis that some annotations based solely 

on computational evidence are incorrect.  

Although annotation quality influences pathway EC, it explains only ~4% of the variance 

in the median EC of pathways that include genes assigned based on all evidence (computational 

and experimental, EC=0.14) and pathways that include genes assigned based on computational 

evidence (EC=0.10). The small increase in co-expressed genes pairs when including experimental 

evidence is potentially due to the small fraction of genes that have experimental evidence (5,991 

genes considering all evidence, 934 genes considering experimental evidence). Nonetheless, 

because annotation quality did have a measurable impact, only genes with experimental evidence 

were included in further analyses. 
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Figure 2.2 Relationship between pathway ECs, annotation quality and similarity measures. 

(A) Relationship between the EC calculated for pathway genes that are annotated based on 

experimental evidence (ECexp) and EC calculated for pathway genes that are annotated only 

computational evidence annotations (ECcomp). The genes used to calculate ECexp and ECcomp 

do not overlap. Each dot represents one pathway. Dashed line: y=x line. (B) Heatmap of 

correlations between pathway EC percentiles calculated with: partial correlations estimated with 

the corpcor method, Spearman’s rank correlation coefficient (Spearman), Pearson Correlation 

Coefficient (PCC), adjusted and normalized Mutual Information (MI), partial correlation 

calculated with the partialcorr method, and transformed p-values of Bayesian Network (BN) (C) 

Percent pathways that have high EC using different similarity measures. (D) Heatmap of pathway 

EC percentiles calculated using different similarity measures. Color represents EC percentiles. 

White dotted rectangles: high EC pathways that are specific to one measure. 
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2.3.3 Influence of the similarity measure used to assess EC 

 In addition to gene annotation quality, similarity measure used to assess gene co-expression 

could impact pathway EC. Although PCC is among the most widely used similarity measures in 

co-expression studies, it does not deal with non-linear relationship well as other similarity 

measures including Spearman’s rank correlation coefficient and mutual information (MI). Another 

consideration is that, all three similarity measures above consider only pairwise correlations, thus 

higher order correlations due to the influence of the other genes in the network are not considered. 

To assess the influence of higher order correlation, we also evaluated two approaches: (1) partial 

correlation, where the correlation between genes was calculated after controlling the effects of 

other genes and (2) a graph model-based approach such as Bayesian Network (BN) where the 

strength of connection of a gene pair is determined by considering all genes in a network. To assess 

the impact of potential non-collinearity and higher order correlations, we first calculated pathway 

ECs with seven different similarity measures including PCC, Spearman’s rank, two partial 

correlation methods (corpcor and partialcorr), adjusted and normalized MI, and transformed p-

value of arc strength in a pathway BN (see 2.5 Methods). To assess the statistical significance of 

EC values and control for false positive ECs, EC values were calculated with randomly chosen 

gene pairs for each pathway size and for each similarity measure. Thus, for each pathway size and 

measure, a random EC distribution is available and used to determine the percentile value of a 

pathway EC (referred to as "EC percentile”). Thus, a high EC percentile indicates reduced 

probability that the observed pathway EC is spurious. 

First, we asked if the pathway EC percentiles are correlated among different measures 

(Figure 2.2B). For example, PCC were significantly positively correlated with, in order of 

diminishing degrees of correlations, corpcor (PCC=0.80, p=2.35e-50), Spearman’s rank 
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coefficient (PCC=0.78, p=1.67e-46), adjusted MI (PCC=0.53, p=5.23e-18), partialcorr 

(PCC=0.39, p=1.97e-09), BN (PCC=0.30, p=5.35e-06), and normalized MI (PCC=0.17, p=1.23e-

02). Given the degrees of correlations in EC percentiles differ widely between measures, the 

similarity measures have significant impact on pathway ECs. Consistent with this notion, the 

number of pathways with ECs that are significantly higher than randomly expected (high EC 

pathways, >95th percentile of the random EC distribution) vary widely depending on the similarity 

measure (Figure 2.2C). Among the measures, corpcor, PCC and Spearman’s rank allowed the 

highest numbers of high EC pathways to be identified. This finding is consistent with the finding 

of a recent study examining PCC, Spearman’s rank coefficient, MI, and other similarity measures 

[27]. Only five of the pathways have high ECs consistently regardless of similarity measures 

(Figure 2.2D). Importantly, consistent the idea that non-linearity and higher order correlations can 

be important, the ECs of some pathways are only significant if a particular similarity measure is 

used (white box, Figure 2.2D). Notably, 17 and 10 pathways have high ECs only when the corpcor 

method and the BN-based measure were used, respectively (Figure 2.2D), illustrating the 

importance of higher order correlations. In addition, different methods of calculating partial 

correlations led to significant differences in high EC pathway recovery. As the corpcor method 

was optimized for genomic data analysis [37], it is not surprising that the results from corpcor is 

more informative. For further analyses, we continue with PCC as the measure the calculate gene 

co-expression as it is one of the widely-used similarity measure and, along with Spearman’s rank 

and corpcor, uncover the highest numbers of high EC pathways.  

2.3.4 Influence of biological factors on pathway EC 

Next, we explored biological factors that may influence pathway EC, including pathway 

size (the number of genes assigned to the pathway), subcellular location, pathway gene function, 
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and evidence of co-regulation. We hypothesized that a pathway with a larger number of genes 

might have relatively more complicated modes of regulation beyond transcription, leading to low 

pathway ECs. In addition, gene products with similar functions tend to be co-localized and may 

be coordinately regulated [38], as in the case for photosynthesis and other chloroplast-related 

pathways [39]. However, pathway gene number was not significantly correlated with pathway EC 

(PCC=-0.03, p=0.67; Figure 2.3A), and pathway gene product subcellular location was not 

associated with pathway EC (Figure 2.3B). 

To assess whether the general biological functions of a pathway contribute to differences 

in EC between pathways, we compared EC between five general pathway categories including 

generation of precursor metabolites and energy, biosynthesis, degradation. However, the 

significance of enrichment of these general categories was only marginal (Mann-Whitney Test, 

p=0.05; Figure 2.3C). Interestingly, although the expression of gene pairs in the general category 

of generation of precursor metabolites and energy is not always significantly coherent, the specific 

pathways within—photosynthesis light reactions, chlorophyllide a biosynthesis I and aerobic 

respiration—had significantly higher ECs compared to random pathways (99th percentile of 

pathway EC distribution). This finding suggests that EC, and more generally co-expression, is 

more relevant to more detailed levels of the functional classification hierarchy.   

Transcriptional regulation is another major factor that could influence pathway EC. Genes 

that are co-regulated could have similar transcript profiles, and the differences in the degree of co-

regulation may explain differences in pathway EC. To determine the extent of co-regulation, we 

asked how the presence of cis-regulatory elements differs among pathways. It is expected that 

pathway genes with similar sets of cis-elements in their promoters would have similar expression 

patterns and thus contribute to high pathway EC. We mapped 349 transcription factor binding 
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motifs [40] to the promoters of all A. thaliana genes, and identified motifs that were over-

represented in the promoters of pathway genes taking each pathway separately and comparing to 

all other genes. A total of 40 overrepresented motifs were found for 17 pathways. However, there 

was no significant difference in EC between pathways with and without overrepresented motif 

sites (Mann-Whitney Test, p=0.66; Figure S.2.2B). This was surprising given that the 349 motif 

dataset spans essentially all known A. thaliana transcription factor families, and transcription 

factors from the same family tend to have similar binding motifs [40]. Thus, the reason why high 

EC pathway genes do not necessarily have more shared motifs (Figure S.2.2B) is not simply due 

to unknown transcription factor binding sites. This finding can also be due to complex interactions 

between binding sites, nucleosome positioning and other DNA properties [41]. We also evaluated 

post-transcriptional regulation by miRNA, but did not find a significant difference in EC between 

pathways with miRNA target genes and those that did not (Mann-Whitney Test, p=0.31; Figure 

S.2.2C). Given the dearth of genome-wide post-transcriptional and other levels of regulatory data 

in plants, it remains to be resolved if post-transcriptional regulation contributes to a lower pathway 

EC.  
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Figure 2.3 Impact of pathway size and other factors on EC. (A) Relationship between ECexp 

of a pathway and pathway size (the number of genes assigned to a pathway). (B) ECexp value 

distribution for pathway genes with products that have subcellular location annotations. PM: 

Plasma membrane (C) ECexp value distribution for different pathway classes (general pathway 

categories). (D) Datasets used to determine pathway ECs. A “+” indicates that the dataset in 

question was used (either individually or in combination) for the analyses depicted by bar graphs 

in (E) and (F). The columns in (D) correspond to those in (E) and (F). (E) The 95th percentile PCC 

values (PCC95) in the null distributions for each dataset or combination of datasets.  PCC95 of 

combined datasets (stress fold change and light (L)+stress (S)+development (D) absolute intensity) 

are labeled in the bar plot (F) Number of pathways with high EC for each dataset and or 

combination of datasets. Green: fold change values were used to calculate ECs. Orange: absolute 

intensity values were used for calculating ECs. 
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2.3.5 Impact of datasets used to evaluate pathway EC 

Among the factors studied ─ the size of the pathway, subcellular location, functions of 

pathway genes, and evidence of shared transcription factor binding sites ─ none significantly 

impact pathway EC. We next asked whether the expression dataset has a major impact on whether 

the EC for a pathway is high or low. The analyses described so far were performed using an 

environmental stress dataset consisting of 112 experiments including biotic and abiotic stress 

treatments in shoot and root [32]. Low pathway EC values could reflect the fact that pathways are 

only relevant to one type of stress (biotic or abiotic) and a large compiled dataset fails to capture 

the underlying patterns of co-expression. To address this possibility, we first calculated the random 

gene pair correlations for three subsets of the environmental stress gene expression dataset: shoot 

abiotic, shoot biotic, and root abiotic. PCC95 values were higher for subsets (PCC95=0.51 - 0.60) 

of the stress dataset than for the entire dataset (PCC95=0.41; Figure 2.3D and E), indicating that 

the difference in gene expression between experiments within a dataset, i.e. data heterogeneity, 

was lower when the samples were divided into biologically relevant subsets. Consistent with this, 

the average sample correlation within each of the shoot biotic, shoot abiotic, and root abiotic 

subsets is higher (0.15, 0.19, and 0.46, respectively) than the entire environmental stress dataset 

(0.13, Mann-Whitney Test using all pairwise sample PCCs, p=8.73e-26, 2.10e-05, 1.93e-144). 

Due to the impact of data heterogeneity, fewer high EC pathways tend to be recovered from 

individual stress datasets compared to combined datasets (Figure 2.3F).  

To test whether these findings are specific to the environmental stress data, an additional 

four expression datasets were analyzed (development, light, hormone, and diurnal; Figure 2.3D). 

We found that the threshold PCC95 values of these datasets were significantly negatively 

correlated with the number of high EC pathways (PCC=0.97, p=1.10e-08). Thus, because PCC95 
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is negatively correlated with data heterogeneity (as discussed in the previous section), higher data 

heterogeneity likely allows more co-expressed pathway genes to be recovered. Data heterogeneity 

can be influenced by which datasets are combined and how the expression data are processed and 

transformed. Combining datasets tends to increase data heterogeneity and thus leads to a better 

recovery of pathway genes based on co-expression (Figure 2.3F). Dataset processing also has an 

effect on data heterogeneity. For example, datasets that were processed to obtain fold change 

values had a substantially lower PCC95 (median PCC95 of fold change datasets=0.41; Figure 

2.3E) than that of the absolute intensity dataset (median PCC95 of intensity datasets=0.76; Figure 

2.3E), although this was not true for the hormone dataset (Figure 2.3E). Taken together, these 

results reveal that dataset transformation approaches and nature of the expression dataset impact 

the threshold for defining significant co-expression and thus significantly shapes pathway EC. 

2.3.6 Influence of individual vs. combined stress datasets on pathway EC 

A wide range (5%-53%) of pathways have significantly high ECs depending on the dataset 

used (Figure 2.3F). This pattern led us to question whether some datasets were more informative 

than others in recovering specific pathways. To assess this, pathway EC percentiles were 

calculated for each dataset separately (Figure S.2.3A). Note that for each expression dataset 

analyzed, we picked half a million pairs of randomly chosen genes from a total of ~22,000 to 

establish background correlations and selecting the correlation threshold at the 95th percentile of 

the random correlation distribution. Because dataset heterogeneity influenced the threshold values 

used to determine gene co-expression (Figure 2.3E), we first asked whether larger, combined 

stress datasets were more informative (i.e. had higher pathway EC percentiles) compared to 

smaller, individual datasets (Figure 2.4A; Figure S.2.3B and C). The combined stress dataset had 

a higher median EC percentile (95.6) compared to the individual datasets (89.5-89.9). For example, 



35 

 

the monoterpene biosynthetic pathway had an EC percentile of 99.6 based on the combined stress 

dataset, but the values ranged from 26.3 to 89.9 for individual datasets. 

By contrast, in >14% of the pathways, the EC percentiles determined with the individual 

datasets were higher than those based on the combined dataset (Figure 2.4A; Figure S.2.3B and 

C). For example, the lipid dependent phytate biosynthesis I pathway had an EC percentile of 99.5 

when the root abiotic stress dataset was used compared with EC percentiles<27 for all other 

individual and combined datasets. Another example is the cuticular wax biosynthetic pathway, 

which had an EC percentile of 99.7 calculated from the shoot abiotic stress data, but had EC 

percentiles of 26.4 and 26.6 when root abiotic and shoot biotic stress datasets were used, 

respectively. This is consistent with the role of cuticular wax in protecting the shoot from drought 

and other stresses [42,43] and the co-regulation of its biosynthetic genes [44]. Similarly, indole-3-

acetic acid (IAA) degradation genes have EC percentiles of 99.9 and 26.3 using root and shoot 

abiotic stress datasets, respectively, consistent with the finding that IAA degradation products have 

been mainly detected in roots [45,46].  

These findings lead to the conclusion that EC among genes in the same pathway is strongly 

influenced by whether individual or combined stress datasets are used, particularly if the pathway 

in question is biologically relevant to the experimental conditions of the dataset. Thus, it is 

important to test multiple individual and combined datasets for finding the optimal EC for a 

pathway. It should be noted that, while high EC pathways can be recovered with individual 

datasets, the smaller numbers of samples in individual dataset have less power in detecting co-

expression. This is because we have included randomized background information for different 

sized datasets in calculating threshold pairwise similarities for determining EC and in calculating 

threshold EC values for identifying pathways with significantly high ECs. A smaller dataset where 
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spurious correlations are expected will have a correspondingly higher threshold because the 

correlations between randomized gene pairs will be higher.  
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Figure 2.4 Impact of datasets on pathway EC Percentile. (A) Relationship between pathway 

EC percentiles calculated using the combined stress gene expression dataset and those calculated 

based on individual stress dataset, abiotic/shoot. (B) Relationship between pathway EC percentiles 

calculated using the light, development, and stress combined dataset and those calculated based 

on individual dataset, stress. In (A) and (B) the dashed line represents y =x, and each dot represents 

a pathway. (C) Individual and combinations of datasets used to determine pathway EC Percentiles.  
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Figure 2.4 (cont’d)  

*: NASCArray consisting of all the datasets listed here as well as additional datasets (~700 

samples). The columns in (C) correspond to those in (D) and (E). (D) Bar plot of percent high EC 

pathways using different expression datasets (E) Heat map of pathway EC percentiles from 13 

gene expression datasets. Dark red: EC percentiles≥ 95. Orange: 95 > EC percentiles < 75. Yellow: 

75 > EC percentiles <50, Blue: 50 > EC percentiles < 0 (F) Histogram of the numbers of datasets 

leading high EC values for each pathway. Example pathways are labeled with an arrow. 

 

2.3.7 Robustness in recovering pathway genes when using different datasets 

To determine whether the conclusion that EC is strongly influenced by stress (S) datasets 

is generalizable to non-stress ones, we further increased the dataset size by including light (L) and 

developmental series (D). We found that when using dataset L, S, D, and combined (L+S+D) 

datasets, 12, 46, 81, and 96 pathways had significantly higher than expected EC, respectively. 

Although the combined dataset was the best for uncovering more pathways, the EC percentiles 

were higher for some pathways when individual datasets were used (Figure 2.4B; Figure S.2.3D 

and E). Two interesting examples are the trans-zeatin biosynthesis and the iron 

reduction/absorption pathways. These pathways only had significantly high EC when using the 

light dataset. Fluctuations in light conditions can alter the expression of trans-zeatin biosynthesis 

genes [47]. In addition, iron is a central component of chlorophyll. One iron reduction gene, FRO6, 

contains multiple light-responsive elements, and another, iron reduction gene FRO7, has an 

expression pattern similar to FRO6 [48,49]. Consistent with our discussion on the impact of 

individual and combined datasets in the previous section, these findings indicate that dataset choice 
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impacts the optimal recovery of pathway genes. Next, we asked how data transformation impacts 

pathway EC percentile. The EC percentiles determined from fold change and absolute intensity 

were significantly positively correlated for the stress (PCC=0.38, p=4.90e-9) and hormone 

(PCC=0.57, p=1.17e-20; Figure S.2.3F and G) datasets. Despite these significant correlations, 

data transformation still resulted in a >50 percentile difference in EC for 27% and 12% of pathways 

using stress and hormone datasets respectively.  

Based on our results, it is important to test datasets according to the pathway of interest, 

but do more expression data samples necessarily lead to better pathway recovery? To answer this 

question, we compared pathway EC percentiles across 12 individual and combined datasets 

(Figure 2.4C). We found that stress dataset had the highest percentage of high EC pathways (53%) 

recovery rate among larger, combined datasets analyzed (Figure 2.4C). To further assess whether 

using a much more inclusive, more conditionally independent dataset compared to the 12 datasets 

we used, would increase the recovery rate of high EC pathways, we analyzed NASCArrays dataset 

with >700 samples [50]. We found that 24% of the pathways had high EC with the NASCArray 

dataset. This recovery rate was lower compared to a much smaller dataset such as the stress set, 

where 53% of pathways had high ECs (Figure 2.4D). Thus more is not necessarily better. This is 

because the overlap in within and between pathway expression correlations was larger when 

NASCArray dataset was used compared to stress dataset (Figure S.2.4A and B), indicating that it 

was harder to distinguish within and between pathway gene pairs using the NASCArray data.  

Next, we asked if some pathways have significantly high EC regardless of the dataset used 

(i.e. are robust). Among pathways, 180 had significantly high EC in >1 datasets (Figure 2.4E), 

but photosynthesis light reactions was the only pathway that had significantly high EC in all 

datasets. This is consistent with earlier findings that light reaction genes are tightly co-regulated 
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[51]. In addition to photosynthesis light reactions, jasmonic acid biosynthesis, aliphatic 

glucosinolate biosynthesis side chain elongation cycle, fatty acid elongation, palmitate 

biosynthesis II and chlorophyll a degradation II were also among the most robust pathways in 

terms of EC.  

On the other end of the spectrum, 15% of the 179 pathways with significant EC had 

significantly high EC in only one dataset (e.g. phenylalanine degradation; Figure 2.4F), further 

indicating the importance of dataset selection for co-expression associations with unknown genes. 

In addition, 21% of the pathways (e.g. ammonia assimilation cycle; Figure 2.4F) did not have 

significant EC regardless of the dataset used; indicating that additional datasets may be required 

and/or these pathways are mainly regulated at levels beyond transcription. Given that many 

pathways had significant EC when a particular dataset was used, we asked how many individual 

datasets are required to recover the 180 pathways with significant ECs. Interestingly, when datasets 

are included one at a time, the number of pathways with significantly high EC initially increased 

but appeared to be saturated after the addition of 11 datasets (Figure S.2.3H). 

Taken together, although genes within pathways can have similar expression patterns, this 

similarity is best recovered after experimenting with a number of different individual and 

combinations of datasets as well as with data transformations. In addition, although data 

heterogeneity increases the number of pathway genes that can be recovered, combining datasets is 

not necessarily the best approach for all pathways. Comparing to 5-53% high EC pathways that 

can be discovered when datasets are used individually, combining the analysis results of the 

individual datasets led to the finding that 80% pathways have high ECs.  
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2.3.8 Clusters as predictive units of pathways 

Clustering genes based on similar expression profiles is commonly performed to find genes 

that are functionally related [52]. In the best-case scenario, most of the genes in a pathway would 

be in the same cluster, and the remaining genes in the cluster could be tested to see if they have 

functions similar to the pathway genes. To evaluate the extent clustering would give us this best 

case scenario, we first employed one of the most widely used clustering algorithms, k-means, to 

group ~22,000 genes in the stress gene expression dataset. To determine the optimal k, there are 

multiple proposed statistical methods including Bayesian Information Criterion (BIC) [53], gap 

statistic based on the elbow plot [54], and silhouette score [55]. Although these measures have 

been successfully implemented in simulated datasets where the grouping is apparent [56], there is 

no best method in determining the number of natural groups of the high-throughput genomics data 

and often researchers have to try multiple number of clustering results [57,58]. In our initial 

analysis, we used elbow plot to define k. We computed within cluster sum-of squares for a range 

of k values starting from 5 clusters and going up to 2000 (Figure S.2.5A). Even though there is no 

clear elbow point, the decrease in the within sum of squares was apparent when k=100 which was 

used for k-means clustering. Once the 100 clusters were obtained, over-representation analysis was 

used to assess how well pathway and cluster membership coincide and an over-representation 

score was defined (see 2.5 Methods). Clusters with significant over-representation scores (q 

<0.05) were analyzed further (Figure 2.5). Our expectation for an ideal clustering result was a low 

q-value (~0). Only 30% of the pathways were found to be over-epresented in >1 cluster, and 38% 

pathways had an over-representation score < 2 (0.01 < q < 0.05). 
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Figure 2.5 Performance of clusters in predicting pathways. (A) Histogram of the maximum 

scores (-log(q)) for over-representation of pathways within clusters. (B) Histogram of the 

maximum F measures for prediction of pathway membership based on cluster membership. (C) 

Relationship between precision and recall for clusters. In (A-C), clusters were generated using k-

means with k=100. (D) Heat map of over-representation scores obtained from different individual 

and combined clustering algorithms (top) and cluster numbers (bottom) Color represents over-

representation scores (-log(q)) from 0 to 12.  
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Figure 2.5 (cont’d)  

Scores less than 1.3 are indicated by dark blue. Scores more than 1.3 are represented by a spectrum 

of light blue to red. Pathways in the heat map are sorted based on the number of times that they 

are over-represented in the clusters, high to low. (E) Bar plot showing the difference between 

overall maximum over-representation score ─ the highest score from any single cluster ─ and the 

over-representation score from clusters generated using k-means, k=100 for each pathway. (F) Bar 

plot showing the difference between the overall maximum F measure ─ the highest score from any 

single cluster ─ and the F measure from clusters generated using k-means, k=100 for each 

pathway. (G) Bar plot showing the difference between maximum Precision ─ the highest score 

from any single cluster ─ and the Precision from clusters generated using k-means, k=100 from 

each pathway. Arrow: performance values for the leucine degradation pathway 

 

As significance alone does not tell us to what extent each cluster is informative in finding 

additional genes associated with the pathway of interest, we evaluated each clustering result as a 

prediction problem, where a gene’s membership in a cluster is used to predict its membership in a 

particular pathway. The performance of the clustering results was evaluated using the F measure, 

which is the harmonic mean of Precision and Recall. Here precision is the proportion of the number 

of genes that overlap between a cluster and a pathway to the number of genes in the cluster. Recall 

is the proportion of the number of genes that overlap between a pathway and a cluster to the number 

of genes in the pathway. F measures can range from 0 and 1 and higher F measures suggest that 

both Precision and Recall are high. Precision, Recall and F measures were calculated for every 

pathway-cluster combination when there was a significant enrichment (q <0.05; Figure 2.5B and 
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C).  We expected high Precision (~1) for the most informative clusters, but the highest precision 

among cluster-pathway combinations was 0.11. In one cluster, 11% of the genes belong to the 

“glucosinolate biosynthesis from the tryptophan pathway”. The same cluster also yielded the 

highest F measure (0.18). This result suggests that there is a need to improve this clustering result, 

potentially by using different clustering algorithms and parameters that is explored further in the 

next section.  

2.3.9 Impact of clustering algorithms and parameters on the identification of 

pathway genes  

In the analyses described so far, we used only one clustering algorithm (k-means) and fixed 

parameters (Euclidean distance, k=100). Next, we assessed how additional clustering algorithms 

and clustering parameters (number of clusters defined, distance measure, and number of runs) 

impact the identification of co-expressed gene clusters and how this in turn impacts the 

identification of genes with similar functions. Five algorithms were applied to the stress expression 

dataset using different parameters including number of clusters (k), consistency among runs, and 

other algorithm-specific parameters, to obtain 366 different clustering results. Although some of 

the algorithms (k-means, approximate kernel k-means, c-means) often yield local optima instead 

of an overall best result, clustering runs with the same algorithm and parameters gave very similar 

results (average PCC among 10 runs=0.8 - 1.0). Therefore, only the maximum over-representation 

score from 10 runs is shown (Figure 2.5D).  

We found that the choice of k is important; regardless of the algorithm, smaller k values 

resulted in low over-representation scores (Figure 2.5D) and a smaller number of pathways over-

represented among clusters (Figure S.2.5B). This is likely due to the fact that smaller k values lead 

to larger sized clusters that contain genes from multiple pathways. We also found that the number 
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of members in a cluster that overlap with members of a pathway differs depending on the algorithm 

used; k-means was the best performing algorithm, followed by approximate kernel k-means and 

hierarchical clustering with the Ward algorithm (Figure S.2.5B). Overall, with all clustering 

methods combined, we were able to recover 131 pathways out of 225 (64 more pathways than 

when only k-means, k=100 was used). In contrast, 95 out of 225 pathways were not over 

represented in any of the clusters, and 22 pathways were only over-represented in one algorithm-

parameter combination (Figure S.2.5C). Taken together, the clustering approach is not 

deterministic; the parameters used influence co-expression associations. Therefore, it is important 

to evaluate multiple algorithms and parameters to recover pathways of interest. 

Multiple algorithm-parameter combinations were examined (e.g. an example combination: 

k-means, k=100), to quantitatively assess the degree of improvement in performance measures. 

First, clusters from 69 algorithm-parameter combinations were generated (Figure 2.5D). For each 

pathway, we asked what the maximum over-representation score was among the clusters from all 

combinations. This maximum score was then compared to the over-representation score of 

clustering results from our standard method discussed above (k-means, k=100; Figure 2.5E). We 

found that the over-representation scores of the best clusters were increased by an average of 1.40 

(25-fold better q-value) compared to the score when only one algorithm/parameter was used. We 

also evaluated clustering performance using F measure (improved by an average of 0.15; Figure 

2.5F) and Precision (improved by an average of 0.20; Figure 2.5G). These results reinforce the 

importance of considering multiple algorithms and parameters to maximize pathway-cluster 

overlap. Furthermore, for algorithms requiring a predefined k, the k value may be different 

depending on the pathway one would like to recover and it is necessary to try out multiple values 
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for the best results. Thus, selecting a presumably optimal k may yield a more natural grouping of 

the entire dataset but at the expense of uncovering clusters representing individual pathways.  

We should emphasize that, although considering multiple clustering parameters allow 

recovery of 93 pathways, there are still 96 pathways that were not recovered by the five algorithms 

used in this study (Figure S.2.6). This may be because genes in these pathways do not have highly 

coordinated expression patterns and have low pathway ECs. Consistent with this interpretation, 

high EC pathways tend to be recovered by clustering compared to low EC ones (Fishers exact test, 

p=4.56E-12; Figure S.2.6). We should also emphasize that the scores used to assess the clustering 

performance ignore the possibility that some genes in the clusters will be novel pathway 

components. The presence of these genes reduces the over-representation score, precision, and F-

measure. These novel pathway component genes are prime candidates for further functional 

characterization using genetic or biochemical analysis. 

2.3.10 Using leucine degradation gene phenomics data to validate co-expression 

associations 

We established that the degree of gene co-expression in some pathways is influenced by 

dataset and data transformation and that it is important to use multiple algorithms and parameters 

when identifying clusters based on co-expression. To demonstrate that novel pathway components 

can in fact be recovered as a result, we used phenomics data to validate novel gene components of 

the leucine degradation pathway [59,60]. We chose to focus on leucine degradation because it is 

among the most over-represented pathways in co-expression clusters (Figure 2.5), and many 

components of the leucine degradation network remain to be discovered in plants [61,62]. Eighteen 

novel genes that were not annotated to leucine degradation in the AraCyc database are consistently 

found in clusters (≥10 clustering results) that are over-represented with 12 annotated leucine 
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degradation genes. Among these genes, AT1G55510, a branched-chain alpha-keto acid 

decarboxylase E1 beta subunit, was recently shown to be involved in leucine degradation [61] but 

has not yet been annotated as such. The fact that AT1G55510 is consistently found in the same 

clusters as leucine pathway genes prompted us to examine the rest of the genes that cluster with 

leucine degradation genes for involvement in leucine degradation. 

We hypothesized that previously unknown associations deduced from co-expression 

clusters could be verified based on their mutant phenotype data. To test this hypothesis, we used a 

published phenomics dataset that includes free seed leucine levels for mutants in more than 5,000 

genes [60] (Figure 2.6A). The free leucine levels (nmol/g fresh weight) of leucine degradation 

gene mutants are expected to be more similar to genes within the same cluster than to wild type 

plants or randomly chosen mutants. As expected, the leucine degradation enzyme genes had higher 

leucine levels than mutants in random genes and wild-type plants (p=0.05 and 0.04 respectively; 

Figure 2.6B). Next we evaluated the clusters that were over-represented with leucine degradation 

genes by calculating the log ratio between the proportion of leucine degradation genes in a cluster 

to the proportion of non-leucine degradation genes in the same cluster. Note that, as k increases, 

the log ratio tends to increase (Figure 2.6C). This trend is potentially due to increased statistical 

power to identify over-representation in smaller sized clusters. Among these clusters, hierarchical 

clustering with the Ward algorithm (k=100 and k=200) and approximate kernel k-means (k=50, 

k=400 and k=500) yielded clusters that had genes (Figure 2.6D) whose leucine levels were 

significantly higher than the wild type measurements (p=0.01-0.05; Figure 6E). Thus, some genes 

in those co-expressed clusters are likely involved in leucine degradation. Nonetheless, the 

differences in leucine levels between mutants of genes in the cluster and wild type plants were 

small (Figure 2.6E). This may be due to the fact that some co-expressed genes are false positives. 
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However, some known leucine degradation pathway gene mutants also do not have dramatic 

differences in leucine level compared to wild type (Figure 2.6B) and this may also explain the 

small effect size. We next asked whether a gene that consistently clusters with leucine degradation 

genes ─ regardless of the algorithm and parameters used ─ tends to be a better pathway gene 

candidate than one that does not. Mutants in genes that were retrieved from three separate 

clustering results had significantly higher leucine levels than mutants in random genes and wild-

type plants (p=0.03 and 2.60e-3 respectively; Figure 2.6F), indicating that consistency may serve 

as a criterion to increase confidence in candidate genes. 
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Figure 2.6 Assessing the validity of co-expression associations with leucine measurement 

data. (A) Log2 of the number leucine degradation (LeuDeg) gene mutants, random gene mutants, 

and WT control plants that were included in the analysis of leucine levels. (B) The absolute leucine 

levels (nM/gFW) in the same three types of genetic background as in (A). (C) Log-odds values 

(log ratio between the proportion of leucine degradation genes in a cluster to the proportion of non-

leucine degradation genes in the same cluster) of clusters that are enriched in leucine degradation 

genes identified using different algorithm-size parameter combinations.  
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Figure 2.6 (cont’d) 

 (D) Log2 of the number of genes that cluster with leucine degradation pathway genes (over-

representation score >1.3) for each algorithm-size parameter combination. (E) Box plot showing 

the absolute seed leucine levels (nM/gFW) in plants with T-DNA insertions in genes clustered 

with leucine degradation pathway genes (enrichment score >1.3) for each algorithm-cluster size 

parameter combination. *: the groups of genes where mutant leucine levels are significantly greater 

than in wild type. (F) The absolute seed leucine levels (nM/gFW) of T-DNA insertion mutants of 

genes that cluster with leucine degradation genes. Binning in x-axis depends on the number of 

times that each gene clusters with leucine degradation genes considering all clustering results. 

2.4 Conclusion 

A large number of high-throughput omics data are accumulating. Of these, transcriptome 

data are the most abundant, covering multiple tissues and conditions, and have been widely used 

to generate hypotheses about gene functions. Since almost the first microarray studies, researchers 

have used the guilt-by-association approach to make useful predictions about gene functions. This 

approach is based on the hypothesis that genes encoding proteins of shared function are more likely 

to have common features such as gene expression patterns. Here we show that even though this 

approach is useful, there are many limitations to co-expression-based functional inferences and 

that these limitations can be potentially overcome through methodological considerations that 

include pathway gene annotation quality, expression dataset used, clustering algorithms, and the 

use of an independent dataset such as the mutant phenotype data used here to maximize the utility 

of co-expression relationships in hypothesizing gene functional relations.  
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By evaluating within-pathway gene expression correlation based on the EC measure, we 

show that genes encoding proteins involved in the same pathway do not necessarily co-express. 

For example, only 5% of pathways have significantly high EC, using a light treatment dataset. For 

the remaining 95% of pathways, pathway genes may not be coordinately expressed and/or the light 

dataset is not informative. For some pathways, co-expression will be ill-suited due to gene sharing 

among pathways (thus multiple mode of regulation), requirement for condition-specific expression 

data that is not available, and/or that coordinated regulation of the pathway is at a level beyond 

transcription. In other situations, several approaches could be taken to improve the recovery of 

pathways with high EC. By filtering genes based on annotation, it might be possible to obtain a 

core set of genes that are co-expressed. In addition, using expression datasets of different type (e.g. 

treatment and/or tissue types), complexity (e.g. individual or combined), and transformation 

method (e.g. fold change or absolute intensity value) could be effective.  

In this study, we have demonstrated that clustering algorithms and parameters impact the 

ability to find novel pathway genes. Thus, by relying on a single algorithm and a single parameter 

─ as is most commonly done in published studies ─ co-expression associations with functional 

implications might be missed. For any pathway being analyzed it is necessary to find the optimal 

algorithm and parameters to identify clusters that contain the majority of the known pathway 

genes. We also demonstrated that using one particular clustering algorithm-parameter combination 

in most cases does not lead to clusters that have optimal overlaps in gene memberships with 

pathways. Instead, for the best result, we need to consider multiple algorithms and parameters. The 

methodological considerations we had in this study reflect the multi-parameter nature of co-

expression based analyses. The studies that include co-expression based approaches should 
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involve rigorous testing of multiple variables ranging from the pathway of interest to expression 

dataset and clustering algorithm. 

2.5 Methods 

2.5.1 A. thaliana metabolic pathways and pathway features analyzed 

A. thaliana metabolic pathways (AraCyc pathways), the genes belonging to these pathways 

and supporting evidence were obtained from the Plant Metabolic Network (version 8, [63]). To 

examine a broader set of gene function in addition to metabolism, A. thaliana Gene Ontology 

biological processes (GO-BPs) annotations were obtained from geneontology.org [64]. Only 

nuclear genes and pathways/processes with >2 genes were included in further analyses. The 

metabolic pathway genes were divided into two sets based on supporting evidence. The first set 

contained all pathway genes regardless of the types of evidence supporting the annotations (382 

pathways, 5,991 genes). The second set only contained genes with experimental evidence (225 

pathways, 934 genes). For the GO data, we examined 1,710 GO-BP terms covering 23,157 genes. 

To determine if genes of a pathway tend to have a particular subcellular location, 

subcellular location information was obtained from the SUBcellular Arabidopsis consensus 

database (SUBAcon [65]), and a contingency table for each pathway and subcellular location was 

established to calculate the enrichment p-value (Fisher’s Exact Test). The resulting p-values were 

corrected for multiple testing [66]. To determine whether similar sets of cis-regulatory elements 

are present among genes in the same pathway, 349 position frequency matrices taken from the Cis-

BP database [40] were converted to position weight matrices (PWMs) based on the A. thaliana 

background AT and CG frequencies (0.33 and 0.17, respectively) using the Tools for Analysis of 

MOtifs (TAMO) package MotifTools [67]. The PWMs were used to determine the location of 
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motif sites in the 1kb region upstream of the transcriptional start sites of A. thaliana genes with 

Motility [68]. To assess the impact of post-transcriptional regulation, we used a dataset with 

associations between miRNAs and their target genes, downloaded from The Arabidopsis 

Information Resource-TAIR [69].  

2.5.2 Expression dataset and its processing 

Six publicly available Affymetrix ATH1 microarray gene expression datasets used in this 

study include: Biotic stress: GSE5615-5616, Light: GSE5617, Abiotic stress: GSE5620-5628, 

Development: GSE5629-5634, Hormone: GSE39384, and Diurnal [32,70–72]. In addition to 

these, ~700 A. thaliana microarray datasets were downloaded from NASCArrays database [50]. 

The datasets were downloaded in either normalized form [50,73] or as unprocessed data from Gene 

Expression Omnibus (GEO) [74]. For the unprocessed datasets, the CEL files for the 

AtGenExpress data [32,70,71] were downloaded from TAIR [69] and quantile normalized using 

the Bioconductor affy package in R [75]. The Bioconductor LIMMA package [76] was used to 

calculate fold changes by contrasting treatment and control experiments, and the p–values of 

significant fold changes were corrected for multiple testing [66].  

2.5.3 Calculation of expression correlation and expression coherence 

To generate the null expression correlation distribution, 500,000 gene pairs were randomly 

selected and their Pearson Correlation Coefficients (PCCs) were calculated using the SciPy library 

[77]. The 95th percentile PCC values (PCC95) in the null distributions were used as thresholds for 

calling the expression patterns of two genes as significantly correlated with a 5% false positive 

rate. Using the PCC95 values, the expression coherence (EC) score was calculated to determine 

the extent of co-expression among genes in a given pathway [24,25]. The EC score of a pathway 
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is the ratio of the number of gene pairs with PCC values higher than PCC95 and the total number 

of gene pairs in a pathway. Thus EC values range from 0 (no gene pair with significant expression 

correlation) to 1 (all gene pairs significantly co-expressed). To identify pathways with significantly 

higher than randomly expected ECs (high EC pathways), pathway-gene associations were 

randomized 100 times with the sizes of the pathways kept the same. For each dataset, a distribution 

of randomly expected EC values was established. For a given dataset, a pathway was defined as a 

high EC pathway if it had an EC score larger than the 95 percentile value of the null EC 

distribution. The percentile of the pathway ECs in the null EC distribution was referred to as EC 

percentile. To assess how similar the gene expression profiles among array experiments in a 

dataset, the PCC values between the experiments in a dataset were calculated and the median PCC 

value was used as a measure of homogeneity among the experiments within a dataset.  

To evaluate the impact of similarity measures, Spearman’s rank coefficient [77], partial 

correlation [37] and Mutual Information (MI) [78] were used as additional similarity measures to 

determine pathway EC in the same way as PCC was used. Partial correlations of pathway genes 

were calculated with two methods: (1) a Python implementation of partialcorr function in 

MATLAB, which determined the correlations between residuals of linear regression, and (2) the 

R package corpcor that was optimized for genomic datasets [37]. MI was calculated both as 

normalized and adjusted with the Python scikit-learn package [78]. The adjusted MI measure 

accounts for impacts of sample sizes (larger samples might lead to higher MI) and the normalized 

MI values was calculated by scaling MI values to between 0 and 1. To explore higher order 

correlations in addition to pairwise ones, Bayesian Networks (BNs) were constructed for each 

pathway using the bnlearn package in R [79]. Hill-climbing algorithm was used to construct BNs 

with options for continuous data. The transformed p-values (-log(p)) of arc strengths between 
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nodes (genes) in BNs were used as measures of gene association strengths that are used similarly 

as pairwise similarity. Only the transformed p-values were used because they were nearly perfectly 

correlated with arc strengths (r2=0.9998). BNs were also constructed for randomized pathways to 

determine threshold p-values for each gene association and the thresholds were then applied to 

determine how many gene pairs in each pathway have above threshold arc strength p-values to 

determine pathway EC. 

2.5.4 Co-expression clustering 

To determine the impact of the clustering algorithm on the resulting co-expressed gene 

clusters, we tested k-means [80], hierarchical clustering (hclust), c-means [81] and Weighted Gene 

Coexpression Network Analysis (WGCNA) [82] in the R environment and approximate kernel k-

means [83] in MATLAB. Clustering parameters tested included the numbers of clusters (k), 

distance measures, and hierarchical clustering algorithms for relevant methods. Initially, we 

attempted to obtain the optimal k for clustering the stress expression dataset by obtaining the 

“elbow plot”. After testing 11 k values ranging from 5 to 2000 to assess, we realized that the 

selected k was not necessarily the best and the choice of k impacts clustering memberships of 

genes. For distance-based algorithms, three distance measures (Euclidean, radial basis function 

kernel and 1-PCC) were tested. For hierarchical clustering, we also explored the impact of average, 

complete and Ward linkage algorithms. For WGCNA, the pickSoftThreshold function was used 

to determine the ß values based on the scale-free topology model [82]. Commonly used clustering 

algorithms ─ such as k-means ─ are not deterministic, i.e. they may result in a local optimum 

solution. To evaluate whether multiple runs could result in significantly different results, we ran 

k-means, approximate kernel k-means and c-means 10 times. We refer to the similarity among 10 
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runs as consistency between the runs. In contrast, for hierarchical clustering and WGCNA, the co-

expression cluster membership was always the same for every run. 

2.5.5 Assessing the overlap in pathway and cluster memberships 

Fisher’s exact test was used to assess how well memberships within a cluster overlap with 

those in a pathway. The resulting p-values were corrected for multiple testing [66]. For each 

clustering algorithm-parameter combination, an “over-representation score” between a cluster and 

a pathway was defined as the -log(q) value where a higher score indicates a more significant degree 

of overlap between cluster and pathway memberships. An over-representation score ≥1.3 (q <0.05) 

was considered to be statistically significant. To account for the possibility that over-representation 

of some pathways is spurious we asked how often significant over-representation scores arise from 

randomized expression data. Specifically, the stress expression dataset was permuted to generate 

15 random datasets that were used in k-means clustering (k=5 to 2000, 10 independent runs for 

each k and each random dataset). The same approach outlined above was also used to assess how 

well memberships in a pathway overlap with those in a random cluster. Among 1,650 random 

clusters, none had a significant over-representation score with A. thaliana pathways. 

To further assess if cluster membership can serve to predict pathway membership, we 

calculated the F measure (the harmonic mean of precision and recall) for each cluster-pathway 

combination. Precision is the proportion of correct predictions over total predictions; in our case 

it was the ratio between the number of genes in a cluster that were also found in a pathway and the 

total number of genes in that cluster. Recall is the proportion of correct predictions over total true 

positives; in our case it was the ratio between the number of genes in a cluster that were also found 

in a pathway and the total number of genes in that pathway. F measure was calculated for each 

pathway-cluster combination with an over-representation score ≥1.3. 
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2.5.6 Using phenomics data to evaluate co-expression associations 

Here we used the mutant profile data from Chloroplast 2010, a database consisting of 

phenotypic screening results for mutants of more than 5,000 genes [59,60] to confirm the potential 

functional links between genes found in the same co-expression cluster. This database includes 

measurements of amino acids and fatty acids as well as the chloroplast morphology and 

photosynthetic parameters. Taking leucine degradation as an example, we expected the leucine 

content to be more similar between mutants of leucine degradation genes and mutants of genes 

found in the same co-expression cluster than to wild-type and mutants of random genes. To 

determine whether this was the case, we retrieved the leucine measurements (in nmol/g fresh 

weight) of 12 leucine annotated degradation genes, genes that were clustered with pathway genes 

with an over-representation score >1.3 (q <0.05), 1000 random genes, where homozygous T-DNA 

insertions were available, and 184 wild type control plants included in the Chloroplast 2010 

database. Significant differences between the leucine levels of mutants and controls, included 

randomly selected mutants of genes that are not in the leucine degradation pathway and wild-type 

plants, were identified with Mann-Whitney tests. 
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Figure S.2.1 Boxplots of EC values distributions of overall and selected GO-BPs and AraCyc 

pathways. The order of x-axis is based on the median EC. 
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Figure S.2.2 Factors that potentially influence pathway EC. (A) Relationship between the 

proportion of genes with experimental evidence and EC. EC is shown on the x-axis. (B) EC 

calculated for pathway genes that are annotated based on experimental evidence (ECexp) 

distribution of pathways with and without enriched motifs. (C) ECexp distribution of pathways 

that have miRNA target genes and of pathways those do not. 
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Figure S.2.3 Randomized pathway EC distributions and EC percentiles from multiple 

datasets. (A) Left panel: Individual and combinations of datasets used to determine pathway EC 

percentiles. A “+” indicates that the dataset in question was used (either individually or in 

combination) for the distributions depicted in Right panel.  
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Figure S.2.3 (cont’d) 

Right panel: Distribution of randomized pathway EC. Pathway gene membership was randomized 

100 times. Median EC per pathway size is shown in this distribution. (B) Relationship between 

pathway EC percentiles calculated using the combined stress gene expression dataset and those 

calculated based on individual stress dataset, biotic/shoot. (C) abiotic/shoot. (D) Relationship 

between pathway EC percentiles calculated using the light, development, and stress combined 

dataset and those calculated based on individual dataset, development. (E) light. (F) Relationship 

between pathway EC percentiles calculated using the fold change and absolute intensities for the 

stress gene expression dataset. (G) Relationship between pathway EC percentiles calculated using 

fold change and absolute intensities for the hormone gene expression dataset. Dashed line: y=x. 

Each dot represents a pathway. (H) The change in the number of pathways with high EC (y-axis) 

with the addition of more expression datasets (x-axis). 
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Figure S.2.4 Distinguishing gene pairs within and between pathways using a condition-

dependent dataset and a condition-independent dataset. (A) Distributions of PCC values of 

within pathway gene pairs (light red) and between pathway gene pairs (light blue) using the 

condition-dependent, stress dataset. Red line: PCC at the 95th percentile of between pathway gene 

pair PCC distribution. (B) Same as (A) using the condition-independent, NASCArray dataset. 
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Figure S.2.5 The extent to which metabolic pathways are over-represented in co-expression 

clusters. (A) Elbow plot showing within cluster sum of squares for k = 5-2000. (B) The number 

of pathways over-represented (y-axis) in clusters obtained using different algorithms and cluster 

numbers (x-axis). (C) Distribution of the number of times that a pathway is over-represented in a 

cluster (sorted high to low). 
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Figure S.2.6 The extent to which high EC pathways are over-represented in clusters. The 

relationship between the pathway-cluster over-representation score (y-axis) and pathway EC 

percentile (x-axis). Horizontal red line: over-representation score=1.3, corresponding to adjusted 

p-value of 0.05. A pathway is considered over-represented if the over-representation score is >1.3. 

Vertical red line: EC percentile=95. High EC pathway has an EC percentile>95.  The insert is the 

contingency table for testing (Fisher’s exact test) whether the number of high EC pathways is 

higher among over-represented clusters than randomly expected. 
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3.1 Abstract 

Plants are exposed to a variety of environmental conditions, and their ability to respond to 

environment variation depends on the proper regulation of gene expression in an organ, tissue, and 

cell type specific manner. Although knowledge is accumulating on how stress responses are 

regulated, a genome-wide model of how plant transcription factors (TFs) and cis-regulatory 

elements (CREs) control spatially specific stress response has yet to emerge. Using Arabidopsis 

thaliana as a model, we identified a set of 1,894 putative CREs (pCREs) that are associated with 

high salinity (salt) up-regulated genes in the root or the shoot. These pCREs led to computational 

models that can better predict salt up-regulated genes in root and shoot compared to models based 

on known TF binding motifs. In addition, we incorporated TF binding sites identified via large-

scale in vitro assays, chromatin accessibility, evolutionary conservation and pCRE combinatorial 

relations in machine learning models, and found that only consideration of pCRE combinations 

led to better performance in salt up-regulation predictions in root and shoot. Our results suggest 

that the plant organ transcriptional response to high salinity is regulated by a core set of pCREs 

and provide a genome-wide view on the cis-regulatory code of plant spatial transcriptional 

responses to environmental stress. 

3.2 Introduction 

Plants are equipped with a wide range of mechanisms to respond to environmental stresses 

such as excess heat, salinity, drought, and pathogen attack [1,2]. These stress response mechanisms 

are indispensable for plant survival and have a significant spatial component where organs and 

tissues respond to the environmental changes differently [3–5]. In the case of high salinity stress 

(referred to as salt stress), after perceiving an increase in soil salt concentration, the primary 
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physiological response of the root is to exclude sodium from the xylem and to send hormonal 

signals of stress to the shoot, while the shoot must respond to the effects of ion toxicity and water 

limitation [6,7]. In addition to physiological changes that are spatially specific, it is well 

documented that differential gene expression under stress conditions can be regulated in highly 

organ and tissue specific manner [8–11], which ultimately impact plant development and 

physiology.  

Spatially- and conditionally- specific gene expression is expected to be subjected to the 

control of transcriptional regulatory machineries, including transcription factors (TFs) and their 

associated cis-regulatory elements (CREs). Currently, the TFs and their corresponding CREs 

regulating stress response have received considerable attention [12–14], but our knowledge on 

spatial regulation of stress responses are limited. CREs can be identified based on co-expression 

[15–19] and/or through in vitro and in vivo TF binding experiments [20–23]. The co-expression 

approach has been successfully used to identify putative CREs (pCREs) in regulating stress 

responsive gene expression in yeast (Saccharomyces cerevisiae) [15] and in A. thaliana [17]. In 

addition, pCREs are over-represented in the 1kb regions upstream of tissue and cell type 

specifically expressed genes [24]. Although some of these pCREs are similar to binding sequences 

of TFs known to regulate stress responsive genes [24], it remains unclear how they may be relevant 

to spatial stress response regulation. One fruitful computational approach for assessing the 

relevance of pCREs is to ask how well they can be used to predict spatial stress response, i.e. how 

well they can be used to identify the “Cis-regulatory Code” (CRC [17,25])  

CRC is defined as the sets of CREs involved in gene regulation in a particular context (e.g. 

environment, location, timing) [17,25]. One major conclusion from CRC studies is that TFs 

frequently regulate genes expression pattern in combinations. For example, in yeast, CREs 
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identified through TF binding data uncovered a complex regulatory code involving combinations 

of multiple CREs [20]. In humans, genes expressed in specific tissues are regulated by particular 

combinations of TFs and CREs [26]. In A. thaliana, CRCs consisting of binary combinations of 

pCREs resulted in more precise predictions of salt stress up-regulated genes [17] then using 

individual CREs. CRCs can potentially be further improved by knowledge of TF binding. For 

example, computational model considering in vitro TF binding site information, sequence 

conservation, DNA structure, and/or chromatin accessibility were shown to predictive of in vivo 

TF binding in mouse [27] and in yeast [28]. Tissue specific TF binding was also predicted using 

information on binding motifs and histone modifications [29]. These examples highlight the 

relevance and utility of CRCs and integration of multiple relevant datasets for understanding the 

mechanisms underlying genome-wide spatial transcriptional response to stress. However, such 

spatial response CRC is not available. 

The goal of this study was to uncover the CRCs underlying spatially specific transcriptional 

response to stress using plant as a model. Specifically, we focused on the CREs relevant to salt 

stress response in the above ground (shoot) and the below ground (root) parts of A. thaliana. Salt 

stress was chosen because it is well studied both physiologically [6,7] and molecularly [30,31], 

and there are documented differences in the transcriptional response to salt in the root and shoot 

[8,11]. Additionally, there are known TFs and CREs for salt stress [31–34] for verifying our 

results. To assess transcriptional changes to salt stress across different organs in A. thaliana, we 

first asked how salt up-regulated genes in roots and shoots differed in their functional annotations. 

Next, to determine how well current knowledge of TF binding sites in A. thaliana can explain 

spatial salt up-regulation, we used motifs and binding sites identified through two large-scale in 

vitro studies [22,23] to generate models of root and shoot salt up-regulation. We then identified 
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additional putative CREs (pCREs) with a co-expression approach to assess if these newly 

identified pCREs allowed better predictions of spatial response to salt stress. We tested whether 

pCRE individually could be used to establish a cis-regulatory model explaining spatial patterns of 

up-regulation during salt stress. To evaluate whether we could further improve spatial salt stress 

response prediction, we filtered pCRE sites according to information on in vitro TF binding 

[22,23], chromatin accessibility, and conserved non-coding regions [35]. Lastly, we built 

prediction models using combinations of CREs. 

3.3 Results and Discussion 

3.3.1 Transcriptional responses to stress have a strong spatial component 

 Earlier global gene expression studies demonstrated that different plant organs have 

distinct transcriptional responses to stress [8–11]. To assess the extent to which organs have unique 

expression patterns under different stress conditions and to determine the similarities between 

organ (root vs. shoot) stress responses, we determined the correlations between the levels of 

differential expression across multiple conditions and time points using two types of existing 

datasets: (1) root and shoot samples under abiotic stress [11] and (2) shoot samples under biotic 

stress (see 3.5 Methods). There were several patterns worth noting. First, samples for related stress 

conditions tended to cluster together, and these "stress condition clusters" tended to have root and 

shoot sub-clusters (Figure 3.1A). For example, osmotic and salt stress samples formed a cluster, 

with sub-clusters composed of shoot and root samples (dotted rectangles I and II respectively; 

Figure 3.1A).  
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Figure 3.1 A. thaliana gene expression correlation across stress datasets and Gene Ontology 

(GO) terms enriched in salt responsive genes. (A) Between-sample Pearson's Correlation 

Coefficients (PCC) calculated based on log2 fold changes (log2(stress treatment/control)) of genes 

in shoot and root samples under each stress condition/treatment duration combination. The orders 

of rows and columns are the same, and they are sorted based on hierarchical clustering of the 

pairwise PCC values. Boxes on the left represent the key for organ and stress condition. Dotted 

rectangles I and II highlight osmotic and salt stress clusters, respectively. (B) Heatmap (left) 

indicating Gene Ontology (GO) Slim terms significantly over- (blue) or under- (red) represented 

in genes that are differentially up-regulated during salt stress after 3 hours in (R)oot only, (S)hoot 

only, and/or (G)lobally in both organs (log2 fold change>1, p ≤ 0.05). Right heatmap summarizes 

the log2 odds ratio (LOR) from the enrichment test (grey: LOR could not be calculated due to 0 in 

ratio). 
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The median Pearson’s Correlation Coefficient (PCC) of the log2 fold-change values 

between samples from the same organ but different stress conditions (median PCC=0.17) were 

significantly lower than those between samples from the same stress condition but different organs 

(median PCC=0.31, Mann-Whitney, p<2.2e-16). Thus, the stress condition has more impact on 

overall expression pattern than organ identity. Nonetheless, under some stress conditions there 

were stronger organ specific effects. For example, the salt stress response correlations between 

organs (median PCC=0.24) were significantly lower those between samples from the same organ 

(median PCC=0.69, Mann-Whitney, p<2.2e-16). Taken together, our findings are consistent with 

earlier studies [8–10] that, while there is a specific transcriptional response to each stress, this 

response is further influenced by the organ where genes are expressed.  

Given the stress response is influenced by organ identity, we next assessed what types of 

genes tend to be differentially up-regulated in root and shoot during salt stress using Gene 

Ontology (GO) term enrichment analysis (see 3.5 Methods). Three sets of significantly salt up-

regulated genes were defined: (1) global - 246 genes both in the root and the shoot; (2) root-specific 

- 1,854 genes only in the root, and (3) shoot-specific - 276 genes only in the shoot. There were 48 

GO terms significantly over/under-represented in ≥1 gene sets defined above (Figure 3.1B). For 

example, thylakoid and plastid terms were over-represented among shoot specifically up-regulated 

genes, consistent with an earlier finding that photosynthesis is significantly impacted by salt stress 

[36]. Among the terms, signal transduction and response to stress were over-represented in all 

three gene sets (Figure 3.1B). As these three gene sets are mutually exclusive, this result suggests 

that the root and the shoot have unique signaling pathway genes up-regulated, as well as pathways 

that are globally necessary for stress response. This result is supported by work on the The Salt 

Overly Sensitive (SOS) pathway that involves components that are common to both organs as well 
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as those specific to the root and shoot [30,37]. Interestingly, “DNA binding transcription factor 

activity” and "DNA binding", were only enriched amongst the root specifically and globally up-

regulated genes. This suggests that there is a set of global TFs and another set specific to the root. 

In addition, genes up-regulated in the root may be regulated by both a global and a root specific 

set of TFs, while genes up-regulated in the shoot may be regulated primarily by a global TF set. 

To summarize, a variety of functional categories were found to be enriched in the genes 

up-regulated by salt stress. In some instances, root specifically, shoot specifically, and globally 

up-regulated genes had the same enriched functional categories. These common enriched terms 

suggest that roots and shoots up-regulate similar types of genes. However, there are also genes up-

regulated in an organ specific manner that may be regulated by distinct sets of up-regulated TFs. 

The TFs that are specifically up-regulated in roots may help to explain the differences in expression 

pattern that we observe between the roots and shoots under salt stress. Thus, the root specifically 

up-regulated genes may be controlled by the root specific TFs. Because TFs may differ in the 

CREs they bind and there are substantial amounts of in vitro TF-DNA interaction data in A. 

thaliana [22,23], we next examined whether known TF binding data may be associated with organ 

specific, salt induced gene expression.  

3.3.2 Known TF binding motifs contribute to a better than random performing 

model for salt up-regulation prediction 

 Because TFs exert their regulatory roles by binding to CREs, we expected that the global 

and organ specific activities of TFs will be reflected in which CREs are in the regulatory regions 

of global, root-specific, and shoot-specific salt up-regulated genes. We hypothesized that each 

organ had a different set of CREs regulating its salt stress up-regulated genes and these CREs 

could be used to construct CRCs that are models for predicting stress responsive gene expression 
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[17]. To test these hypotheses, we collected A. thaliana TF binding data from two large-scale in 

vitro studies, CIS-BP [22] and DAP-seq [23] that cover binding sites of 758 TFs. Given the 

extensive coverage of TFs, we expected that these datasets would cover a significant number of 

cis-regulatory sequences relevant for controlling root and/or shoot up-regulated genes. Here the 

root up-regulated genes were defined as the union of the root specifically and globally (in both 

root and shoot) up-regulated genes under high salinity treatment. Similarly, the shoot up-regulated 

genes were the union of the shoot specifically and globally up-regulated genes. 

 We first tested if the TF binding sites predicted based on the CIS-BP data and the binding 

sites inferred from DAP-seq peaks were significantly over-represented in the putative promoter 

regions (within 1kb upstream of transcriptional start sites) of root and shoot up-regulated genes. 

Among binding site information for 758 TFs, we found that 262 and 397 were significantly over-

represented in the putative promoters of root and shoot up-regulated genes, respectively compared 

to non-responsive genes. Overall, we found that, if the TF binding sites based on the CIS-BP data 

are enriched in the promoter regions of root up-regulated genes, the same sites also tend to be 

enriched among shoot up-regulated genes (enrichment score PCC=0.88, p=9.20e-42; Figure 

3.2A). This was also the case when DAP-seq data was used, but to a much lesser degree 

(PCC=0.25, p=2.27e-04; Figure 3.2B). This finding suggests that some cis-regulatory sites are 

common between root and shoot up-regulated genes. Nonetheless, the correlations were not 

perfect, suggesting that some CIS-BP TF and DAP-seq binding sites were differentially enriched 

between up-regulated genes in root and shoot. Consistent with this notion, the binding sites of 

some TF families were enriched in an organ specific manner. For example, WRKY binding sites 

were over-represented only in root and AP2 sites were over-represented mostly in shoot up-

regulated genes (Figure 3.2A and B). Next, to assess the extent to which known TF binding data 
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could explain organ-specific responses, we established CRCs with machine learning methods for 

predicting whether a gene is up-regulated or non-responsive to salt stress in root or shoot based on 

the presence and absence of CIS-BP TFBM or DAP-seq sites in the putative promoter regions (see 

3.5 Methods).  

We used two approaches to evaluate CRC model performance. The first is Area Under 

Curve - Receiver Operating Characteristic (AUC-ROC), where a perfect model would have AUC-

ROC=1 and random predictions would lead to AUC-ROC=0.5. The second way is the precision-

recall curve, where precision is the proportion of correctly predicted genes that are up-regulated in 

an organ and recall is the proportion of truly up-regulated genes in an organ that are correctly 

predicted. Better models would have precision-recall curves tending more towards the upper-right 

corner of the graph and random predictions would be no better than the background (dotted lines, 

Figure 3.2C and D). The model built with all binding site data according to CIS-BP or DAP-seq 

led to better predictions than randomly expected in root and in shoot (Figure 3.2C and D), 

indicating that these TF binding data contain relevant regulatory information for root and shoot 

salt up-regulation. Consistent with the expectation that only a subset of TFs would be involved in 

the organ-specific up-regulation, models using binding data of TFs with over-represented numbers 

of binding sites in salt up-regulated genes resulted in similar performance as the ones using all TF 

data in either root or shoot (Figure 3.2C and D). In addition, the models based on binding sites of 

TFs that were not over-represented performed poorly (AUC-ROC=0.54-0.56).  
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Figure 3.2 Over-representation of known TF binding sites in organ salt up-regulated genes 

and performance of CRCs predicting salt up-regulation. (A) Scatterplot of enrichment score 

(–log (q-value)) of CIS-BP TFBM sites in the promoters of root (y-axis) and shoot (x-axis) up-

regulated genes compared to non-responsive genes. Each point is for one TFBM. Blue: WRKY TF 

data. Red: AP2 TF data. Dotted lines: q-value threshold at 0.05.  (B) As in (A) but using DAP-seq 

data. Each point is for one TF. (C) Precision-recall curves and AUC-ROCs (insert) of CRCs 

predicting root up-regulated genes using CIS-BP TFs (orange) or DAP-seq TFs (blue). O: over-

represented among root up-regulated genes (red and black). The colors of the precision-recall 

curves correspond to the colors for different subsets in the AUC-ROC bar chart. The error bar 

corresponds to the standard error from 10-fold cross validation for each model. (D) As in (C) but 

for shoot up-regulated genes. 
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As the TF binding information was available for ~38% of the known A. thaliana TFs tested 

under in vitro conditions [22,23,38], there could be some relevant CREs not be included in the 

models. In addition, it is worth noting that performance of modeling root up-regulated genes is not 

as good as modeling salt up-regulated genes in shoots (Figure 3.2C and D). Thus, to improve 

upon our understanding of what CREs are associated with and how these CREs may influence salt 

up-regulation in the root and shoot, we next identified putative CREs based on co-expression to 

assess how the regulatory logic differs between the root and shoot salt up-regulation. 

3.3.3 pCREs derived from co-expression clusters are similar, but not identical, 

to the known binding motifs of TFs 

 We hypothesized that motifs identified through co-expression clustering would provide 

additional regulatory information compared to large-scale TF in vitro binding data [22,23] in 

modeling salt up-regulation. To test this, we identified 1,894 putative CREs (pCREs) over-

represented in putative promoters of root and/or shoot salt up-regulated genes in co-expression 

clusters defined based on the stress fold-change data (see 3.5 Methods). Next, we asked if the 

pCREs identified based on co-expression were similar to 355 CIS-BP TF binding motifs (TFBMs) 

[22]. We calculated the PCC values of the position weight matrices (PWMs) of all motif pairs 

between pCRE and CIS-BP TFBMs to find the best matching pCRE-TFBM pairs where lower 

PCC values indicating diminishing similarity (Figure 3.3A). Three criteria were used to define 

whether a pCRE-TFBM pair had significant similarity. First, we identified pCREs that are identical 

to TFBMs. Only two pCREs were identical (PCC=1) to experimentally determined binding motifs 

for ATBZIP63 involved in abscisic acid (ABA) biosynthesis [34] and ABF3 involved in abscisic 

acid (ABA) signaling [39], consistent with their roles in salt stress response. Second, given PCC=1 

is highly stringent, we defined that a pCRE-TFBM pair has significant similarity if their PCC is 
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significantly higher than (at the 5% level) PCCs of TF pairs from the same family (red; Figure 

3.3A). Based on this criterion, 4% of the pCREs were significantly similar to TFBMs. Third, we 

defined a pCRE-TFBM pair has significant similarity if their PCC is significantly higher than (at 

the 5% level) PCCs of TF pairs from different families (blue; Figure 3.3A). This is reasonable 

because the within family TFBM PCC values tend to be higher than between families (Figure 

S.3.1). This criterion allowed us to assess TFs from which families may bind the pCREs. Based 

on this criterion, 25% pCREs can be assigned to 24 of the 27 TF families and example TFBMs 

and their best matching pCREs are shown in Figure 3.3B.  

While 25% of the organ pCREs enriched among salt up-regulated genes are significantly 

similar to ≥1 TFBMs, what should be made of the remaining 75% of pCREs? One possibility is 

that these pCREs are TFBMs likely bound to one of the families, just that in the existing TF binding 

data a close representative is not available. To test this, we asked if the pCREs are more similar to 

a known TFBM than to sequences randomly drawn from the genome (black dots; Figure 3.3A) 

and found that PCC values between pCREs and their best matching TFBMs are all higher than 

95th percentile value in the pCRE-random sequence PCC distribution (Figure 3.3A). Thus, all 

pCREs are more significantly similar to known TFBMs than random sequences. These findings 

suggest that the pCREs are not simply random sequences pulled from the genome and that the co-

expression-based analysis contributed to an expanded set of CREs that are relevant for organ salt 

up-regulation. 
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Figure 3.3 Similarity of the pCREs to CIS-BP TFBMs. (A) Distributions of PCC values 

between TFBMs. The y-axis indicates different TF families and the x-axis indicates the PCC 

values. Orange: the 95th percentile value of the distributions of PCCs between TFBMs from a 

particular family and pCREs with their best matches in the same family (TFBM vs. pCRE) 

TFBMs. Red: the 95th percentile value in the distribution of PCCs between pairs of TFBMs from 

each TF family (TFBM within). Blue: the 95th percentile value of the distribution of PCCs between 

TFBMs in one family and their best matching TFBMs in other families (TFBM between). Black: 

the 95th percentile value of the distribution of PCCs between TFBM from a particular family and 

random motifs (TFBM vs. random). (B) The sequence logos of bZIP, AP2, NAC-NAM and TCP 

TFBMs from CIS-BP (left) and their best matching pCREs and PCC values (right). 
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3.3.4 pCRE set further improves salt up-regulation prediction in a spatially 

specific manner 

To assess if the pCRE set predicts salt up-regulation better than known in vitro TF binding 

sites [22,23], we modeled salt up-regulated expression using the pCRE set (see 3.5 Methods; 

Figure 3.4A and B). Salt up-regulation prediction models based on pCREs had better prediction 

performance for both root up-regulated genes (red, AUC-ROC=0.71; Figure 3.4A) and shoot up-

regulated genes (red, AUC-ROC=0.79; Figure 3.4B) than the models based on CIS-BP and DAP-

seq data (root AUC-ROC=0.64, shoot AUC-ROC=0.74; Figure 3.2C and D). This improvement 

indicates that using motifs discovered from co-expression clusters containing root and/or shoot up-

regulated genes led to better prediction models of organ salt up-regulation.  

Next, we classified 1,894 organ pCREs into three subsets that were over-represented in the 

promoters of genes up-regulated by salt in the root (759 root pCREs), in the shoot (237 shoot 

pCREs), and in both root and shoot (898 general pCREs). The rationale for defining these pCRE 

subsets was that the root and shoot subsets might be more critical to controlling expression for the 

root specifically and shoot specifically up-regulated genes, respectively, while the general pCREs 

might be critical for globally up-regulated genes. To test this hypothesis, salt up-regulation 

prediction models were established using root, shoot, and general pCREs where each pCRE was 

treated as an independent predictor. For predicting root up-regulated genes (including genes up-

regulated globally and in root specifically), we found that a model based on root pCREs (AUC-

ROC=0.70) was much better than a model based on shoot pCREs (AUC-ROC=0.61; Figure 3.4A). 

Similarly, a model based on shoot pCREs better predicted shoot salt up-regulated genes (AUC-

ROC=0.73) than a model based on root pCREs (AUC-ROC=0.66; Figure 3.4B). Thus, the root 

and shoot pCRE sets are better at predicting up-regulated genes in the organs for which they are 
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associated, demonstrating they are relevant to spatially specific up-regulated genes. In addition, 

root pCREs alone or the combination of the general and the root pCRE set resulted in models that 

performed as well as the model using the all pCRE set (AUC-ROC=0.71; Figure 3.4A). This 

suggests that shoot pCREs provide no additional information to predict root up-regulated genes. 

In contrast, for shoot up-regulated genes, although the model based only on shoot pCRE performed 

reasonably well (AUC-ROC=0.73), it was not as good as the model based only on the general 

pCREs (AUC-ROC=0.80; Figure 3.4B).  

Surprisingly, adding the shoot pCRE set did not provide additional regulatory information 

for salt up-regulation in the shoots that was not already provided by the general pCREs. This 

conclusion is based on the finding that the general pCRE-based model performed as well as a 

model using both the general pCREs and the shoot pCREs (AUC-ROC=0.80; Figure 3.4B). This 

further supports the notion that shoot up-regulated genes may be regulated by a global set of TFs 

(Figure 3.1B) that bind to set of general pCREs. Another surprise was that, for root up-regulated 

gene prediction, the models based on the root pCREs, the general pCREs, and the union of the 

general and the root pCREs performed similarly (Figure 3.4A). One potential explanation is that 

each model captured a distinct subset of the organ up-regulated genes. To assess the extent to 

which the models were predicting similar sets of genes, we examined how genes were classified 

when different pCRE subsets were used (see 3.5 Methods). We found that more root specifically 

up-regulated genes were predicted with the root pCRE-based models (24%) compared to models 

using general pCREs (9%; Figure S.3.2).  
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Figure 3.4 Performance of salt up-regulation prediction models using pCREs identified from 

co-expression clusters. (A) Precision-recall curves for models predicting root salt up-regulated 

genes using all pCREs (black), root pCREs (blue), shoot pCREs (red), general pCREs (orange) 

and, root+general pCREs (purple). The bar plot on top right indicates the corresponding AUC-

ROC values of the models. Error bar is the standard error of precision values or AUC-ROCs from 

10-fold cross validation.  (B) Precision-recall curves and AUC-ROC values for models predicting 

shoot up-regulated genes using all pCREs (black), root pCREs (blue), shoot pCREs (red), general 

pCREs (orange) and, shoot+general pCREs (purple). 
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Taken together, these results demonstrate that the identification of the pCRE set using 

stress expression data can lead to improvements in modeling gene expression over known in vitro 

TF binding sites. This supports our hypothesis that co-expression based approaches would improve 

CRE discovery. We also found that salt stress up-regulated genes in the root and the shoot may be 

regulated by different subsets of motifs in the pCRE set. Genes up-regulated by salt stress in the 

root can be best predicted with a model considering both root and general pCRE sets without 

considering shoot pCREs. However, the shoot up-regulated genes likely are regulated primarily 

by general pCREs, as seen in the equivalent performance of the general pCRE model and the full 

pCRE model of shoot up-regulated genes. 

3.3.5 Filtering pCREs based on TF binding, DNase I hypersensitivity, and 

conservation 

We demonstrated that pCREs identified in this study can predict organ salt up-regulation. 

However, the large number of pCREs identified (1,894) raised the question of whether there might 

be motifs that were redundant or not particularly informative in the predictive model and could be 

filtered out. To reduce redundancy, we first removed highly similar pCRE pairs (see 3.5 Methods). 

Next, we used feature selection algorithms to identify the best performing pCREs in predicting 

root up-regulated genes (Figure 3.4A) and shoot up-regulated genes (Figure 3.4B). Among the 

feature selection algorithms used, the Chi-square statistic-based approach performed the best (see 

3.5 Methods; Supplemental Figure 3). With a threshold chi-square statistic ≥ 10, 678 (41%) and 

397 (35%) of pCREs (referred to as chi10 selected pCREs) were regarded as informative and could 

better predict root (AUC-ROC=0.73; Figure 3.5A) and shoot (AUC-ROC=0.81; Figure 3.5B) salt 

up-regulation, respectively, compared to when the full set of pCREs were used (Figure 3.4A and 

B).  
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To improve prediction of organ salt gene up-regulation further, we took advantage of 

additional regulatory information including the in vitro TF binding data (CIS-BP and DAP-seq), 

chromatin accessibility measured according to DNase I Hyper-Sensitivity (DHS) experiments 

[40], and the Conserved Non-coding Sequences (CNS) among Brassicaceae species [35]. Although 

root and shoot up-regulated gene promoters were over-represented with DHS regions (FETs, all p 

< 5e-13) and with CNSs (FETs, all p<1e-12) compared to non-responsive genes, the performance 

of models based on only DHS or CNS were the same as random guess (AUC-ROC ~ 0.5), 

suggesting additional regulatory sequence information was needed. Thus, we hypothesized that a 

pCRE site would be more informative in predicting gene expression if it overlapped with a 

potential TF binding site, a chromatin accessible region, and/or CNS. 

Models based on DAP-seq filtered pCREs had similar performance to the models using 

original unfiltered pCREs for both root and shoot salt up-regulation (AUC-ROC=0.73-74 and 

0.80-81; Figure 3.5A and B). Because the model performance remained the same and 9-14% of 

the pCRE sites were removed, it is likely that filtering based on DAP-seq data eliminated some 

false positive pCRE sites but also true positive sites. This is also true for filtering pCRE sites based 

on CIS-BP data (Figure 3.5A). On the other hand, filtering pCRE sites based on DHS information 

further decreased the performance for shoot up-regulation prediction but did not impact prediction 

in root (Figure 3.5B). Thus, pCRE sites informative for predicting shoot salt up-regulation were 

likely removed, potentially because chromatin accessibility can only partially predict gene 

expression [41]. One surprising finding was that models based on pCRE sites overlapped with 

CNS had the worst performance in predicting both root and shoot up-regulated genes. This is likely 

because the CNS were identified with stringent criteria and filtering reduced true pCRE sites. In 

addition, this finding suggests that there are pCRE sites that are involved in organ salt up-
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regulation but are not highly conserved. Taken together, the pCRE information alone already led 

to models with the best performance in predicting organ salt up-regulation. Additional TF binding 

information, DHS, and CNS either did not improve or worsen the model performance. 

3.3.6 pCREs work best in combinations 

To evaluate what the minimal set of pCREs was for salt up-regulation predictions, we 

ranked all chi10 pCREs as well as those with DAP, CIS-BP, DHS, and/or CNS evidence according 

to importance scores generated during machine learning runs (see 3.5 Methods). For each chi10 

pCRE, it was examined five times by either applying no filter to the sites the pCRE mapped to or 

by filtering based on four types of evidence (DAP, CIS-BP, DHS, or CNS), this analysis was 

referred to as a combined approach (Figure 3.5). Consistent with models with CNS filtering 

having the lowest performance in predicting organ salt up-regulation, we found that CNS features 

were the least important in predictions (Figure 3.5C and D). Given there were 678 root and 397 

shoot chi10 pCREs, we ranked 2,712 root and 1,588 shoot pCRE-evidence pairs and identified the 

top 100 and 10 pCREs for root or shoot up-regulation.  
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Figure 3.5 Performance of salt up-regulation prediction models using filtered pCRE sets. (A) 

Precision-recall curves for models predicting root salt up-regulated genes using the following 

pCRE sets: (1) chi10 - pCREs selected with the chi-square test feature selection method with a 

threshold of chi-square statistic ≥ 10 (red) (Supplementary Figure 3E and F), (2) DAP - chi10 

selected pCREs including only pCRE sites overlapped DAP-seq peaks (blue), (3) CIS-BP - chi10 

selected pCREs including only pCRE sites overlapped with CIS-BP TFBM sites (orange), (4) DHS 

- chi10 selected pCREs including only pCRE sites overlapped with a DNase-I Hyper-Sensitivity 

(DHS) peaks (green), (5) CNS - chi10 selected pCREs including only pCRE sites overlapped with 

a Conserved Non-coding Sequence (CNS, purple), and (6) Combined - using all information from 

(1)-(5) (black).  
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Figure 3.5 (cont’d) 

(B) Precision-recall curves for models predicting shoot salt up-regulated genes using the six types 

of pCRE sets as in (A). (C) Distributions of importance ranks of all chi10 selected pCREs (chi10) 

or chi10 pCREs filtered based on DAP-seq, CIS-BP, DHS, or CNS data. The ranks were obtained 

from the model built with the Combined dataset in (A) for root. (D) As in (C) but based on the 

model built with the Combined dataset in (B) for shoot. 

 

The models based on the top 100 pCRE-evidence pair yielded AUC-ROC=0.72 and 0.80 

for predicting root and shoot up-regulation, respectively, which were comparable to the models 

based on all chi10 selected pCREs (red; Figure 3.5A and B). However, using only the top 10 

pCRE-evidence pairs, the prediction performance was significantly worse (AUC-ROC=0.66 and 

0.72 for root and shoot prediction, respectively). This result suggests that most important 100 

pCRE-evidence pairs that included 39 and 40 pCREs for root and shoot, respectively, were 

sufficient for predicting organ salt up-regulated genes. This would imply that the rest of the 1,854 

pCREs we identified are not informative. Alternatively, it is possible that some of these seemingly 

uninformative pCREs may reveal their importance only in combinations as demonstrated in studies 

on regulation of gene expression under stress conditions [17,20], as well as tissue specific 

expression [26,42]. So far, we considered many pCREs collectively in the salt up-regulation 

predictions but treated each pCRE individually as an independent predictor. Therefore, we asked: 

(1) whether pCRE combinations were important for salt up-regulated genes in the root and/or the 

shoots, (2) what the important pCRE combinations were, (3) what types of pCREs were involved 

with the combinations, and (4) if combinatorial rules important in root expression were also 

important for shoot expression, or vice versa. 
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To identify pCRE combinations relevant to the up-regulation of genes under salt stress, we 

used the Classification by Association method (CBA; see 3.5 Methods). Due to consideration of 

computational complexity, we restricted our analysis to binary combinatorial rules where the 

presence of two pCREs predicted up-regulation (pCRE A + pCRE B  up-regulation in organ of 

interest). Rule sets were generated for both the root and the shoot salt up-regulated genes. As some 

pCREs may only be informative in combinations, we included all 1,894 pCREs without any 

filtering to identify combinatorial rules. This would also enable us to compare the pCREs involved 

in rules to the individual pCREs found to be most informative. We identified 2,826 and 351 

combinatorial rules for root and shoot up-regulation. 1,086 pCREs were present in the 

combinatorial rules that were predictive of root up-regulation (root rules), but only 389 of them 

were also chi10 selected pCREs that were informative for predicting up-regulation when 

considered individually. Similarly, only 136 out of 427 pCREs in the shoot rules were chi10 

selected. Thus, a substantial number of pCREs were informative for predicting root and shoot salt 

up-regulation only when considered in combination.  

We also found only 12 root rules (among 2,826) had the same pCRE combinations as the 

shoot rules, suggesting that the great majority of the rules for one organ were specific to that organ. 

Most importantly, models based on only the combinatorial rule sets improved predictions for both 

root (AUC-ROC=0.81; Figure 3.6A) and shoot (AUC-ROC=0.87; Figure 3.6B) up-regulated 

genes compared to the models based on presence/absence of single pCREs (AUC-ROC=0.71 and 

0.79 for root and shoot, respectively, Figure 3.4A and B). These results indicate the involvement 

of pCRE combinations to the salt up-regulation. In addition, they demonstrate that the rules capture 

the physical interaction between two presumed TFs binding to a pair of pCREs. Nonetheless, we 

found that the sites of a pair of pCREs in a rule are not significantly closer together in salt up-
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regulated genes compared with non-responsive genes (Figure S.3.4A and B). This is consistent 

with the finding that the distance distribution of the binding sites of interacting human TFs were 

not significantly different from random expectation [42]. Thus, sites of pCRE important for 

combinatorial regulation may not be constrained by their distances. 

With the combinatorial rules, we next examined if the rules tended to be composed of a 

general pCRE and an organ (root or shoot) pCRE, two general pCREs, or two organ pCREs 

(Figure 3.6C). We found that there was a significant difference in the distribution of these three 

categories of combinatorial rules for the shoot rules (Chi-square test, p=6.0e-06), particularly there 

were more general-general pCRE combinations than expected (odds-ratio=1.5), and fewer organ-

organ pCRE rules than expected (odds-ratio=0.52). This aligns with the notion that the general 

pCREs are more important for the regulation of shoot up-regulated genes. The root rules also had 

a significantly different distribution of rule types (Chi-square test, p=0.01), but the effect sizes 

were generally low (odds-ratios range 0.89-1.1). Thus, it does not appear that rules for root up-

regulated genes are composed of general pCRE with a pCRE from one of the organ sets.  

Taken together, our findings suggest that the organ pCREs work best in combinations and 

example combinatorial rules are shown in Figure 3.6D. The greater importance of combinatorial 

rules aligns well with what is already known in mammals, where individual CREs are important 

for expression in multiple tissues, but CRE combinations are more relevant in controlling tissue-

specific expression [18,22]. Both root rules and shoot rules incorporate pCREs from the full set of 

organ pCREs, but there is only little overlap (0.4-3%) in the two sets of rules. This suggests that 

the pCREs need to be considered in combinations for better predictions of salt up-regulation.  
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Figure 3.6 Summary of root and shoot combinatorial pCRE rules and model performance.  

(A) Precision-recall curves comparing models based on combinatorial rules (green) and the full 

pCRE set (black) for predicting root salt up-regulated genes. (B) Precision-recall curves comparing 

model based on combinatorial rules (green) and the full pCRE set (black) for shoot salt up-

regulated genes. (C) Heatmap summarizing the rules identified for salt stress up-regulated genes 

in the root (pCREs: blue=root, red=shoot, orange=general). 
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3.4 Conclusions 

In this study, we identified a set of 1,894 pCREs from co-expression clusters that were 

relevant to the up-regulation of transcript abundance under salt stress in the root and shoot of A. 

thaliana. Among them, 25% pCREs were similar to the known binding motifs of TFs from 

multiple families. Machine learning models for predicting salt up-regulation based on the pCRE 

set had significantly better performance than those based on in vitro binding data from two large-

scale studies [22,23]. Thus, the pCREs identified likely contained cis-regulatory information of 

spatial response to salt. We also found that the salt up-regulation in the root required both a general 

pCRE set that was relevant to up-regulation in both root and shoot as well as a root pCRE set 

primarily associated with root specifically salt up-regulated genes. In contrast, the shoot salt up-

regulated genes relied primarily on a general pCRE set. Considering that substantially more genes 

were up-regulated in the root (2,100) compared to that in the shoot (524), this difference in the 

composition of relevant pCREs may reflect the differences in regulatory complexity and root as 

the primary organ exposed to high salinity treatment. Filtering pCREs using in vitro TF binding 

data, chromatin accessibility and conservation, we found that ~40 pCREs could predict organ salt 

up-regulation with the same performance as the model using all pCREs. Nonetheless, the organ 

salt up-regulation models considering combinations of pCREs had significantly improved 

performance over the models considering pCREs collectively but treated each pCRE as 

independent predictor. Most importantly, the majority of the pCREs in the combinatorial rules 

were not considered important when they were treated as independent predictors and would have 

been false negatives in common motif finding practices.   

One limitation of our study was that the pCREs were identified based on the expression 

data alone without knowledge of whether the sites mapped by these pCREs were actually bound 



100 

 

by TFs. To overcome this limitation, we incorporated in vitro binding, chromatin accessibility, and 

conservation data into the model. We found that the inclusion of in vitro binding data led to models 

with the same performance as those considered only pCREs. Nonetheless, we found that the 

pCREs identified are complementary to in vitro derived TF binding information. Because the in 

vitro TF binding was an assessment of what kinds of sequences could be bound and not where the 

in vivo binding sites were in the genome, the binding data by itself was not expected to predict 

condition-specific expression well. Combining the pCREs identified using condition-specific data 

and the in vitro binding data, the condition-specific regulators and regulatory sequences could be 

pinpointed. In addition to in vitro TF binding data, chromatin accessibility data (DHS) was 

incorporated but led to either a reduced model performance or did not improve the model 

performance. One potential reason was because the DHS data we used were generated under 

conditions not related to salt stress in different developmental stages of A. thaliana. Finally, CNS 

was incorporated to filter pCRE sites but yielded models with the lowest prediction performance. 

One reason could be stress pCREs might have higher evolutionary rates and not well conserved. 

Another possible reason is that CNSs are defined in a stringent fashion or not sensitive enough in 

obtaining sites that are under selection but beyond the limit of detection. 

Another limitation was that the spatial stress response was predicted at the organ level with 

limited resolution. The next logical step is to identify pCREs that can be used to predict the 

differential expression of genes in a cell type specific manner. In any case, our results show that 

co-expression based CRE identification in conjunction with machine learning-based modeling are 

a promising method for globally assessing spatial gene regulation in the context of stress. In 

addition to providing a genome-wide view of the potential cis-regulatory mechanisms, this 

approach may have possible applications in engineering plants that can respond to stresses. Use of 
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native, tissue-specific inducible promoters to engineer plants is promising, but it is limited by the 

promoters that are already available in nature [43]. The methods we used here may help to identify 

individual and/or combinations of cis-regulatory sequences that can be used in synthetic promoters 

to drive tissue specific expression in the context of stress.  

3.5 Methods 

3.5.1 Expression data processing and expression data analysis 

A. thaliana abiotic stress expression data for the root and shoot [11] and biotic stress data 

for the shoot were downloaded from the AtGenExpress website 

(http://www.weigelworld.org/resources/microarray/AtGenExpress/). The data came preprocessed 

and normalized. We calculated log2 fold changes and associated p-values for each stress condition 

and its corresponding control at each time point and each organ using limma [44] in the R 

environment [45]. The p-values were adjusted [46] to control for the False Discovery Rate. Genes 

were considered up-regulated if their log2 fold-change values≥1 and their adjusted p-values≤0.05. 

Genes up-regulated after salt treatment for three hours in the root and in the shoot were referred as 

the root and shoot up-regulated genes respectively. Genes were considered non-responsive if they 

were not significantly differentially expressed (up or down-regulated) under any stress condition 

at any time point in the root or the shoot. Each organ had its own set of non-responsive genes 

(“root non-responsive” and “shoot non-responsive”). This stringent definition of non-responsive 

genes was chosen to because cis-regulatory sequence may be relevant to regulating responses not 

only to salt but also to other stress conditions. 

To assess the relationship of the degrees of differential expression in the root and shoot 

under different stress conditions, Pearson’s Correlation Coefficients (PCCs) of log2 fold change 

http://www.weigelworld.org/resources/microarray/AtGenExpress/
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values were calculated for all pairs of conditions/organ. A heatmap of the PCC values (Figure 3.1) 

was generated using the gplots package in R [47]. To identify the functional categories enriched 

in salt up-regulated genes (3hr) in the root, in the shoot, or in both root and shoot, each plant GO 

slim category (http://www.geneontology.org/ontology/subsets/goslim_plant.obo) was used to 

determine if it contained over/under-represented numbers of up-regulated genes in root, shoot, or 

both organs with  Fisher’s Exact Test (FET) implemented in SciPy (http://www.scipy.org/). The 

p-values were adjusted for multiple testing using the Benjamini-Hochberg method [46]. 

3.5.2 In vitro TF binding, DNase I hypersensitivity, and conserved non-coding 

datasets 

Two sets of in vitro binding data were used. The first set included Position Frequency 

Matrices (PFMs) obtained from the CIS-BP database website [22]. These PFMs are based on either 

protein binding microarray data or TRANSFAC motifs [22]. The PFMs were converted to Position 

Weight Matrices (PWMs) adjusted for the background AT (0.33) and CG (0.17) content of A. 

thaliana genome using the TAMO package [48]. This resulted in a final set of 355 PWMs (referred 

to as TFBMs). To map the TFBMs, first the 1kb sequences upstream of transcriptional start sites 

(putative promoters) of all genes in A. thaliana were downloaded from The Arabidopsis 

Information Resource (ftp://ftp.arabidopsis.org/). The TFBMs from CIS-BP were mapped to the 

putative promoter sequences using Motility (http://cartwheel.caltech.edu) with a threshold  p<1e-

06. The second set included 344 DAP-Seq experiments testing in vitro bindings to naked genomic 

DNA in 598 TFs from the Plant Cistrome Database [25]. A DAP-seq peak (~200bp long) contained 

TF binding site and only peak with fraction of reads in peaks (FRiP) ≥ 5% was considered further. 

We identified TFBM sites and DAP-seq peaks that were over-represented in the promoters of the 

http://www.geneontology.org/ontology/subsets/goslim_plant.obo
ftp://ftp.arabidopsis.org/
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root up-regulated and shoot up-regulated genes by performing FET against the root non-responsive 

and shoot non-responsive genes, respectively.  

DNase I hyper-Sensitivity (DHS) data [40] were obtained from GEO (GSE53322 and 

GSE53324) in form of peaks in bed format. The DHS datasets were derived from multiple 

developmental stages and tissues including 7-day-old dark-grown A. thaliana Col-0 seedlings, 

root, root hair cells, root non-hair cells, and seed coat. Each DHS dataset was treated as distinct 

features in this study for predicting salt up-regulation. A. thaliana-based coordinates of ~90,000 

Conserved non-coding sequences (CNS) among Brassicaceae species were obtained 

(http://mustang.biol.mcgill.ca:8885, [35]) to assess whether CNS may be informative for assessing 

salt up-regulation. In addition, both DHS and CNS regions were used to filter pCRE sites to see if 

sites with different degrees of chromatin accessibility and conservation may contribute to salt up-

regulation prediction differently.  

3.5.3 Salt up-regulation pCRE identification 

To identify pCREs associated with salt up-regulated genes in the root and shoot, we used 

a published pipeline with modifications [17]. The stress expression dataset in the form of a log2 

fold-change expression matrix was used to identify co-expression clusters using iterated rounds of 

k-means clustering such that all clusters contained 60 genes or less, while clusters smaller than 10 

genes were excluded. Clusters enriched in salt up-regulated genes in any time point in either roots 

or shoots were analyzed further for identifying 6-18bp motifs in the putative promoter regions of 

genes in each cluster. Six motif finding programs were used: AlignACE [49], MDScan [50], 

MEME [51], Motif Sampler [52], Weeder [53], and YMF [54]. In the initial motif finding step, 

~300,000 motifs were identified, many of which were redundant. Two rounds of pCRE 

merging/enrichment testing were performed. In the first round, the ~300,000 motifs were merged 

http://mustang.biol.mcgill.ca:8885/
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if their consensus sequences shared the same IUPAC codes and/or if they were highly similar to 

each other (in the same cluster) based on clusters defined using Kullback-Leibler (KL) distance 

[17]. In the enrichment step, these merged pCREs were mapped to the 1kb promoter regions of 

genes in A. thaliana using Motility (http://cartwheel.caltech.edu), and we kept mappings with a p 

< 1e-06. The pCREs were further analyzed if their mapped sites were significantly over-

represented (FET, adjusted p ≤0.05) in promoters of salt up-regulated genes.  

In the second round, we further merged enriched motifs based on PCC distance (1-PCC) 

of the motif PWMs. Using the PCC distance matrix, motifs were clustered hierarchically and 

distinct clusters were demarcated with a PCC distance threshold of 0.10, which was previously 

found to be the first percentile of PCC distances for non-redundant motifs in the JASPER CORE 

dataset [17]. Within each cluster, a single motif was chosen based on having the most significant 

degree of enrichment for genes up-regulated under salt stress in roots and/or shoots. The motifs 

identified from all clusters were collectively referred to as pCREs. To identify pCREs particularly 

relevant to root, shoot, or general salt up-regulation, a final round of FET was done to identify 

motifs were significantly over-represented (p<0.05) only in the root salt up-regulated genes (“root 

pCREs”), only in shoot salt up-regulated genes (“shoot pCREs”), and among genes up-regulated 

in both organs (“general pCREs”). In the end, 1,894 shoot, root, and general pCREs were 

identified.  

3.5.4 Comparison of pCREs and TFBMs 

To assess the similarity between the pCREs identified here and the known TFBMs from 

CIS-BP [22], the PCCs between PWMs of all pCRE-TFBM, all pCRE, and all TFBMs 

combinations were calculated. For each pCRE, the pCRE-TFBM combination with highest PCC 

was analyzed further. To assess the statistical significance of the correlation between a pCRE-
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TFBM pair, a within TF family PCC distribution was established using TFBMs from each TF 

family. This allowed us to test whether a pCRE was more similar to a TFBM of a particular family 

than those between TFBMs within that same family. The PCC distribution of each TFBM family 

was fitted with normal or beta distribution functions based on maximum likelihood using the 

MASS package [55] in R. Every PCC between a pCRE and a TFBM from a particular family was 

compared to the cumulative density function of the fitted within family distribution to get a p-

value. All p-values from the pairwise comparisons were adjusted for multiple testing within the 

same family [56]. 

To further assess which families of TFs pCREs might bind to, between family TFBM PCC 

distributions were generated and fitted as described above. We compared the PCC for each pCRE-

TFBM pair to the between family distributions to generate a p-value, which were adjusted for 

multiple testing [56]. We set a q-value of 0.05 as the threshold to say that the pCRE may be bound 

by the same family as the TFBM. Because the TFBMs for some families were more divergent than 

the other (a wide range median PCCs for within family distribution; Supplemental Figure 1), the 

false negative rates (fail to assign a pCRE to certain families) varied. To assess if the pCREs were 

more similar to TFBMs than to random genomic sequences, 1,894 random PWMs with the same 

length distribution as pCREs were generated. For a random PWM of length k, 15 k-mers were 

randomly generated using the background distribution of AT-GC in A. thaliana, and consolidated 

into a PWM using the MotifTools.Motif_from_counts function in TAMO [48]. The random 

PWMs were then compared to TFBMs to establish the distribution of PCC to randomized PWMs. 
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3.5.5 Prediction of salt up-regulation using machine learning and feature 

selection 

 Our goal was to model salt up-regulation of genes in each organ as a classification problem 

involving two classes: salt up-regulated genes in an organ and genes that are not responsive under 

any stress condition. The Support Vector Machine (SVM, [57]) and Random Forest (RF, [58]) 

algorithms were used for classification implemented in the Waikato Environment for Knowledge 

Analysis (Weka [59]). To get the importance scores of each feature, RF was also used from Scikit-

learn package in Python [60]. Every model in this paper had two components: 1) a set of genes, 

each of which is classified as up-regulated or non-responsive (“expression class”) and 2) a set of 

cis-regulatory sites (CIS-BP TFBMs, DAP-seq peaks, or pCREs) and their presence/absence on 

the putative promoter of each gene (“promoter features”). We established machine learning models 

using five sets of pCRE sites including all mapped pCRE sites, as well as pCRE sites overlapped 

with CIS-BP TFBM sites, DAP-seq peaks, DHS regions, and CNS. In this setup, the models 

predict the genes from the two expression classes using the presence or absence of the promoter 

features. Grid-searches were used to find the best combination of the following three parameters 

in SVM: (1) the ratio of non-responsive to up-regulated genes, (2) the parameter of the soft margin, 

and (3) the gamma parameter of the Radial Basis Function (RBF) kernel. The latter two parameters 

are part of the SVM method itself. Similarly, grid-searches were used for RF predictions including 

(1) the ratio of non-responsive to up-regulated genes and (2) number of attributes. The ratio of 

negative to positive examples was achieved using the Weka class 

“weka.filters.supervised.instance.SpreadSubsample”, which subsamples the non-responsive genes 

to achieve the desired ratio of up-regulated to non-responsive genes. We used 10-fold cross 

validation as implemented in Weka, and the average AUC-ROC from all 10 cross validation runs 
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was calculated using the ROCR package [61]. RF model results were reported in this study as the 

performances of SVM and RF models were correlated and RF was easier to scale-up to large-

datasets. The parameter combination with the maximum average AUC-ROC were taken as the best 

parameters for each model, and this maximum AUC-ROC is what we report for each model. 

Precision-recall curves were plotted using the output from the model with the maximum AUC-

ROCs. 

To eliminate redundant motifs, we used three univariate feature selection methods: 1) PCC-

based using Caret R Package  2) Correlation Feature Selection-CFS in Weka (correlation is based 

on minimum description length (MDL), symmetrical uncertainty, and relief (Hall,1999)) and 3) 

Chi-squared test in Weka on the pCRE sets. For the PCC-based method, we calculated the PCC 

between each pair-wise feature (pCRE sites). For the pairs of features that have greater than a PCC 

of 0.5, kept only one of them. This is an arbitrary threshold; however, removing 15 -20% pCREs, 

did not change the AUC-ROC values of prediction models. With CFS method, we kept the default 

settings in Weka. Chi-squared test in Weka yields ranks for each pCRE based on the chi-square 

statistic. We used the chi-square statistic of 10 and 20 as thresholds to keep higher ranked pCREs. 

3.5.6 Binary prediction of root and shoot up-regulated genes 

While the AUC-ROC is a good measure of the overall performance of machine learning 

models, it does not indicate how well individual genes are predicted. Thus, it is possible that two 

models have similar levels of performance as measured by AUC-ROC resulting from the correct 

predictions of different sets of genes. To assess which genes were predicted by models based on 

different pCRE sets, and to see if different models correctly predict different sets of genes, the 

Weka program CrossValidationAddPredictions was used to identify whether a gene was correctly 

predicted as up-regulated or non-responsive during salt stress. This program makes a model as 
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described above, but it keeps track of the prediction of each gene. We used the best parameter 

combination identified from the original grid-search as the basis for the binary prediction run. We 

chose the parameter combinations with the maximum average AUC-ROC. For that given run, 

maximum F-measure (harmonic mean of precision and recall, calculated using ROCR) was used 

as the threshold to create binary predictions for each gene. We also assessed the overlap of 

correctly predicted up-regulated genes (True Positives, “TP”) based on models using different 

pCRE sets by looking at the percentage of the up-regulated genes correctly predicted by two 

different models.  

3.5.7 Combinatorial motif rule discovery 

 To test if the combinations of specific pCREs were predictive of salt up-regulation in the 

root or shoot, the Classification by Association (CBA) [63] method was used to identify 

combinatorial rules of the form “pCRE A + pCRE B → up-regulation” were selected from the 

CBA output. This method is useful for identifying rules where some combinations of features are 

associated with a class. The features in our case were the presence or absence of pCRE pairs on a 

gene promoter and the class was root or shoot up-regulation. The root or shoot up-regulated and 

non-responsive genes were broken up into different subsamples. Each of these subsamples was 

run through CBA using multiple values for minimum confidence (percentage of genes where 

“pCRE A + pCRE B → up-regulation” out of all the instances of “pCRE A + pCRE B”) and 

support (percentage of genes that with the rule “pCRE A + pCRE B → up-regulation”). Rules for 

shoot up-regulated genes were discovered using a minimum support 0.5% and a minimum 

confidence of 60.0%, with a non-responsive to up-regulated ratio of 2:1. We went through several 

rounds of CBA to discover root rules using different values of support, confidence and non-

responsive to up-regulated ratios. We ended up using a minimum support of 0.1%, a minimum 
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confidence of 60%, and subsamples with 976 non-responsive genes to 488 responsive genes, which 

were the same numbers of genes used to generate the shoot rules. These parameters were chosen 

because the rules generated gave an appreciable gain in the AUC-ROC when performing 

predictions. Due to the limitation of using a GUI version of CBA, we were not able to do an 

extensive exploration of the best CBA parameter values. Thus, it is possible that there is a more 

optimal parameter set that will yield a greater performance gain.  

The distance between pairs of pCREs in a rule was calculated for all instances of the rules 

in the putative promoters. The minimal distance between the closest ends of two pCREs were 

determined. To determine if the minimal distances were significantly different than randomly 

expected, background distributions of pCREs was generated by modeling the frequency of 

distances between two random pCREs of the same lengths as the pCREs in the rule pair based on 

an earlier approach [42]. The only difference in our method was that we compared our observed 

distance distributions to the background distribution using a Mann-Whitney test instead of a 

Kolmogorov-Smirnov test, as the Mann-Whitney test can more directly test whether one 

distribution has higher or lower distances than the other distribution. 
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Figure S.3.1 Distributions of PCCs between CIS-BP TFBMs with and between example TF 

families. Distributions of PCCs between TFBMs within a TF family (red) and between TFBMs 

of a particular family to all other TFBMs across families (blue). 
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Figure S.3.2 Contribution of general, root, and shoot pCREs to the predictions of true 

positive genes that were globally, root-specifically, and shoot-specifically up-regulated. (A) 

Bar plot of % true positive root-specific or global salt up-regulated genes predicted by the root 

pCRE only model (blue), the general pCRE only model (orange), and both models (black). Grey: 

false negatives. (B) Bar plot of % true positive shoot-specific or global salt up-regulated genes 

predicted by the shoot pCRE only model (red), the general pCRE only model (orange), and both 

models (black). Grey: false negatives.  
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Figure S.3.3 Feature selection on pCREs and performance of RF models using selected 

pCREs. (A) Precision-recall curves of models predicting root up-regulated genes (B) Precision-

recall curves of models predicting shoot up-regulated genes. Bar plots on top right of precision-

recall curves indicate the AUC-ROC values for predicting root (A) and shoot (B) salt up-regulated 

genes. The features used are: “root+general” or “shoot+general” (red), “PCC<0.5”: pCREs that 

have PCCs higher than 0.5 (blue), “chi10”: pCREs that have chi-squared statistic higher than 10 

(green). “chi20”: pCREs that have chi-squared statistic higher than 20 (orange). “CFS”: pCREs 

selected from Correlation Feature Selection (purple). (C) Bar plot of number of pCREs that each 

set of feature selection method yields for root+general pCRE set (D) Bar plot of number of pCREs 

that each set of feature selection method yields for shoot+general pCRE set. (E) Dot plot of chi-

square statistic for root+general pCRE set. Red dashed lines: Thresholds used to select pCREs. (F) 

Dotplot of chi-square statistic for shoot+general pCRE set. 
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Figure S.3.4 Summary of the distance between pairs of motifs in combinatorial rules. (A) The 

distance between pairs of motifs in the same rule for all instances of the rule on the promoters of 

all genes in the A. thaliana genome for the root rules. Squares represent the median distance for a 

rule, and the edges of the ribbon represent the 25th and 75th percentile of distances. The color of 

each square represents the significance (Mann-Whitney, adjusted p < 0.05) of the distance 

distribution compared the random background distribution. White: Not significant, red: 

significantly closer than random, blue: significantly further than random. Rows are sorted from 

lowest median distance at the bottom to highest median distance at the top. (B) Same as (A) but 

for shoot rules. 
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CHAPTER 4 

PREDICTIVE MODELS OF CELL TYPE HIGH SALINITY RESPONSIVE 

GENE EXPRESSION 

4.1 Abstract 

How multicellular organisms respond to their environment depends on the responses of 

individual cell types to the surrounding fluctuations. Transcriptional reprogramming based on the 

environmental changes is the key to these responses. Therefore, how transcriptional 

reprogramming is controlled in each distinct cell type is important to decipher. However, the 

mechanism of cell type specific gene expression regulation, particularly towards environmental 

changes, is mostly unknown in plants. Here, we use Arabidopsis thaliana root cell type data as 

examples to understand the mechanism of stress responsive gene expression regulation via cis-

regulatory elements (CREs). We used a computational approach to identify 3,095 putative CREs 

(pCREs) and built predictive models of high salinity responsive gene expression in six root cell 

types (columella, cortex, endodermis-quiescent center, epidermis, proto-phloem and stele). We 

found that pCREs we identified can be used to predict high salinity responsive gene expression 

better than random predictions. Overall, our predictive models are better at identifying non-

responsive genes rather than identifying high-salinity responsive genes. Also, whole organ 

associated CREs yield similar prediction performance to the cell type pCREs. Therefore, the cell 

type pCREs identified need to be further explored to better understand the mechanism of cell type 

environmental responsive gene expression. 
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4.2 Introduction 

Since the invention of the microscope, scientists have aimed to study different types of 

cells and the characteristics that make them different [1]. Distinguishing cell types requires 

studying unique functions that separate them from others. One of the crucial components of having 

various cell types with different functions is a result of how genes are regulated differentially and 

precisely controlled in response to changing environmental conditions. Based on this differential 

regulation, each cell type can be identified by its specific gene expression profile. However, the 

gene expressions, that is steady-state mRNA levels, might not reflect individual changes per cell 

type if the whole organ is analyzed [2]. Thus, isolating cell types is required to study cell type 

specific gene expression profiles. In order to isolate distinct cell types, techniques such as 

fluorescent activated cell sorting (FACS) and laser capture microdissection (LCM) are being used 

[3–5]. These techniques have been used to study Arabidopsis thaliana root cell types. A.thaliana 

root has been an ideal system to study cell types as the roots have a radial organization with layers 

of cell types (epidermis, cortex, endodermis and stele [6]) and undergo continuous development 

from the stem cells, meaning cells divide, expand and specialize [6]. To separate the root cell types, 

green fluorescent protein (GFP) lines that are specific to cell types have been developed and 

extensively used [7]. The ability to isolate the root cell types led the studies to investigate how 

individual cell types vary in gene expression and respond to environmental fluctuations. 

Among the environmental fluctuations, high salt concentrations in soil impact plants 

adversely and result in reduction of the yield in crops [8]. How each cell type is contributing to the 

overall root and whole plant response to salt stress can be learned by understanding how cell types 

regulate salt stress responsive gene expression. Gene regulation involves multiple players, 

including transcription factors (TFs), cofactors, and chromatin remodeling complexes [9]. Among 
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these players, sets of regulatory sequences that are accessible to TF binding could be used to study 

the differential gene expression across cell types [10]. TF binding sites can be determined in 

various ways such as using chromatin immunoprecipitation (ChIP) methods, array or sequencing 

based [11]. However, ChIP methods only cover a single TF binding and it is not feasible to cover 

all TFs in an organism in a single experiment. To determine TF binding sites for as many TFs as 

possible, in vitro methods such as Protein Binding Arrays (PBMs) and DNA Affinity Purification 

(DAP) methods have been developed [12,13]. Apart from in vivo and in vitro methods in 

identifying TF binding sites, computational approaches have also been successfully used [14] in 

hypothesizing putative cis-regulatory elements. These computational approaches include co-

expression, phylogenetics and combination of these two [15]. For example, Haberer et al used 

PhyloCon (Phylogenetic Consensus, [16]) in combination with co-expression across 81 microarray 

studies in identifying candidate TF binding sites [15]. Also, Zou et al identified stress related 

putative cis-regulatory elements (pCREs) using co-expression across 16 stress conditions and time 

points, and six motif finders [17]. Given the large number of potential TF binding sites and/or 

pCREs that could be identified by the computational approaches (over 60,000 sites in Haberer et 

al, 1,215 pCREs in Zou et al), the false positive rate is likely high and additional tests are required 

to be confident of a handful of pCREs through experimental validation. In this regard, evaluation 

of pCREs with machine learning approaches is useful [17]. The machine learning approaches can 

take individual (and/or combinations of) pCREs as the predictors and build models for the 

outcome, such as cell type salt responsive gene expression. With these prediction models, it is 

possible to identify important pCREs that could be involved in TF binding and drive gene 

expression [17,18]. 
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Regulatory mechanisms that are responsible for cell type specific responses to external 

factors still remain to be deciphered [19]. In this study, we aimed to investigate the cis-regulatory 

code (CRC) of salt responsive gene expression in columella (COL), cortex (COR), stele (STE), 

proto-phloem (PHL), epidermis (EPI) and endodermis (END) in the roots and expand the CRC of 

the organ salt up-regulation. Firstly, we asked whether previously identified TF binding 

information could predict root cell type salt up-regulation. Next, we explored to what extent the 

salt responsive gene expression is similar between whole root and the individual root cell types 

and used previously identified organ pCREs to predict root cell type salt up-regulation. We also 

identified pCREs that might be involved in salt up-regulation in each cell type and found there are 

common pCREs among cell types as well as cell type specific ones based on over-representation 

in the promoters of salt up-regulation genes. We built prediction models utilizing these pCREs and 

found that depending on the cell type, different sets of pCREs are needed  to be considered for the 

best performing prediction models.  

4.3 Results and discussion 

4.3.1 Known TF binding data in predicting cell type salt responsive gene 

expression 

To investigate to what the extent the current knowledge of TF binding data can explain salt 

up-regulation in the root cell types COL, COR, END, EPI, PHL, and STE [20], we built machine 

learning models. We used A. thaliana TF binding data from two large-scale in vitro studies, CIS-

BP [12] and DAP-seq [13] that cover binding data of 758 TFs (~38% of the known A. thaliana 

TFs). Given the extensive coverage of the in-vitro TF binding data, we expected root cell type salt 

up-regulation might be explained with the known TF binding data and formed prediction models 
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using machine learning. Using known TF binding data as predictors in Random Forest (RF), root 

cell type salt up-regulation predictions were better than random, and CIS-BP data performed 

slightly better than DAP-seq data in all six cell type predictions (AUC-ROC=0.63-0.71 and AUC-

ROC=0.58-0.68 for CIS-BP and DAP-seq respectively; Figure 4.1A). Among these predictions, 

END and STE had the highest performances and they have the least and the highest number of salt 

up-regulated genes respectively (precision-recall curves for END and STE predictions are given 

in Figure S.4.1A and B). These results suggest that the in-vitro TF binding data are useful in 

understanding root cell type up-regulation, however there is still room for improvement since the 

prediction performances were still lower than perfect classification (AUC-ROC ~1). Given that 

the CIS-BP and DAP-seq studies were not conducted on the condition that we study (high salinity), 

it is expected that using TF binding information that is obtained/predicted under the relevant 

conditions might be more informative in cell type gene expression predictive models. One such 

data could be the pCREs that we identified from root stress responsive gene expression. 
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Figure 4.1 Performance of root cell type salt up-regulation prediction models using TF 

binding data and organ pCREs. (A) Bar plot of AUC-ROC values of prediction models using 

CIS-BP (yellow) and DAP-seq (orange) data. (B) Bar plot of AUC-ROC values of prediction 

models using organ pCREs: root (pink), general (green), union of root and general (blue), and all 

organ (root+general+shoot; purple) pCREs. 
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4.3.2 Organ pCREs in predicting cell type salt responsive gene expression 

Next, to understand whether the pCREs identified from the whole organ (root and shoot) 

for salt stress may provide more information than in-vitro TF binding data in cell type salt up-

regulation predictions, we used organ pCREs as the predictors in the machine learning models 

(Figure 4.1B). Our hypothesis was that the organ pCREs, particularly root pCREs, might explain 

cell type specific salt up-regulation because the genome-wide expression patterns of the salt-

treated root cell types as well as the salt and osmotic stress-treated whole root are positively 

correlated (PCCs ≥ 95th percentile PCC from all pair-wise sample comparisons; Figure 4.2). 

However, we found that the root pCRE-based models did not outperform known TF binding data 

in predicting salt up-regulated genes in each cell type (AUC-ROC=0.64-0.67; Figure 4.1B). This 

suggests that the root pCREs are not predicting salt up-regulation to a finer resolution. Possibly 

with whole root expression dataset, signals from individual cell types are lost, therefore the organ 

pCREs do not represent the regulatory information required for the cell type salt stress responsive 

gene expression. Next, we used pCREs that were over-represented in both root and shoot salt up-

regulated genes (referred to as general pCREs), the union of root and general pCREs, and all organ 

pCREs in predictions. We found that general pCREs were the best performing ones among other 

pCRE sets in predicting root cell type salt up-regulation (AUC-ROC=0.68-0.78; Figure 4.1B, 

Examples of the precision-recall curves are given in Figure S.4.1C and D for END and STE 

predictions). This suggests that the pCREs that are responsible for a common salt response in the 

roots and shoots are also able to predict cell type salt up-regulation well. It is possible that the 

general pCREs are representatives of common stress responsive elements regardless of the tissue. 

Since general pCREs likely predict common cell type salt response, the question remains what the 

cell type specific components are in salt response and whether the cell type specific pCREs would 
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further improve salt up-regulation models providing a finer resolution for mechanism of salt stress 

responsive gene expression. 

A possible way to improve salt up-regulation prediction models is to focus on the gene 

expression at a fine spatial resolution, namely, the gene expression of genes in individual cell types 

to identify cell type specific pCREs. In human studies, cell type specific CREs were identified 

using the gene expression data across cell types and these CREs were used to predict cell type 

specific gene expression [21,22]. We hypothesized that using A.thaliana root cell type stress 

expression data and identifying co-expressed gene clusters, we could find cell type pCREs that can 

explain cell type salt up-regulation better than the known TF binding data and whole organ pCREs.  
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Figure 4.2 Gene expression correlation across stress datasets of root, shoot and root cell 

types. Heatmap of gene expression correlations using pair-wise sample comparisons. Colors 

represent PCC values that fall to ≥ 95th percentile of all pair-wise sample PCCs (0.42). Boxes 

outlined with black are the clusters of biologically relevant associations (e.g. root salt treatment 

samples clustering with root osmotic treatment samples). Boxes outlined with dashed black line 

are the correlations of 5 root cell type salt treatment samples (COL, END, EPI, PHL, STE) with 

root salt treatment samples, mixture of root abiotic stress samples and COR salt treatment sample 

respectively from top to bottom. 
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4.3.3 Identifying root cell type pCREs associated with salt stress 

To identify root cell type pCREs that might be involved in salt stress, we used a motif 

finding pipeline that was developed in a previous study [17]. We incorporated root cell type 

differential expression in COL, COR, END, EPI, PHL, and STE [20], with the root abiotic stress 

data [23] to identify co-expression clusters over-represented with salt stress up-regulated genes in 

different root cell types. After selecting the these clusters, we identified pCREs from the promoters 

of the co-expressed genes. According to the enrichment of pCRE sites in the promoters of the 

genes in these clusters, we classified pCREs into subsets. 583 pCREs were classified as root cell 

type general pCREs, 734-2828 pCREs were considered specific to a particular cell type or found 

to be over-represented in multiple cell type salt up-regulated genes, and 6-360 pCREs were 

considered specific to only one cell type (Figure 4.3A). Because we hypothesized that we would 

find new cell type pCREs, we expected to have motifs that were distinct from organ pCREs. 

Additionally, we asked to what extent each pCRE subset has similar pCREs and expected that 

within the same set, pCREs might be more similar than those across different sets. To address 

these questions, we calculated the average PCC among the pCREs within each pCRE subset. We 

found that within a pCRE set, we did not have the most similar pCREs. For example, cell type 

general pCREs had the highest average correlation (PCC=0.78), but EPI and STE specific pCREs 

had average PCCs ≤ 0.4. We also found that the organ pCRE set and cell type pCRE set did not 

have high similarity across subsets (PCC=0.37-0.47) supporting the notion that the pCREs we 

identified from genes up-regulated in different cell type were distinct from the set of pCREs 

identified using data from whole root and shoot (Figure 4.3B). 
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Figure 4.3 Cell type pCREs: Classification and similarity among pCRE sets. (A) Top panel: 

Bar plot of number of cell type specific pCREs. Bottom panel: Heatmap of over-represented 

pCREs. Each row is a pCRE and red color is for over-representation of that pCRE in the cell type 

salt up-regulated genes. (B) Heatmap of similarity among pCRE sets. Similarity is calculated as 

PCC between Position Weight Matrices (PWMs). COL, COR, END, EPI, PHL and STE pCREs 

are cell type specific pCREs. C.U. is cell type union, referring to pCREs that belong to more than 

one cell type pCRE set. C. GEN is the cell type general pCREs that are over-represented in all cell 

type salt up-regulated genes. 
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4.3.4 Cell type pCREs in predicting salt up-regulation  

We have shown that cell type pCREs were distinct from the organ pCRE set, suggesting 

that the novel motifs may be important in driving salt up-regulation among root cell types in 

addition to the general organ pCREs. We used the cell type pCREs in predicting salt up-regulation 

of each cell type. We found that the general cell type pCRE were better at predicting END salt up-

regulation than END pCREs (AUC-ROC=0.75 vs 0.55; Figure 4.4A; Figure S.4.2A). This trend 

was also observed with COL, COR and EPI salt up-regulation predictions; the general cell type 

pCREs performed better than the respective cell type pCREs (Figure 4.4A). On the other hand, 

STE salt up-regulation seemed to be driven by STE pCREs as the prediction performance was 

better when STE pCREs were use compared to using general cell type pCREs (AUCROC=0.69 vs 

0.63 respectively; Figure 4.4A; Figure S.4.2B). This was also the case for PHL salt up-regulation 

predictions.  For all the predictions, the union of cell type and general pCREs gave the best 

performances, reflecting that both general stress response pCREs and cell type specific pCREs 

might be responsible for the cell type responses. Also, depending on the cell type the major driving 

force in salt up-regulation could be either general or cell type pCREs. Overall, the performance of 

cell type pCREs was similar to the organ pCREs in predicting up-regulation in various cell types 

(Figure 4.1B; Figure 4.4A) and combining these pCRE sets (organ pCREs+cell type pCREs) did 

not further improve prediction model performances (Figure 4.4B). Even though we have seen 

similar performances of the salt up-regulation prediction using the organ pCRE set and cell type 

pCRE set, potentially these sets could predict different sets of genes to be salt up-regulated. To 

test this, we compared the sets of genes predicted by models based on the organ pCRE set and cell 

type pCREs, focusing on the STE up-regulated genes as an example. We found that ~50% of the 

true positives predictions were the same from the two models (Figure S.4.3A). Furthermore, 10% 
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of the salt responsive genes were correctly predicted by the organ pCREs only and 14% were 

predicted correctly by the cell type pCREs only. This result implies that we could predict an 

additional set of the salt responsive genes using cell type pCREs. However, it is interesting to note 

that organ pCREs also predict a subset of STE up-regulated genes that the cell type pCREs could 

not classify correctly. For these sets of genes that were predicted by only organ pCREs, by only 

cell type pCREs and by both, we asked whether the levels of salt up-regulation were different (e.g. 

cell type pCREs predicting genes that have a higher salt responsive gene expression-higher fold 

change- in STE). Our expectation was that there might be differences in the salt up-regulation 

levels between the genes predicted only by certain pCRE sets. However, the gene sets predicted 

(10%, 14%, 50% of STE) did not differ in fold change in salt responsive gene expression (Figure 

S.4.3B). This suggests that there may be another layer in which these genes differ in so that 

different sets of pCREs are informative in predicting them. Overall, we could predict salt up-

regulation to a finer resolution in A. thaliana, yet it remains to be investigated whether the cell 

type pCRE set could be improved in explaining the specific cell type response. 
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Figure 4.4 Performance of cell type salt up-regulation prediction models using cell type 

pCREs. (A) Bar plot of AUC-ROC values of prediction models using cell type (pink), general 

(green), union of cell type and general (blue), and all cell type (purple) pCREs. *: Each cell type 

has a different set of pCREs over-represented in the salt up-regulated gene sets (B) Bar plot of 

AUC-ROC values of prediction models using the union of organ and cell type pCREs. 
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4.4 Conclusions 

With the abundance of transcriptomics studies, it is possible to study the gene regulatory 

networks of different tissues and cell types under changing environmental conditions. In this study, 

we identified pCREs that might be involved in the cell type specific salt stress responsive gene 

expression, particularly salt up-regulation. We found evidence that CRC regulating genes across 

the whole organs might be partially responsible for regulating the root cell type expression based 

on the prediction performance of machine learning models with organ general pCREs as predictors 

(Figure 4.1B). However, we could not rule out the possibility that cell type specific pCREs were 

important in predicting cell type salt up-regulation. Particularly, for STE, we identified pCREs that 

were able to predict STE up-regulated genes well and 14% of the STE up-regulated genes were 

only predicted with cell type pCREs (Figure S.4.3A). This shows that even though organ and cell 

type pCREs lead to similar performances in predicting salt up-regulation across cell types, each 

pCRE set can explain a different portion of genes that are up-regulated. Overall, we identified 

pCREs and built computational models that can explain cell type salt up-regulation. 

To further improve the results of this study and overcome the limitations, the following 

efforts can be made. Firstly, the cell type gene expression data used here only consist of one time 

point (salt treatment for 1h). It was the only dataset available at the time of data processing stage 

of this project. Since then, more studies were conducted related to how root cell types respond to 

environmental fluctuations and salt stress [24]. There is a dataset consisting of 6 time points (1h, 

3h, 8h, 20h, 32h, 48h) of salt treatment across 4 root cell types (COL, COR, EPI and STE) [24]. 

We analyzed this dataset with the expectation that including more time points would further 

improve the co-expression clustering and subsequent pCRE identification. However, we found 

that 1h salt treatments of the same cell types from two different datasets [20,24] did not yield 
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similar expression (based on expression sample clustering similar to Figure 4.2). This is a common 

issue known as the batch effect [25] in gene expression studies and needs further analyses. For 

future work, it would be necessary to evaluate the time scale data more extensively to remove the 

batch effects and incorporate this dataset into the pCRE identification.  

Apart from the expression data used, the approach in analyzing the potential regulatory 

motifs could also be improved. We can further expand on root cell type salt up-regulation by 

identifying k-mers. K-mers are consensus sequences that are of length k and over-represented in a 

given set of sequences (e.g promoters of co-expressed genes). Studies [9,26] found that k-mers are 

informative in predicting gene expression. In this study, we used six motif finders in finding 

PWMs, however using k-mers could be informative in predicting root cell type gene expression 

and in our initial analyses we found promising results. Combinatorial rules are another aspect that 

could be constructed for improving cell type salt up-regulation predictions. As organization of 

CREs is the key in the transcription factor complexes to form and drive gene expression [27], 

considering pCRE pairs might be more important in regulating cell type salt up-regulation 

compared to individual pCREs, as we have seen in organ salt responsive predictive models 

(Chapter 3). 

Apart from the points discussed in improving cell type salt up-regulation predictions, other 

questions to expand on the CRC involved in regulating cell type processes are: (1) What are the 

pCREs involved in the root cell identity and how different are pCREs involved in cell identity vs. 

cell response? (2) What are the pCREs involved in spatial salt down-regulation and what are the 

differences between CRC of up-regulation and. down-regulation? Through answering these 

questions, it might be possible to get a more detailed genome-wide view of the spatial and 

conditional CRC in plants. 
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4.5 Methods 

4.5.1 Gene expression dataset  

Root cell type expression data was downloaded as CEL files from GEO (GSE7641, [20]). 

This expression dataset consists of control and salt stress conditions (150mM NaCl treatment for 

1h) applied to columella (COL), cortex (COR), endodermis+quiescent center (END), epidermis 

(EPI), proto-phloem (PHL) and stele (STE). The CEL files were pre-processed and quantile 

normalized using the Bioconductor affy package in R environment [28]. Log2 fold changes and 

the p-values were calculated for salt stress and the corresponding control for each cell type using 

the limma package [29]. p-values were corrected for multiple testing using false discovery rate 

[30]. In addition to root cell type expression data, root abiotic stress data from AtGenExpress 

(http://www.weigelworld.org/resources/microarray/AtGenExpress/) were used and the data were 

processed in a previous study [17]. Up-regulation in each cell type was defined for the genes with 

log2 fold-change values≥1 and their adjusted p-values≤0.05. Non-responsive genes were defined 

as neither up or down-regulated under any stress at any time point in the root or in any cell type 

sample. 

4.5.2 Co-expression analyses 

To find co-expressed gene clusters, root stress expression dataset from AtGenExpress was 

combined with root cell type salt stress expression dataset and 20,060 genes in the expression 

dataset were clustered into co-expression clusters using c-means [31] in the R environment. 

Among the resulting clusters, clusters that had greater than 10 genes and less than 60 genes were 

selected for further analyses. Clusters that were larger than 60 genes were clustered further and 

clusters containing less than 10 genes were excluded from the analyses. This range of number of 

http://www.weigelworld.org/resources/microarray/AtGenExpress/
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genes in a cluster was required for efficiently running the motif finders [17]. Overall 538 clusters 

were obtained. Fishers exact test was used to select the clusters among the 538 that were over-

represented with cell type salt up-regulated genes (q-value ≤0.05) [32]. This analysis was repeated 

for each cell type separately. 

4.5.3 Cell type pCRE identification 

To identify cell type pCREs, a previously established pipeline using six motif finders was 

used [17]. Motifs were found in the putative promoters (-1kb) of the genes that were in the co-

expression clusters over-represented with each cell type salt up-regulated genes. Overall, 7,417 

and 3,095 pCREs were identified for cell type salt up-regulation and these pCREs were over-

represented in the cell type salt up-regulated genes (for at least one cell type) with an over-

representation q-value of 0.05 and 10-6 respectively. Among the 3,095 pCREs, 978 of them were 

over-represented in the promoters of COL salt up-regulated genes compared to the rest of the 

genome; 1728 in COR, 734 in END, 2,340 in EPI and 2,828 in STE. 583 pCREs were commonly 

over-represented in all root cell type salt up-regulated genes and were referred as “general” pCREs. 

Note that cell type up-regulated genes include cell type specific up-regulated genes as well as the 

genes that were up-regulated in more than one cell type. To assess similarity between pairs of 

pCREs, PCCs were calculated using the Position Weight Matrices (PWMs) of each pCRE. 

4.5.4 Predictive models 

In obtaining predictive models, Support Vector Machine (SVM, [33]) and Random Forest 

(RF, [34]) were used in classifying root cell type up-regulated genes and non-responsive genes in 

the Waikato Environment for Knowledge Analysis (Weka, [35]). To find optimal parameters for 

each classification, grid-searches were done with the following in SVM: (1) the ratio of non-
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responsive to up-regulated genes, (2) the parameter of the soft margin, and (3) the gamma 

parameter of the Radial Basis Function (RBF) kernel; in RF: (1) the ratio of non-responsive to up-

regulated genes and (2) number of attributes to use in trees. 10-fold cross validation was performed 

in prediction models. Two approaches were used to evaluate the prediction performance. (1) Area 

Under Curve-Receiver Operating Characteristic (AUC-ROC) measure, where a perfect model 

would have AUC-ROC=1 and random predictions would lead to AUC-ROC=0.5. (2) Precision-

recall curve, where precision is the ratio of true positive predictions to overall predicted as positive 

and recall is the ratio of true positive predictions to total number of positive class (salt upregulated 

genes). Better models would have precision-recall curves tending more towards the upper-right 

corner of the graph and random predictions would be no better than the background. 
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Figure S.4.1 Precision/recall of END and STE salt up-regulation prediction models using TF 

binding data and organ pCREs. (A) Precision/recall curves of END salt up-regulation models 

using CIS-BP (yellow) and DAP-seq data (orange). (B) Same as (A) but for STE salt up-regulation. 

(C) Precision/recall curves of END salt up-regulation models using root (pink), general (green), 

union of root and general (blue), and all organ (root+general+shoot; purple) pCREs. (D) Same as 

(C) but for STE salt up-regulation. 

 



143 

 

 

Figure S.4.2 Precision/recall of END and STE salt up-regulation prediction models using cell 

type pCREs and union of cell type+organ pCREs. (A) Precision/recall curves of END salt up-

regulation models using cell type (pink), general (green), union of cell type and general (blue), and 

all cell type (purple) pCREs. (B) Same as (A) but for STE salt up-regulation. *: depends on the 

predicted cell type, * in (A) refers to END pCREs, in (B) refers to STE pCREs. (C) Precision/recall 

curves of END salt up-regulation models using (D) Same as (A) but for STE salt up-regulation. 
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Figure S.4.3 True positive predictions from models using organ and cell type pCREs. (A) 

Venn-diagram of percentage true positive predictions using organ pCREs and cell type pCREs. 

STE up-regulated genes were divided into 4 classes: 12% that were correctly predicted by only 

organ pCREs, 49% that were correctly predicted by both organ and pCREs, 14% that were 

correctly predicted by only cell type pCREs and 25% that could not be predicted correctly by either 

pCRE sets (B) Boxplot of log2 fold change expression values of each class of STE up-regulated 

genes described in (A). 
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CHAPTER 5 

CONCLUDING REMARKS 

 

To decipher functional associations among Arabidopsis thaliana genes, and regulatory 

information of stress responsive gene expression, I used computational approaches to analyze 

publicly available global gene expression data. In Chapter 2, I evaluated the utilities and limitations 

of using gene expression data in hypothesizing gene function. I found that based on the individual 

metabolic pathways, the extent of gene co-expression differs and 5%-53% of pathways form 

significant gene co-expression groups with similarity measure and expression dataset used 

impacting this percentage. I also evaluated the commonly-used clustering algorithms with different 

parameters and showed that focusing on only one algorithm led to information loss in relating 

previously unknown genes to known pathways. In validating the co-expression clusters obtained, 

I used an independent phenomics dataset to confirm functional associations to leucine degradation 

pathway. These analyses serve as an outline of the best practices of using gene co-expression in 

functional inference and will be an important resource for studies that aim to utilize gene co-

expression analyses.  

One potential improvement to the research described in Chapter 2 can be including gene 

expression datasets generated by different technologies. I used microarray data available for A. 

thaliana to ask to what extent pathway genes co-express and what the impact of dataset on the 

degree of pathway gene co-expression is. Currently, 48,501 gene expression datasets in the public 

data repository Gene Expression Omnibus (GEO) are microarray-based and 11,338 datasets are 

based on RNA-sequencing (RNA-seq) experiments (as of January 19th, 2017, [1]). Even though 
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there are more microarray datasets compared to RNA-seq ones, the advantage of RNA-seq is that 

genes currently not present as probes on microarrays can be studied. It is shown that 6,953 A. 

thaliana genes are structurally annotated but are not represented on probes of Affymetrix ATH1 

microarray platform, and 52% of these genes not on the array do not have functional annotation 

information [2]. In this case, RNA-seq data can be helpful to uncover co-expression relationships 

of genes absent on microarrays. In addition, RNA-seq allows more information to be extracted, 

such as transcript isoforms or expressed intergenic regions, that can be included in co-expression 

studies. For example, co-splicing networks have been constructed using RNA-seq data and 

correlations in the isoform ratios across different genes have been calculated for functional 

associations [3]. These additional associations using RNA-seq data can complement the 

associations obtained from using microarray data alone. 

Another future direction would be to use machine learning models to predict pathway genes 

using gene co-expression features (e.g. expression coherence, cluster membership). In my study, I 

used unsupervised, clustering methods to associate unknown genes to known pathways. This goal 

can also be achieved in a supervised fashion by classification of pathway genes against genes that 

do not belong to any pathways. This classification can yield models that later be used on the rest 

of the genome to identify genes/genomic regions that show resemblance to genes from specific 

pathways. These models could also show what the most important co-expression features (i.e. EC 

and cluster membership) are in identifying genes that belong to specific pathways. In addition to 

gene co-expression, other levels of genome-wide information can be used in making functional 

associations. For example, protein-protein interactions can be another level of information to along 

with gene co-expression. Although there are data integration approaches using multiple biological 

data types to build gene functional networks [4,5], datasets apart from gene expression still do not 
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have extensive temporal, spatial and conditional information. With accumulation of such data, it 

will be possible to investigate the utilities and limitations of using different data types for gene 

functional inference. 

Another future direction in utilizing gene co-expression is new pathway discovery. In my 

study, I focused on existing literature of metabolic pathways and other biological processes. 

However, co-expression clusters might only contain unknown genes and these co-expressed genes 

could belong to a process that previously have not been studied. Using biotic stress treatment gene 

expression datasets, new signaling pathways have been identified from co-expression modules [6]. 

In the same study, known TF binding motifs such as G-box, W-box, and MYB motifs were also 

mapped to genes in the same co-expression clusters. Through combination of motif and pathway 

over-representation analyses on co-expression clusters, novel pathways as well as the potential 

regulatory signatures responsible for pathway gene co-expression can be identified. Similar 

analyses can be applied to the remaining co-expression clusters (366) obtained in my research. The 

co-expression clusters can also be useful in computational prediction of cis-regulatory elements 

(CREs) driving pathway gene co-expression. There are still many CREs to identify that are 

responsible for pathway gene expression patterns, considering I could not find over-represented 

known TF binding motifs on the promoters of high EC pathway genes. Therefore, additional CREs 

can to be identified using co-expression clusters over-represented with pathway genes to 

complement the TF binding motif information obtained from large scale in-vitro studies [7,8].  

In research described in Chapters 3 and 4, I identified putative CREs (pCREs) that are 

likely involved in spatial salt responsive gene expression. These pCREs were further used in 

predictive models of organ and cell type salt up-regulation and contribute towards knowledge of 

salt stress gene regulation. In addition to pCREs, I also incorporated known TF binding sites, 



152 

 

chromatin accessibility information, and conservation across species into machine learning models 

to predict organ salt up-regulation and to identify the most important pCREs responsible for salt 

up-regulation in root and shoots. In Chapter 4, the predictive models were expanded to the cell 

type level and I identified pCREs that are likely involved in root cell type specific salt up-

regulation. Chapters 3 and 4 revealed pCREs that could be involved in spatial high salinity 

response and the predictive models generated  

For future research, additional genomic regions (in addition to promoters including introns, 

genes) could be used to identify pCREs and information on protein-protein interactions between 

TFs can be considered. Although most (86% [9]) TF binding sites are found near transcription start 

sites, there are also regulatory elements that are known to be present in the introns as well as the 

genic regions [10]. Therefore, to identify pCREs, other genomic regions should also be considered. 

Apart from the CREs, the characteristics of the TFs that bind to these CREs also needs to be 

considered. For example, TFs may not function by themselves and require additional activators to 

initiate binding to CREs. TFs bind to cofactors or other TFs to regulate gene expression. In this 

respect, one limitation of our study was that our predictive models did not take TF-cofactor and 

TF-TF interactions into account. It is possible that some TFs only drive gene expression after these 

interactions are present and we would miss the information from these interactions by only 

focusing on the co-expressed genes and the DNA sequences. Coupling information from gene co-

expression with TF-protein interactions can improve the models of organ salt up-regulation. 

However, conditional protein-protein interaction data, particularly under salt stress, need to be 

generated. 

Prediction of cell type specific salt up-regulation was a challenge in this study. Cell-type 

data provides a higher resolution information compared to that from heterogeneous cell types 



153 

 

within an organ. However, the current cell-type study still focus a group of cells that may be 

heterogenous. Recently, studies focus on subpopulations of cells sharing a common gene-

expression profile with the help of single-cell sequencing studies [11]. As more data are available 

from single cell sequencing studies, it will be possible to utilize the single cell gene expression 

data to identify CREs driving individual cell gene expression. Apart from cell type predictions, 

prediction of down-regulations (both organ and cell type) remains a challenge. Even though 

predictions of organ salt up-regulation were satisfactory using computationally identified pCREs 

as predictors, performance of down-regulation predictions was similar to random guessing. This 

suggests that down-regulation is more complex than up-regulation and considering pCREs is not 

enough. Potentially, post-transcriptional mechanism like RNA turnover can be taken into account 

in modeling down-regulations. Hence, improving predictions of down-regulations will require 

additional data types such as RNA approach to equilibrium sequencing (RATE-seq, [12]) to be 

generated across multiple experimental conditions. 

Overall, in my dissertation I used data-driven approaches towards learning about gene 

regulation and function. Even in the genomes that are well-studied, there are regions that need to 

be functionally annotated. The methodology and results of this thesis are applicable to annotating 

functional regions including genes and regulatory elements. 
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