

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

B. Chimings is
END IN
TER 1 2 1996
ocr 1 8 1923

THE ANALYSIS OF FORAGE HARVEST, STORAGE AND FEEDING SYSTEMS

Ву

Philippe H. Savoie

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

1982

ABSTRACT

THE ANALYSIS OF FORAGE HARVEST, STORAGE AND FEEDING SYSTEMS

By

Philippe H. Savoie

A computer model was developed in cooperation with other researchers to simulate forage systems on dairy farms. The model simulates alfalfa growth, corn silage and corn grain yields, harvest, storage, feeding and ration formulation for a dairy herd. Alfalfa growth is simulated on a daily basis and harvest is simulated on a half-daily basis. Storage, feeding and ration formulation are simulated once per year. A 26-year series of historical weather data from East Lansing, Michigan was used to estimate the average and the distribution of net returns of forage systems.

The analysis focused on alfalfa harvest. Early harvest (May 20 for the first cut) resulted in relatively high quality, low yield and high net return. Low milk producing cows may however use more efficiently an

.:: 123 :: • ::: ï; ... '. . . • : . . . intermediate maturity harvest (June 1 for the first cut) by substituting yield for quality.

Extending the alfalfa harvest period to four weeks reduced the total dry matter and crude protein conserved. The loss in crop value did not however justify the high cost of larger machinery, as long as each harvest is done within a four week period.

More dry matter and a higher crude protein concentration can be conserved by reducing the field-curing delay. Additional curing treatments that would increase the drying rate by 20% increased the feeding value of hay by 10 to 15%. Baling hay at a higher moisture content had a similar effect. Shifting from hay to haylage would yield about 20% more feed per unit area. The feed quality of haylage and hay is practically the same due to the lower dry matter intake of haylage.

The simulation results indicate promising research areas. Applied reseach could be directed towards the development of conditioning treatments that increase the drying rate without increasing dry matter losses, the improvement of conservation of wet hay and the increase of animal intake of alfalfa haylage. More basic research should consider quality changes in silos during filling and fermentation, modeling animal response to hay, haylage and

large	e var	iations	in	feed	quality	, and	improving	estimates
of di	rying	rates an	d d	rv mai	tter los	ses.		

Approved by:
Major Professor
Department Chairman

To my parents

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my major professor, Dr. R. C. Brook, for his continual support during my sojourn at Michigan State University.

I am very grateful towards Dr. J. R. Black for his financial support and intellectual stimulation through the dairy-forage research group. Dr. C. A. Rotz was also very helpful with suggestions and material support for the field research. The presence of Dr. H. E. Koenig and Dr. M. B. Tesar on my guidance committee added precious insights in the area of multidisciplinary research.

The simulation model would only be half done without the faithful cooperation of Luke Parsch. The field experiments would not have been done at all without the enthousiasm of Dr. H. F. Bucholz, director of the Upper Peninsula Experiment Station.

The dissertation is dedicated to my parents who patiently laid the path and bravely let me go on the wonderful adventure of life.

Finally I should not forget my affectionate wife and cheerful children who have shared with me the joys and pains of the present endeavor.

TABLE OF CONTENTS

												I	Page
LIS'	T OF	TAB	LES		•, • •, •, •	• • • •	• • • • •	• •,• • •					viii
			JRES										
Cha	pter	.											
	1.	INTR	DUCTIO	٠٠٠.	• • • • •	• • • •	• • • • •	• • • • •	• • •	• • • •	• • •	• •	1
			The dyr								•••	••	1
			Univer Object:	sity	••••								3 4
	2.	LITE	RATURE I	ŖEVI EW	••••	• • • •	•, •, • • •	• • • • •			• • •	• •	6
	3.	A GE	NERAL A	PPROAC	н то	FORAC	GE S	YSTEM	ıs .		• • •	• •	12
		3.2	The sys	jectiv	e fun	ction	n					• •	12 16 19
			3.3.1 3.3.2 3.3.3 3.3.4	Harve	st ra curi	te	elay		• • •	 			19 22 23
-					oach						• • •	• •	25
		3.4	A disc	rete a	pproa	ch .	• • • •	• • • • •		• • • •	• • •	• •	27
	4.	MACH	INERY MO	ODEL .	• • • • •	•, • • •	• • • •					• •	32
		4.1	Forage	harve	st al	terna	ative	es		i .	• • •	• •	32
			4.1.1 4.1.2	Hayma Hayla	king ge an	alte:	rnat: rect	ives cutt	ing	• • • •	• • •	• •	33 38

Chapter	•		Page
	4.2	Field Capacity	. 38
		4.2.1 Individual operations	39 41
:	4.3 4.4 4.5 4.6	Power requirements	55 56
5.	FORA	GE LOSSES	. 58
`	5.1 5.2	Introduction	
		5.2.1 Mowing and conditioning	62 65 65 67
	5.3	Alfalfa harvest losses due to environmental factors	. 69
		5.3.1 Dry matter losses from respiration 5.3.2 Dry matter losses from rainfall 5.3.3 Changes in digestibility 5.3.4 Changes in crude protein	74
	5.4 5.5 5.6	Alfalfa storage and feeding losses	. 81
6.	FIEL	D DRYING OF ALFALFA	. 85
	6.1 6.2	Literature review	85

Chapter				Page
	6.4		ng coefficients for the drying	101
		6.4.2 S 6.4.3 R	ew adsorption	102 105
	6.5	Addition	al curing treatments	108
		6.5.2 M	edding	109
	6.6	Conclusi	ons	111
7.	THE 1	DYNAMIC S	IMULATION	113
	7.1 7.2 7.3	Direct-c	anding subroutine: ALHARVut alfalfa	118
		7.3.2 H	OWQ: How many plots can be mowed RVQ: How many plots may be harvested	119 122 124
	7.4 7.5	Storage Linking	policyall the subsystems	125 127
8.	COST	ESTIMATE	s	130
	8.1 8.2 8.3 8.4	Fixed co Variable	g the dairy rationstss costss parameters used in the model	135 136
		8.4.1 S	torage structures	138
			1.4.1.1 The cost of vertical silos 1.4.1.2 The cost of hay barns	
			Prices of feed	

Chapte	r ·	Page
9.	SIMULATION RESULTS	146
	9.1 Crop management decisions	147
	9.1.1 Maturity at the time of mowing9.1.2 Three versus four alfalfa harvests	147 155
•	9.2 The rate of harvest and forage value 9.3 Field curing delay	161 168
	9.3.1 Increasing the drying rate 9.3.2 Baling at a higher moisture content 9.3.3 Hay versus haylage 9.3.4 Direct-cut alfalfa	
	9.4 Storage policy	189
10.	CONCLUSIONS	194
	10.1 General conclusions	194 196 199 202
11.	RECOMMENDATIONS FOR FUTURE RESEARCH	206
APPENI	DICES	
λ.	A SURVEY OF FORAGE HARVEST MACHINERY	210
В.	A USER'S GUIDE TO FORHRV	216
С.	A USER'S GUIDE TO ALHARV	237
D.	EXPERIMENTAL DATA OF ALFALFA DRYING	258
E.	LISTING OF THE COMPUTER PROGRAMS	267
LIST (OF DEFEDENCES	344

LIST OF TABLES

Table	Pa	age
4.1	Rotative power (PTO) requirements	53
5.1	Ratio of leaves and stems lost after mowing (data collected in Chatham, Michigan in June 1981)	62
5.2	Ratio of leaves and stems lost after raking, including mowing losses (data collected in Chatham, Michigan in June 1981)	64
5.3	Change in crude protein alfalfa during field drying (from Shepherd et al., 1954)	77
5.4	Alfalfa dry matter losses during harvest and curing	83
5.5	Storage and feeding dry matter losses of alfalfa (adapted from Kjelgaard, 1979)	83
5.6	Changes in the nutritional value of alfalfa during field curing (changes are shown as a fraction of the remaining value per unit mm or h)	84
6.1	Differences in EMC between adsorption and desorption at 15.6 C (from Bakker-Arkema et al., 1962)	97
6.2	Differences in EMC between prebloom and mature alfalfa at 15.6 C (from Bakker-Arkema et al., 1962)	98
7.1	Labor and energy requirements for feeding (from Kjelgaard, 1979)	127
8.1	Daily feed requirements for six types of dairy cows (from NRC, 1978)	135
8.2	Repair and maintenance cost coefficients (from Hunt, 1973)	137

Me

:::

1.;

;;;

:,;

;,

;

•

Table	I	Page
8.3	Prices of vertical concrete silos (quoted from Tristate Silo Inc., Eaton Rapid, MI)	139
8.4	Prices of clear span buildings (quoted from Detroit Steel, Charlevoix, MI and from Lane Clear Span Building, Adrian, MI)	142
8.5	Prices of inputs and outputs used in the ration formulation model	144
8.6	Discount rates and accounting life to estimate yearly cost of durable assets	145
9.1	Date ranges of the first mowing day for harvesting alfalfa at three maturity levels under a three cut system. Dates are shown in Julian days	148
9.2	Number of years out of 26 when mowing started at the limiting date	149
9.3	Potential alfalfa yield (tDM/ha) and crude protein at the earliest mowing date	150
9.4	Harvested alfalfa (tDM/ha) available as feed after accounting for harvest, storage and feeding losses	150
9.5	Feed utilization (tDM/yr) on an 80 ha farm with 128 low yield lactating cows (20 kg milk/cow/day) when alfalfa is harvested at three maturity levels	151
9.6	Feed utilization (tDM/yr) on an 80 ha farm with 128 high yield lactating cows (35 kg milk/cow/day) when alfalfa is harvested at three maturity levels	152
9.7	Comparing non-feed production costs (\$/yr) for harvesting alfalfa at three maturity levels .	152
9.8	Economic comparison (\$/yr) of alfalfa harvest at three maturity levels on an 80 ha farm with 128 lactating cows (20 kg milk/cow/day)	153

Table		Page
9.9	Economic comparison (\$/yr) of alfalfa harvest at three maturity levels on an 80 ha farm with 128 lactating cows (35 kg milk/cow/day)	153
9.10	Production costs (\$/yr) of a 3-cut alfalfa system and of a 4-cut alfalfa system over 80 ha	156
9.11	Economic comparison (\$/yr) of a 3-cut and of a 4-cut alfalfa system over 80 ha at four milk production levels	157
9.12	Potential yield and actual harvest of the fourth alfalfa cut in specific years when the fourth cut was not profitable	159
9.13	Potential alfalfa yield and actual harvest (tDM/ha) from a 4-cut system using the same machinery complement (chopper-round baler) over a wide range of areas	163
9.14	Actual harvested feed (tDM/ha) during each of the four alfalfa cuts	164
9.15	Costs and net returns (\$/ha) of a haylage machinery system used over a wide range of areas with a low yield dairy herd (20 kg milk/cow/day)	165
9.16	Costs and net returns (\$/ha) of a haylage machinery system used over a wide range of areas with a high yield dairy herd (35 kg milk/cow/day)	165
9.17	The average number of calendar days required to harvest each alfalfa cut with a constant size machinery system	
9.18	Feed costs (\$/ha) for low and high milk producing cows with a 4-cut completely hay fixed machinery system over a wide range of areas	167
9.19	Actual harvested yield (tDM/ha) and average field-curing time using extra treatments to increase the drying rate of baled hay	170

Table		Page
9.20	The annual feed cost (\$/ha) as influenced by faster drying treatments for an 80 ha alfalfa farm with 128 lactating cows at four milk production levels	
9.21	Actual harvested feed (tDM/ha) and average field-curing time when hay may be baled at a higher moisture content	173
9.22	The annual feed cost (\$/ha) when hay may be baled at a higher moisture content for an 80 ha farm with 128 lactating cows at four milk production levels	173
9.23	Average number of field-curing days of alfalfa before going into storage (80 ha farm)	175
9.24	Alfalfa available as feed (tDM/ha/yr) from fixed machinery systems for hay and haylage harvest over a range of areas	176
9.25	Storage capacity (tDM) and investment cost (\$) for a hay system (one hay barn) and for a haylage system (two equal size silos)	177
9.26	The resources required to operate three harvest systems for an 80 ha alfalfa farm	
9.27	Feed production and utilization (tDM) under four harvest and conservation systems on an 80 ha farm with 128 high milk producing lactating cows (35 kg/cow/day)	183
9.28	Feed production and utilization (tDM) under four harvest and conservation systems on an 80 ha farm with 128 low milk producing lactating cows (20 kg/cow/day)	183
9.29	Net feed costs (\$/ha) on an 80 ha alfalfa farm with 128 lactating cows at four milk production levels	188
9.30	Average haylage quality and standard deviation when one or two silos are used	190
9.31	Feed utilization under two storage policies with high yield cows (35 kg/day)	191

:::`e

5.32

;;;

9,39

1.

1,5

1,

1,1

1,5

1,5 1

1.0

1,

:,]

Table	P	age
9.32	Feed utilization under two storage policies with low yield cows (20 kg/day)	191
9.33	The feed costs (\$/yr) under two storage policies at four milk production levels with a herd of 128 lactating cows	192
9.34	The storage investment required under two storage policies	192
A.1	A generic summary of mowers and mower- conditioners on the U.S. market (1981)	211
A.2	A generic summary of tedders on the U.S. market (1981)	212
A.3	A generic summary of side-delivery rakes	212
A.4	A generic summary of conventional small rectangular balers	212
A.5	A generic summary of round balers	213
λ.6	A generic summary of large hay stackers	213
λ.7	A generic summary of automatic bale wagons that pick and stack small rectangular bales	213
A.8	A generic summary of bale ejectors	213
λ.9	Hay wagons	214
A.10	A generic summary of forage harvester cutterheads on the U.S. market (1981)	214
A.11	Attachments for cutterheads	214
A.12	Forage wagons with unloading mechanism	215
A.13	Forage blowers on the market	215
A.14	List of manufacturers quoted for specific examples. Complete addresses are available in Implement and Tractor (1981)	215
B.1	Machines used for forage harvest	221

Table	F	age
B.2	Operations modelled in FORHRV	222
B.3	Data required for harvest operations	227
B.4	Example of input data for FORHRV	232
B.5	Example of output from FORHRV	234
C.1	General structure of alfalfa harvest management input data file	238
C.2	Input data for each alfalfa harvest	240
C.3	Example of input data for ALHARV	249
C.4	Example of output from ALHARV	251
D.1	Alfalfa drying data collected in Chatham, Michigan in June and July 1980 and in June 1981	259
D.2	Rain adsorbed by mowed alfalfa. Data collected in Chatham, Michigan	265
D.3	Dew adsorption during the night (between 20:00 and in the evening and 8:00 the next morning)	266
E.1	Listing of CYBER commands to operate the forage simulation model on the MSU computer	269
E.2	Listing of the main program linking FORHRV, ALHARV, ALFMOD and CRNMOD	270
E.3	Listing of program FORHRV	275
E.4	Listing of program ALHARV	294

LIST OF FIGURES

Figure		Page
3.1	The forage system	13
3.2	Frequency diagram of total cost of a forage system	18
3.3	The cumulative probability of net profit of two hypothetical forage systems	18
3.4	Yield and protein concentration of alfalfa versus maturity stage during the first harvest (adapted from Gervais, 1974)	20
3.5	Flow chart of the discrete approach to analyze forage systems	28
4.1	Some of the alternatives in forage systems	34
4.2	The estimation of cycle time for simultaneous baling, transport and unloading	36
4.3	Independent baling and transport. Transport and unloading occur subsequently to baling.	37
5.1	Leaf dry matter loss from raking, as a fraction of total leaf mass, versus dry basis moisture content (adapted from Hundtoft, 1965)	63
5.2	Hypothetical relationship between dry matter losses and speed of operation	63
6.1	Adsorption equilibrium moisture content (dry basis) of mature alfalfa versus temperature and humidity. Experimental data are from Bakker-Arkema et al. (1962)	94
6.2	Adsorption equilibrium moisture content of mature alfalfa in the range of high relative humidities	95

Figure	F	age
6.3	Predicted equilibrium moisture content (dry basis) versus relative humidity for desorption of prebloom alfalfa at 5 C and 35 C	100
7.1	Interactions between the growth simulator and the alfalfa harvest	115
7.2	The basic algorithm to decide how many plots may be mowed today	120
7.3	The basic algorithm to decide how many plots may be harvested today	123
8.1	The initial cost of vertical concrete silos versus silage capacity	141
8.2	The initial cost of clear span barns for the storage of hay versus storage capacity	141
9.1	The cumulative probability of net return per ha for mowing at three maturity levels, identified by the alfalfa crude protein on the first mowing day, with low milk producing cows (20 kg/day/cow)	154
9.2	The cumulative probability of net return per ha for mowing at three maturity levels, identified by the alfalfa crude protein on the first mowing day, with high milk producing cows (35 kg/day/cow)	154
9.3	The cumulative probability of net return per ha for a 3-cut and for a 4-cut alfalfa harvest systems with low milk producing cows (20 kg/day/cow)	158
9.4	The cumulative probability of net return per ha for a 3-cut and for a 4-cut alfalfa harvest systems with high milk producing cows (35 kg/day/cow)	158
9.5	The cumulative probability of the difference in net returns in favor of a 4-cut system versus a 3-cut system with low yield cows (20 kg/day/cow)	160

Figure	1	Page
9.6	The cumulative probability of the difference in net returns in favor of a 4-cut system versus a 3-cut system with high yield cows (35 kg/day/cow)	160
9.7	Net cost of a hay system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04)	179
9.8	Net cost of a haylage system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04)	179
9.9	Expected cost of a haylage system and a hay system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04)	180
9.10	The cumulative probability of annual net cost of a hay system versus a haylage system under 120 ha of alfalfa with high milk production (35 kg/day/cow) and real interest rates (i=0.04)	180
9.11	Expected costs of a haylage system and a hay system versus area for low milk production (20 kg/day/cow)	182
9.12	Expected costs of a haylage system and a hay system versus area assuming haylage dry matter intake is the same as hay intake (high milk production)	182
9.13	Expected costs of a haylage system and a hay system versus area assuming a low real interest rate (i=0.00) and high milk production	186

CHAPTER 1

INTRODUCTION

1.1 The dynamics of forage systems

An increase in the use of cereal grains and protein concentrates in ruminant feeding has been observed in recent years, partly because of low feed prices (Raymond et al., 1978; Blaser, 1976). The current low feed prices may still make the practice feasible, but the FAO (1979) predicts a long term increase of demand and prices of grain and protein. High quality forages, espacially legumes, are a good source of protein and can reduce the need of cereal grains and protein meal in the diet of dairy cows (Thomas, 1980). Good harvesting, storage and feeding practices play an important role in maintaining forage quality.

Important technological changes have occurred in the last twenty years in forage systems. Larger machines (round balers, large hay stackers) have been designed especially to reduce labor requirements (Bowers and Rider,

1974). Hoglund (1967) noted that farmers were shifting from dry hay to more haylage. He also reported an increase in corn silage as a forage. Most of the technological changes have meant more capital expenditures (machinery, silos, feeding equipment) and have been justified on the basis of labor and risk reductions.

Meanwhile the 1970's have witnessed some important structural changes in the availability of some resources, especially fossil energy, and capital due to high interest rates. Holtman et al. (1977) noted that technological adjustments become desirable as the relative scarcity of resources changes with time.

In view of these technological and structural changes, a new assessment of forage harvesting, storage and feeding systems has become highly desirable. A great deal of agronomic, engineering and nutritional knowledge about forages has been published over the last two decades. Modeling tools have become ever more sophisticated. The systems approach, including simulation of the forage system, will be useful in assessing the various technological and management choices available to the farmer in the 1980's.

1.2 Forage research at Michigan State University

Agronomists, animal scientists, economists and engineers have been doing research on various components of the forage system for several years. A multidisciplinary research group was formed in 1979 at Michigan State University to study the dairy-forage system. The group's main objective has been to link the components together and thus gain a better understanding of the whole system. In this context, Sisco (1980) published a detailed model of forage machinery systems.

The present dissertation was also initiated within the mulidisciplinary group. A simulation model of forage growth, harvest, storage, handling and feeding was developed in close cooperation with Parsch (1982). Parsch deals mainly with the impact of various ratios of corn/alfalfa production whereas the present dissertation is concerned mainly with machinery and storage alternatives and with management of the alfalfa crop.

1.3 Objectives

The broad goal of this thesis is to present a methodology and develop a simulation model to analyze and compare forage systems. The model should be versatile enough to allow the analysis of future technological or managerial changes. The specific objectives are:

- 1. To develop a detailed model of forage harvesting, storage and feeding on the dairy farm. The model will not include field operations other than forage harvesting. The model will include alfalfa harvest as either dry hay, wilted haylage or direct-cut silage as well as harvest of corn silage. The analysis will focus mainly on alfalfa harvest as hay and haylage.
- 2. To compare forage systems on the basis of a detailed economic analysis that includes income from milk production, income from the sale of excess forages, and fixed and variable costs of harvesting, storage, feeding and ration formulation (purchase of supplemental feeds). Simulation over several years, based on historical weather data, provides samples of annual profits and an insight into the variability of a system. Comparisons will

be ba

analy

the p

.

3. To co

hayla

treat

or

chem

direc

4. To (

alfa

thre

and

be based not only on expected profit but also on the profit distribution by stochastic dominance analysis (Dillon, 1977).

- 3. To compare alternative technologies: hay versus haylage, direct-cut alfalfa, additional curing treatments to increase the drying rate (maceration or spraying a chemical solution at mowing), chemical additives to preserve high moisture hay or direct-cut alfalfa.
- 4. To compare alternative management strategies: alfalfa maturity and starting date for harvest, three versus four alfalfa cuts, the timeliness cost and choice of machinery size with respect to area.

A E

torets

erperime

:inters

ttiel.

hith to

Schoney affecte:

economic Sestem

19:20: 13:67:5

iay sys

:4:3e3

CHAPTER 2

LITERATURE REVIEW

A brief review of the literature is presented which covers past research efforts to model forage systems and experimental work on various parts of the system. The literature will again be referred to extensively in later chapters to estimate technical parameters required by the model.

A number of researchers have analyzed forage systems with respect to the dairy cow performance. McGuckin and Schoney (1980) compared hay and haylage systems as they are affected by weather. They focused on estimating the economic advantage of switching from a highly variable hay system to a less risky haylage system. Under Wisconsin weather conditions, their model predicted that haylage systems were both more profitable and less variable than hay systems on typical dairy farms. Their model did not deal with discrete aspects of harvest and storage. It charged an annual storage cost per unit harvested and

estant a

jield.

Millie

Erresting

simile crop

in basis

modication ,

at low for

Some a difforage s

Erresting

ist pennsyl

itticus st

Gese studi

ietailed a:

yen :

hand and desired

inate

Carlick e

Reservati

Reservat:

gietade Pi

assumed a constant dry matter harvest rate independent of yield.

Millier and Rehkugler (1972) compared various harvesting rates and harvest starting dates. Using a simple crop model that predicted yield and quality only on the basis of calendar days, they observed that milk production was negatively affected by slow harvest rates and low forage quality.

Some authors have focused on more specific components of forage systems. Bowers and Rider (1974) surveyed forage harvesting equipment in Oklahoma. Kjelgaard and Quade (1975) analyzed forage transport and conveying equipment for Pennsylvania farms. Audsley et al. (1976) compared various storage and feeding methods in the United Kingdom. These studies, along with others (Hendrix, 1960; Moser, 1980), will provide much of the information needed for a detailed analysis of operations related to forage systems.

New technologies abound in the area of forage systems. Bruhn and Koegel (1977) discussed the value of mechanically dewatering alfalfa. Such a process would virtually eliminate all weather risks associated with making haylage. Charlick et al. (1980) have shown some advantages in using preservatives for the storage of high moisture hay. Nehrir et al. (1978) conducted field studies in which hay preservatives were shown to reduce dry matter losses on the average by 650 kg/ha, compared with hay on which no

icrages at icrages at icrages at icrages at icrages produced icram icrossiderab icrassiderab icrassidar icrassiderab icrassiderab icrassiderab icrassiderab icrassiderab icrassiderab icrassiderab icrassiderab icrassiderab icrassidar i

Meservati

A nur Merature Metributi

365). A the use o

intesting the second

Me forag

ia Machin Machin preservatives were applied. Harris and Tullberg (1980) and Wieghart et al. (1980) noted that chemical spraying of forages at the time of mowing could accelerate drying and hence reduce exposure and weather risk. Krutz et al. (1979)proposed а shredding-type conditioner, macerator, to increase the drying rate. Under Indiana conditions, the macerator has been used to dry alfalfa as hay within one day. The dry matter losses may however be considerable. Some European researchers (Dernedde, 1979; Jones and Harris, 1979) noted increased drying rates by tedding grasses after mowing. Alfalfa is not as well suited for tedding as grasses because of the fragile link between the stem and the leaves, through the petiole, and the higher risk of dry matter losses.

A number of harvest models have been presented in the literature. Some authors have used workday probability distributions to establish optimum machinery sets (Hayhoe, 1980; Donaldson, 1968; Sisco et al., 1980; Von Bargen, 1966). As Dumont and Boyce (1974) have observed though, the use of daily weather data is more appropriate in forage harvesting models since the weather of previous days has a definite impact on the work that can be done today and on the forage losses due to weather exposure. In fact, several researchers have used historical daily weather data in machinery selection models (Edwards and Boehlje, 1980; Tulu et al., 1974; Wolak, 1980; Van Elderen, 1980). The

use of hist represent

meather bet

DEE. An o

es smalle

ing one de

Alfal Several

Resented

isienia: o

ilestible

is a had

Recipita Maen

intest

ines inply as

ior harve larvesti:

eresti.

ial lat

use of historical weather data implies that past trends represent future trends. Van Kampen (1971) showed that weather between 1931 and 1945 in central Netherland was more favorable for grain harvesting than between 1946 and 1965. An optimal machinery complement for the first period was smaller than for the second period. One should be aware of significant weather changes in the same location from one decade to the next.

Alfalfa growth simulators have been developed by several researchers. Millier and Rehkugler (1972) presented a simple model where yield and TDN (total digestible nutrients) were a function of the number of calendar days of growth. Fick (1977) and Holt et al. (1978) have developed more sophisticated models which use daily weather data as input such as solar radiation, Precipitation and degree days.

When the harvest of a crop is delayed because of slow harvest rates, there may be yield and quality losses. The decrease in crop value due to slow harvest rates is called timeliness cost. Timeliness costs are sometimes estimated simply as a linear function of the number of days required for harvesting (ASAE, 1981). However, two different forage harvesting methods, extended over the same time period, might well have a different timeliness cost. Indeed forage harvesting losses should include both quantitative and qualitative losses. Dale et al. (1978) simulated alfalfa

in matte ierreases

:978).

adiitiona

diry rat

Vuc!

iodel of

importan:

ilat pa Miel

16027.010

ileply l

Bas West

sin si

esause

is the

the pur

Even al

3;e e:

to for

Willian Contract

dry matter losses during harvest. Alfalfa quality also decreases with harvest delay (National Research Council, 1978). The real measure of quality losses is the additional corn and soybean meal required to re-balance the dairy ration and the possible milk production losses if the minimal nutrient concentration requirement cannot be met.

Much literature is available to help build a detailed model of forage harvesting-storage-feeding systems. It is important however that the model be generic in the sense that parameters are specified symbolically throughout the model. Hence adjustments for geographical location, for technological changes or for managerial choices can be made simply by changing these parameters.

Basically a forage model should include crop growth, harvest, storage and feed utilization on the farm. Indeed, corn silage and alfalfa haylage are not easily marketed because of their short conservation period once they are taken out of storage; their value is usually best estimated in the form of milk production and the relative changes in the purchase of concentrates due to forage quality changes. Even alfalfa hay, which can be sold on the market, is often more efficiently used on the farm for animal production.

The six following chapters describe a general approach to forage systems and the details of harvest, storage, handling and ration formulation. Chapter 9 relies on the simulation model to make inferences about technological and

waagement a

management alternatives in forage systems.

CHAPTER 3

A GENERAL APPROACH TO FORAGE SYSTEMS

3.1 The Systems's Boundaries

The primary emphasis of the present dissertation is to refine the simulation of the harvest, storage and feeding components of forage systems. In a sense, it is a continuation of the work done by Sisco (1980) on forage harvesting. While Sisco considered only the harvesting component, the forage systems's boundaries are now extended to include crop growth, harvest, storage, handling and ration formulation on a dairy farm. Figure 3.1 illustrates the boundaries within which forage systems will be analyzed.

Only two forage crops are considered in the present study: alfalfa and corn silage. An important characteristic of alfalfa is its regrowth in the same year, allowing multiple harvests. There can be time conflicts

SYSTEM COMPONENTS

Figure 3.1. The forage system.

Serveen to Sirst alfa out and

the end of

Miority Alfalfa ha

orpering

The class so:

igs. 7:

ler: and larvested

te cale

Rierial

:elated

Attern,

of forage

0.10-

establish Resent c

jars

Stowerh m

insequen

between the end of corn planting and the beginning of the first alfalfa harvest, between the end of the third alfalfa cut and the beginning of corn silage harvest, and between the end of corn harvest and the fourth alfalfa cut. First priority is given to finishing corn planting, the third alfalfa harvest and the corn harvest before starting the competing operations.

The crop growth component is driven by daily weather data: solar radiation, precipitation and growing degree days. Yields are likely to vary from one harvest to the next and from year to year. Yields and quality of the harvested crop are also affected by the rate of harvest: as the calendar time required for harvest increases, more material and quality losses occur. Several other issues related to crop growth will influence the overall system Performance: the harvest starting date, the Pattern, the alfalfa's winterhardiness, the establishment Of forage fields, fertilization, irrigation. The harvest date and the regrowth pattern are allowed to vary but the Other production parameters (winterhardiness, establishment, fertilizer, irrigation) do not vary in the Present growth model.

Parsch (1982) has adapted a physiological alfalfa Growth model based on research done by Fick (1977). The model predicts growth and regrowth of alfalfa after Subsequent cuttings. Parsch (1982) has also developed a

in silag

What

simulation

Systems?

ervesting trage qua

asis.

ierzentatio

mation form

Partity of

1.1-feed

Howeth on

Provide so

m a year

The issit wi

io conv

consump consely

ie tine

The Sain an

iation of a

corn silage yield model based on Michigan experimental data. Both crop models are included in the present simulation model.

What time increment should one use to simulate forage A detailed harvesting model would simulate systems? harvesting activities (machinery operation, field drying, forage quality changes) on a daily or even on an hourly basis. detailed storage model would fermentation and quality changes on a daily basis. A ration formulation model would allocate various quality forages to dairy animals according to their needs. The Quantity of supplements required would be estimated by a milk-feed optimization model. It was decided to simulate 9rowth on a daily basis, harvest on a half daily basis to Provide some management flexibility and storage and feeding On a yearly basis. All the harvested feed is allocated at the end of the year to a dairy herd.

The harvest, storage and handling components will be dealt with in more detail in later chapters. Their role is to convert the field crop into a feed ready for animal Consumption. An important aspect of the simulation is to Closely track changes in dry matter and in quality between the time the forages are moved and the time they are fed.

The ration formulation model will estimate amounts of Grain and high-protein supplements required to balance the Fation of a complete dairy herd. It will also predict milk

productio

converted

only rea

icraçes a

alizal p

ieve bee:

Relier (

ialry he

producti

alfalfa leeds (

Rotein

iesori be

3.2 The

iațital

Roduct

diket.

joveve:

35 (c];

production. The value of the forage crop harvested is converted into milk production and net profit. This is the only realistic way to evaluate forages since in general forages are not sold on the market but are transformed into animal product. Computerized models for ration formulation have been discussed by Black and Hlubik (1980) and also by Waller et al. (1981). In the present model, rations for a dairy herd composed of lactating cows at four possible milk production levels are balanced using the harvested crops (alfalfa, corn silage and high-moisture corn) and purchased feeds (corn grain and soybean meal) to satisfy energy and Protein requirements. The ration formulation model is described in section 8.1.

3.2 The Objective Function

The inputs of a forage system include labor, energy, Capital, land and supplemental feeds. The outputs are milk Production and excess forages that may be sold on the Market. These material flows will be identified in the Simulation on a yearly basis. For comparison purposes however, material flows are converted into a monetary value as follows:

$$PR = I(1) + I(2) - C(1) - C(2) - C(3)$$
 (3.1)

where PR is I(1) I(2) C(1) maint C(2) and C(3) (mach Te Object ##ferent independen t iependent. Mar as the Cange. The in the same f Wath year w Section of a i frequency jearly pro ionpare di Sitter in tan be con: Rotit suc sisters sho ˈpːobabili.

Swever sy

ites it

itats, it i

where PR is the total yearly profit;

I(1) is income from milk production;

I(2) is income from the sale of excess forages;

C(1) is the annual cost of labor, energy, repair and maintenance for harvest, storage and feeding;

C(2) is the cost of purchased supplemental feeds;

and C(3) is the annualized cost of fixed assets (machinery, silos, land).

The objective function above can be used to compare different forage systems. Cost C(3) is practically independent of weather. All other terms are weather dependent. Even milk production might vary from year to Year as the forage quality and the optimum feeding formula change.

The influence of weather can be assesed by simulating the same forage system over several years of weather data. Each year will provide a different total annual profit. A Series of annual profits can be used to draw a histogram or frequency curve as in figure 3.2. The expected total $oldsymbol{Y}$ early profit is simply the average and can be used to Compare different systems. The frequency curve provides Further information on the relative risk of a system. It Can be converted into the cumulative probability of annual Profit such as in figure 3.3. The comparison of two >ystems shows that system 1 generates on the average \P probability = 0.5) a greater profit than system 2. However system 1 is more variable than system 2: in some Years it may provide unusually large profits; in other Years, it may incur very low profits or even losses.

LOWER BOY

itare 3.

1.0

:: 0:

Figure 3.2. Frequency diagram of total cost of a forage system.

CUMULATIVE PROBABILITY

Figure 3.3 The cumulative probability of net profits of two hypothetical forage systems.

risk-neutra person may profit but of forage

i.i A cor

posit and

Fora Systems

inies t

mains a

וסטמולמים

is consid

3.3.1 7

The important artises is

Mapted Meld and risk-neutral manager would choose system 1. A risk-adverse person may prefer system 2: it yields a lower average profit but it is also less risky than system 1. Comparison of forage systems will be based on the expected yearly profit and on the relative riskiness of each system.

3.3 A continuous versus discrete approach

Forage systems can be simulated either as continuous systems or as discrete systems. The continuous approach implies that small, discontinuous events are aggregated and that average flow rates are used. The discrete approach retains a detailed description of discontinuous events. The discrete approach is usually more complex than the Continuous approach but provides a more realistic representation of actual events. The continuous approach is considered first.

3.3.1 The optimum date to begin harvest

The continuous approach is helpful in assessing some important issues in forage systems. A first question that arises is the optimum date to begin harvest. Figure 3.4, adapted from Gervais (1974), illustrates the changes in Yield and quality of alfalfa during the first cut. The

Figure 3.4. Yield and protein concentration of alfalfa versus maturity stage during the first harvest (adapted from Gervais, 1974).

ctude prote izte or the

jield conti

stage.

Yield :

the mowing

Y

V

viere YDM: QL Prot VAL and t is

ia equati his is re

Maitively Briested

viete TV

.∵e istal va

tration tial to

crude protein decreases almost linearly with the mowing date or the maturity stage. Meanwhile the total dry matter yield continues to increase at least until the full bloom stage.

Yield and quality can be expressed as a function of the mowing date:

$$YDM = f_1(t)$$
 (3.2)

$$QL = f_2(t) \tag{3.3}$$

$$VAL = f_3(QL) = f_3(t)$$
 (3.4)

where YDMis the total dry matter yield (kg/ha);
 QL is the forage quality, here expressed as crude
 protein (dec.);
 VAL is the value of the crop (\$);
and t is the calendar date (day).

In equation 3.4, crop value is a function of crop quality. This is reasonable since milk production is highly and Positively correlated to feed quality. If alfalfa could be harvested instantaneously, then the total value would be:

$$TV = YDM* VAL = f_1(t) * f_3(t)$$
 (3.5)

Where TV is the total value of the crop.

The optimal date to harvest would occur at maximum total value. The optimal date is found by differentiating equation 3.5 with respect to time, setting the equation equal to 0 and solving for t.

d:

Solving e tate to ma single day

3.3.2 Har

In p instantane lactor in

a number

arrest pe

l

there u is hard hard equal hard r is call

When

otal vali

$$dTV = f_1'(t) * f_3(t) + f_1(t) * f_3'(t) = 0$$
 (3.6)

Solving equation 3.6 for t will give the optimal harvest date to maximize profit if the harvest could be done in a single day.

3.3.2 Harvest rate

In practice the alfalfa cannot be harvested instantaneously and the harvest rate becomes an important factor in system performance. The harvest is extended over a number of calendar days. The average value of the harvest period may be estimated as follows:

$$u = A / (EFC * h * r)$$
 (3.7)

Where u is the average number of calendar days required to harvest the crop;

A is the total area of harvest (ha);

EFC is the effective field capacity calculated from equation 4.2 (ha/h);

h is the number of field working hours per day (h/day):

and r is the average ratio of harvesting days to total calendar days over which the harvest period extends.

When the harvest is not instantaneous (u > 0.), the total value of the harvested crop is:

$$TV = \frac{1}{u} \int_{t_0}^{t_0} f_1(t) * f_3(t) * dt$$
 (3.8)

The optimal equation for to.

Solving

which has

the harve

Pear to

3.3.3 F

the day

ile it

imotio conditi

je exp

the fie

ijeté A

The optimal starting date is found by differentiating equation 3.8 with respect to t_0 , equating to 0 and solving for t_0 .

$$\frac{dTV}{dt} = \frac{1}{u} \frac{d}{dt} \int_{t_0}^{t_0} f_1(t) * f_3(t) * dt = 0 \quad (3.9)$$

Solving equation 3.9 for t_0 will give the optimal date on which harvest should begin to maximize profit. Parameter \mathbf{u} , the average number of calendar days required to complete the harvest is not really a constant and will vary from Year to year depending on weather.

3.3.3 Field curing delay

The quality of alfalfa (f₂(t)) is not only affected by the date at which it is moved but also by the amount of time it is left curing in the field. The curing delay is a function of technology, management, yield and environmental Conditions. Quality and value of the alfalfa crop should be expressed as a function of both the date of moving and the field-curing delay.

$$QL = f_2(t,v) \tag{3.10}$$

$$VAL = f_3(t,v)$$
 (3.11)

where v is the field curing delay.

A more

Ĭμ

From

Parameters

ŧ₀,

u, cale (re

end v,

<u>"</u>jje ii u an

the field

tan be

vith larg

vould to

Pearly v

Vould de

Eight Te

aring

tecpro1

g rayl sati ng

¥:e v

A more complete equation for total value is therefore

$$TV = \frac{1}{u} \int_{t_0}^{t_0} f_1(t) * f_3(t,v) * dt$$
 (3.12)

From the above equation, at least three important parameters need to be optimized:

to, the time when harvest should start;

u, the harvest period equal to the average number of calendar days required to complete the harvest (related to harvest rate);

and v, the average field curing delay (days).

The total value of the crop (TV) is likely to increase if u and v are decreased, i.e. if the harvest period and the field curing delay are decreased. The harvest period can be decreased by increasing the harvest rate (usually with larger machinery). The annualized fixed costs (C(3)) would then increase. It is not so clear how C(1), the Yearly variable costs, would be affected. Labor costs would decrease while energy and machinery maintenance costs might remain the same or increase slightly. The field Curing delay can be decreased by a change in the harvest technology. For example shifting from a hay technology to a haylage technology will substantially reduce the field curing time and will usually result in a higher quality, more valuable feed. (The problem of comparing alfalfa hay

with hayla

respond (

(see sect

delay wi

eiposure

intensive

Clea

the crop

dapital a

continuo:

issues i

size of

3.3.4

to com

^{jel}ay (

. Decause

عاث ۷ د

]ea:-to

iiscie:

rearly

7827-5(

with haylage is however compounded by the fact that animals respond differently to hay and haylage of the same quality (see section 5.4.) In general, reducing the field curing delay will increase the value of the crop. However short exposure time technologies are often more capital or energy intensive. So as TV increases, so will C(3).

Clearly there will be tradeoffs between the value of the crop that may be obtained and the additional cost of Capital and energy required to increase this value. The Continuous approach helps to clarify some of the important issues in forage systems, especially with regards to the Size of machinery and the technology used for harvest.

3.3.4 Problems with the continuous approach

Two important parameters, the number of calendar days to complete the harvest (u) and the average field curing delay (v), need to be optimized but vary from year to year because they are weather dependent. Average values of u and v can be used, but information about the magnitude of Year-to-year variations due to weather will be lost. A discrete approach would allow the estimation of Year-to-year variations and establish distributions of Yearly profits.

Alfal

the U.S.

 (t_0) and t

vill affe

Saze year.

rould be

stere n i

Tota Y equat:

Vould be

iztvests

∷ veath

Pievious

ia:vests

o: an a. Ma:

especia:

susting .

inal yze

toving

tipecta Tiavot

ext.

Alfalfa can be harvested up to four times per year in the U.S. North-Central region. The starting harvest date (t₀) and the total harvest period (u) of the first harvest will affect the yield of all subsequent harvests in the same year. The total value of a multiple harvest crop would be the summation of the value of each harvest:

$$TV = TV(1) + TV(2) + ... + TV(n)$$
 (3.13)

where n is the total number of harvests in a year.

Total value of each harvest, TV(i), could be estimated by equation 3.12, but yields (f₁(t)) of subsequent harvests would be affected by t₀ and u. Even n, the total number of harvests in a year, might vary from year to year on account of weather and previous harvests. The interaction between Previous management decisions and the yield of subsequent harvests can be most efficiently simulated by the inclusin of an alfalfa growth model in a discrete simulation.

Many management decisions are discrete and sequential, especially during forage harvest when there is a field Curing delay. A discrete approach is more appropriate to analyze management decisions such as priority between mowing and harvest, mowing policy with regards to weather expectations or changing the harvest sequence after unfavorable weather. The discrete approach is considered next.

3.4 A discrete approach

The discrete approach to analyze forage systems is summarized by the flowchart in figure 3.5. The discrete model is preferred to the continuous model because it follows more closely the discrete decisions and events involved in forage harvesting. It also retains information about year-to-year variations and risk.

The discrete model will simulate forage growth and harvest on a daily basis. After accounting for dry matter losses and quality changes throughout harvest, storage and handling, all forages are used to balance the ration of a complete dairy herd on a yearly basis. The yearly profits are estimated according to equation 3.1. After the simulation has been repeated for a given number of years (N), a frequency curve of yearly profits can be established as in figure 3.2.

More specifically, the discrete model starts by reading input data required for the whole simulation. The crop growth information includes first and last growth days each year for alfalfa, the yield distribution for corn silage, the number of years of simulation and the related historical weather data. The machinery information is used to generate harvest rates over a wide range of yields by

Figure 3.5. Flow chart of the discrete approach to analyze forage systems (continued on the next page).

3 Yes

Mate 3 th

Figure 3.5 (continued from the previous page) Flow chart of the discrete approach to analyze forage systems.

talling a

Chapter

in great

area un iecision

iecision

appendix

∷red a

and feed

estimate

Weather

The

iansing,

alfalfa

three or

alfalfa.

âte, ha

end of

legrowth

⁹Pecifie

^{sch}edule

acouncila

ate bal

îria:ze

calling a set of subroutines headed by subroutine FORHRV. Chapter 4 and appendix B describe the machinery algorithm in greater detail. The management information includes the area under cultivation, the sequence of operations and decision criteria related to harvest and storage. The decision algorithms are documented in chapter 7 and in appendix C. The storage and feeding information concerns fixed assets other than field machinery: silos, hay barns and feeding equipment. The information is later used to estimate the annualized cost of fixed assets.

The simulation is repeated for N years. The present weather file being used contains data for 26 years at East Lansing, Michigan (Parsch, 1982). Within each year, the alfalfa growth is simulated on a daily basis. In general, three or four harvest dates per year are defined for alfalfa. When the calendar date equals the current harvest date, harvest may begin. Growth will continue until the end of the harvest. At this point, the alfalfa is set for regrowth and the cut number (NTHCUT) is increased by one. The second and all subsequent harvests will start at the Specified harvest dates. When no more harvests Scheduled in a given year, all the harvested forages are accumulated according to their storage location. The feeds are balanced with supplemental grains and protein-meal to Optimize milk production of a dairy herd.

The

important

iarvest r

be consid

The

simulate

ictage al

[ea:-to-y

ultimate

estimate

The continuous model is helpful in identifying important issues: the date when harvest should start, the harvest rate and the field-curing delay. These issues will be considered in chapter 9 from the simulation results.

The discrete model provides the basic structure to simulate forage growth and harvest on a daily basis and forage allocation to a dairy herd on a yearly basis.

Year-to-year variations in growth and harvest, and ultimately in available feed and net returns, will be estimated with the use of historical weather data.

fi: Forage

∵je o `arvest

Mactical

Stesent (

used to

Systems.

The tarlier,

direct-cl

alternat: y ç

be done

Mohiner of fora

it lists

CHAPTER 4

MACHINERY MODEL

4.1 Forage harvest alternatives

The object of the machinery model is to predict harvest rates and fuel and labor requirements for Practically any combination of machines at any yield. The Present chapter establishes the relationships that will be used to estimate the performance of forage harvesting systems.

The boundaries of the forage sytem were defined earlier, in section 3.1, to include hay, haylage and direct-cut forages. The more important harvest alternatives will be outlined here.

A detailed survey of harvest alternatives can hardly

be done without making an inventory of the forage harvest

machinery available on the U.S. market. A generic summary

of forage harvesting machinery is presented in appendix A.

It lists sizes and capacities of most forage harvest

related

of 1981.

4.1.1 Ha

Tse:

Ngure 4

Hay mak

produce

The mag

:ectang)

На

operati

1.

2,

3

4

5

7

5

related machines available on the U.S. market in the fall of 1981.

4.1.1 Hay making alternatives

Tseng and Mears (1975) presented a detailed flow chart of most technologies available for forage harvesting. Figure 4.1 is a simplified version of their flow chart. Hay making alternatives include all harvest sequences that Produce dry hay. Dry hay can be packaged in several forms. The more common hay packages are conventional small rectangular bales, large round bales and large hay stacks.

Hay making can be broken down into a number of Operations that may occur in the following sequence:

- Mowing;
- 2. Conditioning, to enhance drying;
- Further curing treatment, such as desiccant spraying or tedding;
- Raking, to bring the material in a narrow windrow for easy pickup;
- Additional treatment after rain;
- 6. Pickup and packaging;
- 7. Hauling to the storage site;
- 8. Conveying into storage.

Figure 4.1. Some of the alternatives in forage systems.

Mowi

Even sor

simultane

chemical

sequentia

it is oft

and conve

baler, ,

operating

unloadin

Packagin

When bal

Rott Packagi:

≥; be

into a

and ar

sizulta

Mowing and conditioning are usually simultaneous. Even some additional curing treatments are sometimes simultaneous with mowing-conditioning (e.g. spraying a chemical solution to enhance drying). Tedding however is sequential. Raking is not always necessary. When it is, it is often done just before packaging. Packaging, hauling and conveying may be simultaneous as in the use of a small baler, with an ejector throwing bales into a wagon, operating simultaneously with a transport unit and a bale unloading component at the storage site (figure 4.2). Packaging may also be independent of hauling and conveying when bales are dropped and left in the field (figure 4.3).

Round bale and large hay stack systems usually make Packaging and transport two independent operations. Bales may be left several days in the field before they are moved into a storage area. These systems are simpler to manage and are less labor intensive than the traditional, simultaneous baling-transport-unloading systems.

Figure 4.2. The estimation of cycle time for simultaneous baling, transport and unloading.

Transport and unloading Independent baling and transport. occur subsequently to baling. Figure 4.3.

4.1.2 Haylage and direct cutting

Haylage and direct cutting systems require that harvest and transport to storage or to the feeding bunk be simultaneous operations. Conceptually they are very similar to the baler-transport-unloader system illustrated in figure 4.2. One occasional difference is the parallel use of trucks or wagons pulled by a second tractor in haylage or silage systems. Hitching and unhitching wagons are eliminated. Dump trucks allow rapid unloading into bunk silos.

Another difference between the haylage system and the baler-ejector-wagon system is the impossibility of leaving haylage on the ground for later pickup. The option of blowing chopped haylage onto the ground may nonetheless be useful in dealing with hay which has molded in the windrow.

4 - 2 Field capacity

Field capacity is a function of speed, of working width and of field efficiency. It is usually expressed in area per unit time (e.g. hectares per hour). Throughput capacity is usually expressed in material flow per unit

time (e.g. tons of dry matter per hour). Throughput may be a function of field capacity and yield for harvesting machines or may be a function of the machine's own ability to process material.

Individual and parallel operations are defined according to ASAE (1981), standard S322. Individual operations are continuous and independent from other operations. Parallel operations involve two or more machinery systems performing their differing functions simultaneously and interdependently. These two types of machinery operations will be analyzed in greater detail below.

4.2.1 Individual operations

Mowing, raking and round baling are examples of individual operations. None can start before a set of management and environmental conditions is met. But once these conditions are met, the individual operation can proceed continuously and independently from other operations.

The theoretical field capacity of an individual peration is calculated as follows:

$$TFC = (V * WW)/10.$$
 (4.1)

where TFC is the theoretical field capacity (ha/h);
 V is the speed (km/h);
 WW is the working width (m);
and 10. is a conversion factor (km-m/ha).

The effective field capacity is lower than the theoretical due to turning, idling, minor field adjustments, temporarily slowing down, etc.

$$EFC = (V * WW * FE)/10.$$
 (4.2)

where EFC is the effective field capacity (ha/h); and FE is field efficiency (decimal).

ASAE (1981) provides some data (D230.3) about the range of field efficiencies for various operations. A field efficiency of 0.80 will be assumed for all individual forage harvesting operations (mowing, raking, tedding, baling, forage chopping independently from transport) except for round balers (FE = 0.75) and large stack wagons (FE = 0.70). The last two machines need to stop to unload the hay packages. The stack wagon moreover must stop periodically to compress the stack. These considerations justify the lower field efficiencies.

The theoretical throughput is

$$TTP = TFC * YDM (4.3)$$

where TTP is theoretical throughput (t DM/h); and YDM is dry matter yield (t DM/ha).

The effective throughput is

$$ETP = EFC * YDM (4.4)$$

where ETP is effective dry matter throughput (t DM/h).

4 .2.2 Parallel operations

The most important parallel operation in forage

Parvesting is harvest-transport-unloading. Each part of

the system can affect the overall efficiency and

throughput. Estimating overall field capacity and material

throughput for a given set of parallel operations can be

cone in three basic steps:

- Calculate the maximum harvest and transport rates per single unit;
- 2. Calculate the maximum harvest and transport rates for all units;
- 3. Balance the harvest and transport rates by including idle time to one or another of the operations.

The concept of cycle time must be introduced to stimate maximum rates. The complete cycle of a forage harvesting machine is the total time required to hitch an

empty wagon, to fill it, to unhitch the filled wagon and to idle while waiting for the transport unit. The hitching and unhitching times are fairly predictable; they are grouped and called the minimum interface time in the field between the harvester and the transport unit.

$$TOTHRC = THR(1) + THR(2) + THR(3)$$
 (4.5)

where TOTHRC is the total harvest cycle time (h);
THR(1) is the minimum interface time in the field
between the harvester and the transport unit (h);
THR(2) is the time required to fill a wagon (h);
and THR(3) is the idle time the harvester spends waiting
for a transport unit (h).

The hitching and unhitching times (THR(1)) are fairly predictable and can be provided from experience. Values between 0.05 and 0.08 hour are generally used in the model for total interface time. The time to fill a wagon, THR(2), will depend on throughput of the harvester and wagon capacity. Throughput is generally expressed as the mass of dry matter processed per unit time whereas wagon capacity is in mass of wet matter. The wagon's dry matter capacity is:

$$DMCAP = WCAP/(1. + M)$$
 (4.6)

Where DMCAP is the wagon's dry matter capacity (t DM);
WCAP is the wagon's actual capacity (t WM);
and M is the moisture content (dec, dry basis).

The actual time to fill a wagon is

$$THR(2) = DMCAP/ETP (4.7)$$

Assuming no idle time (THR(3)=0), the maximum harvest rate of a single harvester is

$$HR = DMCAP/TOTHRC$$
 (4.8)

where HR is the maximum harvest rate of a single harvester (t DM/h).

On very large farms, several harvesters may be working simultaneously. The total maximum harvest rate would then be

$$XHR = NHU * HR$$
 (4.9)

where XHR is the overall maximum harvest rate when no idle
 time is considered (t DM/h);
and NHU is the number of harvesting units.

When more than one harvester is used, it is implicitly assumed that they all are of the same size and capacity.

The cycle time of each transport unit is estimated as £ollows:

TOTTRC =
$$TTR(1) + TTR(2) + TTR(3) + TTR(4)$$

+ $TTR(5) + TTR(6)$ (4.10)

where TOTTRC is the total transport cycle time (h);
TTR(l) is the minimum interface time in the field
between the transport unit and the harvester (h);

TTR(2) is the time to travel from the field to storage with a full load (h);

TTR(3) is the time to travel from storage to the field with an empty wagon (h);

TTR(4) is the minimum interface time at storage, excluding unloading (h);

TTR(5) is extra time the transport unit must spend at the storage site to help with unloading (h);

TTR(6) is idle time waiting for the harvester (h).

The minimum interface time between the harvester and the transport unit TTR(1) is the same as THR(1). Travel times TTR(2) and TTR(3) are calculated by assuming the allowable speed, based on tractor power and **ED**aximum physical speed limitations, will be used to travel the distance between storage and the field back and forth. The Ininimum interface time TTR(4) at storage includes Unhitching and hitching if extra wagons are available and extra labor is working continuously at the storage site, or the time to set up a wagon so it may be ready for Unloading. If the transport unit can exchange a full wagon for an empty one at storage without any delay besides Unhitching and hitching, then TTR(5) is zero. In many Cases however, the transport unit will have to wait for the Unloading system to empty the wagon. The waiting time is estimated as

$$TTR(5) = (DMCAP - QULA)/ULTR$$
 (4.11)

where QULA is the quantity unloaded during the transport unit's absence (t DM); and ULTR is the unloading rate in the presence of the transport unit (t DM/h).

The quantity unloaded during the transport unit's absence is estimated as follows:

$$QULA = ULA * (TTR(1) + TTR(2) + TTR(3))/NTU$$
 (4.12)

where ULA is the unloading rate in the absence of the transport units (t-DM/h);
and NTU is the number of transport units.

The term ULA will usually have a value of zero in the case of haylage and corn silage but it may be significant in the case of baled hay. Hundtoft (1965) reported the Unloading rate of baled hay as about 6 U.S. tons/man.h. This rate was obtained when bales were randomly piled with the use of an elevator. In the present model, an unloading rate of 5 metric tons DM/man.h with a bale elevator and 3.5 metric tons DM/man.h without an elevator was assumed. The Unloading rate in the presence of the transport unit, ULTR, Usually uncreases as the labor available increases.

In the case of a mechanical blower, the maximum wet

There FWM is the flow of wet matter (t WM/h);

PTO is the maximum power available from the power take-off driving tracto (W);

XLD is the maximum allowable continuous load (dec);

EMECH is the mechanical efficiency (dec);

3.6 is a conversion factor (t-s/kg-h);

G is the earth's acceleration (9.8 m/s²);

and HEIGHT is the silo height (m).

The unloading rate expressed in dry matter is

$$ULTR = FWM/(1. + M)$$
 (4.14)

The maximum allowable continuous load is usually effined as 0.71. The mechanical efficiency is set at 0.08 for blowing corn silage and at 0.06 for blowing alfalfa haylage (Kepner et al., 1972; PAMI, 1979).

Assuming no idle time (TTR(6)=0), the maximum transport rate per unit is

$$TR = DMCAP/TOTTRC$$
 (4.15)

where TR is the maximum transport rate per transport unit (t DM/H).

The overall transport rate is

$$XTR = NTU * TR (4.16)$$

where XTR is the overall maximum transport rate when no idle time is considered (t DM/h).

When more than one transport unit is used, it is implicitly assumed that they all are of the same size and capacity.

In general the overall transport capacity XTR will not be equal to the overall harvest rate XHR. If the transport rate is greater than the harvest rate, each transport unit will have to idle and wait for the harvester. The average

waiting time per transport unit is

$$TTR(6) = \frac{NTU * TOTHRC - NHU * TOTTRC}{NHU}$$
(4.17)

If the harvest rate is greater than the transport rate, then the harvester will have to idle and wait for a transport unit. The average waiting time per harvest unit is

$$THR(3) = \frac{NHU * TOTTRC - NTU * TOTHRC}{NTU}$$
 (4.18)

The actual harvest rate is the lowest rate between XTR and XHR.

The above relationships describe the harvest rates for individual and parallel operations. They are used in the computer simulation described in section 4.5.

4.3 Power requirements

Designers and analysts of machinery systems must be concerned especially by two types of power requirements:

Deak demand and average demand. The peak power requirement occurs at maximum load or at maximum throughput, under slippery or sloped conditions. The peak power requirement dictates what minimum tractor size can be matched with a

given implement. The average power requirement occurs at average load, average throughput and under normal soil conditions. It is most useful for estimating average and total fuel consumption.

Only average power requirement will be calculated in the present analysis. A safety factor is introduced to make sure the actual tractor will also satisfy peak demands.

$$LOAD = PWR/XPWR = 1./SF$$
 (4.19)

where SF is a safety factor for tractor power design;
XPWR is the maximum PTO power available from the
tractor (W);
PWR is the average power requirement (in PTO power
equivalent) (W);
and LOAD is the ratio of average power required to
maximum power available.

Typical values of the safety factor range between 1.25 and 1.6, and sometimes beyond. Higher values should be used when peak demand is considerably higher than average demand, when there are large variations in yield, in slope and in soil conditions. PAMI (1979) has reported that most rectangular and round balers require a safety factor of 1.5 to 1.6 to make efficient use of high capacity machines in variable conditions. In some types of machines, such as tub grinders, the tractor may actually stall if the available power is not at least 50% greater than the average power demand due to large variations in peak power

demand. It should be noted that PAMI and most other authors neglect power for tractor to move itself which can frequently be more than 20% of total power required for large and heavy tractors. Since the tractor-axle power is already included in the model, a safety factor of 1.4 will be used and should be fairly conservative.

The average power required from a tractor (PWR) is distributed into three parts:

$$PWR = TRPWR + DBPWR + PTO (4.20)$$

where TRPWR is the tractor-axle power to move the tractor itself (W);

DBPWR is the tractor-axle power to pull the drawbar (W);

and PTO is the rotative power from the power take-off shaft to activate some implements (W).

The tractor-axle power to move the tractor itself is determined by the tractor weight, the friction force against the wheels, the tractor speed, the wheel slip and the slope of travel.

TRPWR = TRM * G * (RRC *
$$\cos\theta$$
 + $\sin\theta$)
* V * CF1 * SLF/3.6 (4.21)

Where TRM is the tractor mass (kg);
G is the earth's acceleration (9.8 m/s²);
RRC is the rolling resistance coefficient;
O is the angle of the slope of travel;
CF1 is a power conversion factor from axle power to PTO equivalent power (CF1=1.10);
SLF is the slip factor and is estimated as 1./(1. - SL);
SL is slip in decimal form;

and V is the tractor speed (km/h).

Rolling resistance and slip are estimated from ASAE data D230.3 (ASAE, 1981). The rolling resistance coefficient is

$$RRC = 0.04 + 1.2/CN$$
 (4.22)

where CN is a soil surface parameter. Typical values are 50 for hard soils, 30 for firm soils, 20 for tilled soils and 15 for soft, sandy soils.

Generally a rolling resistance coefficient of 0.08 is used during forage harvesting (firm soil). Predicted slip in decimal form is

$$SL = \begin{bmatrix} 1. \\ 0.3 * CN \end{bmatrix} ln \begin{bmatrix} 0.75 \\ 0.75 - \left(\frac{RWTAN}{RWNOR} + \frac{1.2}{CN} + 0.04\right) \end{bmatrix}$$
 (4.23)

where RWTAN is the sum of tangential forces against the rear wheels;
and RWNOR is the normal force of the rear wheels against the soil.

The ratio of tangential forces to normal forces is Calculated as follows:

$$\frac{\text{RWTAN}}{\text{RWNOR}} = \frac{\text{DBP} + \text{TRM} * \text{G} * \sin \Theta}{0.75 * \text{TRM} * \text{G} * \cos \Theta}$$
(4.24)

where DBP is the drawbar pull (N).

The coefficient 0.75 in equation 4.24 assumes that 75% of the tractor weight is distributed on the rear wheels. The drawbar pull is a function of the weight of the implement and the wagon being pulled.

$$DBP = WIM * G * (sin\theta + RRC * cos\theta)$$
 (4.25)

where WIM is the mass of the wagon or of the implement pulled by the tractor.

For power requirement calculations, the wagon will generally be considered fully loaded except for empty wagons travelling from storage to the field.

The second part of power required from a tractor is the tractor-axle power to pull the drawbar.

DBPWR = DBP * V * SLF *
$$CF2/3.6$$
 (4.26)

where CF2 is the power conversion factor from drawbar power to PTO equivalent power (CF2=1.20).

The third power requirement is from the power take-off Shaft to activate rotating implements. Table 4.1 gives ♥alues of PTO power requirements for most harvesting Operations. ASAE (1981) and PAMI (1979) have provided most Stimates for power requirements. Power required for mowing is mainly a function of width while power required **For** conditioning is mainly a function of material throughput. Hence a mowing-conditioning operation will be function of both width and throughput. Raking and tedding power requirements shown in table 4.1 are relatively low. All other operations have requirements proportional to the theoretical flow of dry matter FDM, expressed in kg of dry matter per second (kg DM/s). FDM is the same as theoretical throughput in equation 4.3 except for units.

$$FDM = TTP/3.6 \tag{4.27}$$

$$FDM = V * WW * YDM/36.$$
 (4.28)

where FDM is the theoretical flow of dry matter (kg-DM/s);
V is operation speed (km/h);
WW is the working width (m);
and YDM is the dry matter yield (t-DM/ha).

The last equation is obtained by combining equations 4.1, 4.3 and 4.27. The PTO power required from a rotative implement (except mowers) is

$$PTO = PTOW * WW + PTOC * V * WW * YDM/36 (4.29)$$

where PTO is the power take-off required for a rotating
 implement (W);
 PTOW is the power required per unit width in the case
 of mowers (W/m);
PTOC is the power required per unit throughput of dry
 matter (W/kg-DM/s).

For cutterbar mowers, the power requirement is simply

$$PTO = PTOW * WW$$
 (4.30)

Table 4.1. Rotative power (PTO) requirements for forage harvesting operations

Operation	Power requiremment (Watts)
Cutterbar mower	1200 * WW 3000 * WW + 2000 * FDM
Cutterbar mower-cond. Flail mower-cond.	3000 * WW + 8000 * FDM
Drum mower-cond.	6000 * WW + 4000 * FDM
Side-delivery rake	1000 * WW
Tedder	2000 * WW
Baler (rect., alfalfa)	5000 * FDM
Baler (rect., wheat)	6000 * FDM
Round baler (alfalfa)	7500 * FDM
Round baler (wheat)	10000 * FDM
Hay stacker	7500 * FDM
Forage harvester	
Corn silage	15000 * FDM
Alfalfa haylage pickup	15000 * FDM
Alfalfa green chopping	18000 * FDM
Blower: corn silage	EMECH = 0.08
Blower: alfalfa	EMECH = 0.06

Source: ASAE (1981) and PAMI (1979).

The blower power requirement is estimated as follows:

here FWM is the flow of wet material (t WM/h);
HEIGHT is the silo height (m);
and EMECH is the mechanical efficiency (table 4.1).

The field operation speed is not constant. Instead it is calculated for each operation to satisfy three criteria: the maximum desirable speed (a user defined limitation), the maximum allowable throughput and the maximum allowable

tractor load. The maximum speed that satisfies all three criteria will be used for the operation.

The maximum desirable speed is a practical speed limitation to prevent excessive wear and tear or malfunction. The maximum throughput is an implement's physical ability to process material. The maximum speed and throughput are both input parameters (e.g. a baling operation may have a 10 km/h maximum speed and the baler may have a 14 t-DM/h maximum throughput). The speed that will satisfy the throughput limitation is estimated from equation 4.28. The speed that will satisfy tractor load limitations may be estimated by combining equations 4.19 and 4.20 as follows:

The above equation can be solved for speed only.

The actual operating speed will be the highest speed that will satisfy simultaneously the maximum desirable speed, the maximum allowable throughput and the maximum allowable tractor load.

4.4 Energy consumption

Three types of power sources are modeled: gasoline engines, diesel engines and electric motors. Power required from engines is estimated with equation 4.20.

Load is estimated with equation 4.19. Fuel consumption equations are taken from ASAE (1981). For gasoline engines,

FCONS =
$$2.74 * LOAD + 3.15$$

- $0.20 * \sqrt{697 * LOAD}$ (4.34)

where FCONS is fuel consumption (L/kW.h).

For diesel engines,

FCONS =
$$2.64 * LOAD + 3.91$$

$$- 0.20 * \sqrt{738 * LOAD + 173} \qquad (4.35)$$

Actual fuel consumption rate is approximated by

FUEL = FCONS * PWR *
$$(1. + FE)/2$$
. (4.36)

where FUEL is actual consumption (L/h).

The last term in equation 4.36, (1.+FE)/2., is always less than 1. Fuel consumption rate is assumed to be half the normal level when the tractor is idling or turning.

The consumption of electricity is expressed in kW.h/h.

It is a simple function of the power required.

$$ELECT = PWR/(ELEFF * 1000.)$$
 (4.37)

where ELECT is electrical power consumption (kW.h/h);

PWR is the power required to operate an electric motor (W);

and ELEFF is the efficiency of an electric motor (assumed to be generally equal to 0.85).

4.5 Labor requirements

One operator is assumed for each harvester and for each transport unit. In the case of a baling-transport-unloading operation, if no bale thrower is used, then one extra man is assumed to be stacking the bales on the wagon pulled behind the harvester. Extra labor at the unloading site must be specified. The model then adds up all the labor required for an operation (man.h/h).

4.6 Computer implementation

The previous equations have been used to write a computer program called FORHRV. It is a static machinery model that estimates the harvest rate, the energy consumption and the labor requirement for 18 different forage harvest operations at any specified yield. The model calculates harvest rates at 6 different yields in a range specified by the user and creates a matrix called RATES(108,8) that retains all the machinery information for use in a dynamic simulation.

Program FORHRV is further documented in appendix B.

In the dynamic simulation, it is called only once.

Information in the RATES matrix is used thereafter to interpolate harvest rates and fuel consumption at various yields generated in a complete simulation. Chapter 7 establishes the link between FORHRV and the dynamic simulation.

CHAPTER 5

FORAGE LOSSES

5.1 Introduction

Hoglund (1964) presented a useful synthesis of quantitative losses in hay, haylage and silage systems. Since then, a greater recognition has been given to qualitative losses (Waldo and Jorgensen, 1981). In fact, it is the qualitative rather than the quantitative losses that will affect how much corn and soybean meal are required in the ration and whether or not milk production can be maintained.

Both qualitative and quantitative losses must be estimated at all stages of forage conservation: harvest, storage and feeding. Losses related to alfalfa harvest are considered in greater detail than losses related to alfalfa storage and feeding or losses related to corn silage. The daily dynamic simulation is used mainly to estimate quality and quantity changes of alfalfa during growth and harvest.

Changes in storage and feeding are simulated only once per year. Average values are used to estimate storage and feeding losses for five different storage methods and seven feeding methods.

Quantitative losses of alfalfa in the field are segregated into stem and leaf losses since they are affected differently by various treatments or environmental factors. Losses are expressed as a fraction of the remaining material or nutrient.

$$RF(I) = 1. - LS(I)$$
 (5.1)

After several treatments have been applied and after a number of environmental factors have come into play, the final remaining fraction is:

$$FRF = RF(1) * RF(2) * ... * RF(N)$$
 (5.2)

where FRF is the final remaining fraction of material or nutrients; and N is the number of treatments and environmental factors that account for losses.

Let us consider singly the more important treatments and environmental factors that affect losses.

5.2 Alfalfa harvest losses due to mechanical treatments

Mechanical treatments that produce harvest losses include mowing, conditioning, raking, tedding, baling and chopping. Some treatments are especially harsh on the alfalfa leaves at low moisture content.

Mechanical treatments produce material losses but do not generally change the chemical composition of stems and leaves. However the stem to leaf ratio may change and cause a change in the average nutritional composition of the whole plant. This indirect change in quality is estimated at the end of harvest.

5.2.1 Mowing and conditioning

Research carried out by this author (Savoie et al., 1981) showed that dry matter losses due to mowers varied between 0.25% and 1% of the yield. Losses were lowest for cutterbar mowers and highest for drum mower-conditioners. Mower-conditioners followed by heavy crimping produced up to 2% of dry matter losses under light yields. Dale et al. (1978) estimated average mowing losses as 1% of total yield for the cutterbar, 2% for the mower-conditioner and 4.6%

for mowing and heavy crimping. These values are about double the ones measured. The measured mowing losses consisted only of detached material shorter than 200 mm that would not likely be raked back in the windrow. The measured losses did not include losses from unmowed alfalfa or small particles within the windrow which might be lost in subsequent handling. In general, total losses of 1% for the cutterbar and 2% for the mower-conditioner were assumed.

Dale et al. (1978) assumed that all mowing losses consisted only of leaves and no stems. This assumption was tested in June 1981, during the first alfalfa cut at the Chatham Experiment Station in Michigan: mowing losses were separated into leaves and stems. The original data are shown in table 5.1. The average dry matter yield at cutting was 4400 kg/ha; it was split as 39% leaves and 61% stems on a total dry matter basis. Relative losses were low, between 0.025% and 0.4%. The measured consisted of about 75% leaves and 25% stems. If the total dry matter loss from a mower-conditioner is assumed to be 2%, then the distinct losses are 4% of the leaf mass and 1% of the stem mass.

Table 5.1. Ratio of leaves and stems lost after mowing (data collected in Chatham, Michigan in June 1981).

Previous operations(1)	Number of samples	Average (kg-Di		Leaves as a fraction of	
-	-	Leaves	Stems	total loss	
СВ	4	2.88	1.63	0.64	
MC	4	4.92	1.80	0.73	
MCW	4	13.76	5.70	0.71	
СВ	4	0.65	0.32	0.67	
MC	4	13.25	2.35	0.85	
MCW	4	9.33	2.42	0.79	
Ave	rage losses	7.47	2.37	0.76	

⁽¹⁾ Operations are: CB, cutterbar mower; MC, cutterbar mower-conditioner; MCW, cutterbar mower-conditioner-windrower. Data were collected for three operations and for two replications on different days.

5.2.2 Raking

Hundtoft (1965) published a curve relating shatter losses to moisture content during raking. It is redrawn here in figure 5.1, adjusted for a change in the abscissa from wet basis to dry basis moisture content. The statement of shatter losses would lead one to believe that most losses are leaves. Original field data in table 5.2 show that dry matter losses for raking are split almost evenly between leaves and stems. These plots were raked at dry basis moisture levels between 1 and 3. The ratio of leaf to stem losses may be different under dryer

Figure 5.1. Leaf dry matter loss from raking, as a fraction of total leaf mass, versus dry basis moisture content (adapted from Hundtoft, 1965).

losses and speed of operation.

conditions. Stem losses might be expected to remain constant while leaf shatter is likely to increase considerably as the alfalfa becomes dryer. Stem loss from raking will be set constant at 2% of stem mass and leaf loss will be estimated from figure 5.1, as a fraction of the remaining leaf mass.

Table 5.2. Ratio of leaves and stems lost after raking, including mowing losses (data collected in Chatham, Michigan in June 1981).

Previous operations()	Number of 1) samples	Average (kg-D		Leaves as a fraction of	
_	-	Leaves	Stems	total loss	
CB-R	2	3.83	1.00	0.79	
MC-R	2	3.25	0.79	0.80	
MCW-R	2	2.80	0.63	0.82	
CB-R	2	37.37	34.65	0.52	
MC-R	2	22.44	15.53	0.59	
MCW-R	2	33.59	27.49	0.55	
CB-R	2	19.59	16.78	0.54	
MC-R	2	26.79	29.22	0.48	
MCW-R	2	15.10	16.43	0.48	
A	verage losses	18.31	15.84	0.54	

⁽¹⁾ Operations are: CB, cutterbar mower; MC, cutterbar mower-conditioner; MCW, cutterbar mower-conditioner-windrower; R, parallel-bar rake. Data were collected for three operation sequences and for three replications on different days.

5.2.3 Tedding

The tedder spreads the alfalfa across the swath in a rapidly rotating and hitting motion. Dry matter losses measured in the field from tedding were between 1 and 2% of total yield per treatment (Savoie et al., 1981). Tedding was generally applied at high moisture contents (M > 2). No research has apparently estimated tedding losses at very low moisture contents. Leaves would probably shatter in a fashion similar to what can be observed during raking. Dry matter losses from tedding are assumed to be the same as raking losses: only leaves are lost in a proportion given by figure 5.1.

5.2.4 Baling

Three types of balers were considered: the conventional baler making small rectangualr bales, the large round baler and the large hay stack wagon. Alfalfa is usually baled only when the hay is dry enough for storage. Leaves are then very dry and brittle. As will be shown, leaves make up the greater part of dry matter losses during baling.

Whitney (1966) measured total dry matter losses from a conventional baler between 1.4 and 3.8% of yield, but did not distinguish stem from leaf losses. He noted that a bale ejector would increase the losses by between 0.3 and 1%. Kjelgaard (1978) used an average of 3% for baling losses from a conventional baler. Friesen (1977) compared the nutritional value of bale chamber losses with the bale itself: losses had a protein concentration of 22% while the baled hay had a protein concentration of 14%. alfalfa leaves and stems have a protein concentration of about 28% and 11% respectively and leaves represent initially 40% of the total dry matter at mowing time (Bert et al., 1952), a total dry matter loss of 3% would then be split as 5% of the leaf mass and 2% of the stem mass during baling. An ejector would increase leaf loss to 7.5%.

Anderson et al. (1981) and Kjelgaard (1978) have suggested 10% as an average value for dry matter losses from round balers. PAMI (1979) indicated that round baler losses can vary between 5 and 25%: very high losses are more likely to occur in light and dry alfalfa hay. Whole stems and leaves are lost at the pickup stage while mostly leaves are shattered in the bale chamber. Assuming that 10% of the total dry matter is lost, of which 75% consists of leaves, and that leaves represent initially 40% of the mass, then 19% of the leaves and 4% of the stems are lost

during r

matter

Kj

assumpt

leaves

large h

5.2.5

Lo are es

2% for

Euch 1

Where a

consis

of the

the s

the le

fresh

5.2.6

_{реей} с

^Jâle e

during round baling.

Kjelgaard (1979) estimated average stack wagon dry matter losses at 13% of total yield. Using similar assumptions as in the case of the round baler, 24% of the leaves and 5% of the stems are lost during the formation of large hay stacks.

5.2.5 Chopping

Losses from chopping and blowing alfalfa into a wagon are estimated at 5% of total yield for wilted alfalfa and 2% for direct-cut alfalfa (Kjelgaard, 1979). Leaves are much more likely to be lost than stems in this operation where air flows are present. Assuming that 75% of the loss consists of leaves and that leaves represent initially 40% of the total dry matter, then 9% of the leaves and 2% of the stems are lost while chopping wilted alfalfa and 4% of the leaves and 1% of the stems are lost while chopping fresh alfalfa.

5.2.6 The effect of ground speed on material losses

The operation speed and the alfalfa yield have not been considered as factors affecting total material losses.

Dale et al. (1978) assumed a linear relationship between

raking at 0 k

Anders

5.6 kg

unexpe

effec

1

might

at h Yield

likel

the t

highe

Cosse

are e Speed

Iax:

coss

aini obei

Spee

e::e

14/2

to t

raking speed and material losses: relative losses were 0% at 0 km/h and 100% at 10 km/h and above. Meanwhile, Anderson et al. (1981) measured greater baling losses at 5.6 km/h than at 8.1 km/h. They did not explain this unexpected result.

Very little else has apparently been published on the effect of ground speed on material losses. The effect might be important since the physical impact is increased at higher speeds. There is also a relationship between yield and speed: as yields become lower, machines are likely to be operated faster to make more efficient use of the throughput capacity. Low yields are conducive to higher speeds and probably higher relative material losses.

Figure 5.2 is a hypothetical relationship between losses and speed. At some average speed V, average losses are expected (100%). Above this speed up to a critical speed Vc, material losses would increase linearly to some maximum level (MAX). Below the average speed, material losses would decrease linearly to a minimum level. This minimum is not likely to be 0, especially in the case of operations using rotative power independently from ground speed. In the present simulation model no ground speed effect will be assumed in the estimation of material losses (MAX = 100% = MIN). More field research would be necessary to test this assumption.

5.3 Al

quantit

Me

these t

within

stem to

of the

same nu

E:

and ge

à:ges

less

Dry

con

5.

:e

Te s

٤ŋ

5.3 Alfalfa harvest losses due to environmental factors

Mechanical treatments were seen to produce important quantitative losses of alfalfa stems and leaves. However these treatments do not alter the nutrient concentration within either stems or leaves. Of course a change in the stem to leaf ratio indirectly changes the composite quality of the whole crop since leaves and stems do not have the same nutrient composition.

Environmental factors affect directly both dry matter losses and quality changes. Rainfall, plant respiration and general exposure to the weather are known to alter the digestibility of the alfalfa stems and leaves and, to a lesser extent, to change the crude protein concentration. Dry matter losses and quality changes will alternately be considered.

5.3.1 Dry matter losses from respiration

Plant cells of alfalfa remain alive and continue to respire several hours after mowing. Carbohydrates used in respiration are essentially 100% digestible and represent an important nutritional loss (Moser, 1980). Respiration

of al

at t

tempe

on a

also

(197)

Res cond

co₂

r_ax 90.6

360

cor

ge:

0.0

in

kg.

đ

of alfalfa cell tissues is maximum and relatively constant at temperatures between 30 C and 45 C. It will cease at temperatures above 55 C or at moisture contents below 35% on a wet basis (Wolf and Carson, 1973). Respiration is also practically zero below 0C (Wilkinson and Hall, 1966).

The respiration equation is given by Wood and Parker (1971) as:

180 g
$$C_6H_{12}O_6 + 192$$
 g $O_2 \longrightarrow$
264 g $CO_2 + 108$ g $H_2O + 677$ kcal (5.3)

Respiration is often measured in laboratory trials by the concentration of ${\rm CO}_2$ in the air. Every gram of ${\rm CO}_2$ measured corresponds to 0.68 g of carbohydrate lost from the alfalfa dry matter.

There are some discrepencies in reported values of maximum respiration rates after cutting alfalfa. Wilkinson and Hall (1966) noted a maximum heat generation rate of 36000 BTU per U.S. ton per hour at 27 C and at 80% moisture content on a wet basis. Since one 1b of carbohydrate generates about 6770 BTU of heat, the respiration rate is $0.0027~{\rm kg}^{-C}_6{\rm H}_{12}{\rm O}_6/{\rm kg}^{-DM/h}$. Wolf and Carson (1973) reported initial rates as high as $0.007~{\rm kg}^{-C}_0{\rm Kg}^{-DM/h}$ or $0.0048~{\rm kg}^{-C}_6{\rm H}_{12}{\rm O}_6/{\rm kg}^{-DM/h}$, at 30 C and at 70% moisture content on a wet basis. Wood and Parker (1971) suggested maximum

respirat

assumed

respira

of fre

0.003 t

Ţ:

increas

Parker

increa

respi r

• •

propos

Where

güĞ

güğ

abov

3e]₀

teni

dec:

rsu

respiration rates of 0.003 kg- CO_2/kg -DM/h for rye grass at 80% moisture (wet basis) and at 25 C. Dale et al. (1978) assumed that legumes had respiration rates 50% greater than respiration rates of grasses. The maximum respiration rate of freshly cut alfalfa is likely to be in the range of 0.003 to 0.004 kg- $C_6H_{1.2}O_6/kg$ -DM/h.

The respiration rate increases exponentially with an increase in temperature between 0 and 30 C (Wood and Parker,1971). It increases approximately linearly with an increase of the moisture content on a dry basis (Wilkinson and Hall, 1966). A simplified relationship between respiration rate and temperature and moisture content is proposed:

$$R \propto (TDB/30)^2 * (M/4)$$
 (5.4)

where R is the respiration rate (kg-C₆H₁₂O₆/kg-DM/h);
TDB is the dry bulb temperature (C7;
and M is the moisture content of alfalfa, on a decimal,
dry basis (dec, d.b.).

This relationship is valid in the ranges 0 < TDB < 30C and 0.5 < M < 4. For temperatures or moisture contents above these ranges, the factors in parenthesis are one. Below the ranges, the respiration rate is zero. For temperatures between 45 and 55 C, the rate actually decreases (Wolf and Carson, 1973); such temperatures are not usually encountered during hay making in northern climates.

exponer

Th

where h

S

Integra Replac

and ka

total

Whe

t)

ā

æa.

30

gr.g

The moisture content decreases approximately as an exponential decay function:

$$M = Mo * exp(-k * t)$$
 (5.5)

where Mo is the initial moisture content (dec, d.b.);
 k is the drying constant (h ');
and T is time (h).

Substituting equation 5.5 in equation 5.4 yields

$$R \propto (TDB/30)^2 * (Mo/4) * exp(-k * t)$$
 (5.6)

Integrating over time will give the total respiration loss. Replacing coefficient k by two empirical coefficients kl and k2, the following equation may be used to estimate total respiration loss.

TRL =
$$\left(\frac{\text{TDB}}{30}\right)^2 \left(\frac{\text{Mo}}{4}\right)^{-\frac{1}{2}} \times \text{kl} \times (1. - \exp(-\text{k2} \times \text{t}))$$
 (5.7)

where TRL is the total respiration loss (kg- $C_6H_{12}O_6/kg-DM$).

A number of researchers agree that total respiration losses of field cured forages may amount to 10 or 15% of the original dry matter (Watson and Nash, 1960). Assuming a maximum dry matter loss due to respiration of 15% and a maximum total respiration loss of 0.4% in the first hour at 30 C and M = 4.0, values of coefficient kl and k2 are 0.15 and 0.0291 respectively.

accumu;

Re

cannot

loss i

5.3.2

ρλ ρ:

drople addit

prolo

losse

alrea

likel

might next

that 50 mm

this

yssau

tain:

Respiration losses are calculated daily (t = 24 h) and accumulated as long as alfalfa is not harvested. The total cannot however be greater than kl. The same fractional loss is assumed for both leaves and stems.

5.3.2 Dry matter losses from rainfall

Rain may increase dry matter losses in several ways: by breaking off leaves through direct impact of rain droplets, by leaching soluble nutrients, by requiring additional machinery treatments to enhance drying and by prolonging respiration of the wet alfalfa. Dry matter losses due to machinery treatments and to respiration have already been dealt with previously. Leaching loss is not likely to represent a large amount of dry matter but it might affect the digestibility. This is discussed in the next section.

In laboratory experiments, Collins (1981) estimated that 20% of the leaves were lost after two showers totaling 50 mm of rain. Since no mechanical handling was involved, this loss is presumably due only to the impact of rain. Assuming a linear relationship between leaf loss and rainfall, leaf loss due to rain is 0.4% per mm of rain.

5.3.3

prima

consi

I

Diges

at th

Where

and

(198)

incre

Vall

:ela

Wher

ğņğ

5.3.3 Changes in digestibility

Digestibility of alfalfa leaves and stems is affected primarily by respiration and rainfall. Respiration losses consist practically of 100% digestible nutrients. Digestibility of leaves and stems is corrected as follows at the end of the respiration process:

$$TDN(F) = (TDN(I) - TRL)/(1. - TRL)$$
 (5.8)

Digestibility is also affected by rainfall. Collins (1981) estimated that cell wall concentration in alfalfa increased from 32.3% to 38.4% after 50 mm of rain. A linear relationship exists between digestibility and cell wall concentration. From data given by the NRC(1977), the relationship for alfalfa is:

$$TDN = 1.06 - CW$$
 (5.9)

where TDN is total digestible nutrients or digestibility (dec); and CW is the cell wall concentration (dec).

equal

T

Assumi

level

due t

5.3.4

about

the

conce alfal

1960)

tave

betwe

al., hay,

su::(

:he

degra

⁰. כנ

of ab

²bout

The increase of 6.1% in the cell wall concentration is equal to a drop of the same amount in digestibility. Assuming a linear relationship and an initial digestibility level of 60%, the average relative drop in digestibility due to rain is 0.2% per mm of rain.

5.3.4 Changes in crude protein

Many contradicting statements have been published about protein losses during field curing of alfalfa. On the one hand, several authors believe that protein concentration changes very little during field drying of alfalfa (Moser, 1980; Collins, 1981; Watson and Nash, 1960). On the other hand, a number of field experiments have shown substantial drops of crude protein concentration between the time of cut and the time of baling (Bert et al., 1952; Shepherd et al., 1954) or between haylage and hay, the latter being exposed longer in the field and suffering larger protein losses (Hillman et al., 1970).

Protein concentration could decrease either through the physical fragmentation of leaves or through a degradation process within the plant tissues. At the time of cutting, the alfalfa leaves have a protein concentration of about 28% and the stems have a protein concentration of about 11% (Bert et al., 1952). If leaves are shattered,

the p

cont:

alfa

cons

rapi

the

fie)

con

15.

the

dry Pro

:ie

:ea

con

dec f:e

₩ð.

£į

(7

0.

Ġ,

C;

the protein concentration will certainly decrease. In a controlled laboratory experiment, Collins (1981) found that protein concentration actually increased slightly during alfalfa drying, even after rain. Apparently other cellular constituents, especially carbohydrates, are lost more rapidly through respiration and leaching, thus increasing the concentration of protein.

Bert el al. (1952) compared the nutrient content field cured and barn-cured hays. The barn-cured contained 17% crude protein while the field-cured hay 15.6% protein, an additional relative loss of 8.24%. At the time of cut, leaves represented 48.5% of the alfalfa dry matter. At the end of the harvest and drying processes, the barn-cured hay had 37.9% leaves and the field-cured hay had 33.3% leaves. The difference in leafiness explains about half the difference in protein concentration; the other half would be due to a weathering degradation process. The field-cured hay remained in the field between three and ten days while the barn-cured hay was removed from the field after one or two days. Assuming field-cured hay was exposed three extra days on the average (72 hours), the rate of protein concentration loss would be 0.11%/h.

Shepherd et al. (1954) also observed a consistent decrease of crude protein concentration between the time of cut and the time of baling. The relevant data are compiled

between

in tal

and 1

table

exposu it act

vas e

prote

time:

on or

Ta

Trial no.

1 2 3

la 4

to t

resu] tave

respi

in table 5.3. The relative loss of crude protein varied between 7 and 11% for non-rained-on alfalfa and between 12 and 18% for rained-on alfalfa. The last column in the table shows the rate of crude protein loss (%/h of exposure). The rained-on hay had a larger total loss but it actually had a slightly smaller loss rate (%/h) since it was exposed longer to weather before baling. The crude protein loss appears closely related to total exposure time: about 0.15%/h, no matter whether alfalfa was rained on or not.

Table 5.3. Change in crude protein alfalfa during field drying (from Shepherd et al., 1954).

Trial no.	No. of showers	Total rain (mm)	Hours exposed in the field		As	% loss Total	
1 2 3	0 0 0	0. 0. 0.		19.56 21.57 18.21	18.13 19.26 16.88		
			Average	rate l	oss (1,	2,3)	.1612
la 4	2 3	17. 27.	84. 131.		18.91 17.19	12.37 17.91	.1473
			Average	rate 1	oss (la	,4)	.1420

The decrease in protein concentration is probably due to both weathering and a change in the leaf to stem ratio resulting from machinery treatments. The field experiments have not distinguished the contribution of each. Plant respiration and leaching do not decrease the protein

concen

bleach

may al

concen

rate c

set a

relate

20% CI

10 da

prote

5,4

Prese

for d

on ou

hay

same

altal

138 r

concentration. However, other weathering factors such as bleaching, wind and "enzymatic changes" reported by Watson and Nash (1960), which have not previously been mentioned, may all contribute to substantially reduce the protein concentration. On the basis of values estimated above, the rate of protein concentration loss due to exposure only was set at 0.10%/h. This loss does not include machinery related losses. For example, alfalfa initially containing 20% crude protein would lose 24% of its concentration after 10 days (240 h) of field curing and would have a final protein concentration of 15.2%.

5.4 Alfalfa storage and feeding losses

For storage and feeding, average dry matter losses presented by Kjelgaard (1979) were used. Storage losses for dry hay are 4%, 12% and 16% for rectangular bales, round bales and hay stacks. The last two values are based on outside storage. Sheltered storage of round bales and hay stacks would probably reduce dry matter losses to the same level as rectangular bales. Storage losses of wilted alfalfa haylage and of direct cut alfalfa silage are 7% and 13% respectively.

rectan

silage

distin

feedin

for st

hay.

L

stacke: Verma

alfalf;

year (

increas

alfalfa

W

storage:

as lor

high, c

are lea

is pre

recrude

forage.

Feeding dry matter losses are on the average 5% for rectangular bales, 14% for round bales, 16% for hay stacks, 11% for either wilted alfalfa haylage or direct cut alfalfa silage (Kjelgaard, 1979). No published data appears to distinguish between stem and leaf losses during storage and feeding. Consequently the same loss fraction was assumed for stems and leaves.

Little quality change occurs during storage of dry hay. Weeks et al. (1975) observed that digestibility of stacked hay remained around 60% after 10 months of storage. Verma and Nelson (1981) reported that the digestibility of alfalfa in round bales actually increased by 3% after one year of outside storage. Crude protein concentration also increased by 5%. For simulation purposes, quality of alfalfa hay was assumed not to change during storage.

While dry hay is chemically stable once it reaches storage, direct-cut or wilted forages undergo substantial changes during the ensiling process. Respiration continues as long as oxygen is present. If the water content is high, considerable seepage may occur and soluble nutrients are leached. Low moisture haylage may mold if too much air is present.

Few studies have measured specifically the changes of crude protein and digestibility of alfalfa stored as a wet forage. Watson and Nash (1960) reported that ensiling red

concent feeding haylage

clover

change:

crude direct

1961,

Haylage except

early

Ecre

fermen:

haylag:

pay co

by the

^{change} ⁱⁿ dig

except

grg r

forage

T)

jan.

clover produced a slight increase in crude protein concentration and a decrease in digestibility. A number of feeding experiments have compared alfalfa hay with alfalfa haylage: these studies may be helpful in understanding the changes that occur during storage of wet alfalfa.

Most researchers agree that alfalfa hay contains less crude protein and more crude fiber than haylage or direct-cut alfalfa at the time of feeding (Gordon et al., 1961, 1963; Brown et al., 1963; Thomas et al., 1969). Haylage is generally more digestible than hay. One notable exception is provided by Gordon et al. (1961) who, in an early experiment with sealed silos, estimated hay to be more digestible than haylage. Excess heating during fermentation might have reduced the digestibility of haylage.

The lower crude protein and the lower digestibility of hay compared with haylage are probably accounted for mainly by the difference in field curing time and not by storage changes. Little changes in crude protein concentration and in digestibility are likely to occur during fermentation, except in the case where haylage is exposed to excess air and might result in heat-damaged, lower digestibility forage.

There are also differences in the intake of hay versus haylage: animals will in general consume more hay than haylage but, as more grain is fed, this intake difference

is reduced. These nutritional aspects are left within the ration formulation model by treating hay and haylage as two distinct crops. For simulation purposes, quality of alfalfa haylage or silage was assumed not to change during storage. It should be noted that maintaining high quality throughout the storage period is likely to require more management skills with fermented forages than with dry forages.

5.5 Corn silage losses

Kjelgaard (1979) quoted average DM losses of 5% for harvesting, 6% for storage and 4% for feeding of corn silage. Quality changes are likely to occur in the silo. Watson and Nash (1960, p.401) reported that, in one experiment, crude protein concentration increased by 5% and total digestibility decreased by 9%. However no extensive data on these changes seem available. Consequently quality of corn silage was assumed unaltered during storage.

5.6 Summary of losses

Alfalfa harvest losses are estimated in greater detail than all other losses (storage, feeding, corn silage) because the dynamic simulation is intended primarily to simulate daily growth and harvest of alfalfa. Storage and feeding are simulated only once per year; average loss values are used.

Table 5.4 shows values that were used to estimate dry matter losses of alfalfa leaves and stems during harvest. Table 5.5 illustrates dry matter loss values for storage and feeding. The same fractional loss is assumed for both leaves and stems.

Quality changes are estimated according to the values given in table 5.6. Important quality changes are estimated during field curing. Quality changes during storage are practically ignored in the present model for lack of extensive data.

Table 5.4. Alfalfa dry matter losses during harvest and curing.

	Factor	Leaf loss as a fraction of leaf mass	Stem loss as a fraction of stem mass
1.	Mower	0.02	0.005
2.	Mower-conditioner	0.04	0.01
3.	Rake	(0.02-0.21)a	0.02
4.	Tedder	(0.02-0.21)a	0.00
5.	Baler (conventional)	0.05	0.02
	Bale-ejector	0.075	0.02
	Round baler	0.19	0.04
8.	Stack wagon	0.24	0.05
9.	Chopper (wilted)	0.09	0.02
	Chopper (direct-cut)	0.04	0.01
	Respiration	(0.00-0.15)b	(0.00-0.15)b
12.	Rainfall	0.004/mm	0.00

- (a) Rake and tedder will shatter between 2 and 21% of
- leaves depending on moisture content, as in figure 5.1.
 (b) Respiration losses will vary between 0 and 15% depending on exposure time and environmental conditions as predicted by equation 5.7.

Table 5.5. Storage and feeding dry matter losses of alfalfa (adapted from Kjelgaard, 1979).

	Storage method	Storage loss	Feeding loss
2. 3. 4. 5.	Small bales, stored inside Round bales, stored inside Hay stacks, stored inside Round bales, stored outside Hay stacks, stored outside Haylage, vertical silo	.04 .04 .12 .16	.05 .14 .16 .14 .16
7.	Haylage, bunk silo	.13	.11

Table 5.6. Changes in the nutritional value of alfalfa during field curing (changes are shown as a fraction of the remaining value per unit mm or h).

Factor	Digestibility	Crude protein
1. Respiration	Equation 5.8	
2. Rainfall	-0.002/mm	
Exposure		-0.001/h

In future research, the emphasis could be shifted to refining the estimation of dry matter losses and quality changes in storage. Although no quality changes are assumed for silage and haylage, some of the literature indicates slight increases in the crude protein concentration and inconsistent changes in the digestibility of alfalfa stored as a wet forage. Better estimates of harvest dry matter losses are also needed, especially the distinction between leaves and stems and the effect of speed and moisture content.

CHAPTER 6

FIELD DRYING OF ALFALFA

A drying model is developed to be used in the dynamic simulation of forage harvesting. The model is not definitive; much research could still go into improving its predictive value. Since the main objective of the present dissertation is to simulate the whole forage system, the drying model is dealt with as much detail as was deemed necessary to provide reasonable predictions.

The section on equilibrium moisture content is based on data from the literature. The drying model itself is based on original field data collected by this author.

6.1 Literature review

Several factors affect the drying rate of mowed alfalfa in the field. Some are largely uncontrollable: air temperature, humidity, solar radiation, wind velocity,

ground moisture, rainfall, dew and the plant's physiological ability to lose moisture after mowing. Other factors are more easily controlled: maturity stage at the time of mowing, machinery treatments such as conditioning, tedding, raking, the width of the windrow, maceration or chemical spraying.

A complete drying model should attempt to sort out the relative importance of each and every one of these factors. The problem may further be compounded by some unknown interaction. Before delving into the details of such a model, let us briefly survey some of the previous work.

Pedersen and Buchele (1960) and, more recently, Harris and Tullberg (1980) have presented good reviews of the physiological mechanisms involved with alfalfa drying.

Neither have attempted however to predict numerically the drying rate.

Evaporation to predict drying rates. Latent evaporation was measured with an atmometer, a black, horizontal, Porous, wet surface exposed to environmental conditions. Evaporation measurements are thus based on the integrated effects of wind, radiation, temperature and humidity. The authors tested the model only with a limited number of laboratory trials. Their model is yet incomplete for Predicting field drying.

Latent evaporation is not a commonly measured quantity and therefore is difficult to use. The authors contend correlated other environmental that it can be to The drying rate is a function not only of conditions. environmental factors but also of mechanical and chemical treatments that might be applied to field curing forages. A simpler and more logical approach would be to estimate the drying constant and the drying rate directly from the basic environmental parameters and the treatment parameters.

Hill et al. (1977) proposed yet another single parameter to predict the drying rate of alfalfa: the vapor pressure deficit. The vapor pressure deficit is the difference between the vapor pressure at the plant surface, assumed saturated at the ambient dry bulb temperature, and the actual air vapor pressure. The model predicted well for large deficits and not so well for small ones. The authors noted the need to include other meteorological variables which were omitted from their study.

Tullberg and Harris (1978) presented a drying model of Eully exposed alfalfa. The model predicted drying as a Eunction of moisture content, vapor pressure deficit, leaf to stem ratio and whether the alfalfa had been immersed in a solution of potassium carbonate or not. The model is of limited use to predict field drying because it is based on

laboratory trials dealing with small samples of alfalfa unlike the windrow structure found in the field.

Dale et al.(1978), and in a more detailed study Dale (1979), presented a model to predict the drying rate of alfalfa in field conditions under various mechanical treatments. The evaporation model, although presented in a different form, is in fact:

$$\frac{dM}{dt} = -k * (M - EMC)$$
 (6.1)

where M is the moisture content (dec, d.b.);
t is time (h);
EMC is equilibrium moisture_content (dec, d.b.);
and k is the drying constant (h 1).

The constant k is a function of solar radiation, wind velocity, plant density, species and type of conditioning.

Dale's conceptual model has useful been understanding the important factors affecting drying. numerical model however has important weaknesses. First. the model is left implicitly as a difference equation for Computer implementation. This is correct, but the fact that no attention is paid to the size of the time increment can lead to fairly large errors in the estimation of moisture content. Secondly, k is simply calculated by multiplying together solar radiation, a wind velocity factor, a crop density factor and a species-conditioning factor. This assumes that doubling the solar radiation will double the drying rate - a rather unlikely outcome.

It also neglects convective evaporation due to air temperature. Thirdly, equilibrium moisture content of oats was used in the model for lack of data about alfalfa. A more realistic model of alfalfa equilibrium moisture content is presented further in this chapter.

6.2 Theoretical Model

The decreasing rate model is often proposed to simulate the drying of biological products (Brooker et al., 1974).

$$\frac{dM}{dt} = -k * (M - EMC)^{C}$$
 (6.2)

The exponent c is often equated to one. In fact the value of c is likely to vary with M. When moisture content is very high, the moisture evaporates almost freely and at constant rate. Then c is equal to 0. As a biological Product dries, the drying rate is no longer constant but decreases as the moisture content decreases. The value of is likely to increase as the material becomes dryer.

Since the main objective of this research is to simulate the dynamics of forage harvesting, the drying model is simplified into a single equation to predict drying in all moisture ranges. For reasons explained in

the statistical analysis in section 6.4.1, c is equated to one in equation 6.2.

The constant k is tentatively defined as a linear function of environmental and operational factors.

where bo, bl, ..., b9 are statistical estimates of parameters affecting drying; SR is the average solar radiation on a horizontal surface (cal/min/cm2); TDB is the dry bulb temperature (C); WV is the wind velocity (m/s); DENS is the dry matter density in the windrow (kq/ha): RK is a raking factor; CD is a conditioning factor; RNDW is a free water factor, affecting drying rate after rain or dew adsorption; DAY is a factor to distinguish the first day from the subsequent days of field drying; and XTR is an extra or additional treatment factor (e.g. chemical application, maceration).

The last five variables are actually dummy variables with Values being either 0 (no treatment, no rain, first day drying) or 1 (treatments, adsorption of rain or subsequent days of drying).

The variable DENS is the alfalfa dry matter density in the windrow in kg/ha. It is estimated as follows:

$$WR = WW/WC (6.4)$$

$$DENS = YDM/WR$$
 (6.5)

where YDM is the dry matter yield of alfalfa (kg/ha);
WW is the width of the windrow (m);
WC is the width of the cut (m);
and WR is the width of windrow to width of cut ratio.

The raking dummy variable is set on (RK=1) only during the day of raking and set off (RK=0) subsequently. The reason is that raking displaces wet forages from the bottom to the top of the windrow. The beneficial drying effect is present for a limited number of hours and disappears thereafter.

With c=1, a simple analytical expression can be derived from equation 6.2.

$$\left(\frac{M - EMC}{MO - EMC}\right) = exp(-k * t)$$
 (6.6)

where Mo is the initial moisture content; and M is the moisture content at time t.

A major advantage with the use of the analytical equation 6.6 is that the time increment is not an issue. The actual moisture content of a field curing plot can be estimated at any time in the day by this single equation. Moreover the time when the plot will be ready for harvest can also be estimated by solving for t in equation 6.6. On the other hand, the use of equation 6.2, expressed as a difference equation, for estimating drying poses a serious Problem with regards to the choice of a time increment. A large time increment would certainly lead to substantial

inaccuracies. A very small increment could increase significantly the computation time and cost. The problem of a time increment is avoided by using an analytical equation.

The statistical estimation of the coefficients bo to b8 in section 6.4 indicates that some coefficients are not significant. Estimates of b9*XTR, for additional treatments, will be inferred from data published in the literature on various new technologies.

6.3 Equilibrium moisture content

Alfalfa left in a specific environment indefinitely will reach an equilibrium moisture content (EMC). Therefore EMC is a very important factor in alfalfa drying: it indicates whether a hay will lose or gain moisture and provides some insight as to the rate of moisture transfer.

Zink (1935) measured EMC for various hays, including alfalfa. Dexter et al. (1947) noticed a hysteresis effect in EMC of alfalfa: under the same environment, initially dry alfalfa will reach a lower EMC (through adsorption) than initially wet alfalfa (through desorption). They also observed that several samples molded before reaching EMC when they were exposed to a relative humidity above 85%.

Bakker-Arkema et al. (1962) did a systematic study of EMC of alfalfa. They measured EMC in the ranges of 4.4 to 48.9 C and 10 to 90% relative humidity. They also measured the difference between adsorption and desorption. They reported that immature alfalfa had a higher EMC than mature alfalfa.

A regression model was used to fit the adsorption data provided by Bakker-Arkema et al. (1962). The experimental data and the regression curves are plotted on figures 6.1 and 6.2. The relative humidity was split into four ranges to provide a better fit. In the range 0.10 < RH < 0.60,

EMCA =
$$0.026850 + 0.146462 * RH + 0.045716 * RH^2 + 0.00036081 * TDB - 0.0013128 * RH * TDB (6.7)$$

where EMCA is the equilibrium moisture content of alfalfa from adsorption (i.e. the alfalfa is initially drier than the environment) (dec, d.b.);

RH is the relative humidity (dec);
and TDB is the dry bulb temperature (C).

In the range 0.60 < RH < 0.90,

EMCA =
$$0.37517 - 1.2816 * RH + 1.4283 * RH^2$$

+0.0065621 * TDB - 0.010839 * RH * TDB (6.8)

Data below 10% and above 90% relative humidity are sparse. EMC was assumed to be 0 at 0 relative humidity. In the range 0 < RH < 0.10, simple linear interpolation is used.

Figure 6.1. Adsorption equilibrium moisture content (dry basis) of mature alfalfa versus temperature and humidity. Experimental data are from Bakker-Arkema et al. (1962).

Figure 6.2. Adsorption equilibrium moisture content of mature alfalfa in the range of high relative humidities.

$$EMCA = EMCA(RH=0.10) * RH/0.10$$
 (6.9)

Above 90%, three data points were obtained at a constant temperature (15.6 C) at three levels of relative humidity. The data are those on figure 6.2. Lines of constant relative humidity are assumed parallel to the 90% line. Linear interpolation is used to estimate EMC between the lines. In the range 0.90 < RH < 0.95,

$$EMCA = EMCA(RH=0.90) + (RH - 0.90)*.167/.05$$
 (6.10)

In the range 0.95 < RH < 0.975,

$$EMCA = EMCA(RH=0.95) + (RH - 0.95)*.167/.025$$
 (6.11)

In the range 0.975 < RH < 1.00,

$$EMCA = EMCA(RH=0.75) + (RH - 0.975)*.333/.025$$
 (6.12)

All the above equations estimate EMC for adsorption of mature alfalfa. In drying we are mainly concerned with desorption. Also alfalfa is often harvested earlier than at the mature stage. Table 6.1 shows differences between desorption and adsorption. The difference is symbolized as DDA.

Bakker-Arkema et al. (1962) reported desorption EMC at only one temperature (15.6 C) for the range of relative humidities shown in table 6.1. There could be a

temperature interaction in the difference between adsorption and desorption EMC at a given relative humidity. If the slopes of the desorption curves versus temperature are parallel to the slopes of the adsorption curves in figure 6.1 at the same relative humidities, then no temperature interaction would exist. For the time being no temperature interaction will be assumed until more desorption EMC data become available.

Table 6.1. Differences in EMC between adsorption and desorption at 15.6 C (from Bakker-Arkema et al., 1962)

RH	EMC		Difference
	Adsorption	Desorption	
.10	.050	.070	.020
.20	.074	.093	.019
.40	.099	.115	.016
.60	.134	'.164	.030
.70	.163	.235	.072
.80	.208	.385	.177
.90	.333	.727	.394
.95	.499	1.212	.713
.975	.667	1.558	.891
1.000	1.000	2.215	1.215

A quadratic equation was used to estimate the difference, except in the range 0 < RH < 0.10 where the difference is considered constant and equal to 0.01. In the range 0.10 < RH < 0.60,

 $DDA = 0.028221 - 0.085842*RH + 0.14686*RH^{2}$ (6.13)

In the range 0.60 < RH < 0.90,

$$DDA = 1.67675 - 5.3655*RH + 4.3765*RH^{2}$$
 (6.14)

In the range 0.90 < RH < 1.00,

$$DDA = 32.6417 - 75.3285*RH + 43.8909*RH2 (6.15)$$

The difference in EMC due to maturity is defined as DMM. Experimental data from Bakker-Arkema et al. (1962) are shown in table 6.2.

Table 6.2. Differences in EMC between prebloom and mature alfalfa at 15.6 C (from Bakker-Arkema et al., 1962).

RH	EMC		Difference
	Mature	Prebloom	
.10	.043	.060	.017
.20	.064	.080	.016
.40	.087	.109	.022
.60	.122	.161	.039
.70	.157	.207	.050
.80	.205	.263	.058
.90	.284	.452	.168

In the range 0 < RH < 0.10, the difference in EMC between prebloom and mature alfalfa is considered constant and equal to 0.01. In the range 0.10 < RH < 0.60,

$$DMM = 0.019236 - 0.043229*RH + 0.12676*RH^2$$
 (6.16)

In the range 0.60 < RH < 0.90,

$$DMM = 0.002210 * exp(4.5396 * RH)$$
 (6.17)

The exponential model was used here because it provided a more reasonable trend than the quadratic model which suggested a minimum at RH=0.67. Above 90% relative humidity, the difference due to maturity is assumed constant and equal to DMM at RH=0.90 for lack of data (DMM=0.131).

For maturities between prebloom and mature alfalfa, a linear interpolation is proposed. The actual difference is calculated as follows:

$$ADMM = DMM * (DM - D)/DM$$
 (6.18)

where ADMM is the actual difference in equilibrium moisture content between mature alfalfa and the present crop (dec, d.b.);

DMM is the maximum difference in EMC between prebloom alfalfa and mature alfalfa;

DM is the number of calendar days between prebloom and mature stages;

and D is the number of days since prebloom stage.

The actual equilibrium moisture content of alfalfa is corrected for maturity stage and desorption-adsorption differences as follows:

$$EMC = EMCA + DDA + ADMM (6.19)$$

where EMC is the desorption EMC.

Figure 6.3 shows typical curves of EMC versus relative humidity. Temperature is an important variable mainly at high relative humidities. The present model fits well the data between 10 and 90% relative humidities.

Figure 6.3. Predicted equilibrium moisture content (dry basis) versus relative humidity for desorption of prebloom alfalfa at 5 C and 35 C.

There is some evidence that at 0% relative humidity the EMC is not exactly 0 as was assumed here (see Zink (1935)). Above 90% relative humidity, EMC may sometimes be higher than what is predicted here. Further research may be useful in ascertaining more accurate values of equilibrium moisture content, especially under high relative humidities and specifically for desorption.

6.4 Estimating coefficients for the drying model

In this section, experimental data are analyzed to obtain a prediction equation for alfalfa drying in the field. Two simple models are also proposed to estimate the moisture content change of alfalfa exposed to rainfall and dew.

6.4.1 Experimental results

Field drying experiments were carried out during the first and the second alfalfa cuts in 1980 and again during the first cut in 1981 at the Upper Peninsula Experiment Station in Chatham, Michigan. Various machinery sequences were used to compare drying rate differences. The methodology has been explained in a published paper (Savoie

et al., 1981). The reduced data are presented in appendix

D. Each of the 189 observations was obtained from an average of between two and eight samples.

6.4.2 Statistical analysis

A multiple regression routine was used to analyze the data. The dependent variable k was calculated as follows:

$$k = \frac{(dM/dt)}{(M - EMC)}c$$
 (6.20)

where M is equal to (Mo+Mf)/2;
Mo is the initial moisture content;
Mf is the final moisture content;
and (dM/dt) is the drying rate observed (g water/g DM/h).

The variable k was fitted to the model in equation 6.3 for values of c between 1 and 4. The R square value increased as c was decreased. The fit with c=1 yielded the highest value R square=0.3630. The latter value of c was prefered partly because a simpler mathematical expression resulted and also because all the signs of the coefficients were reasonable (bl ... b8).

The complete model was fitted by least squares and the following expression was found.

k = -0.021572 + 0.072605 * SR + 0.0054228 * TDB + 0.0022264 * WV + 0.021293 * RK + 0.029745 * CD + 0.00064916 * RNDW + 0.0077584 * DAY - 0.00000766 * DENS (6.21)

A number of coefficients were non-significant. A step-wise regression was used to delete the non-significant terms at the 0.10 level of significance. The following simpler expression resulted.

The R square value decreased from 0.3630 to 0.3577 with the deletion of the non-significant variables.

The regression analysis tells us a great deal about importance of the various factors the relative in predicting drying. It is noteworthy that wind velocity was non-significant variable, in apparent a contradiction with work done by Shepherd (1965). Shepherd showed a significant effect of wind speed up to a critical point while maintaining other variables relatively fixed. The present results do not necessarily deny a certain windspeed effect on drying rate under certain conditions; they point however that wind effect is overshadowed by solar radiation and dry bulb temperature.

Somewhat unexpectedly dew and rain water absorbed by the alfalfa did not evaporate significantly faster than water initially in the plant. The hypothesis may be that a large fraction of water left on the alfalfa surface is absorbed by the plant before it evaporates, and therefore evaporates at a rate similar to water initially in the

plan

beli

any

cut

Par the

ind

re:

CO

su

hi mo

co

D. ex

C

9: e;

I.

C

plant.

The analysis also suggests there is no reason to believe that the drying constant in subsequent days will be any different from the drying constant on the first day of cut, under the same environmental conditions.

All signs in equation 6.22 are of a reasonable nature. Particularly as density increases, the drying constant and the drying rate will decrease.

The relative humidity was not considered as an independent variable to estimate the drying constant k because EMC in equation 6.20 already accounts for the relative humidity. The constant k was in fact positively correlated with relative humidity. This unexpected result suggests that the EMC model predicts values too high under high relative humidities. Future research should provide more extensive data on the desorption equilibrium moisture content of alfalfa.

The equation was developed from data shown in appendix D. Given the reasonable nature of the signs, slight extrapolations should still provide reasonable results. Of course further data outside the present range will yield greater confidence in the estimations. Data were especially scarce in the lower moisture range. The model may be less accurate to predict drying for low moisture contents. Probably the best way to improve the prediction would be to break down the estimating equation into several

rand

dif

dif

est to

sin

6.4

obs

abs

lin

al

cor

Wi

le

a]

Fr

щO

FO:

ranges for moisture contents between 0 and 5.5, the observed upper limit of alfalfa moisture content. Using different values of coefficient c in equation 6.20 for the different ranges would increase the precision of the estimation. Since the main purpose of this dissertation is to model the dynamics of forage harvesting, the present single equation model was felt adequate.

6.4.3 Rain adsorption

During the field trials, a few occurences of rain were observed. The data are shown in appendix D.

No statistical analysis was done because of the limited number of observations. Conditioned alfalfa absorbed about 40% more rain than the non-conditioned alfalfa. The fraction absorbed was greater for a light rainfall than for a heavy rainfall. The change in moisture content was apparently not affected by the density or the width of the windrow. In fact, tight windrows which had a lesser area exposed to rainfall than wide swathes absorbed a higher fraction of the rain. In the end both wide and narrow windrows had a similar moisture content increase. Freshly moved alfalfa rewetted more easily than alfalfa moved in previous days. The following simple model, in FORTRAN language, is proposed:

```
IF(RAIN.LE.5.) DMR=0.25*RAIN*FCR
IF (RAIN.GT.5.) DMR=(1.25+0.03*(RAIN-5.))*FCR
IF (DMR.GT.3.) DMR=3.
IF (EXDAY.GT.0.) DMR=DMR*(2./3.)
M=M+DMR
IF (M.GT.5.5) M=5.5
```

where RAIN is actual rainfall (mm);

DMR is the increase in moisture content due to rain adsorption;

FCR is a conditioning factor for rain adsorption (1 for no conditioning, 1.4 for conditioned alfalfa);

EXDAY is the number of days alfalfa has been exposed for field curing;

and M is the actual moisture content before and after the rainfall (dec. d.b.).

The model states that for rainfall below 5 mm a greater fraction of the rain is adsorbed than for heavier rainfalls. The increase in moisture content, on a dry decimal basis, can never be greater than 3.00 for freshly mowed alfalfa. Alfalfa exposed more than one day will adsorb only two thirds of the rain adsorbed by freshly mowed alfalfa. The final moisture content of rewetted alfalfa can never exceed 5.5, the apparent physiological limit of alfalfa for holding water.

The model is admittedly approximate and would benefit from further investigation. At this time. it was felt adequate for simulation purposes.

6.4.4 Dew adsorption

Data for dew adsorption during the night is also shown in appendix D. Conditioned alfalfa generally adsorbed about 20% more dew than non-conditioned alfalfa. Tight windrows reduced dew adsorption, compared with wide swathes. More dew was picked up when the evening air was very humid. The drop of non-rain moisture in the previous day appeared as an important factor in the ability of alfalfa to pick up dew. The following model is proposed:

DMDEW=DMPV*WR*(RH-0.5)*FCD

IF (RH.LT.0.5) DMDEW=0.

where DMDEW is the increase of moisture content from dew adsorption;

DMPV is the previous day's change of non-rain moisture content (moisture at 8:00 minus moisture at 20:00, before nightly dew adsorption);

WR is the windrow width to the mower cut width ratio;

RH is the relative humidity of air at 20:00 the evening before dew start settling on the alfalfa;

and FCD is a conditioning factor for dew adsorption (FCD=1 for non-conditioned alfalfa, FCD=1.2 for conditioned alfalfa).

6.5 Additional treatments

The term XTR in equation 6.3 was meant to include any other treatment which might affect the drying constant and the drying rate of alfalfa. Of current interest are treatments like tedding, maceration and chemical spraying.

6.5.1 Tedding

Tedding has a double drying effect. It reduces the windrow density by spreading the forages and it moves the wet bottom layer closer to the top for faster drying.

Dernedde (1979) used a tedder with two different conditioning treatments: crushing and abrasion. In combination with tedding, both conditioners had similar drying performances. Without tedding, the abrasion treatment was superior to the crushing treatment. Clearly there is interaction in the sequence of machinery used. Moreover the effect of an additional treatment may be very strong during midday and could diminish as the sun radiation and air temperature decrease. Such interactions between treatments and the environment are likely. They have seldom been measured by researchers looking into new

treatments. The last term in equation 6.3 should be expanded at least to include:

Coefficients bl0 and bl1 would account for the interaction between the treatment and the drying environment.

Because of the limited information, tedding will be implemented simply as having the turning effect of raking (RK=1) during a single day and as providing a lesser density (WR=1). The drying constant in equation 6.3 will increase accordingly.

6.5.2 Maceration

Maceration shreds the alfalfa tissues and creates a highly transpiring surface. Krutz et al. (1979) have presented some data for maceration. Under favorable drying conditions, the drying rate of macerated alfalfa was initially almost double that of cutterbar mowed alfalfa. After four hours of drying, the drying rates became almost equal as the macerated alfalfa approached balable moisture (<0.25). On the average the macerator produced a drying rate 1.6 times greater than the mower alone. Under those conditions, the drying constant estimated from equation 6.22 was about 0.166 for the mower alone and 0.266 for the

macerator. Based on these limited observations, the value of b9*XTR would be 0.10 during the first four hours of drying. Generally complete drying for baling will require more than four hours. After this four hour period, maceration is likely to still show some benefit though to an unknown and probably lesser extent. The average effect of maceration for curing periods extending beyond four hours will be assumed to be half the initial effect, b9*XTR=0.05.

6.5.3 Chemical treatment

Spraying chemical solutins has been used to accelerate the drying of forage crops (Wieghart et al., 1980). The advantage of chemical spraying is very apparent initially but is largely lost as drying proceeds to balable moisture. From unpublished data, the first day increase of the drying constant due to chemical spraying appears to be in the order of b9*XTR=0.04 and in subsequent days is close to zero or even negative as the untreated material catches up with the treated one. In the simulation model, chemical spraying will be assumed to have an average continuous effect of b9*XTR=0.02.

6.6 Conclusions

The exponential decaying function is used to predict moisture content of alfalfa drying under field conditions. A single equation is used to predict moisture content at any time, or to predict the time when an alfalfa plot may be dry enough for harvest. Statistical analysis of two years of field data has shown the drying constant to be mainly a function of solar radiation, dry bulb temperature, material density and machinery treatments. A linear additive model is used to relate the drying constant to environmental and management factors. Simple models for dew and rain adsorption are also proposed.

The effect of additional treatments such as tedding, maceration or chemical spraying on the drying rate are estimated from data available in the literature. The efficiency of some mechanical or chemical treatments is probably linked to weather conditions. More research would be useful to determine the importance of such interactions.

A more precise drying model should be broken down into several moisture ranges. Presently a single equation is used to estimate drying rate over the entire moisture range of alfalfa. This is felt adequate for the present purpose of simulating forage harvesting on a daily basis. In the

future a more precise drying model could be developed by generating prediction equations for several moisture ranges.

For the present simulation model, the available historical weather data included dry bulb temperature, solar radiation and precipitation on a daily basis, but did not include relative humidity. Consequently the equilibrium moisture content could not be estimated on a daily basis. EMC was simply fixed at 0.15 for the first and fourth alfalfa cuts and at 0.10 for the second and third cuts. In the future more complete weather data should include relative humidity because of its importance in the drying model.

CHAPTER 7

THE DYNAMIC SIMULATION

Alfalfa harvest is simulated on a daily basis. Decision algorithms specify whether alfalfa may be mowed or harvested on any given day. In addition a storage policy separartes high quality from low quality alfalfa.

The present chapter describes these algorithms. Alfalfa harvest may be done in three ways: either as direct-cut alfalfa, as field-cured wilted alfalfa for haylage or as field-cured dry hay. Each is described in detail. The chapter concludes by illustrating how alfalfa harvest, corn harvest (as silage or corn grain) and feeding the cows are linked together in the dynamic simulation.

Many management defined criteria are used to make decisions. Appendix C describes how these criteria are read in as input data. This chapter describes the effects the criteria may have on the sequence of events as weather, yield and other related stochastic variables change.

7.1 The commanding subroutine: ALHARV

All alfalfa harvest operations are controlled by a subroutine called ALHARV. A flow chart in figure 7.1 illustrates the interactions between the growth simulator and the harvest operations controlled by ALHARV.

Several management parameters are required for alfalfa harvest: total area harvested, the sequence of operations which implicitly include the size of each machine and a number of decision criteria (e.g. the maturity at which alfalfa mowing may begin, the moisture content at which the crop may be harvested, whether mowing can be simultaneous or not with harvest, etc.). These management parameters are read as input and are described in appendix C.

The alfalfa growth simulator, written by Parsch (1982), predicts dry matter yield and quality of both leaves and stems on a daily basis. A 26-year series of historical weather data from East Lansing is used for growth and harvest simulation.

When alfalfa is ready for harvest, either after a specific calendar date or after alfalfa has reached a suitable maturity stage, subroutine ALHARV is called. On the first day of harvest, an initialization subroutine is called to estimate the work rates as a function of the

Figure 7.1. Interactions between the growth simulator and the alfalfa harvest.

alfalfa yield. The whole area is also divided into discrete plots. One plot is defined as the area that can be harvested in half a day of continuous field work. A half day is presently defined as a five hour period.

The choice of a half day as a harvest time increment was felt more practical and flexible than either a 1-hour time increment which is too small (farmers would not go out and harvest for only one hour) or a full day time increment which would not allow the option of doing other chores besides harvesting.

For direct cut alfalfa, only one subroutine (DCALF) is called daily. If weather conditions are suitable for field operations, two plots will usually be harvested as direct-cut alfalfa per day.

For field-cured alfalfa, three subroutines are called daily in the following sequence: HRVQ, MOWQ, HRVQ and UPDATE. Subroutine HRVQ checks whether any field-curing plot may be harvested today. It is called twice, once before MOWQ, because first priority is given to harvest over all other field operations such as mowing or raking, and again after MOWQ, in case some plots mowed in the morning could be ready to harvest before the end of the day. A moisture content criterion must be satisfied for a plot to be harvested (i.e. alfalfa must be dry enough either as hay or haylage). Not more than two plots may be harvested in a single day.

Second priority is given to mowing. If mowing can be simultaneous with harvest or if no harvest occurs today, then MOWQ estimates the number of plots that may be mowed today. Subroutine HRVQ is called again in case some plots mowed in the morning may be harvested the same day. Finally subroutine UPDATE examines all the plots that are still curing at the end of the day (i.e. mowed but not harvested). It updates the moisture content until the next morning including day time drying and rainfall or dew adsorption. It also estimates dry matter losses from environmental factors and recalculates the remaining alfalfa yield in each plot.

Once all the plots are harvested, subroutine ENDHRV will aggregate the dry matter and feeding value of the harvested alfalfa. Expected losses in storage and from feeding are already accounted for at this point. Subroutine ENDHRV will also be activated if the harvest period extends beyond 39 calendar days because of dimensional constraints in the growth model. In this case all the remaining unharvested plots are destroyed.

At the end of an alfalfa harvest, the growth simulator is set for regrowth at a date midway between the first and the last mowing dates. The next harvest will not begin until the alfalfa satisfies again the maturity criterion or a new date constraint for the subsequent harvest.

The following sections describe in greater detail the decision criteria involved with direct-cut alfalfa, field-cured alfalfa and storage policy.

7.2 Direct-cut alfalfa

Since direct-cut alfalfa involves no field-curing delays, it is much simpler than hay or haylage operations. Direct-cut harvest is simulated in subroutine DCALF.

Harvesting will proceed on a given day as long as machinery can get on the field. In the present model a single condition must be met to allow direct-cut of alfalfa: the current day's rainfall must be less than 2 mm. When this condition is satisfied, plots are harvested and put into storage immediately. Harvest losses and expected losses in storage and from feeding are all accounted for in subroutine DCALF. The final output is metric tons of dry matter, crude protein and digestibility of alfalfa available as feed.

The maximum field working time for either direct-cut or field-cured harvest is set at 10 hours in the present model, because a plot was defined as the area harvested in half a day (5 hours) and a maximum of two plots may be harvested per day. One may change the available field time by simply changing the definition of a half day: a 12-hour

day could be implemented by defining a plot as the area harvested in 6 hours. Minor changes in INHRV and in MOWQ would be required.

7.3 Field-cured alfalfa

Two important decision algorithms are discussed in this section: MOWQ and HRVQ. Each subroutine contains a number of conditional checks that will specify how many plots may be mowed or harvested in a given day. These subroutines are used to simulate the harvest of field-cured alfalfa.

7.3.1 MOWQ: How many plots can be mowed?

Subroutine MOWQ basically determines how many plots may be moved in a given day. It also initializes a matrix called HARMAT which keeps track of important characteristics (moisture content, total dry matter, leaf fraction, stem fraction, crude protein, digestibility) of each field-curing alfalfa plot.

The algorithm is illustrated in figure 7.2. In practice the area to be moved is a complex function of weather expectations, the area already moved, the stage of maturity of the crop and some management choices. In the

Figure 7.2. The basic algorithm to decide how many plots may be mowed today.

present model, the only weather variable considered is rain: if rain in the current day is greater than 2 mm, no mowing will be done. When mowing is possible, the maximum number of plots that may be harvested in a half day and in a full day are both calculated. A half day represents 5 hours of mowing time and a full day is 10 hours. (These time lengths can be changed in MOWO as explained in section 7.2.) Meanwhile the total number of plots curing cannot be greater than some management defined criterion. Thus a manager can specify that mowing should not outdistance harvest by, say, more than three days (i.e. the total mowed area should not represent more than three full days of harvesting or a maximum of 6 plots). This mowing limitation criterion is an input parameter (see Appendix c).

The maximum number of plots that may be mowed in a full day is estimated by the following FORTRAN statements:

NM10 = IFIX (10. * RTMOW/AREAPL)
MAXMOW(1) = MAX0 (1,NM10)

where NM10 is an integer number of plots mowed in ten hours (the decimal fraction is truncated by the function IFIX);

RTMOW is the mowing rate (ha/h); AREAPL is the area per plot (ha);

and MAXMOW(1) is the maximum number of plots that may be mowed in a full day. The function MAXO insures that at least one plot will be mowed.

Similar statements are used to estimate the number of plots mowed in half a day. These maximum numbers will be reduced if they result in too many plots left curing in the field.

A full day of mowing will occur in two cases: when mowing can be simultaneous with harvest or when no plots are harvested today. Mowing will be limited to a half day when it cannot be simultaneous with harvest and when one plot is being harvested today. No mowing will be done if the whole day is spent harvesting two plots and mowing cannot be simultaneous with harvest.

7.3.2 HRVQ: How many plots may be harvested?

For field-cured alfalfa, harvesting has the restricted meaning of either baling or chopping material after it has reached an adequate moisture content. Harvesting has a higher priority than mowing: if field curing plots are dry enough, they will be harvested before additional alfalfa is mowed.

Figure 7.3 shows the basic algorithm that determines how many plots will be harvested in a given day. Of course when no plots are curing, no harvest is possible. If a curing plot is dry enough by 4pm, then it may be harvested. For a second plot to be harvested, one of the plots must be

Figure 7.3. Basic algorithm to decide how many plots will be harvested today (NHTDAY).

ready for harvest before 10am since the harvest crew would be working at least 10 hours continuously. The maximum number of plots that may be harvested in a day is two.

7.3.3 Other field-curing operations

Besides mowing or mowing-conditioning, a few other field-curing operations are sometimes required: extra conditioning after mowing, tedding, raking or treatment after rainfall. Appendic C explains in greater detail how these other field-curing operations may be included in the harvesting sequence.

These additional field-curing operations are optional and may be omitted. When extra conditioning after mowing is specified (e.g. tedding), it is assumed to be applied immediately after mowing. When raking is specified, its main purpose is to bring a wide swath into a narrow windrow. Such raking treatments are assumed to be applied early in the morning on the day a plot is harvested. Raking or tedding may also be used to disturb a plot that has been rained on. In such a case, the treatment is applied once, immediately after rainfall.

7.4 Storage policy

From a nutritional point of view, it is important to separate high quality from low quality forages. The high quality material is fed to lactating cows whereas the lower quality feed is given to the dry cows and heifers.

A storage allocation algorithm was written to separate alfalfa plots of different quality into different storage areas. Five storage locations are defined as: high quality wet alfalfa, low quality wet alfalfa, high quality dry alfalfa, low quality dry alfalfa and destroyed alfalfa plots because of overexposure. In the last location, alfalfa plots are destroyed after they have been curing beyond a "critical number of days". This criterion is a manager defined input. It is set at 14 days in most simulations.

Another criterion, "critical crude protein", is used to separate high from low quality alfalfa. When the average crude protein within an alfalfa plot goes below the criterion, the plot is stored in the lower quality location.

Wet alfalfa includes both direct-cut alfalfa silage and field-cured haylage. One or two silos of fixed capacity may be specified for wet alfalfa storage. The

first silo is for high quality forages, the second is for lower quality forages. When the first silo is filled, all the remaining alfalfa is forced into the second silo no matter what the quality is. If a very high "critical crude protein" criterion is used, it is possible that the second silo will be filled before the first one. In such a case, the remaining alfalfa is forced into the first silo. When both silos are filled, all the remaining alfalfa must be harvested as dry hay since no emergency wet alfalfa storage is allowed.

Dry hay is also separated into two storage locations, a high quality one and a low quality one. An initial storage capacity is specified. But extra emergency space is always available to store dry hay at some marginal cost (\$/ton-DM/yr). Storage space is not a constraint for hay but it is for wet alfalfa.

At the end of each simulation year, the total dry matter available as feed, the average crude protein and the average digestibility are estimated at each of the four useful storage locations: high quality wet alfalfa, low quality wet alfalfa, high quality dry alfalfa and low quality dry alfalfa. The standard deviations for crude protein and digestibility are also estimated from all the single plots that are accumulated in each storage location.

Total storage and feeding losses are estimated from coefficients presented in chapter 5. The resource requirements for feeding, namely labor and energy, are estimated from coefficients presented in table 7.1. The resource requirements are given per unit of forage wet matter.

Table 7.1. Labor and energy requirements for feeding (from Kjelgaard, 1979).

Fuel (L/tWM)
0.00 0.50 1.50 0.50 1.50 0.15

7.5 Linking all the subsystems

The dynamic simulation model estimates the performance of a forage system for a whole year. Alfalfa growth and harvest are simulated daily. Corn planting and harvest are simulated by 10-day periods. At the end of the year, all the feed harvested is allocated to a dairy herd. Excess forages are sold on the market and supplemental feeds are purchased. The yearly profit is total income from milk and

excess forages sold on the market minus the total cost for machinery, storage structures, labor, energy and supplemental feeds. The yearly simulation is repeated generally 26 times using 26 years of historical weather data. These 26 samples of yearly profit provide the data to estimate the standard deviation and the frequency curve of yearly profits.

The program begins by reading some user defined inputs. The machinery information and the alfalfa information input files are documented in appendices B and C of the present dissertation. The alfalfa growth, corn crop and weather data files are documented in Parsch (1982). The program then calls FORHRV to set up a machinery operation matrix. This matrix contains harvest rates, fuel and labor consumptions for all field operations over a wide range of yields. These calculated rates will be used throughout the simulation at the beginning of each new alfalfa harvest.

At the beginning of each year, an initialization subroutine (YRINIT) is called to set all the aggregation variables to 0. Each day alfalfa growth is simulated by ALSIM. When alfalfa is ready for harvest, ALHARV is called. At the end of each harvest, the alfalfa crop is aggregated into various storage locations (subroutine ENDHRV). At the end of each year, corn silage and corn grain harvests are simulated per 10-day intervals in

subroutine CRNHRV (Parsch, 1982). All the feed is then allocated for feeding dairy cows and the amounts of purchased supplements are estimated (subroutine COWFD). Finally the yearly profit is estimated. The yearly simulation can be repeated for several years (usually 26) to gain information about the distribution of the annual net return.

CHAPTER 8

COST ESTIMATES

The objective function for evaluating forage systems was presented in chapter 3. It is reproduced here for convenience.

$$PR = I(1) + I(2) - C(1) - C(2) - C(3)$$
 (8.1)

where PR is the total yearly profit;

I(1) is income from milk production;

I(2) is income from the sale of excess forages;

C(1) is the annual cost of labor, energy, repair and maintenance for harvest, storage and feeding;

C(2) is the cost of purchased supplemental feeds;

and C(3) is the annualized cost of fixed assets (machinery, silos, land).

The income from milk production I(1) and from the sale of excess forages I(2) and the cost of supplemental feeds C(2) are three interdependent terms. Their estimation is dealt with simultaneously in section 8.1. The annualized cost of fixed assets is discussed in section 8.2. Finally parameters for the estimation of variable costs are

presented in section 8.3.

8.1 Balancing the dairy ration

The simulation model allows for alfalfa to be stored in up to four distinct locations: in a first silo (usually as high quality wet alfalfa), in a second silo (usually as lower quality wet alfalfa), as high quality dry hay and as low quality dry hay. The storage policy is presented in section 7.4.

A dairy ration formulation model was written to allocate in some optimal way all the harvested feeds to the animals. The model is based largely on information published by the NRC (1978).

A brief review of the literature in section 5.4 showed that intake of wet alfalfa was slightly less than intake of dry alfalfa. Since haylage generally has a higher quality than hay, the reduced intake can offset the quality advantage. To simplify things, the crude protein and the digestibility of wet alfalfa are reduced by 5% to account for the lesser intake compared with dry alfalfa hay.

The four alfalfa storage locations are ranked according to crude protein. A fifth alfalfa source included in the analysis is purchased alfalfa hay in case the farm does not produce enough roughage in a bad year.

The

di al

NF

a -

¥

•

The crude protein and the digestibility will vary from year to year depending on weather and other factors. The digestibility is converted into net energy of lactation of alfalfa by the following linear relationship (from data in NRC, 1978).

$$NEL = 1.15 + (TDN - 0.52) * 2.5$$
 (8.2)

where NEL is net energy of lactation in alfalfa (Mcal/kg); and TDN is the total digestible nutrients (dec).

Equation 8.2 is used for values of TDN between 0.52 and 0.74. The NRC (1978) does not indicate any alfalfa samples with a digestibility outside this range. When TDN is below 0.52, NEL will be assumed constant and equal to 1.15. When TDN is above 0.74, NEL will be assumed equal to 1.70.

All the alfalfa, corn silage and high-moisture corn harvested on the farm are fed at such a rate that all will be depleted at the same time. The proportion of each in the ration is estimated as follows:

$$TDM = TALF + TCS + THMC$$
 (8.3)

$$FR(1) = TALF/TDM$$
 (8.4)

$$FR(2) = TCS/TDM$$
 (8.5)

$$FR(3) = THMC/TDM$$
 (8.6)

where TDM is the total dry matter of roughages and high-moisture corn harvested on the farm in a given year (t-DM); TALF is the total alfalfa harvested (t-DM);
TCS is the total corn silage harvested (t-DM);
THMC is the total high-moisture corn harvested (t-DM);
FR(1) is the initial fraction of alfalfa in the ration;
FR(2) is the initial fraction of corn silage in the ration;
and FR(3) is the initial fraction of high-moisture corn in the ration.

Initially the ration is assumed to be composed only of farm grown crops in proportions estimated by equations 8.4, 8.5 and 8.6. The average crude protein and the average net energy of lactation are calculated for the five feed mixes, i.e. the five alfalfa sources with corn silage and high-moisture corn. No qualtiy variation is assumed in the corn crop.

These five feed sources are balanced with six groups of dairy animals defined as follows:

- High yield lactating cows (35 kg of milk per day or 23500 lb per year);
- 2. Medium yield lactating cows (30 kg of milk per day or 20100 lb per year);
- 3. Medium-low yield lactating cows (25 kg of milk per day or 16800 lb per year);
- 4. Low yield lactating cows (20 kg of milk per day or 13400 lb per year);
- 5. Dry cows;

6. Heifers.

The feed requirements for each type of cow are shown in table 8.1. The requirements are based on 650 kg cows producing milk with 3.5% fat. Heifers are assumed to weigh an average of 300 kg. Rations are balanced by insuring that the minimum concentration of NEL (net energy of lactation) and CP (crude protein) are met. Initially only farm grown feeds are assumed in the ration in proportions given by equations 8.4, 8.5 and 8.6. If the minimum required level of NEL is not satisfied, corn grain is added until the requirement is met. If the minimum level of CP is not satisfied, soybean meal is added until the requirement is met.

The total number of lactating cows and the herd composition (i.e. what proportion of animals are in each of the six groups defined previously) are input parameters.

Appendix C explains how they are read into the model.

The total number of cows in the herd allows estimation of the total yearly intake (tons DM) for each cow group. Starting with the high yield lactating cows and the highest quality alfalfa feed mix, the farm grown crops are fed to the cows until their group requirement is met.

Total purchased feeds (soybean meal, corn grain) and unused farm grown crops (alfalfa, corn silage, high-moisture corn, corn grain) are given a buying or

se mi

ob

Mi pr le (k

Dr He

8.

fo

th It

an

ti

selling market value. By including the value of the total milk production, an estimate of the net return can be obtained.

Table 8.1. Daily feed requirements for six types of dairy cows (from NRC, 1978).

Milk	Max. intake		Daily need		Min. concentr.	
production	% Body	kg-DM	NEL	CP	NEL	CP
level (kg/day)	weight		(Mcal)	(kg)	(Mcal/kg)	(kg/kg)
35.	3.2	20.80	34.45	3.385	1.656	0.163
30.	3.0	19.50	31.00	2.975	1.590	0.153
25.	2.8	18.19	27.55	2.565	1.514	0.141
20.	2.6	16.90	24.10	2.155	1.426	0.128
Dry cows			13.39	0.984	1.35	0.11
Heifers			7.25	0.746	1.35	0.12

8.2 Fixed costs

Two important types of durable assests are involved in forage systems: machinery and storage structures. Some of these assets may have a useful life of ten to thirty years. It is necessary to convert their initial cost into an annualized cost to estimate yearly profits in equation 8.1.

The annual cost of durable assets that depreciate with time can be estimated by the capital recovery formula.

ANC =
$$\left[\frac{\text{IC} - \left(\frac{\text{SV}}{(1+i)^n} \right)}{\left(\frac{1+i}{(1+i)^n} - 1 \right)} \right]$$
 (8.7)

wh

an

re

(1

di

fo

sa

ma

8.

and

pe: tra

amo

USe

gen

where ANC is the annualized cost of durable, depreciable assets;

IC is the initial cost;

SV is the salvage value at the end of the accounting life:

i is the interest rate;

and n is the accounting life (years).

In the present model the effects of income tax and differential inflation rates are not considered. The reader is referred to Bartholemew (1981) and Rotz et al. (1981) for more discussion on the topic of cost estimation.

The accounting life will generally be set at 10 years for machinery and 30 years for storage structures. The salvage value is set at 10% of the initial cost for machinery and at 0 for storage structures.

8.3 Variable costs

Variable costs include labor and energy for harvest and feeding, and repair and maintenance of machinery.

Harvest labor is estimated by assuming one operator per tractor. Total labor requirement is the sum of all the tractor use. Feeding labor is proportional to the total amount of forages to be fed. Coefficients in table 7.1 are used to estimate the total feeding labor. Labor cost is generally set at \$5.00 per hour.

Energy use for field machinery are estimated in model FORHRV according to equations presented in section 4.4. All energy requirements are converted into liters of diesel fuel. Energy for feeding is estimated from coefficients in table 7.1. The cost of fuel is generally set at \$0.31 per liter.

Repair and maintenace costs of machinery are proportional to use. A simple model is used.

$$RM = IC * COEFRM * USE$$
 (8.8)

Hunt (1973) has presented some values of COEFRM for various farm machinery. A selected number of coefficients is presented in table 8.2.

Table 8.2. Repair and maintenance cost coefficients (from Hunt, 1973).

Machines	COEFRM (h ⁻¹)
Tractor	0.00012
Mower	0.00120
Rake, tedder	0.00070
Forage harvester	0.00029
Wagon	0.00018
Blower	0.00025

8.4 Economic parameters used in the model

The choice of values for economic parameters such as prices, discounting rates and depreciation life is very important because it might influence the comparison of various systems. These parameters are often uncertain and can be the object of considerable economic analysis.

The main focus of the dissertation is to compare forage systems technologies and management strategies. It is not to carry out extensive analysis of price levels, various discount rates or depreciation lives. The economic parameters used in the analysis are generally fixed. For the record, the values chosen are presented below. The machinery prices are fully described in appendix A. They are average prices based on the list prices available in fall 1981. The following subsections deal with the cost of storage structures, the price of feed and discounting rates.

8.4.1 Storage structures

The initial cost of storage structures is estimated from quotes of local manufacturers (spring 1982).

Prediction equations are developed alternately for the cost

of

ha

8.

si

es un

al

Si (d x

tr

Lo si

eq

th

ca

of vertical concrete silos and for the cost of clear span hay barns.

8.4.1.1 The cost of vertical silos

Table 8.3 shows the prices of six vertical concrete silos of various sizes. Dry matter capacities were estimated from the Midwest Plan Service (1980). Since unloaders are a necessary part of a silo, their cost is also included in the overall silo cost.

Table 8.3. Prices of vertical concrete silos.

(quoted from Tristate Silo Inc., Eaton Rapid, MI)

Silo (dia x he	ame	ter	Storage capacity (tDM)	Silo cost (\$)	Unloader cost (\$)	Total cost (\$)	Cost per unit storage (\$/tDM)
20'	x	50'	111.	14300.	6300.	20600.	186.
20'	X	80'	214.	22700.	6300.	29000.	136.
24'	X	60'	207.	21700.	8500.	30200.	146.
24'	X	80'	308.	28300.	8500.	36800.	119.
30'	X	60'	325.	28800.	9300.	38100.	117.
30'	X	80'	480.	36700.	9300.	46000.	96.

When costs are estimated on a per ton basis, a clear trend appears between cost and capacity. McIsaac and Lovering (1980) have actually proposed an equation relating silo cost to volume under Canadian conditions. Their equation predicts current Michigan prices closely for capacities below 300 tons DM. Above this capacity however, the equation generates unreasonably high prices.

The actual silo prices are plotted on figure 8.1 versus dry matter capacity. The slope is high for low capacities and decreases as the capacity increases. For very low capacities, the marginal cost is about \$200./t-DM. The slope becomes apparently constant above 300 t-DM where the marginal cost becomes \$50./t-DM. The total cost of a 300 t-DM silo is \$37000. Assuming that a zero ton silo will cost nothing, there are now four boundary conditions that can be used to fit a cubic equation. The initial cost of a silo smaller than 300 t-DM is predicted as

$$SC = 200. * CAP - 0.2667 * CAP^2 + 0.00003704 * CAP^3$$
 (8.9)

For silo capacities above 300 tons DM, the initial cost is predicted as

$$SC = 37000. + 50. * (CAP - 300.)$$
 (8.10)

Figure 8.1. The initial cost of vertical concrete silos versus silage capacity.

Figure 8.2. The initial cost of clear span barns for the storage of hay versus storage capacity.

8.4.1.2 The cost of hay barns

Table 8.4 shows prices and sizes of clear span buildings that may be used for the storage of dry hay. The storage capacity is estimated by substracting 12' from the width for moving in the building, by substracting 1' from the height for clearance and by assuming a hay density of 157 kg/m^3 . As with silos, a trend exists between cost and capacity.

Table 8.4. Prices of clear span buildings (quoted from Detroit Steel, Charlevoix, MI and from Lane Clear Span Building, Adrian, MI).

Building size (width x length x height)			ze	Useful capacity (t-DM)	Cost (\$)	Cost per unit storage (\$/t-DM)	
40'	x	42'	x	12'	58.	4290.	74.
50'	X	98'	X	12'	182.	6995.	38.
60'	X	98'	X	14'	272.	8590.	32.
40'	X	40'	X	14'	65.	3777.	58.
40'	X	48'	X	14'	78.	4495.	58.
40'	X	60'	X	14'	97.	4888.	50.
40'	X	72'	X	14'	117.	5795.	50.
48'	X	78'	X	14'	150.	6495.	43.

The actual barn prices are plotted on figure 8.2 versus storage capacity. For low capacities, the marginal cost is about \$75. per ton of dry matter. For capacities above 150 tons DM, the slope becomes practically constant at \$20./t-DM. The total cost of a 150 ton barn is \$6200.

Assuming that zero capacity will cost nothing, the four boundary conditions are used to fit a cubic equation. For capacities below 150 tons DM, the initial cost of a hay barn is predicted as

BC = 75. * CAP - 0.30667 *
$$CAP^2$$

+ 0.000548 * CAP^3 (8.11)

For barn capacities above 150 tons DM, the initial cost is predicted as

$$BC = 6200. + 20. * (CAP - 150.)$$
 (8.12)

8.4.2 Prices of feed

Table 8.5 shows the prices used for the purchase of supplemental feeds and for the sale of excess forages. Prices are based on recent prices published by Nott et al. (1981) and by the Michigan Agricultural Reporting Service. To convert U.S. units into metric tons of dry matter, moisture contents of 20% and 15% on a wet basis are assumed for alfalfa hay and corn grain respectively.

Table 8.5. Prices of inputs and outputs used in the ration formulation model.

Item	Price (U.S. units)	Price (metric units) (\$/t-DM)
Milk	\$13./cwt	286.
Soybean meal	\$225./ton	248.
Buying alfalfa hay	\$60./ton	83.
Selling alfalfa hay	\$50./ton	69.
Buying corn grain	\$3.00/bu	139.
Selling high-moisture		90.
Selling corn silage		70.

Market prices are usually not published for high-moisture corn and corn silage. High-moisture corn has practically the same feeding value as dry corn. However it has a very short life once it is taken out of storage so its marketing is difficult. Corn silage has a lower nutritional value than corn grain and spoils rapidly after it is taken out of storage. Selling prices are set arbitrarily at about 35% below the purchase price of equivalent feeds because of the short preservation period once these fermented feeds are taken out of storage.

8.4.3 Interest rates

Interest or discounting rates are required to estimate the annualized cost of durable assets such as machinery or storage structures. Table 8.6 shows the discount rates and

accounting lives that are generally assumed in the analysis.

Table 8.6. Discount rates and accounting life to estimate yearly cost of durable assets.

Item	Discount rate	Accounting life (years)
Machinery	0.15	10.
Storage structures	0.13	30.

The discount rates in table 8.6 are actually nominal rates because they include the effect of inflation. Real interest rates are closer to 0.04. When comparing alternatives of different capital cost, it may be more appropriate to use real rates. The real and nominal rates will be used alternately to compare hay and haylage systems in chapter 9. In general, nominal rates from table 8.6 will be used.

CHAPTER 9

SIMULATION RESULTS

The models described in the previous chapters along with those described by Parsch (1982) are linked together to simulate forage harvest, storage and feeding. The simulation model is used to test how various management or technological changes might affect the forage system's performance.

Simulation results in this chapter are based on 26 years (1953-1978) of historical weather data from East Lansing, Michigan. Results are generally shown as an average of 26 samples. The results may not be wholly applicable to other geographical locations because of different climatic patterns. similar climate. The forage model could actually be used with weather data from other locations. In this sense, the model still has largely unexplored capabilities to analyze forage systems under a wide variety of climates.

9.1 Crop management decisions

Two major crop management decisions are considered in the following discussion: the alfalfa maturity stage at which mowing should start and the value of a fourth alfalfa cut in late fall.

9.1.1 Maturity at the time of mowing

The alfalfa growth model does not directly predict maturity, but does predict the crude protein of the whole plant. Crude protein is set at a maximum value of 0.231 as long as the ratio of leaves to stems is greater than one (in the early vegetative stage). As the plant matures, the ratio of leaves to stems decreases and so does the crude protein concentration.

The dates on which alfalfa mowing may start are defined in the array BGNCUT(NTHCUT). The number of cuts per year is usually set at 3 or 4; NTHCUT identifies the specific cut (1 to 4). Subroutine ALHARV can interpret BGNCUT (NTHCUT) as the first day to check for alfalfa maturity rather than the first mowing day. Crude protein is used as a measure of plant maturity. When a "mowing

crude protein criterion" (appendix C) is specified in the range 0.15 to 0.23, it is compared daily with the standing crop crude protein. If the plant's crude protein is greater than the criterion, the plant is considered immature and mowing is postponed. To prevent overlap with the subsequent mowing dates, postponement is limited to 10 days. Ten days after BGNCUT(NTHCUT), mowing is forced to start even if the crude protein is above the criterion level.

Table 9.1 shows the date ranges within which mowing will start for the harvest of alfalfa at three maturity levels. The three maturity levels are identified by the crude protein concentration below which mowing may start: 0.230, 0.200 and 0.170.

Table 9.1. Date ranges of the first mowing day for harvesting alfalfa at three maturity levels under a three cut system. Dates are shown in Julian days.

CP at	Harvest l		Harvest 2		Harvest	3	
mowing	Earliest	Latest	Earliest	Latest	Earliest	Latest	
.230	136	145	181	190	226	235	
.200	146	155	201	210	256	265	
. 170	156	165	221	230	286	295	

The date ranges were chosen after testing the growth model over 26 years of weather data and observing when each harvest would most likely reach the specified crude protein. Since growth usually starts on day 91 (April 1), the time intervals between cuts are seen to be about 45

days, 55 days and 65 days for each maturity level. The objective of such a comparison is to measure whether the additional growth and yield of more mature crops can compensate the quality loss.

Table 9.2 illustrates the wide year-to-year variation in the date at which alfalfa reaches the same maturity. For example, the first harvest of early maturity alfalfa (CP=0.23) began at the earliest date (May 16 or day 136) in six years, began at the latest date (May 25 or day 145) in eight years and started between these two dates in 12 years out of 26.

Table 9.2. Number of years out of 26 when mowing started at the limiting date.

CP at	Harvest 1		Harvest 2		Harvest	3	
mowing	Earliest	Latest	Earliest	Latest	Earliest	Latest	
.230	6	8	4	10	1	16	
.200	13	2	6	14	. 8	13	
.170	9	5	4	18	4	15	

Table 9.3 shows the potential alfalfa yield that was available on the earliest mowing date. Mowing could be postponed up to 10 days after this earliest date if alfalfa was still immature (i.e. the crude protein was still very high). In most cases mowing started later than the earliest date and the actual yield was higher than the potential yield in table 9.3. As expected, the later growth system (CP=0.170) had the greatest potential yield.

Table 9.3. Potential alfalfa yield (tDM/ha) and crude protein at the earliest mowing date.

CP at	Harve	st 1	Harve	st 2	Harve	st 3	Tot	al
mowing	DM	CP	DM	CP	DM	CP	DM	CP
.230	3.42	.23	3.36	.23	2.56	.23	9.35	.23
.200	4.56	.21	4.25	.22	2.36	.21	11.17	.21
.170	5.52	.18	4.02	.21	2.27	.20	11.81	.19

Table 9.4 shows actual harvested alfalfa available as feed after accounting for harvest, storage and feeding losses. The total average crude protein decreases steadily as alfalfa is harvested at a more mature stage. Surprisingly the total harvested feed does not increase steadily with maturity. It is maximum for an intermediate maturity (CP=0.20). Although the more mature alfalfa had the greatest potential yield, it incurred greater harvest losses probably due to the fact that the last harvest was in late October, early November during more adverse weather conditions.

Table 9.4 Harvested alfalfa (tDM/ha) available as feed after accounting for harvest, storage and feeding losses.

CP at	Harvest 1	Harvest 2	Harvest 3	Total
mowing	DM CP	DM .CP	DM CP	DM CP
.230	3.43 .177	3.24 .186	2.00 .182	8.67 .180
.200	4.01 .157	3.39 .172	1.65 .152	9.05 .160
.170	4.68 .144	2.85 .159	1.25 .140	8.77 .146

Tables 9.5 and 9.6 show how the harvested alfalfa would be used by a herd of 128 lactating cows producing either 20 or 35 kg of milk per cow per day. The low milk producing herd consumed mostly alfalfa and little corn or soybean meal. Some extra alfalfa had to be bought for the low milking herd. The high milk producing herd required more energy in its ration and consumed a large quantity of corn and also some soybean meal. Consequently some alfalfa was left over and sold as excess forage. Tables 9.5 and 9.6 point out the higher energy need of high production cows compared with low production cows. In the present simulation, only alfalfa is farm grown and all the corn is purchased. With high milk production, it would probably be desirable to reduce the area grown as alfalfa and increase the area grown as corn.

Table 9.5. Feed utilization (tDM/yr) on an 80 ha farm with 128 low yield lactating cows (20 kg milk/cow/day) when alfalfa is harvested at three maturity levels.

CP at mowing	Alfalfa produced	Alfalfa sold	Soy meal purchased	Corn grain purchased
.230	693.79	-173.24	1.63	123.61
.200	723.87	-100.42	1.86	166.12
.170	701.81	-54.31	5.29	230.86

Table 9.6. Feed utilization (tDM/yr) on an 80 ha farm with 128 high yield lactating cows (35 kg milk/cow/day) when alfalfa is harvested at three maturity levels.

CP at mowing	Alfalfa produced	Alfalfa sold	Soy meal purchased	Corn grain purchased
.230	693.79	67.54	67.93	482.43
.200	723.87	171.28	94.65	527.36
.170	701.81	214.36	112.82	574.34

Table 9.7 shows the non feed costs, i.e. mainly the machinery, storage, labor and energy costs. The fuel, repair and maintenance (RM) and labor costs are proportional to the potential yield and increase with maturity. The storage cost is usually constant except when the hay storage structure is filled and emergency hay storage is required (assumed at \$10. per ton DM per year). The greatest amount of feed was harvested under the intermediate maaturity (CP=0.200) and explains the higher storage cost.

Table 9.7. Comparing non-feed production costs (\$/yr) for harvesting alfalfa at three maturity levels on an 80 ha alfalfa farm.

CP at Mach. Storage Fuel RM Labor Fert. Total mowing

- .230 26545. 11155. 2421. 4302. 5917. 15508. 65849.
- .200 26545. 2549. 4500. 11399. 6154. 15508. 66655. .170 26545. 11321. 2584. 4587. 6159. 15508. 66705.

Tables 9.8 and 9.9 illustrate the average net return from harvesting alfalfa at three maturity levels and at two milk production levels. With either low yield milking cows or high yield milking cows, the greatest return is obtained when alfalfa is harvested at the least mature stage (CP=0.230). The benefit of harvesting early is more noticeable with high yield milking cows that use more efficiently high quality feed.

Table 9.8. Economic comparison (\$/yr) of alfalfa harvest at three maturity levels on an 80 ha farm with 128 lactating cows (20 kg milk/cow/day).

CP at mowing	Non-feed costs	Net feed costs	Milk returns	Net returns
.230	65849.	31966.	267238.	169423.
.200	66655.	31986.	267238.	168597.
.170	66705.	38220.	267238.	162313.

Table 9.9. Economic comparison (\$/yr) of alfalfa harvest at three maturity levels on an 80 ha farm with 128 lactating cows (35 kg milk/cow/day).

CP at mowing	Non-feed costs	Net feed costs	Milk returns	Net returns
.230	65849.	78840.	467667.	322978.
.200	66655.	84974.	467667.	316038.
.170	66705.	93021.	467667.	307941.

The cumulative probability curves of net yearly return are plotted in figures 9.1 and 9.2 from the 26 samples of yearly simulation. For low yield cows the expected net return is largest when alfalfa is harvested early (CP=0.230). However, in a number of years, the greater

Figure 9.1. The cumulative probability of net return per ha for mowing at three maturity levels, identified by the alfalfa crude protein on the first mowing day, with low milk producing cows (20 kg/day/cow).

Figure 9.2. The cumulative probability of net return per ha for mowing at three maturity levels, identified by the alfalfa crude protein on the first mowing day, with high milk producing cows (35 kg/day/cow).

yield provided by harvesting later (CP=0.200) would compensate the quality loss. Indeed a profit may sometimes be made by substituting quantity for quality with a low yield milking herd that does not require a very high quality feed.

In the case of a high milk producing herd, the advantage of harvesting early is unambiguous (figure 9.2). In general alfalfa harvest should begin early, when the crude protein is between 20 and 23%, to provide the highest quality feed.

9.1.2 Three versus four alfalfa harvests

In the preceding section it was observed that alfalfa should be harvested as early as possible to get a high quality feed and a maximum net return to the farm. Under an early harvest system the third cut will start between Julian days 226 and 235 (August 14 and August 23). A fair amount of regrowth is usually expected between the end of the third cut and late October. A comparison was made between the 3-cut early harvest system (CP=0.230) described in the previous section and a 4-cut early harvest system. The fourth cut is scheduled to start between Julian days 286 and 295 (October 13 and October 22).

Table 9.10 shows the production (non-feed) costs to harvest 3 or 4 cuts of alfalfa per year. The extra fuel, repair and labor costs to harvest a fourth cut represent \$2547. or \$31.84 per ha. An additional storage cost of \$1061. was also required since the storage structures were already filled after three cuts. The fourth cut was harvested as hay and stored at a temporary storage cost of \$10. per tDM per year. In all it costs about \$45./ha to harvest and store the fourth cut.

Table 9.10. Production costs (\$/yr) of a 3-cut alfalfa system and of a 4-cut alfalfa system over 80 ha.

System Mach. Storage Fuel RM Labor Fert. Total 3 cuts 26545. 11155. 2421. 4302. 5917. 15508. 65840. 4 cuts 26545. 12216. 2998. 5201. 6988. 15508. 69456.

The average feed available from a 3-cut early harvest system is 8.67 tDM/ha with a crude protein of 0.180. The average feed available from a fourth cut harvested as hay after October 13 is 1.32 tDM/ha with a crude protein of 0.141. Hence the yearly total harvested feed under the 4-cut system is 9.99 tDM/ha with an average crude protein of 0.175.

Table 9.11 compares the net returns of a 3-cut and a 4-cut system at four milk production levels. In all cases the 4-cut system yields a larger net return. The difference is greatest for low milk producing levels since

the fourth alfalfa cut will actually be used in the ration and reduce the purchase of alfalfa hay at \$83. per tDM. In the case of a high milk production level the extra alfalfa harvested will not be fed to the herd due to its low quality (CP=0.141) but it will be sold as excess forages at \$69. per tDM. In both cases the expected harvested feed (1.32 tDM/ha) and the reduced expense or the increased income cover the additional production cost (\$45./ha).

Table 9.11. Economic comparison (\$/yr) of a 3-cut and of a 4-cut alfalfa system over 80 ha at four milk production levels.

Milk level kg/day	Number of cuts	Non-feed costs	Net feed costs	Milk returns	Net returns	Diff.
20.	3 4	65849. 69456.	31965. 21464.	267238. 267238.	169424. 176318.	6894.
25.	3 4	65849. 69456.	43795. 33573.	334048. 334048.	224404. 231019.	6615.
30.	3 4	65849. 69456.	59046. 49816.	400858. 400858.	275963. 281586.	5623.
35.	3 4	65849. 69456.	78840. 70488.	467667. 467667.	322978. 327723.	4745.

Figures 9.3 and 9.4 illustrate how the net return from a 4-cut system is generally superior, or said to be stochasticly dominant, over a 3-cut system with either a low milk producing or high milk producing herd.

By comparing the net return on a year by year basis for 26 years, there were actually 2 or 3 years when the 3-cut system would have been more profitable. Table 9.12

Figure 9.3. The cumulative probability of net return per ha for a 3-cut and for a 4-cut alfalfa harvest systems with low milk producing cows (20 kg/day/cow).

Figure 9.4. The cumulative probability of net return per ha for a 3-cut and for a 4-cut alfalfa harvest systems with high milk producing cows (35 kg/day/cow).

shows the yields in three years when the fourth cut was not profitable. Figures 9.5 and 9.6 illustrate the cumulative probability of the difference of net returns between a 4-cut and a 3-cut system. In one year out of ten, the 3-cut system would appear more profitable. But the level of increased profits in the other nine years out of ten amply justify the 4-cut system.

Table 9.12. Potential yield and actual harvest of the fourth alfalfa cut in specific years when the fourth cut was not profitable.

Year	Potential yield (tDM/ha)	Harvested feed (tDM/ha)	Net return (\$/ha)
1957	2.92	0.50	2.21
1962	1.62	0.15	-3.45
1976	2.12	0.00	-20.14

A farmer may wish to avoid these losses by defining a minimum yield below which he will not harvest the fourth Since the harvest and storage costs were estimated at \$45./ha, the farmer would on the average hope to harvest at least 0.65 tDM/ha valued at \$69./tDM. The average potential yield of the fourth cut for a 26-year period was 2.44 tDM/ha. Since the average harvested alfalfa available as feed was 1.32 tDM/ha, the average dry matter loss was 46%. On the basis of average values, a farmer should not harvest a fourth cut unless the potential yield is at least In fact the potential yield was always 1.21 tDM/ha. greater than this minimum value throughout 26 years of

Figure 9.5. The cumulative probability of the difference in net returns in favor of a 4-cut system versus a 3-cut system with low yield cows (20 kg/day/cow).

Figure 9.6. The cumulative probability of the difference in net returns in favor of a 4-cut system versus a 3-cut system with high yield cows (35 kg/day/cow).

simulation. The two or three years out of 26 when a fourth cut was unprofitable were not due to low yield but rather to exceptionally bad weather conditions during harvest.

In the simulation example, the fourth alfalfa cut was harvested as hay and additional temporary storage had to be provided. If unused fixed storage space is available at the time of the fourth cutting, then no additional storage cost would be incurred. Moreover, if the fourth cut can be harvested as haylage instead of hay, less losses are likely to occur. If other crops must also be harvested in the fall, the profitability of the fourth alfalfa cut may become questionable because of possible time conflicts. A fourth alfalfa cutting is generally profitable although there is about a 10% chance of a negative return in exceptionally bad years as long as there is no time conflict with the harvest of other crops.

9.2 The rate of harvest and forage value

The value of a crop is often affected by the harvest rate. In the case of cash crops such as grains, an extended harvest period usually increases dry matter losses and reduces the overall quality. The decrease in the crop value is called timeliness cost.

Alfalfa does not fit well into this simple definition of timeliness cost. Indeed the total alfalfa yield increases almost continuously so that a slower harvest rate will actually produce a greater yield. However quality will decrease. There may sometimes be a tradeoff between quality and quantity as was shown in section 9.1.1. Alfalfa is also different from other crops because of its regrowth mechanisms within the same year. The rate of harvest will affect the yield and quality of subsequent harvests.

A fixed machinery set (medium size chopper and round baler, about 75% haylage and 25% hay) was analyzed over a range of areas. If a timeliness cost is associated with alfalfa harvest, it should appear in the form of higher feed costs per cow or per unit area as more time is used to complete the harvest. The size of the storage structures and the number of cows are scaled to the area. Fixed storage capacity is set as 7.5 tDM/ha for silos and as 2.5 tDM/ha for a hay barn. Extra storage is available for hay at a marginal cost of \$10. per tDM per year. The ratio between cows and area is set as 1.6 lactating cows per hectare.

Table 9.13 shows the potential yield at the earliest mowing dates and the actual harvested feed. All the beginning harvest dates were the same for all areas. The

potential yield is greatest for low areas because the crop was harvested quickly and more time was available for regrowth. The actual harvest is also greatest for small areas. The differences in actual harvest are smaller than the differences in potential yield. Indeed over large areas the alfalfa continued to grow for a longer time because the harvest was extended over a longer period.

Table 9.13. Potential alfalfa yield and actual harvest (tDM/ha) from a 4-cut system using the same machinery complement (chopper-round baler) over a wide range of areas.

Area (ha)	Potential yield	Potential CP	Actual harvest	Actual CP
20	13.76	.21	10.25	.181
40	13.04	.21	10.15	.178
60	12.42	.22	10.04	.177
80	11.79	.22	10.00	.175
100	11.19	.22	9.95	.174
120	10.59	.22	9.93	.172

Table 9.14 shows in greater detail how the yearly yield was distributed into four harvests. Clearly in the first harvest, a longer harvest period results in higher yields and lower quality. In the second harvest, dry matter and qualtiy are practically the same over all areas. The regrowth has adjusted to the slower harvest rates and adapted itself to a longer harvest period. In the third cut, a longer regrowth period produced slightly higher yields for smaller areas. The fourth cut illustrates two trends opposite to those in the first cut: as the area

harvested as alfalfa increases, the fourth cut yield decreases and the qualtity increases. This is due to the shorter regrowth period. Actually the date of harvest for the fourth cut was probably not optimal. The fourth harvest could have started earlier to get a higher quality at the cost of a lesser yield.

Table 9.14. Actual harvested feed (tDM/ha) during each of the four alfalfa cuts.

Area	Harve	est l	Harve	est 2	Harve	est 3	Harve	est 4
(ha)	DM	CP	DM	CP	DM	CP	DM	CP
20	2.91	.199	3.12	.191	2.42	.189	1.79	.127
40	3.13	.190	3.17	.189	2.20	.185	1.65	.134
60	3.29	.183	3.23	.189	2.08	.183	1.43	.141
80	3.43	.177	3.24	.186	2.00	.182	1.32	.141
100	3.56	.172	3.24	.185	1.89	.183	1.25	.140
120	3.69	.167	3.18	.186	1.82	.183	1.24	.148

Tables 9.15 and 9.16 show how the feed costs and net returns vary as a fixed machinery set is used over a larger area. In all cases the decrease in the fixed machinery costs overshadows the increase in the feed costs. For areas above 140 or 150 ha, the system becomes infeasible as the harvest period in some years extends beyond the earliest mowing dates of subsequent harvests. Production costs decrease slightly with area because these costs are proportional to yield. As the machinery set is used over a larger area, more calendar days are required to complete the harvest and less time is available for regrowth. Hence the potential yield is lower and the variable costs related

to harvest (labor, energy, repairs) are also lower.

Table 9.15. Costs and net returns (\$/ha) of a haylage machinery system used over a wide range of areas with a low yield dairy herd (20 kg milk/cow/day).

Area (ha)	Mach. costs	Other prod. costs	Feed costs	Milk returns	Net returns
20	1327.	545.	249.	3340.	1219.
40	664.	544.	252.	3340.	1881.
60	442.	539.	261.	3340.	2098.
80	332.	536.	268.	3340.	2204.
100	265.	534.	277.	3340.	2264.
120	221.	532.	282.	3340.	2305.

Table 9.16. Costs and net returns (\$/ha) of a haylage machinery system used over a wide range of areas with a high yield dairy herd (35 kg milk/cow/day).

Area (ha)	Mach. costs	Other prod. costs	Feed costs	Milk returns	Net returns
20	1327.	545.	838.	5846.	3136.
40	664.	544.	859.	5846.	3780.
60	442.	539.	870.	5846.	3994.
80	332.	536.	881.	5846.	4097.
100	265.	534.	891.	5846.	4156.
120	221.	532.	898.	5846.	4195.

Table 9.17 shows the average number of calendar days required to complete each harvest. The feed costs were seen to increase from \$249./ha to \$298./ha for low milk yield between a 20 ha farm and a 120 ha farm. The average yearly number of harvest days required for each farm is 17 and 81 respectively. The timeliness loss would be about \$0.50/ha/day. Since the average yield is 10 tDM/ha and the value of alfalfa feed can be approximated by \$80./tDM, the

timeliness coefficient would be about 0.0006/day for low milk production. In the case of high yield cows, the increase of feed cost was about twice as much as for low yield cows. The timeliness coefficient would be 0.0012/day for high milk production.

Table 9.17. The average number of calendar days required to harvest each alfalfa cut with a constant size machinery system.

Area	Cut 1	Cut 2	Cut 3	Cut 4	Total
20	3.35	3.50	3.73	6.54	17.12
40	8.00	7.23	6.65	8.92	30.80
60	11.42	11.00	9.08	11.54	43.04
80	15.19	14.35	11.46	14.35	55.35
100	18.96	18.38	13.62	17.31	68.27
120	23.65	21.50	15.65	20.69	81.49

A similar analysis was done with a 100% hay system. The average harvest rate of the hay system was slightly (less than 10%) larger than the haylage system described medium size conventional baler was previously. The simulated over the same area range. From the data in table 9.18, the timeliness coefficients would be about 0.0012/day for low milk yield and 0.0024/day for high milk yield. These timeliness coefficients are relatively low. ASAE (1981) suggests 0.0180 for haymaking in Michigan in June in The estimated timeliness coefficients would data D230.3. indicate that a low harvest rate does not really affect the overall value of an alfalfa crop especially when four cuts are made yearly. A slow harvest rate will produce a low quality first cut but the subsequent cuts will be of higher because the regrowth will have adjusted to the harvest rate.

Table 9.18. Feed costs (\$/ha) for low and high milk producing cows with a 4-cut completely hay fixed machinery system over a wide range of areas.

Area (ha)	Feed costs (20 kg/cow)	Feed costs (35 kg/cow)	Total calendar days to harvest
20	285.	806.	24.57
40	295.	844.	33.95
60	296.	861.	45.28 `
80	330.	885.	55.92
100	330.	904.	68.58
120	339.	920.	81.66

From a practical point of view, the farmer should not worry about taking three or four weeks to harvest the first The subsequent cuts will compensate for the lower quality first cut. Reducing the harvest period to one or two weeks is not worthwhile since this will increase the machinery cost more than it will reduce the feed costs. the number of cuts per year is reduced from four to three or even two, then the timeliness cost would become more important and so would the machinery size. The effect of fill on haylage quality in not presently rate If slow filling rates cause considerable considered. oxidation, then the timeliness cost for haylage systems would be greater than the one predicted.

9.3 Field-curing delay

The previous two sections have shown that the time at which harvest of alfalfa begins is more important than the rate at which it proceeds. Another important parameter in forage systems is the field-curing delay. Quality and value of a forage crop will generally decrease with a longer exposure time.

The forage harvest technologies presently available provide a number of alternatives to decrease the field curing delay:

- Increasing the drying rate by additional treatments at mowing or during curing;
- 2. Baling hay at a higher moisture content and treating the hay against spoilage;
- 3. Shifting from hay to haylage;
- 4. Shifting to direct-cut alfalfa harvest and conservation.

Hay usually cannot be baled before its moisture content is below 20% (wet basis). The treatment of wet hay could allow harvest at 30% moisture. A haylage system can provide good conservation of alfalfa with moisture as high as 60%. A direct-cut system would require no field curing

at all but the technology is not yet feasible because of important seepage losses in storage.

This section will consider the relative advantages and disadvantages of the four technologies outlined above.

9.3.1 Increasing the drying rate

New treatments are being proposed to increase the drying rate of forages to decrease the total field curing time. Section 6.5 dealt with some of these treatments (spraying a chemical solution and maceration) and their impact on the drying rate.

There are tradeoffs associated with these additional treatments. The reduced field exposure time must be weighed against either higher leaf loss or higher production cost or both. More information is required (especially with regards to leaf loss and production costs) to completely assess some of these new technologies. The impact of an increased drying rate can nonetheless be assessed without all the other technological data.

A 100% hay system was simulated under three conditions: with a regular mower-conditioner (control), with an additional treatment that would increase the drying constant by an average of 0.02 similar to the spraying of a chemical solution and with another type of treatment that

would increase the constant by 0.05 similar to maceration. (Section 6.5 gives a justification for these numerical values.) No consideration is given to extra dry matter losses or to extra production costs.

Table 9.19 shows the actual harvest and the average number of days hay was exposed under the three curing conditions: a control (mower-conditioner), spraying a chemical solution and maceration. As the drying rate is increased, the total dry matter harvested and the quality both increase. The results show a reduction of the average exposure time by as much as 1.5 days.

Table 9.19. Actual harvested yield (tDM/ha) and average field-curing time using extra treatments to increase the drying rate of baled hay.

Extra	Assumed	Harv	/est	Average	exposure
treatment	value of	DM	CP	ďa	ys
	b9*XTR			High	Low
	(eq. 6.3)		qual.	qual.
Control	0.00	9.27	.167	4.15	6.63
Chemical	0.02	9.72	.169	3.82	5.87
Maceration*	0.05	10.10	.171	. 3.42	5.19

(*) The extra dry matter losses for maceration are not accounted.

The increased quality of the alfalfa is translated into feed cost savings in table 9.20. The feed cost savings are about \$40./ha/yr with an increased drying coefficient of 0.02 and \$80./ha/yr with an increased drying coefficient of 0.05. The treatment is assumed to be applied over 80 ha for all four cuts.

Table 9.20. The annual feed cost (\$/ha) as influenced by faster drying treatments for an 80 ha alfalfa farm with 128 lactating cows at four milk production levels.

Extra treatment	20 kg/day	25 kg/day	30 kg/day	35 kg/day
Control	330.	469.	663.	885.
Chemical	284.	422.	622.	845.
Maceration	246.	381.	577.	797.

The cost of spraying a chemical solution on alfalfa would have to be less than \$10. per ha per cut or \$4. per ton DM to be profitable. This is unlikely given the types of chemical solutions and their concentrations suggested by Wieghart et al. (1980). Indeed the most promising chemical solution represented an application cost of about \$4.50 per ton DM. When the extra labor and equipment costs are added, the cost of spraying a chemical solution would vary between \$5. and \$10. per ton DM depending on farm size.

A new mechanical hay conditioner such as the macerator suggested by Krutz et al. (1979) appears more promising. It does not have the high variable costs associated with chemical application. If it could actually save \$80./ha/yr, a farmer with 80 ha of alfalfa could certainly afford to pay even double the price of an actual mower-conditioner. However the analysis does not include any estimate of extra dry matter losses or of extra fuel requirement of such a machine. A complete analysis should

include these technical considerations.

9.3.2 Baling at a higher moisture content

The total exposure time of alfalfa during field curing can be reduced either by increasing the drying rate or by harvesting at a higher moisture content. Haylage is one way to harvest at a higher moisture content and is considered in section 9.3.3. Baled hay can be harvested at a higher than normal moisture content, provided some treatment is applied to prevent spoilage.

In the 1950's and 1960's, barn drying of wet hay was a common practice but energy and labor requirements have outdated such a process. More recently the application of proprionic acid has been suggested to conserve hay baled at a high moisture content (Nehrir et al., 1978).

Three simulations were done to compare the effect of being able to harvest hay at a higher moisture content. Table 9.21 shows how a greater amount of yield and quality would be retained if hay could be harvested and stored safely at a higher moisture content. The number of days required for field curing may be reduced by between one half and two full days.

Table 9.21. Actual harvested feed (tDM/ha) and average field-curing time when hay may be baled at a higher moisture content.

Moisture content at baling		Harves DM	ted feed CP	Average exposure days	
Wet basis	Dry basis			High qual.	Low qual.
20%	.25	9.27	.167	4.15	6.63
30%	.43	10.16	.173	3.50	5.27
40%	.67	10.69	.176	2.97	4.37

The improved quality and quantity represent substantial feed cost savings (table 9.22). About \$100./ha/yr may be saved by baling hay at 30% moisture on a wet basis instead of 20%. For such a system to be profitable, the preservative should cost less than \$10. per ton of alfalfa DM preserved.

Table 9.22. The annual feed cost (\$/ha) when hay may be baled at a higher moisture content for an 80 ha farm with 128 lactating cows at four milk production levels.

Moisture at baling (w.b.)	20 kg/day	25 kg/day	30 kg/day	35 kg/day
20%	330.	469.	663.	885.
30%	238.	368.	560.	778.
40%	187.	312.	497.	713.

9.3.3 Haylage versus hay

Alfalfa haylage can be harvested and stored safely with a moisture content between 50% and 60% (wet basis) whereas hay must be dried down to 20% moisture content. Consequently haylage will be subject to weather risk a shorter time than hay. Haylage technology however is more capital intensive than hay technology for both machinery and storage facilities.

A 100% hay system is compared to a 100% haylage system with four alfalfa cuts per year under mid-Michigan climate. The hay machinery system consists of three tractors (60 kW, 40 kW and 20 kW), a large baler (maximum throughput of 14 tDM/h), three bale wagons, a bale elevator, a 2.7 m mower-conditioner, a rake and three men working full-time during hay harvest. Mowing, raking and baling operations are those defined in the example in appendix B (operations 22, 40 and 170).

The haylage machinery system uses three tractors (80 kW, 60 kW and 40 kW), a medium size forage chopper (maximum throughput of 11 tDM/h), two forage wagons, a forage blower, a 2.7 m mower-conditioner and two men working full-time during haylage harvest. Mowing and chopping operations are identical to operations 22 and 150 in the

•..

example in appendix B. Since there is no raking in the haylage operation, the mower leaves the alfalfa in a narrow windrow 1.35 m wide compared with a wider windrow of 2.16 m for hay making.

Table 9.23 shows that the haylage was on the average exposed between 2.4 and 3.2 days for the first and second silos while hay was exposed on the average 4.2 days for high quality hay (CP > 0.17) and 6.6 days for low quality hay (CP < 0.17).

Table 9.23. Average number of field-curing days of alfalfa before going into storage (80 ha farm).

	Silo	1	Silo	2	High quality hay		Low quality hay	
System	Days	CP	Days	CP	Days	CP	Days	CP
Hay Haylage				NA .169	4.15 NA	.189 NA	6.63 NA	.148 NA

Table 9.24 shows the actual feed available after accounting for harvest, storage and feeding losses and its quality for the hay and haylage systems over a range of areas.

Table 9.24. Alfalfa available as feed (tDM/ha/yr) from fixed machinery systems for hay and haylage harvest over a range of areas.

	Hay		Haylage		
Area (ha)	Harvested feed	CP	Harvested feed	CP	
20	9.83	.172	11.13	.186	
40	9.68	.169	11.17	.183	
60	9.61	.167	11.15	.182	
80	9.27	.167	11.05	.180	
100	9.27	.165	11.08	.179	
120	9.21	.163	11.04	.177	

For both systems, the storage and the herd size were scaled to area. The storage capacity was set at 12.5 tDM/ha for hay and 15 tDM/ha for haylage. These capacities are larger than the average harvested feed because storage and feeding losses must be accounted and some extra storage space should be provided for exceptional years. The actual size of storage structures is two thirds of the annual storage capacity requirements since harvest extends between late May and late October and the same storage space can be used twice during at least four months per year. Table 9.25 shows the storage capacities required and the storage investment cost for both systems under a range of areas.

Table 9.25. Storage capacity (tDM) and investment cost (\$) for a hay system (one hay barn) and for a haylage system (two equal size silos).

		Hay		Haylage		
Area (ha)	Annual cap. (tDM)	Storage cap. (tDM)	Cost of barn (\$)	Annual cap. (tDM)	Storage cap. (tDM)	Cost of silos (\$)
20	250.	167.	6500.	300.	200.	34700.
40	500.	333.	9900.	600.	400.	58000.
60	750.	500.	13200.	900.	600.	74000.
80	1000.	667.	16500.	1200.	800.	84000.
100	1250.	833.	19900.	1500.	1000.	94000.
120	1500.	1000.	23200.	1800.	1200.	104000.

The hay and haylage systems can be compared on the basis of resource requirements. The hay system requires much less capital investment but usually requires more labor (table 9.26). The hay system also requires less fuel than the haylage system.

Table 9.26. The resources required to operate three harvest systems for an 80 ha alfalfa farm.

System	Machinery investment	Storage investment	Fuel (L/yr)	Labor (man.h/yr)
Нау	\$79800.	\$16500.	5339.	1831.
Haylage	\$110100.	\$84000.	9387.	1553.
Direct-cut*	\$103900.	\$102000.	10415.	1223.

(*) Equipment and energy necessary for dewatering direct-cut alfalfa are not included.

The main advantages of the haylage system over a hay system are a lesser labor requirement, a higher harvested yield and a higher quality (which may however be offset by a lower animal intake). Two disadvantages with the haylage system are the high investment costs and the relatively

higher fuel consumption.

Figures 9.7 and 9.8 show the expected net costs of haylage and hay systems versus area. The costs include the storage and machinery annualized fixed costs, the cost of labor and energy and repair and maintenance for harvest and feeding, the cost of fertilizers for maintaining alfalfa yields and the net cost of feeds for the specified milk production and herd size. Herd size is set at 1.6 lactating cows per hectare of alfalfa.

When comparing systems of largely different investment levels, the discount rate used in the analysis becomes very important. The fixed costs of both systems are estimated using a real discount rate of 4% (i=0.04). This is more appropriate than the use of nominal rates because real rates provide an adjustment for inflation. A 10-year accounting life is used for machinery, with a 10% salvage value; a 20-year accounting life is used for storage structures with no salvage value.

The upper and lower bounds in figures 9.7 and 9.8 are obtained from the lowest and highest costs in a 26-year simulation. The hay system has wider bounds and more variable costs than the haylage system. In this sense, the hay system is generally riskier than the haylage system.

The curves in figures 9.7 and 9.8 are superimposed in figure 9.9 to compare the expected cost of each system. The haylage system is generally more expensive than the hay

Figure 9.7. Net cost of a hay system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04).

Figure 9.8. Net cost of a haylage system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04).

Figure 9.9. Expected cost of a haylage system and a hay system versus area for high milk production (35 kg/day/cow) and real interest rates (i=0.04).

Figure 9.10. The cumulative probability of annual net cost of a hay system versus a haylage system under 120 ha of alfalfa with high milk production (35 kg/day/cow) and real interest rates (i=0.04).

system with a high yield milk producing herd (35 kg/day/cow). At 120 ha, both systems cost approximately the same. Figure 9.10 shows that the hay system is more variable than the haylage system at 120 ha. Since they both have the same expected return, a risk adverse farmer would choose the haylage system rather than the hay system at 120 ha. For smaller areas, the hay system is more profitable but more variable than the haylage system. Some farmers may be willing to forfeit some profit in order to reduce the year to year variation in cost and could then prefer the haylage system to the hay system.

Figure 9.11 compares the haylage system and the hay system with a low milk producing herd (20 kg/day/cow). The haylage system becomes less expensive than the hay system for areas above 60 ha. It becomes more profitable more quickly with a low milk producing herd than with a high milk producing herd because the advantage of haylage over hay is more quantitative than qualitative. Tables 9.27 and 9.28 show the alfalfa feed production and utilization with high yield and low yield dairy herds.

Figure 9.11. Expected costs of a haylage system and a hay system versus area for low milk production (20 kg/day/cow).

Figure 9.12. Expected costs of a haylage system and a hay system versus area assuming haylage dry matter intake is the same as hay intake (high milk production).

Table 9.27. Feed production and utilization (tDM) under four harvest and conservation systems on an 80 ha farm with 128 high milk producing lactating cows (35 kg/cow/day).

System	Alfal harve DM		Alfalfa sold	Soy meal purchased	Corn grain purchased
Hay Haylage Direct-cut Direct-cut + formic acid	741.4	.167	56.0	59.8	429.5
	884.2	.180	263.1	63.1	490.4
	978.3	.195	346.7	55.7	487.3
	978.3	.195	236.1	25.2	407.2

Table 9.28. Feed production and utilization (tDM) under four harvest and conservation systems on an 80 ha farm with 128 low milk producing lactating cows (20 kg/cow/day).

System	Alfal harve DM		Alfalfa sold	Soy meal purchased	Corn grain purchased
Hay Haylage Direct-cut Direct-cut + formic acid	741.4	.167	-154.7	1.48	94.8
	884.2	.180	-31.5	0.41	76.2
	978.3	.195	22.6	0.00	36.6
	978.3	.195	-1.3	0.00	12.7

The haylage system conserves about 20% more yield and 10% more crude protein than the hay system. The quality advantage of haylage is however offset by a lower intake potential compared with hay. With high milk producing cows, the haylage system indeed requires slightly more soybean meal and corn grain than the hay system to balance the ration. Low milk producing cows require a lower nutrient concentration than high milk producing cows and

consume more alfalfa and less soybean meal or corn grain (table 9.28).

A large fraction of the haylage cannot be used by the high milk producing herd because the nutrient concentration is not high enough. In the model, excess haylage is sold at \$69. per tDM. In practice, a farmer could use about 16% less land with a haylage system than with a hay system to produce the same quantity of feed.

A review of literature in section 5.4 showed that dairy cows will generally intake less haylage than hay on a dry basis. This is modelled by decreasing crude protein and digestibility of haylage by 5% in the ration formulation model. The sensitivity of this assumption was tested by assuming that haylage had the same dry matter intake potential as hay. Figure 9.12 shows that the feed value of haylage would increase significantly and the break-even point for the haylage system with high yield lactating cows would be 40 ha instead of 120 ha.

A real interest rate of 4% has been used to compare the haylage and hay systems. Some businesses use a real rate of return of 10% for investment comparisons. If such a high rate were used, the hay system would appear even more advantageous than the haylage system because of its lower investment cost for both machinery and storage. Farmers often do not expect such a high rate of return. In some cases, their loans may be subsidized to a level that

is close to a 0% real discount rate. Between 1975 and 1980, the inflation rate was higher than the interest rates of the Federal Reserve Bank (U.S.D.A., 1981). The average real interest rate was -0.9% during that period. Under those circumstances, the real cost of capital was low because loans were available at a very low real cost. Figure 9.13 shows that the break-even point of a haylage system would shift down to 100 ha with a real interest rate of 0% instead of 120 ha with a real rate of 4%.

9.3.4 Direct-cut alfalfa

The ultimate way to reduce the field curing time of alfalfa is by direct cut. The main problem with direct-cut alfalfa is its high moisture content and the large seepage losses that are likely to occur during storage. Bruhn and Koegel (1977) have suggested mechanical dewatering of alfalfa by pressing out up to half the initial water. The dewatered alfalfa may be conserved as haylage without field curing.

Table 9.26 compares the resources required to operate a direct-cut system, a hay system and a haylage system. The machinery investment for the direct-cut system is smaller than the one for the haylage system, but the cost of equipment for dewatering and processing the freshly

Figure 9.13. Expected costs of a haylage system and a hay system versus area assuming a low real interest rate (i=0.00) and high milk production.

mowed alfalfa is not included.

Simulation over 26 years showed that more quantity and quality would be retained with a direct-cut system. Table 9.27 shows that it retains 11% more yield than the haylage system and 32% more than the hay system. Storage losses for direct-cut are assumed to be the same as for haylage. In practice it is difficult to avoid important seepage losses with direct-cut alfalfa.

The quantities of soybean meal and corn grain purchased indicate that hay, despite its lower crude protein concentration, has a very good intake level compared with haylage and direct-cut alfalfa. Waldo and Jorgensen (1981) have suggested the use of formic acid to increase the intake potential of haylage to almost the same level as dry hay. Assuming that the addition of formic acid to wet alfalfa increases its intake to the same level as hay, the more efficient use of direct-cut alfalfa results in substantial savings of soybean meal and corn grain purchases (table 9.27).

harvest and conservation systems. The benefit of haylage versus hay increases with lower milk producing cows. The advantage of haylage would hence be more quantitative than Qualitative since low yield cows make better use of low Quality feed. Similarly the benefit of direct-cut alfalfa increases with lower producing cows. In the case of

haylage and direct-cut alfalfa, the decrease in net feed cost is due largely to the increased production of alfalfa (and increased sale of excess forages) and not to the lesser purchase of supplements.

Table 9.29. Net feed costs (\$/ha) on an 80 ha alfalfa farm with 128 lactating cows at four milk production levels.

System	20 kg/day	25 kg/day	30 kg/day	35 kg/day
Нау	330.	469.	663.	885.
Haylage	268.	420.	623.	881.
Direct-cut	48.	219.	436.	720.
Direct-cut + formic acid	28.	128.	317.	582.

The addition of formic acid to direct-cut alfalfa would decrease the purchase of supplemental feeds. The advantage is greatest with high milk producing cows. In fact, the increased dry matter intake assumed for wet alfalfa would allow 110 more tons of alfalfa to be consumed by the herd and would reduce purchases of soybean meal by 30 tons and of corn grain by 80 tons (table 9.27).

The benefit of increasing the dry matter intake of wet alfalfa is about \$140. per ha per year or about \$10. per ton DM with high milk producing cows. The benefit decreases rapidly with lower milk producing cows.

In summary, haylage and direct-cut alfalfa do not reduce substantially the amounts of supplements required in the ration compared with good quality hay. Although they have a higher crude protein concentration than hay, their

lower intake potential makes the overall quality similar to that of hay. Haylage and direct-cut alfalfa do have a quantitative advantage over hay by providing more feed per unit area. Increasing the intake potential of wet alfalfa (with formic acid or any other mean) would be valuable mainly for high milk producing cows. The analysis showed a reduction in feed cost of the order of \$10. per ton of alfalfa dry matter harvested. Any haylage treatment to increase animal feed intake would have to cost less than the estimated benefit.

9.4 Storage policy

The simulation model includes four possible storage locations for alfalfa: silo one (usually high quality wet alfalfa), silo two, high quality hay and low quality hay. These four locations allow flexibility and greater efficiency in the allocation of forages. Indeed the higher quality alfalfa may be fed to high yield lactating cows and the lower quality alfalfa can be fed to dry cows and heifers.

Two smaller silos usually cost more than one large silo with the same total capacity. The two smaller silos however provide more flexibility in the allocation of forages. They also ensure a faster filling rate which may

reduce oxidation losses in the silo. The present storage model does not simulate varying storage losses. Nonetheless the storage policy may be assessed from the feed allocation point of view.

Table 9.30 relates the distribution of harvested alfalfa when one or two silos are used. In addition to the harvested haylage, each system include between 280 and 290 tons of alfalfa baled as hay.

Table 9.30. Average haylage quality and standard deviation when one or two silos are used.

Policy	S	ilo 1		S	ilo 2	
-	DM	CP	S(CP)	DM	CP	S(CP)
l silo	507.7	.183	.017	0.0	.000	.000
2 silos	258.4	.194	.012	259.9	.171	.011

Tables 9.31 and 9.32 show how the feed would be utilized with a high milk yield herd and with a low milk yield herd. More soybean meal and more corn had to be purchased with the high milk herd under the one-silo policy. The feed purchases with the low quality herd were curiously lower under the one-silo policy. Apparently under the two-silo policy, alfalfa with CP=0.194 would be too high in quality to be used efficiently with a low milk yield herd and alfalfa with CP=0.171 would require the Purchase of some supplements. A pooled average CP=0.183

Table 9.31. Feed utilization under two storage policies with high yield cows (35 kg/day).

Policy	Alfalfa produced (tDM)	Soy meal purchased (tDM)	Corn grain purchased (tDM)	Alfalfa sold (tDM)
l silo	798.42	70.84	482.30	176.95
2 silos	799.62	63.51	474.94	163.46

Table 9.32. Feed utilization under two storage policies with low yield cows (20 kg/day).

Policy	Alfalfa produced (tDM)	Soy meal purchased (tDM)	Corn grain purchased (tDM)	Alfalfa sold (tDM)
l silo	798.42	0.92	87.55	-105.38
2 silos	799.62	0.82	94.50	-97.33

This points out a weakness in the ration formulation model. Mixing high quality alfalfa with low quality alfalfa gives numerically an intermediate average quality. But the cows might respond more as if they were fed only low quality instead of an average quality feed. Table 9.30 did in fact show a larger standard deviation in quality with the one-silo policy. The feed model could be improved by taking the variation into account.

Table 9.33 shows the difference in feed costs between storage in one large silo and storage in two smaller silos. With high milk producing cows a two-silo policy allows better allocation of feed and an estimated saving of \$1910.

Per year (for 128 cows). The feed cost savings become

negative under low milk production levels for reasons explained in the above paragraph. In reality we would expect a greater segregation of feed to always reduce feed costs.

Table 9.33. The feed costs (\$/yr) under two storage policies at four milk production levels with a herd of 128 lactating cows.

Policy	20 kg/day	25kg/day	30 kg/day	35 kg/day
l silo 2 silos	21178. 21464.	33474. 33578.	50196. 49816.	72398. 70488.
Diff.	-286.	-98.	380.	1910.

Table 9.34 shows the difference in investment costs between the one-silo and the two-silo policies. The difference of \$22000 is large and would be minimally compensated only with a high production herd. (The return of \$1910. per year represents a negative return over 10 years and a 6% return over 20 years.) At any milk production level lower than 30 kg/cow/day, the two-silo policy is not worthwhile.

Table 9.34. The storage investment required under two storage policies.

Policy	Storage capacity of each silo (tDM)	Total investment (\$)
l silo	600.	52000.	
2 silos	300.	74000.	

As mentioned above however, at least two advantages of the two-silo policy are not accounted for in the model: the lower oxidation of haylage due to a faster filling rate and the lower variation in feed quality within each silo. These two factors should be included in a future more refined storage-feeding model.

CHAPTER 10

CONCLUSIONS

A systems approach was used to evaluate the production and utilization of forages on dairy farms. The boundaries included crop growth, harvest, storage and feeding to the dairy herd. A computer simulation model was developed to simulate the growth and harvest of alfalfa on a daily basis and the allocation of feed on a yearly basis. Historical weather data from East Lansing, Michigan were used to repeat the simulation over 26 years.

10.1 General conclusions

After having worked over the past two years on a multidisciplinary research project and having completed the Present dissertation, two major conclusions predominate:

- 1. The systems approach, by considering simultaneously several interdependent components (namely crop growth, harvest, storage and ration formulation) provides a broader understanding of the relative importance of each component than if one were to consider each component separately;
- 2. Numerical simulation can be used along with field research to analyze the long term impact of new technologies and their adaptability to a wide range of management conditions.

The simulation results showed some interactions between technological choices or management practices and the level of milk production. For example, a hay system was generally less expensive than a haylage system for alfalfa areas below 40 ha. As the area under cultivation increased, the haylage system became profitable more quickly with low milk producing cows than with high milk producing cows because the advantage of haylage over hay is more quantitative than qualitative. Another example is that early harvest of alfalfa is more profitable with high milk producing cows than with low milk producing cows. Simulation provides the researcher and the extension Specialist a broad perspective that a few field nutritional experiments might not give.

Experiments explain physical and biological behavior and are the basis for the simulation model. They can never be replaced by simulation. However simulation may allow the researcher to expand rapidly and at a lesser cost his conclusions to other climatic conditions or to other types of farms. Simulation may also point to promising changes and areas where research priority should be given.

10.2 The sensitivity of model assumptions

With the exception of the alfalfa drying model, the simulation model is largely based on research published in the literature. Some technological coefficients are more accurate than others. The following section discusses the relative accuracy of those coefficients and the effect of erroneous values. Five aspects of the model are considered: the machinery model, the dry matter loss estimates, the quality loss estimates, the drying rate model and the feed model.

The machinery model should be the most accurate one since it is largely based on physical principles while the other models must incorporate biological or physiological principles that are more difficult to quantify. Some aspects of the machinery model such as time for loading and unloading material and the energy to convey material are

only approximate. These approximations should not however have much impact on the overall model.

Dry matter losses can vary considerably during harvest, storage and feeding. Losses from mowing and conditioning are generally low; any inaccuracy should be of little consequence. Losses from raking and baling can be considerably high especially with dry and leafy material, and for round balers and hay stack wagons. Some of the loss estimates in the literature may be outdated because harvest technology has been changing rapidly. Dry matter losses due to environmental factors, such as respiration and rainfall, are not large and their estimation is relatively adequate. Material losses in the silo and during feeding may be considerable; their estimation would benefit from more detailed modelling compared with the use of a fixed percentage loss in the present model.

Quality losses are well modelled during harvest as long as accurate values of leaf and stem losses are available. The model does not deal however with the appearance of mold when alfalfa is left curing for several days under rainy conditions. Quality losses in storage, especially with haylage, is undoubtedly affected by the rate of fill, the silo size and environmental conditions. Modelling quality changes during storage is likely to be the most significant improvement in the analysis of haylage systems.

The drying model predicts the average drying over a Ιt does not predict accurately the whole day. instantaneous drying rate; this was not an objective of the simulation model. The drying model may suffer from the fact that a single equation was used to estimate drying over the whole range of moisture contents. The parameters in the drying equation may be biased because their estimation is based on data mostly in the higher moisture range. Only a few drying data were obtained for low moisture content alfalfa.

The feed model assumes that intake potential is lower for haylage than for hay. The simulation results showed that if the assumption were changed and haylage intake were assumed to be the same as hay intake, the value of haylage would be increased by \$150./ha. The haylage system would become more profitable than the hay system at 40 ha instead of 120 ha. The notion of an intake difference between hay and haylage is very crucial and should be further investigated.

The feed model does not deal with quality variability within the storage structure as it would affect animal response. Simulation results show that some storage policies can provide higher and more uniform quality, but no premium value is given to uniformity versus heterogeneity within the storage structure with equal

average quality.

10.3 Managing the alfalfa crop

The simulations in chapter 9 dealt essentially with the alfalfa crop and how management or technological changes could improve the performance of the forage system. On the basis of historical weather from East Lansing, a number of specific conclusions may be drawn:

- 1. Alfalfa harvest should start early when quality is still high. The greater yield obtained by postponing the harvest does not generally compensate the quality loss. One exception occurs with low quality demanding animals that can more efficiently use a greater quantity of lesser quality feed provided by late harvest than the smaller quantity of high quality feed provided by early harvest.
- 2. The simulation model indicates that a fourth cut is generally profitable if the three previous cuts start early (around May 20th, July 5th and August 20th). In one year out of ten the fourth cut has a negative return not on account of low yield but because of bad harvesting conditions. If other crops must also be harvested at the same time, the

- profitability of the fourth alfalfa cut may be more questionable because of the time conflict.
- 3. A slow harvest rate will result in lower conserved yield and quality than a fast harvest rate, but the differences are small between an instantaneous harvest and a harvest extended over four weeks. An extended first cut will have a relatively high yield and low quality. The subsequent regrowths will adapt themselves to the harvest rate and compensate the low first cut quality with a higher more uniform quality in the subsequent harvests. For haylage systems, a slow harvest rate may cause more damage at storage than in the field because of excessive oxidation during silo filling. For hay harvest, a farmer should not worry about taking three or four weeks for the first cut. decrease of crop value is relatively small not justify the purchase of large machinery to reduce the average harvest period to less three weeks. For both hay and haylage systems, the rate of harvest and the timeliness costs will become more important as the number of yearly harvests decreases.
- 4. The field-curing time and weathering of alfalfa can be reduced either by increasing the drying rate or by harvesting at a higher moisture

A reduction of the field-curing time content. always results in more yield and crude protein conserved for feed. Conventional hay making with a mower-conditioner for all four alfalfa cuts required an average of 4.2 days for curing to 20% moisture (wet basis) and conserved 9.3 tDM/ha with concentration crude protein Increasing the drying rate by about 20%, through additional treatments such as maceration or spraying a chemical solution at mowing, would decrease curing time for hay to 3.4 days and increase harvested yield to 10.1 tDM/ha and 17.1% crude protein. Additional dry matter losses due to the extra mechanical treatment are however accounted. Baling hay at 30% moisture and treating it against spoilage could conserve 10.2 tDM/ha at 17.3% crude protein after 3.5 days of curing on the average. Conserving alfalfa as haylage allows harvesting at moisture contents as high as 60%. The average curing time for hayalge decreased to 2.4 days; 11.1 tDM/ha of alfalfa at 18.0% crude protein are available as feed. Direct-cut alfalfa reuires no field-curing at all and could conserve 12.2 tDM/ha at 19.5% crude protein. Seepage losses and other handling losses are, however, not included for the direct-cut

system.

5. Technologies that conserve more yield and a higher crude protein concentration will result in lower feed costs. Increasing the drying rate for hay making or baling at a higher moisture content can represent a saving of \$8. to \$10. per ton of matter harvested, or a premium value for hay of 10 to 15%. The higher crude protein concentration of haylage compared to hay does not however translate itself into a higher per unit feed value because haylage has a lower dry matter intake potential than hay. The higher nominal quality of haylage is offset by a lower dry matter intake compared with hay. Increasing the potential intake of haylage or direct-cut alfalfa with the use of formic acid or other treatments could reduce feed costs by \$10./tDM of alfalfa harvested, which is equivalent to a premium value to haylage of about 15%.

10.4 Comparing hay and haylage systems

Hay and haylage systems represent different investment levels, different use of energy and labor, different conservation and feeding characteristics. Many factors

come into play in the comparison of these two systems.

In general, a haylage system requires more investment and more energy but less labor than a hay system. It also retains more yield and more crude protein than the hay system. The nominal quality advantage of haylage is however offset by a lower dry matter intake compared with dry hay. The main advantage of haylage over hay is more quantitative than qualitative.

Under mid-Michigan conditions, the haylage system becomes more profitable than the hay system for areas above 120 ha of alfalfa with high yield lactating cows and above ha with low yield lactating cows when a ratio of 1.6 is used for lactating cows to land (cows/ha). Low milk producing cows can consume more haylage than high milk producing cows because the former require relatively low nutrient concentrations that can largely be met by the havlage whereas the latter require high nutrient concentrations that can only be met by the addition of substantial quantities of corn grain and soybean meal.

An assumption in the feed model states that intake of haylage is lower than intake of hay. If the assumption is changed and haylage is assumed to have the same intake potential as hay, the haylage system becomes more profitable than the hay system with high yield cows at 40 ha instead of 120 ha. The difference in feed cost is about \$150. per ha between the two assumptions. It is important

to evaluate more accurately the difference in animal response between alfalfa hay and alfalfa haylage.

Interest rates used when comparing hay and haylage systems can be important. A high real interest rate will favor the hay system because of its lower investment cost. Subsidized loans may make the haylage system more attractive than the hay system.

Under mid-Michigan conditions, a 100% hay system is generally less expensive than a 100% haylage system for farms growing less than 40 ha of alfalfa. Between 40 ha and 120 ha, haylage may become more profitable than hay depending on a number of assumptions. Low milk producing cows or low interest rates will favor the haylage system. If haylage intake is closer to hay intake than would indicate the few feeding trials published, the feed value of haylage could be significantly higher than the one estimated in the model.

The farmer's attitude toward risk will also affect his choice. A risk adverse individual may be willing to forfeit some profit in order to reduce the year-to-year variation. He could thus choose the haylage system which, although more expensive than the hay system, offers less variability. The hay system requires more total labor than the haylage system and three men instead of two during harvest.

Farmers may view hiring and managing temporary labor as representing a higher cost than the \$5. per hour assumed in the model. The haylage system does offer this intangible advantage compared with the hay system.

Under more humid conditions, haylage might become more profitable than hay under smaller areas. The analysis did not consider corn production at all. Introducing corn silage along with haylage may be a more efficient way to use both machinery and storage structures in the context of the whole farm.

A haylage system can produce the same quantity of feed of similar quality as a hay system on about 16% less land. All comparisons were based on equal areas of alfalfa for haylage and hay systems. The excess haylage was given a value of \$69. per tDM. In practice, a farmer may have better land use opportunities than producing excess forages. A more realistic comparison between haylage and hay should consider the production of other crops on the land that is freed from forage production when shifting from hay to haylage. Ideally the boundaries of the system should be expanded to cover the whole farm.

CHAPTER 11

RECOMMENDATIONS FOR FUTURE RESEARCH

The simulation model still has a largely unexplored potential for analyzing forage systems under various climates. In addition the simulation results have pointed out some model weaknesses and areas where more experimental research would be helpful.

In the short term, the simulation model can be used with minimal changes to expand the analysis of forage systems as follows:

1. Use weather data from other locations besides mid-Michigan to specify under what general conditions various technologies might become preferable (e.g. under what rainfall pattern and for what alfalfa areas would haylage become more profitable than hay). Try to include historical values of relative humidity to get better estimates of the drying rate.

Hay systems appeared to be more profitable than haylage systems in mid-Michigan for farms growing less than 40 ha of alfalfa, and up to 120 ha under certain conditions. For this reason research efforts should continue to improve hay systems. Some short term research priorities could be:

- 2. The development of improved field curing treatments that would increase the alfalfa drying rate and would not increase dry matter losses.
- 3. The investigation of treatments to conserve high moisture hay. Early baling can substantially reduce dry matter and nutrient losses.

The simulation model dealt with growth and harvest in greater detail than it did with storage and feeding. Consequently more research is needed to model storage and feeding more accurately. Some long term research priorities should include:

4. Experimental measurement of oxidation of alfalfa haylage as affected by the rate of fill, the silo size and the rate of removal. Little is known about the quality changes within the silo under various filling rates, environmental conditions and rates of removal.

- 5. More precise knowledge on the animal intake difference between alfalfa hay and alfalfa haylage and how to model it.
- 6. Research and development of new physical or chemical means to increase the intake potential of alfalfa haylage.
- 7. A ration formulation model that deals explicitly with cow response to feeds of variable quality.
- 8. Validation of the crop model under a wide range of climatic conditions. The prediction of leaf and stem quality is critical for crop valuation and should be further investigated.
- 9. Validation of the dry matter loss parameters under a wide range of climatic and operational conditions (e.g. rainfall, speed of operation, crop density). A distinction between leaf loss and stem loss should always be made.
- 10. Measurement of alfalfa field drying especially at low moisture contents. More data to predict the desorption equilibrium moisture content of alfalfa are also required. The drying model should be broken into several ranges for greater predicting accuracy.

In general, when assessing a new technology, field experiments should be done to estimate field losses (distinguishing leaf and stem losses), labor and energy requirements, any change in the drying rate and, ideally, feeding trials. A relatively small number of experiments over a short time can provide values for most parameters needed in a simulation model. The simulation model can then be used to assess the long term value and adaptability of the new technology.

APPENDIX A A SURVEY OF FORAGE HARVEST MACHINERY

Appendix A

A SURVEY OF FORAGE HARVEST MACHINERY

A generic summary of forage harvest machinery is presented. It lists sizes and capacities of most machines available on the U.S. market in the fall of 1981. included are average values of machine mass and list price. Such parameters are useful for power requirement calculations and for cost analysis. Costs have been obtained from two sources: NFPEDA (1981) and Michigan through verbal communication. dealers Implement and Tractor (1981) provided an exhaustive listing of specific farm machinery on the U.S. market.

Tractors have not been listed although they are required for harvest. Their main characteristics may be simplified as follows: the average tractor weighs about 100 lb per Hp (60 kg/kW) and costs about \$300. per Hp (\$400./kW) in the fall of 1981.

One can observe from tables A.1 to A.13 that price is closely correlated to mass. For most machines the initial cost runs at about \$5. to \$7. per kg (\$2. to \$3. per lb).

Most costs were based on those from the large, well established companies. There are some substantial price differences for the same size of equipment when it is manufactured by a small or by a large company. The survey does not show these specific differences. It only provides a generic guide for the potential user. Prices will change quickly and even the sizes and the capacities available are likely to change within the next few years.

Table A.1. A generic summary of mowers and mower-conditioners on the U.S. market (1981).

Mower type	Width (m)	Mass (kg)	Cost (\$)	Specific examples (1)
Cutterbar	2.1 2.7 4.3 5.5			•
Cutterbar mower-cond.			6000. 7200. 9700.	JD1207, SNH472 JD1209, SNH472 SNH495
Cutterbar condwind.		-		JD1308, SNH114 JD1308, SNH114
Disk	1.6 2.4	350. 450.	2300. 3000.	IH3104, SNH442 IH3106, SNH462
Drum		365. 570. 1000. 1100.		DZKM22, KMN165 DZKM25, KMN210 DZ108, KMN270 KMN330
Drum mower-cond.		1300. 1400.		

⁽¹⁾ See table A.14 for names of manufacturers.

Table A.2. A generic summary of tedders on the U.S. market (1981).

Width (m)	Mass (kg)	Cost (\$)	Specific examples
2.1	190.	1500.	GRIMM 'B' GRIMM '8' KNGF23N KNGF440 GRIMM '16', KNGF452 KNGF671
2.4	195.	1700.	
3.0	200.	1850.	
4.0	260.	2000.	
4.8	400.	2400.	
7.2	550.	3300.	

Table A.3. A generic summary of side-delivery rakes.

Width (m)	Mass (kg)	Cost (\$)	Specific examples
2.6	350.	2500.	JD660, SNH256
2.9	375.	2700.	JD670, SNH258
5.8	790.	5800.	JD670-671, SNH258-260

Table A.4. A generic summary of conventional small rectangular balers.

Baler size	Pickup width (m)	Maximum continuous throughput (tDM/h)	Mass (kg)	Cost (\$)	Specific examples
Small	1.55	6.	1230.	5900.	JD336, SNH310
Medium	1.70	8.	1450.	7900.	JD346, SNH315
Large	1.80	11.	1640.	9900.	SNH320, JD446
Commercial	1.88	14.	2000.	10900.	SNH420

Table A.5. A generic summary of round balers.

Maximum throughput (tDM/h)	Bale size (kg)	Mass of baler (kg)	Cost (\$)	Specific examples
7.5	400.	1500.	8000.	JD410, SNH846
12.0	800.	1900.	10500.	JD510, SNH851

Table A.6. A generic summary of large hay stackers.

Maximum throughput (tDM/h)	Bale size (kg)	Mass of baler (kg)	Cost (\$)	Specific examples
10.	1350.	2400.	8500.	OW540, HS10
12.	2700.	4000.	12500.	OW560, HS30
14.	4500.	4500.	20000.	OW60A

Table A.7. A generic summary of automatic bale wagons that pick and stack small rectangular bales.

Wagon capacity (t)	Maximum loading rate (tDM/h)	Unloading time (min)	Wagon mass (kg)	Cost (\$)	Specific examples
2.	15.	5.	2000.	11000.	SNH1036
3.	15.	5.	2500.	13500.	SNH1037
5.	15.	5.	4200.	20000.	SNH1063

Table A.8. A generic summary of bale ejectors.

Throughput	Mass (kg)	Cost (\$)	Specific examples
Same as baler	250.	2000.	SNH70, JD ejector.

Table A.9. Hay wagons.

Capacity (t)	Mass (kg)	Cost (\$)	Specific examples
4.	320.	1400.	JD965
6.	400.	1700.	JD1065A
8.	550.	2200.	JD1075

Table A.10. A generic summary of forage harvester cutterheads on the U.S. market (1981).

Typical PTO power required (kW)	Type of hitch	Maximum Continuous throughput (t-DM/h)	Mass (kg)	Cost (\$)	Specific examples
30.	Integral	6.	530.	4300.	SNH707
45.	Pull-type	8.	1130.	6000.	SNH718
60.	Pull-type		1460.	8000.	SNH782
75.	Pull-type		1650.	10500.	SNH892
90.	Pull-type		1700.	12000.	GEHL1250

Table A.11. Attachments for cutterheads.

<pre>Type of attachment (P): pull-type (I): Integral</pre>	Size	Mass (kg)	Cost (\$)
Row-crop (I) Row-crop (P) Row-crop (P) Row-crop (P)	1-row	125.	1500.
	1-row	230.	1800.
	2-row	360.	2800.
	3-row	630.	5100.
Windrow pickup (I)	1.4 m	175.	1400.
Windrow pickup (P)	1.7 m	320.	2200.
Windrow pickup (P)	2.2 m	410.	2600.
Direct-cut mower (P) Direct-cut mower (P)	1.8 m	360.	2800.
	2.3 m	550.	3200.

Table A.12. Forage wagons with unloading mechanism.

Capacity (m3)	Capacity (t)	Mass of wagon (kg)	Cost (\$)	Specific examples
12.2	5.4	1350.	7500.	KASTEN 21
16.7	7.2	1500.	9000.	JD714A
19.0	9.1	1650.	10000.	JD716A

Table A.13. Forage blowers on the market.

Capacity range (t-WM/h)		PTO power range	Mass (kg)	Cost (\$)	Specific examples	
Corn silage	Alfalfa haylage	(KW)		·	-	
70-120 80-140 120-170	35-60 40-70 60-85	50-90 60-100 120-170	500. 600. 450.	2500. 2700. 2500.	JD6500 JD66 JD6000	

Table A.14. List of manufacturers quoted for specific examples. Complete addresses are available in Implement and Tractor (1981).

Company code	Name and location of company
DZ GEHL GRIMM HS IH JD KASTEN KMN KM OW ROWSE SNH	Deutz Corp., Atlanta, GA Gehl Co., West Bend, WI G.H. Grimm Co., Rutland, VT Hesston Corp., Hesston, Kan International Harvester Co., Chicago, IL Deere & Co., Moline, IL Kasten Corp., Allenton, WI KMN Modern Farm Equip. Inc. Kuhn S.A., Vernon, NY Owatonna Mfg. Co., Owatonna, MN Rowse Hydraulic Rake Co., Burwell, NE Sperry New Holland, New Holland, PA

APPENDIX B A USER'S GUIDE TO FORHRV

APPENDIX B

A USER'S GUIDE TO FORHRV

Program FORHRV estimates forage harvest rates for a given set of machines. It is a static model, whose results are used later in a dynamic simulation of forage harvest on a day-to-day basis. It calculates actual field capacity (ha/h), actual throughput (tDM/h), fuel consumption (L/h), electricity consumption (kW.h/h) and labor requirements (man.h/h) for up to 18 forage harvest operations, at six yield levels.

A matrix called RATES(108,8) is created by the program. The 108 rows allow a maximum of 18 operations at six yield levels. Each column contains the following parameters:

RATES(K,1) is dry matter yield (t/ha);

RATES(K,2) is effective field capacity (ha/h);

RATES(K,3) is effective throughput (tDM/h);

RATES(K,4) is actual tractor load (decimal);

RATES(K,5) is fuel consumption (L/h);

RATES(K,6) is electricity consumption (kW.h/h);

RATES(K,7) is labor requirement (man.h/h);
RATES(K,8) is operating speed (km/h).

The reason for calculating rates at six yield levels is to minimize later calculations. For example, alfalfa yield per cut might be expected to vary from a minimum of 1 tDM/ha to a maximum of 6 tDM/ha. The harvest capacity will also change with yield as three main constraints become alternately limiting: maximum operating speed, maximum machine throughput and maximum continuous tractor load. A 20-year simulation might generate 80 different yields; the harvest capacity and material flow rates need be calculated each time. The RATES matrix provides the data for efficient linear interpolation at various yields. Beyond the minimum and maximum yields, flow rates will be assumed constant except for field capacity which will be calculated from throughput capacity and yield.

The input data are read as follows:

- 1. General information (1 card).
- 2. Machinery data file (up to 100 cards, one per machine). A last card with 0000 in the first columns will indicate the end of the machinery file.
- 3. Operations file (up to 18 operations and 60 cards). The last card must show 0000 in the first four columns.
- 4. Print-out options (1 card).

General Information

Seven parameters for general use throughout the program are read into the array XINFO(7). They are read under the format 7F10.2. They are:

XINFO(1), the power safety factor;

- XINFO(2), the soil traction number CN as defined
 in ASAE Data 230.3 (ASAE Yearbook, 1981);
- XINFO(3), the average soil slope (the tangent);
- XINFO(4), the absolute minimum alfalfa yield
 (t DM/ha);
- XINFO(5), the absolute maximum alfalfa yield
 (t DM/ha);
- XINFO(6), the absolute minimum corn silage yield
 (t DM/ha);
- XINFO(7), the absolute maximum corn silage yield (t DM/ha).

The power safety factor is actually the inverse of the allowable continous tractor load. A value of 1.4 will generally be used, based on several observations of measured power requirements and actual tractor size recommendations by PAMI (1979). A firm soil is usually assumed for forage harvesting (CN = 30.). The average soil slope is generally zero. A value greater than zero should however be assigned whenever slopes are important and affect the choice of tractor size. The absolute minimum

and maximum yields of alfalfa and corn silage should be based on prior knowledge of extreme values.

Machinery Data File

Each machinery data card contains 14 parameters to be read under the format I4, 3F8.2, 10F5.1. The first parameter is the machine code and is stored in an array MCODE(100). There can be up to 100 data cards, including the last one (0000). The other 13 parameters are stored in matrix XMDATA(100,13). The parameters are the following machinery characteristics:

```
XMDATA(I,1), mass (kg);
```

XMDATA(I,2), list price (\$);

XMDATA(I,3), actual value (\$);

XMDATA(I,4), machine age (h);

XMDATA(I,5), annual use other than for forage
harvest (h);

XMDATA(I,6), width (m);

XMDATA(I,7), maximum continuous throughput (tDM/h);

XMDATA(I,8), transport capacity (t WM);

XMDATA(I,9), self-propelled machine dummy variable:

1. for self-propelled machines, 0. for
non self-propelled machines;

XMDATA(I,10), engine type dummy variable: 1. for a
gasoline engine, 2. for a diesel engine,

3. for an electric motor:

XMDATA(I,11), engine power (kW);
XMDATA(I,12), time to load one bale (h);
XMDATA(I,13), time to unload a bale wagon (h).

Not all data are relevant to all machines. The first five parameters are required for all. When a machine characteristic is irrelevant, zero (0.0) should be inserted on the data card in the appropriate columns. Table B.1 lists all the machines that are considered for forage harvesting and the relevant data that are required as input to characterize each machine. Some characteristics, especially maximum continuous throughput and time to load or unload, are difficult to estimate accurately. Some values are given in Appendix A. Others are found in the example at the end of this appendix.

Two exceptions to the above parameter defenitions occur with machines 0260 and 0270, dump trucks and forage compacting tractors. Ownership is assumed for all machines except for those two cases, for which leasing will be assumed. Input for XMDATA(I,2) should be leasing cost (\$/h), excluding labor and fuel costs, instead of the list price.

Table B.1. Machines used for forage harvest.

Code number Machine range			Relevant characteristics		
	0010-0019	Tractor	Power		
	0020-0029	Electric motor	Power		
	0030-0039	Cutterbar mower	Width, throughput		
	0040-0049	Cutterbar mower-conditioner	Width, throughput		
	0050-0059	Drum mower-conditioner	Width, throughput		
	0060-0069	Other types of mowers	Width, throughput		
	0070-0079	Side-delivery rake	Width		
	0080-0089	PTO-driven rake	Width		
	0090-0099	PTO-driven tedder	Width		
	0100-0109	Rectangular baler	Throughput		
	0110-0119	Large round baler	Throughput		
	0120-0129	Large stack maker	Throughput		
	0130-0139	Forage harvester cutterhead	Throughput		
	0140-0149	FH row-crop attachment			
	0150-0159	FH windrow pickup			
	0160-0169	FH direct-cut mower			
	0170-0179	Bale thrower			
	0180-0189	Bale wagon	Capacity (tons)		
	0100 0100	(small rectangular bales)	3 ! 1		
	0190-0199	Automatic bale wagon	Capacity,		
		(small rectangular bales)	troughput and		
	0000 0000	Same State Same	time to unload		
	0200-0209	Round bale loader	Time to load,		
	0010-0010	David hala manan	time to unload		
	0210-0219	Round bale mover	Capacity		
	0220-0229	Large stack loader-mover	Time to load,		
	0230-0239	Small bale elevator	time to unload		
	0230-0239		Throughput		
	0250-0259	Forage blower	Throughput		
	0250-0259	Forage boxes	Capacity		
	0270-0279	Dump trucks for forages	Power,capacity Power		
	02/0-02/9	Large tractor for compacting silage in a bunk silo	FOWER		
		PITAGE III & DONK PITO			

Table B.2. Operations modelled in FORHRV.

Code number		Number of data cards
0010-0019	Cutterbar mowing	1
0020-0029	Cutterbar mowing-conditioning	1 1 1 1 1
0030-0039	Drum mowing-conditioning	1
0040-0049	Raking	1
0050-0059	Double-raking	1
0060-0069	Tedding	1
0070-0079	Rectangular baler, with bales	1
	dropped on the ground	
0080-0089	Round baler	1
0090-0099	Large stack maker	1 1 2
0100-0109	Forage harvester, with windrow pickup blowing the forage on the ground), 2
0110-0119	Automatic rectangular bale pickup	1
	wagon	
0120-0129	Large stack moving	1
0130-0139	Round bale loading-moving	1 2 5
0140-0149	Corn silage chopping, transport	5
	and unloading	
0150-0159	Alfalfa haylage chopping, transport	5
0160-0169	and unloading Alfalfa direct-cut chopping,	5
0100-0109	transport and unloading	5
0170-0179	Rectangular baler, with bales	5
	simultaneously ejected or stacked in	a
	trailing wagon, transport and unloadi	
0180-0189	Handpicking rectangular bales dropped	
	on the field, transport and unloading	

Operation File

Some forage harvest operations are simple, involving only a tractor and an implement, while others are more complex, involving a harvester, transport units and an unloading component. The varying complexity is reflected by varying the number of data cards required for each operation. There are 18 different harvest operations modelled by FORHRV: they are listed in table B.2.

The first nine operations are individual operations, whose working rate depends only on one tractor and one implement (or a multiple of the combination). These operations are fully defined with one data card containing eight data, read under the format 314, 5F10.2. The first three data are read into the matrix ICODE(60,3). They are:

ICODE(I,1), the operation code number;

ICODE(I,2), the implement code number from the
 machinery data file;

ICODE(I,3), the power source code number from the machinery data file.

Implement and power source numbers used here must have been previously defined in the machinery data file, otherwise execution will be stopped and the error will be identified.

The other five parameters are read into matrix XOPER(60,5). They are:

XOPER(I,1), the number of units;

XOPER(I,2), the maximum allowable speed (km/h);

XOPER(I,3), the actual working width (m);

XOPER(I,4), the average bale size (kg WM);

XOPER(I,5), the average hauling distance (km).

The last two data are relevant only for certain operations: when baling or when a transport component is included in the operation. The datum XOPER(I,1) allows the use of multiple, identical machines.

Two operations (0100 and 0130) require two data cards. In the case of a forage harvester blowing material on the ground (operation 0100), only one tractor is required but two distinct implements are required: the cutterbar head and the windrow pickup attachment. The first data card is identical to a single-card operation. The second card contains information about the second implement. For operation 0100, all data on both cards are identical except the following:

ICODE(I,2) is the cutterbar code number; ICODE(I+1,2) is the windrow pickup code number. In the case of loading and moving large round bales (operation 0130), the first data card identifies the loading implement while the second card specifies the moving wagon if there is one.

ICODE(I,2) is the bale loader code number;

ICODE(I+1,2) is the bale mover code number.

If no distinct multiple bale mover is used (i.e. round

bales are moved one by one from the field to storage with the loader), then ICODE(I+1,2) should read 0000. All other

data are identical on both cards.

Five operations (0140 to 0180) require five data cards. Operation 0180 is a special case and will be dealt with separately. In the case of the other four operations, the first data card describes the harvester: tractor and harvest implement. The second data card specifies any additional attachment to the harvester: a bale thrower, a corn head, a windrow pickup or a direct-cut mower. The third and fourth cards are usually identical and describe the transport system. The fifth data card identifies the unloading system. Table B.3 shows in detail all the data required for each operation.

It should be kept in mind that each operation between 0140 and 0170 includes harvest, transport and unloading. The use of two transport information cards (cards 3 and 4) allows the analysis of a special case: when no distinct

transport tractor is available, i.e. the same tractor is used for field harvest and for transport to storage. Such an analysis is done by setting the number of transport units initially at zero on card 3 (TR1 = 0.) and by setting the number on card 4 to one (TR2 = 1.).

The last operation (code 0180) is hand-picking small rectangular hay bales. Five data cards are also used to define this operation. Table B.3 shows the information required. Since this is a transport-unloading operation, little information is needed in the first two cards which relate mostly to harvest. Maintaining the same data structure as in the other five-data-card operations simplified the simulation by allowing the use of the same subroutines, especially for transport and unloading calculations.

Print-out Options

last card print-out data contains three parameters: IPR1, IPRINT and IPRIN read under the format 312. When IPRl is equal to one (1), values from the RATES matrix are printed out for each operation at six yield When IPRINT is equal to one (1), detailed information is printed out on cycle times for operations that include transport to storage (operations 0110 to 0180). When IPRIN is equal to one, the input data are printed out. Any value other than one will disactivate the

Table B.3. Data required for harvest operations.

One-data-card operations (0010 to 0090, 0110, 0120)

Hauling distance (km)
Average bale size (kg WM)
Working width (m) n)
Maximum allowable w speed (km/h)
Number of units
Tractor
Implement code
Operation code
-

Two-data-card operations (0100, 0130)

second card, the implement code is for the windrow-pickup or for the round bale mover. ICODE(I+1,2) is 0000 if there is no distinct bale mover and all bales are moved one by one by the Both data cards are identical in form to the one defined above for one-data-card operations. On the On the first card, the implement code is for the cutterhead or the round bale loader. loader from the field to storage.

(0180)
operation
ive-data-card

	(E)		cime , (h)		
	Hauling distance (km)		Minimum interface time at storage, excluding conveying (h)	=	
	Bale size (kg WM)	field unit, driver	Total extra Minimum labor at interfacunloading at storasite excludir	=	
	••	Labor in the field per transport unit, excluding the driver	Total number of wagons	=	
	•	·	Maximum allowable transport speed (km/h)	=	
•	0	·	Number of units	=	Number of units
7	0	0	Transport tractor code	=	Power source code
	0	0	Transport wagon code	=	Unloader code
	1. Operation code	:	=	5	:
	-:	2.	က်	4.	5.

Table B.3. (continued)

Hauling distance (km)		Minimum interface time at storage, excluding conveying (h)	Ξ	
Average bale size (kg WM)		Number of extra men unloading	÷	
Working width (m)	Is a transport wagon pulled by the harvester? Yes=1. No=0.	Total number of wagons	=	
Maximum allowable speed for harvest (km/h)	v	Maximum allowable speed for transport (km/h)	=	Silo height (m)
m	tin he and rt	of :t :R1)	of rt (R2)	ng Se
Number of units	Minimum Interface between, tharvester a transpounit (h)	Number of transport units (TR1)	Number of transport units (TR2)	Number of unloading units
Harvesting tractor code	" Minimum interface time ower between, the harvester and a transport unit (h)	Transport Number of tractor transport code units (T	" Number of transport units (1	Power Number of source unloading code units
Cutterhead Harvesting Number or baler tractor of units code				L Ø
erhead Harvesting aler tractor code	=	Transport e tractor code	=	ider Power source code

print-out options.

An Example

Table B.4 is an example of input data used by program FORHRV. The first page of input data includes general information (first line) and an extensive machinery data file (from the second line to the last line on the page). Sixty-four different machines are specified, between machine 10 (a 20-kW tractor) and machine 270 (a 150-kW tractor for compacting silage). Of course not all machines will be used. The extensive machinery data file is useful because it provides readily a large number of alternatives. Only the machines atually used are cost accounted.

The second page of input data starts with 0000, the separator between the machinery data file and the operations file. Ten operations are identified between operation 40 (raking) and operation 160 (direct-cut alfalfa chopping). Twenty-eight (28) lines are needed to identify the ten operations because some operations require up to five data cards.

The first operation is a raking operation (40) and uses machines 70 (a 2.9 m wide rake) and 10 (a 20-kW tractor). Note that the user must define what machines are matched together.

Operation 170 is a baling-transport-unloading operation. Tractor 13 (60 kW) pulls a conventional baler 103 (14 tons DM/h as maximum throughput) with a bale ejector 181. One transport unit composed of tractor 12 (40 kW) and hay wagon 181 (5.4 ton capacity) travels an average distance of one km from the field to storage. A bale elevator (230) and a 5-kW electric motor are used to unload bales at storage.

As can be seen, each operation can be defined with a fair amount of detail. The present operation file identifies ten operations. Up to 18 operations may be defined in the same file. Not all operations need to be used on a given farm. Only those operations actually done and the machines required are accounted.

The end of the operations file is recognized when 0000 appears in the first four columns. Finally the printout options are read. Here 1-0-1 means that the rates of each operation are printed out, without detail, and the input data are also printed.

Table B.5 shows the calculated work rates for the ten operations defined above. The order in which operations are defined in FORHRV does not matter (the order will matter in the dynamic simulation, in ALHARV). Rates are estimated at six different yields. These rates are conserved in the RATES matrix for subsequent use, by

interpolation, in the dynamic simulation.

Program FORHRV is independent of the dynamic simulation and can be used alone. It should actually be used to test various minor or major changes in implement matchings (e.g. tractor size, number of transport units) before going on with the dynamic simulation.

Table B.4. Example of input data for FORHRV.

THE INPUT DATA FILE FOR		
1.40 30.00 3.00 10 1200.00 8000.J0 8000.JJ 11 1800.0012000.0012000.00	0.0 0.0 0.0 0.0	7.50 20.00 0.0 1.0 2.0 20.0 0.0 0.0 0.0 1.0 2.0 30.0 0.0 0.0
12 2400.0016000.0016000.00	0.0 0.0 0.0 0.0	0.0 1.0 2.0 40.0 9.0 C.0
14 4800.0032000.0032000.00 15 6000.0040000.3040000.03	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 1.0 2.0 80.0 0.0 0.0 0.0 1.0 2.6100.0 0.0 0.0
16 1800-0012000-0012000-00 20 150-00 800-00 800-00 30 360-00 2000-00 2000-00	0.0 0.0 0.0 0.0	0.0 1.0 1.0 30.0 0.0 0.0 0.0 1.0 3.0 5.0 0.0 0.0
40 1140.00 6000.00 6000.JO	0.0 0.0 2.2 10.0	
41 1360.00 7200.00 7200.30 42 1930.00 9700.00 9700.30 43 4500.0022000.0022000.30	0.0 0.0 3.7 15.0	0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 56.0 0.0 0.9
50 1400.00 8100.00 8000.00 70 375.00 2700.00 2700.00	0.0 0.0 3.3 17.0	
71 790.00 5800.00 5800.00 90 400.00 2400.00 2400.00	0.0 0.0 5.8 0.0 (0.0
91 550.00 3300.00 3300.00 100 1200.00 6000.00 6000.00	0.0 0.0 0.0 6.0	
101 1450.00 8000.00 8000.00 102 1650.0010000.0010000.00 103 2000.0011000.0011000.00	0.0 0.0 0.0 11.0	0.0
110 1500.00 8000.00 8000.00 111 1900.0011000.0011000.00	0.0 0.0 0.0 7.5	
120 2400.00 8500.00 8500.00 121 4000.0012500.0012500.00	7.0 G.0 0.0 10.0 ($egin{array}{cccccccccccccccccccccccccccccccccccc$
122 6500.0020000.0020000.00 130 530.00 4300.00 4300.00 131 1130.00 6000.00 6000.00	0.0 0.0 0.0 6.0	
131 1130400 6000.00 6000.00 132 1460.00 8000.00 8000.00 133 1650.0010500.0010500.00	0.0 0.0 0.0 11.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
134 1700.0012000.0012000.00 140 125.00 1500.00 1500.00	0-3 0-0 0-0 18-0	$egin{array}{cccccccccccccccccccccccccccccccccccc$
141 230.00 1800.00 1800.00 142 360.00 2800.00 2800.00 143 630.00 5100.00 5100.00	0.0 0.0 .8 0.0 (3.0 0.0 1.5 0.0 (
143 630.00 5100.00 5100.00 150 175.00 1400.00 1400.00 151 320.00 2200.00 2200.00	0.0 0.0 1.4 0.0	
152 410-00 2600-00 2600-00 160 360-00 2800-00 2800-00	0.0 0.0 2.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
161 550.00 3200.00 3200.00 170 250.00 2000.00 2000.00	3.0 0.0 2.2 0.0	
180 320.00 1400.00 1400.00 181 400.00 1700.00 1700.00		3-6 0-0 0-0 0-0 0-0 0-0 5-4 0-0 0-0 0-0 0-0 0-0
182 550.00 2200.00 2200.00 190 2000.0011000.0011000.00 191 2500.0013500.0013500.00	0.0 0.0 0.0 15.0	7.2 0.0 0.0 0.0 0.0 0.0 0.1 2.0 0.0 0.0 0.0 0.0 .1 3.0 0.0 0.0 0.0 0.0 .1
192 4200.0020000.0020000.00		5.0 0.0 0.0 0.0 0.0 1 .8 0.0 0.0 0.0 1
201 450.00 2800.00 2800.00 210 400.00 2000.00 2000.00		.8 0.0 0.0 0.0 .1 .1 2.4 0.0 0.0 0.0 0.0 0.0
211 650.00 4000.00 4000.00 220 460.00 3000.00 3000.00 221 600.00 4000.00 4000.10	0.0 0.0 0.0 0.0 0.0 0	1.3 0.0 0.0 0.0 0.0 0.3
221 600.00 4000.00 4000.30 222 1000.00 6000.00 6000.30 230 600.00 3000.00 3000.30	0.0 0.0 0.0 3.0	2.7 0.0 0.0 0.0 .1 .1 4.5 0.0 0.0 0.0 .1 .1 0.0 0.0 0.0 0.0 0.0 0.0
240 500.00 2500.00 2500.00 241 600.00 2700.00 2700.00	0.0 0.0 0.0 40.0 (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
242 450.00 2500.00 2500.00 250 1350.00 7500.00 7500.00	3-0 0-0 0-0 0-0 !	0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 7.2 0.0 0.0 0.0 0.0 0.0
251 1500.00 9000.00 9000.00 252 1650.0010000.0016000.00 260 6000.00 30.00 0.30	3.0 0.0 0.0 3.0 9	9-1 0-0 0-0 0-0 0-0 0-0
270 9000.00 30.00 0.00		ó. ó i. ó 2. ó i 5 ö. ó ó. ó

. .. **..** .

Table B.4. Example of input data for FORHEV (continued).

0000 1700 1700 1700 1700 1500 1500 1500	70 103 170 181 181	1133220 11220 11221 11223	11.000000000000000000000000000000000000	8.00 10.00 20.00 20.00 10.00 10.00 20.00 20.00	22.000 22.0000 22.000 22.000 22.000 22.000 22.000 22.000 22.000 22.00	0.00 0.00 1.00 1.00 0.00 0.00 0.00	000 0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
20000000000000000000000000000000000000	493511100221112111221111221112211112221122111222112222	1044444 114444 111111111111111111111111	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000 120000	2.700 7.000 7.777	0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000
0000							

Table B.5. Example of output from FORHRV.

	SPEED(KM/H)	000000 00000 000000 000000	SPEED(KM/H)	### ### ### ### ### ### ### ###	SPEED (KM/H)	14 006-30 006-00 006-00 006-00 00-00	SPEED(KM/H)	111 122 122 132 134 140 140 140 140 140 140 140 140 140 14
	LABOR (MH/H)	000000 000000 000000	LABOR (MH/H)	00000 •••••• 00000	LABOR (MH/H)	00000 00000 00000	LABOR (MH/H)	000 COO
	ELEC(KUH/H)	000000	ELEC(KVH/H)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TR UL ELEC(KWH/H)	989999 999999 999999	MOU-COND ELEC(KUH/H)	
RAKING	FUEL (L/H)	NNNNNN ••••• •••••	ALE EJECT TR FUEL(L/H)	MARAMA - • • • • • • • • • • • • • • • • • • •	CHOP (ALF-UP) FUEL(L/H)	01000000 0000000 0000000 0000000000000	CUTTERBAR MOL FUEL(L/H)	996
KNOUN AS R	LOAD(DEC)	**************************************	KNOUN AS B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KNOUN AS C	9mmmm 9mmm 9 0 0 0 0	KNOWN AS C	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
OPERATION 40	ETP(TDM/H)	4889664 4889666 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6	OPERATION 170) ETP(TDM/H)	MANAAA • • • • • • • • • • • • • • • • • •	PERATION 150 Etp(TDM/H)	PAGENTA PAGENT	OPERATION 22) ETP(TDM/H)	000 000 000 000 000 000
RATES FOR OPER	EFC(HA/H)	MUMUMUM PHAPP O O O O O MUMUMUM	RATES FOR OPER EFC(HA/H)	4000mm	RATES FOR OPER EFC(HA/H)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RATES FOR OPER Efc(HA/H)	0000 0000 8000 0000 8000 0000
CALCULATED WORK RA	YDMCT/HA)	anaga ••••• anaga	CALCULATED WORK RA YDM(T/HA)	40N 411 9	CALCULATED WORK RA YDM(Ţ/HA)	400409	CALCULATED WORK RA YDM(T/HA)	HUM 400

Table B.5. Example of output from FORHRV (continued).

CALCULATED WORK	RATES FOR OPE	OPERATION 60	KNOUN AS	TEDDING			
VDMCT/HA)	EFC(H4/H)	ETP(TDM/H)	LOADIDEC)	FUEL (L/H)	ELEC(KWH/H)	LABOR (MH/H)	SPEED(KM/H)
		287	 	សមាសសមា • • • • • • • • • • • • • • • • • • •	000000	0000C0 000000 ••••• ••••	000000 000000 000000
CALCULATED WORK YDM(T/HA)	RATES FOR OPE EFC(HA/H)	OPERATION 100	KNOUN AS	CHOP ON THE G FUEL(L/H)	GROUND ELEC(KWH/H)	LABOR (MH/H)	SPEED(KM/HI
		0807888 6.00 6.00 8.40 6.40 6.40 6.40			000000	000 0 00 000 00 0 ••••••••••••••••••••••	112.000 111.000 79.500 7.866 7.866
CALCULATED WORK YOM(T/HA)	RATES FOR OPE EFC(HA/H)	OPERATION 80) ETP(TDM/H)	KNOWN AS	ROUND BALING FUEL(L/H)	ELEC(KUH/H)	LABOR (MH/H)	SPEED(KM/H)
~ (N) (A R) (A - (A) (A) (A) (A)	OCCCC	049000 049000 000400 9800000	 		090000 000000 11111 000000	444444 00000 00000	000000 000000 0000000 0000000000000000

Table B.5. Example of output from FORHRY (continued).

	SPEED(KM/H)	000000 000000 000000 000000	SPEED(KM/H)	4044 NN 4044 VA 4044 VA	SPEED(KM/H)	000-055 000-055 000-050 000-055 000-055
	LABOR (MH/H)	000000 000000 000000	L ABOR (MH/H)	0000 00 0000 00 0000 00	LABORCMH/H)	000000 000000000000000000000000000000
MOVER	ELEC(KWH/H)		UL ELEC(KWH/H)	CDBG BB BBGB BB 1111 11 DBBB BB	TR UL Elec(KWH/H)	000000
ROUND BALE MO	FUEL(L/H)	44444 44444 999 999 999 999 999 999 999	CHOP (CS) TR Fuel(L/H)	해하하는 함께 이미	CHOP (ALF-DC) FUEL(L/H)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KNOWN AS A	LOAD(DEC)		KNOWN AS C		KNOUN AS C	9mmmmm 9mmmm 9 0 0 0 0
OPERATION 130	ETP(TDM/H)	NUNUNN ********************************	OPERATION 140	80 90 90 60 90 90 80 90 90	OPERATION 169) ETP(TOH/H)	
RATES FOR OPER	EFC (HA/H)	Bound So	RATES FOR OPER EFC(HA/H)	00000 000 00000 000	F OR CHA/H	
CALCULATED WORK RI	YDMCT/HAD	400420 •••••	CALCULATED WORK RA YDM(T/HA)	21 HILL 21 WASON 20 COOO	CALCULATED WORK RATES YDM(1/HA) EFC	000000 00000 ••••••

APPENDIX C A USER'S GUIDE TO ALHARV

APPENDIX C

A USER'S GUIDE TO ALHARV

Subroutine ALHARV and all the subroutines called therefrom simulate daily harvest of alfalfa either as direct-silage, field-cured haylage or field-cured hay. A flow chart in chapter 7 describes the algorithm and its location in the overall dynamic simulation. The present appendix explains how to set up the input data and provides an example.

The subroutine that reads the input data for alfalfa harvest is called MGTINF. Up to four alfalfa harvests may be simulated per year. For each harvest, the area in hectares, the sequence of harvest operations and a criterion matrix must be read. Information about silo capacity and cost and about hay barn capacity and cost is also read. Printout options for alfalfa harvest are then read. Finally the dairy cow herd is specified when subroutine COWFD is used to formulate the rations. Table C.1 shows the general structure of the alfalfa harvest management data file.

Table C.1. General structure of alfalfa harvest management input data file.

		Line number	Input data	Format	
Harvest	1	1 2 3 4 5 6	Area Sequence of harvest operations Criterion matrix " " " " " "	F10.2 9I5 9F5.2 9F5.2 9F5.2 9F5.2	
Harvest	2	7 8 9 10 11	Area Sequence of harvest operations Criterion matrix """ """ """ """	F10.2 9I5 9F5.2 9F5.2 9F5.2 9F5.2	
Harvest	3	• • •			
• • •					
Harvest	n	• • •			
		6n+1 6n+2	0.0 SILO(1), SILO(2), ALFSIL(1), ALFSIL(2), HAYST(1), HAYST(2), HAYST(3)	F10.2 7F10.2	
		6n+3	IPR2, IPR3, IPR4	312	
		6n+4 6n+5	<pre>XLCOWS, (HERD(I),I=1,6) 1. if another herd is analyzed 0. if ration analysis is ended</pre>		
		6n+6 6n+7	XLCOWS, (HERD(I), I=1,6)		

Basicly the input data can be broken down into three parts: the alfalfa harvest parameters, the storage structures and the dairy herd composition.

Alfalfa harvest parameters

Six input data lines are used to define each harvest. Table C.2 shows all the parameters that define one alfalfa harvest. The first line specifies the area harvested as alfalfa (ha). The second line lists up to nine harvest operations that might be involved in alfalfa harvest. Operations are identified by the same numbers defined previously in the FORHRV program (Appendix B). identify a mowing-conditioning example, 00020 would operation with specific mower and tractor sizes defined in FORHRV. The nine operations must be identified in the order shown in table C.2. Some operations may be omitted such as extra curing treatment (e.g. tedding), treatment after rain (e.g. tedding or raking) or independent transport of bales (e.g. hauling big bales several days after harvest). When such operations do not exist, 00000 should be inserted for the operation number.

The last four lines for each alfalfa harvest contain decision parameters that affect the scheduling of each operation. These decision parameters are stored in the criterion matrix (CRTR, lines 3 to 6).

Table C.2. Input data for each alfalfa harvest.

6		Independent transport of bales	Are bales stored outside? Yes=1.	Is T simult. with H? Yes=1. No=0.		
œ		Destroy the harvest		Critical days for destruct.	Is there independ. transport of bales? Yes=1.	
7		Forced hay harvest	Maximum moisture content (dec,db)	Critical crude protein	Is there independ. transport of bales? Yes=1.	Feeding
9		Second priority harvest	Maximum moisture content (dec,db)	Critical days for destruct.	Is there independ. transport of bales? Yes=1.	Feeding method
ĸ		First priority harvest	Maximum moisture content (dec,db)	Critical crude protein	Is there independ. transport of bales? Yes=1.	Feeding method
4		Treatment after rain		WR	Drying factor	
м		Raking	Can R be simultan. with H? Yes=1. No=0.	KK K		Mowing crude protein criterion
2		Extra curing treatment	Can XT be simultan. with M? Yes=1. No=0.	WR	Drying factor	Maximum nb of days mowing can be ahead of harvest
1	Area (ha)	Mowing- condition.	Can M be simultan. with H? Yes=1. No=0.	Windrow to swath ratio (WR)	Drying factor	Is mowing limited to a half day? Yes=1. No=0.
	Line 1:	Line 2:	Line 3:	Line 4:	Line 5:	Line 6:

Some explanation may be useful as to the difference between first and second priority harvests. These two operations are usually the same operation. A plot of alfalfa will be shifted to second priority harvest if the actual crude protein is lower than the "critical crude protein" (line 4, column 5) or if silo 1 is full and silo 2 is not full. In the case of alfalfa silage or haylage, when both silos are full, the alfalfa plots remaining are harvested as dry hay. There are no storage capacity limitations for dry hay except that a marginal yearly storage cost is added if the volume of hay harvested is above the specified barn capacity. The storage policy is further described in chapter 7. It is implied that there can be two silos receiving forages of different quality. A single silo is also allowed. Alfalfa plots may harvested as soon as their moisture content drops below the "maximum moisture content" specified in the criterion matrix (line 3, column 5, 6 and 7).

Another criterion is used to decide if some plots are irremediably wasted because of overexposure. If a plot is exposed for a period longer than the "critical days for destruction" (line 4, columns 6 and 8), then it is shifted to the harvest operation defined as "destroy the harvest". This operation can be either a baling with transport operation or a chopping operation blowing material on the

ground. In either cases, the value of the material is assumed to be zero and the use of machinery for this disposal operation is accounted. Column 6 applies to first and second priority harvests. Column 8 applies to forced hay harvest.

The ninth operation, "independent transport of bales", is required when baling dry hay is independent from transport, i.e. bales are dropped on the ground and left for some time before they are hauled to a storage area. If the bales are always transported the same day they are harvested, the criterion "average number of days left in the field" should be 0. Otherwise a constant additional field loss will be accounted for weathering of bales left outside.

The windrow to swath ratio (line 4) should be defined for mowing and for all curing treatments. Generally it is 0.8 for mowed alfalfa left in a wide windrow and 0.5 or less for raked material.

The drying factors (line 5) refer to coefficients in equation 6.3. The drying factor for the mowing operation is CD in equation 6.3. It is generally 0 for a simple mower and 1 for a mower-conditioner. In the case of extra curing treatments, the drying factor should be equal to b9*XTR in equation 6.3. For example, a value of 0.05 was suggested for maceration. If there is treatment after rain (tedding or raking), the drying factor is equal to RK in

equation 6.3. A value of 1 should be used. Chapter 6 describes more fully the alfalfa drying model and the drying parameters.

The maximum number of days mowing can be ahead of harvest (line 6, column 2) can be used to reduce the risk of having too many plots curing at the same time. The minimum default value is two days (four plots). If a very high value were used, mowing would proceed regardless of the delays with harvesting.

The mowing crude protein criterion (line 6, column 3) is the crude protein below which mowing should no longer be postponed. The criterion is used as a mesure of maturity. If the crude protein of the growing alfalfa is higher than the criterion, mowing is postponed for a maximum of ten days on the assumption that the plant is still too immature. The mowing crude protein criterion should be in the range between 0.15 and 0.23 to activate the postponing decision algorithm. If the criterion is outside the range, mowing is not postponed and starts on the first date BGNCUT(NTHCUT).

The feeding method for each harvesting operation is a number between 1 and 7. Table 7.1 lists the seven feeding methods considered. It is the model user's responsibility to make sure the feeding method is compatible with the harvest operation.

Presently the model is able to read information for up to five alfalfa harvests per year. Any number between 1 and 5 is allowed (1 < n < 5). A value of 0.0 in line 6n+1, after the last harvest, will indicate the end of alfalfa harvest parameters.

Storage structures

The next line includes seven parameters for the storage of alfalfa:

- SILO(1) is the storage capacity of the first silo (t DM):
- SILO(2) is the storage capacity of the second silo (t DM);
- ALFSIL(1) is the initial cost of silo 1, including the unloading equipment (\$);
- ALFSIL(2) is the initial cost of silo 2, including the unloading equipment (\$);
- HAYST(1) is the marginal cost for storing hay
 once the fixed hay storage capacity is filled
 (\$/t DM/year);
- HAYST(2) is the initial cost of a hay barn (\$);
- HAYST(3) is the fixed hay storage capacity (t DM).

The following line (6n+3) includes three printout parameters. When their value is 1, they activate detailed printouts. Any other value will disactivate the printouts. When IPR2 is 1, a daily printout will show how much area is moved and harvest each day. A seasonal summary will appear at the end of each harvest. When IPR3 is 1, a yearly detailed output will show the feeding value of all alfalfa plots harvested in a year. When IPR4 is 1, a yearly summary of the use of each machine and the resources required for harvest and feeding is printed out.

Dairy herd composition

The last lines, starting at 6n+4, are required only when subroutine COWFD, written by this author, is used for the ration formulation of the dairy herd. While all the previous lines are read from subroutine MGTINF, the last line is read from COWFD. The seven variables read in are:

- XLCOWS, the number of lactating cows
 (representing the total of fractions HERD(1),
 HERD(2), HERD(3) and HERD(4));
- HERD(1), the fraction of the total herd as high
 yield lactating cows (35 kg milk/day);
- HERD(2), the fraction of the total herd as medium yield lactating cows (30 kg milk/day);

- HERD(3), the fraction of the total herd as medium low yield lactating cows (25 kg milk/day);
- HERD(4), the fraction of the total herd as low yield lactating cows (20 kg milk/day);
- HERD(5), the fraction of the total herd as dry cows;
- HERD(6), the fraction of the total herd as heifers.

The sum of HERD(1) to HERD(6) must be equal to 1. Each group of cows is fed farm grown feeds (alfalfa, corn silage, high moisture corn). Additional corn grain or soybean meal may be purchased to satisfy the net energy and the crude protein requirements. Any excess farm grown feeds are sold on the market. Subroutine COWFD is further explained in chapter 8.

The input on the following line is either 0 or 1. A value of 0 means the end of the feed analysis. A value of 1. means another herd with other values for XLCOWS and HERD will be read. The same harvested feed over 26 years will be allocated to this different dairy herd. Again the next line must specify either 0 (end) or 1 (continue with another herd). There must always be an even number of data lines in the dairy herd composition section, and the last card must always read 0.

An example

Table C.3 lists the input data read for the dynamic simulation using the ALHARV set of subroutines for daily harvest simulation and the COWFD subroutine for ration formulation. The second page of table C.3 lists input data read from the alfalfa growth model (Parsch,1982).

Four alfalfa harvests per year are simulated in this example. The four earliest mowing dates are defined as Julian days 135, 180, 225 and 285. No area is grown as corn. On the first page, all four harvests are seen to cover 100 ha. The sequence of operations is the same in all four harvests: operation 22 (mowing-conditioning) is followed by raking (40) and by chopping alfalfa haylage (operation 150). The 26th line indicates that there are two silos with a 375-ton capacity each. There is also a hay barn with a 250-ton DM capacity.

When the first silo is filled, haylage goes into the second silo. When both silos are filled, operation 80 (round baling) takes over the haylage operation. Note that operation 130 (transport of large bales) is also required. If the crop is left field curing more than 14 days, it will be destroyed by operation 100 (chop and blow on the ground).

All the machines used for these operations (22, 40, 150, 80, 100, 130) are those defined in the FORHRV program explained in appendix B.

Table C.4 is a partial output from the dynamic simulation based on input from table C.3. The first page shows the potential yield and quality of alfalfa on the earliest mowing date for each harvest over a 26-year simulation. The second page shows the actual harvested alfalfa available as feed from each harvest. The third page provides information on the starting and ending dates of alfalfa harvest. The fourth page shows how the total alfalfa was distributed in the four storage locations: first silo, second silo, high quality hay and low quality hay. The fifth page shows the feed utilization with 160 low milk producing cows. The sixth page lists costs, milk income and net return. The seventh page is a summary of the resource utilization.

Table C.3. Example of input data for ALHARV.

FOLLOWS			
A D A S	0 • 0		.300
대 전 대	25		
SEQUENCE W	00 • 0006		.100
0 PERATION 1130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.00		009.
AREA AND	46250.00	in COWFD	000.
1150 1150 6 00 6 00 00 6 0	4625:1•03	ta were read	000.
A	375.00	following data	000.
COCO COCO NOCO NOCO NOCO NOCO NOCO NOCO		The	160.

ALF IN
N RUN READ INTO SUBROUTINE ALFIN
INTO
READ
N N
INPUT VALUES FOR ALFALFA SIMULATION
ALFALFA
FOR
VALUES
INPUT

Table C.3. Example of input data for ALHARY (continued).

1643.

070 000 000 000 126 69. 2 5=60085 900 QUAL I TY -60 -00 -05 VARIATION 4=CF 004 004 MUNICAL SANGORNO SANG YIELD. 3=016 24 440 080 P 1=DMYLD 2=CP PRODUCTION. OF CUTTING. 13 i4 15 ALFALFA 3=C0EF 474 200 200 200 PRE-HARVEST **DEVIATION** 000 000 • COLS ARE: FAL ANNUAL P FIRST DAY ARD M00 YALF. 2=STAN DUAL TOTA MATRIX 431 500 12 1=MEAN 1953-1978: 000 848 **000** OUTPUT. 1-4: COLS 2: AR. ALL MEA 000 000 YEARS. 3011 SIMUL ATION ¥ × × × SIMULAT 236 526 226 COLUMNS: EVER ARIZE CUTTINGS E SIMULATION Y 200 56 FOR 5010 CANA ONE ATIST OUTPUT 000 814 I SUT 1975 710 702 702 SUMMARY SUMM/ COLS EACH -CVP

e C.4. Example of output from ALHARY.

. 646 . 014 . 021 AVERAGE DIGESTIBILITY YEARLY CP 400 400 9 . 597 . 129 . 216 0 (DEC) 2634 PROTEIN 2=STANDARD CRUDE ... 900 1000 1000 AVERAGE ALFALFA DM YIELD AVAILABLE AS FEED (T/HA). AVERAGE FOR UP TO 4 HARVESTS AND THE ANNUAL TOTAL HARVEST 3 DM CP 202 1=HEAN, ROV SIMULATION OUTPUT. 0100 SAMPLE STATISTICS • 172 • 009 • 054 3.56

タムやどろすらむほくりらゃんろものらりょう いゅうこうろうろうろうしょしょしょしょしょしょ

HOM

e C.4. Example of output from ALHARY (continued).

17.31 4.80 SPAN ENDING Date 305-12 6-82 02 CONTRACTOR CONTRA OF VARIATION HARVEST 4 STARTING DATE 287.81 3.51 3=C0EF. 13.62 3.20 2.20 SPAN **20** ENDING Date 247.54 ROW 2=STANDARD DEVIATION. HARVEST 3 STARTING DATE 253.92 1.94 SIMULATION 18.38 2.35 135 MHOLE SPAN ROW 1=MEAN. FOR THE ENDING DATE 206.30.00 ALFALFA HARVEST 2 STARTING DATE OUTPUT. 187.92 3.20 9 HARVEST DATES SIMULATION SPAN MPLE STATISTICS FOR 159.92 4.18 ENDING Date ENDING HARVEST 1 STARTING DATE STARTING AND 140.96 3.70 からやたですらららくりらったですりものようとってころってことでごろうとしましまりましてましてましてましてましてましてましてましてましてましてましてましてました。 7 -00

Table C.4. Example of output from ALHARY (continued)

QUALITY HAY S(CP) DIG S(DIG)

M

HIGH QUALITY HAY

F

ALFALFA IN SECOND SILO
ON CP S(CP) DIG S(DIG)

Table C.4. Example of output from ALHARY (continued).

TOTAL ALFALFA FEED AVAILABLE FROM FOUR STORAGE LOCATIONS THE INFORMATION INCLUDES TOTAL DM (T), AVERAGE CP. BIASED STANDARD DEVIATION OF AVERAGE DIG AND BIASED STANDARD DEVIATION OF DIG

4443=14+90004=1400=1400=1400=1400=1400=1400=1400	P-10
0~4~4~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~	200
	900 I
	500
4	S 200
4 6	1 A 00 0
@@ULLOR@UQLH@LOLUNH&@ULROR	> ••0 > •00 > •00 •00 •00 •00 •00 •00 •00 •00
ろろろうろろろろ	0F 126
	m F
• • • • • • • • • • • • • • • • • • •	3 = CO 0 1 0 0 1 0 0
00000000000000000000000000000000000000	800 E
#####################################	2 8044 0 004
	A 600
1000000000000000000000000000000000000	> 6481 H 8041
	- • • •
	8 00m
まるものではいってあるものでものでものでもしているとしていませることをしているとのできるとのではいい。 ユニュー よくくようしゅう (14) しょうしょう (14) しょうしゅう (14) にっぽっぱん (14) にっぽん (14	136 136
₹. •	
TOU BROWNING ON NOT THE STORY ON THE STORY O	2 404 I 0 204 I
	0 004
, 1940,040,040,040,040,040,040,040,040,040,	A 200 I
60000000000000000000000000000000000000	10-4E
	1 HOM 1
	2000 1000 1000
	400
NP	0UTPUT
	21. 21. 5.
എന്നവാവവായത്തെന്നുവാവവാവവാവവാവവാവവാവാവ 1	NO T
ちらもこりもおこちゃりりゅうちりもこうと (************************************	4ULATION •017 •007
	1 400 C
 מוניפיפים של מונים של מונים מונים של	N 6000
	A 400
10/00/00	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.000mmmademmnacanamadem	1
	H 604
00-400-00-00-00-00-00-00-00-00-00-00-00-	NOW NT
	M • • • • • • • • • • • • • • • • • • •
นมนมนมนมนมนมนมนมนมนมนมนมนมนมนมน มนายนายนายนายนมนายนม	AMP 32
	ø

ALFALFA IN FIRST SILO
OM CP S(CP) DIG S(DIG)

MAXINUM INTAKE 1240.34 1240.04 VARIATION 93 000 • 600 9 000 SOLD 000.0 FEEDS 2=STANDARD DEVIATION, ROU 000 000-0 PROPORTIONS: ALF -117.63 89.46 --76 S PURCHASED C6 & CON CON CONTRACT | 1000 CON CONTRACT | 1000 23.23 EEDS WERE USED EACH YEAR TOTALING COURS IS 160 TO THE FOLLOWING TONS OF DRY HATTER COURD 1=MEAN. FEEDS 1.39 1.42 ROM 000 OUTPUT. ED ON THE I 000 000 PRODUCED CS 000 SUMMARY OF HOW FETTIE NUMBER OF LACTORY NET DAIRY HERO IS NOT SAFE HERE FORM STATISTICS FEEDS . 994.65 HOM

output from ALHARY (continued). of Example C.4. Table

15=NRET

Table C.4, Example of output from ALHARY (continued).

	=MILK 15=NRE	00000000000000000000000000000000000000		226382. 7034.
	=	######################################		334048
	SUM(10-12)			107666. 7034.
	2=CG 13=		NO	17664. 3230. .18
	1=FNET 1	When and I had annum the control of	VARIATI	10075. 7402.
DAFOSYM).	UM(1-9) 1	$\begin{array}{c} 0 0 0 0 0 0 0 0$	3=COEF OF	79927. 1926.
•	6 10=SU			000
ENS MODEL	9=DR YC	000000000000000000000000000000000000000	D DEVIATION	•••
FORAGE SYSTEMS Net Returns. '	C 8=CUSTC6		2=STANDARD	19385. 0.00.
DAIRY-F Ss and n	EEO 7=FSC	44444440044040404040404040404040404040	1=HEAN	4119. 321.
COMBINED EARS. ION. GRO	D 6=LABF	$\begin{array}{c} \bullet \bullet$	UN: ROWS	4524. 149. 03
ULTS FOR Y ULATION Y F PRODUCT	I S=LABFL	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	MULATION R	6334. 172. .03
RUN RESU 26 SIMU COST OF	EL 4=RM	N IN THE PROPERTY OF THE PR	FOR SIMU	3683• 194• • 05
TPLATION STRITTON STRITTON PRESTON	6 3=FU	$\begin{array}{c} \mathbf{d}_{\mathbf{q}} \\ \mathbf{d}_{q$	TISTICS	15286. 1114.
HARY SINCE	7 2=F	CONONONONONONONONONONONONONONONONONO	PLE STAT	26545. 00.
MAK MO) II	りらかなですららはようらかなですらんのようらかなです マンクランフングラードをもしましましま	SAM	HUM

Table C.4. Example of output from ALHARV (continued).

		**************************************		••: 000 •
	9=CG(OMT)			000
	-			0
	8=CG(HA)		VARIATION	• • © • • • • • • • • • • • • • • • • •
	S(HA)		OF VAR	• •0 •••
	7=CROPS(HA)		3=COEF	
	O CHRS)		DEVIATION	900
	6=LABFEED(HRS)	••••••••••••••••••••••••••••••••••••••		••• ••• •
		ชา สามารถ สา	2=STANDARD	0 000
ENT.	5=LABFLO(HRS)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1=MEAN	82. 64. 64. 64.
INVESTMENT	/RHS 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROWS	90 80 • • • • •
SE AND	F=	00000000000000000000000000000000000000	ON RUN	6384 172 03
SOURCE U	3=FUEL(・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	SIMULATI	11918. 629. .05
AL A	Sf 6 / 1:		STICS FOR	101500
ROL RESS	N 8	••••••••••••••••••••••••••••••••••••••	E STATI	36600.
E E E		ल ल ल ल ल लल्ला जल लाल लाल ज्ञान जल जल जान जान ज	MPLE	-

APPENDIX D EXPERIMENTAL DATA OF ALFALFA DRYING

APPENDIX D

EXPERIMENTAL DATA OF ALFALFA DRYING

Field experiments were conducted in Chatham, Michigan during the first and second alfalfa cuts in 1980 and during the first cut in 1981. Appendix D lists the original data that were collected during those three experiments. The measurement technique is described in Savoie et al. (1981).

Table D.1 represents drying rate measurements as a function of several machinery and environmental factors. Table D.2 shows how rain was adsorbed by field curing alfalfa. Table D.3 illustrates how dew was adsorbed under a variety of environmental conditions.

Table D.1. Alfalfa drying data collected in Chatham, Michigan in June and July 1980 and in June 1981. Each observation contains fourteen variables. Environmental variables are average values during the drying period. The variables are:

```
average values during the drying period. The variables are:
    DMDT, drying rate (dec. d.b. moisture content per hour);
    MO, the initial moisture content (dec., d.b. = dry basis);
2.
 3. MF, the final moisture content;
4. SR, solar radiation intensity (cal/min/cm2);
   TDB, dry bulb temperature (C);
6.
    TWB, wet bulb temperature (C);
    WV, wind velocity (m/s);
8.
    YDM, yield of dry matter (kg/ha);
    AM, alfalfa maturity factor equal to the ratio in
9.
         equation 6.18:
10.
    WR, windrow to swath ratio (equation 6.4);
    RK, raking dummy variable
11.
         RK = 1, on the day of raking
         RK = 0 otherwise
     CD, conditioning dummy variable
12.
         CD = 0 for cutterbar mowing
         CD = 1 for mower-conditioner
         CD = 2 after a second conditioning treatment;
13.
    RNDW, rain and dew dummy variable
         RNDW = 0 if no rain or dew has occurred
         RNDW = 1 if all the moisture that evaporated
             during the trial was from rain or dew.
         RNDW can be a fraction between 0 and 1 if part
             of the evaporated water was dew or rain and the
             other part was moisture initially in the plant;
14.
    DAY, a day factor
         DAY = 0 on the first curing day
```

DMDT	MO	MF	SR	TDB	TWB	WV	YDM	AM	WR	RK	CD	RNDW	DAY
220	2 (55	2 (17		10 (11.0	2 0	1.120	1.0	700	•	•	•	^
	3.655	•	-	_		_	4129.					Ο.	
.101	2.617	2.222	0.43	15.0	11.0	0.8	4129.	1.0	.782	0.	Ο.	Ο.	0.
. 304	3.720	2.807	0.81	13.0	10.8	4.1	2260.	.90	. 782	0.	0.	Ο.	0.
.279	2.807	2.361	0.86	13.3	10.5	3.4	2260.	.90	.782	0.	0.	0.	0.
.130	2.361	2.112	0.72	13.4	10.7	3.8	2260.	.90	. 782	0.	0.	Ο.	0.
.049	2.112	1.926	0.22	11.0	9.0	2.8	2260.	.90	.782	0.	0.	0.	Ο.
.472	3.398	2.400	1.02	23.6	18.6	4.5	2579.	0.6	. 782	0.	0.	0.	0.
. 344	2.400	1.234	0.51	23.3	19.6	3.1	2579.	0.6	. 782	0.	0.	Ο.	0.

DAY = 1 on all subsequent curing days.

DMDT	MO	MF	SR	TDB	TWB	WV	YDM	AM	WR	RK	CD	RNDW	DAY
.454	3.302	1.654	0.73	26.6	22.6	1.1	1515.	. 55	.782	٥.	٥.	0.	0.
.219		0.357		25.8	21.7	1.7	1515.	.55	.782	0.	0.	0.	0.
.271		2.481		20.8	18.4	3.0	2398.	.50	.782	0.	o.	0.	0.
.617		3.202	-	20.0	15.7	0.9	4181.		.852	0.	0.	0.	0.
.313		2.409		21.0	15.5	0.9	4181.		.852	0.	0.	0.	0.
.179	-	2.122		21.4	16.0	1.4	4181.		.852	0.	0.	0.	0.
.082	2.122	1.833	0.20	19.4	15.7	2.5		.95	.852	0.	0.	0.	0.
.484	4.108	3.688	1.10	14.1	12.0	3.3	4817.	.85	.852	0.	0.	ο.	0.
.237	3.688	2.715	1.18	20.8	15.5	1.5	4702.	.80	.852	0.	0.	Ο.	0.
.123	2.715	2.041	0.42	16.3	12.9	2.5	4817.	.85	.852	0.	٥.	0.	0.
.635	3.932	3.212	1.06	17.9	14.3	0.8	4702.	.80	.852	٥.	0.	Ο.	0.
.237	3.212	2.057	1.20	20.8	15.5	1.5	4702.	.80	.852	0.	0.	Ο.	0.
.113		1.509		20.2	14.1	2.1	4702.	.80	.852	0.	0.	Ο.	0.
.415		2.502	-	20.8	16.2	3.2	4019.	•75	.852	0.	0.	Ο.	0.
. 196		1.759		23.9	18.4	3.5	4019.	•75	.852	Ο.	Ο.	Ο.	0.
.097		1.221		22.2	16.7	3.1	4019.	•75	.852	0.	0.	Ο.	0.
.095		1.881		21.4	16.0	1.4	4824.	•95	.424	1.	0.	Ο.	0.
.067	1.881	1.646		19.4	15.7	2.5	4824.	•95	.424	1.	0.	Ο.	0.
.087		1.897		16.3	12.9	2.5	4868.	.85	.424	1.	0.	Ο.	0.
.115		1.224		20.2	14.1	2.1	3354.	.80	.424	1.	Ο.	Ο.	0.
.109		1.386		22.2	16.7	3.1	4121.	•75	.424	1.	0.	Ο.	0.
.601		4.015		20.5	16.0	0.9	4005.	•95	.443	Ο.	1.	Ο.	0.
.276		3.256		21.0	15.5	0.9	4005.	•95	.443	0.	1.	Ο.	0.
.261		2.879		21.4	16.0	1.4	4005.	•95	.443	0.	1.	Ο.	0.
.070		2.641		19.4	15.7	2.5	4005.	•95	.443	0.	1.	Ο.	0.
.237		3.610		12.2	10.9	3.3	4464.	.85	.443	Ο.	1.	Ο.	0.
.277		2.549		17.9	14.1	3.8	4464.	.85	.443	Ο.	1.	Ο.	0.
.100		1.976		16.3	12.9	2.5	4464.	.85	.443	Ο.	1.	Ο.	0.
.298		3.396		17.9	14.3	0.8	4162.	.80	.443	Ο.	1.	Ο.	0.
.247		2.229		20.8	15.2	1.5	4162.	.80	.443	0.	1.	Ο.	0.
. 134		1.558		20.2	14.1	2.1	4162.	.80	.443	0.	1.	Ο.	0.
.435		2.763		20.8	16.2	3.2	4426.	·75	.443	Ο.	1.	Ο.	0.
.239		1.767		23.9	18.4	3.5	4426.		.443	0.	1.	Ο.	0.
.132	1.767			22.2	16.7		4426.				1.		0.
.286		2.593		19.6	14.0	2.8	4685.		.443	0.	1.	Ο.	0.
.114		2.122		15.0	11.0	0.8	4685.		.443	0.	1.	Ο.	0.
.225	3.720			13.0	10.6	4.1	6005.	.90	.443	0.	1.	Ο.	0.
.231	3.316			13.3	10.5	3.4	6005.	.90	.443	0.	1.	0.	0.
.153		2.628		13.4	10.7	3.8	6005.	.90	.443	0.	1.	0.	0.
.044		2.455		11.0	9.0	2.8	6005.	.90	.443	0.	1.	0.	0.
.760		2.993		25.0	20.2	4.5	3138.	.60	.443	0.	1.	Ο.	0.
-202		2.246		23.3	19.6	3.1	3138.	.60	.443	0.	1.	0.	0.
•337	3.302	1.863	0.74	25.3	21.8	1.1	2809.	•55	.443	0.	1.	0.	0.

DMDT	MO	MF	SR	TDB	TWB	wv	YDM	AM	WR	RK	CD	RNDW	DAY
. 157	1.863	0.919	0.36	25.7	21.7	1.7	2984.	•55	.443	ο.	1.	ο.	ο.
.261		2.346		20.4	18.3	3.0	2093.	.50	.443	0.	1.	0.	0.
.281	-	2.800	-	21.4	16.0	1.4	4406.	.95	. 394	1.	1.	0.	0.
.101		2.459		19.4	15.7	2.5	4406.	.95	.394	i.	1.	0.	0.
.153		1.685		16.3	12.9	2.5	4358.	.85	.394	1.	1.	0.	0.
.128		1.372		20.2	14.1	2.1	3499.	.80	.394	i.	1.	0.	0.
.118		1.087		22.2	16.7	3.1	4196.	.75	.394	i.	1.	0.	0.
.570		3.715		20.3	15.9	0.9	4967.	.95	.705	o.	1.	0.	0.
.306		2.883		21.0	15.5	0.9	4967.	.95	.705	0.	1.	0.	0.
.263		2.498		21.4	16.0	1.4	4967.	.95	.705	0.	1.	0.	0.
.075		2.229		19.4	15.7	2.5	4967.	.95	.705	o.	i.	0.	0.
.377		3.517		13.6	11.7	3.3	4160.	.85	.705	0.	1.	0.	0.
.309		2.271		17.9	14.1	3.8	4160.	.85	.705	0.	1.	0.	0.
.126		1.571		16.3	12.9	2.5	4160.	.85	.705	0.	1.	0.	0.
.440		3.007		16.2	13.6	0.8	4150.		.705	o.	1.	0.	0.
.284		1.772		20.8	15.5	1.5	4150.	.80	.705	o.	1.	0.	0.
.122		1.115		20.2	14.1	2.1	4150.	.80	.705	0.	1.	0.	0.
.677		2.701		21.9	17.1	3.2	4597.	.75	.705	o.	1.	0.	0.
.267		1.552	_	23.9	18.4	3.5	4597.	.75	.705	o.	1.	0.	0.
.097		1.057		22.2	16.7	3.1	4597.	.75	.705	0.	1.	0.	0.
.263		2.293	_	21.4	16.0	1.4	4948.	.95	. 394	1.	1.	0.	0.
.102		1.938		19.4	15.7	2.5	4948.	.95	.394	1.	1.	0.	0.
.119		1.389		16.3	12.9	2.5	3906.	.85	.394	1.	1.	0.	0.
. 144		1.173		20.2	14.1	2.1	3968.	.80	.394	1.	1.	0.	0.
.097		0.868		22.2	16.7	3.1	4305.	.75	.394	1.	1.	0.	0.
.079		1.446		14.1	12.0	3.3	3910.	.95	.852	o.	0.	0.	1.
.041		1.207		17.2	13.5	2.8	3910.	.95	.852	0.	0.	0.	1.
.056		1.186		14.1	12.0	3.3	4824.	.95	.424	0.	0.	0.	1.
.043		0.935		17.2	13.5	2.8	4824.	.95	.424	0.	0.	0.	1.
.044		1.099		17.2	13.5	2.8	4080.	.95	.424	1.	0.	0.	1.
.130		1.368		20.9	15.3	1.5	4472.	.85	.852	0.	0.	0.	1.
.061		1.029		20.2	14.2	2.0	4472.	.85	.852	Ο.	Ο.	0.	1.
.110		1.442		20.9	15.3	1.5	4936.	.85	.424	Ο.	0.	Ο.	1.
.044		1.198		20.2		2.0	4936.		.424	Ο.	Ο.		1.
.099		0.868		20.2	14.2	2.0	5437.		.424	1.	Ο.	Ο.	1.
. 109		0.582		19.8	15.7	3.1		.85	.852	Ο.	0.	0.	1.
.022		0.509	-	22.2	16.7	3.1	5072.	.85	.852	Ο.	0.	Ο.	1.
.067		0.768		19.8	15.7	3.1	5162.	.85	.424	0.	0.	0.	1.
.030		0.594		22.2	16.7	3.1	5162.	.85	.424	0.	0.	0.	1.
.025		0.363		22.2	16.7	3.1	3872.	.85	.424	1.	0.	0.	1.
.050		0.509		20.3	14.7	2.0	3294.	.95	.852	0.	0.	0.	1.
.031		0.573		20.3	14.7	2.0	4452.	.95	.424	0.	0.	0.	1.
.035		0.605		20.3	14.7	2.0	4526.		.424	1.	0.	0.	1.
		_		_	•		-						

DMDT	MO	MF	SR	TDB	TWB	WV .	YDM	AM	WR	RK	CD	RNDW	DAY
.055	1.635	1.279	0 - 87	22.4	17.4	3.1	5206.	.80	.852	0.	0.	0.	1.
.082	1.302			22.3	16.7	3.1	5206.	.80	.852	0.	0.	0.	1.
.071	_	0.859		22.4	17.4	3.1	3354.	.80	.424	0.	0.	0.	1.
.083		0.388		22.3	16.7	3.1	3354.	.80	.424	0.	0.	0.	1.
.079		0.791		22.3	16.7	3.1	5042.	.80	.424	1.	0.	0.	1.
.087		0.722		20.5	16.5	2.2	5136.	.80	.852	0.	0.	0.	1.
.086		· .	1.05	20.5	16.5	2.2	4198.	.80	.424	0.	0.	0.	1.
.070	-	0.831	1.05	20.5	16.5	2.2	5276.	.80	.424	1.	0.	0.	1.
.143		-	1.05	20.5	16.5	2.2	3962.	.00 .75	.852	0.	0.	0.	1.
.098			1.05	20.5	16.5	2.2	4141.	·15 ·75	.424	0.	0.	0.	1.
.125			1.05	20.5	16.5	2.2	4013.	·15 ·75	.424	1.	0.	0.	1.
.131		1.595		14.1	12.0	3.3	4913.				1.	0.	1.
.112		1.208		14.1	12.0	3.3	4948.	.95	.705	0.	1.	0.	1.
.074	1.590	1.149		17.2		2.8	4913.	·95	.394	0.			
.018		1.102		-	13.5			.95	.705	0.	1.	0.	1.
.082				17.2	13.5	2.8	4948.	.95	.394	0.	1.	0.	1.
.064		1.113		17.2	13.5	2.8	5097.	.95	.394	1.	1.	0.	1.
	_			20.3	14.7	2.0	5295.	·95	.705	0.].	0.	1.
.014		0.487		20.3	14.7	2.0	5022.	•95	. 394	0.	1.	0.	1.
.044		0.514		20.3	14.7	2.0	4532.	·95	.391	1.	1.	0.	1.
.111	_	0.968		20.9	15.3	1.5	3646.	.85	.705	0.	1.	0.	1.
.090		0.822		20.9	15.3	1.5	3906.	.85	. 394	0.	1.	0.	1.
.073		0.535		20.2	14.2	2.0	3643.	.85	.705	0.	1.	0.	1.
.051		0.535		20.2	14.2	2.0	3906.	.85	. 394	0.	1.	0.	1.
.067		0.603		20.2	14.2	2.0	5442.	.85	. 394	1.	1.	0.	1.
.063		0.323	_	19.8	15.7	3.1	3721.	.85	.705	0.	1.	0.	1.
.036		0.375		19.8	15.7	3.1	4674.	.85	.394	0.	1.	0.	1.
.010	-	0.261	•	22.2	16.7	3.1	3721.	.85	.705	0.	1.	0.	1.
.026	0.375	_	-	22.2	16.7	3.1	4674.	.85	.394	0.	1.	0.	1.
.008	-	0.275		22.2	16.7	3.1	3572.	.85	.394	1.	1.	0.	1.
.081		0.768		22.4	17.4	3.1	4198.	.80	.705	0.	1.	0.	1.
.092		0.751		22.4	17.4	3.1	3967.	.80	.394	0.	1.	0.	1.
.063	.782	0.419		22.3	16.7	3.1	4198.	.80	.705	0.	1.	0.	1.
.035		0.548		22.3	16.7		_	.80	. 394	0.	1.	0.	1.
.016		0.636		22.3	16.7	3.1	4237.	.80	. 394	1.	1.	0.	1.
. 140	0.871		_	20.5	16.5	2.2	3336.	.80	.705	Ο.	1.	Ο.	1.
.087		0.610	1.05	20.5	16.5	2.2	4102.	.80	.394	Ο.	1.	Ο.	1.
.116	0.851		1.05	20.5	16.5	2.2	5061.	.80	. 394	1.	1.	Ο.	1.
.090			1.05	20.5	16.5	2.2	4733.	·75	.705	Ο.	1.	Ο.	1.
.098	0.971		1.05	20.5	16.5	2.2	4305.	•75	. 394	0.	1.	Ο.	1.
.098	1.151	0.768	1.05	20.5	16.5	2.2	4618.	·75	. 394	1.	1.	Ο.	1.
.122	2.678	1.905		14.1	12.0	3.3	4081.	•95	.479	0.	1.	Ο.	1.
.099	2.471	1.843		14.1	12.0	3.3	4406.	•95	. 394	0.	1.	Ο.	1.
.080	1.905	1.438	0.74	17.2	13.5	2.8	4081.	•95	.479	0.	1.	0.	1.

DMDT	MO	MF	SR	TDB	TWB	WV	YDM	AM	WR	RK	CD	RNDW	DAY
.098	1.843	1.367	0.74	17.2	13.5	2.8	4406.	.95	. 394	٥.	1.	ο.	1.
.098	_	1.162	-	17.2	13.5	2.8	4099.	.95	.394	1.	1.	0.	1.
.029	•	0.687	•	20.3	14.7	2.0	4064.	.95	.479	0.	1.	0.	1.
.038		0.587		20.3	14.7	2.0	4252.	.95	.394	0.	1.	0.	1.
.063		0.636		20.3	14.7	2.0	4099.	.95	.394	1.	1.	0.	1.
. 127		1.236		20.9	15.3	1.5	4741.	.85	.479	0.	1.	0.	1.
.095		_	1.20	20.9	15.3	1.5	4358.	.85	. 394	0.	1.	Ο.	1.
.037		0.742	0.40	20.2	14.2	2.0	4358.	.85	.394	٥.	1.	Ο.	1.
.070	1.247	0.843	0.40	20.2	14.2	2.0	4741.	.85	.479	0.	1.	Ο.	1.
.085	1.194	0.716	0.40	20.2	14.2	2.0	4019.	.85	. 394	1.	1.	Ο.	1.
.060	0.925	0.567	0.94	19.8	15.7	3.1	5413.	.85	.479	٥.	1.	Ο.	1.
.072	0.870	0.441	0.94	19.8	15.7	3.1	4188.	.85	. 394	0.	1.	Ο.	1.
.035		0.313		22.2	16.7	3.1	5413.	.85	.479	0.	1.	Ο.	1.
.023		0.305		22.2	16.7	3.1	4188.	.85	. 394	Ο.	1.	Ο.	1.
.045		0.339		22.2	16.7	3.1	4069.	.85	. 394	1.	1.	Ο.	1.
.113		0.982		22.4	17.4	3.1	4422.	.80	.479	0.	1.	Ο.	1.
. 107		0.845		22.4	17.4	3.1	3499.	.80	. 394	٥.	1.	0.	1.
.061		0.581		22.3	16.7	3.1	4422.	.80	.479	Ο.	1.	Ο.	1.
.067		0.463		22.3	16.7	3.1	3499.	.80	. 394	Ο.	1.	Ο.	1.
.031		0.888	0.57	22.3	16.7	3.1	4305.	.80	. 394	1.	1.	Ο.	1.
.114	0.916	_	1.05	20.5	16.5	2.2	4331.	.80	.479	Ο.	1.	0.	1.
.118			1.05	20.5	16.5	2.2	3902.	.80	. 394	0.	1.	Ο.	١.
.125		-	1.05	20.5	16.5	2.2	4514.	.80	. 394	1.	1.	Ο.	1.
. 152	1.185		1.05	20.5	16.5	2.2	4919.	·75	.479	Ο.	1.	Ο.	1.
. 146		0.852	1.05	20.5	16.5	2.2	4196.	. 75	. 394	Ο.	1.	Ο.	1.
. 190		0.410	1.05	20.5	16.5	2.2	3671.	. 75	. 394	1.	1.	Ο.	1.
.225		2.505	. 38	15.9	15.2	3.2	3967.	•95	.852	Ο.	0.	1.	١.
.113		1.825	•57	20.6	17.8	2.5	3967.	•95	.852	Ο.	Ο.	.74	1.
.094	2.638	2.093	. 38	15.9	15.2	3.2	4824.	•95	.424	Ο.	Ο.	1.	1.
.091		1.545	•57	20.6	17.8	2.5	4824.	•95	.424	Ο.	0.	.82	1.
. 179		3.376	. 38	15.9	15.2	3.2	4973.	•95	.705	Ο.	1.	1.	1.
.161		2.411	•57	20.6	17.8	2.5	4980.	•95	.705	Ο.	1.	1.	1.
. 192	3.972	2.851	. 38	15.9	15.2	3.2	4948.	•95	.394	Ο.	1.	1.	1.
. 147	2.851	1.968	•57	20.6	17.8	2.5	4948.	•95	. 394	0.	1.	1.	1.
. 179		3.478	_	15.9	15.2	3.2	4088.		.479	0.	1.	1.	
. 154		2.552	•57	20.6	17.8	2.5	4088.	•95	.479	Ο.	1.	.89	
.092		3.643	. 38	15.9	15.2	3.2	4406.	•95	.394	0.	1.	1.	1.
. 153		2.762		20.6	17.8	2.5	4406.	.95	.394	0.	1.	1.	
.554	-	2.234	.83	22.3	19.4	3.1	2497.	.50	.852	0.	0.	.90	
. 134		1.311	.24	21.8	19.0	2.4	2643.	.50	.852	0.	0.	0.	1.
.133		1.170		21.8	19.0	2.4	2291.	.50	.424	0.	0.	0.	1.
.637		1.953		22.3	19.4	3.1	2114.	.50	.852	0.	1.		1.
. 138	1.893	0.965	.24	21.8	19.0	2.4	2114.	.50	.424	Ο.	1.	ο.	1.

DMDT	MO	MF	SR	TDB	TWB	WV	YDM	AM	WR	RK	CD	RNDW	DAY
. 560	4.991	1.921	.83	22.3	19.4	3.1	2858.	. 50	1.000	0.	0.	.78	1.
-	1.878	_	_	=	19.0	_	2858.	_	.424			-	
.607	5.310	2.176	.83	22.3	19.4	3.1	2033.	_	.479				
.141	2.176	1.161	.24	21.8	19.0	2.4	2863.	.50	.479	Ο.	1.	0.	1.
. 146	2.014	1.006	.24	21.8	19.0	2.4	1355.	.50	. 394	0.	1.	0.	1.
.601	4.690	1.606	.83	22.3	19.4	3.1	2467.	.50	.479	٥.	2.	.80	1.
.137	1.388	0.442	. 24	21.8	19.0	2.4	2467.	.50	. 394	٥.	2.	0.	1.
.548	4.128	1.308	.83	22.3	19.4	3.1	1690.	.50	1.000	Ο.	1.	.66	1.
.052	1.202	0.843	.24	21.8	19.0	2.4	1690.	.50	. 394	Ο.	1.	Ο.	1.

Table D.2. Rain adsorbed by mowed alfalfa. Data collected in Chatham, Michigan.

Previous treatments (1)	No of samples	Moistur Before rain	e cont. After rain		YDM (kg/ha)	WR	RAIN (mm)	Percent of rain absorbed
СВ	6	1.999	3.815	1.816	3967.	.852	5.3	16.5
CB-R	2	1.646	2.638	0.992	4824.	.424	5.3	24.7
MC	6	2.297	4.422	2.125	4973.	.705	5.3	28.3
MC-R	2	1.938	3.972	2.034	4948.	. 394	5.3	54.4
MCW	6	2.657	4.526	1.869	3872.	.479		- ·
MCW-R	2	2.459	4.179	1.720	4406.	. 394	5.3	_
СВ	4	2.548	5.280	2.738	2467.	.782	30.7	2.8
CB-CR	2	2.378	5.443	3.065	2114.	.782	30.7	2.7
CB-TD	2	2.582	4.991	2.409	2858.	1.000	30.7	2.2
MCW	4	2.431	5.310	2.879	2109.	.407	30.7	4.9
MCW-CR	2	2.218	4.690	2.472	2467.	.407	30.7	4.9
MCW-TD	2	2.272	4.128	1.856	1690.	1.000	30.7	1.0
СВ	4	0.838	2.048	1.210	5207.	.852	28.2	2.6
CB-R	4	0.589	1.746	1.157	4198.	.424	28.2	
MC	4	0.419	2.373	1.954	4198.	.705	28.2	4.1
MC-R	4	0.592	2.343	1.751	4102.	. 394	28.2	6.5
MCW	4	0.581	2.650	2.069	4422.	.479	28.2	6.8
MCW-R	4	0.675	2.645	1.970	3902.	. 394	28.2	6.9
СВ	6	1.138	2.079	0.941	3978.	.852	28.2	1.6
CB-R	2	1.386	2.371	0.985	4141.	.424	28.2	3.4
MC	6	1.110	2.661	1.551	4695.	.705	28.2	3.7
MC-R	2	0.868	2.428	1.560	4305.	. 394	28.2	6.0
MCW	6	1.097	2.365	1.268	4503.	.479	28.9	4.2
MCW-R	2	1.087	2.775	1.688	4196.	. 394	28.2	6.4

⁽¹⁾ Previous treatments are: CB, cutterbar mower; MC, mower-Conditioner; MCW, mower-conditioner-windrower; R, rake and TD, tedder.

Table D.3. Dew adsorption during the night (between 20:00 in the evening and 8:00 the next morning).

Previous	Moistur	(d.b.)		Temperatures (C)			
treatments	Previous	Previous	Morning	Dew	TDB	TWB	Minimum
(1)	morning	evening	after		(C)	(C)	night TDB
CB + rain	3.815	1.825	1.937	.112	19.5	16.0	7.8
CB-R + rain	2.637	1.545	1.537	008	19.5	16.0	7.8
CB	1.852	0.999	1.254	.255	18.8	13.2	7.2
CB-R	1.968	1.033	1.283	.150	18.8	13.2	7.2
CB	3.932	1.597	1.635	.038	18.8	13.2	7.2
CB-R	3.932	1.224	1.315	.091	18.8	13.2	7.2
CB	2.048	0.876	1.090	.214	14.2	10.9	7.0
CB-R	1.748	0.827	0.948	.121	14.2	10.9	7.0
CB	2.653	1.366	1.752	. 386	20.2	19.6	13.3
CB-R	2.374	1.086	1.270	. 184	20.2	19.6	13.3
СВ	1.752	0.646	1.264	.618	23.3	21.1	11.1
CB-R	1.270	0.472	0.822	. 350	23.3	21.1	11.1
CB + rain	5.047	1.440	1.888	. 348	18.2	17.6	13.9
CB-R + rain	5.513	1.170	1.364	. 194	18.2	17.6	13.9
CB	1.579	0.322	1.157	.825	18.5	16.3	16.7
CB-R	1.731	0.532	0.856	. 324	18.5	16.3	16.7
CB	3.398	1.357	2.477	1.120	20.0	17.0	7.8
CB	3.302	0.322	1.655	1.333	23.3	21.1	11.1

APPENDIX E LISTING OF THE COMPUTER PROGRAMS

APPENDIX E

LISTING OF THE COMPUTER PROGRAMS

The computer models developed by this author are listed on the following pages. Before they are presented however, the list of control statements and the organizing main program prepared by Parsch (1982) and this author are briefly explained.

Table E.1 shows the commands that were used on the MSU Cyber 750 to link five input data files and five binary coded files to run the complete simulation of forage systems. The input data files were MACHINPUT for the FORHRV program (appendix B), MGTALFINPUT for the ALHARV algorithm (appendix C), ALFCRNINPUT for the alfalfa and corn models (Parsch, 1982), ELANSWTHR5378 for historical weather data and BMATRIXLP for the stochastic corn yield distributions.

The five binary files were FORHRVBIN from program FORHRV listed in table E.3, ALHARVBIN from program ALHARV listed in table E.4, ALFMODBIN from the alfalfa growth model (Parsch, 1982), CRNMODBIN from the corn yield,

planting and harvest model (Parsch, 1982) and BIGMODBINPS from the organizing main program listed in table E.2.

The organizing main program (table E.2) sets up reading of the input data and links the binary files together. Subroutine REPORT follows immediately after BIGMOD and generates the end of simulation printout tables.

Table E.3 lists program FORHRV, the static machinery model. It can be run independently as described in appendix B. Table E.4 lists program ALHARV, the dynamic harvest, storage and feeding model for alfalfa. It cannot be run independently: it requires FORHRV and the models developed by Parsch (1982), namely the alfalfa growth model (ALFMOD) and the corn model (CRNMOD). The listing includes a main program, TEST, that was used to run ALHARV for testing purposes only with fixed growth and weather parameters. When using TEST as the main program, only ALHARVBIN and FORHRVBIN are required as binary files along with their corresponding input data files, MACHINPUT and MGTALFINPUT.

Table E.1. Listing of the CYBER commands to operate the forage simulation model on the MSU computer.

JOBCARD,RG1,JC2000,CM170000,L100.	100
ATTACH, B, WOLBBINIT.	110
HAL, CCEXEC, B.	120
ATT, DATA1, MACHINPUT.	130
ATT, DATA2, MGTALF I NPUT 1.	140
ATT, DATA3, ALFCRNINPUTB4.	150
EDITOR, E=DATA1.	160
EDITOR, E=DATA2.	170
EDITOR, E=DATA3.	180
ATT, WEATHR, ELANSWTHR5378.	190
ATT, BMATRX, BMATRIXLP.	200
RETURN, DATA1, DATA2, DATA3.	210
ATT, FORHRV, FORHRVBIN.	220
ATT, ALHARV, ALHARVBIN.	230
ATT, ALFMOD, ALFMODBIN.	240
ATT, CRNMOD, CRNMODBIN.	250
ATT, BIGMOD, BIGMODBINPS.	260
LOAD, FORHRV.	270
LOAD, ALHARV.	280
LOAD, ALFMOD.	290
LOAD, CRNMOD.	300
LOAD, BIGMOD.	310
EXECUTE.	320
EXIT, C, S.	330
REWIND, ZZZZZMP, OUTPUT.	340
*EOS	
SAVE, MACH, NS.	360
≯E OS	
SAVE, MGTALF, NS.	380
★ EOS	
SAVE, ALFCRN, NS.	400

Table E.2. Listing of the main program linking FORHRV, ALHARV. ALFMOD and CRNMOD.

```
130
 C **********************************
                                                                           100
       PROGRAM BIGMOD
                                                                           110
 C ***********************
                                                                          120
 C
                                                                           130
 C
                                                                           140
       COMMON/ALF123/SLA.DTL.SDCLAI.XLDLAI.CSF.DTS.XMLOSC.RCTNC.RGR.
                                                                           150
             XMLBUD, XMLTNC, XFROST, ALCROP, ALSOIL, U, ALPHA, XL, PTF, XLAT,
                                                                           160
             XIRRIG, AWFC, AWFS, AWINIT, WTHR (365, 5), DAY1 (39), DEC (39),
                                                                           170
                                                                           180
             DAY2 (14) . SRAD (14)
       COMMON/CTRL24/BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                           190
             QUAL (3,4), GDDCUM, METRIC, JYEARF, JYEARL, IPRT1, IPRT2,
                                                                           200
             JDAYF, JDAYL, JPRT, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                           210
       COMMON/Y3/NMDATA, NOPER, IN, IO
                                                                           220
 C
                                                                           230
 C
                                                                           240
       OPEN (1, FILE='MACH')
                                                                           250
                                                                           260
       OPEN (2, FILE='MGTALF')
       OPEN (3. FILE='BMATRX')
                                                                           270
       OPEN (4. FILE='WEATHR')
                                                                           280
       OPEN (5, FILE='ALFCRN')
                                                                           290
       OPEN (6, FILE='OUTPUT')
                                                                           300
                                                                           310
C
    READ IN ALL USER-INPUTTED DATA FROM FILES.
                                                                           320
C
                                                                           330
       | N=1
                                                                           340
       CALL FORHRY
                                                                           350
       IN=2
                                                                           360
       CALL MGTINF
                                                                           370
       CALL ALFIN (IFEED, ICDF)
                                                                           380
       CALL CRNIN (NYRS, IPRT4)
                                                                           390
C
                                                                           400
C
    BEGIN SIMULATION CYCLE. LOOP 10=YEARS, LOOP 20=DAYS.
                                                                           410
C
                                                                           420
       DO 10 JYEAR=JYEARF, JYEARL
                                                                           430
                                                                           440
       NTHYR=JYEAR-JYEARF+1
C
                                                                           450
C
    READ IN CLIMATOLOGICAL DATA FOR JYEAR. INITIALIZE
                                                                           460
C
    RELEVANT VARIABLES. PLANT CORN CROP FOR JYEAR.
                                                                           470
                                                                           480
                                                                           490
       READ (4,200) ((WTHR (JDAY, ITYPE), ITYPE=1,5), JDAY=1,365)
       CALL YRINIT
                                                                           500
       CALL CRNPLT (NTHYR, CPLANT)
                                                                           510
C
                                                                           520
```

```
C OUTPUT CONTROL OPTION (DAILY) FOR PHENOLOGICAL ALFALFA
                                                                        530
C CROP GROWTH MODEL.
                                                                        540
C
                                                                        550
      IF (IPRT1.NE.999) CALL ALFOUT (1)
                                                                        560
C
                                                                        570
      DO 20 JDAY=JDAYF.JDAYL
                                                                        580
                                                                        590
C GROW ALFALFA CROP FOR JDAY. DETERMINE YIELD. QUALITY
                                                                       600
C ON DAILY BASIS. IF APPROPRIATE, HARVEST AND STORE
                                                                       610
C ALFALFA CROP. SAVE FIRST-DAY STANDING YIELD. QUALITY
                                                                        620
C VALUES (ALFOUT).
                                                                       630
C
                                                                       640
      CALL ALMAIN (JDAY)
                                                                        650
      IF (JDAY.EQ.BGNCUT (NTHCUT) ) CALL ALFOUT (2)
                                                                       660
C
                                                                        670
20
     CONTINUE
                                                                        680
C
                                                                       690
C SUMMARIZE AND STORE END-OF-YEAR STANDING ALFALFA YIELD
                                                                        700
C AND QUALITY MEASURED ON FIRST DAY OF EACH CUTTING.
                                                                        710
C HARVEST CORN CROP FOR JYEAR ONCE 3RD CUT ALFALFA HARVEST
                                                                       720
C HAS FINISHED. WRITE OUT END-OF-YEAR CORN RESULTS IF
                                                                       730
C APPROPRIATE.
                                                                        740
C
                                                                        750
      CALL ALFOUT (3)
                                                                        760
      CALL CRNHRV (NTHYR, JLALHR)
                                                                        770
      CALL WRITAL (2)
                                                                        780
      IF (IPRT4.EQ.1) CALL CRNOUT (NTHYR, NYRS, 1)
                                                                       790
C
                                                                        800
10
      CONTINUE
                                                                        810
                                                                        820
C SUMMARIZE AND PRINT STANDING YIELD/QUALITY ESTIMATES
                                                                        830
C OF ALFALFA AT END OF SIMULATION. SUMMARIZE AND PRINT
                                                                        840
C OUT RESULTS OF CORN SIMULATION.
                                                                        850
C
                                                                        860
      CALL REPORT (NTHYR, NYRS)
                                                                        870
C
                                                                        880
200
     FORMAT (F7.0, 1X, F4.0, 1X, F4.0, 1X, F5.0, 1X, F4.0, 1X)
                                                                        890
      END
                                                                        900
C *******************
                                                                        910
      SUBROUTINE REPORT (NTHYR.NYRS)
                                                                        920
C ********************
                                                                        930
                                                                        940
      COMMON/Z1/AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                        950
      COMMON/Z7/ALHRFD (26, 15), AFEED (26, 23)
                                                                        960
      COMMON/Z10/TCOSTS (26,20), TRESS (26,20)
                                                                        970
      COMMON/SUMRY1/YCORN (26, 19), SCORN (4, 19), CCOST (26, 16), SCOST (4, 16)
                                                                        980
C
      COMMON/COWDTA/....
                                                                        990
      COMMON/PRICE/PLABOR, PFUELD, PFUELG, RATE IM, PDRYCG, PHRVCG, COEFSV (3), 1000
            PFSCA1, PFSCA2, PFSCCS, PFSCHM, ALFYRS, RATEIS, RATEIL, XLIFE (3)
                                                                        1010
C
                                                                        1020
```

```
COMMON /SUMRY2/ TRESP (26,20), TCOSTP (26,20), TCOST (26,20),
                                                                            1030
                                                                            1040
            STCOST (4,20), TRES (26,20), SRES (4,20)
                                                                            1050
      DIMENSION HERD (5)
      DATA TRESP, TCOSTP, TCOST, STCOST, TRES, SRES/520*0.,520*0.,520*0.,
                                                                            1060
            80*0.,520*0.,80*0./
                                                                            1070
                                                                            1080
C
                                                                            1090
C
      OPEN (7, FILE='FEED')
C
                                                                            1100
C
                                                                            1110
 WRITE OUT SIMULATION-END RESULTS GENERATED IN THE INDIVIDUAL
C
                                                                            1120
  SUB-MODELS.
                                                                            1130
                                                                            1140
                                                                            1150
      CALL ALFOUT (4)
                                                                            1160
      CALL WRITAL (3)
      CALL CRNOUT (NTHYR, NYRS, 2)
                                                                            1170
                                                                            1180
C
C
      CALL COWMOD (NYRS)
                                                                            1190
C
                                                                            1200
                                                                            1210
C GENERATE THE SUB-RESOURCE AND SUB-COST MATRICES. (TRESP.TCOSTP).
                                                                            1220
   COLUMNS REPRESENT: (TRES)
                                                                            1230
     1=MACHINE INVESTMENT, $ 2=FEED STORAGE INVESTMENT, $
                                                                            1240
C
C
     3=FUEL USE. LITERS
                              4=REPAIR, MAINTENANCE, $
                                                                           1250
C
     5=FIELD LABOR, MAN/HRS 6=FEEDING LABOR, MAN/HRS
                                                                           1260
     7=AREA IN CROPS, HA
C
                               8=AREA HARVESTED AS CG. HA
                                                                           1270
C
     9=CG PRODUCTION, DMT
                                                                           1280
C
                                                                            1290
C
                                                                            1300
      DO 10 N=1,NYRS
                                                                            1310
      TRESP(N.1) = CCOST(N.11)
                                                                            1320
      TRESP (N, 2) = CCOST(N, 12)
                                                                            1330
      TRESP (N, 3) = CCOST(N, 5)
                                                                            1340
      TRESP (N, 4) = CCOST(N, 1)
                                                                            1350
      TRESP (N,5) =CCOST (N,6)
                                                                            1360
      TRESP (N,6) = CCOST (N,7)
                                                                           1370
      TRESP (N,7) =YCORN (N,5) +AREA (1) + (AREA(1)/ALFYRS)
                                                                           1380
      TRESP (N, 8) = YCORN(N, 8)
                                                                            1390
      TRESP (N,9) = YCORN(N,19)
                                                                            1400
C
                                                                            1410
C COLUMNS REPRESENT: (TCOST)
                                                                            1420
      1=MACHINE FIXED COST, ANNUAL $ 2=STORAGE FIXED COST, $/YR
C
                                                                            1430
C
      3=FUEL COST, $
                              4=REPAIR/MAINT, MACHINES, $
                                                                            1440
      5=FIELD LABOR, $
C
                                                                            1450
                                        6=FEED LABOR. $
C
      7=FERT/SEED/CHEMS, $
                                        8=CUSTOM HARVEST (CG), $
                                                                            1460
      9=DRYDOWN (CG), $
                                                                            1470
                                                                            1480
      TCOSTP(N,1) = CCOST(N,13)
                                                                           1490
      TCOSTP(N,2) = CCOST(N,14)
                                                                           1500
      TCOSTP(N.3) = CCOST(N.2)
                                                                            1510
      TCOSTP(N,4) = CCOST(N.1)
                                                                            1520
```

```
TCOSTP (N,5) = CCOST(N,3)
                                                                               1530
      TCOSTP (N,6) = CCOST(N,4)
                                                                               1540
      TCOSTP (N, 7) = CCOST(N, 10) + (AREA(1) * (PFSCA2+PFSCA1/ALFYRS))
                                                                               1550
      TCOSTP(N,8) = CCOST(N,8)
                                                                               1560
                                                                               1570
      TCOSTP(N,9) = CCOST(N,9)
C
                                                                               1580
10
      CONTINUE
                                                                               1590
C
                                                                               1600
C ADD THE SUB-RESOURCE AND SUB-COST MATRICES TO GENERATE
                                                                               1610
C THE TOTAL RESOURCE USE (TRES) AND TOTAL COST/RETURNS (TCOST)
                                                                               1620
                                                                               1630
C MATRICES.
C
                                                                               1640
                                                                               1650
      DO 20 N=1.NYRS
      D0 24 1=1,20
                                                                               1660
      TRES (N, I) =TRESP (N, I) +TRESS (N, I)
                                                                               1670
      TCOST(N, I) = TCOSTP(N, I) + TCOSTS(N, I)
                                                                               1680
24
      CONTINUE
                                                                               1690
C
                                                                               1700
      DO 22 JCOL=21,23
                                                                               1710
      AFEED (N, JCOL) =YCORN (N, JCOL-4)
                                                                               1720
  22 CONTINUE
                                                                               1730
C
      WRITE (7,300) (AFEED (N,JCOL), JCOL=1,23)
                                                                               1740
C
                                                                               1750
20
      CONTINUE
                                                                               1760
C
                                                                               1770
C
    DAIRY HERD INFORMATION IS READ IN.
                                                                               1780
    THE HARVESTED FEED IS ALLOCATED TO COWS AND SUPPLEMENTS ARE
                                                                               1790
C
    PURCHASED TO BALANCE THE RATION IN COWFD.
                                                                               1800
C
                                                                               1810
      CALL COWFD (NYRS, XLCOWS, HERD)
                                                                               1820
C
                                                                               1830
                                                                               1840
C WRITE OUT THE COST/PROFIT AND RESOURCE MATRICES.
                                                                               1850
      WRITE (6, 100) NYRS
                                                                               1860
                                                                               1870
      DO 30 N=1,NYRS
                                                                               1880
30
      WRITE (6, 110) N, (TCOST(N, I), I=1, 15)
                                                                               1890
      CALL SSTAT (15, TCOST, NYRS, STCOST)
                                                                               1900
      WRITE (6, 118)
                                                                               1910
      WRITE (6, 120)
                                                                               1920
      DO 35 I=1,2
                                                                               1930
35
      WRITE (6, 110) I, (STCOST (I, J), J=1, 15)
                                                                               1940
      WRITE (6, 125) I, ((STCOST (I, J), J=1, 15), I=3, 3)
                                                                               1950
C
                                                                               1960
      WRITE (6, 200)
                                                                               1970
      DO 40 N=1.NYRS
                                                                               1980
40
      WRITE (6,210) N, (TRES(N,1),1=1,15)
                                                                               1990
C
                                                                               2000
      CALL SSTAT (15, TRES, NYRS, SRES)
                                                                               2010
      WRITE (6, 118)
                                                                               2020
```

```
WRITE (6.120)
                                                                           2030
                                                                           2040
      DO 45 I=1.2
45
      WRITE (6,210) I, (SRES (I,J), J=1,15)
                                                                           2050
      WRITE (6,225) |, ((SRES(I,J),J=1,15),I=3,3)
                                                                           2060
C
                                                                           2070
100
      FORMAT ('1'. 'END OF SIMULATION RUN RESULTS FOR COMBINED'.
                                                                           2080
            ' DAIRY-FORAGE SYSTEMS MODEL (DAFOSYM) .'./.
                                                                           2090
            ' SUMMARY OUTPUT FOR ',12,' SIMULATION YEARS.',/,
                                                                           2100
            ' MATRIX TCOST=TOTAL COST OF PRODUCTION, GROSS AND NET'.
                                                                           2110
            ' RETURNS.',/,
                                                                           2120
            ' EACH ROW EQUALS ONE SIMULATION YEAR.'./.
                                                                           2130
            ' COLUMNS REPRESENT: './,
                                                                           2140
            ' 1=FCM 2=FCSTG 3=FUEL 4=RMM 5=LABFLD'.
                                                                           2150
            ' 6=LABFEED 7=FSC 8=CUSTCG 9=DRYCG',
                                                                           2160
         ' 10=SUM(1-9) 11=FNET 12=CG 13=SUM(10-12) 14=MILK ',
                                                                           2170
         '15=NRET',///)
                                                                           2180
C
                                                                           2190
110
      FORMAT (13.2 (1X.F7.0).1X.F6.0.13 (1X.F7.0))
                                                                           2200
125
      FORMAT (13,2 (1x,F7.2), 1x,F6.2,13 (1x,F7.2))
                                                                           2210
C
                                                                           2220
118
      FORMAT (//)
                                                                           2230
120
      FORMAT (' SAMPLE STATISTICS FOR SIMULATION RUN:',
                                                                           2240
     + ' ROWS 1=MEAN 2=STANDARD DEVIATION 3=COEF OF VARIATION'./)
                                                                           2250
                                                                           2260
200
     FORMAT ('1', 'MATRIX TRESS=TOTAL RESOURCE USE AND INVESTMENT.',/,
                                                                           2270
            ' EACH ROW EQUALS ONE SIMULATION YEAR.',/,
                                                                           2280
            ' COLUMNS REPRESENT: ',/,
                                                                           2290
            ' 1=M/INV$ 2=STG/INV$ 3=FUEL(L) 4=M/RM$ '.
                                                                           2300
            ' 5=LABFLD (HRS) 6=LABFEED (HRS) 7=CROPS (HA) ',
                                                                           2310
            ' 8=CG (HA) 9=CG (DMT)',///)
                                                                           2320
C
                                                                           2330
210
      FORMAT (13,2(1X,F8.0),2(1X,F7.0),11(1X,F6.0))
                                                                           2340
      FORMAT (13.2 (1X.F8.2).2 (1X.F7.2).11 (1X.F6.2))
225
                                                                           2350
                                                                           2360
      RETURN
                                                                           2370
      END
                                                                           2380
```

Table E.3. Listing of program FORHRV.

```
PROGRAM DUMMY
                                                                  110
120
     OPEN (5, FILE='MACH')
                                                                  130
     OPEN (6, FILE='OUTPUT')
                                                                  140
     CALL FORHRY
                                                                  150
     STOP
                                                                  160
     END
                                                                  170
C *******************************
                                                                  180
                                                                  190
     SUBROUTINE FORHRY
C **********************************
                                                                  200
C
                                                                  210
C
   PROGRAM FORHRY ESTIMATES FORAGE HARVEST RATES FOR A GIVEN SET OF
                                                                  220
C
   MACHINES.
                                                                  230
   IT WAS WRITTEN BY PHILIPPE SAVOIE, AGRICULTURAL ENGINEERING DEPT.,
C
                                                                  240
C
   MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN, USA 48824
                                                                  250
C
   A USER"S GUIDE IS AVAILABLE IN APPENDIX B OF THE AUTHOR"S DOCTORAL
                                                                  260
C
   DISSERTATION (1982).
                                                                  270
C
   IT CAN BE RUN INDEPENDENTLY WITH THE USE OF PROGRAM DUMMY.
                                                                  280
   SUBROUTINE FORHRY AND ITS APPENDED SUBROUTINES WERE HOWEVER WRITTEN 290
C
C
   TO BE USED WITH THE DYNAMIC HARVEST MODEL ALHARV.
                                                                  300
                                                                  310
     COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                  320
     COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                  330
     COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                  340
     COMMON /Y4/ XOPMD (60.26)
                                                                  350
     COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
                                                                  360
     COMMON /Y6/ RATES (108,8), YAR (6)
                                                                  370
     COMMON /Y7/ NBOP (18), NBMACH (18,7), XNBM (18,7)
                                                                  380
     COMMON /Y9/ IPRINT. IPRI
                                                                  390
     DIMENSION IEXTRA (18)
                                                                  400
     DATA IEXTRA /0.0.0.0.0.0.0.0.1.0.0.1.4.4.4.4/
                                                                  410
     DATA IN/5/,10/6/
                                                                  420
     CALL READ
                                                                  430
     10P=1
                                                                  440
C
   NBMACH INCLUDES THE MACHINERY NUMBERS OF ALL MACHINES USED IN OPERAT450
   NBO (10P). THERE MAY BE UP TO 7 DIFFERENT MACHINES IN AN OPERATION. 460
   XNBM IS THE NUMBER OF UNITS OF EACH MACHINE USED IN AN OPERATION.
                                                                  470
     DO 29 I=1.18
                                                                  480
     DO 29 J=1,7
                                                                  490
                                                                  500
     XNBM(I.J)=0.
  29 NBMACH(1.J)=0
                                                                  510
     1=1
                                                                  520
C
  THERE ARE NOPER OPERATION CARDS
                                                                  530
   10 CALL DCODEI (I)
                                                                  540
```

```
CALL DCODET (I)
                                                                          550
      JOP=ICODE(I.1)
                                                                          560
     DO 50 J=1.18
                                                                          570
      JL0W=J*10-1
                                                                          580
      JHIGH=JLOW+10
                                                                          590
      IF (JOP.LE.JLOW.OR.JOP.GT.JHIGH) GO TO 50
                                                                          600
      JEXTRA=IEXTRA(J)
                                                                          610
  50 CONTINUE
                                                                          620
      IF (JEXTRA.EQ.O) GO TO 30
                                                                          630
                                                                          640
      |X|=|+|
      IX2=I+JEXTRA
                                                                          650
      DO 40 IJ=IX1.IX2
                                                                          660
                                                                          670
      CALL DCODEI (IJ)
  40 CALL DCODET (IJ)
                                                                          680
                                                                          690
   30 CALL BUILDA (I)
                                                                          700
      CALL RATE (I.IOP)
      NBOP(IOP) = JOP
                                                                          710
      NBMACH(IOP, 1) = ICODE(I, 2)
                                                                          720
      NBMACH(10P,2) = ICODE(1,3)
                                                                          730
      XNBM(IOP, 1) = XOPER(I, 1)
                                                                          740
     XNBM(IOP, 2) = XOPER(I, 1)
                                                                          750
      IF (JEXTRA.EQ.O) GO TO 35
                                                                          760
      NBMACH(IOP, 3) = ICODE(I+1, 2)
                                                                          770
                                                                          780
      XNBM(IOP.3) = XOPER(I.1)
      IF (JEXTRA.LE.1) GO TO 35
                                                                          790
                                                                          800
      NBMACH(IOP, 4) = ICODE(1+2, 2)
                                                                          810
      NBMACH(10P, 5) = 1CODE(1+2, 3)
                                                                          820
      NBMACH(10P,6) = 1CODE(1+4,2)
                                                                          830
      NBMACH(10P,7) = 1CODE(1+4,3)
     XNBM(10P, 4) = XOPER(1+2, 3)
                                                                          840
                                                                          850
      XNBM(IOP,5) = XOPER(I+2,1)
                                                                          860
      XNBM(IOP,6) = XOPER(I+4,1)
      XNBM(IOP,7) = XOPER(I+4,1)
                                                                          870
   35 IF (IPRI.NE.1) GO TO 21
                                                                          880
      WRITE (10,200) JOP, (OPNAME(J,I),J=1,5)
                                                                          890
  200 FORMAT ( ///.5x.'CALCULATED WORK RATES FOR OPERATION',16,' KN0900
    +WN AS ',5A4,///,11X,'YDM(T/HA) EFC(HA/H) ETP(TDM/H) LOAD(DEC910
          FUEL (L/H) ELEC (KWH/H) LABOR (MH/H) SPEED (KM/H)',///
                                                                          920
      DO 20 K=1,6
                                                                          930
      IR = (IOP - 1) *6 + K
                                                                          940
      WRITE (10,210) (RATES (IR,J),J=1.8)
                                                                          950
  210 FORMAT (10X,8F12.2)
                                                                          960
  20 CONTINUE
                                                                          970
  21 IOP=IOP+1
                                                                          980
      |=|+JEXTRA+1
                                                                          990
      IF (I.LE.NOPER) GO TO 10
                                                                          1000
      RETURN
                                                                          1010
      END
                                                                          1020
C **********************
                                                                          1030
      SUBROUTINE READ
                                                                          1040
```

```
COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100.13)
                                                                       1060
     COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                       1070
     COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                       1080
     COMMON /Y9/ IPRINT. IPRI
                                                                       1090
C
                                                                       1100
C
   THIS SUBROUTINE READS THE MACHINERY DATA FILE AND THE OPERATION FILEIIIO
    IT INITIALLY READS A GENERAL INFORMATION ARRAY
C
   XINFO(1) IS THE POWER SAFETY FACTOR (USUALLY 1.4)
                                                                       1130
   XINFO(2) IS THE SOIL CONDITION PARAMETER ,ASAE CN NUMBER -- 30 FOR F1140
C
   XINFO(3) IS THE AVERAGE SOIL SLOPE (ITS TANGENT) THE SOIL SLOPE IS 1150
C
       CONVERTED INTO AN ANGLE (RADIANS) IN THE PRESENT SUBROUTINE
                                                                       1160
C
   XINFO (4) IS THE ABSOLUTE MINIMUM ALFALFA YIELD (TDM/HA)
                                                                       1170
   XINFO (5) IS THE ABSOLUTE MAXIMUM ALFALFA YIELD (TDM/HA)
                                                                       1180
C
   XINFO(6) IS THE ABSOLUTE MINIMUM CORN SILAGE YIELD (TDM/HA)
                                                                       1190
C
   XINFO (7) IS THE ABSOLUTE MAXIMUM YIELD OF CORN SILAGE (TDM/HA)
                                                                       1200
C
                                                                       1210
     READ (IN.110) (XINFO(I).I=1.7)
                                                                       1220
     XINFO(3) = ATAN(XINFO(3))
                                                                       1230
C
                                                                       1240
C
   READ THE MACHINERY DATA FILE
                                                                       1250
                                                                       1260
     1=0
                                                                       1270
                                                                       1280
    1 |=|+1
     READ (IN, 120) MCODE (I), (XMDATA (I, J), J=1, 13)
                                                                        1290
     IF (MCODE(I).GT.O) GO TO 1
                                                                       1300
C
                                                                        1310
C
   THE LAST CARD AT THE END OF THE MACHINERY DATA FILE MUST HAVE 0000 1320
C
    IN THE LAST FOUR COLUMNS.
                                                                       1330
   THE NUMBER OF MACHINES IN THE FILE IS NMDATA.
                                                                       1340
C
                                                                        1350
     NMDATA=1-1
                                                                        1360
C
                                                                        1370
C
   READ THE OPERATION FILE
                                                                        1380
                                                                        1390
     1=0
                                                                        1400
    2 | 1 = 1 + 1
                                                                        1410
     READ (IN, 130) (ICODE (I, J), J=1,3), (XOPER (I, J), J=1,5)
                                                                        1420
                                                                        1430
     IF (ICODE (I, 1).GT.0) GO TO 2
C
                                                                        1440
C
   THE LAST CARD AT THE END OF THE OPERATION FILE MUST BE ZERO
                                                                        1450
C
   NOPER IS THE NUMBER OF OPERATION CARDS
                                                                        1460
C
                                                                        1470
     NOPER=1-1
                                                                        1480
C
   WHEN IPRINT IS 1 (ONE). A DETAILED PRINTOUT OF CYCLE TIMESOF HARVEST1490
   TRANSPORT MACHINES WILL APPEAR
                                                                        1500
     READ (IN, 140) IPR1, IPRINT, IPRINP
                                                                        1510
     IF (IPRINP.EO.O) RETURN
                                                                        1520
     WRITE (10.105)
                                                                        1530
     WRITE (10,110) (XINFO(1),1=1,7)
                                                                        1540
```

```
1550
     DO 10 I=1, NMDATA
     WRITE (10,120) MCODE(I), (XMDATA(I,J),J=1.13)
                                                                        1560
10
     WRITE (10,125)
                                                                        1570
      DO 20 I=1.NOPER
                                                                        1580
     WRITE (10,130) (ICODE (1,J),J=1,3), (XOPER (1,J),J=1,5)
                                                                        1590
20
                                                                        1600
      WRITE (10.125)
      WRITE (10.140) IPRI. IPRINT, IPRINP
                                                                        1610
  105 FORMAT (/,5x, 'THE INPUT DATA FILE FOR FORHRY WAS READ AS FOLLOWS') 1620
 110 FORMAT (7F10.2)
                                                                        1630
  120 FORMAT (14,3F8.2,10F5.1)
                                                                        1640
      FORMAT ('0000')
                                                                        1650
  130 FORMAT (314,5F10.2)
                                                                        1660
  140 FORMAT (312)
                                                                        1670
                                                                        1680
      RETURN
      END
                                                                        1690
C ***********************
                                                                        1700
      SUBROUTINE DCODEI (1)
                                                                        1710
C ***********************
                                                                        1720
                                                                        1730
      COMMON /Y1/ XINFO (7) . MCODE (100) . XMDATA (100, 13)
      COMMON /Y2/ | CODE (60,3), XOPER (60,5)
                                                                        1740
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                        1750
      COMMON /Y4/ XOPMD (60.26)
                                                                        1760
C
                                                                        1770
C
      THIS SUBROUTINE DECODES THE IMPLEMENT NUMBER FOR A GIVEN OPERATIO1780
C
    AND INSERTS THE MACHINERY DATA IN A WORKING MATRIX XOPMD (I, J), J=1,131790
C
                                                                        1800
      K=0
                                                                        1810
C
    WHEN THE IMPLEMENT NUMBER IS ZERO. THE WORKING MATRIX IS INITIALIZED 1820
    AS ZERO.
                                                                        1830
C
    THIS CAN HAPPEN IN AT LEAST TWO CASES
                                                                        1840
    1. WHEN ROUND BALES ARE HAULED ONE BY ONE FROM THE FIELD TO STORAGE, 1850
    THERE IS ONLY A LOADER AND NO MULTIPLE BALE WAGON (MOVER).
                                                                        1860
    ZEROES APPEAR ON THE SECOND DATA CARD.
                                                                        1870
    2. WHEN NO EJECTOR IS USED IN THE BALER-WAGON SYSTEM. BUT INSTEAD
                                                                        1880
    ONE MAN STACKS THE BALES IN THE WAGON BEHIND THE BALER.
                                                                        1890
      IF (ICODE (1,2).NE.O) GO TO 4
                                                                        1900
      D0 1 J = 1.13
                                                                        1910
    1 XOPMD (I,J)=0
                                                                        1920
      GO TO 7
                                                                        1930
    4 K=K+1
                                                                        1940
      IF (ICODE (1,2).NE.MCODE (K).AND.K.LT.NMDATA) GO TO 4
                                                                        1950
      IF (ICODE(1,2).EQ.MCODE(K)) GO TO 5
                                                                        1960
                                                                        1970
    AT THIS POINT THE DATA FILE DOES NOT CONTAIN THE SPECIFIC MACHINE
                                                                        1980
C
    GIVEN IN THE OPERATION DATA CARD
                                                                        1990
                                                                        2000
      WRITE (10,140) ICODE (1,1)
                                                                        2010
  140 FORMAT (///, THE IMPLEMENT NUMBER FOR OPERATION', 110, ' DOES NOT E2020
     +XIST IN THE DATA FILE',/, 'MAKE THE CORRECTION')
                                                                        2030
      STOP
                                                                        2040
```

C :

0

C

C

```
5 DO 6 J=1,13
                                                                    2050
     XOPMD(I,J) = XMDATA(K,J)
                                                                    2060
   6 CONTINUE
                                                                    2070
   7 RETURN
                                                                    2080
     END
                                                                    2090
C *********************************
                                                                    2100
     SUBROUTINE DCODET (1)
                                                                    2110
C **************************
                                                                    2120
     COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                    2130
     COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                    2140
     COMMON /Y3/ NMDATA.NOPER.IN.10
                                                                    2150
     COMMON /Y4/ XOPMD (60,26)
                                                                    2160
C
                                                                    2170
C
   THIS SUBROUTINE DECODES THE TRACTOR (OR POWER SOURCE) NUMBER FOR
                                                                    2180
C
                                                                    2190
   OPERATION AND INSERTS THE TRACTOR MACHINERY DATA IN A WORKING MATRIX2200
C
   XOPMD(I,J), J=14,26
                                                                    2210
                                                                    2220
C
   IN THE CASE OF A SELF-PROPELLED MACHINE, TRACTOR CODE IS 0000.
                                                                    2230
C
   IN SUCH A CASE, ALL THE POWER AND ENGINE SPECIFICATIONS ARE GIVEN
                                                                    2240
   WITH THE IMPLEMENT
                                                                    2250
     IF (ICODE (1,3).NE.O) GO TO 7
                                                                    2260
     DO 9 J=14.26
                                                                    2270
     XOPMD(I,J)=0.
                                                                    2280
   9 CONTINUE
                                                                    2290
     GO TO 10
                                                                    2300
   7 K=K+1
                                                                    2310
     IF (ICODE (1,3) .NE.MCODE (K) .AND.K.LT.NMDATA) GO TO 7
                                                                    2320
     IF (ICODE (1,3).EQ.MCODE (K)) GO TO 8
                                                                    2330
                                                                    2340
C
   AT THIS POINT THE DATA FILE DOES NOT CONTAIN THE SPECIFIC MACHINE
                                                                    2350
                                                                    2360
     WRITE (10.150) ICODE (1.1)
                                                                    2370
  150 FORMAT (///, 'THE TRACTOR NUMBER FOR OPERATION', 110.' DOES NOT EXIS2380
    +T IN THE DATA FILE',/, 'MAKE THE CORRECTION')
                                                                    2390
     STOP
                                                                    2400
   8 DO 11 J=14.26
                                                                    2410
     JJ=J-13
                                                                    2420
     XOPMD(I.J) = XMDATA(K.JJ)
                                                                    2430
   11 CONTINUE
                                                                    2440
   10 RETURN
                                                                    2450
                                                                    2460
C *********************
                                                                    2470
     SUBROUTINE BUILDA (1)
                                                                    2480
C *********************
                                                                    2490
     COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                    2500
     COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                    2510
     COMMON /Y3/ NMDATA.NOPER.IN.10
                                                                    2520
     COMMON /Y4/ XOPMD (60.26)
                                                                    2530
     COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
                                                                    2540
```

```
C
                                                                          2550
   THIS SUBROUTINE CREATES THE A ARRAY WHICH INCLUDES PARAMETERS FOR
                                                                         2560
    ESTIMATING SPEED, LOAD, FIELD CAPACITY, THROUGHPUT RATE
                                                                         2570
                                                                         2580
   A(1) IS TRACTOR POWER (KW)
                                                                         2590
    A(2) IS TRACTOR MASS (KG)
                                                                         2600
    A (3) IS IMPLEMENT MASS, INCLUDING WAGON IF PULLED (KG)
                                                                         2610
    A (4) IS PTO POWER (CONSTANT, INDEPENDENT OF THROUGHPUT, KW)
                                                                         2620
    A(5) IS PTOC (COEFFICIENT, DEPENDENT OF THROUGHPUT, KW/KGDM/S)
                                                                         2630
    A (6) IS THE POWER SAFETY FACTOR
                                                                         2640
    A(7) IS THE SOIL CONDITION CN
                                                                         2650
    A (8) IS THE SOIL SLOPE ANGLE (RADIANS)
                                                                         2660
    A (9) IS THE MAXIMUM ALLOWABLE SPEED
                                           (KM/H)
                                                                         2670
    A(10) IS THE WORKING WIDTH (M)
                                                                         2680
    A(11) IS THE DRY MATTER YIELD (T/HA)
                                                                         2690
    A(12) IS THE ACTUAL OPERATING SPEED (KM/H)
                                                                         2700
    A(13) IS THE TRACTOR LOAD (DEC)
                                                                         2710
    A (14) IS THE FIELD EFFICIENCY (DECIMAL)
                                                                         2720
    A(15) IS THE ENGINE TYPE 1. GAS 2. DIESEL 3. ELECTRIC
                                                                         2730
C
    XTTP IS THE MAXIMUM MACHINE THROUGHPUT (TDM/H)
                                                                         2740
C
    JOP IS THE OPERATION CODE (SAME AS ICODE (1.1))
                                                                         2750
C
    DNAME (I.J) CONTAINS THE NAMES OF EACH OPERATION
                                                                         2760
C
    THE OPNAME MATRIX CONTAINS THE NAME OF EACH OPERATION
                                                                         2770
                                                                         2780
      DIMENSION EFF (18), PTOW (18), PTOC (18), DNAME (5, 18)
                                                                         2790
      DATA EFF/.8,.8,.8,.8,.8,.8,.75,.70,.8,.8,.8,.8,.8,.8,.8,.8,.8/ 2800
      DATA PTOW/1.2.3.0.6.00.1..1..2..0..0..0..0..0..0..0..0..0..0..
                                                                         2810
     +0.,0./
                                                                         2820
      DATA PTOC/0.,2.,4.,0.,0.,0.,5.,7.5,7.5,15.,6.,0.,0.,15.,15.,18.,
                                                                         2830
                                                    ,4HCUTT,4HERBA,4HR M2850
     DATA DNAME /4HCUTT,4HERBA,4HR MO.4HWING,4H
     +0,4HW-CO,4HND ,4HDRUM,4H MOW,4H CON,4HD
                                                  , 4H
                                                        ,4HRAKI,4HNG , 2860
                ,4H ,4HDOUB,4HLE R,4HAKIN,4HG ,4H ,4HTEDD,4H12870
     +NG .4H
                       ,4H ,4HRECT,4H BAL,4HING ,4H (DRO,4HP) ,4HROUN2880
                . 4H
     +,4HD BA,4HLING,4H
                           ,4H ,4HLARG,4HE ST,4HACK ,4H BAL,4HING ,
                                                                         2890
     +4HCHOP,4H ON ,
                                                                         2900
                4HTHE ,4HGROU,4HND ,4HAUTO,4H BAL,4HE WA,4HGON ,4H
                                                                         ,2910
     +4HLARG, 4HE ST, 4HACK, 4HMOVE, 4HR , 4HROUN, 4HD BA, 4HLE M, 4HOVER, 4H 2920
         ,4HCHOP,4H (CS,4H) TR,4H UL ,4H ,4HCHOP,4H (AL,4HF-WP,4H) TR2930
     +,4H UL ,4HCHOP,4H (AL,4HF-DC,4H) TR,4H UL ,4HBALE,4H EJE,4HCT T,4H294O
     +R UL ,4H
                  ,4HHAND,4HPICK,4H BAL,4HES T,4HR UL/
                                                                         2950
      JOP=ICODE(I,1)
                                                                         2960
      A(1) = XOPMD(1.24)
                                                                         2970
      A(2) = XOPMD(1, 14)
                                                                         2980
      A(3) = XOPMD(1,1) + XOPER(1,4)
                                                                         2990
      A(15) = XOPMD(1.23)
                                                                         3000
C
                                                                         3010
C
    CHECK IF THE IMPLEMENT IS A SELF-PROPELLED MACHINE
                                                                         3020
                                                                         3030
      IF (XOPMD(I,9).NE.1.) GO TO 1
                                                                         3040
```

```
A(1) = XOPMD(1.11)
                                                                         3050
      A(2) = A(3)
                                                                         3060
      A(3) = 0.
                                                                         3070
      A(15) = XOPMD(1.10)
                                                                         3080
    1 A(6) = XINFO(1)
                                                                         3090
      A(7) = X I NFO(2)
                                                                         3100
      A(8) = XINFO(3)
                                                                         3110
      A(9) = XOPER(1.2)
                                                                         3120
      A(10) = XOPER(1.3)
                                                                         3130
      IF (JOP.GE.100.AND.JOP.LT.110) A (3) =A (3) +XOPMD (1+1,1)
                                                                         3140
      IF (JOP.GE.110.AND.JOP.LT.120) A (3) =A (3) +XOPMD (1,8) \pm1000.
                                                                         3150
      IF (JOP.LT.140.OR.JOP.GE.180) GO TO 6
                                                                         3160
      A(3) = A(3) + XOPMD(1+1, 1) + XOPMD(1+2, 1) + XOPMD(1+2, 8) *1000.
                                                                         3170
      IF (XOPER(1+1,2).EQ.O.) A (3) = A(3) - XOPMD(1+2,8) *1000.
                                                                         3180
    6 DO 22 J=1.18
                                                                         3190
      JL0W=10*J-1
                                                                         3200
      JHIGH=JLOW+10
                                                                         3210
      IF (JOP.LE.JLOW.OR.JOP.GT.JHIGH) GO TO 22
                                                                         3220
      A(4) = PTOW(J) *A(10)
                                                                         3230
      A(5) = PTOC(J)
                                                                         3240
      A(14) = EFF(J)
                                                                         3250
      XTTP=XOPMD(1,7)
                                                                        · 3260
      IF (XTTP.LE.O.) XTTP=1000.
                                                                         3270
   THIS MEANS THAT MAXIMUM THROUGHPUT WILL NOT BE A CONSTRAINT
                                                                         3280
      DO 21 K=1,5
                                                                         3290
   21 OPNAME (K, I) = DNAME (K, J)
                                                                         3300
   22 CONTINUE
                                                                         3310
    NEXT CONSIDER THE CASE OF A BALE THROWER. THE PTO REQUIREMENT IS
                                                                         3320
    INCREASED BY 0.5 KW/KG/S IF A BALE THROWER IS PRESENT.
                                                                         3330
      IF (JOP.LT.170. OR.JOP.GE.180) GO TO 5
                                                                         3340
      IF (ICODE (I+1,2).NE.O) A (5) =A (5)+0.5
                                                                         3350
    5 RETURN
                                                                         3360
      END
                                                                         3370
3380
      SUBROUTINE RATE (1.10P)
                                                                         3390
C ***********************
                                                                         3400
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                         3410
      COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                         3420
      COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
COMMON /Y6/ RATES (108,8), YAR (6)
                                                                         3430
                                                                         3440
      COMMON /Y10/ XLD, XLABOR
                                                                         3450
C
                                                                         3460
   THIS SUBROUTINE CALCULATES RATES OF HARVEST FOR ALL OPERATIONS AND
C
                                                                         3470
C
    INSERTS THE VALUES IN A WORKING MATRIX RATES (108,8) FOR LATER USE
                                                                         3480
    THE RATES (108,8) MATRIX WILL CONTAIN INFORMATION ABOUT HARVEST RATES 3490
    AT 6 DIFFERENT YIELD VALUES FOR EACH OPERATION
                                                                         3500
    HARVEST RATES ARE ESTIMATED FOR A MAXIMUM OF 18 OPERATIONS AT
                                                                         3510
C
    SIX YIELDS. THERE ARE THUS 108 ROWS.
                                                                         3520
    THE SIX YIELD LEVELS ARE EQUALLY SPACED BETWEEN
                                                                         3530
    MINIMUM AND MAXIMUM YIELDS SPECIFIED IN THE GENERAL INFORMATION
                                                                         3540
```

```
C
    ARRAY.
                                                                               3550
    THE EIGHT PARAMETERS IN EACH ROW ARE
                                                                               3560
    RATES (1, 1) IS THE DRY MATTER YIELD (T/HA)
RATES (1, 2) IS EFFECTIVE FIELD CAPACITY (HA/H)
RATES (1, 2) IS THE FEFFETHER.
                                                                               3570
                                                                               3580
    RATES (1,3) IS THE EFFECTIVE THROUGHPUT (TDM/H)
C
                                                                               3590
    RATES (1.4) IS THE TRACTOR LOAD (DECIMAL)
C
                                                                               3600
    RATES (1.5) IS THE FUEL CONSUMPTION (L/H)
                                                                               3610
C
    RATES (1,6) IS THE ELECTRICITY CONSUMPTION (KW-H/H)
                                                                               3620
    RATES (1,7) IS THE LABOR REQUIREMENT PER UNIT OPERATION TIME (MAN-H/H3630
C
C
    RATES (1.8) IS THE OPERATING SPEED (KM/H)
                                                                               3640
C
                                                                               3650
      YMAX=XINFO(5)
                                                                               3660
      YMIN=XINFO (4)
                                                                               3670
      IF (JOP.LT.140.OR.JOP.GT.149) GO TO 2
                                                                               3680
      YMAX=XINFO(7)
                                                                               3690
      YMIN=XINFO(6)
                                                                               3700
    2 DIFF= (YMAX-YMIN) /5.
                                                                               3710
      YAR (1) =YMIN
                                                                               3720
      DO 1 J=2.6
                                                                               3730
    1 YAR(J) = YAR(J-1) + DIFF
                                                                               3740
      IF (JOP.GE.120.AND.JOP.LT.140) GO TO 40
                                                                               3750
      K = (10P - 1) *6
                                                                               3760
      XLABOR=XOPER(I.1)
                                                                               3770
      IF (JOP.LT.140) GO TO 7
                                                                               3780
      IF (JOP.LT.180) GO TO 8
                                                                               3790
C
    HAND PICKING BALES IN THE FIELD
                                                                               3800
      XLABOR= (1.+XOPER (1+1,3)) *XOPER (1+3,1)+XOPER (1+2,4)
                                                                               3810
      GO TO 45
                                                                               3820
    8 IF (JOP.LT.170) GO TO 9
                                                                               3830
C
    THE BALER WITH A WAGON PULLED BEHIND
                                                                               3840
      IF (ICODE (I+1,2).EQ.O) XLABOR=2.*XLABOR
                                                                               3850
    INCLUDING LABOR AT UNLOADING SITE (STORAGE) AND TRANSPORT OPERATORS 3860
                                                                               3870
    9 XLABOR=XLABOR+XOPER (I+2.4)+XOPER (I+2.1)
    7 DO 30 J=1,6
                                                                               3880
      A(11) = YAR(J)
                                                                               3890
      CALL SPEED
                                                                               3900
      K=K+1
                                                                               3910
      RATES (K, 1) = A(11)
                                                                               3920
C
    XOPER(1.2) IS THE NUMBER OF UNITS DOING THE SAME OPERATION
                                                                               3930
    SIMULTANEOUSLY. TOTAL HARVEST RATES ARE
                                                                               3940
    THE SINGLE UNIT HARVEST RATES TIMES XOPER (1,1).
                                                                               3950
      RATES (K, 2) = A(12) *A(10) *A(14) / 10.
                                                                               3960
      RATES (K,3) =RATES (K,2) *A (11)
                                                                               3970
      RATES (K, 4) = A(13)
                                                                               3980
      RATES (K.7) = XLABOR
                                                                               3990
      RATES (K.8) = A(12)
                                                                               4000
      XLD=A (13)
                                                                               4010
      PWR=A(1)
                                                                               4020
      ENG=A (15)
                                                                               4030
      EFF=A (14)
                                                                               4040
```

```
FUI=1.10
                                                                         4050
      FUEL=O.
                                                                         4060
      ELECT=0.
                                                                         4070
      CALL ENERGY (XLD, PWR, ENG, EFF, FUI, FUEL, ELECT)
                                                                         4080
      RATES (K, 5) = FUEL
                                                                         4090
      RATES (K, 6) = ELECT
                                                                         4100
   30 CONTINUE
                                                                         4110
   40 IF (JOP.GE.110.AND.JOP.LT.140) CALL TRCYCI (1,10P)
                                                                         4120
      IF (JOP.GE.140.AND.JOP.LT.180) CALL HRTR (1,10P)
                                                                         4130
   45 IF (JOP.GE.180) CALL HAYPCK (1,10P)
                                                                         4140
      IF (JOP.GE.140.OR.XOPER(I,1).EQ.1.) GO TO 50
                                                                         4150
      DO 25 J=1.6
                                                                         4160
      K = (10P - 1) *6+J
                                                                         4170
      RATES (K, 2) =RATES (K, 2) *XOPER (I, 1)
                                                                         4180
      RATES (K,3) =RATES (K,3) *XOPER (I,1)
                                                                         4190
      RATES (K,5) =RATES (K,5) *XOPER (I,1)
                                                                         4200
      RATES (K,6) =RATES (K,6) *XOPER (I,1)
                                                                         4210
   25 CONTINUE
                                                                         4220
   50 RETURN
                                                                         4230
      END
                                                                         4240
4250
      SUBROUTINE SPEED
                                                                         4260
C ****************************
                                                                        4270
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                         4280
      COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
                                                                         4290
C
                                                                         4300
C
    THIS SUBROUTINE CALCULATES OPERATING SPEED AND TRACTOR LOAD
                                                                         4310
    THREE CONSTRAINTS MUST BE RESPECTED: MAXIMUM ALLOWABLE THROUGHPUT, 4320
    MAXIMUM ALLOWABLE SPEED AND MAXIMUM ALLOWABLE TRACTOR LOAD
C
                                                                         4330
                                                                         4340
      DATA CF1/1.10/, CF2/1.20/
                                                                         4350
      TTP=A(9)*A(10)*A(11)/10.
                                                                         4360
      IF (TTP.LE.XTTP) GO TO 1
                                                                         4370
    REDUCE MAXIMUM ALLOWABLE SPEED SO THROUGHPUT WILL NOT EXCEED MAXIMUM4380
      A(9) = XTTP * 10./(A(10) * A(11))
                                                                         4390
    1 V=A (9)
                                                                         4400
      TETA=A (8)
                                                                         4410
      RRC=0.04+1.2/A(7)
                                                                         4420
      DBP=A (3) *9.8* (RRC*COS (TETA) +SIN (TETA) )
                                                                         4430
      FR= (DBP+A (2) *9.8*SIN (TETA) ) / (0.75*A (2) *9.8*COS (TETA) )
                                                                         4440
      CH1=0.75-(FR+RRC)
                                                                         4450
      IF (CH1.GT.O.) GO TO 5
                                                                         4460
      WRITE (10,10) JOP
                                                                         4470
   10 FORMAT (///, 'SLIP IS EXCESSIVE AND CANNOT BE CALCULATED FOR OPERAT4480
     +10N',110,/,'REDUCE SLOPE, OR INCREASE TRACTOR MASS OR REDUCE TRAIL4490
     +ING IMPLEMENT MASS ')
                                                                         4500
      STOP
                                                                         4510
    5 SL=(1./(0.3*A(7)))*ALOG(0.75/CH1)
                                                                         4520
      SLF=1./(1.-SL)
                                                                         4530
      TRPWR=A (2) *9.8* (RRC*COS (TETA) +SIN (TETA)) *V*CF1*SLF/3600.
                                                                         4540
```

```
DBPWR=DBP*V*CF2*SLF/3600.
                                                                 4550
     PT0=A(4)
                                                                 4560
     PTOV=A(5)*A(10)*A(11)*V/36.
                                                                 4570
     PWR=TRPWR+DBPWR+PTO+PTOV
                                                                 4580
     ALOAD=PWR/A(1)
                                                                 4590
     XLOAD=1./A(6)
                                                                 4600
     IF (ALOAD.LE.XLOAD) GO TO 15
                                                                 4610
C
   AT THIS POINT. MAXIMUM SPEED ASSUMED RESULTS IN EXCESSIVE LOAD.
                                                                 4620
   REDUCE LOAD TO XLOAD AND RECALCULATE SPEED
                                                                 4630
     V= (A(1) *XLOAD-PTO) *V/(TRPWR+DBPWR+PTOV)
                                                                 4640
                                                                 4650
     ALOAD=XLOAD
                                                                 4660
   15 A(12)=V
                                                                 4670
     A(13) = ALOAD
     RETURN
                                                                 4680
     END
                                                                 4690
4700
     SUBROUTINE ENERGY (XLD, PWR, ENG, EFF, FUI, FUEL, ELECT)
                                                                 4710
                                                                 4720
C *****************************
C
                                                                 4730
C
   THIS SUBROUTINE CALCULATES ENERGY FOR FARM OPERATIONS, EITHER LIQUID4740
C
   FUEL FOR TRACTORS (GASOLINE OR DIESEL ENGINES) OR ELECTRICAL ENERGY 4750
C
   FOR ELECTRIC MOTORS.
                                                                 4760
C
                                                                 4770
C
   XLD IS THE POWER SOURCE LOAD (DECIMAL)
                                                                 4780
   PWR IS THE MAXIMUM POWER (KW)
C
                                                                 4790
   ENG IS THE ENGINE TYPE 1. FOR GAS 2. FOR DIESEL AND 3. FOR ELECTRIC4800
C
   EFF IS THE MACHINE FIELD EFFICIENCY
C
   FUI IS THE FUEL USE FACTOR TO ACCOUNT FOR IDLING OR TURNING (USUALLY4820)
C
   EQUAL TO 1.10).
                                                                 4830
C
                                                                 4840
     IF (ENG.LE.2.) GO TO 1
                                                                 4850
C
   WE HAVE AN ELECTRIC POWER SOURCE
                                                                 4860
     FC=0.
                                                                 4870
     ELECT=XLD*PWR*EFF*FUI
                                                                 4880
                                                                 4890
     GO TO 3
   1 IF (ENG.LT.2.) GO TO 2
                                                                 4900
   WE HAVE A DIESEL POWER SOURCE
                                                                 4910
                                                                 4920
     FC=2.64*XLD+3.91-0.2*(738.*XLD+173.)**0.5
                                                                 4930
                                                                 4940
     GO TO 3
   2 ELECT=O.
                                                                 4950
   WE HAVE A GASOLINE ENGINE
                                                                 4960
     FC=2.74*XLD+3.15-0.2*(697.*XLD)**0.5
                                                                 4970
   3 FUEL=FC*PWR*EFF*XLD*FUI
                                                                 4980
     RETURN
                                                                 4990
     END
                                                                 5000
5010
     SUBROUTINE TRCYCI (1,10P)
                                                                 5020
C ***********************
                                                                 5030
     COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                 5040
```

```
COMMON /Y2/ ICODE (60.3), XOPER (60.5)
                                                                           5050
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                           5060
      COMMON /Y4/ XOPMD (60,26)
                                                                          5070
     COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
COMMON /Y6/ RATES (108,8), YAR (6)
                                                                           5080
                                                                           5090
      COMMON /Y9/ IPRINT, IPRI
                                                                           5100
                                                                           5110
   THIS SUBROUTINE CALCULATES TRANSPORT CYCLE TIMES FOR INDIVIDUAL
C
                                                                           5120
    TRANSPORT OPERATIONS (110,120,130) WHICH ARE NOT AFFECTED BY
                                                                           5130
    EXTERNAL HARVEST OR
                                                                           5140
    UNLOADING OPERATIONS
C
                                                                           5150
    OPERATION CODE BETWEEN 110 AND 119 IS FOR AUTOMATIC BALE WAGON
C
                                                                           5160
    OPERATION CODE BETWEEN 120 AND 129 IS FOR A LARGE STACK LOADER-MOVER5170
    OPERATION CODE BETWEEN 130 AND 139 IS FOR A ROUND BALE LOADER-MOVER 5180
    TI IS THE LOADING TIME IN THE FIELD (H)
                                                                           5190
   T4 IS THE UNLOADING TIME AT STORAGE (H)
                                                                           5200
   T2 IS THE TIME TO TRAVEL FROM FIELD TO STORAGE WITH A FULL LOAD (H) 5210
    T3 IS THE TIME TO TRAVEL FROM STORAGE TO FIELD WITH AN EMPTY WAGON (5220
    XMC IS THE MOISTURE CONTENT ON A DRY BASIS
                                                                           5230
    DMCAP IS THE DRY MATTER CAPACITY OF A TRANSPORT WAGON (T)
                                                                           5240
      XMC=0.25
                                                                           5250
      DMCAP=XOPMD(1.8)/(1.+XMC)
                                                                           5260
      IF (DMCAP.GT.O.) GO TO 6
                                                                           5270
      WRITE (10.101) JOP. I
                                                                           5280
  101 FORMAT (///, 1X, 'THE DRY MATTER CAPACITY OF THE TRANSPORT UNIT IN 05290
     +PERATION', 16, 'IS CALCULATED TO BE LESS OR EQUAL TO 0'./. 1X. 'CHECK 5300
     +OPERATION DATA CARD NUMBER, ', 16, ' AND DATA FILE FOR ERROR')
                                                                           5310
      STOP
                                                                           5320
    6 T4=XOPMD(1.13)
                                                                           5330
      IF (JOP.GE.120.AND.JOP.LT.130) T1=XOPMD(1,12)
                                                                           5340
      IF (JOP.LT.130) GO TO 1
                                                                           5350
C
    HERE WE CALCULATE THE NUMBER OF ROUND BALES THAT WILL BE MOVED AT
                                                                           5360
C
    EACH TRIP FROM
                                                                           5370
    THE FIELD (XNBL) AND THE LOADING AND UNLOADING TIMES
                                                                           5380
      IF (ICODE (I+1,2).EQ.0) XNBL=1.
                                                                           5390
      IF (ICODE (I+1,2).NE.O) XNBL=XOPMD (I+1,8) *1000./XOPER (I,4)
                                                                           5400
      T1=X0PMD (1.12) *XNBL
                                                                           5410
      IF (XNBL.GT.1.) T4=T4+T1/3.
                                                                           5420
      IF (XNBL.GT.1.) DMCAP=XOPMD (I+1,8) / (1.+XMC)
                                                                           5430
C
    TRAVELLING WITH A FULL LOAD
                                                                           5440
    1 A(3) = XOPMD(1,1) + DMCAP*(1.+XMC)*1000.
                                                                          5450
      IF (JOP.GE.130) A (3) =A (3) +XOPMD (1+1,1)
                                                                           5460
      A(4) = 0.
                                                                           5470
      A(5) = 0.
                                                                           5480
      A(9) = XOPER(1,2)
                                                                           5490
      XTTP=1000.
                                                                           5500
      CALL SPEED
                                                                           5510
      VFULL=A(12)
                                                                           5520
      T2=XOPER(1,5)/A(12)
                                                                           5530
      XLD2=A(13)
                                                                           5540
```

```
TRAVELLING WITH AN EMPTY WAGON
C
                                                                               5550
      A(3) = A(3) - DMCAP*(1.+XMC)*1000.
                                                                               5560
      CALL SPEED
                                                                              5570
      T3=XOPER(1,5)/A(12)
                                                                              5580
      VEMPT=A(12)
                                                                              5590
      XLD3=A(13)
                                                                              5600
      PWR=A(1)
                                                                              5610
      ENG=A (15)
                                                                              5620
      FUEL=O.
                                                                              5630
      ELECT=0.
                                                                               5640
      FUI=1.
                                                                              5650
      K = (10P - 1) *6
                                                                              5660
      IF (JOP.GT.119) GO TO 2
                                                                              5670
C
    HERE WE CONSIDER THE AUTOMATIC BALE WAGON AT 6 DIFFERENT YIELDS
                                                                              5680
      D0 3 J=1,6
                                                                              5690
      K=K+1
                                                                              5700
      T1=DMCAP/RATES(K.3)
                                                                              5710
      XLD1=RATES (K, 4)
                                                                              5720
      AVLD= (XLD1*T1+XLD2*T2+XLD3*T3) / (T1+T2+T3)
                                                                              5730
      RATES (K,3) = DMCAP/(T1+T2+T3+T4)
                                                                              5740
      RATES (K,2) = RATES (K,3) /RATES (K,1)
                                                                              5750
      RATES (K, 4) = AVLD
                                                                              5760
      EFF = (A (14) *T1*1.1+T2+T3) / (T1+T2+T3)
                                                                              5770
      CALL ENERGY (AVLD.PWR.ENG.EFF.FUI.FUEL.ELECT)
                                                                              5780
      RATES (K,5) = FUEL
                                                                              5790
      RATES (K,6) = ELECT
                                                                              5800
      IF (IPRINT.NE.1) GO TO 3
                                                                              5810
      WRITE (6,100) JOP, T1, T2, T3, T4, VFULL, VEMPT
                                                                              5820
    3 CONTINUE
                                                                              5830
      GO TO 4
                                                                              5840
C
    HERE WE CONSIDER THE LARGE STACK MOVER AND THE ROUND BALE MOVER
                                                                              5850
    2 ETP=DMCAP/(T1+T2+T3+T4)
                                                                              5860
      AVLD= (XLD2*T2+XLD3*T3) / (T2+T3)
                                                                              5870
      EFF = (T2+T3+(T1+T4)/2.)/(T1+T2+T3+T4)
                                                                              5880
      CALL ENERGY (AVLD, PWR, ENG, EFF, FUI, FUEL, ELECT)
                                                                              5890
      DO 5 J=1,6
                                                                              5900
      K=K+1
                                                                              5910
      RATES (K, 1) = YAR(J)
                                                                              5920
      RATES (K, 2) = ETP/YAR(J)
                                                                              5930
      RATES (K, 3) = ETP
                                                                              5940
      RATES (K, 4) = AVLD
                                                                              5950
      RATES (K,5) = FUEL
                                                                              5960
      RATES (K, 6) = ELECT
                                                                              5970
      RATES (K,7) = XOPER(I,1)
                                                                              5980
      RATES (K.8) =VFULL
                                                                              5990
    5 CONTINUE
                                                                              6000
      IF (IPRINT.NE.1) GO TO 4
                                                                              6010
      WRITE (6,100) JOP, T1, T2, T3, T4, VFULL, VEMPT
                                                                              6020
  100 FORMAT (///,5X,'FOR OPERATION',16,' PARTIAL CYCLE TIMES ARE',
                                                                              6030
     +4F10.3,//,5X,'SPEEDS FULL AND EMPTY ARE (KM/H)',2F10.3)
                                                                              6040
```

C С C

```
6050
    4 RETURN
                                                                          6060
      END
C ****************************
                                                                          6070
                                                                          6080
      SUBROUTINE TRANSP (1.10P)
C ************************
                                                                          6090
                                                                          6100
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100,13)
      COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                          6110
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                          6120
      COMMON /Y4/ XOPMD (60.26)
                                                                          6130
      COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
                                                                          6140
      COMMON /Y6/ RATES (108,8), YAR (6)
                                                                          6150
      COMMON /Y8/ TTR(6), THR(3), XMC, FUELTR, FUELUL, ELECTT, ELECTU, DMCAP, UT6160
      COMMON /Y10/ XLD, XLABOR
                                                                          6170
   THIS SUBROUTINE CALCULATES THE MINIMUM CYCLE TIME OF ONE TRANSPORT
                                                                          6180
    UNIT. THE TRANSPORT CYCLE TIME INCLUDES
                                                                          6190
C
    TTR(1), MINIMUM INTERFACE TIME IN THE FIELD WITH THE HARVESTER
                                                                          6200
    TTR (2), TIME TO TRAVEL FROM THE FIELD TO STORAGE WITH A FULL WAGON
                                                                          6210
    TTR (3). TIME TO TRAVEL FROM STORAGE TO THE FIELD WITH AN EMPTY WAGON6220
C
    TTR (4), MINIMUM INTERFACE TIME AT STORAGE
                                                                          6230
C
    TTR (5), EXTRA TIME AT STORAGE TO HELP UNLOAD
                                                                          6240
    TTR (6), IDLE TIME WAITING FOR THE HARVESTER
C
                                                                          6250
    THE HARVEST CYCLE TIME INCLUDES
                                                                          6260
C
    THR (1). MINIMUM INTERFACE TIME IN THE FIELD WITH THE TRANSPORT UNIT 6270
C
    THR (2). TIME TO FILL A WAGON
                                                                          6280
С
    THR (3), IDLE TIME WAITING FOR A TRANSPORT UNIT
                                                                          6290
      TTR(1) = XOPER(I+1,1)
                                                                          6300
C
    WHEN THE WAGON IS PULLED BY A VEHICLE OTHER THAN THE HARVESTER. INTEG310
    TIME IN THE FIELD ALSO INCLUDES TIMEFOR THE HARVESTER TO FILL A WAGO6320
C
       IF (XOPER(1+1,2).EQ.O.) TTR(1)=TTR(1)+THR(2)
                                                                          6330
C
    CREATE VECTOR A TO CALCULATE TRAVEL SPEED TO AND FROM STORAGE
                                                                          6340
      A(1) = XOPMD(1+2,24)
                                                                          6350
                                                                          6360
      A(2) = XOPMD(1+2.14)
      A(3) = XOPMD(1+2,1) + XOPMD(1+2,8) *1000.
                                                                          6370
                                                                          6380
      A(15) = XOPMD(1+2,23)
C
     IF THE HARVESTER MUST ALSO TRANSPORT. THEN ADD THE MASS OF BOTH
                                                                          6390
                                                                          6400
C
    THE HARVESTER AND THE ATTACHMENT.
       IF (XOPER(1+2,1).EQ.O.) A (3) = A(3) + XOPMD(1,1) + XOPMD(1+1,1)
                                                                          6410
   CHECK IF A DUMP TRUCK IS BEING USED FOR TRANSPORT
                                                                          6420
       IF (ICODE (I+2,2).LT.260) GO TO 5
                                                                          6430
      A(1) = XOPMD(1+2.11)
                                                                          6440
                                                                          6450
      A(2) = A(3)
      A(3) = 0.
                                                                          6460
      A(15) = XOPMD(1+2.10)
                                                                          6470
    5 A(4)=0.
                                                                          6480
      A(5)=0.
                                                                          6490
      A(6) = X \mid NFO(1)
                                                                          6500
      A(7) = X I NFO(2)
                                                                          6510
      A(8) = X INFO(3)
                                                                          6520
      A(9) = XOPER(1+2.2)
                                                                          6530
      A(10) = 0.
                                                                          6540
```

```
A(11)=0.
                                                                           6550
      A(14)=1.
                                                                           6560
      XTTP=1000.
                                                                           6570
      CALL SPEED
                                                                           6580
      TTR (2) = XOPER(1,5) / A(12)
                                                                           6590
      VFULL=A(12)
                                                                           6600
      XLD2=A(13)
                                                                           6610
C
    FROM STORAGE TO THE FIELD. THE WAGON IS EMPTY
                                                                           6620
      A(3) = A(3) - XOPMD(1+2,8) *1000.
                                                                           6630
      CALL SPEED
                                                                           6640
      TTR (3) = XOPER(1,5) / A(12)
                                                                           6650
      VEMPT=A (12)
                                                                           6660
      XLD3=A(13)
                                                                           6670
      TTR(4) = XOPER(1+2,5)
                                                                           6680
    CALCULATE UNLOADING RATES IN THE ABSENCE (ULA) AND IN THE PRESENCE 6690
C
    OF THE TRANSPORT UNIT (ULTR)
                                                                           6700
      TTR(5) = 0.
                                                                           6710
      QULA=0.
                                                                           6720
      ULTR=0.
                                                                           6730
      FUELUL=O.
                                                                           6740
      ELECTU=0.
                                                                           6750
C
    IF ICODE (1+4,2) IS NOT ZERO, THERE IS AN UNLOADING DEVICE AND ENERGY6760
    REQUIRED FOR UNLOADING WILL BE CALCULATED
                                                                           6770
      IF (ICODE (1+4,2).NE.O) GO TO 21
                                                                           6780
C
    IN THE CASE OF HAND UNLOADING RECTANGULAR BALES, NO MECHANICAL
                                                                           6790
C
    ENERGY ISREQUIRED, BUT THE IMPACT ON UNLOADING TIME MUST BE
                                                                           6800
    CALCULATED
                                                                           6810
    CALL NUMBER 22.
                                                                           6820
      IF (JOP.GE.170) GO TO 22
                                                                           6830
      GO TO 20
                                                                           6840
    POWER AND ENERGY REQUIREMENTS ARE CALCULATED HER FOR THE BLOWER, THE6850
    ELEVATOR AND THE COMPACTING TRACTOR (BUNK SILOS). THE ENERGY FOR SE6860
    UNLOADING WAGONS IS INCLUDED IN TRANSPORT
                                                                           6870
   21 PWR=XOPMD (1+4,24)
                                                                           6880
      ENG=XOPMD (1+4.23)
                                                                           6890
C
  IN THE CASE OF A COMPACTING TRACTOR, POWER AND ENGINE INFORMATION IS 6900
    GIVEN WITH THE IMPLEMENT.
                                                                           6910
      IF (ICODE (1+4,2).LT.270) GO TO 25
                                                                           6920
      PWR=X0PMD (1+4, 11)
                                                                           6930
      ENG=XOPMD (1+4, 10)
                                                                           6940
   25 EFF=1.
                                                                           6950
      FU1=1.
                                                                           6960
      XLD=1./XINFO(1)
                                                                           6970
    AVERAGE LOAD OF A COMPACTING TRACTOR IS ASSUMED AS 0.5
                                                                           6980
    AVERAGE POWER REQUIRED TO OPERATE A BALE ELEVATOR IS ASSUMED TO BE 6990
    4 KW.
                                                                           7000
      IF (ICODE (I+4,2).GE.270) XLD=0.5
                                                                           7010
      IF (ICODE (I+4,2).LT.240.AND.PWR.GT.5.) XLD=4./PWR
                                                                           7020
      CALL ENERGY (XLD, PWR, ENG, EFF, FUI, FUEL, ELECT)
                                                                           7030
      FUELUL=FUEL
                                                                           7040
```

```
ELECTU=ELECT
                                                                          7050
                                                                          7060
      IF (JOP.LT.170) GO TO 10
    CONSIDER THE CASE OF UNLOADING RECTANGULAR BALES. UNLOADING RATES
                                                                          7070
    ARE ASSUMED TO BE 5 TONNES (METRIC) OF WET MATTER PER MAN-HOUR WITH 7080
    AN ELEVATOR AND 3.5 TWM/MAN.HOUR FOR HAND STACKING.
                                                                          7090
   22 RUL=5.0
                                                                          7100
      IF (ICODE (I+4,2).EQ.0) RUL=3.5
                                                                          7110
      ULA=RUL*XOPER(1+2.4)/(1.+XMC)
                                                                          7120
    QULA IS THE QUANTITY UNLOADED BETWEEN EACH WAGON"S ARRIVAL
C
                                                                          7130
      QULA=ULA* (TTR (1) +TTR (2) +TTR (3)) /XOPER (1+3,1)
                                                                          7140
      IF (JOP.GE.180) GO TO 23
                                                                          7150
      TLABOR=XOPER (1+2.4)+1.
                                                                          7160
      IF (ICODE (I+1,2).EQ.O.AND.XOPER (I+2,1).EQ.O.) TLABOR=TLABOR+1.
                                                                          7170
      GO TO 24
                                                                          7180
   23 TLABOR=XOPER (1+2,4)+XOPER (1+1,3)+1.
                                                                          7190
   24 ULTR=RUL*TLABOR/(1.+XMC)
                                                                          7200
      GO TO 15
                                                                          7210
   10 IF (ICODE (I+4,2).LT.240.OR.ICODE (I+4,2).GE.250) GO TO 20
                                                                          7220
    CONSIDER HERE THE CASE OF A BLOWER. UNLOADING RATE DOES NOT TAKE
                                                                          7230
    INTO ACCOUNT TIME FOR SETTING UP THE WAGON AT STORAGE TTR (4)
                                                                          7240
      HEIGHT=XOPER (1+4,2)
                                                                          7250
    MECHANICAL EFFICIENCY FOR BLOWING IS ASSUMED AS .08 FOR CORN SILAGE 7260
    0.06 FOR ALFALFA HAYLAGE
                                                                          7270
                                                                          7280
      EMECH=0.06
      IF (JOP.GE.140.AND.JOP.LT.150) EMECH=0.08
                                                                          7290
      FWM=PWR*XLD*EMECH*3600./(HEIGHT*9.8)
                                                                          7300
      ULTR=FWM/(1.+XMC)
                                                                          7310
   15 TTR (5) = (DMCAP-QULA) /ULTR
                                                                          7320
      IF (TTR(5).LT.0.) TTR(5)=0.
                                                                          7330
    CALCULATE AVERAGE FUEL CONSUMPTION (L/H) FOR TRANSPORT, CONSIDERING 7340
    IDLE TIME AS ZERO (IDLE TIME WILL BE IDENTIFIED IN SUBROUTINE HRTR) 7350
   20 PWR=X0PMD (1+2,24)
                                                                          7360
      ENG=XOPMD(1+2,23)
                                                                          7370
      FUI=1.
                                                                          7380
      XLD=(XLD2*TTR(2)+XLD3*TTR(3))/(TTR(2)+TTR(3))
                                                                          7390
      TTC=TTR (1) +TTR (2) +TTR (3) +TTR (4) +TTR (5)
                                                                          7400
                                                                          7410
      EFF=(TTR(2)+TTR(3)+0.5*TTR(5))/TTC
      IF (JOP.GE.170) EFF=(TTR(2)+TTR(3))/TTC
                                                                          7420
      IF (XOPER(I+1,2).EQ.O) EFF=EFF+TTR(1)/TTC
                                                                          7430
      CALL ENERGY (XLD, PWR, ENG, EFF, FUI, FUEL, ELECT)
                                                                          7440
      FUELTR=FUEL
                                                                          7450
      ELECTT=ELECT
                                                                          7460
    UT IS THE UNLOADING TIME TO TRANSPORT TIME RATIO. SINCE ENERGY
                                                                          7470
C
    REQUIREMENTS FOR UNLOADING ARE CALCULATED FOR CONTINUOUS UNLOADING, 7480
C
    UT WILL BE USED
                                                                          7490
    TO ESTIMATE ACTUAL ENERGY USED FOR UNLOADING
                                                                          7500
    ATR AND AUR ARE ACTUAL TRANSPORT AND UNLOADING RATES
                                                                          7510
      ATR=DMCAP*XOPER(I+3,1)/TTC
                                                                          7520
      AUR=ULTR*XOPER(1+4,1)
                                                                          7530
      IF (AUR.NE.O) UT=ATR/AUR
                                                                          7540
```

```
C
    IF THE UNLOADING RATE IS O. WE MIGHT HAVE EITHER A COMPACTING
                                                                       7550
                                                                       7560
    TRACTOR. IN
    WHICH CASE UT=0.5 OR WE MAY HAVE NO UNLOADING DEVICE AT ALL (UT=0.) 7570
      IF (AUR.EO.O.) UT=0.5
                                                                       7580
      IF (ICODE (I+4,2).EQ.0) UT=0.
                                                                       7590
      RETURN
                                                                       7600
      END
                                                                       7610
C ************************
                                                                       7620
      SUBROUTINE HRTR (1,10P)
                                                                       7630
7640
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                       7650
      COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                       7660
      COMMON /Y3/ NMDATA.NOPER.IN.IO
                                                                       7670
      COMMON /Y4/ XOPMD (60,26)
                                                                       7680
      COMMON /Y5/ A (15), OPNAME (5, 60), XTTP, JOP
                                                                       7690
      COMMON /Y6/ RATES (108,8), YAR (6)
                                                                       7700
      COMMON /Y8/ TTR (6), THR (3), XMC, FUELTR, FUELUL, ELECTT, ELECTU, DMCAP, UT7710
      COMMON /Y9/ IPRINT.IPR1
                                                                       7720
    THIS SUBROUTINE LINKS THE HARVEST SYSTEM TO THE TRANSPORT SYSTEM
                                                                       7730
    IT CALCULATES MINIMUM HARVEST AND TRANSPORT RATES AND ALLOCATES IDLE7740
    TIME TO WHICHEVER SYSTEM IS FASTER SO BOTH RATES BECOME EOUAL.
                                                                       7750
    IT ALSO CALCULATES ENERGY REQUIREMENTS FOR THE ENTIRE OPERATION
                                                                       7760
    (HARVEST, TRANSPORT AND UNLOADING).
                                                                       7770
      XMC=2.33
                                                                       7780
      IF (JOP.GE.170) XMC=0.25
                                                                       7790
                                                                       7800
      IF (JOP.GE.150.AND.JOP.LT.160) XMC=1.0
      DMCAP=XOPMD(1+2,8)/(1.+XMC)
                                                                       7810
      THR (1) = XOPER(I+1.1)
                                                                       7820
    THE FOLLOWING FIVE VARIABLES ARE INITIALIZED WITH DUMMY VALUES. THE7830
    ACTUAL VALUE IS CALCULATED SUBSEQUENTLY IN EITHER HRTR OR TRANSPORT 7840
    SUBROUTINE.
                                                                       7850
      THR (2) = 0.5
                                                                       7860
      THR (3) = 0.
                                                                       7870
      TTR(6) = 0.
                                                                       7880
    HTOT AND TTOT ARE RATIOS OF HARVEST TIME AND TRANSPORT TIME
                                                                       7890
    TOTAL OPERATION TIME. IN THE CASE OF A HARVESTER ALSO TRANSPORTING 7900
C
                                                                       7910
    MATERIAL TO STORAGE, TIME MUST BE ALLOCATED IN PART TO HARVEST AND
C
    IN PART TO TRANSPORT.
                                                                       7920
    IN THIS CASE HTOT AND TTOT WILL BOTH BE LESS THAN 1 A
                                                                       7930
    THEIR SUM WILL BE EQUAL TO 1.
                                                                       7940
      HTOT=1.
                                                                       7950
      TTOT=1.
                                                                       7960
      CALL TRANSP(1,10P)
                                                                       7970
      K = (10P - 1) *6
                                                                       7980
      DO 10 J=1.6
                                                                       7990
      K=K+1
                                                                       8000
                                                                       8010
      THR (2) = DMCAP/RATES (K. 3)
C
    TRANSPORT RATES WILL BE INDEPENDENT OF YIELD EXCEPT WHEN THE WAGON 8020
    IS PULLED BY THE HARVESTER.
                                                                       8030
                                                                       8040
      IF (XOPER(1+1,2).EQ.O.) CALL TRANSP (1,10P)
```

```
THC=THR (1) +THR (2)
                                                                          8050
      HR=DMCAP*XOPER(I,1)/THC
                                                                          8060
      TTC=TTR(1)+TTR(2)+TTR(3)+TTR(4)+TTR(5)
                                                                          8070
      TR=DMCAP*XOPER(I+3.1)/TTC
                                                                          8080
      IF (XOPER (1+2,1).NE.O.) GO TO 15
                                                                          8090
      HTOT=TR/(TR+HR)
                                                                          8100
      TTOT=HR/(TR+HR)
                                                                          8110
      AHR=HR*HTOT
                                                                          8120
      GO TO 30
                                                                          8130
   15 IF (HR.GT.TR) GO TO 20
                                                                          8140
  HERE TRANSPORT UNIT WILL IDLE TTR (6) HOUR PER UNIT HARVESTER
                                                                          8150
      TTR (6) = (XOPER(1+3.1) *THC-XOPER(1.1) *TTC) / XOPER(1.1)
                                                                          8160
      AHR=HR
                                                                          8170
      THR (3) = 0.
                                                                          8180
      GO TO 30
                                                                          8190
C
    HERE HARVEST RATE IS GREATER THAN TRANSPORT RATE.
                                                                          8200
   HARVESTER WILL IDLE THR (3) HOUR PER TRANSPORT UNIT
                                                                          8210
   20 THR(3)=(XOPER(1.1)*TTC-XOPER(1+3.1)*THC)/XOPER(1+3.1)
                                                                          8220
      AHR=TR
                                                                          8230
      TTR(6) = 0.
                                                                          8240
    NOW LET US MAKE CHANGES TO HARVEST RATES AND ENERGY CONSUMPTION SO 8250
   THEY MAY INCLUDE IDLE TIME.
                                                                          8260
   30 RATES (K. 3) =AHR
                                                                          8270
      RATES (K, 2) = AHR/YAR (J)
                                                                          8280
      THC=THC+THR (3)
                                                                          8290
      FUELHR=RATES (K,5) *THR (2) /THC
                                                                          8300
      ELECTH=RATES (K, 6) *THR (2) /THC
                                                                          8310
    ACTUAL ENERGY CONSUMPTION RATES ARE CALCULATED ON A TOTAL OPERATION 8320
C
                                                                          8330
      FH=FUELHR*HTOT*XOPER(I.1)
                                                                          8340
      FT=FUELTR*TTOT*XOPER(I+3,1)*TTC/(TTC+TTR(6))
                                                                          8350
      FU=FUELUL*TTOT*UT*XOPER(I+4.1)*TTC/(TTC+TTR(6))
                                                                          8360
      EH=ELECTH*HTOT*XOPER(I.1)
                                                                          8370
      ET=ELECTT*TTOT*XOPER(I+3,1)*TTC/(TTC+TTR(6))
                                                                          8380
      EU=ELECTU*TTOT*UT*XOPER(I+4.1)*TTC/(TTC+TTR(6))
                                                                          8390
      RATES (K,5) = FH + FT + FU
                                                                          8400
      RATES (K.6) = EH+ET+EU
                                                                          8410
      IF (IPRINT.NE.1) GO TO 10
                                                                          8420
      WRITE (10,100) JOP, YAR (J), (THR (KK), KK=1,3), (TTR (KK), KK=1,6)
                                                                          8430
  100 FORMAT (//,5x,'OPERATION ',18,/5x,'YIELD ',F10.2,' TDM/HA',/,5x,8440
     +'HARVEST CYCLE TIMES (HOURS) ',/,10X,'T1, INTERFACE TIME WITH TRAN8450
     +SPORT ',F10.4,/,10x,'T2, TIME TO FILL A WAGON IN THE FIELD ',F108460
     +.4,/10X,'T3, HARVESTER IDLE TIME ',F10.4,/,5X,'TRANSPORT CYCLE T18470
     +MES (HOURS) ',/ ,10X,'T1, INTERFACE TIME WITH HARVESTER ',F10.8480
     +4,/,10x,'T2, TIME TO TRAVEL WITH A FULL LOAD ',F10.4,/,10x,'T3, T8490'
     +IME TO TRAVEL WITH AN EMPTY WAGON ',F10.4,/10X,'T4, MINIMUM INTER8500
     +FACE TIME AT STORAGE ',F10.4,/,10x,'T5, TIME HELPING WITH UNLOAD18510
     +NG '. F10.4,/10X.'T6. TRANSPORT UNIT IDLE TIME ',F10.4,/) 8520
      WRITE (10,110) FUELHR, FH, FUELTR, FT, FUELUL, FU, ELECTH, EH, ELECTT, ET, 8530
     +ELECTU, EU, HTOT, TTOT, UT
                                                                          8540
```

```
110 FORMAT (//.60x.'PER SINGLE UNIT', 10x, 'FOR ALL UNITS'./60x, 'ON A CO8550
    +NTINUOUS', 10X, WITH RESPECT TO', /60X, 'BASIS', 20X, 'TOTAL OPERATION 8560
    +TIME',/.5X,'FUEL CONSUMPTION RATES (L/H)
                                                HARVEST', 19X, F10.2, 15X, 8570
    +F10.2,/,36x,'TRANSPORT',17x,F10.2,15x,F10.2,/,36x,'UNLOADING',17x,8580
    +F10.2,15x,F10.2,//,5x,'ELECTRICITY CONSUMPTION RATES (KW-H/H)
    +RVEST',9X,F10.2,15X,F10.2,/46X,'TRANSPORT',7X,F10.2,15X,F10.2,/,
    +46x, 'UNLOADING', 7x, F10.2, 15x, F10.2, ///, 5x, 'THE HARVEST TIME TO TOT8610
    +AL OPERATION TIME RATIO IS ',F10.4,/,5x,'THE TRANSPORT TIME TO TO8620
    +TAL OPERATION TIME RATIO IS ', F10.4,/,5x,'THE UNLOADING TIME TO 8630
     +TRANSPORT TIME RATIO IS '.F10.4)
                                                                         8650
   10 CONTINUE
      RETURN
                                                                         8660
                                                                         8670
      END
C **********************************
                                                                         8680
      SUBROUTINE HAYPCK (I.10P)
                                                                         8690
C *********************************
                                                                         8700
                                                                         8710
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
      COMMON /Y2/ ICODE (60,3), XOPER (60,5)
                                                                         8720
      COMMON /Y3/ NMDATA.NOPER.IN.10
                                                                         8730
      COMMON /Y4/ XOPMD (60,26)
                                                                         8740
      COMMON /Y5/ A (15), OPNAME (5,60), XTTP, JOP
                                                                         8750
      COMMON /Y6/ RATES (108,8), YAR (6)
                                                                          8760
      COMMON /Y8/ TTR (6), THR (3), XMC, FUELTR, FUELUL, ELECTT, ELECTU, DMCAP, UT8770
      COMMON /Y9/ IPRINT. IPRI
                                                                         8780
      COMMON /Y10/ XLD.XLABOR
                                                                         8790
                                                                         8800
   THIS SUBROUTINE LINKS FIELD HAND-PICKING OF RECTANGULAR HAY BALES
                                                                         8810
    AND UNLOADING AT A STORAGE SITE.
                                                                         8820
    THIS OPERATION IS CONSIDERED INDEPENDENT OF AND SUBSEQUENT TO HAY
                                                                         8830
    BALING.
      XMC=0.25
                                                                         8840
      DMCAP=XOPMD (1+2,8)/(1.+XMC)
                                                                         8850
                                                                         8860
      THR (1) = XOPER(I+1,1)
                                                                         8870
      THR (3) = 0.
      TTR(6) = 0.
                                                                         8880
      K = (10P - 1) *6
                                                                         8890
      DO 10 J=1.6
                                                                          8900
                                                                          8910
      K=K+1
    PICKING RATE OF BALES IS A FUNCTION OF YIELD AND LABOR AVAILABLE IN 8920
C
C
    THE FIELD.
                                                                          8930
    VARIABLES BALES AND RMASS ARE BALES PICKED PER HOUR AND TONNES OF
                                                                         8940
    DRY MATTER PICKED PER HOUR.
                                                                          8950
                                                                          8960
      FLABOR=XOPER (1+1,3)+1.
      BALES=(48.+4.*YAR(J))*FLABOR
                                                                         8970
      RMASS=BALES*XOPER(1,4)/(1000.*(1.+XMC))
                                                                          8980
      THR (2) = DMCAP/RMASS
                                                                          8990
      CALL TRANSP (1,10P)
                                                                          9000
      TTC=TTR(1)+TTR(2)+TTR(3)+TTR(4)+TTR(5)
                                                                          9010
      AHR=DMCAP*XOPER(I+3,1)/TTC
                                                                          9020
      RATES (K, 1) = YAR(J)
                                                                          9030
      RATES (K, 2) = AHR/YAR(J)
                                                                          9040
```

```
RATES (K, 3) = AHR
                                                                        9050
   RATES (K, 4) =XLD
                                                                        9060
   FT=FUELTR*XOPER(I+3.1)
                                                                        9070
   FU=FUELUL*UT*XOPER(1+4.1)
                                                                        9080
   ET=ELECTT*XOPER(I+3.1)
                                                                        9090
   EU=ELECTU*UT*XOPER(1+4,1)
                                                                        9100
                                                                        9110
   RATES (K.5) = FT + FU
   RATES (K.6) =ET+EU
                                                                        9120
   RATES (K.7) = XLABOR
                                                                        9130
   RATES (K, 8) = 8.
                                                                        9140
    IF (IPRINT.NE.1) GO TO 10
                                                                        9150
   WRITE (10,100) JOP, YAR (J), (THR (KK), KK=1,3), (TTR (KK), KK=1,6)
                                                                        9160
100 FORMAT (//,5X,'OPERATION ',18,/,5X,'YIELD ',F10.2,' KG/HA',/,5X,9170
  +'HARVEST CYCLE TIMES (HOURS) ',/,10X,'T1, INTERFACE TIME WITH TRAN9180
  +SPORT '.F10.4./,10X.'T2, TIME TO FILL A WAGON IN THE FIELD '.F109190
  +.4,/10X,'T3, HARVESTER IDLE TIME ',F10.4,/,5X,'TRANSPORT CYCLE T19200
  +MES (HOURS) ',/ ,10X,'T1, INTERFACE TIME WITH HARVESTER ',F10.9210
  +4,/,10x,'T2, TIME TO TRAVEL WITH A FULL LOAD ',F10.4,/,10x,'T3, T9220
  +IME TO TRAVEL WITH AN EMPTY WAGON ',F10.4,/10X,'T4, MINIMUM INTER9230
  +FACE TIME AT STORAGE ',F10.4,/,10x,'T5, TIME HELPING WITH UNLOAD19240
  +NG ', F10.4,/10X,'T6, TRANSPORT UNIT IDLE TIME ',F10.4,/)
                                                                        9250
   WRITE (10.110) FUELTR.FT.FUELUL.FU.ELECTT.ET.ELECTU.EU.UT
110 FORMAT (//,60x,'PER SINGLE UNIT',10x,'FOR ALL UNITS',/60x,'ON A CO9270
  +NTINUOUS', 10X, WITH RESPECT TO', /60X, 'BASIS', 20X, 'TOTAL OPERATION 9280
  +TIME',/,5X,'FUEL CONSUMPTION RATES (L/H)',
                'TRANSPORT', 17X, F10.2, 15X, F10.2, /, 36X, 'UNLOADING', 17X, 9300
  +F10.2,15X,F10.2,//,5X,'ELECTRICITY CONSUMPTION RATES (KW-H/H)',
                                                                        9310
                                    'TRANSPORT',7X,F10.2,15X,F10.2,/,
  +46x, 'UNLOADING', 7x, F10.2, 15x, F10.2, ///, 5x, 'THE UNLOADING TIME TO 9330
  +TRANSPORT TIME RATIO IS ',F10.4)
                                                                        9340
 10 CONTINUE
                                                                        9350
    RETURN
                                                                        9360
    END
                                                                        9370
```

Table E.4. Listing of program ALHARV.

```
C
                                                                        100
C ********************************
                                                                        110
      SUBROUTINE ALHARV (REMCUT.REMHRV.ICUTON.JDAY)
                                                                        120
130
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                        140
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                        150
      COMMON /W4/ NPDCA, NDCTD, IDAH
                                                                        160
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                        170
      COMMON /CTRL24/ BGNCUT(5),NTHYR,NTHCUT,NDAYSC,NDAYSH,YLD(4),
                                                                        180
     +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT190
     +, NYRS, I PRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                        200
      COMMON /ALFARG/ GDDB5.AVTA, DAYLIN, DAYLEN, YDAYL, DECR. XLAI, AW,
                                                                        210
    +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC. 220
    +XMATS, TNCS, TMAXC, TMINC
                                                                        230
                                                                        240
   THIS SUBROUTINE IS CALLED FROM THE ALFALFA GROWTH SIMULATOR
                                                                        250
   WRITTEN BY LUKE PARSCH, AGICULTURAL ECONOMICS DEPARTMENT, MSU
                                                                        260
C
    THE PRESENT SUBROUTINE ALHARV AND ALL THE ATTACHED SUBROUTINES
                                                                        270
C
    CALLED HEREFROM WERE WRITTEN BY PHILIPPE SAVOIE, AGRICULTURAL
                                                                        280
    ENGINEERING DEPARTMENT, MICHIGAN STATE UNIVERSITY.
                                                                        290
C
    ALHARV IS CALLED ONCE EACH ALFALFA HARVEST DAY.
                                                                        300
C
   HARVEST WILL NOT BEGIN IF CORN PLANTING (CPLANT) IS NOT FINISHED.
                                                                        310
    IF THE MOWING CRUDE PROTEIN IS SPECIFIED IN THE REASONABLE RANGE.
                                                                        320
   MOWING CAN BE POSTPONED UP TO 10 DAYS BEYOND BGNCUT (NTHCUT)
C
                                                                        330
    IF ALFALFA IS CONSIDERED IMMATURE.
                                                                        340
    ON THE FIRST DAY OF MOWING, AN INITIALIZATION SUBROUTINE IS CALLED. 350
C
    THE WHOLE AREA TO BE HARVESTED IS DIVIDED INTO NPLOTS, THE
                                                                        360
   NUMBER OF PLOTS.
                                                                        370
C
    FOR DIRECT-CUT ALFALFA, IDENTIFIED BY IDAH-1 IN THE INITIALIZATION
                                                                        380
C
    SUBROUTINE, SUBROUTINE DCALF IS CALLED.
                                                                        390
C
    FOR FIELD CURED ALFALFA, EITHER FOR HAY OR HAYLAGE, SUBROUTINES
                                                                        400
C
   HRVQ, MOWQ, HRVO AND UPDATE ARE CALLED IN THAT ORDER.
                                                                        410
C
    FIRST PRIORITY IS GIVEN TO HARVEST (REMOVING ALFALFA FROM THE
                                                                        420
    FIELD). SECOND PRIORITY IS GIVEN TO MOWING.
                                                                        430
   HRVQ IS CALLED A SECOND TIME IN CASE SOME PLOTS MOWED IN THE
                                                                        440
C
   MORNING COULD BE READY FOR HARVEST LATER IN THE AFTERNOON.
                                                                        450
    ALL PLOTS MOWED AND NOT YET HARVESTED (STILL CURING IN THE FIELD)
                                                                        460
C
    ARE THEN UPDATED FOR WEATHERING LOSSES AND FOR DRYING.
                                                                        470
C
    FINALLY WHEN ALL PLOTS ARE HARVESTED THEY ARE AGGREGAGATED INTO THE 480
    HFEED MATRIX BY CALLING ENDHRV.
                                                                        490
                                                                        500
C
    NHTDAY IS THE NUMBER OF PLOTS HARVESTED TODAY
                                                                        510
    NMTDAY IS THE NUMBER OF PLOTS MOWED TODAY
                                                                        520
C
                                                                        530
      I CUTON=0
                                                                        540
```

```
IF (NDAYHR.GT.O) GO TO 5
                                                                            550
      IF (CPLANT.GE.FLOAT (JDAY)) RETURN
                                                                            560
      KFIRST=MAX1 (CPLANT+1., BGNCUT (NTHCUT))
                                                                            570
C
    IF THE CP CRITERION IS UNREASONABLE, BYPASS IT AND HARVEST.
                                                                            580
      IF (CRTR (NTHCUT, 4, 3) .LT.0.15.0R.CRTR (NTHCUT, 4, 3) .GT.0.23) GO TO 5 590
    ON THE FIRST CHECKING DAY, SET THE PREVIOUS DAY'S CP AND RETURN.
                                                                            600
      IF (JDAY.EQ.KFIRST) THEN
                                                                            610
      PDCP1=CRTR (NTHCUT, 4, 3) +0.0001
                                                                            620
      PDCP2=QUAL (3,2)+0.0001
                                                                            630
      PDCP=AMAX1 (PDCP1, PDCP2)
                                                                            640
      RETURN
                                                                            650
      ENDIF
                                                                            660
    ON SUBSEQUENT DAYS, THE NUMBER OF DAYS MOWING HAS BEEN POSTPONED
                                                                            670
    IS CALCULATED. IF IT IS GREATER OR EQUAL TO 10, POSTPONEMENT
                                                                            680
    IS STOPPED AND MOWING MUST START.
                                                                            690
                                                  ģ
      CHDAYS=FLOAT (JDAY) -BGNCUT (NTHCUT)
                                                                            700
      CHMAX=10.
                                                                            710
      IF (CHDAYS.GE.CHMAX) THEN
                                                                            720
C
                                                                            730
      KFIRST=JDAY
                                                                            740
C
                                                                            750
      GO TO 5
                                                                            760
      ENDIF
                                                                            770
      IF (QUAL (3,2).GT.PDCP) GO TO 3
                                                                            780
      IF (QUAL (3,2).GT.CRTR (NTHCUT, 4,3)) RETURN
                                                                            790
C
    HERE THE QUALITY IS LOW ENOUGH TO HARVEST.
                                                                            800
    CHECK IF TODAY IS THE FIRST DAY OF HARVEST.
                                                                            810
      IF (PDCP.GT.CRTR (NTHCUT, 4, 3)) THEN
                                                                            820
      KF I RST=JDAY
                                                                            830
      ENDIF
                                                                            840
      PDCP=QUAL (3,2)
                                                                            850
      GO TO 4
                                                                            860
                                                                            870
      IF (NHRV.EQ.NPLOTS) RETURN
      CONTINUE
                                                                            880
5
      I=NTHCUT
                                                                            890
      JJDAY-JDAY
                                                                            900
      RAIN=PPT
                                                                            910
      NHTDAY-0
                                                                            920
      NMTDAY=0
                                                                            930
      IF (JDAY.EQ.KFIRST) NDAYHR=1
                                                                            940
      IF (NDAYHR.EQ.1) CALL INHRV
                                                                            950
      IF (NDAYHR.GE.39) CALL ENDHRV
                                                                            960
      IF (NDAYHR.GE.39) GO TO 30
                                                                            970
      IF (IDAH.EQ.1) GO TO 10
                                                                            980
      IF (NHRV.LT.NMOW) CALL HRVQ (NHTDAY)
                                                                            990
      IF (NMOW.LT.NPLOTS) CALL MOWQ (NHTDAY, NMTDAY)
                                                                            1000
      NMOW=NMOW+NMTDAY
                                                                            1010
      IF (NHRV.LT.NMOW) CALL HRVQ (NHTDAY)
                                                                            1020
      NHRV=NHRV+NHTDAY
                                                                            1030
      CALL UPDATE
                                                                            1040
```

```
GO TO 20
                                                                      1050
  10 CALL DCALF
                                                                      1060
  20 CONTINUE
                                                                      1070
     IF (NHRV.EO.NPLOTS) CALL ENDHRV
                                                                      1080
     NDAYHR=NDAYHR+1
                                                                      1090
  30 CONTINUE
                                                                      1100
     REMCUT=1.-FLOAT (NMOW) /FLOAT (NPLOTS)
                                                                      1110
     REMHRV=1.-FLOAT (NHRV) /FLOAT (NPLOTS)
                                                                      1120
     IF (NMOW.GT.O) ICUTON=1
                                                                      1130
     IF (NMOW.GE.NPLOTS) ICUTON=0
                                                                      1140
     IF (NMTDAY.GE.NPLOTS) ICUTON=1
                                                                      1150
     CALL WRITAL(1)
                                                                      1160
                                                                      1170
     RETURN
                                                                      1180
     END
1190
                                                                      1200
     SUBROUTINE MGTINF
1210
     COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                      1220
     COMMON /Z5/ IPR2.IPR3.IPR4
                                                                      1230
     COMMON /Z8/ ALFSIL (2), HAYST (3)
                                                                      1240
     COMMON /Y3/ NMDATA.NOPER.IN.IO
                                                                      1250
   THIS SUBROUTINE READS MANAGEMENT INFORMATION RELATED TO ALFALFA
                                                                      1260
   HARVEST. THIS INCLUDES THE AREA. THE SEQUENCE OF OPERATIONS. THE
                                                                      1270
   CRITERION MATRIX FOR EACH ALFALFA HARVEST AND ALFALFA STORAGE
                                                                      1280
   CAPACITIES AND INITIAL COSTS. THERE CAN BE UP TO 4 DISTINCT
                                                                      1290
   ALFALFA HARVESTS IN A GIVEN YEAR. THE NUMBER MAY VARY. WHEN AREA
                                                                      1300
   READ IN IS ZERO, NO MORE HARVESTS ARE CONSIDERED.
                                                                      1310
                                                                      1320
     WRITE (10.95)
                                                                      1330
   95 FORMAT (/.5x.'THE MANAGEMENT INPUTS FOR AREA AND OPERATION SEQUENC1340
    +E WERE READ AS FOLLOWS')
                                                                      1350
     1=0
                                                                      1360
   15 |=|+1
                                                                      1370
     READ (IN, 100) AREA (I) .NBO (I)
                                                                      1380
     WRITE (10,100) AREA(1), NBO(1)
                                                                      1390
  100 FORMAT (F10.2.12)
                                                                      1400
      IF (AREA(I).EQ.O.) GO TO 10
                                                                      1410
     READ (IN, 110) (NOPSQ (I,K),K=1,9)
                                                                      1420
     WRITE (10,110) (NOPSQ(1,K),K=1,9)
                                                                      1430
  110 FORMAT (915)
                                                                      1440
     READ (IN, 120) ((CRTR (I, J, K), K=1,9), J=1,4)
                                                                      1450
     WRITE (10,120) ((CRTR(1,J,K),K=1,9),J=1,4)
                                                                      1460
  120 FORMAT (3(9F5.2,/),9F5.2)
                                                                      1470
     GO TO 15
                                                                      1480
10
     READ (IN, 130) (SILO(I), I=1,2), (ALFSIL(I), I=1,2), (HAYST(I), I=1,3)
                                                                      1490
     WRITE (10,130) (SILO(1),1=1,2), (ALFSIL(1),1=1,2), (HAYST(1),1=1,3) 1500
130
     FORMAT (7F10.2)
                                                                      1510
     READ (IN, 140) IPR2, IPR3, IPR4
                                                                      1520
     WRITE (10,140) IPR2, IPR3, IPR4
                                                                      1530
  140 FORMAT (312)
                                                                      1540
```

```
RETURN
                                                                  1550
     END
                                                                  1560
                                                                  1570
1580
     SUBROUTINE YRINIT
                                                                  1590
C **********************
                                                                  1600
     COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                  1610
     COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                  1620
     COMMON /Z4/FDLABR.FDENER.HRLABR.HRFUEL.HRELEC
                                                                  1630
     COMMON /Z6/ CSLABR, CSFUEL, CSELEC, CSFDLB, CSFDEN, DMCS
                                                                  1640
     COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                  1650
     COMMON /YY1/ USEMCH (100) . UNITS (100)
                                                                  1660
C
   THIS SUBROUTINE PROVIDES AN INITIALIZATION OF PARAMETERS THAT MUST
                                                                  1670
   BE SET TO O AT THE BEGINNING OF EACH YEAR.
                                                                  1680
                                                                  1690
     DATA ALHRFD.AFEED /390*0.0.598*0.0/
     HARDEX=1.
                                                                  1700
     IF (SILO(1).EQ.O.) HARDEX=2.
                                                                  1710
     IF (SILO(1).EQ.O.O.AND.SILO(2).EQ.O.) HARDEX=3.
                                                                  1720
     FDLABR=O.
                                                                  1730
     FDENER=O.
                                                                  1740
     HRLABR=0.
                                                                  1750
     HRFUEL=0.
                                                                  1760
     HRELEC=O.
                                                                  1770
                                                                  1780
     CSLABR=O. \
     CSFUEL=O.
                                                                  1790
                                                                  1800
     CSELEC=O.
                                                                  1810
     CSFDLB=0.
     CSFDEN=O.
                                                                  1820
     DMCS=O.
                                                                  1830
                                                                  1840
     DO 3 1=1,4
   3 \text{ TMSTO}(1)=0.
                                                                  1850
                                                                  1860
     D0 5 I=1.5
     NCUM(I)=0
                                                                  1870
     DO 4 J=1.9
                                                                  1880
   4 OPUSE (I,J)=0.
                                                                  1890
     DO 5 J=1,5
                                                                  1900
   5 \text{ NPST}(I,J)=0
                                                                  1910
     D0 6 l=1,100
                                                                  1920
     USEMCH(I)=0.
                                                                  1930
   6 UNITS (1) =0.
                                                                  1940
     RETURN
                                                                  1950
     END
                                                                  1960
                                                                  1970
1980
     SUBROUTINE INHRV
                                                                  1990
2000
     COMMON /W1/ NPLOTS.NMOW.NHRV.NSTO.AREAPL.HARMAT(40.29).ZRT(9.5)
                                                                  2010
     COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                  2020
     COMMON /W4/ NPDCA, NDCTD, IDAH
                                                                  2030
     COMMON /Z1/ AREA (6) ,NBO (6) ,NOPSO (5,9) ,CRTR (5,4,9) ,SILO (2)
                                                                  2040
```

```
COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                           2050
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                           2060
     +OUAL(3.4).GDDCUM.METRIC.JYEARF.JYEARL.IPRT1.IPRT2.JDAYF.JDAYL.JPRT2070
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                           2080
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                           2090
     +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 2100
     +XMATS.TNCS.TMAXC.TMINC
                                                                           2110
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                           2120
      COMMON /Y6/ RATES (108,8), YAR (6)
                                                                           2130
      COMMON /Y7/ NBOP (18), NBMACH (18,7), XNBM (18,7)
                                                                           2140
      COMMON /Z21/ ADATES (26, 12), SDATES (4, 12)
                                                                           2150
      DATA ADATES /312*O./
                                                                           2160
C
                                                                           2170
    THIS IS AN INITIALIZATION SUBROUTINE. IT IS CALLED ON THE FIRST
                                                                           2180
C
C
    HARVEST DAY.
                                                                           2190
    IT IS CALLED ONLY ONCE FOR EACH HARVEST (OR CUT).
                                                                           2200
C
    UP TO NINE OPERATIONS MAY BE INCLUDED IN A HARVEST SEQUENCE.
                                                                           2210
C
    THE NUMBER OF OPERATIONS IN A SEQUENCE IS EITHER 1 FOR DIRECT CUT
                                                                           2220
C
    ALFALFA OR CORN SILAGE HARVEST (IDENTIFIED BY IDAH=1) OR UP TO
                                                                           2230
C
    9 SEQUENTIAL OPERATIONS (IDAH=9) FOR FIELD-CURED ALFALFA.
                                                                           2240
C
    WHEN ALFALFA IS FIELD CURED. THERE MAY BE UP TO 6
                                                                           2250
C
    SEQUENTIAL OPERATIONS AND 3 OPTIONAL HARVEST OPERATIONS
                                                                           2260
C
    FOR EACH CUT I IN ANY YEAR, THE POSSIBLE OPERATIONS ARE
                                                                           2270
C
      NOPSQ(1,1), MOWING FOR FIELD CURING
                                                                           2280
C
      NOPSQ(1,2), ADDITIONAL CURING TREATMENT OR OOOO
                                                                           2290
C
      NOPSQ(1,3), RAKING JUST BEFORE HARVESTING OR OOOO
                                                                           2300
      NOPSQ(1,4), ADDITIONAL TREATMENT AFTER RAINFALL OR OOOO
C
                                                                           2310
C
      NOPSQ(1,5), FIRST PRIORITY HARVEST OF FIELD CURED FORAGES
                                                                           2320
C
           OR DIRECT-CUT ALFALFA HARVEST.
                                                                           2330
C
      NOPSO(1.6). SECOND PRIORITY HARVEST
                                                                           2340
C
      NOPSQ(1,7), FORCED HAY HARVEST WHEN SILOS ARE FULL
                                                                           2350
C
      NOPSO(1.8). LAST RESORT HARVEST OPERATION TO DESTROY FORAGES AFTER 2360
C
           EXCESSIVE EXPOSURE
                                                                           2370
C
      NOPSQ(1.9), TRANSPORT OF BALED HAY DROPPED IN THE FIELD DURING
                                                                           2380
C
                                                                           2390
           HARVEST.
C
    FOR EACH OPERATION (J) DURING HARVEST (I), FIVE PARAMETERS ARE
                                                                           2400
C
    ESTIMATED. THEY ARE
                                                                           2410
C
      ZRT (J. 1). THE HARVEST RATE AT A SPECIFIC YIELD (HA/H)
                                                                           2420
C
                                                                           2430
      ZRT (J,2), THE FUEL CONSUMPTION RATE (L/H)
      ZRT (J, 3), THE ELECTRICITY CONSUMPTION RATE (KW.H/H)
C
                                                                           2440
C
      ZRT (J.4). THE LABOR REQUIREMENT (MAN.H/H)
                                                                           2450
C
      ZRT (J,5), THE AVERAGE SPEED OF THE HARVESTING IMPLEMENT (KM/H)
                                                                           2460
C
                                                                           2470
C
    THE HARMAT MATRIX CONTAINS ALL THE USEFUL CHARACTERISTICS OF ALFALFA2480
C
    BETWEEN MOWING AND STORAGE TIME. IT KEEPS TRACK OF DRYING. DRY
                                                                           2490
C
    MATTER AND QUALITY CHANGES OF BOTH STEMS AND LEAVES.
                                                                           2500
C
    FOR EACH PLOT (1), THE CHARACTERISTICS ARE
                                                                           2510
C
      HARMAT (1,1), A MOWING DUMMY VARIABLE (1. WHEN MOWED, O. OTHERWISE) 2520
C
      HARMAT (1,2), LEAF YIELD AT TIME OF MOWING (KG-DM/HA)
                                                                           2530
      HARMAT (1,3), STEM YIELD AT TIME OF MOWING (KG-DM/HA)
                                                                           2540
```

```
C
      HARMAT (1.4). CRUDE PROTEIN IN THE LEAVES AT MOWING (DEC.)
                                                                           2550
C
      HARMAT (1,5), CRUDE PROTEIN IN THE STEMS AT MOWING (DEC.)
                                                                           2560
C
      HARMAT (1,6), DIGESTIBILITY OF LEAVES AT MOWING (DEC)
                                                                           2570
C
      HARMAT (1,7), DIGESTIBILITY OF STEMS AT MOWING (DEC)
                                                                           2580
C
      HARMAT (1.8), CRUDE FIBER OF LEAVES AT MOWING (DEC)
                                                                           2590
C
      HARMAT (1,9), CRUDE FIBER OF STEMS (DEC)
                                                                           2600
C
      HARMAT (1,10), INITIAL MOISTURE CONTENT EACH DAY AT 8AM (DEC. DB)
                                                                           2610
C
      HARMAT (1,11), FINAL MOISTURE CONTENT AT TIME OF HARVEST (DEC. DB) 2620
C
      HARMAT (1,12), HARVEST DUMMY VARIABLE (1. WHEN HARVESTED. O. OTHERW2630
C
      HARMAT (1,13), STORAGE DUMMY VARIABLE (1. WHEN STORED. O. OTHERWISE2640
C
      HARMAT (1, 14), NUMBER OF EXPOSURE DAYS SINCE MOWING
C
      HARMAT (1,15), NUMBER OF EXPOSURE DAYS SINCE HARVESTING (IN THE
                                                                           2660
C
           CASE OF BALES LEFT OUTSIDE FOR STORAGE)
                                                                           2670
C
      HARMAT (1.16). CUMULATIVE RAINFALL ON BALED HAY LEFT IN THE FIELD
                                                                           2680
C
              (MM)
                                                                           2690
C
      HARMAT (1, 17), WINDROW TO SWATH WIDTH RATIO
                                                                           2700
C
      HARMAT (1, 18), RAKING FACTOR FOR DRYING (1. ON THE DAY MATERIAL IS 2710
C
           RAKED. O. OTHERWISE)
                                                                           2720
C
      HARMAT (1, 19). MOWING-CONDITIONING FACTOR FOR DRYING
                                                                           2730
C
      HARMAT (1,20), EXTRA TREATMENT FACTOR FOR DRYING
                                                                           2740
C
      HARMAT (1,21), HARVEST INDEX (1. WHEN FIRST PRIORITY, 2. WHEN SECON2750
C
           PRIORITY, 3. WHEN FORCED BALED HAY AFTER FILLING SILOS, 4. WH2760
C
           DESTROYING EXCESSIVELY EXPOSED FORAGES)
C
      HARMAT (1,22), STORAGE TYPE INDEX (1. FOR DRY HAY, 2. FOR WET STORA2780
C
      HARMAT (1,23), THIS PARAMETER HAS NO USE AT PRESENT
                                                                           2790
C
      HARMAT (1,24), REMAINING LEAF FRACTION (DEC)
                                                                           2800
C
       HARMAT (1,25). REMAINING STEM FRACTION (DEC)
                                                                           2810
C
      HARMAT (1,26), REMAINING DRY MATTER FRACTION AFTER RESPIRATION LOSS2820
C
      HARMAT (1,27), CUMULATIVE RAINFALL DURING FIELD CURING (MM)
                                                                           2830
C
      HARMAT(1,28), AVERAGE TIME AFTER 8AM AT WHICH PLOT(1) IS MOWED
                                                                           2840
C
      HARMAT (1,29), MOISTURE CONTENT RIGHT AFTER RAIN OR AT 8AM IN THE
                                                                           2850
C
                                                                           2860
           CASE OF A NON-RAINY DAY (DEC, DB)
C
                                                                           2870
C
    CONVERT YIELD INTO TDM/HA AND INCREASE BY 10 PERCENT TO ESTIMATE
                                                                           2880
    AVERAGE HARVEST RATE THROUGHOUT THE HARVEST SEASON
                                                                           2890
      K = (NTHCUT - 1) *3+1
                                                                           2900
      ADATES (NTHYR, K) = FLOAT (JJDAY)
                                                                           2910
      YDM=TOPS*0.01*1.1
                                                                           2920
      DO 10 J=1,9
                                                                           2930
      DO 10 K=1,5
                                                                           2940
   10 ZRT(J,K)=0.
                                                                           2950
      I=NTHCUT
                                                                           2960
      NBOX=9
                                                                           2970
      IF (NOPSQ(1,1).GE.140.AND.NOPSQ(1,1).LT.150) NBOX=1
                                                                           2980
C
    THE FOLLOWING DO LOOP IDENTIFIES EACH OPERATION AND USES INFORMATION2990
    IN THE RATES MATRIX TO INTERPOLATE ACTUAL PARAMETERS IN THE ZRT MATR3000
      DO 20 J=1,NBOX
                                                                           3010
      11=0
                                                                           3020
    ] ||=||+]
                                                                           3030
      IF (NOPSQ(I,J).EQ.0) GO TO 20
                                                                           3040
```

```
IF (NOPSQ(I,J).NE.NBOP(II).AND.II.LT.18) GO TO 1
                                                                               3050
      IF (NOPSQ(I,J).EQ.NBOP(II)) GO TO 2
                                                                               3060
                                                                               3070
      WRITE (10,100) NOPSQ(1,J)
  100 FORMAT (/,5x, 'OPERATION NUMBER ',16,' HAS NOT BEEN DEFINED INITIAL 3080
     +LY IN SUBROUTINE FORHRV',/,5x,'MAKE THE CORRECTION')
      STOP
                                                                               3100
    2 K = (11-1) *6
                                                                               3110
      YDMLOW=RATES (K+1, 1)
                                                                               3120
      YDMHGH=RATES (K+6, 1)
                                                                               3130
                                                                               3140
      XINCR= (YDMHGH-YDMLOW) /5.
      IF (YDM.LE.YDMLOW) GO TO 3
                                                                               3150
      IF (YDM.GE.YDMHGH) GO TO 4
                                                                               3160
      DIFF= (YDM-YDMLOW) /XINCR
                                                                               3170
      IDIFF=IFIX (DIFF)
                                                                               3180
      KI=1+IDIFF
                                                                               3190
                                                                               3200
      FH=DIFF-FLOAT (IDIFF)
      FL=1.-FH
                                                                               3210
      GO TO 5
                                                                               3220
    3 FL=1.
                                                                               3230
      FH=O.
                                                                               3240
      KI=1
                                                                               3250
      GO TO 5
                                                                               3260
    4 FL=0.
                                                                               3270
      FH=1.
                                                                               3280
      K1=5
                                                                               3290
    5 KL=K+KI
                                                                               3300
      ZRT (J, 1) = RATES (KL, 2) *FL+RATES (KL+1, 2) *FH
ZRT (J, 2) = RATES (KL, 5) *FL+RATES (KL+1, 5) *FH
ZRT (J, 2) = RATES (KL, 6) *FL+RATES (KL+1, 6) *FH
                                                                               3310
                                                                               3320
      ZRT(J,3) = RATES(KL,6) *FL+RATES(KL+1,6) *FH
                                                                               3330
      ZRT(J,4) = RATES(KL,7)
                                                                               3340
      ZRT (J,5) = RATES (KL,8) *FL+RATES (KL+1.8) *FH
                                                                               3350
C
    IN THE CASE OF A YIELD ABOVE THE MAXIMUM USED IN FORHRV, WE SHOULD 3360
    ASSUME A CONSTANT THROUGHPUT INSTEAD OF A CONSTANT FIELD CAPACITY
                                                                               3370
    ALSO REDUCE FIELD OPERATING SPEED PROPORTIONATELY
                                                                               3380
      IF (YDM.GE.YDMHGH) ZRT (J, 1) =RATES (KL+1, 3) /YDM
                                                                               3390
      IF (YDM.GE.YDMHGH) ZRT (J,5) = ZRT (J,5) *YDMHGH/YDM
                                                                               3400
   20 CONTINUE
                                                                               3410
    NMO, NHRV AND NSTO ARE THE TOTAL NUMBER OF PLOTS MOWED, HARVESTED AND 3420
    STORED DURING THE CURRENT HARVEST SEASON
                                                                               3430
    NPDCA IS THE NUMBER OF PLOTS THAT WILL BE HARVESTED AS DIRECT CUT
                                                                               3440
    ALFALFA DURING THE PRESENT HARVEST
                                                                               3450
      NMOW=0
                                                                               3460
      NHRV=0
                                                                               3470
      NSTO=0
                                                                               3480
      NPDCA=0
                                                                               3490
    NDCTD IS THE NUMBER OF PLOTS THAT ARE HARVESTED AS DIRECT CUT
                                                                               3500
C
    ALFALFA TODAY.
                                                                               3510
      NDCTD=0
                                                                               3520
    IDAH IS THE IDENTIFICATION NUMBER FOR ALFALFA HARVEST. ITS VALUE IS 3530
    1 FOR DIRECT CUT ALFALFA. ANY OTHER VALUE MEANS THE ALFALFA WILL BE 3540
```

```
C
    FIELD CURING. IN THIS CASE, IDAH IS USUALLY 9.
                                                                        3550
      IDAH=9
                                                                        3560
      IF (NOPSQ(1,5).GE.160.AND.NOPSQ(1,5).LE.169) IDAH=1
                                                                        3570
      IF (HARDEX.EQ.3.0.AND.NOPSQ(I,1).NE.0) IDAH=9
                                                                        3580
    WE MUST CALCULATE HOW MANY PLOTS WILL BE HARVESTED
C
                                                                        3590
    THE BASIC ASSUMPTION FOR ALFALFA HARVEST IS THAT ONE PLOT IS
                                                                        3600
    EQUIVALENT TO 5 HOURS OF FIRST PRIORITY HARVEST TIME.
                                                                        3610
    AS CAN BE SEEN LATER IN SUBROUTINES HRVQ (FOR FIELD CURED ALFALFA)
                                                                        3620
    AND DCALF (FOR DIRECT CUT ALFALFA), A MAXIMUM OF 2 PLOTS MAY BE
                                                                        3630
    HARVESTED THE SAME DAY. FOR CORN SILAGE HARVEST, THESE CALCULATIONS 3640
    ARE NOT NECESSARY.
                                                                        3650
      IF (NOPSO(NTHCUT, 1).GE.140.AND.NOPSO(NTHCUT, 1).LE.149) RETURN
                                                                        3660
      HRR=ZRT(5,1)
                                                                        3670
      IF (HARDEX.EQ.3.0.AND.NOPSQ(NTHCUT, 1).NE.O) HRR=ZRT(7.1)
                                                                        3680
      XAREA=HRR*5.
                                                                        3690
      NPLOTS=IFIX (AREA (I) /XAREA)+1
                                                                        3700
      AREAPL=AREA(I)/FLOAT(NPLOTS)
                                                                        3710
      IF (NPLOTS.LE.40) GO TO 8
                                                                        3720
      WRITE (10,110) NPLOTS, AREA (1), HRR, YDM
                                                                        3730
  110 FORMAT (/.5X, 'THE NUMBER OF PLOTS TO BE HARVESTED IS GREATER THAN 3740
     +40, THE MAXIMUM ALLOWED',/,5X,'IT IS ACTUALLY ',16,/,5X,'EITHER TH3750
     +E AREA TO BE HARVESTED IS EXCESSIVE OR THE HARVEST RATE IS UNREALI3760
     +STICALLY LOW'./.5X.'AREA IS '.F12.2.' HA AND HARVEST RATE IS '.F123770
     +.2, HA/H FOR A DRY MATTER YIELD OF ',F12.2, KG/HA',/,5X, A CHANG3780
     +E MUST BE MADE')
                                                                        3790
      STOP
                                                                        3800
    8 DO 30 I=1.NPLOTS
                                                                        3810
      DO 30 J=1,29
                                                                        3820
   30 HARMAT (I,J)=0.
                                                                        3830
    CALCULATE THE TIME TO DO EACH OPERATION OVER ONE PLOT
                                                                        3840
      DO 40 J=1.9
                                                                        3850
      TPL(J) = AREAPL/ZRT(J, 1)
                                                                        3860
      IF (ZRT(J,1).LE.O.) TPL(J)=0.
                                                                        3870
   40 CONTINUE
                                                                        3880
      RETURN
                                                                        3890
      END
                                                                        3900
                                                                        3910
3920
      SUBROUTINE HRVQ (NHTDAY)
                                                                        3930
C ***********************
                                                                        3940
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                        3950
      COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                        3960
      COMMON /W3/ HFEED (4.160.5)
                                                                        3970
      COMMON /W4/ NPDCA.NDCTD.IDAH
                                                                        3980
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                        3990
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                        4000
     +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT4010
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                        4020
      COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                        4030
     +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 4040
```

```
4050
    +XMATS, TNCS, TMAXC, TMINC
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                          4060
                                                                          4070
      COMMON /Y3/ NMDATA, NOPER, IN, IO
    SUBROUTINE HRVQ DETERMINES IF ANY FIELD-CURING (ALREADY MOWED) PLOT 4080
   MAY BE
                                                                          4090
   HARVESTED TODAY. PLOTS ARE CONSIDERED IN REVERSE CHRONOLOGICAL ORDE4100
   STARTING WITH THE LAST MOWED PLOT. A MAXIMUM OF TWO PLOTS MAY BE
                                                                          4110
   HARVESTED THE SAME DAY.
                                                                          4120
    (EACH REQUIRES 5 HOURS OF EFFECTIVE FIELD TIME)
C
                                                                          4130
    FOR ONE PLOT TO BE HARVESTED, THE FOLLOWING CRITERIA MUST BE SATISF14140
      1. THE PLOT MUST NOT HAVE BEEN HARVESTED ALREADY
C
                                                                          4150
C
         LESS THAN TWO PLOTS MUST HAVE BEEN ALREADY HARVESTED ON THAT
                                                                          4160
C
                                                                          4170
      3. THE MOISTURE CONTENT OF ALFALFA IN THE PLOT MUST BE BELOW THE
                                                                          4180
C
          CRITICAL MOISTURE CONTENT FOR HARVEST BY 4PM.
C
                                                                          4190
С
      4. IN THE CASE OF A HARVEST INDEX OF 4. . THE PLOT IS HARVESTED
                                                                          4200
C
         TODAY WITHOUT REGARDS TO MOISTURE CONTENT
                                                                          4210
C
    FOR A SECOND PLOT TO BE HARVESTED ON THE SAME DAY, WE NEED
                                                                          4220
      5. ONE OF THE PLOTS READY FOR HARVEST BY 10AM
                                                                          4230
C
    GENERALLY 2 PLOTS MAY BE HARVESTED ON THE SAME DAY IF THE FIVE
                                                                          4240
C
    CONDITIONS
                                                                          4250
    ABOVE ARE SATISFIED. HOWEVER THERE ARE AT FOUR SPECIAL CASES WHERE 4260
C
    ONLY ONE PLOT MAY BE HARVESTED IN A GIVEN DAY
                                                                          4270
C
      1. WHEN RAKING IS REQUIRED AND CANNOT BE SIMULTANEOUS WITH
                                                                          4280
C
                                                                          4290
C
      2. WHEN INDEPENDENT TRANSPORT OF BALES IS REQUIRED. IS NOT
                                                                          4300
С
          SIMULTANEOUS AND MUST BE DONE THE SAME DAY AS HARVEST
                                                                          4310
C
      3. WHEN WE ARE DESTROYING PLOTS (HARVEST INDEX 4). HIGHER
                                                                          4320
C
          PRIORITY IS THUS GIVEN TO MOWING.
                                                                          4330
C
      4. WHEN WE HAVE A HARVEST INDEX OF 2. OR 3. AND THE RATES OF
                                                                          4340
          HARVEST FOR THESE TYPES ARE SLOWER THAN FOR HARVEST INDEX 1
C
                                                                          4350
C
                                                                          4360
      I=NTHCUT
                                                                          4370
C
    TIMEFP IS A DUMMY VARIABLE WHOSE VALUE BECOMES 1. IF A PLOT IS
                                                                          4380
C
    FOR HARVEST BY 10AM.
                                                                          4390
      TIMEFP=0.
                                                                          4400
C
    NFIRST IS THE NUMBER OF THE FIRST ALFALFA PLOT IN A HARVEST SEASON 4410
    THAT IS LEFT CURING IN THE FIELD (EITHER FOR HAY OR HAYLAGE).
                                                                          4420
C
    USUALLY NFIRST WILL BE 1 EXCEPT IN THE CASE OF A SWITCH FROM DIRECT 4430
    CUT ALFALFA HARVEST TO DRY HAY HARVEST ON ACCOUNT OF FILLED SILOS.
                                                                          4440
    NPDCA IS THE NUMBER OF PLOTS THAT WERE PREVIOUSLY HARVESTED AS
                                                                          4450
    DIRECT CUT ALFALFA DURING THE PRESENT HARVEST.
                                                                          4460
      NFIRST=NPDCA+1
                                                                          4470
      J=NMOW+1
                                                                          4480
      DO 10 II=NFIRST, NMOW
                                                                          4490
                                                                          4500
      WRITE (10, 184) JJDAY, J, NHTDAY, HARMAT (J, 12)
                                                                          4510
        FORMAT (5X, 'JJDAY, J, NHTDAY, HARMAT (J, 12) = ',318,F8.1)
C 184
                                                                          4520
      IF (NHTDAY.GE.2) RETURN
                                                                          4530
      IF (HARMAT (J, 12) . EQ. 1.) GO TO 10
                                                                          4540
```

```
NBHR=IFIX (HARMAT (J, 21))+4
                                                                          4550
                                                                          4560
      IF (NHTDAY.EO.O) GO TO 2
   HERE CONSIDER THE SPECIAL CASES WHEN NHTDAY=1
                                                                          4570
      IF (NOPSQ(1,3).NE.O.AND.CRTR(1,1,3).NE.1.) RETURN
                                                                          4580
      IF (NOPSQ(1,9).EQ.O.OR.CRTR(1,3,NBHR).EQ.O.) GO TO 1
                                                                          4590
   HERE WE CONSIDER INDEPENDENT TRANSPORT OF BALES
                                                                          4600
      IF (CRTR(1,1,9).EQ.O.O.AND.CRTR(1,2,9).EQ.O.) RETURN
                                                                          4610
    1 IF (HARMAT (J,21) .EQ.4.) RETURN
                                                                          4620
      IF (HARMAT (J,21) .EQ.1.) GO TO 2
                                                                          4630
      R1=TPL (NBHR) /TPL (5)
                                                                          4640
      IF (R1.GT.1.) RETURN
                                                                          4650
    HERE WE ARE ALLOWED TO CONSIDER HARVESTING A PLOT
                                                                          4660
    2 IF (HARMAT (J, 21) .EQ.4.) GO TO 20
                                                                          4670
                                                                          4680
      CRMC=CRTR(I.1.NBHR)
      CALL DRY (J, TIME, FMCAM, CRMC)
                                                                          4690
        WRITE (10, 101) JJDAY, J, TIME, CRMC
                                                                          4700
C
C
          FORMAT (5X, 'WITHIN HRVQ, JJDAY= J=
                                                   TIME=
                                                                          4710
      + 15X.216,2F8.2)
                                                                          4720
      IF (TIME.GT.8.) GO TO 10
                                                                          4730
      IF (NHTDAY.LT.1) GO TO 3
                                                                          4740
      IF (TIME.GT.2.0.AND.TIMEFP.EQ.O.) GO TO 10
                                                                          4750
    3 IF (TIME.LE.2.0) TIMEFP=1.
                                                                          4760
      IF (NOPSQ(1,3).NE.O) CALL QUANTC(J,3)
                                                                          4770
      CALL QUANTC (J, NBHR)
                                                                          4780
      CALL PLOTCD (J,NS,NBHR)
                                                                          4790
                                                                          4800
      HARMAT(J.12)=1.
    THE FOLLOWING IS TO CHECK WHETHER SILOS ARE FULL OR NOT. WHEN THE
                                                                          4810
    FIRST SILO IS FULL, ALL PLOTS WITH AN INDEX OF 1. MUST BE CHANGED
                                                                          4820
    TO AN INDEX OF 2. (SECOND SILO). WHEN BOTH SILOS
                                                                          4830
    ARE FULL, HARVEST INDEX IS SHIFTED TO 3. (FORCED HAY HARVEST)
                                                                          4840
      IF (NS.GT.2) GO TO 15
                                                                          4850
      IF (HARDEX.EQ.3.) GO TO 15
                                                                          4860
      IF (NS.EQ.2) GO TO 35
                                                                          4870
      IF (TMSTO(1).LT.SILO(1)) GO TO 15
                                                                          4880
      IF (SILO(2).EQ.O.) GO TO 35
                                                                          4890
      DO 30 JJ=NFIRST, NMOW
                                                                          4900
      IF (HARMAT (JJ, 12) .EQ.1.) GO TO 30
                                                                          4910
      IF (HARMAT (JJ, 22) . EQ. 1.) GO TO 30
                                                                          4920
      IF (HARMAT (JJ,21) .NE.1.) GO TO 30
                                                                          4930
      HARMAT(JJ,21)=2.
                                                                          4940
      IF (NOPSQ(1,6).LT.150.OR.NOPSQ(1,6).GT.159) HARMAT(JJ,22)=1.
                                                                          4950
                                                                          4960
        WRITE (10,132) J
C 132
        FORMAT (5X, 'SILO 1 IS FILLED. REASSIGNED PLOT J=',14)
                                                                          4970
   30 CONTINUE
                                                                          4980
      HARDEX=2.
                                                                          4990
   35 IF (TMSTO(2).LT.SILO(2)) GO TO 15
                                                                          5000
      DO 40 JJ=NFIRST, NMOW
                                                                          5010
      IF (HARMAT (JJ, 12) .EQ.1.) GO TO 40
                                                                          5020
      IF (HARMAT (JJ, 22) .EQ.1.) GO TO 40
                                                                          5030
      IF (TMSTO(1).LT.SILO(1)) THEN
                                                                          5040
```

```
HARMAT(JJ,21)=1.
                                                                          5050
      ELSE
                                                                          5060
      HARMAT(JJ,21)=3.
                                                                          5070
      HARMAT(JJ,22)=1.
                                                                          5080
      ENDIF
                                                                          5090
        WRITE (10.133) J
                                                                          5100
C 133
        FORMAT (5X, 'SILO 2 IS FILLED. REASSIGNED PLOT J=', 14)
                                                                          5110
   40 CONTINUE
                                                                          5120
      IF (TMSTO(1).GE.SILO(1)) HARDEX=3.
                                                                          5130
      GO TO 15
                                                                          5140
   20 NPST (1,5) = NPST(1,5) + 1
                                                                          5150
      NCUM(5) = NCUM(5) + 1
                                                                          5160
   15 OPUSE (1,3) = OPUSE(1,3) + TPL(3)
                                                                          5170
      OPUSE (I, NBHR) = OPUSE (I, NBHR) + TPL (NBHR)
                                                                          5180
      IF (CRTR(1,3,NBHR).EQ.1.) OPUSE(1,9) = OPUSE(1,9) + TPL(9)
                                                                          5190
      NHTDAY=NHTDAY+1
                                                                          5200
      HARMAT(J, 12) = 1.
                                                                          5210
        WRITE (10,131) J, HARDEX, TMSTO(1), TMSTO(2)
                                                                          5220
C 131
        FORMAT (5X, 'HARVESTED PLOT J=', 14, ' HARDEX=', F4.0, ' TMSTO (1)=',5230
       +F8.1,' TMSTO (2) = ', F8.1)
                                                                          5240
   10 CONTINUE
                                                                          5250
      RETURN
                                                                          5260
      END
                                                                          5270
C ****************************
                                                                          5280
      SUBROUTINE PLOTCD (J.NS.NBHR)
                                                                          5290
C *********************
                                                                          5300
      COMMON /W1/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40,29), ZRT (9,5)
                                                                          5310
      COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                          5320
      COMMON /W3/ HFEED (4, 160,5)
                                                                          5330
      COMMON /W4/ NPDCA, NDCTD, IDAH
                                                                          5340
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                          5350
      COMMON /CTRL24/ BGNCUT (5) .NTHYR.NTHCUT.NDAYSC.NDAYSH.YLD (4) .
                                                                          5360
     +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT5370
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                          5380
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                          5390
     +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 5400
     +XMATS, TNCS, TMAXC, TMINC
                                                                          5410
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                          5420
      COMMON /Z4/FDLABR, FDENER, HRLABR, HRFUEL, HRELEC
                                                                          5430
      COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                          5440
C
    SUBROUTINE PLOTED CONDENSES THE INFORMATION CONCERNING ONE PLOT AT
                                                                          5450
    THE TIME OF HARVEST. IT SPECIFIES IN WHICH OF 4 STORAGE STRUCTURES 5460
    THE PLOT GOES. THE STORAGE STRUCTURES ARE
C
                                                                          5470
C
      1. WET STORAGE, HIGH QUALITY
                                                                          5480
C
      2. WET STORAGE, LOW QUALITY
                                                                          5490
C
      3. DRY STORAGE, HIGH QUALITY
                                                                          5500
C
      4. DRY STORAGE, LOW QUALITY
                                                                          5510
C
    MATRIX HFEED (NS, NBPL, NCHAR) CONTAINS ALL THE FEED INFORMATION FOR
                                                                          5520
C
    EACH PLOT.
                                                                          5530
    NS IS THE STORAGE STRUCTURE NUMBER (1 TO 4)
                                                                          5540
```

```
NBPL IS THE PLOT NUMBER DURING A GIVEN YEAR THAT GOES INTO NS. A MA5550
C
    A MAXIMUM OF 160 PLOTS IS ALLOWED PER STORAGE STRUCTURE.
                                                                          5560
    IN THE CASE OF SILOS (WET ALFALFA). A CHECK
                                                                          5570
    EXISTS IN SUBROUTINE HRVO TO PREVENT THE SILO FROM OVERFLOWING.
                                                                          5580
    HAY STORAGE VOLUME OR CAPACITY IS ASSUMED UNCONSTRAINED
                                                                          5590
    NCHAR REPRESENTS ONE OF 5 CHARACTERISTICS OF FORAGES STORED
                                                                          5600
C
      1. TOTAL DRY MATTER (METRIC TONS)
                                                                          5610
C
      2. CRUDE PROTEIN (DECIMAL)
                                                                          5620
C
      3. DIGESTIBILITY (DECIMAL)
                                                                          5630
      4. MOISTURE CONTENT (DECIMAL, DRY BASIS)
C
                                                                          5640
      5. NUMBER OF DAYS OF EXPOSURE WHILE CURING.
                                                                          5650
                                                                          5660
    - DIMENSION XLBR (7) . XENE (7)
                                                                          5670
      DATA XLBR /1.,0.25,0.5,0.20,0.40,0.5,0.15/
                                                                          5680
      DATA XENE /0.,0.5,1.5,0.5,1.5,0.15,0.1/
                                                                          5690
      I=NTHCUT
                                                                          5700
      RFRESP=HARMAT (J.26)
                                                                          5710
      RFRESP=AMAX1 (0.85, RFRESP)
                                                                          5720
      IF (IDAH.NE.1) RFRESP=AMIN1(0.97.RFRESP)
                                                                          5730
      TRL=1.-RFRESP
                                                                          5740
      DML=HARMAT (J, 2) *HARMAT (J, 24) *RFRESP
                                                                          5750
      DMS=HARMAT (J, 3) *HARMAT (J, 25) *RFRESP
                                                                          5760
      DM=DML+DMS
                                                                          5770
      PCL=DML/DM
                                                                          5780
      IF (PCL.LT.0.290) PCL=0.290
                                                                          5790
      IF (PCL.GT.0.500) PCL=0.500
                                                                          5800
      PCS=1.-PCL
                                                                          5810
    LOSS OF CRUDE PROTEIN DUE TO EXPOSURE TIME
                                                                          5820
      ET=HARMAT (J. 14) *24.+8.
                                                                          5830
      PLE=ET*0.001
                                                                          5840
      CPL=HARMAT(J.4)*(1.-PLE)
                                                                          5850
      CPS=HARMAT(J,5)*(1.-PLE)
                                                                          5860
      CP=CPL*PCL+CPS*PCS
                                                                          5870
      IF (CP.LT.0.10) CP=0.10
                                                                          5880
C
    LOSS OF DIGESTIBILITY DUE TO RESPIRATION AND RAINFALL
                                                                          5890
      TDNBL=HARMAT (J, 6) *PCL+HARMAT (J, 7) *PCS
                                                                          5900
      DLR=HARMAT (J.27) *0.002
                                                                          5910
      TDN=((TDNBL-TRL)/(1.-TRL))*(1.-DLR)
                                                                          5920
      IF (TDN.LT.0.40) TDN=0.40
                                                                          5930
    DECIDE IN WHICH STORAGE LOCATION THE PLOT WILL GO
C
                                                                          5940
      IF (HARMAT (J.22) .EQ.1.) GO TO 10
                                                                          5950
                                                                          5960
      IF (HARMAT (J, 21) . EQ. 2.) NS=2
                                                                          5970
      GO TO 20
                                                                          5980
   10 NS=3
                                                                          5990
      IF (HARMAT (J,21).GT.1.) GO TO 12
                                                                          6000
      IF (CP.LT.CRTR(NTHCUT, 2,5)) NS=4
                                                                          6010
      GO TO 20
                                                                          6020
   12 IF (HARMAT (J.21) .GT.2.) GO TO 14
                                                                          6030
      NS=4
                                                                          6040
```

```
GO TO 20
                                                                        6050
   14 IF (CP.LT.CRTR(NTHCUT, 2,7)) NS=4
                                                                        6060
   20 NPST (I,NS) = NPST (I,NS) +1
                                                                        6070
      NCUM(NS) = NCUM(NS) + 1
                                                                        6080
      NBPL=NCUM(NS)
                                                                        6090
      CALL STORE (J, NBHR, DMCH, CPCH, TDNCH, NFEED)
                                                                        6100
     HFEED (NS, NBPL, 1) =DM*AREAPL*O.001*(1.-DMCH)
                                                                        6110
      HFEED (NS.NBPL.2) = CP * (1.-CPCH)
                                                                        6120
      HFEED (NS, NBPL, 3) =TDN* (1.-TDNCH)
                                                                        6130
      IF (HARMAT(J,11).EQ.O.) HARMAT(J,11)=HARMAT(J,10)
                                                                        6140
      HFEED (NS, NBPL, 4) = HARMAT (J, 11)
                                                                        6150
      HFEED (NS, NBPL, 5) = HARMAT (J. 14)
                                                                        6160
      TMSTO (NS) =TMSTO (NS) +DM*AREAPL*0.001
                                                                        6170
C
    CUMULATIVE LABOR AND ENERGY REQUIRED FOR FEEDING
                                                                        6180
   FDLABR. CUMULATIVE LABOR REQUIRED FOR FEEDING THE FORAGES (MAN.H)
                                                                        6190
   FDENER, CUMULATIVE ENERGY REQUIRED FOR FEEDING THE FORAGES (LITERS 6200
    OF DIESEL FUEL) .
                                                                        6210
     WM=HFEED (NS.NBPL.1) * (1.+HFEED (NS.NBPL.4))
                                                                        6220
                                                                        6230
      FDLABR=FDLABR+XLBR (NFEED) *WM
      FDENER=FDENER+XENE (NFEED) *WM
                                                                        6240
      KK = (NTHCUT - 1) *3+1
                                                                        6250
      ALHRFD (NTHYR, KK) =ALHRFD (NTHYR, KK) +HFEED (NS, NBPL, 1)
                                                                        6260
      ALHRFD (NTHYR, KK+1) = ALHRFD (NTHYR, KK+1)
                                                                        6270
    + +HFEED (NS, NBPL, 1) *HFEED (NS, NBPL, 2)
                                                                        6280
      ALHRFD (NTHYR, KK+2) = ALHRFD (NTHYR, KK+2)
                                                                        6290
    + +HFEED (NS, NBPL, 1) *HFEED (NS, NBPL, 3)
                                                                        6300
      RETURN
                                                                        6310
      END
                                                                        6320
C
                                                                        6330
SUBROUTINE STORE (J, NBHR, DMCH, CPCH, TDNCH, NFEED)
                                                                        6350
6360
      COMMON /W1/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                        6370
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                        6380
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                        6390
      COMMON /CTRL24/ BGNCUT (5) .NTHYR.NTHCUT.NDAYSC.NDAYSH.YLD (4) .
                                                                        6400
    +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT6410
    +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                        6420
     COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                        6430
    +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 6440
    +XMATS, TNCS, TMAXC, TMINC
                                                                        6450
C
   THIS SUBROUTINE ESTIMATES QUALITY AND QUANTITY LOSSES IN STORAGE AND6460
C
    FEEDING. THERE ARE 5 STORAGE METHODS
                                                                        6470
C
       1. ANY DRY HAY STORED INSIDE (0.04 DM LOSS)
                                                                        6480
C
       2. ROUND BALES STORED OUTSIDE (0.12 DM LOSS)
                                                                        6490
C
       3. HAY STACKS STORED OUTSIDE (0.16 DM LOSS)
                                                                        6500
C
       4. ALFALFA IN A VERTICAL SILO (0.07 DM LOSS)
                                                                        6510
С
       5. ALFALFA IN A BUNK SILO (0.13 DM LOSS)
                                                                        6520
C
    THERE ARE 7 FEEDING METHODS
                                                                        6530
C
       1. RECTANGULAR BALES, HAND FED (0.05 DM LOSS)
                                                                        6540
```

```
C
           ROUND BALES, SELF FED (0.14 DM LOSS)
                                                                          6550
C
           ROUND BALES, GROUND (0.05 DM LOSS)
                                                                          6560
C
       4. HAY STACKS, SELF FED (0.16 DM LOSS)
                                                                          6570
C
       5. HAY STACKS, SHREDDED (0.05 DM LOSS)
                                                                          6580
C
       6. VERTICAL SILO AND UNLOADER (0.11 DM LOSS, 0.10 DIGESTIBILITY 6590
C
           BUNK SILO AND SCOOP (0.11 DM LOSS, 0.15 DIGESTIBILITY LOSS)
                                                                          6600
C
    AT PRESENT. NO CHANGES IN CP OR TDN IS ASSUMED FOR ALL METHODS
                                                                          6610
                                                                          6620
      DIMENSION STOLS (5), FEEDLS (7)
                                                                          6630
      DIMENSION CPCHST (7), TDNCHS (7)
                                                                          6640
      DATA STOLS /0.04,0.12,0.16,0.07,0.13/
                                                                          6650
      DATA FEEDLS /0.05,0.14,0.05,0.16,0.05,0.11,0.11/
                                                                          6660
      DATA CPCHST /0.,0.,0.,0.,0.,0./
                                                                          6670
      DATA TDNCHS /0.,0.,0.,0.,0.,0./
                                                                          6680
      I=NTHCUT
                                                                          6690
      NFEED=IFIX (CRTR (1.4, NBHR))
                                                                          6700
      IF (NFEED.LT.1.OR.NFEED.GT.7) NFEED=1
                                                                          6710
C
    FIND NST, THE STORAGE METHOD, FROM PREVIOUS INFORMATION
                                                                          6720
      IF (HARMAT (J, 22) . EQ. 2.) GO TO 10
                                                                          6730
C
    CONSIDER DRY HAY
                                                                          6740
      NST=1
                                                                          6750
      IF (CRTR(1,1,9).EQ.O.) GO TO 20
                                                                          6760
                                                                          6770
      IF (NOPSQ(1,NBHR).GE.OO90.AND.NOPSQ(1,NBHR).LE.OO99) NST=3
                                                                          6780
      GO TO 20
                                                                          6790
   10 NST=4
                                                                          6800
      IF (CRTR(1,4,NBHR).EQ.7.) NST=5
                                                                          6810
   20 RFDM=1.*(1.-STOLS(NST))*(1.-FEEDLS(NFEED))
                                                                          6820
      DMCH=1.-RFDM
                                                                          6830
      CPCH=0.
                                                                          6840
      TDNCH=0.
                                                                          6850
      CPCH=CPCHST (NFEED)
                                                                          6860
      TDNCH=TDNCHS (NFEED)
                                                                          6870
      RETURN
                                                                          6880
      END
                                                                          6890
                                                                          6900
C ***********************
                                                                          6910
      SUBROUTINE UPDATE
                                                                          6920
C **********************************
                                                                          6930
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                          6940
      COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                          6950
      COMMON /W4/ NPDCA, NDCTD, IDAH
                                                                          6960
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                          6970
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                          6980
     +QUAL (3,4), GDDCUM, METRIC, JYEARF, JYEARL, IPRT1, IPRT2, JDAYF, JDAYL, JPRT6990
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                          7000
      COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                          7010
     +SUMS1, SUMS2, T, WSF, SRADF, DWS, PPT, ESO, ESR, XLEAF, BUDS, STEM, TOPS, TNC, 7020
     +XMATS, TNCS, TMAXC, TMINC
                                                                          7030
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                          7040
```

```
COMMON /Y3/ NMDATA.NOPER.IN.IO
                                                                           7050
    THIS SUBROUTINE PROVIDES A DAILY UPDATE OF ALL INFORMATION IN HARMAT7060
    FOR EXPOSURE LOSSES AND FOR CHANGES IN THE MOISTURE CONTENT.
                                                                           7070
    UPDATES ARE MADE ONCE PER DAY, ONLY FOR PLOTS THAT
                                                                           7080
    ARE CURING IN THE FIELD AND ARE NOT YET HARVESTED AND STORED
                                                                           7090
      IF (NMOW.LT.1) RETURN
                                                                           7100
      IF (NHRV.EO.NMOW) RETURN
                                                                           7110
      NFIRST=NPDCA+1
                                                                           7120
      DO 20 J=NFIRST.NMOW
                                                                           7130
      IF (HARMAT (J, 12) .EQ.1.) GO TO 20
                                                                           7140
      CRMC=1.
                                                                           7150
      IF (RAIN.LT.2.) GO TO 5
                                                                           7160
    HERE WE CHECK IF THERE IS TEDDING OR RAKING AFTER RAIN
                                                                           7170
      IF (NOPSO(NTHCUT,4).EO.O) GO TO 5
                                                                           7180
      HARMAT(J, 17) = CRTR(NTHCUT, 2, 4)
                                                                           7190
      HARMAT(J.18) = 1.
                                                                           7200
      HARMAT (J.20) = CRTR (NTHCUT.3.4)
                                                                           7210
      OPUSE (NTHCUT, 4) =OPUSE (NTHCUT, 4) +TPL (4)
                                                                           7220
    5 CALL DRY (J, TIME, FMCAM, CRMC)
                                                                           7230
        WRITE (10.102) J. FMCAM
                                                                           7240
         FORMAT (5X, WITHIN UPDATE, J= ',14,' FMCAM= ',F10.4)
                                                                           7250
      IF (NOPSQ (NTHCUT, 4) .NE.O.AND.RAIN.GE.2.) CALL QUANTC (J, 4)
                                                                           7260
      HARMAT(J.18) = 0.
                                                                           7270
      HARMAT (J, 28) = 0.
                                                                           7280
      HARMAT(J,27) = HARMAT(J,27) + RAIN
                                                                           7290
    AMC IS THE AVERAGE MOISTURE CONTENT TO ESTIMATE RESPIRATION LOSSES 7300
      AMC=HARMAT (J, 10)
                                                                           7310
      CALL RESP (AMC, RF)
                                                                           7320
      HARMAT(J, 26) = HARMAT(J, 26) *RF
                                                                           7330
      HARMAT (J, 14) =HARMAT (J, 14) +1.

IF (HARMAT (J, 21) .GT.1.) GO TO 14
      HARMAT (J. 10) = FMCAM
                                                                           7340
                                                                           7350
                                                                           7360
    MAKE A PROJECTION OF CRUDE PROTEIN CONCENTRATION OF EACH FIELD CURIN7370
C
    CURING ALFALFA PLOT.
                                                                           7380
    IF CRUDE PROTEIN GOES BELOW A CRITICAL LEVEL, SHIFT
                                                                           7390
    THE PLOT TO LOWER PRIORITY HARVEST.
                                                                           7400
      XL=HARMAT(J,2) *HARMAT(J,24) *HARMAT(J,26)
                                                                           7410
      XS=HARMAT (J, 3) *HARMAT (J, 25) *HARMAT (J, 26)
                                                                           7420
C
    ACCOUNT FOR FUTURE RAKING AND HARVESTING LOSSES
                                                                           7430
      XL=XL*0.95
                                                                           7440
      IF (NOPSQ(NTHCUT, 3).NE.O) XL=XL*0.95
                                                                           7450
      XCP=(XL*HARMAT(J,4)+XS*HARMAT(J,5))/(XS+XL)
                                                                           7460
      XCP=XCP*(1.-0.001*(8.+HARMAT(J,14)*24.))
                                                                           7470
      IF (XCP.GT.CRTR(NTHCUT,2,5)) GO TO 20
                                                                           7480
      IF (NOPSQ(NTHCUT,6).EQ.0) GO TO 12
                                                                           7490
      IF (NOPSQ (NTHCUT, 6) .LT.150.OR.NOPSQ (NTHCUT, 6) .GT.159) GO TO 10
                                                                           7500
      IF (SILO(2).EQ.O.O.OR.TMSTO(2).GE.SILO(2)) GO TO 12
                                                                           7510
      HARMAT(J,21)=2.
                                                                           7520
      HARMAT(J.22)=2.
                                                                           7530
      GO TO 14
                                                                           7540
```

```
10 HARMAT (J, 21) = 2.
                                                                          7550
      HARMAT(J,22)=1.
                                                                          7560
      GO TO 14
                                                                          7570
12
      IF (TMSTO(1).LT.SILO(1)) GO TO 14
                                                                          7580
      HARMAT(J.21)=3.
                                                                          7590
      HARMAT(J.22)=1.
                                                                          7600
      GO TO 16
                                                                          7610
   14 IF (HARMAT (J.21).GT.2.) GO TO 16
                                                                          7620
      IF (CRTR (NTHCUT, 2,6) .LE.O.) GO TO 20
                                                                          7630
      IF (HARMAT (J. 14) .GT. CRTR (NTHCUT, 2,6)) HARMAT (J. 21) =4.
                                                                          7640
      GO TO 20
                                                                          7650
   16 IF (HARMAT (J, 21) .GT. 3.) GO TO 20
                                                                          7660
      IF (CRTR (NTHCUT, 2, 8) . LE.O.) GO TO 20
                                                                          7670
      IF (HARMAT (J, 14) .GT.CRTR (NTHCUT, 2, 8)) HARMAT (J, 21) =4.
                                                                          7680
   20 CONTINUE
                                                                          7690
      RETURN
                                                                          7700
      END
                                                                          7710
                                                                          7720
C ********************************
                                                                          7730
      SUBROUTINE DRY (J, TIME, FMCAM, CRMC)
                                                                          7740
C ***********************
                                                                          7750
      COMMON /WI/ NPLOTS.NMOW.NHRV.NSTO.AREAPL.HARMAT (40.29).ZRT (9.5)
                                                                          7760
      COMMON /W2/ TPL (9) .RAIN.JJDAY.NDAYHR
                                                                          7770
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                          7780
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                          7790
     +QUAL (3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT7800
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                          7810
      COMMON /ALFARG/ GDDB5,AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                          7820
     +SUMS1, SUMS2, T, WSF, SRADF, DWS, PPT, ESO, ESR, XLEAF, BUDS, STEM, TOPS, TNC. 7830
     +XMATS, TNCS, TMAXC, TMINC
                                                                          7840
                                                                          7850
      COMMON /Y3/ NMDATA.NOPER.IN.IO
C
    THE SUBROUTINE DRY HAS TWO MAIN PURPOSES
                                                                          7860
C
          IT ESTIMATES THE TIME AT WHICH A PLOT WILL REACH CRITICAL
                                                                          7870
C
          MOISTURE CONTENT (CRMC) FOR HARVEST UNDER TODAY"S DRYING
                                                                          7880
C
          CONDITIONS. TIME IS ESTIMATED IN HOURS AFTER 8AM.
                                                                          7890
C
      2. IT ALSO ESTIMATES MOISTURE CONTENT OF THE PLOT ON THE NEXT DAY7900
C
          THIS ESTIMATE INCLUDES DESORPTION FROM 8AM TO 8PM ON A NORMAL 7910
C
          DAY AND ADSORPTION THROUGH THE NIGHT FROM DEW. REWETTING IS A7920
C
          ALSO CONSIDERED ON A RAINY DAY (ON SUCH A DAY, DRYING TIME IS 7930
C
          REDUCED FROM 12 TO 6 HOURS).
                                                                          7940
С
    SOLAR RADIATION IS CONVERTED FROM A DAILY ACCUMULATION TO A
                                                                          7950
    RADIATION INTENSITY AVERAGED OVER 12 HOURS (CAL/MIN.CM2)
                                                                          7960
      SR=SRADF/720.
                                                                          7970
      TDB=(TMINC+2.*TMAXC)/3.
                                                                          7980
      IF (HARMAT (J, 17) .LE.O.) HARMAT (J, 17) =0.75
                                                                          7990
      DENS= (HARMAT(J,2) + HARMAT(J,3)) / HARMAT(J,17)
                                                                          8000
      RK=HARMAT (J. 18)
                                                                          8010
      CD=HARMAT (J, 19)
                                                                          8020
      XTR=HARMAT (J, 20)
                                                                          8030
      RAIN=PPT
                                                                          8040
```

```
XKK = (-0.016409) + (.073064*SR) + 0.0055486*TDB + (-0.00000734*DENS)
                                                                            8050
     + +0.019722*RK+0.029649*CD+XTR
                                                                            8060
      IF (XKK.LT.0.01) XKK=0.01
                                                                            8070
      XMO=HARMAT (J. 10)
                                                                            8080
      TDRY=12.
                                                                            8090
      DTRAIN=O.
                                                                            8100
      IF (RAIN.LE.O.) GO TO 10
                                                                            8110
C
    IF THERE IS RAIN, THE MOISTURE CONTENT IS INCREASED
                                                                            8120
    RAIN IS ASSUMED TO OCCUR IN THE MORNING. DRYING RESUMES IN THE
                                                                            8130
    AFTERNOON. THE DAILY DRYING PERIOD IS REDUCED BY 6 HOURS.
                                                                            8140
      DTRAIN=6.
                                                                            8150
      FCR=1.
                                                                            8160
      IF (HARMAT (J. 19) .NE.O.) FCR=1.4
                                                                            8170
      IF (RAIN.LE.5.) DMR=0.25*RAIN*FCR
                                                                            8180
      IF (RAIN.GT.5.) DMR=(1.25+0.03*(RAIN-5.))*FCR
                                                                            8190
      IF (DMR.GT.3.) DMR=3.
                                                                            8200
      IF (HARMAT (J, 14) .GT.O.) DMR=DMR*(2./3.)
                                                                            8210
      XMO=XMO+DMR
                                                                            8220
      IF (XMO.GT.5.5) XMO=5.5
                                                                            8230
    CALCULATE TIME AT WHICH CRMC WILL BE REACHED
                                                                            8240
   10 EMC=0.15
                                                                            8250
      IF (NTHCUT.EQ.2.OR.NTHCUT.EQ.3) EMC=0.10
                                                                            8260
      XMR=(CRMC-EMC)/(XMO-EMC)
                                                                            8270
      IF (XMR.LT.0.01) XMR=0.01
                                                                            8280
      TIME= (-ALOG (XMR) ) /XKK
                                                                            8290
      TIME=TIME+HARMAT (J, 28) +DTRAIN
                                                                            8300
    CALCULATE FINAL MOISTURE AT THE END OF THE DAY
                                                                            8310
      ADT=TDRY-(DTRAIN+HARMAT(J.28))
                                                                            8320
      IF (ADT.LT.O.) ADT=O.
                                                                            8330
      XMR=EXP (-XKK*ADT)
                                                                            8340
      XMC=XMR* (XMO-EMC) +EMC
                                                                            8350
    CALCULATE DEW PICKUP THROUGH THE NIGHT
                                                                            8360
      DMPV=HARMAT (J. 10) -XMC
                                                                            8370
      IF (DMPV.LT.O.) DMPV=O.
                                                                            8380
                                                                            8390
      IF (HARMAT (J, 19) .NE.O.) FCD=1.2
                                                                            8400
      RH=RANDRH (JJDAY)
                                                                            8410
      RH=0.5
                                                                            8420
      DMDEW=DMPV*HARMAT (J, 17) * (RH-0.5) *FCD
                                                                            8430
      IF (RH.LT.O.5) DMDEW=O.
                                                                            8440
      FMCAM=XMC+DMDEW
                                                                            8450
C
    MOISTURE CONTENT AFTER RAINFALL IS NEXT RECORDED
                                                                            8460
      HARMAT(J.29) = XMO
                                                                            8470
C
    WE NEED MOISTURE CONTENT DURING HARVEST IN CASE THE PLOT IS
                                                                            8480
    HARVESTED TODAY.
                                                                            8490
      TIMEHR=TIME+2.
                                                                            8500
      XMR=EXP (-XKK*TIMEHR)
                                                                            8510
      HARMAT (J, 11) = XMR* (XMO-EMC) + EMC
WRITE (10, 102) J, XKK, XMO, XMC, FMCAM
                                                                            8520
                                                                            8530
C 102 FORMAT (5X, WITHIN DRY, J= ', 14, ' XKK, XMO, XMC, FMCAM = ', 4F10.8540
```

```
8550
C
    +3)
     RETURN
                                                                  8560
                                                                  8570
     END
C
                                                                  8580
C ********************************
                                                                  8590
     FUNCTION RANDRH (JDAY)
                                                                  8600
8610
   THIS FUNCTION GENERATES PSEUDO RANDOM VALUES OF RELATIVE HUMIDITY
                                                                  8620
C
   FOR ESTIMATING DEW ADSORPTION. A TRIANGULAR DISTRIBUTION IS ASSUMED8630
C
   FOR RELATIVE HUMIDITY, WITH RH=0.5 THE MOST LIKELY OCCURRENCE
                                                                  8640
   THIS FUNCTION IS CALLED FROM SUBROUTINE DRY (ABOUT LINE 68)
                                                                  8650
   BUT IS NOT PRESENTLY USED.
                                                                  8660
   IT SHOULD BE DISCARDED IT HISTORICAL WEATHER DATA INCLUDE
                                                                  8670
   RELATIVE HUMIDITY OR WET BULB TEMPERATUR OR DEW POINT.
                                                                  8680
                                                                  8690
     X1=FLOAT (JDAY) /1.387
     I1=IFIX(X1)
                                                                  8700
     X2 = (1.+X1-FLOAT(11)) **2.42
                                                                  8710
     12=1F1X(X2)
                                                                  8720
     RN=X2-FLOAT(12)
                                                                  8730
     RANDRH=SORT (RN/2.)
                                                                  8740
                                                                  8750
     IF (RN.GT.0.5) RANDRH=1.-SQRT((1.-RN)/2.)
                                                                  8760
     RETURN
     END
                                                                  8770
                                                                  8780
8790
                                                                  8800
     SUBROUTINE RESP (AMC.RF)
C **************************
                                                                  8810
     COMMON /WI/ NPLOTS.NMOW.NHRV.NSTO.AREAPL.HARMAT (40.29).ZRT (9.5)
                                                                  8820
                                                                  8830
     COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                  8840
     COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
     COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                  8850
    +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT8860
    +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                  8870
                                                                  8880
     COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
    +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 8890
    +XMATS.TNCS.TMAXC.TMINC
                                                                  8900
   SUBROUTINE RESP CALCULATES THE REMAINING FRACTION (RF) OF DRY MATTER8910
   LEFT AFTER 24 HOURS OF RESPIRATION
                                                                  8920
     K1=0.15
                                                                  8930
     K2=0.0291
                                                                  8940
     TIME=24.
                                                                  8950
     ATC=(TMINC+TMAXC)/2.
                                                                  8960
     TF = (ATC/30.) * (ATC/30.)
                                                                  8970
     IF (TF.GT.1) TF=1.
                                                                  8980
     TRL=TF* (AMC/4.) *K1* (1.-EXP (-K2*TIME))
                                                                  8990
     IF (TRL.LT.O.) TRL=O.
                                                                  9000
     RF=1.-TRL
                                                                  9010
     RETURN
                                                                  9020
                                                                  9030
C ***********************
                                                                  9040
```

```
SUBROUTINE MOWQ (NHTDAY, NMTDAY)
                                                                          9050
C **************************
                                                                         9060
      COMMON /WI/ NPLOTS.NMOW.NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                          9070
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                          9080
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                          9090
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                          9100
     +QUAL (3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT9110
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                         9120
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                          9130
     +SUMS1.SUMS2.T.WSF.SRADF.DWS.PPT.ESO.ESR.XLEAF.BUDS.STEM.TOPS.TNC. 9140
     +XMATS.TNCS.TMAXC.TMINC
                                                                          9150
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                          9160
      COMMON /Y3/ NMDATA.NOPER.IN.IO
                                                                          9170
    PLOTS ARE MOWED IN A GROUP SUCH THAT MOWING MAY BE CONTIMUOUS FOR 5 9180
    OR 10 HOURS. A HALF DAY OR A FULL DAY.
                                                                          9190
C
    THE NUMBER OF PLOTS MOWED IN A FULL DAY
                                                                          9200
    IS MAXMOW (2) AND IN HALF A DAY IS MAXMOW (1). THE NUMBER OF PLOTS 159210
    AN INTEGER IN BOTH CASES AND IS AT LEAST EQUAL TO ONE.
                                                                          9220
      DIMENSION MAXMOW (2)
                                                                          9230
      NM10=IFIX(10./TPL(1))
                                                                          9240
      NM5=IFIX (5./TPL (1))
                                                                          9250
      MAXMOW(2) = MAXO(1,NM10)
                                                                          9260
      MAXMOW(1) = MAXO(1.NM5)
                                                                          9270
                                                                          9280
C
    THE MAMIMUM NUMBER OF PLOTS THAT MAY BE MOWED IN A DAY IS
                                                                          9290
    REDUCED IF MAXMOW VALUES PRESENTLY ESTIMATED PRODUCE TOO MANY
                                                                          9300
    CURING PLOTS. CRTR (NTHCUT. 4.2) IS USED TO SPECIFY THE
C
                                                                          9310
C
    MAXIMUM NUMBER OF DAYS MOWING CAN PROCEED AHEAD OF HARVESTING.
                                                                         9320
    A MINIMUM OF 2 DAYS OR 4 PLOTS AHEAD IS ALWAYS ALLOWED.
                                                                         9330
                                                                         9340
      CURING=FLOAT (NMOW- (NHRV+NHTDAY))
                                                                         9350
      ALLWD=2.*CRTR (NTHCUT, 4, 2)
                                                                         9360
      ALLWD=AMAX1 (ALLWD,4.)
                                                                          9370
      DO 5 IV=1.2
                                                                         9380
      TOT=CURING+FLOAT (MAXMOW (IV))
                                                                         9390
      IF (TOT.GT.ALLWD) THEN
                                                                          9400
      IMAX=IFIX (ALLWD-CURING)
                                                                         9410
      MAXMOW(IV) = MAXO(O.IMAX)
                                                                         9420
      ENDIF
                                                                          9430
5
      CONTINUE
                                                                          9440
      I-NTHCUT
                                                                         9450
C
    NO PLOTS ARE MOWED TODAY IF
                                                                          9460
C
       1. THERE IS MORE THAN 2 MM OF RAIN
                                                                         9470
C
       2. MORE THAN 1/2 THE TOTAL AREA IS FIELD CURING
                                                                         9480
C
          TWO PLOTS ARE BEING HARVESTED AND MOWING CANNOT BE
                                                                          9490
C
            SIMULTANEOUS WITH HARVEST
                                                                         9500
      IF (RAIN.GT.2.) RETURN
                                                                         9510
      IF (NHTDAY.GE.2.AND.CRTR(I,1.1).NE.1.) RETURN
                                                                         9520
    NBMW IS THE RELATIVE MOWING TIME IN A DAY (O IS NO TIME, 1 IS A
                                                                         9530
    HALF-DAY, 2 IS A FULL DAY)
                                                                          9540
```

```
C
    HOW MUCH MOWING MAY BE DONE TODAY IS DETERMINED AS FOLLOWS
                                                                           9550
    NORMALLY IF 2 PLOTS ARE HARVESTED TODAY. NO MOWING IS DONE
                                                                           9560
C
             IF 1 PLOT IS HARVESTED TODAY, HALF A DAY IS SPENT MOWING
                                                                           9570
C
             IF O PLOT IS HARVESTED TODAY, ALL DAY IS SPENT MOWING
                                                                           9580
C
    THE FOLLOWING EXCEPTIONS ARE CONSIDERED
                                                                           9590
C
       1. IF MOWING MAY BE SIMULTANEOUS WITH HARVEST. THEN MOWING MAY
                                                                           9600
C
           BE CARRIED OUT ALL DAY
                                                                           9610
C
       2. IF TEDDING IS REQUIRED AND CANNOT BE SIMULTANEOUS WITH MOWING9620
C
           THE MOWING PERIOD IS REDUCED BY HALF A DAY
                                                                           9630
C
       3. IF RAKING IS REQUIRED AND CANNOT BE SIMULTANEOUS WITH HARVEST9640
C
           THE MOWING PERIOD IS REDUCED BY HALF A DAY
                                                                           9650
C
       4. IF CRTR(1,4,1) SPECIFIES THAT THE MAXIMUM PERIOD IS HALF A
                                                                           9660
C
           DAY. THEN ANY TIME A FULL MOWING DAY IS SPECIFIED IT MUST BE 9670
C
           REDUCED.
                                                                           9680
      NBMW=0
                                                                           9690
      NRK=0
                                                                           9700
      IF (NHTDAY.EQ.O) NBMW=2
                                                                           9710
      IF (NHTDAY.EQ.1) NBMW=1
                                                                           9720
      IF (CRTR(1,1,1).EQ.1.) NBMW=2
                                                                           9730
      IF (NOPSQ(1,2).EQ.0) GO TO 10
                                                                           9740
      IF (CRTR(I,1,2).EQ.O.) NBMW=NBMW-1
                                                                           9750
   10 IF (NOPSQ(1,3).EQ.0) GO TO 20
                                                                           9760
      IF (CRTR(1,1,3).EQ.1.) GO TO 20
                                                                           9770
      IF (NHTDAY.NE.O) NRK=1
                                                                           9780
   20 NBMW=NBMW-NRK
                                                                           9790
      IF (NBMW.LE.O) RETURN
                                                                           9800
      IF (NBMW.EQ.2.AND.CRTR(1,4,1).EQ.1.) NBMW=1
                                                                           9810
      NMTDAY=MAXMOW (NBMW)
                                                                           9820
      WRITE (10.101) NMTDAY
                                                                           9830
C 101
        FORMAT (5X, 'WITHIN MOWQ, NMTDAY= ',14)
                                                                           9840
    INITIALIZE EACH NEW MOWED PLOT
                                                                           9850
      I A=NMOW+1
                                                                           9860
      I B=NMOW+NMTDAY
                                                                           9870
      TIMEMW=TPL(1) *0.5
                                                                           9880
      IF (IB.LE.NPLOTS) GO TO 25
                                                                           9890
      IB=NPLOTS
                                                                           9900
      NMTDAY=NPLOTS-NMOW
                                                                           9910
25
      DO 30 J=1A.1B
                                                                           9920
      HARMAT(J, 1) = 1.
                                                                           9930
      HARMAT(J,2) = XLEAF * 10.
                                                                           9940
      HARMAT(J, 3) = STEM * 10.
                                                                           9950
      HARMAT(J,4) = QUAL(1.2)
                                                                           9960
      HARMAT(J,5) = QUAL(2,2)
                                                                           9970
      HARMAT(J,6) = QUAL(1,3)
                                                                           9980
      HARMAT(J,7) = OUAL(2.3)
                                                                           9990
      HARMAT(J,8) = QUAL(1,4)
                                                                           10000
      HARMAT(J,9) = QUAL(2,4)
                                                                           10010
      HARMAT (J, 10) = XINMC (NDAYHR, TIMEMW, NTHCUT)
                                                                           10020
      HARMAT(J, 14) = 1.
                                                                           10030
      HARMAT(J, 17) = CRTR(NTHCUT, 2, 1)
                                                                           10040
```

```
HARMAT(J, 19) = CRTR(NTHCUT, 3, 1)
                                                                         10050
      HARMAT(J,20) = CRTR(NTHCUT,3,2)
                                                                         10060
      HARMAT(J.21)=1.
                                                                         10070
      HARMAT(J.22) = 1.
                                                                         10080
      IF (NOPSO(1.5).LT.140.OR.NOPSO(1.5).GT.169) GO TO 35
                                                                         10090
C
    HERE WE HAVE HAYLAGE OR DIRECT CUT AS FIRST PRIORITY HARVEST
                                                                         10100
      HARMAT (J. 21) =HARDEX
                                                                         10110
    IF HARDEX IS 3.. WE HAVE THE FORCED HAY HARVEST OPTION SINCE SILOS 10120
    ARE FULL.
                                                                         10130
      IF (HARDEX.GE.3.) GO TO 35
                                                                         10140
      HARMAT(J.22) = 2.
                                                                         10150
   35 HARMAT (J.24) = 1.
                                                                         10160
      HARMAT(J.25)=1.
                                                                         10170
      HARMAT(J.26) = 1.
                                                                         10180
      HARMAT (J. 28) =TIMEMW
                                                                         10190
      HARMAT (J. 29) = HARMAT (J. 10)
                                                                         10200
      TIMEMW=TIMEMW+TPL(1)
                                                                         10210
    CHECK IF THE CRUDE PROTEIN CRITERION IS SATISFIED AT MOWING TIME
C
                                                                         10220
      IF (HARMAT (J, 21) .GT.1.) GO TO 34
                                                                         10230
      IF (OUAL (3.2).LT.CRTR (NTHCUT.2.5).AND.TMSTO(2).LT.SILO(2)) THEN
                                                                         10240
      HARMAT(J,21)=2.
                                                                         10250
      ENDIF
                                                                         10260
   34 CONTINUE
                                                                        10270
                                                                         10280
      CALL QUANTC (J.1)
      OPUSE (NTHCUT. 1) = OPUSE (NTHCUT. 1) + TPL (1)
                                                                         10290
                                                                         10300
      IF (NOPSO(NTHCUT.2).EO.0) GO TO 30
    NOW WE CONSIDER AN EXTRA TREATMENT (TEDDING)
                                                                         10310
      HARMAT (J. 17) = CRTR (NTHCUT. 2.2)
                                                                         10320
     HARMAT(J, 18) = 1.
                                                                         10330
                                                                         10340
      CALL QUANTC (J, 2)
      OPUSE (NTHCUT, 2) = OPUSE (NTHCUT, 2) + TPL (2)
                                                                         10350
                                                                         10360
   30 CONTINUE
     RETURN
                                                                         10370
      END
                                                                         10380
C
                                                                         10390
C ****************************
                                                                         10400
      FUNCTION XINMC (NDAYHR.TIMEMW.NTHCUT)
                                                                         10410
C ***************************
                                                                         10420
   THIS IS A SIMPLIFIED APPROXIMATION OF INITIAL MOISTURE CONTENT OF
                                                                         10430
    ALFALFA.
                                                                         10440
   THE MAXIMUM MOISTURE CONTENT IS 4.5 ON THE FIRST DAY OF HARVEST OF
                                                                         10450
    FIRST AND FOURTH CUTS AT 8AM. IT IS 4.0 FOR THE SECOND AND THIRD
                                                                         10460
    CUTS.
                                                                         10470
                                                                         10480
   THE MOISTURE DECREASES BY 0.05 PER HOUR FOR MOWING OCCURRING AFTER
                                                                         10490
    8AM ON A GIVEN DAY.
    IT IS FURTHER DECREASED BY 0.05 PER DAY FOR EACH CALENDAR
                                                                         10500
    DAY AFTER THE BEGINNING OF HARVEST.
                                                                         10510
     XINMC=4.5
                                                                         10520
      IF (NTHCUT.EQ.2.OR.NTHCUT.EQ.3) XINMC=4.0
                                                                         10530
      IF (TIMEMW.GT.10.) TIMEMW=10.
                                                                         10540
```

```
XINMC=XINMC-0.05*TIMEMW
                                                                       10550
      XINMC=XINMC-0.05*FLOAT (NDAYHR)
                                                                       10560
      RETURN
                                                                       10570
      END
                                                                       10580
                                                                       10590
10600
      SUBROUTINE QUANTC (J.N)
                                                                       10610
10620
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                       10630
      COMMON /W2/ TPL (9) . RAIN. JJDAY. NDAYHR
                                                                       10640
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                       10650
      COMMON /CTRL24/ BGNCUT (5) .NTHYR.NTHCUT.NDAYSC.NDAYSH.YLD (4) .
                                                                       10660
     +QUAL (3,4) .GDDCUM.METRIC.JYEARF.JYEARL.IPRT1.IPRT2.JDAYF.JDAYL.JPRT10670
     +,NYRS, IPRT4,NCUTS, JYEAR, JLALHR, CPLANT
                                                                       10680
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                       10690
     +SUMS1, SUMS2, T, WSF, SRADF, DWS, PPT, ESO, ESR, XLEAF, BUDS, STEM, TOPS, TNC, 10700
     +XMATS, TNCS, TMAXC, TMINC
                                                                       10710
      COMMON /Y7/ NBOP (18) . NBMACH (18.7) . XNBM (18.7)
                                                                       10720
C
    THIS SUBROUTINE ESTIMATES LEAF AND STEM LOSSES DUE TO MECHANICAL
                                                                       10730
C
    TREATMENT.
                                                                       10740
C
    THERE ARE 11 TYPES OF LOSS. NB STANDS FOR THE MACHINE TREATMENT.
                                                                       10750
C
         MOWER
                                                                       10760
C
      2. MOWER-CONDITIONER
                                                                       10770
C
         RAKE
                                                                       10780
C
         TEDDER
                                                                       10790
C
          BALER (CONVENTIONAL, RECTANGULAR BALES)
                                                                       10800
C
      6.
          BALER-EJECTOR
                                                                       10810
C
      7. ROUND BALER
                                                                       10820
C
      8.
          STACK WAGON
                                                                       10830
C
          CHOPPER (WILTED ALFALFA)
                                                                       10840
C
      10. CHOPPER (DIRECT-CUT ALFALFA)
                                                                       10850
C
          CHOPPER (DIRECT-CUT CORN SILAGE)
                                                                       10860
C
    XLL REPRESENTS LEAF LOSS
                                                                       10870
C
    XSL REPRESENTS STEM LOSS
                                                                       10880
    FIRST WE HAVE TO IDENTIFY WHICH OPERATION WE ARE DEALING WITH.
                                                                       10890
      DIMENSION XLL(11), XSL(11)
                                                                       10900
      DIMENSION VAL (7), ARG (7)
                                                                       10910
      DATA XLL /.02,.04,0.,0.,.05,.075,.19,.24,.09,.04,.05/
                                                                       10920
      DATA XSL /.005,.01,.02,0.,.02,.02,.04,.05,.02,.01,.05/
                                                                       10930
      DATA VAL /.21,.14,.08,.045,.028,.023,.020/
                                                                       10940
      DATA ARG /.25,.40,.67,1.0,1.5,2.0,2.5/
                                                                       10950
      I=NTHCUT
                                                                       10960
      KK=7
                                                                       10970
      NB=11
                                                                       10980
      IF (NOPSQ(I,N).LE.0019) NB=1
                                                                       10990
      IF (NOPSQ(I.N).GE.20.AND.NOPSO(I.N).LE.39) NB=2
                                                                       11000
      IF (NOPSQ(I,N).GE.40.AND.NOPSQ(I,N).LE.69) GO TO 10
                                                                       11010
      IF (NOPSQ(I,N).GE.70.AND.NOPSQ(I,N).LE.79) NB=5
                                                                       11020
      IF (NOPSQ(I,N).GE.80.AND.NOPSQ(I,N).LE.89) NB=7
                                                                       11030
      IF (NOPSQ(I,N).GE.90.AND.NOPSQ(I,N).LE.99) NB=8
                                                                       11040
```

```
IF (NOPSQ(I,N).GE.0140.AND.NOPSQ(I,N).LE.149) NB=11
                                                                           11050
      IF (NOPSO(I.N).GE.150.AND.NOPSO(I.N).LE.159) NB=9
                                                                           11060
      IF (NOPSQ(I,N).GE.160.AND.NOPSQ(I,N).LE.169) NB=10
                                                                           11070
      IF (NOPSQ(I,N).GE.170.AND.NOPSQ(I,N).LE.179) GO TO 30
                                                                           11080
      GO TO 40
                                                                           11090
   HERE WE CONSIDER RAKING AND TEDDING
                                                                           11100
   10 XMC=HARMAT (J. 10)
                                                                           11110
      IF (RAIN.GT.2.) XMC=HARMAT (J.29)
                                                                           11120
    IN THE CASE OF RAKING AND TEDDING, LEAF LOSS IS A FUNCTION OF
                                                                           11130
C MOISTURE CONTENT.
                                                                           11140
      NB=3
                                                                            11150
      IF (NOPSQ(I,N).GE.60.AND.NOPSQ(I,N).LE.69) NB=4
                                                                           11160
      XLL (NB) = TABLI (VAL, ARG, XMC, KK)
                                                                           11170
      GO TO 40
                                                                           11180
    CHECK IF THERE IS AN EJECTOR
                                                                           11190
   30 NB=5
                                                                           11200
      11=0
                                                                           11210
    1 ||=||+1
                                                                           11220
      IF (NOPSQ(I,N).NE.NBOP(II).AND.II.LT.18) GO TO 1
                                                                           11230
      IF (NBMACH(II,3).NE.O) NB=6
                                                                           11240
   40 HARMAT (J, 24) = HARMAT (J, 24) * (1.-XLL (NB))
                                                                           11250
      HARMAT (J, 25) = HARMAT (J, 25) * (1.-XSL (NB))
                                                                           11260
      RETURN
                                                                           11270
      END
                                                                           11280
                                                                            11290
C *****************************
                                                                           11300
      SUBROUTINE ENDHRY
                                                                            11310
C ********************************
                                                                           11320
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                           11330
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                           11340
      COMMON /W3/ HFEED (4, 160, 5)
                                                                           11350
      COMMON /Z1/ AREA (6) . NBO (6) . NOPSQ (5,9) . CRTR (5,4,9) . SILO (2)
                                                                           11360
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                           11370
     +QUAL (3,4), GDDCUM, METRIC, JYEARF, JYEARL, IPRT1, IPRT2, JDAYF, JDAYL, JPRT11380
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                           11390
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                           11400
     +SUMS1.SUMS2.T.WSF.SRADF.DWS.PPT.ESO.ESR.XLEAF.BUDS.STEM.TOPS.TNC. 11410
     +XMATS, TNCS, TMAXC, TMINC
                                                                            11420
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                           11430
      COMMON /Z4/FDLABR, FDENER, HRLABR, HRFUEL, HRELEC
                                                                           11440
      COMMON /Z5/ IPR2.IPR3.IPR4
                                                                           11450
      COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                           11460
      COMMON /YY1/ USEMCH(100), UNITS(100)
                                                                           11470
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                           11480
      COMMON /Y3/ NMDATA, NOPER, IN, 10
                                                                           11490
      COMMON /Y7/ NBOP (18) . NBMACH (18.7) . XNBM (18.7)
                                                                           11500
      COMMON /Z21/ ADATES (26, 12), SDATES (4, 12)
                                                                           11510
      COMMON /Z22/ DELAY (26, 12), SDELAY (4, 12)
                                                                           11520
      DATA DELAY /312*0.0/
                                                                           11530
      DATA NDAYHR /O/
                                                                           11540
```

```
C
    SUBROUTINE ENDHRY PROVIDES A SUMMARY OF HOW PLOTS WERE HARVESTED
                                                                              11550
    THE END OF EACH CUT AND A DETAILED OUTPUT AT THE END OF EACH YEAR ON11560
    QUANTITY AND QUALITY.
                                                                              11570
      K = (NTHCUT - 1) * 3 + 2
                                                                              11580
      ADATES (NTHYR, K) = FLOAT (JJDAY)
                                                                              11590
      ADATES (NTHYR, K+1) =ADATES (NTHYR, K) -ADATES (NTHYR, K-1)
                                                                              11600
      I=NTHCUT
                                                                              11610
      IF (NDAYHR.LT.39) GO TO 10
                                                                             11620
      NLM-NPLOTS-NMOW
                                                                             11630
      NLH=NPLOTS-NHRV
                                                                             11640
      OPUSE (1,1) = OPUSE (1,1) + NLM*TPL (1)
OPUSE (1,8) = OPUSE (1,8) + NLH*TPL (8)
                                                                             11650
                                                                             11660
      IF (CRTR(1,3,8).EQ.1.) OPUSE(1,9)=OPUSE(1,9)+NLH*TPL(9)
                                                                             11670
      NCUM(5) = NCUM(5) + NLH
                                                                             11680
      NPST(1,5) = NPST(1,5) + NLH
                                                                             11690
10
      CONTINUE
                                                                              11700
      NMOW=NPLOTS
                                                                              11710
      NHRV=NPLOTS
                                                                              11720
    AT THE END OF EACH CUT, SUM UP LABOR, FUEL AND ELECTRICITY REQUIRED 11730
    FOR HARVEST.
                                                                              11740
      DO 50 J=1,9
                                                                             11750
      HRLABR=HRLABR+OPUSE(I.J) *ZRT(J.4)
                                                                              11760
      HRFUEL=HRFUEL+OPUSE (1, J) *ZRT (J, 2)
                                                                              11770
      HRELEC=HRELEC+OPUSE(I,J)*ZRT(J,3)
                                                                              11780
   50 CONTINUE
                                                                              11790
C
    JLALHR IS THE LAST ALFALFA HARVEST DAY DURING THE THIRD HARVEST.
                                                                             11800
    IT WILL BE USED TO ESTABLISH ANY TIME CONFLICT BETWEEN ALFALFA
                                                                             11810
    HARVEST AND CORN SILAGE HARVEST.
                                                                              11820
      IF (NTHCUT.EQ.3) JLALHR=JJDAY
                                                                             11830
C
    CHECK IF THIS IS THE LAST CUT OF THE YEAR
                                                                             11840
      NDAYHR=-40
                                                                              11850
      IF (NTHCUT.LT.NCUTS) RETURN
                                                                              11860
C
    AT THE END OF EACH YEAR, SUM UP MACHINE USE FOR EACH OPERATION
                                                                             11870
    AND FOR EACH INDIVIDUAL MACHINE.
                                                                              11880
      DO 60 I=1.5
                                                                              11890
      DO 60 J=1.9
                                                                             11900
      IF (OPUSE(I,J).LE.O.) GO TO 60
                                                                             11910
      11=0
                                                                             11920
    ] ||=||+]
                                                                             11930
      IF (NOPSQ(I,J).NE.NBOP(II)) GO TO 1
                                                                             11940
      DO 65 K=1.7
                                                                             11950
      IF (NBMACH(II,K).EQ.O) GO TO 65
                                                                             11960
      | J=0
                                                                             11970
    2 |J=|J+1
                                                                             11980
      IF (NBMACH(II,K).NE.MCODE(IJ)) GO TO 2
UNITS(IJ) = AMAX1(UNITS(IJ), XNBM(II,K))
                                                                             11990
                                                                             12000
      USEMCH (IJ) =USEMCH (IJ) +OPUSE (I, J) *XNBM (II, K)
                                                                              12010
   65 CONTINUE
                                                                              12020
   60 CONTINUE
                                                                              12030
    AT THE END OF EACH YEAR. SUMMARIZE THE TOTAL FEED HARVESTED
                                                                              12040
```

```
MATRIX ALHRED (26, 15) CONTAINS DM ,T/HA), CP (DEC), AND TDN (DEC)
                                                                             12050
    FOR EACH ALFALFA HARVEST FOR EACH YEAR. COLUMNS 1 TO 12 CONTAIN
                                                                             12060
C DM. CP AND TDN FOR UP TO 4 ALFALFA HARVESTS. COLUMNS UO TO 15
                                                                             12070
    CONTAIN ANNUAL AGGREGATE INFORMATION.
                                                                             12080
      TCP=0.
                                                                             12090
      TDIG=O.
                                                                             12100
      TDMA=0.
                                                                            12110
      TDM=0.
                                                                            12120
      DO 55 K=1.4
                                                                            12130
      KK = (K-1) * 3+1
                                                                            12140
      DM=ALHRFD (NTHYR, KK)
                                                                            12150
      IF (DM.LE.O.) GO TO 55
                                                                            12160
      CP=ALHRFD (NTHYR, KK+1) /DM
                                                                            12170
      DIG=ALHRFD (NTHYR, KK+2) /DM
                                                                            12180
      ALHRFD (NTHYR, KK+1) =CP
                                                                            12190
      ALHRFD (NTHYR, KK+2) =DIG
                                                                            12200
      ALHRFD (NTHYR.KK) = DM/AREA (K)
                                                                            12210
      TDM=TDM+DM
                                                                            12220
      TDMA=TDMA+DM/AREA(K)
                                                                            12230
      TDIG=TDIG+DM*DIG
                                                                            12240
      TCP=TCP+CP*DM
                                                                            12250
   55 CONTINUE
                                                                            12260
      ALHRED (NTHYR, 13) =TDMA
                                                                            12270
      ALHRFD (NTHYR, 14) =TCP/TDM
                                                                            12280
      ALHRFD (NTHYR, 15) =TDIG/TDM
                                                                            12290
      IF (TDM.LE.O.) THEN
                                                                            12300
      ALHRED (NTHYR. 14) =0.
                                                                            12310
      ALHRFD (NTHYR, 15) =0.
                                                                            12320
      ENDIF
                                                                            12330
    MATRIX AFEED (26.23) CONTAINS DM (TOTAL T). CP (DEC). STANDARD DEV.
                                                                            12340
    OF CRUDE PROTEIN, TDN (DEC) AND STANDARD DEVIATION OF TDN FOR ALL
                                                                            12350
    4 STORAGE LOCATIONS. LOCATION 1 IS FIRST SILO. 2 IS SECOND SILO.
                                                                            12360
    3 IS HIGH QUALITY HAY, 4 IS LOW QUALITY HAY.
                                                                            12370
    THE LAST THREE COLUMNS ARE RESERVED FOR DRY MATTER OF HARVESTED
                                                                            12380
    CORN: CORN SILAGE. HIGH MOISTURE CORN AND DRY CORN GRAIN.
                                                                            12390
      DO 35 NS=1.4
                                                                            12400
      NPSS=NCUM (NS)
                                                                            12410
      IF (NPSS.LE.O) GO TO 35
                                                                            12420
C CALCULATE TOTAL DM, AVERAGE CP, BIASED STANDARD ERROR OF CP, AVERAGE
                                                                            12430
    DIG AND BIASED STANDARD ERROR OF DIG.
                                                                            12440
      SDM=O.
                                                                            12450
      SCP=0.
                                                                            12460
      SDIG=0.
                                                                            12470
      SSCP=0.
                                                                            12480
      SSDIG=0.
                                                                            12490
      DO 36 J=1.NPSS
                                                                            12500
      SDM=SDM+HFEED (NS.J.1)
                                                                            12510
      SCP=SCP+HFEED (NS.J.2)
                                                                            12520
      SSCP=SSCP+HFEED (NS,J,2) *HFEED (NS,J,2)
                                                                            12530
      SDIG=SDIG+HFEED (NS.J.3)
                                                                            12540
```

```
SSDIG=SSDIG+HFEED (NS, J, 3) *HFEED (NS, J, 3)
                                                                            12550
   36 CONTINUE
                                                                            12560
      KK=5*NS-4
                                                                            12570
      AFEED (NTHYR, KK) =SDM
                                                                            12580
      AFEED (NTHYR, KK+1) =SCP/NPSS
                                                                            12590
      AFEED (NTHYR.KK+3) =SDIG/NPSS
                                                                            12600
      VARCP= (SSCP-SCP*SCP/NPSS) /NPSS
                                                                            12610
      VARDIG= (SSDIG-SDIG*SDIG/NPSS) /NPSS
                                                                            12620
      IF (VARCP.LT.O.) VARCP=O.
                                                                            12630
      IF (VARDIG.LT.O.) VARDIG=O.
                                                                            12640
      AFEED (NTHYR, KK+2) = SORT (VARCP)
                                                                            12650
      AFEED (NTHYR.KK+4) = SORT (VARDIG)
                                                                            12660
   35 CONTINUE
                                                                            12670
      DO 81 NS=1.4
                                                                            12680
      TD=0.
                                                                            12690
      TDS=0.
                                                                            12700
      K = (NS - 1) * 3 + 1
                                                                            12710
      NPSS=NCUM(NS)
                                                                            12720
      IF (NPSS.LE.O) GO TO 81
                                                                            12730
      DO 82 NBPL=1.NPSS
                                                                            12740
      TD=TD+HFEED (NS.NBPL,5)
                                                                            12750
82
      TDS=TDS+HFEED (NS, NBPL, 5) *HFEED (NS, NBPL, 5)
                                                                            12760
      XN=FLOAT (NPSS)
                                                                            12770
      DELAY (NTHYR, K) =XN
                                                                            12780
      AD=TD/XN
                                                                            12790
      SDD = (TDS - TD + TD / XN) / (XN - 1.)
                                                                            12800
      IF (XN.LE.1.) SDD=O.
                                                                            12810
      IF (SDD.LT.O.) SDD=0.
                                                                            12820
      DELAY (NTHYR.K+1) =AD
                                                                            12830
      DELAY (NTHYR, K+2) = SORT (SDD)
                                                                            12840
81
      CONTINUE
                                                                            12850
      RETURN
                                                                            12860
      END
                                                                            12870
C ***************************
                                                                            12880
                                                                            12890
C **************************
                                                                            12900
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                            12910
      COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                            12920
      COMMON /W3/ HFEED (4.160.5)
                                                                            12930
      COMMON /W4/ NPDCA, NDCTD. IDAH
                                                                            12940
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                            12950
      COMMON /CTRL24/ BGNCUT(5),NTHYR,NTHCUT,NDAYSC,NDAYSH,YLD(4),
                                                                            12960
     +QUAL(3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT12970
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                            12980
      COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                            12990
     +SUMS1,SUMS2,T,WSF,SRADF,DWS.PPT.ESO.ESR.XLEAF,BUDS.STEM.TOPS.TNC. 13000
     +XMATS, TNCS, TMAXC, TMINC
                                                                            13010
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                            13020
      COMMON /Z4/FDLABR, FDENER, HRLABR, HRFUEL, HRELEC
                                                                            13030
      COMMON /Z5/ IPR2, IPR3, IPR4
                                                                            13040
```

C TH C HA C FII C

1 F 5 I L 1 N S 10 C

```
COMMON /Z7/ ALHRFD (26.15).AFEED (26.23)
                                                                            13050
      COMMON /YY1/ USEMCH (100), UNITS (100)
                                                                            13060
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                            13070
      COMMON /Y3/ NMDATA.NOPER.IN.IO
                                                                            13080
      COMMON /Y7/ NBOP (18), NBMACH (18,7), XNBM (18,7)
                                                                            13090
    THIS SUBROUTINE IS USED FOR ALFALFA GREEN CHOPPING (DIRECT CUT)
                                                                            13100
   HARVEST WILL OCCUR IF RAIN IS LESS THAN 2 MM.
                                                                            13110
      DATA STOLS/0.07/,FDLS/0.11/
                                                                            13120
      DATA DCLL/0.04/,DCSL/0.01/
                                                                            13130
       IF (RAIN.GT.2.) RETURN
                                                                            13140
    HARVEST LOSSES
C
                                                                            13150
      HLEAF=XLEAF * (1.-DCLL)
                                                                            13160
      HSTEM=STEM* (1.-DCSL)
                                                                            13170
      HDM=HLEAF+HSTEM
                                                                            13180
      PCL=HLEAF/HDM
                                                                            13190
      IF (PCL.LT.0.290) PCL=0.29
                                                                            13200
      IF (PCL.GT.0.50) PCL=0.50
                                                                            13210
      PCS=1.-PCL
                                                                            13220
      CP=PCL*QUAL(1,2)+PCS*QUAL(2,2)
                                                                            13230
      DIG=PCL*QUAL(1,3)+PCS*QUAL(2,3)
                                                                            13240
      DM=HDM/100.
                                                                            13250
      NDCTD=1
                                                                            13260
      NHPD=1
                                                                            13270
C
    FIND THE STORAGE STRUCTURE IN WHICH THE ALFALFA WILL BE STORED
                                                                            13280
                                                                            13290
       IF (CP.GE.CRTR(NTHCUT,2,5).AND.TMSTO(1).LT.SILO(1)) GO TO 10
                                                                            13300
      NS=2
                                                                            13310
       IF (TMSTO(2).LT.SILO(2)) GO TO 10
                                                                            13320
     IF QUALITY DICTATES TO STORE IN SILO 2 AND SILO 2 IS FULL WHILE
                                                                            13330
    SILO 1 IS NOT, THEN STORE THE LOW QUALITY SILAGE IN SILO 1 (HIGH QL) 13340
     INSTEAD OF FORCING HAY HARVEST
                                                                            13350
      NS=1
                                                                            13360
   10 CONTINUE
                                                                            13370
      NMTDAY=NMTDAY+1
                                                                            13380
      NHTDAY=NHTDAY+1
                                                                            13390
      NHRV=NHRV+1
                                                                            13400
      NMOW=NMOW+1
                                                                            13410
      NPST (NTHCUT, NS) = NPST (NTHCUT, NS) +1
                                                                            13420
      NCUM (NS) =NCUM (NS) +1
                                                                            13430
      NPDCA=NPDCA+1
                                                                            13440
      NBPL=NCUM (NS)
                                                                            13450
C
    TOTAL DRY MATTER AFTER STORAGE AND FEEDING LOSSES
                                                                            13460
      HFEED (NS, NBPL, 1) =DM*AREAPL*NHPD* (1.-FDLS) * (1.-STOLS)
                                                                            13470
                                                                            13480
      HFEED (NS.NBPL.2) =CP
      HFEED (NS, NBPL, 3) =DIG
                                                                            13490
      XMCI=XINMC (NDAYHR, 5, NTHCUT)
                                                                            13500
      HFEED (NS, NBPL, 4) =XMCI
                                                                            13510
      HFEED (NS, NBPL, 5) = 0.
                                                                            13520
      TMSTO (NS) =TMSTO (NS) +DM*AREAPL*NHPD
                                                                            13530
      NBHR=4+NS
                                                                            13540
```

```
OPUSE (NTHCUT.NBHR) =OPUSE (NTHCUT.NBHR) +TPL (NBHR) *NHPD
                                                                         13550
      KK = (NTHCUT - 1) *3+1
                                                                         13560
                                                                         13570
      ALHRFD (NTHYR, KK) = ALHRFD (NTHYR, KK) + HFEED (NS. NBPL. 1)
      ALHRFD (NTHYR, KK+1) = ALHRFD (NTHYR, KK+1)
                                                                         13580
    + +HFEED (NS.NBPL.1) *HFEED (NS.NBPL.2)
                                                                         13590
      ALHRFD (NTHYR, KK+2) = ALHRFD (NTHYR, KK+2)
                                                                         13600
    + +HFEED (NS.NBPL.1) *HFEED (NS.NBPL.3)
                                                                         13610
      IF (TMSTO(1).LT.SILO(1)) GO TO 15
                                                                         13620
     HARDEX=2.
                                                                         13630
      IF (TMSTO(2).LT.SILO(2)) GO TO 15
                                                                         13640
      IF (NOPSQ (NTHCUT, 1) .EQ.0) GO TO 15
                                                                         13650
    IF BOTH SILOS ARE FULL, SHIFT FROM DIRECT CUT HARVEST TO DRY HAY
                                                                         13660
   HARVEST AS LONG AS THE EQUIPMENT IS AVAILABLE.
                                                                         13670
    THE FIRST HAY HARVEST DAY WILL NOT START UNTIL TOMORROW
                                                                         13680
      HARDEX=3.
                                                                         13690
      IDAH=9
                                                                         13700
      RETURN
                                                                         13710
   15 NLEFT=NPLOTS-NHRV
                                                                         13720
      IF (NLEFT.GE.1) GO TO 25
                                                                         13730
      NHRV=NPLOTS
                                                                         13740
                                                                         13750
      NMOW=NPLOTS
      RETURN
                                                                         13760
    CHECK IF A SECOND PLOT MAY BE HARVESTED TODAY AS DIRECT CUT ALFALFA 13770
   25 IF (NDCTD.GE.2) RETURN
                                                                         13780
      IF (CRTR(NTHCUT, 4, 1).EO.1.) RETURN
                                                                         13790
      NDCTD=NDCTD+1
                                                                         13800
      GO TO 5
                                                                         13810
      END
                                                                         13820
                                                                         13830
13840
      SUBROUTINE WRITAL (ILINE)
                                                                         13850
13860
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                         13870
      COMMON /W2/ TPL (9) , RAIN, JJDAY, NDAYHR
                                                                         13880
      COMMON /W3/ HFEED (4.160.5)
                                                                         13890
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                         13900
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                         13910
     +QUAL (3,4),GDDCUM, METRIC, JYEARF, JYEARL, IPRT1, IPRT2, JDAYF, JDAYL, JPRT13920
    +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                         13930
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                         13940
     +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC, 13950
     +XMATS, TNCS, TMAXC, TMINC
                                                                         13960
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                         13970
      COMMON /Z4/FDLABR.FDENER.HRLABR.HRFUEL.HRELEC
                                                                         13980
      COMMON /Z5/ IPR2, IPR3, IPR4
                                                                         13990
      COMMON /Z6/ CSLABR, CSFUEL, CSELEC, CSFDLB, CSFDEN, DMCS
                                                                         14000
      COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                         14010
      COMMON /Z21/ ADATES (26.12), SDATES (4.12)
                                                                         14020
      COMMON /YY1/ USEMCH(100), UNITS(100)
                                                                         14030
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                         14040
```

```
COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                           14050
      COMMON /Y7/ NBOP (18), NBMACH (18,7), XNBM (18,7)
                                                                           14060
      COMMON /Z22/ DELAY (26, 12), SDELAY (4, 12)
                                                                           14070
      DIMENSION STALHR (4, 15), STFEED (4, 23)
                                                                           14080
      DATA STALHR, STFEED /60*0.,92*0./
                                                                           14090
    THIS SUBROUTINE CONTAINS ALL THE WRITE STATEMENTS FOR THE ALFALFA
                                                                           14100
    HARVEST. THE ARGUMENT ILINE REFERS TO 3 PRINTOUT LEVELS.
                                                                           14110
       ILINE=1 IS FOR DAILY AND SEASONAL OUTPUT.
                                                                           14120
C
       ILINE=2 IS FOR YEARLY OUTPUT.
                                                                           14130
       ILINE=3 IS FOR END-OF-SIMULATION OUTPUT.
C
                                                                           14140
C
    DAILY AND YEARLY PRINTOUTS WILL APPEAR ONLY IF INPUT DATA IPR2,
                                                                           14150
    IPR3 OR IPR4 ARE EQUAL TO 1.
                                                                           14160
      GO TO (1,2,3) ILINE
                                                                           14170
C
    DAILY PRINTOUT
                                                                           14180
      IF (IPR2.NE.1) RETURN
                                                                           14190
      IF (NTHCUT.EQ.1.AND.NDAYHR.EQ.1) WRITE (10,102) NTHYR, JYEAR
                                                                           14200
102
      FORMAT (//,5X, 'DETAILED OUTPUT FOR YEAR ',12,' (',14,')',//)
                                                                           14210
      NHD=NDAYHR-1
                                                                           14220
      IF (NHD.EQ.1) WRITE (10,101)
                                                                           14230
101
      FORMAT (/,6x,'DAILY ALFALFA HARVEST INFORMATION',/,6x,'JDAY',6x,
                                                                           14240
     + 'PLOTS
                   MOM
                              NHRV
                                           PPT
                                                     TOPS'.
                                                                           14250
     + 8X, 'CP
                    DIG',/)
                                                                           14260
      WRITE (10,100) JJDAY, NPLOTS, NMOW, NHRV, PPT, TOPS, QUAL (3,2), QUAL (3,3) 14270
  100 FORMAT (5X,4(15,5X),F10.2,F10.0,2F10.3)
                                                                           14280
      IF (NHRV.NE.NPLOTS) RETURN
                                                                           14290
      I=NTHCUT
                                                                           14300
    A WARNING IS GIVEN IF THE END OF THE ALFALFA HARVEST WAS CAUSED
                                                                           14310
    BY NDAYHR BEING GREATER THAN 39.
                                                                           14320
      IF (NDAYHR.LT.39) GO TO 10
                                                                           14330
      NLM=NPLOTS-NMOW
                                                                           14340
      NLH=NPLOTS-NHRV
                                                                           14350
      WRITE (10.105) I.NLM.NLH
                                                                           14360
  105 FORMAT (5X, 'WARNING--- THE HARVEST RATE MAY BE UNREALISTICALLY LO14370
     +W FOR THE GIVEN AREA',/,5X,'DURING CUT',14,',',14,' PLOTS WERE UNM14380
     +OWED AND', 14, PLOTS WERE UNHARVESTED FOR LACK OF TIME', /, 5x, MORE 14390
     + THAN 39 DAYS WOULD BE REQUIRED TO HARVEST THE WHOLE AREA')
   10 IF (IPR2.NE.1) GO TO 15
                                                                           14410
      WRITE (10,110) I, AREA (1), NPLOTS, (NPST (1, J), J=1,5)
                                                                           14420
  110 FORMAT (5X, DURING CUT', 14, ', AN AREA OF', F8.2, ' HA WAS DIVIDED IN14430
     +TO', 14, PLOTS. PLOTS WERE HARVESTED AND STORED AS FOLLOWS', /, 10x14440
     +,14,' PLOTS AS HIGH QUALITY HAYLAGE', /,10X,14,' PLOTS AS LOW QUAL14450
     +ITY HAYLAGE',/,10X,14,' PLOTS AS HIGH QUALITY HAY',/,10X,14, ' PL014460
     +TS AS LOW QUALITY HAY',/10X,14,' PLOTS DESTROYED BECAUSE OF OVEREX14470
     +POSURE')
                                                                           14480
      WRITE (10,115) (OPUSE (NTHCUT, J), J=1,9)
                                                                           14490
  115 FORMAT (/,5x, 'THE NINE OPERATIONS WERE EACH CONDUCTED FOR THE FOLL14500
     +OWING AMOUNT OF TIME (H) DURING THE PRESENT HARVEST',/,5X,9F10.2) 14510
   15 CONTINUE
                                                                           14520
      RETURN
                                                                           14530
    YEARLY PRINTOUT. IF IPR3 IS 1, A DETAILED DESCRIPTION OF THE VALUE 14540
```

```
VALUE OF ALL ALFALFA PLOTS HARVESTED IN THE YEAR IS PROVIDED.
                                                                         14550
    IF IPR4 IS 1, A DETAILED DESCRIPTION OF ALL MACHINERY USE AND
                                                                         14560
C
   RESOURCE REQUIREMENT IS PROVIDED.
                                                                         14570
      CALL ANCOST (NTHYR)
                                                                         14580
      IF (IPR3.NE.1) GO TO 25
                                                                         14590
      WRITE (10, 102) NTHYR, JYEAR
                                                                         14600
      WRITE (10, 150)
                                                                         14610
  150 FORMAT (/,5x, 'THE PRESENT CUT IS APPARENTLY THE LAST OF THE YEAR', 14620
     +/.5X, THE FEEDING VALUE OF ALL THE FORAGES HARVESTED IN THE YEAR 114630
    +S GIVEN BELOW')
                                                                         14640
      DO 40 NS=1.4
                                                                         14650
      NPSS=NCUM(NS)
                                                                         14660
      IF (NPSS.LE.O) GO TO 20
                                                                         14670
      WRITE (10,120) NS
                                                                         14680
  120 FORMAT (5x, ' IN STORAGE STRUCTURE NS = ', 14, ', THE FOLLOWING PLOTS 14690
    + WERE ACCUMULATED',/,9X,'DM (T) CP DIG MC
                                                                      DAY14700
    +S EXP.')
                                                                         14710
      DO 30 NBPL=1,NPSS
                                                                         14720
      WRITE (10,130) (HFEED (NS,NBPL,J),J=1,5)
                                                                         14730
  130 FORMAT (7X,4F10.3,F8.0)
                                                                         14740
  30 CONTINUE
                                                                         14750
      GO TO 40
                                                                         14760
   20 WRITE (10,140) NS
                                                                         14770
  140 FORMAT (5x, 'NOT A SINGLE PLOT WAS STORED IN STORAGE STRUCTURE NS= 14780
     +', 14, ' DURING THE CURRENT YEAR')
                                                                         14790
   40 CONTINUE
                                                                         14800
      WRITE (10,145) NCUM (5)
                                                                         14810
  145 FORMAT (5x, 'THE NUMBER OF ALFALFA PLOTS DESTROYED BECAUSE OF OVERE14820
     +XPOSURE IN THE YEAR EQUALS ',15)
                                                                         14830
   25 CONTINUE
                                                                         14840
      IF (IPR4.NE.1) RETURN
                                                                         14850
      WRITE (10,102) NTHYR.JYEAR
                                                                         14860
      DO 70 K=1,NMDATA
                                                                         14870
      IF (USEMCH(K).LE.O.) GO TO 70
                                                                         14880
      IF (UNITS (K) .NE.1.) GO TO 71
                                                                         14890
      WRITE (10,170) MCODE (K), USEMCH (K)
                                                                         14900
  170 FORMAT (5x, 'A SINGLE UNIT OF MACHINE', 16, ' WAS USED', F10.2, ' HOURS14910
     + DURING THE YEAR FOR FORAGE HARVEST')
                                                                         14920
                                                                         14930
   71 WRITE (10,171) UNITS (K), MCODE (K), USEMCH (K)
                                                                         14940
  171 FORMAT (5x, F4.0, UNITS OF MACHINE', 16, WERE USED ALLTOGETHER A T14950
     +OTAL OF', F10.2, HOURS DURING THE YEAR FOR FORAGE HARVEST')
                                                                         14960
   70 CONTINUE
                                                                         14970
      WRITE (10,180) HRLABR, HRFUEL, HRELEC, FDLABR, FDENER
                                                                         14980
  180 FORMAT (/,5x, 'THE TOTAL YEARLY RESOURCE REQUIREMENTS',
                                                                         14990
     +' FOR ALFALFA HARVEST AND FEEDING WERE',
                                                                         15000
     +/,10X,'FOR HARVESTING, ',F10.2,' MAN.HOURS',/,26X,F10.2,' LITERS',15010
     + ' OF FUEL',/,26x,F10.2,' KW.H OF ELECTRICITY',/,10x,'FOR FEEDING,15020
     + ',F13.2,' MAN.HOURS',/26X,F10.2,' LITERS OF FUEL OR ELECTRICAL EQ15030
     +UIVALENT')
                                                                         15040
```

```
WRITE (10.190) CSLABR.CSFUEL.CSELEC.CSFDLB.CSFDEN
                                                                       15050
      FORMAT (/,5x, 'THE TOTAL YEARLY RESOURCE REQUIREMENTS',
190
                                                                       15060
     +' FOR CORN SILAGE HARVEST AND FEEDING WERE',
                                                                       15070
     +/,10X,'FOR HARVESTING, ',F10.2,' MAN.HOURS',/,26X,F10.2,' LITERS',15080
     + ' OF FUEL', /, 26x, F10.2, ' KW.H OF ELECTRICITY', /, 10x, 'FOR FEEDING, 15090
     + ',F13.2,' MAN.HOURS',/26X,F10.2,' LITERS OF FUEL OR ELECTRICAL E015100
     +UIVALENT')
                                                                       15110
      RETURN
                                                                       15120
C
    END-OF-SIMULATION PRINTOUT.
                                                                        15130
      CONTINUE
                                                                        15140
      WRITE (10, 125)
                                                                        15150
125
      FORMAT ('1'.///.
                                                                        15160
             /, 5X, AVERAGE ALFALFA DM YIELD AVAILABLE AS FEED (T/HA). 15170
     +AVERAGE CRUDE PROTEIN (DEC) AND AVERAGE DIGESTIBILITY (DEC) './. 5X15180
     +, 'FOR UP TO 4 HARVESTS AND THE ANNUAL TOTAL', //, 'YR', 7X, 'HARVEST 15190
     +1'.12X.
                                                                       15200
     +'HARVEST 2',12X,'HARVEST 3',12X,'HARVEST 4',12X,'TOTAL YEARLY'./. 15210
     +10X.'DM
              CP DIG
                           DM CP DIG DM CP
                                                                       15220
                                                                DIG
             CP DIG
                           . DM CP
     + DM
                                        DIG'.//)
                                                                       15230
      DO 32 I=1,NYRS
                                                                       15240
      WRITE (10,131) I, (ALHRFD(1,J),J=1,15)
                                                                       15250
      FORMAT (2X,12,5(F9.2,2F6.3))
                                                                       15260
   32 CONTINUE
                                                                       15270
      WRITE (10, 134)
                                                                       15280
134
      FORMAT (9X.'----
                                                           -----', 15290
                  -----------
                                                                       15300
      CALL SSTAT (15, ALHRFD, NYRS, STALHR)
                                                                       15310
      WRITE (10.133)
                                                                       15320
133
      FORMAT (///,5X, 'SAMPLE STATISTICS FOR SIMULATION OUTPUT. '.
                                                                       15330
     + 'ROW 1=MEAN, ROW 2=STANDARD DEVIATION, ROW 3=COEF. OF ',
                                                                       15340
     + 'VARIATION'./)
                                                                       15350
      DO 73 I=1,3
                                                                       15360
73
      WRITE (10,131) I, (STALHR(I,J),J=1,15)
                                                                       15370
      WRITE (10,134)
                                                                       15380
      WRITE (10, 132)
                                                                       15390
132
      FORMAT ('1',///,
                                                                       15400
             /,15X,'TOTAL ALFALFA FEED AVAILABLE FROM FOUR STORAGE LOCA15410
     +TIONS',/,15X,'THE INFORMATION INCLUDES TOTAL DM (T), AVERAGE CP, B15420
     +IASED STANDARD DEVIATION OF CP'./.15X.
                                                                       15430
     +'AVERAGE DIG AND BIASED STANDARD DEVIATION',
                                                                       15440
         ' OF DIG',//, ' YR',7X, 'ALFALFA IN FIRST SILO',10X, 'ALFALFA',
                                                                       15450
      ' IN SECOND SILO', 11X, 'HIGH QUALITY HAY', 13X, 'LOW QUALITY HAY', 15460
     +/,8x,'DM CP S(CP) DIG S(DIG) DM CP S(CP) DIG S(DIG)', 15470
     + '
            DM
                 CP S(CP) DIG S(DIG) DM CP S(CP) DIG S(DIG) 1. 15480
     +//)
                                                                       15490
      DO 34 I=1.NYRS
                                                                       15500
      WRITE (10,135) I, (AFEED(I,J),J=1,20)
                                                                       15510
      FORMAT (1X, 12, 2X, 4(F7.1, 2X, 4(F4.3, 1X), 1X))
                                                                       15520
  34 CONTINUE
                                                                       15530
      WRITE (10, 137)
                                                                       15540
```

```
CALL SSTAT (23, AFEED, NYRS, STFEED)
                                                                           15550
      WRITE (10, 133)
                                                                           15560
      DO 74 I=1.2
                                                                           15570
74
      WRITE (10.135) I. (STFEED(1.J).J=1.20)
                                                                           15580
      WRITE (10,136) (1, (STFEED (1, J), J=1,20), I=3,3)
                                                                           15590
      FORMAT (1X, 12, 2X, 4 (F7.2, 2X, 4 (F4.3, 1X), 1X))
136
                                                                           15600
      WRITE (10.137)
                                                                           15610
      FORMAT (7X,'-----
                                                                           15620
137
                                                                           15630
     + '----',//)
                                                                           15640
      WRITE (10,201)
                                                                           15650
201
      FORMAT ('1',//,5x,'STARTING AND ENDING HARVEST DATES OF',
                                                                          15660
             ' ALFALFA FOR THE WHOLE SIMULATION',//,2X,'YR',4X,
                                                                          15670
             'HARVEST 1',21X, 'HARVEST 2',21X, 'HARVEST 3',21X, 'HARVEST 4',15680
            /.8x.'STARTING ENDING SPAN STARTING ENDING '. 15690
            'SPAN STARTING ENDING SPAN STARTING ',
                                                                          15700
            'ENDING SPAN',/,8x,'DATE',6x,'DATE',16x,'DATE',6x,
                                                                          15710
            'DATE', 16X, 'DATE', 6X, 'DATE', 16X, 'DATE', 6X, 'DATE', /, 8X,
                                                                          15720
            '----',6x,'-----',6x,'-----',
                                                                          15730
                                                                          15740
            '----',//)
                                                                           15750
      DO 36 I=1,NYRS
                                                                           15760
      WRITE (10,202) I, (ADATES (1, J), J=1,12)
                                                                           15770
202
      FORMAT (2X,12,1X,F7.0,11(3X,F7.0))
                                                                          15780
36
                                                                           15790
      CALL SSTAT (12, ADATES, NYRS, SDATES)
                                                                           15800
      WRITE (10,133)
                                                                           15810
      DO 38 I=1.3
                                                                           15820
38
      WRITE (10,204) I, (SDATES (1, J), J=1,12)
                                                                           15830
204
      FORMAT (2X,12,3X,F7.2,11(3X,F7.2))
                                                                           15840
      WRITE (10,207)
                                                                           15850
      FORMAT ('1',//,5x,'THE AVERAGE NUMBER OF DAYS ALFALFA WAS'.
207
                                                                           15860
             ' FIELD CURING BEFORE GOING INTO STORAGE'.//.1X,'YR',
                                                                          15870
            10X, 'FIRST SILO', 19X, 'SECOND SILO', 17X, 'HIGH QUALITY HAY',
                                                                          15880
            14X, LOW QUALITY HAY',/,
                                                                           15890
            6x, 'PLOTS', 4x, 'DAYS', 5x, 'S (DAY)',
                                                                           15900
            6x, 'PLOTS', 4x, 'DAYS', 5x, 'S (DAY)',
                                                                           15910
            6x, 'PLOTS', 4x, 'DAYS', 5x, 'S (DAY)',
                                                                           15920
            6x, 'PLOTS', 4x, 'DAYS', 5x, 'S (DAY)',
                                                                           15930
            //)
                                                                           15940
      DO 209 I=1.NYRS
                                                                           15950
209
      WRITE (10,208) I, (DELAY (1, J), J=1,12)
                                                                          15960
208
      FORMAT (1X, 12, 3X, 4(F4.0, 5X, F5.2, 4X, F6.3, 6X))
                                                                          15970
      CALL SSTAT (12, DELAY, NYRS, SDELAY)
                                                                           15980
      WRITE (10, 133)
                                                                          15990
                                                                           16000
      D0 210 1=1,3
      WRITE (10,211) I, (SDELAY (1, J), J=1,12)
210
                                                                           16010
      FORMAT (1x, 12, 3x, 4 (f6.2, 3x, f6.3, 3x, f6.3, 6x))
211
                                                                           16020
      RETURN
                                                                           16030
      END
                                                                           16040
```

```
C
                                                                       16050
16060
      FUNCTION CSRATE (YDM.NOPCS)
                                                                       16070
16080
     COMMON /W1/ NPLOTS.NMOW.NHRV.NSTO.AREAPL.HARMAT (40.29).ZRT (9.5)
                                                                       16090
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                       16100
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                       16110
      COMMON /Z6/ CSLABR.CSFUEL.CSELEC.CSFDLB.CSFDEN.DMCS
                                                                       16120
      COMMON /Z9/ NBOPCS, ZRTCS (5)
                                                                       16130
      COMMON /CTRL24/ BGNCUT (5) .NTHYR.NTHCUT.NDAYSC.NDAYSH.YLD (4) .
                                                                       16140
     +QUAL(3,4).GDDCUM.METRIC.JYEARF.JYEARL.IPRT1.IPRT2.JDAYF.JDAYL.JPRT16150
    +.NYRS, IPRT4.NCUTS.JYEAR.JLALHR.CPLANT
                                                                       16160
      COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                       16170
     +SUMS1,SUMS2,T,WSF,SRADF,DWS,PPT,ESO,ESR,XLEAF,BUDS,STEM,TOPS,TNC. 16180
    +XMATS, TNCS, TMAXC, TMINC
                                                                       16190
     COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                       16200
      COMMON /Y6/ RATES (108,8), YAR (6)
                                                                       16210
     COMMON /Y7/ NBOP (18), NBMACH (18.7), XNBM (18.7)
                                                                       16220
                                                                       16230
      COMMON /W4/ NPDCA, NDCTD. IDAH
    THIS FUNCTION ESTIMATES THE HARVEST RATE (HA/H) FOR THE CORN SILAGE 16240
C
    OPERATION.
                                                                       16250
C
    RETAIN CURRENT VALUES OF TOPS.NTHCUT.IDAH AND NOPSO(1.1).
                                                                       16260
                                                                       16270
    THESE VALUES MUST BE CHANGED BEFORE CALLING INHRV FOR CORN SILAGE.
C
    AFTER THE CORN SILAGE HARVEST RATE IS ESTIMATED. THE ORIGINAL
                                                                       16280
    VALUES WILL BE REASSIGNED TO THE 4 VARIABLES.
                                                                       16290
      DMCS=YDM
                                                                       16300
     NBOPCS=NOPCS
                                                                       16310
      ATOPS=TOPS
                                                                       16320
      JCUT=NTHCUT
                                                                       16330
      JAH=IDAH
                                                                       16340
      NALFM=NOPSQ(1,1)
                                                                       16350
    CHANGE THE VARIABLES FOR CORN SILAGE HARVEST.
                                                                       16360
     TOPS=YDM*100./1.1
                                                                       16370
      NTHCUT=1
                                                                       16380
      IDAH=1
                                                                       16390
      NOPSQ(1,1)=NOPCS
                                                                       16400
      CALL INHRV
                                                                       16410
      CSRATE=ZRT(1,1)
                                                                       16420
      ZRTCS(1) = ZRT(1,1)
                                                                       16430
      ZRTCS(2) = ZRT(1.2)
                                                                       16440
      ZRTCS(3) = ZRT(1,3)
                                                                       16450
      ZRTCS(4) = ZRT(1.4)
                                                                       16460
      ZRTCS(5) = ZRT(1.5)
                                                                       16470
        WRITE (10,152) NOPCS, ((ZRT(1,J),J=1,5),1=1,9)
                                                                       16480
C 152
        FORMAT (5X, 'ZRT MATRIX FOR CORN SILAGE. NOPCS=',14,/,
                                                                       16490
C
      + 9(10x.5F10.2./))
                                                                       16500
    REASSIGN THE ORIGINAL VALUES.
                                                                       16510
      TOPS=ATOPS
                                                                       16520
      NTHCUT=JCUT
                                                                       16530
      IDAH=JAH
                                                                       16540
```

```
16550
      NOPSO(1.1)=NALFM
      RETURN
                                                                          16560
      END
                                                                          16570
C
                                                                          16580
C **********************************
                                                                          16590
      SUBROUTINE ENDCS (CSAREA.CSFED)
                                                                          16600
16610
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                          16620
      COMMON /W2/ TPL (9) .RAIN.JJDAY.NDAYHR
                                                                          16630
      COMMON /W3/ HFEED (4, 160, 5)
                                                                          16640
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                          16650
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                          16660
     +QUAL (3,4),GDDCUM,METRIC,JYEARF,JYEARL,IPRT1,IPRT2,JDAYF,JDAYL,JPRT16670
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                          16680
      COMMON /ALFARG/ GDDB5.AVTA.DAYLIN.DAYLEN.YDAYL.DECR.XLAI.AW.
                                                                          16690
     +SUMS1.SUMS2.T.WSF.SRADF.DWS.PPT.ESO.ESR.XLEAF.BUDS.STEM.TOPS.TNC. 16700
     +XMATS.TNCS.TMAXC.TMINC
                                                                          16710
      COMMON /Z3/ HARDEX, TMSTO (4) . NPST (5.5) . NCUM (5) . OPUSE (5.9)
                                                                          16720
      COMMON /Z4/FDLABR, FDENER, HRLABR, HRFUEL, HRELEC
                                                                          16730
      COMMON /Z5/ IPR2.IPR3.IPR4
                                                                          16740
      COMMON /Z6/ CSLABR, CSFUEL, CSELEC, CSFDLB, CSFDEN, DMCS
                                                                          16750
      COMMON /Z9/ NBOPCS, ZRTCS (5)
                                                                          16760
      COMMON /YY1/ USEMCH (100) . UNITS (100)
                                                                          16770
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100,13)
                                                                          16780
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                          16790
      COMMON /Y7/ NBOP (18) . NBMACH (18.7) . XNBM (18.7)
                                                                          16800
C
    THIS SUBROUTINE ACCOUNTS FOR THE USE OF ALL MACHINES INVOLVED IN
                                                                          16810
    THE CORN SILAGE OPERATION AND ESTIMATES LABOR AND ENERGY REQUIREMENT16820
    LABOR AND ENERGY REQUIRED FOR FEEDING CORN SILAGE ARE
                                                                          16830
C
    APPROXIMATED AS 0.8 MAN.H/TDM AND 0.45 L FUEL EQUIVALENT
                                                                          16840
C
    PER TON OF DRY MATTER.
                                                                          16850
      DATA FDLB.FDEN /0.8.0.45/
                                                                          16860
      CSUSE=CSAREA/ZRTCS(1)
                                                                          16870
C
        WRITE (10,101) (ZRT (1,JJ),JJ=1,5),CSAREA,DMCS,CSUSE
                                                                          16880
        FORMAT (5x, 'PRINTOUT TO CHECK THE SOURCE OF CORN SILAGE ',
C 101
                                                                          16890
C
       + ' ERROR',/,5X,'ZRT = ',5F10.2,/,5X,'CSAREA = ',F10.2,' DMCS=', 16900
C
       + F10.2, ' CSUSE=', F10.2)
                                                                          16910
      11=0
                                                                          16920
    1 | |=| |+1
                                                                          16930
      IF (NBOPCS.NE.NBOP(II)) GO TO 1
                                                                          16940
      DO 65 K=1,7
                                                                          16950
      IF (NBMACH(II,K).EQ.O) GO TO 65
                                                                          16960
      1J=0
                                                                          16970
    2 | J=|J+1
                                                                          16980
      IF (NBMACH(II,K).NE.MCODE(IJ)) GO TO 2
                                                                          16990
      UNITS (IJ) = AMAX1 (UNITS (IJ), XNBM (II, K))
                                                                          17000
      USEMCH(IJ) =USEMCH(IJ) +CSUSE*XNBM(II.K)
                                                                          17010
   65 CONTINUE
                                                                          17020
      CSLABR=CSUSE*ZRTCS (4)
                                                                          17030
      CSFUEL=CSUSE*ZRTCS (2)
                                                                          17040
```

```
CSELEC=CSUSE*ZRTCS (3)
                                                                         17050
      CSFDLB=FDLB*CSFED
                                                                         17060
      CSFDEN=FDEN*CSFED
                                                                         17070
      RETURN
                                                                         17080
      END
                                                                         17090
C *********************************
                                                                         17100
      SUBROUTINE ANCOST (NTHYR)
                                                                         17110
C ************************
                                                                         17120
      COMMON /Z3/ HARDEX,TMSTO (4),NPST (5,5),NCUM (5),OPUSE (5,9)
                                                                         17130
      COMMON /Z4/FDLABR.FDENER.HRLABR.HRFUEL.HRELEC
                                                                         17140
      COMMON /Z6/ CSLABR, CSFUEL, CSELEC, CSFDLB, CSFDEN, DMCS
                                                                         17150
      COMMON /Z8/ ALFSIL (2), HAYST (3)
                                                                         17160
      COMMON /Z10/ TCOSTS (26,20), TRESS (26,20)
                                                                         17170
      COMMON /YY1/ USEMCH (100), UNITS (100)
                                                                         17180
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100,13)
                                                                         17190
      COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                         17200
      COMMON /PRICE/PLABOR.PFUELD.PFUELG.RATEIM.PDRYCG.PHRVCG.COEFSV(3),17210
             PFSCA1, PFSCA2, PFSCCS, PFSCHM, ALFYRS, RATEIS, RATEIL, XLIFE (3)
                                                                         17220
      DIMENSION RMCOEF (27)
                                                                         17230
      DATA RMCOEF /2*1.2,4*12.,3*7.,3*3.1,4*2.9,3.1,1.8,5*3.0,2.5,
                                                                         17240
     + 3.0.0..0./
                                                                         17250
      DATA TCOSTS, TRESS/520*0.,520*0./
                                                                         17260
    THIS SUBROUTINE ESTIMATES THE ANNUAL USE OF RESOURCES AND THE
                                                                         17270
    ANNUALIZED COSTS FOR ALFALFA AND CORN SILAGE OPERATIONS.
                                                                         17280
    L. PARSCH HAS WRITTEN ANOTHER SUBROUTINE THAT ESTIMATES COSTS
                                                                         17290
    FOR HIGH MOISTURE CORN AND GRAIN CORN OPERATIONS.
                                                                         17300
    ALL THESE COSTS ARE MERGED IN SUBROUTINE REPORT AT THE END
                                                                         17310
C
    OF THE SIMULATION.
                                                                         17320
C
                                                                         17330
C
    IN THE FIRST YEAR ONLY. THE FIXED COSTS OF MACHINERY AND OF
                                                                         17340
C
    ALFALFA STORAGE STRUCTURES ARE ESTIMATED.
                                                                         17350
C
                                                                         17360
      IF (NTHYR.NE.1) GO TO 20
                                                                         17370
C
                                                                         17380
C
    TOTAL CAPITALIZATION OF MACHINERY IS CALACULATED.
                                                                         17390
C
                                                                         17400
      TMCAP=0.
                                                                         17410
      DO 10 K=1.NMDATA
                                                                         17420
      IF (USEMCH(K).LE.O.) GO TO 10
                                                                         17430
      IF (MCODE (K) .GE.260.AND.MCODE (K) .LE.279) GO TO 10
                                                                         17440
      TMCAP=TMCAP+XMDATA (K. 3) *UNITS (K)
                                                                         17450
10
      CONTINUE
                                                                         17460
                                                                         17470
C
    TOTAL CAPITALIZATION OF ALFALFA SILOS AND HAY BARN.
                                                                         17480
C
                                                                         17490
      TSCAP=ALFSIL (1) +ALFSIL (2) +HAYST (2)
                                                                         17500
C
                                                                         17510
C
    ESTIMATE THE ANNUALIZED FIXED COSTS FOR MACHINERY AND SILOS.
                                                                         17520
C
                                                                         17530
      ANMACH=ANPV (TMCAP, COEFSV (2), XLIFE (2), RATEIM)
                                                                         17540
```

```
ANSILO=ANPV (TSCAP, COEFSV (1), XLIFE (1), RATEIL)
                                                                         17550
      DO 15 K=1.26
                                                                         17560
                                                                         17570
      TRESS (K. 1) =TMCAP
      TCOSTS (K, 1) = ANMACH
                                                                         17580
      TRESS (K, 2) =TSCAP
                                                                         17590
      TCOSTS (K, 2) = ANSILO
                                                                         17600
15
      CONTINUE
                                                                         17610
20
      CONTINUE
                                                                         17620
C
                                                                         17630
    ANNUAL VARIABLE COSTS: FUEL, LABOR AND REPAIR AND MAINTENANCE.
                                                                         17640
C
    ESTIMATE FUEL REQUIREMENTS AND COSTS FIRST.
                                                                         17650
C
                                                                         17660
      TFUEL=HRFUEL+FDENER+CSFDEN+CSFUEL+HRELEC/6.
                                                                         17670
      TRESS (NTHYR, 3) =TFUEL
                                                                         17680
      TCOSTS (NTHYR, 3) =TFUEL*PFUELD
                                                                         17690
C
                                                                         17700
C
    LABOR REQUIREMENTS AND COSTS.
                                                                         17710
C
                                                                         17720
      TLABHR=HRLABR+CSLABR
                                                                         17730
      TLABFD=FDLABR+CSLABR
                                                                         17740
      TRESS (NTHYR, 5) =TLABHR
                                                                         17750
      TRESS (NTHYR, 6) =TLABFD
                                                                         17760
      TCOSTS (NTHYR, 5) =TLABHR*PLABOR
                                                                         17770
      TCOSTS (NTHYR, 6) =TLABFD*PLABOR
                                                                         17780
C
                                                                         17790
C
    REPAIR AND MAINTENANCE COSTS.
                                                                         17800
C
                                                                         17810
      TRMC=0.
                                                                         17820
      DO 30 K=1,NMDATA
                                                                         17830
      IF (USEMCH(K).LE.O.) GO TO 30
                                                                         17840
                                                                         17850
      KRM=MCODE (K) / 10
      TRMC=TRMC+XMDATA (K, 2) *USEMCH (K) *RMCOEF (KRM) *0.0001
                                                                         17860
30
      CONTINUE
                                                                         17870
      TRESS (NTHYR, 4) =TRMC
                                                                         17880
      TCOSTS (NTHYR, 4) =TRMC
                                                                         17890
C
                                                                         17900
C
    THERE MAY ALSO BE A VARIABLE STORAGE COST FOR DRY HAY IF THE
                                                                         17910
C
    VOLUME HARVESTED EXCEEDS THE NOMINAL STORAGE CAPACITY.
                                                                         17920
C
                                                                         17930
      TOTHAY=TMSTO (3) +TMSTO (4)
                                                                         17940
      IF (TOTHAY.LE.HAYST(3)) RETURN
                                                                         17950
      VARSTO= (TOTHAY-HAYST (3)) *HAYST (1)
                                                                         17960
      TCOSTS (NTHYR, 2) =TCOSTS (NTHYR, 2) +VARSTO
                                                                         17970
      RETURN
                                                                         17980
      END
                                                                         17990
C **********************
                                                                         18000
      SUBROUTINE COWFD (NYRS.XLCOWS.HERD)
                                                                         18010
C *********************
                                                                         18020
C
                                                                         18030
C
    THIS SUBROUTINE ESTIMATES MILK PRODUCTION, THE SALE OF
                                                                         18040
```

```
EXCESS FORAGES AND THE PURCHASE OF SUPPLEMENTAL FEEDS. 18050
C IT WAS WRITTEN BY PHILIPPE SAVOIE. APRIL 1982
                                                                                              18060
     THE ARRAY HERD CONTAINS THE DISTRIBUTION OF ANIMALS
                                                                                              18070
     WITHIN THE DAIRY HERD INTO THE SIX GROUPS SPECIFIED
                                                                                               18080
     BELOW. TYPICAL VALUES COULD BE:
    BELOW. TYPICAL VALUES COULD BE:
DATA HERD /0.30,0.30,0.00,0.00,0.10,0.30/
XLCOWS IS THE TOTAL NUMBER OF LACTATING COWS REPRESENTING
HFRD(1) + HERD(2) + HERD(3) + HERD(4).
                                                                                              18090
                                                                                               18100
                                                                                               18110
                                                                                               18120
    THE HERD IS DIVIDED INTO SIX GROUPS OF ANIMALS:

1. LACTATING COWS PRODUCING 35 KG MILK PER DAY

2. LACTATING COWS PRODUCING 30 KG MILK PER DAY

3. LACTATING COWS PRODUCING 25 KG MILK PER DAY

4. LACTATING COWS PRODUCING 20 KG MILK PER DAY

5. DRY COWS

6. HELEBS (ANSWERS
                                                                                               18130
C
C
C
C
         6. HEIFERS (AVERAGE 300 KG LIVE WEIGHT)
                                                                                               18210
                                                                                               18220
   A FEW PRINTOUTS ARE AVAILABLE TO SHOW DETAILS OF THE RATION
                                                                                               18230
C FORMULATIONS AND HOW COWS ARE FED. THESE ARE PRESENTLY DISACTIVATED 18240
C BY COMMENT SIGNS IN THE FIRST COLUMN. THEY ARE LOCATED JUST 18250
   ABOVE THE DO 60 STATEMENT (4 LINES), ABOVE THE 50 CONTINUE STATEMENT (2 LINES) AND BELOW THE DO 80 STATEMENT (3 LINES).
                                                                                              18260
                                                                                             18270
                                                                                               18280
        COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                                               18290
        COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                                               18300
        COMMON /SUMRY2/ TRESP (26,20), TCOSTP (26,20), TCOST (26,20),
                                                                                               18310
                STCOST (4,20), TRES (26,20), SRES (4,20)
                                                                                               18320
        COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                                              18330
        DIMENSION HERD (6), CNEL (6), CCP (6), TNEL (6), TCP (6), CS (3)
DIMENSION HMC (3), SBM (3), YFR (6), PURALF (5), ADUMMY (4,6)
DIMENSION ALFM (5,6), FR (5), ALFNEL (5), RATION (5,6,5)
                                                                                       18340
18350
18360
        DIMENSION XMILK (4), FEEDUT (26, 12), SFDUT (4, 12), STTCST (4, 20)

DIMENSION TC10 (26), TC13 (26), TC15 (26), TCUA (26), TNRUA (26)
                                                                                            18370
18380
C
                                                                                              18390
     CNEL AND CCP ARE THE MINIMUM CONCENTRATIONS OF NET ENERGY (LACTATION) AND CRUDE PROTEIN REQUIRED IN THE RATION FOR EACH
                                                                                               18400
                                                                                               18410
     OF THE FIVE GROUPS OF COWS (MCAL/KG AND DEC. CP)
                                                                                               18420
        DATA CNEL/1.656,1.590,1.514,1.426,1.35,1.35/
                                                                                               18430
                                                                                                18440
                                                                                               18450
                                                                                               18460
     THEL AND TOP ARE THE TOTAL NET ENERGY OF LACTATION (MCAL) AND
                                                                                               18470
     TOTAL CRUDE PROTEIN (KG) REQUIRED PER ANIMAL PER DAY FOR
                                                                                               18480
      EACH OF THE FIVE GROUPS OF COWS.
                                                                                              18490
                                                                                              18500
        DATA TNEL/34.45,31.00,27.55,24.10,13.39,7.25/
DATA TCP/3.385,2.975,2.565,2.155,0.984,0.746/
                                                                                              18510
                                                                                              18520
C
                                                                                               18530
                                                                                            18540
C
     THE STANDARD QUALITY OF FEEDSTUFFS USED IN THE RATION IS
```

```
CHARACTERIZED BY 1=NET ENERGY OF LACTATION (MCAL/KG).
                                                                           18550
    2=CRUDE PROTEIN (DEC), 3=TDN (DEC).
                                                                           18560
    FIVE TYPES OF FEED ARE CONSIDERD IN THE RATION:
                                                                           18570
    ALFALFA. CORN SILAGE. HIHGGH MOISTURE GRAINCORN. DRY CORN GRAIN
                                                                           18580
    AND SOYBEAN MEAL. DHE FIRST THREE ARE FARM GROWN AND ARE
                                                                           18590
    ALWAYS INCLUDED IN THE RATION. THE LAST TWO ARE ADDED
                                                                           18600
    ONLY WHEN WE MUST INCREASE EITHER THE NET ENERGY
                                                                           18610
    CONCENTRATION (ADD PURCHASED CORN GRAIN) OR THE CRUDE
                                                                           18620
    PROTEIN CEONCENTRATION (ADD SOYBEAN MEAL).
                                                                           18630
    NOTE THAT NO STANDARD VALUE IS USED FOR ALFALFA. BUT RATHER
                                                                           18640
    VALUES OF QUALITY FROM THE AFEED MATRIX WILL BE USED.
                                                                           18650
                                                                           18660
      DATA CS/1.589,0.08,0.70/
                                                                           18670
      DATA HMC/1.84.0.10,0.80/
                                                                           18680
      DATA SBM/1.86,0.496,0.81/
                                                                           18690
      DATA PURALF/10000.,.13,0.,.52,0./
                                                                           18700
      DATA XMILK, PMILK, PSOYM, PCORN, PALF/35., 30., 25., 20., 286., 248., 139., 818710
                                                                           18720
      DATA SCG, SHMC, SALF, SCS/129., 90., 69., 70./
                                                                           18730
      DATA RATION/150*0./
                                                                           18740
      READ (2,99) XLCOWS, (HERD(1), 1=1,6)
                                                                           18750
99
      FORMAT (7F10.3)
                                                                           18760
      DO 5 NTHYR=1.NYRS
                                                                           18770
      TCORN=O.
                                                                           18780
                                                                           18790
      TALF=AFEED (NTHYR, 1) +AFEED (NTHYR, 6) +AFEED (NTHYR, 11)
                                                                           18800
     + +AFEED (NTHYR, 16)
                                                                           18810
      TALF 1-TALF
                                                                           18820
      TCS=AFEED (NTHYR, 21)
                                                                           18830
      TCS 1=TCS
                                                                           18840
      THMC=AFEED (NTHYR, 22)
                                                                           18850
      THMC 1=THMC
                                                                           18860
      TCG=AFEED (NTHYR, 23)
                                                                           18870
      TCG1=TCG
                                                                           18880
C
                                                                           18890
    THE YFR ARRAY CONTAINS THE TOTAL YEARLY FEED REQUIREMENT
                                                                           18900
    (TONS OF DRY MATTER) FOR EACH GROUP OF COWS.
                                                                           18910
    XLCOWS IS THE TOTAL NUMBER OF LACTATING COWS.
                                                                           18920
    TCOWS IS THE TOTAL NUMBER OF COWS IN THE HERD, INCLUDING
                                                                           18930
C
    DRY COWS AND HEIFERS.
                                                                           18940
C
                                                                           18950
      FRLACT=HERD (1) +HERD (2) +HERD (3) +HERD (4)
                                                                           18960
      TFRAC=FRLACT+HERD (5) +HERD (6)
                                                                           18970
      IF (FRLACT.LE.O.O.OR.TFRAC.NE.1.) THEN
                                                                           18980
      WRITE (10.111)
                                                                           18990
111
      FORMAT ('1',//,5X,'***WARNING***',/,5X,'THE TOTAL FRACTION',
                                                                           19000
             ' OF LACTATING COWS WITH RESPECT TO ALL COWS IN THE HERD'.
                                                                           19010
            ' WAS LESS OR EQUAL TO O. ACCORDING TO INPUT',5x,/,
                                                                           19020
         5X, OR THE TOTAL OF ALL FRACTIONS WAS NOT EQUAL TO 1',5X,/,
                                                                           19030
            5%, THE FOLLOWING DEFAULT VALUES WERE GIVEN TO THE SIX',
                                                                           19040
```

```
' COW GROUPS: 0.30, 0.30, 0.00, 0.00, 0.10 AND 0.30.',//)
                                                                              19050
      HERD(1) = 0.30
                                                                               19060
      HERD(2) = 0.30
                                                                               19070
      HERD(3) = 0.00
                                                                               19080
      HERD(4) = 0.00
                                                                               19090
      HERD(5) = 0.10
                                                                               19100
      HERD(6) = 0.30
                                                                               19110
      FRLACT=HERD (1) +HERD (2) +HERD (3) +HERD (4)
                                                                               19120
      ENDIF
                                                                               19130
      TCOWS=XLCOWS/FRLACT
                                                                               19140
      DO 7 JCOW=1.6
                                                                               19150
7
      YFR (JCOW) =TCOWS*HERD (JCOW) *TNEL (JCOW) *365./(CNEL (JCOW) *1000.)
                                                                               19160
      FEEDUT (NTHYR, 12) =YFR (1) +YFR (2) +YFR (3) +YFR (4) +YFR (5) +YFR (6)
                                                                               19170
      DO 10 NS=1.4
                                                                               19180
      K = (NS - 1) *5 + 1
                                                                               19190
      ADUMMY (NS, 1) = AFEED (NTHYR, K)
                                                                               19200
      ADUMMY (NS, 2) = AFEED (NTHYR, K+1)
                                                                               19210
      ADUMMY (NS.3) = AFEED (NTHYR.K+2)
                                                                               19220
      ADUMMY (NS, 4) = AFEED (NTHYR, K+3)
                                                                              19230
      ADUMMY (NS.5) = AFEED (NTHYR.K+4)
                                                                               19240
10
      CONTINUE
                                                                               19250
C
                                                                               19260
C
    FOR WET ALFALFA, A 5 PERCENT REDUCTION OF CRUDE PROTEIN AND OF
                                                                              19270
C
    DIGESTIBILITY IS ASSUMED TO REFLECT THE REDUCED INTAKE WHEN
                                                                               19280
C
    COMPARED WITH DRY ALFALFA.
                                                                               19290
C
                                                                               19300
      DO 12 NS=1,2
                                                                               19310
      ADUMMY (NS,2) = ADUMMY (NS,2) *0.95
                                                                              19320
12
      ADUMMY (NS, 4) = ADUMMY (NS, 4) *0.95
                                                                               19330
C
                                                                               19340
C
    RANK THE FOUR ALFALFA STORAGE LOCATIONS BY QUALITY. THE HIGHEST
                                                                              19350
C
    CRUDE PROTEIN BEING THE FIRST ROW IN ALFM MATRIX.
                                                                               19360
C
    A FIFTH ROW IS INCLUDED FOR PURCHASED ALFALFA IN CASE NOT ENOUGH
                                                                               19370
C
    ROUGHAGE IS PRODUCED ON THE FARM. THE QUALITY OF PURCHASED
                                                                               19380
C
    ALFALFA IS DEFINED IN A DATA STATEMENT FOR PURALF (5).
                                                                               19390
C
    THE FIVE COLUMNS IN MATRIX ALFM REPRESENT: TOTAL DM (METRIC
                                                                               19400
    TONS), CRUDE PROTEIN (DEC), BIASED STANDARD DEV. OF CP,
                                                                              19410
C
    DIGESTIBILITY (DEC) AND BIASED STANDARD DEVIATION OF DIG.
                                                                               19420
                                                                               19430
      DO 30 I=1.4
                                                                              19440
      KMAX=1
                                                                              19450
      XCP=ADUMMY (1.2)
                                                                               19460
      DO 20 NS=2,4
                                                                              19470
      IF (XCP.GT.ADUMMY (NS,2)) GO TO 20
                                                                              19480
      XCP=ADUMMY (NS.2)
                                                                              19490
      KMAX=NS
                                                                              19500
20
      CONTINUE
                                                                              19510
      ALFM(I,I) = ADUMMY(KMAX,I)
                                                                              19520
      ALFM(1,2) = ADUMMY(KMAX,2)
                                                                              19530
      ALFM(1,3) = ADUMMY(KMAX.3)
                                                                              19540
```

```
ALFM(1,4) = ADUMMY(KMAX,4)
                                                                             19550
      ALFM(1,5) = ADUMMY(KMAX,5)
                                                                             19560
                                                                             19570
      ADUMMY (KMAX, 2) = -1.
      CONTINUE
                                                                             19580
30
      ALFM(5.1) = 10000.
                                                                             19590
                                                                             19600
      ALFM(5,2) = PURALF(2)
                                                                             19610
      ALFM(5,3) = PURALF(3)
      ALFM(5,4) = PURALF(4)
                                                                             19620
      ALFM(5,5) = PURALF(5)
                                                                             19630
      TDM=TALF+TCS+THMC
                                                                             19640
    THE NET ENERGY FOR LACTATION IS CALCULATED FOR ALL FIVE ALFALFA
C
                                                                             19650
    SOURCES. NE IS A FUNCTION OF DIGESTIBILITY.
                                                                             19660
                                                                             19670
      DO 40 NS=1,5
      TDN=ALFM (NS.4)
                                                                             19680
      ALFNEL (NS) = 1.15+(TDN-0.52)*2.5
                                                                             19690
      IF (TDN.LT.0.52) ALFNEL (NS) = 1.15
                                                                             19700
      IF (TDN.GT.0.68) ALFNEL (NS) = 1.55
                                                                             19710
40
      CONTINUE
                                                                             19720
C
                                                                             19730
C
    THE FOLLOWING DO LOOPS (60 AND 50) ESTABLISH BALANCED RATIONS
                                                                             19740
C
    FOR ALL COMBINATIONS OF FARM GROWN ROUGHAGES (5 DISTINCT ALFALFA
                                                                             19750
C
    GROUPS) AND OF FIVE ANIMAL GROUPS.
                                                                             19760
C
                                                                             19770
C
                                                                             19780
        WRITE (10,136)
C 136
        FORMAT (//,5X, 'THE RATION FORMULATIONS FOR ALL COMBINATIONS',
                                                                             19790
                          JCOW
                                                                      SBM', 19800
C
                                            CS
                                                     HMC
                                                               CG
              /,5X,'NS
                                  ALF
C
                              CP',/)
                                                                             19810
                   NEL
      DO 60 NS=1,5
                                                                             19820
      IF (ALFM(NS, 1).LE.O.) GO TO 60
                                                                             19830
                                                                             19840
      DO 50 JCOW=1.6
      FR(1)=TALF/TDM
                                                                             19850
      FR (2) =TCS/TDM
                                                                             19860
                                                                             19870
      FR (3) =THMC/TDM
      FR(4) = 0.
                                                                             19880
      FR(5) = 0.
                                                                             19890
      FR1=1.
                                                                             19900
      FR4=0.
                                                                             19910
      FR5=0.
                                                                             19920
      AVENEL=ALFNEL (NS) *FR (1) +CS (1) *FR (2) +HMC (1) *FR (3)
                                                                             19930
      AVECP=ALFM (NS, 2) *FR (1) +CS (2) *FR (2) +HMC (2) *FR (3)
                                                                             19940
      IF (NS.EQ.5) THEN
                                                                             19950
      AVENEL=ALFNEL (NS)
                                                                             19960
      AVECP=ALFM(NS, 2)
                                                                             19970
      ENDIF
                                                                             19980
      IF (AVENEL.GE.CNEL (JCOW)) GO TO 55
                                                                             19990
C
                                                                             20000
C
    HERE WE MUST INCREASE THE CONCENTRATION OF NET ENERGY BY ADDING
                                                                             20010
    MORE CORN GRAIN.
                                                                             20020
C
    THE NEW CONCENTRATIONS IN THE RATION ARE CALCULATED
                                                                             20030
C
                                                                             20040
```

```
R= (CNEL (JCOW) -AVENEL) / (HMC (1) -CNEL (JCOW) )
                                                                                 20050
       FR(4) = R/(1.+R)
                                                                                 20060
       FR(3) = FR(3) / (1.+R)
                                                                                 20070
       FR(2) = FR(2) / (1.+R)
                                                                                 20080
       FR(1) = FR(1) / (1.+R)
                                                                                 20090
       AVECP=ALFM (NS, 2) *FR (1) +CS (2) *FR (2) +HMC (2) * (FR (3) +FR (4))
                                                                                 20100
       IF (NS.EQ.5) THEN
                                                                                 20110
       FR1=1./(1.+R)
                                                                                 20120
       FR4=R/(1.+R)
                                                                                 20130
       AVECP=ALFM(NS.2)*FR1+HMC(2)*FR4
                                                                                 20140
                                                                                 20150
       IF (AVECP.GE.CCP(JCOW)) GO TO 51
                                                                                 20160
                                                                                 20170
    HERE WE NEED TO ADD BOTH CG AND SBM.
                                                                                 20180
    RECALCULATE PROPORTIONS OF FEEDS BY SOLVING TWO EQUATIONS
                                                                                 20190
C
     SIMULTANEOUSLY FOR CCP AND CNEL. BALANCE THE FOLLOWING
                                                                                 20200
C
    EQUATIONS:
                                                                                 20210
C
     AVENEL+HMC (1) *RC+SBM (1) *RS=CNEL (JCOW)
                                                                                 20220
     AVECP +HMC (2) *RC +SBM (2) *RS=CCP (JCOW)
                                                                                 20230
C
                                                                                 20240
C
         X1=CCP (JCOW) - (AVECP+HMC (2) * (CNEL (JCOW) -AVENEL) /HMC (1))
                                                                                 20250
C
         X2=SBM(2)-HMC(2)*SBM(1)/HMC(1)
                                                                                 20260
C
         RS=X1/X2
                                                                                 20270
C
         RC= (CNEL (JCOW) - (AVENEL+SBM (1) *RS)) /HMC (1)
                                                                                 20280
C
         X3=1./(1.+RS+RC)
                                                                                 20290
C
         FR(1) = FR(1) * X3
                                                                                 20300
C
         FR(2) = FR(2) * X3
                                                                                 20310
C
         FR(3) = FR(3) * X3
                                                                                 20320
C
         FR(4) = RC \times X3
                                                                                 20330
C
         FR(5) = RS \times X3
                                                                                 20340
C
         IF (NS.EQ.5) THEN
                                                                                 20350
C
         FR1=FR1*X3
                                                                                 20360
C
         FR4=RC*X3
                                                                                 20370
C
         FR5=RS*X3
                                                                                 20380
C
         ENDIF
                                                                                 20390
C
         GO TO 51
                                                                                 20400
55
       IF (AVECP.GE.CCP(JCOW)) GO TO 51
                                                                                 20410
                                                                                 20420
C
    HERE WE MUST INCREASE THE CONCENTRATION OF CRUDE PROTEIN
                                                                                 20430
C
    BY ADDING SOME SOYBEAN MEAL.
                                                                                 20440
C
    THE NEW CONCENTRATIONS IN THE RATION ARE CALCULATED.
                                                                                 20450
                                                                                 20460
       R= (CCP (JCOW) -AVECP) / (SBM (2) -CCP (JCOW) )
                                                                                 20470
       FR(5) = R/(1.+R)
                                                                                 20480
      FR(4) = FR(4) / (1.+R)
                                                                                 20490
      FR(3) = FR(3) / (1.+R)
                                                                                 20500
      FR(2) = FR(2) / (1.+R)
                                                                                 20510
      FR(1) = FR(1) / (1.+R)
                                                                                 20520
       IF (NS.EO.5) THEN
                                                                                 20530
      FR1=FR1/(1.+R)
                                                                                 20540
```

```
FR4=FR4/(1.+R)
                                                                               20550
      FR5=R/(1.+R)
                                                                               20560
      ENDIF
                                                                               20570
51
      DO 58 11=1.5
                                                                               20580
58
      RATION (NS, JCOW, 11) =FR(11)
                                                                               20590
      IF (NS.EQ.5) THEN
                                                                               20600
      RATION (NS, JCOW, 1) =FR1
                                                                               20610
      RATION (NS. JCOW. 2) =0.
                                                                               20620
      RATION (NS.JCOW. 3) =0.
                                                                               20630
      RATION (NS. JCOW. 4) =FR4
                                                                               20640
      RATION (NS, JCOW, 5) =FR5
                                                                               20650
                                                                               20660
      ENDIF
      AVENEL=ALFNEL (NS) *RATION (NS.JCOW. 1) +CS (1) *RATION (NS.JCOW. 2)
                                                                               20670
        +HMC (1) * (RATION (NS, JCOW, 3) +RATION (NS, JCOW, 4))+SBM (1) *
                                                                               20680
          RATION (NS. JCOW. 5)
                                                                               20690
      AVECP=ALFM (NS.2) *RATION (NS.JCOW.1) +CS (2) *RATION (NS.JCOW.2)
                                                                               20700
         +HMC(2) * (RATION(NS, JCOW, 3) +RATION(NS, JCOW, 4))
                                                                               20710
          +SBM (2) *RATION (NS.JCOW.5)
                                                                               20720
        WRITE (10,137) NS, JCOW, (RATION (NS, JCOW, I), I=1,5), AVENEL, AVECP
                                                                               20730
C 137
         FORMAT (5X,12,17,7F8.3)
                                                                               20740
50
      CONTINUE
                                                                               20750
60
      CONTINUE
                                                                               20760
C
                                                                               20770
C
    FEED EACH GROUP OF COWS ONE AFTER THE OTHER STARTING WITH LACTATING 20780
C
    COWS. THE BALANCED FEEDS WILL BE ALLOCATED STARTING WITH THE
                                                                               20790
C
    HIGHEST QUALITY ALFALFA UNTIL THE YEARLY FEED REQUIREMENT IS MET.
                                                                               20800
C
                                                                               20810
      DO 70 JCOW=1.6
                                                                               20820
      IF (HERD (JCOW) .LE.O.) GO TO 70
                                                                               20830
                                                                               20840
      DO 80 NS=1.5
        WRITE (10,126) JCOW, NS, ALFM (NS, 1), ALFM (NS, 2), YFR (JCOW)
                                                                               20850
C 126
         FORMAT (5X, FEEDING THE COWS: JCOW NS ALFDM ALFCP YFR',
                                                                               20860
                /,5X,20X,13,14,F7.1,F7.3,F7.1)
                                                                               20870
       IF (ALFM(NS,1).LE.O.) GO TO 80
                                                                               20880
      ALFRQ=YFR (JCOW) *RATION (NS, JCOW, 1)
                                                                               20890
       IF (ALFM(NS, 1).GT.ALFRQ) THEN
                                                                               20900
    THE FEED REQUIREMENT FOR JCOW IS COMPLETELY MET.
C
                                                                               20910
    REDUCE THE FEED LEFT IN STORAGE LOCATION NS.
                                                                               20920
      ALFM (NS, 1) = ALFM (NS, 1) - ALFRO
                                                                               20930
      TALF=TALF-ALFRO
                                                                               20940
      THMC=THMC-YFR (JCOW) *RATION (NS.JCOW. 3)
                                                                               20950
      TCS=TCS-YFR (JCOW) *RATION (NS. JCOW. 2)
                                                                               20960
      TCORN=TCORN+YFR (JCOW) *RATION (NS, JCOW, 4)
                                                                               20970
      TSOYM=TSOYM+YFR (JCOW) *RATION (NS, JCOW, 5)
                                                                               20980
      GO TO 70
                                                                               20990
      ENDIF
                                                                               21000
C
                                                                               21010
C
    HERE ALL THE FEED IN NS IS NOT ENOUGH TO SATISFY THE FEED
                                                                               21020
C
    REQUIRED BY COW GROUP JCOW.
                                                                               21030
    USE ALL NS. REDUCE YFR (JCOW) BY EMPTYING ALL THE FEED
                                                                               21040
```

```
C
    IN STORAGE LOCATION NS.
                                                                            21050
                                                                            21060
      TDMNS=ALFM (NS, 1) /RATION (NS, JCOW, 1)
                                                                            21070
      YFR (JCOW) =YFR (JCOW) -TDMNS
                                                                            21080
      TALF=TALF-ALFM(NS.1)
                                                                            21090
      ALFM(NS,1)=0.
                                                                            21100
      THMC=THMC-TDMNS*RATION(NS,JCOW, 3)
                                                                            21110
      TCS=TCS-TDMNS*RATION(NS.JCOW.2)
                                                                            21120
      TCORN=TCORN+TDMNS*RATION(NS.JCOW.4)
                                                                            21130
      TSOYM=TSOYM+TDMNS*RATION (NS.JCOW.5)
                                                                            21140
80
      CONTINUE
                                                                            21150
70
      CONTINUE
                                                                            21160
C
                                                                            21170
C
    MILK PRODUCTION, INCOME FROM MILK, INCOME FROM THE SALE OF EXCESS
                                                                            21180
C
    CROPS AND COST OF PURCHASED FEEDS ARE ESTIMATED BELOW.
                                                                            21190
C
                                                                            21200
      TMILK= (TCOWS* (HERD (1) *XMILK (1) +HERD (2) *XMILK (2)
                                                                            21210
         +HERD (3) *XMILK (3) +HERD (4) *XMILK (4) )) *365./1000.
                                                                            21220
      VMILK=TMILK*PMILK
                                                                            21230
      CSOYM=TSOYM*PSOYM
                                                                            21240
C
    IN THE CASE OF CORN PURCHASES (TCORN), CHECK IF ANY FARM HARVESTED 21250
    CORN IS LEFT AS HMC OR AS DRY GRAIN BEFORE MAKING OUTSIDE PURCHASES 21260
      IF (TCORN.GT.THMC) THEN
                                                                            21270
      TCORN=TCORN-THMC
                                                                            21280
      THMC=0.
                                                                            21290
      ELSE
                                                                            21300
      THMC=THMC-TCORN
                                                                            21310
      TCORN=O.
                                                                            21320
      ENDIF
                                                                            21330
      IF (TCORN.GT.TCG) THEN
                                                                            21340
      TCORN=TCORN-TCG
                                                                            21350
      TCG=O.
                                                                            21360
      ELSE
                                                                            21370
      TCG=TCG-TCORN
                                                                            21380
      TCORN=O.
                                                                            21390
      ENDIF
                                                                            21400
      CCORN=TCORN*PCORN
                                                                            21410
      VCG=TCG*SCG
                                                                            21420
      VHMC=THMC*SHMC
                                                                            21430
      IF (TALF.LT.O.) THEN
                                                                            21440
      VALF=0.
                                                                            21450
      CALF= (-TALF) *PALF
                                                                            21460
      ELSE
                                                                            21470
      VALF=TALF*SALF
                                                                            21480
      CALF=0.
                                                                            21490
      ENDIF
                                                                            21500
      VCS=TCS*SCS
                                                                            21510
      TT=0.
                                                                            21520
      DO 85 I=1.9
                                                                            21530
85
      TT=TT+TCOST (NTHYR, I)
                                                                            21540
```

```
TCOST (NTHYR, 10) =TT
                                                                            21550
    NET COST OF FEEDS: SBM MINUS INCOME FROM EXCESS ALF. CS. HMC
C
                                                                            21560
      TCOST (NTHYR, 11) = CSOYM+CALF- (VHMC+VALF+VCS)
                                                                             21570
C
    NET COST OF CORN PURCHASES
                                                                            21580
      TCOST (NTHYR, 12) = CCORN-VCG
                                                                             21590
      TCOST (NTHYR, 13) =TCOST (NTHYR, 10) +TCOST (NTHYR, 11) +TCOST (NTHYR, 12)
                                                                             21600
      TCOST (NTHYR, 14) = VMILK
                                                                             21610
      TCOST (NTHYR, 15) =TCOST (NTHYR, 14) -TCOST (NTHYR, 13)
                                                                             21620
C
                                                                             21630
C
  MATRIX FEEDUT IS A FEED UTILIZATION MATRIX.
                                                                             21640
                                                                             21650
      FEEDUT (NTHYR. 1) =TALF1
                                                                             21660
      FEEDUT (NTHYR, 2) =TCS1
                                                                            21670
      FEEDUT (NTHYR, 3) =THMC1
                                                                            21680
      FEEDUT (NTHYR, 4) =TCG1
                                                                             21690
      FEEDUT (NTHYR, 5) =TSOYM
                                                                            21700
      FEEDUT (NTHYR, 6) =TCORN
                                                                            21710
      FEEDUT (NTHYR.7) =TALF
                                                                             21720
      FEEDUT (NTHYR, 8) =TCS
                                                                            21730
      FEEDUT (NTHYR.9) =THMC
                                                                            21740
      FEEDUT (NTHYR, 10) =TCG
                                                                             21750
      TT=0.
                                                                            21760
      D0 88 I=1.6
                                                                            21770
88
      TT=TT+FEEDUT (NTHYR, I)
                                                                             21780
      DO 89 1=7,10
                                                                            21790
89
      TT=TT-FEEDUT (NTHYR, I)
                                                                            21800
      FEEDUT (NTHYR. 11) =TT
                                                                             21810
5
      CONTINUE
                                                                            21820
      WRITE (10, 101) XLCOWS, (HERD (1), I=1,6)
                                                                            21830
101
      FORMAT ('1',//,5X,'SUMMARY OF HOW FEEDS WERE USED EACH YEAR',
                                                                            21840
             /,5x, 'THE NUMBER OF LACTATING COWS IS ',F6.0,/,
                                                                            21850
             5X, 'THE DAIRY HERD IS DIVIDED INTO SIX GROUPS IN THE',
                                                                            21860
             ' FOLLOWING PROPORTIONS: ',6 (F5.3,2X),
                                                                            21870
            /,5x,'UNITS ARE METRIC TONS OF DRY MATTER',/,5x,
                                                                            21880
         'RATIONS WERE FORMULATED BY SUBROUTINE COWFD',//,3X,'YR',
                                                                            21890
          10X, 'FEEDS PRODUCED ON THE FARM', 9X, 'FEEDS PURCHASED', 18X,
                                                                            21900
          'FEEDS SOLD', 16x, 'NET FED', 3x, 'MAXIMUM', /,
                                                                            21910
          IIX.
                                                                            21920
          'ALF
                     CS
                                HMC
                                         CG
                                                    SBM
                                                               'CG'.
                                                                            21930
                   ALF
                                        HMC
                                                    CG', 15X, 'INTAKE')
                                                                            21940
      WRITE (10, 103)
                                                                            21950
103
      FORMAT (9X, '-----', 21960 '----', 4X, '-----', 21970
                                                                            21980
      DO 95 I=1,NYRS
                                                                            21990
95
      WRITE (10,102) I, (FEEDUT (1, J), J=1,12)
                                                                            22000
102
       FORMAT (3X,12,12F10.2)
                                                                             22010
      WRITE (10, 103)
                                                                             22020
      CALL SSTAT (12, FEEDUT, NYRS, SFDUT)
                                                                             22030
      WRITE (10.133)
                                                                             22040
```

113 210

21

```
FORMAT (///.5X.'SAMPLE STATISTICS FOR SIMULATION OUTPUT. '.
 133
                                                                        22050
     + 'ROW 1=MEAN. ROW 2=STANDARD DEVIATION. ROW 3=COEF. OF '.
                                                                        22060
     + 'VARIATION'./)
                                                                        22070
      DO 96 I=1.3
                                                                        22080
      WRITE (10,102) I, (SFDUT (1, J), J=1,12)
96
                                                                        22090
      WRITE (10.103)
                                                                        22100
      DO 77 I=1,NYRS
                                                                        22110
      TC10(I) = TCOST(I, 10)
                                                                        22120
      TC13(1) = TCOST(1.13)
                                                                        22130
      TC15(1) = TCOST(1.15)
                                                                        22140
      TCUA(1)=TCOST(1,13)/AREA(1)
                                                                        22150
      TNRUA (1) =TCOST (1.15) /AREA (1)
                                                                        22160
77
      IF (AREA (1) .LE.O.) TCUA (1) =0.
                                                                        22170
      CALL RANK (TC10.NYRS)
                                                                        22180
      CALL RANK (TC13, NYRS)
                                                                        22190
      CALL RANK (TC15, NYRS)
                                                                        22200
      CALL RANK (TCUA, NYRS)
                                                                        22210
      CALL RANK (TNRUA, NYRS)
                                                                        22220
      WRITE (10.112)
                                                                        22230
      FORMAT ('1',//,5X,'TOTAL COSTS RANKED IN INCREASING ORDER',/,
                                                                        22240
112
            5X, 'TOTAL COST (1-9)', 5X, 'TOTAL COST (10-12)', 5X,
                                                                        22250
            'NET RETURN'.
                                                                        22260
            5X, 'TC (10-12) /HA', 5X, 'TNR/HA', //)
                                                                        22270
      DO 78 I=1.NYRS
                                                                        22280
78
      WRITE (10,113) TC10(1),TC13(1),TC15(1),TCUA(1),TNRUA(1)
                                                                        22290
113
      FORMAT (5X,F10.0,2(11X,F10.0),2(6X,F10.0))
                                                                        22300
      WRITE (10,210)
                                                                        22310
210
      FORMAT ('1',///,5X,'TOTAL COSTS IN THE ORIGINAL YEARLY',
                                                                        22320
             ' ORDER FOR THE HERD SPECIFIED ABOVE',//,3X,'YR',3X,
     +
                                                                        22330
            '10=SUM(1-9) 11=FNET 12=CG
                                           13=SUM(10-12) 14='.
                                                                        22340
            MILK
                    15=NET RETURN'.//)
                                                                        22350
      DO 211 I=1,NYRS
                                                                        22360
      WRITE (10,212) I, (TCOST(I,J),J=10,15)
211
                                                                        22370
212
      FORMAT (3X.12.6F10.0)
                                                                        22380
      CALL SSTAT (20,TCOST,NYRS,STTCST)
                                                                        22390
      WRITE (10,133)
                                                                        22400
      DO 213 I=1.3
                                                                        22410
213
      WRITE (10,214) I, (STTCST(I,J),J=10,15)
                                                                        22420
214
      FORMAT (3X.12.6F10.2)
                                                                        22430
      READ (2,201) IZZ
                                                                        22440
201
      FORMAT (110)
                                                                        22450
      IF (IZZ.EO.1) GO TO 1
                                                                        22460
      RETURN
                                                                        22470
                                                                        22480
C ***********************
                                                                        22490
                                                                        22500
      SUBROUTINE RANK (AR.KB)
C **********************
                                                                        22510
C
                                                                        22520
C
    THIS SUBROUTINE REORDERS NUMBERS IN A ONE-DIMENSIONAL ARRAY
                                                                        22530
    AND RANKS THEM IN INCREASING ORDER.
                                                                        22540
```

```
C
    THERE ARE KB NUMBERS TO BE RANKED IN ARRAY AR.
                                                                           22550
C
                                                                           22560
      DIMENSION AR (26) . DUM (26)
                                                                           22570
      IF (KB.LE.1) RETURN
                                                                           22580
      DO 1 1=1.KB
                                                                           22590
      DUM(I) = AR(I)
1
                                                                           22600
    FIND THE MINIMUM VALUE AND RANK IT.
                                                                           22610
      DO 3 J=1,KB
                                                                           22620
      IMIN=1
                                                                           22630
      VALMIN=DUM(1)
                                                                           22640
      DO 2 1=2.KB
                                                                           22650
      IF (VALMIN.GT.DUM(I)) THEN
                                                                           22660
      VALMIN=DUM(I)
                                                                           22670
      IMIN=I
                                                                           22680
      ENDIF
                                                                           22690
2
      CONTINUE
                                                                           22700
      AR (J) = VALMIN
                                                                           22710
      DUM (IMIN) =9.E+20
                                                                           22720
3
      CONTINUE
                                                                           22730
      RETURN
                                                                           22740
      END
                                                                           22750
C ****************************
                                                                           22760
      PROGRAM TEST
                                                                           22770
22780
C
                                                                           22790
C
    PROGRAM TEST IS A DUMMY PROGRAM USED TO TEST ALHARV.
                                                                           22800
C
    IT ALLOWS TO RUN ALHARY AND FORHRY TOGETHER WITHOUT THE
                                                                           22810
C
    CORN AND ALFALFA GROWTH MODELS BY ASSUMING FIXED YIELDS AND
                                                                           22820
    WEATHER CONDITIONS. IT SHOULD BE REPLACED BY THE BIGMOD PROGRAM,
C
                                                                           22830
C
    ALFMOD AND CRNMOD WRITTEN BY PARSCH (1982) TO SIMULATE THE WHOLE
                                                                           22840
C
    DYNAMIC FORAGE MODEL.
                                                                           22850
                                                                           22860
      COMMON /WI/ NPLOTS, NMOW, NHRV, NSTO, AREAPL, HARMAT (40, 29), ZRT (9,5)
                                                                           22870
      COMMON /W2/ TPL (9), RAIN, JJDAY, NDAYHR
                                                                           22880
      COMMON /W3/ HFEED (4, 160,5)
                                                                           22890
      COMMON /Z1/ AREA (6), NBO (6), NOPSQ (5,9), CRTR (5,4,9), SILO (2)
                                                                           22900
      COMMON /CTRL24/ BGNCUT (5), NTHYR, NTHCUT, NDAYSC, NDAYSH, YLD (4),
                                                                           22910
     +QUAL (3,4), GDDCUM, METRIC, JYEARF, JYEARL, IPRT1, IPRT2, JDAYF, JDAYL, JPRT22920
     +, NYRS, IPRT4, NCUTS, JYEAR, JLALHR, CPLANT
                                                                           22930
      COMMON /ALFARG/ GDDB5, AVTA, DAYLIN, DAYLEN, YDAYL, DECR, XLAI, AW,
                                                                           22940
     +SUMS1, SUMS2, T, WSF, SRADF, DWS, PPT, ESO, ESR, XLEAF, BUDS, STEM, TOPS, TNC, 22950
     +XMATS, TNCS, TMAXC, TMINC
                                                                           22960
      COMMON /Z3/ HARDEX, TMSTO (4), NPST (5,5), NCUM (5), OPUSE (5,9)
                                                                           22970
      COMMON /Z4/FDLABR, FDENER, HRLABR, HRFUEL, HRELEC
                                                                           22980
      COMMON /Z5/ IPR2, IPR3, IPR4
                                                                           22990
      COMMON /Z6/ CSLABR, CSFUEL, CSELEC, CSFDLB, CSFDEN, DMCS
                                                                           23000
      COMMON /Z7/ ALHRFD (26, 15), AFEED (26, 23)
                                                                           23010
      COMMON /Z10/ TCOSTS (26,20), TRESS (26,20)
                                                                           23020
      COMMON /YY1/ USEMCH (100), UNITS (100)
                                                                           23030
      COMMON /Y1/ XINFO (7), MCODE (100), XMDATA (100, 13)
                                                                           23040
```

```
COMMON /Y3/ NMDATA, NOPER, IN, IO
                                                                           23050
   COMMON /Y6/ RATES (108.8).YAR (6)
                                                                           23060
   COMMON /Y7/ NBOP (18), NBMACH (18,7), XNBM (18,7)
                                                                           23070
   COMMON /PRICE/PLABOR, PFUELD, PFUELG, RATE IM, PDRYCG, PHRVCG, COEFSV (3), 23080
          PFSCA1, PFSCA2, PFSCCS, PFSCHM, ALFYRS, RATEIS, RATEIL, XLIFE (3) 23090
   COMMON /SUMRY2/ TRESP (26,20), TCOSTP (26,20), TCOST (26,20),
                                                                           23100
         STCOST (4,20), TRES (26,20), SRES (4,20)
                                                                           23110
   DIMENSION HERD (6)
                                                                           23120
   OPEN (1.FILE='MACH')
                                                                           23130
   OPEN (2, FILE='MGTALF')
                                                                           23140
   OPEN (6, FILE='OUTPUT')
                                                                           23150
   DATA IN/5/,10/6/
                                                                           23160
   DATA QUAL /.44..56.1...28..13..196..75..60..666..14..29..224/
                                                                           23170
   DATA PLABOR, PFUELD /5.00, 0.309/
                                                                           23180
   DATA RATEIM, RATEIL /0.15,0.13/
                                                                           23190
   DATA COEFSV, XLIFE /0.0,0.1,0.2,30.,10.,7./
                                                                           23200
   D0 28 1=1.26
                                                                           23210
   D0 26 J=1,20
                                                                           23220
26 AFEED (I,J)=0.
                                                                           23230
   DO 28 J=1.15
                                                                           23240
28 ALHRFD(I,J)=0.
                                                                           23250
   NTHCUT=1
                                                                           23260
   BGNCUT (1) = 1.
                                                                           23270
   BGNCUT (2) = 50.
                                                                           23280
   BGNCUT(3) = 100.
                                                                           23290
   BGNCUT (4) = 365
                                                                           23300
   NTHYR=1
                                                                           23310
   JDAYF=1
                                                                           23320
   JDAYL=150
                                                                           23330
   JYEARF=1
                                                                           23340
   JYEARL=2
                                                                           23350
   CPLANT=0.
                                                                           23360
   NYRS=JYEARL+1-JYEARF
                                                                           23370
   TMINC=15.
                                                                           23380
   TMAXC=25.
                                                                           23390
   SRADF=500.
                                                                           23400
   PPT=20.
                                                                           23410
   XLEAF=220.
                                                                           23420
   STEM=280.
                                                                           23430
   TOPS=500.
                                                                          23440
   | N= 1
                                                                           23450
   CALL FORHRY
                                                                           23460
   I N=2
                                                                           23470
   CALL MGTINF
                                                                           23480
   YCS=10.
                                                                           23490
   CSAREA=100.
                                                                           23500
   DO 30 JYEAR=JYEARF, JYEARL
                                                                           23510
   CALL YRINIT
                                                                          23520
   DO 20 JDAY=JDAYF, JDAYL
                                                                           23530
   IF (JDAY.LT.BGNCUT (NTHCUT)) GO TO 20
                                                                           23540
```

```
X1=FLOAT (JDAY) /4.
                                                                           23550
      I1=IFIX(X1)
                                                                           23560
      X2=X1-FLOAT(11)
                                                                           23570
      IF (X2.E0.0.) PPT=10.
                                                                           23580
      CALL ALHARV (REMCUT, REMHRV, ICUTON, JDAY)
                                                                           23590
C
        IF (JDAY.EQ.1.OR.JDAY.EQ.50) GO TO 96
                                                                           23600
C
        IF (JDAY.EQ.100) GO TO 96
                                                                           23610
C
        IF (JDAY.GE.109.AND.JDAY.LE.111) GO TO 96
                                                                           23620
C
        GO TO 97
                                                                          23630
        WRITE (10, 107) JYEAR, JDAY, NTHCUT, HARDEX, (TMSTO (J), J=1,4)
C 96
                                                                           23640
        WRITE (10, 108) (NPST (NTHCUT, J), J=1,5), (OPUSE (NTHCUT, J), J=1,9)
C
                                                                           23650
C
        WRITE (10.109) (ZRT (J.1).J=1.9)
                                                                           23660
        FORMAT (5X, 'JYEAR=', 14, /, 5X, 'JDAY=', 14, /, 5X, 'NTHCUT=',
C 107
                                                                           23670
       + 14,/,5X,'HARDEX=',F10.0,/,5X,'TMST0=',4F10.2)
C
                                                                           23680
C 108
        FORMAT (5X, 'NPST=',5110,/,5X, 'OPUSE=',9F10.2)
                                                                           23690
C 109
        FORMAT (5X, 'ZRT=', 9F10.2)
                                                                           23700
C 97
        CONTINUE
                                                                           23710
      PPT=0.
                                                                          23720
      IF (REMHRV.EQ.O.) NTHCUT=NTHCUT+1
                                                                           23730
   20 CONTINUE
                                                                           23740
      CSHR=CSRATE (YCS. 140)
                                                                           23750
      CSFED=YCS*CSAREA*0.8
                                                                           23760
      CALL ENDCS (CSAREA, CSFED)
                                                                          23770
      CALL WRITAL (2)
                                                                          23780
      WRITE (10,120) YCS, CSAREA, CSHR, CSLABR, CSFUEL, CSELEC
                                                                          23790
  120 FORMAT (//,10X,'CORN SILAGE HARVEST INFORMATION',/,10X, 6F12.2)
                                                                           23800
      XLEAF=132.
                                                                           23810
      STEM=168.
                                                                           23820
      TOPS=300.
                                                                           23830
      NTHCUT=1
                                                                           23840
      NTHYR=NTHYR+1
                                                                           23850
   30 CONTINUE
                                                                           23860
      CALL WRITAL (3)
                                                                           23870
      DO 53 I=1,NYRS
                                                                           23880
      D0 53 J=1,20
                                                                           23890
53
      TCOST(I,J) = TCOSTS(I,J)
                                                                           23900
      CALL COWFD (NYRS, XLCOWS, HERD)
                                                                           23910
      WRITE (10,130)
                                                                           23920
      FORMAT (//.5x, 'PRINTOUT OF RESOURCES AND COSTS. EACH',
                                                                           23930
     +'COLUMN REPRESENTS:',/,5X,'1=MACH INV. 2=SILO INV. 3=FUEL (L)
                                                                          123940
     +'4=R&M ($) 5=FIEL LB (MAN.H) 6=FEDD LB',//)
                                                                          23950
      DO 40 K=1.NYRS
                                                                           23960
      WRITE (10,140) (TRESS (K,J),J=1,10)
                                                                           23970
140
      FORMAT (5x,6 (F10.1,1x),4F6.1)
                                                                           23980
40
      CONTINUE
                                                                           23990
      WRITE (10.130)
                                                                           24000
                                                                       24010
      DO 50 K=1,NYRS
      WRITE (10,141) (TCOST (K,J),J=1,15)
                                                                           24020
      FORMAT (1X, 15 (1X, F7.0))
                                                                           24030
141
                                                                           24040
50
      CONTINUE
```

```
STOP
                                                                24050
     END
                                                                24060
C
                                                                24070
24080
     FUNCTION TABLE (VAL.ARG.DUMMY.K)
                                                                24090
C ***********************
                                                                24100
     DIMENSION VAL (K) . ARG (K)
                                                                24110
     DUM=AMAX1 (AMIN1 (DUMMY.ARG (K)).ARG (1))
                                                                24120
     DO 1 1=2.K
                                                                24130
     IF (DUM.GT.ARG(I)) GO TO 1
                                                                24140
     TABL I = (DUM-ARG(I-1)) * (VAL(I)-VAL(I-1)) /
                                                                24150
    + (ARG(I) - ARG(I-1))+VAL(I-1)
                                                                24160
     RETURN
                                                                24170
    1 CONTINUE
                                                                24180
     RETURN
                                                                24190
     END
                                                                24200
C ******************************
                                                                24210
      FUNCTION ANPV (PP.COEFSV.XLIFE.RATEI)
                                                                24220
C ***********************
                                                                24230
      IF ((PP.LE.O.).OR.(XLIFE.LE.O.)) THEN
                                                                24240
     ANPV=0.
                                                                24250
     RETURN
                                                                24260
     ELSE
                                                                24270
     CRF=(RATEI*((1.0+RATEI)**XLIFE))/(((1.0+RATEI)**XLIFE)-1.0)
                                                                24280
     ANPV=((PP*(1.0-COEFSV))*CRF)+((PP*COEFSV)*RATE!)
                                                                24290
     ENDIF
                                                                24300
     RETURN
                                                                24310
     END
                                                                24320
C
                                                                24330
C *****************************
                                                                24340
     SUBROUTINE SSTAT (NVAR, SMPL, NOBS, XMOMNT)
                                                                24350
C ******************************
                                                                24360
C
                                                                24370
C
  SSTAT CALCULATES MEAN, STANDARD DEVIATION, COEFFICIENT OF
                                                                24380
  VARIATION, AND SKEWNESS OF A SAMPLE DISTRIBUTION.
                                                                24390
C
   (L. PARSCH, DEPT OF AG ECON, MSU, 12/81)
                                                                24400
C
                                                                24410
     DIMENSION SMPL (26,25), XMOMNT (4,25)
                                                                24420
     DIMENSION SUM (26), SX (25), SV (25), SS (25)
                                                                24430
C
                                                                24440
     DO 10 I=1.NVAR
                                                                24450
     SUM(1) = 0.0
                                                                24460
     DO 20 J=1.NOBS
                                                                24470
20
     SUM(1) = SUM(1) + SMPL(J, I)
                                                                24480
10
     SX(I) = SUM(I) / NOBS
                                                                24490
C
                                                                24500
     DO 30 | |=1,NVAR
                                                                24510
     SUM(11)=0.0
                                                                24520
     DO 40 JJ=1.NOBS
                                                                24530
     SUM(II) = SUM(II) + (SMPL(JJ, II) - SX(II)) **2.
                                                                24540
40
```

```
SV(II) = SUM(II) / (NOBS-1)
                                                                                 24550
      IF (NOBS.LE.1) SV (II) =0.0
30
                                                                                 24560
                                                                                 24570
      DO 50 | | | = 1, NVAR
                                                                                 24580
      SUM (111) =0.0
                                                                                 24590
      DO 60 JJJ=1,NOBS
                                                                                 24600
      IF (SV(III) .EQ.O.O) GO TO 50
                                                                                 24610
      SUM (111) = SUM (111) + ((SMPL (JJJ, 111) - SX (111)) **3./(SV (111) **.5))
60
                                                                                 24620
50
      SS (111) = SUM (111) / NOBS
                                                                                 24630
                                                                                 24640
      DO 70 I=1,NVAR
                                                                                 24650
      XMOMNT(1,1)=SX(1)
                                                                                 24660
      XMOMNT(2,1) = SQRT(SV(1))
                                                                                 24670
      XMOMNT(3,1) = XMOMNT(2,1) / XMOMNT(1,1)
                                                                                 24680
                                                                                 24690
      IF (SX(1).EQ.0.0) XMOMNT (3,1)=0.0
70
      XMOMNT (4,1) = SS (1)
                                                                                 24700
C
                                                                                 24710
      RETURN
                                                                                 24720
      END
                                                                                 24730
```

LIST OF REFERENCES

LIST OF REFERENCES

- Amir, I., J. B. Arnold and W. K. Bilanski, 1978. Mixed integer programming model for dry hay system selection. Part I. Trans. ASAE 21(1):40-44.
- Anderson, P. M., W. L. Kjelgaard, L. D. Hoffman, L. L. Wilson and H. W. Harpster, 1981. Harvesting practices and round bale losses. Trans. ASAE 24(5):841-842.
- ASAE, 1981. Agricultural Engineers Yearbook. ASAE, St. Joseph, Michigan.
- Audsley, E., J. M. Gibbon, S. Cottrell and D. S. Boyce, 1976. An economic comparison of methods of storing and handling forage for dairy cows on a farm and national basis. J. Agr. Eng. Res. 21(4):371-388.
- Bakker-Arkema, F. W., C. W. Hall and E. J. Benne, 1962. Equilibrium moisture content of alfalfa. Mich. Agr. Exp. Stat. Quart. Bull. 44:492-496.
- Bartholomew, R. B., 1981. Farm machinery costing under inflation. Trans. ASAE 24(4):843-845.
- Bert, M. H., H. H. Mitchell, F. W. Crawford and E. W. Lehmann, 1952. The comparative nutrient content of field-cured and barn-cured alfalfa hay. J. Anim. Sci. 11:400-418.
- Blaser, R. E., 1976. Future trends in forage production and utilization. In Proceedings of the Ninth American Forage and Grassland Council Research-Industry Conference. Louisville, Kentucky.
- Bowers, W., and A. R. Rider, 1974. Hay handling and harvesting. Agr. Eng. 55(8):12-18.
- Brooker, D. B., F. W. Bakker-Arkema and C. W. Hall, 1974.
 Drying Cereal Grains. AVI Publishing Co. Wesport,
 Connecticut.

- Brown, L. D., D. Hillman, C. A. Lassiter and C. F. Huffman, 1963. Grass silage versus hay for lactating dairy cows. J. Dairy Sci. 46:407-410.
- Bruhn, H. D. and R. G. Koegel, 1977. More usable protein per acre by a modified forage program. Trans. ASAE 20:653-656.
- Charlick, R. H., M. R. Holden, W. E. Klinner and G. Shepperson, 1980. The use of preservatives in haymaking. J. Agr. Engr. Res. 25(1):87-98.
- Collins, M., 1981. Influence of rainfall during drying on the chemical composition of alfalfa, red clover and birdsfoot trefoil. XIV International Grassland Congress, Lexington, Kentucky. Summaries of papers, p. 350.
- Dale, J. G., D. A. Holt and R. M. Peart, 1978. A model of alfalfa harvest and loss. ASAE paper 78-5030. ASAE, St. Joseph, Michigan.
- Dale, J., 1979. A simulation of alfalfa harvest and loss. M.S. thesis, Dept. Agr. Eng., Purdue University, Lafayette, Indiana.
- Dernedde, W., 1979. Treatments to increase the drying rate of cut forage. Brithish Grassland Society,
 Occasional Symposium No. 11, Brighton. Pages 61-66.
- Dexter, S. T., W. H. Sheldon and D. I. Waldron, 1947. Equilibrium moisture content of alfalfa hay. Agr. Engr. 28:295-296.
- Dillon, J. L., 1977. The Analysis of Response in Crop and Livestock Production. Second edition. Pergamon Press, Oxford.
- Donaldson, G. F., 1968. Allowing for weather risk in assessing harvest machinery capacity. Amer. J. Agr. Econ. 50(1):24-40.
- Dumont, A. G. and D. S. Boyce, 1974. The probabilistic simulation of weather variables. J. Agr. Eng. Res. 19(2):131-146.
- Dyer, J. A. and D. M. Brown, 1977. A climatic simulator for field-drying hay. Agric. Meteor. 18:37-48.

- Dyer, J. A. and I. S. Selirio, 1977. A new method of analysis for hay drying weather. Can. Agric. Engr. 19(2):71-74.
- Edwards, W. and M. Boehlje, 1980. Machinery selection considering timeliness losses. Trans. ASAE 23(4):810-815,821.
- Fairbanks, G. E., S. C. Fransen and M. D. Shrock, 1981.

 Machine made stacks compared with round bales.

 Trans. ASAE 24(2):281-283,287.
- FAO, 1979. FAO Agricultural Commodity Projections 1975-1985. Food and Agriculture Organisation of the United Nations, Rome.
- Fick, G. W., 1977. The mechanisms of alfalfa regrowth: a computer simulation approach. Search: Agriculture 7(3):1-28.
- Friesen, O., 1977. Evaluation of hay and forage harvesting methods. Presented at the International Grain and Forage Harvesting Conference, Ames, Iowa. Sept. 25-29, 1977.
- Gervais, P., 1974. Forage crops. Class notes. Laval University, Ste. Foy, Quebec. Quoted from Kansas Agr. Exp. Stat. Tech. Bull. 15 (1925).
- Gordon, C. H., J. C. Derbyshire, H. G. Wiseman, E. A. Kane and C. G. Mandelin, 1961. Preservation and feeding value of alfalfa stored as hay, haylage and direct-cut silage. J. Dairy Sci. 44:1299-1311.
- Gordon, C. H., J. C. Derbyshire, W. C. Jacobson and H. G. Wiseman, 1963. Feeding value of low-moisture alfalfa silage from conventional silos. J. Dairy Sci. 46:411-415.
- Halyk, R. M. and W. K. Bilanski, 1966. Effects of machine treatments of the field drying of hay. Can. Agr. Engr. 8:28-30.
- Harris, C. E. and J. N. Tullberg, 1980. Pathways of water loss from legumes and grasses cut for conservation. Grass and Forage Science 35:1-11.
- Hayhoe, H. N., 1980. Calculation of workday probabilities by accumulation over sub-periods. Can. Agr. Engr. 22(1):71-75.

- Hendrix, A. T., 1960. Equipment and labor requirements for storing and feeding silage. Agr. Engr. 41(3):162-167.
- Hill, J. D., I. J. Ross and B. J. Barfield, 1977. The use of water vapor pressure deficit to predict drying time for alfalfa hay. Trans. ASAE 22(2):372-374.
- Hillman, D., J. W. Thomas, R. Neitzel, L. V. Nelson, M. Erdmann, S. H. Hildebrand, E. J. Benne, E. Linden and L. Hoag, 1970. Average forage yields and nutrient content as affected by management practices. Agr. Exp. Stat. Mimeo. D-244, Michigan State University, East Lansing.
- Hoglund, C. R., 1964. Comparative storage losses and feeding values of alfalfa and corn silage crops when harvested at different moisture levels and stored in gas-tight and conventional tower silos: an appraisal of research results. Agr. Econ. Report 947, Michigan State University, East Lansing.
- Hoglund, C. R., 1967. Changes in forage production and handling on Southern Michigan dairy farms. Agr. Econ. Report 78, Michigan State University, East Lansing.
- Holt, D. A., 1978. Alfalfa SIMED. ASAE paper 78-4034. ASAE, St. JOseph, Michigan.
- Hundtoft, E. B., 1965. Handling hay crops. Agricultural Extension Bull. 364, Cornell University, Ithaca, New York.
- Holtman, J. B., L. J. Connor, R. E. Lucas and F. J. Wolak, 1977. Material-energy requirements and production costs for alternate dairy farming systems. Agr. Exp. Stat. Res. Rep. 332, Michigan State University, East Lansing.
- Hughes, H. A. and J. B. Holtman, 1976. Machinery complement selection based on time constraints. Trans. ASAE 19(4):812-814.
- Implement and Tractor, 1981. Red Book (January 31) and Product File (March 31) issues. Intertec Publishing Corp., Overland Park, Kansas.

- Jones, L. and C. E. Harris, 1979. Plant and swath limits to drying. Brithish Grassland Society, Occasional Symposium no. 11, Brighton. Pages 53-60.
- Kemp, J. G., G. C. Misener and W. S. Roach, 1972. Development of empirical formulae for drying of hay. Trans. ASAE 15(4):723-725.
- Kepner, R. A., R. Bainer and E. L. Barger, 1972.
 Principles of Farm Machinery. Second edition. AVI
 Publishing Co., Wesport, Connecticut.
- Kjelgaard, W. L. and M. L. Quade, 1975. Systems model of forage transport and handling. Trans. ASAE 18:610-613.
- Kjelgaard, W. L., 1979. Energy and time needs in forage systems. Trans. ASAE 22(3):464-469.
- Klinner, W. E., 1975. Design and performance characteristics of an experimental crop conditioning system for difficult climates. J. Agr. Engr. Res. 20:149-165.
- Krutz, G. W., D. A. Holt and D. Miller, 1979. For fast field drying of forage crops. Agr. Engr. 60(8):16-17.
- Kurtz, P. J., 1970. Naturally dried hay cut and baled the same day. Can. Agr. Engr. 12(2):64-70.
- McIsaac, J. A. and J. Lovering, 1980. A model for estimating silo losses and costs. Can. Farm Econ. 15(5):10-16.
- McGuckin, T. and D. Schoney, 1980. A risk model of forage fed to dairy. ASAE paper 80-1022. ASAE, St. Joseph, Michigan.
- Midwest Plan Service, 1980. Structures and Environment Handbook. Tenth edition. Iowa State University, Ames.
- Miller, B. R., 1980. Minimum cost machinery complement for various farm situations. ASAE paper 80-1015. ASAE, St. Joseph, Michigan.

- Millier, W. F. and G. E. Rehkugler, 1972. A simulation: the effect of harvest starting date, harvesting rate and weather on the value of forage for dairy cows.

 Trans. ASAE 15(3):409-413.
- Moser, L. E., 1980. Quality of forage as affected by post-harvest storage and processing. In Crop Quality, Storage and Utilization: 227-260. American Society of Agronomy, Madison, Wisconsin.
- National Reasearch Council, 1978. Nutrient Requirements of Dairy Cattle. Fifth revised edition. National Academy of Sciences, Washington, D.C.
- Nehrir, H., W. L. Kjelgaard, P. M. Anderson, T. A. Long, L. D. Hoffman, J. B. Washko, L. L. Wilson and J. P. Mueller, 1978. Chemical additives and hay attributes. Trans. ASAE 21(2):217-221,226.
- NFPEDA, 1981. Official Guide: Tractors and Farm Equipment.
 Fall 1981 edition. National Farm and Power Equipment
 Dealers Association, St. Louis, Missouri.
- Nott, S. B., G. D. Schwab, M. Proctor, W. C. Search and M. P. Kelsey, 1981. Estimated 1981 budgets for Michigan crops and livestock. Agr. Econ. Report 389, Michigan State University, East Lansing.
- PAMI, 1978. Getting the most from your round baler.
 Publication 7801. Prairie Agricultural Machinery
 Institute, Humboldt, Saskatchewan.
- PAMI, 1979. Evaluation reports on balers and forage harvesters (E0176A, E1978A, E0378A). Prairie Agricultural Machinery Institute. Humboldt, Saskatchewan.
- Parsch, L. D., 1982. Ph.D. Dissertation. Agricultural Economics Department, Michigan State University, East Lansing.
- Raymond, F., G. Shepperson and R. Waltman, 1978. Forage Conservation and Feeding. Farming Press Limited, Ipswich, Suffolk.
- Rotz, C. A., J. R. Black and P. Savoie, 1981. A machinery cost model which deals with inflation. ASAE paper 81-1513. ASAE, St. Joseph, Michigan.

- Savoie, P., H. F. Bucholtz, R. C. Brook and C. A. Rotz, 1981. Influence of hay harvesting systems on field loss and drying rate. ASAE paper TSR 81-005. ASAE, St. Joseph, Michigan.
- Shepherd, J. B., H. G. Wiseman, R. E. Ely, C. G. Melin, W. J. Sweetman, C. H. Gordon, L. G. Schoenleber, R. E. Wagner, L. E. Campbell, G. D. Roane and W. H. Hosterman, 1954. Experiments in harvesting and preserving alfalfa for dairy cattle feed. USDA Tech. Bull. No. 1079.
- Shepherd, W., 1958. Experimental methods in haymaking trials. Aust. J. Agr. Res. 9:27-36.
- Singh, D. and J. B. Holtman, 1979. An heuristic agricultural field machinery selection algorithm for multicrop farms. Trans. ASAE 22(4):763-770.
- Sisco, J. A., R. C. Brook and J. R. Black, 1980. Machine selection and management for feed harvesting systems. ASAE paper 80-1507. ASAE, St. Joseph, Michigan.
- Sisco, J. A., 1981. A computer model for feed harvesting machinery selection on dairy farms. Ph.D. dissertation. Agricultural Engineering Department, Michigan State University, East Lansing.
- Thomas, J. W., L. D. Brown, R. S. Emery, E. J. Benne and T. J. Huber, 1969. Comparisons between alfalfa silage and hay. J. Dairy Sci. 52:195-204.
- Thomas, J. W., 1980. Forages and silages in the 80's. Pennsylvania Forage and Grassland Council, Forage Conference, Hershey, Pennsylvania. Pages 75-91.
- Tseng, W. T. and D. R. Mears, 1975. Modelling systems for forage production. Trans. ASAE 18:206-212.
- Tullberg, J. N. and D. E. Angus, 1978. The effect of potassium carbonate solution on the drying of lucerne. J. Agric. Sci. 91:551-556.
- Tulu, M. Y., J. B. Holtman, R. B. Fridley and S. D. Parsons, 1974. Timeliness costs and available working days: shelled corn. Trans. ASAE 17(10):798-800.

- Van Elderen, E., 1980. Models and techniques for scheduling farm operations: a comparison. Agr. Systems 5(1):1-17.
- Van Kampen, J. H., 1971. Farm machinery selection and weather uncertainty. In Systems Analysis in Agricultural Management: 295-329. Edited by J. B. Dent and J. R. Anderson, John Wiley.
- Verma, L. R., K. Von Bargen and J. L. Ballard, 1976.

 Planning forage harvesting research using simulation.

 Trans. ASAE 19:1022-1024.
- Verma, L. R. and K. Von Bargen, 1979. Alfalfa quality affected by top topography in mechanically formed stacks. Trans. ASAE 22(2):283-286.
- Verma, L. R. and B. D. Nelson, 1981. Effects of storage method on quality changes in round bales. ASAE paper 81-1519. ASAE, St. Joseph, Michigan.
- Von Bargen, K., 1966. Systems analysis in hay harvesting. Trans. ASAE 9:768-770,773.
- Waldo, D. R. and N. A. Jorgensen, 1981. Forages for high animal production: nutritional factors and effects of conservation. J. Dairy Sci. 64(6):1207-1229.
- Watson, S. J. and M. J. Nash, 1960. The Conservation of Grass and Forage Crops. Oliver and Boyd, Edinburgh.
- Weeks, S. A., F. G. Owen and G. M. Petersen, 1975. Storage characteristics and feeding value of mechanically stacked loose hay. Trans. ASAE 18(6):1065-1069.
- Wieghart, M., J. W. Thomas and M. B. Tesar, 1980.

 Hastening drying rate of cut alfalfa with chemical treatment. J. Anim. Sc. 51(1):1-9.
- Wilkinson, R. H. and C. W. Hall, 1966. Respiration heat of harvested forages. Trans. ASAE 9:424-427.
- Wolak, F. J., 1981. Development of a field machinery selection model. Ph.D. dissertation. Agricultural Engineering Department, Michigan State University, East Lansing.
- Wolf, D. D. and E. W. Carson, 1973. Respiration during drying of alfalfa herbage. Crop Science 13:660-662.

- Wood, J. G. M. and J. Parker, 1971. Respiration during the drying of hay. J. Agr. Engr. Res. 16(3):179-191.
- Zink, F. J., 1935. Equilibrium moistures of some hays. Agr. Engr. 16:451-452.