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ABSTRACT

ESSAYS ON NONLINEAR PANEL MODELS WITH UNOBSERVED HETEROGENEITY
By
Robert Martin

This dissertation concerns nonlinear panel data estimation relevant to the fields of econometrics
and applied microeconomics. Panel data is attractive for estimating causal effects when unob-
served heterogeneity in cross-sectional units is correlated with explanatory variables. For instance,
well-known linear fixed effects and first difference estimators use within-group variation to achieve
consistent estimation. However, nonlinear models often better represent limited dependent vari-
ables like binary outcomes or counts, and extending traditional panel techniques to these settings
can be problematic. For instance, treating heterogeneity as parameters to be estimated usually
leads to what is known as the incidental parameters problem. Furthermore, heterogeneous slopes
in a conditional mean function can also confound estimation, but fewer remedies exist than do
for additive effects. I aim to address these issues in my research with an emphasis on practical

applicability.

Chapter 1: Finite sample properties of bias-corrected fixed effects estimators for panel bi-
nary response models

Maximum likelihood estimation (MLE) of nonlinear unobserved effects panel models is known
to be generally inconsistent when treating the heterogeneity as parameters. Several authors have
proposed corrections justified by large-T expansions of the inconsistency under conditions like
dynamic completeness. Using Monte Carlo (MC) techniques, I find that failure of dynamic com-
pleteness can increase bias in slope and average partial effects (APE) estimates in shorter panels,
but has little impact on APE for longer panels. I also compare bias-corrections to correlated ran-
dom effects (CRE) and Conditional MLE using MC and welfare data from the Survey of Income

and Program Participation (SIPP).



Chapter 2: Exponential panel models with coefficient heterogeneity

If heterogeneous slopes are ignored in exponential panel models, fixed effects Poisson may not
estimate any quantity of interest. Existing estimation methods often involve treating only a small
subset of the slopes as “random effects” and integrating from the likelihood, increasing computa-
tional difficulty. I propose a test to detect slope heterogeneity that, unlike the traditional approach,
does not amount to testing for information matrix equality. Additionally, I present a correlated ran-
dom coefficients approach to identification which allows for estimation of the coefficient means
and average partial effects. I test these proposed methods using a Monte Carlo experiment and

apply them to the patent-R&D relationship for U.S. manufacturing firms.

Chapter 3: Estimation of average marginal effects in multiplicative unobserved effects panel
models

This chapter concerns estimation of average marginal effects in static multiplicative unobserved
effects panel models for nonnegative dependent variables. While fixed effects Poisson (FEP) con-
sistently estimates the parameters of the conditional mean function, marginal effects generally
depend on the unobserved heterogeneity. They would therefore seem inestimable without either
additional assumptions or some form of bias correction. I show, however, that Average Partial
Effect (APE) and Average Treatment Effect (ATE) estimators that use estimated individual effects
are consistent and asymptotically normal. This is in contrast with cases like fixed effects logit,

where similar marginal effects estimators suffer from the incidental parameters problem.
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CHAPTER 1

FINITE SAMPLE PROPERTIES OF BIAS-CORRECTED FIXED EFFECTS
ESTIMATORS FOR PANEL BINARY RESPONSE MODELS

1.1 Introduction

Nonlinear models are popular in economics in many settings. For instance, binary response models
are common for analyzing outcomes like labor force participation, employment, or union member-
ship. At the same time, panel data can be attractive when controlling for unobserved heterogeneity
is necessary to identify causal effects. However, it is well-known that maximum likelihood es-
timation (MLE) that treats heterogeneity as parameters to estimate is inconsistent. For example,
in the case of cross-section heterogeneity, the problem arises in the typical large-N, fixed-T mi-
croeconometric setting because only a handful of observations contribute to the estimation of each
individual’s fixed effect (Lancaster, 2000). This is known as the incidental parameters problem,
first described by Neyman and Scott in 1948.

In the statistics and econometrics literature, there have been many approaches to estimation in
the presence of incidental parameters. In some special cases, it is possible to re-parameterize the
model or find a conditioning variable that removes the incidental parameters from the likelihood
function (Lancaster, 2000). A leading example of this is the conditional logit model, where the
conditioning variable is the number of successes observed for cross-sectional unit (Chamberlain,
1980). However, while conditional maximum likelihood in a case like this consistently estimates
the slope parameters of the index of the logit function, conditioning usually does not identify par-
tial effects, which depend on the heterogeneity (Wooldridge, 2010). Other approaches involve
restricting the relationship between the heterogeneity and explanatory variables in some way. For
instance, if we are willing to assume independence between the heterogeneity and the explanatory
variables, then we can use a random effects approach. In many cases, however, correlation be-

tween heterogeneity and covariates is of concern. The correlated random effects (CRE) approach



of Chamberlain (1980, 1982) or Mundlak (1978), restricts the conditional distribution of the het-
erogeneity to have a mean that is linear function of the explanatory variables, but the restriction at
least buys the researcher identification of APE and scaled slope parameters (Wooldridge, 2010).
Assumptions restricting the nature of the heterogeneity are a potential drawback. For instance,
Rabe-Hesketh and Skrondal (2013) explore a special case in the dynamic probit setting where mis-
specification of the heterogeneity causes significant bias . In general, however, we do not know the
robustness of CRE is when the distributional assumption fails or when the researcher chooses the
wrong conditional mean function.

If one prefers to leave the nature of the heterogeneity completely unrestricted, a linear probabil-
ity model (LPM) estimated by fixed effects ordinary least squares is thought to do a reasonable job
approximating, and even consistently estimates them under certain assumptions regarding the ex-
planatory variables (Stoker, 1986). Nevertheless, often the index slope parameters are of interest,
or the researcher wants to estimate partial effects at different values of the explanatory variables.
In these cases it is tempting to use a nonlinear “fixed effects” estimator, whereby the heterogeneity
are estimated as parameters alongside the index slopes in a MLE procedure, but this is problematic.
Particularly when the number of time periods is small, fixed effects estimators often perform worse
than simply ignoring the heterogeneity entirely (Greene, 2004). In the case of cross-sectional het-
erogeneity only, several studies have noted that inconsistency diminishes as the number of time
periods increases, and that estimates of slope parameters are consistent with both N and 7" growing
to infinity. However, the asymptotic distribution of fixed effects estimators is not centered around
the true parameter values, so confidence intervals can still be misleading (Hahn and W. Newey,
2004).

I study bias corrections for models with cross-sectional heterogeneity that subtract the leading
term of a large-T expansion of the bias from the uncorrected fixed effects MLE. Analytical bias
corrections estimate this term from expressions specific to the parametric model. Jackknife correc-
tions estimate it non-parametrically by generating variation in the uncorrected MLE by dropping

some time periods. These techniques reduce the bias from OP(T_l) to OP(T_z), but they can



require significant restrictions on the underlying distribution of the data (Hahn and W. Newey,
2004). Both approaches assume at least that the explanatory variables are stationary and weakly
dependent. The analytical and jackknife corrections developed by Hahn and Newey (2004) also
require the dependent variables to be serially independent conditional on the heterogeneity and
the explanatory variables. The analytical correction of Fernandez-Val (2009) and the split-panel
jackknife of Dhaene and Jochmans (2015) relax conditional independence to accommodate models
with lagged dependent variables, but still require dynamic completeness.

Either conditional independence, or dynamic completeness rule out serially correlated error
terms, which is potentially a serious problem for static models. Serial correlation is certainly a
concern in linear models, as demonstrated by widespread use of clustered standard errors and post-
estimation testing. Extending that concern to nonlinear models is particularly prudent given that in
cases like the probit or logit, serial correlation causes inconsistency in the estimators themselves,
not just their standard errors. Without unobserved heterogeneity, APE are still identified in probit
or logit models with serial correlation, so the problem is easily handled by using pooled MLE with
cluster-robust standard errors (Wooldridge, 2010). To my knowledge, however, no researchers
have simulated bias-corrected estimators in the presence of serial correlation.

This chapter aims to answer three questions. First, how robust are bias corrections when latent
errors have serial correlation? Second, how do the bias corrections compare to the CRE approach
when the heterogeneity does not satisfy the CRE conditional distribution assumption? Finally, the
incidental parameters problem causes bias not only in slope estimates, but in APE estimates as
well, but how severe is bias in APE estimates when the slopes are estimated consistently with a
procedure like conditional logit?

The first goal is to inform practitioners who wish to account for unobserved heterogeneity
while being agnostic about serial dependence. Using Monte Carlo techniques, I evaluate the im-
pact of serially correlated errors on the analytical bias corrections of Hahn and Newey (2004) and
Fernandez-Val (2009). I also evaluate the drop-one-period jackknife of Hahn and Newey (2004)

and the split-panel jackknife of Dhaene and Jochmans (2015). I generate the error terms in the



latent variable model as first order autoregressive processes, but simulate estimators that use clus-
tered standard errors to allow for general (weak) serial dependence. Since slope parameters are
only identified up to scale in this setting, I focus primarily on estimation of APE, which are still
identified (Wooldridge, 2010).

While simulation evidence from the aforementioned studies shows that bias-corrected estima-
tors often have much more desirable finite sample properties than the uncorrected fixed effects
MLE (at least for slope parameters), less work has been done to evaluate sensitivity of these prop-
erties to relaxation of the assumptions underlying the corrections. Dhaene and Jochmans (2015)
examine departures from stationarity in dynamic models, particularly of initial observations and
propose a Wald test for evaluating the validity of the split-panel approach overall. Alexander and
Breunig (2014) simulate the performance of several bias corrections for the fixed effects probit
estimator while varying parameters like the variance of the heterogeneity and correlation between
heterogeneity and explanatory variables. but do not consider any departures from stationarity or
conditional independence.

In addition to using clustered standard errors, many researchers will find it attractive to make a
CRE assumption to avoid the issue of incidental parameters. In fact, in studying the issue of serial
correlation, many of my simulation results show that the CRE estimator of APE tends to have
better finite sample properties than the uncorrected or corrected fixed effects methods. This result
is not surprising given the data generating process I employ. Therefore, my second contribution is
to consider the relative performance of the CRE approach versus the fixed effects approach when
the CRE conditional distribution assumption does not hold.

Finally, if researchers are willing to assume the dependent variables are conditionally inde-
pendent, then a logit specification can be attractive because conditional maximum likelihood es-
timation (conditioning on the individual’s sum of the dependent variables) allows for consistent
estimation of slope parameters with only N — . However, partial effects are not identified be-
cause they depend on the heterogeneity terms that have been conditioned out of the likelihood

function. Nevertheless, it is tempting to implement the following procedure: 1) Estimate slope



parameters by conditional MLE. 2) Estimate the heterogeneity parameters using logit MLE, while
restricting the slopes to be equal to the estimates from stage 1), and then estimate partial effects.
For instance, an empirical example in Greene (2012, Chapter 17) on German health care utiliza-
tion follows this procedure in estimating partial effects evaluated at the average of the explanatory
variables (PEA) (Greene, 2012). This procedure is likely to suffer from the incidental parameters
problem because, although the slope parameters are consistent, the heterogeneity estimates still
do not converge to anything with fixed 7 (and it is unclear if the sample average of the estimated
heterogeneity converge to anything interesting as N gets large). Fernandez-Val (2009) uses this
procedure to estimate a model of female labor force participation, but corrects the APE estimates
for the incidental parameters problem in the second stage (Fernandez-Val, 2009). Therefore, this
chapter’s third contribution is to include Monte Carlo evidence that uncorrected APE estimates
derived in this manner from conditional logit estimation can have significant bias.

Strictly speaking, any conclusions drawn from these simulations are valid only for the data
generating processes I employ. However, the results presented are still useful in alerting empirical
researchers to potential benefits and pitfalls when implementing one of the discussed estimation
methods.

The rest of the paper is organized as follows. Section 2 reviews the incidental parameters
problem in the panel binary response model, as well as the bias correction techniques considered
here. Section 3 describes the Monte Carlo experiment. Section 4 presents and discusses results
including the application to the SIPP data. Section 5 concludes. Additional tables, as well as

descriptions of the analytical bias correction formulas, are collected in Appendices.

1.2 The panel binary response model with incidental parameters
I consider the following panel binary response model with unobserved heterogeneity.

vir = 1| +x;460+ri; >0], fori=1,....Nandt=1,...,T. (1.1)



where y;; 1s a scalar outcome variable, x;; is a vector of explanatory variables, ¢; is an individual
fixed effect, and rj; is a error term. In the probit (logit) case, rj is distributed standard normal
(standard logistic). 1[] is the indicator function. The log-likelihood function for individual i in
period t is

ir(0,0;) = yir log [G(@; +x;,0)] + (1 — y;r ) log[1 — G(0; +x;,0)] (1.2)

where G is either the standard normal CDF or standard logistic CDF. Following the notation of
Hahn and Newey (2004) and Fernandez-Val (2009), the maximum likelihood estimator of 6y max-

imizes the profile log-likelihood, concentrating out the alphas:

—argmaxz Zﬁl, 0))/NT (1.3)
i=lt=
where
R T
0;(0) :argmoectxZ&,(G,ai)/T (1.4)

t=1
The incidental parameters problem arises because with 7" fixed, as N — oo,

T
Y lu(8 »aiw))/T] (1.5)

R 07, where Oy = arg m@ax En
r=1

where Ey [m(Z;, 04)] = Agi_rgog.vzl m(Zi;, o) /N. For finite T, 07 # 6 because 0/(0) # o, even
when evaluated at the true 8y. Hahn and Newey (2004) show that for smooth likelihoods like the
probit and logit,

Or = 6p+2B/T +0(T2) (1.6)

where 2 = .# b, In this expression, b represents a higher order expansion of the bias in a/(0) as
T gets large, while . is the information matrix of the profile log-likelihood. Both terms together
capture the effect of estimation error in @/(6) on 6. While it is true that  is consistent for 0y if
both N and T — oo, the limiting distribution of VNT ( 0 — 6p) is centered around P/, where
N/T — x. Therefore, confidence intervals for coefficient estimates will likely have poor coverage

(Hahn and W. Newey, 2004).



1.2.1 Bias correction techniques

Arellano and Hahn (2007) provide a thorough review of different approaches to mitigating bias
from the incidental parameters problem. The techniques that I consider in this chapter involve
estimating % and using it to construct an estimator with a bias of lower order. Analytical bias
corrections use expressions for Z (denoted for an arbitrary 6 as %(0)) derived from large-T
expansion of the scores of the profile log-likelihood around the true ¢;. 1 focus mainly on the
“one-step” estimator A 5), which is evaluated at the uncorrected MLE. Then the bias corrected

estimator is formed as

6p. =0 — B(0)/T (1.7)

Previous simulations have shown that the one-step estimator performs reasonably well com-
pared to an iterated procedure or related analytical corrections that solve modified scores (Hahn
and W. Newey, 2004). I examine the methods of Hahn and Newey (2004) and Fernandez-Val
(2009) for estimating A (/9\) Full expressions for the analytical bias corrections can be found in
Appendix A.

Jackknife corrections estimate % nonparametrically by using variation in 0 when estimated
over the full panel and shorter sub-panels. This approach is advantageous because it does not
require an explicit characterization of %, though it does require more computation. Hahn and
Newey (2004) proposed a technique where the MLE is estimated over the 7 subpanels formed by

dropping one period. Their corrected estimator is formed as
- ~ 7-1L -
Onnji = T6 = —— Y. o, (1.8)
s=1
where /Q\s is the uncorrected MLE estimated over the periods {1,...,s—1,s+1,...,T}.
Dhaene and Jochmans (2015) show that splitting the panel into equal, or almost-equal, length
sub-panels minimizes the impact of imprecise estimation of % on the remaining bias and allows
for dynamic models (Dhaene and Jochmans, 2015). To illustrate how the estimator is formed,

suppose T is even for simplicity. Let 551 and 552 be the uncorrected MLE estimated over the



periods {1,2,...,7/2} and {T/2+1,...,T}. Then, the jackknife corrected estimator is formed as
04jjc =20 — (1/2)(8s, + bs,)- (1.9)

Researchers are often interested in estimating functions of the data and parameters, like the

partial effect of the kth element of x;; on the probability that y;; equals one:

my(0,0;,x;1) = Org(a; +x;:0), (1.10)

where g() is the derivative of G(). Many past simulation and theoretical work has suggested that
uncorrected MLE on static binary response models has a “small bias” property for estimates of
APE. This means that the bias in APE estimates tends to be smaller than that of slope parame-
ters, and in the probit case with no heterogeneity, is exactly zero (Fernandez-Val, 2009). This
suggests that biases in §k and Zﬁ\/: | Zthl g(o; +x; 5) move in opposite directions. Since APE and
other functions of the data generally depend directly on the o’s, correcting the slope parameters
only (or using a consistent procedure like conditional logit) is insufficient to handle the incidental
parameters problem as it only removes one source of the bias. In fact, 0;(0), even if evaluated
at 6y, does not converge to its true value with 7" fixed, or at a slower rate when 7 is allowed to
grow (Fernandez-Val, 2009). APE estimates with consistent estimates of 6 but no correction for
imprecise estimation of the a’s may have much larger biases than APE estimates derived from the
uncorrected MLE, as section IV explores.

The analytical and jackknife corrections for APE are implemented in a similar fashion to their
counterparts for slope estimates. In the analytical case (see Appendix A), a bias term is estimated
and subtracted, while for the jackknife, APE are estimated for the full panel and the subpanels
separately and then combined just like the slope estimates.

Under dynamic completeness for the Fernandez-Val case and conditional independence for
the Hahn and Newey case, analytical bias-corrected estimators been shown to be consistent and
asymptotically normal as long as 7' grows faster than N 1/3, and a similar property has been con-

jectured for the Hahn and Newey jackknife correction (Hahn and W. Newey, 2004). This makes



them reasonable procedures to implement when N is fairly large relative to 7', as is typical in
microeconometrics. The split-panel jackknife of Dhaene and Jochmans is only consistent with T
and N growing at the same rate, but they find evidence it reduces bias with as few as six time
periods. The analytical and jackknife corrections analyzed here allow explanatory variables to be
only sequentially exogenous, but require the assumption of dynamic completeness, meaning that
no additional lags of x or y affect the current y;; after x;; has been included. Dynamic completeness

is written formally as

FOiel 0 Xie, Yig—15%i1—1 -5 Vit, Xi1) = f (Vie| 06, i) (1.11)

Either conditional independence or Assumption (1.11) imply that the scores of the log-likelihood
are serially uncorrelated and rule out any serial dependence in the per-period shocks. For the
many researchers interested in estimating static models, however, this assumption is less than ideal.
Empirical researchers routinely encounter static models with neglected serial correlation in the
linear case, and take care to conduct inference using clustered standard errors. Consequently, we
would rather not assume that a static model has fully captured the dynamics in the nonlinear case
either. One attractive point about the CRE approach with clustered standard errors is that for
binary response models with unobserved heterogeneity, arbitrary serial correlation do not cause
inconsistency in APE estimates (Wooldridge, 2010). Any complete comparison of bias corrections,

therefore, should evaluate their robustness to this common problem.

1.3 Monte Carlo experiment

The data generating process I specify is similar to Greene (2004) and Fernandez-Val and Weidner

(2016). The outcome is generated as
yir = 1[04 + Boxir + Yodir + rie > 0] (1.12)

where

Xit:ai+.5Xi’t_1+Vit,t> 1 (113)



X1 = 0 +vj1, vir ~N(0,1/2) (1.14)
dit = 1[xit +hiyt > 0], hjy ~ N(0,1/2) (1.15)
a; ~ N(0,1/16) (1.16)

Iset By = v = 1. In this model, d;; represents a policy or treatment variable of interest, while
Xj; 1s a continuous control variable that is both correlated with d;; and its own past values. Both x;;
and dj; are generated to be strictly exogenous, though the Fernandez-Val and Dhaene and Jochmans
corrections only require sequential exogeneity. Correlation between x;; and ¢; is roughly 0.5, while
correlation between d;; and ¢; is roughly 0.3. Correlation between x;; and d;; is about 0.6.

Let u,, be the population APE of w on the probability that y equals one, for w € {x,d}. In
general, this quantity varies by 7', so for comparison, I report the estimated APE divided by their
true value. For ,3, ¥, and & (the uncorrected MLE),

[ N EN vl mw(B. 9. 64, zir)

Hw B+ XL mw(Bo, 10, OCi7Zit)]

(1.17)

where z; = (xj,d;;) and

Bg(oy + Bxjr + ydir) forw=x
my(B,7, @, zir) = (1.18)

G(0; + Bxip +v) — G(o; + Bxi) forw=d
where for the probit (logit) simulations, G() and g() are the CDF and PDF, respectively, for the
standard normal (logistic) distribution. The expectation in the denominator is simulated with a
single draw from a panel of 1,000,000 individuals. Note that the sum in the numerator is divided
by the entire sample size, NT. An individual j whose value of y j; does not change over the length
of the panel gets, the uncorrected MLE for the heterogeneity, &;, is unbounded, so the individual
is dropped from the estimation of the structural parameters. The estimate m1,,( ﬁ ,¥,@j,z;) for that
observation is zero (Alexander and Breunig, 2014). 1 will discuss practical issues this can cause
when the panels are short and the data are highly persistent. Details on the analytical corrections
can be found in Appendix A. The jackknife-corrected APE estimators are constructed analogously

to the slope estimators in equations (1.8) and (1.9).
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1.3.1 Evaluating the dynamic completeness assumption

I relax dynamic completeness in the panel probit case by introducing serial correlation into the

error term rj; from the latent variable model. I use the following procedure:

Tit = Yr,pUit (1.19)

wip = puj g1 +eip, 1> 1 (1.20)

ujy = ej1/Wp, ey ~ i.i.d.N(0,1) (1.21)
V1—p2 ifp<1

Yip = (1.22)

1/vt ifp=1
Division of e;1 by y; p ensures that each element of {Mit}tT:1 has the same variance, which other-
wise would not hold because of finite length (Vamos, Soltuz, and Craciun, 2007). Multiplication
of ujr by Yy p is to give rj unit variance. I maintain unit variance of the error terms to remove
the coefficient scaling that would otherwise occur in probit MLE. This allows us to better compare
slope estimates across estimators and values of p. In the logit case, I use a Gaussian copula based
on these series of normal errors.

I present results from simulations that set p equal to 0, 0.4, 0.8 to represent cases of dynamic
completeness, moderate serial correlation, and high serial correlation. While the copula is not
guaranteed to maintain the exact serial correlation for the logit case, the autocorrelations were
within two decimal points of the specified p. Consistent with the literature, I considered panel
lengths of 6, 8, 12, and 20, and I set N = 100 in all cases for ease of computation. Previous
work by Fernandez-Val (2009) and Alexander and Breunig (2014) has found that the larger N does
not affect the relative performance of the different estimators in terms of bias, but does increase
their overall precision. I find evidence of these findings, which can be found in Appendix B for
the N = 500, T = 6 case. One important finding is that when estimators have finite sample bias,

coverage of confidence intervals generally decreases with sample size as standard errors shrink.
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I also estimate the probit slope coefficients and APE using the pooled MLE version of Mund-
lak’s (1978) correlated random effects (CRE), and the APE using a LPM for comparison. Standard
errors for each estimator are clustered by individual to account for serial dependence in the scores.

For each pair of p and 7', I run 1000 replications.

1.3.2 Comparing bias correction and CRE under more general forms of heterogeneity

A correlated random affects approach of Mundlak (1978) applied to the panel probit model with

two strictly exogenous explanatory variables assumes that
D(cilx;,d;) = Normal (v + &% + &d;, 03), (1.23)

which implies

D(yj|xi,d;) = Probit (Baxjs + Yadit + Wa + &1 o%i + &2 od;) (1.24)

where X; and d; denote time averages, and the “a” subscript indicates the coefficients are scaled
by 1 /\/TG(%. Therefore, pooled probit of y; on xj, dj;, %; and d; identifies B and ¥ up to
scale. Since the APE depend on the scaled coefficients, they can be estimated consistently with no
problem (Wooldridge, 2010).

Tables 1.1-1.4 in Section 4 show that CRE used on probit data generated with the above process
(or similarly for the logit case) performs well because the heterogeneity enters the equation for
xj; additively; therefore, the o; can be written as a linear function of the time averages of xj.
Consequently, a natural question, is how much better do the fixed effects approaches perform
when the CRE assumption fails?

I explore this question with the panel probit model through the following modifications:

yir = L[ i+ Boxie + Yodir +rig > 0] (1.25)
Xjp = .5x,-),_1 + Vi, t > 1 (1.26)
Xi1 = Vi1, vir ~N(0,1/2) (1.27)
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Where @; ; is one of:
1 &,
o =—1+—Y xj+a (1.28)
VT 5

Xit X0 +x3) +a (1.29)

> (1.30)

Table 1.5 compares the uncorrected fixed effects MLE, MLE with Fernandez-Val’s analytical

o i

1 T
=L

0.125 L » 3
a3;~N|0,exp [— Z(xit+x-t+x-t)
( VT T

Where in the first two cases, a; ~ N(0,1/4).

bias correction, and two estimators based on CRE. One adds X; and d_l to the probit index, and
a more flexible version (CRE2), where the index includes squares of X; and d; and interactions
between the explanatory variables and time averages. I consider panels with 7 =6 and T = 12,

for the dynamically complete case.

1.3.3 Conditional logit and the importance of correcting APE estimates

To evaluate the finite sample properties of APE estimates derived from conditional logit slope
estimates, I generate a panel of logit dependent variables using the process described in (12). I
only consider the p = O case, as conditional logit is not valid when dynamic completeness fails.
I estimate APE using the uncorrected logit MLE, and two conditional logit procedures which
estimate the heterogeneity with a restricted MLE as described on the introduction. One procedure
does not correct for the incidental parameters problem while the other uses Fernandez-Val’s 2009

correction for the logit case.

1.4 Results

For brevity, I mainly report the bias corrections for the probit case. The logit case is qualitatively
similar, though the effect of serial correlation on the Fernandez-Val correction is much less severe.

I also report only the 7 = 6 and 7 = 12 results as they seem to be representative of the short panel
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and long panel cases, respectively. Each of the tables lists the mean and standard deviation of the
estimator, the coverage probability of a 95% confidence interval, and the ratio of the estimated
(cluster-robust) standard error to the standard deviation. They show quite an interesting range of
performance for both the uncorrected MLE and the different bias reduction techniques. Results for

the

1.4.1 Evalauating the dynamic completeness assumption

Tables 1.1 and 1.2 show the performance of the probit slope estimators for different levels of serial
correlation. In line with evidence from the literature, the uncorrected MLE can be severely biased

for the index slopes in the presence of incidental parameters.
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Table 1.1: Probit Estimates of B (By = 1)

p=0 p=04 p=0.8
Mean SD c¢v:.95 % Mean SD c¢v:.95 % ‘ Mean SD  c¢v:.95 %

T=6

MLE 1.36  0.24 0.70 096|156 030 048 0901|249 0.55 0.05 0.83
A-FV09 | 0.96 0.14 0.97 1.15 | 1.03 0.14 0.97 1.17 | 0.63 0.59 0.58 0.29
A-HNO4 | 1.18 0.21 0.87 092|136 026 0.66 083|224 052 0.07 0.72
J-DJ15 085 034 0.64 046 | 0.73 050 0.49 0351080 1.03 0.39 0.28
J-HNO4 | 0.87 0.16 0.82 0951099 020 0.90 0821|143 045 049 0.50
CRE 1.01 0.14 0.95 099 | 1.01 0.15 094 098 | 1.02 0.15 0.93 0.95
T=12

MLE 1.14 0.12 0.79 099 | 1.22 0.13 0.61 099 | 1.61 0.19 0.05 0.96
A-FV09 | 1.00 0.10 0.95 1.03 1105 0.11 094 1.02 133 0.14 0.32 0.98
A-HNO4 | 1.03 0.10 0.94 1.00 | 1.10 0.12 0.87 098|145 0.16 0.16 0.92
J-DJ15 094 0.12 0.82 078 | 0.90 0.16 0.69 062|075 032 0.39 0.31
J-HNO4 | 0.96 0.09 0.93 1.03 | 1.02 0.10 0.95 1.01 | 1.30 0.14 0.38 0.95
CRE 099 0.09 0.95 1.01 | 0.99 0.10 094 098 | 1.00 0.10 095 1.01
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Table 1.2: Probit Estimates of ¥ (yp = 1)

p=0 p=04 p=0.8
Mean SD c¢v:.95 % Mean SD c¢v:.95 % ‘ Mean SD  c¢v:.95 %

T=6

MLE 1.31 026 0.79 098 | 1.52 0.30 0.59 0951249 0.77 0.10 0.65
A-FV09 | 095 0.16 0098 1.26 | 1.02 0.16 0.99 1.32 1 049 0.82 0.62 0.29
A-HNO4 | 1.14 0.22 0.91 1.00 | 1.33 0.27 0.78 093|225 076 0.13 0.54
J-DJ15 078 0.73 0.76 030024 153 054 0.18 | -1.68 2.58 0.17 0.21
J-HNO4 | 0.87 0.17 0.93 1.18 | 0.95 0.32 0.96 065085 1.79 0.59 0.17
CRE 098 0.17 0.95 0991|099 0.16 0.96 1.01 | 1.00 0.15 0.95 0.99
T=12

MLE 1.15 0.14 0.82 1.00 | 1.23  0.15 0.65 099 | 1.61 020 0.11 0.97
A-FV09 | 1.01 0.12 0.97 1.10 | 1.07 0.12 0.95 1.07 133 0.15 044 1.05
A-HNO4 | 1.04 0.12 0.96 1.06 | 1.11  0.13 0.89 1.03 | 144 0.18 0.25 0.96
J-DJ15 095 0.13 091 0931091 0.16 0.83 082064 070 048 0.21
J-HNO4 | 0.97 0.11 0.96 1.13 | 1.03  0.12 0.97 1.09 | 1.30 0.15 0.52 1.06
CRE 1.00 0.11 0.95 1.00 | 1.00 0.11 0.95 098 | 1.00 0.11 0.94 0.97
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In the dynamically complete case (p = 0), bias diminishes as 7" grows, there is still room for
improvement even when 7' = 12. For instance, the uncorrected MLE for y has a bias of 31% when
T =6,butonly 15% when T = 12. As predicted by theory, coverage of the 95% confidence interval
is still somewhat low at 0.82 when 7' = 12, meaning for a 5% significance level, one would expect
to reject a true null hypothesis 18% of the time. As found in previously published simulations,
the correction techniques reduce bias and generally increase coverage. In particular, Fernandez-
Val’s analytical correction performs better than the others in all panels, both in terms of bias and
variance, particularly for the short panels. The split panel jackknife of Dhaene and Jochmans tends
to have higher variance than the others.

If one is concerned primarily with estimating APE, however, the incidental parameters problem
clearly has much less bite, as shown by Tables 1.3 and 1.4. For the dynamically complete case, bias
in the uncorrected MLE for Ly 1s less than 1% for either panel length, while the bias in that of L,
is 4% or less. This supports the “small bias” property for APE estimators found by many previous
studies of static models (Fernandez-Val, 2009). The bias corrected estimators perform well for
the longer panels, but even in the dynamically complete case, many of them have higher bias
than the uncorrected MLE for the short panels. Among the different bias correction techniques,
both corrections from Hahn and Newey (2004) tend to have the smallest bias, while the split panel
jackknife does worse. Additionally, while theory suggests that both corrections reduce bias without
any change in variance, it appears that the jackknife corrections may increase variance, especially

in shorter panels.
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Table 1.3: Probit Estimates of i/ (true value = 1)

p=0 p=04 p=0.8
Mean SD c¢v:.95 g—g Mean SD c¢v:.95 :gg ‘ Mean SD  c¢v:.95 g—g

T=6

MLE 1.00 0.14 094 096|099 0.14 0.93 092 1094 0.14 0.86 0.86
A-FV09 | 096 0.13 0.93 096|094 0.13 0.90 094 | 0.57 044 0.37 0.28
A-HNO4 | 1.05 0.15 0.89 088 | 1.06 0.16 0.88 081 | 1.05 0.16 0.82 0.72
J-DJ15 1.10 0.19 0.78 069 | 1.15 022 0.71 066 | 1.26 022 0.58 0.70
J-HNO4 | 1.04 0.15 0.89 083 | 1.07 0.17 0.84 074 | 1.15 0.19 0.63 0.58
CRE 1.01 0.13 0.96 1.03 ] 1.01 0.13 0095 1.021.01 0.13 0.95 0.99
LPM 095 0.13 094 1.03 1095 0.13 094 1.02 1094 0.13 0.92 1.00
T=12

MLE 1.00  0.09 094 096 | 0.99 0.09 093 0931099 0.09 0.90 0.89
A-FV09 | 0.99 0.09 0.93 0941099 0.09 0.93 091|098 0.09 0.89 0.86
A-HNO4 | 1.00 0.09 0.93 093] 1.00 0.10 0.93 090 | 1.01 0.10 0.90 0.85
J-DJ15 1.00 0.11 0.89 0.81 | 1.01 0.12 0.84 072 | 1.05 0.13 0.78 0.67
J-HNO4 | 1.00 0.09 0.93 093 | 1.00 0.09 0.93 090 | 1.00  0.09 0.90 0.84
CRE 1.00 0.09 0.96 1.01 | 1.00 0.09 094 097 | 1.00 0.09 0095 0.97
LPM 093 0.09 0.88 1.03 1 093 0.09 0.86 1.00 | 0.93 0.09 0.87 0.99

18




Table 1.4: Probit Estimates of ti;/u, (true value = 1)

p=0 p=04 p=0.8
Mean SD c¢v:.95 g—g Mean SD c¢v:.95 :gg ‘ Mean SD  c¢v:.95 g—g

T=6

MLE 096 0.19 0.93 0951097 0.19 0.92 0921096 0.18 0.88 0.84
A-FV09 | 0.93 0.18 0.93 1.01 | 091 0.17 0.92 1.01 | 042 0.56 0.37 0.31
A-HNO4 | 1.00 0.19 0.93 092 | 1.01 0.19 0.92 0.89 | 1.00 0.18 0.89 0.83
J-DJ15 1.09 025 0.81 072 | 1.11  0.26 0.80 0.67 | 1.05 027 0.75 0.60
J-HNO4 | 1.04 0.22 0.89 083 |1.05 021 0.88 079 | 1.05 020 0.83 0.70
CRE 099 0.19 0.95 1.00 | 099 0.18 0.95 1.00 | 0.99 0.17 0.95 1.00
LPM 1.28 0.19 0.68 099|128 0.18 0.67 1.00 | 1.29 0.17 0.62 1.00
T=12

MLE 1.01 0.13 094 099 | 1.01 0.13 0.94 097 | 1.00 0.12 0.94 0.95
A-FV09 | 1.00 0.13 0.94 099 | 1.00 0.13 0.95 0971099 0.12 0.93 0.95
A-HNO4 | 1.01 0.13 0.94 098 | 1.01 0.13 094 096 | 1.01 0.12 0.93 0.94
J-DJ15 1.03  0.15 091 088 | 1.03 0.15 0.88 082 |1.03 0.16 0.87 0.78
J-HNO4 | 1.01 0.13 0.94 096 | 1.02 0.13 093 094 | 1.01 0.12 0.92 0.91
CRE 1.01 0.13 0.95 1.00 | 1.01 0.13 094 098 | 1.00 0.13 0.94 0.98
LPM 1.33  0.13 0.29 1.00 | 1.33 0.13 0.27 099|133 0.13 0.27 0.97
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The simulation results for models where dynamic completeness fails reveal many interesting
implications for the uncorrected and corrected fixed effects probit estimators. To begin with, higher
levels of serial dependence in the error terms and y;; exacerbate a practical difficulty in performing
MLE while treating heterogeneity as parameters to be estimated. The problem relates to the fact
that the partial effect is not well-defined for an individual j whose value of y;; is constant. In
this case, the dummy variable for observation j perfectly predicts the outcome, so the estimate
of a; is technically unbounded (Fernandez-Val, 2009). These observations are therefore dropped
from the estimation sample. These individual’s contributions to the sample APE are equal to zero.
The true a’s in these cases tend to be larger in magnitude, and while this means m(fy, ¥, @, zir)
will be smaller by the properties of the standard normal PDF and CDEF, it should still be strictly
positive. This explains the tendency of MLE to under-predict APE (Alexander and Breunig, 2014).
Additionally, there may be distributional differences between the subpopulation that has a changing
response and the population in general that could cause additional bias.

The probability of observing an individual with a constant y;; increases significantly in the
shorter panels as serial dependence in the errors increases. To illustrate, for T =6 and p =0,
across the 1000 replications, 21% of the individuals were dropped on average, while for 7 = 6 and
p = 0.8, 32% were dropped on average. For comparison, with 7 = 12, this dropping rate was only
7.5% for p =0 and 14.5% for p = 0.8. Splitting the panel for Dhaene and Jochman’s jackknife
makes this much worse, especially when the panel is only six periods long to begin with. Prac-
tically speaking, losing more observations makes it more likely that the numerical maximization
algorithm will not converge (at least when N is relatively small). The worst case of this occurring
in this study was for the split-panel jackknife in the T = 6, p = 0.8 case, in which 32% of replica-
tions had a failure to converge. Similar rates of non-convergence occurred as well for (unreported)
runs of the uncorrected MLE and analytical corrections with high p and only three or four time
periods.

The results show that, as expected, the failure of dynamic completeness significantly increases

the bias and decreases the precision of all of the fixed effects slope estimators. By design of the
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data generating process, this bias is separate from the scaling that would occur from the latent
model errors having non-unit variance as a result of their autoregressive structure. In the worst
of cases, the means of the split-panel jackknife estimates of 7y for the shorter panels even have
the wrong sign when p = 0.8. For small panels, the standard errors of the corrected estimators
also do a poor job estimating the true standard deviations. The increased bias is not surprising
given that in the presence of unobserved heterogeneity, a conditional independence assumption
for {y;1,yi2,--.,vir} is required to identify unscaled slope parameters in the panel probit model
(Wooldridge, 2010). Fernandez-Val’s analytical correction and Hahn and Newey’s jackknife con-
tinue to mitigate the bias and perform relatively well when p = 0.4. While they still provide an
improvement over the uncorrected MLE when p = 0.8, they are still severely biased.

The performance of the fixed effects estimators in estimating APE is much more relevant when
dynamic completeness fails. In the case of the short panel (T = 6), the effect of higher serial corre-
lation in the errors on the performance of the fixed effects estimators is quite mixed. Comparisons
between estimators in Tables 1.3 and 1.4 suggest that the analytical correction proposed by Hahn
and Newey seem fairly robust to serial correlation, with biases in APE estimates of 6% or less.
Bias in the Fernandez-Val correction only increases slightly at low-to-moderate levels of serial
correlation, but the combination of high autocorrelation and short panel length causes a substantial
downward bias of 40% to 60%. With the longer panels, however, the effect of p on the bias of this
and the other corrections is much smaller, 2% or less for the 7 = 12 case.

The effect of p on the jackknife APE corrections is different for each explanatory variable.
For instance, the bias in the split-panel jackknife APE estimates for x increase with higher p in
the 7 = 6 case, but those for d appear to be less affected. Hahn and Newey’s jackknife shows a
very similar pattern, but with much smaller variance of the estimators. Furthermore, the results for
the split-panel jackknife illustrate that slope and APE estimates do not necessarily agree in sign.
This is another drawback to using this procedure on short panels, since splitting the panel increases

variance substantially. Perhaps larger N would mitigate this problem.
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1.4.1.1 Comparison with uncorrected MLE

As in the dynamically complete case, it is important to note that the uncorrected APE estimators
often have lower bias than either the analytical or jackknife corrected estimators, especially for
the short panels. For longer panels, the uncorrected MLE, analytical corrections, drop-one-period
jackknife, and CRE behave very similarly, while the split-panel jackknife has higher variance. For
comparison, the CRE and LPM are not really affected by either failure of dynamic completeness or
the length of the panel. The structure of the data is such that one would expect CRE to do well. As
a side note, I found that a generalized estimating equations approach with either an exchangeable
or AR(1) covariance matrix was not much more efficient than pooled MLE for the CRE model. In
contrast to the CRE, the best linear approximation performs fairly well for the continuous variable

(bias of 5 —7%) but does not perform very well for the discrete variable (bias of 28 — 34%).

1.4.2 Comparing bias correction and CRE under more general forms of heterogeneity

Table 1.5 compares probit APE estimates for the continuous variable x using the uncorrected MLE,
Fernandez-Val correction, and two Correlated Random Effects estimators, described in Section 3.
I consider panels with 7 = 6 and 7 = 12, in the case of serially independent errors. The estimators
are compared across three different forms of heterogeneity which do not satisfy the conditional
distribution assumptions for either CRE estimator. The uncorrected MLE and Fernandez-Val cor-

rection, in contrast, place no restriction on the nature of the heterogeneity.
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Table 1.5: Probit Estimates of Ly /i, Under Different Heterogeneity (true value = 1)

ay (0%} a3
Mean SD c¢v:.95 % ‘ Mean SD c¢v:.95 ‘S% ‘ Mean SD c¢v:.95 g—g

T=6

MLE 1.00 0.16 0.92 0901|098 0.23 0.91 0.86 099 0.15 0.92 0.90
A-FV09 | 0.96 0.15 0.92 0911093 0.21 0.89 0.87 1095 0.14 0.90 0.90
A-HNO4 | 1.04 0.16 0.88 0.83 | 1.03 0.24 0.87 078 | 1.03 0.16 0.88 0.82
CRE 076 0.15 0.59 096 | 0.75 020 0.74 1.03 1095 0.15 0.92 0.99
CRE2 0.78 0.15 0.65 0951076 020 0.75 1.01 | 096 0.15 0.93 0.98
T=12

MLE 099 0.12 0.91 0.89 1098 0.18 0.85 076 | 1.00 0.10 0.92 0.91
A-FV09 | 098 0.12 0091 0.88 | 0.97 0.18 0.84 0751099 0.10 0.92 0.90
A-HNO4 | 1.00 0.12 0.91 0.87 1 099 0.18 0.84 074 | 1.01 0.10 091 0.89
CRE 0.68 0.11 0.22 1.01 1079 0.17 0.72 098 [ 0.95 0.10 0.92 1.02
CRE2 070 0.11 0.26 1.00 | 0.80 0.17 0.73 0971096 0.10 0.93 1.01
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Since the pooled-MLE version of CRE only identifies slope parameters up to scale, I only
report on the APE. The tables show that the bias in the CRE estimators is higher in all three
specifications. For instance, in the second specification (& = o), CRE underestimates the APE
of x by about 25% when T = 6, while the biases in the uncorrected MLE and the Fernandez-Val
correction are only 2% and 9%, respectively. The results for the APE of d were comparatively
similar, though the CRE estimators tended to have a positive bias. This illustrates the importance
of the functional form assumption when specifying a CRE model, and suggests an advantage in

the FE approaches as they place no restrictions on the ¢;.

1.4.3 Conditional logit and the importance of correcting APE estimates

Table 1.6 explores a possible approach to handling unobserved cross-sectional heterogeneity in
logit models where the response variables are conditionally independent. Using conditional logit to
consistently estimate slope parameters does not allow for estimating average partial effects unless
the researcher can somehow recover estimates of the ¢;. One way 1is to estimate them by MLE,
restricting the slope parameters to their conditional logit estimates, but this causes bias in APE
estimates. The table shows the APE estimates (for the continuous variable x) from the uncorrected
pooled logit MLE, conditional logit without correcting the APE estimates (denoted CLOG), and
conditional logit where the APE have been corrected using Fernandez-Val’s formula (CLOGC).

Simulations for the APE of d showed a very similar pattern.
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Table 1.6: Corrected and Uncorrected Logit Estimates of i/ (true value = 1)

p=0 p=04 p=0.8
Mean SD  c¢v:.95 g—g Mean SD  c¢v:.95 g—g ‘ Mean SD  c¢v:.95 g—g

T=6

MLE 1.01 0.19 0.95 1.01 | 1.01 0.18 0.94 099 | 099 0.18 0.92 0.88
CLOGIT 0.87 0.16 0.93 1.14 | 0.87 0.16 0.91 1.10 | 0.87 0.15 0.82 0.93
CLOGIT-C | 1.00 0.18 0.94 1.00 | 0.99 0.18 0.93 0.97 1098 0.17 0.90 0.83
T=12

MLE 1.00 0.12 0.95 1.01 | 1.00 0.12 0.95 1.01 | 1.00 0.12 0.94 0.95
CLOGIT 094 0.11 0.94 1.06 | 094 0.11 0.94 1.06 | 094 0.11 0.91 0.99
CLOGIT-C | 1.00 0.12 0.95 1.00 | 1.00 0.12 0.95 1.00 1 099 0.12 0.93 0.94
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The table illustrates a couple of interesting points. First, the uncorrected conditional logit
APE estimates have biases that are 5-13 percentage points higher than the corrected versions.
This shows that inconsistent estimation of the ¢; is a significant problem even when a consistent
procedure is used to estimate the slope coefficients. Moreover, these suggest that the “small bias”
property in the uncorrected MLE APE estimates observed earlier is the result of two competing
biases. In the case of this chapter’s data generating process, an upward bias in the slope estimate
is being offset by a scale factor that is biased toward zero. Using a procedure like conditional logit
(or any bias correction) while failing to correct APE estimates removes only one source of the

problem and may increase the bias compared to doing no correction at all.

1.4.4 Empirical example: Welfare participation

As an additional demonstration of the relative performance of these fixed effects estimators, I ap-
ply them to a dataset on participation in Aid to Families with Dependent Children (AFDC), a U.S.
welfare program. The data are by way of Chay and Hyslop (2014), who use the 1990 Survey of
Income and Program Participation (SIPP). The panel consists of AFDC participation, age, race,
marital status, number of children, and poverty level for 1,934 women who either received bene-
fits or had income below a certain threshold at some point during the sample period. As welfare
participation is a binary response that is thought to be highly persistent over time, Chay and Hys-
lop differentiate between unobserved heterogeneity, and structural state dependence as sources of
persistence, finding significant evidence for the latter using dynamic estimators under varying as-
sumptions about the nature of the heterogeneity and initial conditions (Chay and Hyslop, 2014).
Although their findings suggest that a dynamic model may be more appropriate, these data still
provide an interesting and relevant setting for evaluating the bias-corrected fixed effects estimators
in the static case. Table 1.7 lists slope parameter estimates for two key determinants of participa-
tion, marital status and number of children. Note that in addition to several control variables, these
specifications include time period dummies. While technically, they are also incidental parameters

under large-T bias corrections, it is customary to include them in this type of analysis. In (unre-
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Table 1.7: Welfare Participation: Slope Estimates

Full Sample Sample with changing participation
CRE MLE A-FV09 A-HNO4 J-DJ15 J-HN0O4 CRE
&) 2) 3) “ ®) (6) (7
Marriage -0.986 -1.908  -1.579 -1.730  -1.822  -1.565 -1.462
(0.011) (0.208) (0.178)  (0.189) (0.229) (0.176) (0.022)
Kids 0.162 0.481 0.409 0.437 0.447 0380  0.358
(0.001) (0.104)  (0.098)  (0.100) (0.121) (0.096) (0.006)
N=1934 | N*=494
T=8 T=8

Controls include education, poverty level, a quadratic in age, a race dummy,

and time period dummies. Standard errors were clustered by individual
ported) simulations with true time effects, I found that the additional bias caused by their inclusion
to be smaller and that it did not change the relative performance of the different FE estimators. Ta-
ble 1.8 lists estimated APE. Unlike the simulations, these tables include CRE and LPM estimates
over the estimation subsample of the fixed effects estimators. This application highlights the prob-
lems that may arise when many individuals have responses that do not change. In this case, only
494, or roughly 25% of women in the sample had participation that changed over the 32 months
of the survey. In the worst simulation case (T = 6,p = 0.8) 68% of the sample still had responses
that changed. Practically speaking, not only does this increase variance of the estimators, but it
potentially exacerbates any bias stemming from sample selection (which did not appear to be much
of a problem in the simulations).

The bias-corrected slope estimates in both cases are smaller in magnitude than the uncorrected
MLE, and are similar in magnitude to CRE estimates over the subsample of changing responses,
though quite different from the CRE estimates over the whole sample. Probit slope estimates from
the 1998 and 2014 versions of Chay and Hyslop range from -0.934 to -0.658 for the marriage
variable, and 0.11 to 0.152 for the kids variable. Both are much smaller in magnitude than the non-
linear fixed effects estimates suggesting that persistence, state dependence and/or sample selection

are playing a significant role.
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Table 1.8: Welfare Participation: Average Partial Estimates

Full Sample Sample with changing participation
CRE LPM MLE A-FV09 A-HNO4 J-DJ15 J-HN0O4 CRE* LPM*
M 2 3) “4) 5) (6) (7 (8) )
Marriage -0.260 -0.271 | -0.112  -0.110 -0.115  -0.162 -0.129 -0.112 -0.126
(0.001) (0.001) | (0.007) (0.008) (0.007) (0.008) (0.008) (0.000) (0.000)
Kids 0.047 0.052 0.034 0.033 0.035 0.049 0.034 0.034 0.033
(0.000) (0.000) | (0.007) (0.007) (0.007) (0.007) (0.007) (0.000) (0.000)

N=1934 N*=494
T:8 T:8
*Sum of partial effects divided by full sample size for comparison with FE estimators
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The 1998 version of Chay and Hyslop contains several estimates of LPMs, including the static
model estimated with fixed effects (column 2 of Table 2), which are compared to the bias-correct
APE estimates in Table 1.8. The Chay and Hyslop estimates (that account for heterogeneity) range
from -0.271 to -0.143 for marriage and from 0.029 to 0.068 for kids. The bias corrected estimates
range from -0.162 to -0.110 for marriage and from 0.033 to 0.050 for kids, which seem more in
line than the slope estimates, echoing previous research and the simulation evidence in this chapter

for the “small bias” property.

1.5 Conclusion

The simulation evidence in this chapter suggests that these bias corrections continue to estimate
APE fairly well when the level of serial correlation is low to moderate, but strong serial correlation
may cause bias when the panel is short. As such, dynamic completeness may be a substantive
requirement unless the researcher has access to many time periods of data. Estimation in shorter
panels may also present sample selection or computational challenges. While it may seem unfair
to evaluate a technique based on large-T asymptotic approximations using panels with only six
time periods, others have suggested these techniques have desirable properties in large-N, small-T
settings. Moreover, the results of this chapter suggest that if a researcher is primarily concerned
with estimating APE in a static model, then the included bias correction techniques may offer
little benefit relative to the uncorrected MLE while adding the cost of a more complicated estima-
tion procedure. It should be noted, however, that the “small bias” property of APE does not hold
in dynamic models, where correction techniques have been found to decrease bias substantially.
Additionally, I find that the fixed effects approach (with or without a bias correction) may offer
advantages over CRE when the heterogeneity does not satisfy the CRE assumption. I also find ev-
idence that highlights the importance of correcting for inconsistent estimation of the heterogeneity
terms when a consistent procedure is used to estimate the slopes.

There are many important avenues for future research. First and foremost, an interesting ques-
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tion is how well the analytical bias correction of Hahn and Kuersteiner (2011) performs in this
setting. It accommodates serial correlation in theory, but requires “moderately large 7.” Further-
more, in practical applications like a policy or program analysis, it is important to control for time
effects, which I did not include in this set of simulations. The reason is that under the large-T
asymptotics that justify these corrections, time dummies are also incidental parameters. I did run
a set of simulations over the same values of p and 7 where time effects were estimated, but not
part of the true data generating process for y;;. I found that the same relative patterns held across
estimators as in this chapter, but the additional incidental parameters caused slightly higher bias
in slope parameters and virtually no increase in bias for APE except for the short panels, where
bias increased slightly. Fernandez-Val and Weidner (2016) allow for both time and cross-sectional
heterogeneity in analytical and jackknife corrections. However, the results depend on N /T being
constant in the limit. Therefore, unlike the wide and short panels included in this chapter, their

application is intended for settings where N and T are of similar magnitude.
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CHAPTER 2

EXPONENTIAL PANEL MODELS WITH COEFFICIENT HETEROGENEITY

2.1 Introduction

The fixed effects Poisson (FEP) estimator, also known as multinomial QCMLE, is an attractive
choice for modeling nonnegative responses whose conditional means contain an unobserved indi-
vidual effect that may be correlated with the explanatory variables. Unlike other conditional-ML
estimators, notably the FE logit, FEP does not require assuming a full distribution or conditional in-
dependence (Wooldridge, 1999). This chapter considers the exponential conditional mean, which
is logically consistent for nonnegative dependent variables and has the feature that coefficients on
the regressors can be interpreted as semi-elasticities.

The focus of this chapter is an extension to the unobserved effects exponential model that al-
lows for additional heterogeneity in the form of random coefficients. While there is some literature
considering Poisson variables in this setting, less insight exists into how to proceed for other non-
negative or non-count variables, or even what the consequences are of ignoring the heterogeneity.
In the linear unobserved effects model with strictly exogenous regressors and random coefficients,
for instance, it is straightforward to show that fixed effects OLS is consistent for the means of the
coefficients so long as they are mean-independent of the time-demeaned regressors. This is not
necessarily true for nonlinear models, as this chapter shows for the exponential case. Moreover,
it is unknown whether other quantities of interest, like average partial effects (APE), can be con-
sistently estimated while ignoring coefficient heterogeneity. Furthermore, much of the literature
assumes all sources of heterogeneity are independent of covariates, which can cause inconsistent
estimation of coefficient means as well as type II errors in tests for random coefficients

These potential complications motivate testing for neglected heterogeneity. An LM test in the
style of Chesher (1984), however, is likely to reject when the Poisson distribution is misspecified

or when conditional independence fails. Therefore, I extend this methodology specifically to the
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FEP setting, deriving a simple variable addition test that is more broadly applicable. Furthermore,
I propose a method for parametrically identifying the means of random coefficients that leads to
estimators that are computationally simple related to existing approaches to random coefficients in
this model. One novel contribution of this chapter is to treat random coefficients and the traditional
multiplicative effect! separately, as the latter can be handled without restricting their dependence
on explanatory variables. I also provide estimators of average partial effects. In an application
to the patent R&D relationship among U.S. manufacturing firms, I find evidence of heterogeneous
elasticities and lagged effects, though the results are not robust to changes in the estimation sample.

The rest of this chapter is organized as follows: Section 2 gives an overview of the existing
literature, Section 3 reviews the FEP model and the classical test for the Fixed Effects Poisson
case, before proposing this chapter’s theoretical contributions. Section 4 contains a Monte Carlo
experiment for the methods proposed, while Section 5 describes the empirical application. Section

6 consists of a brief conclusion and direction for future research.

2.2 Literature Review

Applying Andersen’s (1970) conditional ML methodology, Hausman, Hall, and Griliches (1984)
developed the FEP estimator for count data that allows arbitrary dependence between the unob-
served effect and the regressors. They implemented their techniques to analyze the patent-R&D
relationship in the U.S. manufacturing industry. Wooldridge (1999), showed that correct specifi-
cation of the conditional mean and strict exogeneity of the regressors (conditional on the unob-
served effect) were sufficient for consistency of FEP, broadening its application as a quasi-CMLE.
Cameron and Trivedi (2013) considered the panel unobserved effects Poisson model with random
coefficients in a “random effects” setting where all heterogeneity were assumed to be normally

distributed and independent of the regressors. They concluded that “unlike for the linear model,

IThe multiplicative effect can also be expressed as a random intercept inside the exponential
conditional mean function.
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the conditional mean for the random slopes model differs from that for the pooled and random
effects models, making model comparison and interpretation more difficult.”

Lagrange multiplier (LM) statistics are attractive in testing for coefficient heterogeneity be-
cause they use parameter estimates from a restricted model which can be simpler to estimate. In
this case, the restricted model is FEP, for which built-in procedures exist in Stata and other pro-
grams. Moreover, LM tests are valid for null values on the boundary of the parameter space,
unlike Wald tests, which is important because parameters (i.e. variances) associated with random
coefficients should be nonnegative (Wooldridge, 2010). Random coefficients are an example of
neglected heterogeneity that Chesher (1984) derived a test for in the ML setting. Chesher, as well
as Lee and Chesher (1986), developed methodology for deriving test statistics in this and other
settings where scores are identically zero under the parameter restriction. Greene and MacKenzie
(2015) applied this methodology to random effects probit MLE. Hahn, Newey, and Smith (2014)
extend Chesher’s to moment condition estimators like Generalized Method of Moments (GMM).
Hahn, Moon, and Snider (2015) allow for dependence between the heterogeneity and covariates
when testing the likelihood setting, though they also find that tests that treat the heterogeneity and
regressors as mean and second-moment independent still have power under alternatives where this
is not true. A common feature of tests for neglected heterogeneity in the likelihood setting is that
they have the interpretation of being either for information matrix (IM) equality or for overdis-
persion, making them less attractive for settings where researchers do not want to fully specify a
distribution. I derive a test for slope heterogeneity in exponential models that does not have this
drawback.

A Poisson-normal mixture model like the one described by Cameron and Trivedi is one of
the “Generalized linear latent and mixed models” studied by Rabe-Hesketh and Skrondal (2004).
The likelihood function consists of a multi-dimensional integral that must be numerically approxi-
mated, limiting its application to models where only a small number of coefficients are believed to
be random. The authors used adaptive Gaussian quadrature to estimate a model of seizure counts

for 236 subjects of (randomly assigned) epilepsy treatment trial, where both the intercept and the
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coefficient on a variable for time of visit were allowed to be vary by individual. While a random ef-
fects approach makes sense for the experimental setting, treating the heterogeneity as independent
of covariates can cause inconsistent estimation in many economic applications.

Wang, Cockburn, and Puterman (1998), do allow dependence between the heterogeneity and
explanatory variables in the panel Poisson setting, assuming a parametric form for the dependence
as well as a particular distribution for the heterogeneity. With the patent-R&D relationship in mind,
they propose a mixed-Poisson regression approach which assumes that the coefficients follow a
discrete distribution with finite support, modeling the probability mass at each point as multinomial
logit. Their method involves using economic intuition or selection criteria to select the number of
support points. Moreover, they suggest using a continuous model for the coefficients if model
selection criteria indicate four or more points of support. My paper complements their work by
proposing such a model. One benefit of my approach is that as in FEP, cases I can allow an
unrestricted relationship between the explanatory variables and the multiplicative effect, as well as

analyze non-counts.

2.3 Theory

2.3.1 The fixed effects Poisson model with coefficient heterogeneity

The standard fixed effects Poisson model with an exponential mean function assumes:

E(yif|x;,ci) = E(yir|xit,ci) = ciexp(xi: By) (2.1)

fori=1,...,N;t =1,...,T. In this expression, x;; is a 1 X K vector of time-varying explanatory
variables, ¢; is unobserved heterogeneity, and B is a K x 1 unknown vector of coefficients.?
Equation (2.1) implicitly assumes that x;; is strictly exogenous. Hausman, Hall, and Griliches

(1984) showed that if conditional on x; = {x;1, ..., X;7 } and ¢;, the y;; are independently distributed

2Wooldridge (1999) considered conditional mean functions of the form ¢;m(x;, B)) of which
m(x;, Bo) = exp(x;Bo) is a special case.
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as Poisson with mean given by (2.1), then conditioning on n; = Z;T:1 vir results in the multinomial
distribution for {y;i,...,yir }-
The multinomial log-likelihood is
T
WW:EWMMWWL (2.2)
where

. exp(xitB)
pi(xi, B) YT exp(xiB)’ (2.3)

The feature that ¢; enters conditional mean function multiplicatively means it cancels out of

pt(x;, B) and therefore /;(B), meaning dependence between c¢; and x; may remain unrestricted.
This structure also has the consequence that coefficients on time-constant regressors are not iden-
tified because these terms also cancel. This model is particularly attractive because as shown by
Wooldridge (1999), B maximizes the expected value of 2.2 as long as (2.1) is true. Therefore,
under additional regularity conditions, FEP consistently estimates B with N growing and T fixed.
Notably, consistency does not require a distribution assumption for the responses and allows them
to be arbitrarily serially correlated (Wooldridge, 1999).

Condition (2.1) generally fails, however, if the coefficients in the conditional mean function

vary by individual i, as in the following:
E(yit|xi,ci;bi) = E(yir|Xir, ci, bi) = ciexp(xiby), (2.4)

where now b; is a K x 1 vector of unobserved random variables such that E(b;) = B;. Defining
d; = b; — B, the conditional mean in (2.4) is equivalent to c¢;exp(x; B + x;;d;), meaning one
interpretation of the heterogeneity is unobserved interactions in the index of the mean function.
There is a more practical, economic interpretation as well. Assuming element j is not functionally

related to any other elements of x;;, then

dlog [E (yit|x;,ci, b;))
axl'tj

= bjj, (2.5)
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so model (2.4) implies semi-elasticities of the conditional mean of y; that vary by individual. If
xjtj 1s the log of another variable, as in some applications, then the b;; are individually-varying
elasticities.

An immediate consequence is that the heterogeneity likely causes specification error if we want
to use FEP assuming (2.1). To see this, suppose for concreteness that d; is continuous, and write
its PDF conditional on x; and ¢; as f(.; W), where Y is an unknown parameter that is nonzero
only if the coefficients are random. It follows under (2.4) and the Law of Iterated Expectations

(LIE) that
E(yit|xi,¢i) = ciexp [xi Bo+ 8 (xi,Xir, cis Wo)] , (2.6)

where

gt (i, i, ¢i3 Wo) = log { E [exp(x;:d;) |x;, ¢;]} = log{//RK eXP(xitdi)f(di|xi>Ci)ddi} . 27

assuming the expectation exists. The exponential function now contains an unknown term that
is generally nonzero and varies over time.> Depending on what we are willing to assume about
the dependence between b; and x;, we may not be able to distinguish between coefficients that
are random and a more flexible functional form. The consequence of ignoring the coefficient
heterogeneity is that now (2.1) is not correct, and so FEP of y;; on x;; can no longer be shown
to be generally consistent for B. This is true even under ideal conditions like independence
between b; and {x;,c;} In fact, simulation evidence from Section 4 suggests that substantial bias
and inconsistency for FEP in this case. This is to contrast with the linear unobserved effects model
with random coefficients, in which Fixed Effects OLS is consistent for the means of the coefficients
so long as the coefficients are mean independent of the time-demeaned regressors (Wooldridge,
2010). In this case, the random coefficients cause a certain form of system heteroskedasticity in

the idiosyncratic errors that is handled completely with robust inference.

31f g/ (x;, ci; Wy) were time-constant, then it would also cancel from py (x;, B, y) and FEP would
be consistent, but there is no reason to think this should be the case with time-varying x;;.
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2.3.2 Testing under full distributional assumptions

If the y;; are count data and researchers are willing to take full distributional assumptions seriously,
the approach of Chesher (1984) provides a simple LM test. The slopes are not allowed to depend
on the covariates or ¢; under the alternative, which avoids having to specify a particular joint
distribution for b; and x;. However, lack of power may be an issue in alternatives where b; depends
on x;. Findings of Hahn, Moon and Snider (2015), however, suggest that this is less of a concern

in nonlinear models. The following statements formalize the assumptions:

vit|(xi,¢i,b;) ~ Poisson[ciexp(xib;)],i=1,...,N;t=1,...,T, (2.8)
{yil,-..,yir} are independent conditional on {x;,c;, b;} (2.9)
b; = By + Aou;, where u;|(x;,c;) ~ F(0,Ig), (2.10)

where I is the K x K identity matrix.

From Chesher (1984), assumption (2.10) does not assume a particular distribution for b;, but
specifies that they follow a “location-scale generalization of the class of spherical distributions”
described by Kelker (1970). Denote the PDF of u; as f().

It follows that
yil(ni, x;,ci,b;) ~ Multinomial (n;, py(x;, b;),. .., pr(x;,b;)), (2.11)

where

ib;) = L VA 2.12
Pi(i:bi) Y7 exp(x;b;) &12

Therefore, the log-likelihood for an observation i, integrating out the random part of the slopes, is

N r
£(B.A) = log { ey S (G f<ul->dui} , @13)

=1

where the integral is of K dimensions.
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An LM test of Hy : Ag = 0 is attractive because in this case, b; = B, and so the restricted
model can be estimated using FEP. It also turns out that the restricted score does not depend on the
unknown PDF f().

However, the parameterization of this model causes a complication in deriving the restricted
scores, as described by Chesher (1984) and Lee and Chesher (1986) for a more general class of
models. It turns out the score of the unrestricted model evaluated at the parameter restriction is
identically zero.* Chesher (1984) proposed re-parameterizing the scale assumption and restricting

the correlation among the heterogeneity allowed under the alternative.’

Aozdiag{\/z,...,\/a} (2.14)

Allowing no covariance between coefficients may affect power under alternatives in which this
does not hold, but at the same time, information about the covariances is only relevant if there
is evidence that the variances are nonzero.® Under (2.14), the restricted score has the 0/0 form,
but the limits follow from L'Hopital’s rule. The algebraic details are collected in Appendix C.

Collecting the A; in the K x 1 vector A, the restricted score is:

3\

(57 vie[Vopi(xi.BY /pi(x:, B)
N la 5
si(B,0) Egino{vef(ﬁ,/l)’} - ; 2 f) , (2.15)
\ sag(x;,B) )

where aj(x;, B) is the (j, j)th element of
A(x;,B)
T T e
=Y Vgt (B)+ (Z Vﬁffﬁ-‘ﬂﬁ)) <Z V,;ﬁf-‘f(ﬁ))- (2.16)
t=1 t=1 =1

4See Appendix C for the derivation.

SChesher’s solution would be to assume Ay = \/%I K

OThe relevant alternative, strictly speaking, should be that at least one 4 ; o > 0, but for simplic-
ity, the two-sided alternative is treated here, as in Chesher (1984).
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M

In this last expression, £;7

is the multinomial log-likelihood for observation i in period ¢.

The outer product of the score version of the LM statistic is then N times the uncentered R-
squared from the regression of 1 on E;, where for each observation i, s; is the appropriate summand
in right hand side of (2.15) evaluated at E pep- The advantage to this approach is its relative
simplicity. The unrestricted model may be even computationally infeasible to estimate, but a test
of the null hypothesis of constant coefficients is relatively easy to implement.

The downside of this approach concerns robustness to failure of (2.8) or (2.9). Chesher (1984)
notes that statistics derived using this approach resemble White’s (1982) information matrix test for
general model misspecification, as E [A(x;, B)] = 0 if the conditional multinomial distribution is

correct. This means coefficient heterogeneity cannot be distinguished from failures of the model’s

other assumptions, such as the Poisson distribution or conditional independence.

2.3.3 Testing under weaker assumptions

In the previous section, I showed the classical test applicable to conditionally independent Pois-
son dependent variables. While the statistic is simple to calculate, the test is likely to reject in
cases where the Poisson or conditional independence assumption fail regardless of the presence
of random coefficients. This is similar to the case of a linear model where the presence random
slopes (that are assumed to be independent of covariates) is indistinguishable from a certain form
of system heteroskedasticity. In this section, I extend Chesher’s approach to testing for neglected
heterogeneity to the FEP setting where only the conditional mean of y;; is assumed to be correctly
specified. I show that an LM test of exclusion restrictions on squared regressors is valid when the
coefficients are allowed to belong to a location-scale family under the alternative.

As before, assume:
E(yif|x;,ci,bi) = E(yit|xir, ci, bi) = ciexp(x;:b;) (2.17)
and

b; = By + Agu;, where uj|(x;,c;) ~ F(0,Ig), (2.18)
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where again the CDF F () and the corresponding PDF f() are left unspecified.

Similar to before, these conditions imply:

E(yif|x;,c;) = ciexp [xi; By +me(x;,Ag)] , (2.19)

where

o) = o {E expCx Ao i) =10g { [ exole doms(u)am p. - 220)

It is easy to see that m;(x;,0) = 0. In the multivariate normal case, m;(x;,Ag) = letﬂoxlt,

where Q) = AOA6. Rejecting Hy : Ag = 0 provides evidence against the null of constant coeffi-
cients.

I follow Chesher’s derivation of the LM statistic as before, but unlike other methods, I only
integrate u; out of the conditional mean function, not the entire likelihood or score. The unrestricted

quasi log-likelihood is

T
ti(B,A) =Y yirlog[p:(x;, B,A)], (2.21)
=1
where
exp (xi: B + my; (x;, A)) '
23:1 exp (x;-B + my (x;,A))

The first K elements of the unrestricted score evaluated at A = 0 are just the usual FEP scores.

pt(xi7B7A)

(2.22)

The gradient with respect to A evaluated at A = 0, however, presents a similar problem as before. I
make the same re-parameterization as before, shown in equation (2.14), restricting the coefficients
to be uncorrelated with each other under the alternative. The restricted scores have a 0/0 form and
are evaluated using L’Hopital’s Rule. The details are collected in Appendix C.

The score evaluated at the parameter restriction is:

(

ZtT:] Vit [Vﬂpt (xiuﬁao)//pl‘(xi7ﬁ70)]

5i(B,0) = %Z;T:l)’it [Zr 1exp(xzrﬁ) <‘111 Xirl ﬂ /Zr 1exp<xirﬁ) . (2.23)

L 22; 1 Vit [Zr—l exp(x;-B) < Xitk xHK)] /Zr—leXp(-xirﬁ))
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The last K elements are proportional to the restricted FEP scores for testing the exclusion of
squared regressors from the model with constant slopes. Therefore, in the exponential case, we
cannot distinguish random coefficients from the presence of quadratics in E(y;|xj,c;). As an
empirical matter, however, this test takes no stand on the (conditional) distribution, overdispersion,
or serial correlation of y;;, so it may offer some advantages to the approach in Section 3.2. For
example, if a researcher rejects the null using the test based on (2.15), but fails to reject based on

(2.23), then he or she can proceed in estimating the model based on (2.1) with some peace of mind.

2.3.4 A correlated random coefficients approach to testing and estimation

When one wishes to allow more than one or two slopes to be random, “random effects” type es-
timation based on integrating out the heterogeneity is computationally difficult and may not be
robust to misspecification of the response variable’s distribution. A straightforward alternative,
which is applicable not only to counts but also to other nonnegative responses, is to make a para-
metric, distributional assumption for b; that allows us to derive E [exp(x;,d;)|x;,c;]. Here, I assume

correlated random coefficients (CRC) and (conditional) multivariate normality:

b; = ay+To¥} +d;,

d;|(x;,c;) ~ Normal(0,9Q), (2.24)

where X; = ZIT:1 Xjs, O is an unknown K x 1 vector, and I'(y is an unknown K x K matrix. This as-
sumption states that the dependence between x; and the mean of b; is captured entirely through the
time averages of x;;, and is the application of Mundlak (1978) to the current setup. Alternatively,
one could allow the mean of b; to depend on x; in the style of Chamberlain (1980). If I'g = 0, then
(2.24) amounts to a stronger version of (2.10) where then &y = B. Note that (2.24) only requires
multivariate normality of the coefficients conditional on x;; their unconditional distribution may
not be normal, though logically speaking it should be continuous and have unbounded support.
Condition (2.24) also implies b; and ¢; are independent, conditional on x;. This is less restrictive

for testing purposes because b; is constant under the null, but it could affect power under alterna-

41



tives where the two are dependent. The two sources of heterogeneity are still allowed, through x;,
to be correlated unconditionally. As in FEP, the relationship between x; and ¢; is left completely
unrestricted.

Under (2.4) and (2.24), it follows from properties of the lognormal distribution and the LIE

that

E(yie|xisci) =E (yir |xiz, %1, ¢;)
1
=c;exp (x,-, o +xl~,1"05c;» + Exitﬂox§t>
1 K 5 K—-1 K
=c;exp | x;;@g+ (X; @ x;)vec(Tp) + 5 Z WXjy +2 Z Z PjnXit jXith
J=1 J=1h#j

_ 1,
=cjexp (xit oo+ (X; ®@xi) Yo + %t (00) , (2.25)

where Yo = vec(To), Xi = (X5 1, - - X5 g Xir 1 Xir2 Xig 1 Xir3 - - - Xit K—1%itK )

) = (0,...0,2012,2p13 .-, 2Pk—1,k)"» ®j = Var(b;), and pjj, = Cov(b,by,).

Equation (2.25), along with regularity conditions, implies that FEP of y;; on x;;, interactions
between x;; and X;, and squares and interactions of x;; will consistently estimate @, ¥, and @
without assuming a distribution for y;; and while allowing arbitrary serial correlation (Wooldridge,
1999).

Following estimation of (2.25), the unconditional means of the b; are easy to estimate using

the following, where i3 = E(X;):
Bo=E(b;) = ag+Touk, (2.26)

I believe that using the lognormal distribution in the FEP setting is novel and that it offers
the crucial advantage of still allowing one source of heterogeneity to be correlated with x;.” This

procedure is easy to implement, as the FEP estimator is available in software packages like Stata,

7A similar result appeared in Cameron and Trivedi (2013) for the case where bi|x;,c; ~
Normal(B, Q) and c;|(x;,b;) ~ lognormal (0, Gcz) as a way of illustrating how random coeffi-
cients change E (yj|x;).
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though practitioners should be careful to calculate cluster-robust standard errors to account for se-
rial correlation and misspecification of the multinomial distribution. Another important note is if
one believes that time constant variables z; belong in the model and they also have random coeffi-
cients that are correlated with the coefficients on the x;;, then the augmented FEP regression should
also include interactions between z; and x;; as these are not absorbed by ¢; when conditioning on
n;.

One drawback to this approach is that for a binary element k of x;;, FEP only identifies oy, +
%wk. Similarly, some elements of @ and £ are not separately identified when x;; contains both
levels and higher order terms.

This model nests the traditional case of constant coefficients, which occurs when ¥, = 0 and
@ = 0). Rejection of the null that ¥, = 0 is perhaps most convincing evidence of that slopes vary
by individual. Therefore, the primary contribution of this approach to random coefficients is to
suggest the inclusion of interactions between time-varying regressors and time averages to see if
more flexibility is necessary.

If there is no evidence that slopes are correlated with the X;, then one should carefully consider
how to interpret inference on @q. Statistically significant estimates may just indicate that squares
and cross-products of x;; belong in the FEP regression. Clearly if the cross-products are significant
while the squares are not, or if the coefficients on squared terms are negative and significant,
then the random coefficient framework does not make sense, though the results may still have
yielded useful insight into the what functions of the explanatory variables should be included in

the analysis.

2.3.5 Adding second moment assumptions

While under our assumptions, FEP is consistent under correct specification of the conditional mean
(2.25), it may be possible to achieve greater efficiency by adding assumptions about the conditional

second moment of y;. Another reason may be to identify the coefficients on binary variables.
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I assume a variance function that is proportional to the conditional mean.
Varyi |xi, ci, bi] = opc;exp(xib;) (2.27)

Additionally, the following CRE assumption implies conditional mean and variance functions

that do not depend on c;.
log(c;)|x;,b; ~ Normal (y; +%:& |, 02) (2.28)

Under assumptions 2.4, 2.24, 2.27, and 2.28, it follows from the properties of the lognormal distri-

bution, the LIE, and the Law of Total Variance that
_ _ 1
E(yit|x;) = E(yir|xir, X;) = exp {h(xinxia 80) + Sv(xir, To)] (2.29)
and

Var(yit|x;) =Var(yi|x, %;)
_ 1
=0p exp [h(xitaxi, 0p) + Ev(xita To)]

+exp [2h(x;;, X;, 00) +v(xis, To)] {exp [v(xi, To)] — 1}, (2.30)

where 8 = (1,81, 7). T = (@), 07)". h(xit.%i,00) = w1 + %& | +x;: 0 + (X; ® x;1) Yo, and
v(xit, To) = Xy @) + 07

Estimation of 0 and T can then proceed using pooled normal QMLE, specifying the mean
and variance functions as above. As the normal distribution is a member of the quadratic expo-
nential family, this procedure is consistent without the normal distribution being true (Gourieroux,
Monfort, and Trognon, 1984) Once again, inference should be made cluster-robust to account for
serial correlation and the true distribution being non-normal. Estimation of B, can then proceed as
before, and coefficients on binary or quadratic variables are now identified off of the nonlinearity
in (2.30).

Normal QMLE in this case is straightforward to program in software like Stata using built-in

maximum likelihood functions, and it had good finite sample properties in simulations run for this
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chapter. Some researchers may wish to specify a conditional covariance structure for y; as a way

to get more efficiency. If so, one option is to assume

Cov[yir,yirlxi,ci,bj] = 0,t # . (2.31)

Equation (2.31) does not allow serial correlation when conditioning on X;, c;, b;, but the pres-
ence of the time-constant heterogeneity ensures that the responses will be serially correlated when

conditioning on x; only. Under 2.4, 2.24,2.27, 2.31, and 2.28,

Cov(yir, yirlxi) =
- _ 1
exp (i i, 80) + h(xir, %5, 00) + 5 (v(xir, T0) + (xir, ro»] {exp(xi Qo] +07) ~ 1}

(2.32)

2.3.6 Estimating average partial effects

Even though the coefficients in (2.4) have direct interpretations as semi-elasticities, it may still be
desirable to estimate partial effects and APEs, perhaps to compare estimates between competing
nonlinear models. Moreover, this sections shows that the average partial effects for a binary vari-
able depend only on oy, + %a)k, meaning that even though we cannot separately identify oy and @y
without second moment assumptions, we can still estimate average partial effects.

Let x = {x1,Xxp,...,x7}, ¢, and b = {by,b;...,bg} denote fixed values of the variables. The

partial effect of a continuous x; ; on the conditional mean of y; is defined as®

oE ,c,b
¢;(x:,c,b) = % = cjexp(xtb)b;. (2.33)
1j

For a binary x;, the partial effect is defined as the discrete difference in the conditional mean

of y; at each level of the binary variable. In the expressions to follow, the subscript £ signifies that

Xk Xi, or their associated coefficients have been omitted from the vector.

81 implicitly assume that x; ; is not functionally linked with any other element in x;.
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¢k<xf7c7b) EE(yf’xﬂ;f?xtk = 17C7b) _E<yt’xt]5/7xtk = O,C,b)

=cexp(xyby+ by) — cexp(xyby) (2.34)

Of course, estimating features of the distributions of ¢; and ¢ is infeasible as we do not observe ¢
or b. Therefore, this section focuses mainly on APEs where the heterogeneity has been averaged

out.

Sh(xt) = EVi [¢h(xluci7bi)] ) (235)

where v = (c,b’) and h € {j,k}.

2.3.6.1 Approaches under the CRE assumption for c;

To proceed, it is necessary to maintain the assumptions of correlated random coefficients (2.24).
As ¢; is unobserved, I also maintain (2.28). Later, I will discuss a possible “estimator” of ¢;. For
now, there are two choices as to how to proceed in estimating 6; and &. The first is to estimate an
Average Structural Function (ASF), as proposed by Blundell and Powell (2003), where essentially
X proxies for v and is averaged out before taking derivatives and differences. The second is to use
derivatives and differences of (2.29) directly (Wooldridge, 2010).
The ASF is defined as:
ASF (x;) = Ey, [ciexp(xtD;)], (2.36)

where again, x; is a fixed argument. Under (2.24), (2.27), and (2.28) the L.LLE. implies

ASF(x;) = Ex {exp {h(xt,ic,-, 0)) + %v(xt, 1:0)” (2.37)

Passing the derivative through the expectation, the APE for continuous x;; is:

6j(x,) :EJ‘C

1 K
exp <h(xt,5c,-, 0p) + Ev(xt, ‘L'o)) <Otj —f—J'ci}/j + ®)x; +h§~pjhxm>] (2.38)
J

For a binary x;j, the APE is:
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5k(x,) =F% [E (y,\xﬂj/,xtk = I,X‘l') —F (yt |xﬂ¢,x,k = O,X‘i)]

1 1
=Ex |:6Xp (h(xtl;ﬁ lvxiv 60) + Ev(‘xﬂ;f? 1770)) —&Xp (h<xl‘/;f707xi7 00) + EV(.X}],/, 0, TO)):| ’

(2.39)
where
h(xy1,%;,00) =W1 + 58| + X400+ XLy + xt/,ffik)’;}+ O +Xi,
(x40, %;,00) =W + %8 | + X400+ Xy, Ty + xt/%ik)’f},
K
V(X 1, To) =Xp@p+ 03 + o +2 Z PkhXth
hk
and v(x,y,0, To) =Xy@y+ 0. (2.40)

The direct approach consists of taking derivatives and differences of 2.29 directly. Note that
since these expressions do not first average out X, the entire history of x is now a fixed argument.

For a continuous variable x; ; the APE is:

IE(yi|x)
O:(x) =—2"2
]( ) axtj

_ 1 _ 1 K
=exp (h(xt,x, 0p) + Ev(x,, To)> <5J/T +aj+xY;+ ferJ +@jx;j + hg.pjhxth> :
J
2.41)

where ¥ is the jth row and ’yj is the jth column of I'.

Define z(x;,%,0,7T) = h(x;,%,0) + %v(xt, 7). Then we have for a binary x;,

8¢(x) =E (il Lxac g = 1) = E (il Lk = 0)
_ . 8 () . NSO NNRNCIIV L DS
exp z(x,;f,x,%, % T/,/) +§thk + o, +xk/)/k]),/+ YickXey,” + Xeipy, ]5/—1- 20)k+ Z PrhXth
h#k
—exp (Z(x,/),/, Xy, 91%, T/,/) + éfit(l(c)) +xﬂ¢ft(,?) ’}'2) , (2.42)
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where ¥, is the kth diagonal element of I, it(ll) = % (1 + ZST £t xsk> , and Xt(/(c)) = %ZST 2 X5k

Whichever approach is chosen, one can then estimate J;(x;) or & (x;) by inserting the estimated
parameters, replacing expectations over the distribution of X with averages over i, and plugging in
interesting values of x. Many researchers will average over the distribution of x to get a single

number. Asymptotic variances can be computed either via the delta method or using the panel

bootstrap.

2.3.6.2 Estimation when the slopes are independent of covariates

The traditional case where b; is independent of x; (conditional on c;) is one where the ASF is iden-
tified without placing any restriction on ¢; or Var(y; |x;). The following summarizes the necessary

condition.

b;=By+d,,

d;|(xj,c;) ~ Normal(0,9y). (2.43)

The results of Section 3.4 continue to hold, but the time averages no longer enter E (y;;|x;;,c;) (that
iS, FO = 0)

The LIE implies that for a fixed x;,

1
ASF (x;) = E(c;)exp (xtﬂo + Ex,QOxgt) (2.44)

Passing the derivative through the expectation, the APE of a continuous variable x;; is given

by:

1 K
5]' (x) =E(cj)exp (xtﬁ() + E.X'tﬂ()x;t) (ﬁj + 40X+ hé.pjhxth> (2.45)
J

For a binary variable x;;, the APE is:
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O (x:) =

E(c;)

1, 1 K 1,
exp | XyBy+ SXy@y+ o+ S oy + hék P | —E(ci)exp ( xyBy+ Sy ) |-

(2.46)
An estimator for E(c;) is conveniently available. Poisson QMLE using (2.25) and treating the c; as
(strictly positive) parameters is algebraically equivalent to multinomial QCMLE. 9) In our current
application, for a given 8 = (B’, @’)’, the QMLE for ¢; is:

_ ]
Zthl exp(x;tB + Xy @)

ci(9) (2.47)

where again, n; = Zthl vi;- Define ¢; = ci(a), where @ is the FEP estimate of (B6, (06)/ . The
properties of ¢; are not well-known in either the constant or heterogeneous slope case. Though
there is no incidental parameters problem for 6 in the FEP case, ¢;(0) # c¢;, even when evaluated
at 6. Viewing c; as a parameter, there is no reason to think ¢; is unbiased and it cannot be
consistent with 7" fixed.

However, the ASF in this case is proportional to E(c;). Strict exogeneity of x;; and (2.24) imply

that

T
Iy
E(nilei %) = ci ), exp <xitﬂo + Exitcoo> (2:48)
t=1

It follows from the L.I.E. that

n;

E(c;))=E
@ YI oex (xﬁ +lic-a)>
t—1CXP \ XirPo T 53X W0

(2.49)

meaning N~ ! Zﬁ\’: | Ci consistently estimates E(c;).
Many researchers are primarily interested in a single APE estimate (averaged across the sample

of observables). In this case, it may be attractive to treat ¢; as the unobservable ¢; and average

9See Wooldridge, 2010 or Cameron and Trivedi, 2013
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across the distributions of ¢; and x; at the same time. We would, generally expect such APE
estimators for nonlinear FE models derived in such a way to suffer from the incidental parameters
problem, even if the slopes are estimated consistently. 10 Given that N ! Zi.vz | Ci is consistent for
E(c;), however, it may be that estimators including functions of ¢; that are averaged across i have
desirable properties. This appears to be true at least for the data generating process considered in
this chapter. Simulation results in Section 4 indicate very small finite sample bias of overall APE

estimators computed using ¢; in this way.

2.4 Monte Carlo

24.1 Comparing estimation methods

To illustrate the impact of ignoring random coefficients in the FEP setting, I simulate the perfor-
mance of the different estimators in both the ideal case of constant coefficients and in the case

where the coefficients vary by individual. I employed the following data generating process:

Yit|(X;, Wi, ¢i,bj1,bin) ~ Poisson [c;exp(bj1 X +bipwir)] , (2.50)

log(c;) ~ Normal(0,1/16) (2.51)

xjp = log(c;) +.5x; 1 +vig, t > 1

xj1 = log(c;); +vi1, vie ~N(0,1/2) (2.52)
wip = 1[xy +hjy > 0], hjyy ~N(0,1/2) (2.53)
b; »?

" vormar | [P N I (2.54)
L) B2 p o3

1OSee, for example, Fernandez-Val, 2009.

50



For the above draws, i = 1,...,1000 and t = 1,...,10. The case where a)lz, (022, and p all equal

zero corresponds to the constant coefficient case. For these simulations, the b;; are generated to be
independent of {x;, w;}, and this assumption is maintained in estimation. The b; j are also generated
to be independent of each other (p = 0) but this is not assumed in estimation.

In the following tables, FEP refers to the estimator that ignores the random coefficients. FEP2
refers to the estimator that adds the square of x and an interaction between x and w. Since this
model’s assumptions does not separately identify B, and co22 , the estimated coefficient on w is
compared to 3, + %(022 NQML refers to the normal QML estimator that also assumes (2.27) and
(2.28).11 T set | = @» = o but do not assume equal variance in estimation. In each case, I used

one thousand replications.

T APE estimates from NQML also plugged in c;.
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Table 2.1: Finite Sample Properties of Slope Estimators: f; = 1,5, = —1

—

Bi B2 B+ sw?
FEP FEP2 NQML FEP NQML FEP2
[0} Mean SD Mean SD Mean SD | Mean SD Mean SD | Mean SD  Truth
000 |1.00 002 100 0.03 1.00 0.02]-1.00 003 -1.00 0.04|-1.00 0.04 -1.00
005(1.00 002 100 0.03 1.00 002]-1.00 003 -1.00 0.04|-1.00 0.04 -1.00
0.10 | 1.01 0.02 1.00 0.03 1.00 0.02|-1.00 0.03 -1.00 0.04]-0.99 0.04 -1.00
0.15|1.02 002 100 0.03 1.00 0.03]-099 003 -1.00 0.04|-099 0.04 -0.99
020|1.03 002 100 0.03 1.00 0.03]-099 0.03 -1.00 0.04|-0.98 0.04 -0098
025|1.05 003 100 0.03 1.00 0.03]-098 0.03 -1.00 0.04|-0.97 004 -097
030 1.07 0.03 1.00 0.03 1.00 0.03|-098 004 -1.00 0.04]-096 0.04 -0.96
035|1.10 0.04 1.00 0.04 1.00 0.04|-097 004 -099 0.05]|-094 0.04 -094
040 |1.14 006 100 0.04 1.00 004]-09 005 -099 0.05|-093 0.05 -092
045 |1.18 007 100 0.04 099 005]-096 007 -099 0.05(-091 0.05 -090
050|123 009 100 0.04 099 0.05]-095 0.08 -0.98 0.06]-0.89 0.05 -0.88
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Table 2.2: Finite Sample Properties of APE Estimators: f; = 1,5, = —1

Est. APE of x Est. APE of w
FEP FEP2 NQML FEP FEP2 NQML

w Truth Mean SD Mean SD Mean SD | Truth Mean SD Mean SD Mean SD

0.00 | 0.88 0.88 0.03 088 003 088 0.03]|-1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
005088 088 0.03 088 003 088 0.03]|-1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
0.10 090 089 0.03 089 003 089 0.03)|-1.13 -1.13 006 -1.13 0.09 -1.13 0.08
0151091 092 004 092 004 092 004 |-1.14 -1.15 007 -1.14 0.10 -1.14 0.08
0201095 095 004 095 004 095 004)|-1.15 -1.17 0.07 -1.15 0.10 -1.15 0.08
0251098 099 0.05 099 005 099 005|-1.16 -1.19 0.09 -1.17 0.12 -1.16 0.10
030 1.04 104 007 1.04 006 103 0.06|-1.19 -1.23 0.11 -1.19 0.16 -1.18 0.11
035|1.11 1.11 009 1.11 008 1.10 0.09 |-1.22 -127 0.14 -122 020 -1.20 0.13
040|120 121 0.15 121 0.13 120 0.14|-126 -1.35 022 -126 029 -123 0.16
045132 132 022 133 021 131 023 |-130 -143 034 -130 047 -126 0.24
050149 149 047 150 049 148 048 |-1.36 -1.57 086 -1.35 060 -1.29 0.26
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It appears from Table 2.1 that the standard deviation of the coefficients is positively related to
the finite sample bias (in magnitude) in FEP slope estimates. This is not surprising given that (2.1)
fails for @ > 0. This is despite the fact that the coefficients are independent of the covariates and
each other, a case in which random coefficients would not cause a problem in linear models. In
contrast, the augmented FEP and the NQML estimators show much smaller bias at all levels of ®,
with the exception of the FEP2 coefficient on w, which, as expected, appears to show small bias
for B, + %a)z.

The APEs are estimated using expressions similar to (2.45) and (2.46) using the FEP2 and
NQML parameter estimates. The difference is I treat ¢; as ¢; and average over {x;,c;} only once.
I followed an analogous procedure for the FEP case.

Table 2.2 suggests that this approach to estimating APEs has small bias for the FEP2 and
NQML case, despite using estimates of incidental parameters. For FEP, bias in the APE of the
binary variable increases as @ increases. Surprisingly, this is not the case for the continuous
variable. Even though the simulation suggests a large bias in the FEP estimate of ;. This warrants
further investigation as it suggests there many be circumstances in which researchers can ignore
random coefficients if all they care about is APEs of continuous variables, though it could also be

an artifact of this data generating process.

2.4.2 Testing when coefficients are not normal

Section 3 shows that for slope heterogeneity in a location-scale family of spherical distributions
(where the heterogeneity are independent of each other), an LM test for coefficient heterogeneity
is equivalent to testing the coefficients on squares of the covariates, which suggests that the het-
erogeneity need not be normal for the approach of this chapter to work well. To explore this, I

generate the responses using random coefficients of different distributions.

bijp = 1+w((ujz—0-5)/\/1/12),uijU(O,l) (2.55)
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bij3 = 1+w((uj3—4)/\/§> U3~ X3 (2.56)

bij4:1+w<uj4/\/5/3),uj4~r5 2.57)
bijs=1+o (uj5 —1) ,ujs ~ Exponential (1) (2.58)
bij6 ~ Gamma (1/0*, &%) (2.59)

These draws are made separately for j = 1,2, and for simplicity, Cov(b;j,b;ny) = 0 for each
h. Each coefficient’s data generating process ensures that it has a mean of 1 and variance of 2.
Each of the first five coefficients falls into a location-scale family as they consist of a standardized
random variable multiplied by @ to result in a variance of ®? and shifted to have a mean of one.
The gamma coefficients, in contrast, are not drawn from a location-scale family, but are directly
specified to have a mean of 1 and variance of w?.

Given the issue identifying parameters associated with binary regressors in the FEP2 setting, |
generate the responses to depend on continuous regressors only, where each x; j is generated as in
(2.52).

Yit|(Xi1,Xi2, i, bi1p, biop) ~ Poisson [c;exp(bj1pXir1 + biopXir)] (2.60)

After generating the data, 1, 3, (012, (022, and p were estimated using FEP of y; on x;{, x;7, xtzl,

xt22, and x;1x;0. A Wald test was then performed on X2 xtzz, and x;1x;0. The results of Section 3.3

t1
suggest that this test should perform well for the first five coefficient types, and I conjecture that it
performs well for the Gamma coefficients as well. When testing for random slopes, is important
to use a FE procedure if one is concerned that the multiplicative effect ¢; is correlated with the

explanatory variables. Otherwise, the omitted variable problem is likely to cause the test to be

over-sized. In fact, in a simulation where Random Effects Poisson was used on the same set of
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covariates, a Wald test rejected the null of constant slopes in 88% of replications when the true

slopes were nonrandom.

Table 2.3: Testing when b; is not normal

Empirical Rejection Probability (Null value 0.05)
0] Normal Uniform* Chi2* t5* Exp.* Gamma
0.00 | 0.069  0.069 0.069 0.069 0.069 0.069
0.05 | 0.108 0.115 0.112 0.108 0.121 0.132
0.10 | 0.186  0.212 0.159 0.196 0.16 0.178
0.15 | 0.308 0.359 0.287 0302 0.303 0.334
0.20 | 0.468 0.531 0.439 0.408 0.404 0472

0.25 | 0.640  0.691 0.543 0579 0.553 0.625
0.30 | 0.785 0.796 0.689 0.693 0.652 0.741
0.35 | 0.881 0.887 0.796 0.804 0.757 0.817

0.40 | 0914  0.948 0.860 0.852 0.814 0.868
0.45 | 0.931 0.965 0.897 0.897 0.876 0.892
0.50 [ 0.970  0.979 0904 0919 0.876 0.923

Table 2.3 shows that as expected, rejection probabilities increase with @ when the coefficients
are normal, and are quite high when o is large.!2 What is interesting is that there does not seem
to be much change in either size or finite sample power when the coefficients are not normal, even

when the coefficients are not drawn from a location-scale family.

2.5 Empirical application: the Patent-R&D relationship

There is a long history of economic inquiry into the relationship between a firm’s research and
development (R&D) expenditures and the number of patents for which it applies in a given year.
Patent applications are viewed in the literature as an indicator of additions to the knowledge stock
of a firm (Pakes and Griliches, 1980). Pakes and Griliches (1980) were among the first to focus on
firm effects as a source of potential endogeneity in analyzing U.S. manufacturing firms. Hausman,
Hall, and Griliches (1984) and Hall, Griliches, and Housman (1986) also look to firm effects to

account for significant over-dispersion in the distribution of patent counts. In addition to FEP,

121 have not yet varied the cross-section size. I would expect these rejection probabilities to
increase.
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Negative Binomial models are also common as a way to introduce more dispersion. Nonlinear
count models are not only attractive for logical reasons, but also because datasets can contain a
nontrivial proportion of observations with zero patents. These observations must be eliminated or
transformed in some ad hoc manner before estimating a linear log-log model(Hall, Griliches, and
Hausman, 1986). Such observations seem to be more common in more recent datasets as well.
While only 8% of observations were zero in Hall, Hausman, and Griliches 1968-1975 panel of 121
firms, 16.5% were zero in Gurmu and Perez-Sebastian’s 1982-1992 panel of 391 firms (Gurmu
and Pérez-Sebastian, 2008).

A common finding in the literature is that distributed lag models that do not account for any
firm heterogeneity tend to have a U-shaped lag profile, and that after accounting for firm hetero-
geneity, only contemporaneous R & D expenditure tends to be significant (Hall, Griliches, and
Hausman, 1986). In a cross-sectional analysis of the pharmaceutical industry, Wang, Cockburn,
and Puterman (1998) use a Poisson model and allow for heterogeneity in both the multiplicative
effect and coefficients. While the mixing distribution is allowed to depend on the regressors, they
assume that the vector of heterogeneity has finite support, which in their analysis consisted of three
or fewer points. This framework may be less palatable in studies with broader industry coverage.

The population of interest for this chapter is publicly-traded U.S. manufacturing firms in ex-
istence from 1996 to 2003. The patent data come from the United States Patent and Trademark
Office by way of the National Bureau of Economic Research’s Patent Data Project (PDP) and
includes data through 2006. As patents are not recorded in the USPTO database until they are
granted, the panel is truncated in 2003 to diminish the effect of the time-lag between applica-
tion and granting.13 Financial information on publicly-traded firms comes from the Compustat
database, accessed through Wharton Research Data Services (WRDS) in September 2016. Hall,
Jaffe, and Trajtenberg (2001) and Bessen (2009) thoroughly describe the patent data as well as

matching information for the Compustat database. Matching patents to firms is not a trivial given

13The average lag over applications made in 1990-92 was 1.76 years, with 96.1% of patents
granted in three years or less.
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nonstandard naming in USPTO records, among other issues.

I mainly follow Bound, et. al (1982) and Hall, Griliches, and Hausman (1986) in assembling
the panel dataset. The initial sample from the Compustat database consists of 3,126 firms in the
U.S. manufacturing industry that were in existence in the year 2000. Following the literature, I
require that data exist for patents and R&D expenditures for each year from 1996 to 2003, and
that R&D expenditures be strictly positive since I take logs. I also eliminate firms that show large
jumps in either gross capital or employment in a year. In the end, my sample consists of 848 firms
over the period 1996-2003. I describe the selectivity of my sample in Tables 2.4 and 2.5. The
tables show that although the sample covers only about a quarter of U.S. manufacturing firms in
2000, it covers nearly 70% of R&D expenditures. Coverage is generally poorer for smaller firms
and higher for larger firms both in terms of net sales and R&D. Sample coverage is comparable to

Hall, Griliches, and Hausman (1986) in terms of net sales, though they achieve 90% coverage of

total R&D.
Table 2.4: Distribution of Net Sales in 2000
Number in 2000 cross-section Number in Sample Coverage
Net Sales All Pos. R&D All  Pos. R&D
Less than $1M 332 207 49 0.15 0.24
$1M-10M 439 335 115 0.26 0.34
$10M-100M 900 672 242 0.27 0.36
$100M-1B 986 588 244 0.25 0.41
$1B-10B 402 271 157 0.39 0.58
More than $10B 67 52 41 0.61 0.79
Total 3,126 2,125 848 0.27 0.40

Table 2.5: R& D Expenditures in 2000

Firm R&D (2000 USD) 2000 Cross-section ~ Sample  Coverage

Less than $1M 170.15 55.32 0.33
$1M-10M 3695.48 1492.38 0.40
$10M-100M 21621.47 8765.10 0.41
$100M-1B 38160.81 25075.92 0.66
$1B-10B 67084.16 54007.14 0.81
Total 130732.08 89395.85 0.68
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Table 2.6 shows summary statistics for the key variables over the sample of 848.14 Consistent
with the literature, this shows the distribution of patents to be right-skewed and over-dispersed
with a thick right tail. Also noteworthy is that compared to previous studies, my sample contains
a much higher proportion of zeros than previous studies. Compared to either Hall, Griliches, and
Hausman (1986) or Gurmu and Perez-Sebastian (2008), the median number of patents is lower,

and the maximum number of patents is higher in this sample.

14Note that firms with zero patents in all years drop from the multinomial log-likelihood.
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Table 2.6: Summary of Key Variables in 2000

Variable Mean St.Dev. Min 1stQ. Med. 3rdQ. Max
Net Sales (Millions of USD) 2506.28 12980.46 0.00 15.77 118.73 877.54 206083.00
R&D (Millions of USD) 105.42 490.95 0.01 222 7.53 31.71 6800.00
Patents 30.47 141.85 0.00 0.00 2.00 7.00 1811.00
Fraction with zero patents 0.35 0.48 - - - - -
Fraction in scientific sector 0.55 0.50 - - - - -

All dollars amounts are real 2000 USD.

The scientific sector is defined to include the drug, computer, electronic component, and scientific instrument industries.
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I apply the exponential model introduced in Section 3 to patent counts where the regressors of
interest are the logs of current R&D and up to three lags. I include year dummies, but assume their

coefficients are constant.

T
E [patents;|1og(R;1),. .., log(RiT), &, c;, bi] = ciexp (Z bjslog(R;;—s) + 5t> , (6l
s=0

where R;; is real R&D expenditures by firm i in year ¢. The CRC assumption is:

bi| (log(Ri,t—0)7 i 710g(Rl'7t—T)7 o, Ci) ~ Normal(a + }/log(R)l, Q)? (2.62)

where log(R); = 7! YT log(Rj) is a scalar. Section 3 implies that FEP of patents on current
and lagged log(R) terms, interactions between log(R) and the log(R) terms, and squares and cross-

products of the log(R) terms will be consistent under these assumptions.

Table 2.7: Results for traditional estimators

ey (2) 3) “4) ) (6)
VARIABLES PQML1 PQML2 FEOLS1 FEOLS2 FEPI1 FEP 2
log(Ry) 0.819%**  0.423*%*  (0.113***  0.0476%* 0.318*** (0.161%**
(0.0441)  (0.191)  (0.0198)  (0.0205) (0.0682) (0.0560)
log(R_1) 0.234#%* 0.00784 0.0158
(0.0637) (0.0192) (0.0378)
log(R_») 0.0845 0.00777 -0.0250
(0.108) (0.0180) (0.0710)
log(R_3) 0.0826 -0.00789 -0.00236
(0.203) (0.0204) (0.0546)
Dum. for zero pat. -0.543%*%  -().442%**
(0.0261)  (0.0301)
Constant -0.211 -0.228 1.091#%*  1.268%*%*
(0.211) (0.214)  (0.0440)  (0.0765)
Sum of log(R) coeff. 0.819%** (.824***  (.113%** 0.055 0.318***  (0.1495
(0.0441)  (0.045)  (0.0198) (0.034)  (0.0682) (0.1096)
Observations 6,784 4,240 6,784 4,240 5,968 3,510
Number of firms 848 848 848 848 746 702
R-squared 0.157 0.137

Clustered standard errors in parentheses. Year dummies included in all specifications.

w5 pc0.01, #* p<0.05, * p<0.1

Table 2.7 presents results from the six different specifications that assume constant coefficients.

For all but columns (3) and (4), the dependent variable is the number of patents. Columns (1) and
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(2) contains Poisson QMLE estimates where firm heterogeneity is ignored. Column (3) contains
estimates from FE OLS where the dependent, variable is the log of patents. For this column only,
zero patent counts are changed to 1, with a dummy variable added following Hall, Griliches, and
Hausman (1986). Columns (5) and (6) contain FEP estimates.

Consistent with the literature, these estimates imply that correlation between patents and cur-
rent R&D is strongest relative to lag effects, and that the total elasticity of patents with respect
to R&D that is less than unity. I also find the estimated elasticities fall once I account for firm
effects. For the Poisson specification, the total elasticity falls from 0.82 to 0.32 in the one-lag
model and from 0.82 to 0.15 in the three-lag model. The three-lag FEP specification implies an
elasticity with respect to current R&D that is only about half of those estimated in previous studies,
and this estimate is sensitive to the time dimension of the panel and lag-length chosen. If I mimic
Gurmu and Perez-Sebastian (2008) and estimate a four-lag FEP model over 1982-1992, I get very
similar results to theirs. It is possible that the nature of the patent-R&D relationship changed in
the intervening decade, but it may also be that the exponential model is incorrect, our specification
neglects some dynamics or endogeneity, or that sample selection has had a different effect on the
more current data.

Additionally, Section 3 and Section 5 imply that neglected slope heterogeneity could also be
a source of bias in this model. Table 2.8 gives results from the CRC estimator proposed in this
chapter, varying the lag length and assumptions about Q. In columns (1) and (3), I impose that the
b; are deterministic linear functions of mi’ while in column (4), I impose that Q is diagonal.

Given (2.61) and (2.62), these data do provide some evidence of slope heterogeneity. In the
one-lag models, none of the additional terms are statistically significant. The evidence is mixed in
the three-lag models. In column (3), the estimates of ¥ are jointly marginally significant (p = 0.08),
with the interaction involving the second lag of log(R) negative and significant at the 5% level. In
column (4), while all terms involving log(R) are jointly significant, the interactions and squares are
not. In column (5), the interactions, squares, and cross-products are jointly marginally signifcant

(p = 0.08). The terms associated with Q are jointly insignificant, however, as are the interactions
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Table 2.8: Results for CRC FEP estimators

(1) 2) 3) “4) &)
VARIABLES CRCFEP1 CRCFEP2 CRCFEP3 CRCFEP4 CRCFEP5

log(Rp) 0.538%**  ().548*** 0.115 0.152 0.160
(0.144) (0.151) (0.141) (0.133) (0.141)

log(R_1) 0.0736 0.0604 0.111
(0.0892) (0.0951) (0.0887)
log(R_5) 0.444%%  0.423%%x  (360%**
(0.173) (0.148) (0.121)

log(R_3) -0.0384 -0.00633 0.0205
(0.149) (0.142) (0.125)

log(Ry) x log(Rq) -0.0394 0.165 0.00850  -0.182 -0.215
(0.0285) (0.183) (0.0248) (0.224) (0.251)

log(R_1) x log(Ry) -0.0103 -0.118 0.0177
(0.0167) (0.195) (0.294)

log(R_») x log(Ro) -0.0844%%  -0.556%%  -0.167
(0.0368) (0.258) (0.313)

log(R_4) x log(Ry) 0.00672  -0.0775 -0.236
(0.0284) (0.159) (0.262)

log(Ro)]? -0.102 0.0915 0.0921
(0.0892) (0.108) (0.118)

llog(R_1)]? 0.0569 0.102
(0.0978) (0.108)
log(R_,)]? 0.234%%  (.309%*
(0.118) (0.147)

log(R_3)]? 0.0404 0.117
(0.0735) (0.0854)

log(Rg) x log(R_) -0.0986
(0.141)

log(Rg) x log(R_») -0.0120
(0.177)

log(Rg) x log(R_3) 0.144
(0.176)

log(R_1) x1og(R_3) -0.255
(0.183)

log(R_) xlog(R_3) 0.123
(0.129)
log(R_5) xlog(R_3) -0.266**
(0.118)

Clustered standard errors in parentheses. Year dummies included in all specifications.

##% p0.01, ** p<0.05, * p<0.1
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Table 2.9: CRCFEP 3 estimated elasticities

Parameter Estimate S.E. P-value 95% C.1.
B\O 0.134 0.093 0.149 -0.048 0.315
B_ 0.051 0.057 0379 -0.062 0.163

0.257  0.098 0.009 0.064 0.449
-0.023  0.092 0.800 -0.205 0.158

B +B ,+B.s 0417 0127 0001 0.169 0.666
_r= a‘H—l + 774 110g(R). Clustered S.E’s ignore sampling error of log(R)

E>P>m>
_|,_ W N =

=)

=

with the time average. Therefore, while there is marginal evidence of heterogeneity, I cannot parse
it into its components.
Focusing on model (3), therefore, the results are quite interesting, at least at face value. The

estimator for the average elasticity with respect to R, is given by

Bos = Gy 1+ Tsp1102(R), (2.63)

where log(R) = (NT)~! ny:l Zthl log(R;;). I give these estimates in Table 2.9.

This implied lag profile for the average elasticity is different from that previously observed in
the literature, where typically the contemporaneous elasticity accounts for most of the total and
the lags are much smaller in magnitude and often statistically insignificant. Model (3) estimates
imply, however, that the highest estimated average elasticity is with respect to the second lag of
log(R), at 0.26 with a standard error of 0.098. Meanwhile, the contemporaneous and other lags are
insignificantly different from zero. At face value, this seems to imply a delay in the benefit to R&D
expenditures. Furthermore, the negative estimated coefficient on log(R_5) X m implies that
the firms with larger R&D expenditures overall experience lower marginal returns. The correlation
between m and the estimate of the multiplicative firm effect is 0.39, indicating that firms with
a higher base rate of patenting tend to have lower marginal returns to R&D dollars, which echoes
the findings of Wang, et. al. (1998) with regards to the pharmaceutical industry. Unfortunately,
however, the results do not appear to be robust to changes in the estimation sample. If I construct a

panel over 1994-2001, for instance, neither the lag-structure result or the finding of heterogeneous

64



slopes hold. It may be that there is still a sample selection problem caused by not observing any

patent applications made through 2003 if the were not granted before 2006.

2.6 Conclusion

FEP analysis of count or other nonnegative response variables cannot generally be justified in
the presence of heterogeneous slopes and may not lead to estimation of any quantity of interest.
Given this, I extend Chesher’s (1984) testing framework to the FEP setting and show that an LM
test for neglected heterogeneity amounts to adding squares of regressors to the set of covariates.
This procedure is more widely applicable than classical tests. Simulation evidence also suggests
robustness to this approach when coefficients are neither normal nor belong to a location-scale
family.

Identification via a correlated random coefficients assumption leads to FEP on a more flexible
mean function as an estimation method. Under a proportional variance assumption and CRE as-
sumption for the scalar, multiplicative effect, normal QMLE is another technique which may have
advantages in cases of binary or time-constant regressors. Each of these options feasibly allows for
higher dimensional random coefficients than estimators based on likelihoods with integrals, while
also allowing for dependence between the heterogeneity and the regressors.

Application of these methods to the U.S. manufacturing industry may indicate firms may have
heterogeneous elasticities of patenting with respect to R&D, and that in contrast to previous results,
there may be a delay in the effect of R&D expenditures on patenting. results do not hold when
estimating over different years of data. One immediate avenue for future research is to extend
this type of correlated random coefficients model to cases where the regressors are not strictly
exogenous, either because of feedback, contemporaneous endogeneity, or sample selection, as a

way to explore robustness of these findings.
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CHAPTER 3

ESTIMATION OF AVERAGE MARGINAL EFFECTS IN MULTIPLICATIVE
UNOBSERVED EFFECTS PANEL MODELS

3.1 Introduction and Review

Nonlinear models often make logical sense for representing limited dependent variables like dis-
crete choices and counts. Challenges can arise, however, in micro-econometric panel settings
when one wishes to control for unobserved individual heterogeneity and has relatively few time
periods of data. For static multiplicative effects models with strictly exogenous covariates, fixed
effects Poisson (FEP) consistently estimates the parameters of a correctly-specified conditional
mean function (Wooldridge, 1999). Researchers may also want to estimate quantities like Average
Partial Effects (APE) and Average Treatment Effects (ATE), but as they depend on the unobserved
heterogeneity, it is not immediately clear how to proceed.

I study an approach that estimates APE and ATE by combining FEP parameter estimates with
estimates of the individual heterogeneity. The latter come from unconditional Poisson QMLE
treating the heterogeneity as parameters to be estimated, a procedure that yields estimates of the
conditional mean function parameters that are algebraically equivalent to FEP.! While easy to
implement, such APE and ATE estimates potentially suffer from the incidental parameters problem
(IPP) since the individual effect estimates are based on only 7 observations (Lancaster, 2000).
However, I show that in multiplicative models, such APE and ATE estimators are consistent and
asymptotically normal with only the cross-sectional dimension growing. The consistency result
may not be surprising, but it is not implied by consistency of FEP for slope coefficients, and similar
results do not hold for other nonlinear models. For instance, the IPP still biases APE estimates in
fixed effects binary response models even if one knows the true values of the slope parameters or

can estimate them consistently (Fernandez-Val, 2009).

IThis result was derived independently by Lancaster (2002) and a version of Blundell, et. al.
(2002).
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To my knowledge, estimating APE and ATE using estimated incidental parameters has not
been studied in multiplicative models specifically. Many authors have studied consistent slope
parameter and marginal effect estimation using estimated incidental parameters in either general
nonlinear models or in other specific settings. One solution is to employ bias corrections that are
justified by large-T asymptotics. See, for example, Hahn and Newey (2004) for general nonlinear
models estimated with unconditional MLE, or Fernandez-Val (2009) for the unobserved effects
probit model. Although allowed to be much smaller than the number of individuals, the number of
time periods needs to be sufficiently large for the asymptotic approximation of the bias to perform
well. For static probit and logit models, Fernandez-Val, Greene (2004) and others have noted a
“small bias” property for APE and ATE estimates from unconditional MLE . The multiplicative
case, however, is special in that the average marginal effects estimators are actually consistent with
only the cross-section size growing, a rare result outside of the linear model. This means they
should perform well even with only two time periods.

Empirical researchers, of course, also have the option to focus on quantities that do not de-
pend on unobserved heterogeneity. For instance, the exponential conditional mean function with a
linear index gives the slope coefficients interpretations as semi-elasticities, and proportional treat-
ment effects are also identified (M. Lee and Kobayashi, 2001). Another possibility is to make
additional assumptions. For example, one could use a correlated random effects (CRE) approach
by assuming a parametric form for the mean of the heterogeneity conditional on the explanatory
variables. This is applicable in many nonlinear settings to estimate slope parameters as well as
average partial effects (Wooldridge, 2010). Using estimated heterogeneity, however, avoids addi-
tional restrictions and allows the researcher to estimate average marginal effects in levels, which
may be more meaningful than slope parameters and allows comparisons across models.

The rest of this chapter is organized as follows: Section 2 describes the multiplicative model
and derives the asymptotic properties of the APE and ATE estimators that use estimated hetero-
geneity. I also discuss some interesting implications of using these estimators in exponential mod-

els. Section 3 evaluates the proposed estimators via Monte Carlo, and Section 4 concludes. Simu-
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lation tables are collected in Appendix D.

3.2 Theory

The multiplicative unobserved effects panel model assumes that fori =1,....N; T =1,...,T,

E(yit|x;i,c;) = E(yie|Xir, ci) = cim(xir, By) (3.1)

where m(xi,,ﬁo) is a known, positive, continuous, differentiable function of a 1 x K vector of
explanatory variables x;; and an unknown K X 1 parameter vector B. The term ¢; is unobserved
heterogeneity that is assumed to be strictly positive. Equation (3.1) implicitly assumes that x;;
is strictly exogenous, conditional on ¢;. T assume that the vector {y;i,...,yiT,Xi1,---,XiT,Ci} 1S
independent and identically distributed across i, and that 7 is fixed.

A common choice in the empirical literature is m(x;, B) = exp(x;;B), but other forms are
possible, and the responses need not even be counts. For example, under the restriction that 0 <
c; < 1, yj could be binary or fractional, in which case m(x;;, ) might be the logistic or normal
cumulative distribution function. Another option for nonnegative responses is a panel version of
Wooldridge’s (1992) alternative to the Box-Cox transformation. In this case, with B = (8',1)’,
the specification would be:

[1+Ax;0]'/%, 2 +£0
m(xip, B) = t (3.2)

exp(x;;0), A=0.
The parameters are perhaps less interesting in these examples than in the exponential case, moti-
vating the estimation of marginal effects. While most of the derivations in this section are for a
generic m(x;, B), I include a discussion of the exponential case at the end of this section.
Hausman, Hall, and Griliches (1984) showed that if conditional on x; = {x;;,...,X;7} and ¢;,
the y;; are independently distributed as Poisson with mean given by (3.1), then conditioning on

n; = Z;T:1 yir results in the multinomial distribution for {y;i,...,y;7} . The resulting fixed effects
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Poisson (FEP) estimator is given by:

A N
B :argli?axz&(ﬁ), (3.3)
i=1
(xltvﬁ)

Wooldridge (1999) showed that /Ai is consistent for B under (3.1) only, making it a quasi con-
ditional maximum likelihood estimator (QCMLE). Standard asymptotic theory for M-estimators

yields that under regularity conditions:

VN(B —Bo) % N(0,A5 ' BoAS ), (3.5)

where Ag = —E [V%&-(ﬁo)} , By =Var[s;(By)], and s;(By) = Vﬁéi(ﬁo)’. The sandwich form of
the asymptotic variance estimator should be used to account for the fact that without the stronger
assumptions of Hausman, et. al., £;(B) is not the true log-likelihood for individual i.

Researchers are often interested in estimating marginal effects, as the B; may not have an

meaningful interpretation outside of the exponential case. I define the APE of a continuous variable

XJ' as:
aE(yit|xit>Ci)} Im(xir, By) L
5§, = |25Vl —E|e;T 'Y Mi(x,Bo)|, (3.6
J>0 { axitj Z axltj tgl J( tﬁo) (3.6)

where M ;(x;;,B) = W I define the ATE for a binary x;, as:
it j

&, =E [E(yit|xit(—k)axitk =1,¢;) = E(iel iy (— ) Xiek = O,Ci)}

T
lT_l Z (m Xir(— 71,/30) (xzt 0 30))] (3.7)
t=1
where the subscript (—k) indicates element k has been omitted, and where m(x;,(_g), 1, B) and
m(%y(— 1, B) correspond to a 1 or 0 being inserted for x;; in m(x;;, B).

Both of these quantities depend on c;, and so an additional assumption (i.e. correlated random

effects) would seem necessary to proceed. However, unconditional QMLE that treats the c; as
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additional parameters offers algebraically equivalent estimates of B, as FEP, as well as a closed-

form estimate of ¢;. The formula is:
cwi,B)= = —==0 (3.8)

where w; = {y1,. .., YiT> Xil,- -, XiT }-
The analysis to follow hinges on studying the properties of this random function of the data,
which I rewrite for a generic B as:
Zthl Yit
Zthl m(xil‘7 ﬁ)

There is a practical reason to estimate B using FEP instead of unconditional QMLE (i.e.

c(wi,B) = (3.9

including N individual dummies in the exponential model). As pointed out by Cameron and Trivedi
(2013), the econometrician may encounter computational or software limitations for large values
of N. It is easier to just calculate ¢; following FEP estimation. The APE and ATE estimators I

investigate are:

~ N T —~
§;=T)" 'Y Y GiM;(x;, B) (3.10)
i=1t=1
. Ly R R
6k - (NT)_ Z Z Ci [m(xit(—k)7 17ﬁ) _m(xit(—k);(),ﬁ) (3.11)

i=1t=1
Clearly ¢(w;, B) # c;, even if evaluated at B, and with only N growing, ¢; cannot be consis-

tent for ¢; (under the view that c; is one of N individual-specific parameters).2 One should not
generally expect marginal effects calculated from estimated incidental parameters to be consistent
in nonlinear models, even if slope parameter estimates of are consistent. However, some sample
averages involving ¢; are consistent in the FEP case due to the form of ¢(w;, B) and the fact that ¢;

and m(x;;, B() are multiplicatively separable.

Theorem 1 Suppose A=nN"1 ):i.il c(wi,B)h(xi,B) is an estimator of Ao = E [c;h(x;, By)]- As-

sume that (3.1) holds and that each element of the P x 1 random vector g(w;, B) = c(w;, B)h(x;, B)

2Cameron and Trivedi (2013) assert ¢; L c;j as T — oo, which is true if {y; } and {m(x;;,Bg)}
are ergodic for the mean.
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satisfies the regularity conditions on q(w;, B) from Theorem 12.2 of Wooldridge (2010). Then
252

Proof. Since B LA Bo. then N’lxi.\/:l c(w,-,B)h(x,-,B) LY [c(w;, Bg)h(x;,Bg)] by Lemma 12.1

in Wooldridge (2010). Furthermore, by the L.LE.,

E[c(wi, Bo)h(xi, Bo)] =E{E[c(wi, Bo)h(xi, Bo)|xi ci]}

(YT E(vielxi,ci)
— h I
£ i Zthlm(xit»ﬁ()) * BO)]
X m(xie, Bo) .
- i Zlem(xit,ﬂo) h(x”ﬁ())]
=E [cih(x;, Bo)] (3.12)

u
Consistency of N~! Zﬁ.\’: | €i for E(c;) follows from setting h(x;, B) = 1, while consistency of s ]
and gk follow from either setting

T

h(x,B)=T""Y M;(x;,B) or (3.13)

=1

T
h(x;,B)=T"" ; [m(xit(—k)7lvﬁ) _m(xit(fk)voaﬁ)] : (3.14)

Theorem (1) shows that unlike with other nonlinear fixed effects estimators, no bias correction
is necessary to estimate the APE and ATE in this setting. One might expect, a priori, that gj and
gk would perform well anyway as T grows and ¢; better approximates c;. Nevertheless, Theorem
(1) holds for an arbitrary 7', so s ; and gk should perform well even in panels with only two time
periods (the minimum needed for FEP). The APE and ATE I consider are just two of many possible
quantities of interest. Researchers might also want to know the average marginal effect for a
specific time period, or for a specific subpopulation defined by the observables (i.e. the Average
Treatment Effect on the Treated). One might also want to estimate the partial effect evaluated at

the averages of the heterogeneity and covariates. As long as ¢; multiplies the relevant function
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of the data, one need not worry about the difference between it and ¢; when averaging over the
cross-section.

As a caution, one cannot use ¢; to learn about other features of the distribution of ¢; except
in more restrictive cases. For instance, Var(c;) is identified only under additional assumptions
about Var(y;|x;,c;). A simple example is when the Poisson variance assumption, Var(y;|x;,c;) =
E(yjt|x;,c;), and zero conditional covariance, Cov(yj;, yir|Xi,c;) = 0,f # r, both hold. In this case,
one can show that Var(c;) = Var[c(w;,Bg)] — E [ci/Zthl m(xit,Bo)].

The asymptotic variance of A can be derived similarly to the delta method, but making sure to

account for the randomness in w;. 3

Theorem 2 Under the assumptions in Theorem (1),
VN(A — 1) % N(0,Dy),
where

Dy = Var g(wi, By) — 2o — GoAy 'si(Bo) |

Go = E |Vg(wi,Bo)| = E [c(wi, Bo)Vgh(xi, Bo) + h(xi, Bo)V ge(wi, Bo)|
Zthl Vﬁm(xinﬁ))
Z,T:1 m(x;, B) ’
Vgh(x;,B) is the P x K Jacobian of h(x;,B), and

Vge(wi, B) = —c(wi, B) (

Vﬁm(xit,ﬂ) is the 1 x K gradient of m(x;,B).

Proof. Define G; as the P x K Jacobian of g(w;, B) evaluated at different mean values between B

3The derivation here is essentially the same as the solution to Wooldridge (2010), Problem
12.17.
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and By. By a mean value expansion of each element of \/Ni =N"1/2 ):i.\; 1 8(wi, B) around B,

N N N
NY2Y g(wi,B)=N""2Y g(w;,Bo) + (N‘ ZG> N (B-Bo) (3.15)
i=1 i=1
N ~
=N"12Y g(wi,Bo)+GoVN (B~ Bo) +0p(1) (3.16)
i=1

N N
_N—1/2 Y g(wi.Bo) _N1/2 Y GoAalsi(ﬁo) +o0p(1). (3.17)
i=1 i=1

The second equality follows because consistency of ﬁ implies N -1 Z].\i G; L Gy and because

\/_<B ﬁ()) Op(1). The third follows because \/_(ﬁ ﬁ()) =N~ 1/22 Ay Isi(Bo) +

0p(1). Therefore,
\/ﬁ(i —)»0> NT1/2 Z [ (wi, Bo) lo—GoAglsi(Bo)] +op(1) (3.18)

By the Asymptotic Equivalence Lemma, the limiting distribution of /N (I — l()) is the same as
N1/2 ):f.vzl [g(w,-, Bo)—Ao— GoAalsi(BO)} , which is easily shown to be the scaled sample av-
erage of a mean-zero random vector. Therefore, by the Central Limit Theorem for i.i.d. sequences,
the result follows. m

Applying Theorem (2) for the APE of a continuous covariate x ;:

\/N<3~—6~ )iN(o,Dj,o), (3.19)
Dj,o = Var [ - Z ¢ wl?BO (xleO) G A() SI(B())] (3.20)
4 r Vgm its
Gja() =E wlaﬂO ; {VﬁM xl[7ﬁ0) (xztaﬂ()) (Ztl ﬁ (x ﬁ0)> }] (321)

Zthl m(xil‘a BO)
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For the ATE of the binary covariate xy:

VN (Sk . 5k70) 4 N(0,Dy), (3.22)
T

Dk’O = Var T_l Z C(Wi,ﬁo) (m(xlt s l,ﬁo) (xn O ﬁ()) — 5k70 _ Gk,oAalsi(BO)] ,
=1

(3.23)

T ZT— \v4 m;
Gk70 =FE Wl,ﬂo Z {Vﬁm,, VBmit(O)_(mit(l)_mit(O)) (%ﬁt) }] 7
=1 thl mi;
(3.24)

where mj; = m(x;, Bg), mjr (1) = m(Xis(—p)s 1,Bo), and m; (0) = m(Xjy(—g),0 ,Bp). These asymp-
totic variances can be consistently estimated from the above expressions by plugging in B for B

and forming the sample analogs to the expectation and variance operators.

3.2.1 Exponential Models

Since it is a common specification in empirical research, I include a few observations about the
exponential conditional mean case. The form of the quasi log-likelihood means that one can es-
timate coefficients on time-varying x;; only. Nevertheless, §;( and & ¢ are still identified when
the conditional mean function is exponential and includes time-constant observables. To see this,

suppose the following:
E(yilxir, 2isvi) = viexp(xis Bo + 2i¥o), (3.25)

where now I use v; to denote the unobserved heterogeneity. Define ¢; = v;exp(z;¥). Then clearly

E(yit|xi, ci) = ciexp(xi Bg)- (3.26)

The heterogeneity has absorbed the time-constant observables. Theorems (1) and (2) still hold, but
the function ¢; now serves as a stand-in for the total contribution from all time-constant variables—
observed and unobserved. Analogous to the linear case, ¥, is not identified, nor are the average
partial effects of the z;, but given consistent estimates of B;, one can still consistently estimate the

average partial effects of the time-varying regressors.
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One alternative estimand studied by Lee and Kobayashi (2001) is the proportional treatment
effect, which for a binary treatment and the simple index in (3.25) is: 4
E(yituxit(—k) yXitk = 17Zia Vi)

= —1=-exp(B)—1 (3.27)
ék E(yituxit(—k)7xitk = O7zi7vi) (Bk)

Of course, & may interesting in its own right, but my analysis shows that estimating the ATE in
levels using (3.11) is another option, even when time-constant regressors belong in the model.

Furthermore, APE of a continuous variable simplifies in the exponential conditional mean case.

' T
80 =E|T"" Y CieXp<xitﬁ)] Bio (3.28)

t=1

T
=E|T7'Y E()’it|xitvci>] Bio (3.29)

) T
o Z E(yir)
=1

where the last equality is by the L.I.LE. Here, the population scale factor is analogous to the cross-

Bjo: (3.30)

section case and doesn’t depend on the heterogeneity.

Moreover, an estimator that treats ¢; as the unknown ¢; is equivalent to the sample analog of

(3.30).

N T R
= [(NT)‘1 ; ; exp(x;:B) ] Bj= [NT -y Zyn] B; (3.31)

i=1t

Consistency of gj for 6; is immediate given a consistent estimator of f3 0 Since & ; does not
depend on ¢;, one could even estimate B, without assuming strict exogeneity of x;;, using the
GMM approach of either Chamberlain (1992) or Wooldridge (1997) based on sequential moment
restrictions.

The asymptotic variance is simpler as well:

Avar \/]T](gj_gj,O) :Val’(yiﬁj—5j—u;rjAalsi(ﬁ0)), (3.32)

4Lee and Kobayashi’s model includes multi-valued treatment as well as interactions between
the treatment and covariates, so the proportional treatment effect depends on x;; and z;, but only
involves coefficients on time-varying regressors and interactions.
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where uT = E(T*1 Zthl yir), and rj is a 1 x K-vector with jth element equal to 1 and all other

elements equal to 0. The expression is similar if GMM is used to estimate B.

3.2.2 A note about dropped observations

If the dependent variable for an observation [ is zero in each time period, then observation / con-
tributes nothing to the quasi log-likelihood, as can be seen in equation (3.4). Clearly, the terms in
gj and gk corresponding to observation I’s contribution are then equal to zero, since ¢(w;, B) = 0.
Nevertheless, if interested in an APE or ATE with respect to the entire population of interest, the
sample size N in the formulas for gj and gk should correspond to the number of individuals in
the entire the cross-section, not the number of individuals in the estimation sample (that is, with

n; > 0). Otherwise, the estimates will be conditional on this particular subsection of the population

and be inflated by a factor of N/N,,, where N, = Zf'\; 1[n; > 0].

3.3 Monte Carlo

3.3.1 Design

I employ the following data generating process. Fori=1,...,Nandt=1,...,T:

Vit|(xi,d;, ¢;) ~ Poisson [c;exp(B1xir + Badit )] , (3.33)
log(c;) ~ Normal(0,6?) (3.34)

xip =log(c;) + pxig—1+vir, t > 1 (3.35)

xi1 = log(c;) /(1= p) +vi1/y/1—p2, vir ~N(0,1/2), (3.36)
p=03-050 (3.37)

diy = 1[x;; +log(c;) +hiy > 0], hjyy ~N(0,1/2) (3.38)
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I study panels of dimensions N € {500,1000,2000} and T € {2,4,10}. The conditional
marginal distribution of y; is Poisson with an exponential mean function. I set f; = 0.5 and
B = —0.5. 1 vary the degree of heterogeneity, with o € {0,0.25.0.5,0.75,1}. The continuous
covariate x; and the binary covariate d; are both correlated with the heterogeneity, and the strength
of the correlation increases with . The scaling of x;; is intended to keep Var(x;) constant across
the different 7.7 That the autoregressive parameter in the equation for x; depends on o is an
attempt to keep the autocovariance structure of x; more consistent as o increases.

I estimate B; and 3, using FEP, and employ the APE and ATE estimators proposed in equations
(3.10) and (3.11). In the tables to follow, FEP estimates are denoted with a “~”. For reference, |
also estimate the slopes, APE, and ATE using pooled Poisson QMLE, which ignores c; entirely.
These estimates are denoted with a “~ . Both FEP and Poisson QMLE are consistent when o = 0,
but only FEP is consistent when o > (0. Reporting the results for Poisson QMLE is intended to
give the reader a sense of how large a problem neglected heterogeneity causes under this particular
DGP. For each estimator and parameter combination, I report the mean and standard deviation of
the empirical distribution, the estimated bias, the ratio of the mean standard error to the empirical
standard deviation, and the probability of rejecting a true null hypothesis at the 5 percent signifi-
cance level. I use cluster robust asymptotic standard errors with the slope estimates, though they
are technically not necessary with this DGP. For the APE and ATE estimates, I use the “uncondi-
tional” asymptotic standard errors derived in this chapter for the FEP case, as well as the analogous

versions for Poisson QMLE. For each parameter combination, I draw 2000 replications.

3.3.2 Results

Full tables of simulation results can be found in Appendix D. I focus attention on the APE and ATE
estimates, though the slope estimates are included for reference. As expected, across all values of
N and T, there is virtually no finite sample bias in the Poisson QMLE and the FEP estimates in the

absence of heterogeneity (o = 0). In the presence of heterogeneity, however, Poisson QMLE slopes

SSee Vamos, Soltuz, and Craciun 2007.
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and APEs are biased. As heterogeneity increases, bias increases, and the probability of rejecting a
true null hypothesis quickly approaches one. Therefore, this DGP succeeds in simulating settings
where controlling for individual effects is important.

Finite sample bias in 31 is less than 0.01 for all values of N, T, and o, which is not surprising
given that in the exponential case, the APE scale factor does not even depend on ¢;. Some ATE
estimates at higher levels of ¢ are slightly biased away from zero when the panel is short and the
sample is smaller. For instance, when N = 500 and 7 = 2, finite sample bias is between 2 and
2.5 percent of the true value when o > 0.5. However, the magnitudes of these biases decrease to
1 — 1.5 percent when N = 1000 and O — 1 percent when N = 2000. In the T =4 and 7' = 10 cases,
the finite sample bias is less than 1 percent and quite small in the larger cross-sections.

The finite sample standard deviations behave in predictable ways, decreasing as either N or
T increases. The variability in 3\2 seems to be greater than that of 51, and the spread between
them increases with o, which might be related to the fact that 31 does not actually use ¢; in the
exponential case. The standard errors derived in this chapter perform reasonably well, particularly
with the largest cross-section, where at worst, their empirical mean underestimates the empirical
standard deviation by about 4 percent. This occurs for the standard error of 51 intheT =4,0=1
case, where as a point of comparison, the mean standard error for El also underestimates the finite
sample standard deviation of El by a similar amount. For the most part, the results suggest the
approximations get better as N increases, though simulating more replications may be necessary
to reduce sampling error. When o is high, the apparent underestimation by the standard errors
leads to slight over-rejection by about one or two percentage points, but larger N also mitigates
this problem.

Overall, these simulations support this chapter’s theoretical findings. The asymptotic properties
derived in Section 2 for the APE and ATE estimators that use estimated incidental parameters seem

to approximate their finite sample behavior very well.
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3.4 Conclusion

It is already well-known that in static multiplicative panel models under strict exogeneity, estimat-
ing the heterogeneity still leads to consistent estimation of the parameters of a correctly-specified
conditional mean function. This chapter adds the result that APE and ATE estimators that use es-
timated heterogeneity are also consistent and v/N-asymptotically normal with T fixed. In fact, the
results hold for estimating the mean of a wider class of random quantities where the heterogeneity
is multiplicatively separable from functions of the data. I derive asymptotic standard errors for
these estimators that perform well in simulations for a leading case in empirical research. One area
for future research would be to use higher order expansions to derive standard errors that better

approximate the standard deviation of the sampling distribution.
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APPENDIX A

ANALYTICAL BIAS CORRECTION EXPRESSIONS FROM CHAPTER 1

From Hahn and Newey (2004), and Fernandez-Val (2009), the one-step bias corrected estimator is

formed as

Ope = 6 — 2(0)/T, (A.1)

where % (0)= f(e)*@(e). Here 6 denotes a generic coefficient vector, and 6 is the uncorrected

MLE.

A.1 Hahn and Newey’s bias correction for M-estimators

With strictly exogenous regressors Xj;:

—

N T T T
f<9)=—{(NT>‘1__ZI;[%e<9 — Uit (6 (; ) (Zﬂm(e))} (A.2)

t=1
N N T
b(0)=NT) ' Y Y {aua(®) |Bi(6) + Wir(0)| +inaad?(0)/2}, (A3
where

s=1

T —1
;/\ls(x(e)> Z {‘//\lsa(e)ll/}lt(e)+{}\lsa06(9)6-12(9)/2}7 (A4)

T
Z (A.5)

In these expressions, uj; (0) and v;,(0) are derivatives of the log-likelihood with respect to 6 and
0, respectively, evaluated at o; = 0;(0) = arg max ZzT:1 0i;(6,04)/T. Partial derivatives of u;,(0)
and v;,(0) are denoted by the 6 and « subscripts. The terms W;;(6), G ( ), B,( ) are estimators
for the influence function, asymptotic variance, and higher order asymptotic bias, respectively, of

0;(0) as T grows.
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A.2 Fernandez-Val’s bias correction based on conditional expectations

Fernandez-Val (2009) simplifies the Hahn and Newey (2004) corrections by taking expectations
conditional on {x;,;} and using the Law of Iterated Expectations. For static probit models with

strictly exogenous regressors,

where
. 10(G(0) +x0)) - (T . )1
Git 0)= ~ = » O =T Glt 0 > (A7)
() = S G 0) +x:0)[1 —0(@0) cx0) O 1 |\ & Gi(®
n:(8) = (1/2) (T‘l i%(@)éitw)) ot (A.8)
=1
2if(68) = §;(6) +x;6, and &(6) ZaTng%Xiéir(e,ai)/T (A.9)

t=1

A.3 Average Partial Effects

As in equation (14) of Section II, we define the function m(f,7, o, x;;) as the partial effect of w;,
on the probability that y;; = 1 for w € {x,d}. Using one of the analytical bias-corrected slope

estimators, 5bc and . = &i(gbc), the bias-corrected estimator for the average partial effect is

N T _ R
Hype=NT)"' Y Y iy (Bocs Toes OpesXir) — AT (A.10)
i=1r=1
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Using Hahn and Newey’s method:
1 < v ~2
-y Z {aBi+(1/2)iaad? } (A.11)
i: :

where Bi; = Bir(6pc) 51-2 = 8i2(§bc), and mg, and mqq denote partial derivatives with respect to a,
evaluated at 6y, and 0.

Using Fernandez-Val’s method:
N T T -1
A=N"Y ( Zman,> +(1/2) <T_1 Z%aa> (T—l Y 6,-,) (A.12)

where A;; = lit(gbc) ni = nl(ebc) and Glt = Git(gbc)-
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APPENDIX B

SIMULATION RESULTS FOR BIAS CORRECTIONS ON A LARGER
CROSS-SECTION

Table B.1: Probit Slope Estimates when N = 500, T = 6

-~

B (true value = 1) ¥ (true value = 1)
‘ Mean SD cv: .95 g—g ‘ Mean SD cv: .95 g—g

p=0.0

MLE 1.33  0.10 0.08 099 | 1.32 0.10 0.15 1.06
A-FV09 | 095 0.06 0.92 1.13 1 0.97 0.07 0.99 1.34
A-HNO4 | 1.15 0.09 0.57 094 | 1.15 0.09 0.71 1.09
J-DJ14 0.92 0.13 0.61 0531094 0.13 0.79 0.72
J-HNO4 | 090 0.07 0.68 098 | 092 0.07 0091 1.26
CRE 0.99 0.06 0.94 098 | 0.99 0.07 0.96 1.06
p=04
MLE 1.51  0.12 0.00 099 | 1.51 0.12 0.01 1.06
A-FV09 | 1.02 0.06 0.98 1.17 | 1.05 0.07 0.99 1.41
A-HNO4 | 1.32 0.11 0.09 092|132 0.11 0.16 1.04
J-DJ14 085 0.19 041 0.36 | 0.87 0.18 0.58 0.50
J-HNO4 | 1.02 0.08 0.92 0.90 | 1.03 0.08 0.97 1.14
CRE 0.99 0.06 094 1.01 1 0.99 0.07 0.95 1.05
p=0.8
MLE 236 020 0.00 1.00 | 2.37 0.22 0.00 0.99
A-FV09 | 0.79 0.21 041 0321 0.76 024 0.50 0.40
A-HNO4 | 2.12  0.19 0.00 0.87 | 2.14 0.21 0.00 0.86
J-DJ14 094 047 0.26 0.17 | 0.71 1.09 0.32 0.10
J-HNO4 | 1.60 0.17 0.00 0.62 | 1.59 0.18 0.01 0.66
CRE 0.99 0.06 0.94 1.00 | 0.99 0.07 0.94 1.00
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Table B.2: Probit APE Estimates when N =500, T =6

L/ ly (true value = 1)

Ly /g (true value = 1)

SE

‘ Mean SD cv: .95 g—g ‘ Mean SD cv: .95 )

p=0.0

MLE 0.99 0.06 093 094 | 098 0.08 0.95 1.02
A-FV09 | 095 0.06 0.85 094 | 094 0.08 0091 1.08
A-HNO4 | 1.03  0.07 0.87 0.86 | 1.01 0.08 0.94 1.00
J-DJ14 1.09 0.09 0.59 0.66 | 1.11  0.10 0.68 0.77
J-HNO4 | 1.04 0.07 0.85 0.81 | 1.05 0.09 0.87 0.90
CRE 1.00 0.06 0.95 0.99 | 1.00 0.08 0.96 1.05
LPM 093 0.06 0.78 099 | 1.29 0.08 0.05 1.07
p=04

MLE 097 0.06 091 094 | 098 0.08 0.94 1.01
A-FV09 | 093 0.06 0.72 093|093 0.07 0.87 1.08
A-HNO4 | 1.04 0.07 0.86 0.84 | 1.02 0.08 0.94 0.98
J-DJ14 1.13 0.09 041 059 | 1.13 0.11 0.56 0.71
J-HNO4 | 1.05 0.07 0.78 077 | 1.06  0.09 0.84 0.87
CRE 1.00 0.06 0.95 1.01 | 1.00 0.08 0.96 1.04
LPM 0.93 0.06 0.80 1.01 | 1.29 0.08 0.04 1.05
p=0.8

MLE 092 0.06 0.66 091 | 096 0.07 0.89 0.94
A-FV09 | 0.72 0.15 0.02 033 10.64 0.18 0.01 0.39
A-HNO4 | 1.04 0.07 0.82 0.77 | 1.00 0.07 0.93 0.93
J-DJ14 1.23  0.10 0.10 053] 1.14 0.11 047 0.62
J-HNO4 | 1.13  0.08 0.32 0.62 | 1.09 0.08 0.69 0.76
CRE 1.00 0.06 0.95 099 | 1.00 0.08 0.95 1.00
LPM 093 0.06 0.77 1.00 | 1.29 0.08 0.02 1.02
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APPENDIX C

DERIVATIONS OF TEST STATISTICS FROM CHAPTER 2

C.1 Derivations from Section 2.3.2

From section 3.2, the score of (2.13) evaluated at A = 0 is identically zero. Assuming we can pass

the derivative through the integral, we can work out the following:

ffRKhit [H;T 1Pt(xu )ylt] [Z[ 1YitU; ®ql(xla7b ):| f(ul) dui
ffRKf(yl’xHul?cl? n;)f(u;)du;

Vali(B,A) = (C.1)

where h;; = Tn—" q:(x;,b;) = V. Pt (x;,b;)/pt(x;,b;). Evaluating at A = 0, and pulling the
1y1t

terms that do not depend on u; out of the integrals, we have:

i [Hlepz(xi,ﬂ)yi’} [Z[T:Q’it Sk w;® qe(xi, B) f(u;) du;
A=0 hig [T17— pe(xi, B)it] [J f(u;) du;

VAgi(ﬁvA)‘ (C.2)

T
=Y viE [u;®q(x;,b;)] (C.3)
=1

0.

The second equality uses that [k f(#;)du; = 1, while the third follows from independence of x;;
and u;, as well as E(u;) = 0.
Following the re-parameterization shown in (2.14), stacking the A; into K x 1 vector A, defining

let @ = (B’,A’)’, and following similar steps as before, we have:

(%ﬂl‘

a0 2\/— [Zynqt] xi, B ]// i f () du; (C4)

lj:O

where ¢; () is the jth element of g;(), The above has 0/0 form since E (u;) = 0.
(Iﬂ )

Using L’ Hopital’s rule, the limit, of —45-== as each element of A approaches zero from above
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is:

j@ffRKhit[Htpt(xiabi)yit] {Ztyll‘rtj(xw i)+ [Zt)’zt%J(x,,b)]z} lzj (u;) du;

. (C5)
2 (ﬁ) ffRK hig (TT; pe(xi,b;)it] f (u;) du;

where r; () is the (j, j)th element of Va1 (x;,b;). The —— ; \/)T terms cancel, as do the h;, the product
J
terms when we evaluate at A =0 (b; = B). Then using [k f(u;)du;=1and [[px ul-zjf(u,-) du;, =

E(u 12]) = 1, we get the last K elements of (2.15).

C.2 Derivations from Section 2.3.3

As before, the restricted score of (2.21 is identically zero.

T VAD: i 7A
Vali(B,A) :t;)’it { gfzxifﬁ{i\) )}

L YT exp(xipB +me(x;,A)) [Vami(x;,A) — Vym(x;,A)]

= Vi ; (C.6)
tgl ! Zzzl exp(x;-B +mr(x;,A))

Vmi (A = Sk exp (xi Au;) (u; @ x;¢ ) f (u;) du; ©7

AT [Tk exp (i Aou) £ (u) du |

The complication arises because
Sk ;@) f (u;) du;

V . — = .

A (i A) ‘A=0 [k f(u;)du; 0 ©®
which implies

Vali(B,A) ’A:O —0. (C.9)

After the re-parameterization, for each of the A j» We have:

-1 X AW X Fw:) du:
VA e (X3, A {// exp(x; Agu;) f(ul)du,} ffRKeXP( it l)xlt]”l]f( i) i (C.10)
2/

When evaluated at A = 0, the second factor of (C.10) has the form 0/0.
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Using L’Hopital’s rule, as each A; approaches zero from above, we have:

(xig ) x5 ju f (w;) du

A . A 2(—
w0 2\/)TJ w0 (2\/771- )
- T e f (up) du
N 2

1
= Exl%j (C.11)

Plugging these limits in into the expression for VA ¢;(B,0), we get (2.23).
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APPENDIX D

SIMULATION RESULTS FROM CHAPTER 3

Table D.1: Finite Sample Properties of Poisson QMLE: 1 =0.5,8, = —0.5,N = 500

1 B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 1050 000 0.06 098 0.06 -0.50 0.00 0.09 0.99 0.05
T=4 050 000 004 099 0.06 -0.50 0.00 0.06 1.00 0.05
T=10|0.50 0.00 0.03 099 0.05 -0.50 0.00 0.04 0.98 0.05
c=0.25

T=2 1058 008 0.06 099 0.29 -0.38 0.12 0.09 0.99 0.28
T=4 058 008 0.04 1.00 0.52 -0.39 0.11 0.06 0.99 0.46
T=10]058 008 0.03 1.01 0.87 -0.38 0.12 0.04 1.00 0.84
o =0.50

T=2 1074 024 0.06 097 0.99 -0.19 0.31 0.10 0.99 0.90
T=4 (074 024 004 0095 1.00 -0.19 0.31 0.07 0095 0.99
T=1010.74 024 0.03 094 1.00 -0.19 0.31 0.05 1.00 1.00
o =0.75

T=2 1092 042 0.07 0.86 1.00 -0.04 046 0.11 0093 0.97
T=4 1092 042 006 0.84 1.00 -0.04 046 0.09 093 0.99
T=101]091 041 0.05 0.82 1.00 -0.04 046 0.07 0.89 1.00
o =1.00

T=2 |1.07 057 009 0.77 1.00 0.09 059 0.15 0.86 0.96
T=4 |1.08 058 0.09 0.70 1.00 0.08 0.58 0.13 0.78 0.96
T=10]1.08 058 0.08 0.71 1.00 0.08 0.58 0.11 0.76 0.98
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Table D.2: Finite Sample Properties of Fixed Effects Poisson: f; =0.5,8, = —0.5,N = 500

~ -~

Bi B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 1050 000 0.10 0.99 0.05 -0.50 0.00 0.13 0.99 0.05
T=4 1050 000 0.05 099 0.05 -0.50 0.00 0.07 1.00 0.05
T=101]0.50 0.00 0.03 0.99 0.05 -0.50 0.00 0.04 0.98 0.05
o=0.25

T=2 1050 000 0.09 0098 0.06 -0.50 0.00 0.13 0.99 0.05
T=4 1050 000 0.05 1.01 0.05 -0.50 0.00 0.07 0.99 0.05
T=10]0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.04 1.00 0.05
o =0.50

T=2 1050 000 0.08 0.99 0.05 -0.50 0.00 0.14 1.00 0.05
T=4 050 000 0.04 1.00 0.05 -0.50 0.00 0.08 0.98 0.06
T=10]0.50 0.00 0.02 1.00 0.06 -0.50 0.00 0.04 1.02 0.05
o =0.75

T=2 1050 000 0.06 1.01 0.05 -0.50 0.00 0.14 0.99 0.06
T=4 1050 000 0.03 099 0.06 -0.50 0.00 0.08 0.99 0.05
T=10]0.50 0.00 0.02 0.99 0.06 -0.50 0.00 0.05 0.99 0.05
o =1.00

T=2 1050 000 0.05 097 0.06 -0.50 0.00 0.15 0.97 0.06
T=4 1050 000 0.03 097 0.06 -0.50 0.00 0.08 1.01 0.05
T=101]0.50 000 0.02 097 0.06 -0.50 0.00 0.05 1.01 0.05
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Table D.3: Finite Sample Properties of Poisson QMLE: B; =0.5,8, = —0.5,N = 500

81 (APE) 8, (ATE)
| Mean Bias SD  SE/SD RP(0.05) | Mean Bias SD SE/SD RP(0.05)

c =0.00

T=2 [041 000 005 099  0.05 -042 000 0.08 1.00 0.5
T=4 041 000 004 099 0.05 -042 000 0.05 1.00 0.5
T=10/041 000 002 099  0.05 -0420.00 0.03 099  0.05
c=0.25

T=2 [050 007 005 099 024 034 0.12 0.08 1.00 030
T=4 050 007 004 1.00 043 -0.34 011 006 099 049
T=10/050 0.07 002 1.02 0.79 -034 0.2 004 1.00  0.85
0 =0.50

T=2 [074 024 007 097 094 020 036 0.10 099 091
T=4 1074 024 006 095 100 020 036 0.08 095 099
T=10/074 024 005 097 1.00 -020 036 005 1.00  1.00
c=0.75

T=2 [119 054 015 091 100 -0.06 070 0.16 092  0.96
T=4 | 119 054 014 088  1.00 -0.06 071 012 092  0.98
T=10|119 054 013 090  1.00 -0.06 071 0.10 0.88  0.99
o =1.00

T=2 [200 107 036 083 100 0.13 128 028 084  0.95
T=4 [203 110 039 076  0.99 012 126 027 072 096
T=10/202 109 035 082 1.00 014 128 022 073 097
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Table D.4: Finite Sample Properties of Fixed Effects Poisson: f; =0.5,8, = —0.5,N = 500

~

5| (APE) S, (ATE)
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

o =20.00

T=2 |041 0.00 0.08 0.99 0.05 -043 0.00 0.11 0.99 0.05
T=4 |041 0.00 0.04 0.99 0.05 -0.42 0.00 0.06 1.00 0.05
T=10|041 0.00 0.02 0.99 0.05 -042 0.00 0.04 0.99 0.05
o=0.25

T=2 |043 0.00 0.08 0098 0.05 -046 0.00 0.13 0.99 0.05
T=4 |043 0.00 0.04 1.00 0.05 -046 0.00 0.07 0.99 0.05
T=101|043 0.00 0.02 1.01 0.05 -045 0.00 0.04 1.01 0.04
o =0.50

T=2 |050 0.00 0.08 1.00 0.05 -0.57 -0.01 0.18 0.98 0.05
T=4 |050 0.00 0.05 0.99 0.06 -0.56 0.00 0.10 0.98 0.06
T=10|0.50 0.00 0.03 1.02 0.05 -0.56 0.00 0.06 1.03 0.04
o=0.75

T=2 |0.65 000 0.09 1.00 0.05 -0.79 -0.02 0.28 0.98 0.05
T=4 |0.65 0.00 006 0098 0.06 -0.77 -0.01 0.16 0.99 0.06
T=10|0.65 0.00 0.05 0098 0.06 -0.77 -0.01 0.10 0.98 0.05
o=1.00

T=2 1093 000 0.14 094 0.07 -1.17 -0.03 0.46 0.95 0.06
T=4 1093 0.00 0.12 0.90 0.08 -1.15 -0.01 0.28 0.98 0.06
T=101]0.93 0.00 0.10 0.95 0.08 -1.15 0.00 0.19 097 0.06
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Table D.5: Finite Sample Properties of Poisson QMLE: B; = 0.5,8, = —0.5,N = 1000

Bi B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 (050 000 0.04 1.00 0.05 -0.50 0.00 0.06 0.99 0.05
T=4 050 000 0.03 1.00 0.05 -0.50 0.00 0.04 0.99 0.05
T=101]0.50 0.00 0.02 098 0.05 -0.50 0.00 0.03 0.99 0.05
o=0.25

T=2 1058 008 0.04 1.01 0.52 -0.38 0.12 0.06 1.01 0.46
T=4 1058 008 0.03 1.02 0.80 -0.38 0.12 0.04 0.99 0.78
T=10]058 0.08 0.02 1.03 0.99 -0.38 0.12 0.03 1.03 0.99
o =0.50

T=2 1074 024 0.04 0098 1.00 -0.19 0.31 0.07 0.96 0.99
T=4 1074 024 0.03 0098 1.00 -0.19 0.31 0.05 1.00 1.00
T=10]0.74 024 0.02 097 1.00 -0.19 0.31 0.03 1.00 1.00
o =0.75

T=2 1092 042 0.05 092 1.00 -0.04 046 0.08 0.96 0.99
T=4 1092 042 0.05 0.86 1.00 -0.05 045 0.07 0.90 0.99
T=101092 042 0.04 0.83 1.00 -0.04 046 0.05 0.88 0.99
o =1.00

T=2 109 059 0.08 0.78 1.00 0.07 057 0.11 0.85 0.98
T=4 109 059 0.07 0.73 1.00 0.07 057 0.10 0.78 0.98
T=101]1.09 059 0.07 0.75 1.00 0.07 057 0.09 0.77 0.99
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Table D.6: Finite Sample Properties of Fixed Effects Poisson: 1 =0.5,8, = —0.5,N = 1000

~ -~

Bi B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 1050 000 0.07 099 0.05 -0.50 0.00 0.09 1.01 0.05
T=4 050 000 0.04 1.00 0.05 -0.50 0.00 0.05 0.98 0.05
T=101]0.50 0.00 0.02 098 0.05 -0.50 0.00 0.03 0.99 0.05
o=0.25

T=2 1050 000 0.06 0098 0.05 -0.50 0.00 0.09 1.00 0.05
T=4 050 000 0.03 1.00 0.05 -0.50 0.00 0.05 0.99 0.06
T=101]050 000 0.02 1.04 0.04 -0.50 0.00 0.03 1.01 0.04
o =0.50

T=2 (050 000 0.05 1.00 0.05 -0.50 0.00 0.10 1.01 0.05
T=4 1050 000 0.03 098 0.06 -0.50 0.00 0.06 1.00 0.06
T=101]0.50 000 0.02 1.02 0.05 -0.50 0.00 0.03 0.99 0.05
o =0.75

T=2 1050 000 0.04 1.02 0.04 -0.50 0.00 0.10 0.99 0.05
T=4 1050 000 0.03 099 0.05 -0.50 0.00 0.06 1.00 0.05
T=10]0.50 000 0.01 1.01 0.05 -0.50 0.00 0.03 1.00 0.05
o =1.00

T=2 1050 000 0.03 099 0.05 -0.50 0.00 0.11 0.99 0.05
T=4 1050 000 0.02 097 0.06 -0.50 0.00 0.06 1.01 0.05
T=10]050 000 0.01 1.02 0.05 -0.50 0.00 0.03 1.00 0.05
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Table D.7: Finite Sample Properties of Poisson QMLE: B; = 0.5,8, = —0.5,N = 1000

81 (APE) &, (ATE)
| Mean Bias SD  SE/SD RP(0.05) | Mean Bias SD SE/SD RP(0.05)

c =0.00

T=2 [041 000 0.04 099 0.06 -042 000 0.05 099  0.05
T=4 041 000 003 099  0.05 -042 000 0.04 099  0.05
T=10/041 000 002 098  0.05 -0420.00 0.02 1.00  0.05
c=0.25

T=2 [050 007 004 100 045 -0.34 0.11 0.06 1.01 048
T=4 1050 007 003 100 0.71 034 012 004 099 079
T=10/050 0.07 002 1.01  0.98 -034  0.11 003 1.03 099
0 =0.50

T=2 [074 024 005 098 100 020 036 0.08 096  0.99
T=4 1074 024 004 098 100 020 036 0.05 1.00  1.00
T=10/074 024 004 098  1.00 -020 036 0.04 1.00  1.00
c=0.75

T=2 [119 054 011 095 100 -0.06 070 0.11 096  0.99
T=4 | 119 054 010 091  1.00 -0.06 070 0.09 0.89  0.99
T=10|119 054 010 090  1.00 -0.06 070 0.07 0.87  0.99
o =1.00

T=2 [204 110 028 084 100 0.12 126 022 083 097
T=4 203 110 029 080  1.00 012 126 021 073 097
T=10/204 110 026 085 1.00 012 127 017 075 098
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Table D.8: Finite Sample Properties of Fixed Effects Poisson: 1 =0.5,8, = —0.5,N = 1000

~

5| (APE) S, (ATE)
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

o =20.00

T=2 |041 0.00 0.06 0.99 0.05 -042 0.00 0.08 1.01 0.05
T=4 |041 0.00 0.03 0.99 0.06 -0.42 0.00 0.05 0.98 0.05
T=10|041 0.00 0.02 098 0.05 -042 0.00 0.03 0.99 0.05
o=0.25

T=2 |043 0.00 0.06 0098 0.05 -0.46 0.00 0.09 1.00 0.05
T=4 |043 0.00 0.03 1.00 0.05 -045 0.00 0.05 0.99 0.06
T=10| 043 0.00 0.02 1.02 0.05 -046 0.00 0.03 1.02 0.04
o =0.50

T=2 |050 0.00 0.06 1.00 0.05 -0.57 -0.01 0.13 1.01 0.04
T=4 |050 0.00 0.03 0.99 0.05 -0.56 0.00 0.07 1.01 0.05
T=101|0.50 0.00 0.02 1.01 0.05 -0.56 0.00 0.04 1.00 0.05
o=0.75

T=2 |0.65 000 0.06 1.02 0.04 -0.78 -0.01 0.19 0.99 0.05
T=4 |0.65 0.00 004 0098 0.06 -0.77 0.00 0.11 1.00 0.05
T=10|0.65 0.00 0.03 1.00 0.05 -0.77 0.00 0.07 1.01 0.05
o=1.00

T=2 1093 000 0.10 0095 0.06 -1.16 -0.01 0.31 0.98 0.05
T=4 1093 0.00 008 0.93 0.07 -1.15 0.00 0.19 0.99 0.05
T=101]0.93 0.00 0.07 0.96 0.07 -1.15 0.00 0.13 0.99 0.05
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Table D.9: Finite Sample Properties of Poisson QMLE: B; = 0.5,8, = —0.5,N = 2000

Bi B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 (050 000 0.03 1.00 0.05 -0.50 0.00 0.04 0.99 0.05
T=4 1050 000 0.02 1.01 0.05 -0.50 0.00 0.03 1.00 0.05
T=10]0.50 000 0.01 097 0.06 -0.50 0.00 0.02 0.99 0.05
o=0.25

T=2 1058 008 0.03 1.02 0.81 -0.38 0.12 0.04 1.02 0.75
T=4 1058 008 0.02 1.01 0.98 -0.38 0.12 0.03 1.00 0.96
T=101]0.58 0.08 0.01 098 1.00 -0.38  0.12 0.02 0.97 1.00
o =0.50

T=2 1074 024 0.03 0098 1.00 -0.19 0.31 0.05 1.00 1.00
T=4 (074 024 0.02 1.00 1.00 -0.19 0.31 0.03 1.04 1.00
T=10]0.74 024 0.02 097 1.00 -0.19 0.31 0.02 0.99 1.00
o =0.75

T=2 1092 042 0.04 092 1.00 -0.04 046 0.06 0.97 1.00
T=4 1092 042 0.04 0.88 1.00 -0.05 045 0.05 095 1.00
T=101]092 042 0.03 0.89 1.00 -0.05 045 0.04 092 1.00
o =1.00

T=2 [1.09 059 0.06 0.83 1.00 0.07 057 0.09 0.84 0.99
T=4 |1.09 059 0.06 0.79 1.00 006 056 0.08 0.82 0.99
T=10|1.09 059 0.05 0.80 1.00 0.07 057 0.07 0.80 0.99
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Table D.10: Finite Sample Properties of Fixed Effects Poisson: ; = 0.5, 8, = —0.5,N = 2000

~ -~

Bi B2
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

|
00

c=0

T=2 1050 000 0.05 099 0.06 -0.50 0.00 0.06 0.96 0.06
T=4 050 000 0.03 1.00 0.05 -0.50 0.00 0.04 1.00 0.05
T=10]0.50 000 0.01 097 0.06 -0.50 0.00 0.02 0.99 0.05
o=0.25

T=2 1050 000 0.04 1.01 0.05 -0.50 0.00 0.07 0.99 0.06
T=4 1050 000 0.02 1.02 0.05 -0.50 0.00 0.04 1.00 0.05
T=101]0.50 000 0.01 098 0.06 -0.50 0.00 0.02 0.98 0.05
o =0.50

T=2 1050 000 0.04 099 0.05 -0.50 0.00 0.07 0.99 0.05
T=4 1050 000 0.02 1.02 0.05 -0.50 0.00 0.04 1.01 0.05
T=10]0.50 0.00 0.01 0.99 0.05 -0.50 0.00 0.02 0.98 0.05
o =0.75

T=2 1050 000 0.03 095 0.06 -0.50 0.00 0.07 0.97 0.05
T=4 1050 000 0.02 099 0.06 -0.50 0.00 0.04 1.03 0.04
T=101]0.50 000 0.01 098 0.05 -0.50 0.00 0.02 0.98 0.05
o =1.00

T=2 1050 000 0.02 098 0.05 -0.50 0.00 0.08 0.98 0.05
T=4 1050 000 0.01 096 0.06 -0.50 0.00 0.04 0.99 0.05
T=10]0.50 000 0.01 1.01 0.05 -0.50 0.00 0.02 1.01 0.05
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Table D.11: Finite Sample Properties of Poisson QMLE: B; =0.5,8, = —0.5,N = 2000

81 (APE) 8, (ATE)
| Mean Bias SD  SE/SD RP(0.05) | Mean Bias SD SE/SD RP(0.05)

c =0.00

T=2 [041 000 002 099 0.05 -042 000 0.04 099  0.05
T=4 041 000 002 101  0.05 -042 000 0.03 1.00 0.5
T=10/041 000 001 096  0.05 -042 0.00 0.02 098  0.05
c=0.25

T=2 [050 007 003 102 0.75 034 0.1 0.04 1.02 077
T=4 050 007 002 100 095 -0.34 011 003 1.00 097
T=10/050 007 001 099  1.00 -034 0.1 002 097  1.00
0 =0.50

T=2 [074 024 004 098 100 020 036 0.05 1.00  1.00
T=4 1074 024 003 099 100 020 036 0.04 1.04  1.00
T=10/074 024 003 099 1.00 020 036 003 099  1.00
c=0.75

T=2 [119 054 008 095 100 -0.06 071 0.08 096  1.00
T=4 | 119 055 008 093 100 -0.06 070 0.06 095  1.00
T=10|119 055 007 095 1.00 -0.06 070 0.05 092  1.00
o =1.00

T=2 [203 110 0.9 091 100 0.11 126 0.16 0.84  0.99
T=4 204 111 020 086 100 0.11 125 015 080 099
T=10]204 111 019 090 100 011 126 013 077 099
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Table D.12: Finite Sample Properties of Fixed Effects Poisson: ; = 0.5, 8, = —0.5,N = 2000

~

5| (APE) S, (ATE)
Mean Bias SD SE/SD RP(0.05) ‘ Mean Bias SD SE/SD RP(0.05)

o =20.00

T=2 |041 0.00 0.04 0.99 0.05 -0.42 0.00 0.06 0.96 0.06
T=4 |041 0.00 0.02 0.99 0.05 -0.42 0.00 0.03 1.00 0.05
T=10 041 0.00 0.01 097 0.06 -042 0.00 0.02 0.98 0.05
o=0.25

T=2 |043 0.00 0.04 1.01 0.05 -0.46 0.00 0.07 0.98 0.05
T=4 |043 0.00 0.02 1.01 0.04 -0.45 0.00 0.04 1.00 0.05
T=10| 043 0.00 0.01 0098 0.05 -046 0.00 0.02 0.99 0.05
o =0.50

T=2 |050 0.00 004 0098 0.05 -0.56 0.00 0.09 0.99 0.05
T=4 |050 000 0.02 1.03 0.04 -0.56 0.00 0.05 1.01 0.05
T=101|0.50 0.00 0.02 0.99 0.05 -0.56 0.00 0.03 097 0.05
o=0.75

T=2 |0.65 0.00 0.05 0.96 0.06 -0.77 0.00 0.14 097 0.06
T=4 |0.65 0.00 003 0098 0.06 -0.77 0.00 0.08 1.03 0.05
T=10|0.65 0.00 0.02 0.99 0.06 -0.77 0.00 0.05 0.99 0.05
o=1.00

T=2 093 0.00 0.07 099 0.06 -1.16 -0.01 0.22 0.98 0.05
T=4 1093 0.00 0.06 0.96 0.06 -1.15 0.00 0.14 0.99 0.06
T=101]0.93 0.00 0.05 1.00 0.05 -1.15 0.00 0.09 0.99 0.05
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