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ABSTRACT

ESSAYS ON NONLINEAR PANEL MODELS WITH UNOBSERVED HETEROGENEITY

By

Robert Martin

This dissertation concerns nonlinear panel data estimation relevant to the fields of econometrics

and applied microeconomics. Panel data is attractive for estimating causal effects when unob-

served heterogeneity in cross-sectional units is correlated with explanatory variables. For instance,

well-known linear fixed effects and first difference estimators use within-group variation to achieve

consistent estimation. However, nonlinear models often better represent limited dependent vari-

ables like binary outcomes or counts, and extending traditional panel techniques to these settings

can be problematic. For instance, treating heterogeneity as parameters to be estimated usually

leads to what is known as the incidental parameters problem. Furthermore, heterogeneous slopes

in a conditional mean function can also confound estimation, but fewer remedies exist than do

for additive effects. I aim to address these issues in my research with an emphasis on practical

applicability.

Chapter 1: Finite sample properties of bias-corrected fixed effects estimators for panel bi-
nary response models

Maximum likelihood estimation (MLE) of nonlinear unobserved effects panel models is known

to be generally inconsistent when treating the heterogeneity as parameters. Several authors have

proposed corrections justified by large-T expansions of the inconsistency under conditions like

dynamic completeness. Using Monte Carlo (MC) techniques, I find that failure of dynamic com-

pleteness can increase bias in slope and average partial effects (APE) estimates in shorter panels,

but has little impact on APE for longer panels. I also compare bias-corrections to correlated ran-

dom effects (CRE) and Conditional MLE using MC and welfare data from the Survey of Income

and Program Participation (SIPP).



Chapter 2: Exponential panel models with coefficient heterogeneity

If heterogeneous slopes are ignored in exponential panel models, fixed effects Poisson may not

estimate any quantity of interest. Existing estimation methods often involve treating only a small

subset of the slopes as “random effects” and integrating from the likelihood, increasing computa-

tional difficulty. I propose a test to detect slope heterogeneity that, unlike the traditional approach,

does not amount to testing for information matrix equality. Additionally, I present a correlated ran-

dom coefficients approach to identification which allows for estimation of the coefficient means

and average partial effects. I test these proposed methods using a Monte Carlo experiment and

apply them to the patent-R&D relationship for U.S. manufacturing firms.

Chapter 3: Estimation of average marginal effects in multiplicative unobserved effects panel
models

This chapter concerns estimation of average marginal effects in static multiplicative unobserved

effects panel models for nonnegative dependent variables. While fixed effects Poisson (FEP) con-

sistently estimates the parameters of the conditional mean function, marginal effects generally

depend on the unobserved heterogeneity. They would therefore seem inestimable without either

additional assumptions or some form of bias correction. I show, however, that Average Partial

Effect (APE) and Average Treatment Effect (ATE) estimators that use estimated individual effects

are consistent and asymptotically normal. This is in contrast with cases like fixed effects logit,

where similar marginal effects estimators suffer from the incidental parameters problem.
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CHAPTER 1

FINITE SAMPLE PROPERTIES OF BIAS-CORRECTED FIXED EFFECTS
ESTIMATORS FOR PANEL BINARY RESPONSE MODELS

1.1 Introduction

Nonlinear models are popular in economics in many settings. For instance, binary response models

are common for analyzing outcomes like labor force participation, employment, or union member-

ship. At the same time, panel data can be attractive when controlling for unobserved heterogeneity

is necessary to identify causal effects. However, it is well-known that maximum likelihood es-

timation (MLE) that treats heterogeneity as parameters to estimate is inconsistent. For example,

in the case of cross-section heterogeneity, the problem arises in the typical large-N, fixed-T mi-

croeconometric setting because only a handful of observations contribute to the estimation of each

individual’s fixed effect (Lancaster, 2000). This is known as the incidental parameters problem,

first described by Neyman and Scott in 1948.

In the statistics and econometrics literature, there have been many approaches to estimation in

the presence of incidental parameters. In some special cases, it is possible to re-parameterize the

model or find a conditioning variable that removes the incidental parameters from the likelihood

function (Lancaster, 2000). A leading example of this is the conditional logit model, where the

conditioning variable is the number of successes observed for cross-sectional unit (Chamberlain,

1980). However, while conditional maximum likelihood in a case like this consistently estimates

the slope parameters of the index of the logit function, conditioning usually does not identify par-

tial effects, which depend on the heterogeneity (Wooldridge, 2010). Other approaches involve

restricting the relationship between the heterogeneity and explanatory variables in some way. For

instance, if we are willing to assume independence between the heterogeneity and the explanatory

variables, then we can use a random effects approach. In many cases, however, correlation be-

tween heterogeneity and covariates is of concern. The correlated random effects (CRE) approach
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of Chamberlain (1980, 1982) or Mundlak (1978), restricts the conditional distribution of the het-

erogeneity to have a mean that is linear function of the explanatory variables, but the restriction at

least buys the researcher identification of APE and scaled slope parameters (Wooldridge, 2010).

Assumptions restricting the nature of the heterogeneity are a potential drawback. For instance,

Rabe-Hesketh and Skrondal (2013) explore a special case in the dynamic probit setting where mis-

specification of the heterogeneity causes significant bias . In general, however, we do not know the

robustness of CRE is when the distributional assumption fails or when the researcher chooses the

wrong conditional mean function.

If one prefers to leave the nature of the heterogeneity completely unrestricted, a linear probabil-

ity model (LPM) estimated by fixed effects ordinary least squares is thought to do a reasonable job

approximating, and even consistently estimates them under certain assumptions regarding the ex-

planatory variables (Stoker, 1986). Nevertheless, often the index slope parameters are of interest,

or the researcher wants to estimate partial effects at different values of the explanatory variables.

In these cases it is tempting to use a nonlinear “fixed effects” estimator, whereby the heterogeneity

are estimated as parameters alongside the index slopes in a MLE procedure, but this is problematic.

Particularly when the number of time periods is small, fixed effects estimators often perform worse

than simply ignoring the heterogeneity entirely (Greene, 2004). In the case of cross-sectional het-

erogeneity only, several studies have noted that inconsistency diminishes as the number of time

periods increases, and that estimates of slope parameters are consistent with both N and T growing

to infinity. However, the asymptotic distribution of fixed effects estimators is not centered around

the true parameter values, so confidence intervals can still be misleading (Hahn and W. Newey,

2004).

I study bias corrections for models with cross-sectional heterogeneity that subtract the leading

term of a large-T expansion of the bias from the uncorrected fixed effects MLE. Analytical bias

corrections estimate this term from expressions specific to the parametric model. Jackknife correc-

tions estimate it non-parametrically by generating variation in the uncorrected MLE by dropping

some time periods. These techniques reduce the bias from Op(T−1) to Op(T−2), but they can
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require significant restrictions on the underlying distribution of the data (Hahn and W. Newey,

2004). Both approaches assume at least that the explanatory variables are stationary and weakly

dependent. The analytical and jackknife corrections developed by Hahn and Newey (2004) also

require the dependent variables to be serially independent conditional on the heterogeneity and

the explanatory variables. The analytical correction of Fernandez-Val (2009) and the split-panel

jackknife of Dhaene and Jochmans (2015) relax conditional independence to accommodate models

with lagged dependent variables, but still require dynamic completeness.

Either conditional independence, or dynamic completeness rule out serially correlated error

terms, which is potentially a serious problem for static models. Serial correlation is certainly a

concern in linear models, as demonstrated by widespread use of clustered standard errors and post-

estimation testing. Extending that concern to nonlinear models is particularly prudent given that in

cases like the probit or logit, serial correlation causes inconsistency in the estimators themselves,

not just their standard errors. Without unobserved heterogeneity, APE are still identified in probit

or logit models with serial correlation, so the problem is easily handled by using pooled MLE with

cluster-robust standard errors (Wooldridge, 2010). To my knowledge, however, no researchers

have simulated bias-corrected estimators in the presence of serial correlation.

This chapter aims to answer three questions. First, how robust are bias corrections when latent

errors have serial correlation? Second, how do the bias corrections compare to the CRE approach

when the heterogeneity does not satisfy the CRE conditional distribution assumption? Finally, the

incidental parameters problem causes bias not only in slope estimates, but in APE estimates as

well, but how severe is bias in APE estimates when the slopes are estimated consistently with a

procedure like conditional logit?

The first goal is to inform practitioners who wish to account for unobserved heterogeneity

while being agnostic about serial dependence. Using Monte Carlo techniques, I evaluate the im-

pact of serially correlated errors on the analytical bias corrections of Hahn and Newey (2004) and

Fernandez-Val (2009). I also evaluate the drop-one-period jackknife of Hahn and Newey (2004)

and the split-panel jackknife of Dhaene and Jochmans (2015). I generate the error terms in the
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latent variable model as first order autoregressive processes, but simulate estimators that use clus-

tered standard errors to allow for general (weak) serial dependence. Since slope parameters are

only identified up to scale in this setting, I focus primarily on estimation of APE, which are still

identified (Wooldridge, 2010).

While simulation evidence from the aforementioned studies shows that bias-corrected estima-

tors often have much more desirable finite sample properties than the uncorrected fixed effects

MLE (at least for slope parameters), less work has been done to evaluate sensitivity of these prop-

erties to relaxation of the assumptions underlying the corrections. Dhaene and Jochmans (2015)

examine departures from stationarity in dynamic models, particularly of initial observations and

propose a Wald test for evaluating the validity of the split-panel approach overall. Alexander and

Breunig (2014) simulate the performance of several bias corrections for the fixed effects probit

estimator while varying parameters like the variance of the heterogeneity and correlation between

heterogeneity and explanatory variables. but do not consider any departures from stationarity or

conditional independence.

In addition to using clustered standard errors, many researchers will find it attractive to make a

CRE assumption to avoid the issue of incidental parameters. In fact, in studying the issue of serial

correlation, many of my simulation results show that the CRE estimator of APE tends to have

better finite sample properties than the uncorrected or corrected fixed effects methods. This result

is not surprising given the data generating process I employ. Therefore, my second contribution is

to consider the relative performance of the CRE approach versus the fixed effects approach when

the CRE conditional distribution assumption does not hold.

Finally, if researchers are willing to assume the dependent variables are conditionally inde-

pendent, then a logit specification can be attractive because conditional maximum likelihood es-

timation (conditioning on the individual’s sum of the dependent variables) allows for consistent

estimation of slope parameters with only N → ∞. However, partial effects are not identified be-

cause they depend on the heterogeneity terms that have been conditioned out of the likelihood

function. Nevertheless, it is tempting to implement the following procedure: 1) Estimate slope
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parameters by conditional MLE. 2) Estimate the heterogeneity parameters using logit MLE, while

restricting the slopes to be equal to the estimates from stage 1), and then estimate partial effects.

For instance, an empirical example in Greene (2012, Chapter 17) on German health care utiliza-

tion follows this procedure in estimating partial effects evaluated at the average of the explanatory

variables (PEA) (Greene, 2012). This procedure is likely to suffer from the incidental parameters

problem because, although the slope parameters are consistent, the heterogeneity estimates still

do not converge to anything with fixed T (and it is unclear if the sample average of the estimated

heterogeneity converge to anything interesting as N gets large). Fernandez-Val (2009) uses this

procedure to estimate a model of female labor force participation, but corrects the APE estimates

for the incidental parameters problem in the second stage (Fernandez-Val, 2009). Therefore, this

chapter’s third contribution is to include Monte Carlo evidence that uncorrected APE estimates

derived in this manner from conditional logit estimation can have significant bias.

Strictly speaking, any conclusions drawn from these simulations are valid only for the data

generating processes I employ. However, the results presented are still useful in alerting empirical

researchers to potential benefits and pitfalls when implementing one of the discussed estimation

methods.

The rest of the paper is organized as follows. Section 2 reviews the incidental parameters

problem in the panel binary response model, as well as the bias correction techniques considered

here. Section 3 describes the Monte Carlo experiment. Section 4 presents and discusses results

including the application to the SIPP data. Section 5 concludes. Additional tables, as well as

descriptions of the analytical bias correction formulas, are collected in Appendices.

1.2 The panel binary response model with incidental parameters

I consider the following panel binary response model with unobserved heterogeneity.

yit = 111 [αi + xxxitθ0 + rit > 0] , for i = 1, . . . ,N and t = 1, . . . ,T. (1.1)
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where yit is a scalar outcome variable, xxxit is a vector of explanatory variables, αi is an individual

fixed effect, and rit is a error term. In the probit (logit) case, rit is distributed standard normal

(standard logistic). 111 [·] is the indicator function. The log-likelihood function for individual i in

period t is

`it(θ ,αi) = yit log [G(αi + xxxitθ)]+(1− yit) log [1−G(αi + xxxitθ)] , (1.2)

where G is either the standard normal CDF or standard logistic CDF. Following the notation of

Hahn and Newey (2004) and Fernandez-Val (2009), the maximum likelihood estimator of θ0 max-

imizes the profile log-likelihood, concentrating out the alphas:

θ̂ = argmax
θ

N

∑
i=1

T

∑
t=1

`it(θ , α̂i(θ))/NT (1.3)

where

α̂i(θ) = argmax
α

T

∑
t=1

`it(θ ,αi)/T (1.4)

The incidental parameters problem arises because with T fixed, as N→ ∞,

θ̂
p→ θT , where θT = argmax

θ
EN

[
T

∑
t=1

`it(θ , α̂i(θ))/T

]
(1.5)

where EN [m(Zit ,αi)] ≡ lim
N→∞

∑
N
i=1 m(Zit ,αi)/N. For finite T , θT 6= θ0 because α̂(θ) 6= αi, even

when evaluated at the true θ0. Hahn and Newey (2004) show that for smooth likelihoods like the

probit and logit,

θT = θ0 +B/T +O(T−2) (1.6)

where B =I−1b. In this expression, b represents a higher order expansion of the bias in α̂(θ) as

T gets large, while I is the information matrix of the profile log-likelihood. Both terms together

capture the effect of estimation error in α̂(θ) on θ̂ . While it is true that θ̂ is consistent for θ0 if

both N and T → ∞, the limiting distribution of
√

NT (θ̂ − θ0) is centered around B
√

κ , where

N/T → κ . Therefore, confidence intervals for coefficient estimates will likely have poor coverage

(Hahn and W. Newey, 2004).
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1.2.1 Bias correction techniques

Arellano and Hahn (2007) provide a thorough review of different approaches to mitigating bias

from the incidental parameters problem. The techniques that I consider in this chapter involve

estimating B and using it to construct an estimator with a bias of lower order. Analytical bias

corrections use expressions for B (denoted for an arbitrary θ as B(θ)) derived from large-T

expansion of the scores of the profile log-likelihood around the true αi. I focus mainly on the

“one-step” estimator B(θ̂), which is evaluated at the uncorrected MLE. Then the bias corrected

estimator is formed as

θ̃bc = θ̂ −B(θ̂)/T (1.7)

Previous simulations have shown that the one-step estimator performs reasonably well com-

pared to an iterated procedure or related analytical corrections that solve modified scores (Hahn

and W. Newey, 2004). I examine the methods of Hahn and Newey (2004) and Fernandez-Val

(2009) for estimating B(θ̂). Full expressions for the analytical bias corrections can be found in

Appendix A.

Jackknife corrections estimate B nonparametrically by using variation in θ̂ when estimated

over the full panel and shorter sub-panels. This approach is advantageous because it does not

require an explicit characterization of B, though it does require more computation. Hahn and

Newey (2004) proposed a technique where the MLE is estimated over the T subpanels formed by

dropping one period. Their corrected estimator is formed as

θ̃hn jk = T θ̂ − T −1
T

T

∑
s=1

θ̂s, (1.8)

where θ̂s is the uncorrected MLE estimated over the periods {1, . . . ,s−1,s+1, . . . ,T}.

Dhaene and Jochmans (2015) show that splitting the panel into equal, or almost-equal, length

sub-panels minimizes the impact of imprecise estimation of B on the remaining bias and allows

for dynamic models (Dhaene and Jochmans, 2015). To illustrate how the estimator is formed,

suppose T is even for simplicity. Let θ̂S1 and θ̂S2 be the uncorrected MLE estimated over the
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periods {1,2, . . . ,T/2} and {T/2+1, . . . ,T}. Then, the jackknife corrected estimator is formed as

θ̃d j jk = 2θ̂ − (1/2)(θ̂S1 + θ̂S1). (1.9)

Researchers are often interested in estimating functions of the data and parameters, like the

partial effect of the kth element of xxxit on the probability that yit equals one:

mk(θ ,αi,xxxit) = θkg(αi + xxxitθ), (1.10)

where g() is the derivative of G(). Many past simulation and theoretical work has suggested that

uncorrected MLE on static binary response models has a “small bias” property for estimates of

APE. This means that the bias in APE estimates tends to be smaller than that of slope parame-

ters, and in the probit case with no heterogeneity, is exactly zero (Fernandez-Val, 2009). This

suggests that biases in θ̂k and ∑
N
i=1 ∑

T
t=1 g(α̂i + xxxit θ̂) move in opposite directions. Since APE and

other functions of the data generally depend directly on the α’s, correcting the slope parameters

only (or using a consistent procedure like conditional logit) is insufficient to handle the incidental

parameters problem as it only removes one source of the bias. In fact, α̂i(θ), even if evaluated

at θ0, does not converge to its true value with T fixed, or at a slower rate when T is allowed to

grow (Fernandez-Val, 2009). APE estimates with consistent estimates of θ but no correction for

imprecise estimation of the α’s may have much larger biases than APE estimates derived from the

uncorrected MLE, as section IV explores.

The analytical and jackknife corrections for APE are implemented in a similar fashion to their

counterparts for slope estimates. In the analytical case (see Appendix A), a bias term is estimated

and subtracted, while for the jackknife, APE are estimated for the full panel and the subpanels

separately and then combined just like the slope estimates.

Under dynamic completeness for the Fernandez-Val case and conditional independence for

the Hahn and Newey case, analytical bias-corrected estimators been shown to be consistent and

asymptotically normal as long as T grows faster than N1/3, and a similar property has been con-

jectured for the Hahn and Newey jackknife correction (Hahn and W. Newey, 2004). This makes
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them reasonable procedures to implement when N is fairly large relative to T , as is typical in

microeconometrics. The split-panel jackknife of Dhaene and Jochmans is only consistent with T

and N growing at the same rate, but they find evidence it reduces bias with as few as six time

periods. The analytical and jackknife corrections analyzed here allow explanatory variables to be

only sequentially exogenous, but require the assumption of dynamic completeness, meaning that

no additional lags of xxx or y affect the current yit after xxxit has been included. Dynamic completeness

is written formally as

f (yit |αi,xxxit ,yi,t−1,xxxi,t−1 . . . ,yi1,xxxi1) = f (yit |αi,xxxit) (1.11)

Either conditional independence or Assumption (1.11) imply that the scores of the log-likelihood

are serially uncorrelated and rule out any serial dependence in the per-period shocks. For the

many researchers interested in estimating static models, however, this assumption is less than ideal.

Empirical researchers routinely encounter static models with neglected serial correlation in the

linear case, and take care to conduct inference using clustered standard errors. Consequently, we

would rather not assume that a static model has fully captured the dynamics in the nonlinear case

either. One attractive point about the CRE approach with clustered standard errors is that for

binary response models with unobserved heterogeneity, arbitrary serial correlation do not cause

inconsistency in APE estimates (Wooldridge, 2010). Any complete comparison of bias corrections,

therefore, should evaluate their robustness to this common problem.

1.3 Monte Carlo experiment

The data generating process I specify is similar to Greene (2004) and Fernandez-Val and Weidner

(2016). The outcome is generated as

yit = 111 [αi +β0xit + γ0dit + rit > 0] (1.12)

where

xit = αi + .5xi,t−1 + vit , t > 1 (1.13)
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xi1 = αi + vi1, vit ∼ N(0,1/2) (1.14)

dit = 111 [xit +hit > 0] , hit ∼ N(0,1/2) (1.15)

αi ∼ N(0,1/16) (1.16)

I set β0 = γ0 = 1. In this model, dit represents a policy or treatment variable of interest, while

xit is a continuous control variable that is both correlated with dit and its own past values. Both xit

and dit are generated to be strictly exogenous, though the Fernandez-Val and Dhaene and Jochmans

corrections only require sequential exogeneity. Correlation between xit and αi is roughly 0.5, while

correlation between dit and αi is roughly 0.3. Correlation between xit and dit is about 0.6.

Let µw be the population APE of w on the probability that y equals one, for w ∈ {x,d}. In

general, this quantity varies by T , so for comparison, I report the estimated APE divided by their

true value. For β̂ , γ̂ , and α̂ (the uncorrected MLE),

µ̂w
µw

=
1

NT ∑
N
i=1 ∑

T
t=1 mw(β̂ , γ̂, α̂i,zit)

E
[

1
T ∑

T
t=1 mw(β0,γ0,αi,zit)

] , (1.17)

where zit = (xit ,dit) and

mw(β ,γ,αi,zit) =


βg(αi +βxit + γdit) for w = x

G(αi +βxit + γ)−G(αi +βxit) for w = d
(1.18)

where for the probit (logit) simulations, G() and g() are the CDF and PDF, respectively, for the

standard normal (logistic) distribution. The expectation in the denominator is simulated with a

single draw from a panel of 1,000,000 individuals. Note that the sum in the numerator is divided

by the entire sample size, NT . An individual j whose value of y jt does not change over the length

of the panel gets, the uncorrected MLE for the heterogeneity, α̂ j, is unbounded, so the individual

is dropped from the estimation of the structural parameters. The estimate mw(β̂ , γ̂, α̂ j,z jt) for that

observation is zero (Alexander and Breunig, 2014). I will discuss practical issues this can cause

when the panels are short and the data are highly persistent. Details on the analytical corrections

can be found in Appendix A. The jackknife-corrected APE estimators are constructed analogously

to the slope estimators in equations (1.8) and (1.9).
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1.3.1 Evaluating the dynamic completeness assumption

I relax dynamic completeness in the panel probit case by introducing serial correlation into the

error term rit from the latent variable model. I use the following procedure:

rit = ψt,ρuit (1.19)

uit = ρui,t−1 + eit , t > 1 (1.20)

ui1 = ei1/ψt,ρ , eit ∼ i.i.d.N(0,1) (1.21)

ψt,ρ ≡


√

1−ρ2 if ρ < 1

1/
√

t if ρ = 1
(1.22)

Division of ei1 by ψt,ρ ensures that each element of {uit}Tt=1 has the same variance, which other-

wise would not hold because of finite length (Vamoş, Şoltuz, and Crăciun, 2007). Multiplication

of uit by ψt,ρ is to give rit unit variance. I maintain unit variance of the error terms to remove

the coefficient scaling that would otherwise occur in probit MLE. This allows us to better compare

slope estimates across estimators and values of ρ . In the logit case, I use a Gaussian copula based

on these series of normal errors.

I present results from simulations that set ρ equal to 0, 0.4, 0.8 to represent cases of dynamic

completeness, moderate serial correlation, and high serial correlation. While the copula is not

guaranteed to maintain the exact serial correlation for the logit case, the autocorrelations were

within two decimal points of the specified ρ . Consistent with the literature, I considered panel

lengths of 6, 8, 12, and 20, and I set N = 100 in all cases for ease of computation. Previous

work by Fernandez-Val (2009) and Alexander and Breunig (2014) has found that the larger N does

not affect the relative performance of the different estimators in terms of bias, but does increase

their overall precision. I find evidence of these findings, which can be found in Appendix B for

the N = 500, T = 6 case. One important finding is that when estimators have finite sample bias,

coverage of confidence intervals generally decreases with sample size as standard errors shrink.
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I also estimate the probit slope coefficients and APE using the pooled MLE version of Mund-

lak’s (1978) correlated random effects (CRE), and the APE using a LPM for comparison. Standard

errors for each estimator are clustered by individual to account for serial dependence in the scores.

For each pair of ρ and T , I run 1000 replications.

1.3.2 Comparing bias correction and CRE under more general forms of heterogeneity

A correlated random affects approach of Mundlak (1978) applied to the panel probit model with

two strictly exogenous explanatory variables assumes that

D(ci|xxxi,dddi) = Normal(ψ +ξ1x̄i +ξ2d̄i,σ
2
a ), (1.23)

which implies

D(yit |xxxi,dddi) = Probit(βaxit + γadit +ψa +ξ1,ax̄i +ξ2,ad̄i) (1.24)

where x̄i and d̄i denote time averages, and the “a” subscript indicates the coefficients are scaled

by 1/
√

1+σ2
a . Therefore, pooled probit of yit on xit , dit , x̄i and d̄i identifies β and γ up to

scale. Since the APE depend on the scaled coefficients, they can be estimated consistently with no

problem (Wooldridge, 2010).

Tables 1.1-1.4 in Section 4 show that CRE used on probit data generated with the above process

(or similarly for the logit case) performs well because the heterogeneity enters the equation for

xit additively; therefore, the αi can be written as a linear function of the time averages of xit .

Consequently, a natural question, is how much better do the fixed effects approaches perform

when the CRE assumption fails?

I explore this question with the panel probit model through the following modifications:

yit = 111
[
α j,i +β0xit + γ0dit + rit > 0

]
(1.25)

xit = .5xi,t−1 + vit , t > 1 (1.26)

xi1 = vi1, vit ∼ N(0,1/2) (1.27)

12



Where α j,i is one of:

α1,i =−1+
1√
T

T

∑
t=1

x2
it +ai (1.28)

α2,i =
1√
T

T

∑
t=1

(xit + x2
it + x3

it)+ai (1.29)

α3,i ∼ N

(
0,exp

[
0.125√

T

T

∑
t=1

(xit + x2
it + x3

it)

])
(1.30)

Where in the first two cases, ai ∼ N(0,1/4).

Table 1.5 compares the uncorrected fixed effects MLE, MLE with Fernandez-Val’s analytical

bias correction, and two estimators based on CRE. One adds x̄i and d̄i to the probit index, and

a more flexible version (CRE2), where the index includes squares of x̄i and d̄i and interactions

between the explanatory variables and time averages. I consider panels with T = 6 and T = 12,

for the dynamically complete case.

1.3.3 Conditional logit and the importance of correcting APE estimates

To evaluate the finite sample properties of APE estimates derived from conditional logit slope

estimates, I generate a panel of logit dependent variables using the process described in (12). I

only consider the ρ = 0 case, as conditional logit is not valid when dynamic completeness fails.

I estimate APE using the uncorrected logit MLE, and two conditional logit procedures which

estimate the heterogeneity with a restricted MLE as described on the introduction. One procedure

does not correct for the incidental parameters problem while the other uses Fernandez-Val’s 2009

correction for the logit case.

1.4 Results

For brevity, I mainly report the bias corrections for the probit case. The logit case is qualitatively

similar, though the effect of serial correlation on the Fernandez-Val correction is much less severe.

I also report only the T = 6 and T = 12 results as they seem to be representative of the short panel
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and long panel cases, respectively. Each of the tables lists the mean and standard deviation of the

estimator, the coverage probability of a 95% confidence interval, and the ratio of the estimated

(cluster-robust) standard error to the standard deviation. They show quite an interesting range of

performance for both the uncorrected MLE and the different bias reduction techniques. Results for

the

1.4.1 Evalauating the dynamic completeness assumption

Tables 1.1 and 1.2 show the performance of the probit slope estimators for different levels of serial

correlation. In line with evidence from the literature, the uncorrected MLE can be severely biased

for the index slopes in the presence of incidental parameters.
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Table 1.1: Probit Estimates of β (β0 = 1)

ρ = 0 ρ = 0.4 ρ = 0.8
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 1.36 0.24 0.70 0.96 1.56 0.30 0.48 0.90 2.49 0.55 0.05 0.83
A-FV09 0.96 0.14 0.97 1.15 1.03 0.14 0.97 1.17 0.63 0.59 0.58 0.29
A-HN04 1.18 0.21 0.87 0.92 1.36 0.26 0.66 0.83 2.24 0.52 0.07 0.72
J-DJ15 0.85 0.34 0.64 0.46 0.73 0.50 0.49 0.35 0.80 1.03 0.39 0.28
J-HN04 0.87 0.16 0.82 0.95 0.99 0.20 0.90 0.82 1.43 0.45 0.49 0.50
CRE 1.01 0.14 0.95 0.99 1.01 0.15 0.94 0.98 1.02 0.15 0.93 0.95
T=12
MLE 1.14 0.12 0.79 0.99 1.22 0.13 0.61 0.99 1.61 0.19 0.05 0.96
A-FV09 1.00 0.10 0.95 1.03 1.05 0.11 0.94 1.02 1.33 0.14 0.32 0.98
A-HN04 1.03 0.10 0.94 1.00 1.10 0.12 0.87 0.98 1.45 0.16 0.16 0.92
J-DJ15 0.94 0.12 0.82 0.78 0.90 0.16 0.69 0.62 0.75 0.32 0.39 0.31
J-HN04 0.96 0.09 0.93 1.03 1.02 0.10 0.95 1.01 1.30 0.14 0.38 0.95
CRE 0.99 0.09 0.95 1.01 0.99 0.10 0.94 0.98 1.00 0.10 0.95 1.01
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Table 1.2: Probit Estimates of γ (γ0 = 1)

ρ = 0 ρ = 0.4 ρ = 0.8
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 1.31 0.26 0.79 0.98 1.52 0.30 0.59 0.95 2.49 0.77 0.10 0.65
A-FV09 0.95 0.16 0.98 1.26 1.02 0.16 0.99 1.32 0.49 0.82 0.62 0.29
A-HN04 1.14 0.22 0.91 1.00 1.33 0.27 0.78 0.93 2.25 0.76 0.13 0.54
J-DJ15 0.78 0.73 0.76 0.30 0.24 1.53 0.54 0.18 -1.68 2.58 0.17 0.21
J-HN04 0.87 0.17 0.93 1.18 0.95 0.32 0.96 0.65 0.85 1.79 0.59 0.17
CRE 0.98 0.17 0.95 0.99 0.99 0.16 0.96 1.01 1.00 0.15 0.95 0.99
T=12
MLE 1.15 0.14 0.82 1.00 1.23 0.15 0.65 0.99 1.61 0.20 0.11 0.97
A-FV09 1.01 0.12 0.97 1.10 1.07 0.12 0.95 1.07 1.33 0.15 0.44 1.05
A-HN04 1.04 0.12 0.96 1.06 1.11 0.13 0.89 1.03 1.44 0.18 0.25 0.96
J-DJ15 0.95 0.13 0.91 0.93 0.91 0.16 0.83 0.82 0.64 0.70 0.48 0.21
J-HN04 0.97 0.11 0.96 1.13 1.03 0.12 0.97 1.09 1.30 0.15 0.52 1.06
CRE 1.00 0.11 0.95 1.00 1.00 0.11 0.95 0.98 1.00 0.11 0.94 0.97
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In the dynamically complete case (ρ = 0), bias diminishes as T grows, there is still room for

improvement even when T = 12. For instance, the uncorrected MLE for γ has a bias of 31% when

T = 6, but only 15% when T = 12. As predicted by theory, coverage of the 95% confidence interval

is still somewhat low at 0.82 when T = 12, meaning for a 5% significance level, one would expect

to reject a true null hypothesis 18% of the time. As found in previously published simulations,

the correction techniques reduce bias and generally increase coverage. In particular, Fernandez-

Val’s analytical correction performs better than the others in all panels, both in terms of bias and

variance, particularly for the short panels. The split panel jackknife of Dhaene and Jochmans tends

to have higher variance than the others.

If one is concerned primarily with estimating APE, however, the incidental parameters problem

clearly has much less bite, as shown by Tables 1.3 and 1.4. For the dynamically complete case, bias

in the uncorrected MLE for µx is less than 1% for either panel length, while the bias in that of µd

is 4% or less. This supports the “small bias” property for APE estimators found by many previous

studies of static models (Fernandez-Val, 2009). The bias corrected estimators perform well for

the longer panels, but even in the dynamically complete case, many of them have higher bias

than the uncorrected MLE for the short panels. Among the different bias correction techniques,

both corrections from Hahn and Newey (2004) tend to have the smallest bias, while the split panel

jackknife does worse. Additionally, while theory suggests that both corrections reduce bias without

any change in variance, it appears that the jackknife corrections may increase variance, especially

in shorter panels.
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Table 1.3: Probit Estimates of µ̂x/µx (true value = 1)

ρ = 0 ρ = 0.4 ρ = 0.8
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 1.00 0.14 0.94 0.96 0.99 0.14 0.93 0.92 0.94 0.14 0.86 0.86
A-FV09 0.96 0.13 0.93 0.96 0.94 0.13 0.90 0.94 0.57 0.44 0.37 0.28
A-HN04 1.05 0.15 0.89 0.88 1.06 0.16 0.88 0.81 1.05 0.16 0.82 0.72
J-DJ15 1.10 0.19 0.78 0.69 1.15 0.22 0.71 0.66 1.26 0.22 0.58 0.70
J-HN04 1.04 0.15 0.89 0.83 1.07 0.17 0.84 0.74 1.15 0.19 0.63 0.58
CRE 1.01 0.13 0.96 1.03 1.01 0.13 0.95 1.02 1.01 0.13 0.95 0.99
LPM 0.95 0.13 0.94 1.03 0.95 0.13 0.94 1.02 0.94 0.13 0.92 1.00
T=12
MLE 1.00 0.09 0.94 0.96 0.99 0.09 0.93 0.93 0.99 0.09 0.90 0.89
A-FV09 0.99 0.09 0.93 0.94 0.99 0.09 0.93 0.91 0.98 0.09 0.89 0.86
A-HN04 1.00 0.09 0.93 0.93 1.00 0.10 0.93 0.90 1.01 0.10 0.90 0.85
J-DJ15 1.00 0.11 0.89 0.81 1.01 0.12 0.84 0.72 1.05 0.13 0.78 0.67
J-HN04 1.00 0.09 0.93 0.93 1.00 0.09 0.93 0.90 1.00 0.09 0.90 0.84
CRE 1.00 0.09 0.96 1.01 1.00 0.09 0.94 0.97 1.00 0.09 0.95 0.97
LPM 0.93 0.09 0.88 1.03 0.93 0.09 0.86 1.00 0.93 0.09 0.87 0.99
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Table 1.4: Probit Estimates of µ̂d/µd (true value = 1)

ρ = 0 ρ = 0.4 ρ = 0.8
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 0.96 0.19 0.93 0.95 0.97 0.19 0.92 0.92 0.96 0.18 0.88 0.84
A-FV09 0.93 0.18 0.93 1.01 0.91 0.17 0.92 1.01 0.42 0.56 0.37 0.31
A-HN04 1.00 0.19 0.93 0.92 1.01 0.19 0.92 0.89 1.00 0.18 0.89 0.83
J-DJ15 1.09 0.25 0.81 0.72 1.11 0.26 0.80 0.67 1.05 0.27 0.75 0.60
J-HN04 1.04 0.22 0.89 0.83 1.05 0.21 0.88 0.79 1.05 0.20 0.83 0.70
CRE 0.99 0.19 0.95 1.00 0.99 0.18 0.95 1.00 0.99 0.17 0.95 1.00
LPM 1.28 0.19 0.68 0.99 1.28 0.18 0.67 1.00 1.29 0.17 0.62 1.00
T=12
MLE 1.01 0.13 0.94 0.99 1.01 0.13 0.94 0.97 1.00 0.12 0.94 0.95
A-FV09 1.00 0.13 0.94 0.99 1.00 0.13 0.95 0.97 0.99 0.12 0.93 0.95
A-HN04 1.01 0.13 0.94 0.98 1.01 0.13 0.94 0.96 1.01 0.12 0.93 0.94
J-DJ15 1.03 0.15 0.91 0.88 1.03 0.15 0.88 0.82 1.03 0.16 0.87 0.78
J-HN04 1.01 0.13 0.94 0.96 1.02 0.13 0.93 0.94 1.01 0.12 0.92 0.91
CRE 1.01 0.13 0.95 1.00 1.01 0.13 0.94 0.98 1.00 0.13 0.94 0.98
LPM 1.33 0.13 0.29 1.00 1.33 0.13 0.27 0.99 1.33 0.13 0.27 0.97
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The simulation results for models where dynamic completeness fails reveal many interesting

implications for the uncorrected and corrected fixed effects probit estimators. To begin with, higher

levels of serial dependence in the error terms and yit exacerbate a practical difficulty in performing

MLE while treating heterogeneity as parameters to be estimated. The problem relates to the fact

that the partial effect is not well-defined for an individual j whose value of y jt is constant. In

this case, the dummy variable for observation j perfectly predicts the outcome, so the estimate

of αi is technically unbounded (Fernandez-Val, 2009). These observations are therefore dropped

from the estimation sample. These individual’s contributions to the sample APE are equal to zero.

The true α’s in these cases tend to be larger in magnitude, and while this means m(β0,γ0,α,zit)

will be smaller by the properties of the standard normal PDF and CDF, it should still be strictly

positive. This explains the tendency of MLE to under-predict APE (Alexander and Breunig, 2014).

Additionally, there may be distributional differences between the subpopulation that has a changing

response and the population in general that could cause additional bias.

The probability of observing an individual with a constant yit increases significantly in the

shorter panels as serial dependence in the errors increases. To illustrate, for T = 6 and ρ = 0,

across the 1000 replications, 21% of the individuals were dropped on average, while for T = 6 and

ρ = 0.8, 32% were dropped on average. For comparison, with T = 12, this dropping rate was only

7.5% for ρ = 0 and 14.5% for ρ = 0.8. Splitting the panel for Dhaene and Jochman’s jackknife

makes this much worse, especially when the panel is only six periods long to begin with. Prac-

tically speaking, losing more observations makes it more likely that the numerical maximization

algorithm will not converge (at least when N is relatively small). The worst case of this occurring

in this study was for the split-panel jackknife in the T = 6, ρ = 0.8 case, in which 32% of replica-

tions had a failure to converge. Similar rates of non-convergence occurred as well for (unreported)

runs of the uncorrected MLE and analytical corrections with high ρ and only three or four time

periods.

The results show that, as expected, the failure of dynamic completeness significantly increases

the bias and decreases the precision of all of the fixed effects slope estimators. By design of the
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data generating process, this bias is separate from the scaling that would occur from the latent

model errors having non-unit variance as a result of their autoregressive structure. In the worst

of cases, the means of the split-panel jackknife estimates of γ for the shorter panels even have

the wrong sign when ρ = 0.8. For small panels, the standard errors of the corrected estimators

also do a poor job estimating the true standard deviations. The increased bias is not surprising

given that in the presence of unobserved heterogeneity, a conditional independence assumption

for {yi1,yi2, . . . ,yiT} is required to identify unscaled slope parameters in the panel probit model

(Wooldridge, 2010). Fernandez-Val’s analytical correction and Hahn and Newey’s jackknife con-

tinue to mitigate the bias and perform relatively well when ρ = 0.4. While they still provide an

improvement over the uncorrected MLE when ρ = 0.8, they are still severely biased.

The performance of the fixed effects estimators in estimating APE is much more relevant when

dynamic completeness fails. In the case of the short panel (T = 6), the effect of higher serial corre-

lation in the errors on the performance of the fixed effects estimators is quite mixed. Comparisons

between estimators in Tables 1.3 and 1.4 suggest that the analytical correction proposed by Hahn

and Newey seem fairly robust to serial correlation, with biases in APE estimates of 6% or less.

Bias in the Fernandez-Val correction only increases slightly at low-to-moderate levels of serial

correlation, but the combination of high autocorrelation and short panel length causes a substantial

downward bias of 40% to 60%. With the longer panels, however, the effect of ρ on the bias of this

and the other corrections is much smaller, 2% or less for the T = 12 case.

The effect of ρ on the jackknife APE corrections is different for each explanatory variable.

For instance, the bias in the split-panel jackknife APE estimates for x increase with higher ρ in

the T = 6 case, but those for d appear to be less affected. Hahn and Newey’s jackknife shows a

very similar pattern, but with much smaller variance of the estimators. Furthermore, the results for

the split-panel jackknife illustrate that slope and APE estimates do not necessarily agree in sign.

This is another drawback to using this procedure on short panels, since splitting the panel increases

variance substantially. Perhaps larger N would mitigate this problem.
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1.4.1.1 Comparison with uncorrected MLE

As in the dynamically complete case, it is important to note that the uncorrected APE estimators

often have lower bias than either the analytical or jackknife corrected estimators, especially for

the short panels. For longer panels, the uncorrected MLE, analytical corrections, drop-one-period

jackknife, and CRE behave very similarly, while the split-panel jackknife has higher variance. For

comparison, the CRE and LPM are not really affected by either failure of dynamic completeness or

the length of the panel. The structure of the data is such that one would expect CRE to do well. As

a side note, I found that a generalized estimating equations approach with either an exchangeable

or AR(1) covariance matrix was not much more efficient than pooled MLE for the CRE model. In

contrast to the CRE, the best linear approximation performs fairly well for the continuous variable

(bias of 5−7%) but does not perform very well for the discrete variable (bias of 28−34%).

1.4.2 Comparing bias correction and CRE under more general forms of heterogeneity

Table 1.5 compares probit APE estimates for the continuous variable x using the uncorrected MLE,

Fernandez-Val correction, and two Correlated Random Effects estimators, described in Section 3.

I consider panels with T = 6 and T = 12, in the case of serially independent errors. The estimators

are compared across three different forms of heterogeneity which do not satisfy the conditional

distribution assumptions for either CRE estimator. The uncorrected MLE and Fernandez-Val cor-

rection, in contrast, place no restriction on the nature of the heterogeneity.
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Table 1.5: Probit Estimates of µ̂x/µx Under Different Heterogeneity (true value = 1)

α1 α2 α3
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 1.00 0.16 0.92 0.90 0.98 0.23 0.91 0.86 0.99 0.15 0.92 0.90
A-FV09 0.96 0.15 0.92 0.91 0.93 0.21 0.89 0.87 0.95 0.14 0.90 0.90
A-HN04 1.04 0.16 0.88 0.83 1.03 0.24 0.87 0.78 1.03 0.16 0.88 0.82
CRE 0.76 0.15 0.59 0.96 0.75 0.20 0.74 1.03 0.95 0.15 0.92 0.99
CRE2 0.78 0.15 0.65 0.95 0.76 0.20 0.75 1.01 0.96 0.15 0.93 0.98
T=12
MLE 0.99 0.12 0.91 0.89 0.98 0.18 0.85 0.76 1.00 0.10 0.92 0.91
A-FV09 0.98 0.12 0.91 0.88 0.97 0.18 0.84 0.75 0.99 0.10 0.92 0.90
A-HN04 1.00 0.12 0.91 0.87 0.99 0.18 0.84 0.74 1.01 0.10 0.91 0.89
CRE 0.68 0.11 0.22 1.01 0.79 0.17 0.72 0.98 0.95 0.10 0.92 1.02
CRE2 0.70 0.11 0.26 1.00 0.80 0.17 0.73 0.97 0.96 0.10 0.93 1.01
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Since the pooled-MLE version of CRE only identifies slope parameters up to scale, I only

report on the APE. The tables show that the bias in the CRE estimators is higher in all three

specifications. For instance, in the second specification (α = α2), CRE underestimates the APE

of x by about 25% when T = 6, while the biases in the uncorrected MLE and the Fernandez-Val

correction are only 2% and 9%, respectively. The results for the APE of d were comparatively

similar, though the CRE estimators tended to have a positive bias. This illustrates the importance

of the functional form assumption when specifying a CRE model, and suggests an advantage in

the FE approaches as they place no restrictions on the αi.

1.4.3 Conditional logit and the importance of correcting APE estimates

Table 1.6 explores a possible approach to handling unobserved cross-sectional heterogeneity in

logit models where the response variables are conditionally independent. Using conditional logit to

consistently estimate slope parameters does not allow for estimating average partial effects unless

the researcher can somehow recover estimates of the αi. One way is to estimate them by MLE,

restricting the slope parameters to their conditional logit estimates, but this causes bias in APE

estimates. The table shows the APE estimates (for the continuous variable x) from the uncorrected

pooled logit MLE, conditional logit without correcting the APE estimates (denoted CLOG), and

conditional logit where the APE have been corrected using Fernandez-Val’s formula (CLOGC).

Simulations for the APE of d showed a very similar pattern.
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Table 1.6: Corrected and Uncorrected Logit Estimates of µ̂x/µx (true value = 1)

ρ = 0 ρ = 0.4 ρ = 0.8
Mean SD cv:.95 SE

SD Mean SD cv:.95 SE
SD Mean SD cv:.95 SE

SD
T=6
MLE 1.01 0.19 0.95 1.01 1.01 0.18 0.94 0.99 0.99 0.18 0.92 0.88
CLOGIT 0.87 0.16 0.93 1.14 0.87 0.16 0.91 1.10 0.87 0.15 0.82 0.93
CLOGIT-C 1.00 0.18 0.94 1.00 0.99 0.18 0.93 0.97 0.98 0.17 0.90 0.83
T=12
MLE 1.00 0.12 0.95 1.01 1.00 0.12 0.95 1.01 1.00 0.12 0.94 0.95
CLOGIT 0.94 0.11 0.94 1.06 0.94 0.11 0.94 1.06 0.94 0.11 0.91 0.99
CLOGIT-C 1.00 0.12 0.95 1.00 1.00 0.12 0.95 1.00 0.99 0.12 0.93 0.94
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The table illustrates a couple of interesting points. First, the uncorrected conditional logit

APE estimates have biases that are 5-13 percentage points higher than the corrected versions.

This shows that inconsistent estimation of the αi is a significant problem even when a consistent

procedure is used to estimate the slope coefficients. Moreover, these suggest that the “small bias”

property in the uncorrected MLE APE estimates observed earlier is the result of two competing

biases. In the case of this chapter’s data generating process, an upward bias in the slope estimate

is being offset by a scale factor that is biased toward zero. Using a procedure like conditional logit

(or any bias correction) while failing to correct APE estimates removes only one source of the

problem and may increase the bias compared to doing no correction at all.

1.4.4 Empirical example: Welfare participation

As an additional demonstration of the relative performance of these fixed effects estimators, I ap-

ply them to a dataset on participation in Aid to Families with Dependent Children (AFDC), a U.S.

welfare program. The data are by way of Chay and Hyslop (2014), who use the 1990 Survey of

Income and Program Participation (SIPP). The panel consists of AFDC participation, age, race,

marital status, number of children, and poverty level for 1,934 women who either received bene-

fits or had income below a certain threshold at some point during the sample period. As welfare

participation is a binary response that is thought to be highly persistent over time, Chay and Hys-

lop differentiate between unobserved heterogeneity, and structural state dependence as sources of

persistence, finding significant evidence for the latter using dynamic estimators under varying as-

sumptions about the nature of the heterogeneity and initial conditions (Chay and Hyslop, 2014).

Although their findings suggest that a dynamic model may be more appropriate, these data still

provide an interesting and relevant setting for evaluating the bias-corrected fixed effects estimators

in the static case. Table 1.7 lists slope parameter estimates for two key determinants of participa-

tion, marital status and number of children. Note that in addition to several control variables, these

specifications include time period dummies. While technically, they are also incidental parameters

under large-T bias corrections, it is customary to include them in this type of analysis. In (unre-
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Table 1.7: Welfare Participation: Slope Estimates

Full Sample Sample with changing participation
CRE MLE A-FV09 A-HN04 J-DJ15 J-HN04 CRE
(1) (2) (3) (4) (5) (6) (7)

Marriage -0.986 -1.908 -1.579 -1.730 -1.822 -1.565 -1.462
(0.011) (0.208) (0.178) (0.189) (0.229) (0.176) (0.022)

Kids 0.162 0.481 0.409 0.437 0.447 0.380 0.358
(0.001) (0.104) (0.098) (0.100) (0.121) (0.096) (0.006)

N=1934 N*=494
T=8 T=8

Controls include education, poverty level, a quadratic in age, a race dummy,
and time period dummies. Standard errors were clustered by individual

ported) simulations with true time effects, I found that the additional bias caused by their inclusion

to be smaller and that it did not change the relative performance of the different FE estimators. Ta-

ble 1.8 lists estimated APE. Unlike the simulations, these tables include CRE and LPM estimates

over the estimation subsample of the fixed effects estimators. This application highlights the prob-

lems that may arise when many individuals have responses that do not change. In this case, only

494, or roughly 25% of women in the sample had participation that changed over the 32 months

of the survey. In the worst simulation case (T = 6,ρ = 0.8) 68% of the sample still had responses

that changed. Practically speaking, not only does this increase variance of the estimators, but it

potentially exacerbates any bias stemming from sample selection (which did not appear to be much

of a problem in the simulations).

The bias-corrected slope estimates in both cases are smaller in magnitude than the uncorrected

MLE, and are similar in magnitude to CRE estimates over the subsample of changing responses,

though quite different from the CRE estimates over the whole sample. Probit slope estimates from

the 1998 and 2014 versions of Chay and Hyslop range from -0.934 to -0.658 for the marriage

variable, and 0.11 to 0.152 for the kids variable. Both are much smaller in magnitude than the non-

linear fixed effects estimates suggesting that persistence, state dependence and/or sample selection

are playing a significant role.
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Table 1.8: Welfare Participation: Average Partial Estimates

Full Sample Sample with changing participation
CRE LPM MLE A-FV09 A-HN04 J-DJ15 J-HN04 CRE* LPM*
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Marriage -0.260 -0.271 -0.112 -0.110 -0.115 -0.162 -0.129 -0.112 -0.126
(0.001) (0.001) (0.007) (0.008) (0.007) (0.008) (0.008) (0.000) (0.000)

Kids 0.047 0.052 0.034 0.033 0.035 0.049 0.034 0.034 0.033
(0.000) (0.000) (0.007) (0.007) (0.007) (0.007) (0.007) (0.000) (0.000)

N=1934 N*=494
T=8 T=8

*Sum of partial effects divided by full sample size for comparison with FE estimators
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The 1998 version of Chay and Hyslop contains several estimates of LPMs, including the static

model estimated with fixed effects (column 2 of Table 2), which are compared to the bias-correct

APE estimates in Table 1.8. The Chay and Hyslop estimates (that account for heterogeneity) range

from -0.271 to -0.143 for marriage and from 0.029 to 0.068 for kids. The bias corrected estimates

range from -0.162 to -0.110 for marriage and from 0.033 to 0.050 for kids, which seem more in

line than the slope estimates, echoing previous research and the simulation evidence in this chapter

for the “small bias” property.

1.5 Conclusion

The simulation evidence in this chapter suggests that these bias corrections continue to estimate

APE fairly well when the level of serial correlation is low to moderate, but strong serial correlation

may cause bias when the panel is short. As such, dynamic completeness may be a substantive

requirement unless the researcher has access to many time periods of data. Estimation in shorter

panels may also present sample selection or computational challenges. While it may seem unfair

to evaluate a technique based on large-T asymptotic approximations using panels with only six

time periods, others have suggested these techniques have desirable properties in large-N, small-T

settings. Moreover, the results of this chapter suggest that if a researcher is primarily concerned

with estimating APE in a static model, then the included bias correction techniques may offer

little benefit relative to the uncorrected MLE while adding the cost of a more complicated estima-

tion procedure. It should be noted, however, that the “small bias” property of APE does not hold

in dynamic models, where correction techniques have been found to decrease bias substantially.

Additionally, I find that the fixed effects approach (with or without a bias correction) may offer

advantages over CRE when the heterogeneity does not satisfy the CRE assumption. I also find ev-

idence that highlights the importance of correcting for inconsistent estimation of the heterogeneity

terms when a consistent procedure is used to estimate the slopes.

There are many important avenues for future research. First and foremost, an interesting ques-
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tion is how well the analytical bias correction of Hahn and Kuersteiner (2011) performs in this

setting. It accommodates serial correlation in theory, but requires “moderately large T .” Further-

more, in practical applications like a policy or program analysis, it is important to control for time

effects, which I did not include in this set of simulations. The reason is that under the large-T

asymptotics that justify these corrections, time dummies are also incidental parameters. I did run

a set of simulations over the same values of ρ and T where time effects were estimated, but not

part of the true data generating process for yit . I found that the same relative patterns held across

estimators as in this chapter, but the additional incidental parameters caused slightly higher bias

in slope parameters and virtually no increase in bias for APE except for the short panels, where

bias increased slightly. Fernandez-Val and Weidner (2016) allow for both time and cross-sectional

heterogeneity in analytical and jackknife corrections. However, the results depend on N/T being

constant in the limit. Therefore, unlike the wide and short panels included in this chapter, their

application is intended for settings where N and T are of similar magnitude.
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CHAPTER 2

EXPONENTIAL PANEL MODELS WITH COEFFICIENT HETEROGENEITY

2.1 Introduction

The fixed effects Poisson (FEP) estimator, also known as multinomial QCMLE, is an attractive

choice for modeling nonnegative responses whose conditional means contain an unobserved indi-

vidual effect that may be correlated with the explanatory variables. Unlike other conditional-ML

estimators, notably the FE logit, FEP does not require assuming a full distribution or conditional in-

dependence (Wooldridge, 1999). This chapter considers the exponential conditional mean, which

is logically consistent for nonnegative dependent variables and has the feature that coefficients on

the regressors can be interpreted as semi-elasticities.

The focus of this chapter is an extension to the unobserved effects exponential model that al-

lows for additional heterogeneity in the form of random coefficients. While there is some literature

considering Poisson variables in this setting, less insight exists into how to proceed for other non-

negative or non-count variables, or even what the consequences are of ignoring the heterogeneity.

In the linear unobserved effects model with strictly exogenous regressors and random coefficients,

for instance, it is straightforward to show that fixed effects OLS is consistent for the means of the

coefficients so long as they are mean-independent of the time-demeaned regressors. This is not

necessarily true for nonlinear models, as this chapter shows for the exponential case. Moreover,

it is unknown whether other quantities of interest, like average partial effects (APE), can be con-

sistently estimated while ignoring coefficient heterogeneity. Furthermore, much of the literature

assumes all sources of heterogeneity are independent of covariates, which can cause inconsistent

estimation of coefficient means as well as type II errors in tests for random coefficients

These potential complications motivate testing for neglected heterogeneity. An LM test in the

style of Chesher (1984), however, is likely to reject when the Poisson distribution is misspecified

or when conditional independence fails. Therefore, I extend this methodology specifically to the
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FEP setting, deriving a simple variable addition test that is more broadly applicable. Furthermore,

I propose a method for parametrically identifying the means of random coefficients that leads to

estimators that are computationally simple related to existing approaches to random coefficients in

this model. One novel contribution of this chapter is to treat random coefficients and the traditional

multiplicative effect1 separately, as the latter can be handled without restricting their dependence

on explanatory variables. I also provide estimators of average partial effects. In an application

to the patent R&D relationship among U.S. manufacturing firms, I find evidence of heterogeneous

elasticities and lagged effects, though the results are not robust to changes in the estimation sample.

The rest of this chapter is organized as follows: Section 2 gives an overview of the existing

literature, Section 3 reviews the FEP model and the classical test for the Fixed Effects Poisson

case, before proposing this chapter’s theoretical contributions. Section 4 contains a Monte Carlo

experiment for the methods proposed, while Section 5 describes the empirical application. Section

6 consists of a brief conclusion and direction for future research.

2.2 Literature Review

Applying Andersen’s (1970) conditional ML methodology, Hausman, Hall, and Griliches (1984)

developed the FEP estimator for count data that allows arbitrary dependence between the unob-

served effect and the regressors. They implemented their techniques to analyze the patent-R&D

relationship in the U.S. manufacturing industry. Wooldridge (1999), showed that correct specifi-

cation of the conditional mean and strict exogeneity of the regressors (conditional on the unob-

served effect) were sufficient for consistency of FEP, broadening its application as a quasi-CMLE.

Cameron and Trivedi (2013) considered the panel unobserved effects Poisson model with random

coefficients in a “random effects” setting where all heterogeneity were assumed to be normally

distributed and independent of the regressors. They concluded that “unlike for the linear model,

1The multiplicative effect can also be expressed as a random intercept inside the exponential
conditional mean function.
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the conditional mean for the random slopes model differs from that for the pooled and random

effects models, making model comparison and interpretation more difficult.”

Lagrange multiplier (LM) statistics are attractive in testing for coefficient heterogeneity be-

cause they use parameter estimates from a restricted model which can be simpler to estimate. In

this case, the restricted model is FEP, for which built-in procedures exist in Stata and other pro-

grams. Moreover, LM tests are valid for null values on the boundary of the parameter space,

unlike Wald tests, which is important because parameters (i.e. variances) associated with random

coefficients should be nonnegative (Wooldridge, 2010). Random coefficients are an example of

neglected heterogeneity that Chesher (1984) derived a test for in the ML setting. Chesher, as well

as Lee and Chesher (1986), developed methodology for deriving test statistics in this and other

settings where scores are identically zero under the parameter restriction. Greene and MacKenzie

(2015) applied this methodology to random effects probit MLE. Hahn, Newey, and Smith (2014)

extend Chesher’s to moment condition estimators like Generalized Method of Moments (GMM).

Hahn, Moon, and Snider (2015) allow for dependence between the heterogeneity and covariates

when testing the likelihood setting, though they also find that tests that treat the heterogeneity and

regressors as mean and second-moment independent still have power under alternatives where this

is not true. A common feature of tests for neglected heterogeneity in the likelihood setting is that

they have the interpretation of being either for information matrix (IM) equality or for overdis-

persion, making them less attractive for settings where researchers do not want to fully specify a

distribution. I derive a test for slope heterogeneity in exponential models that does not have this

drawback.

A Poisson-normal mixture model like the one described by Cameron and Trivedi is one of

the “Generalized linear latent and mixed models” studied by Rabe-Hesketh and Skrondal (2004).

The likelihood function consists of a multi-dimensional integral that must be numerically approxi-

mated, limiting its application to models where only a small number of coefficients are believed to

be random. The authors used adaptive Gaussian quadrature to estimate a model of seizure counts

for 236 subjects of (randomly assigned) epilepsy treatment trial, where both the intercept and the
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coefficient on a variable for time of visit were allowed to be vary by individual. While a random ef-

fects approach makes sense for the experimental setting, treating the heterogeneity as independent

of covariates can cause inconsistent estimation in many economic applications.

Wang, Cockburn, and Puterman (1998), do allow dependence between the heterogeneity and

explanatory variables in the panel Poisson setting, assuming a parametric form for the dependence

as well as a particular distribution for the heterogeneity. With the patent-R&D relationship in mind,

they propose a mixed-Poisson regression approach which assumes that the coefficients follow a

discrete distribution with finite support, modeling the probability mass at each point as multinomial

logit. Their method involves using economic intuition or selection criteria to select the number of

support points. Moreover, they suggest using a continuous model for the coefficients if model

selection criteria indicate four or more points of support. My paper complements their work by

proposing such a model. One benefit of my approach is that as in FEP, cases I can allow an

unrestricted relationship between the explanatory variables and the multiplicative effect, as well as

analyze non-counts.

2.3 Theory

2.3.1 The fixed effects Poisson model with coefficient heterogeneity

The standard fixed effects Poisson model with an exponential mean function assumes:

E(yit |xxxi,ci) = E(yit |xxxit ,ci) = ci exp(xxxitβββ 0) (2.1)

for i = 1, . . . ,N; t = 1, . . . ,T . In this expression, xxxit is a 1×K vector of time-varying explanatory

variables, ci is unobserved heterogeneity, and βββ 0 is a K × 1 unknown vector of coefficients.2

Equation (2.1) implicitly assumes that xxxit is strictly exogenous. Hausman, Hall, and Griliches

(1984) showed that if conditional on xxxi = {xxxi1, . . . ,xxxiT} and ci, the yit are independently distributed

2Wooldridge (1999) considered conditional mean functions of the form cim(xxxi,βββ 0) of which
m(xxxi,βββ 0) = exp(xxxitβββ 0) is a special case.
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as Poisson with mean given by (2.1), then conditioning on ni ≡ ∑
T
t=1 yit results in the multinomial

distribution for {yi1, . . . ,yiT}.

The multinomial log-likelihood is

`M
i (βββ ) =

T

∑
t=1

yit log [pt(xxxi,βββ )] , (2.2)

where

pt(xxxi,βββ )≡
exp(xxxitβββ )

∑
T
r=1 exp(xxxirβββ )

. (2.3)

The feature that ci enters conditional mean function multiplicatively means it cancels out of

pt(xxxi,βββ ) and therefore `i(βββ ), meaning dependence between ci and xxxi may remain unrestricted.

This structure also has the consequence that coefficients on time-constant regressors are not iden-

tified because these terms also cancel. This model is particularly attractive because as shown by

Wooldridge (1999), βββ 0 maximizes the expected value of 2.2 as long as (2.1) is true. Therefore,

under additional regularity conditions, FEP consistently estimates βββ 0 with N growing and T fixed.

Notably, consistency does not require a distribution assumption for the responses and allows them

to be arbitrarily serially correlated (Wooldridge, 1999).

Condition (2.1) generally fails, however, if the coefficients in the conditional mean function

vary by individual i, as in the following:

E(yit |xxxi,ci,bbbi) = E(yit |xxxit ,ci,bbbi) = ci exp(xxxitbbbi), (2.4)

where now bbbi is a K× 1 vector of unobserved random variables such that E(bbbi) = βββ 0. Defining

dddi ≡ bbbi− βββ 0, the conditional mean in (2.4) is equivalent to ci exp(xxxitβββ 0 + xxxitdddi), meaning one

interpretation of the heterogeneity is unobserved interactions in the index of the mean function.

There is a more practical, economic interpretation as well. Assuming element j is not functionally

related to any other elements of xxxit , then

∂ log [E(yit |xxxi,ci,bbbi)]

∂xit j
= bi j, (2.5)
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so model (2.4) implies semi-elasticities of the conditional mean of yit that vary by individual. If

xit j is the log of another variable, as in some applications, then the bi j are individually-varying

elasticities.

An immediate consequence is that the heterogeneity likely causes specification error if we want

to use FEP assuming (2.1). To see this, suppose for concreteness that dddi is continuous, and write

its PDF conditional on xxxi and ci as f (�;ψψψ0), where ψψψ0 is an unknown parameter that is nonzero

only if the coefficients are random. It follows under (2.4) and the Law of Iterated Expectations

(LIE) that

E(yit |xxxi,ci) = ci exp [xxxitβββ 0 +gt(xxxi,xxxit ,ci;ψψψ0)] , (2.6)

where

gt(xxxi,xxxit ,ci;ψψψ0) = log{E [exp(xxxitdddi)|xxxi,ci]}= log
{∫∫

RK
exp(xxxitdddi) f (dddi|xxxi,ci)ddddi

}
, (2.7)

assuming the expectation exists. The exponential function now contains an unknown term that

is generally nonzero and varies over time.3 Depending on what we are willing to assume about

the dependence between bbbi and xxxi, we may not be able to distinguish between coefficients that

are random and a more flexible functional form. The consequence of ignoring the coefficient

heterogeneity is that now (2.1) is not correct, and so FEP of yit on xxxit can no longer be shown

to be generally consistent for βββ 0. This is true even under ideal conditions like independence

between bbbi and {xxxi,ci} In fact, simulation evidence from Section 4 suggests that substantial bias

and inconsistency for FEP in this case. This is to contrast with the linear unobserved effects model

with random coefficients, in which Fixed Effects OLS is consistent for the means of the coefficients

so long as the coefficients are mean independent of the time-demeaned regressors (Wooldridge,

2010). In this case, the random coefficients cause a certain form of system heteroskedasticity in

the idiosyncratic errors that is handled completely with robust inference.

3If gt(xxxi,ci;ψψψ0) were time-constant, then it would also cancel from pt(xxxi,βββ ,ψψψ) and FEP would
be consistent, but there is no reason to think this should be the case with time-varying xxxit .
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2.3.2 Testing under full distributional assumptions

If the yit are count data and researchers are willing to take full distributional assumptions seriously,

the approach of Chesher (1984) provides a simple LM test. The slopes are not allowed to depend

on the covariates or ci under the alternative, which avoids having to specify a particular joint

distribution for bbbi and xxxi. However, lack of power may be an issue in alternatives where bbbi depends

on xxxi. Findings of Hahn, Moon and Snider (2015), however, suggest that this is less of a concern

in nonlinear models. The following statements formalize the assumptions:

yit |(xxxi,ci,bbbi)∼ Poisson [ci exp(xxxitbbbi)] , i = 1, . . . ,N; t = 1, . . . ,T, (2.8)

{yi1, . . . ,yiT} are independent conditional on {xxxi,ci,bbbi} (2.9)

bbbi = βββ 0 +ΛΛΛ0uuui,where uuui|(xxxi,ci)∼ F(000, IIIK), (2.10)

where IIIK is the K×K identity matrix.

From Chesher (1984), assumption (2.10) does not assume a particular distribution for bbbi, but

specifies that they follow a “location-scale generalization of the class of spherical distributions”

described by Kelker (1970). Denote the PDF of uuui as f ().

It follows that

yyyi|(ni,xxxi,ci,bbbi)∼Multinomial(ni, p1(xxxi,bbbi), . . . , pT (xxxi,bbbi)), (2.11)

where

pt(xxxi,bbbi)≡
exp(xitbbbi)

∑
T
r=1 exp(xirbbbi)

. (2.12)

Therefore, the log-likelihood for an observation i, integrating out the random part of the slopes, is

`i(βββ ,ΛΛΛ) = log

{∫∫
RK

ni!

∏
T
t=1 yit!

T

∏
t=1

[pt(xxxi,bbbi)
yit ] f (uuui)duuui

}
, (2.13)

where the integral is of K dimensions.
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An LM test of H0 : ΛΛΛ0 = 000 is attractive because in this case, bbbi = βββ 0, and so the restricted

model can be estimated using FEP. It also turns out that the restricted score does not depend on the

unknown PDF f ().

However, the parameterization of this model causes a complication in deriving the restricted

scores, as described by Chesher (1984) and Lee and Chesher (1986) for a more general class of

models. It turns out the score of the unrestricted model evaluated at the parameter restriction is

identically zero.4 Chesher (1984) proposed re-parameterizing the scale assumption and restricting

the correlation among the heterogeneity allowed under the alternative.5

ΛΛΛ0 = diag
{√

λ1,0, . . . ,
√

λK,0

}
(2.14)

Allowing no covariance between coefficients may affect power under alternatives in which this

does not hold, but at the same time, information about the covariances is only relevant if there

is evidence that the variances are nonzero.6 Under (2.14), the restricted score has the 0/0 form,

but the limits follow from L’Hopital’s rule. The algebraic details are collected in Appendix C.

Collecting the λ j in the K×1 vector λλλ , the restricted score is:

sssi(βββ ,000)≡ lim
λλλ↓0

{
∇θθθ `(βββ ,λλλ )

′}= N

∑
i=1



∑
T
t=1 yit

[
∇β pt(xxxi,βββ )

′/pt(xxxi,βββ )
]

1
2a1(xxxi,βββ )

...

1
2aK(xxxi,βββ )


, (2.15)

where a j(xxxi,βββ ) is the ( j, j)th element of

AAA(xxxi,βββ )

≡
T

∑
t=1

∇
2
βββ
`M
it (βββ )+

(
T

∑
t=1

∇βββ `
M
it (βββ )

)′( T

∑
t=1

∇βββ `
M
it (βββ )

)
. (2.16)

4See Appendix C for the derivation.
5Chesher’s solution would be to assume ΛΛΛ0 =

√
λ0IK

6The relevant alternative, strictly speaking, should be that at least one λ j,0 ≥ 0, but for simplic-
ity, the two-sided alternative is treated here, as in Chesher (1984).
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In this last expression, `M
it is the multinomial log-likelihood for observation i in period t.

The outer product of the score version of the LM statistic is then N times the uncentered R-

squared from the regression of 1 on s̃ss′i, where for each observation i, s̃ssi is the appropriate summand

in right hand side of (2.15) evaluated at β̃ββ FEP. The advantage to this approach is its relative

simplicity. The unrestricted model may be even computationally infeasible to estimate, but a test

of the null hypothesis of constant coefficients is relatively easy to implement.

The downside of this approach concerns robustness to failure of (2.8) or (2.9). Chesher (1984)

notes that statistics derived using this approach resemble White’s (1982) information matrix test for

general model misspecification, as E [AAA(xxxi,βββ )] = 000 if the conditional multinomial distribution is

correct. This means coefficient heterogeneity cannot be distinguished from failures of the model’s

other assumptions, such as the Poisson distribution or conditional independence.

2.3.3 Testing under weaker assumptions

In the previous section, I showed the classical test applicable to conditionally independent Pois-

son dependent variables. While the statistic is simple to calculate, the test is likely to reject in

cases where the Poisson or conditional independence assumption fail regardless of the presence

of random coefficients. This is similar to the case of a linear model where the presence random

slopes (that are assumed to be independent of covariates) is indistinguishable from a certain form

of system heteroskedasticity. In this section, I extend Chesher’s approach to testing for neglected

heterogeneity to the FEP setting where only the conditional mean of yyyit is assumed to be correctly

specified. I show that an LM test of exclusion restrictions on squared regressors is valid when the

coefficients are allowed to belong to a location-scale family under the alternative.

As before, assume:

E(yit |xxxi,ci,bbbi) = E(yit |xxxit ,ci,bbbi) = ci exp(xxxitbbbi) (2.17)

and

bbbi = βββ 0 +ΛΛΛ0uuui,where uuui|(xxxi,ci)∼ F(000, IIIK), (2.18)
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where again the CDF F() and the corresponding PDF f () are left unspecified.

Similar to before, these conditions imply:

E(yit |xxxi,ci) = ci exp [xxxitβββ 0 +mt(xxxi,ΛΛΛ0)] , (2.19)

where

mt(xxxi,ΛΛΛ0) = log{E [exp(xxxitΛΛΛ0uuui)|xxxi,ci]}= log
{∫∫

RK
exp(xxxitΛΛΛ0uuui) f (uuui)duuui

}
. (2.20)

It is easy to see that mt(xxxi,000) = 0. In the multivariate normal case, mt(xxxi,ΛΛΛ0) =
1
2xxxitΩΩΩ0xxx′it ,

where ΩΩΩ0 = ΛΛΛ0ΛΛΛ
′
0. Rejecting H0 : ΛΛΛ0 = 0 provides evidence against the null of constant coeffi-

cients.

I follow Chesher’s derivation of the LM statistic as before, but unlike other methods, I only

integrate uuui out of the conditional mean function, not the entire likelihood or score. The unrestricted

quasi log-likelihood is

`i(βββ ,ΛΛΛ) =
T

∑
t=1

yit log [pt(xxxi,βββ ,ΛΛΛ)] , (2.21)

where

pt(xxxi,βββ ,ΛΛΛ)≡
exp(xxxitβββ +mt(xxxi,ΛΛΛ))

∑
T
r=1 exp(xxxirβββ +mt(xxxi,ΛΛΛ))

. (2.22)

The first K elements of the unrestricted score evaluated at ΛΛΛ = 000 are just the usual FEP scores.

The gradient with respect to ΛΛΛ evaluated at ΛΛΛ = 000, however, presents a similar problem as before. I

make the same re-parameterization as before, shown in equation (2.14), restricting the coefficients

to be uncorrelated with each other under the alternative. The restricted scores have a 0/0 form and

are evaluated using L’Hopital’s Rule. The details are collected in Appendix C.

The score evaluated at the parameter restriction is:

sssi(βββ ,000) =



∑
T
t=1 yit

[
∇βββ pt(xxxi,βββ ,000)′/pt(xxxi,βββ ,000)

]
1
2 ∑

T
t=1 yit

[
∑

T
r=1 exp(xxxirβββ )

(
x2

it1− x2
ir1

)]
/∑

T
r=1 exp(xxxirβββ )

...

1
2 ∑

T
t=1 yit

[
∑

T
r=1 exp(xxxirβββ )

(
x2

itK− x2
irK

)]
/∑

T
r=1 exp(xxxirβββ )


. (2.23)
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The last K elements are proportional to the restricted FEP scores for testing the exclusion of

squared regressors from the model with constant slopes. Therefore, in the exponential case, we

cannot distinguish random coefficients from the presence of quadratics in E(yit |xxxit ,ci). As an

empirical matter, however, this test takes no stand on the (conditional) distribution, overdispersion,

or serial correlation of yit , so it may offer some advantages to the approach in Section 3.2. For

example, if a researcher rejects the null using the test based on (2.15), but fails to reject based on

(2.23), then he or she can proceed in estimating the model based on (2.1) with some peace of mind.

2.3.4 A correlated random coefficients approach to testing and estimation

When one wishes to allow more than one or two slopes to be random, “random effects” type es-

timation based on integrating out the heterogeneity is computationally difficult and may not be

robust to misspecification of the response variable’s distribution. A straightforward alternative,

which is applicable not only to counts but also to other nonnegative responses, is to make a para-

metric, distributional assumption for bbbi that allows us to derive E [exp(xxxitdddi)|xxxi,ci]. Here, I assume

correlated random coefficients (CRC) and (conditional) multivariate normality:

bbbi = ααα0 +ΓΓΓ0x̄xx′iii +dddi,

dddi|(xxxi,ci)∼ Normal(000,ΩΩΩ0), (2.24)

where x̄xxiii = ∑
T
t=1 xxxit , ααα0 is an unknown K×1 vector, and ΓΓΓ0 is an unknown K×K matrix. This as-

sumption states that the dependence between xxxi and the mean of bbbi is captured entirely through the

time averages of xxxit , and is the application of Mundlak (1978) to the current setup. Alternatively,

one could allow the mean of bbbi to depend on xxxi in the style of Chamberlain (1980). If ΓΓΓ0 = 000, then

(2.24) amounts to a stronger version of (2.10) where then ααα0 = βββ 0. Note that (2.24) only requires

multivariate normality of the coefficients conditional on xxxi; their unconditional distribution may

not be normal, though logically speaking it should be continuous and have unbounded support.

Condition (2.24) also implies bbbi and ci are independent, conditional on xxxi. This is less restrictive

for testing purposes because bbbi is constant under the null, but it could affect power under alterna-
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tives where the two are dependent. The two sources of heterogeneity are still allowed, through xxxi,

to be correlated unconditionally. As in FEP, the relationship between xxxi and ci is left completely

unrestricted.

Under (2.4) and (2.24), it follows from properties of the lognormal distribution and the LIE

that

E(yit |xxxi,ci) =E(yit |xxxit , x̄xxi,ci)

=ci exp
(

xxxitααα0 + xxxitΓΓΓ0x̄xx′i +
1
2

xxxitΩΩΩ0xxx′it

)
=ci exp

(
xxxitααα0 +(x̄xxi⊗ xxxit)vec(ΓΓΓ0)+

1
2

(
K

∑
j=1

ω jx
2
it j +2

K−1

∑
j=1

K

∑
h 6= j

ρ jhxit jxith

))

≡ci exp
(

xxxitααα0 +(x̄xxi⊗ xxxit)γγγ0 +
1
2

x̌xxitωωω0

)
, (2.25)

where γγγ0 = vec(ΓΓΓ0), x̌xxit = (x2
it1, . . .x

2
itK ,xit1xit2,xit1xit3 . . .xit,K−1xitK),

ωωω0 ≡ (ω1, . . .ωK ,2ρ12,2ρ13 . . . ,2ρK−1,K)
′, ω j =Var(b j), and ρ jh =Cov(b j,bh).

Equation (2.25), along with regularity conditions, implies that FEP of yit on xxxit , interactions

between xxxit and x̄xxi, and squares and interactions of xxxit will consistently estimate ααα0, γγγ0, and ωωω0

without assuming a distribution for yit and while allowing arbitrary serial correlation (Wooldridge,

1999).

Following estimation of (2.25), the unconditional means of the bbbi are easy to estimate using

the following, where µµµ x̄xx = E(x̄xxi):

βββ 0 ≡ E(bbbi) = ααα0 +ΓΓΓ0µµµ
′
x̄xx, (2.26)

I believe that using the lognormal distribution in the FEP setting is novel and that it offers

the crucial advantage of still allowing one source of heterogeneity to be correlated with xxxi.7 This

procedure is easy to implement, as the FEP estimator is available in software packages like Stata,

7A similar result appeared in Cameron and Trivedi (2013) for the case where bbbi|xxxi,ci ∼
Normal(βββ 0,ΩΩΩ0) and ci|(xxxi,bbbi) ∼ lognormal(0,σ2

c ) as a way of illustrating how random coeffi-
cients change E(yit |xxxi).
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though practitioners should be careful to calculate cluster-robust standard errors to account for se-

rial correlation and misspecification of the multinomial distribution. Another important note is if

one believes that time constant variables zzzi belong in the model and they also have random coeffi-

cients that are correlated with the coefficients on the xxxit , then the augmented FEP regression should

also include interactions between zzzi and xxxit as these are not absorbed by ci when conditioning on

ni.

One drawback to this approach is that for a binary element k of xxxit , FEP only identifies αk +

1
2ωk. Similarly, some elements of ααα0 and ΩΩΩ0 are not separately identified when xxxit contains both

levels and higher order terms.

This model nests the traditional case of constant coefficients, which occurs when γγγ0 = 000 and

ωωω0 = 000). Rejection of the null that γγγ0 = 000 is perhaps most convincing evidence of that slopes vary

by individual. Therefore, the primary contribution of this approach to random coefficients is to

suggest the inclusion of interactions between time-varying regressors and time averages to see if

more flexibility is necessary.

If there is no evidence that slopes are correlated with the x̄xxi, then one should carefully consider

how to interpret inference on ωωω0. Statistically significant estimates may just indicate that squares

and cross-products of xxxit belong in the FEP regression. Clearly if the cross-products are significant

while the squares are not, or if the coefficients on squared terms are negative and significant,

then the random coefficient framework does not make sense, though the results may still have

yielded useful insight into the what functions of the explanatory variables should be included in

the analysis.

2.3.5 Adding second moment assumptions

While under our assumptions, FEP is consistent under correct specification of the conditional mean

(2.25), it may be possible to achieve greater efficiency by adding assumptions about the conditional

second moment of yyyi. Another reason may be to identify the coefficients on binary variables.
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I assume a variance function that is proportional to the conditional mean.

Var [yit |xxxi,ci,bbbi] = σ0ci exp(xxxitbbbi) (2.27)

Additionally, the following CRE assumption implies conditional mean and variance functions

that do not depend on ci.

log(ci)|xxxi,bbbi ∼ Normal(ψ1 + x̄xxiξξξ 1,σ
2
a ) (2.28)

Under assumptions 2.4, 2.24, 2.27, and 2.28, it follows from the properties of the lognormal distri-

bution, the LIE, and the Law of Total Variance that

E(yit |xxxi) = E(yit |xxxit , x̄xxi) = exp
[

h(xxxit , x̄xxi,θθθ 0)+
1
2

v(xxxit ,τττ0)

]
(2.29)

and

Var(yit |xxxi) =Var(yit |xxxit , x̄xxi)

=σ0 exp
[

h(xxxit , x̄xxi,θθθ 0)+
1
2

v(xxxit ,τττ0)

]
+exp [2h(xxxit , x̄xxi,θθθ 0)+ v(xxxit ,τττ0)]{exp [v(xxxit ,τττ0)]−1} , (2.30)

where θθθ ≡ (ψ1,ξξξ
′
1,ααα
′,γγγ ′)′, τττ = (ωωω ′0,σ

2
a )
′, h(xxxit , x̄xxi,θθθ 0) ≡ ψ1 + x̄iξξξ 1 + xxxitααα0 +(x̄xxi⊗ xxxit)γγγ0, and

v(xxxit ,τττ0)≡ x̌xxitωωω0 +σ2
a .

Estimation of θθθ 0 and τττ0 can then proceed using pooled normal QMLE, specifying the mean

and variance functions as above. As the normal distribution is a member of the quadratic expo-

nential family, this procedure is consistent without the normal distribution being true (Gourieroux,

Monfort, and Trognon, 1984) Once again, inference should be made cluster-robust to account for

serial correlation and the true distribution being non-normal. Estimation of βββ 0 can then proceed as

before, and coefficients on binary or quadratic variables are now identified off of the nonlinearity

in (2.30).

Normal QMLE in this case is straightforward to program in software like Stata using built-in

maximum likelihood functions, and it had good finite sample properties in simulations run for this
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chapter. Some researchers may wish to specify a conditional covariance structure for yyyi as a way

to get more efficiency. If so, one option is to assume

Cov [yit ,yir|xxxi,ci,bbbi] = 0, t 6= r. (2.31)

Equation (2.31) does not allow serial correlation when conditioning on xxxi,ci,bbbi, but the pres-

ence of the time-constant heterogeneity ensures that the responses will be serially correlated when

conditioning on xxxi only. Under 2.4, 2.24, 2.27, 2.31, and 2.28,

Cov(yit ,yir|xxxi) =

exp
[

h(xxxit , x̄xxi,θθθ 0)+h(xxxir, x̄xxi,θθθ 0)+
1
2
(v(xxxit ,τττ0)+ v(xxxir,τττ0))

]{
exp(xxxitΩΩΩ0xxx′ir +σ

2
a )−1

}
.

(2.32)

2.3.6 Estimating average partial effects

Even though the coefficients in (2.4) have direct interpretations as semi-elasticities, it may still be

desirable to estimate partial effects and APEs, perhaps to compare estimates between competing

nonlinear models. Moreover, this sections shows that the average partial effects for a binary vari-

able depend only on αk +
1
2ωk, meaning that even though we cannot separately identify αk and ωk

without second moment assumptions, we can still estimate average partial effects.

Let xxx = {xxx1,xxx2, . . . ,xxxT}, c, and bbb = {b1,b2 . . . ,bK} denote fixed values of the variables. The

partial effect of a continuous xt j on the conditional mean of yt is defined as8

φ j(xxxt ,c,bbb)≡
∂E(yt |xxxt ,c,bbb)

∂xt j
= ci exp(xxxtbbb)b j. (2.33)

For a binary xtk, the partial effect is defined as the discrete difference in the conditional mean

of yt at each level of the binary variable. In the expressions to follow, the subscript 6 k signifies that

xtk, x̄k, or their associated coefficients have been omitted from the vector.

8I implicitly assume that xt j is not functionally linked with any other element in xxxt .
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φk(xxxt ,c,bbb)≡E(yt |xxxt 6k,xtk = 1,c,bbb)−E(yt |xxxt 6k,xtk = 0,c,bbb)

=cexp(xxxt 6kbbb6k +bk)− cexp(xxxt 6kbbb 6k) (2.34)

Of course, estimating features of the distributions of φ j and φk is infeasible as we do not observe c

or bbb. Therefore, this section focuses mainly on APEs where the heterogeneity has been averaged

out.

δh(xxxt)≡ Evvvi [φh(xxxt ,ci,bbbi)] , (2.35)

where vvv≡ (c,bbb′)′ and h ∈ { j,k}.

2.3.6.1 Approaches under the CRE assumption for ci

To proceed, it is necessary to maintain the assumptions of correlated random coefficients (2.24).

As ci is unobserved, I also maintain (2.28). Later, I will discuss a possible “estimator” of ci. For

now, there are two choices as to how to proceed in estimating δ j and δk. The first is to estimate an

Average Structural Function (ASF), as proposed by Blundell and Powell (2003), where essentially

x̄xx proxies for vvv and is averaged out before taking derivatives and differences. The second is to use

derivatives and differences of (2.29) directly (Wooldridge, 2010).

The ASF is defined as:

ASF(xxxt)≡ Evvvi [ci exp(xxxtbbbi)] , (2.36)

where again, xxxt is a fixed argument. Under (2.24), (2.27), and (2.28) the L.I.E. implies

ASF(xxxt) = Ex̄xx

[
exp
[

h(xxxt , x̄xxi,θθθ 0)+
1
2

v(xxxt ,τττ0)

]]
(2.37)

Passing the derivative through the expectation, the APE for continuous xt j is:

δ j(xxxt) =Ex̄xx

[
exp
(

h(xxxt , x̄xxi,θθθ 0)+
1
2

v(xxxt ,τττ0)

)(
α j + x̄xxiγγγ

′
j +ω jxt j +

K

∑
h6= j

ρ jhxth

)]
(2.38)

For a binary xtk, the APE is:
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δk(xxxt) =Ex̄xx
[
E
(
yt |xxxt 6k,xtk = 1, x̄xxi

)
−E

(
yt |xxxt 6k,xtk = 0, x̄xxi

)]
=Ex̄xx

[
exp
(

h(xxxt 6k,1, x̄xxi,θθθ 0)+
1
2

v(xxxt 6k,1,τττ0)

)
− exp

(
h(xxxt 6k,0, x̄xxi,θθθ 0)+

1
2

v(xxxt 6k,0,τττ0)

)]
,

(2.39)

where

h(xxxt 6k,1, x̄xxi,θθθ 0) =ψ1 + x̄iξξξ 1 + xxxt 6kααα 6k + xxxt 6kΓΓΓ 6kx̄xx 6k + xxxt 6kx̄ikγγγ
k
6k +αk + x̄xxiγγγ

′
k,

h(xxxt 6k,0, x̄xxi,θθθ 0) =ψ1 + x̄iξξξ 1 + xxxt 6kααα 6k + xxxt 6kΓΓΓ 6kx̄xx 6k + xxxt 6kx̄ikγγγ
k
6k,

v(xxxt 6k,1,τττ0) =x̌xx 6kωωω 6k +σ
2
a +ωk +2

K

∑
h 6=k

ρkhxth,

and v(xxxt 6k,0,τττ0) =x̌xx 6kωωω 6k +σ
2
a . (2.40)

The direct approach consists of taking derivatives and differences of 2.29 directly. Note that

since these expressions do not first average out x̄xx, the entire history of xxx is now a fixed argument.

For a continuous variable xt j the APE is:

δ j(xxx) =
∂E(yt |xxx)

∂xt j

=exp
(

h(xxxt , x̄xx,θθθ 0)+
1
2

v(xxxt ,τττ0)

)(
ξ j/T +α j + x̄xxγγγ

′
j +

1
T

xxxtγγγ
j +ω jxt j +

K

∑
h6= j

ρ jhxth

)
,

(2.41)

where γγγ j is the jth row and γγγ j is the jth column of ΓΓΓ0.

Define z(xxxt , x̄xx,θθθ ,τττ) = h(xxxt , x̄xx,θθθ)+ 1
2v(xxxt ,τττ). Then we have for a binary xtk,

δk(xxx) =E
(

yt |xxx 6k,{xsk}Ts6=t ,xtk = 1
)
−E

(
yt |xxx 6k,{xsk}Ts6=t ,xtk = 0

)
=exp

(
z(xxxt 6k, x̄xx 6k,θθθ 6k,τττ 6k)+ξ jx̄

(1)
tk +αk + x̄xx 6kγγγ

′
k 6k + γkkx̄(1)tk + xxxt 6kx̄(1)tk γγγ

k
6k +

1
2

ωk +
K

∑
h 6=k

ρkhxth

)

− exp
(

z(xxxt 6k, x̄xx 6k,θθθ 6k,τττ 6k)+ξ jx̄
(0)
tk + xxxt 6kx̄(0)tk γγγ

k
6k

)
, (2.42)
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where γkk is the kth diagonal element of ΓΓΓ0, x̄(1)tk ≡
1
T

(
1+∑

T
s 6=t xsk

)
, and x̄(0)tk ≡

1
T ∑

T
s6=t xsk.

Whichever approach is chosen, one can then estimate δ j(xxxt) or δk(xxxt) by inserting the estimated

parameters, replacing expectations over the distribution of x̄xx with averages over i, and plugging in

interesting values of xxx. Many researchers will average over the distribution of xxx to get a single

number. Asymptotic variances can be computed either via the delta method or using the panel

bootstrap.

2.3.6.2 Estimation when the slopes are independent of covariates

The traditional case where bbbi is independent of xxxi (conditional on ci) is one where the ASF is iden-

tified without placing any restriction on ci or Var(yit |xxxi). The following summarizes the necessary

condition.

bbbi = βββ 0 +dddi,

dddi|(xxxi,ci)∼ Normal(000,ΩΩΩ0). (2.43)

The results of Section 3.4 continue to hold, but the time averages no longer enter E(yit |xxxit ,ci) (that

is, ΓΓΓ0 = 000).

The LIE implies that for a fixed xxxt ,

ASF(xxxt) = E(ci)exp
(

xxxtβββ 0 +
1
2

xxxtΩΩΩ0xxx′it

)
(2.44)

Passing the derivative through the expectation, the APE of a continuous variable xt j is given

by:

δ j(xxxt) =E(ci)exp
(

xxxtβββ 0 +
1
2

xxxtΩΩΩ0xxx′it

)(
β j ++ω jxt j +

K

∑
h6= j

ρ jhxth

)
(2.45)

For a binary variable xtk, the APE is:
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δk(xxxt) =

E(ci)

[
exp

(
xxxt 6kβββ 6k +

1
2

x̌xx 6kωωω 6k +αk +
1
2

ωk +
K

∑
h6=k

ρkhxth

)
−E(ci)exp

(
xxxt 6kβββ 6k +

1
2

x̌xx 6kωωω 6k

)]
.

(2.46)

An estimator for E(ci) is conveniently available. Poisson QMLE using (2.25) and treating the ci as

(strictly positive) parameters is algebraically equivalent to multinomial QCMLE. 9) In our current

application, for a given θθθ ≡ (βββ ′,ωωω ′)′, the QMLE for ci is:

ci(θθθ) =
ni

∑
T
t=1 exp(xxxitβββ + x̌xxitωωω)

, (2.47)

where again, ni = ∑
T
t=1 yit . Define ĉi = ci(θ̂θθ), where θ̂θθ is the FEP estimate of (βββ ′0,ωωω

′
0)
′. The

properties of ĉi are not well-known in either the constant or heterogeneous slope case. Though

there is no incidental parameters problem for θ̂θθ in the FEP case, ci(θθθ) 6= ci, even when evaluated

at θθθ 0. Viewing ci as a parameter, there is no reason to think ĉi is unbiased and it cannot be

consistent with T fixed.

However, the ASF in this case is proportional to E(ci). Strict exogeneity of xxxit and (2.24) imply

that

E(ni|ci,xxxi) = ci

T

∑
t=1

exp
(

xxxitβββ 0 +
1
2

x̌xxitωωω0

)
(2.48)

It follows from the L.I.E. that

E(ci) = E

 ni

∑
T
t=1 exp

(
xxxitβββ 0 +

1
2 x̌xxitωωω0

)
 (2.49)

meaning N−1
∑

N
i=1 ĉi consistently estimates E(ci).

Many researchers are primarily interested in a single APE estimate (averaged across the sample

of observables). In this case, it may be attractive to treat ĉi as the unobservable ci and average

9See Wooldridge, 2010 or Cameron and Trivedi, 2013
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across the distributions of ĉi and xxxi at the same time. We would, generally expect such APE

estimators for nonlinear FE models derived in such a way to suffer from the incidental parameters

problem, even if the slopes are estimated consistently. 10 Given that N−1
∑

N
i=1 ĉi is consistent for

E(ci), however, it may be that estimators including functions of ci that are averaged across i have

desirable properties. This appears to be true at least for the data generating process considered in

this chapter. Simulation results in Section 4 indicate very small finite sample bias of overall APE

estimators computed using ĉi in this way.

2.4 Monte Carlo

2.4.1 Comparing estimation methods

To illustrate the impact of ignoring random coefficients in the FEP setting, I simulate the perfor-

mance of the different estimators in both the ideal case of constant coefficients and in the case

where the coefficients vary by individual. I employed the following data generating process:

yit |(xxxi,wwwi,ci,bi1,bi2)∼ Poisson [ci exp(bi1xit +bi2wit)] , (2.50)

log(ci)∼ Normal(0,1/16) (2.51)

xit = log(ci)+ .5xi,t−1 + vit , t > 1

xi1 = log(ci)i + vi1, vit ∼ N(0,1/2) (2.52)

wit = 111 [xit +hit > 0] , hit ∼ N(0,1/2) (2.53)

bi1

bi2

∼ Normal


β1

β2

 ,

ω2
1 ρ

ρ ω2
2


 (2.54)

10See, for example, Fernandez-Val, 2009.
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For the above draws, i = 1, . . . ,1000 and t = 1, . . . ,10. The case where ω2
1 , ω2

2 , and ρ all equal

zero corresponds to the constant coefficient case. For these simulations, the bi j are generated to be

independent of {xxxi,wwwi}, and this assumption is maintained in estimation. The bi j are also generated

to be independent of each other (ρ = 0) but this is not assumed in estimation.

In the following tables, FEP refers to the estimator that ignores the random coefficients. FEP2

refers to the estimator that adds the square of x and an interaction between x and w. Since this

model’s assumptions does not separately identify β2 and ω2
2 , the estimated coefficient on w is

compared to β2 +
1
2ω2

2 . NQML refers to the normal QML estimator that also assumes (2.27) and

(2.28).11 I set ω1 = ω2 = ω but do not assume equal variance in estimation. In each case, I used

one thousand replications.

11APE estimates from NQML also plugged in ĉi.
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Table 2.1: Finite Sample Properties of Slope Estimators: β1 = 1,β2 =−1

β̂1 β̂2
̂

β2 +
1
2ω2

2
FEP FEP2 NQML FEP NQML FEP2

ω Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Truth
0.00 1.00 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -1.00 0.04 -1.00
0.05 1.00 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -1.00 0.04 -1.00
0.10 1.01 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -0.99 0.04 -1.00
0.15 1.02 0.02 1.00 0.03 1.00 0.03 -0.99 0.03 -1.00 0.04 -0.99 0.04 -0.99
0.20 1.03 0.02 1.00 0.03 1.00 0.03 -0.99 0.03 -1.00 0.04 -0.98 0.04 -0.98
0.25 1.05 0.03 1.00 0.03 1.00 0.03 -0.98 0.03 -1.00 0.04 -0.97 0.04 -0.97
0.30 1.07 0.03 1.00 0.03 1.00 0.03 -0.98 0.04 -1.00 0.04 -0.96 0.04 -0.96
0.35 1.10 0.04 1.00 0.04 1.00 0.04 -0.97 0.04 -0.99 0.05 -0.94 0.04 -0.94
0.40 1.14 0.06 1.00 0.04 1.00 0.04 -0.96 0.05 -0.99 0.05 -0.93 0.05 -0.92
0.45 1.18 0.07 1.00 0.04 0.99 0.05 -0.96 0.07 -0.99 0.05 -0.91 0.05 -0.90
0.50 1.23 0.09 1.00 0.04 0.99 0.05 -0.95 0.08 -0.98 0.06 -0.89 0.05 -0.88
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Table 2.2: Finite Sample Properties of APE Estimators: β1 = 1,β2 =−1

Est. APE of x Est. APE of w
FEP FEP2 NQML FEP FEP2 NQML

ω Truth Mean SD Mean SD Mean SD Truth Mean SD Mean SD Mean SD
0.00 0.88 0.88 0.03 0.88 0.03 0.88 0.03 -1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
0.05 0.88 0.88 0.03 0.88 0.03 0.88 0.03 -1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
0.10 0.90 0.89 0.03 0.89 0.03 0.89 0.03 -1.13 -1.13 0.06 -1.13 0.09 -1.13 0.08
0.15 0.91 0.92 0.04 0.92 0.04 0.92 0.04 -1.14 -1.15 0.07 -1.14 0.10 -1.14 0.08
0.20 0.95 0.95 0.04 0.95 0.04 0.95 0.04 -1.15 -1.17 0.07 -1.15 0.10 -1.15 0.08
0.25 0.98 0.99 0.05 0.99 0.05 0.99 0.05 -1.16 -1.19 0.09 -1.17 0.12 -1.16 0.10
0.30 1.04 1.04 0.07 1.04 0.06 1.03 0.06 -1.19 -1.23 0.11 -1.19 0.16 -1.18 0.11
0.35 1.11 1.11 0.09 1.11 0.08 1.10 0.09 -1.22 -1.27 0.14 -1.22 0.20 -1.20 0.13
0.40 1.20 1.21 0.15 1.21 0.13 1.20 0.14 -1.26 -1.35 0.22 -1.26 0.29 -1.23 0.16
0.45 1.32 1.32 0.22 1.33 0.21 1.31 0.23 -1.30 -1.43 0.34 -1.30 0.47 -1.26 0.24
0.50 1.49 1.49 0.47 1.50 0.49 1.48 0.48 -1.36 -1.57 0.86 -1.35 0.60 -1.29 0.26
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It appears from Table 2.1 that the standard deviation of the coefficients is positively related to

the finite sample bias (in magnitude) in FEP slope estimates. This is not surprising given that (2.1)

fails for ω > 0. This is despite the fact that the coefficients are independent of the covariates and

each other, a case in which random coefficients would not cause a problem in linear models. In

contrast, the augmented FEP and the NQML estimators show much smaller bias at all levels of ω ,

with the exception of the FEP2 coefficient on w, which, as expected, appears to show small bias

for β2 +
1
2ω2.

The APEs are estimated using expressions similar to (2.45) and (2.46) using the FEP2 and

NQML parameter estimates. The difference is I treat ĉi as ci and average over {xxxit , ĉi} only once.

I followed an analogous procedure for the FEP case.

Table 2.2 suggests that this approach to estimating APEs has small bias for the FEP2 and

NQML case, despite using estimates of incidental parameters. For FEP, bias in the APE of the

binary variable increases as ω increases. Surprisingly, this is not the case for the continuous

variable. Even though the simulation suggests a large bias in the FEP estimate of β1. This warrants

further investigation as it suggests there many be circumstances in which researchers can ignore

random coefficients if all they care about is APEs of continuous variables, though it could also be

an artifact of this data generating process.

2.4.2 Testing when coefficients are not normal

Section 3 shows that for slope heterogeneity in a location-scale family of spherical distributions

(where the heterogeneity are independent of each other), an LM test for coefficient heterogeneity

is equivalent to testing the coefficients on squares of the covariates, which suggests that the het-

erogeneity need not be normal for the approach of this chapter to work well. To explore this, I

generate the responses using random coefficients of different distributions.

bi j2 = 1+ω

(
(u j2−0.5)/

√
1/12

)
, u j2 ∼U(0,1) (2.55)
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bi j3 = 1+ω

(
(u j3−4)/

√
8
)
,u j3 ∼ χ

2
4 (2.56)

bi j4 = 1+ω

(
u j4/

√
5/3
)
,u j4 ∼ t5 (2.57)

bi j5 = 1+ω
(
u j5−1

)
,u j5 ∼ Exponential (1) (2.58)

bi j6 ∼ Gamma (1/ω
2,ω2) (2.59)

These draws are made separately for j = 1,2, and for simplicity, Cov(bi1h,bi2h) = 0 for each

h. Each coefficient’s data generating process ensures that it has a mean of 1 and variance of ω2.

Each of the first five coefficients falls into a location-scale family as they consist of a standardized

random variable multiplied by ω to result in a variance of ω2 and shifted to have a mean of one.

The gamma coefficients, in contrast, are not drawn from a location-scale family, but are directly

specified to have a mean of 1 and variance of ω2.

Given the issue identifying parameters associated with binary regressors in the FEP2 setting, I

generate the responses to depend on continuous regressors only, where each xit j is generated as in

(2.52).

yit |(xxxi1,xxxi2,ci,bi1h,bi2h)∼ Poisson [ci exp(bi1hxit1 +bi2hxit2)] (2.60)

After generating the data, β1, β2, ω2
1 , ω2

2 , and ρ were estimated using FEP of yt on xt1, xt2, x2
t1,

x2
t2, and xt1xt2. A Wald test was then performed on x2

t1, x2
t2, and xt1xt2. The results of Section 3.3

suggest that this test should perform well for the first five coefficient types, and I conjecture that it

performs well for the Gamma coefficients as well. When testing for random slopes, is important

to use a FE procedure if one is concerned that the multiplicative effect ci is correlated with the

explanatory variables. Otherwise, the omitted variable problem is likely to cause the test to be

over-sized. In fact, in a simulation where Random Effects Poisson was used on the same set of
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covariates, a Wald test rejected the null of constant slopes in 88% of replications when the true

slopes were nonrandom.

Table 2.3: Testing when bbbi is not normal

Empirical Rejection Probability (Null value 0.05)
ω Normal Uniform* Chi2* t5* Exp.* Gamma
0.00 0.069 0.069 0.069 0.069 0.069 0.069
0.05 0.108 0.115 0.112 0.108 0.121 0.132
0.10 0.186 0.212 0.159 0.196 0.16 0.178
0.15 0.308 0.359 0.287 0.302 0.303 0.334
0.20 0.468 0.531 0.439 0.408 0.404 0.472
0.25 0.640 0.691 0.543 0.579 0.553 0.625
0.30 0.785 0.796 0.689 0.693 0.652 0.741
0.35 0.881 0.887 0.796 0.804 0.757 0.817
0.40 0.914 0.948 0.860 0.852 0.814 0.868
0.45 0.931 0.965 0.897 0.897 0.876 0.892
0.50 0.970 0.979 0.904 0.919 0.876 0.923

Table 2.3 shows that as expected, rejection probabilities increase with ω when the coefficients

are normal, and are quite high when ω is large.12 What is interesting is that there does not seem

to be much change in either size or finite sample power when the coefficients are not normal, even

when the coefficients are not drawn from a location-scale family.

2.5 Empirical application: the Patent-R&D relationship

There is a long history of economic inquiry into the relationship between a firm’s research and

development (R&D) expenditures and the number of patents for which it applies in a given year.

Patent applications are viewed in the literature as an indicator of additions to the knowledge stock

of a firm (Pakes and Griliches, 1980). Pakes and Griliches (1980) were among the first to focus on

firm effects as a source of potential endogeneity in analyzing U.S. manufacturing firms. Hausman,

Hall, and Griliches (1984) and Hall, Griliches, and Housman (1986) also look to firm effects to

account for significant over-dispersion in the distribution of patent counts. In addition to FEP,

12I have not yet varied the cross-section size. I would expect these rejection probabilities to
increase.
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Negative Binomial models are also common as a way to introduce more dispersion. Nonlinear

count models are not only attractive for logical reasons, but also because datasets can contain a

nontrivial proportion of observations with zero patents. These observations must be eliminated or

transformed in some ad hoc manner before estimating a linear log-log model(Hall, Griliches, and

Hausman, 1986). Such observations seem to be more common in more recent datasets as well.

While only 8% of observations were zero in Hall, Hausman, and Griliches 1968-1975 panel of 121

firms, 16.5% were zero in Gurmu and Perez-Sebastian’s 1982-1992 panel of 391 firms (Gurmu

and Pérez-Sebastián, 2008).

A common finding in the literature is that distributed lag models that do not account for any

firm heterogeneity tend to have a U-shaped lag profile, and that after accounting for firm hetero-

geneity, only contemporaneous R & D expenditure tends to be significant (Hall, Griliches, and

Hausman, 1986). In a cross-sectional analysis of the pharmaceutical industry, Wang, Cockburn,

and Puterman (1998) use a Poisson model and allow for heterogeneity in both the multiplicative

effect and coefficients. While the mixing distribution is allowed to depend on the regressors, they

assume that the vector of heterogeneity has finite support, which in their analysis consisted of three

or fewer points. This framework may be less palatable in studies with broader industry coverage.

The population of interest for this chapter is publicly-traded U.S. manufacturing firms in ex-

istence from 1996 to 2003. The patent data come from the United States Patent and Trademark

Office by way of the National Bureau of Economic Research’s Patent Data Project (PDP) and

includes data through 2006. As patents are not recorded in the USPTO database until they are

granted, the panel is truncated in 2003 to diminish the effect of the time-lag between applica-

tion and granting.13 Financial information on publicly-traded firms comes from the Compustat

database, accessed through Wharton Research Data Services (WRDS) in September 2016. Hall,

Jaffe, and Trajtenberg (2001) and Bessen (2009) thoroughly describe the patent data as well as

matching information for the Compustat database. Matching patents to firms is not a trivial given

13The average lag over applications made in 1990-92 was 1.76 years, with 96.1% of patents
granted in three years or less.
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nonstandard naming in USPTO records, among other issues.

I mainly follow Bound, et. al (1982) and Hall, Griliches, and Hausman (1986) in assembling

the panel dataset. The initial sample from the Compustat database consists of 3,126 firms in the

U.S. manufacturing industry that were in existence in the year 2000. Following the literature, I

require that data exist for patents and R&D expenditures for each year from 1996 to 2003, and

that R&D expenditures be strictly positive since I take logs. I also eliminate firms that show large

jumps in either gross capital or employment in a year. In the end, my sample consists of 848 firms

over the period 1996-2003. I describe the selectivity of my sample in Tables 2.4 and 2.5. The

tables show that although the sample covers only about a quarter of U.S. manufacturing firms in

2000, it covers nearly 70% of R&D expenditures. Coverage is generally poorer for smaller firms

and higher for larger firms both in terms of net sales and R&D. Sample coverage is comparable to

Hall, Griliches, and Hausman (1986) in terms of net sales, though they achieve 90% coverage of

total R&D.

Table 2.4: Distribution of Net Sales in 2000

Number in 2000 cross-section Number in Sample Coverage
Net Sales All Pos. R&D All Pos. R&D
Less than $1M 332 207 49 0.15 0.24
$1M-10M 439 335 115 0.26 0.34
$10M-100M 900 672 242 0.27 0.36
$100M-1B 986 588 244 0.25 0.41
$1B-10B 402 271 157 0.39 0.58
More than $10B 67 52 41 0.61 0.79
Total 3,126 2,125 848 0.27 0.40

Table 2.5: R& D Expenditures in 2000

Firm R&D (2000 USD) 2000 Cross-section Sample Coverage
Less than $1M 170.15 55.32 0.33
$1M-10M 3695.48 1492.38 0.40
$10M-100M 21621.47 8765.10 0.41
$100M-1B 38160.81 25075.92 0.66
$1B-10B 67084.16 54007.14 0.81
Total 130732.08 89395.85 0.68
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Table 2.6 shows summary statistics for the key variables over the sample of 848.14 Consistent

with the literature, this shows the distribution of patents to be right-skewed and over-dispersed

with a thick right tail. Also noteworthy is that compared to previous studies, my sample contains

a much higher proportion of zeros than previous studies. Compared to either Hall, Griliches, and

Hausman (1986) or Gurmu and Perez-Sebastian (2008), the median number of patents is lower,

and the maximum number of patents is higher in this sample.

14Note that firms with zero patents in all years drop from the multinomial log-likelihood.
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Table 2.6: Summary of Key Variables in 2000

Variable Mean St.Dev. Min 1st Q. Med. 3rd Q. Max
Net Sales (Millions of USD) 2506.28 12980.46 0.00 15.77 118.73 877.54 206083.00
R&D (Millions of USD) 105.42 490.95 0.01 2.22 7.53 31.71 6800.00
Patents 30.47 141.85 0.00 0.00 2.00 7.00 1811.00
Fraction with zero patents 0.35 0.48 – – – – –
Fraction in scientific sector 0.55 0.50 – – – – –
All dollars amounts are real 2000 USD.

The scientific sector is defined to include the drug, computer, electronic component, and scientific instrument industries.
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I apply the exponential model introduced in Section 3 to patent counts where the regressors of

interest are the logs of current R&D and up to three lags. I include year dummies, but assume their

coefficients are constant.

E [patentsit | log(Ri1), . . . , log(RiT ),δt ,ci,bbbi] = ci exp

(
τ

∑
s=0

bi,s log(Ri,t−s)+δt

)
, (2.61)

where Rit is real R&D expenditures by firm i in year t. The CRC assumption is:

bbbi|(log(Ri,t−0), . . . , log(Ri,t−τ),δt ,ci)∼ Normal(ααα + γγγ
′log(R)i,ΩΩΩ), (2.62)

where log(R)i = T−1
∑

T
t=1 log(Rit) is a scalar. Section 3 implies that FEP of patents on current

and lagged log(R) terms, interactions between log(R) and the log(R) terms, and squares and cross-

products of the log(R) terms will be consistent under these assumptions.

Table 2.7: Results for traditional estimators

(1) (2) (3) (4) (5) (6)
VARIABLES PQML 1 PQML 2 FEOLS 1 FEOLS 2 FEP 1 FEP 2

log(R0) 0.819*** 0.423** 0.113*** 0.0476** 0.318*** 0.161***
(0.0441) (0.191) (0.0198) (0.0205) (0.0682) (0.0560)

log(R−1) 0.234*** 0.00784 0.0158
(0.0637) (0.0192) (0.0378)

log(R−2) 0.0845 0.00777 -0.0250
(0.108) (0.0180) (0.0710)

log(R−3) 0.0826 -0.00789 -0.00236
(0.203) (0.0204) (0.0546)

Dum. for zero pat. -0.543*** -0.442***
(0.0261) (0.0301)

Constant -0.211 -0.228 1.091*** 1.268***
(0.211) (0.214) (0.0440) (0.0765)

Sum of log(R) coeff. 0.819*** 0.824*** 0.113*** 0.055 0.318*** 0.1495
(0.0441) (0.045) (0.0198) (0.034) (0.0682) (0.1096)

Observations 6,784 4,240 6,784 4,240 5,968 3,510
Number of firms 848 848 848 848 746 702
R-squared 0.157 0.137

Clustered standard errors in parentheses. Year dummies included in all specifications.
*** p<0.01, ** p<0.05, * p<0.1

Table 2.7 presents results from the six different specifications that assume constant coefficients.

For all but columns (3) and (4), the dependent variable is the number of patents. Columns (1) and
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(2) contains Poisson QMLE estimates where firm heterogeneity is ignored. Column (3) contains

estimates from FE OLS where the dependent, variable is the log of patents. For this column only,

zero patent counts are changed to 1, with a dummy variable added following Hall, Griliches, and

Hausman (1986). Columns (5) and (6) contain FEP estimates.

Consistent with the literature, these estimates imply that correlation between patents and cur-

rent R&D is strongest relative to lag effects, and that the total elasticity of patents with respect

to R&D that is less than unity. I also find the estimated elasticities fall once I account for firm

effects. For the Poisson specification, the total elasticity falls from 0.82 to 0.32 in the one-lag

model and from 0.82 to 0.15 in the three-lag model. The three-lag FEP specification implies an

elasticity with respect to current R&D that is only about half of those estimated in previous studies,

and this estimate is sensitive to the time dimension of the panel and lag-length chosen. If I mimic

Gurmu and Perez-Sebastian (2008) and estimate a four-lag FEP model over 1982-1992, I get very

similar results to theirs. It is possible that the nature of the patent-R&D relationship changed in

the intervening decade, but it may also be that the exponential model is incorrect, our specification

neglects some dynamics or endogeneity, or that sample selection has had a different effect on the

more current data.

Additionally, Section 3 and Section 5 imply that neglected slope heterogeneity could also be

a source of bias in this model. Table 2.8 gives results from the CRC estimator proposed in this

chapter, varying the lag length and assumptions about ΩΩΩ. In columns (1) and (3), I impose that the

bbbi are deterministic linear functions of log(R)i, while in column (4), I impose that ΩΩΩ is diagonal.

Given (2.61) and (2.62), these data do provide some evidence of slope heterogeneity. In the

one-lag models, none of the additional terms are statistically significant. The evidence is mixed in

the three-lag models. In column (3), the estimates of γγγ are jointly marginally significant (p= 0.08),

with the interaction involving the second lag of log(R) negative and significant at the 5% level. In

column (4), while all terms involving log(R) are jointly significant, the interactions and squares are

not. In column (5), the interactions, squares, and cross-products are jointly marginally signifcant

(p = 0.08). The terms associated with ΩΩΩ are jointly insignificant, however, as are the interactions
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Table 2.8: Results for CRC FEP estimators

(1) (2) (3) (4) (5)
VARIABLES CRCFEP 1 CRCFEP 2 CRCFEP 3 CRCFEP 4 CRCFEP 5

log(R0) 0.538*** 0.548*** 0.115 0.152 0.160
(0.144) (0.151) (0.141) (0.133) (0.141)

log(R−1) 0.0736 0.0604 0.111
(0.0892) (0.0951) (0.0887)

log(R−2) 0.444** 0.423*** 0.360***
(0.173) (0.148) (0.121)

log(R−3) -0.0384 -0.00633 0.0205
(0.149) (0.142) (0.125)

log(R0)× log(R0) -0.0394 0.165 0.00850 -0.182 -0.215
(0.0285) (0.183) (0.0248) (0.224) (0.251)

log(R−1)× log(R0) -0.0103 -0.118 0.0177
(0.0167) (0.195) (0.294)

log(R−2)× log(R0) -0.0844** -0.556** -0.167
(0.0368) (0.258) (0.313)

log(R−4)× log(R0) 0.00672 -0.0775 -0.236
(0.0284) (0.159) (0.262)

[log(R0)]
2 -0.102 0.0915 0.0921

(0.0892) (0.108) (0.118)
[log(R−1)]

2 0.0569 0.102
(0.0978) (0.108)

[log(R−2)]
2 0.234** 0.309**

(0.118) (0.147)
[log(R−3)]

2 0.0404 0.117
(0.0735) (0.0854)

log(R0)× log(R−1) -0.0986
(0.141)

log(R0)× log(R−2) -0.0120
(0.177)

log(R0)× log(R−3) 0.144
(0.176)

log(R−1)× log(R−2) -0.255
(0.183)

log(R−1)× log(R−3) 0.123
(0.129)

log(R−2)× log(R−3) -0.266**
(0.118)

Clustered standard errors in parentheses. Year dummies included in all specifications.
*** p<0.01, ** p<0.05, * p<0.1
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Table 2.9: CRCFEP 3 estimated elasticities

Parameter Estimate S.E. P-value 95% C.I.

β̂0 0.134 0.093 0.149 -0.048 0.315
β̂−1 0.051 0.057 0.379 -0.062 0.163
β̂−2 0.257 0.098 0.009 0.064 0.449
β̂−3 -0.023 0.092 0.800 -0.205 0.158
β̂0 + β̂−1 + β̂−2 + β̂−3 0.417 0.127 0.001 0.169 0.666

β̂−τ = α̂τ+1 + γ̂τ+1log(R). Clustered S.E.’s ignore sampling error of log(R)

with the time average. Therefore, while there is marginal evidence of heterogeneity, I cannot parse

it into its components.

Focusing on model (3), therefore, the results are quite interesting, at least at face value. The

estimator for the average elasticity with respect to Rt−s is given by

β̂−s = α̂s+1 + γ̂s+1log(R), (2.63)

where log(R) = (NT )−1
∑

N
i=1 ∑

T
t=1 log(Rit). I give these estimates in Table 2.9.

This implied lag profile for the average elasticity is different from that previously observed in

the literature, where typically the contemporaneous elasticity accounts for most of the total and

the lags are much smaller in magnitude and often statistically insignificant. Model (3) estimates

imply, however, that the highest estimated average elasticity is with respect to the second lag of

log(R), at 0.26 with a standard error of 0.098. Meanwhile, the contemporaneous and other lags are

insignificantly different from zero. At face value, this seems to imply a delay in the benefit to R&D

expenditures. Furthermore, the negative estimated coefficient on log(R−2)× log(R0) implies that

the firms with larger R&D expenditures overall experience lower marginal returns. The correlation

between log(R0) and the estimate of the multiplicative firm effect is 0.39, indicating that firms with

a higher base rate of patenting tend to have lower marginal returns to R&D dollars, which echoes

the findings of Wang, et. al. (1998) with regards to the pharmaceutical industry. Unfortunately,

however, the results do not appear to be robust to changes in the estimation sample. If I construct a

panel over 1994-2001, for instance, neither the lag-structure result or the finding of heterogeneous
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slopes hold. It may be that there is still a sample selection problem caused by not observing any

patent applications made through 2003 if the were not granted before 2006.

2.6 Conclusion

FEP analysis of count or other nonnegative response variables cannot generally be justified in

the presence of heterogeneous slopes and may not lead to estimation of any quantity of interest.

Given this, I extend Chesher’s (1984) testing framework to the FEP setting and show that an LM

test for neglected heterogeneity amounts to adding squares of regressors to the set of covariates.

This procedure is more widely applicable than classical tests. Simulation evidence also suggests

robustness to this approach when coefficients are neither normal nor belong to a location-scale

family.

Identification via a correlated random coefficients assumption leads to FEP on a more flexible

mean function as an estimation method. Under a proportional variance assumption and CRE as-

sumption for the scalar, multiplicative effect, normal QMLE is another technique which may have

advantages in cases of binary or time-constant regressors. Each of these options feasibly allows for

higher dimensional random coefficients than estimators based on likelihoods with integrals, while

also allowing for dependence between the heterogeneity and the regressors.

Application of these methods to the U.S. manufacturing industry may indicate firms may have

heterogeneous elasticities of patenting with respect to R&D, and that in contrast to previous results,

there may be a delay in the effect of R&D expenditures on patenting. results do not hold when

estimating over different years of data. One immediate avenue for future research is to extend

this type of correlated random coefficients model to cases where the regressors are not strictly

exogenous, either because of feedback, contemporaneous endogeneity, or sample selection, as a

way to explore robustness of these findings.
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CHAPTER 3

ESTIMATION OF AVERAGE MARGINAL EFFECTS IN MULTIPLICATIVE
UNOBSERVED EFFECTS PANEL MODELS

3.1 Introduction and Review

Nonlinear models often make logical sense for representing limited dependent variables like dis-

crete choices and counts. Challenges can arise, however, in micro-econometric panel settings

when one wishes to control for unobserved individual heterogeneity and has relatively few time

periods of data. For static multiplicative effects models with strictly exogenous covariates, fixed

effects Poisson (FEP) consistently estimates the parameters of a correctly-specified conditional

mean function (Wooldridge, 1999). Researchers may also want to estimate quantities like Average

Partial Effects (APE) and Average Treatment Effects (ATE), but as they depend on the unobserved

heterogeneity, it is not immediately clear how to proceed.

I study an approach that estimates APE and ATE by combining FEP parameter estimates with

estimates of the individual heterogeneity. The latter come from unconditional Poisson QMLE

treating the heterogeneity as parameters to be estimated, a procedure that yields estimates of the

conditional mean function parameters that are algebraically equivalent to FEP.1 While easy to

implement, such APE and ATE estimates potentially suffer from the incidental parameters problem

(IPP) since the individual effect estimates are based on only T observations (Lancaster, 2000).

However, I show that in multiplicative models, such APE and ATE estimators are consistent and

asymptotically normal with only the cross-sectional dimension growing. The consistency result

may not be surprising, but it is not implied by consistency of FEP for slope coefficients, and similar

results do not hold for other nonlinear models. For instance, the IPP still biases APE estimates in

fixed effects binary response models even if one knows the true values of the slope parameters or

can estimate them consistently (Fernandez-Val, 2009).

1This result was derived independently by Lancaster (2002) and a version of Blundell, et. al.
(2002).
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To my knowledge, estimating APE and ATE using estimated incidental parameters has not

been studied in multiplicative models specifically. Many authors have studied consistent slope

parameter and marginal effect estimation using estimated incidental parameters in either general

nonlinear models or in other specific settings. One solution is to employ bias corrections that are

justified by large-T asymptotics. See, for example, Hahn and Newey (2004) for general nonlinear

models estimated with unconditional MLE, or Fernandez-Val (2009) for the unobserved effects

probit model. Although allowed to be much smaller than the number of individuals, the number of

time periods needs to be sufficiently large for the asymptotic approximation of the bias to perform

well. For static probit and logit models, Fernandez-Val, Greene (2004) and others have noted a

“small bias” property for APE and ATE estimates from unconditional MLE . The multiplicative

case, however, is special in that the average marginal effects estimators are actually consistent with

only the cross-section size growing, a rare result outside of the linear model. This means they

should perform well even with only two time periods.

Empirical researchers, of course, also have the option to focus on quantities that do not de-

pend on unobserved heterogeneity. For instance, the exponential conditional mean function with a

linear index gives the slope coefficients interpretations as semi-elasticities, and proportional treat-

ment effects are also identified (M. Lee and Kobayashi, 2001). Another possibility is to make

additional assumptions. For example, one could use a correlated random effects (CRE) approach

by assuming a parametric form for the mean of the heterogeneity conditional on the explanatory

variables. This is applicable in many nonlinear settings to estimate slope parameters as well as

average partial effects (Wooldridge, 2010). Using estimated heterogeneity, however, avoids addi-

tional restrictions and allows the researcher to estimate average marginal effects in levels, which

may be more meaningful than slope parameters and allows comparisons across models.

The rest of this chapter is organized as follows: Section 2 describes the multiplicative model

and derives the asymptotic properties of the APE and ATE estimators that use estimated hetero-

geneity. I also discuss some interesting implications of using these estimators in exponential mod-

els. Section 3 evaluates the proposed estimators via Monte Carlo, and Section 4 concludes. Simu-
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lation tables are collected in Appendix D.

3.2 Theory

The multiplicative unobserved effects panel model assumes that for i = 1, . . . ,N; T = 1, . . . ,T ,

E(yit |xxxi,ci) = E(yit |xxxit ,ci) = cim(xxxit ,βββ 0), (3.1)

where m(xxxit ,βββ 0) is a known, positive, continuous, differentiable function of a 1×K vector of

explanatory variables xxxit and an unknown K× 1 parameter vector βββ 0. The term ci is unobserved

heterogeneity that is assumed to be strictly positive. Equation (3.1) implicitly assumes that xxxit

is strictly exogenous, conditional on ci. I assume that the vector {yi1, . . . ,yiT ,xxxi1, . . . ,xxxiT ,ci} is

independent and identically distributed across i, and that T is fixed.

A common choice in the empirical literature is m(xxxit ,βββ ) = exp(xxxitβββ ), but other forms are

possible, and the responses need not even be counts. For example, under the restriction that 0 <

ci < 1, yit could be binary or fractional, in which case m(xxxit ,βββ ) might be the logistic or normal

cumulative distribution function. Another option for nonnegative responses is a panel version of

Wooldridge’s (1992) alternative to the Box-Cox transformation. In this case, with βββ = (θθθ ′,λ )′,

the specification would be:

m(xxxit ,βββ ) =


[1+λxxxitθθθ ]

1/λ , λ 6= 0

exp(xxxitθθθ), λ = 0.
(3.2)

The parameters are perhaps less interesting in these examples than in the exponential case, moti-

vating the estimation of marginal effects. While most of the derivations in this section are for a

generic m(xxxit ,βββ ), I include a discussion of the exponential case at the end of this section.

Hausman, Hall, and Griliches (1984) showed that if conditional on xxxi = {xxxi1, . . . ,xxxiT} and ci,

the yit are independently distributed as Poisson with mean given by (3.1), then conditioning on

ni ≡ ∑
T
t=1 yit results in the multinomial distribution for {yi1, . . . ,yiT} . The resulting fixed effects
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Poisson (FEP) estimator is given by:

β̂ββ = argmax
βββ

N

∑
i=1

`i(βββ ), (3.3)

`i(βββ ) =
T

∑
t=1

yit log

[
m(xxxit ,βββ )

∑
T
r=1 m(xxxir,βββ )

]
. (3.4)

Wooldridge (1999) showed that β̂ββ is consistent for βββ 0 under (3.1) only, making it a quasi con-

ditional maximum likelihood estimator (QCMLE). Standard asymptotic theory for M-estimators

yields that under regularity conditions:

√
N(β̂ββ −βββ 0)

d→ N(000,AAA−1
0 BBB0AAA−1

0 ), (3.5)

where AAA0 =−E
[
∇2

β
`i(βββ 0)

]
, BBB0 =Var [sssi(βββ 0)], and sssi(βββ 0) = ∇βββ `i(βββ 0)

′. The sandwich form of

the asymptotic variance estimator should be used to account for the fact that without the stronger

assumptions of Hausman, et. al., `i(βββ ) is not the true log-likelihood for individual i.

Researchers are often interested in estimating marginal effects, as the β j may not have an

meaningful interpretation outside of the exponential case. I define the APE of a continuous variable

x j as:

δ j,0 = E
[

∂E(yit |xxxit ,ci)

∂xit j

]
= E

[
ciT
−1

T

∑
t=1

∂m(xxxit ,βββ 0)

∂xit j

]
≡ E

[
ciT
−1

T

∑
t=1

M j(xxxit ,βββ 0)

]
, (3.6)

where M j(xxxit ,βββ ) =
∂m(xxxit ,βββ )

∂xit j
. I define the ATE for a binary xk as:

δk,0 =E
[
E(yit |xxxit(−k),xitk = 1,ci)−E(yit |xxxit(−k),xitk = 0,ci)

]
=E

[
ciT
−1

T

∑
t=1

(
m(xxxit(−k),1,βββ 0)−m(xxxit(−k),0,βββ 0)

)]
(3.7)

where the subscript (−k) indicates element k has been omitted, and where m(xxxit(−k),1,βββ ) and

m(xxxit(−k),1,βββ ) correspond to a 1 or 0 being inserted for xitk in m(xxxit ,βββ ).

Both of these quantities depend on ci, and so an additional assumption (i.e. correlated random

effects) would seem necessary to proceed. However, unconditional QMLE that treats the ci as
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additional parameters offers algebraically equivalent estimates of βββ 0 as FEP, as well as a closed-

form estimate of ci. The formula is:

c(wwwi, β̂ββ ) =
∑

T
t=1 yit

∑
T
t=1 m(xxxit , β̂ββ )

≡ ĉi (3.8)

where wwwi ≡ {yi1, . . . ,yiT ,xxxi1, . . . ,xxxiT}.

The analysis to follow hinges on studying the properties of this random function of the data,

which I rewrite for a generic βββ as:

c(wwwi,βββ )≡
∑

T
t=1 yit

∑
T
t=1 m(xxxit ,βββ )

(3.9)

There is a practical reason to estimate βββ 0 using FEP instead of unconditional QMLE (i.e.

including N individual dummies in the exponential model). As pointed out by Cameron and Trivedi

(2013), the econometrician may encounter computational or software limitations for large values

of N. It is easier to just calculate ĉi following FEP estimation. The APE and ATE estimators I

investigate are:

δ̂ j = (NT )−1
N

∑
i=1

T

∑
t=1

ĉiM j(xxxit , β̂ββ ) (3.10)

δ̂k = (NT )−1
N

∑
i=1

T

∑
t=1

ĉi

[
m(xxxit(−k),1, β̂ββ )−m(xxxit(−k),0, β̂ββ )

]
(3.11)

Clearly c(wwwi,βββ ) 6= ci, even if evaluated at βββ 0, and with only N growing, ĉi cannot be consis-

tent for ci (under the view that ci is one of N individual-specific parameters).2 One should not

generally expect marginal effects calculated from estimated incidental parameters to be consistent

in nonlinear models, even if slope parameter estimates of are consistent. However, some sample

averages involving ĉi are consistent in the FEP case due to the form of c(wwwi,βββ ) and the fact that ci

and m(xxxit ,βββ 0) are multiplicatively separable.

Theorem 1 Suppose λ̂λλ ≡ N−1
∑

N
i=1 c(wwwi, β̂ββ )hhh(xxxi, β̂ββ ) is an estimator of λλλ 0 ≡ E [cihhh(xxxi,βββ 0)]. As-

sume that (3.1) holds and that each element of the P×1 random vector ggg(wwwi,βββ )≡ c(wwwi,βββ )hhh(xxxi,βββ )

2Cameron and Trivedi (2013) assert ĉi
p→ ci as T → ∞, which is true if {yit} and {m(xxxit ,βββ 0)}

are ergodic for the mean.
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satisfies the regularity conditions on q(wwwi,βββ ) from Theorem 12.2 of Wooldridge (2010). Then

λ̂λλ
p→ λλλ 0

Proof. Since β̂ββ
p→ βββ 0, then N−1

∑
N
i=1 c(wwwi, β̂ββ )hhh(xxxi, β̂ββ )

p→ E [c(wwwi,βββ 0)hhh(xxxi,βββ 0)] by Lemma 12.1

in Wooldridge (2010). Furthermore, by the L.I.E.,

E [c(wwwi,βββ 0)hhh(xxxi,βββ 0)] =E {E [c(wwwi,βββ 0)hhh(xxxi,βββ 0)|xxxi,ci]}

=E

[
∑

T
t=1 E(yit |xxxi,ci)

∑
T
t=1 m(xxxit ,βββ 0)

hhh(xxxi,βββ 0)

]

=E

[
ci ∑

T
t=1 m(xxxit ,βββ 0)

∑
T
t=1 m(xxxit ,βββ 0)

hhh(xxxi,βββ 0)

]

=E [cihhh(xxxi,βββ 0)] (3.12)

Consistency of N−1
∑

N
i=1 ĉi for E(ci) follows from setting hhh(xxxi,βββ ) = 1, while consistency of δ̂ j

and δ̂k follow from either setting

hhh(xxxi,βββ ) = T−1
T

∑
t=1

M j(xxxit ,βββ ) or (3.13)

hhh(xxxi,βββ ) = T−1
T

∑
t=1

[
m(xxxit(−k),1,βββ )−m(xxxit(−k),0,βββ )

]
. (3.14)

Theorem (1) shows that unlike with other nonlinear fixed effects estimators, no bias correction

is necessary to estimate the APE and ATE in this setting. One might expect, a priori, that δ̂ j and

δ̂k would perform well anyway as T grows and ĉi better approximates ci. Nevertheless, Theorem

(1) holds for an arbitrary T , so δ̂ j and δ̂k should perform well even in panels with only two time

periods (the minimum needed for FEP). The APE and ATE I consider are just two of many possible

quantities of interest. Researchers might also want to know the average marginal effect for a

specific time period, or for a specific subpopulation defined by the observables (i.e. the Average

Treatment Effect on the Treated). One might also want to estimate the partial effect evaluated at

the averages of the heterogeneity and covariates. As long as ĉi multiplies the relevant function
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of the data, one need not worry about the difference between it and ci when averaging over the

cross-section.

As a caution, one cannot use ĉi to learn about other features of the distribution of ci except

in more restrictive cases. For instance, Var(ci) is identified only under additional assumptions

about Var(yyyi|xxxi,ci). A simple example is when the Poisson variance assumption, Var(yit |xxxi,ci) =

E(yit |xxxi,ci), and zero conditional covariance, Cov(yit ,yir|xxxi,ci) = 0, t 6= r, both hold. In this case,

one can show that Var(ci) =Var [c(wwwi,βββ 0)]−E
[
ci/∑

T
t=1 m(xxxit ,βββ 0)

]
.

The asymptotic variance of λ̂λλ can be derived similarly to the delta method, but making sure to

account for the randomness in wwwi. 3

Theorem 2 Under the assumptions in Theorem (1),

√
N(λ̂λλ −λλλ 0)

d→ N(000,DDD0),

where

DDD0 =Var
[
ggg(wwwi,βββ 0)−λλλ 0−GGG0AAA−1

0 sssi(βββ 0)
]
,

GGG0 = E
[
∇βββ ggg(wwwi,βββ 0)

]
= E

[
c(wwwi,βββ 0)∇βββ hhh(xxxi,βββ 0)+hhh(xxxi,βββ 0)∇βββ c(wwwi,βββ 0)

]
,

∇βββ c(wwwi,βββ ) =−c(wwwi,βββ )

(
∑

T
t=1 ∇βββ m(xxxit ,βββ )

∑
T
t=1 m(xxxit ,βββ )

)
,

∇βββ hhh(xxxi,βββ ) is the P×K Jacobian of hhh(xxxi,βββ ), and

∇βββ m(xxxit ,βββ ) is the 1×K gradient of m(xxxit ,βββ ).

Proof. Define G̈GGi as the P×K Jacobian of ggg(wwwi,βββ ) evaluated at different mean values between β̂ββ

3The derivation here is essentially the same as the solution to Wooldridge (2010), Problem
12.17.
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and βββ 0. By a mean value expansion of each element of
√

Nλ̂λλ = N−1/2
∑

N
i=1 ggg(wwwi, β̂ββ ) around βββ 0,

N−1/2
N

∑
i=1

ggg(wwwi, β̂ββ ) =N−1/2
N

∑
i=1

ggg(wwwi,βββ 0)+

(
N−1

N

∑
i=1

G̈GGi

)
√

N
(

β̂ββ −βββ 0

)
(3.15)

=N−1/2
N

∑
i=1

ggg(wwwi,βββ 0)+GGG0
√

N
(

β̂ββ −βββ 0

)
+op(1) (3.16)

=N−1/2
N

∑
i=1

ggg(wwwi,βββ 0)−N−1/2
N

∑
i=1

GGG0AAA−1
0 sssi(βββ 0)+op(1). (3.17)

The second equality follows because consistency of β̂ββ implies N−1
∑

N
i=1 G̈GGi

p→ GGG0 and because
√

N
(

β̂ββ −βββ 0

)
= Op(1). The third follows because

√
N
(

β̂ββ −βββ 0

)
= −N−1/2

∑
N
i=1 AAA−1

0 sssi(βββ 0)+

op(1). Therefore,

√
N
(

λ̂λλ −λλλ 0

)
= N−1/2

N

∑
i=1

[
ggg(wwwi,βββ 0)−λλλ 0−GGG0AAA−1

0 sssi(βββ 0)
]
+op(1) (3.18)

By the Asymptotic Equivalence Lemma, the limiting distribution of
√

N
(

λ̂λλ −λλλ 0

)
is the same as

N−1/2
∑

N
i=1

[
ggg(wwwi,βββ 0)−λλλ 0−GGG0AAA−1

0 sssi(βββ 0)
]
, which is easily shown to be the scaled sample av-

erage of a mean-zero random vector. Therefore, by the Central Limit Theorem for i.i.d. sequences,

the result follows.

Applying Theorem (2) for the APE of a continuous covariate x j:

√
N
(

δ̂ j−δ j,0

)
d→ N(0,D j,0), (3.19)

D j,0 =Var

[
T−1

T

∑
t=1

c(wwwi,βββ 0)M j(xxxit ,βββ 0)−δ j,0−G j,0AAA−1
0 sssi(βββ 0)

]
, (3.20)

G j,0 = E

[
c(wwwi,βββ 0)(T

−1)
T

∑
t=1

{
∇βββ M j(xxxit ,βββ 0)−M j(xxxit ,βββ 0)

(
∑

T
t=1 ∇βββ m(xxxit ,βββ 0)

∑
T
t=1 m(xxxit ,βββ 0)

)}]
(3.21)
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For the ATE of the binary covariate xk:

√
N
(

δ̂k−δk,0

)
d→ N(0,Dk,0), (3.22)

Dk,0 =Var

[
T−1

T

∑
t=1

c(wwwi,βββ 0)
(

m(xxxit(−k),1,βββ 0)−m(xxxit(−k),0,βββ 0

)
−δk,0−Gk,0AAA−1

0 sssi(βββ 0)

]
,

(3.23)

Gk,0 = E

[
c(wwwi,βββ 0)(T

−1)
T

∑
t=1

{
∇βββ mit(1)−∇βββ mit(0)− (mit(1)−mit(0))

(
∑

T
t=1 ∇βββ mit

∑
T
t=1 mit

)}]
,

(3.24)

where mit = m(xxxit ,βββ 0), mit(1) = m(xxxit(−k),1,βββ 0), and mit(0) = m(xxxit(−k),0,βββ 0). These asymp-

totic variances can be consistently estimated from the above expressions by plugging in β̂ββ for βββ 0

and forming the sample analogs to the expectation and variance operators.

3.2.1 Exponential Models

Since it is a common specification in empirical research, I include a few observations about the

exponential conditional mean case. The form of the quasi log-likelihood means that one can es-

timate coefficients on time-varying xxxit only. Nevertheless, δ j,0 and δk,0 are still identified when

the conditional mean function is exponential and includes time-constant observables. To see this,

suppose the following:

E(yit |xxxit ,zzzi,vi) = vi exp(xxxitβββ 0 + zzziγγγ0), (3.25)

where now I use vi to denote the unobserved heterogeneity. Define ci = vi exp(zzziγγγ0). Then clearly

E(yit |xxxit ,ci) = ci exp(xxxitβββ 0). (3.26)

The heterogeneity has absorbed the time-constant observables. Theorems (1) and (2) still hold, but

the function ĉi now serves as a stand-in for the total contribution from all time-constant variables—

observed and unobserved. Analogous to the linear case, γγγ0 is not identified, nor are the average

partial effects of the zzzi, but given consistent estimates of βββ 0, one can still consistently estimate the

average partial effects of the time-varying regressors.
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One alternative estimand studied by Lee and Kobayashi (2001) is the proportional treatment

effect, which for a binary treatment and the simple index in (3.25) is: 4

ξk ≡
E(yit ,xxxit(−k),xitk = 1,zzzi,vi)

E(yit ,xxxit(−k),xitk = 0,zzzi,vi)
−1 = exp(βk)−1 (3.27)

Of course, ξk may interesting in its own right, but my analysis shows that estimating the ATE in

levels using (3.11) is another option, even when time-constant regressors belong in the model.

Furthermore, APE of a continuous variable simplifies in the exponential conditional mean case.

δ j,0 =E

[
T−1

T

∑
t=1

ci exp(xxxitβββ )

]
β j,0 (3.28)

=E

[
T−1

T

∑
t=1

E(yit |xxxit ,ci)

]
β j,0 (3.29)

=

[
T−1

T

∑
t=1

E(yit)

]
β j,0, (3.30)

where the last equality is by the L.I.E. Here, the population scale factor is analogous to the cross-

section case and doesn’t depend on the heterogeneity.

Moreover, an estimator that treats ĉi as the unknown ci is equivalent to the sample analog of

(3.30).

δ̂ j =

[
(NT )−1

N

∑
i=1

T

∑
t=1

ĉi exp(xxxit β̂ββ )

]
β̂ j =

[
(NT )−1

N

∑
i=1

T

∑
t=1

yit

]
β̂ j (3.31)

Consistency of δ̂ j for δ j is immediate given a consistent estimator of β j,0 . Since δ̂ j does not

depend on ĉi, one could even estimate βββ 0 without assuming strict exogeneity of xxxit , using the

GMM approach of either Chamberlain (1992) or Wooldridge (1997) based on sequential moment

restrictions.

The asymptotic variance is simpler as well:

Avar
[√

N(δ̂ j−δ j,0)
]
=Var(ȳiβ j−δ j−µ

T
y r jA

−1
0 sssi(βββ 0)), (3.32)

4Lee and Kobayashi’s model includes multi-valued treatment as well as interactions between
the treatment and covariates, so the proportional treatment effect depends on xxxit and zzzi, but only
involves coefficients on time-varying regressors and interactions.
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where µT
y ≡ E(T−1

∑
T
t=1 yit), and r j is a 1×K-vector with jth element equal to 1 and all other

elements equal to 0. The expression is similar if GMM is used to estimate βββ 0.

3.2.2 A note about dropped observations

If the dependent variable for an observation l is zero in each time period, then observation l con-

tributes nothing to the quasi log-likelihood, as can be seen in equation (3.4). Clearly, the terms in

δ̂ j and δ̂k corresponding to observation l’s contribution are then equal to zero, since c(wwwl ,βββ ) = 0.

Nevertheless, if interested in an APE or ATE with respect to the entire population of interest, the

sample size N in the formulas for δ̂ j and δ̂k should correspond to the number of individuals in

the entire the cross-section, not the number of individuals in the estimation sample (that is, with

ni > 0). Otherwise, the estimates will be conditional on this particular subsection of the population

and be inflated by a factor of N/Np, where Np = ∑
N
i=1 111 [ni > 0].

3.3 Monte Carlo

3.3.1 Design

I employ the following data generating process. For i = 1, . . . ,N and t = 1, . . . ,T :

yit |(xxxi,dddi,ci)∼ Poisson [ci exp(β1xit +β2dit)] , (3.33)

log(ci)∼ Normal(0,σ2) (3.34)

xit = log(ci)+ρxi,t−1 + vit , t > 1 (3.35)

xi1 = log(ci)/(1−ρ)+ vi1/

√
1−ρ2, vit ∼ N(0,1/2), (3.36)

ρ = 0.3−0.5σ (3.37)

dit = 111 [xit + log(ci)+hit > 0] , hit ∼ N(0,1/2) (3.38)
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I study panels of dimensions N ∈ {500,1000,2000} and T ∈ {2,4,10}. The conditional

marginal distribution of yt is Poisson with an exponential mean function. I set β1 = 0.5 and

β2 = −0.5. I vary the degree of heterogeneity, with σ ∈ {0,0.25.0.5,0.75,1}. The continuous

covariate xt and the binary covariate dt are both correlated with the heterogeneity, and the strength

of the correlation increases with σ . The scaling of xi1 is intended to keep Var(xt) constant across

the different T .5 That the autoregressive parameter in the equation for xt depends on σ is an

attempt to keep the autocovariance structure of xt more consistent as σ increases.

I estimate β1 and β2 using FEP, and employ the APE and ATE estimators proposed in equations

(3.10) and (3.11). In the tables to follow, FEP estimates are denoted with a “̂”. For reference, I

also estimate the slopes, APE, and ATE using pooled Poisson QMLE, which ignores ci entirely.

These estimates are denoted with a “˜”. Both FEP and Poisson QMLE are consistent when σ = 0,

but only FEP is consistent when σ > 0. Reporting the results for Poisson QMLE is intended to

give the reader a sense of how large a problem neglected heterogeneity causes under this particular

DGP. For each estimator and parameter combination, I report the mean and standard deviation of

the empirical distribution, the estimated bias, the ratio of the mean standard error to the empirical

standard deviation, and the probability of rejecting a true null hypothesis at the 5 percent signifi-

cance level. I use cluster robust asymptotic standard errors with the slope estimates, though they

are technically not necessary with this DGP. For the APE and ATE estimates, I use the “uncondi-

tional” asymptotic standard errors derived in this chapter for the FEP case, as well as the analogous

versions for Poisson QMLE. For each parameter combination, I draw 2000 replications.

3.3.2 Results

Full tables of simulation results can be found in Appendix D. I focus attention on the APE and ATE

estimates, though the slope estimates are included for reference. As expected, across all values of

N and T , there is virtually no finite sample bias in the Poisson QMLE and the FEP estimates in the

absence of heterogeneity (σ = 0). In the presence of heterogeneity, however, Poisson QMLE slopes

5See Vamos, Soltuz, and Craciun 2007.
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and APEs are biased. As heterogeneity increases, bias increases, and the probability of rejecting a

true null hypothesis quickly approaches one. Therefore, this DGP succeeds in simulating settings

where controlling for individual effects is important.

Finite sample bias in δ̂1 is less than 0.01 for all values of N, T , and σ , which is not surprising

given that in the exponential case, the APE scale factor does not even depend on ci. Some ATE

estimates at higher levels of σ are slightly biased away from zero when the panel is short and the

sample is smaller. For instance, when N = 500 and T = 2, finite sample bias is between 2 and

2.5 percent of the true value when σ ≥ 0.5. However, the magnitudes of these biases decrease to

1−1.5 percent when N = 1000 and 0−1 percent when N = 2000. In the T = 4 and T = 10 cases,

the finite sample bias is less than 1 percent and quite small in the larger cross-sections.

The finite sample standard deviations behave in predictable ways, decreasing as either N or

T increases. The variability in δ̂2 seems to be greater than that of δ̂1, and the spread between

them increases with σ , which might be related to the fact that δ̂1 does not actually use ĉi in the

exponential case. The standard errors derived in this chapter perform reasonably well, particularly

with the largest cross-section, where at worst, their empirical mean underestimates the empirical

standard deviation by about 4 percent. This occurs for the standard error of δ̂1 in the T = 4,σ = 1

case, where as a point of comparison, the mean standard error for β̂1 also underestimates the finite

sample standard deviation of β̂1 by a similar amount. For the most part, the results suggest the

approximations get better as N increases, though simulating more replications may be necessary

to reduce sampling error. When σ is high, the apparent underestimation by the standard errors

leads to slight over-rejection by about one or two percentage points, but larger N also mitigates

this problem.

Overall, these simulations support this chapter’s theoretical findings. The asymptotic properties

derived in Section 2 for the APE and ATE estimators that use estimated incidental parameters seem

to approximate their finite sample behavior very well.
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3.4 Conclusion

It is already well-known that in static multiplicative panel models under strict exogeneity, estimat-

ing the heterogeneity still leads to consistent estimation of the parameters of a correctly-specified

conditional mean function. This chapter adds the result that APE and ATE estimators that use es-

timated heterogeneity are also consistent and
√

N-asymptotically normal with T fixed. In fact, the

results hold for estimating the mean of a wider class of random quantities where the heterogeneity

is multiplicatively separable from functions of the data. I derive asymptotic standard errors for

these estimators that perform well in simulations for a leading case in empirical research. One area

for future research would be to use higher order expansions to derive standard errors that better

approximate the standard deviation of the sampling distribution.
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APPENDIX A

ANALYTICAL BIAS CORRECTION EXPRESSIONS FROM CHAPTER 1

From Hahn and Newey (2004), and Fernandez-Val (2009), the one-step bias corrected estimator is

formed as

θ̃bc = θ̂ −B(θ̂)/T, (A.1)

where B̂(θ) = Î (θ)−1b̂(θ). Here θ denotes a generic coefficient vector, and θ̂ is the uncorrected

MLE.

A.1 Hahn and Newey’s bias correction for M-estimators

With strictly exogenous regressors xxxit :

Î (θ) =−

{
(NT )−1

N

∑
i=1

T

∑
t=1

[ûitθ (θ)− ûitα(θ)]

(
T

∑
t=1

v̂itθ (θ)

)
/

(
T

∑
t=1

v̂itα(θ)

)}
(A.2)

b̂(θ) = (NT )−1
N

∑
i=1

T

∑
t=1

{
ûitα(θ)

[
β̂i(θ)+ ψ̂it(θ)

]
+ ûitαα σ̂

2
i (θ)/2

}
, (A.3)

where

β̂i(θ) =−

(
T

∑
s=1

v̂isα(θ)

)−1 T

∑
s=1

{
v̂isα(θ)ψ̂it(θ)+ v̂isαα(θ)σ̂

2
i (θ)/2

}
, (A.4)

σ̂
2
i (θ) = T−1

T

∑
s=1

ψ̂it(θ)
2. (A.5)

In these expressions, ûit(θ) and v̂it(θ) are derivatives of the log-likelihood with respect to θ and

αi, respectively, evaluated at αi = α̂i(θ) = argmax
α

∑
T
t=1 `it(θ ,αi)/T . Partial derivatives of ûit(θ)

and v̂it(θ) are denoted by the θ and α subscripts. The terms ψ̂it(θ), σ̂2
i (θ), β̂i(θ) are estimators

for the influence function, asymptotic variance, and higher order asymptotic bias, respectively, of

α̂i(θ) as T grows.
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A.2 Fernandez-Val’s bias correction based on conditional expectations

Fernandez-Val (2009) simplifies the Hahn and Newey (2004) corrections by taking expectations

conditional on {xxxi,αi} and using the Law of Iterated Expectations. For static probit models with

strictly exogenous regressors,

Î (θ) =

N−1
N

∑
i=1

[(
T−1

T

∑
t=1

Ĝit(θ)xxx
′
itxxxit

)
−

(
T−1

T

∑
t=1

Ĝit(θ)xxx
′
it

)(
T−1

T

∑
t=1

Ĝit(θ)xxxit

)
σ̂

2
i

]
(A.6)

b̂(θ) = N−1
N

∑
i=1

{(
−T−1

T

∑
t=1

Ĝit(θ)xxx
′
it

)
η̂i(θ)+

(
T−1

T

∑
t=1

Ĝit(θ)λ̂i(θ)xxx
′
it

)
σ̂

2
i /2

}
,

where

Ĝit(θ) =
[φ(α̂i(θ)+ xxxitθ)]

2

Φ(α̂i(θ)+ xxxitθ)[1−Φ(α̂i(θ)+ xxxitθ)]
, σ̂

2
i = T

(
T

∑
t=1

Ĝit(θ)

)−1

, (A.7)

η̂i(θ) = (1/2)

(
T−1

T

∑
t=1

λ̂it(θ)Ĝit(θ)

)
σ̂

4
i , (A.8)

λ̂it(θ) = α̂i(θ)+ xxxitθ , and α̂i(θ) = argmax
α

T

∑
t=1

`it(θ ,αi)/T (A.9)

A.3 Average Partial Effects

As in equation (14) of Section II, we define the function m(β ,γ,α,xxxit) as the partial effect of wit

on the probability that yit = 1 for w ∈ {x,d}. Using one of the analytical bias-corrected slope

estimators, θ̃bc and α̃bc = α̂i(θ̃bc), the bias-corrected estimator for the average partial effect is

µ̃w,bc = (NT )−1
N

∑
i=1

T

∑
t=1

mw(β̃bc, γ̃bc, α̃bc,xxxit)− ∆̂/T. (A.10)
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Using Hahn and Newey’s method:

∆̂ = (NT )−1
N

∑
i=1

T

∑
t=1

{
m̃α β̃i +(1/2)m̃αα σ̃

2
}
, (A.11)

where β̃it = β̂it(θ̃bc) σ̃2
i = σ̂2

i (θ̃bc), and m̃α and m̃αα denote partial derivatives with respect to α ,

evaluated at θ̃bc and α̃bc.

Using Fernandez-Val’s method:

∆̂ = N−1
N

∑
i=1


(

T−1
T

∑
t=1

m̃α η̃i

)
+(1/2)

(
T−1

T

∑
t=1

m̃αα

)(
T−1

T

∑
t=1

G̃it

)−1
 (A.12)

where λ̃it = λ̂it(θ̃bc), η̃i = η̂i(θ̃bc) and G̃it = Ĝit(θ̃bc).
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APPENDIX B

SIMULATION RESULTS FOR BIAS CORRECTIONS ON A LARGER
CROSS-SECTION

Table B.1: Probit Slope Estimates when N = 500, T = 6

β̂ (true value = 1) γ̂ (true value = 1)
Mean SD cv: .95 SE

SD Mean SD cv: .95 SE
SD

ρ = 0.0
MLE 1.33 0.10 0.08 0.99 1.32 0.10 0.15 1.06
A-FV09 0.95 0.06 0.92 1.13 0.97 0.07 0.99 1.34
A-HN04 1.15 0.09 0.57 0.94 1.15 0.09 0.71 1.09
J-DJ14 0.92 0.13 0.61 0.53 0.94 0.13 0.79 0.72
J-HN04 0.90 0.07 0.68 0.98 0.92 0.07 0.91 1.26
CRE 0.99 0.06 0.94 0.98 0.99 0.07 0.96 1.06
ρ = 0.4
MLE 1.51 0.12 0.00 0.99 1.51 0.12 0.01 1.06
A-FV09 1.02 0.06 0.98 1.17 1.05 0.07 0.99 1.41
A-HN04 1.32 0.11 0.09 0.92 1.32 0.11 0.16 1.04
J-DJ14 0.85 0.19 0.41 0.36 0.87 0.18 0.58 0.50
J-HN04 1.02 0.08 0.92 0.90 1.03 0.08 0.97 1.14
CRE 0.99 0.06 0.94 1.01 0.99 0.07 0.95 1.05
ρ = 0.8
MLE 2.36 0.20 0.00 1.00 2.37 0.22 0.00 0.99
A-FV09 0.79 0.21 0.41 0.32 0.76 0.24 0.50 0.40
A-HN04 2.12 0.19 0.00 0.87 2.14 0.21 0.00 0.86
J-DJ14 0.94 0.47 0.26 0.17 0.71 1.09 0.32 0.10
J-HN04 1.60 0.17 0.00 0.62 1.59 0.18 0.01 0.66
CRE 0.99 0.06 0.94 1.00 0.99 0.07 0.94 1.00
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Table B.2: Probit APE Estimates when N = 500, T = 6

µ̂x/µx (true value = 1) µ̂d/µd (true value = 1)
Mean SD cv: .95 SE

SD Mean SD cv: .95 SE
SD

ρ = 0.0
MLE 0.99 0.06 0.93 0.94 0.98 0.08 0.95 1.02
A-FV09 0.95 0.06 0.85 0.94 0.94 0.08 0.91 1.08
A-HN04 1.03 0.07 0.87 0.86 1.01 0.08 0.94 1.00
J-DJ14 1.09 0.09 0.59 0.66 1.11 0.10 0.68 0.77
J-HN04 1.04 0.07 0.85 0.81 1.05 0.09 0.87 0.90
CRE 1.00 0.06 0.95 0.99 1.00 0.08 0.96 1.05
LPM 0.93 0.06 0.78 0.99 1.29 0.08 0.05 1.07
ρ = 0.4
MLE 0.97 0.06 0.91 0.94 0.98 0.08 0.94 1.01
A-FV09 0.93 0.06 0.72 0.93 0.93 0.07 0.87 1.08
A-HN04 1.04 0.07 0.86 0.84 1.02 0.08 0.94 0.98
J-DJ14 1.13 0.09 0.41 0.59 1.13 0.11 0.56 0.71
J-HN04 1.05 0.07 0.78 0.77 1.06 0.09 0.84 0.87
CRE 1.00 0.06 0.95 1.01 1.00 0.08 0.96 1.04
LPM 0.93 0.06 0.80 1.01 1.29 0.08 0.04 1.05
ρ = 0.8
MLE 0.92 0.06 0.66 0.91 0.96 0.07 0.89 0.94
A-FV09 0.72 0.15 0.02 0.33 0.64 0.18 0.01 0.39
A-HN04 1.04 0.07 0.82 0.77 1.00 0.07 0.93 0.93
J-DJ14 1.23 0.10 0.10 0.53 1.14 0.11 0.47 0.62
J-HN04 1.13 0.08 0.32 0.62 1.09 0.08 0.69 0.76
CRE 1.00 0.06 0.95 0.99 1.00 0.08 0.95 1.00
LPM 0.93 0.06 0.77 1.00 1.29 0.08 0.02 1.02
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APPENDIX C

DERIVATIONS OF TEST STATISTICS FROM CHAPTER 2

C.1 Derivations from Section 2.3.2

From section 3.2, the score of (2.13) evaluated at ΛΛΛ = 000 is identically zero. Assuming we can pass

the derivative through the integral, we can work out the following:

∇Λ`i(βββ ,ΛΛΛ) =

∫∫
RK hit

[
∏

T
t=1 pt(xxxi,bbbi)

yit
][

∑
T
t=1 yituuu′i⊗qt(xxxi, ,bbbi)

]
f (uuui)duuui∫∫

RK f (yyyi|xxxi,uuui,ci,ni) f (uuui)duuui
(C.1)

where hit =
ni!

∏
T
t=1 yit !

, qt(xxxi,bbbi) = ∇bbbi
pt(xxxi,bbbi)/pt(xxxi,bbbi). Evaluating at Λ = 0, and pulling the

terms that do not depend on uuui out of the integrals, we have:

∇Λ`i(βββ ,ΛΛΛ)
∣∣∣
ΛΛΛ=000

=
hit
[
∏

T
t=1 pt(xxxi,βββ )

yit
][

∑
T
t=1 yit

∫∫
RK uuu′i⊗qt(xxxi,βββ ) f (uuui)duuui

]
hit
[
∏

T
t=1 pt(xxxi,βββ )

yit
]∫∫

RK f (uuui)duuui
(C.2)

=
T

∑
t=1

yitE
[
uuu′i⊗qt(xxxi,bbbi)

]
(C.3)

= 000.

The second equality uses that
∫∫
RK f (uuui)duuui = 1, while the third follows from independence of xxxit

and uuui, as well as E(uuui) = 000.

Following the re-parameterization shown in (2.14), stacking the λ j into K×1 vector λλλ , defining

let θθθ ≡ (βββ ′,λλλ ′)′, and following similar steps as before, we have:

∂`i(βββ ,λλλ )

∂λ j

∣∣∣
λλλ=0

=

 1

2
√

λ j

[
T

∑
t=1

yitqt j(xxxi,βββ )

]∫∫
RK

ui j f (uuui)duuui


λ j=0

(C.4)

where qt j() is the jth element of qt(), The above has 0/0 form since E(uuui) = 000.

Using L’Hopital’s rule, the limit, of ∂`i(βββ ,λλλ )
∂λ j

as each element of λλλ approaches zero from above
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is:

1
2
√

λ j

∫∫
RK hit [∏t pt(xxxi,bbbi)

yit ]
{

∑t yitrt j(xxxi,bbbi)+
[
∑t yitqt j(xxxi,bbbi)

]2}u2
i j f (uuui)duuui

2

(
1

2
√

λ j

)∫∫
RK hit [∏t pt(xxxi,bbbi)

yit ] f (uuui)duuui

, (C.5)

where rt j() is the ( j, j)th element of ∇bbbi
qt(xxxi,bbbi). The 1

2
√

λ j
terms cancel, as do the hit the product

terms when we evaluate at λλλ = 000 (bbbi = βββ 0). Then using
∫∫
RK f (uuui)duuui = 1 and

∫∫
RK u2

i j f (uuui)duuui =

E(u2
i j) = 1, we get the last K elements of (2.15).

C.2 Derivations from Section 2.3.3

As before, the restricted score of (2.21 is identically zero.

∇ΛΛΛ`i(βββ ,ΛΛΛ) =
T

∑
t=1

yit

[
∇ΛΛΛ pt(xxxi,βββ ,ΛΛΛ)

pt(xxxi,βββ ,ΛΛΛ)

]
=

T

∑
t=1

yit
∑

T
r=1 exp(xxxirβββ +mr(xxxi,ΛΛΛ))

[
∇λλλ mt(xxxi,ΛΛΛ)−∇λλλ mr(xxxi,ΛΛΛ)

]
∑

T
r=1 exp(xxxirβββ +mr(xxxi,ΛΛΛ))

, (C.6)

∇λλλ mt(xxxi,ΛΛΛ) =

∫∫
RK exp(xxxitΛΛΛuuui)(uuu′i⊗ xxxit) f (uuui)duuui∫∫

RK exp(xxxitΛΛΛ0uuui) f (uuui)duuui
. (C.7)

The complication arises because

∇λλλ mt(xxxi,ΛΛΛ)
∣∣∣
ΛΛΛ=000

=

∫∫
RK (uuu′i⊗ xxxit) f (uuui)duuui∫∫

RK f (uuui)duuui
= 000, (C.8)

which implies

∇ΛΛΛ`i(βββ ,ΛΛΛ)
∣∣∣
ΛΛΛ=000

= 000. (C.9)

After the re-parameterization, for each of the λ j, we have:

∇λ j
mt(xxxi,ΛΛΛ) =

{∫∫
RK

exp(xxxitΛΛΛ0uuui) f (uuui)duuui

}−1 ∫∫
RK exp(xxxitΛΛΛuuui)xit jui j f (uuui)duuui

2
√

λ j

. (C.10)

When evaluated at λλλ = 000, the second factor of (C.10) has the form 0/0.
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Using L’Hopital’s rule, as each λ j approaches zero from above, we have:

lim
λλλ↓0

∫∫RK exp(xxxitΛΛΛuuui)xit jui j f (uuui)duuui

2
√

λ j

= lim
λλλ↓0


1

2
√

λ j

∫∫
RK exp(xxxitΛΛΛuuui)x2

it ju
2
i j f (uuui)duuui

2( 1
2
√

λ j
)


=

x2
it j
∫∫
RK u2

i j f (uuui)duuui

2

=
1
2

x2
it j (C.11)

Plugging these limits in into the expression for ∇ΛΛΛ`i(βββ ,000), we get (2.23).
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APPENDIX D

SIMULATION RESULTS FROM CHAPTER 3

Table D.1: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 500

β̃1 β̃2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.06 0.98 0.06 -0.50 0.00 0.09 0.99 0.05
T = 4 0.50 0.00 0.04 0.99 0.06 -0.50 0.00 0.06 1.00 0.05
T = 10 0.50 0.00 0.03 0.99 0.05 -0.50 0.00 0.04 0.98 0.05
σ = 0.25
T = 2 0.58 0.08 0.06 0.99 0.29 -0.38 0.12 0.09 0.99 0.28
T = 4 0.58 0.08 0.04 1.00 0.52 -0.39 0.11 0.06 0.99 0.46
T = 10 0.58 0.08 0.03 1.01 0.87 -0.38 0.12 0.04 1.00 0.84
σ = 0.50
T = 2 0.74 0.24 0.06 0.97 0.99 -0.19 0.31 0.10 0.99 0.90
T = 4 0.74 0.24 0.04 0.95 1.00 -0.19 0.31 0.07 0.95 0.99
T = 10 0.74 0.24 0.03 0.94 1.00 -0.19 0.31 0.05 1.00 1.00
σ = 0.75
T = 2 0.92 0.42 0.07 0.86 1.00 -0.04 0.46 0.11 0.93 0.97
T = 4 0.92 0.42 0.06 0.84 1.00 -0.04 0.46 0.09 0.93 0.99
T = 10 0.91 0.41 0.05 0.82 1.00 -0.04 0.46 0.07 0.89 1.00
σ = 1.00
T = 2 1.07 0.57 0.09 0.77 1.00 0.09 0.59 0.15 0.86 0.96
T = 4 1.08 0.58 0.09 0.70 1.00 0.08 0.58 0.13 0.78 0.96
T = 10 1.08 0.58 0.08 0.71 1.00 0.08 0.58 0.11 0.76 0.98

89



Table D.2: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 500

β̂1 β̂2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.10 0.99 0.05 -0.50 0.00 0.13 0.99 0.05
T = 4 0.50 0.00 0.05 0.99 0.05 -0.50 0.00 0.07 1.00 0.05
T = 10 0.50 0.00 0.03 0.99 0.05 -0.50 0.00 0.04 0.98 0.05
σ = 0.25
T = 2 0.50 0.00 0.09 0.98 0.06 -0.50 0.00 0.13 0.99 0.05
T = 4 0.50 0.00 0.05 1.01 0.05 -0.50 0.00 0.07 0.99 0.05
T = 10 0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.04 1.00 0.05
σ = 0.50
T = 2 0.50 0.00 0.08 0.99 0.05 -0.50 0.00 0.14 1.00 0.05
T = 4 0.50 0.00 0.04 1.00 0.05 -0.50 0.00 0.08 0.98 0.06
T = 10 0.50 0.00 0.02 1.00 0.06 -0.50 0.00 0.04 1.02 0.05
σ = 0.75
T = 2 0.50 0.00 0.06 1.01 0.05 -0.50 0.00 0.14 0.99 0.06
T = 4 0.50 0.00 0.03 0.99 0.06 -0.50 0.00 0.08 0.99 0.05
T = 10 0.50 0.00 0.02 0.99 0.06 -0.50 0.00 0.05 0.99 0.05
σ = 1.00
T = 2 0.50 0.00 0.05 0.97 0.06 -0.50 0.00 0.15 0.97 0.06
T = 4 0.50 0.00 0.03 0.97 0.06 -0.50 0.00 0.08 1.01 0.05
T = 10 0.50 0.00 0.02 0.97 0.06 -0.50 0.00 0.05 1.01 0.05
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Table D.3: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 500

δ̃1 (APE) δ̃2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.05 0.99 0.05 -0.42 0.00 0.08 1.00 0.05
T = 4 0.41 0.00 0.04 0.99 0.05 -0.42 0.00 0.05 1.00 0.05
T = 10 0.41 0.00 0.02 0.99 0.05 -0.42 0.00 0.03 0.99 0.05
σ = 0.25
T = 2 0.50 0.07 0.05 0.99 0.24 -0.34 0.12 0.08 1.00 0.30
T = 4 0.50 0.07 0.04 1.00 0.43 -0.34 0.11 0.06 0.99 0.49
T = 10 0.50 0.07 0.02 1.02 0.79 -0.34 0.12 0.04 1.00 0.85
σ = 0.50
T = 2 0.74 0.24 0.07 0.97 0.94 -0.20 0.36 0.10 0.99 0.91
T = 4 0.74 0.24 0.06 0.95 1.00 -0.20 0.36 0.08 0.95 0.99
T = 10 0.74 0.24 0.05 0.97 1.00 -0.20 0.36 0.05 1.00 1.00
σ = 0.75
T = 2 1.19 0.54 0.15 0.91 1.00 -0.06 0.70 0.16 0.92 0.96
T = 4 1.19 0.54 0.14 0.88 1.00 -0.06 0.71 0.12 0.92 0.98
T = 10 1.19 0.54 0.13 0.90 1.00 -0.06 0.71 0.10 0.88 0.99
σ = 1.00
T = 2 2.00 1.07 0.36 0.83 1.00 0.13 1.28 0.28 0.84 0.95
T = 4 2.03 1.10 0.39 0.76 0.99 0.12 1.26 0.27 0.72 0.96
T = 10 2.02 1.09 0.35 0.82 1.00 0.14 1.28 0.22 0.73 0.97
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Table D.4: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 500

δ̂1 (APE) δ̂2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.08 0.99 0.05 -0.43 0.00 0.11 0.99 0.05
T = 4 0.41 0.00 0.04 0.99 0.05 -0.42 0.00 0.06 1.00 0.05
T = 10 0.41 0.00 0.02 0.99 0.05 -0.42 0.00 0.04 0.99 0.05
σ = 0.25
T = 2 0.43 0.00 0.08 0.98 0.05 -0.46 0.00 0.13 0.99 0.05
T = 4 0.43 0.00 0.04 1.00 0.05 -0.46 0.00 0.07 0.99 0.05
T = 10 0.43 0.00 0.02 1.01 0.05 -0.45 0.00 0.04 1.01 0.04
σ = 0.50
T = 2 0.50 0.00 0.08 1.00 0.05 -0.57 -0.01 0.18 0.98 0.05
T = 4 0.50 0.00 0.05 0.99 0.06 -0.56 0.00 0.10 0.98 0.06
T = 10 0.50 0.00 0.03 1.02 0.05 -0.56 0.00 0.06 1.03 0.04
σ = 0.75
T = 2 0.65 0.00 0.09 1.00 0.05 -0.79 -0.02 0.28 0.98 0.05
T = 4 0.65 0.00 0.06 0.98 0.06 -0.77 -0.01 0.16 0.99 0.06
T = 10 0.65 0.00 0.05 0.98 0.06 -0.77 -0.01 0.10 0.98 0.05
σ = 1.00
T = 2 0.93 0.00 0.14 0.94 0.07 -1.17 -0.03 0.46 0.95 0.06
T = 4 0.93 0.00 0.12 0.90 0.08 -1.15 -0.01 0.28 0.98 0.06
T = 10 0.93 0.00 0.10 0.95 0.08 -1.15 0.00 0.19 0.97 0.06
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Table D.5: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 1000

β̃1 β̃2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.04 1.00 0.05 -0.50 0.00 0.06 0.99 0.05
T = 4 0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.04 0.99 0.05
T = 10 0.50 0.00 0.02 0.98 0.05 -0.50 0.00 0.03 0.99 0.05
σ = 0.25
T = 2 0.58 0.08 0.04 1.01 0.52 -0.38 0.12 0.06 1.01 0.46
T = 4 0.58 0.08 0.03 1.02 0.80 -0.38 0.12 0.04 0.99 0.78
T = 10 0.58 0.08 0.02 1.03 0.99 -0.38 0.12 0.03 1.03 0.99
σ = 0.50
T = 2 0.74 0.24 0.04 0.98 1.00 -0.19 0.31 0.07 0.96 0.99
T = 4 0.74 0.24 0.03 0.98 1.00 -0.19 0.31 0.05 1.00 1.00
T = 10 0.74 0.24 0.02 0.97 1.00 -0.19 0.31 0.03 1.00 1.00
σ = 0.75
T = 2 0.92 0.42 0.05 0.92 1.00 -0.04 0.46 0.08 0.96 0.99
T = 4 0.92 0.42 0.05 0.86 1.00 -0.05 0.45 0.07 0.90 0.99
T = 10 0.92 0.42 0.04 0.83 1.00 -0.04 0.46 0.05 0.88 0.99
σ = 1.00
T = 2 1.09 0.59 0.08 0.78 1.00 0.07 0.57 0.11 0.85 0.98
T = 4 1.09 0.59 0.07 0.73 1.00 0.07 0.57 0.10 0.78 0.98
T = 10 1.09 0.59 0.07 0.75 1.00 0.07 0.57 0.09 0.77 0.99
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Table D.6: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 1000

β̂1 β̂2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.07 0.99 0.05 -0.50 0.00 0.09 1.01 0.05
T = 4 0.50 0.00 0.04 1.00 0.05 -0.50 0.00 0.05 0.98 0.05
T = 10 0.50 0.00 0.02 0.98 0.05 -0.50 0.00 0.03 0.99 0.05
σ = 0.25
T = 2 0.50 0.00 0.06 0.98 0.05 -0.50 0.00 0.09 1.00 0.05
T = 4 0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.05 0.99 0.06
T = 10 0.50 0.00 0.02 1.04 0.04 -0.50 0.00 0.03 1.01 0.04
σ = 0.50
T = 2 0.50 0.00 0.05 1.00 0.05 -0.50 0.00 0.10 1.01 0.05
T = 4 0.50 0.00 0.03 0.98 0.06 -0.50 0.00 0.06 1.00 0.06
T = 10 0.50 0.00 0.02 1.02 0.05 -0.50 0.00 0.03 0.99 0.05
σ = 0.75
T = 2 0.50 0.00 0.04 1.02 0.04 -0.50 0.00 0.10 0.99 0.05
T = 4 0.50 0.00 0.03 0.99 0.05 -0.50 0.00 0.06 1.00 0.05
T = 10 0.50 0.00 0.01 1.01 0.05 -0.50 0.00 0.03 1.00 0.05
σ = 1.00
T = 2 0.50 0.00 0.03 0.99 0.05 -0.50 0.00 0.11 0.99 0.05
T = 4 0.50 0.00 0.02 0.97 0.06 -0.50 0.00 0.06 1.01 0.05
T = 10 0.50 0.00 0.01 1.02 0.05 -0.50 0.00 0.03 1.00 0.05
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Table D.7: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 1000

δ̃1 (APE) δ̃2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.04 0.99 0.06 -0.42 0.00 0.05 0.99 0.05
T = 4 0.41 0.00 0.03 0.99 0.05 -0.42 0.00 0.04 0.99 0.05
T = 10 0.41 0.00 0.02 0.98 0.05 -0.42 0.00 0.02 1.00 0.05
σ = 0.25
T = 2 0.50 0.07 0.04 1.00 0.45 -0.34 0.11 0.06 1.01 0.48
T = 4 0.50 0.07 0.03 1.00 0.71 -0.34 0.12 0.04 0.99 0.79
T = 10 0.50 0.07 0.02 1.01 0.98 -0.34 0.11 0.03 1.03 0.99
σ = 0.50
T = 2 0.74 0.24 0.05 0.98 1.00 -0.20 0.36 0.08 0.96 0.99
T = 4 0.74 0.24 0.04 0.98 1.00 -0.20 0.36 0.05 1.00 1.00
T = 10 0.74 0.24 0.04 0.98 1.00 -0.20 0.36 0.04 1.00 1.00
σ = 0.75
T = 2 1.19 0.54 0.11 0.95 1.00 -0.06 0.70 0.11 0.96 0.99
T = 4 1.19 0.54 0.10 0.91 1.00 -0.06 0.70 0.09 0.89 0.99
T = 10 1.19 0.54 0.10 0.90 1.00 -0.06 0.70 0.07 0.87 0.99
σ = 1.00
T = 2 2.04 1.10 0.28 0.84 1.00 0.12 1.26 0.22 0.83 0.97
T = 4 2.03 1.10 0.29 0.80 1.00 0.12 1.26 0.21 0.73 0.97
T = 10 2.04 1.10 0.26 0.85 1.00 0.12 1.27 0.17 0.75 0.98
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Table D.8: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 1000

δ̂1 (APE) δ̂2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.06 0.99 0.05 -0.42 0.00 0.08 1.01 0.05
T = 4 0.41 0.00 0.03 0.99 0.06 -0.42 0.00 0.05 0.98 0.05
T = 10 0.41 0.00 0.02 0.98 0.05 -0.42 0.00 0.03 0.99 0.05
σ = 0.25
T = 2 0.43 0.00 0.06 0.98 0.05 -0.46 0.00 0.09 1.00 0.05
T = 4 0.43 0.00 0.03 1.00 0.05 -0.45 0.00 0.05 0.99 0.06
T = 10 0.43 0.00 0.02 1.02 0.05 -0.46 0.00 0.03 1.02 0.04
σ = 0.50
T = 2 0.50 0.00 0.06 1.00 0.05 -0.57 -0.01 0.13 1.01 0.04
T = 4 0.50 0.00 0.03 0.99 0.05 -0.56 0.00 0.07 1.01 0.05
T = 10 0.50 0.00 0.02 1.01 0.05 -0.56 0.00 0.04 1.00 0.05
σ = 0.75
T = 2 0.65 0.00 0.06 1.02 0.04 -0.78 -0.01 0.19 0.99 0.05
T = 4 0.65 0.00 0.04 0.98 0.06 -0.77 0.00 0.11 1.00 0.05
T = 10 0.65 0.00 0.03 1.00 0.05 -0.77 0.00 0.07 1.01 0.05
σ = 1.00
T = 2 0.93 0.00 0.10 0.95 0.06 -1.16 -0.01 0.31 0.98 0.05
T = 4 0.93 0.00 0.08 0.93 0.07 -1.15 0.00 0.19 0.99 0.05
T = 10 0.93 0.00 0.07 0.96 0.07 -1.15 0.00 0.13 0.99 0.05

96



Table D.9: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 2000

β̃1 β̃2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.04 0.99 0.05
T = 4 0.50 0.00 0.02 1.01 0.05 -0.50 0.00 0.03 1.00 0.05
T = 10 0.50 0.00 0.01 0.97 0.06 -0.50 0.00 0.02 0.99 0.05
σ = 0.25
T = 2 0.58 0.08 0.03 1.02 0.81 -0.38 0.12 0.04 1.02 0.75
T = 4 0.58 0.08 0.02 1.01 0.98 -0.38 0.12 0.03 1.00 0.96
T = 10 0.58 0.08 0.01 0.98 1.00 -0.38 0.12 0.02 0.97 1.00
σ = 0.50
T = 2 0.74 0.24 0.03 0.98 1.00 -0.19 0.31 0.05 1.00 1.00
T = 4 0.74 0.24 0.02 1.00 1.00 -0.19 0.31 0.03 1.04 1.00
T = 10 0.74 0.24 0.02 0.97 1.00 -0.19 0.31 0.02 0.99 1.00
σ = 0.75
T = 2 0.92 0.42 0.04 0.92 1.00 -0.04 0.46 0.06 0.97 1.00
T = 4 0.92 0.42 0.04 0.88 1.00 -0.05 0.45 0.05 0.95 1.00
T = 10 0.92 0.42 0.03 0.89 1.00 -0.05 0.45 0.04 0.92 1.00
σ = 1.00
T = 2 1.09 0.59 0.06 0.83 1.00 0.07 0.57 0.09 0.84 0.99
T = 4 1.09 0.59 0.06 0.79 1.00 0.06 0.56 0.08 0.82 0.99
T = 10 1.09 0.59 0.05 0.80 1.00 0.07 0.57 0.07 0.80 0.99
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Table D.10: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 2000

β̂1 β̂2
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.50 0.00 0.05 0.99 0.06 -0.50 0.00 0.06 0.96 0.06
T = 4 0.50 0.00 0.03 1.00 0.05 -0.50 0.00 0.04 1.00 0.05
T = 10 0.50 0.00 0.01 0.97 0.06 -0.50 0.00 0.02 0.99 0.05
σ = 0.25
T = 2 0.50 0.00 0.04 1.01 0.05 -0.50 0.00 0.07 0.99 0.06
T = 4 0.50 0.00 0.02 1.02 0.05 -0.50 0.00 0.04 1.00 0.05
T = 10 0.50 0.00 0.01 0.98 0.06 -0.50 0.00 0.02 0.98 0.05
σ = 0.50
T = 2 0.50 0.00 0.04 0.99 0.05 -0.50 0.00 0.07 0.99 0.05
T = 4 0.50 0.00 0.02 1.02 0.05 -0.50 0.00 0.04 1.01 0.05
T = 10 0.50 0.00 0.01 0.99 0.05 -0.50 0.00 0.02 0.98 0.05
σ = 0.75
T = 2 0.50 0.00 0.03 0.95 0.06 -0.50 0.00 0.07 0.97 0.05
T = 4 0.50 0.00 0.02 0.99 0.06 -0.50 0.00 0.04 1.03 0.04
T = 10 0.50 0.00 0.01 0.98 0.05 -0.50 0.00 0.02 0.98 0.05
σ = 1.00
T = 2 0.50 0.00 0.02 0.98 0.05 -0.50 0.00 0.08 0.98 0.05
T = 4 0.50 0.00 0.01 0.96 0.06 -0.50 0.00 0.04 0.99 0.05
T = 10 0.50 0.00 0.01 1.01 0.05 -0.50 0.00 0.02 1.01 0.05
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Table D.11: Finite Sample Properties of Poisson QMLE: β1 = 0.5,β2 =−0.5,N = 2000

δ̃1 (APE) δ̃2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.02 0.99 0.05 -0.42 0.00 0.04 0.99 0.05
T = 4 0.41 0.00 0.02 1.01 0.05 -0.42 0.00 0.03 1.00 0.05
T = 10 0.41 0.00 0.01 0.96 0.05 -0.42 0.00 0.02 0.98 0.05
σ = 0.25
T = 2 0.50 0.07 0.03 1.02 0.75 -0.34 0.11 0.04 1.02 0.77
T = 4 0.50 0.07 0.02 1.00 0.95 -0.34 0.11 0.03 1.00 0.97
T = 10 0.50 0.07 0.01 0.99 1.00 -0.34 0.11 0.02 0.97 1.00
σ = 0.50
T = 2 0.74 0.24 0.04 0.98 1.00 -0.20 0.36 0.05 1.00 1.00
T = 4 0.74 0.24 0.03 0.99 1.00 -0.20 0.36 0.04 1.04 1.00
T = 10 0.74 0.24 0.03 0.99 1.00 -0.20 0.36 0.03 0.99 1.00
σ = 0.75
T = 2 1.19 0.54 0.08 0.95 1.00 -0.06 0.71 0.08 0.96 1.00
T = 4 1.19 0.55 0.08 0.93 1.00 -0.06 0.70 0.06 0.95 1.00
T = 10 1.19 0.55 0.07 0.95 1.00 -0.06 0.70 0.05 0.92 1.00
σ = 1.00
T = 2 2.03 1.10 0.19 0.91 1.00 0.11 1.26 0.16 0.84 0.99
T = 4 2.04 1.11 0.20 0.86 1.00 0.11 1.25 0.15 0.80 0.99
T = 10 2.04 1.11 0.19 0.90 1.00 0.11 1.26 0.13 0.77 0.99
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Table D.12: Finite Sample Properties of Fixed Effects Poisson: β1 = 0.5,β2 =−0.5,N = 2000

δ̂1 (APE) δ̂2 (ATE)
Mean Bias SD SE/SD RP(0.05) Mean Bias SD SE/SD RP(0.05)

σ = 0.00
T = 2 0.41 0.00 0.04 0.99 0.05 -0.42 0.00 0.06 0.96 0.06
T = 4 0.41 0.00 0.02 0.99 0.05 -0.42 0.00 0.03 1.00 0.05
T = 10 0.41 0.00 0.01 0.97 0.06 -0.42 0.00 0.02 0.98 0.05
σ = 0.25
T = 2 0.43 0.00 0.04 1.01 0.05 -0.46 0.00 0.07 0.98 0.05
T = 4 0.43 0.00 0.02 1.01 0.04 -0.45 0.00 0.04 1.00 0.05
T = 10 0.43 0.00 0.01 0.98 0.05 -0.46 0.00 0.02 0.99 0.05
σ = 0.50
T = 2 0.50 0.00 0.04 0.98 0.05 -0.56 0.00 0.09 0.99 0.05
T = 4 0.50 0.00 0.02 1.03 0.04 -0.56 0.00 0.05 1.01 0.05
T = 10 0.50 0.00 0.02 0.99 0.05 -0.56 0.00 0.03 0.97 0.05
σ = 0.75
T = 2 0.65 0.00 0.05 0.96 0.06 -0.77 0.00 0.14 0.97 0.06
T = 4 0.65 0.00 0.03 0.98 0.06 -0.77 0.00 0.08 1.03 0.05
T = 10 0.65 0.00 0.02 0.99 0.06 -0.77 0.00 0.05 0.99 0.05
σ = 1.00
T = 2 0.93 0.00 0.07 0.99 0.06 -1.16 -0.01 0.22 0.98 0.05
T = 4 0.93 0.00 0.06 0.96 0.06 -1.15 0.00 0.14 0.99 0.06
T = 10 0.93 0.00 0.05 1.00 0.05 -1.15 0.00 0.09 0.99 0.05
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