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ABSTRACT

OPTIMUM ECONOMIC TUBE DIAMETER
FOR PUMPING HERSCHEL-BULKLEY
FLUIDS

By

Edgardo Jose Garcia Caes

The optimum tube diameter, for which the total cost of a
pumping system is a minimum, has been derived for the case of
Herschel-Bulkley fluids in both laminar and turbulent flow. The
method accounts for the tube system cost as a function of diameter,
as well as the pump station and operating costs as a function of the
power requirements. The optimum diameter can be estimated given the
rheological properties, density of the fluid, mass flow rate, and
economic parameters. The elevation and pressure difference in the
system are irrelevant when a linear relationship is used for the pump
station cost. The friction loss in fittings can be ignored when the
tube length is much greater than the tube diameter. The pump station
cost has less influence than the operating cost in determining the
optimum diameter. The use of apparent viscosity and Newtonian flow
behavior for non-Newtonian fluids may lead to severe errors in pipe

sizing.



1. INTRODUCTION

1.1 General Remarks

A problem associated with the design of fluid handling systems
is the selection of tube or pipe size. The installed cost of a
process piping system can vary between 7% and 60% of the total fixed
investment (Wright, 1950). It is, therefore, important to choose the
tube size that would result in the greatest economy while maintaining
the designated operating conditions and performance requirements.
Three criteria often control the selection of tube size; the pressure
drop available, velocity allowable, and least annual cost. The first
criterion is usually used when a given pressure drop must be absorbed
by the tube. Limits in velocity may be encountered in the handling
of slurries in which a minimum velocity must be maintained to keep
the particles in suspension. Conversely, quality degradation of the
product may restrict high velocities. The least annual cost applies
when a given amount of fluid is to be pumped through a tube system.
It is based on an economic balance of the capital and operating cost
to give a tube size that will result in the least annual charge
(Nolte, 1978; Kent, 1978).

In this study, techniques to estimate the optimum tube diameter
based on the least annual cost are developed for tube systems trans-
porting non-Newtonian fluids. The Herschel-Bulkley model was selected

due to its generality and wide application in fluid foods, as well as



other fluid materials (Holdsworth, 1971; Higgs and Norrington, 1971;
Steffe et al., 1983; Boger and Tiu, 1974).

Non-Newtonian characteristics must be considered in the design
of pumping systems when handling fluids of this type (Cheng, 1975;
Johnson, 1982). Failure to do so may lead to under or over sizing,
resulting in a system inefficient to operate or more costly to erect

as suggested by Steffe (1983) and Nolte (1978).

1.2 Objectives

The specific objectives of this study are as follows.

Objective 1: Develop an equation to predict the total annual
cost of a pumping system as a function of the tube
diameter.

Objective 2: Develop an equation to estimate the optimum
economic tube diameter for pumping systems handling
Herschel-Bulkley fluids.

Objective 3: Demonstrate the design errors caused by using
apparent viscosity and Newtonian flow behavior to design

pumping systems handling non-Newtonian fluids.



2. LITERATURE REVIEW

2.1 Herschel-Bulkley (H-B) Model

The flow behavior of many fluid foods and other industrially
important fluids may be described by the H-B model which can be written

as (Herschel and Bulkley, 1926).

- .n
Tpy = To ¥ K v (2.1)
where
T__ = shear stress, Pa
rz
o = yield stress, Pa
K = consistency coefficient, Pa sn
n = flow behavior index, dimensionless
Yy = rate of shear (-dv/dr), 51

This model simplifies to other well-known models. The power

law or Ostwald-de Waele model is written as

- °n
Ty = Ky (2.2)

where

A power law fluid is called pseudoplastic when 0 < n < 1 and
dilatant when n > 1. Equation (2.1) reduces to the Bingham plastic

model when n = 1 and n = K as



Tpg = Tt ny (2.3)
where

n = plastic viscosity, Pa s

Newtonian fluids are described by Equation (2.1) when Ty = 0,

n=1, and u = K as

TT WY (2.4)

where

p = Newtonian viscosity, Pa s

The shear stress-shear rate relationships for the above models are
shown graphically in Figure 1.

It is common practice to use an apparent viscosity (ua) and
assume Newtonian fluid behavior to estimate the frictional pressure
losses for the flow of non-Newtonian fluids in tubes. Apparent vis-

cosity is defined as

T =y (2.5)

Since equation (2.5) is used to describe H-B fluids, by may be written

in terms of the H-B parameters using Equation (2.1) and (2.5) as

- -1 °n-1
ua = TO Y + K v (2~6)

From Equation (2.6), it is evident that My is defined at a particular
rate of shear. Therefore, the use of an apparent viscosity may lead

to over- or under-estimation of the pressure losses and power
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Figure 1.

SHEAR RATE

Shear stress - shear rate relationship for
time-independent non-Newtonian and Newtonian
fluids: (1) Herschel-Bulkley model, (2) Bingham
plastic model, (3) Pseudoplastic model, (4)
Dilatant model, (5) Newtonian model.



requirements depending the rate of shear at which the apparent vis-
cosity is measured. This, in turn, may lead to improper sizing of

pipe, pump, and motor (Steffe, 1983).

2.2 Optimization

The selection of a value for a given design variable to mini-
mize the total cost of a project is possible whenever a change in this
variable causes some costs to increase while other costs decreases
(Skelland, 1967). For a pumping system, the total cost can be divided
into three components: the tube system cost, the pump station cost,
and the operating cost (Darby and Melson, 1982). The tube system cost
primarily consist of the installed cost of tube, fittings, and values.
This increases with increasing tube diameter (Skelland, 1967; Darby
and Melson, 1982; Jelen, 1970). The pump station cost mainly consist
of the installed cost of pump and motor while the operating cost
parimarily consists of the cost of electrical power required to pump
the fluid through the system. Both of these costs are directly pro-
portional to the power requirements which decrease with increasing
tube diameter since the pressure drop due to friction decreases with
increasing tube diameter. Consequently, the pump station cost and
operating cost decrease with increasing tube diameter (Skelland, 1967;
Darby and Melson, 1982; Downs and Tait, 1953). This is shown graphi-
cally in Figure 2. Clearly, the optimum value for the diameter can
be obtained when the sum of these costs is at a minimum.

Mathematically, the total cost CT can be expressed as func-
tion at the tube diameter (D) with the following algebraic equation

(Skelland, 1967).



Total cost, Cp

COST ($/(yr)(unit length of pipe))

Pipe system cost, Cpi

Pump station cost, Cpu

Operating cost, Cop

A

Figure 2.

Dopt

PIPE DIAMETER

Optimum economic pipe diameter for minimum
total cost at a fixed mass flow rate.



CT(D) = Cpi(D) + Cpu(D) + Cop(D) (2.7)

where

CT = total annual cost of pumping system per unit length

of tube, $/yr m

C ; total annual cost of installed tube system per
P unit length of tube, $/yr m

C y total annual cost of installed pump station per unit
PU"" 7ength of tube, $/yr m

Cop = gota] annual operating cost per unit length of tube,
/yr m
The analytical method for optimization of a function of a
single variable involves differentiating with respect to the variable
and equating the result to zero. So the result, for D, in the total
cost equation is

d

_d d d
DT D

Solving Equation (2.8) for D gives the optimum diameter for
which the total cost is at minimum (Skelland, 1967; Jelen, 1970;
Reklaitis et al., 1983).

2.3 Power Requirements

The work per unit mass required to pump an incompressible
isothermal fluid through a tube system from point 1 to point 2 under
steady state conditions is given by the mechanical energy balance

equation (Heldman and Singh, 1981) written as



i} Vg 9? P2 = Py
W= Ec+ 3, - & + 5 + 9(22'21) (2.9)
where
W = work per unit mass, J/kg

E = energy loss due to friction, J/kg
P = pressue, Pa

p = fluid density, kg/m3

g = acceleration duebto gravity (9.8 m/sz)
z = elevation, m

v = mass average velocity, m/s

o = kinetic energy correction factor

1,2 = subscripts referring to points 1 and 2, respectively

Osorio and Steffe (1984) developed an equation for the kinetic
energy correction factor (a) for Hershel-Buikley fluids in laminar
flow. o is equal to two for turbulent flow. For the purpose of tube/
pipe selection, however, the change in kinetic energy can be assumed
to be zero since the tube has a constant diameter (91 = 92) and point
one and two have been located far enough from any entrance,bend, or
fitting to have the same velocity profile (a1 = a2) (Skelland, 1967).

The energy loss due to friction in a straight pipe can be

written in terms of the Fanning equation as (Govier and Azis, 1972)
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Ee = ngzL (2.10)
where

f = fanning friction factor

L = tube/pipe length, m

D= tube/pipe inside diameter, m

The pressure drop due to friction depends on the flow char-
acteristic, as well as the fluid properties. At slow flow, the fluid
velocity is parallel to the tube axis and the pattern is smooth.

This condition is known as laminar or streamline flow. As the veloc-
ity of flow increases, there is a point where the flow becomes unstable,
eddies develop, and cause the fluid to swirl in all directions to the
line of flow. The flow is then turbulent. The region from the end of
Taminar to fully turbulent flow is known as transitional region.

The theoretical relationship between pressure drop due to
friction and flow rate for a H-B fluid in laminar flow can be optained
by integrating Equation (2-1) as shown by Cheng (1970), Charm (1978),
Skelland (1967), and Govier and Azis (1972). This relationship can
be rewritten in term of the friction factor and generalized Reynolds
number (Hands, 1978; Heywood and Cheng, 1982) and will be outlined
later in this study.

The transitional flow of non-Newtonian fluids has been subject
to research for many years. Various criteria of transition has been
developed based on the end of the laminar flow regime (Metzner and
Reed, 1957; Ryan and Johnson, 1959; and Mishra and Tripathi, 1973).

Le Fur and Martin (1967) applied the Ryan and Johnson criterion for
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Bingham and power law fluids. This criterion was also used by Hanks
and Christiansen (1962) for nonisothermal flow of pseudoplastic fluids
and by Cheng (1970) for H-B fluids. Hanks (1963) developed a more
general stability criterion and applied it to the transitional flow of
Bingham plastic fluids (Hanks, 1963). More recently Hanks and Ricks
(1974) presented the transition flow behavior of H-B fluids based on
his theory of laminar flow stability (Hanks, 1969).

Numerous equations havé been developed to calculate the fric-
tion factor of power law (Dodge and Metzner, 1959; Shaver and Merrill,
1959; Kemblowski and Kolodziejski, 1973; Tomita, 1959; Szilas et al.,
1981; Clapp, 1961; Hanks and Ricks, 1975), Bingham plastic (Tomita,
1959; Thomas, 1962; Hanks and Dadia, 1971; Darby and Melson, 1981) and
H-B (Torrance, 1963; Hanks, 1978) fluids in turbulent flow. Good
reviews of these equations are found in articles by Heywood and Cheng
(1982), Cheng (1975), Kenshington (1974), Govier and Azis (1972), and
Skelland (1967). Unlike Newtonian flow, the friction factor prediction
for non-Newtonian fluids varies greatly, depending on the equation
used. This deviation increases with decreasing flow behavior index,
but is not very sensitive to the yield stress, up to a Hedstrom
number of 104. This is the motivation for using equations based on
the power law model to predict friction factor for H-B fluids (Heywood
and Cheng, 1982). However, this may lead to over estimation of the
friction factor (Cheng, 1970). For all the methods developed for
transitional and turbulent flow, the work of Hanks and Ricks (1974)

and Hanks (1978) are the most comprehensive in describing the flow
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behavior of H-B fluids in laminar, transition, and turbulent flow.
This work will be presented later in this study.

So far only the friction loss in a straight tube has been
considered. However, to determine the total pressure drop in a tube
system, one must add the friction loss arrising from any fittings,
valves, and any other devices in the line. The total energy loss due
to friction then can be written in terms of Equation (2.8) and the
summation of the energy loss in fitting and other devices (Steffe

et al., 1984) as

=2 =2
_ efvL v
S S I E e (2.11)

where

Kf = dimensionless fittings resistance coefficient

An alternative way to account for the friction loss iﬁ fittings
is by means of an equivalent length Lf/D or Le =L + Lf, where Lf is
the equivalent length of pipe for the fittings, valves, and other
devices. Then, Equation (2.8) can be rewritten as (Govier and Azis,

1972).

2F 32 (L + L)
Ee = . (2.12)

Numerical data for the equivalent length and resistance coeffi-
cients for turbulent flow of Newtonian fluids through valves, bends,
fittings, and other devices is available in standard reference books

(Crane, 1982; Perry and Chilton, 1973; Govier and Azis, 1972). These
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values can be used as an approximation for non-Newtonian fluids
since the friction loss in fittings does not depend significantly
on the non-Newtonian character of the fluid during turbulent flow
(Cheng, 1970, 1975). Although rather limited, some information on
friction loss in fittings, valves, and entrances of non-Newtonian
fluids in laminar flow is given by Wilkinson (1960), Skelland (1967),
and Ury (1966). Unlike turbulent flow, the friction loss coefficient
in laminar flow depends on the fluid properties and increases sig-
nificantly with decreasing Reynolds number. This was shown by the
data of Kittredge and Rowley (1957) for Newtonian fluids and Steffe
et al. (1984) for a power law fluid. Iwanami and Suu (1970) consid-
ered the pressure drop in right-angle fittings for various slurries.
Steffe et al. (1984) used a Blasius type equation to correlate the
friction loss coefficient to a generalized Reynolds number for the
laminar flow of a power law fluid through a tee (used as elbow),
90° elbow and a three-way plug valve. The pressure drop in entrances
under laminar flow conditions has been considered by Michiyoski et al.
(1966) for a Bingham plastic fluid, Collins and Schowalter (1963) for
a power law fluid, and Soto and Shah (1976) for a H-B fluid. Cheng
(1970) presented a technique to approximate frictional fittings loss
for non-Newtonian fluids using the tabulated Newtonian losses.

Once the total energy loss per unit mass is known, the power

requirement is given by
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p =t X (2.13)
where

P = power, Watts

E = combined fractional efficiency of pump and motor

M = mass flow rate, kg/s

2.4 Economic Considerations

In most cases, the purchase cost per unit length of a pipe
may be written in terms of the pipe diameter with the following

empirical relationship (Skelland, 1967; Peters and Timmerhaus, 1968)

c’ P

X (39.37 D) (2.14)
where

C' = purchase cost of a new pipe, $/m

X = purchase cost of one inch diameter pipe per unit
meter of pipe length, $/m in p*
p = constant for purchase cost of pipe dependent
on the pipe material, dimensionless

D = tube/pipe inside diameter, m

Typical valve of p' for different pipe materials is given by
Nolte (1978), Skelland (1967), and Darby and Melson (1982). This
relation permits estimation of the cost of any size pipe from the cost
of a specific size pipe. Nolte (1978) used 2 inch diameter as a
reference because of the greater availability of purchase cost data
at this size. Based on Equation (2.14), the total annual cost of

installed pipe system can be expressed as



where

pi

pi
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(a +b) (F+1) x (39.37 )P (2.15)

total annual cost of installed tube system per
unit length of tube, $/yr m

annual fixed cost of the tube system expressed
as a fraction of the initial installed cost of
the tube system, 1/yr

annual maintenance cost of the tube system
expressed as a fraction of the initial installed
cost of the tube system, 1/yr

ratio the total cost for fittings and installation of
pipe/tube and fittings to purchase cost of new pipe/tube

The ratio F is estimated at the reference size taken for the

purchase cost of the pipe. That is, the pipe size used to estimate X

in Equation (2.14). For Equation (2.15) the reference size is one

inch.

Notice that a, b, and F are assumed to be invariant with tube

diameter, and p' only depends of the tube material. The maintenance

cost (b) is generally taken as 4% per year of the new equipment cost.

For corrosive processes or highly instrumented equipment, this figure

may be as high as 7 to 10% of the investment (Perry and Chilton,

1973).

The annual fixed cost, a, can be estimated, assuming zero

salvage valve, from the uniform recovery factor (Newnan, 1983) as

where

_ias
1+ )NV -1

(2.16)

life-time of equipment, yr

interest rate (fraction)
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Alternative methods to estimate the annual fixed cost are discussed
by Newnan (1983), Jelen (1970), Peters and Timmerhaus (1968), and
Perry and Chilton (1973).

The installed cost of a pipe system can also be correlated
to the tube size with a logarithmic plot of the total installed cost,
including fittings, valves, installation, etc., versus the tube
diameter (Jelen, 1970). The installed cost-diameter relationship

can then be written as

c=c, ns (2.17)

where

o
n

total installed cost of the tube system including the
cost of fittings, valves, installation, etc., $/m

empirical constant for the tube system cost, $/m1+S

o
n

(%]
1]

exponent constant in the tube system cost eguation,
dimensionless

The annual cost of a pump station can be written in terms of
power capacbility. Darby and Melson (1982) gave a linear relationship
between the cost and horsepower for large size pump stations. An
alternative method is to estimate the pump station cost from the cost
data of a different pump size with the following logarithmic relation-

ship (Jelen, 1970; Perry and Chilton, 1973).
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Q
¢, = ¢, (Q—;)q (2.18)

where

o
]

1 unknown cost of equipment of size Q1

o
n

2 known cost of equipment of size 02

cost capacity factor

Ne]
1]

Values of q for different pump types and power ranges are
given by Jelen (1970), Peters and Timmerhaus (1968), and Perry and
Chilton (1973). When q = 0.6, this relationship is known as the
six-tenths-factor rule. A closer approximation of this relationship

has been found to be (Perry and Chilton, 1973)

ST S P (2.19)

10 'q,”’ I .
where

CD = total direct cost of equipment of size Q2

CI = total indirect cost of equipment of size Q2

Cost data for pipes, pumps, and fittings are presented by
Peters and Timmerhaus (1968), Jelen (1970), Marshall and Brandt (1970),
and Barrett (1981). This data could be updated with cost indexes,
however, current data should be used whenever possible (Jelen, 1970).

The annual operating cost is primarily the annual electrical

energy consumption and is given as (Skelland, 1967)
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Ce h P
Cop S (2.20)
where
Cop = total annual operating cost per unit length of
tube, $/yr m
C, = cost of electrical energy, $/W hr
h = hours of operation per year
L = tube/pipe length, m
P = power, Watts, Equation (2.13)

2.5 Optimum Economic Pipe Diameter

Various relationships have been developed for the optimum
economic diameter of Newtonian fluids under laminar and turbulent
flow conditions. Genereaux (1937) was probably the first to present
pipe diameter optimization methods based on the economic balance of
pipe and operating costs. Further details of Genereuax's work are
given by Peters and Timmerhaus (1968). Downs and Tait (1953) based
their analysis on the economic balance of pipe and pump costs and
provided corrections to account for the operating cost. Perry and
Chilton (1973), and Peter and Timmerhaus (1968) presented optimum
diameter relationships based on the concept or return on incremental
investment. Other methods for determining economic pipe diameter
for Newtonian fluids are discussed by Wright (1950), Sarchet and
Colburn (1940), Nolte (1978), Dickson (1950), Braca and Happel (1953),
and Nebeker (1979).

Optimum economic diameter relationship are more limited for

non-Newtonian fluids. Duckham (1972) gave general guidelines to
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estimate the optimum diameter of non-Newtonian fluids. Skelland
(1967) developed optimum diameter equations based on Metzner and

Reed (1955), and Dodge and Metzner (1959) friction factor relation-
ships for non-Newtonian fluids in laminar and turbulent flow,
respectively. For laminar flow his relationships may be written

in terms of the power law model [as defined by Equation (2.2)].

The analysis is based on the economic balance of pipe and operating
costs assuming a pump was already available or its cost was invariant
with pipe diameter. Skelland (1967) also developed a relationship
to estimate the optimum pumping temperature based on the economic
balance of heating cost and operating cost. The latter decreases
with increasing temperature due to the decrease of consistency coeffi-
cient with increasing temperature. Application of Skelland's rela-
tionships for the food processing industry was presented by Boger

and Tiu (1974). More recently, Darby and Melson (1982) applied
dimensionless analysis to developed graphs from which the optimum
diameter can be obtained directly for Newtonian, Bingham plastic, and
power law fluids. In their analysis, they assumed the friction
factor to be constant in the differentiation of the total cost
[Equation (2.7]. The friction factor relationships of Churchill
(1977) and Darby and Melson (1981) were used for Newtonian and Bingham
plastic fluids, respectively. These relationships span all flow
regimes. The equation of Dodge and Metzner (1959) was used for

the turbulent flow of power law fluids. Unlike Skelland, their
economic analysis includes the pump station cost for which they

developed a linear relationship with pump power.



3. THEORETICAL DEVELOPMENT

3.1 Flow Behavior of Herschel-Bulkley Fluids

The theoretical pressure-drop/flow rate relationship for H-B
fluids in laminar flow, in terms of the fanning friction factor, has
been derived by Hanks (1978) and Heywood and Cheng (1982). To date,
Torrance (1967) and Hanks (1973) have presented theoretical analysis
of turbulent flow for H-B fluids. Hanks' analysis is the most com-
prehensive method. Unlike the Torrance equation, the Hank's rela-
tionship deals with transitional flow and includes the laminar-
turbulent transition criterion developed by Hanks and Ricks (1974).
In addition, Hanks' analysis accounts the viscous dampening effect
of the wall on eddy properties near the wall and radial variation of
shear stress, and retained the molecular flux term. His relationship
along with the laminar-turbulent transition of Hanks and Ricks (1974)
and the laminar flow relationship will be presented in this section.
The Torrance equation is given in Appendix A. The Hanks relationship
is particularly suitable for determining the optimum diameter
because it provides a continuous function of friction factor with

tube or pipe diameter.

3.1.1 Laminar Flow

Consider a tube of length L and radius rw(D = 2rw) with fric-
tional pressure drop between points 1 and 2 of AP, (Figure 3). A

force balance on the core of the fluid gives
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Figure 3.

Velocity profile for Herchel-Bulkley fluid
in a tube.

0
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2 -
r APf = 2ﬂrLTrz (3.1)

or
r APf

Tz T A (3.2)

At the wall, Equation (3.2) becomes

r AP
- _W f
Tw - 2L (3.3)
Combing Equations (3.2) and (3.3) yields
= =
Tpy = . Ty £ T, (3.4)

Defining additional dimensionless variable as u = v/V,
& = TO/TW, I = -du/dg and g = F/Fw, Equation (2.1) can be written

in dimensionless form as

Wt
g:g +t —— (3'5)
O LN
WoW

Since ¢z = 1 when £ = 1, it follows from Equation (3.5) that

T Y‘n
n W W
r'=(1-¢g)—mA (3.6)
w 0 Kvn

Substituting Equation (3.6) into (3.5) gives the result

gt (1-g)¢ (3.7)
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Assuming no slip at the wall, the velocity distribution can be

obtained from

1 1
u J (-2 ae =1, | ole,g) de (3.8)

where £' is a dummy variable.

Upon integration, Equation (3.8) gives the relationship for the veloc-

ity distribution as

T
= . 1/n ( n 2 1 )[}1 50)1/n+1 - (¢ - Eo)l/n+f} (3.9a)
(1-¢,)
for
£ > SO
u _ Fw ( n ) (1 _ g )l/n + 1 (3_9b)
0 (1 - go)l/n n+ 1 0
for g <&

In terms of the defined dimensionless variable, the expres-
sion for the flow rate is given by
g 1
2 J 0 guo dg + 2 gudg = 1 (3.10)

) £
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Substituting Equation (3.8) into Equation (3.10) yields, since

Uy is constant for 0 < & <&

[pN]

r, | & ¢t (E.8) det+2 | & | z(ge)de’ de | =1
£ £, E

(3.11)

Integrating the double integral in Equation (3.11) by parts, using
Leibnitz' rule (Hanks and Ricks, 1974) gives

1
r, | £t (€, g5) dg =1 (3.12)

%

Substituting Equations (3.7) into (3.12) and integrating results in

1 -
rh = f____fgl___ (3.13)

W n n
ASersr

where

(1-¢)% 2¢ (1-¢) g 7
p=(1+ 3n)n(1 - €0)1+n [j(l + 32) + ?1 + 2n)o + (1 2 n{]

(3.14)

By combining Equation (3.6) and the definition of the Fanning friction

factor as
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f=—t -0 (3.15)

Equation (3.13) can be written in terms of the friction factor as

£ = l’% (3.16)

where y is given by Equation (3.14) and Re, the generalized Reynolds

number, is (by definition)

pr
(3.17)

Re = 8 (1 l13n)n

If one eliminates v using equation (3.6), and the definitions

of f and Re, Equations (3.13) may be rearranged (Hanks, 1978) to give

2-n
- 2, y\n
Re = 2 He (1 T 3n) ( Z, ) (3.18)
where y is given by Equation (3.14) and
2 T 2-n
He = 20— (2 ) (3.19)

Equation (3.19) is a generalization of the Hedstrom number.
Equation (3.18) defines £, @s an implicit function of Re and He for

He > 0. £, = 0 when He = 0, i.e., 7 = 0.



26

3.1.2 Laminar-Turbulent Transition

Laminar instability starts when the ratio k, the rate of
change of angular momentum of a deforming fluid element to its rate
of loss of frictional drag momentum, exceeds a critical valve k
(Hanks, 1969). For rectilinear pipe flow, the stability parameter

can be written as

(3.20)

where Iy» Cs Us and y are given by equations (3.6), (3.7), (3.9a),
and (3.14), respectively. « is a function of the radial position g
having the value of zero at £ =1 and € = £o° and a maximum value at
some point in the field (¢ = £ , « = ) where maximum instability
occurs. The transitional critical Reynolds number (Rec) is obtained
from Equation (3.20) when one sets £ = £ and « = 404 (Hanks and
Ricks, 1974). This valve will give Rec = 2100 for Newtonian pipe
flow. The radial position of maximum instability £ is found by
setting dc/d¢ = 0. For H-B fluids, the critical Reynalds number

is then given by the following expression (Hanks and Ricks, 1978)

2+n
6464 n y2/" (2 + n)Ten 5.21)
Re_ = .
+
(o} (1 + 3n)2 (1 - goc) 1 2/n

where Y. is given by Equation (3.14) with £ = Eoc Equation (3.18)
is also valid at Re = Rec. Now, by eliminating Rec with Equations

(3.18) and (3.21), the relationship between He and o Can be obtained

as
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2+n
3232 (2 + )l * M gocz/"'l 5.2

He =
n (1 - Eoc)2/n+1

which defines Eoc @S in implicit function of He (Equation (3.19))
and n.
The critical friction factor, fc’ can be estimated from

Equations (3.16) with y = Ve and Re = Rec.

3.1.3 Transitional and Turbulent Flow

For transitional and turbulent flow, the time average momen-

tum flux can be expressed as (Hanks, 1968)

- _ L =T
Try = Trg ¥ Ty (3.23)
where th is the molecular flux, given by Equation (2.1), and %Iz is

the turbulent flux (or Reynolds stress). This latter flux is given

by Hanks and Dadia (1971), Hanks and Ricks (1975), Hanks (1978), as
=T _ 2
Ty, = ORY (3.24)

where % is a modified Prandtl's mixing length (Hanks, 1968) and is
given in terms of the dimensionless variable X = &/, as (Hanks and

Ricks, 1975; Hanks, 1978)

A=k (1-8){1 - exp [-o(1 - )]} (3.25)

where
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R - Rc
¢ = (3.26)
/8" B
k = Prandtl's universal mixing length constant = 0.36
and
2-n 1/n
R= (1230 | pe () 2 (3.27)

n 16

R is a working parameter and reduces to R = Re/f for Newtonain fluids
(Hanks, 1968). The parameter RC is estimated from Equation (3.27)
with Re = ReC and f = fc.

The parameter B is given by the following empirical relation-

ship for the H-B model (Hanks, 1978).

(1 + 0.000504 He)

Substituting equations (2.1) and (3.24) into (3.23), Equation

(3.23) can be rewritten in dimensionless form as

T . pvzxzri )
g = go +-—n g + __T C (3-29)
TWFW w

where Fw is given by Equation (3.6) since £ = 1 and X = 0 when £ = 1.

Using Equation (3.6), (3.15), (3.17), and (3.27), Equation

(3.29) can be written as
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R2

=gyt (1-g) "+ B (1 g )M )52 (3.30)

0

Combining equations (3.6), (3.12), (3.15), (3.17), and (3.27), Equa-

tions (3.12) can be written in equivalent form

2-n o [ 2-n
" GT-;Egﬁ)n %g J 6% ¢ (g)de

£

(1-¢,) 1 (3.31)
0
where z(&) is given implicity by Equation (3.30).

Finally, from the definitions of f, Re, R and He, it can be

shown that

R = S35 (3.32)

The methodology to estimate the friction factor is outlined in
Figure 4. A computer program (Appendix D) written in FORTRAN 77

as developed to accomplish these calculations.

3.2 Total Annual Cost of a Pumping System

Assuming negligible kinetic energy change and substituting
Equation (2.11), the work per unit mass, Equation (2.9), can be

written as

_2 _2
W= Ziﬁ_L +) Ke %T + %? + gAz (3.33)



Input Variables
K, n, Tgs P M

D, D or D

Fluid Properties, Mass Flor Rate
Pipe/Tube Inside Diameter

est opt

1. v Calculate v from Equation (3.34)

2. Re Calculate Re from Equation (3.17)

3. He Calculate He from Equation (3.19)

4. Eoc Calculate gqc from Equation (3.22)
through iteration 0 < g,. <1

5. be Calculate Ve from Equation (3.14)
with go = goc

6. Rec Calculate ReC from Equation (3.21)

7. fc Calculate fc from Equation (3.16) with

If Re < Rec then laminar flow.

8.-a

9.-a
10.-a

Alternative for laminar flow

8.-b

S.-b
10.-b

%o

1
f

-

%0

npc=1pc and Re = Rec

If transition or turbulent go to Step 11.

Calculate Eo from Equation (3.18)
tiirough interation. (go =0 if Ty = 0

(He = 0)). g,.< £y < 1
Calculate y from Equation (3.14)
Calculate f from Equation (3.16)

Calculate £ from Equat1on (3 15)
guessing f > 2 1 / (p v ) ocS &g <

Calculate y from Equation (3.14)

Calculate f from Equation (3.16) and
compare with the guess value in
Step 8-b

If Re > Rec, then transitional/turbulent flow

11.

fest

Guess a value for f > 210/(092)

Figure 4.

Calculation scheme to estimate the friction factor.
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12. R

13. R
If R < Rc’ then go to step 11.

14. £o
15.
16.
17. Aj
18. cj
19.
20.
21. f

Calculate R, from Equation (3.27) with
Re = Rec and f = fC

Calculate R from Equation (3.27)
Guess a higher valve for fest

Calculate £ from Equation (3.32) or
(3.15). 0 <& <&

Calculate B from Equation (3.28)
Calculate ¢ from Equation (3.26)
Generate values of xj from Equation
(3.25) with E 2B < 1(3=1,2,3...)
Generate values of Cj from Equation
(3.30) with values of xj and
%5§J51U=123.“)

Evaluate the integral of Equation (3.31)
by numerical methods with ‘j and

Es §.5j <1(j=1,2,3...)

Calculate Equation (3.31). If result

# 1, then go to Step 11.

If Equation (3.31) is equal to one,

then f = fest

Figure 4. Continued.



where the friction factor f is obtained using Hanks' method
described in the previous section and the friction loss coefficients,
Kf, for fittings can be approximated with the Newtonian data for
turbulent flow (Crane, 1982; Perry and Chilton, 1973; Govier and
Azis, 1972) and the relationship given by Iwanami and Suu (1970),
Steffe et al. (1984), and Soto and Shah (1976) for laminar flow.

The mass average velocity may be written as

5 (3.34)

Substituting Equation (3.34) into (3.33) gives the result

02 02
_ 32fM°L 8M Ap
w2 B ) ke 2 4+ gtz (3.35)
mp D mp D
The annual cost of a pipe system can be estimated using
Equation (2.17) as

cpi = (a + b)chS (3.36)

where C total annual cost of installed tube system per‘unit

pi length of tube, $/yr m

a = annual fixed cost of the tube system expressed as a
fraction of the initial installed cost of the tube
system, 1/yr

b = annual maintenance cost of the tube system expressed
as a fraction of the initial installed cost of the
tube system, 1/yr

C_ = empirical constant for the tube system cost, $/m1+S

s = exponent of tube system cost equation, dimensionless



33

As stated before, Cp and s can be estimated from a log-log plot of
the installed csot of the tube system (tube, fittings; valves, etc.)
versus the tube inside diameter. Notice that Equation (3.36) can
also be interpreted as Equation (2.15) if one lets s = p' and

p

C.=(F+1) X (39.37) This permits one to obtain the installed

p
annual cost of the tube system as a function of the diameter from the
knowledge of the costs of one-inch tube and fittings. However, some
error may be introduced by assuming F to be independent of D and
extrapolating from the cost of one tube size. Therefore, this method
should only be used in preliminary tube sizing when data and knowledge
of the system are limited. More accurate results can be obtained if
the variables Cp and s are calculated from the installed cost of the
tube system for various tube diameters. Even in this case, extra-
polating beyond the diameter range used should be avoided. That is,
Equation (3.36) should be estimate using a range of diameters where
the optimum diameter is expected. Notice that the annual fixed cost
and the annual maintenance cost ratios are assumed to be independent
of tube diameter. However, these costs, as well as other costs
associated with the tube system which may depend on the tube diameter,
may be included in the estimation of the installed cost of the tube
system. Then the fixed and maintenance cost will be included in the
varialbes Cp and S. If this is done, the term (a + b) in Equation
(3.36) can be set equal to one.

The cost of a pump station can be written, in a manner

similar to Equation (2.19) as
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Cos = p PS4 ¢ (3.37)
where
CpS = total cost of installed pump station, $
CD = empirica] constant for the pump station cost,
$/uS
CI = empirical constant for the pump station cost, $
s' = exponent of the pump station cost equation,

dimensionless

The value of C CI’ and s' can be obtained from a

D’
plot of the installed cost of the pump versus the power require-
ments. The installed pump station cost includes the purchase cost

of pump, motor, and other costs dependent on the size of the pump.
Equation (3.37) permits the use of a linear (s' = 1) or power (CI = 0)
relationship for CpS versus P. Notice also that this equation can be
interpreted as Equation (2.19) if one lets C; = Ci, P = Ql’ s' = q,
and CD = Cﬁ,lozq. The annual pump station cost per unit length of
tube can then be expressed as

=(a! ' '
Cpu =(a' + b )(CDP + CI)/L (3.38)

where

a' = annual fixed cost of the pump station expressed
as a fraction of the initial installed cost of
the pump station, 1/yr

b' = annual maintenance cost of the pump station
expressed as a fraction of the initial installed
cost of the pump station, 1l/yr
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Again, the fixed cost and the maintenance costs may be
included in the estimation of the installed cost of the pump station
for the different pump sizes accounting for these costs in the
variables Crs Cpo and s'. Then, the term (a' + b') in Equation
(3.38) could be set equal to one.

The total annual cost of a pumping system per unit length
of tube can be obtained by adding Equations (2.20), (3.36), and

(3.38) which gives, after rearrangement,

¢ che [ (@ +b) (cDPS' +Cp)
C; = (a + b) CpD + Ceh D + 11 (3.39)

T L

Substituting Equation (2.13) into (3.39) yields

Chi | E(a’ + b )(CAS WS E™S +¢.)
e D I +1

C.=(a+b)CDS+ ,
T P LE Ch P

(3.40)
where

W = work per unit mass, J/kg, Equation (3.35)

The procedure to estimate the pumping system costs is
outlined in Figure 5. The computer program developed to accomplish

these calculations is given in Appendix D.

3.3 Optimum Economic Tube Diameter

As stated before, the optimum tube diameter, Dopt’ can be
obtained by setting dCT/dD = 0 assuming that CT is only a function

of D, i.e.,
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Imput Variables

M, L, Ap, Az, K¢ Pumping system parameters

n, K, Tys P Fluid properties

Cp,s, a, b Tube system cost parameters

CI, CD’ s'ya', b' Pump station cost parameters

Ce’ h, E Operating cost parameters

D or Dopt Tube/pipe inside diameter

1. v Calculate v from Equation (3.34)

2. f Calculate f from scheme in Figure 4
3 W Calculate W from Equation (3.35)

4. P Calculate P from Equation (2.13)

5. Cpi Calculate Cpi from Equation (3.36)
6. Cpu Calculate Cpu from Equation (3.38)
7. Cop Calculate Cop from Equation (2.20)
8. CT Calculate CT from Equation (3.39) or (3.40)

Figure 5. Calculation scheme to estimate the annual costs of a
pumping system.
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. s-1 32 h | (a' +bt)sieps !
ap Cr = (a +b)scD &

= T + 1]
p opt 1rZQZDBE ceh gs'-1

D D
_ d opt __opt d .
5f Dopt ot K¢ T @ K¢ 0 (3.41)

For laminar flow, df/dD can be obtained from the derivative of

Equation (3.16) with respect to the diameter which gives

div'pos 16 dRe _ _16 dy
de- - £he = (3.24)
@ ReZ @ Tz @

Replacing V with Equation (3.34) in Equation (3.17) and taking the

derivative of Re with respect to D gives
%%e_ = _(3LB_4)_ Re (3.43)

Similarly, substituting 5 with Equation (3.15) in Equation (3.14) and

taking the derivative of y with respect to D gives.

Vog 4yo
L. i B (3.40)
dD L dD D :
where
e | eI e M- )P e 21 e 20)(1 e 3)gy (1= Eg) + (1 +IM(1 e 2m) (1 ““5-1
L0 e m - g3+ 2l + 31+ mig (1= 6021+ (1 + 2med (1 - )

(3.45)
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Substituting Equations (3.43) and (3.44) into Equation (3.42) and
solving for df/dD gives

645 o + 16 (4 - 3n)
4. .0 (3.46)
a0 Revd (T ¥ oE.) -
or
) 4fE 0 + (4 - 3n)f
S - (3.47)

D (1+oat))

where f, g6 and o are given by equations (3.16), (3.18), and (3.45),
respectively.

Equation (3.46) was confirmed for the special cases of the
power law, Bingham plastic and Newtonian fluids by comparing it to
independent analytical solutions for these fluids. It was also
confirmed numerically for two examples of a H-B fluid (Appendix B).

A numerical integration was required to estimate the friction
factor for turbulent flow as seen in Equation (3.31); hence, the
derivative of the friction factor with respect to the diameter must be

approximated numerically for this flow condition by

é%’f(D) _ f(D + ;3 - f(D-x) (3.48)
where

f(D) = the friction factor expressed as a function of D

X = a small positive number

The backward difference method is used to evaluate the derivative for

diameters just below the critical diameter where turbulent flow starts



(Appendix C). Examples of f(D) versus D are shown in Appendix B. An
alternative equation for df/dD for turbulent flow is given in Appen-
dix A when the friction factor is estimated with the relationship
developed by Torrance (1967).

Since no general equation exists for the fitting resistance
coefficient (Kf), it must be assumed to be independent of the diameter.
That is, dKg/dD = 0. In addition, when L > > D, L/D and 02/4L will
be small numbers having a small influence on Dopt' Hence, constant
K¢ values for Newtonian fluids for turbulent flow can be used as an

approximation to evaluate Dopt' Then, the D0 is given implicity by

pt
from Equation (3.41)

eliminating the dKf/dD term and solving for DOpt
as
s+5 32M3Ceh (a' + b')s"CD ps' -1
D = . + 1
opt (a + b)stﬂzsz Ceh
. 1
df opt
5f - DOpt D + i ZKf (3.49)

where

P = power, watts, Equation (2.13)

1 = = = = S
By letting CD = 0, ZKf 0, £o 0 and Cp (1 + F)(39.37)°X,
and substituting df/dD for Equation (3.46) or (3.47), Equation (3.49)

reduces to
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1
()

D, 4(1 + 3n)C FhK (8.'31(1 + 3n)> n
pt :
s(a + b)(F + 1)(39.37)5 X o men

(3.50)

which is an equivalent form of Skelland's equation (Skelland, 1967;
p. 245) for power law fluids in laminar flow, but with the variables
expressed in SI units.

The procedure to estimate the optimum diameter is shown in
Figure 6. The computer program to do these calculations is given in

Appendix D.

3.4 Limitation of Design Method

Some assumptions are inherent in the design method presented.
Even though some of these assumptions were stated previously, they
will be summaried here:

1. Use of Newtonian values for the fittings resistance

coefficients
2. Constant fluid density (incompressible fluid)
3. Homogeneous or pseudohomogeneous fluids
4. No slip or apparent slip at the wall
5. No elastic or time-dependent behavior

6. Smooth wall (for turbulent flow only)

~
.

Isothermal flow
8. Steady state flow

9. Negligible kinetic energy change
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Imput variables

M, L, Aps AZ, sz Pumping system parameters
n, K, Ty> P Fluid properties
Cp, S, a, b Tube system cost parameters
CI’ CL’ s'y, s', b! Pump station cost parameters
Ce, h, E Operating cost parameters
1 Dest Guess Dopt
2. v Calculate v from Equation (3.34)
3. f Calculate f from scheme in Figure 4
4. df/dD Calculate df/dD from Equation (3.46) or

(3.47) if the flow is laminar (Re < Rec)
or from Equation (3.48) if the flow is

turbulent (Re > Rec)

5. W Calculate W from Equation (3.35)
6. P Calculate P from Equation (2.13)
7. Dopt If Equation (3.49) is true then Dopt =

Dest’ otherwise go to Step 1

Figure 6. Calculation scheme to estimate the optimum diameter.
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The first assumption may be violated when handling non-
Newtonian fluids under laminar flow. Under this flow condition, the
fittings resistance coefficient increases with decreasing Reynolds
number (Steffe et al., 1984). The frictional loss in fittings may
become significant in a complex tube system with a great number of
fittings. This may cause errors in estimating the optimum diameter,
particularly with short tube systems.

The next three conditions may be violated in the handling of
heterogeneous or multiphase fluids. In these systems, a particle-
free layer may form at the pipe wall creating a variation of solids
concentration. The Tubricating action of this 1iquid layer is known
as effective slip. These systems cannot be accurately described by
the H-B fluid model. More complex models are also required to
describe the flow behavior of viscoelastic and time-dependent fluids.
Viscoelastic fluids show partial elastic recovery on removal of
deforming shear stresses. Such materials exhibit both viscous and
elastic properties. Time-dependent fluids exhibit reversible decrease
(thixotropic), irreversible decrease (rheomalaxis) or reversible
increase (rheopectic) in shear stress with time at constant rate of
shear (Skelland, 1967). These and various time-independent rheologi-
cal models not described by Equation (2.1), such as the E11is and
Casson models, are not considered in this study.

For turbulent flow, wall roughness leads to increased
pressure drop (Cheng, 1975). Therefore, the power requirements will
be underestimated for this condition since the pressure-drop/flow-

rate relation used in this study for turbulent flow (Sections 3.1.3)






is applicable only for smooth walls. This, in turn, will lead to

under estimation of D Nonisothermal conditions will cause errors

opt’
in the design method s?nce the consistency coefficient (K) depends

on temperature. It decreases with increasing temperature according

to the Arrhenius relationship (Cheng, 1975). Nonisothermal conditions
may be caused by changes in environmental temperature or by mixing

of various streams at different temperature. In addition, unsteady
flow conditions may be encountered in start-up operations. Also,
pressure surge waves may develop in long pipeline due to fluid

inertia and compressibility (Cheng, 1975). Finally, appreciable
kinetic energy changes may be found in complex tube systems with

variation of tube diameter, entrances, fittings, etc. The current

design method is not applicable for such systems.




4. RESULT AND DISCUSSION

4.1 Model Verification

To validate the model, the optimum diameter (Dopt) was first
estimated for the example given by Skelland (1967) (Illustration 7.1
(c) pp. 253) for a power law fluid. His data, in terms of the vari-
ables and units of the model developed in this study, are given in

Table 1. The Do using this model was found to be 0.1653 (0.5425 ft)

t
which is the samz as the one obtained from Skelland's optimum diameter
equation for power law fluids (as defined by Equation (2.2)). Notice
that the answer in his illustration is different and is due to round-
off error in his numerical constants. Direct calculation using his
original equation (pp. 245) gave the same result. This is to be
expected since Equation (3.49) is a general form of Equation (3.50)
which is an equivalent form of Skelland's equation. The model was also
tested using the example from Darby and Melson (1982) for a Bingham
plastic fluid in turbulent flow. Their data are given in Table 2.

The Do t for this case was found to be 0.865m which is 0.82% higher

than tEeir value. This small deviation is probably due to the fact
that Darby and Melson assumed df/dD = 0 and used an approximation
(Darby and Melson, 1981) of the friction factor relationship of
Hanks and Dadia (1971) in the derivation of their model. Even though

the result of Darby and Melson was close to the one obtained using

the model of this study, their assumption of df/dD = 0 may introduce

44
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Table 1. Fluid properties and other pertinent data for the optimum
diameter example problem given by Skelland (1967)

Fluid Properties

n=0.5 K=23.02 Pas"; p=977.29 kg/m>
Pipe Cost Parameters
C, = 354.53 $/m2*° s =1.5;a=0.14; b = 0.06

Power Cost Parameters

C, = 2.0 x 10° $/W hr; h = 6570 hrs/yr

Other Pertinent Data

M= 13.83 kgss; L = 1523.93 m; E = 0.3

Optimum Pipe Diameter

D = 0.1653 m

opt
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Table 2. Fluid properties and other pertinent data for the optimum
diameter example problem given by Darby and Melson (1982)

Fluid Properties

n=1.0; n=003Pas;r, =4.2Pa; o= 1400 kg/mS

Pipe Cost Parameters

C, = 409.58 $/me % s =1.2; a - 0.05

Pump Station Cost Parameters

CI = 173800 $; CD - 0.6 $/W; s' =1.0; a' = 0.05

Power Cost Parameters

C, = 4.0x 1072 $/W hr; h = 8640 hrs/yr

Other Pertinent Data

M=729.16 kg/s; L =1m; E = 0.6

Optimum Pipe Diameter

D = 0.858 m

opt
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significant error for other fluid properties and flow conditions. This

assumption is based on df/dD being much smaller than 5f/Do t for the

p
term 5f/Dopt-df/dD which appears in Equation (3.49) if the equation

is divided by D0 However, for power law fluids in laminar flow,

£
df/dD can vary ftom 20% to 5f/D for n =1 to 74% of 5f/D for n = 0.1.
For H-B fluids, df/dD was found to be as much as 68% of 5f/D.
Therefore, the assumption of df/dD << 5f/D is questionable.

In addition, the mode1 was verified by comparing the Dopt
obtained analytically (Equation (3.49)) and graphically (Figure 2)
as will be shown later.

4.2 Cost Parameters and Other Pertinent
Data for a Pumping System

Consider a pumping system consisting of 100m of 304 stainless
steel tubing with both ends at the same pressure and elevation. The
tube system includes three tees (used as elbow), three 90° elbows,
twenty-one union couplings, and two plug valves giving an overall
fittings resistance coefficient of 10. A close coupled sanitary
centrifugal pump is to be used with pump and motor (combined) effi-
ciency of 70%. The variation of the installed tube system costs per
meter length of tube with tube inside diameter are shown in Table 3.
These are plotted on log-log coordinates in Figure 7. As seen, a
straight line described by Equation (2.17) gives the constant Cp and
s shown in the figure and a regression coefficient of 0.95. The
values of Cp and s are also given in Table 4. In addition, the fixed
(a) and maintenance (b) annual cost ratios for the tube system are

presented. The values of a was estimated from Equation (2.16) assuming



48

Table 3. Variation of the installed cost of a tube system per meter
length of tube with tube diameter. Estimated from the
purchase cost (January 1985) of 100 m of Tri-Clover 304
Stainless Steel Tubes (1-3 in tubes are gauge 16, 4 in
tube in gauge 14), polished ID + OD; 3 tees (7MP); 3 90°
Elbows (2CMP); 3 Caps (16AMP); 2 plug valves (DIOMP);

30 Gaskets (40MP-U); 30 Clamps (13MHHM); 36 Furrales
(14RMP). Ladish Company, Tri-Clover Div., Kenosha, Wis-
consin. Installation costs approximated with 1.5 man-hr/
joint-diameter (in) relation (Jeler, 1970), and labor
cost of $35/man hr.
Diameter Installed Cost
0D (in) ID (m) $/M

1 0.0221 36.53

14 0.0348 44.24

2 0.0475 56.57

2% 0.0602 76.35

3 0.0729 94.65

4 0.0974 144.71
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Figure 7. Variation of the installed cost of the
tube system (Table 3) with tube inside

diameter.
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Table 4. Cost parameters for the tube system presented in Table 3.
Based on Figure 7 and Equations (2.18) and (3.36)

cp ($/ms+1) 1097
S 0.93
a (1/yr) 0.18

b (1/yr) 0.10
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an interest rate of 12% and lifetime of 10 years. The value of b
was taken as 10% of the installed cost of the tube system.

The variation of the installed costs of the pump station
with pump size are shown in Table 5. These are plotted in Figure 8.
As seen, a straight line (s' = 1), described by Equation (3.37) gives
the constants CI and CD shown in the figure with a regressibn coeffi-
cient of 0.96. The valves of CI, CD’ and s' are also shown in Table 6
along with fixed (a') and maintenance (b') annual cost ratios for
the pump station. An interest rate of 12% and lifetime of 5 years
were used to estimate a'. As for the tube system, b' was taken as
10% of the installed pump station. In addition, the system is to be
operated 75% of the year (6,570 hrs/yr) and the electrical energy
cost if 0.06 $/kW hr. These and other pertinent data are tabulated
in Table 7.

4.3 Optimum Diameter for a System
Handling Tomato Ketchup

It is desired to determine the most economical diameter

(C__,) for transport of tomato ketchup at a mass flow rate of 4.0 kg/s.

opt
Thiz fluid can be considered to be a homogeneous non-Newtonian fluid
described by the H-B model (Higgs and Norrington, 1971). The fluid
properties at 25°C are given in Table 8.

Using given variables (Tables 4, 6, 7, and 8), the Dopt minimum

cost (C ) power (P), work (W), and pumping system costs (Cpi’ C

T . pu’
min
Cop) at optimum were estimated using the procedure outlined in

Figures 5 and 6. The results are summarized in Table 9. Figure 9
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Table 5. Variation of the installed pump station cost with power
requirements. Estimated from the purchase cost (January,
1985) of Tri-Flo close-coupled sanitrary centrifugal
pumps, C216 (with water cooled rotary seal) and electric
motor (60 cycle 230/460 volt-3 phase), 1750 rpm for
4-2 Hp pumps and 3500 rpm for 1-15 Hp pumps. ("Easy-
Clean" totally-enclosed motor), Ladish Company, Tri-
Clover Division, Denosha, Wisconsin. Installation cost
taken as 25% of the total purchase cost (Peters and
Timmerhaus, 1968).

Power Installed Cost
Hp Watts ($)
1/2 372.9 1313
3/4 559.3 1348
1 745.7 1366
11/2 1118.6 1384
2 1491.4 1484
2 1491.4 1414
3 2237.1 1791
5 3728.5 1876
7 1/2 5592.8 2175
10 7457.0 2225

15 11185.5 2686
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Figure 8. Variation of the installed cost of the
pump station (Table 5) with power
requirements (linear relationship).
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Table 6. Cost parameters for the pump station presented in Table 5.
Based on Figure 8 and Equations (3.37) and (3.38)

¢ ($) 1308

Cp $/W 0.13
s' 1.0

a' (1/yr) 0.28
b’ (1/yr) 0.10

Table 7. Electrical energy cost, hours of operations per year,
combined pump and motor efficiency, summation of the
fittings resistance coefficients, tube length, pressure
and elevation change, and mass flow rate used to estimate
the costs, and optimum diameter for the pumping system
presented in Table 3 and 5

C ($/W hr) 6.0 x 107°
h (hrs/yr) 6570

E 0.70
K¢ 10.0

L (m) 100.0

Ap (Pa) 0

Az (m) 0

M (kg/s) 4.0
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Table 8. Rheological properties (Higgs and Norrington, 1971) and
density (Lopez, 1981) for tomato ketchup at 25°C
n 0.27
K (Pa s") 18.7
Ty (Pa) 32.0
0 (kg/m’) 1110.0
Table 9. Optimum economic tube diameters, pumping system costs, and

work and power requirements, at optimum for a system
(Tables 4, 6, and 7) transporting tomato ketchup with
properties given in Table 8

Dopt (m) 0.06907
CTmin ($/yr m) 45.70
Cpi ($/yr m) 25.58
Cpu ($/yr m) 6.66
Cop ($/yr m) 13.46
W (J/kg) 597.81

P (k Watts) 3.42
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Total cost, Cp

Operating cost, C
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Tube system cost, Cpi

Pump station cost, Cpu
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Figure 9. Variation of tube system cost, pump station

cost, operating cost, and total cost with
tube inside diameter for a system (Table 4,
6, and 7) transporting tomato ketchup with
properties given in Table 8.
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shows the variation of the costs with tube inside diameter. As seen,

D obtained graphically and analytically was 0.06907m for a CT
mi

opt
of 45.70 $/yr m or 5¢/ton of tomato ketchup pumped annually.

n

P was found to be 3.42 kW (4.58Hp). It can also be seen that tube
diameter between 0.0585m and 0.0835m results in total costs which
does not exceed the minimum value by more than 2% and that the
deviation from minimum increases more rapidly as the diameter
decreased. The Reynolds number was found to be less than the criti-
cal Reynolds number for Dopt’ hence the flow was laminar as seen in
Table 10. These values (Table 10) were estimated following the

scheme shown in Figure 4 with the program given in Appendix 7.4.

4.4 Sensitivity Analysis

This section is devoted to study the sensitivity of Dopt on the

various input variables shown in Figure 6. This was done by estima-
tion the percent change of DOpt obtained using a #10% value of each
variable. Even though the analysis is mostly based on the example

of Section 4.3, some general insight can be obtained on the relative
importance of the cost components of the pumping system other variables

in determining D The percent changes of D0 for each .of the

opt’ pt
variables are shown in Table 11. The change in the Cpu variables,

with the excpetion of s', resulted in small changes of D0 This

pt’
is due to the small variation of Cps with P obtained in Figure 8.

Changing s' just changed the nature of this relationship. The varia-
tion of the variables of Cpi and COp resulted in considerable changes

can also be

on the Dopt

of Dopt‘ The greater influence of Cpi and Cop
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Table 10. Flow condition of Do = 0.06907 m for the pumping system

pt

handling 4.0 kg/s of tomato ketchup with properties given
in Table 8

Re 107

He 8.85

f 0.2214

&0 0.2815

Rec 2754.0

£ 0.007506




59

Table 11. Percent change of Dopt with £10% change of imput variable
for the example presented in Section 4.3

Percent change of variable -10% +10%
Variables Percent Change of Dopt
Fluid Properties n -5.11 +5.17
K -3.04 +2.88
o -0.80 +0.78
0 +5.07 -4.39
Pumping System M -4.91 +4.65
L +0.07 -0.07
IKe -0.09 +0.07
Ap -- --
Az -- --
Tube system cost Cp +4.11 -3.58
(Cps) s -5.52 +5.82
a +2.56 -2.36
b +1.39 -1.33
Pump Station Cost C -- --
(Cpy) o -0.43 +0.42
s' -2.62 +5.94
a' -0.32 +0.30
b' -0.12 +0.10
Operating Cost E +4.11 -3.58
(Cop) C, -3.49 +3.30

h -3.49 +3.30
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noticed in Figure 9. Cpu has less influence on Dopt compared to Cop’

An economic balance on Cpi and Co ~along gave a DOpt of 0.06602 m which

P

is 4.42% lower than the value found when Cpu was considered. For the

example to Table 2, Do t excluding C u was found to be 0.855 m, 1.17%

P P

lower than the value found when Cpu was included. The changes of a

and b did not effect the results as much as Cp and s. A change of

+10% in a represents an appropriate change of *#20% in the 1ife-time
(N) or £25% change in interest rate (i). These variations on N and i
result in less than 3% change on Dopt‘ From Equation (3.49), it can

be observed that where using a linear relationship (s' = 1) for CpS

vs. P, the Dopt is independent of the pressure energy change (Ap) and

the elevation change (Az). Even if s' is not equal to one, D ¢ can

op

be assumed to be independent of Ap and Az, since C_ generally varies

pu
little with P. To show this, the data in Table 5 were fitted to the
curve shown in Figure 10. The value of CD’ CI’ and s' for this curve
are given in Table 12. The Dopt using these constants and Az = Ap = 0
was found to be 0.06902 m which is only 0.07% lower than the value
found using the linear relationship of Figure 8. For Az = 20 m and

Ap = 0, the Do was found to be 0.46% lower. This variation was

t
also obtained ?or Az = 0 and Ap = 217.78 kPa (2.15 atm) which shown
the small influence of Ap and Az have on Dopt'

The changes on L and K¢ also produced small changes on Dopt;
hence, using the constant Kg¢ value of Newtonian fluids in turbulent
flow for approximating non-Newtonian fluid behavior will introduce

negligible error. As seen from Equation (3.49), Dopt can also be
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Figure 10. Variation of the installed cost of the

pump station (Table 5) with power
requirements (non-linear relationship).
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Table 12. Cost constants of Equation (3.37) for the pump station
presented in Table 5 based on Figure 10

¢ ($) 1075
Cy ($/WS") 5.53
s' 0.60

assumed to be independent of Kf if the tube length is much greater

than the Do expected. Otherwise, the summation of the resistance

pt
coefficient per unit length of pipe (ZKf/L) can be used as an appro-
ximation without greatly effecting the results. Notice also that if

s' =1 and L.>>Dopt or an approximation of ZKf/L is used, D0 is also

pt
independent of L. In other words, DOpt can be estimated from the
costs of a unit length of tube/pipe (e.g., one meter). The small

effect of the error of Ap, Az, EKf, and L on Do is of great value

pt
since these variables are usually not well known in preliminary sizing
of a pipe system. Finally, as seen in Table 11, *10% change in the
fluid properties and mass flow rate, except for the yield stress,

resulted in considerable change on Dopt‘

4.5 Opti Diameter Using A t Vi ities
The optimum diameter (Dopt)’ pumping system costs, power
requirements and work requirements to transport tomato ketchup were

estimated assuming Newtonian flow behavior and apparent viscosities

(“a) of 4.723 Pa s and 1.715 Pa s to show the problems that may arise
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from this practice. The value of uy were calculated from Equation

1 and 50 s'l, respectively, to

(2.6) using a rates of shear of 15s~
simulate point measurement (such as those which might be made with a
Brookfield viscometer) at these shear rates. The results, using My =
4.723 Pa s, are shown in Table 13 and compared to the results of

Table 9 (Section 4.3). As seen, as Do  Was over estimated'signifi-

P

cantly given a CT 20.63% higher and a P value 37.56% lower. However,
min

this D0 t does not give the actual minimum as seen in Table 14 which

Y
illustrates the actual pumping system costs, and work and power
requirements estimated using the H-B model at D = 0.1138 m (the Dopt
obtained using My = 4.723 Pa s). As seen, D = 0.1138 m gives a total
cost which deviates from the minimum by 15.4%. In addition, the
actual power requirement is 33.78% lower than the one estimated using
the apparent viscosity. If the pumping system was designed using

this apparent viscosity (4.723 Pa s), the tube system cost (Cpi) and
pump station cost (Cpu) would be estimated to be 40.7 $/yr m and

6.02 $/yr m for a tube size and pump size of 0.1138 m and 2.13 kWatts,
respectively (Table 13). However, the operating cost would be 6.28
$/yr m since the actual power requirement at D = 0.1138m is 1.59
kWatts (Table 14). So the total cost for this system wou]d be

53.0 $/yr m which is 15.97% higher than the one in Table 9. In
addition, the system would have a oversized (hence, less efficient)
pump.

Table 15 shows the results obtained using Hy = 1.715 Pa s and

a comparison with the values of Table 9. The Dopt for this case was

found to be 0.09271 m, 34.23% higher than the one obtained in Table 9.
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Table 13. Optimum economic tube diameter, pumping system costs, and
work and power requirements at optimum estimated assuming
Newtonian flow behavior and an apparent viscosity of
4,723 Pa s

Results for % Difference with
_ the results of
Dopt (m) 0.1138 +64.76
CT ~ ($/yr m) 55.13 +20.63
min

cpi ($/yr m) 40.7 +59.11

Cpu ($/yr m) 6.02 - 9.61

Cop ($/yr m) 8.41 -37.56

W (J/kg) 373.25 -37.56

p (kWatts) 2.13 -37.56

Table 14. Pumping system costs, and work and power requirements

estimated using the H-B model for D = 0.1138 m

Cr ($/yr m)

Chi  (8/yr m)
Cou  ($/yrm)
Cop  (8/yr m)
W (J/kg)

P (kWatts)

52.74

40.7

5.76

6.28

279.0
1.59
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Table 15. Optimum economic tube, diameter, pumping system costs,
and work and power requirements at optimum estimated
assuming Newtonian flow behavior and an apparent vis-
cosity of 1.715 Pa-s

Results for % Difference
y. = 1.715 Pa-s with Results
a of Table 9

Dopt (m) 0.09271 +34.23

Cr ($/yr m) 46.42 + 1.58

min

Cpi ($/yr m) 33.63 +31.47

Cpu ($/yr m) 5.84 -12.31

Cop ($/yr m) 6.95 -48.40

W (J/kg) 308.49 -48.40

P (kWatts) 1.6 -48.40
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Again, this Dopt does not give the actual minimum as seen in Table 16.
In this case, the total cost deviated from minimum by 5.51%. From
Tables 15 and 16, it can also be séen that the actual power requirement
at D =0.09271 m is 18.7% higher than the one estimated using the
apparent viscosity. If the tube size and pump size were to be
selected, base or Table 15, the pumping system would have a undersized
pump uncapable of meeting the actual operating conditions. Therefore,
the pump would have to be replaced or the operating time would have

to be increased resulting in a more expensive system.

As these two examples show, the use of My and Newtonian flow
behavior to design non-Newtonian handling systems may lead to errors

depending on the rate of shear at which My Was measured.

4.6 Optimum Diameter for a System Handling
a Herschel-BulkTey Fluid in Turbulent Flow

A problem was selected to test the optimum diameter model for
a H-B fluid that resulted in a Dopt for which the flow was turbulent.

For this purpose, the Do ¢ Was estimated for a hypthetical H-B fluid

Y
with properties given in Table 17 and the cost data shown in Tables 4,

6, and 7. The results at CT are shown in Table 18. The flow
min
condition for Dopt was found to be turbulent (Table 19) and the

variation of the costs with D is shown in Figure 11. The Dopt
obtained graphically and analytically was found to be 0.04065 m

for a C of 24.16 $/yr m confirming Equation (3.49) for turbulent

T .

min

flow. The diameter range, which CT did not exceed the CT by more
min
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Table 16. Pumping system costs, and work and power requirements
estimated using the H-B model for D = 0.09271 m

Cr ($/yr m) 48.22
Coi ($/yr m) 33.63
Cpu ($/yr m) 6.04
Cop ($/yr m) 8.55
W (J/kg) 379.46
P (kWatts) 2.17

Table 17. Rheological properties and density for a hypothetical
Herschel-Bulkley fluid

n 0.70
K (Pa s™) 0.03
1 (Pa) 2.0

o (kg/m) 1400.0
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Table 18. Optimum economic tube diameter pumping system costs and
work and power requirements, power at optimum for a
system (Table 4, 6, and 7) transporting a H-B fluid
with properties given in Table 17
Dopy (m) 0.04065
CT ($/yr m) 24.16

min
Cpi ($/yr m) 15.62
cpu ($1/yr m) 5.37
Cop ($/yr m) 3.17
W (J/kg) 140.68
P kWatts 0.80
Table 19.

Flow condition at DOpt = 0.04065 m for the pumping system

handling 4.0 kg/s of a H-B fluid with properties given
in Table 17

Re 2.40 x 10°
He 1.88 x 10°
£ 0.004883
£, 0.1207

Re, 6.34 x 10%
£ 0.08200
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Figure 11. variation of tube system cost, pump station

cost, operating cost, and total cost with
tube inside diameter for a system (Tables 4,
6, and 7) transporting a H-B fluid with
properties given in Table 17.
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than 2%, was 0.0365 m to 0.046 m, which is smaller than the example
of Section 4.3. As observed in the previous example, the total
cost deviated from minimum most slowly as the diameter increased
(Figure 11). This rate of increase is practically given by Cpi

as seen from the similarity of the slopes of the CT and Cpi curves

for D > Dopt’



5. SUMMARY AND CONCLUSIONS

1. An equation to determine the total annual cost of a
pumping system as a function of tube diameter (based on the costs
of the tube system, pump station, and operation) has been developed
for system handling Herschei-Bu]k]ey fluids under laminar, transitional,
or turbulent flow condition.

2. An equation to determine the optimum economic tube
diameter has been developed for pumping systems handling Herschel-
Bulkley fluids under laminar, transitional, or turbulent flow condi-
tions.

3. The pump station cost had less influence than the
operating cost in determining the optimum economic tube diameter.

4. The optimum economic tube diameter is independent of any
elevation difference (Az) and pressure energy difference (Ap) in the
system if a Tinear relationship (s' = 1) is used to correlate the
pump station cost to power requirements. In addition, Az and Ap do
not have to be known accurately if the variation of the pump station
cost with power is small.

5. The optimum ecnomic tube diameter can be obtained from
the pumping system costs of a unit length of tube if a linear rela-
tionship is used to correlate the pump station cost to the power

requirements (s' = 1) and the length of the tube system is much
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greater than the tube dijameter (L >> Dopt) or the frictional loss
in fittings and values is approximated as the summation of the
fittings resistance coefficient per unit length of tube.

6. The use of apparent viscosity and Newtonian flow behavior
for non-Newtonijan fluids caused significant errors in the estimation
of the optimum economic tube diameter, total annual cost, and power

requirements of the pumping system.
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TURBULENT FLOW
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APPENDIX A
ALTERNATIVE EQUATIONS FOR f AND df/dD FOR H-B FLUIDS IN
TURUBLENT FLOW

Torrance (1967) developed a friction factor relationship for

H-B fluids in turbulent flow as

1 2.275 , 1.97 L
7 0.45 =+ === an (1 gO)
n
+ 1;]97 on [Re % fl'"/ﬂ (A.1)

where

Re and £, are given by Equations (3.17) and (3.15),
respectively

Combining the definition of f, Re, and He, Equation (3.15) can be

rewritten as

2 2-n

z-n( n >
.- 16 _(2He) > 1+3n -~ (A.2)

Rézrﬁ- f

g

Equations (A.1) and (A.2) gives the friction factor as a function
of Re, He, and n. Replacing v with Equation (3.34) in Equation (3.17)
and £, With Equation (3.15) in Equation (7.1), the derivative of

f with respect to D from Equation (7.1) gives
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4 3-94[4-3n(1- go)]f3/2

D

—h

(A.3)
|:3.94f* " (1.-1.97f*)n(1-g0)r| D

This equation can be used instead of Equation (3.48) if the Torrance
relationship (Equation (A.1)) is used to estimate the fanning fric-
tion factor in turbulent flow. However, it is not clear what laminar-
turbulent criterium should be used with the Torrance equation.

Equation (A.3) was confirmed in the same manner as Equation (3.46).
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APPENDIX B

VERIFICATION OF df/dD EQUATION FOR LIMINAR FLOW

The friction factor relation for power law fluids in laminar

flow is given by Equation (3.16) with W|€ =1 as
o=1

¢-16 (B.1)

where

Re is defined by Equation (3.17)

When Equation (B.1) is differentiated with respect to D, it yields

D ReD ’

When a value of zero for 50 (TO'= 0).is substituted into Equation
(3.46), it reduces to Equation (B.2), indicating that Equation (3.46) is
correct for the special case of the power law fluid. Equation (B.2)
was also obtained by Darby and Melson (1982), and indirectly by
Skelland (1967).

For the Bingham plastic fluid, the friction factor is given by

Equation (3.16) with K = n, and Re and y evaluated at n = 1 as
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Pk m (8.3)
where

Re ey = Lo (8.4)
and

w‘n=1= 1 -%€°+%€g (8.5)

When Equation B.6) is differentiated with respect to D, it gives

4 (1 - &)
64.50 W + 16

df
@ PR (B.6)
Refpay * ¥fpoy "0 (14 [3 Vn=1 :I %o
If one evaluates Equation (3.45) at n=1, it can be shown that
aa-g)
o=t = m——— (B.7)

Then if n=1 is substituted in Equation (3.46), it reduces to Equa-
tion (B.6) which shows that Equation (3.46) is correct for the
special case of the Bingham plastic. Similar results are found when
considering the solution for a Newtonian fluid. In addition to the
method just outlined, Equation (3.46) was confirmed numerically using
Equation (3.48). The properties of tomato ketchup (Table 8) and

the H-B fluid given in Table 17 along with mass flow rate of 4.0 Kg/s
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were considered. These fluid properties and flow condition were

also used for the examples given in Section 4.3 and 4.6, respectively.
The variations of the friction factor with diameter for tomato

ketchup and the H-B fluid are given in Figures 12 and 13, respectively.
These curves can be obtained using the scheme shown in Figure 4.

The analytical value obtained for df/dD at D = 0.06907m (the Dopt
found in Section 4.3) was found to be 11.0585. Using x = 0.0001 in
Equation (3.48), the numerical value was found to be 11.0586 which

is only 0.001% higher than the analytical one. For the H-B fluid
(Table 17), the analytical value of df/dD at D = 0.1m was found to

be 1.045, 0.02% lower than the numerical value (1.0452) obtained

using x = 0.001. It is clear that the analytical results are very
close to the numercial results and small differences can be attributed

to the limitations associated with the numerical solution technique. .
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APPROXIMATION OF df/dD FOR TURBULENT FLOW



APPENDIX C

APPROXIMATION OF df/dD FOR TURBULENT FLOW

As seen from Figure 14 and 15, the variation of the friction
factor in the turbulent region is small compared to the laminar region
for these examples. However, higher variation, similar to the laminar
region, may be found for higher values of He. Since the numerical
solutions [using Equation (3.48)] of df/dD for the x values used
gave a good approximatjon of the analytical solution in the laminar
region, it is‘expected that the same will be true for the turbulent

region. The following values of x are therefore suggested:

Diameter (m) X
0.001 < D < 0.01 0.00001
0.01 < D < 0.10 0.0001
0.10 < D < 1.00 0.001
1.00 < D<10.00 0.01

The value of df/dD for D = 0.04065m, the Dopt obtained in the
example of Section 4.6, was found to be 0.10929. The friction factor
may increase and then decrease for the region just below the diameter
where turbulent flow start (Figure 15). The backward difference

method with the above values of x can be used to evaluate df/dD in
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this region. However, designing so close to the laminar-turbulent
transition is not recommended due to the unstability of the flow

and variation in frictional pressure losses.
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APPENDiX D

LISTING OF COMPUTER PROGRAF

PROGRAM FFTCOD(INPUT,CUTPUT,TAPE10=INPUT ,TAPE20=0UTPUT)

WRITTEN BY EDGARDO J. GARCIA-CAES
COMPLETED MARCH, 1985

THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS:

1. CALCULATES THE FRICTION FACTOR IN LAMINAR, TRANSITIONAL OR
TURBULENT FLOW GIVEN DE.DIM,K . MFR.N AND YS

2. CALCULATES THE PUMPING SYSTEM COSTS AND WORK AS A FUNCTION

OF DIM GIVEN API.APP . BPI,BPP,CO,.CEP,CHEL,CHPS,CI1,CP,DE,EFF,

HR,K,LEGT.MFR N.PP1 PPP SUFFC AND YS

CALCULATES THE OPTIMUM ECONOMIC DIAMZITER GIVEN API APP,

BPI.BPP.CD,CEP,CHEL,CHPS.C]I . CP DE,EFF ,HR,LEGT ,MFR.N,PPI PPF,

SUFFC ANC YS

THE PROGRAM FIRST GIVES THE FOLLOWING OPTIONS: 1- TO

w

ESTIMATE THE FANNING FRICTION FACTOR, 2- TO GENERATE COSTS

V.S. DIAMETER DATA. TO ESTIMATE THE OPTIMUM PIPE DIAMCTER.

ONE MUST FIRST ESTIMATE THE COSTS FOR VARIOUS DIAMETERS(OPTION 2) 1IN
ORDER TO SELECT THE RANGE OF THE DIAMETER WHERE THE OPTIMUN DIAMETER
IS _LOCATED. THAT IS, A RANGE OF DIAMETERS THAT CONTAIN THE MINIMUM
TOTAL CCST. AFTER OPTION 2 IS COMPLETED., THE PROGRAM GIVES THE
FOLLOWING OPTIONS: 1- TO START THE PROGRAM. 2- TO ESTIMATE THE
OPTIMUM DIAMETER,3- TO CONTINUE WITH A NEW RANGE OF DIAMETERS (E.G.
IF THE RANGE WHERE THE OPTIMUM DIAMETER IS LOCATED HAS NOT BEEN
FOUND). 4- TO EXIT THE PROGRANM. AFTER THE OPTIMUM DIAMETER HAS BEEN
FOUND, THE PROGRAM GIVES THE FOLLOWING OPTIONS: {1- TC PRINT THZ COSTS

V.S. DIAMETER DATA GENERATED DURING THE OPTIMUM DIAMETER
ITERATION, 2- TO EXIT THE PROGRAM. TO ESTIMATE THE PUMPING
SYSTEM _COSTS AND WORK FOR A GIVEN DIM, START THE PROGRAMN

AND ENTER OFTION 2. THEN, WHEN ASKED FOR THE DIAMETER RANGE,
ENTER THE SAME VALUES FOR THE DIM LOWER & UPPER BOUNDS AND ON:
FOR THE NUMEER OF DATA POINTS.

N MUST BE GREATER THAN O. AND LESS THAN 2.0 FOR TURBULENT FLOW
#LE $0gg¥é0~ NUMBERS IN COMMENT STATEMENTS REFER TO THE ONES IN
H H .

LIST OF VARIABLES:

API= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRESSED AS A
FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE
SYSTEM,1/YR,EQ.(2-16)

APP= ANNUAL FIXED COST OF THE PUMP STATION EXPRESSED AS
FRACTION OF THE INITIAL COST OF THE PUMP STATION,1/YR,EQ.(2-16)

BPI= ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EXPRESSED
AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE
SYSTEM, 1/YR

BPP= ANNUAL MAINTAINANCE COST OF THE PUMP STATION EXPRESSED
AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PUMP
STATION, 1/YR

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST,$/W==PPP

CEP= COST OF ELECTRICAL ENERGY,$/W HR

CHEL= ELEVATION CHANGE.,M

CHPS= PRESSURE CHANGE,PA

Cl= EMPIRICAL CONSTANT FOR THE PUMP STATION COST,.$

CONDIT= FLOW CONDITION 1.E. LAMINAR,TURBULENT OR CRITICAL

CP= EMPIRICAL CONSTANT FOR THE PIPE SYSTEM COST,$/M==(1+FP])

CPCT1= TOTAL ANNUAL COST OF INSTALLED PIPE/TUBE SYSTEM

PER UNIT LENGTH OF PIPE/TUBE,$/YR M.EQ.(3-36)

CPCT2= TOTAL ANNUAL COST OF INSTALLED PUMP STATION

PER UNIT LENGTH OF PIPE/TUBE.$/YR M,EQ. (3-38)
DE= FLUID DENSITY ,KG/M==3
DELTA= DIAMETER INCREMENT FOR THE GENERATION OF COSTS V.S.
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DIAMETER

GUIIII0000

AMETER LDVER BOUND . ¥
TER UPPER BOUND
[e] A. F-32YENEY of pume anp moToR
SHEARED PLUG RADIU
T TRSNSITION VALUE OF 0

ATED DURING THE OPTIMUM

£ OPTIMUM

ok ?D'NYS GENERATED DURING
N
chYoR O-YES; 1-NO; 2-TOC MANY ITERATION

WOR
VS: YIELD STRESS
LIST OF SUBROUTINES:

ST OF FUNCTIONS

MCRIT= CRITICAL DIAM
ICFAC= FRICTION FA! CTDR FUNCTION

BOOONOOOOHNO00
Do

REAL MFR.K,N
PARAMETER (
HARACT

83
<8
o
o
2
3
-
n
@
21

LL.TOLT
\2%1.E-3/

) R e Te

CUMMDN/ROOTNO
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0T=0
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VUVUVYVUUVEEEVVDE
VDVDVONDODODN0 N0
2Z2222ZAAAZZ2Z

IF(NANS.NE.1.AND.NANS.NE.2) GO TO 5
INPUT OF FLUID PROPERTIES

. 1. ENTER 1 TO ESTIMATE THE FANNING FRICTI
.’ 2. ENTER 2 TO GENERATE CCST V.S. DIAMETER DATA’

ON

FACTOR'

PRINT=
WRITE(20.110)
WRITE(2C,110)
PRINT=
PRINT=
PRINT=,/ ENTER FLOW INDEX . ... ...ttt .
READ~> N
PRINT*
;Eng.'l ENTER CONSISTENCY COEFSIZIENT, (PA SEC==N)
PRINT~
PRINT»,’ ENTER YIELD STRESS. (P&). . ... ... ..
REA&D~,
PRINT=
PRINT =, ENTER FLUID DENSITY, (KG/M==3). ... ... ... ..
READ= ,DE
PRINT=
PRINT=
INPUT OF PUMPING SYSTEM VARIABLES
WRITE(20,3490)
PRINT=
PRINT~
PRINT=,’ ENTER MASS FLOW RATE, (KG/SEC).........viiunn.. ’
READ= .MFR
IF(NANS.EQ.1) GO TO 10
GC TO 15
PRINT=
PRINT=,’ ENTER PIPE DIAMETER, (M).......... ... ... ... ...
READ» ,DIM

ESTIMATION OF THE FRICTION FACTOR
FFX=FRICFAC(DIM)
OUTPUT OF THE RESULTS OF THE FRICTION FACTOR

PRINT =
PRINT=
wRITE(zo,asog
WRITE (20,350
PRINT=

WRITE (20, 150) CONDIT
PRINT=
w91T5220.1so RE
WRITE(20,170) HE
WRITE (20, 180) FFX
wRITE§20.380 EO
WRITE (20,370
PRINT=

WRITE (20, 120)
PRINT»
WRITE(20,130) REC
WRITE(20,140) FC
WRITE(20,360) EOC
WRITE(20.370

GO TO 75
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MORE INPUT OF PUMPING SYSTEM VARIABLES

PRINT=

PBINT'.' ENTER PIPE LENGTH., (M). .. ... ... .. . . . ...
REAC=*  LEGT

PRINT»

PRINT=,’ ENTER PRESSURE CHANGE. (PA). .. ... ... . ... ... ...
READ= CHPS

PRINT~

PRINT>,’ ENTER ELEVATION CHANGE, (M). ... ... ... ... . . ... ‘
READ> CHEL

PRINT=

PRINT=,’ ENTER SUMMATION OF THE FITTINGS RESISTANCE’
PRINT=, COEFFICIENTS . . i e e e e e e e e
READ~ ,SUFFC

PRINT=»

PRINT=,’ ENTER COMBINED FRACIONAL EFFICIENCY’

PRINT» , OF PUMP AND MOTOR. ... . ittt e
READ=~ EFF

PRINT~

PRINT-

INPUT -OF TUBE SYSTEM COST VARIAEBLES

WRITE(20,340)
PRINT»

PRINT »

PRINT=,’ ENTER EMPIRICAL CONSTANT FOR THE TUBE SYSTEWM’
PRINT=, ' COST, CP, ($/M==(1+S) ). ... ... ... .
READ- . CP

PRINT-.'IENTER EXPONENT FOR THE TUBE SYSTEM COST, S........

PRINT =

PRINT=,’ ENTER ANNUAL FIXED COST OF THE TUBE SYSTEM’

PRINT =,/ EXPRESSES AS A FRACTION OF THE INITIAL’
PRINT= ' INSTALLED COST OF THE TUBE SYSTEM...........
READ~> , API

PRINT =

PRINT~,’ ENTER ANNUAL MAINTAINANCE COST OF THE TUEE'’

PRINT =, SYSTEN EXPRESSED AS A FRACTION OF THE’

PRINT =, ’ INITIAL INSTALLED COST OF THE TUBE SYSTEM. ..
READ= ,BPI

PRINT =

PRINT =

WRITE (20.340)
PRINT»
PRINT»
PRINT=, * ENTER EMPIRICAL CONSTANT FOR THE PUMP STATION’
PRINT=, ’ COST, CI, ($) .ottt i ’
READ=.CI
PRINT»
PRINT=,’ ENTER EMPIRICAL CONSTANT FOR THE PUMP STATION’
PRINT=~ .’ COST, CD, ($/WATTS=»S-PRIME)................ ‘
READ=,CD
PRINT =
PRINT=.‘ ENTER EXPONENT FOR THE PUMP STATION COST,S-PRIME..
READ*> ,PPP
PRINT =
PRINT=,’ ENTER ANNUAL FIXED COST OF THE PUMP STATION’
PRINT=, ’ EXPRESSED AS A FRACTION OF THE INITIAL’
PRINT=, ' INSTALLED COST OF THE PUMP STATION..........
READ=, APP
PRINT =
PRINT~>,’ ENTER ANNUAL MAINTAINANCE COST OF THE PUMP’
PRINT~, ‘ STATION EXPRESSED AS A FRACTION OF THE’
PRINT =, ' INITIAL INSTALLED COST OF THE PUMP STATION..
READ=~ .BPP
PRINT =
PRINT=

INPUT OF OPERATING COST VARIABLES
WRITE(20,340)
PRINT~
PRINT =
PRINT-.'FENTER COST OF ELECTRICAL ENERGY, ($/WATTS HR).....
READ=.
PRINT=
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313= PRINT=,’ ENTER HOURS OF OPERATION PER YEAR.................

314= READ=,

315+ PRINT=

316= PRINT=

317= WRITE(20.340)

318= IF(NANS . EC.2) GC TO 60

319= GO TO 5

320=20 CONTINUE

321=C

322=C ESTIMATION OF CRITICAL D]JAMETER THROUGH

gggsg ITERATION FROM EQ.(3-47) & (2-21)
=

325=C THE INITIAL DIC RANGE IS OBTAINED FROM EQ.(3-17) & (3-34)

g%gcg WITH RE=1.E3 & RE=1.E6 FOR DIC4 & DICS,RESPECTIVELY
=

328= DIC1=1.E3-PI*-(2.-N;vK-(§3.-N+1.)/(A.tN))-*N

329= DIC2=1.E6=PI==(2.-N)=K~((3.=N+1_)/(4 . >N))>=N

330= DIC3=2.==(7, -5.«N)=DE=~(N-1.)*MFR==(2.-N)

331= DIC4=(DIC1/DIC3)--}1./(3.-N-4 ;)

332« DICS=(DIC2/DIC2)==(1./(3.=N-4.))

333=2% CALL BISECT2(DIC4,DIC5,40,TOLA,DIMCRIT,DIC)

334= IF (NORDOT.E0.0) GO TC 30

335= PRINT =

336= PRINT~

337= PRINT=~,’ THE CRITICAL DIAMETER. DIC WAS NDOT FOUND’

338= PRINT~>

229= PRINT~».,’ IN THE RANGEZ ' ,DIC4,’ <= DIC <= ‘,DICS

340= PRINT~

341= PRINT=,’ ENTER A WIDER RANGE FOR DIC’

342= READ-.DIC4.DICS

343= NOROOT=C

344= GO TO 2%

345=30 CONTINUE

346=C

347=C ESTIMATION OF THE OPTIMUM TUBE DIAMETER

g:gxg THROUGH ITERATION FROM EG.(3-49)

350= PRINT=

351= PRINT =

352= PRINT=.’ ENTER RANGE FOR THE OPTIMUM PIPE DIAMITER, (M)....

353=35 READ>,DI1.DI12

354= CALL BISECT1(D!1.DI2,.50.70LC,0PDIAM)

355= 1F§NOR007.50.2; GO TO 4C

356= IF(NOROOT.EQ.O0) GO TO 45

3357= PRINT=

358= PRINT=

358= PRINT>,’ THE OPTIMUM PIPE DIAMETER WAS NOT FOUND IN‘

360= PRINT=,’ THE RANGE GIVEN. ENTER A NEW RANGE, (M)...........

361= NOROQT=0

362= GO TO 35

363=40 PRINT»

364= PRINT»

365= PRINT=,’ TOO MANY INTERACTION TO FIND THE OPTIMUM PIPE’

366= PRINT>,’ DIAMETER. ENTER A SMALLER RANGE. (M).............

367= NOROOT=0

368= GO TO 35

369=C

370=C ESTIMATION OF THE PUMPING SYSTEM CCSTS AND

g;;-g WORK AT THE OPTIMUM DIAMETER

373=45 CALL TOTCOST(OPDIAM,WORK,TOCT,OPCT,CPCT1,CPCT2)

375=C OUTPUT OF RESULTS AT THE OPTIMUM DIAMETER
376=C
=
377= PRINT =
378= PRINT=
379+ PRINT»
380= WRITE(20.350§
381= WRITE (20,350
382= PRINT=
2 Ml ey woe
&
385= WRITE(20,210) OPCT
386« VRITE}20.22O CPCT1
387= WRITE 20.230; CPCT2
3e8= WRITE(20,240) WORK
389= PRINT=
390= WRITE(20, 150) CONDIT
381= PRINT»
392= WRITE(20,160) RE
393= WRITE(20,170) HE
394r= WRITE(20,180) FFX
395= WRITE(20,380) EO
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SUBROUTINE TOTCOST(DI,WORK,TOCT,OPCT,CPCT1,CPCT2)
THIS SUBROUTINE CALCULATES THE FOLLOWING:

1. WORK PER UNIT MASS.EO.%3-35

2. POWER REQUIREMENTS.EQ.(2-13

3. PUMPING SYSTEM COSTS, EQ.(2
(3-38) & (2-7

NOTE: POWER IS ONLY USED INTERNALLY
LIST OF VARIABLES:

API= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRESSED AS A
FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE
SYSTEM, 1/YR.EQ.(2-16)

APP= ANNUAL FIXED COST OF THE PUMP STATION EXPRESSED AS
FRACTION OF THE INITIAL COST OF THE PUMP STATION.1/YR,EQ.(2-186)

BPI= ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EXPRESSED
AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE
SYSTEM, 1/YR

BPP= ANNUAL MAINTAINANCE COST OF THE PUMP STATION EXPRESSED
AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PUMP
STATION, 1/YR

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.$/W==PPP

CEP= COST OF ELECTRICAL ENERGY,$/W HR

CHEL= ELEVATION CHANGE .M

CHPS= PRESSURE CHANGE,PA

Cl= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.$

CP= EMPIRICAL CONSTANT FOR THE PIPE SYSTEM COST,$/M= -(1+pp1)

CPCT= TOTAL ANNUAL CAPITAL COST OF INSTALLED EQUIPME

PER UNIT LENGTH OF PIPE/TUBE,$/YR M
CPCT 1= TOTAL ANNUAL COST OF INSTALLED PIPE/TUBE SYSTEM
PER UNIT LENGTH OF PIPE,/TUBE.$/YR M,EC.(3-36)
CPCT2= TOTAL ANNUAL COST OF INSTALLED PUMP STATION
PER UNIT LENGTH OF PIPE/TUBE,$/YR M,EQ. (3-38)

DE= FLUID DENSITY,KG/M==3

Dl= TUBE/PIPE INSIDE DIAMETER.M

EFF= COMBINED FRACTIONAL EFFICIENCY OF PUMP AND MOTOR

FFX= FANNING FRICTION FACTOR

HR= HOURS OF OPERATION PER YEAR

K= CONSISTENCY COEFFICIENT . PA S==N

LEGT= TUBE/PIPE LENGTH,M

MFR= MASS FLOW RATE,KG/S

-20).(3-36)

OPCT= TATAL ANNUAL OPERATING COST PER UNIT LENGTH OF
PIPE/TUBE,$/YR M,EQ.(2-20)

Pl= 3.141593

POWER= POWER REQUIREMENTS,.EQ.(2-13)

PPI= EXPONENT IN THE PIPE SYSTEM COST EQUATION

PPP= EXPONENT IN THE PUMP STATION COST EQUATION

SUFFC= SUMMATION OF THE FITTINGS RESISTANCE COEFFICIENT

TOCT= TOTAL ANNUAL COST OF A PUMPING SYSTEM PER UNIT
LENGTH OF PIPE/TUBE,$/YR M,EQ.(2-7)

WORK= WORK PER UNIT MASS,J/KG,EQ.(3-35)

WORK1= WORK REQUIRED DUE TO PIPE FRICTION

WORK2= WORK REQUIRED DUE TO FITTINGS FRICTION

WORK3= woax DUE TO PRESSURE AND ELEVATION DIFFERENCE IN

HE SYSTEM
YS= YIELD STRESS,PA
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CALCULATION OF WORK FROM EQ.(3-35)
WORK =32, =LEGT*MFR=MER=FFX/(PI1=0D1=DE=DE
WORK2=8 -MFF-MFR SUFVC/(PI P1=DE=DE=-DI
HORKJtcHPS/DE =CH

ORK = wDﬂK!oUDRKZ‘wDRKB

CALCULATION OF POWER FROM EQ.(2-13)
POWER=MFR=WORK/EFF

CALCULATION OF OPERATING COST FROM EQ.(2-20)
OPCT=CEP=HR=POWER/LEGT

CALCULATION OF TUBE SYSTEM COST FROM EC.(3-36)
CPCT1=(AFI+BPI)=CP=DI1==PPI

CALCULATION OF PUMP STATION COST FROM EOQ.(3-38)
CPCT2=(APP+BPP)=(CI+CD=POWER==PPP)/LEGT

TOTAL ANNUAL CAPITAL COST
CPCT=CPCT14CPCT2

CALCULATION OF TOTAL COST FROM EOQ.(2-7)
TOCT=0PCT+CPCT
RETURN

1==5)
)
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FUNCTION DIMCRIT(DI)

THIS FUNCTION EQUATE THE GENERALIZED REYNOLDS NUMBER
EQ.(3-17). WITH THE CRITICAL REYNOLDS NUBER.EQ.(3-21) TO GIVE
A FUNCTION IN TERM OF DIC FOR A GIVE MASS FLOW RATE.

LIST OF VARIABLES:

A1= LOWER BOUND GUESS OF EOC

A2= UPPER BOUND GUESS OF EOC

DE= FLUID DENSITY,KG/M==3

Dl= TUBE/PIPE INSIDE DIAMETER,

EOC= LAMINAR-TURBULENT TRANSITION VALUE OF EO
:i-HgENERALIZED HEDSTROM NUMBER,EQ.(3-19)

K= CONSISTENCY COEFFICIENT,PA S==N

MFR= MASS FLOW RATE,KG/S

N= FLOW BEHAVIDR INDEX

g?nogT:AEggg INDICATOR: O-YES; 1-NO; 2-TOO MANY ITERATION
PSIC= LAMINAR-TURBULENT TRANSITION VALUE OF Y

RE= GENERAL_LIZED REYNCLDS NUMBER,EQ.(3-17)

REC= LAMINAR-TURBULENT TRANSITION VALUE OF RE.EQ.(3-21)

RECP= HERSCHEL-BULKLEY GENERALIZED CRITICAL REY gg% S NUMBER= REC*PSIC

REC1,REC2.REC3= WORKING VARIABLES TO CALCULATE
RE1,RE2,RE2= WORKING VARIABLES TO CALCULATE RE
TOLC= TOLERANCE ERROR FOR EO.(3-22)

U= MASS AVERAGE VELOCITY,M/S

YS= YIELD STRESS,PA

LIST OF SUBROUTINES:

BISNEWT= ROOT FINDING SUBROUTINE: BISECTION-NEWTON METHODS
LIST OF FUNCTIONS:

DFUN1= DERIVATIVE OF FUNt1 WITH RESPECT TO EOC
FUN1= EQ.(3-22) REWRITTEN AS FUN1(EODZ)=0.
Y= LAMINAR FLOW FUNCTION (PSI).EQ.(3-14)
REAL MFR.X,N,Pl
PARAMETER (PI=3.141583)
EXTERNAL FUN1,DFUN1
COMMON/MFRCCF /MFR K /YSTDEN/YS,DE/FLWIDX/N
COMMON/HEDSTR/HX/TOLER2/TOLC
COMMON/ROOTNO/NOROOT

CALCULATION OF U FROM EQ.(3-34)
U=4.=MFR/(PI=DE=DI==2)
CALCULATION OF RE FROM EQ.(3-17)

5 3.*N+1.))==N
2. )--N

(2 N)
'DE'RE1'RE2 RE3/K
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CALCULATION OF HE FROM EQ.(3-19)
S.EQ.0.) THEN

DE/YS)'DI-'2-(YS/K)--(2./N)
D IF

IF(HE.EQ.O0.) GO TO 10

CALCULATION OF EOC THROUGH ITERATION FROM EQ.(3-22)
HX!HE

g ,40, Tch FUN1,DFUN1,EOC)

T=
T =
I'.’ THE DIMENSIONLESS UNSHEARED PLUG RADIUS,EOC,WAS NOT’
i-.' FOUND IN THE RANGE ‘/,A1,’ <= EDC <= ’, A2
PRINT>,’ ENTER A NEW RANGE FOR EOC: O. <= EOC < 1.0 ...... ‘
READ» A% A2
NOROOT=0
GC 7O 5
CONTINUE

CALCULATION OF REC FROM EQ.(3-21)
REC1=33600.=SORT(1. /2’ ) N/(1 +3.*N)==2
REC2=E2 +N)==((2. +N)/ N))
REC3= -EOC)==(1.+2.

CALCULATION OF PSI-CRITICAL FROM EQ.(3-14) WITH EO=EOC
PSIC=Y(EOC)
CONTINUE CALCULATION OF REC

RECP*REC1*REC2'PSIC"(2 /N)/REC3
REC=RECP/PSIC

DIMCRIT 1.-REC/RE

RETURN

END
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SUBROUTINE BISECT1(XA, XB,MAX,ERROR ,NEWX)

THIS SUBROUTINE COMPUTES THE OPTIMUM DIAMETER FROM
EC.(3-49) (COMPUTES THE ROOT OF THE FUNCTION OPTDIAM). 1IT
IS A COMBINATION OF THE BISECTION AND SECANT ITERATION
METHOD. THE BISECTION INTERVAL IS USED TO START THE
SECANT ITERATION. THE PROGRAM CONTINUES WITH THIS METHOD
UNTIL THE SOLUTION IS FOUND OR THE FOLLOWING SITUATIONS
OCCUR: 1- X FALLS OUTSIDE THE INTERVAL KNOWN TO CONTAIN THE
SOLUTION:; 2- X 1S OUT OF RANGE OR INDEFINITE: 3- TOC

FAR AWAY FROM THE SOLUTION; 4- THE NUMBER OF ITERATIONS
EXCEEDS MAX. IF THESE SITUATIONS OCCUR, THE PROGRAM
SWITCHh TO THE BISECTION METHOD TO OBTAIN A SMALLER
INTERVAL. REFERENCE: MOORE.E. 1982. "INTRODUCTION TO
FORTRAN AND ITS APPLICATION". ALLYN AND BACON, INC..
BOSTON,MASS.

LIST OF VARIABLES:

DIFFe= DIFFERENCE BETWEEN TWO ITERATION POINTS
DIXx= DIAMETER ARRAY GENERATED DURING THE OPTIMUM DIAMETER
ITERATION
ERROR= TOLERANCE ERROR
FA= VALUE OF OPTDIAM AT XA
FB= VALUE OF OPTDIAM AT X8
FFX= FANNING FRICTION FACTOR
FFY= FRICTION FACTOR ARRAY GENERATED DURING THE OPTIMUM
DIAMETER ITERATION
FM= VALUE OFf OPTDIAM AT XM
FO= VALUE OF OPTDIAM AT XO
F1= VALUE OF OPTDIAM AT X1
LM= -1 IF X IS INDEFINITE; +1 IF OUT OF RANGE; O OTHERWISE
MAX= MAXIMUM NUMBER OF SECANT ITERATION
NEWX= ROOT OF OPTDIAM
NO= NUMBER OF DATA POINTS GENERATED DURING THE OPTIMUM
DIAMETER ITERATION
NOROOT= ROOT INDICATOR: O-YES; 1-NO: 2-TOC MANY ITERATION
X= POINT FROM THE SECANT ITERATION EQUATION
XA= LOWER BOUND POINT USED IN THE BISECTION METHOD
XB= UPPER BOUND POINT USED IN THE BISECTION MZITHOD
XM= MIDPOINT BETWEEN XA & XE
XO0= SECOND POINT REQUIRED FOR THE SECANT PROCESS
X1= FOCUS POINT FOR THE SECANT ITERATION

LIST OF SUBROUTINES:
SWAP= INTERCHANGE THE VALUE OF TwO VARIABLES
LIST OF FUNCTIONS:

FRICFAC= FRICTION FACTOR FUNCTION
OPTDIAM= OPTIMUM DIAMETER FUNCTION,EQ.(3-49) REWRITTEN AS
OPTDIAM(X)=0.

REAL NEWX,FFY(100),DIX(100)
COMMON/ROOTNO/NOROOT
COMMON/FRICFC/FFX
COMgON/FFVSDI/FFY.DIX.ND

NO=
IF(XA.GT.XB) THEN
CALL SWAP(XA,6XB)

D IF

XsFRICFAC(XA)

?1 =FFX
1)=XA

MTMMONTm

1IF(ND.GT.99) GO TO 95
IF(ABS(F1/F0).GT.5..0R.ABS(FO/F1).GT.5.) GO TO 40
IF(ALOG(ABS(F1)).GT.0..0R.ALOG(ABS(FO)).GT.0.) GO TO 40
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853=C
854=C SECANT ITERATION
855=C
856= DO 30 J=1,MAX
857= IF(ABS(F1).G E BS(FO)) THEN
858= CALL SWAP(FO, {
850= CALL SWAP(XO, x1
860= END IF
861= X=X1-F1=(X1-XO0)/(F1-FO)
862= LM=LEGVAR( X
863= IF (LM.NE.O) GO TO 4C
864-= IF(X.LT.XA.OR.X.GT.XB) GO TO 40
865= DIFF=ABRS(X-X1)
866= IF(DIFF.LE.ABS(X=ERROR)) GO TO 80
867= X0=X1
868= FO=F 1
869= X1=X
870= FFX=FRICFAC(X)
871= NO=NO+ 1
872= FFY}N0;=FFX
873= DIX(ND)=
874= F1=0PTDIAM(X)
875=30 CONTINUE
876=C
g;;ag BISECTION ITERATION
879=40 FFX=FRICFAC(XM)
880= NO=NO+ 1
881= FFY(NO)=FFX
882= DIX(NO)=XM
883= FM=OPTDIAM(XM)
884= IF (FM.EQ.0.) GO TO 70
885= IF (FA=FM.LE.O.) GD TO SO
886= XA=XM
887= FA=FM
888= FO=FA
889= X0=XA
890= F1=FB
891= X1=XB
892= GO TO 60
893=50 XB=XM
894= FB=FM
895= X1=XB
896= F1=FB
897= X0=XA
898= FO=FA
899=60 xm=§xn+xs)/
900= IF (ABS(XA-XB).GT.ABS(XM=ERROR)) GO TO 10
901=70 X=XM
902=80 NEWX=X
903= FFX=FRICFAC(NEWX)
904 = NO=NO+1
905= FFY}NO =FFX
906+= DIX(NO)=NEWX
907= RETURN
908=90 NEWX=(XA+XB)/2.
Q= NOROOT=1
810= RETURN
911=95 NEWX=(XA+XB)/2.
912« NOROOT=2
913= RETURN
914= END
915=C
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FUNCTION OPTDIAM(DI)

THIS FUNCTION EXECUTES THE OPTIMUM DIAMETER EQUATION,
.(3-49), REWRITTEN AS OPTDIAM(DI)=0

LIST OF VARIABLES:

API= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRES

SED AS A
FRACTION OF THE IN;E%AL INSTALLED COST OF TH IP

S

A

PIPE
SYSTEM, 1/YR,EQ.(2-

APP= ANNUAL FIXED COST OF THE PUMP STATION EXPRESSED A
FRACTION OF THE INITIAL COST OF THE PUMP STATION,

BPI= ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EXPRE
AS A FRACTION OF THE INITIAL INSTALLED COST OF TH
SYSTEM, 1/YR

BPP= ANNUAL MAINTAINANCE COST OF THE PUMP- STATION EXPRESS
g%A#IngS}ION OF THE INITIAL INSTALLED COST OF THE PUMP

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST,$/Wx=PPP

CEP= CDST OF ELECTRICAL ENERGY,$/W HR

CHEL= ELEVATION CHANGE

CHPS= PRESSURE CHANGE, PA

CAL CONSTANT FOR THE PUMP STATION COST,

CAL CONSTANT FOR THE PIPE SYSTEM COST, $/M-*(1+PPI)

DENSITY.KG/M==3

IPE INSIDE DIAMETER,M

EFF= COMBINED FRACTIONAL EFFICIENCY OF PUMP AND MOTOR

FFX= FANNING FRICTION FACTOR

HR= HOURS OF OPERATION PER YEAR

K= CONSISTENCY COEFFICIENT PA S==N

LEGT= TUBE/PIPE LENGTH,M

MFR= MASS FLOW RATE,LKG/S

OP1,0P2,0P3,0P4= WORKING CALCULATIONAL PARAMETERS

PI= 3.141593

POWER= POWER REQUIREMENTS,EQ.(2-13)

PPI= EXPONENT IN THE PIPE SYSTEM COST EQUATION

PPP= EXPONENT IN THE PUMP STATION COST EQUATION

SUFFC= SUMMATION OF THE FITTINGS RESISTANCE COEFFICIENT

WORK= WORK PER UNIT MASS,J/KG,EQ.(3-35

E
E
S
T /YR,EQ.(2-16)
E S

S
1/YR
SSED
E PIPE
ED

WORK1= WORK REQUIRED DUE TO PIPE FR
WORK2= WORK REQUIRED DUE TO FITTINGS FRICTION
WORK3= WORK DUE TO PRESSURE AND ELEVATION DIFFERENCE IN

THE SYSTEM
YS= YIELD STRESS,PA

LIST OF FUNCTIONS:
DFFWD= DERIVATIVE OF FFX WITH RESPECT TO DI

REAL MFR,.K,LEGT
PARAMETER (PI -3 14

CALCULATION OF WORK FROM EQ.(3-35)

WORK1=32. *LEGT*MFR*MFR=FFX/(PI=PI=DE*DE=*DI**5)
WORK2=8 . *MFR*MFR*SUFFC/(PI*PI=DE*DE=DI=*4)
WORK3=CHPS/DE+9.8=CHEL

WORK=WORK 1+WORK2+WORK3

CALCULATION OF POWER FROM EQ.(2-13)
POWER=MFR*WORK/EFF

OPTIMUM DIAMETER EQUATION
OP1=(API+BPI )*PPI*CP*PI=PI*DE*DE*EFF*DI=»(PPI+5.)
OP2=32 . xCEP*HR=*MFR*=*3
OP3=(APP+BPP ) *PPP»CD*POWER** (PPP-1. )/(CEP-HR)
OP4=5.«FFX-DI*DFFWD(DI)+DI*SUFFC/LEG
gE;BéaM=1 .-OP2=0P4*(0P3+1.)/0P1

END
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FUNCTION DFFWD(DI)

THIS FUNCTION COMPUTES THE DERIVATIVE OF THE FRI
FACTOR WITH RESPECT TO THE TUBE/PIPE INSIDE DIAM
FOR LAMINAR OR TURBULENT FLOW

LIST OF VARIABLES:

DI= TUBE/PIPE INSIDE DIAMETER,M

DIC= LAMINAR-TURBULENT TRANSITION VALUE OF DIM

DFF= DERIVATIVE OF THE FRICTION FACTOR WITH RESPECT T0
DIAMETER(DI)

DF1,DF2= WORKING VARIABLES TO CALCULATE DFF-LAMINAR

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

FFX= FANNING FRICTION FACTOR

FH1= VALUE OF THE FRICTION FACTOR AT DI+H

FH2= VALUE OF THE FRICTION FACTOR AT DI-H

H= SMALL POSITIVE NUMBER

I= -1 IF DFF IS INDEFINITE: +1 IF OUT OF RANGE; O OTHERWISE

N= FLOW BEHAVIOR INDEX

SIGMA= PARAMETER IN THE DFFX/DD EQUATION FOR LAMINAR

FLOW.EQ.(3-47)

T OF FUNCTIONS:

1= EQ.(3-45)
CFAC= FRICTION FACTOR FUNCTION

CcT
E

ION
TER

LIS
FFL
FRI

REAL N
COMMON/FLWIDX/N/FRICFC/FFX
COMMON/UNSPLG/EO/CRITDI/DIC
IF(DI.LT.DIC) GO TO 10

DERIVATIVE FOR LAMINAR FLOW,.EQ.(3-47)

FFL1(EO)
FFX*SIGMA=EO-FFX=(3.*N-4.)
1. ;SIGMA EO)

NUMERICAL APPROXIMATION FOR TURBULENT FLOW

H=0. 1

IF(DI.LT.0.01) THEN

H=0.0001=H

ELSE IF(DI.LT.O.1) THEN

H=0.001*H

ELSE IF(DI.LT.1.) THEN
H=0.01*H

ELSE IF(DI.LT.10.) THEN

H=0. 1#*H

END 1F

FH1=FRICFAC DI+H{

FH2=FRICFAC(DI-H
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BACKWARD OR FORWARD DIFFERENCE ARE USED NEAR
DIC FOR DI < DIC

IFgFH1.GT.FFX.AND.FH2.GT.FFX) THEN
IF(ABS(FFX-FH1).LE.ABS(FFX-FH2)) THEN

FORWARD DIFFERENCE
DFF=(FH1-FFX)/H
ELSE

BACKWARD DIFFERENCE
DFF=(FFX-FH2)/H
END IF
ELSE

QUADRATIIC APPROXIMATION,EQ.(3-48)
DFF*(:H1-FH2)/(2.-H)

EN
1=LEGVAR(DFF)

IF THE DERIVATIVE 1S INDEFINITE OR OUT OF
RANGE, THEN IT IS NEGLECTED. THIS MAY ONLY HAPPEN NEAR
DIC FOR DI < DIC WHERE THERE MAY BE AN ABRUP
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ON FACTOR ACCORDING TC
THE SCHEME OF FIGURE 4. TORRANCE REE%T%?NSHIP. EQ.(A-1),

IS E
FACTOR FOR TURBULENT FLOW.
LIST OF VARIABLES:

A1= LOWER BOUND GUESS OF EO OR EOC

A2= UPPER BOUND GUESS OF EC OR EOC

CONDIT= FLOW CONDITION I.E. LAMINAR,TURBULENT OR CRITICAL
DE= FLUID DENSITY,KG/M==3

DI= TUBE/PIPE INSIDE DIAMETER,M

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

EOC= LAMINAR-TURBULENT TRANSITION VALUE OF EO

FC= LAMINAR-TURBULENT TRANSITION VALUE OF FF

FF= FANNING FRICTION FACTOR

FTORR= TORRANCE’'S FRICTION FACTOR FOR TURBULENT FLOW,EQ.(A-1)

FFO= LOWER BOUND FOR FF OR FTORR, .(3-15) WITH ED0=1.0
FF1= %gwgzosgggD GUESS FOR THE CALCULATION OF THE TURBULENT

FF2= FINAL LOWER BOUND GUESS FOR THE CALCULATION OF FTORR

FF3= FINAL UPPER BOUND GUESS FOR THE CALCULATION OF FTORR

FF4= LOWER BOUND GUESS FOR THE CALCULATION OF THE TURBULENT FF.
EQ..(3-27) WITH R=RC

FE4P= WORKING VARIABLE TO CALCULATE FFé

FF6

FF8

FF7= UPPER BOUND GUESS FOR THE CALCULATION OF TURBULENT FF
= LOWER BOUND GUESS FOR THE CALCULATION OF TURBULENT FF
= FINAL LOWER BOUND GUESS FOR THE CALCULATION OF THE
TURBULENT FF
F9= FINAL UPPER BOUND GUESS FOR THE CALCULATION OF THE
TURBULENT FF
n§= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)
=
K= CONSISTENCY COEFFICIENT,PA Sx=N
LIMLOW= COUNTER
LIMUP= COUNTER
MFR= MASS FLOW RATE, KG/S
N= FLOW BEHAVIOR IND
NOROOT= ROOT INDICATOR O-YES:; 1-NO; 2-TOO MANY ITERATION
NOTIME= COUNTER
PI= 3.141583
PSIC= LAMINAR-TURBULENT TRAN
RC= LAMINAR-TURBULENY TRANSI
RE= GENERALIZED REYNOLDS NUM

S v
5
REC= LAMINAR-TURBULENT TRANSK
A
E

UE OF Y

F
R

Zr
o<Z
< P
>~
rocer
cCrmr
—ma
~ gOom
0O0O0-—™
CcCyrm

Q.(3-21)
RECP= HERSCHEL-BULKLEY GENER ggé S NUMBER= REC=PSIC

REC1,REC2,REC3= WORKING VARI

D _CRI
0 CAL
ALCULAT

RAL OF EQ.(3-31)

E.E

L REY

LATE

RE1,RE2,RE3= WORKING VARIABL E RE

TOLC= TOLERANCE ERROR FOR EQ.

JOLERANCE ERROR FOR THE

TOLL= TOLERANCE ERROR FOR EQ.

TOLERANCE ERROR FOR EQ.

TOLV= TOLERANCE ERROR FOR EQ.

U= MASS AVERAGE VELOCITY,M/S
YS= YIELD STRESS,PA

LIST OF SUBROUTINES:

BISECT2= ROOT FINDING SUBROUTINE: BISE ON-SECANT METHODS
BISNEWT= ROOT FINDING SUBROUTINE: BISE ON-NEWTON METHODS

LIST OF FUNCTIONS:

DFUN1= DERIVATIVE OF FUN1 WITH RESP CT TO_EOC
DTORREN= DERIVATIVE OF TORREN WITH RESPECT TO FTORR
DUNPGRA= DERIVATIVE OF USPGRA WITH RESPECT TO EO
FFTM= EQ. 31; REWRITTEN AS FFTM%FF =0.

—~—— '\wmr——dmv-ﬂ-c
WWW—W r=~=—00-
1 Z 0 AmMNO-

WWwa—fpoumZm O

Oa0mn
N Ty N o I ]

FUN1= EQ.(3-22) REWRITTEN AS FUN1

R= TURBULENT PARAMETER, EQ.(3-27

TORREN= TORRANCE EQUATION EQ.(A-1) REWRITTEN AS
TORREN(FTORR)=0.

UNPGRA= EQ.(3-18) REWITTEN AS UNPGRA(ED;*O

Y= LAMINAR FLOW FUNCTION (PSI),EQ.(3-14

~
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REAL MFR.K.N,PI

PARAMETER(PI=3.141593)

CHARACTER CONDI =10

EXTERNAL FFTM

EXTERNAL FUN1,DFUN1

EXTERNAL USPGRA . DUSPGRA

EXTERNAL FFT2,DFFT2

EXTERNAL TORREN.DTORREN

COMMON/MFRCCF /MFR,K/YSTDEN/YS ,DE/FLWIDX/N/AVEVEL/U
COMMON/CRICON/REC,FC,EOC/FLWCON/RE ,HE
COMMON/UNSPLG/ED
COMMON/TOLER1/TOLV,.TOLI/TOLER2/TOLC/TOLER3/TOLL,TOLT
COMMON/ROOTNO/NOROOT/BLOCK1/RC
COMMON/CODFLW/CONDIT

COMMON/HEDSTR/HX

CALCULATION OF U FROM EOQ.(3-34)
U=4.*MFR/(PI=DE*DI=»2)

CALCULATION OF RE FROM EQ.(3-17)
RE1-}N/(3 “N+1.))==N
RE2=(D1/2 )--u
RE3=U==(2. -
RE=8.'DE-RE1*REQ‘R53/K

CALCULATION OF HE FROM EG.(3-19)

IF(YS.EQ.O.) THEN
HE=0,

EL
EE'(DE/YS) DI==2=(YS/K)==(2./N)

IF(HE.EQ.O0.) GO TO 10
CALCULATION OF EOC THROUGH ITERATION FROM EQ.(3-22)

HX=HE

A1=0.

A2=.999999999

CALL BISNEWT(A1,A2,40,TOLC,FUN1,DFUN1,EOC)

IF(NOROOT.EQ.O) GD TO 10

PRINT =

PRINT=

gs}:;'.' THE DIMENSIONLESS UNSHEARED PLUG RADIUS,EOC,WAS NOT’
PRINT=,’ FOUND IN THE RANGE ‘,At1,’ <= EOC <= ‘ A2

PRINT =

PRINT=,/ ENTER A NEW RANGE FOR EOC: O. <= EOC < 1.0 ...... !

CONTINUE
CALCULATION OF REC FROM EQ.(3-21)

REC1=33600.*SORT(1./27. )'N/(1 +3.%N)==2
REczcsz +N)=x((2. +N)/}
REC3 2

=(1.-E0C)*s(1.+
CALCULATION OF PSI-CRITICAL FROM EOQ.(3-14) WITH EO=EOC
PSIC=Y(EOC)

CONTINUE CALCULATION OF REC

RECP=REC1*REC2*PSIC=»(2./N)/REC3
REC=RECP/PSIC

CALCULATION OF FC FROM EQ.(3-16) WITH PSI=PSI-C & RE=REC
FC=16./RECP
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IF(RE.NE.REC) GO TC 15
THE FLOW IS CRITICAL
CONDIT"CRI?ICAL’

D-Eu.
GO TO 60

CONTINI
IF(RE. GT REC) GO TO 30

THE FLOW IS LAMINAR
CONDIT='LAMINAR’
ESTIMATION OF EO THROUGH ITERATION FROM EQ.(2-18)
E.EC.0.) GO TO 25
hT\A{ 42.50.70LL USPGRA.DUSPGRA, EO)
EC.0)'GD
THE DIMENSIONLESS UNSHEARED PLUG RADIUS,EO,WAS NOT’
FOUND IN THE RANGE ,A1,’ <= EO <= ’,A2
ENTER A NEW RANGE FOR EO: O. <= EO < 1.0 ........
A2

CDNTINUE

ESTIMATION OF FF FROM EQ.(3-14) & (3-16)
FF=16/(RE=Y(ED))
GO TO' 60

CONTINUE
THE FLOW IS TURBULENT
CONDIT='TURBULENT"

ESTIMATION OF LOWER & UPPER BOUND FOR FTORR. FFO 1
CALCULATED FROM EQ.(3-15) WITH EO 1.0. THEN THIS
USED TO CALCULATE THE LOWER BOUND GUESS FDR THE FR
FACTOR FOR WHICH THE CONDITION EO <_1.0 IS VALID.
1S ALSO USED TO ESTIMATE THE FINAL TURSULENT FE

FFO=2.=YS/(DE~UU)

FF1=FFO:

FF2eFFe

FF3=1.0
CALCULATION OF FTORR THROUGH ITERATION FROM EC.(A-1)
THIS VALUE 1S USED TO GET A RANGE FOR THE

CALL BISNEWT(FF2.FF3,50,TOLT, TORREN,DTORREN, FTORR)

IF (NOROOT.EQ.0) GO TO 40

PRINT~

PRINT =

PRINT-. THE INITIAL GUESS FOR THE FRICTION FACTOR (FTORR) *

PRINT=.’ WAS NOT FOUND IN THE RANGE ‘.FF2.’ <= FTORR <= /,FF3

PRINT=,’ ENTER A NEW RANGE FOR FTORR. > /,FFO.’ ......

READ» FF2 FF3

RO0T =0
GO 3s
CONTINUE




106

6=C
7=C CALCULATION OF RC FROM EQ.(3-27) WITH RE=REC & FF=FC
g=c RC=R(REC,FC)
i=C ESTIMATION OF & LOWER & UPPER BOUND FOR FF IN TURBULENT FLOW.
2=C FF4 IS _ESTIMATED FROM EQ.(3-27) WITH R=RC. THIS hlLL VES
3=C A FRICTION FACTOR GUESS FOR WHICH R > RC OR EO'<
4-C A CONDITION FOR TURBULENT FLO!
326= FF4P=(N/(1.+3.=N))
327= FF4=16.=(FF4P= nc--N/REr--(z /(2.-N))
328= FF5=1.35+F
329= FIN.GE £150) THEN
30= Fé=.4
31= FF7=
32= ELSE IF(N.GE.0.7) THEN
33= FFé=.5=FT
4= -
5= LSE 1F(N. .6) THEN
6= 6
7=
8= L 1 . .5) THEN
9= F6=.7=FT0
O F
41 L .4) THEN
42
43=
4a= .3) THEN
45=
46=
47 = L .2) THEN
48 =
49=
350=
351= .
352= =2.8=FTORR
353= I
352+ NOTIME=1
355= 8=FF 1
356= FO=FFS
357= LIMLOW=1
358= LIMup=
359= E(FEa. loT.FFB) THEN
360= FFg=
361= {iMlous2
6 ND_IF
IF(FF6.GT.FFB) THEN
FF8=FF6
LIMLOW=3
END IF
IF(FF7.LT.FF9) THEN
FFO9=FF7
LIMUP=2
END_IF
CONTINUE
ESTIMATION OF FF THROUGH ITERATION FROM EQ.(3-31)
CALL BISECT2(FF8.FF9,20.TOLT,FFTM,FF)
TF (NOROOT .£C.0.OR.NOROOT.£0.2) GO_TO 55
IF(LIMLOW.EQ. i.AND.LIMUP.EQ.1) GO TO 50
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1428=60
1429=
1430=
1431=
1432=C
1433=C

IF THE ROOT IS NOT FOUND.

WIDER FF RANGE

ME=NOTIME+1
0TIME.EO.2;
IMLOW.EQ.2
FgéGT.FF1) THEN
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NOROOT=0

INT=,

T=,’ *,FF8,’

~ FFB,FF

EO=2.»YS/(FF=*DE=U=U)
CONT INUE

FRICFAC=FF

RETURN

END

THEN
THEN
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IT MAKES S
BEFORE IT ASKS THE U

(NOTIME.EQ.3.AND.LIMUP.EQ.2) THEN

<= / FF9

E
S

Vv
3

E
R

RAL ATTEMPS WITH A
TO ENTER A NEW RANGE

THE FRICTION FACTOR (F.F.) WAS NOT FOUND IN THE RANGE’
<= F.F.
, ENTSR A NEW RANGE FOR F.F. >
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FUNCTION FUN1(EC)
THIS FUNCTION IS EQ.(3-22) REWRITTEN AS FUN1(EC)=0.
LIST OF VARIABLES:

EC= DIMENSIONLESS UNSHEARED PLUG RADIUS AT THE
LAMINAR-TURBULENT TRANSITION

HX= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)

N= FLOW BEHAVIOR INDEX

P1,P2,P3= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLWIDX/N/HEDSTR/HX

p1=§1eaoo *SORT(1./27. ;/N)-(2.+N)--((2.+N)/(1.+N))
p2= EC/(1 -EC)==(1.+N))==((2.-N)/N)
P3=1./(1.-EC)==*N

FUN1=HX p1npz P3

RETURN

END

FUNCTION DFUN1(EC)

THIS FUNCTION IS THE DERIVATIVE OF FUN1, EQ.(3-22),
WITH RESPECT TO EC. I.E. DFUNI(EC) = D FUN1(EC)/ D EC
IT 1S USED IN THE NEWTON‘S ITERATION METHOD IN

SUBROUTINE BISNEWT.
LIST OF VARIABLES:

EC= DIMENSIONLESS UNSHEARED PLUG RADIUS AT THE
LAMINAR-TURBULENT TRANSITION
N= FLOW BEHAVIOR INDEX
1.P2,P23,P4,P5= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLWIDX/N

P1=-(1seoo *SORT(1. /27.;/N{-l2.+N)-'((2.+N)/(1.+N))
P2=(2.-N)=EC>=((2.-2.*N)/N)/N

P3= 1 ~EC)==((2,+N)/N

Pa=(2.+N)=EC=»((2.-N)/N)/N

P5=(1.-EC)=*((2.+2. -N;/N)

DFUN1 P1 =(P2/P3+P4/P5

RETU

END
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FUNCTION USPGRA(EX)
THIS FUNCTION IS EQ.(3-18) REWITTEN AS USPGRA(EX)=0.
LIST OF VARABLES:

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS
HE= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)
N= FLOW BEHAVIOR INDEX

P1,P2= WORKING CALCULATIONAL PARAMETERS
RE= GENERALIZED REYNOLDS NUMBER.EQ.(3-17)

LIST OF FUNCTIONS:
Y= LAMINAR FLOW FUNCTION (PSI).EQ.(3-14)

REAL N

COMMON/FLWCON/RE HE /FLWIDX/N
P1=RE*EX=x((2.-N)/N

P2=2 =HE=Y(EX)*=((2.-N)/N)

P3=(N/(1.43 =N))==2.

USPGRA=P1-P2=P3

RETURN

END

FUNCTION Y(EX)
THIS FUNCTION EXECUTES EQ.(3-14). I.E. PSI=Y(EX)
LIST OF VARIABLES:

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS
N= FLOW BEHAVIOR INDEX
P1,P2,P3,P4= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLWIDX/N

P1-(1.-EX)-'2

P2=2,=EX~{1.-EX)=(1. +3 'N)/(1 +2.=N)
P3=EXx>2n (1 +3. -N;/(1
P4=(1,-EX)=»(1,+N

Y=P4»(P1+P24P3) = =N

RETURN

END
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:g§g=c FUNCTION DUSPGRA(EX)
=
1531=C THIS FUNCTION IS THE DERIVATIVE OF FUNCTION USPGRA
1532=C Eo (3-18), WITH RESPECT TO EX. I.E. DUSPGRA(EX)
1533=C D USPGRA(EX)/D EX. IT IS USED IN THE NEWTON’S ITERATION
:ggg=g METHOD IN SUBROUTINE BISNEWT.
=
1536=C LIST OF VARABLES:
1537=C
1538=C EX= DIMENSIONLESS UNSHEARED PLUG RADIUS
1539=C FFL1= SIGMA, EQ.(3-45)
1540=C HE= GENERALIZED HEDSTROM NUMBER,EQ. (3-19)
1541=C N= FLOW BEMHAVIOR INDEX
1542=C P1,P2,P3,P4= WORKING CALCULATIONAL PARAMETERS
}g:g=g RE= GENERALIZED REYNOLDS NUMBER.EQ.(3-17)
1545=C LIST OF FUNCTIONS:
1546=C
1547=C FFL1= EQ.(3-45)
1548=C Y= LAMINAR FLOW FUNCTION (PSI).EQ.(3-14)
1549=C
1550=C
1651= REAL N
1652= COMMON/FLWCON/RE ,HE/FLWIDX/N
1553= P1=}2.-N)/
1554= P2=(N/(1.43.%N))==2
1855= P3=2 . =HE=P2xP 1> FFL1(EX; Y(EX)==P1
1556= P4=P{=RE=*EX==((2.-2 /N)
1657= DUSPGRA=P3+P4
1558= RETURN
1559= END
1560=C
:gg;=c FUNCTION FFL1(EX)
1ggi=g THIS FUNCTION EXECUTES EQ. (3-45). I.E. SIGMA=FFL1(EX)
1 =
}ggg=g LIST OF VARIABLES:
1567=C Ex= DIMENSIONLESS UNSHEARED PLUG RADIUS
1568=C FFL1= PARAMETER IN THE DF/DD EQUATION FOR LAMINAR FLOW
1569=C (EQ.(2-47)),(SIGMA) EQ.(3-45). ALSO USED IN
1570=C USED IN FUNCTION DUSPGRA.
1571=C N= FLOW BEHAVIOR INDEX
lg;2=g P1,P2,P3,P4,P5,P6= WORKING CALCULATIONAL PARAMETERS
3=
1574=C
1575= REAL
1576= COMMON/FLWIDX/N
1577= P1=1.+3
1578= P2=1.+2.
1579= P3=1.+N
1580= P4=1.-EX
1581= PS5=P12P3=P4=%2+42 . =P2=P{*EX=P4+P 12P2=P3sEX~=2
1582= P6=P2=P3xP4=x%342 =P 1=P3=EXxP4xx2+P{*P2=P4=EXnx2
1583= FFL1=P5/P6
1584= RETURN
1585= END
1586=C
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FUNCTION TORREN(FX)

THIS FUNCTION EXECUTES THE FRICTION FACTCR EQUATION
OF TORRANCE FOR TURBULENT:-FLOW,EQ.(A-1),
REWRITTEN AS TORREN(FX)=0.

LIST OF VARIABLES:

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS
EO1,E02,E03= WORKING VARIABLES TO CALCULATE EO
FX= FANNING FRICTION FACTOR

HE= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)

N= FLOW BEHAVIOR INDEX

P1,P2,P3= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER,EQ.(3-17)

REAL N
COMMON/FLWIDX/N/FLWCON/RE , HE
CALCULATION OF EO FROM EOQ.(A-2)

=(N/(1.+3.%N))==(2, *N/(Z =N))
=16.=(2. -HE)--(N/(2 N))
=FX=RE*=(2./(2.-N))
EO1=E02/EO3

TORRANCE EQUATION

P1=0.45-2.75/N+1.97'ALOG(1.-EO)/N
P2=((1 +3.=N)/(4.=N) )=
P3=1.97~ALOG(RE=P2= Fx--(1 =N/2.))/N
TORREN=P1+P3 1./SQRT(FX

RETURN

END

FUNCTION DTORREN(FX)

IS FUNCTION IS THE DERIVATIVE OF FUNCTION TORREN,
TH RESPECT TO FX. I.E. DTORREN(FX)=D TORREN(FX)/D
USED IN THE NEWTON’S ITERATION METHOD IN SUBROUT

SNEW
ST OF VARIABLES:

H E
1

S

I

I

8= DIMENSIONLESS UNSHEARED PLUG RADIUS

X

E

1

E

I

Q.(A-1),
Fx. IT
NE

1,E02,E03= WORKING VARIABLES TO CALCULATE EO
= FANNING FRICTION FACTOR

= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)

FLOW BEHAVIOR INDEX

,P2,P3= WORKING CALCULATIONAL PARAMETERS

= GENERALIZED REYNOLDS NUMBER,.EQ.(3-17)

REAL N
COMMON/FLWIDX/N/FLWCON/RE .HE
CALCULATION OF EDO FROM EQ.(A-2)

EO1=(N/(1.4+3.%N))=x(2, ~N/(2 -N))
E02=16.~»(2.=HE )=»{(N/(2 ))
EO3=FX=RE==(2. /(‘.-N )
EO=E01=ED2/ED

THE DERIVATIVE OF TORREN WITH RESPECT TO FX
P1=3.94-EO-SORT(FX)+N (1.-EO0)
P2=3.94=(1.-N/2.)=(1. -EO) SQRT(FX)
P3=2.%N»(1.-EO)*FXx=1.
DTORREN= P1+P2)/P3
RETUR
END
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FUNCTION FFTM(FT)

THIS FUNCTION EXECUTES EG.(3-31) REWRITTEN AS FFTM(FT)=0.

LIST OF VARIABLES:

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS
FT= FANNING FRICTION FACTOR

HE= GENERALIZED HEDSTROM NUMBER,EQ.(3-19)

g; FkOW BEHAVIOR INDEX
=
P2,P3= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER,.EQ.(3-17)

LIST OF FUNCTIONS:

R= TURBULENT PARAMETER, EQ.(3-27)
ROMBIN= INTEGRAL IN EQ.(3-31)

REAL N
COMMON/FLWIDX/N/FLWCON/RE ,HE

CALCULATION OF

PR=R(RE,F

T)

RP FROM EQ.(3-27)

CALCULATION OF EO FROM EQ.(3-32)

ovom
(AN
[}

2 *HE/PR"2)"(N/(2 -N))
~E0)==((2.-N /
N/(1 +3.xN) )=

CALCULATION OF EQ.(3-31)
FFTM=1, -PR*x=2xP2=P3=ROMBIN(EO,PR)==~(2.-N)/RE

RETURN
END

FUNCTION R(RX,FX)

THIS FUNCTION EXECUTES EQ.(2-27). 1

LIST OF VARIABLES:

FX= FANNING FRICTION FACTOR

N= FLOW BEHAVIOR INDEX

RX= GENERALIZED REYNCLDS NUMBER
P1,P2= WORKING CALCULATIONAL PARAMETERS

/N
)

== ((2.-N)/2.))==(1

.E.

./N)

=R(RX,FX)
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FUNCTION ROMBIN(EX,RY)

THIS FUNCTION COMPUTES THE INTEGRAL IN EOQ.(3
BY THE ROMBERG METHOD. THE INTEGRATION IS DI D
IN SEVERAL SECTIONS DEPENDING THE FLOW BEHAV
INDEX AND THE INTEGRAL IS INDEPENDENTLY COMP

FOR EACH SECTION. THE VALUES OF THE DIMENSIO
SHEAR RATE ARE SAVED IN ARRAY FS{1 TO BE USED
LOWER & AND UPPER BOUND GUESSES IN CONSECUTI
ROOT ITERATION OF FUNCTION FFT2(E0‘(3-30).REF
MILLER, A.R. 1982. "FORTRAN PROGRAMS". SYB
INC. ,BERKELEY,CA.

LIST OF VARIABLES:

DELTA = INTERVAL VALUE

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS

FS1,FS2,FS3,FS4= DIMENSIONLESS SHEAR RATE ARRAYS
Ui= VALUE OF FFT1 AT EX OR O

FU2- VALUE OF FFT1 AT UPPER

FU3= VALUE OF FFT1 AT

LOWER= LOWER LIMIT OF INTEGRATION

N= FLOW BEHAVIOR INDEX

PIECES= NUMBER OF INTERVALS

RY= TURBULENCE PARAMETER,EQ.(3-27)

T= VALUES OF ROMBERG TABLEAU

TOLI= TLERANCE ERROR FOR THE INTEGRATION

TOSUM= FINAL VALUE OF THE INTEGRATION IN EQ.(3-31)

UPPER= UPPER LIMIT OF INTEGRATION

X= TRAPEZOIDAL POINTS

LIST OF FUNCTIONS:
FFT1= FUNCTION INSIDE THE INTEGRAL IN EQ(3-31)

)
E
D
SS

31
1D
OR
TE
LE
AS
E

ERENCE:

INTEGER PIECES.NX(13)
REAL

REAL LowER T7(92)

REAL Fs1(4097) FS3(4097),FS2(2049)
COMMON/FLWIDX/N
COMMON/TOLERY/TOLV,TOLI

DO 5 KV=1,4007

FS1 vg=o.

[

-
wn
w

mo
nToncCcoownoo
~E242NZN Z
\lmcoz"v« nC—A~a A4~

—“rrfmm-+40™m

E o 1) THEN
IF(N.LE.O.2) THEN
IF(N.LE.O.3) THEN

0w n-

(1.-LOWER)+LOWER

(UPPER,F 1),FS1(2),EX,RY)
g%/UPPER

[ R7, Y7, S | N 4
_a~TMaam

UPPER-LOWER)/PIECES
Fu2)/2.
LTA=C

IOC P—M TR TI = ”'—4
nm

=V=
[}
T
1
=
1
(
1+
E

(o)
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NM=NM+ 1

FOTOM=4 .,

NX(NM) =NN

PIECES=PIECES=2

LL=PIECES-

L2=(LL+1)/2
DELTA=(UPPER-LOWER)/PIECES

COMPUTE TRAPEZOIDAL SUM FOR 2==(NM-1)+1 POINTS
DO 30 II'L1 L2
=]]=2-

X-LOWER+DELTA-
FU3=rFT1(X FS1(II1),FS1(1I+1),EX,RY)
SUM=SUM+FU3
Fsz§11)=ru3/x--2
11~ 2)=Fsz(11)
CONTINU
~z-~z+L2
DO 35 KV=1, L2+1
FS3(KV=2-1)=FS1(KV)
CONTINU E
T(NN)=SUM=DELTA
NTRA=NX (NM- 1
KK=NM- 1

COMPUTE T ARRAY

DO 40 MM=1, KK

J=NN+MM

T-inNM-1)+MM-1
T(J)=(FOTOM=T(U-1)-T(NT))/(FOTOM-1.)
FOTOM=FOTOM=4 .
CONTINUE

NEW ORDERED VALUES OF THE DIMENSIONLESS SHEAR RATE

KV=1,NZ
)=FS3(KV)

)= OLé)) GO TO 60

CONTINUE

TOSUM=TOSUM+T (J)
LOWEE'UPPER

.1.) GO _TO 75
9999999999999) GO TO 70
7.0.9) GO TO 65

UPPER=(1.-LDWER)/2.+LOWER

GO TO 15

CONT INUE

Egsug-735un+(1 “UPPER)=(1.+4FU2)/2.
ROMBIN=TOSUM

RETURN

END
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FUNCTION FFT1(EY,C1,C2,EX,RY)

THIS FUNCTION EXECUTES THE FUNCTION
INTEGRAL IN EQ.(3-31). I.E. FFT1=(

LIST OF VARIABLES:

B= EMPIRICAL WALL EFFECT PARAMETER IN MIXING LENGTH
THEORY,EQ. (3-28)

cve DIMENSIONLESS RATE OF SHEAR (2ETA)

Ci= LOWER BOUND GUESS FOR CV

€3 UPBER BOUND QUESS FOR Cv

E= DIMENSIONLESS RADIAL COORDINATE (XI)

EX= DIMENSTONLESS UNSHEARED PLUG RADIUS
k3

E2= EX

HE= GENERALI

NSIDE THE
Z TA)=(XI)~

X =2

ZED HEDSTROM NUMBER,EQ.(3-19)
L= DIMENSIONLESS MIXING LENGTH (LAMBDA),EQ.(3-25)
N= FLOW BEHAVIOR INDEX
NOROOT= ROOT INDICATOR O-YES; 1-NO; 2-TOO MANY ITERATION
Q= PARAMETER IN MIXING LENGTH (PHI). EQ.(3-26)
RC= LAMINAR-TURBULENT TRANSITION VALUE OF RY
RE= GENERALIZED REYNOLDS NUMBER,EQ.(3-17)

g;: ;gRBULANCE PARAMETER, EQ.(3-27)

TOLiT TOLERANGE ERROR FBR LT Mg o7 oo

LIST OF SUBROUTINES:

BISNEWT= ROOT FINDING SUBROUTINE: BISECTION-NEWTON METHODS
LIST OF FUNCTIONS:

DFFT2= DERIVATIVE OF EFFT2 WITH RESPECT TO CV
FFT2= EQ.(3-30) REWRITTEN AS FFT2(CV)=0.

REAL N,L

EXTERNAL FFT2,DFFT2

COMMON/FLWIDX/N/FLWCON/RE ,HE

COMMON/BLOCK 1/RC/BLOCK2/E.EZ.R2,L

EOE&ON/TOLER1/TOLV,TOLI/ROOTNO/ OROOT
=

EZ=EX

RZ=RY

CALCULATION OF B FROM EQ.(3-28)
B=22.*(1.+.00352=HE,/(1.+.000504*HE )*~>2)/N
CALCULATION OF Q (PHI) FROM EQ.(3-26)
0=(RZ-RC)/(B=SQRT(8.))
CALCULATION OF L (LAMBDA) FROM EQ.(3-25)
L=.36x(1.-E)=(1.-EXP(-Q=(1.-E)))

CALCULATION OF CV (ZETA) THROUGH ITERATION
FROM EQ.(3-30)

CALL BISNEWT(C1 C2,100,TOLV,FFT2, DFFT2 cv)
NOROOT=0

FUNCTION INSIDE THE INTEGRAL OF EQ.(3-31)
=CV-E-‘2 '

FFT
RET
END
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FUNCTION FFT2(CX)

THIS FUNCTION IS EQ.(3-30) REWRITTEN AS FFT2(CX)=0.
LIST OF VARIABLES:

CX= DIMENSIONLESS RATE OF SHEAR (ZETA)

E= DIMENSIONLESS RADIAL COORDINATE (XI)

EZ= DIMENSIONLESS UNSHEARED PLUG RADI

L= DIMENSIONLESS MIXING LENGTH (LAMBDA) EQ.(3-25)
N= FLOW BEHAVIOR INDEX

P1.P2= WORKING CALCULATIONAL PARAMETERS

RZ= TURBULANCE PARAMETER.EG.(3-27)

REAL
COMMON/FLWIDX/N/BLOCKz/E EZ,RZ,.L
P1=EZ-E+(1.-EZ)=

P2=RZ2==2= L--2 cx--z-(1 -EZ2)==(2./N)/8.

FUNCTION DFFT2(CX)

THIS FUNCTION IS THE DERIVATIVE OF FUN”TION FFT2(CX),
EQ.(3-30), WITH RESPECT TO CX. I.E. DFFT2(CX)=

D FFT2(Cx)/D CX. IT IS USED IN THE NEWTON S ITERATION
METHOD IN SUBROUTINE BISNE

LIST OF VARIABLES:

Cx= DIMENSIONLESS RATE OF SHEAR (ZETA)

IMENSIONLESS RADIAL COORDINATE (XI)

IMENSIONLESS UNSHEARED PLUG RAgég?
TERS

m

MENSIONLESS MIXING LENGTH (LAM

o]

I .EQ.(3-25)
gow BEHAVIOR INDEX

T

D
P
P WORKING CALCULATIONAL PARAM‘
URBULANCE PARAMETER,EQ.(3-2

EZ=
L=
N=
P1
R2

REAL N,L

COMMON/FLWIDX/N/BLOCK2/E EZ,RZ,L
P1=N=(1.-EZ)=CXx=>(N-1.
P2=RZ==2=L==2=CX=(1. -EZ)"(2 /N)/4.
DFFT2=P1+P2

RETURN

END
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SUBROUTINE BISNEWT(XA,XB,MAX,ERROR,FUN,DFUN,NEWX)

THIS SUBROUTINE COMPUTES THE ROOT OF THE FUNCTION FUN. IT
IS A COMBINATION OF THE BISECTION AND NEWTON'S ITERATION

METHOD. THE MIDPOINT OF THE INTERVAL (PART OF THE BISECTION

PROCESS) IS USED TO START THE NEWTON’S ITERATION. THE
PROGRAM CONTINUES WITH THIS METHOD UNTIL THE SOLUTION IS
FOUND OR THE FOLLOWING SITUATIONS OCCUR: 1- DFUN=Q.

2- X FALLS OUTSIDE THE INTERVAL KNOWN TO CONTAIN THE

SOLUTION; 3- THE DIFFERENCE IN SUCCESIVE APPROXIMATION DOES

NOT DECRASED; 4- THE NUMBER OF ITERATIONS EXCEEDS MAX. IF
THESE _SITUATIONS OCCUR, THE PROGRAM SWITCH TO THE
BISECTION METHOD TO OBTAIN A SMALLER INTERVAL. REFERENCE:
MOORE.E. ~1982. "INTRODUCTION TO FORTRAN AND ITS
APPLICATION". ALLYN AND BACON, INC.,BOSTON,MASS.

LIST OF VARIABLES:

DIFF= DIFFERENCE BETUEEN TWO ITERATION POINTS
ERROR= TOLERANCE ERRO

FA= VALUE OF FUN AT XA

FB= VALUE OF FUN AT XB

FM= VALUE OF FUN AT XM

FUNC= VALUE OF FUN AT X

FPRIME= VALUE OF DFUN AT X

M= -1 JF X IS INDEFINITE: +1 IF OUT OF RANGE; O OTHERWISE
MAX= MAXIMUM NUMBER OF NEWTON’S ITERATION

NEwWXx= ROOT OF FUN

NOROOT= ROOT INDICATO O-YES; 1-NO

OLDDIFF= DIFFERENCE OF PRE I0US ITERATION

OLDX= PREVIOUS VALUE OF X

X= POINT FROM NEWTON’S ITERATION EQUATION

XA= LOWER BOUND POINT USED IN THE BISECTION METHOD

XB= UPPER BOUND POINT USED IN THE BISECTION METHOD

XM= MIDPOINT BETWEEN XA & XB

LIST OF SUBROUTINES:
SWAP= INTERCHANGE THE VALUE OF TWO VARIABLES
LIST OF FUNCTIONS:

FUN= FUNCTION WHOSE ROCT IS COMPUTED
DFUN= DERIVATIVE OF FUN WITH RESPECT TO THE ROOT VARIABLE

REAL NEW
COMMON/RDOTNO/NDROOT
IF(XA.GT.XB)THEN

CALL SWAP(XA,XB)

END IF

FA=FUN( )
IF(FA.EQ.O0.) GO TO 90
FB=FUN(

1F§FB £Q ) GO TO 100
IF(FA*FB. GT 0.)GO TO 80
XM= (XA+XB)/2.
2L231F=ABS(XA XB)/2.



118

2047=C
2048=C NEWTON’S ITERATION
2049=C
2050= DO 20 JU=1,MAX -
2051= OLDX=X
2052= FPRIME=DFUN(X)
2053= M=_LEGVAR(FPRIME)
2054= IF}M NE.O) GO TO 30
2055= IF(FPRIME.EQ.0.)GO TO 30
2056= FUNC=FUN(X)
2057= X=X-FUNC/FPRIME
2058= M=LEGVAR(X)
2059= IF(M.NE.O) GO TO 30
2060= IF (ABS(X-XM). GT ABS(XA-XB)/2.) GO TO 30
2061= DIFF=ABS(X-0LDX)
2062= IFgDIFF LE.ABS(X*ERROR)) GO TO 70
2063= IF(DIFF.GE.OLDDIF) GO TO 30
2064= OLDDIF=DIFF
2065=20 CONTINUE
2066=C
2067=C BISECTION ITERATION
2068=C
2069=30 FM=FUN( XM
2070= IF§FM Q.0 ) 0 TO 60
2071= IF(FA*FM. .)GOD TO 40
2072= XA=XM
2073= FA=FM
2074= GO To 50
2075=40 XB=X
2076=50 xM=(XA+xB)/
2077= IF(ABS(XA-XB).GT.ABS(XM=ERROR)) GO TO 10
2078=60 NEWX=XM
= RETURN
2080=70 NEWX=X
2081= RETURN
2082=80 NEWX=(XA+XB)/2.
2083~ NOROOT=1
2084= RETURN
2085=90 NEWX=XA
2086= RETURN
2087=100 NEWX=XB
2088= RETURN
2089= END

2090=C
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SUBROUTINE BISECT2(XA,XE,MAX, ERROR,FUN,NEWX)
YHXS SUERDUIINE COMPUTES THE ROOT OF THE FUNCTION FUN. IT
T

H

ET E_BISECTION INTERVAL IS USE!
SECANT_ITERATIO HE GRAM CONTINUES W THIS ME D
UNTIL THE SOLUTION IS FOUND OR THE FOLLOWING SITUATIONS

1- X FAL.S OUTSIDE THE INTERVAL KNOWN TC CONTAIN THE
SOLUTION: 2- T OF RANGE OR _INDEFINITE: 3
FAR AWAY FROM THE SO \i_4- THE BER OF ITERATIONS
EXCEE| X. 1F SITUATIONS OCCUR, THE

W1 LLER
INTERVAL. REFERENCE: MOORE.E. 1982. INTRDDUCTION 70
FORTRAN AND ITS APPLICATION®. ALLYN AND BACON
BOSTON,MASS .

LIST OF VARIABLES:

DIFF= DIFFERENCE EEYWEEN TWO ITERATION POINTS
ERROR= TOLERANCE
VALUE OF FUN
FET VALUE OF FON AT XE
FM= VALUE OF FUN AT XM
FO= VALUE OF FUN AT X0

0 FUN
M= £ 4 1s IND‘F h TE: +1 IF OUT OF RANGE: O OTHERWISE
Wixe MAXIMOM NUMBER OF SECANT ITERATION

T N AT -YES: 1-N
X= POINT FROM THE SECAN' ITERATION
XA= LOWER BOUND POINT USED IN THE

552 TION
XB= UPPER BOUND POINT USED IN THE BIS!

SEC.

RATI

uA
ECTION METHOD
ECTION METHOD
XM= MIDPOINT BETWEEN & XB
XO= SECOND POINT REOUARED FOR_THE ANT PROCESS
X1= FOCUS POINT FOR THE SECANT ITE

LIST OF SUBROUTINES
SWAP= INTERCHANGE THE VALUE OF TWO VARIABLES
LIST OF FUNCTIONS
FUN= FUNCTION WHOSE ROOT IS COMPUTED
REAL NEWX
CDMMDN/RBDTND/NORDDY
) THEN

IF(XA.
CALL SWAP(XA XB)

XO=
FO=FA
X1=X8
=FB
XM= (XA+XB)/2.
IF (FO*F1.G7.0.) GO TO 90
CONTINUE
IF}ABS(F(/FO).GY.S..DR.AES(FO/F‘)AGY.S. GO TO 40
IF(ALOG(ABS(F1)).GT.-2..0R.ALOG(ABS(FO)).GT.-2.) GO TO 40
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SECANT ITERATION

30 J=1,MAX
ABS(F1).GE.ABS(FO)) THEN
L SWAP(FO,F1
L SWAP(XO.X1

IF

1-F1=(X1-X0)/(F1-FOQ)
EGVAR(X;

LM.NE.O) GO TO 40
T.XA.OR.X.GT.XB) GO TO 40
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NEWX=(XA+XB)/2.
NOROOT =1
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SUBROUTINE SORTING(X,Y,NU)

SHELL-METZNER SORT FOR ARRAYS X & Y OF SIZE NU, IN
INCREASING ORDER OF X. MAX. SIZE = 100. REFERENCE:
MILLER, A.R. 1982. "FORTRAN PROGRAMS". SYBEX INC.
BERKELEY, CA.

REAL X(100),Y(100)
JUMP=NU

JUMP=JUMP /2
IF(JUMP.E0.0) GO TO 99
J2=NU-JUM

00d30 J=1, d2
J3=1+JUMP
IF(X(I).LE.X(Y
CALL SWApé }I;
gA%L SWAP 1
IF(I. GT O) GO TO 20
CONTIN

3)) 80 70 30
Iv} 3);

SUBRCUTINE SWAP(AA,BB)
THIS SUBROUTINE INTERCHANGE THE VALUE OF TWO VARIABLES

HOLD=A4L
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