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ABSTRACT

OPTIMUM ECONOMIC TUBE DIAMETER

FOR PUMPING HERSCHEL-BULKLEY

FLUIDS

By

Edgardo Jose Garcia Caes

The optimum tube diameter, for which the total cost of a

pumping system is a minimum, has been derived for the case of

Herschel-Bulkley fluids in both laminar and turbulent flow. The

method accounts for the tube system cost as a function of diameter,

as well as the pump station and operating costs as a function of the

power requirements. The optimum diameter can be estimated given the

rheological properties, density of the fluid, mass flow rate, and

economic parameters. The elevation and pressure difference in the

system are irrelevant when a linear relationship is used for the pump

station cost. The friction loss in fittings can be ignored when the

tube length is much greater than the tube diameter. The pump station

cost has less influence than the operating cost in determining the

optimum diameter. The use of apparent viscosity and Newtonian flow

behavior for non-Newtonian fluids may lead to severe errors in pipe

sizing.



1. INTRODUCTION

1.1 General Remarks
 

A problem associated with the design of fluid handling systems

is the selection of tube or pipe size. The installed cost of a

process piping system can vary between 7% and 60% of the total fixed

investment (Wright, 1950). It is, therefore, important to choose the

tube size that would result in the greatest economy while maintaining

the designated operating conditions and performance requirements.

Three criteria often control the selection of tube size; the pressure

drop available, velocity allowable, and least annual cost. The first

criterion is usually used when a given pressure drop must be absorbed

by the tube. Limits in velocity may be encountered in the handling

of slurries in which a minimum velocity must be maintained to keep

the particles in suspension. Conversely, quality degradation of the

product may restrict high velocities. The least annual cost applies

when a given amount of fluid is to be pumped through a tube system.

It is based on an economic balance of the capital and operating cost

to give a tube size that will result in the least annual charge

(Nolte, 1978; Kent, 1978).

In this study, techniques to estimate the optimum tube diameter

based on the least annual cost are developed for tube systems trans-

porting non-Newtonian fluids. The Herschel-Bulkley model was selected

due to its generality and wide application in fluid foods, as well as



other fluid materials (Holdsworth, 1971; Higgs and Norrington, 1971;

Steffe et al., 1983; Boger and Tiu, 1974).

Non-Newtonian characteristics must be considered in the design

of pumping systems when handling fluids of this type (Cheng, 1975;

Johnson, 1982). Failure to do so may lead to under or over sizing,

resulting in a system inefficienttx>operate or more costly to erect

as suggested by Steffe (1983) and Nolte (1978).

1.2 Objectives
 

The specific objectives of this study are as follows.

Objective 1: Develop an equation to predict the total annual
 

cost of a pumping system as a function of the tube

diameter.

Objective 2: Develop an equation to estimate the optimum
 

economic tube diameter for pumping systems handling

Herschel-Bulkley fluids.

Objective 3: Demonstrate the design errors caused by using
 

apparent viscosity and Newtonian flow behavior to design

pumping systems handling non-Newtonian fluids.



2. LITERATURE REVIEW

2.1 Herschel-Bulkley (H-B) Model
 

The flow behavior of many fluid foods and other industrially

important fluids may be described by the H-8 model which can be written

as (Herschel and Bulkley, 1926).

.. '0
Trz — To + K y (2.1)

where

T = shear stress, Pa

rz

To = yield stress, Pa

K = consistency coefficient, Pa 5n

n = flow behavior index, dimensionless

i = rate of shear (-dv/dr), 3’1

This model simplifies to other well-known models. The power

law or Ostwald-de Naele model is written as

_ °n
Trz - K y (2.2)

where

A power law fluid is called pseudoplastic when 0 < n < 1 and

dilatant when n > 1. Equation (2.1) reduces to the Bingham plastic

model when n = 1 and n = K as



O

Trz = TO + n y (2.3)

where

n = plastic viscosity, Pa 5

Newtonian fluids are described by Equation (2.1) when To = O,

n = 1, and p = K as

where

p = Newtonian viscosity, Pa 5

The shear stress—shear rate relationships for the above models are

shown graphically in Figure 1.

It is common practice to use an apparent viscosity (pa) and

assume Newtonian fluid behavior to estimate the frictional pressure

losses for the flow of non-Newtonian fluids in tubes. Apparent vis-

cosity is defined as

t = u i (2.5)

Since equation (2.5) is used to describe H-B fluids, pa may be written

in terms of the H-8 parameters using Equation (2.1) and (2.5) as

_ --1 ~n-1
“a — To y + K y (2.6)

From Equation (2.6), it is evident that pa is defined at a particular

rate of shear. Therefore, the use of an apparent viscosity may lead

to over- or under-estimation of the pressure losses and power
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SHEAR RATE

Shear stress - shear rate relationship for

time-independent non-Newtonian and Newtonian

fluids: (1) Herschel-Bulkley model, (2) Bingham

plastic model, (3) Pseudoplastic model, (4)

Dilatant model, (5) Newtonian model.



requirements depending the rate of shear at which the apparent vis-

cosity is measured. This, in turn, may lead to improper sizing of

pipe, pump, and motor (Steffe, 1983).

2.2 Optimization
 

The selection of a value for a given design variable to mini-

mize the total cost of a project is possible whenever a change in this

variable causes some costs to increase while other costs decreases

(Skelland, 1967). For a pumping system, the total cost can be divided

into three components: the tube system cost, the pump station cost,

and the operating cost (Darby and Melson, 1982). The tube system cost

primarily consist of the installed cost of tube, fittings, and values.

This increases with increasing tube diameter (Skelland, 1967; Darby

and Melson, 1982; Jelen, 1970). The pump station cost mainly consist

of the installed cost of pump and motor while the operating cost

parimarily consists of the cost of electrical power required to pump

the fluid through the system. Both of these costs are directly pro-

portional to the power requirements which decrease with increasing

tube diameter since the pressure drop due to friction decreases with

increasing tube diameter. Consequently, the pump station cost and

operating cost decrease with increasing tube diameter (Skelland, 1967;

Darby and Melson, 1982; Downs and Tait, 1953). This is shown graphi-

cally in Figure 2. Clearly, the optimum value for the diameter can

be obtained when the sum of these costs is at a minimum.

Mathematically, the total cost C can be expressed as func-T

tion at the tube diameter (D) with the following algebraic equation

(Skelland, 1967).
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Figure 2. Optimum economic pipe diameter for minimum

total cost at a fixed mass flow rate.



CT(D) = C 1.(D) + C (D) (2.7)p um) + cO
P P

where

CT = total annual cost of pumping system per unit length

of tube, $/yr m

i total annual cost of installed tube system per

p unit length of tube, $/yr m

C u total annual cost of installed pump station per unit

p length of tube, $/yr m

COp = gotal annual operating cost per unit length of tube,

/yr m

The analytical method for optimization of a function of a

single variable involves differentiating with respect to the variable

and equating the result to zero. So the result, for D, in the total

cost equation is

.9.
d0

c =-d—cT dD (”HEP (ow-(15c (D)=O (2.8)
pi

Solving Equation (2.8) for 0 gives the optimum diameter for

which the total cost is at minimum (Skelland, 1967; Jelen, 1970;

Reklaitis et al., 1983).

2.3 Power Requirements
 

The work per unit mass required to pump an incompressible

isothermal fluid through a tube system from point 1 to point 2 under

steady state conditions is given by the mechanical energy balance

equation (Heldman and Singh, 1981) written as



  

I: Ii p2 ' p1
w - Ef + a2 - a1 +--——E;——-+ 9(22-21) (2.9)

where

w = work per unit mass, J/kg

Ef = energy loss due to friction, J/kg

p = pressue, Pa

p = fluid density, kg/m3

9 = acceleration due to gravity (9.8 m/sz)

z = elevation, m

v = mass average velocity, m/s

a = kinetic energy correction factor

1,2 = subscripts referring to points 1 and 2, respectively

Osorio and Steffe (1984) developed an equation for the kinetic

energy correction factor (a) for Hershel-Buikley fluids in laminar

flow. a is equal natwo for turbulent flow. For the purpose of tube/

pipe selection, however, the change in kinetic energy can be assumed

to be zero SlflCG'UEttUbe has a constant diameter (171 = 92) and point

one and two have been located far enough from any entrance,bend, or

fitting to have the same velocity profile (dl = dz) (Skelland, 1967).

The energy loss due to friction in a straight pipe can be

written in terms of the Fanning equation as (Govier and Azis, 1972)



10

E1. = .;ngi. (2.10)

where

f = fanning friction factor

L = tube/pipe length, m

D = tube/pipe inside diameter, m

The pressure drop due to friction depends on the flow char-

acteristic, as well as the fluid properties. At slow flow, the fluid

velocity is parallel to the tube axis and the pattern is smooth.

This condition is known as laminar or streamline flow. As the veloc—

ity of flow increases, there is a point where the flow becomes unstable,

eddies develop, and cause the fluid to swirl in all directions to the

line of flow. The flow is then turbulent. The region from the end of

laminar to fully turbulent flow is known as transitional region.

The theoretical relationship between pressure drop due to

friction and flow rate for a H-B fluid in laminar flow can be optained

by integrating Equation (2-1) as shown by Cheng (1970), Charm (1978),

Skelland (1967), and Govier and Azis (1972). This relationship can

be rewritten in term of the friction factor and generalized Reynolds

number (Hands, 1978; Heywood and Cheng, 1982) and will be outlined

later in this study.

The transitional flow of non-Newtonian fluids has been subject

to research for many years. Various criteria of transition has been

developed based on the end of the laminar flow regime (Metzner and

Reed, 1957; Ryan and Johnson, 1959; and Mishra and Tripathi, 1973).

Le Fur and Martin (1967) applied the Ryan and Johnson criterion for



ll

Bingham and power law fluids. This criterion was also used by Hanks

and Christiansen (1962) for nonisothermal flow of pseudoplastic fluids

and by Cheng (1970) for H-B fluids. Hanks (1963) developed a more

general stability criterion and applied itto the transitional flow of

Bingham plastic fluids (Hanks, 1963). More recently Hanks and Ricks

(1974) presented the transition flow behavior of H-B fluids based on

his theory of laminar flow stability (Hanks, 1969).

Numerous equations have been developed to calculate the fric—

tion factor of power law (Dodge and Metzner, 1959; Shaver and Merrill,

1959; Kemblowski and Kolodziejski, 1973; Tomita, 1959; Szilas et al.,

1981; Clapp, 1961; Hanks and Ricks, 1975), Bingham plastic (Tomita,

1959; Thomas, 1962; Hanks and Dadia, 1971; Darby and Nelson, 1981) and

H-B (Torrance, 1963; Hanks, 1978) fluids in turbulent flow. Good

reviews of these equations are found in articles by Heywood and Cheng

(1982), Cheng (1975), Kenshington (1974), Govier and Azis (1972), and

Skelland (1967). Unlike Newtonian flow, the friction factor prediction

for non-Newtonian fluids varies greatly, depending on the equation

used. This deviation increases with decreasing flow behavior index,

but is not very sensitive to the yield stress, up to a Hedstrom

number of 104. This is the motivation for using equations based on

the power law model to predict friction factor for H-B fluids (Heywood

and Cheng, 1982). However, this may lead to over estimation of the

friction factor (Cheng, 1970). For all the methods developed for

transitional and turbulent flow, the work of Hanks and Ricks (1974)

and Hanks (1978) are the most comprehensive in describing the flow
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behavior of H-B fluids in laminar, transition, and turbulent flow.

This work will be presented later in this study.

So far only the friction loss in a straight tube has been

considered. However, to determine the total pressure drop in a tube

system, one must add the friction loss arrising from any fittings,

valves, and any other devices in the line. The total energy loss due

to friction then can be written in terms of Equation (2.8) and the

summation of the energy loss in fitting and other devices (Steffe

et al., 1984) as

 

(2.11)m
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<

”
h

I

An alternative way to account for the friction loss in fittings

is by means of an equivalent length Lf/D or Le = L + Lf, where Lf is

the equivalent length of pipe for the fittings, valves, and other

devices. Then, Equation (2.8) can be rewritten as (Govier and Azis,

1972).

2f 92 (L + L )f

Ef = D (2 12) 

Numerical data for the equivalent length and resistance coeffi-

cients for turbulent flow of Newtonian fluids through valves, bends,

fittings, and other devices is available in standard reference books

(Crane, 1982; Perry and Chilton, 1973; Govier and Azis, 1972). These
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values can be used as an approximation 'flar non-Newtonian fluids

since the friction loss in fittings does not depend significantly

on the non-Newtonian character of the fluid during turbulent flow

(Cheng, 1970, 1975). Although rather limited, some information on-

friction loss in fittings, valves, and entrances of non-Newtonian

fluids in laminar flow is given by Wilkinson (1960), Skelland (1967),

and Ury (1966). Unlike turbulent flow, the friction loss coefficient

in laminar flow depends on the fluid properties and increases sig-

nificantly with decreasing Reynolds number. This was shown by the

data of Kittredge and Rowley (1957) for Newtonian fluids and Steffe

et al. (1984) for a power law fluid. Iwanami and Suu (1970) consid—

ered the pressure drop in right-angle fittings for various slurries.

Steffe et al. (1984) used a Blasius type equation to correlate the

friction loss coefficient to a generalized Reynolds number for the

laminar flow of a power law fluid through a tee (used as elbow),

90° elbow and a three-way plug valve. The pressure drop in entrances

under laminar flow conditions has been considered by Michiyoski et al.

(1966) for a Bingham plastic fluid, Collins and Schowalter (1963) for

a power law fluid, and Soto and Shah (1976) for a H-B fluid. Cheng

(1970) presented a technique to approximate frictional fittings loss

for non-Newtonian fluids using the tabulated Newtonian losses.

Once the total energy loss per unit mass is known, the power

requirement is given by
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 P = M E N (2.13)

where

P = power, Watts

E = combined fractional efficiency of pump and motor

M = mass flow rate, kg/s

2.4 Economic Considerations
 

In most cases, the purchase cost per unit length of a pipe

may be written in terms of the pipe diameter with the following

empirical relationship (Skelland, 1967; Peters and Timmerhaus, 1968)

PI

6' X (39.37 D) (2.14)

where

C' = purchase cost of a new pipe, $/m

X = purchase cost of one inch diameter pipe per unit

meter of pipe length, $/m in pl

p‘ = constant for purchase cost of pipe dependent

on the pipe material, dimensionless

D = tube/pipe inside diameter, m

Typical valve of p' for different pipe materials is given by

Nolte (1978), Skelland (1967), and Darby and Melson (1982). This

relation permits estimation of the cost of any size pipe from the cost

of a specific size pipe. Nolte (1978) used 2 inch diameter as a

reference because of the greater availability of purchase cost data

at this size. Based on Equation (2.14), the total annual cost of

installed pipe system can be expressed as

 



where

pi

Cpi

15

(a + b) (F + 1) x (39.37 D)p' (2.15)

total annual cost of installed tube system per

unit length of tube, $/yr m

annual fixed cost of the tube system expressed

as a fraction of the initial installed cost of

the tube system, 1/yr

annual maintenance cost of the tube system

expressed as a fraction of the initial installed

cost of the tube system, l/yr

ratio the total cost for fittings and installation of

pipe/tube and fittings to purchase cost of new pipe/tube

The ratio F is estimated at the reference size taken for the

purchase cost of the pipe. That is, the pipe size used to estimate X

in Equation (2.14). For Equation (2.15) the reference size is one

inch. Notice that a, b, and F are assumed to be invariant with tube

diameter, and p' only depends of the tube material. The maintenance

cost (b) is generally taken as 4% per year of the new equipment cost.

For corrosive processes or highly instrumented equipment, this figure

may be as high as 7 to 10% of the investment (Perry and Chilton,

1973). The annual fixed cost, a, can be estimated, assuming zero

salvage valve, from the uniform recovery factor (Newnan, 1983) as

where

= I (1 T I)N (2.16)

(1 + i )N-1

life-time of equipment, yr

interest rate (fraction)
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Alternative methods to estimate the annual fixed cost are discussed

by Newnan (1983), Jelen (1970), Peters and Timmerhaus (1968), and

Perry and Chilton (1973).

The installed cost of a pipe system can also be correlated

to the tube size with a logarithmic plot of the total installed cost,

including fittings, valves, installation, etc., versus the tube

diameter (Jelen, 1970). The installed cost-diameter relationship

can then be written as

c = cp DS (2 17)

where

C = total installed cost of the tube system including the

cost of fittings, valves, installation, etc., $/m

Cp = empirical constant for the tube system cost, $/m1+5

s = exponent constant in the tube system cost equation,

dimensionless

The annual cost of a pump station can be written in terms of

power capacbility. Darby and Melson (1982) gave a linear relationship

between the cost and horsepower for large size pump stations. An

alternative method is to estimate the pump station cost from the cost

data of a different pump size with the following logarithmic relation-

ship (Jelen, 1970; Perry and Chilton, 1973).
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Q

1: C2 (6%” V (2.18)

where

(
'
7

I
I

1 unknown cost of equipment of size 01
0

I
I

2 known cost of equipment of size 02

cost capacity factor

.
0 I
I

Values of q for different pump types and power ranges are

given by Jelen (1970), Peters and Timmerhaus (1968), and Perry and

Chilton (1973). When q = 0.6, this relationship is known as the

six-tenths-factor rule. A closer approximation of this relationship

has been found to be (Perry and Chilton, 1973)

-.QI\9'
C1 - CD (63-) + CI (2.19)

where

CD' = total direct cost of equipment of size 02

C ' = total indirect cost of equipment of size 02

Cost data for pipes, pumps, and fittings are presented by

Peters and Timmerhaus (1968), Jelen (1970), Marshall and Brandt (1970),

and Barrett (1981). This data could be updated with cost indexes,

however, current data should be used whenever possible (Jelen, 1970).

The annual operating cost is primarily the annual electrical

energy consumption and is given as (Skelland, 1967)
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Ce h P

C0p = --If-- (2.20)

where

Cop = total annual operating cost per unit length of

tube, $/yr m

Ce = cost of electrical energy, $/W hr

h = hours of operation per year

L = tube/pipe length, m

P = power, Watts, Equation (2.13)

2.5 Agptimum Economic Pipe Diameter
 

Various relationships have been developed for the optimum

economic diameter of Newtonian fluids under laminar and turbulent

flow conditions. Genereaux (1937) was probably the first to present

pipe diameter optimization methods based on the economic balance of

pipe and operating costs. Further details of Genereuax's work are

given by Peters and Timmerhaus (1968). Downs and Tait (1953) based

their analysis on the economic balance of pipe and pump costs and

provided corrections to account for the operating cost. Perry and

Chilton (1973), and Peter and Timmerhaus (1968) presented optimum

diameter relationships based on the concept or return on incremental

investment. Other methods for determining economic pipe diameter

for Newtonian fluids are discussed by Wright (1950), Sarchet and

Colburn (1940), Nolte (1978), Dickson (1950), Braca and Happel (1953),

and Nebeker (1979).

Optimum economic diameter relationship are more limited for

non-Newtonian fluids. Duckham (1972) gave general guidelines to
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estimate the optimum diameter of non-Newtonian fluids. Skelland

(1967) developed optimum diameter equations based on Metzner and

Reed (1955), and Dodge and Metzner (1959) friction factor relation-

ships for non-Newtonian fluids in laminar and turbulent flow,

respectively. For laminar flow his relationships may be written

in terms of the power law model [as defined by Equation (2.2)].

The analysis is based on the economic balance of pipe and operating

costs assuming a pump was already available or its cost was invariant

with pipe diameter. Skelland (1967) also developed a relationship

to estimate the optimum pumping temperature based on the economic

balance of heating cost and operating cost. The latter decreases

Mch increasing temperature due to the decrease of consistency coeffi-

cient with increasing temperature. Application of Skelland's rela—

tionships for the food processing industry was presented by Boger

and Tiu (1974). More recently, Darby and Melson (1982) applied

dimensionless analysis to developed graphs from which the optimum

diameter can be obtained directly for Newtonian, Bingham plastic, and

power law fluids. In their analysis, they assumed the friction

factor to be constant in the differentiation of the total cost

[Equation (2.7]. The friction factor relationships of Churchill

(1977) and Darby and Melson (1981) were used for Newtonian and Bingham

plastic fluids, respectively. These relationships span all flow

regimes. The equation of Dodge and Metzner (1959) was used for

the turbulent flow of power law fluids. Unlike Skelland, their

economic analysis includes the pump station cost for which they

developed a linear relationship with pump power.



3. THEORETICAL DEVELOPMENT

3.1 Flow Behavior of Herschel-Bulkley Fluids

The theoretical pressure-drop/flow rate relationship for H—B

fluids in laminar flow, in terms of the fanning friction factor, has

been derived by Hanks (1978) and Heywood and Cheng (1982). To date,

Torrance (1967) and Hanks(1978) have presented theoretical analysis

of turbulent flow for H-B fluids. Hanks' analysis is the most com-

prehensive method. Unlike the Torrance equation, the Hank's rela-

tionship deals with transitional flow and includes the laminar-

turbulent transition criterion developed by Hanks and Ricks (1974).

In addition, Hanks' analysis accounts the viscous dampening effect

of the wall on eddy properties near the wall and radial variation of

shear stress, and retained the molecular flux term. His relationship

along with the laminar-turbulent transition of Hanks and Ricks (1974)

and the laminar flow relationship will be presented in this section.

The Torrance equation is given in Appendix A. The Hanks relationship

is particularly suitable for determining the optimum diameter

because it provides a continuous function of friction factor with

tube or pipe diameter.

3;}.1 Laminar Flow

Consider a tube of length L and radius rw(D = 2rw) with fric-

tional pressure drop between points 1 and 2 of APf (Figure 3). A

force balance on the core of the fluid gives
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rw E; — —--

"'Tw —1§//

~‘f L ;3.
    

Figure 3. Velocity profile for Herchel-Bulkley fluid

in a tube.
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2 _
nr APf — anLtrZ (3.1)

or

r APf

Trz = -_?fi:_— (3.2)

At the wall, Equation (3.2) becomes

r AP

_ w f

Combing Equations (3.2) and (3.3) yields

T = JC- T = E T (3 4)

r2 rw w w '

Defining additional dimensionless variable as u = v/v,

£0 = To/TW, F = -du/dg and c = F/FW, Equation (2.1) can be written

in dimensionless form as

KT" r" n

E = E + -——————- C (3.5)

0 T r"
w w

Since g = 1 when a = 1, it follows from Equation (3.5) that

r‘Ifl

n Tw w
p = (1 _ g ) "TT-_—' (3.6)

w o KVn

Substituting Equation (3.6) into (3.5) gives the result

a = to + (1- 50) c“ (3.7)
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Assuming no slip at the wall, the velocity distribution can be

obtained from

1 1

u =J (- 94—) da' = r dale-01d: (3.8)

where E‘ is a dummy variable.

Upon integration, Equation (3.8) gives the relationship for the veloc-

ity distribution as

 

 

F

u = W 1,“ (n21)[<1a0)1/”*1-(a - 50>1/"+1] (3 9a)

(1 - £0)

for

g>g

u - F” < “ > (1 - a )1/" + 1 (3-9b)
o (1 _ £0)1/n n + 1 o

for g $.50

In terms of the defined dimensionless variable, the expres-

sion for the flow rate is given by

l

E

2 J 0 Euo dg + 2 gudg = 1 (3.10)

0 E
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Substituting Equation (3.8) into Equation (3.10) yields, since

u0 is constant for 0.: g_: :0

N

r a c (E',EO) da'1-2 a c (5'.£0) dg' d5 = 1

a a a

(3.11)

Integrating the double integral in Equation (3.11) by parts, using

Leibnitz' rule (Hanks and Ricks, 1974) gives

1

P :2 c (E, to) dz = 1 (3.12)

g0

Substituting Equations (3.7) into (3.12) and integrating results in

(1- a)

1‘3: 3 n (3.13)

w (1':*§fii

 

where

(1-.;)2 2, (1-1) 2:2 “
w=(1+3mH1-€dhn[TTrfih'i I1+an°*'1$"EI

(3.14)

By combining Equation (3.6) and the definition of the Fanning friction

factor as
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f= W = ° (3.15) 
 

Equation (3.13) can be written in terms of the friction factor as

f = if? (3.16)

where w is given by Equation (3.14) and Re, the generalized Reynolds

number, is (by definition)

 

n

D

Re = 8 (Ti-7371')” pl (3.17)

If one eliminates 9 using equation (3.6), and the definitions

of f and Re, Equations (3.13) may be rearranged (Hanks, 1978) to give

2-n

)2 (51)”— (3.18)
0

 

where w is given by Equation (3.14) and

2 T

He = 14(3)? (3.19)

Equation (3.19) is a generalization of the Hedstrom number.

Equation (3.18) defines go as an implicit function of Re and He for

He > 0. go = 0 when He = 0, i.e., To = 0.
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3.1.2 Laminar-Turbulent Transition

Laminar instability starts when the ratio K, the rate of

change of angular momentum of a deforming fluid element to its rate

of loss of frictional drag momentum, exceeds a critical valve E

(Hanks, 1969). For rectilinear pipe flow, the stability parameter

can be written as

Re pr u;
= 9L Ji_ 2 = w

K dr (V I 16
(3.20)

ZAPf

where PW, ;, u, and u are given by equations (3.6), (3.7), (3.9a),

and (3.14), respectively. K is a function of the radial position a

having the value of zero at g = 1 and g = g0, and a maximum value at

some point in the field (5 = E , K = E) where maximum instability

occurs. The transitional critical Reynolds number (Rec) is obtained

from Equation (3.20) when one sets a = E and E = 404 (Hanks and

Ricks, 1974). This valve will give Rec = 2100 for Newtonian pipe

flow. The radial position of maximum instability E is found by

setting dK/dg = 0. For H-B fluids, the critical Reynalds number

is then given by the following expression (Hanks and Ricks, 1978)

 

2+n

6464 n pz/“‘1 (2 + n) 1+n

Rec = 2 1 + 2/n (3°21)

(1 + 3n) (1 - 50C)

where we is given by Equation (3.14) with :0 = 50c Equation (3.18)

is also valid at Re = Rec. Now, by eliminating ReC with Equations

(3-18) and (3.21), the relationship between He and goc can be obtained

as
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2 + n

3232 (2 + ”)1 + n EOCZ/n-l

He = E/IH'I (3.22)

n (1 - 50c)

which defines Soc as in implicit function of He (Equation (3.19))

and n.

The critical friction factor, fc, can be estimated from

Equations (3.16) with w = we and Re = Rec.

3.1.3 Transitional and Turbulent Flow

For transitional and turbulent flow, the time average momen-

tum flux can be expressed as (Hanks, 1968)

-_L-T
Trz - Trz + Trz (3.23)

where 1:2 is the molecular flux, given by Equation (2.1), and 1:2 is

the turbulent flux (or Reynolds stress). This latter flux is given

by Hanks and Dadia (1971), Hanks and Ricks (1975), Hanks (1978), as

-T _ .2
th - pty (3.24)

where t is a modified Prandtl's mixing length (Hanks, 1968) and is

given in terms of the dimensionless variable I = t/rw as (Hanks and

Ricks, 1975; Hanks, 1978)

A = k (1 - F.){1- exp [-¢(1- €)]} (3-25)

where
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R - RC

0 = (3.26)

«GE's

k = Prandtl's universal mixing length constant = 0.36

and

_§;fl l/n

R = ( 1 + 3n) Re (i:) 2 (3°27)16

R is a working parameter and reduces to R = Re/f'for Newtonain fluids

(Hanks, 1968). The parameter RC is estimated from Equation (3.27)

with Re = ReC and f = fc.

The parameter 8 is given by the following empirical relation-

ship for the H-8 model (Hanks, 1978).

 

B =.%% 1 + 0.00352 He 2 (3.28)

(1 + 0.000504 He)

Substituting equations (2.1) and (3.24) into (3.23), Equation

(3.23) can be rewritten in dimensionless form as

-n n -2 2 2

_ Kv Fw n pv 1 PW 2

g - g + —————-— g + —-—-——- C (3.29)

T F Tw

where Fw is given by Equation (3.6) since g = 1 and A = 0 when a = 1.

Using Equation (3.6), (3.15), (3.17), and (3.27), Equation

(3.29) can be written as
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2

+ (1- to) 1;" + 38—0 - a )2/n 122:2 (3.30)5=6 o
0

Combining equations (3.6),(3.12), (3.15),(3.17), and (3.27), Equa-

tions (3.12) can be written in equivalent form

2-n 1 2‘"

T n nR2 2
(1 - 60) (j—gfgfii fig' 5 C (EIdE

€

1 (3.31)

o

where t(g) is given implicity by Equation (3.30).

Finally, from the definitions of f, Re, R and He, it can be

shown that

 R = 2 (3.32)

The methodology to estimate the friction factor is outlined in

Figure 4. A computer program (Appendix 0) written in FORTRAN 77

as developed to accomplish these calculations.

3.2 Total Annual Cost of a Pumpingggystem
 

Assuming negligible kinetic energy change and substituting

Equation (2.11), the work per unit mass, Equation (2.9), can be

written as

w =-3£§—L + Kf-7T + 7? + gAz (3.33)



 

Input Variables

K,11,to, p M

0, Des or DO

Fluid Properties, Mass Flor Rate

Pipe/TUbe Inside Diameter

 

t pt

1. 9 Calculate 9 from Equation (3.34)

2. Re Calculate Re from Equation (3.17)

3. He Calculate He from Equation (3.19)

4. 50c Calculate 50c from Equation (3.22)

through 1terat10n O_: 50c < 1

5. wC Calculate wC from Equation (3.14)

with 50 = 50C

ReC Calculate ReC from Equation (3.21)

fc Calculate fc from Equation (3.16) with

If Re < ReC then laminar flow.

8.-a g0

9.—a w

10.-a f

Alternative for laminar flow

8.-b E
C’o

9.-b w

IO.-b f

wc=wC and Re = ReC

If transition or turbulent go to Step 11.

Calculate go from Equation (3.18)

through interation. (£0 = 0 if r0 = 0

(He = 0)). 60C: to < 1

Calculate w from Equation (3.14)

Calculate f from Equation (3.16)

Calculate go from Equation (3.15)

guessing f > 2 IO/'(p v2). Eocg £0 < 1

Calculate w from Equation (3.14)

Calculate f from Equation (3.16) and

compare with the guess value in

Step 8-b

If Re > Rec, then transitional/turbulent flow

11. fest Guess a value for f > 210/(pV2)

 

Figure 4. Calculation scheme to estimate the friction factor.
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12. R

13. R

If R < Rc’ then go to step 11.

14. go

15. B

16.

17. NJ

18. Cj

19.

20.

21. f

Calculate RC from Equation (3.27) with

Re = Re and f = f
c c

Calculate R from Equation (3.27)

Guess a h1gher valve for fest

Calculate go from Equation (3.32) or

(3.15). 0 §.€0 < goc

Calculate B from Equation (3.28)

Calculate w from Equation (3.26)

Generate values of xi from Equation

(3.25) with go §_g §_1 (j = 1, 2, 3 ...)

Generate values of Cj from Equation

(3.30) with values of Ni and

RiiyE1U=133-~)

Evaluate the integral of Equation (3.31)

by numerical methods with Cj and

50:53: _<_1 (j = 1,2,3 ...)

Calculate Equation (3.31). If result

# 1, then go to Step 11.

If Equation (3.31) is equal to one,

then f = fest

 

Figure 4. Continued.



where the friction factor f is obtained using Hanks' method

described in the previous section and the friction loss coefficients,

Kf, for fittings can be approximated with the Newtonian data for

turbulent flow (Crane, 1982; Perry and Chilton, 1973; Govier and

Azis, 1972) and the relationship given by Iwanami and Suu (1970),

Steffe et al. (1984), and Soto and Shah (1976) for laminar flow.

The mass average velocity may be written as

 

g = 2
(3.34)

Substituting Equation (3.34) into (3.33) gives the result

 

. 02 02

_ 32fM L 8M E: 02

n p D n p D

The annual cost of a pipe system can be estimated using

Equation (2.17) as

cpi = (a + b)cp0S (3.36)

where C total annual cost of installed tube system per unit

P‘ length of tube, $/yr m

a = annual fixed cost of the tube system expressed as a

fraction of the initial installed cost of the tube

system, 1/yr

b = annual maintenance cost of the tube system expressed

as a fraction of the initial installed cost of the

tube system, 1/yr

C = empirical constant for the tube system cost, $/m1+S

s = exponent of tube system cost equation, dimensionless
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As stated before, Cp and s can be estimated from a log-log plot of

the installed csot of the tube system (tube, fittings, valves, etc.)

versus the tube inside diameter. Notice that Equation (3.36) can

also be interpreted as Equation (2.15) if one lets s = p' and

cp = (F + 1) x (39.37)P'.

annual cost of the tube system as a function of the diameter from the

This permits one to obtain the installed

knowledge of the costs of one-inch tube and fittings. However, some

error may be introduced by assuming F to be independent of D and

extrapolating from the cost of one tube size. Therefore, this method

should only be used in preliminary tube sizing when data and knowledge

of the system are limited. More accurate results can be obtained if

the variables Cp and s are calculated from the installed cost of the

tube system for various tube diameters. Even in this case, extra-

polating beyond the diameter range used should be avoided. That is,

Equation (3.36) should be estimate using a range of diameters where

the optimum diameter is expected. Notice that the annual fixed cost

and the annual maintenance cost ratios are assumed to be independent

of tube diameter. However, these costs, as well as other costs

associated with the tube system which may depend on the tube diameter,

may be included in the estimation of the installed cost of the tube

system. Then the fixed and maintenance cost will be included in the

varialbes Cp and S. If this is done, the term (a + b) in Equation

(3.36) can be set equal to one.

The cost of a pump station can be written, in a manner

similar to Equation (2.19) as
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cps = Co PS + CI (3.37)

where

CpS = total cost of installed pump station, $

CD = empirical constant for the pump station cost,

$/WS

CI = empirical constant for the pump station cost, $

exponent of the pump station cost equation,

dimensionless

(
A I
I

The value of CD, CI, and s' can be obtained from a

plot of the installed cost of the pump versus the power require-

ments. The installed pump station cost includes the purchase cost

of pump, motor, and other costs dependent on the size of the pump.

Equation(3.37) permits the use of a linear (s' = 1) or power (CI = 0)

relationship for Cps versus P. Notice also that this equation can be

interpreted as Equation (2.19) if one lets CI = Ci, P = Q1’ 51 = q,

and CD = Céz’qu. The annual pump station cost per unit length of

tube can then be expressed as

- 1 1 5'
Cpu -(a + b )(CDP + CI)/L (3.38)

where

a' = annual fixed cost of the pump station expressed

as a fraction of the initial installed cost of

the pump station, l/yr

b' = annual maintenance cost of the pump station

expressed as a fraction of the initial installed

cost of the pump station, l/yr
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Again, the fixed cost and the maintenance costs may be

included in the estimation of the installed cost of the pump station

for the different pump sizes accounting for these costs in the

variables CI, CD, and S'. Then, the term (a' + b') in Equation

(3.38) could be set equal to one.

The total annual cost of a pumping system per unit length

of tube can be obtained by adding Equations (2.20), (3.36), and

(3.38) which gives, after rearrangement,

S CehP (a' + b') (cDPS' + CI)

CT = (a + 0) CPD + L Ceh P + 1 (3.39)
  

Substituting Equation (2.13) into (3.39) yields

c hnw E(a' + b')(C nS'wS 5'5 + c )
e D I + 1
 
 c = (a + b)C US + _

T p LE CJIMW

(3.40)

where

W = work per unit mass, J/kg, Equation (3.35)

The procedure to estimate the pumping system costs is

outlined in Figure 5. The computer program developed to accomplish

these calculations is given in Appendix D.

3.3 Optimum Economic Tube Diameter

As stated before, the optimum tube diameter, Dopt’ can be

obtained by setting dCT/dD = 0 assuming that CT is only a function

of D, i.e.,
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Imput Variables

h, L, Ap,Az, 2Kf

nsKsTsp
o

Cp,s, a, b

CI, CD, 5', a', b'

Ce’ h, E

D or Dopt

1 l

2 f

3. W

4. P

5. Cpi

6. Cpu

7 Cop

CT

Pumping system parameters

Fluid properties

Tube system cost parameters

Pump station cost parameters

Operating

Tube/pipe

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

cost parameters

inside diameter

9 from Equation (3.34)

f from scheme in Figure 4

W from Equation (3.35)

P from Equation (2.13)

Cpi from Equation (3.36)

Cpu from Equation (3.38)

C0p from Equation (2.20)

CT from Equation (3.39) or (3.40)

 

Figure 5. Calculation scheme to estimate the annual costs of a

pumping system.
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d ( ) s—l 32n3ceh (a' + b')s'cDM5"1

—— C = a + b SC 0 — , + 1 '
dD T p opt TT2p2D6E Ceh E5 -1

2

d Dopt Dopt d
5f - DoptEfiIf + L sz - 4L ED'ZKf = 0 (3.41)

For laminar flow, df/dD can be obtained from the derivative of

Equation (3.16) with respect to the diameter which gives

d _ 16 dRe 16 £1.11».
— f — - — — (3.24)
dB wRe2 dD Rewz dD

Replacing V with Equation (3.34) in Equation (3.17) and taking the

derivative of Re with respect to 0 gives

91%: = _l(3"[3 4 Re (3.43)

Similarly, substituting go with Equation (3 15) in Equation (3.14) and

taking the derivative of w with respect to 0 gives.

dw psio d 440 £0

dD'=-.T——‘ ED f — "‘ff—-' (3.44)

where

C = [(1 + 3n)(1 + n)(1 - 5°)z + 2(1 + 2n)(1 + 3n)£o(1 - £0) + (1 + 3n)(1 + 2n)(1 + n)£§ I

1(1 + 2n)(1 + n)(l - 5°)3 + 2(1 + 3n)(l + n)g° (1 - 5012+(1 + 3n)(1 + 2n):§ <1 - an)

(3.45)
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Substituting Equations (3.43) and (3.44) into Equation (3.42) and

solving for df/dD gives

 

 

d 64goo + 16 (4 - 3n)

an I = RewD (1+ OED (3'46)

01"

d 4f§oo + (4 - 3n)f

d—D' f = D (1 + 05°) (3'47)

where f, go and o are given by equations (3.16), (3.18), and (3.45),

respectively.

Equation (3.46) was confirmed for the special cases of the

power law, Bingham plastic and Newtonian fluids by comparing it to

independent analytical solutions for these fluids. It was also

confirmed numerically for two examples of a H-B fluid (Appendix B).

A numerical integration was required to estimate the friction

factor for turbulent flow as seen in Equation (3.31); hence, the

derivative of the friction factor with respect to the diameter must be

approximated numerically for this flow condition by

= f(D + x) - f(D—x)
 

E UP) 2X (3.48)

where

f(0) = the friction factor expressed as a function of D

x = a small positive number

The backward difference method is used to evaluate the derivative for

diameters just below the critical diameter where turbulent flow starts



(Appendix C). Examples of f(D) versus 0 are shown in Appendix B. An

alternative equation for df/dD for turbulent flow is given in Appen-

dix A when the friction factor is estimated with the relationship

developed by Torrance (1967).

Since no general equation exists for the fitting resistance

coefficient (Kf), it must be assumed to be independent of the diameter.

That is, dKf/dD = o. In addition, when L > > o, L/D and 02/4L will

be small numbers having a small influence on 00 Hence, constant

pt'

Kf values for Newtonian fluids for turbulent flow can be used as an

approx1mat1on to evaluate Dopt' Then, the DOpt 1s g1ven 1mpl1c1ty by

eliminating the dKf/dD term and solving for DOpt from Equation (3.41)

  

 

as

Ds+5 32M3ceh (a' + b')s'-cD PS"1
= . + 1

Opt (a + b)stn2p2E Ceh

5f - o -94 +-EQEE—zm< (3 49)
opt dD L f '

where

P = power, watts, Equation (2.13)

By letting CD = 0, ZKf = 0, go = 0 and cp = (1 + F)(39.37)SX,

and substituting df/dD for Equation (3.46) or (3.47), Equation (3.49)

reduces to
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1

(331.71)

110 4(1 + “IcthK (8:4(1 + 3n)) ’1
pt .

s(a + b)(F + 1)(39.37)S x QE "8"

  

(3.50)

which is an equivalent form of Skelland's equation (Skelland, 1967;

p. 245) for power law fluids in laminar flow, but with the variables

expressed in SI units.

The procedure to estimate the optimum diameter is shown in

Figure 6. The computer program to do these calculations is given in

Appendix D.

3.4 Limitation of Design Method

Some assumptions are inherent in the design method presented.

Even though some of these assumptions were stated previously, they

will be summaried here:

1. Use of Newtonian values for the fittings resistance

coefficients

2. Constant fluid density (incompressible fluid)

Homogeneous or pseudohomogeneous fluids

#
0
)

No slip or apparent slip at the wall

5. No elastic or time-dependent behavior

6. Smooth wall (for turbulent flow only)

7. Isothermal flow

8. Steady state flow

9. Negligible kinetic energy change
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b
o
o
m

Imput variables

M, L, Ap, Az, 2Kf

II, K9 T0: D

C , s, , bp a

C13C35959b

L

Pumping system parameters

Fluid properties

Tube system cost parameters

Pump station cost parameters

Operating cost parameters

Guess DOpt

Calculate 9 from Equation (3.34)

Calculate f from scheme in Figure 4

Calculate df/dD from Equation (3.46) or

(3.47) if the flow is laminar (Re < Rec)

or from Equation (3.48) if the flow is

turbulent (Re > Rec)

Calculate W from Equation (3.35)

Calculate P from Equation (2.13)

If Equation (3.49) is true then Dopt =

Dest’ otherw1se go to Step 1

 

Figure 6. Calculation scheme to estimate the optimum diameter.
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The first assumption may be violated when handling non-

Newtonian fluids under laminar flow. Under this flow condition, the

fittings resistance coefficient increases with decreasing Reynolds

number (Steffe et al., 1984). The frictional loss in fittings may

become significant in a complex tube system with a great number of

fittings. This may cause errors in estimating the optimum diameter,

particularly with short tube systems.

The next three conditions may be violated in the handling of

heterogeneous or multiphase fluids. In these systems, a particle-

free layer may form at the pipe wall creating a variation of solids

concentration. The lubricating action of this liquid layer is known

as effective slip. These systems cannot be accurately described by

the H-B fluid model. More complex models are also required to

describe the flow behavior of viscoelastic and time-dependent fluids.

Viscoelastic fluids show partial elastic recovery on removal of

deforming shear stresses. Such materials exhibit both viscous and

elastic properties. Time-dependent fluids exhibit reversible decrease

(thixotropic), irreversible decrease (rheomalaxis) or reversible

increase (rheopectic) in shear stress with time at constant rate of

shear (Skelland, 1967). These and various time-independent rheologi-

cal models not described by Equation (2.1), such as the Ellis and

Casson models, are not considered in this study.

For turbulent flow, wall roughness leads to increased

pressure drop (Cheng, 1975). Therefore, the power requirements will

be underestimated for this condition since the pressure-drop/flow-

rate relation used in this study for turbulent flow (Sections 3.1.3)



 

 

 



is applicable only for smooth walls. This, in turn, will lead to

under estimation of D Nonisothermal conditions will cause errors
0 t'

in the design method since the consistency coefficient (K) depends

on temperature. It decreases with increasing temperature according

to the Arrhenius relationship (Cheng, 1975). Nonisothermal conditions

may be caused by changes in environmental temperature or by mixing

of various streams at different temperature. In addition, unsteady

flow conditions may be encountered in start-up operations. Also,

pressure surge waves may develop in long pipeline due to fluid

inertia and compressibility (Cheng, 1975). Finally, appreciable

kinetic energy changes may be found in complex tube systems with

variation of tube diameter, entrances, fittings, etc. The current

design method is not applicable for such systems.

 



4. RESULT AND DISCUSSION

4.1 Model Verification

To validate the model, the optimum diameter (00 ) was first
t

estimated for the example given by Skelland (1967) (IllUstration 7.1

(c) pp. 253) for a power law fluid. His data, in terms of the vari-

ables and units of the model developed in this study, are given in

Table 1. The Dopt using this model was found to be 0.1653 (0.5425 ft)

which is the same as the one obtained from Skelland's optimum diameter

equation for power law fluids (as defined by Equation (2.2)). Notice

that the answer in his illustration is different and is due to round-

off error in his numerical constants. Direct calculation using his

original equation (pp. 245) gave the same result. This is to be

expected since Equation (3.49) is a general form of Equation (3.50)

which is an equivalent form of Skelland's equation. The model was also

tested using the example from Darby and Melson (1982) for a Bingham

plastic fluid in turbulent flow. Their data are given in Table 2.

for this case was found to be 0.865m which is 0.82% higher
pt

than their value. This small deviation is probably due to the fact

The D0

that Darby and Melson assumed df/dD = 0 and used an approximation

(Darby and Melson, 1981) of the friction factor relationship of

Hanks;and Dadia (1971) in the derivation of their model. Even though

the result of Darby and Melson was close to the one obtained using

the model of this study, their assumption of df/dD = 0 may introduce

44
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Table 1. Fluid properties and other pertinent data for the optimum

diameter example problem given by Skelland (1967)

 

Fluid Properties
 

0.5; K = 3.02 Pa 5”; p = 977.29 kg/m33

I
I

Pipe Cost Parameters
 

354.58 s/m2'5; s = 1.5; a = 0.14; b = 0.06C
'
)

I
I

Power Cost Parameters
 

Ce = 2.0 x 105 $/w hr; n = 6570 hrs/yr

Other Pertinent Data
 

n = 13.83 kg/s; L = 1523.93 m; E = 0.3

Optimum Pipe Diameter

D = 0.1653 m
opt
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Table 2. Fluid properties and other pertinent data for the optimum

diameter example problem given by Darby and Melson (1982)

 

Fluid Properties
 

n = 1.0; n = 0.03 Pa 5; To = 4.2 Pa; 0 = 1400 kg/m3

Pipe Cost Parameters
 

cp = 409.58 $/m2'2; s = 1.2; a - 0.05

Pump Station Cost Parameters
 

CI = 173800 $; CD - 0.6 $/W; s' = 1.0; a' = 0.05

Power Cost Parameters
 

ce = 4.0 x 10"5 $/w hr; n = 8640 hrs/yr

Other Pertinent Data
 

M==729.16 kg/s; L = 1m; E = 0.6

Optimum Pipe Diameter
 

D = 0.858 m
opt
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significant error for other fluid properties and flow conditions. This

assumption is based on df/dD being much smaller than 5f/Dopt for the

term 5f/Dopt-df/d0 which appears in Equation (3.49) if the equation

is divided by D However, for power law fluids in laminar flow,
0 t'

df/dD can vary ftom 20% to 5f/D for n = 1 to 74% of 5f/D for n = 0.1.

For H-B fluids, df/dD was found to be as much as 68% of Sf/D.

Therefore, the assumption of df/dD << 5f/D is questionable.

In addition, the model was verified by comparing the Dopt

obtained analytically (Equation (3.49)) and graphically (Figure 2)

as will be shown later.

4.2 Cost Parameters and Other Pertinent

Data for a Pumping System

 

 

Consider a pumping system consisting of 100m of 304 stainless

steel tubing with both ends at the same pressure and elevation. The

tube system includes three tees (used as elbow), three 90° elbows,

twenty-one union couplings, and two plug valves giving an overall

fittings resistance coefficient of 10. A close coupled sanitary

centrifugal pump is to be used with pump and motor (combined) effi-

ciency of 70%. The variation of the installed tube system costs per

meter length of tube with tube inside diameter are shown in Table 3.

These are plotted on log-log coordinates in Figure 7. As seen, a

straight line described by Equation (2.17) gives the constant Cp and

5 shown in the figure and a regression coefficient of 0.95. The

values of CD and s are also given in Table 4. In addition, the fixed

(a) and maintenance (b) annual cost ratios for the tube system are

presented. The values of a was estimated from Equation (2.16) assuming
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Table 3. Variation of the installed cost of a tube system per meter

length of tube with tube diameter. Estimated from the

purchase cost (January 1985) of 100 m of Tri-Clover 304

Stainless Steel Tubes (1-3 in tubes are gauge 16, 4 in

tube in gauge 14), polished ID + 00; 3 tees (7MP); 3 90°

Elbows (2CMP); 3 Caps (16AMP); 2 plug valves (DIOMP);

30 Gaskets (40MP-U); 30 Clamps (13MHHM); 36 Furrales

(14RMP). Ladish Company, Tri-Clover Div., Kenosha, Wis-

consin. Installation costs approximated with 1.5 man-hr/

joint-diameter (in) relation (Jeler, 1970), and labor

cost of $35/man hr.

Diameter Installed Cost

00 (in) ID (m) $/M

1 0.0221 36.53

1% 0.0348 44.24

2 0.0475 56.57

2% 0.0602 76.35

3 0.0729 94.65

4 0.0974 144.71
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~93

I C = 1097 0° for 0.0221 < D < 0.0974m

Correlation Coefficient = 0.95 g

100'-

E b

\ D

(D

E" b

0:

<3

0 .

Q

m

a
q I

<

9

in

E

b

10 L l 1 L l 1 1 1 l

0.01 0.1

TUBE INSIDE DIAMETER (m)

Figure 7. Variation of the installed cost of the

tube system (Table 3) with tube inside

diameter.
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Table 4. Cost parameters for the tube system presented in Table 3.

Based on Figure 7 and Equations (2.18) and (3.36)

 

cp ($/m$+1) 1097

s 0.93

a (l/yr) 0.18

b (1/yr) 0.10
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an interest rate of 12% and lifetime of 10 years. The value of b

was taken as 10% of the installed cost of the tube system.

The variation of the installed costs of the pump station

with pump size are shown in Table 5. These are plotted in Figure 8.

As seen, a straight line (5' = 1), described by Equation (3.37) gives

the constants CI and CD shown in the figure with a regression coeffi-

cient of 0.96. The valves of CI, CD, and s' are also shown in Table 6

along with fixed (a') and maintenance (b') annual cost ratios for

the pump station. An interest rate of 12% and lifetime of 5 years

were used to estimate a'. As for the tube system, b' was taken as

10% of the installed pump station. In addition, the system is to be

operated 75% of the year (6,570 hrs/yr) and the electrical energy

cost if 0.06 $/kW hr. These and other pertinent data are tabulated

in Table 7.

4.3 Optimum Diameter for a System

Handling Tomato Ketchup

 

 

It is desired to determine the most economical diameter

(D ) for transport of tomato ketchup at a mass flow rate of 4.0 kg/s.
opt

This fluid can be considered to be a homogeneous non-Newtonian fluid

described by the H-B model (Higgs and Norrington, 1971). The fluid

properties at 25°C are given in Table 8.

Using given variables (Tables 4, 6, 7, and 8), the 00 minimum
pt

cost (C ) power (P), work (W), and pumping system costs (Cpi’ C 9

T .
.m1n

Cop) at optimum were estimated using the procedure outlined in

Figures 5 and 6. The results are summarized in Table 9. Figure 9

[N
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Table 5. Variation of the installed pump station cost with power

requirements. Estimated from the purchase1c09t(January,

1985) of Tri-Flo close-coupled sanitrary centrifugal

pumps, C216 (with water cooled rotary seal) and electric

motor (60 cycle 230/460 volt-3 phase), 1750 rpm for

1-2 Hp pumps and 3500 rpm for 1-15 Hp pumps. ("Easy-

Clean" totally-enclosed motor), Ladish Company, Tri-

Clover Division, Denosha, Wisconsin. Installation cost

taken as 25% of the total purchase cost (Peters and

Timmerhaus, 1968).

 

  

 

Power Installed Cost

Hp watts ($)

1/2 372.9 1313

3/4 559.3 1348

1 745.7 1366

1 l/2 1118.6 1384

2 1491.4 1484

2 1491.4 1414

3 2237.1 1791

5 3728.5 1876

7 1/2 5592.8 2175

10 7457.0 2225

15 11185.5 2686
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C = 1308 + 0.13 P
ps

Coorelation Coefficient = 0.96

I3000

2500

2000

1500  1000 L 4 A I 1

2000 4000 6000 8000 10000

POWER (watts)

 

Figure 8. Variation of the installed cost of the

pump station (Table 5) with power

requirements (linear relationship).
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Table 6. Cost parameters for the pump station presented in Table 5.

Based on Figure 8 and Equations (3.37) and (3.38)

CI ($) 1308

CD $/W 0.13

s' 1.0

a' (l/yr) 0.28

b' (l/yr) 0.10

Table 7. Electrical energy cost, hours of operations per year,

combined pump and motor efficiency, summation of the

fittings resistance coefficients, tube length, pressure

and elevation change, and mass flow rate used to estimate

the costs, and optimum diameter for the pumping system

presented in Table 3 and 5

 

ce ($/w hr) 6.0 x 10'5

h (hrs/yr) 6570

E 0.70

2k, 10.0

L (m) 100.0

49 (Pa) 0

02 (m) 0

M (kg/s) 4.0
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Table 8. Rheological properties (Higgs and Norrington, 1971) and

density (Lopez, 1981) for tomato ketchup at 25°C

 

n 0.27

K (Pa s“) 18.7

To (Pa) 32.0

p (kg/m3) 1110.0

 

Table 9. Optimum economic tube diameters, pumping system costs, and

work and power requirements, at optimum for a system

(Tables 4, 6, and 7) transporting tomato ketchup with

properties given in Table 8

 

Dopt (m) 0.06907

CTmin ($/yr m) 45.70

Cpi ($/yr m) 25.58

Cpu ($/yr m) 6.66

COp ($/yr m) 13.46

W (J/kg) 597.81

P (k Watts) 3.42
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80

70

Total cost, CT

60-

..(
- ---- --------- C . +2

E:CT . ‘17 Tmin %

min |

40" l

Operating cost, COp I

I
30- I

' Tube system cost, Cpi

I
20- I

I

I

10_ Pump station cost, Cpu

D

1 1 . 09th 1 1 .

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

TUBE INSIDE DIAMETER (m)

Figure 9. Variation of tube system cost, pump station

cost, operating cost, and total cost with

tube inside diameter for a system (Table 4,

6, and 7) transporting tomato ketchup with

properties given in Table 8.
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shows the variation of the costs with tube inside diameter. As seen,

Dopt obtained graphically and analytically was 0.06907m for a CT

of 45.70 $/yr m or 5¢/ton of tomato ketchup pumped annually. m1”

P was found to be 3.42 kW (4.58Hp). It can also be seen that tube

diameter between 0.0585m and 0.0835m results in total costs which

does not exceed the minimum value by more than 2% and that the

deviation from minimum increases more rapidly as the diameter

decreased. The Reynolds number was found to be less than the criti-

cal Reynolds number for Dopt’ hence the flow was laminar as seen in

Table 10. These values (Table 10) were estimated following the

scheme shown in Figure 4 with the program given in Appendix 7.4.

4.4 Sensitivity Analysis
 

This section is devoted to study the sensitivity of Dopt on the

various input variables shown in Figure 6. This was done by estima—

tion the percent change of Dopt obtained using a 110% value of each

variable. Even though the analysis is mostly based on the example

of Section 4.3, some general insight can be obtained on the relative

importance of the cost components of the pumping system other variables

in determining D The percent changes of 00 for each.of the
opt' pt

variables are shown in Table 11. The change in the Cpu variables,

with the excpetion of 5', resulted in small changes of Dopt’ This

is due to the small variation of CpS with P obtained in Figure 8.

Changing s' just changed the nature of this relationship. The varia-

tion of the variables of Cpi and COp resulted in considerable changes

on the 00 can also beof Dopt° The greater 1nfluence of Cpl and C0 pt

P
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Table 10. Flow condition of Dopt = 0.06907 m for the pumping system

handling 4.0 kg/s of tomato ketchup with properties given

 

in Table 8

Re 107

He 8.85

f 0.2214

go 0.2815

Re 2754.0
c

f 0.007506

 

 



Table 11. Percent change of 00
pt

for the example presented in Section 4.3

with +10% change of imput variable

 

Percent change of variable -10% +10%

 

 

 

 

 

 

Variables Percent Change of Dopt

Fluid Properties 0 -5.11 +5.17

K -3.04 +2.88

To -0.80 +0.78

0 +5.07 -4.39

Pumping System M -4.91 +4.65

L +0.07 -0.07

ZKf -0.09 +0.07

AP -- --

AZ -- --

Tube system cost C +4.11 -3.58

(Cpi) sp -5.52 +5.82

a +2.56 -2.36

b +1.39 -1.33

Pump Station Cost CI -- --

(Cpu) CD -0.43 +0.42

5' -2.62 +5.94

a' -0.32 +0.30

0' -0.12 +0.10

Operating Cost E +4.11 -3.58

Cop) Ce -3.49 +3.30

-3.49 +3.30
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not1ced 1n Figure 9. Cpu has less 1nfluence on Dopt compared to CO

An economic balance on Cpi and C0

. P°

p__along gave a DOpt of 0.06602 m wh1ch

is 4.42% lower than the value found when Cpu was considered. For the

example to Table 2, DOpt excluding Cpu was found to be 0.855 m, 1.17%

lower than the value found when Cpu was included. The changes of a

and 0 did not effect the results as much as Cp and s. A change of

+10% in a represents an appropriate change of +20% in the life-time

(N) or 125% change in interest rate (1). These variations on N and i

result in less than :3% change on Dopt' From Equation (3.49), it can

be observed that where using a linear relationship (5' = 1) for Cps

vs. P, the DOpt is independent of the pressure energy change (Ap) and

the elevation change (82). Even if s' is not equal to one, D t can

0P

be assumed to be independent of Ap and 82, since C generally varies
pu

little with P. To show this, the data in Table 5 were fitted to the

curve shown in Figure 10. The value of CD, CI’ and s' for this curve

are given in Table 12. The Dopt using these constants and A2 = Ap = 0

was found to be 0.06902 m which is only 0.07% lower than the value

found using the linear relationship of Figure 8. For 82 = 20 m and

pt was found to be 0.46% lower. This variation was

also obtained for A2 = 0 and Ap = 217.78 kPa (2.15 atm) which shown

Ap = 0, the Do

the small influence of Ap and 82 have on Dopt’

The changes on L and ZKf also produced small changes on Dopt;

hence, using the constant Kf value of Newtonian fluids in turbulent

flow for approximating non—Newtonian fluid behavior will introduce

negligible error. As seen from Equation (3.49), Dopt can also be



I
N
S
T
A
L
L
E
D

C
O
S
T

(
5
)

3000

2500

2000

1500

1000

61

0-6

cps: 1075 + 5.53 P
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Figure 10. Variation of the installed cost of the

pump station (Table 5) with power

requirements (non-linear relationship).
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Table 12. Cost constants of Equation (3.37) for the pump station

presented in Table 5 based on Figure 10

 

CI ($) 1075

CD ($/w5') 5.53

s' 0.60

 

assumed to be independent of Kf if the tube length is much greater

than the DO expected. Otherwise, the summation of the resistance
pt

coefficient per unit length of pipe (ZKf/L) can be used as an appro-

ximation without greatly effecting the results. Notice also that if

s = 1 and L>>DOpt or an approx1mat10n of ZKf/L 15 used, 00 t 15 also

P

independent of L. In other words, Dopt can be estimated from the

costs of a unit length of tube/pipe (e.g., one meter). The small

effect of the error of Ap, Az, ZKf, and L on Do is of great value
pt

since these variables are usually not well known in preliminary sizing

of a pipe system. Finally, as seen in Table 11, :10% change in the

fluid properties and mass flow rate, except for the yield stress,

resulted in considerable change on Dopt‘

1 5 0 I' D' I H . g I M' '!i s

The optimum diameter (Dopt)’ pumping system costs, power

requirements and work requirements to transport tomato ketchup were

estimated assuming Newtonian flow behavior and apparent Viscosities

(pa) of 4.723 Pa 5 and 1.715 Pa sto show the problems that may arise
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from this practice. The value of pa were calculated from Equation

1 and 50 s.1(2.6) using a rates of shear of 15s- , respectively, to

simulate point measurement (such as those which might be made with a

Brookfield viscometer) at these shear rates. The results, using pa =

4.723 Pa 5, are shown in Table 13 and compared to the results of

Table 9 (Section 4.3). As seen, as 00 was over estimated signifi-
pt

cantly given a CT 20.63% higher and a P value 37.56% lower. However,

this Dopt does no$13ive the actual minimum as seen in Table 14 which

illustrates the actual pumping system costs, and work and power

requirements estimated using the H-8 model at D = 0.1138 m (the Dopt

obtained using pa = 4.723 Pa 5). As seen, 0 = 0.1138 m gives a total

cost which deviates from the minimum by 15.4%. In addition, the

actual power requirement is 33.78% lower than the one estimated using

the apparent viscosity. If the pumping system was designed using

this apparent viscosity (4.723 Pa 5), the tube system cost (Cpi) and

pump station cost (Cpu) would be estimated to be 40.7 $/yr m and

6.02 $/yr m for a tube size and pump size of 0.1138 m and 2.13 kWatts,

respectively (Table 13). However, the operating cost would be 6.28

$/yr m since the actual power requirement at D = 0.1138m is 1.59

kWatts (Table 14). So the total cost for this system would be

53.0 $/yr m which is 15.97% higher than the one in Table 9. In

addition, the system would have a oversized (hence, less efficient)

pump.

Table 15 shows the results obtained using pa = 1.715 Pa 3 and

a comparison with the values of Table 9. The Dopt for this case was

found to be 0.09271 m, 34.23% higher than the one obtained in Table 9.
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Table 13. Optimum economic tube diameter, pumping system costs, and

work and power requirements at optimum estimated assuming

Newtonian flow behavior and an apparent viscosity of

4.723 Pa 5

Results for % Difference with

_ the results of

Dopt (m) 0.1138 +64.76

CT . ($/yr m) 55.13 +20.63

m1n

Cpi (S/yr m) 40.7 +59.11

Cpu ($/yr m) 6.02 - 9.61

Cop ($/yr m) 8.41 -37.56

W (J/kg) 373.25 -37.56

p (kWatts) 2.13 -37.56

Table 14. Pumping system costs, and work and power requirements

estimated using the H-8 model for D = 0.1138 m

 

CT ($/yr m) 52.74

Cpi ($/yr m) 40.7

Cpu ($/yr m) 5.76

COp ($/yr m) 6.28

w (J/kg) 279.0

P (kWatts) 1.59
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Table 15. Optimum economic tube, diameter, pumping system costs,

and work and power requirements at optimum estimated

assuming Newtonian flow behavior and an apparent vis-

cosity of 1.715 Pa—s

Results for % Difference

u = 1.715 Pa-s with Results

3 of Table 9

Dopt (m) 0.09271 +34.23

CT ($/yr m) 46.42 + 1.58

min

Cpi ($/yr m) 33.63 +31.47

Cpu ($/yr m) 5.84 -12.31

Cop ($/yr m) 6.95 -48.40

W (J/kg) 308.49 -48.40

P (kWatts) 1.6 -48.40
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Again, this 00 t does not give the actual minimum as seen in Table 16.

In this case, the total cost deviated from minimum by 5.51%. From

Tables 15 and 16, it can also be seen that the actual power requirement

at D ==0.09271 m is 18.7% higher than the one estimated using the

apparent viscosity. If the tube size and pump size were to be

selected, base or Table 15, the pumping system would have a undersized

pump uncapable of meeting the actual operating conditions. Therefore,

the pump would have to be replaced or the operating time would have

to be increased resulting in a more expensive system.

As these two examples show, the use of pa and Newtonian flow

behavior to design non-Newtonian handling systems may lead to errors

depending on the rate of shear at which pa was measured.

4.6 Optimum Diameter for a System Handling

a Herschel-Bulkley Fluid in Turbulent Flow

A problem was selected to test the optimum diameter model for

a H-B fluid that resulted in a DOpt for which the flow was turbulent.

For this purpose, the Dopt was estimated for a hypthetical H—B fluid

with properties given in Table 17 and the cost data shown in Tables 4,

6. and 7. The results at C are shown in Table 18. The flow
T .

m1n

condition for Dopt was found to be turbulent (Table 19) and the

variation of the costs with D is shown in Figure 11. The Dopt

obtained graphically and analytically was found to be 0.04065 m

for a C of 24.16 $/yr m confirming Equation (3.49) for turbulent
T .
m1n

flow. The diameter range, which CT did not exceed the CT by more

min
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Table 16. Pumping system costs, and work and power requirements

estimated using the H-8 model for D = 0.09271 m

CT ($/yr m) 48.22

Cpi ($/yr m) 33.63

Cpu ($/yr m) 6.04

C0p ($/yr m) 8.55

W (J/kg) 379.46

P (kWatts) 2.17

Table 17. Rheological properties and density for a hypothetical

Herschel-Bulkley fluid

 

n 0.70

K (Pa s”) 0.03

To (Pa) 2.0

9 (kg/m3) 1400.0
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Table 18. Optimum economic tube diameter pumping system costs and

work and power requirements, power at optimum for a

system (Table 4, 6, and 7) transporting a H-B fluid

with properties given in Table 17

DOpy (m) 0.04065

CT ($/yr m) 24.16

min

Cpi ($/yr m) 15.62

Cpu ($l/yr m) 5.37

C0p ($/yr m) 3.17

W (J/kg) 140.68

P kWatts 0.80

Table 19. Flow condition at Dopt = 0.04065 m for the pumping system

handling 4.0 kg/s of a H-B fluid with properties given

in Table 17

 

Re 2.40 x 104

He 1.88 x 105

f 0.004883

50 0.1207

ReC 6.34 x 104

f 0.08200
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Total cost, CT

 

 

 

    

 

Tube system cost, Cpi

  

I

I

I

I

I

I

I

l

I

I

I

I

I

L 
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Pump station cost, Cpu

DOpt Operating cost, COp

1+ 1 J 3 ==:_.
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TUBE INSIDE DIAMETER (m)

Figure 11. Variation of tube system cost, pump station

cost, operating cost, and total cost with

tube inside diameter for a system (Tables 4,

6, and 7) transporting a H-B fluid with

properties given in Table 17.



70

than 2%, was 0.0365 m to 0.046 m, which is smaller than the example

of Section 4.3. As observed in the previous example, the total

cost deviated from minimum most slowly as the diameter increased

(Figure 11). This rate of increase is practically given by Cpi

as seen from the similarity of the sl0pes of the CT and Cpi curves

for D > Dopt'



5. SUMMARY AND CONCLUSIONS

1. An equation to determine the total annual cost of a

pumping system as a function of tube diameter (based on the costs

of the tube system, pump station, and operation) has been developed

for system handling Herschel-Bulkley fluids under laminar, transitional,

or turbulent flow condition.

2. An equation to determine the optimum economic tube

diameter has been developed for pumping systems handling Herschel-

Bulkley fluids under laminar, transitional, or turbulent flow condi-

tions.

3. The pump station cost had less influence than the

operating cost in determining the optimum economic tube diameter.

4. The optimum economic tube diameter is independent of any

elevation difference (A2) and pressure energy difference (Ap) in the

system if a linear relationship (5‘ = 1) is used to correlate the

pump station cost to power requirements. In addition, 82 and Ap do

not have to be known accurately if the variation of the pump station

cost with power is small.

5. The optimum ecnomic tube diameter can be obtained from

the pumping system costs of a unit length of tube if a linear rela-

tionship is used to correlate the pump station cost to the power

reQuirements (s' = 1) and the length of the tube system is much
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greater than the tube diameter (L >> Dopt) or the frictional loss

in fittings and values is approximated as the summation of the

fittings resistance coefficient per unit length of tube.

6. The use of apparent viscosity and Newtonian flow behavior

for non-Newtonian fluids caused significant errors in the estimation

of the optimum economic tube diameter, total annual cost, and power

requirements of the pumping system.
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ALTERNATIVE EQUATIONS FOR f AND df/dD FOR H-B FLUIDS IN

TURBULENT FLOW

74



APPENDIX A

ALTERNATIVE EQUATIONS FOR f AND df/dD FOR H-B FLUIDS IN

TURUBLENT FLOW

Torrance (1967) developed a friction factor relationship for

H-B fluids in turbulent flow as

_l_ = _ 2.275 1.97 _ e
J1? 0.45 -—n +-——n tn (1 go)

 

n n

n

+ 1.97 in [Re 1+3n fI-I'I/Z] (A.I)

where

Re and 50 are given by Equations (3.17) and (3.15),

respectively

Combining the definition of f, Re, and He, Equation (3.15) can be

rewritten as

 

81.
2 2-n

2-n < n )

£0 = 16 (2He) 2 1+3n . (A.2)

Rez:fi- f

Equations (A+1) and (A+2) gives the friction factor as a function

of Re, He, and n. Replacing V with Equation (3.34) in Equation (3.17)

and go with Equation (3.15) in Equation (7.1), the derivative of

f with respect to D from Equation (7.1) gives

75
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3.94 [4 - 3n (1 - g0)]f3/2

[394+i + (1.-1.97ii)n(1-g0):| 0

 

a
l
e
.

:
3
-
h

This equation can be used instead of Equation (3.48) if the Torrance

relationship (Equation (A.1)) is used to estimate the fanning fric—

tion factor in turbulent flow. However, it is not clear what laminar-

turbulent criterium should be used with the Torrance equation.

Equation (A.3) was confirmed in the same manner as Equation (3.46).
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VERIFICATION OF df/dD EQUATION FOR LAMINAR FLOW
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APPENDIX B

VERIFICATION OF df/dD EQUATION FOR LIMINAR FLOW

The friction factor relation for power law fluids in laminar

flow is given by Equation (3.16) with wIE = 1 as

o=1

where

Re is defined by Equation (3.17)

When Equation (8.1) is differentiated with respect to D, it yields

—0 ReD (3'2)

When a value of zero for go (To = 0) is substituted into Equation

(3.46), it reduces to Equation (B.2), indicating that Equation (3.46) is

correct for the special case of the power law fluid. Equation (8.2)

was also obtained by Darby and Melson (1982), and indirectly by

Skelland (1967).

For the Bingham plastic fluid, the friction factor is given by

Equation (3.16) with K = n, and Re and w evaluated at n = 1 as

78
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= Re|n=1 w'n=1 (8.3)

where

ReIn=1 = BEEF (3'4)

and

wIn=1 = 1 "3 £0 +'3 6: (8'5)

When Equation B.6) is differentiated with respect to D, it gives

4 (1 - 52)

 

df

- o . ' 0

ReIn=1 LlJIn=1 D 1+ [3 wl _ :lgo
n—l

If one evaluates Equation (3.45) at n=1, it can be shown that

4 <1- e3)

0 n=1 _ 3 wln=1 (3-7)

Then if n=1 is substituted hiEquation (3.46), it reduces to Equa-

tion (B.6) which shows that Equation (3.46) is correct for the

special case of the Bingham plastic. Similar results are found when

considering the solution for a Newtonian fluid. In addition to the

method just outlined, Equation (3.46) was confirmed numerically using

Equation (3.48). The properties of tomato ketchup (Table 8) and

the H-B fluid given in Table 17 along with mass flow rate of 4.0 Kg/s
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were considered. These fluid properties and flow condition were

also used for the examples given in Section 4.3 and 4.6, respectively.

The variations of the friction factor with diameter for tomato

ketchup and the H-B fluid are given in Figures 12 and 13, respectively.

These curves can be obtained using the scheme shown in Figure 4.

The analytical value obtained for df/dD at D = 0.06907m (the Dopt

found in Section 4.3) was found to be 11.0585. Using x = 0.0001 in

Equation (3.48), the numerical value was found to be 11.0586 which

is only 0.001% higher than the analytical one. For the H-8 fluid

(TablelJO, the analytical value of df/dD at D = 0.1m was found to

be 1.045, 0.02% lower than the numerical value (1.0452) obtained

using x = 0.001. It is clear that the analytical results are very

close to the numercial results and small differences can be attributed

to the limitations associated with the numeriCal solutiOn technique.-
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APPENDIX C

APPROXIMATION OF df/dD FOR TURBULENT FLOW



APPENDIX C

APPROXIMATION 0F df/dD FOR TURBULENT FLOW

As seen from Figure 14 and 15, the variation of the friction

factor in the turbulent region is small compared to the laminar region

for these examples. However, higher variation, similar to the laminar

region, may be found for higher values of He. Since the numerical

solutions [using Equation (3.48)] of df/dD for the x values used

gave a good approximatidn cfi’ the analytical solution in the laminar

region, it is expected that the same will be true for the turbulent

region. The following values of x are therefore suggested:

  
Diameter (m) x

0.001 _<_ 0 < 0.01 0.00001

0.01_: 0 < 0.10 0.0001

0.10 _<_ o < 1.00 0.001

1.00_<_ 0<10.00 0.01

The value of df/dD for D = 0.04065m, the Dopt obtained in the

example of Section 4.6, was found to be 0.10929. The friction factor

may increase and then decrease for the region just below the diameter

where turbulent flow start (Figure 15). The backward difference

method with the above values of x can be used to evaluate df/dD in
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this region. However, designing so close to the laminar-turbulent

transition is not recommended due to the unstability of the flow

and variation in frictional pressure losses.
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APPENDIX D

LISTING OF COMPUTER PROGRAM

PROGRAM FFTCOD(INPUT.CUTPUT.TAPE10=INPUT,TAPE2O=DUTPUT)

WRITTEN BY EDGARDO d. GARCIA-CAES

COMPLETED MARCH. 1985

THIS PROGRAM PERFORMS THE FOLLOWING FUNCTIONS:

1. CALCULATES THE FRICTION FACTOR IN LAMINAR. TRANSITIONAL OR

TURBULENT FLOW GIVEN DE.DIM.K.MFR.N AND VS

2. CALCULATES THE PUMPING SYSTEM COSTS AND WORK AS A FUNCTION

OF DIM GIVEN API.APP.BPI.BPP,CO.CEP.CHEL,CHPS.CI.CP.DE.EFF,

HR.K.LEGT.MFR.N.PPI.PPP.SUFFC AND YS

CALCULATES THE OPTIMUM ECONOMIC DIAMETER GIVEN API.APP.

BPI.BPP.CD.CEP.CHEL.CHPS.CI.CP.DE.EFF.HR.LEGT.MFR.N.PPI.PPF,

SUFFC AND YS

THE PROGRAM FIRST GIVES

ESTIMATE THE FANNING FRI

TE

0
)

E FOLLOWING OPTIONS: 1- TO

ION FACTOR. 2- TO GENERATE

TIMATE THE OPTIMUM PIPE DIA

ONE MUST FIRST ESTIMAT E COSTS FOR VARIOUS DIAME TE

ORDER TO SELECT THE RANG OF THE DIAMETER WHERE THE 0

C

V. S. DIAMETER DATA. g

D

IS LOCATED. THAT IS. A RANGE OF DIAMETERS THAT CONTAIN 1

U

I

I

S

TH

CT

ES

TH

E

TOTAL COST. AFTER OPTION 2 IS COMPLETED. THE PROGRAM

FOLLOWING OPTIONS: 1* TO START THE PROGRAM. 2- TO EST

PTIMUN OIAMETER.3- TO CONTINUE WITH A NEW RANGE OF D

THE RANGE WHERE THE OPTIMUM DIAMETER IS LOCATED HA

UND). 4- TO EXIT THE PROGRAM. AFTER THE OPTIMUM DIAME

UND. THE PROGRAM GIVES THE FOLLOWING OPTIONS: 1- TO P

.S. DIAMETER DATA GENERATED DURING THE OPTIMUM DIAMETER

ERATION. 2- TO EXIT THE PROGRAM. TO ESTIMATE THE PUMPING

STEM COSTS AND WORK FOR A GIVEN DIM. START THE PROGRAM

AND ENTER OPTION 2. THEN, WHEN ASKED FOR THE DIAMETER RANGE.

ENTER THE SAME VALUES FOR THE DIM LOWER & UPPER BOUNDS AND ONE

FOR THE NUMBER OF DATA POINTS.

N MUST BE GREATER THAN 0. AND LESS THAN 2.0 FOR TURBULENT FLOW

Ahk $3?§}%ON NUMBERS IN COMMENT STATEMENTS REFER TO THE ONES IN

LIST OF VARIABLES:

APl= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRESSED AS A

FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE

SYSTEM.1/YR.EO.(2-16)

APP= ANNUAL FIXED COST OF THE PUMP STATION EXPRESSED AS

FRACTION OF THE INITIAL COST OF THE PUMP STATION.1/YR.EO (2-16)

BPI= ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EXPRESSED

AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE

SYSTEM.1/YR

BPP= ANNUAL MAINTAINANCE COST OF THE PUMP STATION EXPRESSED

g$A¢IS§ACTIgN OF THE INITIAL INSTALLED COST OF THE PUMP

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST. s/w--PPP

CEP= COST OF ELECTRICAL ENERGY S/w HR

CHEL= ELEVATION CHANGE.M

CHPS= PRESSURE CHANGE.PA

CI= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.$

CONDIT= FLow CONDITION 1.5. LAMINAR TURBULENT OR CRITICAL

CP= EMPIRICAL CONSTANT FOR THE PIPE SYSTEM COST. S/M--(1+PPI)

CPCT1= TOTAL ANNUAL COST OF INSTALLED PIPE/TUBE SYSTEM

PER UNIT LENGTH OF PIPE/TUBE. S/YRM .50. (3 -36)

CPCT2- TOTAL ANNUAL COST OF INSTALLED PUMP STATION

PER UNIT LENGTH OF PIPE/TUEE.$/YR M.Eo. (3-38)

OE: FLUID OENSITY.KG/M--3

DELTA- DIAMETER INCREMENT FOR THE GENERATION OF COSTS v.5.
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DIAMETER DATA

DIM: TUBE/PIPE INSIDE DIAMETER.M

DIC= LAMINAR-TURBULENT TR SITION VALUE OF DIM M

DIC1= wORKING VARIABLE TO C LCULATE DIC4

DIC2: WORKING VARIABLE T CALC'LATE DICS

D1C3= WORKIN“ VARIABLE TO ALCULATE DICA & DICE

DIC4= LOWER BOUND GUESS TO CALCULATE DIC

OIC5= UPPER BOUND GUESS TO LCULATE DIC

DIX= DIAMETER ARRAY GENERATED DURING THE OPTIMUM DIAMETER

ITERATION

D11: OPTIMUM DIAMETER LOWER BOUND

OI2= OPTIMUM DIAME ER UP OUN M

EFF: COMBINED FRACTIONAL EFFICIENCY OF PUMP AND MOTOR

EO= DIMENSIONLESS SHEAREO PLUG RAD

EOC= LAMINAR-TURBULFNT TRANNSITION VALUE OF ED

FC= LAMINAR-TURBULENT TRANSITION VALUE OF FFX

FFX= FANNING FRICT

FFY: FRICTION FACTOR ARRAY GENERATED DURING THE OPTIMUM

DIAMETER ITERAT

HE= GENERALIZED HEDSTROM NUMBER. ED. (3 19)

HR= HOURS OF OPERATION PER YEA

K= CONSISTENCY COEFFICIENT PA S--N

LEGT: TUEE/PIPE LENGTH

MFR: MASS FLOR RATE RG/S

N: FLOW BEHAVIOR INDEX

NANS= MENU POINTER

NO= NUMBER OF DATA POINTS GENERATED DURING THE OPTIMUM

DIAMETER ITERAAT

NOROOT= ROOT INDICATOR; O-YES: 1-NO; 2-TOO MANY ITERATION

NP: COUNTER

OPC = TATAL ANNUAL OPERATING COST PER UNIT LENGTH OF

PIPE/TUBE.S’Y .Eo. )

O A.= 0;;IMUM ECONOMIC TUBE/PIPE INSIDE DIAMETER M

= .141 3

POINTS: NUMBER OF COSTS E WORK V. S. DIAMETER oDATA POINTS

PP:- EXPONE I IN THE PIPE SYSTEM COST EDUATI

PPP- EXPON I IN THE PUMP STATION COST EOUATION

= GENERALIZED REY NO U R.E 3—1 )

REC: LAMINAR-TURBULENT TRANSITION VALUE OF RE EO.(3—21)

PFC: SUMMATIDN OF THE ITTI GS RESISTANCE COEFFICIENT

TOCT: TOTAL ANNUAL COST OF A UMPI SYSTEM PER UNIT

LENGTH OF PIPE/TUBE.S/YR M -7)

TOL = TOLERANCE ERROR TO FIND DIC

TDLC= TOLE N: ERROR FOR EO.§3-22)

TOLD: TOLERANCE ERROR FOR EO. 3-49)

TOLI= TOLERANCE ERROR FOR THE INTEGRAL OF ED. (3- 31)

TOLL= TDLERANC’ ERROR FOR EO.(3-18

TOLT: TOLERANCE ERROR FOR EO.(3-31

TOLV: TOLERANCE ERROR FOR ED (3-30

U: M 5 AVERAGE VELOCITY.M/S

WORK= WORK PER UNIT MASS.U/KG.EO.(3-35)

YS= YIELD STRESS PA

LIST OF SUBROUTINES:

BISECT1= ROOT FINDING SUBROUTINE: BISECTION-SECANT METHODS

BISECT2= FINDING SUBR UTINE: BISECTION-SECANT METHODS

TOTCOST: COMP E THE PUMPING SYSTEM COSTS s THEORE CA

WORK REQUIREMENTS.

SORTING: RT ARRAYS D G Y

SWA = INTERCHANGE THE VALUE OF Two VARIABLES

LIST OF FUNCTIONS

DIMCRIT= CRITICAL DIAMETER FUNCTION

FRICFAC= FRICTION FACTOR FUNCTION

REAL MFR R,N,PI.FFY(1OO).DIX(1OO).LEGT

PARAMETER (PI=3.141593)

CHARACTER CONDIT-1O

EXTER AL DIMCRIT

COMMON/MFRCCF/MFR.K/YSTDEN/Ys.DE/FLwIDX/N/AVEVEL/U

COMMON/CRICON/REC.FC.EOC/FLwCON/RE.HE

OMMON/UNSPLG/EO/CRITOI/DIC

COMMON/PIPECT/API.BPI.CP.PPI.LEGT

COMMON/PUMPCT/APP,BPP.CI.CD.PPP,EFF/ELECTS/CEP HR

OMMON/CHPSEL/CHPS.CHEL/FRICFC/FFX

OMMON/FFVSDI/FFY.DIX.NO

COMMON/TOLERT/TOLV.TOLI/TOLER2/TOLC/TOLER3/TOLL.TOLT

COMMON/ROOTNO/NOROOT/CODFLw/CONDIT/FLCFT/SUFFC

RSESOTOLA. OLC.TOLL.TOLT.TDLV,TOLI.TOLD/5-1.E-4.2-1.E-3/
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WRITE(ZO 100)

PRINT-

PRINT-

PRINT-

WRITE(20.110

WRITE(20.330

WRITE(20.110)

PRINTF

PRINT-

PRINTi

E§§MT-'l 1. ENTER 1 TO ESTIMATE THE FANNING FRICTION FACTOR’

PRINT. ’ 2. ENTER 2 TO GENERATE COST V.S. DIAMETER DATA’

PRINT- ’ ANSWER? ............ ’

READ’ NANS

PRINTP

PRINTP

IF(NANS.NE.1.AND.NANS.NE.2) GO TO 5

INPUT OF FLUID PROPERTIES

PRINT-

WRITE(20.110)

WRITE(20.110)

PRINT-

PRINT-

PRINT-.’ ENTER FLOW INDEX ..................................

READ-.N

PRINT-

PRINT-,’ ENTER CONSISTENCY COEFFICIENT, (PA SEC-“NI ........ '

READ'.K

PRINT-

PRINT- ’ ENTER YIELD STRESS. (PA) ..........................

READF.

PRINT-

PRINT-.’ ENTER FLUID DENSITY, (KG/MF'3) ....................

READ'.DE

PRINTP

PRINT-

INPUT OF PUMPING SYSTEM VARIABLES

WRITE(20.340)

PRINT-

PRINT'

PRINT-.’ ENTER MASS FLOW RATE.

READ'.MFR

IF(NANS.EQ.1) GO TO 10

GO TO 15

PRINT:

PRINT-.’ ENTER PIPE DIAMETER,

READ’. .

(KG/SEC) ....................

(M) ..........................

ESTIMATION OF THE FRICTION FACTOR

FFX=FRICFAC(OIM)

OUTPUT OF THE RESULTS OF THE FRICTION

TRIT-
WRITE(20.350;

g§§;$(20.350

EEIMT(20'1SO) CONDIT

WRITE§20.160 RE

WRITE 20.170 HE

WRITE(20.180 FFX

WRITEE20.380 ED

gfiILE 20.370

3:}L$(2O'120)

WRITE(20.130 REC

WRITE(20.14O FC

WRITE(20.360 EOC

WRITE(20.37O

GO TO 75

FACTOR
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MORE INPUT OF PUMPING SYSTEM VARIABLES

"
I
n
”

.’ ENTER PIPE LENGTH. (M) ............................

LEGT

'.’ ENTER PRESSURE CHANGE. (PA) .......................

CHPS

'.’ ENTER SUMMATION OF THE FITTINGS RESISTANCE’

' ' COEFFICIENTS ................................

NTP.’ ENTER COMBINED FRACIONAL EFFICIENCY’

NT-,’ OF PUMP AND MOTOR ...........................

INPUT OF TUBE SYSTEM COST VARIABLES

WRITE(20.3AO)

PRINT-

PRINT-

PRINT-.' ENTER EMPIRICAL CONSTANT FOR THE TUBE SYSTEM’

PRINT-.’ COST. CP. (S/M-~T1+SII ......................

REAO- CP

PRINT-

PRINT-.' ENTER EXPONENT FOR THE TUBE SYSTEM COST. S ........

READ-.PPI

PRINT-

PRINT-.' ENTER ANNUAL FIXED COST OF THE TUBE SYSTEM’

PRINT-.' EXPRESSES AS A FRACTION OF THE INITIAL’

PRINT-.’ INSTALLED COST OF THE TUBE SYSTEM ...........

READ' API

PRINT-

PRINT-.’ ENTER ANNUAL MAINTAINANCE COST OF THE TUEE’

PRINT-.’ SYSTEM EXPRESSED AS A FRACTION OF THE’

PRINT-. ’ INITIAL INSTALLED COST OF THE TUBE SYSTEM...

READP.BPI

PRINT-

PRINT-

INPUT OF PUMP STATION COST VARIABLES

wRITE(20.340)

PRINT-

PRINT-

PRINT-, ' ENTER EMPIRICAL CONSTANT FOR THE PUMP STATION’

PRINT-,' COST. CI. (S) ...............................

READ-.CI

PRINT-

PRINT:. ' ENTER EMPIRICAL CONSTANT FOR THE PUMP STATION’

PRINT-.' COST. CO. (S/VATTs--s-PRIME) ................

READ-.CD

PRINT:

PRINT- ' ENTER EXPONENT FOR THE PUMP STATION COST.s-PRIME..

READ-.PPP

PRINT-

pRINTt.’ ENTER ANNUAL FIXED COST OF THE PUMP STATION’

PRINT-.' XPRESSED AS A FRACTION OF THE INITIAL’

PRINT-.’ INSTALLED COST OF THE PUMP STATION ..........

READ-.APP

PRINT-

PRINT-.’ ENTER ANNUAL MAINTAINANCE COST OF THE PUMP’

PRINT-.’ STATION EXPRESSED As A FRACTION OF THE’

PRINT-.’ INITIAL INSTALLED COST OF THE PUMP STATION..

READ-.BPp

PRINT-

PRINTP

INPUT OF OPERATING COST VARIABLES

E(20.340)

T-

’CEPENTER COST OF ELECTRICAL ENERGY. ($/WATTS HR) .....

ENTER ELEVATION CHANGE. (M) ....................... ’

I



U
M
W
Q
Q
U
U
O
O
Q
I
A
I
I
A
)

”
M
M
N
J
—
A
—
A
-
A
J
—
A
.
‘

w
M
-
P
O
I
D
W
Q
O
I
U
I
b
w

(
A
H
A
)

M
I
D

(
”
5

I
I

I
I

o
n

w
w
w
w

k
n
o
w
n

w
m
q
m

II
II

II
II

n
o

336=

U
U
I
O
O
I
U

R
i
b
-
(
0
0
0
0
0

J
O
I
D
I
D
Q

I
I

I
I

I
I

I
I

I
I

395'F

91

PRINT-.’ ENTER HOURS OF OPERATION PER YEAR ................. '

READ-.HR

PRINT-

PRINT-

WRITE(20.340)

IF(NANS.EC.2) GO TO 60

GO TO 5

CONTINUE

ESTIMATION OF CRITICAL DIAMETER THROUGH

ITERATION FROM E0 (3-17) 8 (3-21)

THE INITIAL DIC RANGE IS OBTAINED FROM E0.(3-17I a (3-34)

MITH RE=1.E3 & RE= E6 FOR DIC4 S OIC5.RESPECTIVELY

DIC1=1.EBFPI*'(2 -N;FK-(§3.-N+1.)/(4.PN))-*N

OIC2=1.E6-PI--(2 -N PK-( 3.-N+1.I/I4.-NII-~N

DIC3=2.--(7.-5 PN)-DE--(N-1.)PMFR--(2.-N)

DIC4=IDIC1/DIC3)--éI./(3.-N-4.g)

DIC5=(DIC2/DIC3)-- 1./(3.-N-4. I

CALL BISECT2(DIC4.DICS.40.TOLA.DIMCRIT.DIC)

IF (N0ROOT.E0.0) GO TO 30

PRINT-

PRINT~

PRIMI"I THE CRITICAL DIAMETER. DIC WAS NOT FOUND’

PRINT'.’ IN THE RANGE ’.DIC4.’ <= DIC <= ’.DIC5

PRINT-

PRINT-.’ ENTER A WIDER RANGE FOR DIC’

READ-.DIC4.DIC5

N0RDOT=0

GO TO 25

CONTINUE

ESTIMATION OF THE OPTIMUM TUBE DIAMETER

THROUGH ITERATION FROM EO.(3-49)

PRINT-

PRINT-

PRINT'.’ ENTER RANGE FOR THE OPTIMUM PIPE DIAMETER. (M)....’

READ-.DII.DI2

CALL BISECT1(DI1.DI2.50.TOLD.OPDIAM)

IFENOROOT.EO.2g GO TO 40

IF NOROOT.E0.0 GO TO 45

PRINTP

PRINT-

PRINT'.’ THE OPTIMUM PIPE DIAMETER WAS NOT FOUND IN’

PRINT-.’ THE RANGE GIVEN. ENTER A NEW RANGE. (M) ........... ’

NOROOT80

GO TO 35

PRINT-

PRINT”

PRINT'.’ TOO MANY INTERACTION TO FIND THE OPTIMUM PIPE’

PRINT'.’ DIAMETER. ENTER A SMALLER RANGE. (M) ............. ’

NOROOT=0

GO TO 35

ESTIMATION OF THE PUMPING SYSTEM COSTS AND

WORK AT THE OPTIMUM DIAMETER

CALL TOTCOST(OPDIAM.WORK.TOCT.OPCT.CPCT1.CPCT2)

OUTPUT OF RESULTS AT THE OPTIMUM DIAMETER

 

PRINT:

PRINT-

PRINT-

WRITE(20.350g

WRITE(20.3SO

PRINT-

WRITEE20.190 OPOIAM

WRITE 20.200 TOCT

WRITE(20.21O OPCT

WRITEé20.22O CPCT1

wRITE 20.230; CPCT2

WRITE(20.240 WORK

PRINT-

WRITE(20.150) CONDIT

PRINTP

WRITE 20.160 RE

WRITE 20.170 HE

wRITE 20.180 FFX

WRITE(20.380) ED
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CONTINUE

V.

rANS ED.

I
.

O L C
.
.
.

S.

I

D

GENERATION OF PUMPING

.
.
.
.
.

20 370)

20.120)

1

‘

2

3

3

2

20 110)

1

2

TS.LE.

1)

 

GENERATED

20.110)

2

2

2

3

3

R

)

1

ESTIMATION

WORK FOR THE

E

C

I

O

ENTER

GO TO 50

OF TH

DURING

I

DIAMETER

N

.) THEN

7

8

9

O

1

CALL SORTING(DIX.FFY.NO)

NO

S

2

THE
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SUBROUTINE TOTCOST(DI.WORK,TOCT.OPCT.CPCT1.CPCT2)

THIS SUBROUTINE CALCULATES THE FOLLOWING:

1. WORK PER UNIT MASS.EQ.E3-35

2. POWER REQUIREMENTS EQ 2-13

3. PUMPING SYSTEM COSTS. EO.(2T2O).(3-36)

(3' 38) 8 (2

NOTE: POWER IS ONLY USED INTERNALLY

LIST OF VARIABLES:

API= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRESSED AS A

FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE

SYSTEM. 1/YR. E0. (2- 16)

APP= ANNUAL FIXED COST OF THE PUMP STATION EXPRESSED AS

FRACTION OF THE INITIAL COST OF THE PUMP STATION.1/YR EO.(2-16)

BPI= ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EXPRESSED

AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PIPE

SYSTEM.1/YR

BPP= ANNUAL MAINTAINANCE COST OF THE PUMP STATION EXPRESSED

AS A FRACTION OF THE INITIAL INSTALLED COST OF THE PUMP

STATION.1/YR

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.$/W--PPP

CEP= COST OF ELECTRICAL ENERGY.$/W HR

CHEL= ELEVATION CHANGE.M

CHPS= PRESSURE CHANGE.PA

CI= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.$

CP= EMPIRICAL CONSTANT FOR THE PIPE SYSTEM COST. S/M-‘(1+PPI)

CPCT= TOTAL ANNUAL CAPITAL COST OF INSTALLED EOUUIPMENT

PER UNIT LENGTH OF PIPE/TUBE. S/Y M

PIPE/TUBE SYSTEMCPCT1= TOTAL ANNUAL COST OF INSTALLED

PER UNIT LENGTH OF PIPE/TUBE S/YR M.EO.(3-36)

CPCT2: TOTAL ANNUAL COST OF INSTALLED PUMP STATION

PER UNIT LENGTH OF PIPE/TUBE.$/YR M.EO (3-38)

DE= FLUID DENSITY KG/MIES

DI: TUBE/PIPE INSIDE DIAMETER M

EFF: COMBINED FRACTIONAL EFFICIENCY OF PUMP AND MOTOR

IN

OF OPERATION PER YEAR

TENCY COEFFICIENT.PA S'*N

E/PIPE LENGTH,M

FLOW RATE.KG/S

AL ANNUAL OPER

E/TUBE.$/YRM

RI: 3.141593

RDwER= RDwER REQUIREME

PPI= EXPONENT IN THE P

PPP= EXPONENT IN THE P

SUFFC= SUMMATION 0F TH

TOCT= TOTAL ANNUAL CO

LENGTH OF P P /

T M

E

E
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REAL M R.K PI.LEGT

RARAME ER lPI=3.141593)

COMMON/MFRCCF/MFR,K/VSTDEN/YS.DE

MON/RIPECT)ARI.GPI.CR.RPI.LEGT

COMMON/PUMPCT/APP.BPP.CI.CD.PPP EF F/ELECTS/CEP HR

COMMON/CHPSEL/CHPS.CHEL/FRICFC/FFX

COMMON/FLCFT/SUFFC

CALCULATION OF WORK FROM Eo.(3-35)

WORK1=32. -LEGT- MFR- MrR- FPx/(PI-PI- DE- DE- DI--5)

ORK2=8 ‘MFR- MFR- SUFF C/(PI- PI- DE- DE- DI-- 4)

IBSRSESSEEIBEEEEQSEE

CALCULATION OF POWER FROM Eo.(2-13)

POWER=MFR-WORK/EFF

CALCULATION OF OPERATING COST FROM Eo.(2—2o)

OPCT=CEP~HR-POWER/LEGT

CALCULATION OF TUBE SYSTEM COST FROM Ec.(3-36)

CPCT1=(API+BPI)-CP-D1--PPI

CALCULATION OF PUMP STATION COST FROM Eo.(3—38)

CPCT2=(APP+3PP)u(CI+CD-POWER-xPPP)/LEGT

TOTAL ANNUAL CAPITAL COST

CPCT=CPCT1+CPCT2

CALCULATION OF TOTAL COST FROM E0 (2-7)

TOCT=OPCT+CPCT

RETURN

END
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FUNCTION DIMCRIT(DI)

THIS FUNCTION EOUATE THE GENERALIZED REYNOLDS NUMBER

EO.(3-17). WITH THE CRITICAL REYNOLDS NUBER.EO.(3-2T) TO GIVE

A FUNCTION IN TERM OF DIC FOR A GIVE MASS FLOW RATE.

LIST OF VARIABLES:

A1= LOVER BOUND GUESS OF EOC

A2= UPPER BOUND GUESS OF EOC

DE: FLUID DENSITY,KG/M-'3

DI= TUBE/PIPE INSIDE DIAMETER.M

EOC= LAMINAR-TURBULENT TRANSITION VALUE OF EO

H§=HEENERALIZED HEDSTROM NUMBER.EO.(3-19)

K= CONSISTENCY COEFFICIENT.PA S-EN

MFR: MASS FLOW RATE.KG/S

N: FLOW BEHAVIOR INDEx

NOR03T743g8; INDICATOR; o-YES; 1-NO; 2-TOO MAN\ ITERATION

PSIC= LAMINAR-TURBULENT TRANSITION VALUE OF Y

RE= GENERALIZED REYNOLDS NUMBER.EO.(3-17)

REC= LAMINAR-TURBULENT TRANSITION VALUE OF RE E0. (3-21)

RECP= HERSCHEL-BULKLEY GENERALIZED CRITICAL REYNOLDS NUMBER= RECrPSIC

REC1.REC2.REC3= WORKING VARIABLES TO CALCULATE REC

RE1.RE2 RE3= WORKING VARIABLES TO CALCULATE RE

TDLC= TOLERANCE ERROR FOR EO (3-22)

U= MASS AVERAGE VELOCITY M/S

YS= YIELD STRESS.PA

LIST OF SUBROUTINES:

BISNEVT= ROOT FINDING SUBROUTINE: BISECTIDN-NERTON METHODS

LIST OF FUNCTIONS:

DFUN1: DERIVATIVE

FUN1= EO.(3*22) RE

Y= LAMINAR FLOW FU

OF FUN1 O EOC

WRITTEN

NCTION

REAL MFR x N

PARAMETER (P 141593

EXTERNAL FUN FUN1

COMMON/MFRCC FR K,YS

COMMON/HEDSTR/H>/TOL ER

COMMON/ROOTNO/NOROOT

CALCULATION OF U FROM 50.

*MFR/(PI-OE‘DI--2)

CALCULATION OF RE FROM EQ.(3-17)

F 3.*N+1.))-~N

= DI 2. )ERN

=UR'(2. N)

8. *DERRE1-RE2 RES/K

i )
1

F TDE N/YYs.DE/FLwIDx/N

2/TOLC

(3-34)

U=4.
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CALCULATION OF HE FROM EO.(3-19)

IF(YS. E0. 0. ) THEN

EOCOO.

SE=(DE/YS)*DI--2'(YS/K)-*(2./N)

END IF

IF(HE.E0.0.) GO TO 10

CALCULATION OF EOC THROUGH ITERATIDN FROM EO.(3'22)

HXsHE

A1=O.

A2=.999999999

CALL BISNEVT(A 1 A2.40.TOLC.FUN1.DFUN1.EOC)

IF(NOROOT.EQ. 0) GO TO 10

PRINT-

PRINT~

gg%m1-.' THE DIMENSIONLESS UNSHEARED PLUG RADIUS.EOC.wAS NOT’

ggIfiT-.' FOUND IN THE RANGE ’.A1.’ <= EOC <= ’,A2

PRINT'.’ ENTER A NEW RANGE FOR EOC: 0. <= EOC < 1.0 ...... '

READF.A1,A2

NOROOT=o

GO TO 5

CONTINUE

CALCULATION OF REC FROM Eo.(3-21)

REC1=33600. -SORT(1. /27. )- N/(1.+3.*N)'*2

REC2=E2. +N)-'((2. +N)/ 1 +N))

REC3= -EOC)“(1 +2. N)

CALCULATION OF PSI-CRITICAL FROM EO.(3-14) wITH EO=EOC

PSIC=Y(EOC)

CONTINUE CALCULATION OF REC

ES};REC2PSIC"(2. /N)/REC3R

EC

IT= 1. -REC/RE

RECP =

REC= R

DIMCCR

RETURN

END
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SUBROUTINE BISECT1(XA,XB.MAX.ERROR.NEWX)

THIS SUBROUTINE COMPUTES THE OPTIMUM DIAMETER FROM

EO.(3-49) (COMPUTES THE ROOT OF THE FUNCTION OPTDIAM). IT

IS A COMBINATION OF THE BISECTION AND SECANT ITERATION

METHOD. THE BISECTION INTERVAL IS USED TO START THE

SECANT ITERATION. THE PROGRAM CONTINUES WITH THIS METHOD

UNTIL THE SOLUTION IS FOUND OR THE FOLLOWING SITUATIONS

OCCUR: 1- X FALLS OUTSIDE THE INTERVAL KNOWN TO CONTAIN THE

SOLUTION; 2' X IS OUT OF RANGE OR INDEFINITE; 3- TOO

FAR AWAY FROM THE SOLUTION; 4- THE NUMBER OF ITERATIONS

EXCEEDS MAX. IF THESE SITUATIONS OCCUR. THE PROGRAM

SWITCH TO THE BISECTION METHOD TO OBTAIN A SMALLER

INTERVAL. REFERENCE: MOORE.E. 1982. ”INTRODUCTION TO

FORTRAN AND ITS APPLICATION“. ALLYN AND BACON. INC..

BOSTON.MASS.

LIST OF VARIABLES:

DIFF= DIFFERENCE BETWEEN TWO ITERATION POINTS

DIX= DIAMETER ARRAY GENERATED DURING THE OPTIMUM DIAMETER

ITERATION

ERROR= TOLERANCE ERROR

FA= VALUE OF OPTDIAM AT XA

FB= VALUE OF OPTDIAM AT XB

FFX= FANNING FRICTION FACTOR

FFY= FRICTION FACTOR ARRAY GENERATED DURING THE OPTIMUM

DIAMETER ITERATION

FM= VALUE OF OPTDIAM AT XM

F03 VALUE OF OPTDIAM AT XO

F1= VALUE OF OPTDIAM AT X1

LM= -1 IF X IS INDEFINITE; +1 IF OUT OF RANGE; O OTHERWISE

MAX: MAXIMUM NUMBER OF SECANT ITERATION

NEWX= ROOT OF OPTDIAM

NO= NUMBER OF DATA POINTS GENERATED DURING THE OPTIMUM

DIAMETER ITERATION

NOROOT= ROOT INDICATOR: O-YES: 1-NO: 2-TOO MANY ITERATION

X= POINT FROM THE SECANT ITERATION EQUATION

XA= LOWER BOUND POINT USED IN THE BISECTION METHOD

X8g UPPER BOUND POINT USED IN THE BISECTION METHOD

XM= MIDPOINT BETWEEN XA 8 X8

X0: SECOND POINT REQUIRED FOR THE SECANT PROCESS

X1= FOCUS POINT FOR THE SECANT ITERATION

LIST OF SUBROUTINES:

SWAP= INTERCHANGE THE VALUE OF TWO VARIABLES

LIST OF FUNCTIONS: _

FRICFAC= FRICTION FACTOR FUNCTION

OPTDIAM= OPTIMUM DIAMETER FUNCTION.EQ.(3-49) REWRITTEN AS

OPTDIAM(X)=O.

REAL NEWX

COMMON/RD

COMMON/FR

COMMON/FF

NO=2

IF(XA.GT.XB

CALL SWAP(XA.X

END IF

FFx-FRICFAC(XA
FFY§1 sFFx

,FFY;

OTNO

ICFC/

VSDI/

) T

2 sXB

:TDIAM(XB)

XA+XB)/2.

FO~F1.GT.O.) GO TO 90

NO.GT.99) GO TO 95

ABs1F1/FO).GT.5..OR.ABS(FOéF .GT.

ALOG(ABS(F1)).GT.O..OR.ALO F

1) 5.) GO TO 40

ABS( O)).GT.O.) GO TO 40
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SECANT ITERATION

OO 30 d= 1 MA

IF(AB 5(F15. GE.ABS(FO))THEN

CALL swAR(FO.F

CALL swAP(XO x1

END IF

X=X1-F1-(X1-xo)/(F1—-FO)

LM=LEGVAR(X

IF (LM NE. 0 GO TO 40

IF(X LT. XA. OR.x .xs) GO TO 40

DIFF=ABS(X-X1)

IF(DIFF LE.AB$(x-ERROR)) GO TO GO

XO=X1

FO=F1

x1=x

FFx=FRICFAC(x)

NO=NO+1

FFY§N0;=FFX

OIx NO =x

F1=ORTOIAM(x)

CONTINUE

BISECTION ITERATION

FFX=FRICFAC(XM)

NO=NO+1

FFYENOT=FFX

OIx N0)=XM

FM=0PTDIAM(XM)

IF EFM.EQ.O.) GO TO 70

IF FAxFM.LE.O ) GO TO so

XA=XM

FA=FM

FO=FA

XO=XA

F1-Fs

X1=xs

GO TO 60

XB=XM

FB=FM

X1=XB

F1=FB

XO=XA

FO=FA

XM= EXA+XB)/2.

iFXMABS(XA- X8). GT. ABS(XM*ERROR)) GO T0 10

NEWX=X

FFX=FRICFAC(NEWX)

NO=NO+1

FvaNochFx

OIx NO =NEWX

RETURN

NEWX=(XA+XB)/2.

NOROOT=1

RET

Nwa=(XA+XB)/2.

NOROOT =2

RETURN

END
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FUNCTION OPTDIAM(DI)

THIS FUNCTION EXECUTES THE OPTIMUM DIAMETER EQUATION.

.(3-~49). REWRITTEN AS OPTDIAM(DI)=O

LIST OF VARIABLES:

API= ANNUAL FIXED COST OF THE PIPE SYSTEM EXPRESS D AS A

FRACTION OF THE INITIAL INSTALLED COST OF TH IPE

SYSTEM.1/YR.EQ.(2-16)

ANNUAL FIXED COST OF THE PUMP STATION EXPRES E

FRACTION OF THE INITIAL COST OF THE PUMP STA I N.

ANNUAL MAINTAINANCE COST OF THE PIPE SYSTEM EX RE

AS A FRACTION OF THE INITIAL INSTALLED COST OF TH

SYSTEM.1/YR

ANNUAL MAINTAINANCE COST OF THE PUMP STATION EXPRES

AS A FRACTION OF THE INITIAL INSTALLED COST OF THE P

STATION. 1/YR

CD= EMPIRICAL CONSTANT FOR THE PUMP STATION COST. $/W**PPP

CEP= COST OF ELECTRICALMENERGY. S/W HR

CHEL= ELEVATION CHANGE.

APP=

BPI=

E

E P

S D AS

T O 1/YR.EQ .(2-16)

P SSED

E PIPE

BPPB SED

UMP

CHPS= PRESSURE CHANGE. PA

CI= EMPIRICAL CONSTANT FOR THE PUMP STATION COST.

CP= EMPIRICAL CONSTANT FOR THE PIPE SYSTEM COST. $/M**(1+PPI)

D = FLUID DENSITY. KG/Mfi'3

DIs TUBE/PIPE INSIDE DIAMETER.M

EFF= COMBINED FRACTIONAL EFFICIENCY OF PUMP AND MOTOR

FFx= FANNING FRICTION FACTOR

HR= HOURS OF OPERATION PER YEAR

K= CONSISTENCY COEFFICIENT PA s--N

LEGT= TUBE/PIPE LENGTH

MFR: MASS FLow RATE KG/S

0P1.0P2.0P3.0P4= WORKING CALCULATIONAL PARAMETERS

PI: 3.141593

POWER= POWER REQUIREMENT$.EO.(2-13)

PPI= EXPONENT IN THE PIPE SYSTEM COST EQUATION

PPP= EXPONENT IN THE PUMP STATION COST EOUATION

SUFFC= SUMMATION OF THE FITTINGS RESISTANCE COEFFICIENT

WORK: WORK PER UNIT MASS.U/KG.EO.(3-35

WORK1= WORK REQUIRED DUE TO PIPE FRICTION

WORK2= WORK REQUIRED DUE TO FITTINGS FRICTION

WORK3= WORK DUE TO PRESSURE AND ELEVATION DIFFERENCE IN

THE SYSTEM

YS= YIELD STRESS.PA

LIST OF FUNCTIONS:

DFFWD= DERIVATIVE OF FFX WITH RESPECT TO DI

REAL MFR.

PARAMETER

COMMON/MP

COMMON/PI

COMMON/PU

COMMON/ERIC

CALCULATION OF WORK FROM EO. (3-35)

WORK1=32. I"LEGT'FMFth-MFRI'KFFX/(PIWPImDEI'IDEWDl"W53)

WORK2=8. *MFR*MFR*SUFFC/(PI*PI*DE*DE*DI**4)

WORK3=CHPS/DE+9. B'CHEL

WORKtWORK1+WORK2+WORK3

CALCULATION OF POWER FROM EO.(2-13)

POWER=MFRPW0RK/EFF

OPTIMUM DIAMETER EQUATION

0P1=(API+BPI)IPPI*CPtPI-PI*DE*DE*EFF*DI**(PPI+5.)

OP2=32. *CEPIHRtMFR**3

OP3=(APP+BPP)‘PPPECDEPOWER**(PPP- 1. )/(CEP-HR)

OP4-5. -FFx-DI*DFFWDEDI)+DI*SUFFC/LW

OPTDIAMcL -0P2*0P4- OP3+1 )/OP1

K

(
RC
PE
MP

O
H
H
m
H
mL

p

C

C

C
F
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FUNCTION DFFWD(DI)

THIS FUNCTION COMPUTES THE DERIVA

FACTOR WITH RESPECT TO THE TUBE/P IPE

FOR LAMINAR OR TURBULENT FLOW

LIST OF VARIABLES:

DI= TUBE/PIPE INSIDE DIAMETER.

DICg LAMINAR-TURBULENT TRANSITION VALUE OF DIM.

F8 DERIVATIVE OF THE FRICTION FACTOR WITH RESPECT TO

DIAMETER(DI)

1.DF2= WORKING VARIABLES TO CALCULATE OFF-LAMINAR

= DIMENSIONLESS UNSHEARED PLUG RADIUS

X: FANNING FRICTION FACTOR

FH1‘ VALUE OF THE FRICTION FACTOR AT OI+H

FH2= VALUE OF THE FRICTION FACTOR AT DI-H

= SMALL POSITIVE NUMBER

1= -1 IF OFF 15 INOEFINITE; +1 IF OUT OF RANGE; O OTHERWISE

N= FLOW BEHAVIOR INDEX

SIGMA: PARAMETER IN THE DFFx/OD EQUATION FOR LAMINAR

FLow.EQ.(3—47)

T OF FUNCTIONS:

1= EQ.(3-45}

CFAC= FRICTION FACTOR FUNCTION

IVE OF THE FRICTION

INSIDE DIAMETER

LIS

FFL
FRI

REAL N

COMMON/FLWIDX

COMMON/UNSPLG

IF(DI.LT.DIC)

DERIVATIVE FOR LAMINAR FLOW.EO.(3-47)

=FFL1(EO)

FFXFSIGMA- EO- FFx- (3 *N 4. )

1..ESIGMA- E0)

\
\

NUMERICAL APPROXIMATION FOR TURBULENT FLOW

H=O.1

IF(OI. LT.O. 01) THEN

H=O. OOO1

ELSE IF(OI. LT. O. 1) THEN

H=O. OO1

) THENELSEOIF(DI. LT. 1.

EL8E1IF(DI. LT. 10. ) THEN

END IF

FH1=FRICFAACEDI+Hg

FH2=FRICFAC DI-H
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BACKWARD OR FORWARD DIFFERENCE ARE USED NEAR

DIC FOR DI < DIC

IFEFH1.GT.FFX.AND.FH2.GT.FFX) THEN

IF ABS(FFX-FH1).LE.ABS(FFX-FH2)) TH

FORWARD DIFFERENCE

DFF=(FH1-FFX)/H

ELSE

BACKWARD DIFFERENCE

DFF=(FFx-FH2)/H

END IF

ELSE

QUADRATIIC APPROXIMATION.EQ.(3-48)

DFF=(FH1-FH2)/(2.-H)

END IF

I=LEGVAR(DFF)

EN

IF THE DERIVATIVE IS INDEFINITE OR OUT OF

RANGE. THEN IT IS NEGLECTED. THIS MAY ONLY HAPPEN NEAR

DIC FOR DI < DIC WHERE THERE MAY BE AN ABRUPT

INCREASE OF FFX



O
C
H
D
O
C
J

5
0
0
0
0
0
0
0
0
0
0
M
M
M
M
F
J
M
M
M
M
M
-
A
-
A
A
A
A
-
A
A
-
A
-
‘
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
4

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

‘
d
d
‘
J
‘
J
J
‘
J
‘
J
‘
d
J
—
L
J
J
—
L
J
—
A
J
-
A
—
A
—
A
—
b
-
A
—
L
-
A
J
‘
J
-
A
—
L
—
A
—
A
—
A
J
—
l
—
A
A
—
A
-
‘
J
J
—
A
—
L
—
A
—
L
_
A
A
A
.
.
.
A
J
A
J
J
J
J
J
‘
J
A
A
A
-
‘
J
J
J
J
J
J
A
J
J
‘

"
I
I
I
!
!
!
"
l
l
I
l
l
l
l
l
n
u
l
l
l
l
n
l
l
l
l
l
l
I
l
l
l
n
n
l
l
l
l
u
n
u
n
l
l
n
l
l
n
n
l
l
l
l
l
l
"
l
l
l
l
l
l
l
l
i
l
fl

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
b
5
5
5
5
5
b
~
b
b

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

S
w
n
a
o
m
m
4
m
m
w
a
A
O
m
m
4
m
m
b
w
n
4

103

FUNCTION FRICFAC(DI)

THIS FUNCTION CALCULATES THE FRICTION FACTOR ACCORDING TO

THE SCHEME OF FIGURE 4. TORRANCE RELATIONSHIP. EQ.(A-1 .

IS USED TO OBTAIN THE INITIAL GUESSES OF THE FRICTION

FACTOR FOR TURBULENT FLOW.

LIST OF VARIABLES:

A1= LOWER BOUND GUESS OF EO OR EOC

A2= UPPER BOUND GUESS OF ED OR EOC

CONDIT= FLOW CONDITION I. E. LAMINAR.TURBULENT OR CRITICAL

DE= FLUID DENSITY.KG/M'-3

DI= TUBE/PIPE INSIDE DIAMETER.M

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

EOC= LAMINAR-TURBULENT TRANSITION VALUE OF EO

FC= LAMINAR-TURBULENT TRANSITION VALUE OF FF

FF: FANNING FRICTION FACTOR

FTORR= TORRANCE’ S FRICTION FACTOR FOR TURBULENT FLOW. EQ. (A-1)

FFO= LOWER BOUND FOR FF OR FTORR. .(3- 15) WITH EO=1. Q

FF1= FEWENDBETEBRGUESS FOR THE CALCULATION OF THE TURBULENT

FF2= FINAL LOWER BOUND GUESS FOR THE CALCULATION OF FTORR

FF3= FINAL UPPER BOUND GUESS FOR THE CALCULATION OF FTORR

FF4= LOWER BOUND GUESS FOR THE CALCULATION OF THE TURBULENT FF.

EQ..(3-27) WITH R=RC

FF4P= WORKING VARIABLE TO CALCULATE FF4

FF5.FF7= UPPER BOUND GUESS FOR THE CALCULATION OF TURBULENT FF

FF6= LOWER BOUND GUESS FOR THE CALCULATION OF TURBULENT FF

FF8= FINAL LOWER BOUND GUESS FOR THE CALCULATION OF THE

TURBULENT FF

FF9= FINAL UPPER BOUND GUESS FOR THE CALCULATION OF THE

TURBULENT FF

n§=HgENERALIZED HEDSTROM NUMBER.EQ.(3-19)

K= CONSISTENCY COEFFICIENT.PA S**N

LIMLDW= COUNTER

LIMUP= COUNTER

MFR: MASS FLOW RATE KG/S

N= FLOW BEHAVIOR INOE

NOROOT= ROOT INDICATOR: O-YES; 1-N0; 2-TOD MANY ITERATION

NOTIME= COUNTER

PI= 3.141593

EQ.(3-21)

e HERSCHEL-BULKLEY GENER YNOLDS NUMBER= RECRPSIC

REC2,REC3= WORKING VARI REC

E2,RE3= WORKING VARIABL

TOLERANCE ERROR FOR EQ.

TOLERANCE ERROR FOR THE

OLERANCE ERROR FOR E8.

0.

S

I
"

D 3 H 2 D D _
g
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m C I
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m Z .
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m
r
n
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TOLT= TOLERANCE ERROR FOR E

TOLV= TOLERANCE ERROR FOR E

U= MASS AVERAGE VELOCITY.M/

YS= YIELD STRESS.PA

LIST OF SUBROUTINES:

BISECT2= ROOT FINDING SUBROUTINE: BISEC

BISNEWT= ROOT FINDING SUBROUTINE: BISEC

LIST OF FUNCTIONS:

TSECANT METHODS

N-NEWTON METHODS

DFUN1= DERIVATIVE OF FUN1 WITH RESPECT TO EOC

DTORREN= DERIVATIVE OF TORREN WITH RESPECT TO FTORR

DUNPGRA= DERIVATIVE OF USPGRA WITH RESPECT TO EO

FFTM= EQ. (3- 31; REWRITTEN As FFTMEFF)=O.

FUN1: EQ. (3—22 REWRITTEN AS FUN1 EOC)-o.

R: TURBULENT PARAMETER. EQ (3-27)

TORREN= TORRANCE EQUATION. EQ.(A-1) REWRITTEN AS

TORREN(FTORR)=O.

UNPGRA: EQ.(3-18) REWITTEN As UNPGRA(E0;=O

Y: LAMINAR FLOW FUNCTION (PSI) EQ.(3-14
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REAL MFR.K.N.P

PARAMETER(PI=3.141593)

CHARACTER CONDIT-1O

EXTERNAL FFTM

EXTERNAL FUN1.DFUN1

EXTERNAL USPGRA.DUSPGRA

EXTERNAL FFT2.DFFT2

EXTERNAL TORREN.DTORREN

COMMON/MFRCCF/MFR.K/YSTDEN

COMMON/CRICON/REC.FC.EOC/F

COMMON/UNSPLG/EO

COMMON/TOLER1/TOLV.TOLI/TO

COMMON/ROOTNO/NOROOT/BLOCK

COMMON/COOFLw/CONOIT

COMMON/HEDSTR/HX

CALCULATION OF U FROM EQ.(3-34)

U=4.~MFR/(PI:DE-DIa-2)

CALCULATION OF RE FROM EQ.(3-17)

RE1=§N/(3.*N+1.))-*N

R52: DI/2.)"N

REB=U--(2.-N)

RE=8.*DEPRE1*RE2*RE3/K

CALCULATION OF HE FROM EQ.(3-19)

IF(YS.EQ.O.) THEN

HE=O.

I

DE/FLWIDX/N/AVEVEL/U

N/RE.HE

/YS.

LWCO

LER2/TOLC/TOLER3/TOLL.TOLT

1/RC

E SE

HE=(DE/YS)‘DI'E2'(YS/K)“(2./N)

END IF

IF(HE.EQ.O.) GO TO 10

CALCULATION OF EOC THROUGH ITERATION FROM EQ.(3-22)

HXIHE

A1=O.

A2=.999999999

CALL BISNEWT(A1.A2.40.TOLC.FUN1,DFUN1.EOC)

IF(NOROOT.EQ.O) GO TO 10

PRINT-

PRINT'

EQEST'.’ THE DIMENSIONLESS UNSHEARED PLUG RADIUS.EOC.WAS NOT’

PRINT‘.I FOUND IN THE RANGE ’.A1.' <= EOC <= ’.A2

PRINT'.’ ENTER A NEW RANGE FOR EOC: 0. <= EOC < 1.0 ...... ’

READ‘.A1.A2 ‘

NOROOT=Q

GO TO 5

CONTINUE

CALCULATION OF REC FROM EQ.(3-21)

REC1-33600.*SORT(1./27.)tN/(1.+3.*N)*-2

REC2'E2.+N)**((2.+N)/§1.+N))

REC3- 1.-EOC)**(1.+2. N)

CALCULATION OF PSI-CRITICAL FROM EQ.(3-14) WITH EO=EOC

PSIc-Y(EOC)

CONTINUE CALCULATION OF REC

RECP=REC1*REC2'PSIC*'(2./N)/RECS

RECIRECP/PSIC

CALCULATION OF FC FROM EQ.(3-16) WITH PSIIPSI-C & RE=REC

FC=16./RECP
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IF(RE.NE.REC) GO TO 15

THE FLOW Is CRITICAL

CONDIT=’CRITICAL’

FF=FC

EO=EOC

GO TO 60

CON

IF(RE.GT. REC) GO TO 30

THE FLOW IS LAMINAR

CONDIT=’LAMINAR’

ESTIMATION OF EO THROUGH ITERATION FROM EQ.(2-18)

IF(HE.EQ.O.) GO TO 25

A1=EOC

A2=O. 999999

CALL BISNEWT(A1 A2. 50. TOLL. USPGRA DUSPGRA. ED)

IF(NOROO EC. 0) GO

PRINT-

PRINT‘

S:§fi;-.’ THE DIMENSIONLESS UNSHEARED PLUG RADIUS.EO.WAS NOT’

PRINT'II FOUND IN THE RANGE ’.A1.’ <= ED <= ’.A2

PRINT-.’ ENTER A NEW RANGE FOR E0: 0. <= EO < 1.0 ........ ’

READ'.A1.A2

NORDOT=O

GO TO 20

CONTINUE

ESTIMATION OF FF FROM EQ.(3-14) 8 (3-16)

FF=16/(RE-Y(EO))

GO TO 60

CONTINUE

THE FLOW IS TURBULENT

CONDIT=’TURBULENT’

ESTIMATION OF LOWER UPPER BOUND FOR FTORR. FFQ

CALCULATED FROM EQ. (3-15) WITH ED .0. HEN TH

USED TO ALCULATE THE LOWER BOUND GUESS FORvTHED

FACTOR FOR WHICH THE CONDITION ED < .0 IS LI

IS ALSO USED TO ESTIMATE THE FINAL TURBULENT FF

FFO=2.-Ys/(DE-Unu)

FF1=FFO+1.E-5

FF2=FF1

FF3=1.O

CALCULATION OF FTORR THROUGH ITERATION FROM EQ. (A-1)

THIS VALUE IS USED TO GET A RANGE FOR THE FF

CALL BISNEVT(FF2 FF3é so. TOLT TORREN DTORREN FTORR)

IF(NOROO Q.O) G0 40

PRINT-

PRINT:

PRINTI'I THE INITIAL GUESS FOR THE FRICTION FACTOR (FTORR) '

PRINT " WAS NOT FOUND IN THE RANGE ’.FF2.’ <= FTORR <= ’.FF3

.

PRINT-i’ ENTER A NEW RANGE FOR FTORR > ’.FFO.’ ...... ,

READ-. FF2 F3

NOROOT

D TO 35

CONTINUE
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CALCULATION OF RC FROM EQ.(3'27) 'ITH RE=REC 8 FF=FC

RC=R(REC.FC)

ESTIMATION OF A LOWER 8 UPPER BOUND FOR FF IN TURBULENT FLOW.

F4 IS ESTIMATED FROM EQ.(3- 27) WITH R=RC. THIS WIL GIVES

A FRICTION FACTOR GUESS FOR WHICH R > RC OR ED < .

A CONDITION FOR TURBULENT FLOW

N/(1-N))

-(FFAP;RCFFN/RE)--(2 /(2 -N))
-

4
.
.
.
"

w
}

_
A

N.GLO.7)THEN

OR

.
.
.
I
.

N.GE.O.6) THEN

T R

_
A

E.O.5) THEN

_
A

F

N

T
F

N.GLO.4)THEN

F

N

_
L
-

GE.O.3) THEN

w
.
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.
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I
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2.

IF

IME=1

=FF1

=FF5

LOW=1

UP=1

FF4.GT.FF8) THEN

=FF4

LOW=2

IF

FF6.GT.FF8) THEN

=FFe

LOW=3

IF

FF7 LT.FF9) THEN

=FF7

UP=2

IF

TINUE

ESTIMATION OF FF THROUGH ITERATION FROM EQ.(3-31)

CALL BISECT2(FF8oFF9 20 TOLT FFTM FF)

IF (NOROO .NOROOT E0 2) GO TO 55

IF(LIMLO TEOO1OANO LIMUP E0. 1) GO TO 50



95'=

98‘

99:

02=

03=
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IF THE ROOT IS NOT FOUND. IT MAKES SEVERAL ATTEMPS WITH A

WIDER FF RANGE BEFORE IT ASKS THE USER TO ENTER A NEW RANGE

N
h
-

1
"

I
I

M
a
n

.
5

4
r
-

"
.
5

_
A

~
5
0
!

(NOTIME.EO.3.AND.LIMUP.EO.2) THEN

"
T
H
-
‘
7
1
"
?
!

“
£
1
1
(
fl
b
H
fl
t

_
L
U
I
‘
T
'
I

iNT*.’ THE FRICTION FACTOR (F.F.) WAS NOT FOUND IN THE RANGE’

INTF.' ’.FF8.’ <= F.F. k: ’.FF9

INT-.’ ENTER A NEW RANGE FOR F.F. > I.FFO.’ ...... '

3 F9

Z
D
V
V
V
'
O
T
J

O
M
X
J
I
J
X
J
J
U
Z
)

EO=2.*YS/(FF‘DE‘U'U)

CONTINUE

FRICFAC'FF

RETURN

END
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FUNCTION FUN1(EC)

THIS FUNCTION Is EQ.(3-22) REWRITTEN AS FUN1(EC)=O.

LIST OF VARIABLES:

EC= DIMENSIONLESS UNSHEARED PLUG RADIUS AT THE

LAMINAR-TURBULENT TRANSITION ( 9)

3-1HX= GENERALIZED HEDSTROM NUMBER.EQ.

N= FLOW BEHAVIOR INDEX

P1.P2.P3= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLWIDX/N/HEDSTR/Hx

P1=E16800.*SORT(1 /27 g/N)-(2.+N )-~((2. +N)/(1. +N))

P2= EC/(1 -EC)*'(1. +N) --((2 -N )/N)

P3=1./(1. -EC)‘*N

FUN1=HX-P1*P2-P3

RETURN

END

FUNCTION OFUN1(EC)

THIS FUNCTION Is THE DERIVAATIVE OF FUN1EO(3-22).

WITH RESPECT TO EC. I. E. OF UN1(EC) = D FUN1(EC)/ D EC.

IT Is USED IN THE NEWTON s ITERATION METHOD IN

SUBROUTINE BISNEWT.

LIST OF VARIABLES:

EC= DIMENSIONLESS UNSHEARED PLUG RADIUS AT THE

LAMINAR-TURBULENT TRANSITION

N= FLOW BEHAVIOR INDEX

P1.P2.P3.P4,P5= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLWIDX/N .

P1='(16800. *SORT(1 /27. g/N;'(2.+N)-'((2.+N)/(1.+N))

P2= 2.-N)-ECr-((2. -2. *N /N /N

P3= 1.-EC)**((2. +N)/N)

P4=_2.+N)' EC~‘((2. -N)/N)/N

P5=(1. -Ec )-*((2. +22.!Ng/N)

DFUN1=P1u(P2/P3+P4/Ps

RETURN

END
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THIS FUNCTION IS EQ.(3-18) REWITTEN AS USPGRAIEX)=O.

FUNCTION USPGRA(EX)

LIST OF VARABLES:

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS

HE=

N= FLOW BEHAVIOR INDEX

P1 .P2=

109

GENERALIZED HEDSTROM NUMBER.EO.(3-19)

WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER.EQ.(3-17)

LIST OF FUNCTIONS:

Y: LAMINAR FLOW FUNCTION

THIS FUNCTION EXECUTES EQ.

m
D
C
‘
D
‘
O
‘
U
O
D

Z
n
u
n
k
a
¢
0
n
1

U
4
U
N
N
I
Z
> r

N

MON/FLWCON/

REnEx-- (2.

FUNCTION Y(EX)

LIST OF VARIABLES:

EX=

N:

P1,P2.P3.P4=

DIMENSIONLESS UNSHEARED PLUG RADIUS

FLOW BEHAVIOR INDEX

REAL N

COMMON/FLWIDx/N

P1x(

p2= 2.

1.-EX)-*2

-Ex)- (1. +3.aN)/(1. +2. -N)'EX~(1.

p3: EX-~2-~(1. +3. ~N

94:11 -Ex)-*(1. +N

g/(1+N

Vspa-(R1+R2+Ra)-uN

RETURN

END

(PSI).EQ.(3-14)

‘FLWIDX/N

-N)/N)

(3-14). I .E. PSI=Y(EX)

WORKING CALCULATIONAL PARAMETERS
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FUNCTION DUSPGRA(EX)

THIS FUNCTION IS THE DERIVATIVE OF FUNCTION USPGRA.

EQ.(3T18). WITH RESPECT TO EX. I.E. OUSPGRA(EX )

D USPGRA(EX)/O EX. IT IS USED IN THE NEWTON’ S ITERATION

METHOD IN SUBROUTINE BISNEWT.

LIST OF VARABLES:

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS

FFL1= SIGMA E0 (3 45)

HE= GENERALIZED HEDSTROM NUMBER. Eo. (3-19)

N= FLOW BEHAVIOR INDEX

P1.P2.P3.P4= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER.EO.(3-17)

LIST OF FUNCTIONS:

FFL1= EQ.(3-45)

v= LAMINAR FLOW FUNCTION (PSI).EO.(3-14)

L N

MgN/N)WCON/REHE/FLWIDX/N

(N/(1. +3. *N))-

g.‘HE:P2P1 FFL1(EX; YSEX)‘*P1

p

UR

1-RE Ex-*((2 -2 -N /N

GRA=P3+P4

FUNCTION FFL1(Ex)

THIS FUNCTION EXECUTES EO. (3-45). I.E. SIGMA=FFL1(Ex)

LIST OF VARIABLES:

Ex= DIMENSIONLESS UNSHEARED PLUG RADIUS

13:21;IFZILRRMALFBP45) IN
LOW BEHAVIOR INDEX

2. P3.P4.P5.P6= WORKING CALCULATIONAL PARAMETERS'
U
‘
I
‘
I

REA

SOMMON/FLWIDX/N

P2= 1. +2

P3=1.+N

P4=1.-EX

P5=P1tP3-P4-*2+2.*PZIP1FEX-P4+P1*P2‘P3'EXT'2

P6=P2~P3~P4-:3+2.-P1-P3-Ex-P4u-2+P1-P2-P4-Ex-*2

FFL1=P5/P6

RETURN

END



.
.
:
.
.
.
A
.
.
.
s
.
.
n
.
.
.
s
u
-
fi
.
.
.
.
.
.
.
A
u
.
—
l
.
-
—
I
»
-
I
.
.
J
l
.
.
A
.
.
.
n
.
.
.
n
.
.
.
A
L
.
.
A
.
4
1

O
)
0
1
0
1
0
)
O
i
u
n
c
n
t
fl
t
n
t
n
c
n
t
fl
t
fl
t
fl
c
n
L
fl
t
fl
t
fl

(
I
f
)
(
)
(
3
(
3
(
)
(
)
(
)
(
)
(
)
(
7
(
3
(
7
(
7
(
3
(
7

(
)
(
)
(
3

(
)
(
3
(
3

-
d
l
.
_
A
.
_
L
.
_
A

.
A
.
.
4
5
.
A
.
a
.
.
‘
.
.
2
5
.
A
.
.
J
L
.
.
A
.
_
A
.
_
A

o
u
n
m
a
n
n
m
o
u
n
m
o
u
n
m
a
n
n
w

(
3

_
A
-
b
—
‘
J
—
b
—
A
d
—
b

m
a
n
n
m
o
u
a
n
I

I
:
I
s
(
0
6
0
0
0
0
0
0
0
O
O
L
O
C
O
I
J
I
O
I
J
B
J
A
J
A
J
A
J
A
J
B
J

k
)
-
A
C
)
U
)
O
D
~
J
O
I
U
1
t
>
u
)
h
J
—
b
C
)
“
3
0
0
~
J
(
D
L
”
1
>
(
O

"
fl
l
I
n
fl
l
l
fl
u
I
I
fl
u
I
l
"
fl
l
I
u
fl
I
I
fl
n
I
l
u
fl

(
)
(
3
(
)
(
3
(
7
(
)
(
3
(
7
(
)
(
3
(
3
(
3
(
3
(
3
(
3
(
3
(
1

_
L
.
5
.
2
.
2
.
A
.
.
.
.
A
.
2
.
.
.
.
5
.
5

m
o
n
n
m
o
u
n
m
a
u
n
m
a
»

-
A

O
)

U
‘

(
I
C
D
C
D

.
L

O
)

(
0
(
D
~
d
(
b
(
n
l
>
(
o
h
o
-
A
C
)

(
3
(
)
(
5

I
I

I
I

I
I

I
I

II
I
I

I
I

I
I

I
I

I
I

I
I

(
fl
L
fl
L
fl
t
fl
L
fl
C
fl
L
fl
L
fl
t
fl

(
3

.
A
.
2
_
A
.
.
;
.
5
.
2
.
L
.
A

O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I

111

FUNCTION TORREN(FX)

THIS FUNCTION EXECUTES THE FRICTION FACTOR EQUATION

OF TORRANCE FOR TURBULENTrFLOW.EO.(A-1).

REWRITTEN AS TORREN(FX)=O.

LIST OF VARIABLES:

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

WORKING VARIABLES TO CALCULATE E0EO1.Eoz.E03=

FX= FANNING FRICTION FACTOR

HE= GENERALIZED HEDSTROM NUMBER.EO.(3-19)

N= FLOW BEHAVIOR INDEX

P1.P2.P3= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER.E0.(3-17)

REAL N

COMMON/FLWIOX/N/FLWCON/RE.HE

CALCULATION OF E0 FROM EQ.(A-2)

=(N/(1. +3. *N))*'(2. *N/(2.’N))

=16. I"(2. ‘HE)‘*(N/(2 N))

:FxX*RE"(2 /(2 N)

EO1'EO2/EOS

TORRANCE EQUATION

P1=O.45-2.75/N+1.97*ALOG(1.-EO)/N

P2=((1.+3.*N)/(4.*N))*rN

P3=1.97FAL0G(RE*P2-Fx-*(1.-N/2.))/N

TORREN=P1+P3-1./SQRT(FX)

RETURN

END

E01

E02

E03

EO=

FUNCTION OTORREN(FX)

THIS FUNCTION IS THE DERIVATIVE OF FUNCTION TORREN. EQ. (A-1).

WITH RESPECT TO FX. I. E. DTORREN(FX):DTORREN(FX)/O FX. IT

IS USED IN THE NEWTON’ S ITERATION METHOD IN SUBROUTINE

BISNEWT.

LIST OF VARIABLES:

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

EO1.E02.E03= WORKING VARIABLES TO CALCULATE E0

FX= FANNING FRICTION FACTOR

HE= GENERALIZED HEDSTROM NUMBER,EO.(3-19)

N= FLOW BEHAVIOR INDEX

P1,P2.P3= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER.EQ.(3-17)

REAL N

COMMON/FLWIDX/N/FLWCON/RE.HE

CALCULATION OF E0 FROM EQ.(A-2)

EO1=(N,/(1. +3. I"I\'))"'”*(2. II'N/(2. -N))

EO2=16.'(2.‘HE)*’(N/I2. ))

E03=FX*RE'*(2./(2.-N))

EO=E01 EO2/EO

THE DERIVATIVE OF TORREN WITH RESPECT TO FX

P1=3.94*Eo- SORT(FX)+N-(1. O)

P2=3.94-1.-N/2.)' -EO)-SORT(Fx)

P3=2. *N -EO)*FX£11. 5

DTORREN: P1+P2)/P3

RETURN

END
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FUNCTION FFTM(FT)

THIS FUNCTION EXECUTES EQ.(3-31) REwRITTEN As FFTM(FT)=O.

LIST OF VARIABLES:

EO= DIMENSIONLESS UNSHEARED PLUG RADIUS

FT: FANNING FRICTION FACTOR

HE= GENERALIZED HEDSTROM NUMBER.EQ.(3-19)

g; FEOW BEHAVIOR INOEx

P2.P3= WORKING CALCULATIONAL PARAMETERS

RE= GENERALIZED REYNOLDS NUMBER.EO.(3-17)

LIST OF FUNCTIONS:

R: TURBULENT PARAMETER. EQ.(3-27I

ROMBIN= INTEGRAL IN EQ.(3-31I

REAL N

COMMON/FLWIDX/N/FLWCON/RE.HE

CALCULATION OF RP FROM EO (3-27)

PR=R(RE.FT)

CALCULATION OF EO FROM EQ.(3-32)

EO= 2. *HE/PRFt2)*-(N/(2. -N))

P2= -EO)*'((2. N)/N )

P3= N/(1. +3. :N))

CALCULATION OF EQ.(3—31)

FFTM=11.-PR*'2*P2 P3ROMBIN(EO PR)"(2. -N)/RE

EEBURN

N

FUNCTION R(RX,FX)

THIS FUNCTION EXECUTES E0 .(3 27). I.E. ’ ’=R(RX FXI

LIST OF VARIABLES:

FX= FANNING FRICTION FACTOR

N= FLOW BEHAVIOR INDEX

RX= GENERALIZED REYNOLDS NUMBER

P1.P2= WORKING CALCULATIONAL PARAMETERS

REAL N

COMMON/FLwIDx/N

P1=ERX*(FX/16.)'*((2.-N)/2.))"(1./N)

P2= 1.+3.*N)/N

R=P1-P2

RETURN

END
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FUNCTION ROMBIN(EX.RYI

THIS FUNCTION COMPUTES THE INTEGRAL IN E0

BY THE ROMBERG METHOD. THE INTEGRATION IS

IN SEVERAL SECTIONS DEPENDING THE FLOW BEH

INDEX AND THE INTEGRAL IS INDEPENDENTLY C0

FOR EACH SECTION. THE VALUES OF THE DIMENS

SHEAR RATE ARE SAVED IN ARRAY FS1 TO BE US

LOWER & AND UPPER BOUND GUESSES IN CONSECU

ROOT ITERATION 0F FUNCTION FFT2(EO.(3-30).

MILLER. A.R. 1982. "FORTRAN PROGRAMS". SY

INC..BERKELEY.CA.

LIST OF VARIABLES:

DELTA = INTERVAL VALUE

EX= DIMENSIONLESS UNSHEARED PLUG RADIUS

FS1.FS2.FS3.FS4= DIMENSIONLESS SHEAR RATE ARRAYS

FU1= VALUE OF FFT1 AT EX OR 0

FU2= VALUE OF FFT1 AT UPPER

FU3= VALUE OF FFT1 AT X

LOWER= LOWER LIMIT OF INTEGRATION

N= FLOW BEHAVIOR INDEX

PIECES= NUMBER OF INTERVALS

RY= TURBULENCE PARAMETER.E0.(3-27)

T= VALUES OF ROMBERG TABLEAU

TOLI= TLERANCE ERROR FOR THE INTEGRATION

TOSUM= FINAL VALUE OF THE INTEGRATION IN EQ.(3-31I

UPPER= UPPER LIMIT OF INTEGRATION

X= TRAPEZOIDAL POINTS

LIST OF FUNCTIONS:

FFT1= FUNCTION INSIDE THE INTEGRAL IN EO(3-31)

n
-
I
M
H
K
D
U
A

INTEGER PIECES.Nx(13)

REAL N

REAL LOWER.T(92)

REAL FS1(4097).FS3(4097).FS2(2049)

COMMON/FLWIDX/N

COMMON/TOLER1/TOLV.TOLI

DO 5 KV=1,4097

FS1EKV§=O.

F53 KV =0.

CONTINUE

DO 10 KV=1.2049

FS2(KV)=O.

CONTINUE

TOSUM=O.

FU1=O.

Fs1(1)=o.

LOWER=EX

6F(§.LE.O.1) THEN

5L5; IF(N.LE.O.2) THEN

5L5; IF(N.LE 0.3) THEN

ELSE

V=.5

END IF

UPPEReV-(1.-LOVER)+LOVER

CONTINUE

FS1(2)=1

FU2=FFT1(UPPER.FS1(1),FS1(2).Ex.Rv)

FS1(2)=FU2/UPPER~*2

FSA-FS1(2)

PIECEs=1

NX(1)=1

BEL;A=(UPPER-LOWERI/PIECES

c=(FU1+FU2)/2

SUM=C

T(1)=DELTA-C

NM=1

NN=2

L1=1
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NM=NM+1

FOTOM=4.

NX(NM)=NN

PIECES=PIECE5-2

LL=PIECES-1

L2=(LL+1)/2

DELTA=(UPPER-LOWERI/PIECES

COMPUTE TRAPEZOIDAL SUM FOR 2"(NM-1)+1 POINTS

DO 30 II=L1.L2

1:11-2-

x=LowER+DELTA-I

FU3=FFT1(x. FS1(II) FS1(II+1). Ex RY)

SUM: SUM+F U3

FS2§II)=FU3/X¥*2

F53 II2)=F52(II)

CONTINUE

N2=N2+L2

DO 35 KV=1L2+1

FS3(Kv-2 -13=Fs1(KV)

CONTINUE

T(NN)=SUM-DELTA

NTRA=NX(NM-1)

KK=NM-1

COMPUTE T ARRAY

DO 40 MM=1.KK

U=NN+MM

NT=NXENM-1)+MM-1

= FOTOM-T(U-1)-T(NT))/(FOTOM—1.)

FOTOM=FOTOM-4.

CONTINUE

NEW ORDERED VALUES OF THE DIMENSIONLESS SHEAR RATE

.L

+ .0.) GO TO 5

TENTRA+1I'T(NN:1)I .L OLIII GO TO 60

T NN-1I'T(d)) E. ABS 0 60

T. 12) GO TO 55

CONTINUE

TOSUM=TOSUM+T(d)

LOWEngPPER

GO TO 75

9999999999) GO T0 70

I GO TO 65

.I

9

'
fl
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I

1
1

C M C
)

.
4
.

C
I
!
)

I
0
1
0

E

UPPER‘(%.'LOWERI/2.+LOWER

CONTINUE

TOSUM=TOSUM+(1. -UPPERI*(1.+FU2)/2.

CONTINUE

ROMBIN‘TOSUM

RETURN

END
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FUNCTION FFT1(EY.C1.C2.EX,RY)

THIS FUNCTION EXECUTES THE FUNCTION INSIDE

INTEGRAL IN EQ.(3-31). I.E. FFT1=(2ETA)-(

LIST OF VARIABLES:

B: EMPIRICAL WALL EFFECT PARAMETER IN MIXING LENGTH

THEORY.Eo.(3-2e)

CV= DIMENSIONLESS RATE OF SHEAR (ZETA)

C1: LOWER BOUND GUESS FOR CV

C2= UPPER BOUND GUESS FOR CV

X

THE

I)‘*2

E= DIMENSIONLESS RADIAL COORDINATE (XI)

EX= EIMENSIONLESS UNSHEARED PLUG RADIUS
8

Ez= EX

HE= GENERALIZED HEDSTROM NUMBER EQ.(3-19)

L= DIMENSIONLESS MIXING LENGTH (LAMBDA). Q.(3-25)

N= FLOW BEHAVIOR INDEX

NOROOT= ROOT INDICATOR: O-YES; 1-N0; 2-TOO MANY ITERATION

o= PARAMETER IN MIXING LENGTH (PHI). EQ.(3-26)

RC= LAMINAR-TURBULENT TRANSITION VALUE OF RY

RE= GENERALIZED REYNOLDS NUMBER.Eo.(3-17)

3;: EURBULANCE PARAMETER. EQ.(3-27)

= Y

TOLI= TOLERANCE ERROR FOR THE INTEGRAL OF EO.(3-31)

TOLV= TOLERANCE ERROR FOR EQ.(3-30)

LIST OF SUBROUTINES:

BISNEWT= ROOT FINDING SUBROUTINE: BISECTION-NEWTON METHODS

LIST OF FUNCTIONS:

DFFT2= DERIVATIVE OF EFFT2 WITH RESPECT TO CV

FFT2= EQ.(3'30) REWRITTEN AS FFT2(CV)=O.

HE

EZ.R .L

OTNO NOROOT\
N

CALCULATION OF B FROM EQ.(3-28)

B=22.-(1.+.00352rHE/(1.+.000504-HE)*-2)/N

CALCULATION OF 0 (PHI) FROM EQ.(3-26)

O=(RZ-RC)/(B*SORT(8.))

CALCULATION OF L (LAMBDA) FROM EQ.(3-25)

L=.36-(1.-E)*(1.-EXP('Q‘(1.-E)))

CALCULATION OF CV (ZETA) THROUGH ITERATION

FROM EQ.(3-30)

CALL BISNEWT(C1.C2.100.TOLV.FFT2.DFFT2,CV)

NOROOT=O '

FUNCTION INSIDE THE INTEGRAL OF EQ.(3-31)

FT1=CV*E**2 'F

RETURN

END
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FUNCTION FFT2(CX)

THIS FUNCTION IS EQ.(3-30) REWRITTEN AS FFT2(CX)=O.

LIST OF VARIABLES:

CX= DIMENSIONLESS RATE OF SHEAR (ZETA)

E: DIMENSIONLESS RADIAL COORDINATE (XI)

Ez= DIMENSIONLESS UNSHEARED PLUG RADIU

L: DIMENSIONLESS MIXING LENGTH (LAMBDA). E0. (3 25)

N: FLOW BEHAVIOR INDEX

P1. P2= WORKING CALCULATIONAL PARAMETERS

Rz= TURBULANCE PARAMETER. EC. (3-2 7)

REAAL N

COMMON/FLWIDX/N/BLOCK2/E. EZ. R2. L

333%£351"?93” )I! 1: th2n 1 .E2 a:- 2 N .

FFT2=P1+P2 ( ( / )/8
RETURN

END

FUNCTION DFFT2(CXI

THIS FUNCTION IS THE DERIVATIVE OF FUNCTION FFT2(CXI.

EQ.(3‘3OI WITH RESPECT TO CX. I.E. DFFT21CXI=

D FFT2(CXI/D CX. IT IS USED IN THE NEWTON’S ITERATION

METHOD IN SUBROUTINE BISNEWT.

LIST OF VARIABLES:

CX= DIMENSIONLESS RATE OF SHEAR (ZE TA

IMENSIONLESS RADIAL COORDINATE (X

IMENSIONLESS UNSHEARED PLUG RADI

MENSIONLESS MIXING LENGTH (LAMBD

)

I)

D US

I A).

Bow BEHAVIOR INDEX

T

D

g EQ.(3-25)

P WORKING CALCULATIONAL PARAMETERS

URBULANCE PARAMETER. E0. (327)D
O
Z
r
'
m
m

N
A

I
I

I
I
N

I
I

REAL N. L

COMMON/FLWIDX/N/BLOCK2/E. EZ RZ. L

P1=N (1. -EZ)-CXP*(N

P2= RZ‘F2FL-‘2CX (1. -EZ)"(2. /N)/4.

DFFT2=P1+P2

RETURN

END
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SUBROUTINE BISNEWT(XA.XB.MAX.ERROR.FUN.DFUN.NEWX)I

THIS SUBROUTINE COMPUTES THE ROOT OF THE FUNCTION FUN. IT

IS A COMBINATION OF THE BISECTION AND NEWTON’ S ITERATION

METHOD. THE MIDPOINT OF THE INTERVAL (PART OF THE BISECTION

PROCESS) IS USED TO START THE NEWTON’ S ITERATION. THE

PROGRAM CONTINUES WITH THIS METHOD UNTIL THE SOLUTION IS

FOUND OR THE FOLLOWING SITUATIONS OCCUR; 1- DFUN‘O.

2- X FALLS OUTSIDE THE INTERVAL KNOWN TO CONTAIN THE

SOLUTION: 3- THE DIFFERENCE IN SUCCESIVE APPROXIMATION DOES

NOT DECRASED; 4- THE NUMBER OF ITERATIONS EXCEEDS MAX. IF

THESE SITUATIONS OCCUR. THE PROGRAM SWITCH TO THE

BISECTION METHOD TO OBTAIN A SMALLER INTERVAL. REFERENCE:

MOORE. E. 1982. "INTRODUCTION TO FORTRAN AND ITS

APPLICATION". ALLYN AND BACON. INC..BOSTON.MASS.

LIST OF VARIABLES:

DIFF= DIFFERENCE BETWEEN TWO ITERATION POINTS

ERROR= TOLERANCE ERROR

FA= VALUE OF FUN AT XA

FB8 VALUE OF FUN AT XB

FM: VALUE OF FUN AT XM

FUNC= VALUE OF FUN AT X

FPRIME= VALUE OF DFUN AT X

= -1 IF X IS INDEFINITE: +1 IF OUT OF RANGE:

MAXIMUM NUMBER OF NEWTON’S ITERATION

NEWX= ROOT OF FUN

NOROOT= ROOT INDICATOR. 0“ YES: 1-NO

OLDDIFF= DIFFERENCE OF PREVIOUS ITERATION

OLDX= PREVIOUS VALUE OF X

X¢ POINT FROM NEWTON’S ITERATION EQUATION

XA= LOWER BOUND POINT USED IN THE BISECTION METHOD

XB= UPPER BOUND POINT USED IN THE BISECTION METHOD

XM= MIDPOINT BETWEEN XA 6 X8

LIST OF SUBROUTINES:

SWAPs INTERCHANGE THE VALUE OF TWO VARIABLES

LIST OF FUNCTIONS:

FUN: FUNCTION WHOSE ROOT IS COMPUTED

O OTHERWISE

DFUN: DERIVATIVE OF FUN WITH RESPECT TO THE ROOT VARIABLE

REAL NE

COMMON/ROOTNO/NOROOT

IF(XA. GT. XB)TEN

CALL SWAP(XA XB)

END IF

FA-FUN(XA)

IF(FA.EO.O .) GO TO 90

FBsFUN(XB)

IFEFB.EO. O. ) OGO TO 100

IF FA*FB.GT. .)GO TO 80

XM=(XA+XB)/2O

OLDBIFxABS(xA-XB)/2.



2074:

2075=40

2076=50

20778
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NEWTON’S ITERATION

OO 20 U=1, MAX «

OLDX=X V

FPRIME=OFUN(x)

M=LEGVAR(FPRIM

IFEM.NE.O) GO TO 30

IF FPRIME EQ. O.)GO TO 30

FUNC=FUN(X)

X=X-FUNC/FPRIME

M=LEGVAR(X)

IF(M.NE.O) GO TO 30

IF (AB$(X-XM). GT. ABS(XA-XB)/2 ) GO TO 30

OIFF=ABS(x-OLODX)

IFgDIFF. LE. ABS(X*ERROR)) GO TO 70

IF OIFF GE. OLOOIF) GO TO 30

OLOOIF=OIFF

CONTINUE

BISECTION ITERATION

FMcFUN(XM)

IFEFM.E0.0.)GO TO 60

IF FAtFM.LE.O.)GO TO 40

XA=XM

FA=FM

GO TO 50

XB=XM

XM= (XA+XB)/2

§E&A85(XA- xe). GT. ABS(XM- ERROR)) GO TO 10

RETURN

NEWX= x

RETUR

NEWX=(XA+XB)/2.

NOROOT

RETURN

NEWX=XA

RETURN

NEWX=XB

RETURN

END
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SUBROUTINE BISECT2(XA,XB.MAX,ERROR.FUN,NEWX)

THIS SUBROUTINE COMPUTES THE ROOT OF THE FUNCTION FUN. IT

IS COMMBINATION OF THE BISECTION AND SECANT ITERATION

METHOD. THE BISECTION INTERVAL IS USED TO STAAR T E

SECANT ITERATION. THE PROGRSM CONTINUES WITH THIS METHOD

0

OCCUR: 1- X FQLLS OUTSIDE THE INTERVAL KNOWN TC CONTAIN THE

SOLUTION 2- T OF RANGE OR INDEFINI E

FAR AWAY M THE SO TION: - THE U ER OF ITERATIONS

EXCEEDS X F E SITUATIONS O CUR. TH

SWI CH TO THE BISECTION MET DO TO OBTAIN A SMA

I ERVAL R ER NCE: MO R E "INTRODUCTION TO. E E O E 198

FORTRAN AND ITS APPLICATION“. ALLYN AND BACON.

BOSTON MASS.

LIST OF VARIABLES:

DIFF= DIFFERENCE EgggSEN TWO ITERATION POINTS

ERROR= TOLERANCE

FA VALUE OF FUN 2T XA

F LUE OF FUN AT XO

F1 VALUE OF U T X

L I INDEFINITE IF OUT OF RANGE; O OTHERWISE

ITERATION

M: -1 x 15 : +

MAX= MAXIMUM NUMBER OF SECAN

NE R F

v
m
o
.
.
.

Z

H
M
O

m
0

4
1
>U TION

O ECT ION METHDD

XB= UPPER BOUND POINTXUSED IN THE BISECT ION METHOD

WEEN 8 X8

XO= SECOND POINT REQUIRED FOR THE SECANT PROCESS

X1= FOCUS POINT FOR THE SECANT ITERATION

LIST OF SUBROUTINES:

SWAP= INTERCHANGE THE VALUE OF TWO VARIABLES

LIST OF FUNCTIONS:

FUN= FUNCTION WHOSE ROOT IS COMPUTED

REAL

COMMON/ROOTNO/NOROOT

(XA. GT. XB) THE

CALL SWAP(XA. XB)N

F1= B

XM= §XA+XB)/2

Fo-F1 GT. 0. ) GO TO 90

/F 0) .GT. 5T .OR. ABS(FO/F1). GT gg TO 40

BSS(F 1)) 2. LOG(ABSS(FO) .-2.) GO TO 40
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SECANT ITERATION

DO so d=1 MAx

IF(ABSTF13.GE.ABS(FO)) THEN

CALL SWAP(FO.F1

CALL SWAP(XO,X1

END IF

x=x1-F1n(X1-x0)/(F1-FO)

LM=LEGVAR(X;

LM.NE.O GO TO 40

LT.XA.0R.X.GT.XB) GO TO 40

ABS(x-x1)

FF.LE.ABS(X*ERROR)) GO TO so

O
fl
X
fl
X
H
U
H
H

Z
u
n
u
n
A
fl
A

A
fl
X
M
X
O
fi
x
A

BISECTION ITERATION

XM)

E0.0.) GO TO 70

F LE.O.) GO TO 50

GO TO 60

XM=2XA+XB)/2.

iFXNABS(XA-XB).GT.ABS(XM*ERR0R)) GO TO 10

Nwa=x

RETURN

NEWX=(XA+XB)/2.

NOROOT=1

RETURN

END
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gégg=c SUBROUTINE SORTING(X.Y.NU)

2201=C SHELL-METZNER SORT FOR ARRAYS X 8 Y OF

2202=C INCREASING ORDER OF X. MAX. SIZE = 100.

2203=C MILLER. A.R. 1982. "FORTRAN PROGRAMS".

2204=C BERKELEY. CA.

2205=C

2206=C

220"= REAL X(100). Y(100)

2208: JUMP

2209=1O dUMPszMP/2

221o= IF(JUMP E0. 0) GO TO 99

2211= U2=NU- dUM

2212: DD 30 d= 1.puz

2213= =

2214=2o U3=I+UUMR

2215= IF(X(I). LE. X(d3)) GO TO 30

2216= CALL SWAPEX II ;.Xéd3)g

2217: CALL SWAP .v 3)

2218= IrI-

2219: IF(I. GT.PO) GO To 20

222o=30 CONTINUE

2221: GO TO 10

2222:99 RETURN

2223= END

2224=C

§§§g=c SUBROUTINE SWAP(AA.BB)

2227=c THIS SUBROUTINE INTERCHANGE THE VALUE

2228=C

2229=C

2230= HOLD=AA

2231= AA=BB

2232= BB=HOLD

2233= RETURN

2234: ENO

2235=C

SIZE NU. IN

REFEREN E:C

SYBEX N

OF TWO VARIABLES
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