
EXPERIMENTAL AND NUMERICAL TECHNIQUES

RELATED TO THE STRESS ANALYSIS

OF APPLES UNDER STATIC LOADS

I ASDIueriaflon‘ I

for TEN Degree of DEL D.

MICHIGAN STATE UNIVERSITY

Josse G. De Baerdemaeker

~ 1975 V



2x04255970

' LIBRARY      

  
  

Illsill/77111llflfllil/“mllm 2L Michigan 5m '*

This is to certify that the

I". _ thesis entitled

Experimental and Numerical Techniques

Related to the Stress Analysis of

Apples under Static Loads

presented by

Josse G. De Baerdemaeker

has been accepted towards fulfillment

of the requirements for

Ph. D. dpgfiwin Agricultural Engineering 

 

.- l b 1 75"Date 9 Fe ruary 9

0-7639







ABSTRACT

EXPERIMENTAL AND NUMERICAL TECHNIQUES

RELATED TO THE STRESS ANALYSIS

OF APPLES UNDER STATIC LOADS

By

Josse G. De Baerdemaeker

The objective of this work was to develop a technique

for studying the mechanical behavior of apples under

static loading conditions. The apple flesh was assumed

to have linear viscoelastic properties and isotropic

constitutive equations were experimentally determined.

These material properties were used in a numerical model

which described the behavior of a spherical body under

static loads.

An experimental procedure for determination of bulk

and shear relaxation functions and a time dependent

Poisson's ratio were described. The bulk and shear

relaxation functions and Poisson's ratio for Red

Delicious apples exhibit time dependence. Suggestions

were made for the determination of dynamic material

properties and for the inclusion of a ripeness factor

in the constitutive equations.



The finite element method was used to obtain

numerical solutions to the viscoelastic boundary value

problem of a viscoelastic sphere loaded by a rigid flat

plate. The experimental relaxation functions were used.

Experimental and calculated force—deformation curves at

low deformation rates were compared and the differences

were discussed.

An iterative procedure was developed for the study

of creep behavior of a sphere under a constant load. The

stress distribution in the sphere at the initial loading

and at a later time were compared. The location of

maximum compressive stresses was shown to be at the center

of the contact area while maximum shear and tensile

stresses Were found near the circular boundary of the

surface of contact.

This thesis concludes with suggestions for the

development of a failure criterion which should also

include the proven effect of time in storage on the

failure strength.
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1. INTRODUCTION

Mechanization of fruit harvesting and handling

operations has become widespread in recent years. A

major design concern is the effect mechanical harvesting

and handling has on the quality of the products, parti-

cularly the level of bruise damage that occurs during

these operations.

One phase of the fruit handling process that is

undergoing some major changes is the storage. A lumber

shortage has stirred an interest in the bulk storage of

apples, thereby eliminating the need for a large number of

bulk bins.

Fresh market apples have to be (almost) completely

bruise free, but bruise damage in apples for the process-

ing industry is acceptable as long as most of the bruised

tissue can be removed during the peeling operation.

Larger bruises require bleaching and increase processing

costs.

The increased interest in the bulk storage of apples

for processing has raised the question of the allowable

depth to which apples can be piled before excessive

bruising occurs. The answer to this problem can be sought

along two lines. First, experiments can be conducted to

determine the maximum allowable drop height, the

1
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relationship between drop height and bruise size, and the

relationship between stack height and bruise size. The

results of these experiments are valuable only for the

practical applications they simulate because they do not

furnish enough basic information for possible use in

other applications. An alternate method is to approach

apple bruising from a mechanics of deformable bodies

point of View, using the laws that govern the static or

dynamic behavior of the material.

The latter approach has become more acceptable in

recent years. Most research in this area, however, has

been limited either to attempts to formulate the consti—

tutive equations of the tissue (Mohsenin and Goehlich,

1962), to solve viscoelastic boundary value problems

(Hamann, 1967), or else to define a failure criterion

(Miles and Rehkugler, 1971). While these are essential

in the study of bruising of fruits, they are, by themselves,

insufficient to completely describe the behavior of fruit

during bruising. The study of bruising is hindered by

two primary items: the difficulty in completely defining

the time dependent material properties and the difficulty

in calculating the stresses in the fruit which result from

a contact type of loading.

The objective of this work was to develop some

experimental and analytical techniques required in study-

ing the behavior of fruit during loading. The specific

objectives were:
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(1) To establish an experimental technique for

determining the constitutive equations governing

the mechanical behavior of apple tissue.

(2) To use the experimental values of the consti—

tutive equations in a finite element model for the

solution of viscoelastic boundary value problems

and to verify the numerical technique by comparing

experimental and numerical force-deformation curves.

(3) To study the stress distribution in apples

under loading and gain some insight in the formation

of a bruise.

It is important to note that this work was based on

the assumption that the undamaged fruit tissue can be

considered homogeneous and isotropic, a good macroscopic

approximation. Other recent research has also approached

the behavior of the tissue by considering its basic

composition as a mixture of solids, liquids and gas

(Brusewitz, 1969; Akyurt, 1969; Gustafson, 1974).



2. LITERATURE REVIEW

In a review of a decade of research on mechanical

properties of fruits and vegetables, Mohsenin (1971)

cited some immediate applications, among which were:

characterizations of the material, optimum time to

harvest, quality evaluation, damage in collecting, hand—

ling and storage. Mohsenin (1971) cites ample literature

on the work done toward these applications. Some of this

work relates to the characterization of the material and

the use of the material properties in evaluating stresses

in fruit under static and dynamic loading and the study of

the bruise susceptibility of the product. The pertinent

topics are summarized below.

2.1 Constitutive Equations or Stress-Strain Relations

2.1.1 Viscoelastic Behavior of Agricultural Products

During the early experiments on mechanical behavior

of fruits and vegetables, it was observed that force

deformation relations include time effects (Finney, 1963;

Mohsenin, 1963; Timbers ct a2., 1966). Morrow and

Mohsenin (1966) review some of these early investigations

and conducted a study of their own. Their study led them

to conclude that McIntosh apples can be considered as

4
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viscoelastic bodies, with a nearly linear behavior.

Chappell and Hamann (1968) also studied the viscoelastic

behavior of apple flesh, but they found the material

properties to be somewhat stress dependent and thus could

not be exactly characterized as linear. Hamann (1967 and

1970) also noted the non—linear properties in apple flesh,

but he made the assumption of linearity to facilitate his

analysis. Clevenger and Hamann (1968) concluded from

uniaxial tensile tests that the apple skin also has a

viscoelastic behavior.

2.1.2 Viscoelastic Constitutive Equations

The theory of Viscoelasticity is adequately described

by several authors such as Flugge (1967), Christensen

(1971), and Ferry (1970). There are several equivalent

forms of the constitutive equations of viscoelastic

materials: hereditary integral forms, differential

operator form, complex modulus form. The integral form

of the constitutive equations can be written as

(Christensen, 1971)1

 

1The standard indicial system for a rectangular Cartesian

reference frame is employed whenever applicable: Repeating

the subscripts i, j, k or 1 implies summation, Kronecker's

delta is denoted by 61-, differentation with respect to

space is indicated by Subscripts preceded by a comma.



 

de-.(T)
, t 1

8-13 =f 91””) J dT (2'1)

1: d e: (T)
_ kk

Okk — [m G2(t-T) dT (2.2)

_ dT

where G1(t) is a relaxation function appropriate to

states of shear and G2(t) is a relaxation function

appropriate to states of dilatation. The deviatoric

stress and strain tensors are

l

— 0,, — 3 dij Okk , Sii — 0 (2.3)

and

l

.. = .. — — = 2.
913 €13 3 5ij Ekk ’ 8ii 0 ( 4)

stress tensorrespectively with Oij

8,, = strain tensor

13

Sij = Kronecker delta, zero for i f j

.. = 6 + 6 + 6 = 3

and 611 11 22 33

Ckk = first invariant of the stress

tensor

Ekk = first invariant of the strain

tensor
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In order to use the same notation as in elasticity, the

relaxation functions in simple shear and dilation are

taken as

G(t) = G1(t)/2 (2.5)

K(t) = G2(t)/3 (2.6)

These relaxation functions are equivalent to the elastic

shear and bulk moduli, respectively.

An alternate form of the stress—strain relation is

obtained by using creep functions to represent the current

strain as determined by current value and past history of

stress (Christensen, 1971)

t d 813(T)
.. = - x 2.e13 [m J1(t T, ——7fF———- dT ( 7)

dT (T)

c = ft J (t-T) ___393___ dT (2.8)
kk _m 2 dT

where J1(t) and J2(t) are creep functions for states of

shear and dilatation. They can be related to the

relaxation functions by use of Laplace Transforms or

other interconversion techniques (Knoff and Hopkins, 1972).

Shear and bulk modulus are two independent constants

characterizing a homogeneous elastic solid, and the

relations between these and more commonly used engineering

parameters like Young's modulus and Poisson's ratio have
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been established (see Sokolnikoff, 1956). Similar

relations exist between the Laplace transforms of the

viscoelastic relaxation functions (Christensen, 1971).

The commonly used relaxation function E(t) which

characterizes a state of uniaxial extension and a visco—

elastic Poisson's ratio v(t) can be defined as the

viscoelastic equivalents to Young's modulus and Poisson's

ratio in elasticity.

2.1.3 Constitutive Equations of Agricultural Products

Simple mechanical models of combinations of elastic

and viscous elements have been used to represent visco-

elastic behavior of fruits. These mechanical models are

described in more detail in Flugge (1967) and Mohsenin

(1970). They all represent a possible approximation for

describing the viscoelastic behavior with an elastic or

a viscous model as the limits. The material is often

considered to be elastic in dynamic experiments (Fridley

ct a£., 1968; Horsfield ct a£., 1972). Poisson's ratio

has been evaluated both as an elastic constant (Finney,

1963; Morrow, 1965; Hughes and Segerlind, 1972) and a

time dependent value (Chappell and Hamann, 1968).

Finney (1963) calculated an elastic Poisson's ratio

for potatoes from a mean bulk modulus and mean uniaxial

compression modulus. Morrow (1965) used an elastic bulk

modulus and Boussinesq solution for a cylindrical plunger

on a half space to simultaneously determine an elastic
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uniaxial modulus and elastic Poisson's ratio. Hughes and

Segerlind (1972) derived an elastic Poisson's ratio by

comparing the axial force-deformation relation of two

cylindrical samples, one specimem was free to expand in

the radial direction while the other was not.

Bulk compression and uniaxial compression are most

commonly used to determine the relaxation functions,

while torsion and tension tests are very difficult to

apply because of gripping problems (Morrow and Mohsenin,

1966). Morrow (1965) and Sharma and Mohsenin (1970)

used hydrostatic compression for evaluation of the bulk

creep function. Uniaxial compression has been extensively

used for evaluation of the uniaxial relaxation function

E(t) (Finney, 1963; Chappell and Hamann, 1968; Hammerle

ct a£., 1971; Morrow ct a£., 1971).

Direct methods for measuring Viscoelastic Poisson's

ratio have been investigated. Chappell and Hamann (1968)

measured lateral displacement of an axially compressed

specimen using linear variable differential transformers

(LVDT) on each side of the specimen. They observed that

Poisson's ration of apples decreased with increasing time.

Mohsenin (1970) mentions the measuring microscope as well

as a Nikon Shadowgraph for direct measurement of Poisson's

ratio. No time dependency of this parameter is mentioned.

Hammerle and McClure (1970) used a photomicrometer and

found that Poisson's ratio of sweet potato flesh increased

‘with time.
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A widely used form of the relaxation function is an

exponential series representation known as the generalized

Maxwell Model

E(t) = (2.9)
"
M
B

t1
:l

(
D

c.
..

Several authors have discussed methods to determine

the parameters Ej and dj from experimental relaxation

curves (Gradowczyk and Moavenzadeh, 1969; Mohsenin, 1970;

Hammerle and Mohsenin, 1970; Chen and Fridley, 1972;

Bashford and Whitney, 1973).

Creep functions are sometimes approximated using

elastic elements and viscous elements in parallel, as

represented by the series (Gradowczyk and Moavenzadeh,

1969)

DCt) = ) (2.10)

"
M
B

U A T (
D

Models of this kind were used to approximate the bulk

compressive behavior of apples (Morrow, 1965; Sharma and

Mohsenin, 1970).

Hamann (1969) attempted to experimentally determine

the dynamic axial compression relaxation function and the

shear relaxation function by measuring complex moduli

and the use of an approximate equation relating relaxation

functions and complex moduli. He found that a simple

Maxwell Model (spring and dashpot in series) is a good
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approximation of uniaxial dynamic behavior, While the

shear experiments gave no reliable results.

Peterson and Hall (1973) found no consistent inter—

dependency of the complex modulus and temperature when

studying potato flesh.

2.1.4 Some Other Experiments

Theocaris (1964) has shown that the information

obtained from a simple tension test along the whole

response spectrum of the material together with an

initial value of the lateral contraction ratio are

sufficient for the complete description of the visco—

elastic properties of the material. The lateral contraction

ratio functions are monotonically increasing functions.

Rigbi (1967) also recognized this delayed lateral deform-

ation of viscoelastic materials. Gottenberg and

Christensen (1964) demonstrated that the complex shear

modulus function is a convenient property to experimentally

determine and that the shear relaxation function may be

obtained by direct conversion from the frequency to the

time domain.

Parsons at at. (1969) used a specimen under tensile

stress and a ”shear-sandwich” specimen for the measurement

of the complex uniaxial relaxation function and the complex

shear relaxation function.

Laird and Kingsbury (1973) described an experiment

for determining the longitudinal complex modulus function.
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Their experimental setup consisted of a single degree of

freedom system with the material specimen acting as a

massless stiffness element, whose spring constant is

represented by a complex number.

Hayes and Morland (1968) proposed different constrained

compression tests for determination of response functions

of anisotropic linear viscoelastic materials. Their

derivations were based on the hereditary integral

representation and no actual experiments were described.

Arridge (1974) determined the bulk or dilatational

relaxation function of solid polymers from measuring the

extensions of a tube of the material under internal

pressure.

2.2 Analysis of Stress in Fruits Under Loading

Limited work has been done to analyze stresses in

fruits under loading. Hamann (1970) solved the contact

problem involving one Viscoelastic spherical body falling

onto another for the approach of the bodies, surface

indentations, surface pressures and internal stresses.

He used a simple Maxwell model for the uniaxial relaxation

function and a constant Poisson's ratio when specifying

the constitutive equations. The finite element method

has been used to determine the stresses in apples sub-

jected to a contact type load. Apaclla (1973) assumed

an elastic material. Rumsey and Fridley (1974) used a
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material with constant bulk modulus and time dependent

shear relaxation function.

2.3 Criteria for Maximum Allowable Load
 

Considerable work has been done on experimental

determination of loads that cause failure or rupture in

fruits or vegetables. Nelson and Mohsenin (1968) have

determined a relation between bruise volume and load.

They report that bruises caused by dynamic loads are

considerably larger than those caused by equivalent

quasi-static loads. In an effort to understand the

criteria associated with bruising, researchers have

attempted to define parameters associated with damage of

agricultural products. Some of those parameters are

energy to bruising, maximum force during impact, maximum

stresses within the product or maximum deformation.

Energy required for bruising was reported greater under

impact conditions than under quasi-static loading condi—

tions for apples (Mohsenin and Géhlich, 1962), apples and

peaches (Fridley ct a£., 1964). However, others have

found lower energy to damage under impact than under

quasi—static conditions for sweet potatoes (Wright and

Splinter, 1968) and pears (Fridley and Adrian, 1966).

Fletcher ct at. (1965) reported that energy force and

deformation to rupture first decrease with increasing

loading rate, then increase. Maximum force during impact
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was studied by Davis and Rehkugler (1971) for apple-limb

impact and by Hammerle and Mohsenin (1966) and Simpson

and Rehkugler (1972) for cushioned impact of apples.

Wright and Splinter (1968) reported that rupture forces

of cylindrical samples of sweet potatoes during impact

were about one-third of those under slow loading. Fluck

and Ahmed (1972) studied impact bruising of whole fruits

and concluded from their experiments that it was impossible

to say whether energy or force is the more important

parameter in bruising.

The location of the bruise has suggested that

maximum shear stress can be a possible failure parameter

(Fridley and Adrian, 1966). Horsfield at at. (1972)

predicted damage of peaches caused by impact based upon

the theory of elaStic impact, the radii of curvature, the

impact energy, the elastic modulus and the shear strength.

The shear strength of the material was determined from

calculating the shear stresses that exist in an impacting

elastic sphere and the observation of whether or not a

bruise had occurred.

Miles and Rehkugler (1971) attempted to define a

failure criterion for apple flesh using a uniaxial

compression force superimposed with a hydrostatic

compression. The hydrostatic pressure was of the same

order of magnitude as the mean normal stress at failure.

They confirmed that stress at failure is a function of

strain rate. They concluded that shear stress is the most

significant failure parameter.
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2.4 Comments and Conclusions
 

Several researchers have established the almost

linear viscoelastic behavior of agricultural products.

Attempts have been made to experimentally determine the

relaxation or creep functions describing this visco-

elastic behavior. It was noted that a uniaxial relaxation

function can easily be found from a relaxation experiment.

However, the determination of a second relaxation function

to completely describe the properties of a linear material

has been less successful. Assumptions have been made

that either Poisson's ratio or the bulk modulus are

constant. Other experiments were thereby based on the

formulae of the theory of elastic contact in which the

boundary conditions are only approximately described.

Christensen (1971) states that the ideal experimental

procedure is the one where the analysis, used to relate

the mechanical property of interest to an observable

quantity, must yield the exact solution of the field

equations of the theory and represent the exact boundary

conditions of the specimen. A torsion test of a

cylindrical sample as used for the determination of the

shear relaxation function satisfies the above conditions.

However, the nature of the agricultural product makes the

torsion test nearly impossible. Direct measurement of

Poisson's ratio during a uniaxial compression test is an

alternative solution, but no standard procedure has
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evolved. This is also partially due to the nature of

the material.

Stress analysis in fruits under loading has been

limited either by the insufficient knowledge of the

material properties or by the lack of analytical solutions

to various -— sometimes complicated -— boundary conditions

or by both. The recent introduction of the finite

element technique in the agricultural field offers and

excellent alternative to analytical solutions. However,

some of the applications were restricted by the limited

availability of material properties. Assumptions were

made that one or both of the material property functions

were elastic instead of viscoelastic.

The determination of the maximum allowable load on

fruit under different loading conditions has been the

subject of several experimental investigations while

there have been no analytical approaches to it. The

recent work of Miles and Rehkugler (1971) was a first

attempt to establish a failure criterion for apple flesh.

After analysis of their data, it remains unclear whether

the maximum shear stress theory or the distortion energy

theory or any variation of these can be used as a valid

failure criterion.

In summary, many attempts have been made to describe

the mechanical behavior of fruits. The determination of

the constitutive equations as well as the stress analysis

within the fruits subjected to a load have been based on
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assumptions that limit their applicability, and a firm

criterion for material failure is missing. No unified

study which determines the material properties, and then

uses these properties to determine the state of stresses

at failure has been undertaken.



3. CONSTITUTIVE EQUATIONS OF APPLE FLESH

The determination of the material properties is a

basic step in modeling the behavior of an apple subjected

any loading. The review of literature indicated there

are some difficulties in the experimental determination

of the stress—strain relations of apple flesh due to

the nature of the product. A new experimental technique

which allows the determination of two relaxation functions

for an isotropic homogeneous material is presented in

this section.

3.1 Equations of the Linear Theory of Viscoelasticity
 

3.1.1 Laplace Transform of Viscoelastic Equations

The convolution integral form of the viscoelastic

constitutive equations was given in Chapter 2, equations

(2.l)—(2.8). The relationship between the different

relaxation and creep functions can be established by

introducing the Laplace transformation. Let f(t) be a

<

continuous function over 0 < t _ m. The Laplace trans—

form of this function is

' m -st

f(s) = L.[f(t)] = f f(t)e dt (3.1)

0

18
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Application of the transformation to the convolution

integrals (2.1), (2.2), (2.7) and (2.8) yields (Christensen,

1971)

Eij(s) = sG1(s) 513(8) (3.2)

Ekk(s) = sG2(s) Ekk(s) (3 3)

'Eij(s) = s31(s) Eij(s) (3.4)

'Ekk(s) = s32(s) Ekk(s) (3.5)

In the case of simple uniaxial extension

'5 (s) = s E(s) E' (s) (3.6)

11 11

where E(s) is the Laplace transform of the uniaxial

relaxation function E(t). The equation (3.6) is similar

to the elastic uniaxial stress—strain relationship

011 = E €11 (3.7)

The similarity between (3.6) and (3.7) is expressed more

specifically in the correspondence principle (Flfigge,

1967; Christensen, 1971) which states that a solution to

a viscoelastic problem can be obtained by replacing the

elastic moduli in the elastic solution by the s
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multiplied transform of the corresponding viscoelastic

relaxation function. The resulting functions are the

Laplace transforms of the solution to the viscoelastic

problem.

The solution in the time domain can be obtained

using the inverse transforms of a function. This is

given by

—l l a+ioo

“f(t) = L [I(8)1= . I f(s) estds (3.8)
. 2N1 a_im

 

The inverse Laplace transform of several common

functions can be obtained from a table of Laplace

transforms and a partial fraction expansion of f(s).

The residue theorem (or integration along a contour in

the complex s—plane) can be used when f(s) is expressed

as a quotient of polynomials in which the polynomial in

the denominator is of a higher order than that in the

numerator (Wylie, 1960; p. 711-716). The above methods

have some disadvantages in numerical analysis. An

approximate numerical method to evaluate the inverse

Laplace transform is discussed later in this chapter.

3.1.2 Complex Modulus Representation

It is sometimes desirable to express the constitutive

equations as a function of frequency rather than time.

Conversion from the time domain to the frequency domain
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and vice versa is accomplished using the Fourier transform

+00 ,

f(w) = f f(t) e‘1

.00

wt dt (3.9)

and the inverse Fourier transform

+®_ iwt

f(w) e dw (3.9a)

1

f(t) 2E— f_m

According to Christensen (1971), the Fourier transform

of the relaxation function for deviatoric stress is

+m t d ei'(T) ,iwt_ _ J
sij(w) f_m[[mel(t T) “ET:““ dTJG at

(3.10)

If eij(r) = 0 for t<0, and A: (t-T), then

m_d ei'(T) ' m -iwA
_ j —1wt

.. = -—-————- d G A dAlJ(w) [f0 d T e TJIIO 1( )e 1

(3.11)

and

w d e..(T) A m -iwt _

f 13 e-led = iw f e (T)e d1 = iw ei.(w)

o d T 0 Li Jr

(3.12)

Decomposing G (t) into two parts

G1(t) = 81 + G1(t) (3.13)
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where G1(t) + 0 as t + m and substituting into the

second integral of (3.11) yields

m iwk 8 m —iwt

[0 61(1) e- =T—l + foél(1)e dA (3.14)

10)

Equation (3.11) can be rewritten as

oo

_ _. 0 A

.. = .. + A ' +le(w) elJ(w)[G1 waG1( ) Sln wkdx

oo

iw [061(1) cos midi] (3.15)

01‘

_ * __

sij(w) = G1(im) eij(w) (3.16)

*

after some modification where G (iw) is the complex

1

deviatoric modulus with real and imaginary parts given

by

(D
O A

ul + w [ G1(A) sin midi (3.17)

o

G'(w)
1

and

w [OG1(A) cos wde (3-18)

G”(w)

2

Similar expressions can be derived from the Fourier

transform of the dilatational stress-strain relations

yielding
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_ * , _

okk(w) = G2 (1w) ekk(w) (3.19)

whereby the complex dilatational modulus has as the real

and the imaginary part

1 0 00"

G (m) = G + m f G (i) sin midi (3.20)
2 2 02

and"

G:(w) = m ] G2(i) cos midi (3.21)

0

Equations (3.17), (3.18) and (3.20), (3.21) convert

the relaxations functions from the time domain to the

frequency domain. Since they have the form of a Fourier

sine or cosine transform they can be inverted to yield

(Christensen, 1971)

 

2 °° G'(w)

G (t) = — [ _9___.sin mt dm (3.22)
CI TT 0 (1)

A 2 ”Ga(w)

Ga(t) = g f cos mt dm (3.23)

0 w

and d = 1, 2

Equations (3.22) and (3.23) provide a means of obtaining

the relaxation functions from dynamic experiments.
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3.2 Analysis of a Relaxation Experiment
 

The experimental procedure discussed in this section

is based on a method developed by Hughes and Segerlind

(1972), who used the procedure to measure the elastic

modulus and Poisson's ratio of biological materials under

the assumption of time independence. The procedure

involves the compression of two cylindrical cores of

material. One sample is compressed axially while free

to deform in the transverse direction. The second sample

is compressed inside a rigid die which prevents lateral

deformation (Figure 3.1).

This procedure can also be used to obtain the time

dependent material properties of apple flesh. The proof

of this follows.

Equations (3.2) and (3.3) are rewritten here in a

simple manner whereby the Laplace transform is indicated

by a bar

E,, = s G _.. (3 24)
13 1 1J

Gkk = 8 G2 Ekk (3.25)

and from (2.3) and (2.4)

s —3 la 3 (326)
ij ij 2 ij kk '
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6.. .1j Ekk (3 27)

t
o
l
l
-
-
J

When a simple uniaxial compression exists in the

direction of o , the boundary conditions are

11

E = E = o (3.28)

22 33

Combining (3.24), (3.26), (3.27) and (3.28) yields

3 = s G [§E11 — %(E + e )] (3.29)

3 = s G (E + e + e ) (3.29a)

Elimination of E32 and Esafrom (3.29) and (3.29a) gives

an expression for the uniaxial relaxation function

3 = s E E (3.30)

11 11

whereby

_ 3 G ‘G

E = 1 2 (3.31)

G1 + 2G2

If a sample is compressed in a rigid die with no

transverse deformation possible then
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e = e = 0 (3.32)

Combining (3.24), (3.25), (3.27) and (3.32), and (3.25)

and (3.32) yields

and

-E + o + o = s G’ E (3.34)

The last two equations provide an expression for a

”constrained" relaxation function, E(s)

E = S H E (3.35)

with

x = (2‘61 + Gz)/3 (3.36)

The functions E(t) and X(t) can be experimentally

determined and the Laplace transform numerically

calculated.

The Laplace transform of the deviatoric and

dilatational relaxation functions are also needed in

this analysis.

Starting with (3.36)

62 = 3 x — 2 ‘G1 (3.37)
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and substituting G2 in (3.31) yields the quadratic

equation in G1

3 _ _ _

+ E X) + X E = 0 (3.38)

N
I
H

(3.39) 

E 3_ __

X) + [(‘2‘+§X)2— 4X E]

2

Numerical calculations have shown that only the positive

sign in front of the square root gives true values for

the relaxation function G1(t). The root with the

negative sign is deleted.

Hughes and Segerlind (1972) derived an equation for

the elastic Poisson's ratio. Using the correspondence

principle, this equation can be rewritten for the visco-

elastic case as

i

2

— 1)2 — 8(= - 1)} ] (3.40)

3.2.1 Experimental Determination of the Relaxation

Functions E(t) and X(t)

The relaxation functions can be expressed as a sum

of exponential terms of the form

n

E(t) = X E. e (3.42)
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The shape of experimental constrained relaxation functions

indicated that (3.42) also can be used to obtain an

equation for these functions. Moreover, it can be shown

from (3.36) than if the dilatational and deviatoric

relaxation functions have the form of an exponential

series, then the constrained relaxation function is of

the same form.

Consider a state of simple uniaxial compression

with non-zero stress and strain components olft) and

e (t). Take the strain as specified in terms of a unit

11

step function u(t) and the strain amplitude so

6 (t) = e u(t) (3.43)

11 0

then the convolution integral

 

t dIe: u(T)1

o (t) = j E(t-t) 0 dt (3.44)

1' o d T

becomes

0 (t) = E(t) so (3.45)

11

Equation (3.45) suggests that E(t) can be obtained by

measuring the force on a specimen as a function of time

when the specimen is subjected to an instantaneous strain

80 at time t=0. An 'instantaneous' deformation, however,

is physically impossible. Moreover, it would also
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require special recording equipment for the force signal,

a feature not commonly available on testing machines.

A ramp-step function as shown in Figure 3.2 is more

easily applied. Chen and Fridley (1972) have derived

the equations of the force on a specimen subjected to

this type of deformation

a A n E- - 't

F(t)=— z_1.(1—e0‘1)ror05t2t

Lo i=1 0‘i 1

(3.46)

and

a A n E1 ‘ait -Gi(t‘t1)

F(t) ='TT— Z .__ (l-e 5e for t > t1

01:101.

1 (3.47)

where a is the slope of the ramp deformation function, A

is the cross-sectional area of the specimen and t1 is the

time after which the deformation is held constant.

Figure 3.3 gives an example of a response curve of

a specimen subjected to the deformation in Figure 3.2.

After the substitution t' = t—t equation (3 47) can
1 7

be rewritten as

v n “Git, '

F(t ) = 2 Ci e t > 0 (3.48)

i=1

where

a A E. —d.t

C, = jg“ a1(1 — e 1 1) (3.49)
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Similar equations can be written for the force acting

on a laterally constrained specimen subjected to an axial

ramp-step deformation function.

* n * 'aIt'

F (t') = z c].L e 1 t' > 0 (3.50)

i=1

With *

* a A Xi -0t.t1

c1 = -—— —; (1 — e 1 ) (3.51)

O

The determination of the coefficients C1 and Ci* and the

exponents di and a: from the experimental values of the

force for t > t1 leads directly to the determination of

the uniaxial and constrained relaxation function.

Difficulties arise in trying to fit an exponential

series through experimental data. First, the exact number

of terms is an unknown. Furthermore, Lanczos (1956, p.

272-280) has shown in a numerical example that a

perfectly satisfactory representation of the same data

can be obtained by an exponential series with different

number of terms. He attributes this fact to the extra-

ordinary sensitivity of the exponents and coefficients to

small changes of the data. The only remedy to obtain the

”true” model would be an increase of the accuracy of the

data to limits which are beyond the possibilities of

most measuring devices. Hence, the limitation of the

relaxation method for experimental determination of the

relaxation function is that the exponential series obtained
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is only adequate for the time range of the data used.

Extrapolations of the function beyond that time range

most likely do not accurately describe the physical

phenomenon. Considering the above problem, it is

possible that dynamic experiments or a combination of

dynamic and relaxation experiments may lead to a more

general relaxation function.

A non—linear least squares method is used here to

determine the number of terms as well as the coefficients

and exponents of the exponential series model. The

final selection of a model is based on the following

criteria:

(i) The model results in the smallest estimated

variance of observation errors;

(ii) All the exponents and coefficients have a

positive value.

A non—linear least squares statistics program is

described by Beck and Arnold (1974). The parameters

(i.e. coefficients and exponents) are estimated in an

iterative manner according to

l

(k+1) (k) T<k> no mo (k)

.9 = 12. + (Z. Y .4 > .2. WEI-:1 >

(k)

where: b vector of estimated parameters

(k) T T

sensitivity matrix : g = (V n )Z
_ —B_
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W = weighting matrix. In this application the

diagonal terms are set equal to l, the off-

diagonal terms are equal to zero

Y = observation vector. Contains the measured

values of the force.

(k)

E = model vector. Contains the predicted values

of the force using the estimated parameters

after the kth iteration.

k = number of iterations.

This iterative estimation procedure needs initial or

starting values for the parameters. These starting

values are obtained through a curve fitting procedure

based on the method of successive residuals and described

by Chen and Fridley (1972).

The described technique for obtaining the coefficients

and exponents of the most generalized Maxwell model is

contained in a computer program, GENMAX.

3.2.2 Numerical Interconversions of the Relaxation

Functions: Approximate Laplace Transform

Inversion

The relaxation functions for simple uniaxial

compression and constrained compression were discussed

in the previous section. The deviatoric and dilatational

relaxation functions and the viscoelastic Poisson's ratio
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can now be calculated using the expressions (3.39),

(3.37) and (3.39a). However, these expressions are the

Laplace transforms of the desired functions and an

inverse Laplace transformation has to be performed. A

numerical inversion procedure must be used to obtain the

inverse Laplace transform.

Numerical inversion of the Laplace transform has

been described by Lanczos (1956), Papoulis (1957), Cost

(1964), Bellman ct at. (1966), Cost and Becker (1970) and

others. The procedure as described here is adopted from

Miller and Guy (1966) and uses and orthogonal polynomial

series expansion. The Laplace transform E(s) of a

function f(t) is defined by

_ ”. _st

f(s) =f0f(t) e dt (3.54)

Assume that E(s) is known at discrete points along

the real s-axis. After the substitution

X = 2 e —1 (3.55)

where 6 is a real positive number, a new function is

defined over the interval (-1 s x g l)

g<x> = f(t) = f(—% ln[(l+X)/2]) (3.56)
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With this substitution, (3.54) becomes

8

_ 1 +1 g “5'1' (3.57)

f(s) = 7;; {_l[(1+2 1 g(X)dx

(0,8)

Jacobi Polynomials Pn (X)form a Set of orthogonal poly—

nomials in the interval [—1 f x E l]. The expansion of

g(x) over the interval [—1, l] in terms of a series of

Jacobi polynomials can then be written as

(0.8)

Cn Pn (x) (3.58)

”
M
8

g(X) =

n 0

where B > 0. The major task is to evaluate the

coefficients C which can be done by inserting (3.58)
n)

into (3.57) an substituting

S = (B + 1 + k) 5 (3.59)

After integration and algebraic simplification, Miller

and Guy (1966) obtained the expression

 

_ k k(k-l) ... [k-(m—l)]

6f[(B+l+k)0] = Z Cm

m=0 (k+B+l)(k+B+2)...(k+B+l+m)

(3.60)

This result is true for k e=0, 1, 2 ... and by successively

allowing k = 0, l, ... the following system of equations

iS generated
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6f[(8+1)61 =

8+1

_ C Cl
6f[(8+2)6] = 0 + (3.61)

(8+2) (8+2)(B+3)

0 2c 20

d¥[(s+3)d] = O + 1 + 2
 

 

 

8+3 (8+3)(B+4) (8+3)(B+4)(B+5)

The coefficient CO is obtained by setting k = 0 and from

the knowledge of E(s) at s = (B+1)5. The coefficient C1

is found from setting k = l and from the knowledge of CO

and the value of E(s) at s = (B+2)6.

When N coefficients are calculated, the function

g(x) may be approximated by this finite number N of terms

in (3.58). The approximation of f(t) is

f(t) =

N (0,8) —6t

2 0 pH [26 —1] (3.62)

The Jacobi polynomials in (3.62) are evaluated using the

recurrence formula (Szegé, 1959)

(0,8)

2n(n+8)(2n+B-2)Pn (X) =

(0,8)

(2n+B-l){(2n+8)(2n+B—2)X-82}Pn_1 (X)

(0.8)

- 2(n—l)(n+B—1)(2n+8) P n = 2,3,4

n-2

(0.8)

P (x) = l
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(0,8)

P1 (x) = 5(B+2)x - 58 (3.63)

Equations (3.61)—(3.63) were programmed for a digital

computer solution. The programs were checked using

functions whose inverse is known. These programs were

combined with a computer program RELAX which calculates

the values of the bulk and shear relaxation functions

(equations (3.37), (3.39) and (2.5), (2.6)) and of the

Viscoelastic Poisson's ratio (equation (3.40)) at

different values of time. The input to the program

consists of the coefficients and exponents of the uni—

axial relaxation function E(t) and the constrained

relaxation function X(t).

3.2.3 Accuracy of the Method

The experimental procedure described above was

simulated on a digital computer to evaluate its accuracy.

Hypothetical bulk and shear relaxation functions were

assumed.

800 e ' + 50 e (3.64)llB(t) = G2(t)/3

-.1t —5t

G(t) = Gl(t)/2 = 450 e + 100 e (3.65)

The uniaxial relaxation functions and the constrained

relaxation function were found using equations (3 31)
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and (3.36)

-.11574 t -l.90753 t

E(t) = 1136.444e + 7.604e +

—4.84951 t

213.211e (3.66)

-.1t —.2t —2t

X(t) = 600 e + 800 e + 50 e +

—5t

133.333 e (3.67)

A relaxation force versus time was then calculated for

both uniaxial and constrained relaxation.

The following parameters were used ((3.49) and (3.51))

a = 1

L0 = .75

A = .5

t1 = .06

An error term ER was introduced with zero mean and

standard deviation SD such that

F'(t) = F(t) + ER(0,SD) (3.68)

Values of F'(t) at discrete time points and for different

values of SD were used as input to the parameter estimation

package GENMAX. It was found that the coefficients and

exponents of the three-term model (3.66) could be obtained

only when there was zero input error. The four—term model
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posed some problems which were assumed to be due to the

almost equal values of the exponents .l and .2 of the

first two terms in (3.67). The presence of errors no

longer allowed determination of the exact values of the

parameters. A two—term model seemed adequate to

describe the force as a function of time for the time

period considered. A summary of the estimated variances

of observations errors is given in Table 3.1.

'The estimated coefficients and exponents were then

used in the program RELAX for numerical evaluation of the

bulk and shear relaxation functions. These calculated

values were compared with the theoretical values and the

variances and maximum values of the errors are also

summarized in Table 3.1 for the different errors of the

force. The absolute value of the errors in the relaxation

functions generally increased as the variance of the error

in the applied force increased. The maximum errors,_

however, were relatively small. For example, the largest

error variance in the force value produced an error for

the bulk relaxation function of about two percent of the

value of this function.

The two—term approximation of the force curve

resulted in accurate values of the bulk and shear

relaxation functions only for the time period in which

data points for the force were available. Calculation of

values of bulk and shear relaxation functions beyond that

period resulted in meaningless values.
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3.2.4 Summary of the Procedure

The following is a summary of the steps involved in

the proposed procedure for determination of relaxation

functions:

i) Measurement of the force relaxation curve of a

uniaxial compressed specimen and of a laterally

constrained specimen under axial compression.

ii) Estimation of the coefficients and exponents of

a generalized Maxwell model (i.e. exponential

series) that adequately describe the experimental

force curves.

iii) Using the correspondence principle, find the

Laplace transforms of the shear and bulk

relaxation function. Transformation to the time

domain is performed through numerical inversion

of the Laplace transform.

It was shown in an example that errors in the force

data as well as the approximative nature of the inverse

Laplace transform method lead to errors of the bulk and

shear relaxation function. However, the results can be

considered satisfactory for relatively small errors of

the force data. The method does not allow extrapolation

of the bulk and shear relaxation functions beyond the time

period for which experimental force values were available.
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3.3 Determination of Dynamic Properties
 

The complex modulus representation of the constitutive

equations as given by equations (3.16) and (3.19) can serve

as a basis for the derivation of an experimental technique

for determination of the complex deviatoric modulus G:(iw)

and complex dilatational mOdU1US'G:(iw)r The derivation is

similar to the one for the relaxation functions. A complex

uniaxial modulus E*(iw) and a complex restrained modulus

X*(iw) are introduced. Their relation to deviatoric and

dilatational moduli is expressed by the equations

36:(iw) G:(iw)

 

* .

E (1w) = * . 14. (3.70)

G1(1w) + 262(1w)

and

* . * . * .

X (1w) = [2G (1m) + 2G2(1w)]/3 (3.71)

1

from which the following equations are derived

* E* . 3X* . * ,

G (1w) = %[__Ai92.+ ___Alfll] + %{[E (1w) +

1 2 2 2

3X* ' * %

——~él§l]2 — 4X*(im) E (im)} (3.72)

*. *. *.

G2(1w) = 3X (1w) — 2G1(1w) (3.73)

The complex form of Poisson's ratio is
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E*(im) {[Fl:(iw) E*(iw) }A

“1 + *112 -8[— -1]

v*(iw)= X*(im) X*(iw) X*(im) (23.74)

4

The complex moduli E*(iw) and X*(iw) can be

experimentally determined from the amplitude ratio and

phase angle between stress and strain of a specimen

subjected to a sinusoidal displacement. Simple axial

sinusoidal displacement is used for E*(im), while

sinusoidal compression of an axially constrained specimen

*

is used for X (im).

 

* O

E (im) = 1' (im) (3.75)

E:11

and

E*(iw) = E'(w) + i E”(w) (3.76)

with

E'(m) = |E*(im)| cos 9

E"(w) = |E*(im)] sin 9 (3.77)

. * . .

The phase angle is 6 and IE (1w)| denotes the magnitude of

the complex value, i.e.

|E*(im)| = IE'(m)2 + E"(m§ 5 (3.78)

Similar equations can be written for the constrained

complex modulus
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* O I
x (im) = 11(im) (3.79)

e 8 = E = 0

11 22 33

and

X*(im) = X'(m) + i X"(m) (3.80)

with

X'(m) = |X*(im)| cos d

and

* (3.81)

‘X"(w) = [X (im)] sin ¢

Some preliminary experiments suggested that difficulties

may arise in the determination of the phase angle e for

the constrained tests due to friction of the specimen

against the sidewall of the sample holder. It was also

found that the phase angle cannot be determined with

sufficient accuracy from a ”Lissajous" figure on the

oscilloscope screen, and that more accurate instrumentation

is required. If these difficulties can be overcome, the

determination of the complex moduli through the use of

(3.22) and (3.23) might result in a more general expression

for the relaxation functions than the relaxation experi-

ment described in the previous section.

3.4 Closure
 

The constitutive equations of viscoelastic materials

were given and a boundary value problem was formulated
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such that it served as the basis for the experimental

determination of the stress—strain relations. A constrained

modulus function, based on the stress—strain relationship

of a sample subjected to axial deformation but with no

lateral deformation possible was introduced. Deviatoric

and dilatational stress—strain relations were obtained

from the simple uniaxial modulus function and the con—

strained modulus function. A method for determining

either relaxation functions or complex moduli was

proposed and its limitations and advantages were discussed.



4. EXPERIMENTAL PROCEDURE

4.1 Apple Selection and Storage
 

The apples used in the determination of the

material properties were of the variety Red Delicious,

Miller Spur, grown at the Michigan State University

Horticulture Research Center. The apples were selectively

harvested for size (diameter larger than 80 mm) and

immediately put in controlled atmosphere storage at 00C.

The apples were removed from storage 20 hours before the

experiments were conducted and placed at room temperature.

4.2 Sample Preparation
 

Cylindrical samples with a diameter of 19.05 mm were

cut by driving a corkborer into the apple parallel to the

stem calyx axis. The samples were then placed in a hole

in a plexiglass plate of 19.05 mm thickness and the ends

were cut parallel to the plate using a thin sectioning

machine, as shown in Figure 4.1. The final length of the

specimen was measured to a tenth of a millimeter. The

samples were coated with a silicone spray to prevent

excessive moisture loss during the relaxation tests.

Four cylindrical samples were cut from each apple.

Two of these were used for the determination of the

47



 



 
Figure 4.1. Sample Cutting Machine

 
Figure 4.2. Force and Deformation Measuring and

Recording Equipment
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uniaxial and constrained relaxation functions. The

other two were used to determine the failure force of a

sample under uniaxial compression and under constrained

compression at a constant strain rate. A semi-spherical

sample with a diameter of 35.56 mm was also removed from

the cheek of the apple using a utensil normally used to

make small meatballs. This sample was used for the

experimental determination of the force—displacement

relation of a spherical apple flesh sample in contact with

a rigid flat plate.

4.3 Relaxation Tests
 

Relaxation tests on the free and constrained samples

were performed using an Instron testing machine with

some added peripheral equipment as shown in Figure 4.2.

A schematic diagram of the equipment is given in Figure

4.3.

The deformation rate, or the slope of the ramp-step

deformation function in Figure 3.2 was 25.4 mm/min. The

deformation was monitored using a linear variable dis—

placement transducer. The crosshead of the testing machine

was stopped whenever the deformation was approximately

1.65 mm, corresponding to a strain of .0864 mm/mm.

The force was measured using the strain gage bridge

circuit of the Instron load cell and a d.c. bridge

amplifier. The amplifier output was fed into a data
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acquisition system. The force signal was sampled every

.4 second and punched on paper tape. The relaxation

experiments were conducted for approximately ten

minutes. The paper tape output was read on the CDC

6500 computer of the Michigan State University Computer

Laboratory. After decoding and correcting occasionally

defective recordings, the maximum force value corresponding

to t' = 0 in (3.48) and (3.50) was determined. A force

vector and time vector were obtained in a form ready for

 

use in the program GENMAX for estimation of the coefficients

and exponents in the generalized Maxwell model.

The output of GENMAX was inspected for the nature of

the signs of the coefficients and exponents, their

variance-covariance matrix and the estimated variance of

the input error. A two—term exponential series gave the

best results for most samples.

The coefficients and exponents of the Maxwell model

for the uniaxial and constrained compression tests were

introduced as input to the program RELAX, together with

control parameters for the polynomial expansion. Discrete

numerical values of bulk and shear relaxation functions

and time dependent Poisson's ratio were the final results.
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Data on Paper Tape

 

l TRANS J

Decode

 

{ CLEAN I

 

Check for erratic recording

I GENMAX I

 

Uniaxial relaxation function

Constrained relaxation function

  
{ 1
 

Bulk relaxation

Shear relaxation

Poisson's ratio 

Figure 4.4. Analysis of Relaxation Test Data to

Obtain Relaxation Functions and Poisson's

Ratio



5. EXPERIMENTAL RELAXATION FUNCTIONS

The theoretical developments and experimental

techniques described in the previous chapters were used

for the determination of relaxation functions of apple

flesh. The results of these experiments are first

given for a single apple; the average values for a

larger sample of apples are shown thereafter.

5.1 Relaxation Force Curves 

Measured relaxation force values for a uniaxial

and a constrained compression are given in Figures 5.1

and 5.2. The forces are shown from the moment the

displacement became constant, for for t' > 0 in (3.48)

and (3.50). The test specimen had a diameter of 19.05

mm and an initial length of 19.1 mm. The deformation

was held constant at —l.65 mm and —1.70 mm respectively

for the uniaxial compression and the constrained com—

pression. Only every twentieth data point is shown in

the graphs. The force is in newtons, the time in

minutes. The solid lines represent the exponential

series that were used to model the experimental force

curves. Both curves were represented by a two—term

exponential series.
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The uniaxial relaxation force model was

—2. 5 t' —. 29 '

F(t) = 13.0 e 96 + 70.24 e O t (5.1)

which resulted in an estimated variance of the observation

errors of 0.12092. The variance—covariance matrix of

the parameters C1 and d- (equations 3.48 and 5.1) is given
1

in Table 5.1. The model for the constrained relaxation

force was

* —3.10 t' _.027 t'

F (t) = 35.24 e + 83.44 e (5.2)

and the estimated variance of the observation errors was

1.42. The variance—covariance matrix of the parameters

in this model is also given in Table 5.1.

Observation of the model and the experimental values

in Figures 5.1 and 5.2 indicated that the model showed

large deviations from the measured values for small

values of time, especially for time t' = 0. Therefore,

the estimation of the coefficients in (3.48) and (3.50)

was subjected to the linear restraints

n

F(t'=0) = E C. (5.3)

* n

F (t'=0) = 2 c. (5.4)

 



Table 5.1.

57

Variance-covariance matrices of parameters in

a two-term exponential series.

F = z c. e”°‘it
l

(a)
Uniaxial Relaxation Force
 

C C

[Equations (5.1) and (5.2)]

 

 

 

 

1 2 1 2

C1 .00930 —.00012 —.00202 0

C2 .00052 —.00040 0

01. .00129 0

dz 0 0

Constrained Relaxation Force(a)

* * * *

C1 C2 0L1 0‘2

C1 .11450 —.00248 —.00936 .00001

C2 .00907 -.00259 -.00002

 
 

(a) Zero value when zero in

—.00256 0

the fifth decimal p1ace.
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Kmenta (1971) comments that imposing such restraints

increases the value of the estimated variance of the

observation errors, but a better model can be obtained

due to the inclusion of some known values.

The linear restraints were introduced such that

n

C1 = F(t'=0) — E C. (5.3a)
. 1
i=2

and *

* * n *

C1 = F (t'=0) — E C. (5.4a)

i=2 1

The results of forcing the models through the observed

force value at time t'=O are shown in Figures 5.3 and

5.4. The resulting equations were

—4.152 t' —.029 t'

F(t) = 16.06 e + 70.46 e (5.5)

for the uniaxial relaxation, and

* ~4.631 t —.028 t

F (t) = 43.91 e + 84.37 e (5.6)

for the constrained relaxation. In this case the

estimated variance of the observation errors were

respectively 0.1665 and 1.847. These values were higher

than in the previous case as was expected. The variance—

covariance matrices of the three parameters in these

models are given in Table 5.2.
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Table 5.2. Variance-covariance matrix of parameters in

a two—term exponential series subjected to the

linear restraint C1 = F(t'=0) - 02

[Equations (5.5) and (5.6)]

a

Uniaxial Relaxation Force< )

 

C a d

2 l 2

C2 .0006 -.00042 0

61 .00154 0

02 0

 
Constrained Relaxation Force(a)

 

 

C2 d1 d2

*

C2 .00927 —.00260 — 00002

*

al .00331 .00001

*

d 0

2

 
 

(a) Zero value assumed when aero in the fifth decimal

place.
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5.2 Relaxation Functions 

The uniaxial and constrained relaxation functions,

E(t) and X(t), were determined from the relaxation force

curves using equations (3.49) and (3.51), and (5.5) and

(5.6). The uniaxial relaxation function

 _ —.029 t

E(t) = .744 e 4'152 t + 2.863 e (5.7)

is shown in Figure 5.5. Figure 5.6 represents the con—

strained relaxation function

—4.630 t —.028 t

X(t) = 2.011 e + 3.325 e (5.8)

The dimensions of the relaxation functions E(t) and X(t)

are in megapascals (MPa) or lOeN/mz, while t is time in   minutes.

Discrete values of the bulk and shear relaxation

functions and Poisson's ratio were calculated using the

numerical procedure described in Section 3.2.2. The

results are displayed in Figures 5.7, 5.8 and 5.9. It

can be seen that while all these material properties are

time dependent, the bulk relaxation function exhibited the

largest changes with time.
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5.3 Average Values of Relaxation Functions 

The uniaxial and constrained relaxation functions and

discrete values of the bulk and shear relaxation functions

and Poisson's ratio for 24 apples are given in Appendix A.

They are summarized in Table 5.3. The tests on these

apples were run within less than three weeks from the

time of harvest. In Figures 5.10 through 5.14, the

average values and standard deviations of the respective

relaxation functions are given for different time values.

It can be noted that the bulk relaxation function

decreased very rapidly during the initial time periods.

The shear relaxation functions and Poisson's ratio also

decreased with time, but their decrease was less rapid

than for the bulk relaxation function. These properties

also varied among apples. The standard deviations of

the values of the relaxation functions at a single time

were as large as ten percent of the average value. They

were generally larger at the small time values.
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6. FINITE ELEMENT FORMULATION IN VISCOELASTICITY

A method for determining the viscoelastic constitutive

relations of biological material was presented in the

previous section. These constitutive equations are

essential for the analysis of the behavior of these

materials under different loading conditions.

A finite element method for solving these visco—

elastic boundary value problems is now presented. Its

application will be illustrated in a following section.

Finite element methods have already been used by

several authors in solving viscoelastic boundary value

problems (for example, Taylor at a£., 1968; Herrmann

and Peterson, 1968; Heer and Chen, 1969; Malone and

Connor, 1971; Carpenter, 1972). The following derivations

are similar to those by Taylor at at. (1968) and Heer

and Chen (1969).

6.1 Viscoelastic Boundary Value Problem:

Variational Theorem

 

 

A viscoelastic quasi-static boundary value problem is

governed by the following relations which have to be

satisfied, and which are similar to the elastic boundary

value relations (Christensen, 1971):

75



76

(i) Equilibrium equations

0.. . + F. = 0 i,j = l, 2, 3 (6.1)

where a comma denotes a differentiation and F, is a body

1

force vector.

(ii) Constitutive equations

t 3€k1(T)

.0ij — [OGijk1(t-i) __§¥___ dt (6.2)

where

G - l [G t G t 15 6
ijkl ‘ 3 2( ) ‘ 1( ) ij kl

(6.3)

1:

+ 2G1(t) [51k 6ij+5i1 6jk]

Using convolution notation (6.2) can be written as

,, = *olJ Gijkl Ekl (6.4)

(iii) Strain displacement relations

... —1—
.

61.1 3913'“ “3.1) (6 5)

(iv) Prescribed boundary values

Oij nj = Si on B0 (6.6)
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and

B0 is the part of the boundary on which the tractions Si

are prescribed and Bu is that part on which the dis—

placements Ai are prescribed. nj denotes the components

of the unit normal vector to the boundary.

Let I be a functional defined as (Christensen, 1971)

= 1 * .. * _ _ * _I IVEZGijkl €13 Ekl F1 ul] dV

- IB(Si * ui) da (6.7)

0

where it is assumed that the displacement boundary

conditions are satisfied. V is the total volume of the

solid. It can be shown that the first variation 61 of 1

due to a displacement variation vanishes when the

equilibrium equations and the boundary conditions are

satisfied. In other words, the solution of the boundary

value problem stated in (6.1), (6.2), (6.5) and (6.6)

can be obtained by finding the stationary value of the

functional I in (6.7). The finite element method can

be used as a numerical technique based on the minimization

of this functional.
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6.2 Axisymmetric Viscoelastic Solids

In the case of axial symmetry (no displacement or

displacement gradients in the 6 direction), Figure 6.1,

the strain displacement relations are (Sokolnikoff, 1956)

Bur

ETI‘I‘ €11 _ 3r

auz

EZZ _ 822 = DZ

5 e = BE

80 n r

= E = 1—(33111: + £3.14. )
Erz 12 2 DZ Sr (6.8)

Combining (6.2) and (6.3) the constitutive equations are

t dek1

011 = Orr = IOGllkl(t-T) _CIT— dT

ti .2.
I0[3(G2‘G1) dT (err + 222 +€ee> +

de

G ——££] dr

1 dT

or

1 l

= — — + 3G * + - G —G * +

Orr 3[(G2 G1) 1] Err 3( 2 1) (EZZ 600)

(6.9)
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Figure 6.1. Stresses in Axially Symmetric Problems
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Equation (6.9) can be rewritten as

0 = A * e + A * e + A * e (6.10)

Similar expressions can be derived for the other stress

components Ozz’ At this moment, it is0 , 0 .

66 rz

convenient to simplify the notation by setting (Figure 6.1)

1 rr 2 ZZ 3 ee 4 r2

(6.11)

The stress—strain relations can then be expressed as

o = A * e K,M = 1,2,3,4 (6.12)

K KM M

where

AKM = AMK

and

l

A = A = A = “(G +2G ) = B+_G

11 22 33 3 2 1 3

g

A = A = A = (G —G ) = B — G

12 13 23 1 3

A = AG = G

w 1

A = A = A = O (6.13)

101 '42 '43
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The axisymmetric expression for the functional (6.7)

becomes

I = A A * * — F * dV
IVEZ KM E:M 8K d ud]

— [B (sa * ua)da (6 14)

0

where K,M = l,2,3,4

and d = 1,2

6.3 Discretization of a Region:

Finite Element Formulation

6.3.1 Nodal Displacements

The volume and surface integrals in (6.14) can be

expressed as a sum of integrals over a set of subregions

I E 1] ( e * A * e)dv= 5 8 E:

e=1 Ve K KM M

p e e p

— 2 f e(u * F )dV — z I e(ue * Se)da

e=1 V a “ e=1 B a a

O (6.15)

where the superscripts e indicate the subregions.

The displacements in each subregion or element are

approximated by algebraic polynomials relating them to

displacements of nodal points of that element (Zienkiewicz,

1971)
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or {ue} = [Ne]{U} (6.16)

[Nejis the matrix of shape functions relating displacements

in the element Tue} to the nodal displacements {U}.

An example of an axisymmetric element is given in

Figure 6.2, and the nodal displacements are indicated.

The strain vector is obtained by appropriate space

differentiation of (6.16)

{ce} = [Be]{U} (6.17)

Substitution of (6.16) and (6.17) into (6.15) and the

use of matrix notation instead of indicial notation

yields

p T T

I = 2 AI ({U} [B] * [A] * [Bl {U})dV

e=1 V

p T T

— 2 f ({U} [N] * {F})dV

e=1 V

p T T

— z f ({U} [N] * {S})da (6.18)

e=1 BO

T

Where [B] is the transpose of matrix [B] and the element

superscripts are deleted for clarity. The order of

integration can be changed. The integration over space is

performed first, then the convolution. Hence,
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Figure 6.2. Triangular Axisymmetric Element and Nodal

Displacements
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P T T

1 = z AIU} * [I [B] IA][B]dV] * {U}

:1 V

p T

— 2 {U} * [IENJT{F}dv]

e l V

P T T

— 2 {U} * [f[N] {Slda] (6.19)

e=1 Bo

This functional can be written in a simpler form as

T T

I = A{U} * [K] * {U} — {U} * {R} (6.20)

The stiffness matrix is

.|

GT p

f eIB ] [AJIB ]dV (6.21)

P

[K] = ZIke] = 2

=1 Ve

The force vector is

p T

{R} = z{re) = 2 (f e[Ne] Fe dV +

e=1 V

I eINeJTISelda) (6.22)

B

It should be noted that the displacement vector {U} now

contains all the nodal displacements of a region and IR}

is the vector of all the nodal forces.

Taking the first variation of (6.20) and setting it

equal to zero yields
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T T

51 = 6{U} * [K] * {U} — 6{U} * {R} = 0

or

[K] * {U} - {R} = 0 (6.23)

Equation (6.23) resembles the finite element equations of

elasticity where the displacements are also the unknowns.

However, the explicit form of (6.23) contains a time

integral

t

f [K(t—T)] d{U(T)} ={R(t)} (6.24)

T=O

These integral equations can be solved numerically by the

use of time increments (Gupta, 1974). Rewriting the

integral in (6.24) as a summation over time steps results

in

n

z [K(tn-tm)]{AU(tm)} = {E(tn)} (6.25)

m=l

where {AU(tm)} is a vector of displacement increments from

time tmto tm+1 ,approximated as a displacement at the

beginning of the time increment.

The last displacement increment can now be found from

the previous displacement increments and a possible

initial step displacement {U0} at time t=0. This is done

by reordering the terms in the summation in (6.25)
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[K02 _t )]{AU(t )} ={R(t M—
n n n n

n—l

z [K(tn-tm)]{AU(tm)} — [K(tn)]{UO} (6.26)

m=l

Hence the equation for the first few time steps are

[K(o)]{U } = {R(t-)}
o O

[K(o)]{AU(t1)} = {R(t1)} — [K(t1)]{UO}

[K(o)]{AU(t3)} = {R(t2)} - [K(t1)]{AU(t1)}

- [K(t2)]{UO} (6.27)

A disadvantage of this method is that the number of

terms on the right—hand side in (6.27) increases with an

increasing number of time steps. If the stiffness matrix

for each time interval is stored, an enormous amount of

computer storage space is required. An alternate method

is to rebuild these stiffness matrices each time they are

used. This procedure, however, rapidly increases the

required computer time, and, therefore, the cost. The

latter method was used in the computer programs written

for this study. Another approach is the use of logarithmic

time increments which can be organized such that only one

stiffness matrix has to be stored at each moment (Gupta,

1974). More simplifications could be made in the case of
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exponential series representation of relaxation functions

(Taylor ct a£., 1968; Heer and Chen, 1969).

6.3.2 Element Stresses

The stress in each element can be derived from the

nodal displacements by substituting (6.17) into (6.12)

“(69) [A] * [8911081

01‘

e

{0 } [AJIBel * {Ue} (6.25)

Writing (6.25) as a convolution integral, and dropping the

superscript notation gives

t

{G(t)} = f [A(t—T)]IB] d {U(T)} (6 26)

0

Replacing the integral by a summation over discrete time

steps yields the stress as a function of the displacement

increments

{o(tn)} = IA(tn)][B]{UO} +

n

m:1[A(tn—tm)l[B]{AU(tm)} (6.27)

Note that the calculations performed in (6.27) have to be

repeated for each element.



7. NUMERICAL ANALYSIS OF MECHANICAL BEHAVIOR

OF APPLES UNDER LOADS

A finite element method for the solution of visco-

elastic boundary value problems was presented in the

previous section. Existing finite element programs for

two-dimensional elasticity were modified to accommodate

the Viscoelastic problems related to the loading of

apples. The modification included a change to axially

symmetric triangular elements, allocation of computer

storage for the displacement increments calculated

during each time step and the recalculation of the force

vector on the right-hand side of the equation (6.27)

after each time step. The finite element method was

used with the previously discussed constitutive equations

to analyze the behavior of apples under different loading

conditions.

The behavior of a spherical specimen in contact with

a rigid flat plate was studied. It was used as a model

for the behavior of an apple in contact with a rigid wall

or floor.

An analysis of the compression of a simple cylindrical

sample was performed in order to evaluate the accuracy of

the procedure. Comparisons were made between the numerical

results and analytical solutions for simple problems.

88



89

7.1 Division into Elements
 

The finite element grids of a cylindrical and a

spherical sample are shown in Figures 7.1 and 7.2. The

cylindrical sample had a 9.025 mm radius and a length of

19.1 mm. The radius of the spherical sample was 17.8 mm.

Each triangle represents a ring-shaped element as was

shown in Figure 6.2. The region in Figure 7.2 represents

a half sphere, in which the other half was omitted because

of symmetry with respect to the r-G plane. The element

size of the spherical sample was varied such that a very

fine grid was obtained in the vicinity of the applied

contact loads. This fine grid was necessary to obtain

accurate results.

The division of the regions into elements was done

with an automatic grid generating program which also

labeled the nodes for minimum computer memory requirements

relative to the storage of the stiffness matrix [K] in

(6.23). There were 42 elements with 32 nodes in the

cylindrical sample and 370 elements with 215 nodes in the

spherical sample.

7.2 Special Techniques for the Solution

of Contact Problems
 

The solution of the viscoelastic contact problems

using finite elements required Special care in the

determination at each time step of those nodes that make
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Figure 7.1. Finite Element Grid for a Cylindrical
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Figure 7.2. Finite Element Grid for a Spherical Specimen
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contact with the flat plate after each time step. The

force between the sphere and the plate was assumed in the

z-direction. A special subroutine was written to monitor

the displacement of boundary nodes and, if necessary, to

impose nodal displacements to make them compatible with

the flat plate displacement. Nodes in contact with a flat

plate are illustrated in Figure 7.3.

The calculation of the resultant contact force between

the flat plate and the specimen also required the knowledge

of the nodes in contact with the flat plate. They

determined over which elements the stress had to be

integrated to obtain the resultant contact force. Integration

was done by multiplying the element stress in the z-

direction with the projection in the r—e plane of the

outside surface area of these boundary elements.

The formulation of the finite element method in terms

of nodal displacements assumes that nodal forces and/or

some nodal displacements can be specified, after which all

the other nodal displacements can be calculated. This

formulation creates some special problems when analyzing

the behavior of a spherical sample under a constant force

(creep) loading. The actual distribution of the force

over the contact area depends on the size of the contact

area, but this in turn depends on the axial displacement.

Hence, no nodal contact forces can be accurately specified

since the axial displacement is the unknown of the problem.

The formulation of a constant force loading was solved by
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Figure 7.3. Spherical Sample in Contact with Rigid

Flat Plate: Prescribed Displacement of

the Contact Nodes
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assuming an axial displacement, and calculating the

contact force for this displacement. If this contact

force was not equal to the specified creep load, the

specified displacements were corrected and the contact

force was recalculated. This iterative procedure is

illustrated in Figure 7.4. FC is the constant creep load,

Ul is the initially assumed displacement. The displace—

ment U1 requires a force F which is larger than the creep

1

force. Multiplying U1 by FC/F1 results in a displacement

U2 which requires a force F2. This iteration is continued

until a displacement is obtained which requires a force

very close to the constant creep load.

7.3 Material Properties
 

Most of the numerical analyses in this chapter were

done for apple material having the following experimentally

determined relaxation functions in the zero to two minute

time region

—15.897t _,
.888 e + 2.731 e 106t (7,1)E(t)

—l9.303t —.119t

1.386 e + 3.549 e (7.2)X(t)

These relaxation functions are shown in Figures 7.5 and

7.6. The values of bulk and shear relaxation functions,

which were used in the finite element analysis, are given

in Figures 7.7 and 7.8 respectively. In some examples
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specimens were used whose material properties are ex-

pressed by the relaxation functions

-l7.561t3 —.O96t

1.018 e + 3.092 e (7.3)E(t)

and

—22.127t _ 129

1.964 e + 3.886 e ' (7.4)X(t)

The latter sample is referred to as Sample 11, while the

former will be designated as Sample I.

7.4 Specimen Subjected to a Constant Deformation Rate
 

The finite element models of both the cylindrical

and the spherical specimen were subjected to a deformation

rate of -2.54 mm/min in the z-direction (axial compression).

The required compressive force on the cylindrical sample

to obtain this deformation rate was analytically found

from (3.46) and (7.1)

-15.897t _,106t

F(t) = 978.61 — 2.12 6 -976.61 e

(7.3)

where the force is in newtons.

This force versus time function was plotted in Figure 7.9

for comparison with the force values obtained from the

finite element analysis. Excellent agreement between the

analytical and the numerical technique was observed,

except at time t=0 where a non—zero force value was
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obtained, an error inherent in the summation over time

in equation (6.27).

The calculated force versus time curve was also

compared with experimentally obtained force-time curves

of cylindrical samples subjected to a deformation rate

of 2.54 mm/min. Figure 7.10 shows two experimental

curves and a calculated curve. The variation in response

among samples of the same apple can readily be observed.

The Calculated value does not exactly coincide with either

of the two experimental curves. In most cases the

calculated values are slightly lower than the measured

ones. This can also be seen in the results for a

different apple (Sample II) represented in Figure 7.11.

Comparison of experimental and calculated force—time

curves for several samples taken from different apples

indicated that the slope of the calculated curves was in

general smaller than the slope of the measured values.

The slope of these force—time curves at this deformation

rate depends on the value of the relaxation functions for

very small values of time. It was already discussed in

Section 3.2.1 that relaxation experiments do not always

result in very good values of the relaxation functions

for small time values, and that dynamic experiments would

be necessary. However, the relaxation functions

determined from the relaxation experiments would be

sufficient for smaller deformation rates.
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The compressive force on a spherical sample subjected

to a constant axial deformation rate of 2.54 mm/min is

illustrated in Figure 7.12 and Figure 7.13. The

calculated values in both cases are higher than the

measured values. This difference was believed to be

caused by differences in the radius of curvature between

the experimental sample and the model in Figure 7.2.

The calculated force—deformation relation for a 15.1 mm

radius sphere given in Figure 7.12 illustrates this

effect of the radius of curvature. Slight irregularities

in the specimen boundary at the contact point were very

difficult to eliminate during the sample preparation.

Unfortunately, it was seldom possible to obtain more than

one spherical sample from one apple after the cylindrical

samples were removed.

The comparison of the calculated and experimental

force deformation or force—time curves in this section has

shown that the numerical technique can be used to

simulate the mechanical behavior of the fruit. It is also

clear that the experimental relaxation functions have to

be applied with caution and do not always give close

agreement between calculated and measured force values

for rapidly changing loading conditions. This indicates

the need for dynamic experiments if dynamic loadings are

to be studied.
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Experimental and Calculated Force—Time
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7.5 Behavior of Fruit under a Constant Load

The experiments and calculations up to this point

were performed assuming a fixed displacement. In the

following, the displacement of a specimen is analyzed

as it evolves in time under the influence of a constant

load.

7.5.1 Creep Behavior of a Cylindrical Specimen

A creep compliance D(t) can be defined to express

viscoelastic strain of a one-dimensional specimen as a

function of stress (Christensen, 1971)

t d o (T)

e (t) =fD(t-T)-——1-1———— (it (7.5)

11 0 d T

This creep compliance can be related to the uniaxial

relaxation function via their respective Laplace trans—

forms

13(5) = __1__. (7.6)

$2 E(S)

Combining (7.6) with the uniaxial relaxation

function of (7.1) yields the creep compliance

-12.02t

D(t) = .365 + .0387t — .0883 e (7.7)

which is shown in Figure 7.14. The units of D(t) are

(megapascalf1
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Equations (7.7) and (7.5) were used to calculate the

change in length of a cylindrical specimen subjected to a

constant compressive load of 80 N, applied at time t=0.

The deformation of the specimen is shown in Figure 7.15

as a function of time.

The nodal loads could have been specified for this

particular specimen. The iterative procedure described

in Section 7.2, however, was used to demonstrate its

applicability. The calculated force had to be within

plus or minus 2.5 percent of the creep load to terminate

the iteration. The results shown in Figure 7.15

indicate the validity of the technique.

7.5.2 Creep Behavior of a Spherical Specimen

The deformation of and the stress distribution in a

spherical body composed of apple parenchyma and subjected

to a constant flat plate load of 50 N was calculated.

The evolution of the axial deformation, calculated using

the iterative finite element procedure, is depicted in

Figure 7.16. The creep deformation rate became very

small after only 0.5 minute.

Isostress curves were interpolated from nodal stress

values which were obtained from the element stress values

through a ”consistent stress analysis” technique (Oden and

Brauchli, 1971). The isostress lines at time t=0, or the

instant of loading, are shown in Figures 7.17 through 7.20.
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In Figures 7.21 through 7.24 those lines were repeated

at time t = 0.76 minutes. The stresses in the z—direction

and the principal stresses appeared largest near the

initial point of contact and decreased with increasing

distance from the contact point. The shear stress,

however, had a maximum near the contact point farthest

from the axis of symmetry. The maximum value of the

shear stress at that point was .476 MPa at t = 0 and

decreased to .2 MPa at t = .76 minute. The decrease

with time of the maximum compressive stress and maxi—

mum shear stress is illustrated in Figure 7.25.

Closer observation of the principal stress values

also showed that there existed a tensile stress at the

circular boundary of the surface of contact with a

maximum value of 1.02 MPa at time t = 0 and decreasing

to 0.57 MPa at t = .76 min. The tensile stress acted in

the axial direction. Some of the stresses in spherical

bodies in elastic contact were discussed by Timoshenko

and Goodier (1971). They indicated the existence of a

radial tensile stress at the circular boundary of the

surface of contact, but the magnitude of this tensile

stress was smaller in comparison with the compressive

stresses at the center of contact. The location of the

maximum shear stress and the maximum tensile stress is

indicated in Figure 7.26, which also shows the deformed

grid at time t = 0.76 min.
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Figure 7.21. Lines of Constant Stress in the

z—Direction at Time t = 0.76 min
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Figure 7.22. Lines of Constant Maximum Principal

Stress at Time t = 0.76 min
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Figure 7.23. Lines of Constant Minimum Principal

Stress at Time t = 0.76 min
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7.6 Closure
 

Experimental loadings of spherical samples up to

failure were performed. Inspection of the resulting

bruises showed bruise shapes which passed through the

point of maximum tensile and shear stress as presented

in Figure 7.20. Similar bruise shapes were reported by

Horsfield at afi. (1972). The application of the

numerical methods presented in determining the

occurrence of a bruise depends on the availability of a

criterion to describe the condition of material failure.

It follows from the previous section that if a maximum

stress is a failure criterion, then bruising would

occur at the instant of loading of the apple with the

creep load. A discussion on failure criteria is

presented in section 9.4.





8. SUMMARY AND CONCLUSIONS

A new experimental procedure for the determination

of bulk and shear relaxation functions and Poisson's

ratio of apple flesh was developed. This procedure

utilizes the relaxation properties of free and

constrained cylindrical specimens and numerical tech-

niques related to the inverse Laplace transform to

obtain numerical values for these viscoelastic

properties. The experimentally determined constitutive

relations were used in a viscoelastic finite element

analysis to calculate the stresses in apples under loads.

An iterative method was presented for finding the

deformation of a spherical specimen under a constant

force.

The following conclusions can be drawn from this

study:

1) The bulk and shear relaxation functions and

Poisson's ratio of apple flesh are time

dependent properties.

2) There is a large variation in the magnitude of

the relaxation functions between apples.

3) Apples subjected to constant creep loads
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experience maximum stresses at the initial

application of the force.

Maximum shear and tensile stresses exist at

the circular boundary of the contact surface

during a flat plate loading.





9. FURTHER DEVELOPMENTS AND SUGGESTIONS

FOR FUTURE RESEARCH

The research reported in this dissertation was part

of an ongoing regional research project related to the

harvesting and handling of fruits and vegetables (NE-93).

Michigan's contribution to this project is the development

of failure criteria for apple and potato flesh. This

dissertation was the first step in this study and

 

focused on the definition of the material properties of

apples and the determination of the stress components

within the apple when it is subjected to static loads.

Some of the important areas related to apple bruising

which must still be investigated are discussed in the

following sections.

9.1 Change of Material Properties

During Ripening

 

A method has been presented within this dissertation

for the determination of viscoelastic constitutive

equations of apple parenchyma. These constitutive

relations were used in a numerical technique for the

solution of viscoelastic boundary value problem and the

analysis of stress in fruit under loading. The under—

lying assumption in these calculations was that the
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material structure is not altered during the time period

of the experiment. It seems logical that for the study

of long time fruit behavior this assumption has to be

modified.

Water loss during storage and the chemical changes

due to ripening can have a great effect on the material

properties. These factors are very difficult to

incorporate into the described analytical technique

merely because ripening itself is a phenomenon that is

difficult to quantify. The hypothesis is made here that

a ripeness index (T) can be established. This ripeness (

index could be based on either starch content, sugar

content, pectin content (itself a component of the

structural strength of the fruit), or simply on the time

in storage under steady state conditions.

The relaxation functions in Section 5 have to be

determined for different values of the ripeness index

W. Ga(t) denotes the value of the relaxation function

at the reference value of the ripeness index W. If the

ripeness index changes then the relaxation function for

that ripeness index can be designated as ga(t,W).

Thus,

ga(t,wo) = Ga(t) d = 1,2 (9.1)

The equation (9.1) is similar to the one used by

Christensen (1971) to express temperature dependence
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of mechanical properties. Considerable simplification

can be achieved if a unique shift function X(W) can be

found for which

gawm = Ga(€) (9.2)

E = t X(W) (9.3)

'This shift function allows the superposition of time

and ripeness in the same way time and temperature can be

superimposed for thermorheological simple materials

(Ferry, 1970; Hammerle and Mohsenin, 1970). The use of

the reduced variable 5 means that the behavior of material

in long—term storage can be analyzed with the same ease

with which the mechanical behavior was studied in the

previous section.

9.2 The Effect of the Skin 

The presence of the skin was neglected in the models

used in this study. Rumsey and Fridley (1974) found

that the presence of an elastic skin produced no

significant change of the internal stress distribution

of the parenchyma. Gustafson (1974), however, showed

that the restraint created by the skin can cause increased

stresses in the body if the turgor pressure is accounted

for. The effect of the skin properties on the stresses
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in the apple parenchyma demands more investigation.

9.3 Dynamic Mechanical Properties
 

It was mentioned in section 7.4 that the values of

the relaxation functions for small values of time are

important for the study of material behavior under

rapidly changing conditions. A theoretical analysis

for the determination of dynamic material properties was

presented in section 3.3. An improved experimental

technique should be developed for the measurement of the

complex moduli.

9.4 Development of a Failure Criterion
 

Combination of the stress analysis techniques with

a criterion for material failure is required to determine

under which state of external loading apples start to

bruise. Work of Miles and Rehkugler (1971) towards the

development of a failure criterion has been mentioned in

section 2.3. Theirs and some other work on yield

criteria of polymers is analyzed here and some suggestions

for further development are proposed.

Figure 9.1 is a plot of the principal stresses 01

and 02 at failure from data given by Miles and Rehkugler

(1971). This failure locus has more characteristics of

the yield locus of maximum distortional energy theory

than of the locus associated with the maximum shear stress
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theory (Mendelson, 1968). Moreover, data on compressive

failure strength at higher hydrostatic pressures are

needed to complete the compressive part of the failure

locus graph.

Yield criteria for polymer materials have been

investigated. Mears at az. (1969) showed that tensile

yield stress of polyethylene and polypropylene increases

significantly with increasing hydrostatic pressures.

The applied hydrostatic stresses were about ten times

higher than the mean normal stress at the yield point.

Raghava at at. (1973) used thin—walled polymer tubes

under different internal pressures and axial tension

or compression to study the yield behavior of poly—

carbonate and polyvinylchloride. They proposed the yield

criterion

(0 — o )2 + (o — o )2 + (o — o )2 +

1 2 2 3 3 1

2(C—T)(o1 + 02 + 03) = 2CT (9.4)

where 01, 02 and 03 are the principal stresses of the

applied stress state while C and T are the absolute

values of the compressive and tensile yield strengths

respectively. The influence of the hydrostatic pressure

is indicated by the term (01 + 02 + 03). When C = T,

the criterion reduces to the maximum distortion energy

theory (von Mises criterion). Tensile strength of apple

flesh should be investigated in View of the tensile
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stresses mentioned in section 7.5. They are required to

determine whether equation (9.1) or any variation thereof

is applicable in this case.

The changing of material properties during ripening

can have an effect on: (i) the failure criterion to be

used at different ripeness stages and (ii) the level of

distortional energy 9r shear stress at failure, whichever

may be the criterion. It was mentioned in section 4.2

that some cylindrical specimens were loaded to failure.

The average axial compressive stress in cylindrical

samples at failure was found to be —.49 MPa at the be-

ginning of the storage period and -.34 MPa after four

months of storage. It is conceivable that bruise develop—

ment later than the time of application of the creep load

may result from these changes.
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APPENDIX A

EXPERIMENTAL RELAXATION FUNCTIONS FOR APPLE FLESH
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UNIAXIAL RELAXATION FUNCTION
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.32586E000

.31963E000

.31k02Efi00

.31254E000

.31352E*00

.31334E¢00

.31281E+00

POIS. RATIO

0305925000

03393BE§00

0333145000

0321“0E§00

030185E+00

02729“E*00

0239215900

0208205500

0179305900

0165135500
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UNIAXIAL RELAXATION FUNCTION 03B

.7781 EXP( ~2.95#06 'T)

2.052% EXP( -.0281k ‘T)

CONSTRAINED RELAXATION FUNCTION 035

1.5068 EXP( -k.0#959 ‘T)

3.2968 EXP( -.0279h 'T)

TIME SHEAR M00 BULK MOD POIS. RATIO

(MIN.) (MEGAPASC.) (MEGAPASC.)

.0 .12163E+01 .31316EI01 .32808E000

.31000E-01 .11990Et01 .2981OE+01 .323h3E+00

.62000E-01 .11735EO01 .28088E+01 .31927Et00

.12500E+00 .11365E+01 .26284E+01 .31220E§00

.25000E+00 .10786E+01 .2333BE+01 .302“6E+00

050000E+00 .10008E*01 .20612E+01 .29352E*00

.10000E+01 .939k6E+00 .19309Ek01 .2913QE600

.20000E+01 .89702E+00 .187A6E+01 .29362Efi00

.90000E+01 .80973E*00 .17708E+01 .29“09E+00

.80000E+01 .83855E+00 .17032E+01 .29391E+00

UNIAXIAL RELAXATION FUNCTION 036

.7335 EXP( -3.260#0 ‘T)

2.5034 EXP( -.02737 ‘'T)

CONSTRAINED RELAXATION FUNCTION 037

1.736% EXP( -b.45328 ’T)

3.3106 EXP( -.02786 ’T)

TIME SHEAR MOD BULK MOD POIS. RATIO

(MIA.) (MEGAPASC.) (MEGAPASC.)

.0 .1222“E+01 .34212E+01 .39039Et00

.31000E-01 .12006E+01 .3223HE+01 .33450E+00

.62050E-01 .11807E+01 .30521E+01 .32924Ef00

.12500E+00 .11k53E+01 .27711E+01 .32017E+00

.250005+00 .10916E+01 .29065E+01 .3072“E*00

.50000E+00 .10267E+01 .20871E+01 .29902E000

.100COE+01 .97285E+00 .19064E#01 .28763E+00

.20000E+01 .93581E+00 .188785+01 .28761E000

.000£GE+01 .8876EE+00 .17899E+01 .28772Et00

.80000E+01 .87487Ei00 .17650E+01 .28797E+00



 



UNIAXIAL RELAXATION FUNCTION

.5859 EXP(

2.308“ EXP(
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038

-2.77h35 ‘T)

-.02773 ‘T)

CONSTRAINEO RELAXATION FUNCTION 039

1.0738 EXP( -2.99313 ‘T)

3.2166 EXP(

SHEAR MOD

(MEGAPASC.)

TIME

(MIN.)

.0

.31000E-01

.62000E-01

.12500E+00

.25000E+00

.50000E+00

.10000E+01

.20000E+31

.00000E+01

.800COE+01

UNIAXIAL RELAXATION FUNCTION

.6060 EXP(

2.2361 EXP(

.11058E+01

.10885E*01

.10723E+01

.10“30E+01

-.023hh ‘T)

BULK MOD

(MEGAPASC.)

.28156E+01

.27015E+01

.26741E+01

.25551E+01

.99735E+00 .23762E+01

.93922E600 .2167HE+01

.88711E+00 .20130E+01

.809205+00 .1939SE+01

.79972E+00 .18654E+01

.78282E+00 .18477E+01

090

-2.37079 ‘T)

-.03184 ‘T)

CONSTRAINED RELAXATION FUNCTION 091

1.6123 EXP(

3.1703 EXP(

TIME

(MIN.)

.0

.310COE-01

.620005-01

.12500E+00

.25000E+00

.500006+00

.10000E+01

02000UE+31

.00000E+01

.80000E901

SHEAR M00

(MEGAPASC.)

.1CAQ7E+01

.1C309Eé01

.10182EI01

.99853E*00

.9557#E+00

.90177E+00

.8L572E*00

.80228E+00

.75655E+00

.70591E+00

-3.37739 ‘T)

-.00169 ‘T)

BULK MOD

(MEGAPASC.)

.33926Ef01

.3207QE+01

.31162E+01

.28887E+01

.25603EI01

.22006E+01

.19720E+01

.18515E+01

.16789E+01

.16218E+01

POIS. RATIO

.32632E000

.32969E000

.32321E900

.32058E900

.31656E*00

.31182E+00

.30868E900

.30890E+00

.3115“E*00

.312k8E000

POIS. RATIO

.3604#E+00

.356555'00

.35297E+00

.34656E+00

.33666E*00

.32066E600

.31576E+00

.31222E+00

.30705E+00

.30613E000
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UNIAXIAL RELAXATION FUNCTION 092

.9973 EXP( -2.98030 ‘T)

2.3227 EXP( -.03069 ‘T)

CONSTEAINED RELAXATION FUNCTION 093

1.9959 EXP( -3.97533 'T)

3.6299 EXP( -.03999 'T)

TIME SHEAR MOD BULK MOO

(MIN.) (MEGAPASC.) (MEGAPASC.)

.0 .10159E+01 .92160E+01

.310COE-01 .10039Et01 .90295E+01

.62000E-01 .99317E+00 .38616E+01

.12500E+00 .97395E*00 .35716E+01

.25000E900 .99197E+00 .31599E+01

.50000E000 .89782E+00 .27089E+01

.10000E+]1

.20000E+01

.90000E+01

. 30000E+01

.85310E+00

.81559EI00

.76888E+00

.75692E+00

.29297E*01

.22970E+01

.21399E+01

.20835Et01

UNIAXIAL aELAXATION FUNCTION 099

2.8628 EXP( -.02892 ‘T)

CONSTRAINED RELAXATION FUNCTION 095

2.0112 EXP( -9.63030 ‘T)

3.3256 EXP( -.02890 ‘T)

TIME SHEAR MOD BULK MOD

(MIN.) (MEGAPASC.) (MEGAPASC.)

.0 .13563E+01 .35285E+01

.310COE-01 .13288E+01 .32932E+01

.620COE~01 .13397E+01 .30895E+31

.12500Ef00 .12699E+01 .27553E+01

.25000E+00 .12100E+01 .23206E+01

.530COE+00 .11577E*01 .19336E+01

.100EOE+01 .11259E+01 .17507E+01

.20000E+31 .10960E+01 .16813E+01

.90000E+01 .10383E001 .15929E+01

.8]000E+31 .10239E+01 .156985+01

POIS.

'0'.

P015. RATIO

.38859E+00

.38506Ef00

.38183E‘00

.37600E*00

.36685E+00

.35533Ef00

.39603E000

.39293Ef00

.39066E+00

.39012EO00

RATIO

.32966E+00

.32291E‘00

.31579E+00

.30377E+00

.28519E000

.26178E000

.29225E+00

.23920E+00

.23363Ef00

.23385E*00
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UNIAXIAL RELAXATION FUNCTION 096

.5797 EXP( -9.85286 ‘T)

2.5519 EXP( 0.02972 ‘T)

CONSTRAINED RELAXATION FUNCTION 097

3.1290 EXP( -5.25089 ‘T)

3.0730 EXP( -.05399 ‘T)

TIME SHEAR MOD BULK MOD

(MIN0) (MEGAPASC0) (MEGAPASCo)

00 0112736901 0“693SE§01

031000E‘01 011038E901 0925095201

0620(05-01 010837E+01 038733E+01

.12500E+00

.25000EI00

.50000E+00

.10000E+01

.20000E+01

.90000Eé01

.80000E+01

.10518Et01

.10132Ef01

.98997E+00

.97778E600

.96825E+00

.93513Et00

.92997E+00

032707E+01

0252205+01

.19050E+01

.16256E+01

.19709E+01

.12928Ef01

011812E+01

UNIAXIAL RELAXATION FUNCTION 050

.8353 EXP( -2.57389 ‘TI

3.1536 EXP( -.03197 ‘T)

CONSTRAINED RELAXATION FUNCTION 051

1.3105 EXP( -3.92813 'T)

3.8951 EXP( -.02798 ‘T)

TIME SNEAR MOD BULK MOD

(MIN0) (MEGAPASC0) (MEGAPA300)

00 0155265701 0308505701

031000E‘01 .15312E+01 029785E+01

062000E'01 0151115§01 .238325001

.12500E+30

.25000E+00

.500EOE000

.100CCE+01

oZUUCUEfOl

.90000E+01

.80050E+31

.19791E+01

.19133Et01

.13292E001

.12926E+01

.11756E+01

.11006E+01

.10808E*01

.27202Ef01

.29906E+01

.22565E+01

.21269E+01

.20732E+01

.19823E+01

.19595E+01

POIS. RATIO

030073E+00

03808TE§00

037395E+00

035972E§00

033709E‘00

030509E*00

0270565+00

0292925+00

0216UZE+00

020863E+00

POIS. RATIO

.28952E000

.28062E000

.27719E000

.27120E000

.26302E+00

.25580E+00

.25569E*00

.26103E000

.26533E+00

.26625E+00
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UNIAXIAL RELAXATION FUNCTION‘ 052

3.0238 EXP(

.6996 EXP( -3.83393 ‘T)

-.03906 ‘T)

CONSTRAINEO RELAXATION FUNCTION 053

1.2360 EXP(

3.8003 EXP(

TIME

(MIN.)

.0

.31000E-01

.620COE-01

.125COE000

.250COE+30

.50000E+00

.10000E+01

.20000E+31

.90000E+01

.80000E+01

UNIAXIAL RELAXATION FUNCTION

.7501 EXP( -3.17312

2.9222 EXP(

-3.06739 ‘T)

-.02267 ‘T)

SHEAR MOD BULK H00

(HEGAPASC.) (MEGAPASC.)

.19301E+01 .31292E+01

.13992E+01 .30558E+01

.13718E+01 .29879E+01

.132515I01

.12599E+01

.119235+01

.11050£.01

.11013£+01

.10233E+01

.10005E+01

-.03818

.28651E+01

.26732E+01

.2.3.55+01

.22958E+01

.216586+01

.21097E+01

.209395+01

059

’T)

‘T)

CONSTRAINED RELAXATION FUNCTION 055

2.3671 EXP(

9.2212 EXP(

TIME

(MIN.)

.0

.31000E-01

.620COE-01

.12500E+00

.25000E+00

.53000E+00

.100LOE+01

.200COE+01

.900EOE+31

.80000E+31

*3.66107 ‘T)

-.09113 ‘T)

SHEAR MOD BULK M00

(MEGAPASC.) (MEGAPASC.)

.13376E+01 .98099E+01

.13193E+01 .95766E+01

.1293LE+01 .93730Et01

.12553E+01 .90237E+01

.11989E+01 .35282E+01

.11302E+01

.1C725E+01

.10297E+01

.95291E+00

.93321E+00

0300815*01

0263158’01

0252295001

0231895+01

022615E+01

POIS.

POIS.

RATIO

.30179E§00

.30138E000

.30093E+00

.29979Et00

.29676E+00

.29079E*00

.28367E+00

.28279E000

.290665000

.29398E+00

RATIO

.37271EG00

.36905E+00

.36573E000

.35973Ef00

.35025E+00

.33811E’00

.32763E*00

.32285E+00

.32157E+00

.32228E000
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UNIAXIAL RELAXATION FUNCTION 056

.6686 EXP( -2.55635 'T)

2.7517 EXP( -.03327 ’T)

CONSTRAINEO RELAXATION FUNCTION 057

1.7637 EXP( -3.08777 ‘T)

3.0195 EXP( -.09009 ‘T)

TIME SHEAR MOD BULK MOD POIS. RATIO

(MIN.) (MEGAPASC.) (MEGAPASC.)

.0 .13026E+01 .30963E+01 .31288E000

.310CCE-31 .12882E+01 .290096+01 .30673E'00

.62000E-01 .12799E+01 .27687E+01 .30092E000

.125COE+00 .12508E+01 .25357E+01 .29003E*00

.25000E+00 .12129E+01 .21873E+01 .27167E§00

.50000E+00 .11699Et01 .17839Ef01 .29979E000

.10000E+01 .11201E001 .19878E+01 .21961E000

.23000E401 .10897Ef01 .13999E+01 .19139E600

.90000E+01 .10301E+01 .12058E+01 .175805F00

.30000E+11 .1£198E+01 .11685E+01 .17260E+00

UNIAXIAL RELAXATION FUNCTION 060

.6872 EXP( -3.98099 ‘T)

2.5579 EXP( -.09137 ‘T)

CONSTRAINED RELAXATION FUNCTION 061

1.9710 EXP( -3.57930 ‘T)

3.6786 EXP( -.03913 ’T)

TIME SHEAR MOO BULK M00 POIS. RATIO

(MIN.) (MEGAPASC.) (MEGAPASC.)

.0 .12091E501 .35938E+01 .39796E+00

.31000E-01 .11789Ef01 .39201E+01 .39551Et00

.62000E-01 .11553E+01 .33093E+01 .39375Et00

.12500E*30 .1115CE+01 .31172E+01 .39059Ef00

.25000E+30 .10557E+01 .28918E+01 .33573E000

.500005+00 .98793E+00 .259555+01 .32986E000

.130COE+01 .933905t00 .23510Ef01 .32573E000

.200COE+01 .88896E+00 .22523E+01 .32587E+00

.90000E+01 .81866E+00 .21293E+01 .32960E000

.800005+01

 

.80109E+00 .20862E+01 .33105Et00
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UNIAXIAL RELAXATION FUNCTION 069

.7659 EXP( -3.59599 ¥T)

2.8992 EXP( -.09593 ‘T)

CONSTRAINED RELAXATION FUNCTION 065

1.7995 EXP( -3.92369 ‘T’

3.9250 EXP( -.03291 ‘T)

TIME SHEAR M00 BULK MOD POIS. RATIO

(HIN.) (MEGAPASC.) (MEGAPASC.)

.0 .13667E+01 .33521Et01 .32055E+00

.31000E-01 .13386E+01 .32099E+01 .31701E+00

.620IOE-01 .13135E+01 .30817E+01 .31367Ei00

.12500E930 .12699E+01 .28583E+01 .30795Ef00

.25000E+00 .12067E+01 .25317E+01 .29709E000

.500COE+00 .11365E+01 .21709E+01 .28260E+00

.10000E+01 .1[813E§01 .19308E+01 .26899E+00

.23000E+01 .10272E+01 .18925E+01 .26562E000

.90000E+01 .93309Et00 .17728E+01 .27987E+00

.80000E+01 .90762E+00 .17551E+01 .27791E+00

UNIAXIAL RELAXATION FUNCTION 066

.8296 EXP( -2.55665 ‘T)

2.6139 EXP( -.09959 ’T)

CONSTRAINED RELAXATION FUNCTION 067

3. 013 EXP( -9.29651 ‘T)

3.9963 EXP( -.09191 ‘T)

TIME

(MIN.)

.0

.31000E-01

.62080E‘01

.12500E+00

.25000E+00

.500005+30

.10000E+01

.20000E+01

.900EOE+]1

0300005+01

SHEAR H00

(MEGAPASC.)

.12328E+01

.12153E901

.1199CE+01

.11692E+01

.11219E+01

.1C575Et01

.99986E+00

.99665E+00

.89158Et00

.87669E*00

BULK MOD

(MEGAFASC.)

.51023E+01

.97100E+01

.93652E+01

.37897E+01

.30156E901

.22779E+01

.18658E+01

.16079E+01

.12067E+01

.10893E+01

POIS. RATIO

038808E+00

038199E+00

.375195500

.36359E+00

03““73E000

.31899E000

.29299E*00

.26931E+00

.23567E000

.22523E900
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