ASPECTS OF JUNEBERRY BIOLOGY, MANAGEMENT POTENTIAL AND WILDLIFE VALUE

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
DEAN PAUL LONGRIE
1972

This is to certify that the

thesis entitled

ASPECTS OF JUNEBERRY BIOLOGY, MANAGEMENT POTENTIAL AND WILDLIFE VALUE

presented by

DEAN PAUL LONGRIE

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Fisheries & Wildlife

O-7639

SORM

.

ABSTRACT

ASPECTS OF JUNEBERRY BIOLOGY, MANAGEMENT POTENTIAL AND WILDLIFE VALUE

By

Dean Paul Longrie

Juneberry (Amelanchier laevis) was examined on sites selected as being representative of the range of habitat found on northern sections of the Huron-Manistee National Forest. Reproductive success was greatest on sites having percent overstory canopy cover greater than 15. The "typical" juneberry clump had 7 to 12 stems, a maximum age difference between stems of 16 years, mean stem age of 34 years, mean diameter of 3 inches, and height of 27 feet, and would be codominant with trees most closely associated with it. Fruit production varied several fold from year to year.

The percent of available juneberry stems browsed as well as the percent of current twig length consumed substantiates the ranking of juneberry as an "intermediately preferred" deer browse. Based on seasonal nutrient composition as well as dry matter digestibility, juneberry browse would also rank "intermediate" in apparent

nutritional value to deer. However, juneberry fruit, based on metabolizability of energy and dry matter, should rank as a high value ruffed grouse food.

Increased wildlife utilization as well as rejuvenation of low vigor clumps would result from inclusion of
partial cutting of low vigor juneberry stems in wildland
management practices. The release of juneberry seedlings
via short rotation or selective cutting of codominant
trees would be desirable juneberry management resulting in
aesthetic and wildlife benefits.

ASPECTS OF JUNEBERRY BIOLOGY, MANAGEMENT POTENTIAL AND WILDLIFE VALUE

Ву

Dean Paul Longrie

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Fisheries and Wildlife

DEDICATION

To my God, my wife, and our children to whom I owe so much.

ACKNOWLEDGMENTS

I sincerely thank:

My major professor, Dr. Leslie W. Gysel, committee members Duane E. Ullrey, Dr. Victor Rudolph, and Dr. George Petridies for criticism on the text.

Dr. Peter Murphy and Dr. Gary Schneider for counseling on the study design.

Dr. Forest Stearns for review of the text.

Forest Service personnel, Dr. Dean Urie, George Irvine, Dr. John Cooley, Terry Richards, Ken Adams, Jim Zilmer, Bill Dunn, Ed Hanson, and Ron Scott for their invaluable cooperation on the study areas.

Dr. Peter Salomon and Dr. John Beaman for toxonomic confirmation of several plant species.

Dr. W. T. Magee and Dr. W. Conley for assistance in analyzing the data.

My wife, Lynn, Mrs. Georgia Benny and Miss Judy Boger for typing various stages of the rough draft.

Professors, fellow students, and others who offered encouragement and advice.

TABLE OF CONTENTS

																		Page
INTR	ODUC	TIC	N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
STUD	Y AR	EA.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	cati cent			+ a +	·	-	Hic		•					• nhu	•	•	•	6 7
Ne.	Cenc		ge	Lat	.101	laı	1112	COL	уа	iiiu	r 117	SIC	gra	piry	•	•	•	,
METH	ods.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
RESU	LTS.	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
Ve	geta	tic	n	Ana	lys	sis	•	•	•	•	•	•	•	•		•		24
Di	seas	e.									•	•	•	•		•	•	31
Wi.	ldli	fe	Ut	ili	zat	ior	١.											32
Nu	ldli trit	ior	nal	De	tei	cmir	ati	ions		•	•	•	•	•	•	•	•	32
DISC	USSI	ON.		•	•	•	•	•	•		•	•	•	•	•	•	•	36
Nu	trit	ior	nal	Va	lue	e of	ΞJι	ınek	err	v E	rui	it 1	for					
	Ruff							•		_		•	•	•			•	36
Nu	trit	ior	nal	Εv	alı	ıati	on	of	Jun	ebe	erry	7 B1	cows	se	•		•	37
	gest																•	39
Ve	geta	tiv	<i>r</i> e	Ana	lys	sis	•	•	•	•	•	•	•	•	•	•	•	40
	Fact	ors	s A	ffe	cti	ing	Rep	orod	luct	ior	ı.		•	•	•			40
(Grow	th	Ch	ara	cte	eris	stic	cs		•				•	•	•	•	41
	Mana																	42
LITE	RATU	IRE	CI	TED).	•	•	•	•	•	•	•	•	•	•	•	•	46
APPE	NDIX											_						52

LIST OF TABLES

Table]	Page
1.	Plot and Line Intercept Sizes and the Vegetative Parameter Sampled by That Corresponding Plot or Line		14
2.	Nutritive Parameters of Juneberry Fruit, Alfalfa Hay, Blackberry, and Blueberry (Dry Basis)		52
3.	Stems Per Acre, Basal Area (BA) and Importance Value (IV) of Trees 1 Inch Diameter Breast Height (DBH) and Greater Found in the 20 Foot x 50 Foot Plots	•	53
4.	Stems Per Acre and Importance Values (IV) of Plants 18 Inches in Height to Less Than 1 Inch Diameter Breast Height (DBH) Found in the 5 Foot x 50 Foot Plots	•	54
5.	The Stems Per Acre and Importance Values (IV) of Plants 1 to 17 Inches in Height Found in the 10 Foot x 3 Foot Plots	•	55
6.	The Relative Importance of Juneberry, Seedlings, Saplings and Mature Clumps, on Each Area	•	56
7.	The Percent of Ground Cover, Composed of Plants 1 Inch or Less in Height Including Grass-Sedge, Determined by Ten Foot Line Intercepts	•	57
8.	Diversity and Similarity Indices of Plant Communities on the Four Study Areas	•	58
9.	Juneberry Fruit Production in 1970 and 1971 .	•	58

Table		Page
10.	Soil Moisture Characteristics of the Top 4 Inches of Soil Found (A) Adjacent to Juneberry Seedlings Compared to (B) Not Adjacent to Juneberry Seedlings	. 59
11.	Growth Characteristics of Juneberry (\underline{A} . laevis) in Northern Lower Michigan	. 60
12.	Frequency of Occurrance of Woody Plants Immediately Associated to Juneberry	. 61
13.	Growth Characteristics of Tree Species Associated With Juneberry	. 62
14.	The Percent of Available Juneberry Twigs Browsed During the Winters of 1971 and 1972 Based on Twig Counts Made in the Latter Part of March Each Year	. 63
15.	Results of Seven Day Feeding Experiment Using 5 Ruffed Grouse Fed Juneberry Fruit	. 63
16.	A Comparison of the Nutrient Parameters of Juneberry Twigs Versus Leaves After Adjusting for Time (Dry Basis)	. 64
17.	A Comparison of the Nutritive Parameters of Juneberry Twigs and Leaves Through Time .	. 65
18.	Significant Correlation Coefficient (*P .05; **P .01) of Juneberry Constitutents and True Dry Matter Digestibility	. 66
19.	Comparisons of Proximate Analyses of Juneberry Fruit and Winter Stems With That of Fruit and Winter Stems of Several Other Browsed Species (Dry Basis)	
20.	Comparisons of Apparent Dry Matter Digestibility of Juneberry With Other Winter Browse Species	. 68
21.	The Species of Woody Plants Found in the Study Areas	. 69
22.	Species of Herbaceous Plants Found in Study	. 70

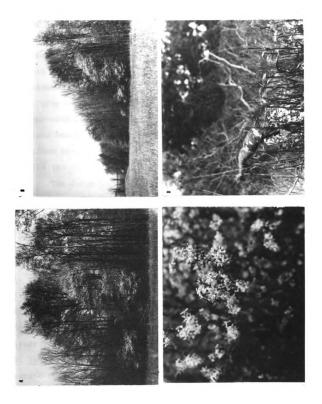
LIST OF FIGURES

Figure		Page
1A & B.	Illustration of Juneberry Aesthetic Characteristics	2
ıc.	Juneberry Flowers	2
1D.	Coppice Growth on Cut Juneberry Stems	2
2.	Diagram of Nested Plot and Line Intercepts Used to Sample Vegetative Parameters	12

INTRODUCTION

The concept of multiple use has, in recent years, become the dominant theme of many state and federal forest management plans. Public forest lands in the Lake States that were managed with minimal regard for interests other than forestry are now being managed under several land priorities including aesthetic and wildlife values.

Management consideration of shrubs and small trees, which have no commercial timber or fiber value, but, have aesthetic and wildlife value, seems imminent.


The objectives of this study are to encourage the inclusion of juneberry in the wildland management plans and considerations of state and federal agencies by determination of: factors affecting juneberry reproduction, growth characteristics, management potential as well as its utilization and nutritional value to some game species.

Juneberry (Amelanchier laevis), a shrub-tree, has aesthetic (Figure 1A and 1B) characteristics at all seasons. In the spring these multistemed plants produce an abundance of fragrant while flowers (Figure 1C). At this time, the associated hardwood trees are without leaves

Illustration of juneberry aesthetic characteristics. Figure 1A & B.

Figure 1D. Coppice growth on cut juneberry stems.

Figure 1C. Juneberry flowers.

and the red-brown leaves of juneberry are only half formed. During much of the summer the red-purple colored sweet and juicy fruit adds color to the landscape. In early autumn the leaf color turns to hues of yellow which contrast with the red and green foliage of its arboreal associates. In all seasons, but perhaps most notably in the winter, its light gray bark with its longitudinal stripes as well as the spreading mushroom-shaped growth form add to the wildland beauty. In addition, juneberry fruit and browse are known to be utilized by wildlife, game and non-game species (Martin, et al., 1951).

The genus Amelanchier includes 24 species distributed in North America, Europe, northern Africa, and eastern Asia (Jones, 1946). Eighteen species are found in North America, at lease one is present in every Canadian provence and each state of the contiguous United States. Seven species are reported in Michigan, A. gaspnesis,

A. sanguinea, A. stolonifera (A. spicata), A. arborea

A. laevis, A. interior, A. bartramiana, of which the first five have been recorded in the lower peninsula (op. cit.). A. laevis was the only species found in my study sites, save for Mio where A. arborea also occurred.

A. laevis and A. arborea hybridize frequently to the extent that it has been suggested that they are merely varieties of a single species (Cruise, 1964). This study considers only A. laevis.

The taxonomy of Amelanchier is complex as evidenced by the work of Wiegand (1912, 1920, 1935), Nielson (1939), Jones (1946), and Cruise (1964). For example, Little (1953) lists 23 botanical names applied to A. utahensis. Much of the confusion results from variations in foliage characteristics which may occur even within the same species for different stages of development and different habitats (Jones, 1964). Many of the species hybridize readily (Sax, 1931; Cruise, 1964), contributing to the magnitude of the species variation. Amelanchier laevis typically occurs as a clump of 7 to 12 stems. The stems within a clump may differ in age. Amelanchier arborea is very similar to A. laevis in appearance though generally smaller. Characters used to differentiate A. laevis from A. arborea were the glabrous ovary summit and adaxial leaf surface, and, near anthesis, the erect stature of the sepals (Cruise, 1964; Beaman pers. comm., 1970).

A. <u>laevis</u> is found primarily in wet to dry upland woods from Newfoundland to Ontario and Minnesota south to Maryland, Indiana, and Iowa and in the mountains to Georgia and Alabama (Gleason and Cronquist, 1963; Sargent, 1949).

STUDY AREA

Location

Field aspects of the study were concentrated in four sites. The sites were selected after considerable reconissance of the northern sections of the Huron-Manistee National Forest as well as discussion with United States Forest Service personnel. These areas, designated as Warfield (T21N-R13W Sec. 11), W-38 (T21N-R11W Sec. 6), Berner (T21N-R12W Sec. 9), and Mio (T25-R4E Sec. 2) are located in Manistee, Wexford, and Oscoda Counties respectively. Each site was a sample from a homogenous area of approximately 100 acres. Warfield, W-38, and Berner fall within the Manistee and Mio in the Huron National Forests. An additional area, chosen for its high deer population and called the Reed Ranch (T27N-R4E Sec. 10), is on privately owned "club country" and is adjacent to the Huron National Forest. For comparative purposes, sites were subjectively selected on the following basis (in order of priority set by the author): first, to represent the observed range in juneberry population density; second, to represent the various plant communities juneberry was observed to be a part of; and third, to represent variations in slope, aspect, drainage and soil observed during the initial reconissance. The areas were subsequently designated as representing "poor" or "good" juneberry areas based (in order of priority set by the author) on juneberry reproduction, relative importance within the plant community and growth characteristics.

Recent Vegetational History and Physiography

Both areas designated as having "poor" juneberry populations, Warfield and W-38, were extensively disturbed by man. Warfield was cut over approximately 8 years prior to this study (Irvine per. comm., 1970) removing commercially valuable trees. Much of the new growth was coppice. On W-38, many large trees, red maple (Acer Rubrum), Beech (Fagus grandifolia), black cherry (Prunus serotina), from 4 to more than 14 inches dbh were killed with silvicide by Forest Service personnel over the last 4 years to release planted red pine (Pinus resinosa) seedlings. The vegetation of the areas designated as having "good" populations of juneberry, Berner and Mio, were virtually undisturbed over the past 40 years. However, the designation of the Mio site by the United States Forest Service as a "juneberry release area" indicates that juneberry was favored when this site was last cutover.

The areas studied were on hilly moraines or outwash plains. Ninety percent of the total area slopes less than

5 degrees. Soil types, identified by R. Larson and S. Holcom of the Soil Conservation Service, are: Warfield: Grayling sand; W-38: Kalkaska sand; and Mio: Chelsea sand and East Lake loamy sand. With one exception, the soils are well drained, acid, and low in fertility and available soil moisture capacity. The Montcalm loamy sand, a somewhat better soil, is described as moderately low in fertility and soil moisture capacity.

METHODS

Each site was divided, using aerial photos, into a grid of consecutively numbered squares, 66 feet on a side. Within each study area samples were taken from squares randomly selected, using a table of random digits.

Two indices used to compare the plant communities examined in this study were diversity and similarity. diversity index, according to Simpson (1947), equals the total number of individual plants times the total number of individual plants minus one divided by the sum of the number of individuals of one plant species times the number of individuals of that same species minus one. For example, consider two communities, each composed of two species and a total of 10 individual plants. community had 9 individuals of one species, 1 individual of the second species and a diversity index of 1.25. second, more diverse, community had 5 individuals from each species and a diversity index of 2.25. The similarity index, according to Sorensen (1948), is two times the number of plant species common to each area divided by the sum of number of species found in the first area plus the number

of species found in the second area. The more species common to both areas the higher the similarity index. New juneberry clumps originate primarily from seed, 5 to 10 per fruit, diseminated by birds and mammals (Jones, 1946; Gleason and Cronquist, 1963; Martin, et al., 1951; U.S. Forest Service, 1948). To determine the amount of fruit produced, more than 40 randomly selected juneberry clumps, an average of 10 clumps per area, were sampled in June of 1970 and 1971. In 1970, the amount of fruit per cubic foot of crown was estimated from the average number of fruits counted within a 6 inch by 6 inch by 12 inch frame at two to four locations around the crown of each sampled clump. In 1971, two to seven foot-square screen fruit traps were placed around each clump sampled. trap was assumed to sample one cubic foot of the crown. Estimates of crown volume were calculated using the formula:

 $V = 3.14 \text{ ab} \div 4 \text{ h} \text{ (Lyon, 1964)}$

were a and b are crown diameters taken at right angles and h is the height of the crown.

Because juneberry stems less than 1 inch in diameter were observed to bear fruit, the juneberry stems per acre in the intermediate strata, 18 inches in height to less than 1 inch dbh, were included along with the larger stems in estimating fruit production. The number of clumps per acre

was calculated by dividing the juneberry stems per acre by the mean number of stems per clump. The mean oven-dry weight per fruit was determined by individually weighing 64 oven-dried fruits collected from each area. produced per acre was then determined by dividing the stems per acre by the number of stems per clump which was then multiplied by the weight of fruit per clump. determine the relative importance of juneberry seedlings within the lower vegetation strata as well as other vegetative parameters, a vegetation analysis was made on each site. An average of 10 nested plots (Figure 2) was used to sample the vegetation on each area. The relative importance of juneberry seedlings, saplings and mature clumps within their respective strata on each area was computed by adjusting the importance value (I.V.) (Curtis and Cottam, 1965) of juneberry found for each strata to a basis of 100.

During the initial reconissance as well as during the vegetation analysis of the selected study areas, it was noted that juneberry seedlings were more likely to be found under the canopy of pole size or larger trees than in open areas regardless of the proximity of large juneberry clumps. This may be due, at least in part, to higher soil moisture in shaded areas. To test this possibility soil samples were taken in pairs, 10 pairs per area, from the top 4 inches. One sample was taken where juneberry

Figure 2. Diagram of nested plot and line intercepts used to sample vegetative parameters. Table 1 gives the parameters measured by each plot and line.

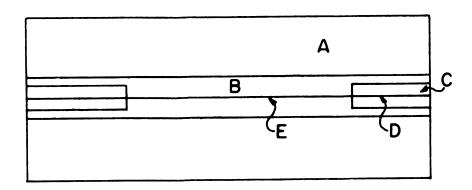


TABLE 1.--Plot and Line Intercept Sizes and the Vegetative Parameter Sampled by That Corresponding Plot or Line.

Plot or Line	Number of Plots or Lines	Size or Plot or Line	Parameter Measured
A	1	20' X 50'	Species composition, stem density and basal area of trees 1" dbh and greater.
В	1	5' X 50'	Species composition and density of plants greater than 18" tall and less than 1" dbh.
С	2	3' X 10'	Species composition and density of plants other than grass or sedge between l" and 18" tall.
D	2	10'	Composition and percent of ground cover.
Е	1	50'	Percent of dominant canopy cover.

seedlings were growing (A) and the second in each pair

(B) from 10 to 20 feet away where no juneberry seedlings

were found. Soil moisture was determined gravimetrically,

as percent of dry weight. Likewise, moisture content at

15 atmospheres (wilting point) and at 100 cm of water

(field capacity) was determined. Student's "t" test was

used to determine if there was a significant difference

within the paired samples.

To determine growth characteristics, 247 juneberry stems, an average of 9 stems per clump and 7 clumps per area, were randomly selected for examination. Stem age, diameter, and growth increment for the preceeding 10 years was determined from basal x-section of the stems or from increment borings. To determine what trees were most frequent immediate associates of juneberry and to compare their growth characteristics similar data were collected for 107 arboreal associates 1 inch dbh and greater. associated trees were located within a radius of 25 feet from the center of the juneberry clumps sampled. The mean number of stems per clump, mean height of individual stems and mean distance from immediately adjacent trees was also determined. General estimates of the range of above ground biomass of juneberry found on these study areas was determined by cutting 9 clumps. Three mature clumps, subjectively chosen as representatives of high, medium, or low standing biomass, were cut from the Manistee areas and subsequently dried and weighed.

To assess potential intensive management value of juneberry on these areas, methods of seed extraction, seed and vegetative propagation, and mature clump rejuvenation were evaluated. The susceptibility of juneberry to disease was also examined.

Ripe juneberry fruit, picked from the crowns of more than 40 trees in July and August, 1970, was collected in double plastic bags and deep frozen to preserve the nutritional value (Mc Donald, 1968). Seeds were extracted, from fresh frozen fruit or from air dried fruit, by maceration in water. Much of the pulp and aborted seeds were washed away by running water through a deep pan containing the macerated fruit. Seeds were then air dried, weighed, stored in a sealed glass jar, and refrigerated at approximately 40°F (U.S. Forest Service, 1948).

In assessing propagation by seed, scarification and site preparation were examined. Seeds were also planted in containers. In July, 1970, 100 freshly collected and unscarified seeds were planted at the Wellston laboratory of the North Central Forest Experiment Station. In April, 1971, at each of the 4 main study areas, two 4 x 8 foot plots were sown with 200 seeds. The 200 seeds were scarified by immersion for 15 minutes in concentrated sulfuric acid (Hilton, et al., 1965). Half of each plot had site preparation in that the sod was broken, soil turned and raked, the seed planted one-half inch below the

soil and then lightly mulched. One hundred seeds were broadcast over the surface of the remaining half plots.

Concurrently 500 seeds were planted in plastic and Br-8 (paper by-product) containers for subsequent transplanting. The planted containers were placed in the experiment station greenhouse or in growth chambers at Michigan State University. More than 100 randomly selected seeds, acid scarified and unscarified, were tested for embryo viability using tetrazolium solution following the procedure described by Cruise (1964).

After initial reconissance and vegetative analysis of all selected areas, where special attention was given to natural reproduction of juneberry, only three instances of vegetative reproduction were noted. All three cases involved layering by twigs when fallen branches forced juneberry stems to the ground. However, some species of Amelanchier have been propagated by hardwood cuttings (Hartmann, et al., 1968; Harris, 1961; and U.S. Forest Service, 1948). Temperate tree species often require a period of physiological dormancy prior to initiation of new growth (Hartmann, et al., 1968). To determine the dormancy requirement of Amelanchier laevis, and thus the optimum time for collecting hardwood twigs to be used for vegetative propagation as well as the practicality of using hardwood cuttings for reproductive purposes, 630 twigs were collected over 7 collection periods between October, 1971, and February, 1972. Samples of ten twigs per clump,

from 3 clumps per area, from the Warfield, W-38, and Berner areas, were made at each collection. Each twig was razor cut below the first node above the most recent bud scale scar. Each cut surface was immersed for 10 seconds in "jiffy grow," a commercial root growth stimulatory hormone, and then placed in a mist chamber under continuous light for at least one month. The twigs were checked weekly for root formation.

To determine the effect of cutting on the vigor and wildlife utilization of juneberry, 55 randomly selected clumps were cut in March of 1971. Half of the clumps were only partially cut, enough to allow the crown to fall to the ground. Stems of the remaining clumps selected were completely severed.

Juneberry clumps on all study areas were examined for the occurrence of disease.

General wildlife utilization was determined by daily field observations and limited live trapping, using juneberry fruit as bait. Evaluation of juneberry use by deer was emphasized because of the availability of practical and reliable techniques as well as the importance of deer as a game species. In March of 1970 and 1971, the percent of available juneberry twigs browsed was estimated. The estimate was made by counting the number of browsed and unbrowsed twigs in a 6 foot high by one foot high section through all juneberry clumps encountered along a line

connecting 10 randomly located points. These lines had an average length of approximately 600 feet. An average of three juneberry clumps were intersected per line. To determine the mean percentage length utilization of juneberry winter browse on each site, regression equations relating twig length and diameter were determined. A total of 826 dormant twigs was collected and analyzed following the procedure described by Basile and Hutchings (1966).

Quality as well as quantity of available food affects most animal population levels, reproductive rates, disease resistance, and mortality rates (Bissel and Strong, 1955; Maynard and Loosli, 1969). Several species of wildlife have been reported to use juneberry as a food (Martin, et al., 1951; Berner, 1967; and Bookhout, 1965). However, in this study only ruffed grouse and deer, major game species in this area, are specifically considered in estimating the nutritive value of juneberry.

In evaluation of the nutritional value of the juneberry fruit, five adult ruffed grouse, 3 females and 2 males that were captured from the wild as chicks and individually caged, were fed fresh frozen juneberry fruit for thirteen consecutive days. The fruit sample fed to the grouse was a composite of equal quantities from the 4 main study areas. During the first 6 days (precollection period) the birds were gradually taken off their previous pelleted diet. Food and water was given ad libitum.

During the 7 day collection period, the grouse were fed at 9 am., and excreta collected at 8:30 am. the following day. A quantity of fruit, equalling the average quantity consumed during the precollection period, was fed each day. Water was supplied ad libitum. After collection and before forced air drying, the excreta were sprinkled with $6N H_2SO_4$ to reduce the loss of ammonia nitrogen. dried excreta, were grouped by bird and were combined for the first 4- and second 3-day portion of the collection The material was ground through a 20 mesh screen in a Wiley mill and sealed in polyethylene bags until analysis. Samples were dried in a vacuum oven at 86°C for 24 hours to determine dry weight. The fruit and excreta were analyzed for nitrogen by semimicro Kjeldahl procedures. A Parr adiabatic bomb calorimeter was used to determine the gross energy content of excreta and fruit. The oven-dry fruit and excreta were assayed for crude fat by extraction with anhydrous diethyl ether in a Goldfisch apparatus. Fruit and excreta were heated in a muffle furnace at 650°C to determine the ash content. The unpaired "t" test (Snedecor, 1956: 98-99), was used for statistical comparisons of digestibility estimates during the 4- or 3-day collection periods.

Many researchers have noted a marked decline of browse utilization by deer in the spring and summer (Drawe, 1968; Healy and Lindzey, 1968; Stiteler and Shaw,

1966; and Korschgen, 1954). Observations made on all areas during the spring and summer of 1970, indicated that deer browsed juneberry infrequently in the spring and summer. However, some species of Amelanchier have been reported as being moderately to heavily utilized (54 percent of diet) by deer during the spring and summer seasons (Carhart, 1944; Bramble and Goddard, 1943; Atwood, 1941; and Dietz, et al., 1958). Blair and Epps (1969) and Short, et al. (1966) believe that the changes in plant chemistry with seasonal change must be considered in deer nutrition. Hence, chemical analyses of juneberry leaves and/or twigs at various times of the year were made.

Twigs (current growth only) and leaves, if present, were collected from the four main study areas in four periods. The dates for sampling were designed to be in periods that were potentially different physiologically and nutritionally. The first period, June, represented a time of rapid growth. The second period, the last half of July, was assumed to be a time of maximum production of photosynthate, the third period, mid-August to mid-September, represented a decline in physiological activity as the plants neared dormancy. The final sampling time, December-January, represented the dormant period.

The samples included at least two twigs from the 4 major quadrants of each randomly selected clump. A minimum of 10 clumps were sampled from each area at each

time (Swank, 1956). Each sample was sealed in a polyethylene bag and frozen the same day it was collected. The samples were forced air-dried at approximately 35°C until brittle, then ground through a size 20 mesh in a Wiley mill and rebagged until analyzed. The leaves and twigs were analyzed for crude protein, ether extract and ash by the same standard procedures (Horwitz, 1969) used in the ruffed grouse experiment. Again, gross energy was determined by bomb calorimetry. Cell wall constituents (NDF = neutral-detergent fiber), lignocellulose (ADF = acid-detergent fiber), and crude lignin (acid-detergent lignin) were determined by procedures outlined by Van Soest (Goering and Van Soest, 1970). Hemicellulose was calculated as cell wall constituents minus acid-detergent fiber. Cellulose was calculated as acid-detergent fiber minus The content of silica, determined for winter crude lignin. twigs only, was less than 2 percent. Therefore, its effect on digestibility was considered negligible (Van Soest and Jones, 1968) and subsequent samples were not analyzed for silica.

Bissel and Strong (1955) and Short (1966) suggest that chemical content of a forage may not be closely related to its nutritional value and that digestibility should be determined for more accurate forage evaluation.

Van Soest, et al. (1966), Johnson (1963, 1966), Pearson (1970), and others have reported the similarity in digestibility determinations made by in vivo and in vitro methods.

Grimes (1965), Cowan, et al. (1970), and Longrie (1970) have demonstrated the similarities in digestion, in vivo and in vitro, of sheep and deer. Hence, in vitro true dry matter digestibility of juneberry fruit and leaves and/or stems collected at several times of the year was determined using both sheep and deer inoculum. The in vitro method used followed the procedure presented by Van Soest (Goering and Van Soest, 1970) with slight modification (CO2 was continuously bubbled into the fermentation flasks and no manometer was used). Because of the quantity of material required for the complete proximate and digestibility analyses, the samples from the different study areas were composited and comparisons were made only between time periods and between twigs and leaves. For approximately one week prior to sampling the inoculum, the rumen fistulated deer and sheep, used as sources, were gradually placed on a relatively high fiber diet, alfalfa hay (Table 2) for the sheep and commercially prepared alfalfa pellets mixed with a specially formulated "stock" diet (Ullrey, 1971) for the deer. Because of missing values in some of the parameters measured, a least squares analysis for unequal sub-class numbers and an unequal one-way analysis of variance was used to statistically evluate the data.

RESULTS

Vegetation Analysis

The overstory, composed of trees 1 inch dbh and greater, of the first "poor" area (Warfield) was dominated, based on importance value (I.V.) (Curtis and Cottam, 1965), by short, scrubby appearing white oak (Quercus alba) and red oak (Q. borealis) (Table 3). The trees on this flat area were short and scrubby appearing, as might be expected on Grayling sand, the poorest soil occurring on the sites examined. This particular soil, though not the poorest gradation of Grayling sand, is representative of large areas of Northern Michigan (Gysel, et al., 1972). sparse (3,834 stems per acre) intermediate strata, 18 inches in height to less than 1 inch dbh, was dominated by black cherry (Prunus seretina) (Table 4). The low strata, plants 1 inch to 17 inches in height excluding grasses and sedges, had bracken fern (Pteridium aqualinum) and sheep sorrel (Rumex acetocella) as major constituents (Table 5). The relative importance value, maximum value of 100 for each strata, for juneberry was 11 in the overstory, 10 in the intermediate strata and a mere 2 in the low (seedling) strata (Table 6). A high percent of grass-sedge ground

cover (65) was found along with low overstory crown cover (15 percent) and low basal area (stocking), 33 square feet per acre (Tables 3 and 7). This first "poor" juneberry area (Warfield) had the lowest diversity index, 4.4 (Table 8) which suggests that the community was in relatively early succession (Odum, 1969), Its highest similarity index was calculated when compared with a "good" juneberry site (Mio), 0.54 (Table 8). This indicated that the species composition of Warfield was most like that found at Mio. The overstory species composition of the second "poor" juneberry site (W-38) reflects the better soil, Kalkaska sand, found on this gently sloping The higher soil quality was also reflected in the area. relatively large size of the major constituents of the overstory, sugar maple (Acer saccharum), black cherry, and beech (Fagus grandifolia). That this "poor" site had the lowest overstory canopy cover (10 percent) and low basal area (40 square feet per acre) accounts in part for the domination of the intermediate strata by bracken fern. Hawkweed (Hieracium spp.), sheep sorrel and black cherry seedlings dominated the low vegetative strata. Juneberry had relative importance values of 0, 6, and 2 for the overstory, intermediate and low strata respectively. ductive success was reflected by the relative importance value of juneberry in the low (seedling) strata. ductive success also was consistantly reflected by the

percent of overstory canopy cover. As in the first "poor" juneberry site (Warfield) reproductive success was relatively low. The ground cover was almost exclusively litter (83 percent) which was composed primarily of dead plant material. This second "poor" site (W-38) had the second lowest diversity index, 5.0, again suggesting that plants in this area represent a relatively early successional stage. This "poor" site (W-38) had its highest similarity index value (0.68) when compared with one "good" juneberry site (Berner) which suggested that the areas were representatives of different points along a successional continuum.

The best soil examined, Montcalm loamy sand, was found on the first "good" juneberry site (Berner). This area had an interspersion of flat and gently rolling topography due in part to a small creek meandering through the site. The most important trees on this area were sugar maple, black cherry, aspen (Populus tremuloides and P. gradidentata) and juneberry. The percent of overstory canopy cover (31) as well as the basal area, 89 square feet per care, was more than twice that found on the "poor" juneberry sites. Litter, usually most common under a more closed canopy, was the principal (54 percent) component of the ground cover. However, the interspersion of the forest with natural openings on this "good" site was evident by the species composition of the intermediate

and low strata. Blackberry (<u>Rubus allegeniensis</u>), bracken fern, and golden rod (<u>Solidago spp.</u>) dominated the intermediate strata. The main constituents of the low strata were hawkweed, sheep sorrel, and blackberry. Compared to the previously discussed sites, the relative importance values of juneberry, 14, 7, 6 for the overstory, intermediate and low (seedlings) strate respectively, were high. Juneberry reproduction, over eleven thousand seedlings per acre, was the greatest recorded for all areas studied. This "good" juneberry site (Berner) also had the highest diversity index, 8.0. Therefore, the vegetation represented a relatively high successional stage.

The vegetation of the second "good" juneberry site (Mio), having a diversity index of 7.1, was also relatively high successionally and was most similar 0.63, to the first "good" area (Berner). The similarity of the two "good" areas was further reflected by species composing, in equal importance, the overstory, aspen, black cherry and juneberry. This area, which included part of the shoreline of the shallow Hughes Lake, was hilly, having slopes ranging from 3 to 20 percent. Terrain ranged from dry-upland, with Chelsea sand, to moist lowland, with East Lake loamy sand. Although this "good" site (Mio) had the highest percent of overstory canopy cover (70) and basal area (179 square feet per acre), the abundance of natural

openings (most of which could be termed "frost pockets") as well as the characteristic openness of aspen crown (permitting light penetration) accounted for the dominance of bracken fern and blackberry in the intermediate strata. The low strata had wintergreen (Gautheria procumbus), blueberry (Vaccinium angustifolium), red maple (Acer rubrum) and blackberry as the most important components. As on all previously discussed sites (except W-38), the relative importance of juneberry in the plant community increased from the low to high vegetative strata. Two comparatively extreme relative importance values, the highest for the overstory, 25, and the lowest for the intermediate strata, 5, were reported for juneberry on this second "good" site (Mio). The comparatively high importance value for juneberry in the low (seedling) strata, 5, indicated that conditions were favorable for reproduction.

All sites produced several times more fruit in 1970 compared to 1971 (Table 9). The "poor" sites (Warfield and W-38) produced the smallest quantity (oven-dry) of fruit (Table 9). The three sites having the relatively higher quality soil, W-38, Berner, and Mio, produced the most fruit. The soil on these same sites had significantly (0.05 level) more moisture when located under overstory canopy cover, associated with juneberry seedlings (soil sample A), than the same soil type located in adjacent open areas (soil sample B) (Table 10). As might be

expected, due to the soil types being the same, no significent differences were found within the paired samples from any area for "wilting point" or "carrying capacity."

The "poor" juneberry areas (Warfield and W-38) had the lowest mean age, 31 years for both sites (Table 11). The mean age of juneberry on the "good" sites (Berner and Mio) was 35 and 36 years respectively. The maximum age of a juneberry stem (57 years) was found on the "good" site, Berner, which had the best soil. Considering all sites, the largest maximum age difference between stems of the same clump was 30 years, with a mean maximum age difference of 16 years. Again considering juneberry from all sites, the mean number of stems per clump ranged from 7 to 10, the mean diameter ranged from 2.3 to 4.1 inches, and the mean growth increment for the last 10 years ranged from 0.24 to 0.69 centimeters (Table 11). The first "poor" site (Warfield) had the lowest mean diameter (1.8 inches) and height (13.6 feet), reflecting its low quality soil (Grayling sand). The higher quality soil was reflected by the average mean stem height (27.7 feet) of juneberry on the W-38, Berner, and Mio sites (Table 11).

The most common trees immediately associated with juneberry, in descending order of percent frequency, were by area: black cherry, red maple, red oak, and aspen for Mio; sugar maple and black cherry for Berner; aspen, black cherry and beech for W-38; and white oak for Warfield

(Table 12). The mean values for age, diameter, 10 year growth increment and distance from center of juneberry clump varied little (Table 13) from the respective composite values of 34 years, 4.6 inches, 0.66 centimeters and 13.6 feet. The composite mean age of juneberry did not differ significantly from that of their immediate arboreal associates. However, the composite mean diameter of juneberry associated was significantly (0.05 level) greater than that of juneberry. The oven-dry above ground biomass of single clumps varied considerably from area to area at the "high" end of the range: Warfield 26 pounds, W-38 199 pounds, and Berner 651 pounds. The "medium" or average clump weights varied little between the two "poor" juneberry sites, Warfield 12 pounds, and W-38 18 pounds, which averaged less than half the weight found on the "good" site, Berner 40 pounds. There was essentially no difference between the areas, Warfield 6 pounds, W-38 9 pounds, and Berner 7 pounds, when comparing the "low" end of the range of clump weights sampled.

There was no area difference to consider in evaluating methods specifically designed for management applications. Of the two seed extraction procedures used, the procedure which included drying fruit prior to maceration decreased, by approximately one-four, the time required to separate apparently viable seeds from pulp and aborted seeds. Five percent of the unfrozen seed planted

at the experiment station germinated by May, 1971. As of November, 1971, no germination of any of the seed taken from the deep frozen fruit germinated. Seed viability tests were completely negative.

A total of 6, less than 1 percent, of the hardwood cuttings formed roots. Rooting occurred from 3 to 6 weeks after being placed under mist. At least one twig from each area sampled and from the first and last collection period rooted.

In the growing season following cutting, all cut clumps produced coppice growth (Figure 1D). The crowns of the stems that were only partially cut continued to grow, producing leaves, new twigs and fruit.

Disease

Although several species of Gymnosporangium rusts (Arthur, 1962) as well as fire blight (Westcott, 1960) have juneberry as a preferred host only leaf blight, caused by Fabraea maculata, and witches broom caused by Apiosporina collinsii (Hepting, 1971), were noted on the main study areas as well as the Reed Ranch site. Presumably these diseases are not fatal to the host (Kennedy and Stewart, 1967; Westcott, 1960), however, the few dead clumps or dead or apparently dying stems found were infected with the witches broom disease.

Wildlife Utilization

Deer, ruffed grouse, flying squirrel (Glaucomys volans) cedar waxwing (Anthus spragueii), and robin (Turdus migratorius) were species observed feeding on juneberry. The percent of available juneberry twigs browsed by deer increased from 1971 to 1972 (Table 14), on Warfield, 28 to 33 percent, on W-38, 14 to 16 percent, on Mio, 12 to 41 percent and on the Reed Ranch, 65 to 80 percent. Only the Berner area decreased from 1971, 19 percent to 1972, 11 percent. The mean percent of current twig utilized by deer, 76 (Warfield), 73 (W-38), 77 (Berner), and 77 (Mio) varied little from area to area.

Nutritional Determinations

Analysis of juneberry fruit resulted in the following mean values (oven-dry basis) for crude protein (crude protein equals 6.25 x Kjeldahl nitrogen) (5.1 percent), crude fat (3.5 percent), total ash (2.8 percent), and gross energy (4.19 kcal/g) (Table 2). Juneberry fruit averaged 24.8 percent dry matter (oven-dry basis). The juneberry fruit analyzed was sampled from the fruit used in the following feeding trials. Analysis of the first 4 days of ruffed grouse excreta resulted in the following mean values (oven-dry basis) for crude protein (15.8 percent), crude fat (3.1 percent), total ash (10.4 percent), and gross energy (3.23 kcal/g). The daily mean weight of dry matter consumed and dry matter excreted per bird for

the first 4 days of the 7 day grouse feeding trial were 18.9 g and 5.9 g respectively. The mean value for apparent metabilizability of dry matter, (dry matter consumed - dry matter excreted) ÷ dry matter consumed x 100, was 68.8 percent for the first 4 days of the collection period. The mean value for metabilizable energy, (gross energy consumed - gross energy excreted) ÷ gross energy consumed x 100, for the first 4 days of collection was 72.0 percent of gross energy. No significant (P<.05) difference was found between the results obtained on the last 3 day collection or with the total 7 day collection (Table 16).

Specific analysis of juneberry fruit as compared to juneberry twigs or leaves resulted in low percent composition values of NDF (neutral-detergent fiber = cell wall constituents), ADF (acid detergent fiber = lignocellulose), hemicellulose, cellulose, and crude lignin (Table 2). Similar analysis of juneberry twigs and leaves, after adjusting for time, resulted in twigs being significantly (P<.0005) higher than leaves in percent composition of NDF, ADF, cellulose and crude lignin (Table 16). Leaves were significantly (P<.0005) higher in percent composition of crude protein (Table 16). However, twigs and leaves did not differ significantly in their percent composition of hemicellulose.

The crude protein composition (dry basis) of twigs increased significantly (P<.024) from the first time

period (June, 6.3 percent) to the fourth period (Nov.-Jan., 7.6 percent) (Table 18). Crude lignin composition of twigs decreased significantly (P<.002) from the first (15.0 percent) to the fourth (11.0 percent) time period. Crude lignin also showed a significant (P<.022) change with time in leaves. However, crude lignin composition of leaves increased from the first, 12.0 percent, to the third (Aug., 16.5 percent) time period. Crude fat composition of leaves increased significantly (P<.003) from the first (4.1 percent) to the third (6.0 percent) period. Crude fat, total ash and gross energy values for dormant twigs were 4.6 percent, 3.9 percent, and 4.40 kcal/q, respectively.

After adjusting for time, the mean in vitro true dry matter digestibility of leaves (64.8 percent for sheep or 58.4 percent for deer) was significantly (P<.0005) greater than the digestibility of twigs (50.1 percent for sheep or 46.5 percent for deer), regardless of inoculum source (Table 17). The mean true dry matter digestibility (deer) of twigs increased significantly (P<.05) from 42.5 to 46.8 percent with maturity (Table 17).

Significant (P<.05* or P<.01**) positive correlations (Table 18) were found for twig and leaf combined, after adjusting for time, between NDF and cellulose**, between NDF and ADF**, between ADF and cellulose** and between percent composition of protein and in vitro true

dry matter digestibility (sheep inoculum). Significant negative correlations were found for twig and leaf combined, after adjusting for time, between percent concentration of NDF and digestibility**, between NDF and crude protein**, between NDF and hemicellulose*, between crude lignin and crude protein**, between cellulose and crude protein**, between cellulose and crude protein**, and between hemicellulose and cellulose*.

Simple positive correlation** was found between the percent composition of ADF with cellulose composition within twigs. Simple negative correlations, within twigs, were found between NDF composition and digestibility**, between ADF and digestibility*, between ADF and hemicellulose**, between crude lignin and crude protein*, between crude lignin and cellulose**, and between hemicellulose and cellulose**.

Significant positive correlations were found within leaves, between composition of NDF and hemicellulose* and between ADF and crude lignin**. Significant negative correlations were found between percent composition of NDF and digestibility*, between ADF and digestibility**, between ADF and crude lignin with crude protein**.

DISCUSSION

The percent of available twigs browsed and the high percent of twig length utilized (Table 14) support the ranking of juneberry as an intermediate preference winter deer browse (Dahlberg and Guetinger, 1965). Two (deer and grouse) of the nine game species and three of the 32 nongame species of birds and mammals of the Great Lakes region reported to use juneberry (Martin, et al., 1951, Berner; 1969; Bookout, 1965) were actually observed doing so. There was a general increase in percent of available twigs browsed from 1971 to 1972.

Nutritional Value of Juneberry Fruit for Ruffed Grouse

Compared with some other ruffed grouse foods, black cherry and blueberry fruit (Bump, et al., 1947), juneberry fruit would rank as an intermediate based on percent composition of protein, fat and ash (Table 2). Inman (1971), feeding grouse a diet (a) similar in cellulose composition (9.6 percent) to juneberry fruit (10.2 percent), found metabolizability of dry matter to be 57.9 ± 1.6 percent. Juneberry fruit's dry matter metabolizability was

higher, 68.8 percent, which suggests, along with juneberry fruit's high percent of metabolizable energy (72.2 percent of gross energy), that juneberry fruit were high quality grouse food.

Only 4 of the 7 collection days were needed for the results obtained from the ruffed grouse feeding trial. The shortened collection period, if adequate for other foodstuffs would considerably reduce the amount of laborious food collection time in the field as well as the total laboratory analysis time.

Nutritional Evaluation of Juneberry Browse

The seasonal changes in nutritive composition of twigs and leaves seem very important for accurately evaluating juneberry as a deer food. The protein requirement for growth of fawns (weaned in September) is probably 12 to 17 percent (Ullrey, et al., 1967; Magruder, et al., 1957; and French, et al., 1955), and juneberry is highest in protein in spring and early summer. This period (spring and early summer) is also one of high protein demand for late gestation and for lactation. To the extent that juneberry is consumed by the nursing fawn, it would help to meet its requirements for growth. Later in the season (winter) when the protein requirement is less (approximately 7 percent of food composition needed for adult maintenance), juneberry twigs had their maximum

percent protein content (7.6). Twigs and leaves had a significant (P<.002 and P<.022 respectively) seasonal change in percent crude lignin composition (Table 17). Percent composition of crude lignin, considered to be virtually indigestible and therefore, a good indicator of the relative digestibility of forages (Fonnesbeck, 1969), decreased with twig maturity. This suggests that twig digestibility, as related to crude lignin composition would be greatest when deer utilization, in these areas, was greatest. Because of the variation due to analytical methods used, and differences in site, genotype and age, it was difficult to make meaningful comparisons of these proximate analysis data with those of others. However, it could be informative to compare winter browse and fruit nutrition parameters of several browse species, including the highly preferred (Dahlberg and Guettinger, 1956) northern white cedar (Thuja occidentalis), big tooth aspen, hybrid sumac (Rhus typhina glabra) an earlier analysis of A. laevis (Davenport, 1937), as well as an analysis of a frequently browsed western species of juneberry (A. alnifolia) (Table 19). The protein contents of A. laevis and white cedar were very similar, however, A. laevis was consistantly higher in percent protein than many other browse species (Smith, 1952; Ullrey, et al., 1967, 1968, 1971,; Smith, 1970; Short and Harrell, 1969; and Blair and Epps, 1969). Of the species compared, juneberry fruit

A. <u>laevis</u> ranked intermediate, behind hybrid sumac, in percent ash (important in deer skeletal and antler development). From these comparisons alone, <u>A. laevis</u> could be considered nutritionally important to deer.

Digestibility

Determination of forage digestibility is probably one of the most meaningful methods of evaluating a deer The values found for in vitro true dry matter food. digestibility of juneberry are best interpreted when related to dry matter digestibilities reported for other woody plants providing critical winter browse. Apparent dry matter digestibility, which includes consideration of metabolic fecal losses, was the most frequently found form for presenting digestibility data. Corrections of in vitro true dry matter digestibility for metabolic fecal losses were made using the procedure presented by Goering and Van Soest (1970). Based on comparison of in vitro apparent dry matter digestibility with in vivo apparent dry matter digestibility (Table 20), juneberry winter twigs were slightly less digestible than sprays of northern white cedar and cedar-aspen mixtures (Ullrey, et al., 1971). Juneberry twigs were at the high end of the range of apparent dry matter digestibility determined by Ullrey, et al. (1967, 1968) for balsam fir (Abies balsama) and jack pine (Pinus banksianus). Juneberry

digestibility values would fall between those found for white cedar, a highly preferred and nutritious deer browse, and balsam fir, often considered an emergency low quality food. An intermediate ranking of A. laevis as a deer browse seems appropriate on the basis of nutrient composition and dry matter digestibility as well as preference.

Based on the simple correlations between juneberry chemical constituents and dry matter digestibility (Table 18) the ratio of ADF and NDF (negatively related with in vitro dry matter digestibility) to crude protein (positively related to in vitro digestibility) may provide a useful browse digestibility index.

Vegetative Analysis

Factors Affecting Reproduction

The "good" juneberry sites (Berner and Mio) had relatively high reproductive success, demonstrated by the comparatively high relative importance value of juneberry seedlings in the low strata of vegetation. Consistantly occurring with this desirable level of reproduction was relatively high percent overstory canopy cover, stocking (i.e., basal area per acre), fruit production (i.e., seed production) and diversity index value (i.e., stage of succession). As reported for the frequent immediate associate of juneberry, black cherry, as well

as other species of juneberry (U.S. Forest Service, 1948, 1965) shade or canopy cover enhanced the reproductive success of A. laevis. The significantly higher level of moisture found in the soil located under canopys and adjacent to juneberry seedlings compared with moisture in the soil located in adjacent openings also suggests a positive relationship of shade and juneberry reproductive success. The shade reduces incident solar radiation and reduces air movement, therefore, reduces evaporation of soil moisture. It seemed likely that along with these other factors, competition, specifically from the grassessedges, reduced reproductive success, at least on the first "poor" site (Warfield). Controlled experiments designed to specifically evaluate the effect of competition (e.q., site preparation) and seed coat scarification on reproductive success were not successful.

Growth Characteristics

In general juneberry growth characteristics did not demonstrate a consistent trend between "poor" or "good" sites. However, only on a site having a very poor soil, e.g., Grayling sand on the Warfield area, would mature juneberry stems (30 years) have a mean height of 14 feet. Juneberry, A. laevis, clumps occurring in northern Michigan, or in other locations of similar environment, (assuming the objective of selecting representative areas was met) could be expected to closely approach the

following characteristics. The "typical" mature juneberry clump would have 7 to 12 stems, maximum age difference between stems of 16 years, mean stem age of 34 years, mean diameter of 3 inches, a height of 27 feet and would be codominant with the trees most closely associated with it. With the same assumptions, immediate arboreal associates of juneberry would most frequently be black cherry or aspen, would be approximately the same age as the juneberry clump and would be 5 inches in diameter (i.e., grow more rapidly than a juneberry stem). It can be concluded, perhaps more meaningfully, that a 34 year old juneberry stem greater than 4 inches in diameter would be growing on a "good" juneberry site. Likewise, a "medium" or average juneberry clump having a mean stem age of 38 years and an above ground biomass (oven-dry) of 40 pounds or more, would indicate a "good" juneberry site. Although juneberry was a codominate with its immediate arboreal associates, it was noted that when a mature or sapling size juneberry was under a closed canopy, it appeared to have little vigor, produce little or no fruit and have very short current twig growth.

Management Recommendations

To wisely manage juneberry or any species its position within the ecosystem should be clear. Junberry as well as most trees immediately adjacent to it are

secondary species in the main climax communities (beech-maple, oak, and aspen).

Development of juneberry in the forest (beechmaple, oak, aspen) stands started with the establishment of
seedlings. Reproduction was mainly from seed which
germinated and developed most successfully in shaded
areas. These shaded sites had more available moisture near
the surface and less competition for that moisture from
intolerent species of grass-sedge. Juneberry (seedlings)
are tolerant of shading. During the sapling stage juneberry had an apparent reduction in shade tolerance and an
increase in light as well as space requirement. Dense
stands of saplings are a rarity. At maturity or the shrubsmall tree stage, juneberry grew most vigorously and had
maximum multistem development in open areas. Relatively
uncommon single or few stem development occurred in closed
stands.

In communities associated with beech-maple, oak and aspen juneberry reproduction developed well under shaded conditions. Mature vigorous clumps were most common in openings and in the "ecotone" with relatively few within the closed forest stand.

Juneberry would be a desirable component of any stand due to its aesthetic contribution alone. The amount of browse produced by juneberry is generally small, 1 to 10 pounds per acre in the study areas; however, the protein

content is relatively high during the winter. Juneberry fruit is heavily used by numerous species of wildlife (game and non-game). Its relatively high metabolizability by grouse and digestibility by deer (<u>in vitro</u>) indicate that juneberry fruit is a high quality food.

Including juneberry in management plans would ensure the maintenance of special characteristics (especially aesthic) in communities that would otherwise be essentially homogenous in composition. Recognizing the value of the wide distribution of juneberry, management would primarily involve taking special precautions to protect some seedlings and advanced reproduction as well as partial cutting of low These considerations could be part of the vigor clumps. silvicultural treatment of the forest stands. Juneberry could also be maintained in natural openings along with other desirable wildlife food species (black cherry, sumac, and blackberry). In "club" areas where deer are above carrying capacity (populations as high as 100 deer per square mile) (Gysel, pers. comm., 1970), and juneberry rarely developes past the small seedling stage, reduction of the deer population to the carrying capacity would be the first step in management.

Only in special cases on small areas where site conditions are ideal and the wildlife or aesthetic benefits warranted should planting of juneberry (seed) be considered. Of the procedures used, the air-drying of ripe fruit prior

to maceration was the most efficient seed extration method. However, it seems practical, economical and "natrual" to simply use the entire dried fruit, though not evaluated in this study, as the possible "best" means of seed propagation as suggested by the United States Forest Service (1948). Whatever method used for seed propagation, tests of embryo viability should be performed prior to seeding. Too few hardwood twigs produced roots to justify any estimates of dormancy period, or to support the use of hardwood cuttings as a practical method of vegetative reproduction of A. Laevis, at least by the techniques used. Including juneberry management methods with economic management of dominant trees would result in desirable aesthetic and wildlife benefits.

LITERATURE CITED

- Arthur, J. C. 1962. Manual of the rusts in the United States and Canada. Hafner Pub. Co., New York. 438 pp.
- Atwood, E. L. 1941. White-tailed deer foods of the United States. J. Wildl. Mgmt. 5:314.
- Basile, J. V., and S. S. Hutchings. 1966. Twig diameter-length-weight relations of bitterbrush. J. Range Mgmt. 19(1):34-38.
- Beaman, J. 1970. Personal Comm. Systematic Botanist, Dept. of Botany and Plant Pathology, Michigan State Univ. East Lansing, Mich.
- Berner, A. 1969. Habitat analysis and management considerations for ruffed grouse on a multiple use area in Michigan. Ph.D. thesis, Michigan State Univ., East Lansing.
- Bissel, H. D., and H. Strong. 1955. The crude protein variations in the browse diets of California deer. Calif. Fish. and Game, 41(2):145-155.
- Blair, R. M., and E. A. Epps, Jr. 1969. Seasonal distribution of nutrients in plants of seven browse species in Louisana. South. Forest Exp. Sta., New Orleans, La. 35 pp. (USDA Forest Serv. Res. Pop. S0-51).
- Bookhout, T. A. 1965. The Snowshoe hare in upper Michigan: its biology and feeding coactions with white-tailed deer. Mich. Dept. Cons. Res. and Devel. Rept. No. 38, 191 pp.
- Bramble, W. C., and M. K. Goddard. 1943. Seasonal browsing of woody plants by white-tailed deer in the bear oak forest type. J. Forestry, 41:471.

- Bump, G., R. W. Darrow, F. C. Edminister, and W. F. Crissey. 1947. The ruffed grouse. New York State Cons. Dept. 915 pp.
- Cowan, R. L., J. S. Jordan, J. L. Grimes, and J. D. Gill. 1970. Comparative nutritive values of forage species. In Range and Wildlife habitat evaluation. USDA Misc. Pub. 1147.
- Cruise, J. E. 1964. Studies of natural hydrids in Amelanchier. Can. J. of Bot. 42:651-663.
- Curtis, J. T., and G. Cottam. 1965. Plant ecology workbook. Burgess Pub. Co., Minneapolis, Minn. 193 pp.
- Dahlberg, B. L., and R. C. Guettinger. 1956. The whitetailed deer in Wisconsin. Tech. Bull. No. 14. Wis Cons. Dept., 282 pp.
- Davenport, L. A. 1937. Unpublished data courtesy of Michigan Dept. of Natural Resources.
- Dietz, D. R., R. H. Udall, H. R. Shepherd, and L. E. Yeager. 1958. Seasonal progression in chemical content of five key browse species in Colorado. Proc. Soc. Am. Foresters, pp. 117-122.
- Drawe, D. L. 1968. Mid-summer diet of deer on the Welder Wildlife Refuge. J. Range Mgmt. 21(3):164-166.
- Einarsen, A. S. 1946. Crude protein determination of deer food as an applied wildlife management technique. Trans. N. Amer. Wildl. Conf. 11: 309-312.
- Fonnesbeck, P. V. 1969. Partitioning the nutrients of forages for horses. J. Anim. Sci. 28(5):624-633.
- French, C. E., L. C. McEwen, N. D. Magruder, and others. 1955. Nutritional requirements of white-tailed deer for growth and antler development. Penn. Agr. Exp. Sta. Bull. 600, 50 pp.
- Gleason, H. A., and A. Cronquist. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. D. Van Nostrand Co., Princeton, N.J. 810 pp.
- Goering, H. K., and P. J. Van Soest. 1970. Forage fiber analyses (apparatur, reagents, procedures and some applications). USDA Handb. No. 379, 20 pp.

- Grimes, J. L. 1968. Nutritive evaluation of various deer foods. I. Effect of plant species, plant morphology, and season. II. Comparison of sheep and deer as experimental animals. M.S. thesis. Penn. State Univ., Univ. Park. 97 pp.
- Gysel, L. W., J. H. Cooley, and F. Stearns. 1972. Timber and wildlife implications of pine conversion methods on poor oak sites. J. Forestry. 70(5); 1-3.
- Harris, R. E. 1961. The vegetative propagation of Amelanchier alnifolia. Can. J. Plant Sci. 41:728-731.
- Hartmann, H. T., and D. E. Kester. 1968. Plant propagation, principles and practices. 2nd Ed., Prentice-Hall Inc., Englewood Cliffs, N.J., 702 pp.
- Healy, W. M., and J. S. Lindzey. 1968. Forage preferences of captive deer while free ranging in the Allegheny National Forest. In Research Briefs, Pa. State Univ. Univ. Park. 20 pp.
- Hepting, G. H. 1971. Diseases of forest and shade trees of the United States. USDS Forest Service.

 Agriculture Handb. 386, 658 pp.
- Hilton, R. J., A. S. Jaswal, B. S. E. Teskey, and B. Barabos. 1965. Rest period studies on seeds of Amelanchier, Prunus, and Sorbus. Can. J. Plant Sci. 45(1):79-85.
- Horwitz, W. (ed.) 1969. Official methods of analysis of the association of agricultural chemists. 10th ed. Association of Official Agricultural Chemists, Washington, D.C. 957 pp.
- Inman, D. L. 1971. ⁵¹C_rCl₃ mobility and cellulose digestion in three gallinaceous species. Ph.D. thesis. Mich. State Univ. 41 pp.
- Irvine, G. W. 1970. Wildlife biologist for Huron-Manistee National Forest.
- Johnson, R. R. 1963. Symposium on microbial digestion in ruminants: in vitro rumen fermentation techniques.

 J. Anim. Sci. 22:792-800.
- and in vivo rumen studies. J. Anim. Sci. 25: 855-875.

- Jones, G. N. 1946. American species of Amelanchier.
 Illinois Biol. Monographs, 20, No. 2. Urbana,
 Illinois.
- Kennedy, L. L., and A. W. Stewart. 1967. Development and taxonomy of <u>Apiosporina collinsii</u>. Can. J. Bot. 45:1597-1604.
- Little, E. L., Jr. 1953. Checklist of native and naturalized trees of the United States (including Alaska). USDA Handb. 41,472 pp.
- Longrie, D. P. 1970. Techniques for identifying rumen material from deer. M.S. thesis, Michigan State Univ., East Lansing.
- Lyon, L. J. 1970. Length and weight-diameter relations of serviceberry twigs. J. Wild. Mgmt. 34(2):456-460.
- Magruder, M. D., C. E. French, L. C. Mc Ewen, and R. W. Swift. 1957. Nutritional requirements of white-tailed deer for growth and antler development. II. Experimental results of the third year. Penn. Agr. Exp. Sta. Bull. 628, 21 pp.
- Martin, A. C., H. S. Zim, and A. L. Nelson. 1951. American wildlife and plants. McGraw-Hill Book Co., New York, 500 pp.
- Maynard, L. A., and J. K. Loosli. 1969. Animal nutrition. 6th ed. McGraw-Hill Book Co., New York, 613 pp.
- Mc Donald, I. W. 1968. The nutrition of grazing ruminants. Nutri. Abs. and Rev. 38(2):381-400.
- Nielsen, E. L. 1939. A taxonomic study of the genus

 Amelanchier in Minnesota. Am. Midland Naturalist,

 22:160-208.
- Odum, E. P. 1969. The strategy of ecosystem development. Science. 164:3877 pp. 262-270.
- Pearson, H. A. 1970. Digestibility trials: in vitro techniques in range and wildlife habitat evaluation. USDA Misc. Pub. 1147.
- Sargent, C. S. 1949. Manual of the trees of North America, Volume one. Dover Publications, Inc. New York. 433 pp.

- Sax, K. 1931. The origin and relationships of the Pomoideae. J. Arnold Arboretum, 12:3-22.
- Short, H. L., and A. Harrell. 1969. Nutrient analysis of two browse species. J. Range Mgmt. 22(1):40-43.
- nutrients in mule deer browse plants. Ecology. 47:222-229.
- Simpson, E. H. 1949. Measurement of Diversity. Nature. 163:688.
- Smith, A. D. 1952. Digestibility of some native forages for mule deer. J. Wildl. Mgmt. 16:309.
- Smith, H. K. 1970. The biology, wildlife use and management of sumac in the lower peninsula of Michigan. Ph.D. thesis, Michigan State Univ., East Lansing.
- Snedecor, G. W. 1956. Statistical methods applied to experiments in agriculture and biology. 5th ed. The Iows State College Press, Ames. 534 pp.
- Sorenson, T. 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. K. Danske Vidensk. Selsk., 5:1-34.
- Stiteler, W. M., Jr., and S. P. Shaw. 1966. Use of woody browse by white-tail deer in heavily forested area of northeastern United States. Thirth-first N. Am. Wildl. and Nat. Res. Conf. Trans. 1966:205-212.
- Swank, W. G. 1956. Protein and phosphorus content of browse plants as an influence on southwestern deer herd levels. N. Am. Wildl. Conf. Trans. 21: 141-158.
- Ullrey, D. E., W. G. Youatt, H. E. Johnson, L. D. Fay, and B. E. Brent. 1967. Digestibility of cedar and jack pine browse for the white-tailed deer. J. Wildl. Mgmt. 31(3):448-454.
- ______, W. G. Youatt, H. E. Johnson, L. D. Fay, and
 B. L. Bradley. 1967. Protein requirement of
 white-tailed deer fawns. J. Wildl. Mgmt. 31(4):
 679-685.

Ullrey, D. E., W. G. Youatt, H. E. Johnson, L. D. Fay, B. E. Brent, and K. E. Kamp. 1968. Digestibility of cedar and balsam fir browse for the white-tailed deer. J. Wildl. Mgmt. 32(1):162-171. , H. E. Johnson, W. G. Youatt, L. D. Fay, B. L. Schoepke, and W. T. Magee. 1971. A basal diet for deer nutrition research. J. Wildl. Mgmt. 35(1):57-62. , W. G. Youatt, H. E. Johnson, L. D. Fay, D. B. Purser, B. L. Schoepke, and W. T. Magee. 1971. Limitations of winter aspen browse for the whitetailed deer. J. Wildl. Mgmt. 35(4):732-743. U.S. Forest Service. 1948. Woody-plant seed manual. USDA Forest Service Misc. Pub. 654, 416 pp. 1965. Silvics of forest trees of the United States. Agr. Handb. No. 271. 762 pp. Van Soest, P. J., and L. H. P. Jones. 1968. Effect of silica in forages upon digestibility. J. Dairy Sci. 51:1644-1648. , R. H. Wine, and L. A. Moore. 1966. Estimation of the true digestibility of forages by the in vitro digestion of cell walls. Proc. 10th Inter. Grassl. Congr., 438-441. Wainio, W. W., and E. B. Forbes, 1941. The chemical composition of forest fruits and nuts from Pennsylvania. J. Agr. Res. 62(10):627-635. Westcott, C. 1960. Plant disease handbook. D. Van Nostrand Co., Princeton, N.J., 825 pp. Wiegand, K. M. 1912. Amelanchier in eastern North America. Rhodora. 14:117-161. 1920. Additional nores on Amelanchier Rhodora. 22:146-151.

1935. A taxonomist's experience with hybrids

in the wild. Science. 81:161-166.

TABLE 2.--Nutritive parameters of juneberry fruit, alfalfa hay, blackberry, and blueberry (dry basis).

Parameter	Blackberry ^a	Juneberry Fruit	Alfalfa ^b Hay	Blueberry
Composition				
NDF, %		16.5	60.0	
ADF, %		14.5	45.0	
Crude lignin, %		4.3	9.5	
Cellulose, %		10.2	32.5	
Hemicellulose, %		2.0	15.0	
Crude protein, %	8.6	5.1	13.1	4.2
Crude fat, %	8.4	3.5	1.9	3.8
Total ash, %	3.6	2.8	8.8	1.4
Gross energy, kcal/g		4.9	3.4	
True Digestibility (in	vitro)			
Dry matter (sheet inoculum)		88.0	62.6	
Dry matter (deer inoculum)		73.6	57.8	

^aAfter Davenport, 1937.

bAlfalfa hay was used to acclimate the sheep's rumen flora and fauna to a high fiber diet i.e., juneberry twigs and leaves.

CAfter Wainio and Forbes, 1941.

TABLE 3.--Stems per acre, basal area (BA) and importance value (IV)^a of trees 1 inch diameter breast height (dbh) and greater found in the 20 foot x 50 foot plots.

Stems Basal IV Acre Area Acre Area	Acre Acre 6 61 4 87	Area Area 4,225	Ι	,	٩							
8 109 y 35 163 113 1,670 183 2,542 1 17 161 105 126		4,225		Stems/ Acre	Basal~ Area	Ν	Stems/ Acre	Basal ^b Area	ΛI	Stems/ Acre	Basal ^b Area	N
y 35 163 113 1,670 183 2,542 1 17 161 105 126		4,225										
113 1,670 183 2,542 1 17 161 105 126	9 87	2,510	61	35	1,438	26	366	10,576 ^b	94			
183 2,542 1 17 161 105 126	9 87	2,510										
17 161 105 126	9 87	2,510										
105 126			25	56	294	34	488	11,196	96	70	3,403	192
White Ash Red Maple Hazel Sugar Maple Hophornbeam	2 113	1,640	41				610	1,560	74			
Red Maple Hazel Sugar Maple Hophornbeam	σ	43	œ									
Hazel Sugar Maple Hophornbeam	17	826	15	35	066	48	183	2,510	36			
Sugar Maple Hophornbeam	70	95	11									
Hophornbeam	366	3,095	98	122	2,722	107						
Booch	26	383	20									
				87	360	55						
Jack Pine										17	1,372	63
Red Pine										56	42	45
Total 461 4,771 300	0 749	12,817	300	305	5,804	300	5,804 300 1,647	25,843	300	113	4,817	300

^aCurtis and Cottam, 1965.

basal area, square inches per acre.

TABLE 4.--Stems per acre and importance values (IV)^a of plants 18 inches in height to less than 1 inch diameter breat height (dbh) found in the 5 foot x 50 foot plots.

	Warfield		Berner	L	W-38	88	Mio	01	Reed Ranch	Anch
Species	Stems/ Acre	NI .	Stems/ Acre	IV	Stems/ Acre	ΛΙ	Stems/ Acre	ΛΙ	Stems/ Acre	VI
Sweetfern	02	٠					ווסו	4	1 224	32
Black Cherry	2,056	96	174	m	79	00	1,289	16	11011	*
Red Oak	383	27	35	7		,				
White Oak	805	25								
Aspen	349	22	732	7	16	7	349	9	35	σ
Willow	35	'n	105	7			697	4		
Juneberry	139	21	1,080	14	285	13	4 18	10		
Aster			662	œ	16	7	314	4	35	σ
Goldenrod			3,694	23	792	22				
Blackberry			6,168	43	127	œ	4,565	56	1,394	5 6
Forb			209	œ	32	4	139	7	35	6
Bracken Fern			6,482	37	11,722	114	18,088	75	5,053	92
Red Pine			523	11	285	11			383	23
White Ash			174	9	4.8	7				
Red Maple			105	S	63	7	1,185	16		
Hawthorn			139	S			174	4		
Witch Hazel			508	S			35	7		
Spruce			139	m						
Sugar Maple			488	7	63	7				
Hophornbeam			1,673	11						
Beech					127	œ				
Juniper					16	7				
Blueberry Manle leafed Wibernum							314	10		
Mint							1,255) L		
Dogwood							•	٠,		
Whorled Loosestrife							4 A	9 V		
False Solomon Seal							32	n (4		
!	,	,	;	,						
Total	3,834	200	22,791	200	11,671	200	30,495	200	8,259	200

^aCurtis and Cottam (1965).

TABLE 5.--The stems per acre and importance values (IV) of plants 1 to 17 inches in height found in the 10 foot x 3 foot plots.

	Warfield		Berner	.	W-38	8	Mio	0	Reed Ranch	anch
Species	Stems/ Acre	IV	Stems/ Acre	IV	Stems/ Acre	IV	Stems/ Acre	IV	Stems/ Acre	ΝI
Juneberry Aster	290		11,035	12	726	4	4,646 3,049	10 3	871 2,178	108
Goldenrod Blackberry			4,501 22,942	517	4,950	18	1,452	16	581	4
Forb	736 37	ŕ	13,358	70 10 10	2,310	4.5	5,663	۲,	2,904	14
Sheepsorrel	40,946	46	5,134	5 8	46,200	333	16616	•	684.6	87
White Ash Red Maple			2,759 3,049	ശ ഗ	396 7,326	12	22,361	20		
Black Cherry Strawberry	2,759	11	860'9	11,	21,054	30	11,470	12 9	290	7
Mint Cinquefoil			19,021	10	;	•				
Hawkweed Red Oak	436	m	1,307		67,782	25	4,646	10	581	7
Sugar Maple Hophornbeam	9	ç	2,323	4. W	6,930	11	4,066	9 0	A C	ď
Sweet Fein Blueberry White Oak	8,567	7 C C					22,796	5 2	8,712 145	у ю Ј. 44 ш
Beech	!)			396	my	4,211	e	i i	,
Lycopodium Canada Mayflower Wintergreen Whorled Loosestrife					0,340	o	7,841 118,483 8,276	10 56 7		
Total	115,143	200	269,344	200	172,260	200	2,411,320	200	54,305	200

TABLE 6.--The relative importance of juneberry, seedlings, saplings and mature clumps, on each area. These data were obtained by adjusting the IV^a of juneberry at the various categories to a basis of 100.

		Area	3	
Category	Warfield	W-38	Berner	Mio
Mature clumps (1" dbh and greater)	11	0	14	25
Sapling (18" in height to less than 1" dbh)	10	6	7	5
Seedling (1" to less than 18" in height)	2	2	6	5
Total ^b	23	8	27	35

 $^{^{}a}$ IV = importance value after Curtis and Cottom (1965).

b The maximum value for a column is 300.

TABLE 7.--The percent of ground cover, composed of plants 1 inch or less in height including grass-sedge, determined by ten foot line intercepts.

			Area			
Species	Warfield	Berner	W-38	Mio	Reed Ranch	Total
Sweet fern Grass-sedge Litter Blueberry Mossa Forb Sheepsorrel Hawkweed Club moss Wintergreen Red Pine	0.7 65.2 33.8 0.2 0.1	36.8 53.7 4.1 0.8 2.6 2.0	3.5 83.3 4.6 3.3 3.3 2.0	21.5 75.5	55.8 41.5	0.7 182.8 287.8 0.2 8.8 0.8 5.9 5.3 2.0 3.0 2.7
Total	100	100	100	100	100	500

aPrimarily Polytricum spp.

TABLE 8.--Diversity and similarity indices of plant communities on the four study areas.

Similarity ^a	Diversityb
Warfield with Berner (.51)	Warfield (4.44)
Warfield with W-38 (.43)	Berner (8.02)
Warfield with Mio (.54)	W-38 (5.02)
Berner with W-38 (.68)	Mio (7.13)
Berner with Mio (.63)	
W-38 with Mio (.50)	

aSimilarity was determined using the procedure discussed by Sorensen (1948) where similarity = 2C ÷ A+B; C = number of species common to each area, A = number of species in one area, B = number of species in the second area.

TABLE 9.--Juneberry fruit production in 1970 and 1971. a

Year	Berner	Warfield	W-38	Mio
1970 ^b	1,794.5	270.3	660.0	14,974.5
1971 ^b	92.2	59.9	82.1	571.0

Average oven-dry weight of juneberry fruit estimated to be 0.1124 g.

bDiversity was determined using the procedure discussed by Simpson (1949) where diversity = N(N-1) ÷ Sum($N^1(N^1-1)$); N = total number of individuals of all species, N^1 = number of individuals of one species.

bDry weight of juneberry fruit produced per acre (pounds).

TABLE 10. -- Soil moisture characteristics of the top 4 inches of soil found (A) adjacent to juneberry seedlings compared to (B) not adjacent to juneberry seedlings.

	w	Soil Moisture % Dry Weight	sture aight	щ	Field Capacity	pacity ^b	Wi	Wilting Point ^C	int ^c
Location	ı×	S x S	"t"	ı×	Sx.	"t"	ı×	°×.	"t"
Reed Ranch A B	.184	.096	.914ns	960.	.017	2.316ns			·
Mio B B	.137	.039	2.684+	.087	.024	.236ns	.039	.004	2.82ns
Warfield A B	.058	.027	.295ns	.046	.020	1.367ns	.016	.009	
Berner A B	.130	.093	2.645+	.087	.049	.454na	.042	.009	1.963ns
W-38 A B	.139	.073	2.896+	.088	.044	1.806ns	.037	.017	1.630ns

actual moisture found in the soil.

 $^{^{}m b}$ The percent moisture held by the soil under the pressure equivalent of 100 cm of water.

^cThe percent of moisture held by the soil under the pressure of 15 atmospheres.

⁺Significant at .05 level.

TABLE 11.--Growth characteristics of juneberry (A. laevis) in northern lower Michigan. a

Location	Age-Years (Mean + SE)	Diameter (Inches) (Mean <u>+</u> SE)	Growth Increment for Last 10 Yrs. (cm) (Mean + SE)	Height (Ft.) (Mean + SE)	Stems Per Clump (Mean + SE)
Warfield	31.0 ± 1.6	1.8 ± 0.1	0.38 ± 0.03	13.6 ± 0.6	10.0 ± 1.0
Berner	35.0 + 1.4	4.1 ± 0.3	0.43 + 0.04	27.0 ± 2.1	7.0 ± 1.0
W-38	31.0 + 1.9	3.3 + 0.5	0.69 + 0.10	27.3 ± 1.6	7.0 ± 1.0
Mio	36.0 + 1.2	2.3 ± 0.1	0.24 ± 0.03	28.7 + 2.4	12.0 ± 2.0
Reed Ranch	35.0 ± 2.1	3.2 + 0.2	•		
Composite	33.9 + 0.7	2.9 + 0.1	0.4 + 0.02	20.3 + 1.0	6.6 + 2.3

^aBased on 247 juneberry stems, averaging 7 clumps per area.

TABLE 12.--Frequency of occurrance of woody plants immediately associated to juneberry. Plants sampled (107) were located within a 25 foot radius of the center of a juneberry clump.

		Are	ea .	
Species	Warfield (percent)	W-38 (percent)	Berner (percent)	Mio (percent)
Black Cherry	5	18	36	31
Aspen	5	22	4	19
White Oak	66			
Red Maple		11		27
Red Oak	19			23
Red Pine	5			
Juneberry			4	
Hophornbeam			16	
Sugar Maple			40	
Beech		18		
Alder		16		
Hazel		5		
Paperbirch		5		
Elm		5		

TABLE 13.--Growth characteristics of tree species associated with juneberry.

Location	Age-Years (Mean <u>+</u> SE)	Diameter (Inches) (Mean <u>+</u> SE)	Growth Increment for Last 10 Yrs. (cm) (Mean + SE)	Distance From Juneberry (Mean <u>+</u> SE)
Warfield	33.3 ± 2.5	4.4 ± 0.1	.81 ± 0.07	13.6 ± 0.9
Berner	39.0 + 2.5	5.6 ± 0.4	.59 <u>+</u> 0.05	12.9 ± 1.1
W-38	28.5 + 1.7	3.6 ± 0.3	.75 ± 0.09	13.9 + 1.4
Mio	33.3 + 2.3	4.9 ± 0.2	· 56 ± 0.05	14.2 ± 1.1
Reed Ranch	36.5 + 6.9	:	:	
Composite	33.7 ± 1.2	4.6 + 0.2	.66 ± 0.03	13.6 ± 0.6

Based on 107 individual tree associates within a radius of 25 feet from juneberry clump.

 $^{^{\}rm b}$.t" comparing age of juneberry to associates = .5656 ns at .05 level.

c"t" comparing diameter of juneberry to associates = 2.583, significant at .05 level.

TABLE 14.--The percent of available juneberry twigs browsed during the winters of 1971 and 1972 based on twig counts made in the latter part of March each year.

Location		Available Browsed	Percent of Available Twigs Browsed on Cut Clumps of Juneberrys
	1971	1972	1972
Warfield	28	33	91
Berner	19	11	23
W-38	14	16	44
Mio	12	41	94
Reed Ranch	65	80	96

TABLE 15.--Results of seven day feeding experiment using 5 ruffed grouse fed juneberry fruit.

	First 4 Days ^a (Mean <u>+</u> SE)	Second 3 Days (Mean <u>+</u> SE)	
Apparent metabolizability of dry matter (%)	68.8 <u>+</u> 0.1	69.1 <u>+</u> 0.8	68.9 <u>+</u> 0.4
Metabolizable energy (% of GE)	72.2 <u>+</u> 0.3	71.7 <u>+</u> 0.9	72.0 <u>+</u> 0.5
Daily mean dry matter consumed (g)	18.9 <u>+</u> 2.3	19.4 <u>+</u> 2.1	19.2 <u>+</u> 2.2
Daily mean dry matter excreted (g)	5.9 <u>+</u> 0.7	6.0 <u>+</u> 0.7	5.9 <u>+</u> 0.7

aComparison of the mean of the first 4 days with mean of second 3 days and with 7 day mean using the "t" statistic were all "not significant" at the .05 level.

TABLE 16.--A comparison of the nutrient parameters of juneberry twigs versus leaves after adjusting for time (dry basis).a

Dependent Variable		Leaf (Mean <u>+</u> SE)	_
Composition			
NDF, %	57.6 <u>+</u> 0.9	43.2 <u>+</u> 1.0	.0005
ADF, %	48.0 ± 1.2	29.7 ± 1.4	.0005
Crude lignin, %	16.3 <u>+</u> 0.6	12.1 ± 0.7	.0005
Hemicellulose, %	10.3 ± 1.5	13.2 <u>+</u> 1.8	.272
Cellulose, %	30.4 <u>+</u> 1.2	16.4 ± 1.4	.0005
Crude Protein, %	6.5 ± 0.3	13.3 ± 0.4	.0005
True Digestibility (<u>in vitro</u>)			
Dry matter (sheep inoculum), %	50.1 <u>+</u> 0.9	64.8 <u>+</u> 1.1	.0005
Dry matter (deer inocolum), %	46.5 <u>+</u> 1.2	58.4 <u>+</u> 1.3	.0005

^aDetermined by least squares analysis for unequal sub-classes.

TABLE 17.--A comparison of the nutritive parameters of juneberry twigs and leaves through time.

ependent Variable	Time ^b Period	Twig (Mean <u>+</u> SE)	Leaf (Mean <u>+</u> SE)	Approximate Significance of F Statistic
omposition				
NDP,	1	56.4 + 1.5	40.9 + 2.2	
•	2	58.3 + 1.5	44.7 ± 2.2	
	3	57.4 \pm 1.7	43.5 \pm 2.5	(Leaf) .485
	4	58.1 ± 1.5	43.5 ± 2.5	(Twig) .799
ADF, %	1	45.3 <u>+</u> 2.8	26.4 <u>+</u> 1.2	
	2	48.8 ± 2.8	28.8 ± 1.2	
	3 4	46.0 ± 3.3 51.5 ± 2.8	31.7 ± 1.4	(Leaf) .061 (Twig) .453
	•			(1419) 1433
Crude Lignin, &	1	15.0 ± 1.3	12.0 <u>+</u> 0.8	
	2 3	19.2 + 1.3	13.1 ± 0.8	(r 6) 000
	4	19.9 <u>+</u> 1.5 11.0 + 1.3		(Leaf) .022 (Twig) .002
	-	<u></u>		(1419) 1002
Cellulose, &	1	30.3 ± 3.0	14.4 ± 0.6	
	2	29.6 ± 3.0	14.9 ± 0.6	10 - 15 - 150
	3 4	$\begin{array}{c} 26.1 \pm 3.5 \\ 35.4 \pm 3.0 \end{array}$	15.3 ± 0.7	(Leaf) .668 (Twig) .293
	•	33.4 ± 3.0		(IWIG) .293
Hemicellulose, %	1	11.1 <u>+</u> 3.8	14.5 <u>+</u> 1.6	
	2	12.4 ± 3.8	16.6 ± 1.6	
	3	11.3 ± 4.4	11.7 <u>+</u> 1.9	(Leaf) .208
	4	6.7 ± 3.8		(Twig) .730
Crude Protein, %	1	6.3 <u>+</u> 0.4	14.1 <u>+</u> 0.8	
	2	5.8 ± 0.4	13.3 ± 0.8	
	3 4	6.5 ± 0.4 77.6 ± 0.4	11.1 <u>+</u> 0.9	(Leaf) .101 (Twig) .024
	•	7.0 <u>+</u> 0.4		(1419) 1024
Crude Pat, %	1		4.1 ± 0.3	
	2 3		4.6 + 0.2	(T == #) 003
	4	4.6 ± 0.3	6.0 <u>+</u> 0.3	(Leaf) .003
		-		
Total Ash, T	1 2		5.3 ± 0.4	
	3		5.4 <u>+</u> 0.4 5.7 + 0.4	(Leaf) .789
	4	3.9 ± 0.3	3 <u>-</u> 0.4	(2021)
Cross Prace	1	_	49 4 1 3	
Gross Energy	2		4.8 <u>+</u> 1.3 4.5 + 1.3	
	3		$\frac{1.5}{4.5} + 1.5$	(Leaf) .421
	4	4.4 ± 0.1	_	
rue Digestibility in <u>vitro</u>)				
Dry Matter	1	53.6 + 1.4	69.4 + 2.3	
(sheep inocolum)	2	48.4 ± 1.4	64.3 + 2.3	
	3	50.6 ± 1.6	62.2 ± 2.6	(Leaf) .173
	4	48.3 \pm 1.4	_	(Twig) .069
Dry Matter	1	50.3 <u>+</u> 2.2	64.8 + 2.3	
(deer inocolum)	2	42.5 ± 2.2	56.2 ± 2.3	
	3	45.2 \pm 2.2	55.9 ± 2.0	(Leaf) (P<.05)
	4	46.8 <u>+</u> 1.9		(Twig) (P<.05)

^aComparisons were made using an unequal one-way analysis of variance.

bTime 1 = June, Time 2 = July, Time 3 = Late August-Early September, Time 4 = November-January.

.01) of juneberry constitutents and .05; **P TABLE 18.--Significant correlation coefficients (*P true dry matter digestibility.

Stem	NDF	ADF	Crude Lignin	Cellulose	Hemi Cellulose Protein	Protein
True Digestibility (<u>in vitro</u>)						
<pre>Dry matter (sheep inocolum), %</pre>	93**a 72**b 63*c	91**a 54*b 77**c	71* ^c	e**83**		. 86**a
Percent Composition						
Crude Protein	87**a	87**a 77**c	50**a 63*b 76**c	78**a		
Cellulose	82**a	.97**a .93**b .76*c	q**69°-		62**a 71**b	
Hemicellulose	o*69°	57**a 74**b				
Crude Lignin		.94**C				
ADF	.89**a					
NDF						

aCorrelation for twig and leaf combined after adjusting for time.

A STATE OF STREET

bCorrelation for within twigs.

Correlation for within leaves.

TABLE 19.--Comparisons of proximate analyses of juneberry fruit and winter stems with that of fruit and winter stems of several other browsed species (dry basis).

	Crude Protein, %	Crude Fat, %	Ash, %	Gross Energy kcal/g
A. laevis stems	7.6	4.6	3.9	4.4
A. <u>leavis</u> stems ^a	9.1	4.0	4.8	
A. alnifolia stems	7.0	4.7	3.0	• •
N. White Cedar sprays	7.2	9.5	4.3	5.1
Hybrid Sumac stems ^d	7.0	10.9	4.9	4.8
Hybrid Sumac fruit ^d	6.8	21.9	2.7	5.1
A. <u>laevis</u> fruit	5.1	3.5	2.8	5.2

^aDavenport, 1937.

bDietz, et al., 1958.

Cullrey, et al., 1968.

^dSmith, 1970.

TABLE 20.--Comparisons of apparent dry matter digestibility of juneberry with other winter browse species.

	% Apparent Dry Matte	er Digestibility
A. <u>laevis</u> (deer inoculum) a	34	
A. <u>laevis</u> (sheep inoculum) a	35	
N. White Cedar ^b	45	
85% Cedar 15 % Aspen ^b	42	
70% Cedar 30% Aspen ^b	38	
Jack Pine ^C	34	to 45
Balsam ^d	27	to -156

and sheep inoculum. Others determined by in vivo methods. True digestible dry matter converted to apparent digestible dry matter by subtraction of metabolic fecal losses (12.9 digestion units).

bullrey, et al., 1967.

Cullrey, et al., 1967.

dullrey, et al., 1968.

TABLE 21.--The species of woody plants found in the study areas.

Common Name

Scientific Namea

Red Maple Sugar Maple Juneberry Dogwood Hawthorn Beech White Ash Witch Hazel Juniper Sweetfern Hophornbeam White Spruce Jack Pine Red Pine White Pine Trembling Aspen Big Tooth Aspen Black Cherry Red Oak White Oak Blackberry Blueberry Maple-leafed Vibernum

Acer rubrum Acer saccharum Amelanchier laevis Cornus rugosa Crataegus sp. Fagus grandifolia Fraxinus americana Hamamelis virginiana Juniperus communis Myrica asplenifolia Ostrya virginiana Picea glauca Pinus banksiana Pinus resinosa Pinus strobus Populus tremuloides Populus grandidentata Prunus serotina Quercus borealis Quercus alba Rubus allegeniensis Vaccinium angustifolium Vibernum acerifolium

^aNomenclature follows Gleason and Cronquist (1963).

TABLE 22.--Species of herbaceous plants found in study areas.

Scientific Namea Common Name Thimbleweed Aneomone cyclindrica Aster cordifolia Aster Aster sagitifolius Aster Aster Aster undulatus Bluebell Campenula rotundifolia Strawberry Fragaria virginiana Wintergreen Gautheria procumbens Devil's Paint Brush Hieracium aurantiacum Florentine Hawkweed Hieracium florentinum Honeysuckle Lonicera involucrata Club Moss Lycopodium obscurum Whorled Loosestrife Lysimachia quadrifolia Canada Mayflower Mianthemum canadense Wild Bergamot Monarda fistulosa Cinquefoil Potentialla argentea Moss Polytricum spp. Braken Fern Pteridium aquilinum Gooseberry Ribes cynosbati Sheepsorrel Rumex acetocella False Solomon Seal Smilacina racemosa Goldenrod Solidago caesia Solidago canadensis Goldenrod Goldenrod Solidago gigantea Solidago hispida Goldenrod Starflower Trientalis borealis Sedge Carex spp. Danthonium spicata Grasses Deschampsia causpitisa Panicum spp.

^aNomenclature follows Gleason and Cronquist (1963).

MICHIGAN STATE UNIV. LIBRARIES
31293106084621