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ABSTRACT

HABITAT USE AND COMPETITIVE BOTTLENECKS

IN SIZE-STRUCTURED FISH POPULATIONS

BY

James F. Gilliam

This thesis deals with two current problems in the ecology of

size-structured populations. By size-structured populations, I mean

populations which consist of an array of sizes, and in which different

sizes have different ecological characteristics. The first problem is

the question of optimal habitat choice when habitats differ not only

in the foraging rates obtainable in them, but also in the mortality

risk to which an animal is exposed while foraging. The second problem

involves an interaction between two species, say A and B, in which A

preys upon B when A is large, but A competes with B when A is small.

The first chapter deals with the problem of foraging under

mortality risk. This chapter is completely theoretical. Using

optimal control theory, I derive decision rules for animals given a

"choice" of a number of growth rates and mortality rates, where the

choice of a higher growth rate during a day brings with it a higher

probability of being preyed upon. For juveniles in populations near

equilibrium, the rule is very simple: an animal should choose the

habitat or behavior which minimizes the ratio of mortality rate to

growth rate. For adults or animals in increasing or decreasing

populations, the results can be expressed as degrees of departure from

the rule just stated.



James F. Gilliam

The second chapter concerns the problem of the predator-prey

"bottleneck." The chapter contains some work on the implications of a

bottleneck's effect on the demography and population dynamics of the

system, but most of the chapter is an investigation of the potential

for this type of effect between the largemouth bass (Micropterus
 

salmoides) and the bluegill sunfish (Lepomis macrochirus). The
 

largemouth bass preys upon the bluegill over much of its life, but

when small the bass and bluegill consume similar prey. I conclude

that the bluegills probably reduce the growth rates of small bass in

one lake but not another, and quantify the effect of four bluegill

densities on bass growth rates in an experimental pond.
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CHAPTER 1

Foraging Under Mortality Risk In Size-Structured Populations

INTRODUCTION

For most animals, fitness is clearly related both to an ability

to obtain food and to avoid predators. However, many circumstances

arise in which these two components of fitness conflict. For example,

the most profitable habitats for foraging may also be the most

dangerous, or certain foraging tactics may make a forager more

vulnerable to predators. It is often concluded that predation risk

strongly affects the evolution of a forager's behavior (e.g.

Rosenzweig 1974; Sih 1980; Nelson and Vance 1979; see Stein 1979 and

Morse 1980 for reviews). Further, some work has shown that the

behaviors can be plastic since foragers show a reduction in foraging

rate when predators or predator models are present (Stein and Magnuson

1976; Milinski and Heller 1978; Caraco, Martindale, and Pulliam 1980;

Shaffer and Whitford 1981; Fraser and Gerri 1982). Werner, Gilliam,

Hall, and Mittelbach (1983) have shown that small bluegill sunfish

shift to energetically less profitable but apparently safer habitats

when a predator is present, and, further, that the shift results in

reduced growth rates for the survivors. Thus, the presence of a

predator introduces a cost to a forager, the risk of predatory death,

which the forager may partially offset by incurring a second cost, a



reduced foraging (growth) rate. Collectively, the above studies show

that at least some ants, fish, birds, and mammals do in some way

facultatively balance a tradeoff between mortality risk and foraging

rate.

Since habitat use and prey selection within a habitat are central

to competitive processes, a method of predicting foraging behavior

under predation risk is an essential element in a predictive theory of

community organization. In this paper I present a basis for

predicting behavior when the maximization of foraging rate and

short-term survivorship conflict. The major question asked is: Given

a "choice" of a number of foraging rates, each with an associated

mortality rate, which choice maximizes fitness? In particular, given

an array of habitats, each with an associated foraging rate and

mortality rate, in which one(s) should an animal forage?

Here, I investigate the above questions for iteroparous

size-structured populations. By "size-structured" populations, I mean

populations in which an individual's salient ecological properties,

notably its foraging abilities, vulnerability to predators, and

fecundity, can be regarded as functions of the individual's size

rather than its age. I also allow the animal's foraging rate and

mortality rate to be under behavioral control; that is, the animal's

daily foraging and mortality rates are functions of both its size and

its behavior (e.g. habitat use, times of feeding, swimming speed).

The fecundity rate is taken to be a function of the animal's size

(reproductive effort questions are not considered here). This

dependence of ecological characteristics on size rather than age

appears to be a reasonable representation for many animals which



exhibit indeterminant growth, as many fish, reptiles, amphibians, and

invertebrates.

I first consider optimal behavior in populations near equilibrial

population size, and then investigate the cases of increasing and

decreasing populations. Initially, I assume that the foraging,

mortality, and fecundity rates are not explicit functions of time.

That is, these rates are functions of time only to the extent that

body size is a function of time. The important biological consequence

of this assumption is that this implies a constant environment and

continuous reproduction. This allows an analytical solution to the

problem which provides a starting point from which consequences of

alternative assumptions can be explored.

The Nature of the Tradeoff:

A Representative Problem and a Generalization

As an example of the growth-mortality tradeoff, consider the

problem of ontogenetic habitat shifts by fish. As fish grow, they

typically exhibit marked shifts in prey utilization, as documented by

a huge literature on fish diets (Carlander 1977). Habitat shifts

often accompany the changes in diets. For example, juvenile bluegill

sunfish (Lepomis macrochirus) travel from shallow littoral nests to
 

the limnetic zone upon hatching and feed upon zooplankton (Werner,

1966). They then usually return to the littoral zone after reaching a

size of about 20 mm standard length and prey primarily upon insects

and crustaceans. In lakes in southwest Michigan, the bluegills

typically forage among littoral vegetation until reaching 60-100 mm

length (3 to 4 years old), at which time they switch habitats again,

and most of their time is subsequently spent foraging on open-water



Figure 1. Size-specific growth (g1) and mortality (“1) rates in habitats

l and 2. b(s) is the birth rate.
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zooplankton (pers. obs.; Mittelbach, 1981).

Mittelbach (1981) has presented evidence that the bluegills in

the littoral zone would usually exhibit higher growth rates if they

instead foraged in the open limnetic zone. He suggested that small

fish may remain among vegetation because the structure affords

protection from predators, and that larger fish can utilize the open

water with less danger because their vulnerability is lower than small

fish. Further, Werner, Gilliam, Mittelbach, and Hall (1983) have

experimentally confirmed that small bluegills shift to greater use of

a vegetated habitat in the presence of predators versus their use in

the predators' absence, but larger non-vulnerable bluegills do not

show the habitat shift.

A simple representation of vital rates associated with

ontogenetic habitat shifts is shown in Figure 1 (see werner 1982 for a

similar treatment of habitat shifts when habitats do not vary in

mortality risk). At a particular resource level, a fish of a given

size foraging in Habitat 1 is depicted to grow (gm/day, cal/day, or

mm/day) at a rate g1 and incur a mortality rate (probability of

death/day) of H]. In Habitat 2, the fish would experience growth and

mortality rates of g2 and Hz, respectively. Thus, Habitat 2 is always

the more dangerous habitat, but large fish can grow faster there. “1

and “2 are shown as declining functions of fish size, which will

usually be true if larger fish are less vulnerable to predators,

though ml or U2 may increase over some range if the predators are

positively size-selective. As drawn, the growth functions, g1 and g2,

indicate that, on a particular resource, the growth rate first

increases and then declines to zero. This happens when the animal's



gross foraging rate increases with size, but at large sizes metabolic

costs increase faster than increases in foraging capabilities. The

details of the growth and mortality functions are not important to the

conceptual development of the problem; Figure 1 simply represents a

seemingly common case.

Given the relations shown in Figure 1, a small fish would both

maximize its growth rate and minimize its mortality rate by foraging

in habitat 1. This would maximize its survivorship and size at each

age and is clearly optimal in this framework. As the fish grows, at

what size would a shift from habitat l to habitat 2 be favored by

natural selection? A fish shifting a size 3* would maximize its

growth rate, but at the cost of raising its mortality rate from

U1 (3*) to U2 (3*). Thus, at sizes greater than 3*, the animal is

faced with a growth rate-mortality rate tradeoff; maximization of

growth during a day conflicts with the minimization of mortality risk

(maximization of survivorship) during that day. Intuitively, one

might surmise that a delay in the habitat shift would be favored by

natural selection, since at sizes slightly larger than 9*, the fish's

mortality rate can be substantially lowered at the cost of a slightly

lowered growth rate. However, a delayed switch to Habitat 2 would

usually increase mortality at future ages, since the fish would be

smaller at each future age than it would have if it had switched at

3*. Also, the animal's fecundity at each future age will be lowered

by the delay in switching since the animal will be smaller at each

subsequent age. Clearly, the short-term tradeoff between mortality

rate and growth rate can be restated to be a tradeoff between

short—term survivorship (during a day) and long-term survivorship and



fecundity (over the rest of the animal's life).

Figure 2 represents a case similar to Figure l, but depicts one

habitat (in this case, a vegetated habitat) as being safer (lower u)

but less energetically profitable (lower 3) than another habitat (an

open water habitat with planktonic prey). This may crudely

approximate the options often available to bluegill sunfish. Here,

the question is not just when to switch habitats, but whether to

switch, and how many times.

Now suppose that an animal may choose to split its time between

the two habitats (the case for three or more habitats can also easily

be constructed). Figure 3a depicts, for a fish of a given size, the

overall daily growth and mortality rates as a function of the time

spent in one of the habitats. Here, Habitat l is "dangerous“ but

"rich", and Habitat 2 is "safe" but "poor". The growth rate, g, is

drawn as an increasing, concave function of the time spent in the rich

habitat. The concavity is due to a concave relation between daily

foraging rate and growth rate (Webb 1978). Other shapes of u and g

are certaily plausible. For example, 3 may decline over some range in

Figure 3a if there are substantial travel costs between habitats;

different shapes of curves can be easily accommodated in the model

presented in this paper.

Since u and g are both functions of behavior (the proportion of

time in Habitat 1) for a fish of a given size, we can plot U directly

as a function of g, as in Figure 3b. This makes the tradeoff

explicit; the animal must, in effect, choose a growth rate (via its

habitat choice), and each increase in growth rate (a benefit) carries

with it an increase in mortality (a cost). At other points in an



Figure 2. Hypothetical size-specific growth and mortality rates for

bluegill sunfish in Lawrence Lake.
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Figure 3. (a) Growth and mortality rates resulting from mixed habitat

use. (b) The relationships in (a), replotted to express

mortality rate as a function of growth rate.
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animal's life history, u may be a nonincreasing function of g. For

example, fish smaller than 3* in Fig. 1 simultaneously maximize

growth and minimize mortality by foraging in Habitat 1.

The problem can now be generalized by defining three functions,

as shown in Figure 4. The animal's birth rate, b(s), is a function of

the animal's size. Also, there is a function, gmax(s), which gives

the animal's maximal growth rate obtainable under existing resource

levels. The animal's mortality rate on a particular day is a

function, u(g,S), of the animal's size and the growth rate the animal

"chooses" (Figure 4b). It will be convenient to refer to a "choice of

growth rate" on each day, but, of course, this phrase really means

that the animal behaves in a certain way (e.g. through its habitat

choice, diel activity pattern, foraging speed, distance from a

refuge), and that behavior, together with the animal's size, results

in a growth rate and a mortality rate for that day.

The Selection Criterion

On each day an animal must adopt some behavior, and the behavior

adopted will have associated growth and mortality rates. Taken

together, the series of decisions across an animal's (or cohort's)

lifetime results in a growth path. There exist an infinite number of

possible growth paths, each with an associated survivorship and

fecundity schedule, and the present task is to find the particular
 

growth path which maximizes fitness.

The criterion of fitness used here is this: In a

density-dependent population at equilibrium, find the series of

decisions which result in R0 = 1 (r = 0) when all other series of

decisions results in R0 < 1 (r < 0). Here, r is the instantaneous
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Figure 4. (a) Size-specific birth and maximal growth rates.

(b) Mortality rate, a function of size and "chosen"

growth rate.
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rate of increase of the population, and Ro is the net reproductive

rate,

R, = affix)b(x>dx. (1)

where £(x) = survivorship to age x, and b(x) = fecundity at age x. A

morph with R0 = 1 just replaces itself, and ”invading" morphs with

R0 < 1 are eliminated.

This criterion is used implicitly in density-dependent models

without age-structure, where the criterion is equivalent to the

maximization of population density. The maximization of total

population density cannot usually be used as a congruent criterion for

size-structured populations, although Hastings (1978) has shown that

it can be for the special case of the density-dependence at each age

(size) depending only upon the total population size, and Charlesworth

(1980) has shown that if a "critical age group" can be identified, the

maximization of the density of that age group is equivalent to the

criterion, R0 = 1 when all alternatives yield Ro < 1. The analysis in

this paper assumes nothing about the details of density-dependence

except that, for a population exhibiting an arbitrary series of

behaviors, the population will establish an equilibrial size (and age)

structure at which Ro - 1, and the task is to depict the choice of a

growth path (series of behaviors) which is noninvasable by alternative

choices when Ro - 1 for the "established" path.

I describe below the series of decisions which maximize R0 for a

given level of resources and mortality pressure, and note that the

solution holds for the particular case of the resource levels and
 

mortality pressures existing at equilibrium. That is, a population
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exhibiting optimal behavior will have the property that R0 = 1 at

equilibrium, and all invading behaviors yield RO < l. The case of

increasing or declining populations will be considered subsequently.

A Solution

Mathematically, we want to find a function, g(x), which maximizes

an integral, R0. This kind of problem can be solved with optimal

control theory, a technique with its roots in the calculus of

variations. Optimal control theory is certainly largely unfamiliar to

most ecologists, though optimal control theory has been used in

ecological contexts by some authors, especially recently (Katz 1974,

Leon 1976, Sibly and McFarland 1976, Clark 1976, Mirmirani and Oster

1978, Oster and Wilson 1978, McCleery 1978, Vincent and Pulliam 1980,

Cab 1980, Goodman 1982). Suggested introductions are contained in

Intriligator (1971), Takayama (1974), and the original work of

Pontryagin 35 El' (1964), as well as the papers cited above.

In the terminology of optimal control theory, the growth rate,

g(x), is a control variable, whose value at each age is to be chosen

so as to maximize the objective functional, R0. In addition, two

state variables can be defined which describe the state of a cohort at

age x. These state variables are the size at age x, 3(x), and the

integral of previous mortality rates, D(x) = 6x u(y)dy, where y is a

dummy variable. These two state variables completely specify £(x) and

b(x) since £(x) = e'D(x) and b(x) a b [s(x)]. Across age (time), the

state variables change at a rate determined by the control variable

and the state variables themselves:

x

31—3 = d ’ggffldx = 11(X) = u[S(X). g<x>1 <2) 
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‘35 = g(x) (3)
X

Thus, at each age, the life historical effects of the choice of growth

rate are expressed through the effects on the state variables.

There is also a constraint on the growth rate, g(x) S

gmax [s(x)]. This can be incorporated either by explicitly entering

the constraint in the problem, or by imposing an artificial penalty

that effectively prevents g(x) from exceeding gmax[s(x)]. The latter

method keeps the mathematics more transparent in this case and has no

effect on the biological results, as will be seen in graphical

solutions. The penalty is imposed by letting u(g, 3) turn arbitrarily

sharply upward at gmax(3)' In Figure 4b, this could be depicted by

drawing u(g, s) as turning very sharply along the edge defined by

gmax(s), rather than terminating the surface as now drawn. Thus,

strictly speaking, g(x) has no formal upper bound, but the penalty

(greatly increased mortality rate) is set so great that in practice it

will not exceed gmax(5)° The mathematics also require that b(s) be

continually differentiable; accordingly, b(s) is taken to be very

sharply sigmoid near the size of first reproduction, rather than a

discontinuous function as depicted in Figure 4a.

The Hamiltonian function can now be formed:

H = e-D<X> b[s(x)] + AD<xI utg<x). s<x>1 + A8<x)g(x) <4)

The first term is the integrand of the objective functional. The

second and third terms are each the product of an auxiliary variable

(also called a costate variable, adjoint variable, or multiplier), and

a state variable's rate of change. 3AD(x) is an auxiliary variable
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associated with the state variable D(x) and multiplies u[g(x), s(x)],

the value of dD/dx (see Eq. 2). Similarly, As(x) is associated with

the state variable s(x) and multiplies g(x), the value of ds/dx

(Eq. 3).

Pontryagin's Maximum Principle states that H is maximized at each

x by the Optimal g(x). Further, it is known that dH/dx = BH/Bx. For

this problem, 3H/3x = 0 since x does not appear explicitly in the

equation (e.g. b and u depend only upon the state and control

variables, not explictly on age itself). Thus, the Hamiltonian is

said to be autonomous and is in fact constant across all ages.

The fact that H is constant for all x can be used to good

advantage in determining a solution. Since H is constant, its value

can be determined by finding its value at any particular x, in this

case when x is very large. It is known that when the objective

functional's (Ro's) limits of integration are from say, 0 to T, where

T is finite, the values of the auxiliary variables at T are equal to

zero if the final values of the state variables are unspecified (in

this problem, we do not specify required final values for s and D).

This is true for any arbitarily large but finite T. Surprisingly,

perhaps, this result does not always hold for T =‘”, and

counterexamples have been found (e.g. Takayama 1974, p. 625). It does

appear that *D(”) a 0 and A8(m) - 0 for this system, but the general

conditions for which this would hold are not known. However, we can

circumvent this problem by taking the integral (R0) from 0 to T, where

T is very large but finite, rather than from 0 to “a If T is

sufficiently large, we can safely take e‘D(T)b(T) = 0, and since AD(T)

= AS(T) = 0, it follows that H(T) = 0. Thus, for all x, H = 0 for the
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optimal growth path, and H < 0 for suboptimal paths.

reminiscent of the condition, r = 0 (R0 = 1) for the

flusis

optimal path and

r < 0 (Ro < 1) for all other paths.

The problem can now be stated succinctly within the structure of

The goal is to findPontryagin's Maximum Principle. the path of the

control variable, g(x), which maximizes R0 = éTe-D(x) b[s(x)]dx,

subject to the constraints on the state variables (Eqs. 2 and 3). For

this problem, dropping the arguments of the functions for brevity,

H = e’Db + AD D+ Asg = 0 (5)

Further, since H is maximized by the choice of g,

-§E = 0 = ADEB-3+ A for each x (6)

as g S

The changes in the auxiliary variables are described by

d)‘D 23H
__._x = — 8—D: e Db

(7)

dxs _ 3H _ "D (11) A 3M (8).__. - - .__ _ .__ _ -D"‘

dx 33 d3 33

The usual way of solving this type of problem would be to solve

the differential equations, Eqs. 2, 3, 7, and 8 with two known initial

values, D(O) - 0 amd 3(0) 8 so, and two known final values,3\D(T) -

AB(T) - 0. However, the observation that the Hamiltonian is constant

and equal to zero allows us to circumvent this process and obtain

useful results without having to specify the forms of the functions.

One way to describe the relationship between u and g at the
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optimal solution is to find Bu/Bg, which will be called the "marginal

risk," at the optimum. Solving Eq. 6 for Bu/Bg yields 3u/3g - -

As/AD. Solving Eq. 5 for As (this is where H = 0 is a crucial

observation) and substituting into a“lag = - As/AD yields

3 + e'Db/A

—B-= u D for each x (9)

as g

 

This equation is the central result of this paper. The meaning of

this equation will be assessed below separately for juveniles and

adults.

Optimal Decisions for Juveniles
 

For juveniles, b = 0 by definition. Hence Eq. 9 reduces to

an u

33 g ( )

In Figure 5, it can be seen by inspection that this relationship holds

at only one value of g, denoted 80pt' That is, straight lines drawn

through the origin depict points at which U/g is constant, and the

particular line which is tangent to u defines the point at which

Bu/ 3g = u/g.

Figure 5 suggests an alternative statement of the condition for

optimality. SOpt may be recognized graphically as the value of g

which minimizes u/g. This can be confirmed by solving a(u/g)/3g = 0

for au/ag, which yields Eq. 10. Thus a simpler statement of the rule

is “minimize p/g at each age (size)."

The meaning of this rule becomes clearer when related to an

expression for survivorship to a particular size. It has been shown

(VanSickle 1977, Warner, Gilliam, Hall, and Mittelbach, 1982) that the
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Figure 5. Graphical solution of the optimal growth rate for juveniles.
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survivorship to a particular size, 31, can be described by

81.119;

Manse" 8: 3‘8) d8 . (11)

where so - size at birth. An animal which minimizes u(s)/g(s) at each

size thus maximizes its probability of reaching each size, in

particular the probability of reaching reproductive size.

The simplicity of the rule (minimize u/g) suggest that animals

may evolve an ability to make decisions approximating optimal

behavior. For example, if an animal must choose between two habitats,

the first of which confers twice the growth rate as the other, the

animal should just choose the first habitat unless it is twice as

dangerous (u twice as large). That is, "choose habitat 1 if ullgl <

“2/82" can be rewritten as, "choose habitat 1 if gI/gz > ul/uz." The

animal does not have to judge the absolute levels of u and g in each

habitat, only the relative values of growth and "danger". Given the

repeatedly demonstrated ability of animals to make some kind of

decision when foraging rate and mortality rate conflict, this

particular rule does not appear difficult to follow, whether through

the evolution of inflexible behavior or the evolution of an ability to

facultatively balance costs and benefits through some process. The

simplicity of the rule also suggests that tests of this model are

achievable if growth and mortality rates can be experimentally

determined for alternate habitats.

The problem of ontogenetic habitat shifts can now be solved for

juveniles. Figures 6a and 6b are solutions to the problems in Figures

1 and 2. Here, the switches are shown to be discrete, though a period

of use of both habitats might be predicted in some cases (see below).
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(a) Optimal size (SOpt) for switching from habitat 1 to

habitat 2. 3* is the size at which an animal maximizing

its growth rate would switch. (b) Optimal switching sizes

between plankton and vegetation. Fitness is maximized by

foraging on plankton between sizes so and 31, foraging

among vegetation between sizes 31 and 32, and returning to

the plankton at size 32.
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Other problems can be solved if the options can be depicted in the U-g

plane (either as a continuous function, as first modelled, or as any

other set of points, since "minimize U/g" is the general rule for

juveniles). For example, if u and g can be depicted as a function of

movement rate, distance from a refuge, or duration of a crepuscular

foraging bout, the Options can be plotted in the u-g plane. The

optimal solution can then be found graphically by increasing the slope

of a line through the origin until it meets an option.

When would discrete habitat shifts be predicted? Graphically,

mixed habitat use might occur when D(S) is a convex function, but use

of only one habitat would be expected if u(g) is a linear or concave

function. This is illustrated in Figure 7. In the original statement

of the problem, the concavity of u(g) was taken to be a result of

growth inefficiencies, i.e. that growth rate is a concave function of

foraging rate, at high foraging rates. When growth is strongly

food-limited, p(g) may be approximately linear. Thus, we might expect

discrete habitat shifts during periods in the life history in which

growth is strongly food-limited.

Other factors which would favor habitat specialization include a

cost (in energy or mortality) of transit between habitats and reduced

foraging efficiency, due to short-term learning effects, when two

habitats are used. Both of these effects are illustrated in Figure 8.

The displacement of g downward for a mixed strategy represents a

travel cost, and the "sag" in g represents a foraging rate depression

from short-term learning effects, i.e. over some range, the animal's

foraging rate in a habitat is an increasing function of the time spent

there during that day. Mathematically, U is no longer a function of
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Figure 7. (a) Illustration of habitat specialization when u is

linear in g. The "corners" each represent exclusive use of

a habitat. (b) choice of an intermediate growth rate (use

of both habitats) when u is convex.
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An example of added complexity in theIJ-g plane: the

effect of travel costs and short-term learning on mortality

and growth. Both factors favor habitat specialization.

(a) Energetic travel costs are depicted as displacing the

growth rate downward. Short-term learning effects are

represented by a "sag" in the growth rate, depicting a case

in which an animal's foraging rate while in a habitat is a

function of the time Spent there. (b) The dashed line

represents no travel or learning cost. The travel cost

"detaches" the line and moves it to the left. The learning

cost makes it bend. Both effects make a mixed strategy

unlikely.
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g, but the graph in the u-g plane is sufficient.

Having seen that the optimal behavior is the behavior which

maximizes survivorship to each size, and that an animal does this by

minimizing u/g (or maximizing g/u) at each size and age, it is worth

noting what the strategy does not do. First, it usually does not

maximize the probability of survivorship to each age, £(x). For

example, if au/as a O and 3u/3g > O for all sizes, an animal would

maximize its survivorship (to each age) by not growing at all.

Second, it is not the strategy which "projects" the maximal biomass of

the cohort into the next day. This strategy can be approximated for

small u and g as maximizing y - (l-u)(s+g). Setting ay/ag - 0 yields

Bu/Bg a (1-u)/(s+g). This strategy would result in acceptance of a

higher marginal risk (higher Bu/ag) by small animals and lower

marginal risk by large animals than the optimal strategy. Third, it

is not the same as maximizing the expected gain in cohort biomass

during a day. This can be approximated by maximizing y = (l-p)(g),

and setting ay/ag = 0 yields Bp/ag = (l-p)/g. Since 1-11> g for small

u, this strategy would result in acceptance of a higher marginal risk

by all sizes.

Optimal Decisions for Adults
 

For adults, the condition is Eq. 9. For small values of e‘Db/AD,

the condition is very close to the condition for juveniles; as

e’Db/AD increases, the condition diverges from that for juveniles.

What is the meaning of the term e‘Db/XD? The expression e'Db is

the rate of offspring produced by a cohort of age x. It turns out

(see below) that AD can be interpreted as the negative of the expected

number of future offspring produced by the cohort. Thus, the term
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e'Db/AD is a measure of the ratio of present and future reproduction.

To see that AD is the expected number of future offspring

produced by a cohort, first recall that AD(T) - 0. From Eq. 7,

A - A

D(T) D(O) +'£T e‘D(X)b(x)dx. Since this integral is just R0 = l .

AD(O) - -1 (- -Ro). Thus AD(x) begins at -1, is constant for

juveniles, and upon onset of reproduction approaches zero as age

progresses. At age x, AD(x) - AD(O) + 5x e'D(Y) b(y)dy -

- gCZ-D(y) b(y) dx + ofx e'D(y) b(y)dy, where y is a dummy variable.

Thus,

mm = - xf"°e=-D<>'> b(y)dy (12)

This shows that AD(x) is the negative of the cohort's expected

reproduction.

Defining R(x) as the cohort's expected future reproduction,

R(x) = - AD(x), so Eq. 9 can be rewritten as

_33 a U-e’Db/R

as g (13)

Alternatively, define V(x) as the reproductive value of an animal of

age x. Then V(x) - R(x)/2(x) - R(x)/e‘D(x) - - AD(x)/e'D(x), and

Eq. 9 can be rewritten as:

filL..E_Z_llfl (14)

38 8

Equations 13 and 14 emphasize that the solution for adults is

similar to that for juveniles, but the acceptable marginal risk is

"discounted" by the ratio of present to future reproduction. A

graphical relationship is represented in Figure 9.

For juveniles, the optimal growth rate at each size depends only
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Figure 9. Optimal growth rate for adults. The optimal marginal risk

(Bu/33) for an adult is less than that for a juvenile with

the same u(g) for a given size. Starting with the juvenile

solution, au/Bg - u/g, the adult relationship can be viewed

as (a) reducing Bu/ag until Bulag - (u-b/V)/g, or (b)

drawing a new function, (u-b/V)/g, and finding the tangent

through the origin, at which 3(u-b/V)/3g - (u-b/V)/g. (a)

and (b) are equivalent because 3(u-b/V)/3g a Bu/Bg, since

the derivative is evaluated with the state and auxiliary

variables, and hence b/V, held constant.
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upon the growth and mortality rates extant at that size, but for

adults, AD(x) (or R(x) or V(x)) must also be determined. The value of

AD(x) depends upon the growth, mortality, and birth rates at all other

adult sizes. Since much more information is required to depict

adults' optimal behavior, quantification of optimal growth rates in

experiments will often be more difficult for adults than for

juveniles.

Increasing And Declining Populations

In an increasing or declining population, the task is to find the

behavior which maximizes r in the equation,

1 '3 {)Te-I‘X £(
x)b(x)dx (15)

This problem is mathematically closely related to the

density-dependent case, though conceptually the problems differ. In

the density-dependent case, operationally, r was set equal to zero,

the strategy which maximized the integral in Eq. 15 was determined,

and it was assumed that density-dependent processes must adjust R(x)

and b(x) so as to make Eq. 15 true (i.e. R0 - 1). In the problem of

increasing or declining populations, the strategy which maximizes the

integral is found, where the optimal strategy is specified in part by

r, and then r is adjusted so as to make Eq. 15 true (see Leon 1976,

Goodman 1982).

Mathematically the problem is to find the growth path, g(x),

which maximizes

T

J I of e-rx e"D(x)b(x)dx (l6)
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subject to the constraints on the state variables, Eqs. 2 and 3. The

problem can be substantially simplified by introducting a new state

variable, z(x), defined as z(x) - rx + D(x). Then Eq. 16 can be

written as

T

J: {, e-z(x)b(x)dx (17)

Noting that dz/dx = r + u, the Hamiltonian and associated equations

are

H = e-zb + Az(r+u) + Asg (18)

%3= 2%4‘As (19)

-E;; s —«%% = e-zb (20)

The introduction of z(x) has allowed the problem to be written in an

autonomous form rather than the nonautonomous form in Eq. 16. In

fact, as before, the Hamiltonian is constant and equal to zero.

Solving Eq. 19 for Bu/Bg yields 3u/3g - - As/Az, and solving Eq. 18

for As and substituting into the above expression for Bu/Bg yields

a“ (u + r) + e'2 b/Az

15E... 3
(22)

 

The behavior of A2 is analogous to the behavior of 8D in the

equilibrial density-dependent case. For the value of r which results

in J - 1, 12(0) - -l, dz/dx - O for juveniles, Xz approaches zero as x

becomes large, and *2 (T) = 0. Also, the reproductive value, V,
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equals -(Xz/e-z); the term e-zb/Az in Eq. 22 can be written as b/V.

Thus, this "density-independent" case differs from the equilibrial

density-dependent case only in that r # O in Eq. 22.

For juveniles, the rule thus becomes "minimize the quantity

(11+ r)/g at each age (size),' where r is the rate of increase of the

optimal strategy. When r > 0, the minimization of (u + r)/g becomes

more nearly equivalent to the maximization of g; i.e. an animal should

accept greater mortality risk and decrease its time to maturity (and

fecundity at each adult age) relative to the density-dependent,

equilibrial case, (r - 0). When r < 0 , the opposite is true; the

animal should reduce its daily mortality rate with the effect of

slowing its growth rate and lengthening its age at maturity. Thus,

compared to juveniles in a density-dependent population near

equilibrium which maximize fitness by maximizing survivorship to each

size, animals in an increasing population should tend towards being

"bold" "growth maximizers," and animals in declining populations

should tend towards being "timid" "mortality minimizers."

Conclusion

The ways in which animals respond to predators have been of

interest to animal behaviorists and ecologists for some time, but the

development of a testable predictive basis has lagged behind the

recognition of the question's evolutionary and ecological importance.

Certainly, the major impediment to the development of such a construct

has been that the tradeoff between growth and mortality involve

benefits and costs expressed in different units. The simplicity of

the central result for juveniles, "minimize u/g, is encouraging given

the initial complexity of the problem. It is also encouraging that
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this simple rule is "central" with respect to temporary disturbances

from equilibrium; in increasing populations, natural selection will

favor greater risk-taking, and in declining populations, it will favor

less. Of course, the particular form of perturbations may influence

long-term strategies (e.g. Turelli and Petry, 1980), but the rule

appears to be a good starting point for density-dependent

size-structured populations near equilibrium.

In addition to quantitative predictions of habitat use, the model

suggests some qualitative results which are perhaps not obvious a

priori. First, as developed earlier, rather discrete habitat shifts

are expected at sizes at which growth is strongly food-limited, but

not at which growth is not strongly food—limited in at least one

habitat. Second, if "background" mortality rates in two habitats are

increased by a constant, an optimizing animal may shift from the safer

to the more dangerous habitat. Graphically, this can be seen in Fig.

7(a) by uniformly raising or lowering u(g). However, if u is

multiplied by a constant, the solution is unchanged. Third, given the

same u(g) function for a juvenile and an adult, the adult should adopt

a lower marginal risk (an/3g) than juveniles. However, this does not

necessarily mean that the adult would, for example, forage for a

shorter time, since it must produce offspring ("maintain" the.

prescribed b (8)). A model incorporating reproductive effort could

provide more complete predictions of adult foraging behavior relative

to juveniles (see below).

Some previous work provides a basis for describing optimal

behavior in populations which are not size-structured. Pulliam, Pyke,

and Caraco (1982) have derived and tested a predicted tradeoff between
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feeding and scanning for predators by flocking birds, under the goal

of minimizing mortality from either predators or starvation. Katz

(1974) described annual patterns of foraging rates which would

minimize the total time spent foraging during the year, and listed

some alternative criteria. Craig, DeAngelis, and Dixon (1979)

presented a similar model with the objective of minimizing total time

spent handling prey. Pearson (1976) developed a model of optimal prey

selection under the objective of maximizing the energy gain per

mortality cost during a foraging bout; this criterion maximizes the

total energy gained over the lifetime of an animal with no age— or

size—dependent properties, and is reminiscent of the minimization of

u/g in juveniles near equilibrium. Hopefully, the present paper,

together with the above work, will provide starting points which

approximate the tradeoff in many species.

When discussing the problem of habitat selection under mortality

risk, a question often raised is whether animals are capable of making

the sort of decision suggested by the theory developed here. The

question can be divided into two parts. First, can an animal make an

appropriate decision, given all necessary information (mortality and

growth rates of options)? Second, can an animal obtain the necessary

information in the first place?

To answer the first question, experimentation is necessary. Some

tests with centrachid fish are in progress. .A priori, given that the

fish have accurate information on alternatives, I see no strong

impediment to the evolution of appropriate behaviors. The behavior of

many animals is obviously influenced by "fear" and "hunger,' and these

motivations must be integrated in some way to effect a behavior. I
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would expect natural selection to select for particular integrative

processes which maximize fitness. The theory presented here is a

beginning in the description of the particular integrative process

which does maximize fitness.

The second question, that of obtaining information on which to

make decisions, certainly can present major difficulties to animals.

To respond facultatively, an animal must assess at least relative

mortality risk and foraging rates associated with different options.

It does appear that many animals can assess and compare different

foraging rates, and behave in such a way as to approach maximization

of their foraging rate (e.g. Krebs 1978; Werner, Mittelbach, Gilliam

and Hall 1983), but the assessment of mortality risk probably presents

a more difficult "sampling" problem. Especially when predators are

seldomly encountered, information on mortality risk may be both rare

and highly variable. When information is impossible or expensive to

gather and process, and/or the benefit of facultative responses is

small due to constant conditions, rather inflexible behaviors may

evolve. When information can be gained at small cost, and/or

conditions change often, evolution of more plastic behavior may occur,

as has now been documented for several species.

The bluegill may exhibit both types of behavior at different

points in its ontogeny. As outlined earlier, upon hatching from eggs

laid in nests in the shallow littoral zone, bluegill fry swim to the

limnetic zone of lakes. At about 10-20 mm standard length, they

return to the littoral zone. Since visual sensory abilities are

limited at these very small sizes, the fry may not assess the presence

of predators at all, and the timing may be inflexibly set by natural
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selection. However, at larger sizes (ca. 35 mm, one year old fish in

the experiment by Werner 35 El, 1982b), bluegill sunfish are known to

assess predation risk and respond facultatively. Direct underwater

observations suggest to me that in lakes and ponds with somewhat clear

water, fish routinely encounter predators on a daily basis, and likely

form some sort of estimate of danger in various habitats. In lakes

with less opportunity for visual assessment, habitat selection may be

less flexible, and might depend in part upon an evolved affinity for

physical structure. The affinity, which might decline with fish size,

could be integrated with information on foraging rates to effect a

habitat choice.

In the model presented in this paper, it has been assumed that

u(g,s) is time-invariant and that fecundity, b(s), is continuous and a

function of size. This has allowed an interpretable analytical

solution from which the impact of alternative assumptions can be

explored. For example, seasonality of growth rates and/or mortality

rates for a given behavior can be summarized by making n a function of

age as well as growth and size. Seasonality in birth rate can

similarly be introduced. If particular forms of the seasonality are

assumed, specific cases are solvable in principle. One might expect,

for example, that animals would accept a higher marginal risk at times

immediately preceeding a predictable decline in resource levels if an

increased size during the decline confers some benefit; e.g. if the

mortality rate in winter is negatively size-dependent, an animal might

accept a higher marginal risk in the preceeding summer. Similarly, if

resources are expected to increase in the near future, allowing a

lower mortality rate for a given growth rate, an animal may "wait out
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the storm" by temporarily accepting a low marginal risk (or even

shrinking). Reproductive effort questions could also be explored by

both making g and b control variables, and compactly describing the

relationships between growth, fecundity, size, mortality, and perhaps

age in a single function, g(g, b, s, x).

Hopefully, the beginning presented here will prove useful in

exploring community-level interactions between size-structured

populations. The development of Optimal foraging theory in the 1970's

has provided what appears to be a powerful tool in the prediction of

resource utilization by animals unconstrained by mortality risk. If

the theory developed here and modifications of it prove useful in

predicting habitat use, the essential tools will be available to

predict both habitat use and prey utilization within a habitat by

species in a community. This would provide a more powerful

alternative to exhaustive experimentation and "intuition" in exploring

the impacts of species introductions (or removals) and resource

changes in a community, and could provide predictions of evolutionary

directions in extant or perturbed communities.
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CHAPTER 2

Recruitment of a piscivore through a competitive bottleneck:

Competitive effects of bluegill sunfish on juvenile largemouth bass

INTRODUCTION

Fish, as many other animals, usually exhibit dramatic niche

shifts during their ontogeny. These shifts usually involve changes in

diet and often habitat use, and results in an individual's

encountering a series of different competitors and predators as it

grows. This complexity renders suspect any blanket classification of

a species as being another's predator, prey, or competitor since the

interaction may be very age- or size-specific.

In this paper, we investigate a case in which a species, the

largemouth bass, competes with at least some size-classes of another

species, the bluegill sunfish, early in its life, and then preys upon

the same species at larger sizes. Werner (1977) and Keast (1977) have

noted that many fish species which eventually become piscivores pass

through stages during which they consume mainly zooplankton and/or

insects, as commonly do all sizes of species on which the piscivorous

individuals prey. This suggests the possibility of a competitive

"bottleneck" in which an increase in the density of the "prey" species

may decrease the growth and survivorship of small individuals but

increase the growth and survivorship of large individuals in the
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"piscivorous" population, therefore altering the population's age and

size structure. This effect would be enhanced if the "piscivorous"

species' morphology rendered it a poor competitor on small

invertebrate prey. The possibility of the complete exclusion of bass

or other "piscivores" from a community due to a competitive bottleneck

is raised, similarly to the size-specific developmental bottlenecks

between crustacean competitors described by Neill (1975). While the

exclusion of a species is a very dramatic example of a competitive

bottleneck, more subtle effects on a species' age and size structure

may commonly occur, affecting not only the "predator's“ population

structure but its impact on other members of the community. The

survival of small fish is often thought to strongly influence the

strength of a year-class of fish (e.g. Cushing 1974, Kramer and Smith

1962), and reductions in the growth rate of small fish might strongly

affect early survival (next section).

The interaction we investigate is between the largemouth bass

(Micropterous salmoides) and bluegill sunfish (Lepomis macrochirus),
 

 

two dominant fish in lakes through much of Eastern North America.

There is a huge literature on the life histories and especially diets

of both of these species (reviewed in Carlander 1977), but nearly all

of the studies deal with a single species or do not provide

information on the nature of size-specific interactions (but see

notable exceptions below). The bass-bluegill system has usually been

viewed as a predator-prey interaction, but at small sizes largemouth

bass feed upon invertebrates, as, typically, do all sizes of

bluegills. We know of no detailed work on the simultaneous diets of

specific sizes of small bass and bluegills other than the work by
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Mullan and Applegate (below) and the work reported in this paper.

However, single-species studies indicated the potential for extensive

overlap in resource use.

Life histories of course vary somewhat betwen lakes, but the

basic pattern is as follows. Largemouth bass spawn at a water

temperature of about 16°C and the male tends the nest and fry until

the fry reach a length of about 10-25 mm Standard Length (SL, the

length from the anterior tip of the mandible to the end of the

vertebral column; essentially, the length excluding the caudal fin).

The bass usually switch to progressively larger prey as they grow,

first consuming small zooplankters (e.g. rotifers, Bosmina, copepod

nauplii), then larger zooplankters (e.g. Daphnia, Sida, copepods)
 

initially at 8-12 mm, then sometimes insects or amphipods at initially

10-30 mm, and finally switch to fish prey at 25-90 mm. In Michigan,

bass are commonly about 100 mm long at one year of age and are largely

piscivorous. Bluegills first spawn at a water temperature of about

20°C, which in Michigan commonly occurs about three or four weeks

after the spawning of the bass. Unlike the bass, bluegills commonly

continue to spawn for several weeks after the initial activity.

Bluegill fry are not tended by the male after leaving the nest and

apparently travel to the limnetic regions of lakes and feed upon

zooplankton until they reach 8-20 mm SL, at which time they usually

return to the littoral zone. They then consume zooplankton, insects,

and other invertebrates thereafter, switching habitats on a seasonal

and size-specific basis (Mittelbach 1981). In Southwest Michigan,

bluegills are commonly about 30 mm SL at age I, 60 mm at age II, and

80 mm at age III.
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In addition to the diet similarities noted above, there is some

more direct evidence that competition occurs between juvenile

largemouth bass and other fish. Applegate and Mullan (1966) and

Mullan and Applegate (1968) documented the diets of bass and other

fish in two reservoirs and noted that in the newer reservoir bass

between 20 mm and 40 mm SL utilized chironomid larvae as a "bridge”

between diets of zooplankton and fish. In the older reservoir, the

chironomids were essentially absent from the bass diets although

bluegills and other centrarchids consumed midges throughout the year.

The bass grew faster in the new reservoir. Von Geldern (1971) noted

an inverse relation between the density of adult threadfin shad in a

California reservoir and the size of largemouth bass year classes; he

suggested that competition for food or interference with spawning

success may be responsible. Von Geldern and Mitchell (1975) and Fast

.25 El. (1982) showed that the first-year growth rates of largemouth

bass decreased dramatically following the introduction of threadfin

shad into California reservoirs, and that the growth rates of older

bass increased concurrently.

This type of interaction may be common in other fish, although it

remains largely uninvestigated. Crossman (1959) and Larkin 35 El’

(1957) reported some effects of the introduction of the redside shiner

into Paul Lake, British Columbia, which included a decrease in the

growth rate of rainbow trout less than about 120 mm fork length and a

probable increase in the growth rate of rainbow trout over about 200

mm. Svardson (1976) noted that species introduced into Scandinavian

lakes were more likely to substantially impact resident species if the

invader was more planktonic than the resident. One explanation
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offered by Svardson is that the invader competed with the young of the

resident species. Maly (1976) has suggested that a competitive

bottleneck may occur among c0pepods, and Neill and Peacock (1980) have

shown experimentally that an increase in algal productivity increases

the recruitment of herbivorous Cyclops nauplii to the carnivorous
 

adult population.

This paper is organized as follows. First, we develop a simple

representation of the effect of reduced individual growth rates on the

recruitment of small bass to the piscivorous population. Then the

potential for competition is assessed by four measures: the relative

handling times on invertebrate prey, a survey of habitat use,

measurement of growth rates in two lakes with a comparison to maximal

growth rates when food is abundant, and documentation of diets in two

lakes. Finally, the hypothesis that the growth rate of small bass is

a function of the density of bluegills is tested in a pond in which

small bass are exposed to a gradient of bluegill densities.

GROWTH RATE AS A KEY PARAMETER

What follows is a simple abstraction of the effect of a reduced

growth rate on the survivorship through some size interval, such as

the size at commencement of feeding and the size at commencement of

piscivory. If the growth and mortality rates are taken to be

functions of the animal's size rather than its age, as appears to be

the case for fish at least at early ages (e.g. Ricker 1979), a simple

expression may be derived relating the survivorship through the size

interval following changes in the size-specific growth and mortality

rates.
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The survivorship of a fish from age x1 to age x2 can be described

by

- -&T2 u(x) dx

L(x1, x2) = e , (l)

where x = age and (x) = instantaneous mortality rate at age x (see

e.g. Hassell, 1978, Appendix I). If the mortality rate is explicitly

a function of size rather than age, we can rewrite u(x) as u[s(x)].

We can then change the variable of integration from age to size to

obtain an expression for survivorship from size s1 to size 32.

Equation 1 can thus be rewritten as

- fx(82) 11[s(x)]dx

le<s1), x<s2)1 = e “(81’ (2)

Changing the variable of integration yields

_ £52 u(s)/(dS/dX) d3
L(Slp 82) = e l

(3)

Since ds/dx is the growth rate, g(s), we have

- £82 u(s)/g(s)ds

e 1 <4)L(Sl, 82)

VanSickle (1977) has derived this equation by a different method.

Intuitively, Eq. 4 represents survivorship across a size interval

because u(s)/g(s) is the instantaneous probability of death at a

particular size, since that probability is the product of D(s) (i.e.

deaths/time) and the inverse of the growth rate (a measure of the time

spent at that size).

Assume some arbitrary "baseline" state at which some values of

u(s) and g(s) occur (e.g. bass in the absence or a given density of
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bluegills). Now assume some change multiplies the growth rate by a

factor, c (c < l for a growth reduction). Then the new survivorship,

L', can be expressed as

-.fs2 U(s)/cg(s) ds

L' - e 81

- <1/c) {:2 u(8)/8(8)d8
= e

" {:2 u(8)/g(8) NC

= e 1 (5)

Since the expression in brackets is just L(sl, 82), this yields

(omitting the size range for compactness),

L' = L(1/C) (6)

This equation relates simply the survival through the size

interval before and after the reduction in growth rate. For example,

if the growth rate is reduced to one third its former level, the new

survivorship is just the cube of the former survivorship.

The qualitative message from Eq. 6 is this: at parts of the

animal's life history at which survivorship is already low, reductions

in the grOWth rate have a much larger impact on survivorship than at

points at which survivorship is initially high. For example, if c -

1/3 and L - .90, then L' - .73, a reduction of 19%. However, if L =

.01, L' - .000001, a decrease of 99.9902. The effect of the decrease

in growth rate is depicted in Figure 1 for various values of c and L.

Little is known of the size-specific mortality rates of fish during

the first year, but it is clear that the survivorship between first

feeding and piscivory lies near the origin in Figure 1 for bass
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Figure 1. Percent reduction in survivorship through a size (not an

age) interval due to a reduction in growth rate. L(Sl, 52)

is the survivorship prior to the reduction in growth rate.

c is the value by which the growth is multiplied.
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(Zweiacker st 31. 1975) and other fish (Braum 1978).

The impact of an increase in the size-specific mortality rate,

u(s), can also be assessed by the above method. By a derivation

analogous to that shown above, if u(s) is multiplied by a factor k,

Eq. 6 still applies if k/c is substituted for l/c, and Fig. 1 also

applies if the same substitution is made. Large bluegills and other

centrarchids are known to prey upon bass fry (e.g. Mullan and

Applegate, 1967; pers. obs.), so an increase in their density may have

a substantial "direct” effect on bass survivorship through a size

interval in addition to the "indirect" effect through the depression

of growth rate.

This representation is of course a vastly simplified

representation of the complex biological processes occurring during

the early life history of fish. Eipper (1975) reviewed many biotic

and physical factors which are thought to affect early survival of

bass and other fish, and there clearly are abiotic factors such as

wave action which can cause large variation in survival. The

deterministic treatment presented above is intended only to provide a

starting point from which to assess the impact of decreased growth

rates within the context of many other factors thought to affect

mortality, and to motivate the investigation of growth rates as a key

factor in an idealized deterministic system. The approach is most

directly applicable to systems in which density-dependent, biotic

processes are strong, but in more stochastic systems it can also

provide a starting point for assessing the effect of reduced growth

rate on the mean value of survivorship.
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METHODS

Handling times were measured for fish feeding on Simocephalus and
 

Coenagrionid damselfly nymphs. These two prey were chosen as

representative of littoral zone cladocerans and insect nymphs,

respectively. The Simocephalus were cultured in the laboratory and
 

sorted with sieves to select individuals of 1.8-2.2mm length, mean =

2.0mm. The damselflies were collected from ponds at the Kellogg

Biological Station. Two sizes were used: 5.0-7.0mm long, excluding

the anal gills, and 9.0-11.0mm long. These sizes will be called 6mm

and 10mm damselflies, respectively.

Handling times on these prey were measured for bass of lengths of

25, 35, 45, 55, 70, and 138mm SL, and for bluegills of lengths 25, 35,

45, 55, and 80mm SL. The handling times were measured in ZOO-liter

aquaria while a fish foraged for a given prey size among a dense bed

of Chara. The handling times were measured with an event recorder and

were taken to be the time between the initial attack of a prey to the

resumption of searching behavior.

Dry weights of the prey and the fish were calculated from

regressions of the form W = aLb, where the length measurement was in

mm and the weights in mg or gm. The parameters were: Simocephalus
 

(mg), a - .01737, b = 2.17 (Ivanova and Klakowski 1972); coenagrionids

(mg), a = .00124, b - 2.74 (unpublished); bass (gm), a = 0.00000170, b

= 3.2157 (regression for bass from Three Lakes and Lawrence Lake);

bluegills (gm),a = .00000676, b = 3.043 (Lawrence Lake).

The habitat use of the fish was recorded in Lawrence Lake

(described below) on July 25 and 26, 1978. The method was as

described in Werner, gt il’ (1977) and was taken along transect II in
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Werner st 31. Divers counted all bass and bluegills along a 100m

transect and classified the location of each fish on two axes: the

"position" and the "microhabitat." The "position" is a measure of the

distance from the shore and hence the depth of the water. Position 1

was closest to the shore and was on a shallow (0.5m water depth) bench

without vegetation cover. Positions 2 and 3 were in about 1m of water

depth on the bench and at its point of contact with the beginning of

the sloping bottom, respectively. Positions 4 and 5 were at depths of

2m and 4m, respectively. Except for Position 1, the area was covered

with a dense growth of primarily Scirpus subterminalis. The
 

"microhabitat" measurement refers to the position of the fish in or

above the vegetation. The fish were recorded as being in the lower

vegetation, upper vegetation, or at some height above the vegetation

at 0.25m intervals.

Fish were collected for growth and diet studies by seining in

Lawrence Lake, Barry County, Michigan, and Three Lakes, Kalamazoo

County, Michigan. Lawrence Lake is a mesotrophic lake, 4.9 hectares

surface area, and 12.6m maximum depth. Three Lakes refers to a chain

of three lakes; we collected fish in the middle lake of the chain.

The lake is more productive than Lawrence Lake, is about 10 ha in

surface area, and has a maximum depth of 10m. The vegetation along

the sampling area on the south side of the lake is predominantly

‘Ehara. Fish were collected between 0900 and 1100 h on a weekly basis.

The fish were killed with an overdose of tricaine methanesulfonate and

preserved in 10% formalin. Stomach contents were identified and prey

length measurements taken. Length-weight regressions were used to

convert the measured lengths to weights.
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The maximal growth rates of bass were estimated by placing bass

fry from a holding pond into a fishless pond at the Kellogg Biological

Station. Approximately five hundred 15.5 to 19mm bass fry were

introduced into a circular pond (29m diameter, 1.8m deep) with

abundant zooplankton and insect nymphs. Bass were sampled weekly for

growth and resources qualitatively monitored for depletion. Some

resource depletion became apparent by July 9, at which time 198 bass

were transferred to another pond. The stomachs of the bass were

distended throughout the experiment. The length (mm)-weight (gm)

power function regression had the parameters, a = .0000007863, b =

3.491.

The instantaneous growth rates were calculated for fish from

Lawrence Lake, Three Lakes, and the maximal growth experiment. The

calculation of the instantaneous rate between day i and day j was

calculated from r = [1n (weight at i)-ln(weight at j)]/(days between

samples). In each case, the growth rate of a fish of the mean length

in the cohort was calculated. Thus, on each date, the mean length of

the cohort was calculated, the weight of a fish of the mean length was

calculated, and that value was entered into the growth rate equation

together with the weight of the mean fish length of the previous

sample. This growth rate was then estimated to have applied to a fish

of the standard length which was at the midpoint of the two standard

lengths used in the calculations.

The bass-bluegill competition experiment was performed in an

experimental pond of the same dimensions as the ponds used in the

maximum growth experiment. To simulate conditions in local lakes, a

ring of cattails was removed from the pond, and the dense growth of
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Potamogeton was thinned to approximate densities in local lakes. The
 

pond was then quartered with partitions made of 3mm fish seines, and

bluegills of a mean length of 34.3 mm (sd = 2.80) were introduced in a

gradient of densities: 300, 500, 1000, and 1500 per quadrant. 250

bass (27.5mm, sd = 2.59) were placed into each quadrant. Samples for

growth and diet calculations were taken weekly. Only a cursory

treatment of the experiment is given here; a more complete account is

in preparation.

RESULTS

HANDLING TIMES

On prey ranging from 2mm Simocephalus to 10mm damselflies, a bass
 

of a given standard length took a greater mean time to handle a prey

than did a bluegill of the same length. Figure 2 shows the

regressions for both species and the original data for bass. The data

points corresponding to a (prey length)/(predator length) < 0.1 are

for Simocephalus and represent the mean handling time per prey during
 

a foraging bout; the points corresponding to a length ratio greater

than 0.1 refer to damselflies and are handling times on individual

prey items.

The regressions of handling time (H) on the ratio of prey length

to fish length (PL/FL) were fitted by a nonlinear regression algorithm

(program P3R in the BMDP computer programs series). This allowed the

regression line to better approximate the mean handling time rather

than the mean of the logarithm of handling time, which differed as a

result of the large variances in the data. The fitted equations were

as follows: bass, H = 1.68exp[6.438(PL/FL)], serial correlation

coefficient - 0.20, n - 388; bluegills, H = 0.80exp[7.904(PL/FL)],
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Figure 2. Handling times on Simocephalus and.damselflies for
 

largemouth bass and bluegills. Data points are the

individual values for the bass.
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correlation = 0.16, n = 129. Regressions of handling time on the

ratio of prey weight to fish weight (PW/FW) are: bass, H =

l.80exp[178.3(PW/FW)], correlation = 0.38, n = 388; bluegills, H =

O.80exp[516.7(PW/FW)], correlation = 0.26, n = 129, where both the

prey weight and the fish weight are expressed as mg dry weight.

The Optimal prey weight is taken to be the weight which minimizes

the ratio of mean handling time to prey weight for a given fish

weight; the variance in handling times is not considered in this

calculation, although in a more detailed treatment of foraging rates

the variance might alter the optimal value somewhat (Gilliam,

unpublished). The regressions of the form H = (a)exp[b(PW/FW)] have

the convenient property that the value of PW/FW which minimizes H/PW

for a given fish weight occurs at (l/b), or PW = FW/b. Therefore, the

above regressions estimate the optimal prey weight for bass to occur

at FW/l78.3 = 0.0056FW and at 0.0019FW for bluegills.

Figure 3 shows the optimal prey weights for bass and bluegills as

a function of their standard lengths, calculated from the above

relationships. For present purposes, the utility of the figure is to

suggest that a bass of a given length has the same Optimal prey weight

as a bluegill that is about ten percent longer. This is one way to

estimate the potential for the source of the most direct competition

from an array of bluegill sizes present.

It should be noted that in Figure 3, the Optimal prey weight

exceeds the weight of a 10mm damselfly for bass larger than 33mm and

bluegills larger than 36mm. Since invertebrate prey of that size are

usually rare in lakes, both fish species may in practice be limited

largely to invertebrates below the optimal prey size. If this is the
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Figure 3. Optimal prey weights for bluegills and largemouth bass.

Left curve: bass. Right curve: bluegill.
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case, the opportunities for segregation of bluegill diets by prey size

may be limited for bluegills of about 36mm and above. Thus, Figure 3

suggests that bass of about 33mm and perhaps smaller may compete

directly with most sizes of bluegills present in the littoral. It

should also be noted that the curves are extrapolated for optimal prey

weights above the weight of a 10mm damselfly, 0.68mg. Thus, while the

curves are appropriate for the original purpose of suggesting the

optimal sizes of invertebrate prey likely to be found in lakes, and

hence the fish sizes with similar optimal prey sizes, the curves may

not be appropriate for describing the optimal prey sizes of fish above

about 35mm.

HABITAT USE

Figure 4 describes the habitat use by young-of-year bass and four

size classes of bluegills in Lawrence Lake on the afternoons of July

26 and 27, 1978. The patterns were similar for the two dates and the

data are combined. In the microhabitat dimension, the bass were found

mainly in the upper half of the vegetation (predominantly Scirpus

subterminalis about 0.5mm tall). Young-of-year bluegills (O-25mm size
 

class) were found among and just above the vegetation. The 26-50mm

bluegills were distributed similarly to the bass, and larger bluegill

classes shifted progressively higher in the water column. Across

positions, the bass were distributed across all positions except the

unvegetated portion of the shallow bench. The 26-50mm and 51-75mm

bluegills showed a similar distribution to the bass. These results

are in general agreement with previous surveys (Werner 35.2}! 1977,

Hall and Werner 1977). Qualitative observations in 1979 and 1980

yielded the same general pattern. Mittelbach (1981) found that



Figure 4.
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Habitat use by largemouth bass and bluegills.

"Microhabitat" represents location in or above the

vegetation. LV - lower vegetation, UV - upper vegetation,

0-.25 = zero to 0.25m above vegetation. "Position"

represents distance from shore.



P
E
R
C
E
N
T

60"1

40"

20"

 

60-

40"

20-1

 

60‘

40"

20'l

 

60"

40--l

20‘

 

60"

401

20‘

 

1
:
.
E
— YOY BASS

 

 

36

26-50

51-75

86

76-125

LV uv 0‘ >

.25 .25

MICROHABITAT

 

 

 

 

 
1 .2 3 4 5

1

POSITION



69

bluegills larger than 75mm did not forage extensively in the littoral

zone in July; this is also consistent with the present data.

These results show that there is not extensive habitat

segregation betwen bass and 25-75mm bluegills in the littoral zone,

and that the 25-50mm (predominantly one-year-old) bluegills utilize

essentially the same areas as the bass.

GROWTH RATES

Figure 5 depicts the growth curves for cohorts of bass in Three

Lakes, Lawrence Lake, and the "unlimited growth" experiment in ponds.

On all dates, the fish in the ponds were substantially larger than in

the lakes. The sizes are plotted as lengths since fish length is a

more familiar quantity than weight; if the size were expressed as

weight, the difference between the lakes and the ponds would appear

even larger.

While Figure 5 might suggest a substantial depression of growth

rates below their maximum, the data are confounded by a difference in

spawning times in the lakes. By expressing the growth rates as a

function of the fish size rather than time, specific sizes at which

the growth rates are depressed can be identified.

The estimated instantaneous relative growth rates are shown in

Figure 6. The growth curves are somewhat irregular, as expected with

the estimation of growth rates from mean sizes of bass caught at

tabout one-week intervals. However, the data yield useful information

on the extent of growth depression at different sizes.

Three growth curves are shown for Lawrence Lake. The curve

designated LLBOS is a school of bass which we were able to locate

regularly early in 1980. After the school's diSpersal, we were able
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Figure 5. Mean largemouth bass lengths in a maximal growth rate

experiment (Ponds) and two lakes. 3L198O - Three Lakes in

1980. LL1980 = Lawrence Lake in 1980.
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Figure 6.

72

Instantaneous relative growth rates (day'l) of largemouth

bass in the maximal growth rate experiment (Ponds), Three

Lakes (3L1980), a school in Lawrence Lake (LLSOS), all bass

collected in Lawrence Lake (LL80) and Lawrence Lake in 1979

(LL79). The arrow indicates the point of transferral of

the fish from one pond to another.
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to identify individuals from the school over the next two weeks since

those fish formed a distinct, large size class relative to bass which

were spawned later. The calculated instantaneous relative growth

fluctuate somewhat, but it appears that the cohort grew at about

one-half the rates of the bass in the pond between the lengths of

about 22mm and 42mm. The second curve is designated by LL80. It is

calculated from the lengths of all fish captured on a date in Lawrence

Lake during 1980. At sizes < 28mm, the curve is identical to the

LLSOS curve. The "dip" at 36mm and peak at 41mm are not judged to

reflect real changes in the growth rate since the size-frequency

distribution was bimodal and the changes can be attributed to sampling

error in the proportion of fish near each mode. The overall trend

suggested by LL80 is that growth rates are depressed in Lawrence Lake,

and that the depression occurs across all sizes. The third curve,

LL79, is constructed from bass collected in 1979. Over the size range

collected, growth rates were substantially depressed.

The data for Three Lakes shows a substantially different pattern

from that of Lawrence Lake. At lengths up to about 33mm, the bass

grew at approximately maximal rates. At sizes > 35mm, growth rates

were somewhat depressed. In Three Lakes, therefore, neither inter-

nor intraspecific density-dependent growth appeared to occur at sizes

less than about 33mm.

The growth data therefore suggest a possibility for a competitive

bottleneck affecting bass in Lawrence Lake, but provides evidence

against such an effect in Three Lakes for small sizes, though the

effect might occur at larger sizes.
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DIETS IN LAWRENCE LAKE AND THREE LAKES

A summary of the diets of young-of-year bass in Lawrence Lake are

shown in Table 1 for each sampling date. As they grew, the fish

switched from a diet of copepods and Bosmina to a diet of littoral

cladocerans (Sida, Latona, Simocephalus) and insects and finally to
 

fish (centrarchid fry). The transition is depicted in Figure 7, in

which the diets of the cohort are plotted against the mean length of

the fish in the cohort on a date. The cladocerans act as a "bridge"

between small copepods and fish prey for bass between about 20mm and

30mm.

The diets of bass in Three Lakes were somewhat similar to those

in Lawrence Lake, as shown in Table 2. However, in Three Lakes,

Baetid mayfly nymphs formed the transition between the copepod and

fish diets. This is seen in Figure 8. Unlike Lawrence Lake, the

mayfly nymphs continued to contribute substantially to the diet after

the cohort reached 30mm in mean length.

In both lakes, the shifts in taxonomic categories coincided with

a shift to progressively larger prey. In Figure 9, the mean prey

weight in the stomach of each fish collected in Lawrence Lake is

plotted as a function of the individual's length. The dots represent

bass without fish prey; the x's represent bass with at least one fish

prey. The mean prey size is clearly strongly related to the size of

the fish, and over the summer the mean prey size spanned nearly five

orders of magnitude. Figure 10 shows the same relationship for Three

Lakes.

The presence Of the mayfly nymphs in the bass in Three Lakes

resulted in a smoother progression to larger prey than did the
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Table 1. Diets of young-of-year largemouth bass in Lawrence Lake,

1980, expressed as percent dry weight of total diet. To be

included in the table, an item must have comprised at least

five percent of the diet on at least one date. Values

rounded to the nearest percent, and values less than 2

percent omitted. Prey categories are, in order, copepods:

Cyclopoida, Calanoida; cladocerans: Bosmina, Sida, Latona,
 

Simocephalus; Chironomid larvae; Baetidae; centrarchid fry.
 

Date n mean SL Cycl Cala Bosm Sida Lato Simo Chir Baet Cent
  

6-16 8 13.9 45 40 7

6-23 9 16.2 15 63 16

6-30 12 23.8 6 43 15 6 10 13

7-8 10 31.1 19 11 3 2 2 61

7-14 12 27.1 5 4 4 81

7-21 10 31.6 3 7 2 86

7-28 10 35.7 3 4 3 85

8-4 10 36.0 4 95

8-12 8 45.9 99

8-26 9 51.7 99

9-26 10 65.1 99
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Figure 7. Diets of largemouth bass in Lawrence Lake.
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Table 2. Diets of young-of-year largemouth bass in Three Lakes, 1980.

Description as in Table l. Acro - Acroperus (a littoral

cladoceran), Cypr a Cyprinid fish.

Date n mean SL Cycl Sida Simo Acro Baet Cypr Cent
  

6-24 5 13.9 99

7-1 11 13.4 38 20 17 8 16

7-10 8 24.3 4 54 39

7-15 22 29.3 19 6 72

7-23 13 37.2 4 95

7-30 10 36.9 27 13 58

8-6 10 41.7 33 17 48

8-13 10 50.7 99

8-27 10 59.7 99

9-26 8 68.9 99
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Figure 8. Diets of largemouth bass in Three Lakes.
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Figure 9. Mean dry weight of prey in the stomachs of individual

largemouth bass in Lawrence Lake. The X's represent bass

with at least one fish prey. The E's represent fish with

empty stomachs.
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Figure 10. Mean dry weight of prey in the stomachs of individual

largemouth bass in Three Lakes. Symbols as in Figure 9.
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cladocerans in Lawrence Lake, as can be seen in a comparison of Figure

9 and Figure 10. Inspecting the mean prey weights of 20 to 30mm bass

in Lawrence Lake, it is seen that the weights fall mainly between 0.01

and 0.05mg. These bass were feeding mainly on Sida and other

cladocerans. The two bass in that size range with mean prey weights

of 0.1 to 0.2mg had Baetid nymphs in their stomachs, along with

littoral cladocerans. In Three Lakes, the mean prey sizes in the

stomachs of 20 to 30mm bass was shifted up by an order of magnitude

relative to Lawrence Lake. These mean weights reflect a diet of

Baetid nymphs, and the mean prey weights of 20 to 30mm bass in Three

Lakes is close to the Optimal prey weight of 0.4mg calculated from the

laboratory experiments. It appears that the presence of Baetids in

the diet of Three Lakes bass may be a major contributor to the

difference in growth rates between the Lawrence and Three Lakes fish.

The bluegill diets were substantially different from the bass in

both lakes, though this could not be anticipated from the handling

time data and the habitat use patterns, both of which suggested

substantial potential for diet overlap. Table 3 shows the diets of

25mm to 60mm bluegills in Lawrence Lake. Throughout the sampling

period, the diets consisted largely of chironomid larvae. However, a

substantial part of the diet consisted 0f.§1§2 and some Latona. Thus,

in Lawrence Lake, it appears that direct competition between bass and

bluegills occurs for the littoral cladoceran and chironomid larvae

resources. The low level of Baetids in the Lawrence Lake bass cannot

be attributed to their depletion by bluegills based on the diets of

the bluegills, since Baetids were hardly consumed over the sampling

period.
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Habitat surveys (Werner st 31. 1977 and unpublished data)

indicate that the density of 25 to 60mm bluegills is at least ten

times the density of young-of-year largemouth bass in Lawrence Lake.

Absolute consumption rates are not known for the fish, but even if the

25 to 60mm bluegills had only the same consumption rate (mg/day) per

fish as the 25mm bass, the total demand on the §1d3_population by the

bluegills would exceed the demand by the bass, given that §1d3_formed

12-522 of the bluegills' diets in July. This suggests that if the

density of §1d3_was depressed by foraging, the primary source of the

depression was from the bluegill population, and the levels of Sida
 

largely set by the bluegills rather than the bass. Phoenix (1976)

found that fish can strongly depress population levels Of littoral

zone cladocerans.

Table 4 shows the diets of 25 to 60mm bluegills in Three Lakes.

These fish also mainly consumed chironomid larvae. They also consumed

some littoral cladocerans and Baetids. While there was some overlap

with the bass' diets, it was not so large as in Lawrence Lake. Unlike

Lawrence Lake, neither the diet information nor the growth rates

strongly suggest the operation of a competitive bottleneck.

A QUANTIFICATION OF THE EFFECT OF BLUEGILL

DENSITY ON BASS GROWTH RATES

The prey partitioning between the bass and bluegills was

greater than the laboratory experiments and habitat use survey

suggested might occur, and it brings into question whether any

substantial competition is likely to occur. Therefore, the effect of

bluegill density on bass growth was quantified in an experimental

pond, as described in the Methods. Here, the main result of the
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experiment is presented; the experiment will be treated more fully

elsewhere (Gilliam, Wérner, and Hall, in prep.), but is included here

because of its direct relevance to the material presented so far.

Figure 11 shows the final mean weights of the bass and bluegills

after forty-seven days. The bluegill growth rates were strongly

density-dependent. The bass growth rate was not differentially

affected by bluegill density across the first two densities, then

declined markedly. In the presence of 300 bluegills, surviving bass

each gained an average of 1.0gm dry weight; in the presence of 1500

bluegills, they gained an average of 0.25gm. The initial mean length

was 27.5mm, and the final mean lengths were 56.3mm at the highest

density.

The reduction in growth rate occurred despite a degree of

resource partitioning similar to the lakes. At the lowest density,

the bluegills' diet consisted of chironomid larvae, 78%; Simocephalus,
 

7%; and cyclopoid copepods, 5%. No other prey composed more than 3%

of the diet. The bass' diets consisted of Baetidae, 35%;

Simocephalus, 14%; Ceriodaphnia, 11%; cyclopoid copepods, 10%,
 

calanoid copepods, 10%; and chironomid larvae, 7%. The major source

of overlap was on a littoral zone cladoceran (Simocephalus) and
 

chironomids, as in Lawrence Lake. At the highest density, the

bluegills' diets consisted of chironomid larvae, 65%; cyclopoid

copepods, 8%; Simocephalus, 4%; and gastropods, 4%. The bass' diets
 

were calanoid copepods, 42%; Baetidae, 27%; chironomid larvae, 11%;

and Simocephalus, 7%. Again, the main overlap was on Simocephalus and
  

chironomids.
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Figure 11. Final mean dry weights of bluegills and largemouth bass, as

a function Of the density of bluegills in an experimental

pond.
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CONCLUSION

The results of the pond experiment demonstrate the depression of

the bass' growth rates by increased bluegill densities, despite

substantial resource partitioning between the species. This increases

our confidence in the existence of a competitive effect of bluegills

on bass in Lawrence Lake, and contrasts with the apparent absence of a

strong depression in Three Lakes. The difference in the bass' growth

rates in Lawrence Lake and Three Lakes corresponds with the existence

of the Mayfly "bridge" in Three Lakes. The growth rates of fish have

previously been found to be closely related to the mean prey size

consumed (Paloheimo and Dickie 1966, Martin 1970, Kerr 1971, wankowski

and Thorpe 1979), so a causal relationship is a reasonable hypothesis.

It is not known to what extent the paucity of Baetids in the bass'

diets in Lawrence Lake is attributable to their depletion by bluegills

or other fish, but their absence does appear to contribute to the

bass' reduced growth rates and forces competition with the bluegill on

the Sida resource.
 

There is agreement between the expected impact of the bottleneck

and the population levels of bluegills and bass in the two lakes.

Censuses of the fish populations of Lawrence Lake and Three Lakes by

Werner £5 31. 1977 showed that the density of bluegills was an average

of 411 per 100m in the littoral zone of Lawrence Lake, but only 326 in

Three Lakes. This coincided with a lower bass density in Lawrence

Lake than in Three Lakes, 54 versus 66 per 100m.

The level of resource partitioning between the species was

greater than anticipated at the beginning of this investigation. The

bluegills' extensive consumption of chironomids is contrasted by the
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bass' low utilization. Applegate and Mullen's (1967) report of the

bass' use of the chironomids when the resource seemed to be abundant

suggests that chironomids can afford high growth rates to the bass.

Thus the low levels of chironomids in the bass' diets in Lawrence Lake

may signify another source of the bottleneck. Indeed, the chironomids

in the diets of the bluegills usually average between 0.1 and 0.5mg

dry weight, which is similar to the weights of the Baetids utilized by

the bass in Three Lakes. Preliminary laboratory observations have

indicated that bass lack an ability to cleanly extract chironomids

from tubes in sediments, while bluegills can do so. When feeding on

chironomids, bluegills would attack burrowed chironomids by sucking a

precise area of the sediments into its mouth, and then expelling the

sediments while retaining the chironomid. The bass, which has a

larger mouth than the bluegill (see illustrations and descriptions in

e.g. Werner 1977), would attempt to grasp the tube or a partially

exposed chironomid between the jaws, employing little suction; this

behavior was less effective than the bluegill's. The bass also

appeared to position itself less precisely than the bluegill; this

seems to be related to the more gibbose body shape of the bluegill

relative to the fusiform shape of the bass usually associated with

efficient and rapid swimming speeeds rather than maneuverability

(Alexander 1967).

Although the bass' larger mouth and fusiform body shape may

contribute to its poor utilization of chironomids, its morphology

clearly confers an advantage in capturing large or elusive prey, such

as fish. It is not known to what extent this ability may apply to

elusive invertebrates, such as the calanoid copepods consumed in the
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pond competition experiment, but elucidation of this question may

contribute substantially to our understanding of prey selection by the

bass. Timms (personal communication) has found that bass feed at a

substantially higher rate on Baetids in aquaria than do bluegills, and

that the bass dart at the mayflies and engulf them, while bluegills

attempt to maneuver precisely and employ suction, which is often

unsuccessful.

The foraging experiments on Simocephalus and damselflies also led
 

to an entirely unanticipated behavior which may ameliorate the

competitive effect of the bluegills somewhat. As reported more fully

elsewhere (in preparation), when foraging on these prey in Chara, the

bass would approach an area of the vegetation, lower the mandible, and

then close it rapidly, "blowing" water from its mouth. This would

often dislodge prey from the vegetation and resulted in the bass'

experiencing about twice the effective encounter rate (prey attacked

per second searching but not handling prey), though it also incurred

the reported higher handling cost than the bluegill.

It is not known to what extent this behavior is utilized in the

lakes by the bass. Even with this behavior, the reduction in the Sida

by the greatly numerically dominant bluegills would be expected to

contribute to the observed reduction in the bass' growth rates.

However, the "included niche” nature of the interaction with bluegills

suggests that the bass' contribution to the reduction of S193 levels

would not affect the bluegills as much as the bluegills affect the

bass. This is because §1d3_forms most of the diet of the bass using

that resource, but the bluegills usually utilize Sida_less than or to

about the same extent as chironomids.
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The reduction of the bass' growth rates in Lawrence Lake and the

pond competition experiment occurred despite the absence of large

bluegills. Mittelbach (1981) has shown that bluegills larger than

about 75mm forage largely on limnetic zooplankton during the summer

months. Mittelbach elucidated some of the implications Of the

presence of limnetic zooplankton in providing a means of resource

partitioning between large and small bluegills, and showed that the

absence of limnetic resources would be likely to result in greater

resource depletion in the littoral zone and stunting of the bluegill

population. This often happens in shallow ponds without distinct

littoral and limnetic areas. If this occurred, the small bass would

also be expected to be impacted by the same processes of resource

depletion and greatly reduced growth rates experienced by the

bluegills.

The size-specific reductions in growth rates have substantial

implications for the size structure of the population of bass and

other fish experiencing size-specific interactions. Since

depression of a cohort's growth rate at a particular size results in

a reduction in survivorship through that size interval, growth rates

at subsequent sizes would increase if the growth rates are

intraspecifically density-dependent; this would happen whether or not

the large sizes prey upon the species causing the growth reduction at

a smaller size. Thus a competitive bottleneck would usually act to

increase the subsequent survivorship and fecundity of animals

surviving the bottleneck. Thus, although the bottleneck acts to

reduce the number of fish in the piscivorous population, it may or may

not reduce the biomass and production of the piscivores. To this
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extent, the effect of a bottleneck is somewhat analogous to problems

approached in work on Optimal harvesting. The usual goal of

harvesting models is to find the amount of imposed mortality (usually

on the adult population, unlike the bottleneck) which maximizes

production. At low harvest rates, stunted populations of many slowly

growing individuals can result; at high harvest rates, low population

numbers of fast-growing individuals can result. Thus, the effect of

harvesting or a competitive bottleneck changes the demography of the

population, but the effects on total biomass and production depend

upon the severity of the density-dependent processes occurring.

The presence of a bottleneck is also expected to affect the

evolution of an animal's morphology. If the introduction of a

competitor severely lowers a species' survivorship through some size

interval, the species would be expected to evolve to increase its

growth rate through that size range. This could occur either by

character convergence (e.g. become a better planktivore) or by

character divergence (e.g. become an even better piscivore, and switch

to fish at an even smaller size). However, the evolution of

morphology at one size carries with it morphological changes at all

previous and subsequent sizes, since fish do not extensively rework

their morphology ontogenetically, except for a few examples of

metamorphosis. The ways in which fish and other animals

morphologically balance selective pressures at various points in their

ontogeny remains a virtually uninvestigated problem at the

intersection between the disciplines of evolutionary ecology and

development.

Finally, a graphical model is presented here which is motivated
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bv the bass-bluegill interaction. The intent of the model is to begin

to assess the potential population dynamics and equilibria in a system

in which one species preys upon another, but whose young incur

increased mortality as the ”prey" population increases. This is done

by severely abstracting the bass-bluegill and similar systems to

obtain a conceptually manageable, simple graphical representation as a

beginning from which the impact of the reintroduction of meaningful

biological features can be assessed.

The develOpment of the model is presented in the Appendix and the

resulting predator-prey phase plane is shown in Figure 12a, where H =

prey and P = predator. The model ignores size structure except for

the existence of "juvenile" predators whose survivorship is a

decreasing function of H and P. It also ignores time lags in the

system.

In Figure 12a, the prey zero isocline, denoted by H' = 0, is

drawn as in "standard" predator-prey theory (Rosenzweig and MacArthur

1963, Tanner 1975). However, unlike other predator-prey theory, the

predator isocline (P' - 0) forms a “dome." Under the dome, the

predator population increases; outside it declines.

Figure 12a tells us that there are two alternate stable

equilibria to which the populations can move in this abstraction. The

equilibrium on the left leg of the dome represents the “standard"

predator-prey equilibrium. The other (at H = K, P - 0) represents

exclusion of the predator by the prey. Thus, depending upon the

initial population densities, the system could behave like a

"standard" predator-prey relationship or result in the extinction of

the predator. If the prey exist at H = K, the system is
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Figure 12. Phase-plane representation of a predator and a prey

species, in which the offspring of the predators first

compete with the prey. See Appendix for assumptions. H a

prey, P - predator. The prey and predator isoclines are

represented by H' = 0 and P' - 0, respectively. K a

maximal prey density. (a) The predator-prey phase plane

(b) The relationship of R1 to H and the relationship of L

to H for three densities of P: 0, P1, and P2.
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non-invasable by small numbers of predators, but the predator can

invade if H is temporarily reduced to a level between the "window" at

the base of the dome or if it arrives in initially large numbers and

the population trajectories are attracted to the left leg of the dome.

In this context, it is interesting to note that much effort has been

given to trial-and-error studies of initial stocking densities of bass

and bluegill in farm ponds. Implicit in the justification for such

studies must be the assumption that alternate stable states exist, or

that initial densities strongly affect the population trajectories so

as to provide desirable though temporary population structures.

The above model of the bottleneck problem shows that the prey can

exclude the predator if it reduces L to a point at which 1/L > R1.

This necessary condition was clear from initial considerations of the

problem, but the questions of stability of the populations in that

region, multiple equilibria, and the nature of the stabilities at each

equilibria point were not clear. The addition of age and size

structure back into the model sets up time lags and hence "inertia"

into the trajectories of the populations, but the abstraction provides

a starting point from which those complexities can be assessed. As

investigations of size-structured population interactions continue, a

combination of simplified theory and illuminating, sobering field and

laboratory data appears to be essential for substantial progress on

this sometimes almost paralyzingly complex problem.
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APPENDIX

The abstraction results in the isoclines in Figure 12a and was

formulated as follows. The "prey" population level is described only

by their density, H; no age or size structure is assumed. The

"predator" population level is represented by the density, P, of

individuals large enough to consume the prey. The rate of change of H

is a function of H and P. Following standard predator-prey theory, in

Figure 12a the prey zero isocline is drawn as in Rosenzweig and

MacArthur (1963) and is labelled as H' - 0. The rate of change of P

is a function of H and P. P does not change if Ro - 1, and R0 is

taken to be L(H,P) ° R1(H). L(H,P) is the survivorship of the

predator's offspring (hereafter called "juveniles") to predatory size,

and is a decreasing function of H due to a bottleneck effect, and also

a decreasing function of P due to cannibalism (the feature of

cannibalism may be easily removed; see below). R1(H) is the expected

number of juveniles produced by a predator over its lifetime given

that it has reached predatory size, and is an increasing function of

H. It is assumed that the predator receives negligible benefit from

cannibalism and that the prey incur negligible cost from competition

with juveniles. Then P is stationary when L ° R1 - 1, or R1 - l/L.

In Figure 12b, R is drawn as are the values of l/L for three levels of

P. P is stationary at the intersections of R1 and 1/L; when R > 1/L,

P increases, and when R < 1/L, P decreases.
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This allows the construction of the predator isocline. The first

two points of the isocline can be drawn as depicted by the dashed

lines; at very low P, P increases if H is between the two points just

plotted. If H is higher, P decreases because the low survivorship of

the juveniles outweighs the high reproduction of the predators. If H

is lower, the survivorship of the juveniles is high, but the

reproduction of the predators is low since the density of prey is low.

The next points on the predator isocline can be plotted at the value P

and the value of H at which 1/L(P1) - R1. Similarly, at a predator

level of P2, there is a single point.

The predator isocline thus constructed will be called the "dome."

At any point inside the dome, the predator increases; at any point

outside, the predator decreases. If cannibalism is not assumed to

occur, then L depends only upon H, and the dome does not close at the

top; instead, there are two vertical lines positioned at the first two

points drawn on the predator isocline.

There are three equilibrium points in Figure 12a (in addition to

H = 0, P - 0). The first is the intersection of the left leg of the

dome with the prey isocline. The second equilibrium is the

intersection of the right leg with the prey isocline. This

equilibrium is unstable and is reminiscent of the unstable

two-competitor case in Lotka-Volterra competition theory. The third

equilibrium is at H a K, P = 0, which represents the exclusion of the

prey by the predator. Thus in this mixed predator-prey-competitor

system, one equilibrium occurs at which the predator—prey interaction

appears to dominate the dynamics of the system, and two equilibria

occur at which the competitive effects are salient.
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If the prey have little effect on L, the right leg of the dome

will intersect the H-axis at H > K.and the system will behave

essentially as a predator-prey interaction. The dome may also be

shifted to the left if the predator has alternative prey. Numerous

similar variations are left to the interested reader.
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