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ABSTRACT

THE ROLE OF THE INTERLEUKIN-1 FAMILY IN THE DEVELOPMENT OF DIABETIC
RETINOPATHY

By
Derrick ]. Feenstra

Diabetic retinopathy is one of the most prominent complications of diabetes
with approximately 67% of diabetic patients experiencing some form of retinopathy
(1). Currently there is no cure for the disease, and in order to develop more reliable
therapies a better understanding of mechanisms leading to disease onset and
progression are crucial. The aim of this dissertation was to identify underlying
mechanisms promoting diabetic retinopathy. Since there is a growing consent that
chronic retinal inflammation might be causing and driving the progression of
diabetic retinopathy the research was specifically focused on identifying potential
mediators and cell types participating in the inflammation, and testing whether
targeting specific inflammatory pathways will be a valid therapeutic strategy to
treat diabetic retinopathy.

First, in order to understand the role of inflammation in diabetic retinopathy
we examined the caspase-1/IL-13 pathway. We demonstrated that caspase-1
activity is increased in the retinas of streptozotocin (STZ)-induced diabetic mice at
10 and 20 weeks of diabetes. Interestingly, elevated caspase-1 activity was
prevented in diabetic IL-1R1-/- mice at 20 weeks indicating that sustained caspase-1
activity is dependent on feedback through IL-1R1. The same phenomena was

observed in Miiller cells in vitro. Furthermore, we identified Receptor Interacting



Protein-2 (RIP2) as a central regulator of caspase-1 activity induced by either high
glucose or IL-1p. It was further identified that this caspase-1 activity leads to Miiller
cell death both in vitro and in vivo.

To confirm that the activation of the caspase-1/IL-1p pathway is indeed
responsible for retinal pathologies associated with retinopathy we used the
galactosemic mouse model, another model of retinopathy leading to the same
vascular pathologies seen in the STZ diabetic mouse model. Knockout of caspase-1
prevented the formation of acellular capillaries in galactosemic mice. When Miiller
cells were treated with elevated galactose levels, caspase-1 was activated and led to
cell death. Interestingly, mediators associated with caspase-1 activation such as
Thioredoxin Interacting Protein (TXNIP) and oxidative stress were not induced by
galactosemia as they are in hyperglycemic conditions.

Finally, to identify potential roles of other IL-1 family members we began to
examine the role of [L-1a in the activation of the caspase-1/IL-1f3 pathway. Our data
suggest that IL-1a contributes to caspase-1 activity and Miiller cell activation since
treatment with an IL-la neutralizing antibody inhibited high glucose induced
caspase-1 activity. Furthermore, we observed that IL-1a appeared to translocate in
to the nucleus under high glucose conditions in Miiller cells in vitro.

Collectively, these findings indicate that caspase-1 activation and subsequent
IL-18 production are crucial for the development and progression of diabetic
retinopathy. Miiller cells are a prominent site of active caspase-1 in the diabetic
retina. It seems that targeting the caspase-1/IL-1f3 pathway might be a potential

new strategy to develop therapies to treat diabetic retinopathy.
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Chapter 1. Introduction

1.1 Diabetes Mellitus

Diabetes mellitus is a disease characterized by elevated fasting blood glucose
(Fasting blood glucose = 126 mg/dl) (2). Although there are numerous types of
diabetes, the two most common types of diabetes are Type 1 and Type 2 diabetes. In
patients with Type 1 diabetes, also known as insulin-dependent or juvenile diabetes,
there is an autoimmune destruction of the pancreatic beta cells, the cell type that is
responsible for producing insulin, which renders the body unable to produce the
insulin required to stimulate glucose uptake from the blood stream. Patients with
Type 2 diabetes have a similar increase in blood glucose but by an entirely different
mechanism. Type 2 diabetes, also known as insulin-independent diabetes, is the
most common form of diabetes and results from improper insulin signaling. Unlike
patients with Type 1 diabetes, these patients are able to produce insulin, however
the insulin cannot act on its receptor to trigger glucose uptake from the blood
stream into target tissues such as muscle and adipose tissue, a process known as
insulin resistance.

Diabetes is the first non-contagious disease labeled an epidemic by the World
Health Organization. The number of people affected by the disease is staggering;
approximately 29 million people in the United States have diabetes, a number that
accounts for 9.3% of the total population. To make matters worse, 86 million people
in the United States have pre-diabetes, meaning they have either elevated blood
glucose levels or impaired glucose tolerance, which puts them at severe risk of

developing diabetes in the future (2). According to the American Diabetes



Association the disease has cost the United States a total of $245 billion in 2012.
These costs are a result of both the reduced productivity of the afflicted individuals
in the work force, and also direct medical costs from the many complications that
arise with the disease. Some of the common complications of diabetes include skin

ulcers, impaired wound healing, nephropathy, neuropathy, and retinopathy.

1.2 Diabetic Retinopathy
1.2.1- Introduction to Diabetic Retinopathy

Diabetic retinopathy is one of leading causes of acquired blindness in
working age adults. As the prevalence of diabetes increases so does the incidence of
diabetic complications such as diabetic retinopathy. Diabetic retinopathy is a sight
threatening disease that occurs in patients with both Type 1 and Type 2 diabetes.
Duration of diabetes seems to be the strongest predictor of the incidence of
retinopathy as approximately 8% of diabetic patients had retinopathy at 3 years,
25% by 5 years, 60% by 10 years and 80% by 15 years.

Another predictor of disease progression is glycemic control. In the Diabetes
Control and Complications Trial (DCCT) a total of 1,441 patients who had either no
retinopathy (primary prevention cohort) or minimal-to-moderate non-proliferative
DR (secondary progression cohort) were treated by either conventional treatment
using one or two daily injections of insulin or by intensive diabetes management
with three or more daily insulin injections or a continuous subcutaneous insulin
infusion. During the first 36 months, incidence of progression of retinopathy was

similar between the two treatments in the primary prevention cohort. After 36



months however, there was a substantial decrease in incidence of retinopathy in the
intensive treatment group compared to the conventional treatment group. In the
secondary progression cohort, the intensive treatment group had higher initial
incidence during the first year, however by 36 months the intensive group had
lower risks of progression. Together, this indicated that glycemic control was
important in both the prevention and intervention of diabetic retinopathy.
1.2.2 Non-proliferative Diabetic Retinopathy

The initial stage of diabetic retinopathy is referred to as non-proliferative, or
background, diabetic retinopathy (Figure 1). The retinal changes associated with
non-proliferative diabetic retinopathy include microaneurysms, lipid exudates,
microhemorrhages, cotton-wool spots, and thickening of the basement
membrane(3). These retinal changes are reversible and the defects in a patients
vision are minimal(4). The associated changes in vision of patients with non-
proliferative diabetic retinopathy include decreased contrast sensitivity unless the

patient begins to show signs of edema, which can lead to decreased visual acuity(3).



Figure 1. Fluorescein angiography of patients with non-proliferative diabetic
retinopathy.
A) Early frame fluorescein angiogram from a non-proliferative diabetic retinopathy

patient showing microaneurysms. B) Mid and C) late frame non-proliferative

angiogram from the same patient showing DME and leakage from microaneurysms.




1.2.3 Proliferative Diabetic Retinopathy

As the disease progresses patients can develop more severe vision-
threatening pathologies. These changes are commonly a result in the disease
progressing from non-proliferative to proliferative diabetic retinopathy, where
there is abnormal growth of new blood vessels. These new blood vessels can lead to
leakage of blood into the retinal tissue or vitreous fluid which blocks light from
passing through the fluid to activate photoreceptors in the back of the retina (Figure
2) Additionally, these blood vessels can lead to tractional-detachment of the retina

which can result in permanent damage if not treated(3,4).



Figure 2. Fluorescein angiography of patients with proliferative diabetic
retinopathy with neovascularization of the disc and elsewhere.

A) Early stage, imaged for disc. B) Early stage, imaged for macula. C) Mid stage D)

Late stage.




1.2.4 Diabetic Macular Edema

In addition to the non-proliferative and proliferative stages of diabetic
retinopathy, diabetic patients are also at risk of developing diabetic macular edema
(DME). DME is the most common cause of vision loss in patients with diabetic
retinopathy and can occur in either the non-proliferative or proliferative stage of
diabetic retinopathy. DME arises from the breakdown of the inner blood retinal
barrier (primarily from endothelial cells) rather than the outer blood retinal barrier
(primarily from retinal pigment epithelium(RPE)) and is caused by the
redistribution of tight junction proteins such as claudin and occludin leading to
leakage of fluid from the vasculature into the retina(5,6). In a healthy retina, excess
fluid is removed primarily by the RPE pump, where RPE transport potassium and
chloride ions out of the extracellular space allowing for passive removal of water via
aquaporin-1 channels(7,8). In addition to the RPE pump, Miiller cells also play a
major role in the removal of fluid from the retina. Miiller cells act as potassium
shuttle by taking up potassium from the extracellular fluid through Kir2.1 potassium
channels and depositing the potassium into the vasculature using Kir4.1 channels
that are found on the Miiller cell processes that encompass the blood vessels(9,10).
This leads to osmotic fluid removal through aquaporin-4(8,10-12). In diabetes,
Miiller cells have been shown to downregulate the Kir4.1 channels, but not Kir2.1,
leading to continued potassium uptake with no release into the
microvasculature(13-15). This leads to subsequent swelling of Miller cells
contributing to Miiller cell dysfunction and decreased fluid removal contributing to

DME. DME leads to thickening of the macula due to fluid accumulation and can be



observed by optical coherence tomography (OCT) (Figure 3). The thickening of the
macula due to fluid accumulation typically leads to disruption of the retinal

structure and changes in visual acuity.



Figure 3. OCT of patients with DME
(A) Line scan OCT from patient with DME with visible fluid accumulation in the
macula. (B) Map scan from patient with DME showing increased macular thickening

due to fluid accumulation.




1.2.5 Current Therapies for Diabetic Retinopathy

There are currently two main therapies for the treatment of diabetic
retinopathy. The first are agents that target VEGF (vascular endothelial growth
factor) and are typically used in the treatment of proliferative diabetic retinopathy
and DME. Elevated levels of VEGF are found in the vitreous of patients with diabetic
retinopathy and DME. VEGF is a growth factor that promotes neovascularization and
also increases vascular permeability by increasing occludin phosphorylation and
decreasing occludin levels in endothelial cells in the inner retinal vasculature.
Therefore, neutralizing VEGF using specific antibodies has been successful in
correcting vascular leakage and neovascularization. Unfortunately, not every patient
responds to this treatment and patients that do require monthly injections of the
drug to keep symptoms from reoccurring. Overall, this treatment strategy is a huge
burden to the patient..

The second therapy is laser focal photocoagulation. The Early Treatment
Diabetic Retinopathy Study (ETDRS) was the first large scale study examining the
effects of using a argon blue-green or green laser to inflict 50-200pM moderate
intensity burns in a grid pattern in the macula of the retina. In this study the laser
burns were focused on microaneurysms, intraretinal microvascular abnormalities
and other potential leakage or neovascular sites. It was observed that laser
photocoagulation had a led to a significant improvement in visual acuity in treated
eyes compared to untreated eyes 3 years later. Since this study, laser
photocoagulation is still a common treatment for proliferative diabetic retinopathy,

however, the methods have changed for focal laser treatment for DME. Currently,
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burns are smaller (50 uM) and have a lighter intensity (using yellow and green, but
no longer blue-green laser) to prevent scar expansion. Although, the exact
mechanism by which focal and panretinal laser work is unclear, there have been
numerous proposed mechanisms. The most common proposed mechanism is that
the burns destroy the photoreceptors in the peripheral retina leaving more oxygen
remaining healthy tissue. This eliminates areas of hypoxia, which is one of the main
drivers of VEGF production. Additionally, photocoagulation destroys the leakage
sources such as microaneurysms and leaky vessels. Other studies indicate that laser
photocoagulation actually improves the RPE pumping of ions and water out of the
retina and into the choroid.

In sum, the lack of available therapies points to the need for identifying new
targets involved in the progression of diabetic retinopathy. In order to identify new
targets there needs to be increased understanding of how the retina changes during

diabetes.

1.3 Retina Structure

The retina is a highly organized tissue consisting of various layers located in
the back of the eye (Figure 4A). The cross-sectional layers of the retina from inner
most layer to the outer most layer are ordered as follows (Figure 4B), the (1) Inner
Limiting Membrane (ILM), which forms the boundary between the neural retina and
the vitreous humor, a clear jelly-like fluid that fills the eye. The ILM is made up of
the end feet of Miiller cells, which are then coated in a mucopolysaccharide on the

surface in order to form a true boundary between the

11



Figure 4. Anatomy of the Eye and Retina.
A) Anatomy of the eye showing location of the retina. B) Illustration of the cross
section of the retina showing each retinal cell type. *This figure is used with

permission from webvision.utah.med.edu.
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retina and vitreous humor(16,17). The (2) nerve fiber layer consists of the axons
from the ganglion cells that run across the inner surface of the retina, just behind
the ILM, and converge at the optic nerve to where they eventually return
information to the brain for processing. They are supported by astrocytes, one of the
three glia cell types in the retina. The (3) ganglion cell layer synapses in the (4)
inner plexiform with the bipolar cells and amacrine cells. The (5) inner nuclear
layer (INL) consists of the cell bodies of amacrine cells, bipolar cells, horizontal cells,
microglia, and Miiller cells, another glia cell type. The bipolar cells serve as a
“bridge” to pass the signal from photoreceptor cells in the outer retina to the
ganglion cells in the inner retina. The (6) outer plexiform layer is where the bipolar
cells and horizontal cells synapse with the photoreceptor inner segments. Just
behind this synapse is the (7) outer nuclear layer, which contains the highly
organized nuclei of the photoreceptors, which are connected to the photoreceptor
outer segments, which is the starting location of the visual cycle and signal
transduction. The outer segment of the photoreceptors makes up the (8)
photoreceptor layer. Just behind the photoreceptors is the final layer of the retina,
which is the (9) retinal pigment epithelium cell layer.

The retina is unique in that it has two blood supplies. The first blood
supply comes from the central retinal artery and branches after it enters through
the optic nerve (Figure 5). These blood vessels are located within the retinal layers
and can easily be seen in a fundus image. The blood supply from the central retinal
artery is responsible for supplying nutrients and oxygen to the inner retina. The

second blood supply is the choroid. The choroid lies just behind the retina and
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supplies oxygen and nutrients specifically to the RPE and photoreceptors that are
located in the outer retina, one of the most metabolically active sites in the body. By
having their own blood supply just posterior to the retina photoreceptors are very
well suited to cope with the high metabolic demand. Interestingly, there are
speculations that this unique design of the retina (having photoreceptors in the back
instead on the front of the eye and retina) evolved exactly to guarantee the high
metabolic demand could be supported. This is also the reason that the macula can
survive as an avascular region; since it is a region that consists of only the
photoreceptor cell layer that receives is nutrients solely from the choroid located
behind the retina and doesn’t depend on blood vessels within the retinal tissue that
originate from the central retinal artery.

Looking at a fundus of the retina it becomes apparent that the retina is a
tissue that is not only highly organized in the cross-sectional layers, but also
organized spatially from the anterior view. The area in the center of the retina is
known as the macula, which is then further divided into the fovea, parafovea and the
perifovea (Figure 5B). This region of the retina is responsible for the highest visual
acuity due to the high concentration of cone photoreceptors. Furthermore, this is an
avascular region of the retina and also the thinnest layer of the retina as it contains
only cone photoreceptors and end feet of Miiller cells. Therefore, each photon of
light can pass directly through the fovea to activate the photoreceptors with limited
interference from the other retinal cell layers. The area outside of the macula is

known as the peripheral retina. The peripheral retina is a highly vascular region
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responsible for contrast sensitivity due to the increased concentration of rod

photoreceptors.
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Figure 5. Fundus and OCT of Healthy Retina

A) Fundus image of retina showing central retinal artery entering retina through the
optic disc. The fovea (shown by arrow) can also be seen in the center of the retina.
B) OCT showing the cross sectional layers of the same retina with arrow showing
foveal pit that contains cone photoreceptors. *This figure is used with permission

from webvision.med.utah.edu.
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1.4 Miiller Cells
1.4.1 Miiller Cells in the Healthy Retina

Miiller cells are the principle glia of the retina. They are the only cells to span
the entire width of the retina and have intimate contact with both the retinal blood
vessels and retinal neurons (Figure 4B). Because of this arrangement, Miiller cells
have a variety of important functions in the healthy retina. Functions of Miiller cells
can be divided into 3 major categories: (1) Uptake and recycling of
neurotransmitters, retinoic acid compounds, and ions (such as potassium K*), (2)
control of metabolism and supply of nutrients for the retina, and (3) regulation of
blood flow and maintenance of the blood retinal barrier.

The extensive contact of Miiller cells with retinal neurons allows Miiller cells
to actively participate in proper neurotransmission. They rapidly take up and clear
glutamate and y-aminobutryic acid (GABA) in the inner plexiform layer(18-21).
Studies have shown that Miiller cells take up extracellular glutamate through the
Glutamate Aspartate Transporter (GLAST) and indicate that glutamate removal and
prevention of neurotoxicity in the retina is achieved primarily by this
mechanism(22,23). Once taken up, glutamate is converted to glutamine by
glutamine synthetase and released back to neurons for re-synthesis of glutamate
and GABA(24). This process provides substrate for neurotransmitter synthesis and
also prevents glutamate toxicity. Miiller cells further maintain proper retinal
function by participating in a process known as “potassium spatial buffering”, a
process that redistributes and normalizes K* in the surrounding microenvironment

to avoid prolonged accumulation of K*(25). It has been shown that Miiller cells can
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take up K* from the inner and outer plexiform layers where neuronal synapses
occur and release the K* into the vitreous humor in an effort to redistribute K*
ions(26). This process is also involved in retinal fluid removal. Miiller cells act as
potassium shuttle by taking up potassium from the extracellular fluid through Kir2.1
potassium channels and depositing the potassium into the vasculature using Kir4.1
channels that are found on the Miiller cell processes that encompass the blood
vessels(9,10). This leads to osmotic fluid removal through aquaporin-4(8,10-12).

In addition to regulating neurotransmitters and ion levels within the retina,
Miiller cells also participate in the retinoid cycle with cone photoreceptors by taking
up all-trans retinol from the subretinal space(27-30). During the visual cycle,
photons of light lead to isomerization of 11-cis retinal to all-trans retinal in the rod
and cone photoreceptors. Once isomerized, all-trans retinal is expelled from the
opsin protein to be reduced by retinol dehydrogenases to all-trans retinol(31). The
all-trans retinol from the cones is then released into the extracellular space where it
is taken up by Miiller cells, isomerized back to 11-cis retinol by all-trans retinol
isomerase, and released back to the extracellular space to be taken up by the cone
photoreceptors where it can finally be oxidized from 11-cis retinol back to original
11-cis retinal to restart the visual cycle(27-29,32).

Miiller cells seem a primary site of nutrient storage for the retina. It has been
shown that ATP production in Miiller cells drastically declines when glycolysis is
inhibited. However, ATP levels remained equal in aerobic versus anaerobic
conditions as long as glucose was provided, indicating that Miiller cells live

primarily from glycolysis rather than oxidative phosphorylation(33). This is
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important as it spares oxygen for retinal neurons and other cell types that use
oxidative phosphorylation for ATP production. Furthermore, Miiller cells are the
primary site of glycogen storage in the retina(33,34). When nutrient supplies are
low Miiller cells can utilize this glycogen storage to provide metabolites for other
cell types. Furthermore, the large amounts of lactate they produce via glycolysis and
irreversible conversion of pyruvate to lactate due to a specific lactate
dehydrogenase isoform can be transported to photoreceptors to be used as a
potential alternative source of energy in case of need(33,35,36). Interestingly,
studies suggest that the metabolism of glucose and glycogen by Miiller cells is
regulated by light being absorbed by the photoreceptors(24). This means that as
photoreceptors absorb light, the Miiller cells respond by metabolizing more glucose
in order to provide more lactate for photoreceptors as needed, indicating that
Miiller cells and photoreceptors are tightly coupled in their respective functions by
metabolism. In addition to providing lactate as a fuel source for photoreceptors,
Miiller cells can also regulate nutrient supplies to the retina via regulation of retinal
blood flow. In a healthy retina, increased light stimulation results in increased
retinal blood flow, which is required to supply the activated neurons with oxygen
and other nutrients, a process termed neurovascular coupling. Miiller cells play a
crucial role in neurovascular coupling as they release metabolites controlling
vasoconstriction and vasodilation of retinal blood vessels(37,38).

One of the most important functions of Miiller cells is their regulation of
retinal blood flow and contribution to the blood retinal barrier. The blood retinal

barrier is essential for preventing leakage of blood and other potentially harmful
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stimuli such as pathogens from entering the retinal tissue. It has been shown that
Miiller cells induce blood-barrier properties in retinal endothelial cells(39,40).
Studies using conditional ablation of Miiller cells showed severe blood retinal
barrier breakdown(41). The exact mechanism of how Miiller cells maintain the
blood retinal barrier is debated but includes the secretion of factors such as pigment
epithelium-derived factor (PEDF) and thrombospondin-1 which are anti-angiogenic
and increase the tightness of the endothelial barrier(42,43).

It is clear that Miiller cells are an integral part of a healthy and well
functioning retina. Any disturbance to these cells certainly affects cellular cross-talk
within the retina and its proper function. However, despite their importance Miiller
cells are still an under-studied cell type in the context of diseases such as diabetic
retinopathy. The following aims to provide an overview about the effects of diabetes
on Miiller cells and the role Miiller cells play in pathological events in the diabetic

retina.

1.4.2 Miiller Cells in Diabetic Retinopathy

Functional changes that have been determined in Miiller cells begin early in
the disease, with significant decreases in glutamate transport via GLAST beginning
after just 4 weeks of diabetes in rats(44). This is consistent with reports showing
significantly increased glutamate accumulation in the retinas of diabetic rats(45,46).
Furthermore, these studies have shown that there is decreased glutamine
synthetase activity and a subsequent decrease in the conversion of glutamate to

glutamine necessary for neurotransmitter regeneration(45,46). These results are in
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line with reports demonstrating glutamate increases to a potentially neurotoxic
level in the vitreous of diabetic patients(47). However, in neurological diseases such
as stroke, therapies targeting glutamate increase have been ineffective indicating
that increased glutamate levels might not play a pathophysiological role(48,49).
Whether increased glutamate levels actually cause neurotoxicity over time in
diabetic retinopathy has yet to be determined.
It seems that Miiller cells not only contribute to glutamate toxicity directly by
decreased glutamate uptake, but Miller cells also contribute indirectly via
decreased K* uptake during the progression of diabetic retinopathy. There is
decreased K* conductance on the plasma membrane of Miiller cells isolated from rat
retinas after 4 months of experimental diabetes(15). Redistribution of the Kir4.1 K*
channel has been identified as the mechanism of decreased K* conductance(15).
This decrease in K* conductance was also observed in Miiller cells of patients with
proliferative diabetic retinopathy(50). Alteration of the Kir4.1 K* channel
localization in Miiller cells in the diabetic retina has been attributed to the
accumulation of advanced glycation end products (AGEs)(51). Together, this can
lead to an imbalance in K* concentrations and altered K* homeostasis leading to
neuronal excitation and subsequent glutamate toxicity. The contribution of K*
spatial buffering in the context of DME has been discussed in section 1.2.4.

In addition to the defects in neurotransmitter clearance and K* homeostasis
during diabetic retinopathy, Miiller cells become activated as shown by increased
expression of glial fibrillary acidic protein (GFAP), a common marker of reactive

gliosis(45,52,53). Upon activation, Miiller cells have been shown to secrete a
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number of pro-inflammatory cytokines and pro-angiogeneic growth factors
including vascular endothelial growth factor (VEGF), pigment epithelium-derived
factor (PEDF), interleukin-1f (IL-p), interleukin-6 (IL-6), tumor necrosis factor-a
(TNF-a), chemokine ligand-2 (CCL2Z), prostaglandin E2 (PGEZ2), inducible nitric
oxide synthase (iNOS) and cyclooxygenase-2 (C0X2)(54-60).

One specific pro-inflammatory pathway seems to stand out when talking
about Miiller cells and their role in inflammatory events. Once stimulated, Miiller
cells predominantly activate the caspase-1/interleukin-1beta (IL-1f) pathway(61-
63) leading to speculations that IL-13 might not only be produced during
inflammatory events but also for physiological events such as regulation of glucose

consumption.

1.5 Caspase Family
1.5.1 Caspase Enzymes- Functions and Outcomes

Caspases are a family of enzymes responsible for regulating inflammation
and cell death in both normal and disease states. These endoproteases share a
common mechanism of action in which they recognize their specific substrate and
use a catalytic cysteine residue in their active site to cleave the substrate after an
aspartic acid residue. It is this “C”ysteine-mediated cleavage after an “As”partic acid
residue from which the “Cas”pase name is derived. Caspases have been classified
into two main categories, the pro-inflammatory caspases that regulate inflammation
or pro-apoptotic caspases that initiate and carry out cell death. The pro-

inflammatory caspases include caspase-1, -4, -5, -11, and -12(64). The pro-
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apoptotic caspases can be further divided into subgroups including initiator
caspases (caspase-8 and -9) or executioner caspases (caspase-3, -6, and -7)(64).

Caspases are typically produced as an inactive pro-caspase that requires
dimerization and autocatalytic cleavage of their pro-domain before they can carry
out their own enzymatic function. The mechanism of dimerization and activation is
dependent on the specific caspase in question, however the binding of an adaptor
protein to the pro-domain of the procaspase, allowing for autocatalytic cleavage
between the pro- and active-domain on the caspase to produce the active caspase,
typically facilitates activation. This mechanism is known as the proximity induced
mechanism of caspase activation(65).

In the pro-apoptotic caspases the pro-domain contains a death effector
domain (DED) to facilitate dimerization and activation. Activation of an initiator
caspase via the DED typically leads to a cascade of caspase activation where one
caspase cleaves and activates the next, leading to eventual cleavage and activation of
executioner caspases resulting in cell death. With the pro-inflammatory caspases
the adaptor protein typically binds the caspase activation and recruitment domain
(CARD) rather than a DED, leading to dimerization and cleavage in order to activate
the caspase. Furthermore, where as activation of pro-apoptotic caspases leads to
activation of other caspases, activation of pro-inflammatory caspases typically
results in activation of pro-inflammatory cytokines.

1.5.2 Caspase-1
Caspase-1 is arguably the most well studied member of the caspase family.

Formerly known as interleukin-1-converting enzyme (ICE), the most prominent
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action of caspase-1 is its ability cleave and activate interleukin-1f, a
proinflammatory cytokine involved in innate immunity(66,67). Caspase-1 itself is
produced as a 45 kDa inactive zymogen, and is cleaved at two locations resulting in
three separate subunits- the CARD domain required for activation, with the
remaining two subunits being 10 (p10) and 20 (p20) kDA polypeptides(68-71).
Following cleavage of multiples caspases, two p10 subunits and two p20 subunits
come together to form heterotetramer capable of cleaving various
substrates(69,71,72). Caspase-1 is in the group of proinflammatory caspases rather
than the pro-apoptotic group, and thus contains a CARD required for recruitment
and activation rather that a DED. The activation of caspase-1 is typically facilitated
by a molecular platform termed the inflammasome. The inflammasome platform
usually contains a pattern recognition receptor (PRR), which is responsible for
sensing various harmful stimuli, either pathogen associated molecular patterns
(PAMPs) or damage associated molecular patterns (DAMPs). There are a number of
known activators of caspase-1 including NLR family pyrin domain containing 1
(NLRP1), NLRP3, NLRP6, NLRP7, NLR family CARD domain containing protein 4
(NLRC4), absent in melanoma 2 (AIM2), RIG-1-like receptors, and receptor
interacting protein-2 (RIP2)(73,74).

In addition to its primary function in IL-1f production, caspase-1 has been
shown to be a relatively promiscuous enzyme that is able to cleave a variety of
substrates. Caspase-1 can cleave and activate IL-18, a cytokine that can stimulate
inflammation via induction of tumor necrosis factor-a(TNFa) and interferon-y

(IFNy)(75-78). Furthermore, caspase-1 can be linked to adaptive immunity due to
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it's role in activation of IL-33 which modulates T helper type 2 (TH2Z) immune
response(74,79). Recent studies have shown that there may be at least 121 caspase-
1 substrates, many of them related to cell death independent of IL-1f action(73).
1.5.3 Caspase-1 in Disease

Caspase-1 has been implicated in a number of diseases involving
inflammation. These disease range from inflammatory disease such as septic shock,
inflammatory bowel disease, rheumatoid and osteoarthritis, to neurodegenerative
diseases such as Huntington’s disease, amyotrophic lateral sclerosis and Alzheimer’s
disease, and also diseases of the eye including diabetic retinopathy and age related
macular degeneration (AMD)(62,66,80-88). The harmful effects of caspase-1 can be
mediated by cleavage of its vast number of substrates, although IL-1p and IL-18 are
the most prominent effectors. The beneficial effects of caspase-1 inhibition have
been implicated in a number of diseases ranging from rheumatoid arthritis,

epilepsy, and diabetic retinopathy(88-90).

1.6 The Interleukin-1 Family and Signaling
1.6.1 The Interleukin-1 Family

Interleukin-1 (IL-1) was the first interleukin to be identified and the IL-1
family has since grown to a total of 11 members. These 11 family members include
IL-1q, IL-1f3, IL-1 receptor antagonist (IL-1Ra), IL-18, IL-33, and IL-1F5-F10. The
effects of these family members have increased in complexity with recent studies.
Some of these family members seem to be inflammatory by acting as a Type 1 IL-1

receptor (IL-1R1) agonist (IL-1a, IL-18, IL-18, IL-1F6, IL-1F8, IL-1F9, [L-1F11), some
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can be suppressors of inflammation by acting as an IL-1R1 antagonist (IL-1Ra, IL-
1F10), and some have even been shown to be anti-inflammatory in nature (IL-1F5,
IL-1F7)(91-93). Furthermore, IL-1a, IL-33, and IL-1F7 have been found in the
nucleus and exert their effects by acting as a nuclear factor by binding to DNA and
influencing gene transcription(91,94-97). Interestingly, although the majority of
these IL-1 family members act as extracellular cytokines, only IL-lra has a
traditional signal peptide allowing it to be secreted by the classical secretory
pathway involving the endoplasmic reticulum and Golgi complex
mechanism(93,97). The exact mechanism by which the other IL-1 members are
secreted is currently unknown.

1.6.2 IL-18, IL-1( Receptor Signaling, and Regulation

IL-1p is arguably the most widely researched member of the IL-1 family. This pro-
inflammatory cytokine plays a crucial role in innate immunity, and is typically
produced by monocytes, macrophages or microglia in response to DAMPs or
PAMPs(92). IL-1p is produced as a biologically inactive 31 kDa precursor (pro-IL-
1B) and requires cleavage by caspase-1 to produce the 17 kDa active form that is
secreted and involved in inflammation and cell death in innate immunity(68,98-
100). IL-1p signaling is facilitated by ligand binding to IL-1R1 on the cell membrane.
Much like Toll Like receptors (TLRs), IL-1R1 contains an extracellular
immunoglobulin domain to which IL-1f binds. Upon binding, IL-1R1 recruits the IL-
1 receptor accessory protein (IL-1RAcP) that is necessary for signal transduction.
Both IL-1R1 and IL-1RAcP have intracellular Toll/IL-1 receptor (TIR) domains that
upon the formation of the heterodimer, come together and recruit myeloid
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differentiation primary response protein 88 (MYD88) leading to phosphorylation of
IL-1R-associated kinases (IRAKs) and inhibitor of NF-kB kinase § (IKKf) resulting in
activation of NF-kB and eventual gene transcription. Due to the severity of IL-1
signaling, this pathway is tightly controlled by a number of redundant negative
regulators. The first level of regulation comes from within the IL-1 family itself, IL-
1ra. IL-1ra can bind to IL-1R1 and prevent recruitment of the crucial IL-1RAcP, thus
occupying IL-1R1 and preventing signaling(93,101). Another level of regulation
comes from the Type 2 IL-1 receptor (IL-1R2) that serves as a decoy receptor. IL-
1R2 is able to bind IL-1f but the receptor lacks the cytoplasmic TIR domain and is
therefore unable to signal. In addition to serving as an IL-1f trap, IL-1R2 provides
further sequestration of signaling since it recruits the IL-1RAcP after it binds IL-1p,
leaving less IL-1RACcP to dimerize with IL-1R1.

1.6.3 Autoinflammatory Disease

IL-1p plays such a significant role in some inflammatory diseases that there is an
entire class of syndromes that are characterized by aberrant IL-1f signaling.
Termed “Autoinflammatory” diseases, these diseases involve increased IL-1f
signaling, although it can come from either uncontrolled caspase-1 activation and
IL-1P secretion as in the case of familial Mediterranean fever (FMF), cryopyrin-
associated periodic syndroms (CAPSs), and Muckle-Wells syndrome, or decreased
regulation of the IL-1f signaling as in the case of deficiency of IL-1ra
(DIRA)(97,102-104). One common characteristic of these autoinflammatory
diseases is their general responsiveness to IL-1f blockade, whether it be through an

IL-1 receptor antagonist or an IL-1p neutralizing antibody(91,105-107).
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1.7 Objectives of the Dissertation

In the last few years, it has become clear that diabetic retinopathy has
multiple features of a chronic inflammatory disease. Interestingly, preliminary
studies have indicated that the pro-inflammatory caspase-1/IL-13 pathway is
activated in diabetic retinopathy. Since autoinflammatory diseases are defined by
caspase-1 activation and IL-1f3 production it was an intriguing idea to investigate
whether diabetic retinopathy has some features of an autoinflammatory disease.
Supporting such an idea was the fact that Miiller cells seem to preferentially activate
this pathway once stimulated and could serve as a main source for active caspase-1

and IL-1.

Therefore, the working hypothesis investigated in this dissertation is as follows:

Hypothesis: We hypothesize that hyperglycemia induces caspase-1 activity
and IL-1f production in retinal Miiller cells in vitro and retinal tissue in vivo.
We postulate that caspase-1 is sustained by an IL-1f-induced feedback
mechanism that requires signaling via a functional IL-1 receptor as it has been
discussed for autoinflammatory diseases. We further hypothesize that

intervening in the caspase-1/IL-1 pathway will prevent diabetic retinopathy.

The goal of this study was to identify mechanisms involved in the activation of the
caspase-1/IL-1f pathway and potential feedback signaling involved in sustained

inflammation. Furthermore, we aimed to identify the consequence of prolonged
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caspase-1 activation in the fate of Miiller cells and also in the development and
progression of diabetic retinopathy in order to potentially identify new therapeutic

targets in disease treatment.
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Chapter 2. Interleukin-1 Receptor-Dependent and Independent Caspase-1
Activation in Diabetic Retinopathy

2.1 Introduction

Diabetes leads to many complications, one of them being diabetic retinopathy.
Diabetic retinopathy is characterized by microaneurysms, vascular leakage,
neovascularization and/or macular edema within the retina and ultimately leads to
vision loss(108). Diabetic retinopathy was once thought of as a purely
microvascular disease, however more recent studies indicate that the disease may
actually originate within the retinal tissue. Sustained low-grade retinal tissue
inflammation has been discussed as the cause for retinal cell dysfunction and cell
death leading to subsequent microvascular changes(109,110). Despite increasing
evidence that chronic inflammation and cell death contribute to development and
progression of diabetic retinopathy, there have been few treatments aimed at
preventing these events. In order to develop such treatments, a better
understanding of mechanisms underlying initiation and maintenance of chronic
inflammation is crucial.

Interleukin-13 (IL-1p) has emerged as one of the prominent pro-inflammatory
cytokines associated with diabetic retinopathy(111-115). Levels of IL-1f are
elevated in the vitreous and serum of patients with proliferative diabetic
retinopathy compared to healthy individuals(113). Caspase-1, originally named
Interleukin-1 Converting Enzyme (ICE), is the enzyme responsible for producing
IL-1p by converting pro-IL-1f3 into its active form, which in turn exerts its effects via

the Type 1 receptor (IL-1R1). Our previous work has indicated that caspase-1 is
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activated throughout the progression of diabetic retinopathy in STZ and
galactosemic mice(62,88,116). Caspase-1 activity was also elevated in retinal tissue
samples from diabetic donors(62,117). Miiller cells are one of the cell types
identified as being a source of active caspase-1 and IL-1f3 production.

Typically, caspase-1 activation occurs in response to a bacterial infection.
This mechanism is well established and usually involves sensing of the pathogen via
the Nlrp3 inflammasome(118). In the diabetic retina, caspase-1 activation is unique
in that it occurs in response to elevated glucose levels rather than a pathogen. Very
little is known about caspase-1 activation in so called “sterile inflammation.”
Alternative pathways that are independent of the Nlrp3 inflammasome have been
suggested to activate caspase-1 in pathogen free conditions. For example, Receptor
Interacting Protein 2 (RIP2) can act as a potential activator of caspase-1 in sterile
inflammation(119-123). In Huntington’s disease, which is considered to be a sterile
inflammatory disease, RIP2-mediated caspase-1 activation leads to chronic tissue
inflammation and cell death(82). To date, the mechanism by which caspase-1
activation is initiated, and more importantly sustained, in the retina and retinal cells
under diabetic conditions is not known.
Therefore, this study aimed to identify mechanisms of how caspase-1 activity is
induced and maintained in hyperglycemic conditions in vitro and in vivo and how
this process contributes to the sustained low-grade inflammation seen in diabetic

retinopathy.

31



2.2 Research Design And Methods

Antibodies and Reagents. Caspase-1 antibody was from Invitrogen (Burlington,
Ontario). Goat Anti-Rabbit IgG conjugated to horseradish peroxidase (HRP) and 4-
20% Gradient Tris-SDS-PAGE gels were from BioRad (Hercules, CA). TRIzol, 7-
amino-4-trifluoro-methylcoumarin (AFC) and glucose assay kit were from Sigma (St.
Louis, MO). GHb kits were from Glyc-Affin (Rockford, IL). Caspase-1 substrate,
YVAD-fmk and elastase Calbiochem (San Diego, CA). Human IL-1f3, IL-1 receptor
antagonist (IL-1ra), and high sensitivity IL-13 ELISA was from R&D Systems
(Minneapolis, MN). Rabbit polyclonal anti-RIP2 antibody (ab8428) was from Abcam
(Cambridge, MA). ON-TARGETplus SMARTpool Human RIPK2 and ON-TARGETplus
Control siRNA Non-Targeting siRNA #1 were purchased from Thermo Scientific
Dharmacon. Amaxa Cell Line Nucleofector Kit L. was purchased from Lonza (Basel,
Switzerland). Mouse anti-Glutamine synthetase (#610517, clone 6) was obtained
from Transduction Laboratories.

Animal Models. Caspase-1 knockout mice (Casp1/-) (gift from Dr. T. McCormick, Case
Western Reserve University), and IL-1 receptor knockout mice (IL-1R1-/-) (Jackson
Laboratories; strain name: B6.12957-111r1tm%m) (both in a C57BL/6 background)
mice were bred using homozygous breeding pairs. Recent studies have
demonstrated that these caspase-1 null mice (derived from the original strain
described by Li et al (66)) lack both caspase-1 and caspase-11 (Casp1~/-Casp11/-)
(124,125). Male mice (Wild-type (WT) C57BL/6, Casp1/-, and IL-1R1-/-) weighing 20
g were randomly assigned to be either diabetic or non-diabetic controls.

Streptozotocin (STZ) injections (60mg/kg body wt i.p. on 5 consecutive days) were
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utilized to induce diabetes as previously described (62). Diabetic animals were
maintained with insulin injections (0.1-0.2 units of NPH insulin subcutaneously) as
needed. Animals had free access to food and water and were maintained under a 12
h on/12 h off light cycle. Treatment of animals conforms to the Association for
Research in Vision and Ophthalmology Resolution on Treatment of Animals in
Research. GHb levels were measured at the end of the each study to determine
severity of diabetes (Table 1).

Histologic assessment of retinal vascular pathology. Isolated retinas were washed in
running water overnight and then digested in elastase solution (0.4U/ml in
100mmol/L sodium phosphate buffer, 150 mmol/L sodium chloride, 5 mmol/L
EDTA) for 30-45 min at 37°C. The retinal tissue was transferred into 100mmol/L
Tris-Hydrochloric Acid buffer (pH 8.5) and left overnight at RT. The cleaned vessel
network was dried onto a mounting slide, stained with hematoxylin and PAS,
dehydrated and covered with coverslip. Numbers of acellular capillaries were
counted in 8 areas per retina (20X magnification), averaged, and reported per mm?
retina as previously described(126).

Tissue Culture. Human retinal Miiller cells (hMC): Handling of human tissue
conformed to the tenets of Declaration of Helsinki for research involving human
tissue. Human Miiller cells were isolated from retinal tissue of healthy donors with
no history of diabetes and chronic inflammatory diseases as previously
described(127,128).

Treatment: hMC (1x10°) were treated with either 5 mmol/L glucose DMEM or 25

mmol/L glucose DMEM supplemented with 2% FBS, 1% P/S for either 48 or 96
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hours. Cells treated with 5 mmol/L glucose medium served as controls. For IL-1f
studies, recombinant human IL-18 (1-5ng/ml) was used. For IL-1ra studies,
following pretreatment with 100ng/ml IL-1ra for 1 hour, hMC were incubated in 25
mmol/L glucose DMEM for 48 or 96 hours, or in 5 mmol/L glucose DMEM plus
recombinant human IL-1f (2ng/ml) for 24 hours.

siRNA Electroporation: hMCs were electroporated with either siRNA against RIP2
(50 nmol) or scramble RNA control (50 nmol) using a Nucleofector II device from
Amaxa Biosystems (Cologne, Germany).

Preparation of cytosolic lysates. Following treatment, hMC were lysed in 100ul of
lysate buffer [CHAPS Buffer (100mM HEPES, pH 7.5 containing 10% sucrose, 0.1%
CHAPS), 1mmol/L EDTA, 1 mmol/L PMSF and leupeptin (10pg/ml)] as described
previously(126).

Caspase-1 Activity Assay. Caspase-1 activities were measured as described
previously (62,117,126-129). Briefly, equal amounts of sample protein (15 ug) were
incubated in the presence of the specific caspase-1 substrate (YVAD-AFC;
2.5umol/L) for 1 hour at 32°C. AFC fluorescence was detected by a Tecan Spectra
FluorPlus fluorescence plate reader (excitation: 400 nm, emission: 510 nm). Release
of AFC by active caspase-1 was calculated against an AFC standard curve and
expressed as pmol AFC/mg protein/min.

Cytokine Assays. Medium (150pl) from hMC treated with 5 mmol/L or 25 mmol/L
glucose containing medium was added to pre-coated 96 well plates. IL-13 ELISAs
were performed according to the manufacturer’s directions. Levels of cytokine were

normalized to mg of total protein.
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Glucose Consumption Assay. hMC (1x10¢) were cultured with either 5 mmol/L or 25
mmol/L glucose media for 96 hours. Media was changed at 48 hours. After
collection of media at 48 and 96 hours, glucose concentration in media was
measured using glucose assay Kkits according to manufacturer’s directions.

Western Blot Analysis. Proteins (40pg) were separated in 4-20% SDS gradient gels
and blotted on nitrocellulose membrane. Membranes were incubated with primary
antibody against RIP2 (1:1000 dilution in PBS/0.05% Tween 20) overnight at 4°C
followed by incubation with secondary antibody (1:5,000 dilution) for 1 hour at RT
and developed using LICOR Biosciences Odyssey Imaging System (Lincoln, NE).
Membranes were re-probed for f-actin and relative densities of RIP2/$-actin were
calculated.

Miiller Cell Death Detection. In vivo: Animals (see above) were sacrified after 6
months of diabetes. Eyes were fixed in formalin, embedded in paraffin, sectioned
(10uM), and blocked with mouse on mouse (M.0.M.) Ig blocking solution for 1 hour
at RT. Slides were incubated with primary anti-Glutamine synthetase antibody
(1:1000) for 1 hour at RT. Following staining with secondary antibody, slides were
treated with Fluresceine Avidin DCS for 10 min in dark and cover-slipped with DAPI
containing mounting media. Blinded samples were visualized using scanning laser
confocal microscopy (LSM 510; Carl Zeiss Meditec, Gottingen, Germany) and a water
objective (63X Plan-Neofluor; Carl Zeiss Meditec). The number of Miiller cells (GS
positive cells) per standard retinal area (143pum x 143pum) was established from
eight independent areas per section. Five individual sections per experimental

group were counted and the average number of Miiller cells was determined and
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graphed. In vitro: Following treatment, cells were suspended and 100pL of cell
suspension was mixed with 100pL of trypan blue solution. Cell death was quantified
using hemocytometer.

Statistical Analysis. Analysis of data was performed using the Anova One-Way
(correlated samples, p<0.05) test followed by Tukey’s post analysis or Kruskal-
Wallis test (ordinal data; p<0.05) followed by Dunn’s post analysis to determine
statistical significance among groups. For details in statistical analysis see
VasserStats Statistical Computation Web Site. All data are presented as mean *

SDEV.

2.3 Results
2.3.1 Inhibition of Diabetic Retinopathy in STZ mice by Caspase-1 Knockout.

We have previously shown that diabetes leads to sustained caspase-1
activation throughout the development of diabetic retinopathy(126). To
demonstrate that this activation of caspase-1 is necessary for the development of
diabetic retinopathy, a long-term study using 4 experimental groups non-diabetic
WT, diabetic WT, non-diabetic Casp1~- and diabetic Casp1~/- mice was initiated. After
6 months of diabetes, there was a significant increase in the number of acellular
capillaries/mm? retina in diabetic WT mice (12.2 * 1.6) compared to non-diabetic
WT mice (5.2 £ 0.8). Caspase-1 knockout prevented diabetes-induced formation of
acellular capillaries indicating that activation of caspase-1 is indeed crucial for the
development of diabetic retinopathy (Figure 6). Supplemental Table 1 shows that

inhibition of diabetic retinopathy was not due to changes in severity of diabetes.
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2.3.2 Sustained Caspase-1 Activity in STZ Mice Dependent on Feedback Through
the IL-1 Receptor.

Caspase-1 activation leads to IL-1f3 production. Reports in the literature have
suggested that IL-f itself can promote activation of caspase-1 via signaling through
the IL-1R1 receptor(130,131). Since sustained caspase-1 activation is important for
the development of diabetic retinopathy we tested whether intervention in the
downstream signaling of the caspase-1/IL-13/IL-1R1 signaling pathway using IL-
1R1 knockout mice would impact caspase-1 activation throughout disease
progression. After 10 weeks of diabetes, caspase-1 activity was significantly
increased in both diabetic WT and diabetic IL-1R1-/- mice by 59.6 + 15.3% and 33.2
* 9.8% respectively compared to non-diabetic mice (Figure 7A). At 20 weeks of
diabetes, caspase-1 activity was increased by 30.2 + 3.8% in the retinas of diabetic
WT mice compared to non-diabetic WT mice. However, there was no significant
increase in caspase-1 activity in retinas of diabetic IL-1R1-/- mice compared to non-
diabetic IL-1R1-/- or WT mice indicating that caspase-1 activation progresses from
an IL-1R1 independent mechanism at 10 weeks of diabetes to an IL-1R1 dependent
mechanism at 20 weeks of diabetes (Figure 7B). These data are consistent with a
caspase-1/IL-1f/IL-1R1 feedback signaling mechanism.

2.3.3 Inhibition of Caspase-1 Activity in Human Miiller cells by IL-1 Receptor
Antagonist.

Previously we have shown that hyperglycemia induces caspase-1 activation

and IL-1f production in human Miiller cells(54,62,88). Therefore, these cells were

used to explore mechanisms of caspase-1/IL-18/IL-1R1 feedback signaling under
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hyperglycemic conditions. To determine whether caspase-1 activation progresses
from an IL-1R1 independent mechanism to an IL-1R1 dependent mechanism in this
cellular model, human Miiller cells (hMCs) were treated with 5 mmol/L or 25
mmol/L glucose media in the presence or absence of an IL-1 receptor antagonist for
48 or 96 hours. At 48 hours, caspase-1 activity was increased by 32.5 * 3.6% in
hyperglycemic conditions compared to normal. IL-1ra treatment had no significant
effect on caspase-1 activity (Figure 8A). At 96 hours, treatment with IL-1ra led to a
97.7 + 5.3% reduction in caspase-1 activity in cells incubated in hyperglycemic
conditions indicative of a caspase-1/IL-1f/IL-1R1 feedback signaling (Figure 8B).
To further confirm the concept of caspase-1/IL-1B/IL-1R1 feedback signaling, we
tested whether IL-1p alone can induce caspase-1 activity in hMCs. hMCs were
treated with increasing concentrations of IL-1f (0.5-2 ng/mL) in 5 mmol/L glucose
conditions for 24 hours. IL-1f induced caspase-1 activation in a concentration
dependent fashion demonstrating that IL-13 is capable of inducing caspase-1
activity (Figure 8C). Treatment with IL-1ra led to an 87.2 * 3.4% inhibition of IL-1(3-
induced caspase-1 activity demonstrating that the effects seen by IL-1 were
mediated by the IL-1 receptor (Figure 8D).
2.3.4 Glucose Consumption in Miiller Cells Exposed to Hyperglycemic Conditions.
In order to understand how sustained caspase-1 activity becomes dependent
on feedback signaling through the IL-1 receptor despite the constant presence of a
high glucose stimulus, we determined how much glucose Miiller cells consume
when exposed to prolonged periods of hyperglycemia. Over the first 48 hours, hMCs

cultured in 25 mmol/L glucose consumed nearly twice as much glucose (6.3 + 0.4
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mmol/L) as cells cultured 5 mmol/L glucose (3.3 + 0.4 mmol/L). Interestingly,
between 48 and 96 hours there was no significant difference in glucose
consumption between Miiller cells cultured in 25 mmol/L glucose (3.5 * 1.0
mmol/L) compared to cells cultured in 5 mmol/L glucose (3.2 £0.5 mmol/L) (Figure
9). These data indicate that glucose consumption is drastically increased at early
time points at which treatment with IL-1ra is ineffective. At later time points
however, glucose consumption decreases to normal levels and chronic caspase-1
activation becomes less dependent on hyperglycemia and mostly dependent on IL-
1B, which can directly activate caspase-1 as we have shown above, explaining the
effectiveness of IL-1ra treatment in hyperglycemic conditions.

2.3.5 RIP2 Mediated Caspase-1 Activation by Hyperglycemia.

Our results so far indicate that caspase-1 activation in Miiller cells is
seemingly maintained by two stimuli. Initially, activation of caspase-1 is
predominantly driven by hyperglycemia. Once activated, caspase-1 activity is
sustained by feedback signaling of IL-1f through the IL-1 receptor. Therefore, we
were interested whether both stimuli activate caspase-1 by the same mechanism.
Several known activators of caspase-1 were tested; only RIP2 played a significant
role in hyperglycemia-induced caspase-1 activation. As shown in Figure 10A, RIP2
protein is significantly upregulated in hMCs cultured in 25 mmol/L glucose (77.6 *
25.5%) compared to control. To confirm that increased RIP2 levels are responsible
for increased hyperglycemia-induced caspase-1 activity, siRNA against RIP2 was
used. Caspase-1 activity was significantly increased in hMCs transfected with

scramble siRNA or left non-transfected in hyperglycemic conditions compared to
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control. Knock down of RIP2 attenuated high glucose-induced caspase-1 activity by
85.8 * 1.8% demonstrating that RIP2 is necessary for hyperglycemia-induced
caspase-1 activity (Figure 10B). Consistently, knock down of RIP2 also prevented IL-
1P production under these conditions (Figure 10C).

2.3.6 Inhibition of IL-B-Induced Caspase-1 Activity by RIP2 Knock Down.

Since RIP2 upregulation was crucial for hyperglycemia-driven caspase-1
activation, we further investigated the role of RIP2 in IL-1B-induced caspase-1
activation. Treatment of hMCs with IL-18 in 5 mmol/L glucose media led to a
2.38+0.6 fold increase in RIP2 protein levels (Figure 11A). siRNA against RIP2
prevented IL-1(3-induced caspase-1 activation as seen in Figure 11B. RIP2 is not
only involved in hyperglycemia-induced caspase-1 activation but also promotes
caspase-1 activation by IL-1B. Together, this indicates that RIP2Z is a central
regulator of the caspase-1/IL-1/IL-1R1 feedback signaling that controls Miiller cell
function and viability.

2.3.7 Hyperglycemia-Induced Miiller Cell Death Mediated by Caspase-1/IL-
18/IL-1R1 Feedback Signaling.

We have previously shown that prolonged exposure to hyperglycemia causes
Miiller cell death. To determine the role of caspase-1/IL-18/IL-1R1 pathway and
feedback signaling in Miiller cell death, hMCs were treated with 5 mmol/L or 25
mmol/L glucose media in the presence or absence of RIP2 siRNA or an IL-1ra for 96
hours. Upstream inhibition of the caspase-1/IL-1f signaling by RIP2 knock down
prevented hyperglycemia mediated cell death of Miiller cells (Figure 12A).
Additionally, IL-1ra treatment prevented hyperglycemia-induced cell death
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demonstrating that feedback signaling affects proper Miiller cell function and
viability (Figure 12B). These data indicate that interference in caspase-1/IL-1p/IL-
1R1 feedback signaling at any point of the pathway is beneficial for Miiller cell
survival.

2.3.8 Diabetic Caspase-1-/- Mice Are Protected from Miiller Cell Loss.

We have demonstrated that hyperglycemia-induced sustained caspase-1
activation is detrimental for Miiller survival in vitro. To confirm the importance of
caspase-1 activation on Miiller cell viability in vivo, numbers of Miiller cell were
counted in retinal sections of non-diabetic or STZ-diabetic WT and non-diabetic or
STZ-diabetic caspase-1/- mice. Diabetes caused a 12.2 + 2.0% loss of Miiller cells
after 6 months of diabetes. Knock out of caspase-1 prevented diabetes-induced
Miiller cell loss indicating that activation of caspase-1 is detrimental for Miiller cell

survival not only in vitro but more importantly in vivo (Figure 13).

41



Figure 6. Retinal capillary degeneration in non-diabetic and diabetic wild type
and caspase-1 knockout mice.

Retinas of non-diabetic (n=6) and diabetic (n=8) wild type mice, and non-diabetic
(n=6) and diabetic (n=5) caspl/- mice were isolated at 7 months of diabetes.

Number of acellular capillaries was determined and expressed as mean + SDEV.
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Figure 7. Caspase-1 activity pattern in the retinas of non-diabetic and diabetic
wild type and IL-1R1-/‘mice.

Retinas of non-diabetic (n=10) and diabetic (n=10) wild type and non-diabetic
(n=12) and diabetic (n=10) IL-1R1~/- mice were isolated at 10 weeks (A) and 20
weeks (B). Caspase-1 activity was measured and expressed as mean + SDEV with (*)

= p< 0.05 compared to non-diabetic animals.
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Figure 8. Inhibition of hyperglycemia-and IL-B-induced caspase-1 activity in
human Miiller cells by IL-1 receptor antagonist.

hMCs were cultured in either 5 mmol/L or 25 mmol/L glucose media in the
presence or absence of 100ng/ml IL-1ra for (A) 48 or (B) 96 hours. (C) hMCs were
treated in 5 mmol/L glucose or 5 mmol/L glucose + IL-1f (0.5, 1, or 2ng/ml)
containing media for 24hrs. (D) hMCs were treated with [L-1ra (100ng/ml) in either
5 mmol/L glucose or 5 mmol/L glucose + IL-1f (2ng/ml) media for 24hrs. Caspase-
1 activity was measured and expressed as mean = SDEV with (*) = p< 0.05

compared to control and (#) = P<0.01 compared to 25 mmol/L glucose.
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Figure 9. Glucose consumption normalized over time in Miiller cells.
hMCs were incubated in either 5 mmol/I glucose or 25 mmol/I1 glucose for eitehr 48

or 96 hours. Glucose consumption was measured and expressed as mean * SDEV,

n=5, p<0.05.
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Figure 10. RIP2 mediated caspase-1 activity and IL-B production in Miiller
cells.

(A) hMCs were incubated in either 5 mmol/L glucose or 25 mmol/L glucose media
for 48 hours. RIP2 protein levels were determined by Western Blot analysis,
normalized to B-actin, and expressed as mean * SDEV (n=5) with (*) = p< 0.05
compared to 5 mmol/L glucose. (B) hMCs transfected with either scramble RNA or
siRNA were incubated in 5 mmol/L glucose or 25 mmol/L glucose media for 48
hours. Caspase-1 activity was assessed and expressed as mean + SDEV (n=5) with
(*) = p< 0.01 compared to 5 mmol/L glucose and (#) = p<0.01 compared to 25
mmol/L glucose. hMCs without transfection served as controls. (C) IL-1f release
into media was measured using ELISA assays. IL-1f levels are expressed as mean *
SDEV (n=3) with (*) = p< 0.05 compared to 5 mmol/L glucose and (#) = p<0.05

compared to 25 mmol/L glucose.
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Figure 11: IL-13-induced caspase-1 activity mediated by RIP2.

(A) hMCs were incubated in either 5 mmol/L glucose or 5 mmol/L glucose + IL-1f3
(2ng/ml) for 24 hours. RIP2 protein levels were determined by Western Blot
analysis, normalized to -actin, and expressed as mean = SDEV (n=5) with (*) = p<
0.05 compared to 5 mmol/L glucose. (B) hMCs transfected with either scramble
RNA or siRNA were incubated in 5 mmol/L glucose or 5 mmol/L glucose + IL-1f3
(2ng/ml) for 24 hours. Caspase-1 activity was assessed and expressed as mean =
SDEV (n=5) with (*) = p< 0.01 compared to 5 mmol/L glucose and (#) = p<0.01

compared to 25 mmol/L glucose.
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Figure 12: Inhibition of hyperglycemia-induced Miiller cell death by IL-1ra,
YVAD-fmk, and RIP2siRNA.

hMCs were cultured in either 5 mmol/L or 25 mmol/L glucose media in the
presence or absence of (A) RIP2 siRNA or (B) 100ng/ml IL-1ra for 96 hours. At 96
hours, cell death was determined using the Trypan Blue Exclusion assay and
expressed as mean = SDEV (n=5) with (*) = p<0.01 compared to 5 mmol/L glucose,

(#) = P<0.01 compared to 25 mmol/L glucose.
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Figure 13: Caspase-1 dependent Miiller cell death in retinas of diabetic mice.
Eyes of STZ-diabetic wt (n=10) and non-diabetic wt (n=10), STZ-diabetic cas-1-/-
(n=5) and non-diabetic cas-1-/- (n=5) mice were isolated after 7 months duration of

diabetes. Number of Miiller cells is presented as mean = SDEV with (#) = p<0.02.
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Figure 14: Proposed mechanism of sustained caspase-1 activation via

feedback signaling in Miiller cells.
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Table 1: Summary of Animal Data.

Severity of diabetes was estimated by measuring non-enzymatically glycated
hemoglobin (GHb) levels using affinity chromatography (Glyc-Affin; Pierce,
Rockford, IL). (*) = p< 0.05 significantly different from normal wild type animals

compared to diabetic wild type animals and normal Cas-1 -/- (A) or IL-1R1 -/- (B)

animals compared to diabetic Cas-1 (A) or IL-1R1 -/- (B) animals .

Experimental Group Duration of diabetes GHD (%) GHb
(weeks) {mmol/mol)

A) WT normal 24 4.8+0.10 29+]

A) WT diabetic 24 13.8+0.50 (*) 127+5

A) Cas-l-/- normal 24 3.65+0.32 16+3

A) Cas-1-/- diabetic 24 13.7£2.11 (*) 126121

_—_ s me—m——e—e—e—e—e—e—e—e,—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—,—_——————————————————————————————

B) WT normal 10 4.34+0.63 24406
B) WT diabetic 10 10.47+£3.95 (*) 91439
B) IL-IR 1 -/« normal 10 3.36+0.42 1314
B) IL-1R1 -/~ diabetic 10 10.39+0.87 (*) 90+9
B) WT normal 20 4.360.76 248
B) WT diabetic 20 13.22+0.76 (*) 121+8
B) IL-1R | </« normal 20 3.69x0.17 17+2
B) IL-IR1 -/~ diabetic 20 9.42+1.12 (*) 79+11
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2.4 Discussion

The importance of inflammation in the progression of diabetic retinopathy has
become increasingly apparent. A variety of pro-inflammatory cytokines have been
identified in the vitreous of patients compared to healthy individuals, among them
IL-18(111-115,132). Our previous studies have shown that caspase-1 activity is
consistently increased in the retinas of diabetic animals and patients(62,133). This
new study provides novel mechanistic insights into the process of prolonged
caspase-1 activation and IL-f production in diabetic retinopathy. First, using
caspase-17/- mice we demonstrated that caspase-1 activation is indeed crucial for
the development of diabetic retinopathy. Furthermore, using IL-1R1~/- mice we
identified that diabetes-induced caspase-1 activity progresses from an IL-1R1
independent mechanism to an IL-1R1 dependent mechanism throughout disease
progression. This is consistent with our previous observation that knock down of
the IL-1R1 receptor prevented the development of diabetic retinopathy(133). These
data provide for the first time an indication of a caspase-1/IL-1f/IL-1R1 feedback
signaling mechanism that keeps caspase-1 active in the diabetic retina. Using Miiller
cells known to produce active caspase-1 and IL-1f under hyperglycemic conditions
we confirmed that prolonged exposure to hyperglycemia leads to caspase-1/IL-
1B/IL-1R1 feedback signaling causing sustained caspase-1 activity. We were able to
show that hyperglycemia initiates caspase-1 activity and IL-1f3 continues to promote
caspase-1 activation despite the fact that initial increased glucose consumption has
been normalized. In addition, activation of caspase-1 by both stimuli, hyperglycemia
and IL-1p, was mediated by RIP2 as determined by RIP2 knockdown experiments.
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Finally, we determined that activation of the caspase-1/IL-1f/IL-1R1 feedback is
detrimental leading to Miiller cells death. Hyperglycemia is not only detrimental for
Miiller cells in vitro but most importantly in vivo. We confirmed that Miiller cell loss
in vivo is dependent on activation of caspase-1. Taken together, this indicates that
hyperglycemia induces caspase-1 activation and IL-1p production initiating a
seemingly IL-1f driven caspase-1/IL-1B/IL-1R1 feedback cycle that is detrimental
to the viability of retinal cells such as Miiller cells and promotes the development
and progression of diabetic retinopathy (Figure 14).

The idea of a caspase-1/IL-1B/IL-1R1 feedback signaling is intriguing for several
reasons. Although our study used Miiller cells to demonstrate hyperglycemia-
induced caspase-1/IL-1B/IL-1R1 feedback signaling, other retinal cells might be
capable of producing similar feedback cycles leading to sustained caspase-1
activation and prolonged IL-1f production. Several retinal cell types such as
astrocytes and microglia have been identified to produce IL-13 when exposed to
elevated glucose levels(134-136). This leaves the strong possibility that IL-1p
produced by one retinal cell type feeds into IL-1f feedback signaling of another
retinal cells type even further augmenting IL-18 production. Despite our in vitro
studies showing that autocrine activation is sufficient to induce caspase-1/IL-18/IL-
1R1 feedback signaling the combination of several IL-1B-producing cells amplifying
feedback signaling might actually be necessary to reach high enough IL-1f levels for
IL-1P to drive caspase-1 activation via the IL-1R1 in the diabetic retina. This could

explain the long duration of diabetes required for caspase-1 activity to become
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dependent on IL-1f feedback in vivo. However, more studies need to be done to
positively confirm this concept of caspase-1/IL-13/IL-1R1 feedback signaling in
other retinal cell types. Future studies will also have to identify how other cytokines
such as TNFa that have been associated with the development of diabetic
retinopathy influence the regulation of the caspase-1/IL-p/IL-1R1 feedback
signaling.

Looking deeper into the switch of caspase-1 activation from IL-1R1 independent to
IL-1R1 dependent mechanisms despite the presence of an obvious hyperglycemic
environment we examined glucose consumption in Miiller cells. Miiller cells are
unique in their metabolism since they derive their energy primarily from glycolysis
and are known to take up large amounts of glucose(33). Although hyperglycemia
initially drives caspase-1 activation, over time glucose consumption surprisingly
decreased and eliminated glucose as a mediator of prolonged caspase-1 activity.
This indicates that Miiller cells may be capable of regulating glucose consumption
overtime to avoid excessive caspase-1 activation by hyperglycemia. However, cells
are unable to compensate for the increased levels of IL-1f3, which itself is capable of
driving caspase-1 activation. This leads to caspase-1 activation being driven solely
by IL-1p feedback signaling, which explains the effectiveness of IL-1ra treatment
since glucose is playing a minor role in caspase-1 activation once the feedback
signaling is set in motion. How much glucose is actually needed to trigger caspase-1
activation and to support ongoing caspase-1/IL-1p/IL-1R1 feedback signaling has to
be determined in more detail in future studies. Interestingly, although caspase-1
activation during this feedback signaling is mediated by two distinct stimuli,
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hyperglycemia and IL-1f, both pathways are controlled by one regulator, RIP2.
RIP2, a 62 kDa CARD domain containing protein, can act as a scaffold protein
capable of binding and activating pro-caspase-1 via CARD-CARD
interaction(82,119,120). Aberrant RIP2 activity has been implicated as a driver of
inflammation in diseases such as Huntington’s Disease, where it causes increased
caspase-1 activation and IL-1f production, ultimately leading to neuronal cell
death(82). For the first time this study shows that RIP2 plays a major role in
hyperglycemia-mediated caspase-1 activation and cell death in retinal Miiller cells.
This is interesting since the more prominent mechanisms of caspase-1 activation
seem to be inflammasome-mediated mechanisms involving NLRP3(118). NLRP3
upregulation has been shown in some retinal cells(137) but was not observed in our
studies in Miiller cells (data not shown).

Prolonged activation of caspase-1 and IL-1f production causes Miiller cell death in
vitro and in vivo. Miiller cell death in diabetic retinopathy was first identified in
1980, however, few studies have looked at actual mechanisms underlying Miiller
cell death(54,133,138-140). Intervention in the caspase-1/IL-13/IL-1R1 feedback
signaling by inhibition of caspase-1 as shown in this study or by the IL-1 receptor as
we previously reported prevents Miiller cell death in diabetic retinopathy
demonstrating the importance of this signaling pathway to Miiller cell
viability(140). The protective effect of caspase-1 inhibition on Miiller cell viability is
not surprising. Increasing evidence shows that there are a number of modes of
programmed cell death in addition to the classical apoptosis(141,142). One of the

more recently identified types of cell death, termed pyroptosis, is an inherently
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inflammatory based cell death defined as being caspase-1 dependent and
preventable by inhibition of caspase-1(142). This current study demonstrates that
hyperglycemia-induced Miiller cell death fulfills all criteria for pyroptosis and links
the pro-inflammatory function of caspase-1 and IL-18 production to cell death.
Excessive IL-1f production by Miiller cells might not only affect viability of Miiller
cells but also affect viability of surrounding retinal cells as we have previously
shown for endothelial cells(143). Furthermore, Miiller cell death preceded acellular
capillary formation suggesting a potential role for Miiller cells in the progression of
diabetic retinopathy.

In this study we have outlined a mechanism of prolonged caspase-1 activation that
contributes to chronic inflammatory events in the diabetic retina and while set in
motion by hyperglycemia seemingly becomes independent of its original
hyperglycemic insult. If confirmed in diabetic patients it could potentially explain
why diabetic retinopathy still progresses despite good control of blood glucose
levels. It also might open new venues for treatment of diabetic retinopathy.
Currently the most common therapy seeks to inhibit VEGF, a growth factor that
promotes increased vascular permeability and neovascularization(144-148). While
these drugs have been successful in some patients, they do not provide reliable
benefits for all patients. Our data suggest that treatment of inflammatory events are
potentially more pressing than inhibition of growth factors such as VEGF. Several
studies have shown that IL-1f can lead to increased production of VEGF(149-151).
Inhibition of caspase-1/IL-13 signaling may provide a therapeutic target upstream

of VEGF, without inhibiting VEGF actions directly.
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Chapter 3. Modes of Retinal Cell Death in Diabetic Retinopathy

This chapter is a modified version of an article published in Journal of Clinical and
Experimental Ophthalmology

Authors: Derrick . Feenstra, E. Chepchumba Yego, and Susanne Mohr

3.1 Abstract

Cell death seems to be a prominent feature in the progression of diabetic
retinopathy. Several retinal cell types have been identified to undergo cell death in a
diabetic environment. Most emphasis has been directed towards identifying
apoptosis in the diabetic retina. However, new research has established that there
are multiple forms of cell death. This review discusses the different modes of cell
death and attempts to classify cell death of retinal cells known to die in diabetic
retinopathy. Special emphasis is given to apoptosis, necrosis, autophagic cell death,
and pyroptosis. It seems that different retinal cell types are dying by diverse types of
cell death. Whereas endothelial cells predominantly undergo apoptosis, pericytes
might die by apoptosis as well as necrosis. On the other hand, Miiller cells are
suggested to die by a pyroptotic mechanism. Diabetes leads to significant Miiller cell
loss at 7 months duration of diabetes in retinas of diabetic mice compared to non-
diabetic, which is prevented by the inhibition of the caspase-1/IL-1f (interleukin-
1beta) pathway using the IL-1 receptor knockout mouse. Since pyroptosis is
characterized by the activation of the caspase-1/IL-13 pathway subsequently

leading to cell death, Miiller cells seem to be a prime candidate for this form of
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inflammation-driven cell death. Considering that diabetic retinopathy is now
discussed to potentially be a chronic inflammatory disease, pyroptotic cell death
might play an important role in disease progression. Understanding mechanisms of
cell death will lead to a more targeted approach in the development of new

therapies to treat diabetic retinopathy.

3.2 Introduction

The most common features of diabetic retinopathy are alterations to the
retinal microvasculature leading to microaneurysms, macular edema, leakage of
blood into the retinal tissue and vitreous, and eventual blindness(3,108).
Endothelial cells, which line the microvasculature and provide the blood-retinal
barrier, have long been regarded as a scapegoat for explaining changes in the
increased vascular permeability in the course of diabetic retinopathy. However, the
blood-retinal barrier function of the endothelial cells is supported by surrounding
cells, such as Miiller cells, pericytes, and astrocytes(39). Since the blood-retinal
barrier depends so heavily on this interdependent microenvironment where the
function of one cell type depends on support from other cell types, any cellular
injury and cell loss will have vast effects on proper retinal barrier function and for
that matter any retinal function(143,152,153).

Indeed, loss of retinal cells seems to be a prominent feature of diabetic
retinopathy. Diabetes-induced cell death has been observed in numerous retinal cell
types such as endothelial cells(143,154-156), pericytes(156-158), neural retinal

cells such as ganglion cells(159-161), and retinal glial cells such as Miiller cells,
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astrocytes, and microglia(5,52,88,135,162-166). Endothelial cell death and pericyte
loss have long been assumed to play an important role in the loss of proper blood-
retinal barrier function(152,156,167,168). Despite increasing efforts to
demonstrate retinal cell death in diabetic retinopathy, mechanisms leading to cell
death by diabetes are only poorly understood to date. Identifying potential modes of
cell death is complicated by the fact that for some forms of cell death, the pathways
and markers are poorly understood and are still being discovered. In recent years,
existing types of cell death (apoptosis and necrosis) have been re-classified and new
subtypes of cell death have been added.

According to the most recent cell death nomenclature paper published by the
Nomenclature Committee on Cell Death (NCCD) there are now 13 subroutines of
regulated cell death identified(142). These include anoikis, autophagic cell death,
caspase-dependent intrinsic apoptosis, caspase-independent intrinsic apoptosis,
cornification, entosis, extrinisic apoptosis by death receptors, extrinsic apoptosis by
dependence receptors, mitotic catastrophy, regulated necrosis, netosis,
parthanatosis, and pyroptosis. Each type of cell death has different, and often not
fully defined, characteristics and markers leading to increased complexity in correct
identification of cell death mechanisms both in vitro and more importantly in vivo.
Apoptosis is the most studied type of cell death in diabetic retinopathy. It has well-
defined features and is easily detectable with established techniques, such as TUNEL
(Terminal dUTP Nick End Labeling) assay. However, some of the cell death types are
far more difficult to detect due to the lack of established markers and techniques

available.
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In order to establish mechanisms underlying the development of diabetic
retinopathy and to determine whether cell death is crucial for the progression of the
disease, a better understanding of potential types of cell death in the diabetic retina
must be achieved. This will then allow for more targeted therapies to combat cell
death in diabetic retinopathy. This review will provide an overview of the various
retinal cell types undergoing cell death in diabetic retinopathy and attempt to assign

cell death classification to these dying cells.

3.3. Apoptosis: Extrinsic Versus Intrinsic

The most well defined form of cell death is apoptosis. Apoptosis, originally
introduced by Kerr et al. in 1972, is a term that describes a form of programmed cell
death resulting in cytoplasmic and nuclear condensation, a specific pattern of DNA
fragmentation, and eventual demise of the cell into apoptotic bodies to be
phagocytosed by surrounding cells with very little inflammation involved in the
process(169). The common theme in identification of apoptotic cell death is the use
of TUNEL staining or other methods that are aimed to specifically detect the
apoptotic DNA laddering pattern(170-172). However, due to recent advancements
in cell death studies and changes in cell death nomenclature, classification of
apoptosis is not as simple as detection of specific DNA fragmentation.

Apoptosis can be divided into various subcategories according to both the
stimuli and the pathways leading to execution of cell death, and should therefore be
a term used with caution. ‘Extrinisic Apoptosis’ for example is used to define cell

death induced by binding of lethal ligands including FAS/CD95 ligand, tumor
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necrosis factor a (TNFa), or TNF-related apoptosis inducing ligand (TRAIL) to their
respective death receptor(142,173). Upon binding of these ligands to the death
receptor, the “death domain” of the receptor recruits the assembly of the “death-
inducing signaling complex” (DISC), a platform of various proteins. The DISC can
differ depending on the death receptor involved but typically results in activation of
caspase-8(142,174-176). Depending on cell type, active caspase-8 initiates one of
two distinct pathways. First, active caspase-8 can directly cleave caspase-3, known
as an executioner caspase in the apoptotic process(177). Alternatively, active
caspase-8 can cleave BH3-interacting domain death agonist (BID) creating
truncated BID (tBID). tBID then binds Bcl-2 allowing BAX to form a pore in the
outer membrane of the mitochondria enabling the release of cytochrome c into the
cytosol. This triggers formation of the canonical ‘apoptosome’ via assembly of
APAF1 with pro-caspase-9, cytochrome c, and dATP leading to caspase-9 activation,
which in turn activates caspase-3(142,178).

Another type of apoptosis, ‘intrinsic apoptosis’ is similar to extrinsic
apoptosis in that there is eventual activation of caspase-3 as the executioner
caspase. However, rather than an extrinsic ligand binding to a death receptor,
apoptosis is triggered by intracellular stress such as DNA damage, oxidative stress,
or excitotoxicity(142). Regardless of the intracellular stress that initiates intrinsic
apoptosis, the intrinsic and extrinsic pathways converge at the mitochondria.
Increased pore formation by either bak or bax, or pore formation by a multi-protein
complex termed the permeability transition pore (PTP) promotes the release of

proteins such as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G
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(ENDOG) from the mitochondria into the cytosol(142,179,180). In addition,
alterations of the respiratory chain lead to increased reactive oxygen species (ROS)
production(142). As described above, apoptosome formation induces caspase-9 and
subsequent caspase-3 activation. Activation of caspse-3 initiates events that are
responsible for the specific DNA cleavage pattern seen in apoptotic cell death. In
contrast, AIF and ENDOG can translocate to the nucleus leading to DNA
fragmentation that is independent of caspase activation(178,181-186). In this case,
apoptotic cell death occurs even in the absence of active caspases or when caspases
are pharmacologically inhibited. This allows for even further classification of
intrinsic apoptosis into caspase-dependent and caspase-independent intrinsic
apoptosis(142). Therefore, observation of DNA fragmentation alone by TUNEL
staining is not sufficient to distinguish between the different types of apoptosis.
Much of the research in diabetes-induced retinal cell death has been focused
on identifying apoptosis using the TUNEL assay as the method of choice. Some
TUNEL based studies were supported by additional data identifying active caspase-
3. TUNEL staining has identified increased endothelial cell apoptosis in retinas of
diabetic and galactose fed rats, compared to control animals(156,187,188). A similar
increase in TUNEL staining was seen in retinal endothelial cells of diabetic
mice(189). A recent study confirmed these results in the retinas of human subjects
with diabetic retinopathy compared to those without(190). TUNEL staining has also
been used in studies showing that neutrophils from diabetic rats, when co-cultured
with human endothelial cells, led to increased endothelial cell apoptosis indicating

that other cells types when exposed to hyperglycemia induce endothelial cell death
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via an apoptotic pathway(191). In other studies, propidium iodide (PI), which when
injected intravenously will fluoresce after leakage through injured cell membrane
and bind to DNA or RNA, has been used to detect endothelial cell apoptosis in
diabetic rats(154). However, PI staining does not allow for a discrimination between
cells undergoing apoptosis or necrosis(154). While much of the apoptosis research
has used DNA fragmentation alone, some more detailed studies have shown that
high glucose leads to cytochrome c release and changes in mitochondrial
morphology in endothelial cells indicating a mitochondria-mediated apoptotic
mechanism(192). This is further supported by a study that demonstrated that
overexpression of bcl2, an anti-apoptotic member of the bcl2 family, prevented
capillary degeneration in diabetic mice(193). Other studies have demonstrated that
hyperglycemia can initiate pro-apoptotic pathways in endothelial cells by measuring
caspase-8 and caspase-3 activity indicating the caspase dependency of the apoptotic
process(143,189,194,195). Although these studies provide good evidence that
caspase-dependent apoptosis is the predominant type of cell death for endothelial
cells when exposed to a hyperglycemic environment, more studies are needed to
determine whether apoptotic cell death in endothelial cells is mediated by an
intrinsic or extrinsic mechanism in diabetic retinopathy.

Apoptosis has also been suggested as the type of cell death in pericytes
during the progression of diabetic retinopathy. TUNEL staining demonstrated
increased pericyte apoptosis in retinas of diabetic and galactose fed rodents
compared to control animals(156,187,196). Increased pericyte apoptosis has also

been shown in retinal tissue of diabetic patients compared to non-diabetic patients,
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again using TUNEL staining(157,158). In addition, increased caspase-8 and caspase-
3 activity is seen in rat retinal pericytes in high glucose conditions(197). Similarly
to endothelial cells, mitochondria of retinal pericytes display significant
fragmentation and metabolic dysregulation and this has been directly implicated in
accelerated apoptosis in retinal pericytes in diabetic retinopathy(198). These
studies all indicate a similar caspase-dependent apoptotic mechanism for pericytes
as seen for endothelial cells.

Additionally, TUNEL staining has been used to identify apoptosis in a variety
of retinal cell types, although numbers of these studies are limited. Increased
apoptosis in neural retinal cells such as ganglion cells of diabetic rats compared to
non-diabetic rats has been detected(135,159,160,188,196). Amacrine cells have also
been shown to undergo apoptosis, as characterized by TUNEL staining and staining
for active caspase-3, using the Ins2Akita mouse model(199). It has been suggested
that there is selective S-cone loss as identified by TUNEL staining in diabetic
retinopathy(200). However, more detailed studies are needed to further confirm
the aforementioned mechanisms and to allow for a distinct classification of
apoptosis in these cells. Although numerous studies have established that apoptosis
of several cell types occurs in the diabetic retina, the next important step will be to
identify the link between increased glucose levels and the initiation of caspase-

dependent apoptosis.
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3.4 Necrosis: A Regulated Pathway to Cell Death?

Historically, necrosis was considered the type of cell death “on the other end” of the
cell death spectrum. Necrosis has been a term used for ‘accidental cell death’ rather
than ‘programmed cell death,” which was reserved for apoptosis. It was defined in
the classification of cell death article published by the NCCD in 2005, as cell death
with no apparent signs of apoptosis or autophagy(201). The morphological
appearance of cells undergoing necrosis were described as having features such as
cytoplasmic swelling, mechanical rupture of the plasma membrane, dilation of
cytoplasmic organelles, and chromatin condensation(201). The understanding of
pathways leading to necrosis in vivo was vague at best. Due to the lack of a clear
mechanism for necrosis, new terms describing “necrosis-like” cell death were
introduced. One of these new terms was “apoptonecrosis” where apoptosis evolves
into necrosis, although use of this term was discouraged to avoid further confusion
until pathways involved in this process were fully identified(201). However, out of
this research, the picture of “regulated necrosis” and it's importance in various
physiological and pathological settings evolved(142,202). Triggers for regulated
necrosis include excitotoxicity, DNA damage resulting in DNA alkylation, and ligands
such as TNF and FasL binding to their respective death receptors(142,203-207).
These triggers initiate ubiquitination of receptor interacting kinase-1 (RIPK1) and
subsequent activation of RIP3. Whereas RIP3 would activate pro-caspase-8 in
apoptotic conditions, in experimental or pathological settings where caspase-8 is
absent RIP3 can lead directly to execution of regulated necrosis(142,203-205).

Crucial characteristics of regulated necrosis include death receptor signaling,
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absence of caspase activity, and RIP1 and /or RIP3 activation. Activation of
pathways in regulated necrosis still lead to the classical morphological features
associated with necrosis(142). All these new studies indicate that the process of
necrotic cell death can be regulated depending on microenvironment rather than
being a random event as previously assumed.

Necrosis has been implicated in the process of diabetic retinopathy.
Increased necrotic cell death of pericytes has been observed in the retinas of
diabetic rats and humans using light and electron microscopy(208-210). This
particular pericyte cell death was later described as “selective necrosis”(138).
Reasoning for this designation was most likely due to the assumption that this cell
death caused by diabetic conditions was accidental. Although the newer studies
claim apoptosis as the major type of cell death for pericytes in diabetic retinopathy,
one cannot exclude that some pericytes might undergo cell death via regulated
necrosis depending on microenvironment and the progression of the disease.
Further clarification of the definition for necrosis and the pathways involved may be

necessary to better understand and identify this process in the diabetic retina.

3.5 Autophagic Cell Death

Autophagic cell death may be the most puzzling type of cell death identified
to date. It is currently defined by the NCCD as “a type of cell death that occurs in the
absence of chromatin condensation but accompanied by massive autophagic
vacuolization of the cytoplasm”(141). The first study demonstrating that autophagic

cell death exists in vivo showed that knockdown of key genes required for
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autophagy reduced cell death in Drosophila melanogaster(211). Autophagic cell
death has also been identified in cancer cells exposed to chemotherapeutic agents in
vitro(212,213). Cells dying by autophagic cell death have very little association with
phagocytes, contrary to cells dying by apoptosis which are eventually removed via
phagocytosis(141). In order to determine autophagic cell death, cell death must be
prevented by inhibition of the autophagic pathway either by chemicals or
knockdown of essential autophagic proteins(141,142). Detection of common
markers used to observe increases or decreases in autophagy, such as LC3
(microtubule-associated protein 1 light chain 3) or ATG (autophagy) family
members, are not sufficient to indicate autophagic cell death.

Autophagy is the process of removing unwanted or damaged cellular
material or organelles by packaging these materials into autophagosomes, which
are then targeted for degradation. In most physiological settings, autophagy is
considered a beneficial and a pro-survival mechanism used by the cell and inhibition
of autophagy can actually lead to increased apoptosis(214-218). Therefore, an
increase in autophagic flux does not always imply autophagic cell death. For
example, if cell death occurs with increased markers of autophagy but cannot be
blocked by autophagy inhibition, it is not indicative of autophagic cell death. To
classify cells as dying by autophagic cell death, inhibition of proteins within the
autophagic pathway must promote cell survival.

Whether autophagic cell death is occurring in the progression of diabetic
retinopathy has not been determined to date. A recent study indicated increased

autophagy by measuring levels of ATG5, but whether this ultimately leads to
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autophagic cell death in retinal cells during diabetic retinopathy has not been

addressed(219).

3.6 Pyroptosis: Inflammation Driven Cell Death

An emerging type of cell death that is attracting increasing attention is
‘pyroptosis.” Pyroptosis is an inherently inflammatory-mediated form of cell death,
defined as being caspase-1-dependent(73,142,220). During pyroptosis, there is
assembly of a multiprotein platform allowing for induced proximity-mediated
activation of caspase-1. Active caspase-1 then cleaves the pro-inflammatory
cytokines IL-1f3 and IL-18 from their inactive precursors to their biologically active
forms(73,75,76,220). The multiprotein platform allowing for caspase-1 activation is
termed either the inflammasome or pyroptosome. Inflammasomes are comprised of
the ASC (Apoptosis-associated Speck-like protein containing a CARD) adaptor
protein and a cytosolic sensor of either DAMPS (Danger Associated Molecular
Patterns) or PAMPS (Pathogen Associated Molecular Patterns) such as a NLRs
(NOD-like receptors) or AIM2 (absent in melanoma 2)(221-225). The pyroptosome
is an assembly of ASC dimers that can directly activate caspase-1(226). Prevention
of pyroptosis is accomplished by inhibition of caspase-1 either by pharmacological
intervention or caspase-1 knockout in animal models. Although it is now very well
established that initiation of pyroptosis is caspase-1 and IL-1f driven, the execution
phase of pyroptosis is not yet completely understood. It has been shown that
pyroptosis shares traits with both apoptosis and necrosis in the execution

phase(141,227). Execution of pyroptotic cell death might depend on cell type,
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microenvironment, and stimulus. Different pathways might be involved in the
execution of pyroptosis bringing into question whether TUNEL staining is actually
able to identify all pyroptotic cells.

This inflammatory-mediated process of cell death is particularly intriguing in
the context of diabetic retinopathy. A disease which was originally thought of as a
purely microvascular disease, diabetic retinopathy is now being viewed as a
potential chronic inflammatory disease leading to changes in the retinal
microvasculature(3,110,228). Studies have demonstrated that diabetes leads to
activation of caspase-1 and IL-1f production in the retinas of diabetic and
galactosemic mice as well as diabetic rats(135,229,230). Active caspase-1 and IL-1(3
was also detected in retinal tissue of diabetic patients(88,162) and the vitreous of
patients with proliferative diabetic retinopathy(113,231). Inhibition of the
caspaspe-1/IL-B signaling pathway prevented the development of diabetic
retinopathy in diabetic and galactosemic animals indicating that this inflammatory
pathway is important for disease development, potentially via pyroptotic cell death
of retinal cells that are crucial for proper retinal function(88,135).

When looking at specific cell types undergoing pyroptotic cell death in the
course of diabetic retinopathy, retinal glial cells stand out. It has been shown that
caspase-1 activity and IL-1 production is increased in vitro in Miiller cells following
exposure to hyperglycemic conditions and cells die as a consequence(116,232).
Inhibition of the caspase-1 pathway prevented Miiller cell death under these
conditions. In Miiller cells and microglia, it has been shown that use of minocycline,

a drug that decreases caspase-1/IL-13 signaling, is able to prevent -cell
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death(88,135). These in vitro studies are an indication that glial cells might respond
to chronically elevated glucose levels by undergoing pyroptotic cell death.

Since execution of pyropototic cell death lacks specific markers, identifying
retinal cells dying by pyroptosis in vivo is a difficult task. Studies using EM show that
there is Miiller cell death occurring in diabetic retinopathy(138). Dying Miiller cells
are described as being hypertrophic consistent with the notion that during
pyroptosis, cells swell rather than shrink as observed in apoptotic cell death(53).
Other studies indicate that there is simply hypertrophy and glial dysfunction
associated with the disease(135). A previous study by us has shown that GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) accumulates in the nucleus of Miiller
cells in the retinas of diabetic rats(163). Nuclear accumulation of GAPDH has been
closely associated with cell death induction(233-235). Interestingly, hyperglycemia-
induced nuclear accumulation of GAPDH was mediated by activation of the caspase-
1/IL-13 pathway(54,139). Whether caspase-1/IL-13-mediated GAPDH nuclear
accumulation is part of the pyroptotic pathway in general has yet to be determined.
As our results indicate (Figure 15), diabetes leads to Miiller cell loss in the retinas of
diabetic mice. Due to the lack of specific markers for pyroptotic cell death, Miiller
cells were stained against glutamine synthetase and CRALPB and counted. To
confirm that Miiller cell loss was dependent on the activation of the caspase-1/IL-1f3
pathway, IL-1 receptor knockout mice were made diabetic and Miiller cells were
counted in retinas of non-diabetic and diabetic IL-1 receptor knockout mice.
Inhibition of the caspase-1/IL-1f3 pathway prevented diabetes-induced Miiller cell

loss. These studies are the first to clearly demonstrate Miiller cell loss in diabetes
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and to suggest that cell death might occur via a pyroptotic mechanism. Based on our
studies, we suggest that hyperglycemia leads to activation of caspase-1 and
subsequent production of IL-1f3 leading to Miiller cells death via pyroptosis (Figure
16). Since glial cells in general respond to hyperglycemia by producing pro-
inflammatory cytokines, future studies need to determine whether all glial cell types

are able to undergo pyroptotic cell death.
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Figure 15: IL-1R1 Dependent Miiller cell death in diabetes.

Diabetic wild type (gHb= 11.0 # 1.8) and IL-1R1-/- (gHb=12.1 + 0.4) were sacrificed
after 7 months of diabetes along with age matched normal controls (wild type gHb=
3.8 £ 0.55, [L-1R1-/- gHb= 3.2 # 0.2). Animals were sacrified and eyes were isolated
and fixed in formalin. Retinal sections were processed for both glutamine synthase,
CRALBP, and DAPI staining and blinded samples were visualized using confocal
microscopy Z-sections. The number of Miiller cells was determined by counting
three independent areas per retinal section and three retinal sections per animal.
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Figure 16. Scheme of pyroptosis in Miiller cells.
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3.7 Conclusion

In conclusion, cell death seems to be a prominent feature in the progression
of diabetic retinopathy. Several retinal cell types have been shown to undergo
various forms of cell death (Table 2). A lot of emphasis has been given to study
apoptosis of retinal cells during the progression of the disease. Based on the studies
available, it is fair to say that endothelial cells are predominantly dying by an
apoptotic process, however the type of apoptosis has yet to be determined. Several
studies point to a caspase-dependent mechanism involving mitochondrial damage
but more studies are needed to fully determine an intrinsic or extrinsic apoptotic
pathway. Other cell types suggested to undergo apoptosis are ganglion cells,
amacrine cells, and S-cones. However, due to the limited number of studies on cell
death in these cell types, a conclusion as to whether these cells are truly dying of
apoptosis cannot be made at this time. The picture is not clear for pericytes; both
apoptosis as well as necrosis have been suggested as modes of cell death. Given the
new research on necrosis that indicates necrosis can also be a regulated process like
apoptosis, more studies are needed to determine precise mechanisms of pericyte
cell death in diabetic retinopathy. The type of cell death might depend on the
phenotype of pericytes and the microenvironment surrounding these cells.
Inflammation-driven pyroptosis is an emerging form of cell death that is receiving a
lot of attention right now. This type of cell death is intriguing to study in the context
of diabetic retinopathy since new understandings of the disease suggest that
diabetic retinopathy is a chronic inflammatory disease. Miiller cells are prime

candidates for this form of cell death due to the fact that diabetes-induced cell death
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is dependent on the activation of the caspase-1/IL-1 pathway. More studies are
needed to fully understand the mechanism underlying the process of pyroptosis and
to determine whether glial cells including macro and micro glial cells are
undergoing pyroptosis in diabetes. Loss of other retinal cell types such as
astrocytes has been reported but identification of the type of cell death has not been
made(166).

Other types of cell death such as anoikis, entosis, parthanatos, netosis,
cornification, and mitotic catastrophe, have yet to be identified in the course of
diabetic retinopathy but cannot be excluded from the process of disease
development. Further development of tools capable of assessing these modes of cell
death is needed to determine whether these cell death modalities are present in
diabetic retinopathy.

A better understanding of how retinal cells are dying during the development
and progression of diabetic retinopathy will allow for a more targeted approach to
intervene in this process. Although the general consensus is that inhibition of cell
death is beneficial for disease prognosis, timing at which intervention should be
started and targeting of specific retinal cell types will be crucial for a successful
outcome of treatments aiming to inhibit cell death. Therefore, the more knowledge
that is attained on which cell types undergo what type of cell death, the more

therapeutic strategies can be developed.
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Table 2. Characteristics of modes of cell death and potential retinal cell types

undergoing cell death in diabetic retinopathy.

Retinal cell types were assigned into a cell death category based on identification of

at least two characteristics of the respective mode of cell death. Abbreviations: AlF,

apoptosis-inducing factor; ENDOG, endonuclease G; TNF, tumor necrosis factor;

LC3/Atg8, microtubule-associated protein 1 light chain 3; SQSTM1, sequestosome 1;

DAMP, danger associated molecular pattern; PAMP, pathogen associated molecular

pattern.
Cell Death Characteristics Retinal Cell Types
Extrinsic * Triggered by binding of lethal ligands (FAS/CD95, TNF, TRAIL) to | * Endothelial cells
respective death receptor * Pericyte
apoptosis » Caspase-8 activation leading to eventual caspase-9 and caspase-3 | ¢ Ganglion cells
activation as the executioner caspase * Amacrine
* DNA fragmentation * S-cones
Intrinsic » Triggered by intracellular stress (DNA damage, oxidative stress, | * Endothelial cells
excitoxicity) * Pericytes
apoptosis * Increased mitochondrial outer membrane permeability * Ganglion cells
* Release of proteins from mitochondria (cytochrome c) * Amacrine
» AIF and ENDOG nuclear translocation * S-cones
* DNA fragmentation
» Caspase-9 activation leading to caspase-3 activation as the
executioner caspase
Necrosis * Triggered by excitotoxicity, DNA damage, or binding of lethal | « Pericytes
ligands (TNF, FasL)
* Ubiquitination of RIP1 and subsequent RIP3 activation
* Cell death even in the absence of caspase activity
Autophagic * Presence of autophagy markers (lipidation of LC3/Atg8) e ?
* Increased degradation of autophagic substrates (SQSTM1)
cell death * Prevented by inhibition of autophagy
Pyroptosis * Triggered by either DAMPs or PAMPs » Miiller cells

* Assembly of either inflammasome or pyroptosome complex
» Caspase-1 activation and subsequent IL-1f3 or IL-18
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Chapter 4. Caspase-1 Activation in Galactosemia

4.1 Introduction

Diabetic retinopathy is the leading cause of acquired blindness in adults.
Currently there is no cure for the disease and the few treatments that are available
have limited success, work on a case-by-case basis, and are both a burden to the life
quality of the diabetic patient and a financial burden to the health care system. The
most common therapies are designed to treat the vascular changes seen in diabetic
retinopathy. Research has shown however, that inflammation plays a key role in the
development of diabetic retinopathy and may preclude the vascular changes seen in
disease progression (61,62,111-113,115,189). Recently, a study identified at least
19 cytokines are elevated in the vitreous of patients with proliferative diabetic
retinopathy compared to healthy individuals (132). Therefore, understanding
inflammation in the progression of diabetic retinopathy may help to identify new
targets for therapies.

One of the major concerns in diabetic retinopathy research is the lack
disease-relevant of animal models. Mice have an inherently different retinal
structure as they have no macula, and disease pathology doesn’t progress to
proliferative diabetic retinopathy as it does in humans. One interesting model is the
galactosemia model. The galactosemia model was first identified in a study by the
Kern lab and showed that dogs fed a 30% D-galactose diet showed retinal
pathologies similar to those in the diabetic retina including microaneurysms,

hemorrhages, acellular capillaries, vascular lesions and pericyte dropout(236).
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Interestingly, these pathologies developed even though the animals lacked many of
the systemic abnormalities typically associated with diabetes as they had normal
blood glucose, free fatty acids and serum insulin(236). Since then, the galactosemia
model has been used extensively as a tool to study retinal diabetic-like retinopathy
without systemic diabetes-related changes(237-244). Mice and rats fed galactose-
enriched diet show similar retinal pathologies to dogs including increased retinal
capillary width and microaneurysms at 8 months of age, and increased retinal
microaneurysms, acellular capillary formation, pericyte ghosts and capillary
basement membrane thickening as duration of galactosemia is extended(244-
246,246-251). Previous reports show that there is chronic, low-grade inflammation
in the retinas of galactosemic mice(61,62,248). Several studies indicate there may
be multiple sources contributing to this inflammation, however all reports conclude
that reducing this inflammation leads to protection from disease development and
may be a useful strategy in the treatment of diabetic retinopathy. Studies using
galactosemic CD18 and ICAM-1 deficient mice to inhibit leukocyte adherence show
there is decreased retinal inflammation which results in decreased breakdown of
blood-retina barrier, decreased endothelial cell death and decreased formation of
acellular capillaries(248). Previously, we have reported increased caspase-1 activity
and IL-1p in the retinas of galactosemic mice(61,62). Furthermore, administration
of the drug minocycline inhibited caspase-1 activity and IL-1f3 production in the
retinas of galactosemic mice and this resulted in decreased formation of acellular
capillaries(61). In addition to increased inflammation, studies have shown

abnormalities in metabolism in the retinas of galactosemic mice and this may be a
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driver of inflammation(247,252-258). Interestingly, these studies show there are
key differences between the experimental-diabetes and galactosemia models with
regards to metabolic abnormalities. In diabetic mice there were increases in both
systemic and retinal oxidative stress, however in galactosemic mice oxidative stress
increased only in the retinas, but was normal in the plasma(252). Furthermore,
there are differential effects of antioxidants in the retinas of these two
models(252,256).

Caspase-1, formerly known as Interleukin-1 Converting Enzyme (ICE), is an
enzyme produced as an inactive zymogen that can be activated to convert inactive
pro-IL-1f3 into biologically active IL-1f (75,259-262). Caspase-1 activation has been
linked to increased production of reactive oxygen species (ROS) and upregulation of
TXNIP, a protein which can bind and inhibit thioredoxin leading to ROS
generation(137,263). Studies show that TXNIP plays a significant role in diabetic
retinopathy and that inhibition of TXNIP prevents diabetes-induced inflammation,
gliosis, pericyte loss and ganglion cell injury(137,197,264). Although many studies
have focused on the differences in metabolism, inflammation and retinopathy
pathology between high glucose and high galactose models, relatively few studies
have been performed examining the effects of high galactose at the cellular level. In
the present study, we examine differences between hyperglycemia and galactosemia
and how they affect oxidative stress and caspase-1 activity in the retina and retinal
Miiller cells. Furthermore, we explore whether potential differences in caspase-1
activity can be linked to differences in oxidative stress between hyperglycemic and

galactosemic conditions.
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4.2 Materials and Methods

Materials: Caspase-1 substrate YVAD-AFC and caspase-1 inhibitor YVAD-FMK were
purchased from Calbiochem (San Diego, CA). Mouse anti-TXNIP antibody was
purchased from MBL International (Woburn, MA). Gradient-Tris-SDS-PAGE (4-20%)
gels were from BioRad (Hercules, CA). 7-amino-4-trifluoro-methylcoumarin (AFC)
standards came from Sigma (St. Louis, MO).

Animal Models: Male mice (C57BL/6) weighing 20 g were randomly assigned to be
made diabetic, galactosemic, or left as normal controls. Diabetes was induced by
streptozotocin injections (60 mg/kg body wt i.p. on 5 consecutive days) as
described previously (13). Insulin was given to diabetic animals as needed to
achieve slow weight gain without preventing hyperglycemia and glycosuria (0.1-
0.2 units of NPH insulin subcutaneously, two to three times a week). Galactosemia
was induced by feeding normal mice a diet enriched with 30% galactose.

Tissue Culture: The transformed rat retinal Miiller cell line (rMC-1) has been
established previously as a relevant cell type for retinal Miiller cell studies
(54,62,163,265). rMC-1 cells were maintained in normal (5mmol/L) glucose
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin (PS) in a humidified incubator kept at
37 degrees Celsius with 5% COx.

High Glucose and Galactose Treatment: For high glucose studies rMC-1 were treated
in DMEM supplemented with glucose for final glucose concentration of 25 mmol/L.
For high galactose treatment rMC-1 were treated in DMEM containing standard 5

mmol/L glucose and supplemented with 20 mmol/L galactose. Studies using the
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caspase-1 inhibitor (YVAD-fmk; 100uM) were performed as described in previous
studies(54).

Preparation of Cytosolic Lysates: Following respective treatments, rMC-1 were lysed
in cytosolic lysate buffer [CHAPS Buffer (100mM HEPES, pH 7.5 containing 10%
sucrose, 0.1% CHAPS), 1 mmol/L EDTA, 1 mmol/L PMSF and leupeptin (10pg/ml)
as described previously (54,88).

Caspase-1 Activity assays: Caspase-1 activity was measured as described
previously(54,62,88,117,139,163). Equal amounts of sample (15 pg) were incubated
in the presence of the caspase-1 specific substrate (YVAD-AFC; 2.5 umol/L) for 1
hour at 32 degrees C. AFC fluorescence was detected by a Tecan Spectra FluorPlus
fluorescence plate reader (excitation: 400 nm, emission: 510 nm). The release of
AFC after cleavage by active caspase-1 was calculated against AFC standard curve
and expressed as pmol AFC/mg protein/min.

Western Blot Analysis: Protein (40ug) was separated in 4-20% SDS gradient gels and
blotted on nitrocellulose membrane. Membranes were incubated against TXNIP
(1:1000 dilution in PBS/0.05% Tween 20) overnight at 4 degrees C followed by
incubation with anti-mouse secondary antibody (1:5,000 dilution) for 1 hour at RT.
Membranes were imaged using LICOR Biosciences Odyssey Imaging System.
Membranes were reprobed using anti-B-actin antibody and normalized by the
relative density of TXNIP/f3-actin.

ROS Measurement: ROS was measured using cell permeable 2’-7’-dichlorofluroescin
diacetate (H:DCFDA) (Invitrogen, Burlington, Ontario). rMC-1 were plated on

Costar 96 well plates, black with a clear bottom (Corning, NY) at 100,000 cells per
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well. After treatment, media was removed, and 100 pl of 10 uM H2DCFDA diluted in
serum free media was added to each well for 15 minutes, after which H,DCFDA was
aspirated out of well and replaced with serum free media. ROS was measured on
TECAN Infinite m1000 plate reader at an excitation of 494 nm and emission of 525
nm. Following measurement of ROS, fluorescence was normalized using cell
permeable Hoechst 33342 nucleic acid stain and normalized to a standard curve to
determine cell number.

Trypan Blue Cell Death Assay: Cell death was determined as described
previously(44,54,88,163,266). Briefly, following treatment rMC-1 samples were
masked and assessed for trypan blue inclusion indicating cell death. Cell death was
quantified and expressed as fold change increase compared to cells cultured in
normal glucose.

Statistical Analysis: Analysis of data was performed using the One-Way Anova
(correlated samples; p<0.05) test followed by Tukey’s post analysis or Kruskal-
Wallis test (ordinal data; p<0.05) followed by Dunn’s post analysis to determine
statistical significance between groups. For details in statistical analysis see
VassarStats, Statistical computational website. All data are presented as mean

+SDEV.

4.3 Results
4.3.1 Galactosemia Increases Caspase-1 Activity in Miiller Cells
It is known that there is chronic low-grade inflammation in the retinas of

galactosemic mice. Previously we have shown that there is increased caspase-1
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activity in the retinas of hyperglycemic and galactosemic mice and that inhibition of
caspase-1 prevents the formation of acellular capillaries in these animals. To
identify the cellular source of this caspase-1 we treated rMC-1 cells with either 5
mmol/L glucose, 25 mmol/L glucose (high glucose) or 5 mmol/L glucose and 20
mmol/L glucose (high galactose). We found that treatment with either high glucose
or high galactose led to a significant increase in caspase-1 activity in rMC-1 cells
(Figure 17).
4.3.2 High Glucose, But Not High Galactose Generates Reactive Oxygen Species

Caspase-1 activity has been linked to mitochondrial dysfunction and
increases in ROS. In order to determine whether the observed increases in caspase-
1 activity were due to generation of ROS we treated cells measure ROS production in
rMC-1 cells over the course of 96 hours. Interestingly, we observed increased ROS
production in rMC-1 cells treated with high glucose, however high galactose had no
effect on ROS production (Figure 18A,B).
4.3.3 Glucose Specific Increases in TXNIP

TXNIP is one of the primary targets of studies involving increased ROS
accumulation. Interestingly, numerous reports have shown that TXNIP also plays a
role in caspase-1 activition, and TXNIP is shown to be increased in studies relating
to diabetic retinopathy. We observed that there are increased protein levels of
TXNIP in rMC-1 cells treated with high glucose for 24 hours (Figure 19A).
Interestingly, in the same manner that ROS generation was specific to glucose and
not galactose, there was no increase in TXNIP protein in rMC-1 cells treated with

high galactose (Figure 19B). Interestingly, we observed two bands in our Western
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Blot analysis of TXNIP, the lower band was consistent the molecular weight of
TXNIP, however the upper band was found around 90 kDA. More interestingly, in
high glucose treated samples; the upper band appeared to decrease in intensity as
the lower band increased. Next, we measured TXNIP levels in rMC-1 over the
course of 96 hours to determine whether TXNIP was increased at all time points of
increased ROS production. We observed significant increases in TXNIP levels at 24,
48, 72 and 96 hours of high glucose treatment (Figure 19C)
4.3.4 Caspase-1 Inhibition Prevents Galactosemia-Induced Miiller Cell Death and
Acellular Capillary Formation

Previously we have shown that inhibition of caspase-1 can prevent Miiller
cell death and acellular capillary formation in diabetic animals. To determine
whether galactosemia can also lead to Miiller cell death in a caspase-1 dependent
manner we measured cell death in rMC-1 treated with high galactose in the
presence or absence of a caspase-1 inhibitor. We found that high galactose led to a
significant increase in cell death, and that treatment with a caspase-1 inhibitor
significantly decreased cell death (Figure 20). To examine whether inhibition of
caspase-1 affected disease progression in vivo, acellular capillary formation was
counted in either non-diabetic or galactosemic mice. We observed increased
acellular capillary formation in galactosemic animals, however inhibition of caspase-
1 prevented increased acellular capillary formation in galactosemic cas-17/- mice

(Figure 21).
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Figure 17. High Glucose and Galactose-Induced Caspase-1 Activity.
rMC-1 were treated with either normal or high galactose for 24 hours and measured

for caspase-1 activity. Data expressed as mean + SDEV. n=5, p<0.05.
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Figure 18. ROS induced by high glucose but not high galactose.
rMC-1 were treated with either normal glucose, A) high glucose, or B) high galactose
for up to 72 hours. ROS production was measured and expressed as mean AFU *

SDEV. n=>5, p<0.05.
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Figure 19. TXNIP protein induction is glucose specific. (Cont. on next page)

rMC-1 were treated with either normal glucose, A) high galactose, or B) high
glucose. TXNIP protein levels were determined by Western Blot analysis. C) protein
levels were determined by Western Blot analysis, normalized to B-actin, and

expressed as mean * SDEV (n=5) with (*) = p< 0.05 compared to 5 mmol/L glucose.
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Figure 19 cont..
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Figure 20. High Galactose leads to caspase-1 dependent Miiller cell death.
rMC-1 were treated with normal or high galactose in the presence or absence of a
caspase-1 specific inhibitor (YVAD-FMK). Cell death was measured using trypan

blue exclusion method.
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Figure 21. Acellular capillary formation in non-diabetic and galactosemic
mice.

Retinas of non-diabetic (n=6) and galactosemic (n=10) wild type mice, and non-
diabetic (n=6) and galactosemic (n=6) caspl~/- mice were isolated at 7 months of
diabetes. Number of acellular capillaries was determined and expressed as mean =+

SDEV.
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4.4 Conclusion

Previous studies have shown that the galactosemia model induces diabetic-
like retinopathy with similar retinal pathologies to experimental diabetes in vivo.
Relatively few studies have been performed examining the effects of high galactose
at the cellular level. It is known that diabetes leads to increased oxidative stress and
inflammation, and that one cellular source of this is Miiller cells. Studies have linked
increased oxidative stress and inflammation in high glucose to increases in TXNIP.
Thioredoxin, along with glutathione and catalase, represents one of the three
primary antioxidant pathways used to eliminate ROS from the environment(267).
TXNIP functions as negative regulator of thioredoxin and inhibits it from scavenging
ROS, leading to ROS accumulation. In the present study, we compared the effects of
high glucose and high galactose on Miiller cells specifically on oxidative stress,
TXNIP regulation, caspase-1 activity and Miiller cell death.

First, reports indicate that high glucose leads to increased caspase-1
activation and IL-1f production in Miiller cells(62,88,137). We observed that there
was increased caspase-1 activity in rMC-1 cells treated with either high galactose or
high glucose. This indicates that some of the retinal pathologies observed in
galactosemic mice, such as increased inflammation may be due to increased
caspase-1 activity and subsequent IL-1 production by Miiller cells.

Next, we examined differences in ROS production in rMC-1 under high
glucose or high galactose conditions. Studies indicate that there are abnormalities in
retinal metabolism and oxidative stress in galactosemic mice, however there are

significant differences in retinal metabolism and antioxidant response between
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diabetic and galactosemic mice. We observed there is significantly increased ROS
production in rMC-1 beginning at 36 hours of high glucose treatment and that it
increases progressively at all time points to 96 hours. Interestingly, there were no
significant difference in ROS production in rMC-1 treated with high galactose at any
time point between 24 and 96 hours. This indicates that caspase-1 activity may
actually be independent of ROS production in galactosemic conditions.
Furthermore, under high glucose conditions, increases in caspase-1 activity are
detectable as early as 24 hours, which is prior to increased ROS production,
indicating that caspase-1 activity may be independent of ROS production under high
glucose conditions as well, at least initially.

Since increased caspase-1 activity and oxidative stress have both been linked
to increases in TXNIP expression we determined if there are similar changes in
TXNIP protein levels. Interestingly, when comparing TXNIP protein levels in either
high glucose to high galactose we observed similar differences between the two
models to what was observed in ROS production. There is increased TXNIP protein
levels in rMC-1 under high glucose conditions and it is observed at all time points
between 24 and 96 hours. Consistent with TXNIP’s function as a negative regulator
of thioredoxin, TXNIP protein levels increase just before the accumulation of ROS in
rMC-1 cells. There was no observed increase in TXNIP levels in the high galactose
samples. Interestingly, in western blot images analysis we observed two bands, one
at 55 kDa molecular weight corresponding to TXNIP, and another near 95 kDa. In
the high glucose treated samples, as there was increased intensity of the lower band

for TXNIP, there was a decrease in the upper band as if it was a bound form that was
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decreasing in high glucose conditions. This change in the upper band was not
observed and remained consistent in high galactose treated samples.

Previously, we have found that inhibition of caspase-1 prevents Miiller cell
death in rMC-1 treated with high glucose(88). Numerous studies in other systems
have also shown that caspase-1 activity contributes to pyroptotic cell death(268-
270). Interestingly, we observed that just as there is increased caspase-1 activity in
rMC-1 treated with high galactose, there is also increased cell death after prolonged
exposure. Inhibition of caspase-1 with a caspase-1 inhibitor (YVAD-fmk) prevented
this cell death. The importance of caspase-1 to the progression of retinopathy in
galactosemic mice was illustrated in cas-1-/- mice fed a galactose enriched diet.
Retinopathy progression was prevented in these animals indicating that the
caspase-1 pathway is activated not only in the STZ diabetic model as reported
previously, but also in the galactosemic model of retinopathy.

Collectively this indicates that there are many similarities and differences in
rMC-1 treated with either high glucose or high galactose. While both treatments led
to significantly increased inflammation as observed by increased caspase-1 activity,
only high glucose led to increased TXNIP levels and ROS accumulation. This
indicates that caspase-1 may be activated independently of oxidative stress in rMC-
1. Furthermore, both models lead to a similar eventual out come of caspase-1-

dependent cell death.
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Chapter 5. The Role of Interleukin-1a in Caspase-1 Activation and Cell Death
in Miiller Cells
5.1 Introduction

Previously we have demonstrated that IL-1f plays a crucial role in sustained
caspase-1 activity and cell death in Miiller cells exposed to high glucose conditions
and also in the progression of diabetic retinopathy. Therefore, it was important to
examine the role of another IL-1 family member, IL-1q, in these events.

There are a number similarities and differences between IL-1a and IL-1p. In
terms of similarities, IL-1a and IL-1p are both synthesized as a 31 kDa precursor
(pro-form) that can be cleaved into 17 kDa mature forms. Additionally, both of these
cytokines function as ligands of IL-1R1 and exert similar inflammatory
responses(271).

There are many differences between IL-1a and IL-18 however, for example
they have wunique amino acid sequences and have very different
bioavailability(99,272). Whereas IL-1f is only synthesized and secreted after a cell
encounters harmful stimuli, IL-1a is constitutively expressed in many cell types
even under normal conditions(273). Furthermore, IL-1f is a secreted cytokine,
whereas IL-la can be secreted or membrane bound(274-278). Another key
difference is that unlike IL-1p that is cleaved by caspase-1 and requires this
processing to be biologically active, IL-1a is cleaved instead by calpain, however it

does not require cleavage in order to be active(271). Both the precursor and cleaved
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forms of IL-lo are agonists of IL-1R1 and produce identical biological
responses(271,279).

In addition to its functions as a proinflammatory cytokine, IL-1a is unique in
that it has a nuclear localization signal (NLS) on its N-terminal pro-piece
(NTP)(280,281). This allows either the uncleaved pro-IL-1a or the cleaved IL-1a-
NTP to translocate to the nucleus. The exact function of IL-1a in the nucleus is
largely unknown, however studies indicate that it can bind to the chromatin and

directly regulate transcription of proinflammatory genes(282-284).

5.2 Materials and Methods

Tissue Culture. Human retinal Miiller cells (hMC): Handling of human tissue
conformed to the tenets of Declaration of Helsinki for research involving human
tissue. Human Miiller cells were isolated from retinal tissue of healthy donors with
no history of diabetes and chronic inflammatory diseases as previously
described(127,128).

Treatment: hMC (1x10°) were treated with either 5 mmol/L glucose DMEM or 25
mmol/L glucose DMEM supplemented with 2% FBS, 1% P/S for either 48 or 96
hours. Cells treated with 5 mmol/L glucose medium served as controls. For IL-1f
studies, recombinant human IL-18 (1-5ng/ml) was used. For IL-1ra studies,
following pretreatment with 100ng/ml IL-1ra for 1 hour, hMC were incubated in 25
mmol/L glucose DMEM for 48 or 96 hours, or in 5 mmol/L glucose DMEM plus

recombinant human IL-1 (2ng/ml) for 24 hours.
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Caspase-1 Activity Assay. Caspase-1 activities were measured as described
previously (62,117,126-129). Briefly, equal amounts of sample protein (15 ug) were
incubated in the presence of the specific caspase-1 substrate (YVAD-AFC;
2.5umol/L) for 1 hour at 32°C. AFC fluorescence was detected by a Tecan Spectra
FluorPlus fluorescence plate reader (excitation: 400 nm, emission: 510 nm). Release
of AFC by active caspase-1 was calculated against an AFC standard curve and
expressed as pmol AFC/mg protein/min.

Miiller Cell Death In vitro: Following treatment, cells were suspended and 100pL of
cell suspension was mixed with 100uL of trypan blue solution. Cell death was
quantified using hemocytometer.

Immunofluorescence. Cells were plated on cover slips in a 6 well plate with 35k
cells/well. After treatment cells were washed, permeabilized and stained for IL-1a
using anti-IL-1a antibody (Abcam, ab9875), and nuclei was stained for DAPL
Following staining, samples were imaged using confocal microscope.

Statistical Analysis. Analysis of data was performed using the Anova One-Way
(correlated samples, p<0.05) test followed by Tukey’s post analysis or Kruskal-
Wallis test (ordinal data; p<0.05) followed by Dunn’s post analysis to determine
statistical significance among groups. For details in statistical analysis see
VasserStats Statistical Computation Web Site. All data are presented as mean *

SDEV.

97



5.3 Results

In order to examine determine if IL-1a plays a role in high glucose-induced
caspase-1 activity in Miiller cells, we first treated hMCs with either normal or high
glucose for 96 hours and used an anti-IL-1a antibody to block the effects of IL-10.
We observed that treatment with anti-IL-1a prevented high glucose induced
caspase-1 activity at 96 hours, similar to what we previously observed using an IL-1
receptor antagonist (Figure 22). To determine whether this blockage of caspase-1
activity prevented subsequent Miiller cell death we measured cell death in the
aforementioned experiment. Interestingly, we saw that anti-IL-1a also prevented
high glucose induced Miiller cell death (Figure 23).

Next, since IL-1a has a nuclear localization sequence we determined whether
there could be any nuclear translocation in Miiller cells. Here we treated hMCs with
normal or high glucose and used immunofluorescence to examine -cellular
localization (Figure 24A). Interestingly, we observed an increase in the cells

positive for nuclear IL-1a after 96 hours of high glucose treatment (Figure 24B).
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Figure 22. IL-1a blockage decreases caspase-1 activity in Miiller Cells Under

High Glucose Conditions.

Caspase-1 activity after treatment with 5mmol/1 or 25 mmol/1 glucose in the

presence or absence of anti-IL-1a. N=5, p<0.05.
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Figure 23. High glucose-induced Miiller cell death inhibited by anti-IL-1a.
Miiller cell death measured by Trypan Blue exclusion after treatment with 5mmol/1

or 25 mmol/l glucose in the presence or absence of anti-IL-1a. N=5, p<0.05.
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Figure 24. Nuclear Accumulation of IL-1a In Miiller Cells Under High Glucose
Conditions.

(A) Immunofluroescence staining of Miiller cells for IL-1a (red) or DAPI (blue).
Cells were treated for 48 hours- 5mM glucose (upper left), 48 hours- 25mM glucose
(upper right), 96 hours- 5mmol/l glucose (lower left), or 96 hours- 25 mmol/I
glucose (lower right). (B) Cells positive for nuclear IL-lo. were counted and

expressed as mean * SDEV. n=5, p<0.05.
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5.4 Conclusion

In previous chapters, we examined the caspase-1/IL-18/IL-1R1 pathway and
its role in sustained caspase-1 activation in Miiller cells under high glucose
conditions. In this study we examined another IL-1 family member, IL-1q, and its
potential role caspase-1 activation. Interestingly, we found that blockage of IL-1a
prevents sustained caspase-1 activity and subsequent cell death, similar to
treatment with an IL-1 receptor antagonist. Collectively, this indicates that IL-1a
may act in combination with IL-1f in driving caspase-1 activation through
activation of IL-1R1. Furthermore, we have shown that high glucose induces nuclear
translocation of IL-1o. It remains to be determined the exact role of IL-1a in the
nucleus of Miiller cells under these conditions, however it appears to be localized at
focal points, consistent with previous reports of IL-1a binding to specific locations

on the nuclear chromatin(283).
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Chapter 6. Summary and Future Outlook

6.1 Summary of data regarding caspase-1/IL-18 feedback signaling in the
retina of diabetic mice

The importance of inflammation in the progression of diabetic retinopathy
has become increasingly apparent. A variety of pro-inflammatory cytokines have
been identified in the vitreous of patients compared to healthy individuals, among
them IL-1f. Our previous studies have shown that caspase-1 activity is consistently
increased in the retinas of diabetic animals and patients. New data from this thesis
project provide novel mechanistic insights into the process of prolonged caspase-1

activation and IL-f production in diabetic retinopathy. Our results indicate:

* Using caspase-1-/- mice we demonstrated that caspase-1 activation is indeed
crucial for the development of diabetic retinopathy.

* Furthermore, using IL-1R17/- mice we identified that diabetes-induced
caspase-1 activity progresses from an IL-1R1 independent mechanism to an
IL-1R1 dependent mechanism throughout disease progression.

* These data provide for the first time an indication of a caspase-1/IL-18/IL-
1R1 feedback signaling mechanism that keeps caspase-1 active in the
diabetic retina.

* Using Miiller cells known to produce active caspase-1 and IL-1f under
hyperglycemic conditions we confirmed that prolonged exposure to
hyperglycemia leads to caspase-1/IL-13/IL-1R1 feedback signaling causing
sustained caspase-1 activity.
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* Hyperglycemia increased RIP2 protein levels in Miiller cells after 24 hours.
Most importantly, siRNA against RIP2 decreases caspase-1 activation and
subsequent IL-1f3 secretion under hyperglycemic conditions.

* Consistent with a decrease in caspase-1 activation and IL-1f3 secretion, siRNA
against RIP2 prevented hyperglycemia-induced Miiller cell death after 96
hours of hyperglycemia exposure.

* Interestingly, IL-1 also increased RIP2 protein levels. siRNA against RIP2
also attenuates caspase-1 activity induced by exogenous IL-1f3 indicating that
RIP2 is not only activating caspase-1 under hyperglycemic conditions, but
also by IL-1( feedback signaling.

* Diabetic and galactosemic caspase-1-/- mice were protected from Miiller cell
loss and the formation of acellular capillaries, confirming that caspase-1
activation plays a significant role in Miiller cell loss in vivo and is crucial for

disease progression.

Future outlook: Future studies are requires to determine whether interfering in

caspase-1 activation by targeting RIP2 represents a potential therapeutic target for
treatment of diabetic retinopathy. In addition, it would be valuable to test drugs that
target caspase-1 or IL-1f directly which are already on the market for other
diseases in the context of diabetic retinopathy. This would increase possibilities of

drug choices dramatically.
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Figure 25: Schematic outlining the caspase-1/IL-1f feedback signaling the

diabetic mouse.
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6.2 Summary of data regarding the role of IL-1a in hyperglycemia-induced
caspase-1 activation in Miiller cells

Hyperglycemia leads to sustained activation of caspase-1 and IL-1f3 production in
the retinas of diabetic animals and patients in vivo and in Miiller cells in vitro.
Interference in this signaling by knockout of caspase-1 or the IL-1R1 prevents
diabetic retinopathy indicating that the IL-1 pathway is important for the
development of the disease. The IL-1 family is comprised of multiple members
including IL-la. This study was focused on identifying the role of IL-la in

hyperglycemia-induced chronic inflammation in human Miiller cells. Data show that:

* Hyperglycemia led to a decrease in cytosolic IL-1a in Miiller cells at 24 hours.

* Treatment with anti-IL-1a inhibited hyperglycemia-induced chronic caspase-
1 activity and subsequent cell death in Miiller cells suggesting that IL-1a
plays a role in caspase-1/IL-1f inflammatory feedback signaling.

* Cytosolic localization of IL-la became increasingly localized to the
cytoskeleton during high glucose treatment compared to control.

* There was a significant increase in nuclear IL-1a at 96 hours indicating that
IL-1a might function on a transcriptional level to sustain inflammation at
prolonged high glucose exposure.

* Nuclear IL-1a appeared punctated rather than diffusely spread throughout
the nucleus.

Future outlook: This study has shown that IL-la seems to participate in

hyperglycemia-induced chronic caspase-1/IL-13/IL-1R1-mediated inflammation.
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Further studies are necessary to identify the role of IL-1a in the development of
diabetic retinopathy and whether IL-1a can be targeted for drug development.

Furthermore, the role of IL-1a in the nucleus remains to be examined.

6.3 Implications of the data collected during this thesis project to the field of

Miiller cells and diabetic retinopathy

Hyperglycemia promotes release of (1) growth factors, such as vascular endothelial
growth factor (VEGF) and pigment epithelium-derived factor (PEDF), and (2)
cytokines and chemokines including interleukin-1f (IL-f), interleukin-6 (IL-6),
tumor necrosis factor-a (TNF-a), and chemokine ligand-2 (CCL2)(54-60,285) (61-
63) from Miiller cells. In vitro studies have provided ample evidence that Miiller
cells are a potential source for growth factors and cytokines when stimulated with
elevated glucose levels. Considering that most of the growth factors, cytokines, and
chemokines released by Miiller cells have been identified in the vitreous of diabetic
patients it is fair to assume that Miiller cells contribute to the overall synthesis of
these factors in vivo(231,286-288).

How much Miiller cell derived growth factors really contribute to the
pathology of diabetic retinopathy in vivo is still not fully understood. The first
studies to understand the contribution and effect of Miiller cell derived VEGF to the
development and progression of diabetic retinopathy were done by the group of Y.Z.
Le. This group disrupted VEGF in Miiller cells with an inducible Cre/lox system and

examined diabetes-induced retinal inflammation and vascular leakage in these
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conditional VEGF knockout (KO) mice. The diabetic conditional VEGF KO mice
exhibited an overall decrease in parameters associated with the pathology of
diabetic retinopathy such as leukostasis, expression of inflammatory biomarkers,
depletion of tight junction proteins, numbers of acellular capillaries, and vascular
leakage compared to diabetic control mice(59,289,290). Additional studies focusing
on altering known regulators of VEGF production such as HIF-1 (hypoxia inducible
factor 1)(291) and the Wnt signaling pathway(292) specifically in Miiller cells have
supported the notion that Miiller cell derived VEGF is actually a major component in
the process of retinal angiogenesis and pathology in diabetic retinopathy. Besides
VEGF, Miiller cell derived PEDF has also been suggested to have its part in diabetes-
induced retinal angiogenesis(42). Taken together, it seems that Miiller cell derived
growth factors contribute heavily to pathological vascular events in diabetic
retinopathy.

Although Miiller cell derived VEGF contributes to detrimental effects on the
microvasculature in the diabetic retina, the intent of such growth factor production
by Miiller cells in the first place might have been to protect itself and the retinal
neurons from a diabetic insult. This idea is supported by a study using mice that
carry a disrupted VEGFR2 specifically in Miiller cells. Loss of VEGFR2 caused a
gradual reduction in Miiller glial density, decreased of scotopic and photopic
electroretinography amplitudes, and accelerated loss of photoreceptors, ganglion
cells, and inner nuclear layer neurons in the diabetic retina(293). More studies are
needed to fully explore and understand the beneficial effects of Miiller cell derived

growth factors on Miiller cells itself and retinal neurons in the context of disease.
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This is especially important since long-term anti-VEGF treatment might hamper
functional integrity of Miiller cells and neurons causing unexpected additional
problems in treating diabetic retinopathy.

Besides growth factors, Miiller cells release a variety of cytokines and
chemokines under hyperglycemic conditions. For example, Miiller cells are a major
source of retinal interleukin-lbeta (IL-1f) production as discussed in this
dissertation(62,126,128,294,295). Caspase-1, originally named interleukin-1f3
converting enzyme (ICE), produces the active cytokines IL-1f3 and IL-18 by cleavage
of their inactive proform(259,260,296,297). In Miiller cells, hyperglycemia strongly
induces the activation of the caspase-1/IL-1f signaling pathway as we have
previously shown(62,128). Increased caspase-1 activation and elevated IL-1f3 levels
have also been identified in the retinas of diabetic mice and retinal tissue and
vitreous fluid of diabetic patients(62,113,134,295,298). We have identified that
targeting this pathway by knocking down caspase-1 or the IL-1 receptor (IL-1R1) or
by pharmacological intervention protects against the development of diabetic
retinopathy in diabetic rats and mice(126,135). Prolonged IL-1f production by
Miiller cells has been shown to affect endothelial cell viability in a paracrine
fashion(295). Endothelial cells are extremely susceptible to IL-13 and rapidly
progress to cell death in response to this pro-inflammatory cytokine(295).
Endothelial cell death is detectable in the retinal microvasculature of diabetic
animals and isolated retinal blood vessels of diabetic donors and has been
associated with the formation of acellular capillaries, a hallmark of retinal pathology

in diabetic retinopathy(156). Besides IL-1f3, Miiller cells produce other well-known
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pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFa) and
interleukin-6 (IL-6)(126,128,135,140,162,299,300). Anti-TNFa therapy has been
proposed as a strategy to treat diabetic retinopathy in diabetic
animals(111,112,115,189). Detrimental effects of IL-6 have been associated with
vascular dysfunction and promotion of angiogenesis(301-303) which is why IL-6
recently has become a new therapeutical target of interest to prevent diabetes-
induced vascular damage. The production and release of pro-inflammatory
cytokines by Miiller cells strongly contributes to the chronic inflammatory
environment detected in the diabetic retina that over time promotes drop-out of a
retinal cells.

From a vascular perspective, other cytokines such as IL-6 has been solely
associated with detrimental effects(301-303). However, we have previously shown
that IL-6 prevents hyperglycemia-induced Miiller cell dysfunction and loss clearly
supporting a beneficial and protective nature of IL-6(128). This observation is well
in line with reports that in the retina IL-6 is an important cytokine responsible for
maintaining proper neuronal function as well as stimulating neuroprotective
effects(128,304-307). Treatment with IL-6 has been shown to protect retinal
ganglion cells from pressure-induced cell death(304). Additionally, in an
experimental model of retinal detachment, genetic ablation or neutralization of IL-6
led to a significant increase in photoreceptor cell death. However, treatment with
exogenous [L-6 resulted in a significant increase in photoreceptor density in the
outer nuclear layer(307). These different effects of IL-6 can potentially be attributed

to the two distinct signaling pathways IL-6 acts through. Classical IL-6 signaling -
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thought to be the anti-inflammatory and protective pathway - is mediated by the
membrane-bound form of the IL-6 receptor (IL-6R) and the ubiquitously expressed
glycoprotein 130 (gp130). Only cells such as Miiller cells (but not endothelial cells)
that express IL-6R are able to signal through classical IL-6 signaling. Conversely, IL-
6 trans-signaling, which is mediated by binding of IL-6 to the soluble form of the IL-
6 receptor (sIL-6R) and gp130, is thought to be the more pro-inflammatory and pro-
angiogenic pathway(128,302,305,308-318). In diabetic patients, correlations
between increased levels of IL-6 and the development of complications in the eye
have been made(319-324). However, whether IL-6 levels are increased in diabetes
as an attempt to protect from a pro-inflammatory environment or whether high
levels of IL-6 synergistically exaggerate diabetes-induced inflammation has yet to be
determined.

Whether Miiller cells die in diabetic retinopathy has long been a matter of
debate. It is easy to see that Miiller cells are “sturdy” cells taking into account how
well equipped these cells are to produce fair amounts of protective factors that
shield them at least in the beginning from a chronic diabetic insult as discussed
above. However, newer studies indicate that over time Miiller cells actually do begin
to die the longer diabetic retinopathy progresses. Frequency of Miiller cell death in
the diabetic retina rapidly accelerates when protective growth factors are
blunted(293).

Better understanding of types of cell deaths has furthered studies to look for
mechanisms other than apoptosis by which Miiller cells can die in a diabetic

environment. In this dissertation (Chapter 3) we have identified one particular
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mechanism of cell death that stands out and can explain histological features
described for Miiller cells in the diabetic retina. Pyroptosis is an inherently
inflammatory mediated mechanism of cell death, defined as being caspase-1-
dependent(73,142,220). Miller cells show increased caspase-1 activity and IL-1f3
production following exposure to hyperglycemic conditions and cells die as a
consequence(116,232). Although it is now very well established that initiation of
pyroptosis is caspase-1 and IL-1f driven, the execution phase of pyroptosis is not
yet completely understood. It has been shown that pyroptosis shares traits with
both apoptosis and necrosis in the execution phase(141,227). Since execution of
pyropototic cell death lacks specific marker, identifying retinal cells dying by
pyroptosis in vivo is a difficult task. Markers such as TUNEL staining used to detect
apoptotic cell death may not adequately detect pyroptosis. Therefore, we have
performed a study actually counting Miiller cells in the healthy and diabetic retina
and determined roughly 15% cell death at 7 months of diabetes(140). Even more
important, inhibition of the caspase-1/IL-13 pathway inhibited diabetes-induced
Miiller cell death in vivo as we had previously shown in vitro(126,128,140). Several
other studies are in line with our observation that Miiller cells die in a
hyperglycemic environment. The first study to describe dying Miiller cells in
diabetic retinopathy was done using EM analysis(138). Dying Miiller cells are
described as being hypertrophic consistent with the notion that during pyroptosis,
cells swell rather than shrink as observed in apoptotic cell death(53). To collect
more evidence for Miiller cells death in the diabetic retina we looked at earlier

markers of cell death and we have identified that GAPDH (glyceraldehyde-3-
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phosphate dehydrogenase) accumulates in the nucleus of Miiller cells in the retinas
of diabetic rats(163). Nuclear accumulation of GAPDH has been closely associated
with cell death induction(233-235,325). Consistent with our finding that Miiller
cells die by pyroptotic cell death, hyperglycemia-induced nuclear accumulation of
GAPDH depends on the activation of the caspase-1/IL-1 pathway(54,139). The
consequences of dying Miiller cells are multi faceted. On the bad side - Miiller cell
death will promote loss of retinal blood barrier integrity, increased vascular
permeability, and loss of neuroprotection affecting both neurons and vascular cells.
Loss of Miiller cells in diabetes has also been associated with aneurysm formation, a
clinical characteristic of diabetic retinopathy(138). However, one can also argue
that on the good side - removal of activated and pro-inflammatory Miiller cells
might be a “shut off’ mechanism to deal with an increasing inflammatory
environment in the diabetic retina. A lot more studies are needed to determine the
full pathway of Miiller cells death and to identify whether all Miiller cells are equally

affected by hyperglycemia.
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Figure 26: Timeline of Diabetic Retinopathy In Mice and Rats.
Timeline illustrating course caspase-1 activation, cytokine secretion, Muller cell
death initiation and execution in comparison to other prominent events

associated with diabetic retinopathy in retinas of STZ diabetic mice and rats.
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6.4 Conclusion

Miiller cells are a major component of a healthy retinal environment. Once
chronic hyperglycemia disturbs their environment, Miiller cells become
dysfunctional and start activating pathways to counter-regulate and “repair” the
environment.

In order to do so, Miiller cells release a large variety of growth factors and
cytokines in a diabetic environment. Most of the research to date has focused on the
detrimental effects the release of these growth factors and cytokines causes to the
retina. When taking a closer look most of these effects are associated with vascular
dysfunction and angiogenesis. On the other hand, it seems that production of these
growth factors and cytokines by Miiller cells are primarily intended to protect
Miiller cells and consequently retinal neurons from diabetic insult and might only
secondarily turn into the damaging components observed in diabetic retinopathy.
Very few studies have started to consider the protective nature of Miiller cell
derived growth factors and cytokines in regards to the integrity of glia cells and
neurons. A lot more studies are needed to understand the nature of Miiller cells
derived growth factors and cytokines. For a successful development of a new
therapy targeting these factors both detrimental as well as beneficial effects need to
be considered.

Understanding Miiller cell functions within the retina and restoring such
function in diabetic retinopathy should become a cornerstone for developing
effective therapies to treat diabetic retinopathy. Some approaches have been tested

to increase Miiller cell function by stimulating the beta-adrenergic
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pathway(326,327). Whether these studies materialize into effective therapy

strategies has to be seen in the future.
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Chapter 7. Internship Experience at Hoffmann-La Roche

[ spent the final year of the graduate program working at Hoffmann La-Roche
at their campus in Basel, Switzerland. [ was accepted for a one year internship to
the Roche internship for Scientific Exchange (RiSE) program and my appointment
was in the ophthalmology department of pharmaceutical Research and Early
Development (pRED). The RiSE program is designed to give graduate students an
opportunity to work at a pharmaceutical company with the goal of learning new
techniques and learn what it is like to work in industry.

The ophthalmology department at Hoffmann La-Roche focuses on
translational research with a goal of identifying new therapeutic targets in a number
of vision related diseases. My experience in the field of diabetic retinopathy and
inflammation was extremely useful and allowed me to be a valuable member to the
research team. [ was given my own research project and it allowed me to lead a
project and design the experiments necessary to complete the project. Additionally,
[ worked with many of the other team members and it allowed me to collaborate
with a team on portfolio related projects. During this work I learned many new
techniques and how to incorporate them into research projects. One of the new
techniques that I have used in the internship is RNA sequencing and how to analyze
the data obtained. This technique has been useful in helping to identify new targets
for potential therapies in a number of ocular diseases. In addition to RNA
sequencing, I have also become more familiar with confocal and two photon

microscopy and luminex magnetic bead cytokine assays. I have learned to use a
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number of new devices including the Roche MagnaPure for RNA extraction and
purification, Heidelberg for Optical Coherence Tomography (OCT), and the Phoenix
Micron IV for fundus imaging and laser photocoagulation. Furthermore, I have
increased my skills in vitro by continuing to work with the STZ diabetic mouse
model and have begun to work on the Choroidal Neovascularization (CNV) mouse
model.

Collectively, the experience of the RiSE internship was extremely valuable and

further confirmed that [ would like to pursue a career at a pharmaceutical company.
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