

This is to certify that the

thesis entitled

THE METHOD OF CELL ROTATION FOR COMPUTER BASED CORRECTION OF FLUORESCENCE MEASUREMENTS FOR ATTENUATIONS DUE TO PRIMARY AND SECONDARY ABSORPTION

presented by

Karlis Adamsons

has been accepted towards fulfillment of the requirements for

M.S. degree in Chemistry

Major professo

Date Jel. 12, 1982

0-7639

OVERDUE FINES: 25¢ per day per item

RETURNING LIBRARY MATERIALS:

Place in book return to remove charge from circulation records

© COPYRIGHT

BY

KARLIS ADAMSONS

1982

© 1982

KARLIS ADAMSONS

All Rights Reserved

sveiks

THE METHOD OF CELL ROTATION FOR COMPUTER BASED CORRECTION OF FLUORESCENCE MEASUREMENTS FOR ATTENUATIONS DUE TO PRIMARY AND SECONDARY ABSORPTION

Ву

Karlis Adamsons

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Chemistry

1982

f h C C ď n W. C M

ABSTRACT

THE METHOD OF CELL ROTATION FOR COMPUTER BASED CORRECTION OF FLUORESCENCE MEASUREMENTS FOR ATTENUATIONS DUE TO PRIMARY AND SECONDARY ARSORPTION

В١

Karlis Adamsons

An improved computerized right-angle spectrofluorometer capable of automatically implementing primary and secondary absorption corrections was constructed. The instrument incorporates a unique approach utilizing off center cell rotation to allow regulation of the thickness of the sample solutions through which the excitation and emission beams penetrate. Knowledge of the transmittance as a function of pathlength along both the excitation and emission optical axes permits determination of fluorescence signal attenuation caused by sample absorption. Equations have been determined and programs written to allow calculation of the correction factors to be done in real time. Once the factors are calculated, they are automatically instituted to generate fluorescence data corrected for these absorption effects.

Successful primary absorption corrections were obtained for quinine sulfate solutions in the concentration range 1×10^{-8} to 1×10^{-5} M with 1° absorbances 7×10^{-5} to 7×10^{-2} . Successful secondary absorption corrections were obtained for solutions containing quinine sulfate, 1×10^{-5} M, and fluoroscein over the concentration range 1×10^{-6} to 1×10^{-4} M with 2° absorbances 6×10^{-3} to $2\cdot3\times10^{-1}$.

yet an

the m

were wature

Dedication

The most beautiful thing we can experience is in the unveiling of yet another artistic masterpiece from nature's museum. The success of this work is dedicated to all of those who provided me the freedom and the means for such an experience in scientific discovery. Witnesses were we to the birth of a new means for looking at the finer details of nature's composition and brush strokes. With new vision the extent of the unveiling we are about to encounter is unknown...

scie

trut

not accu cann

is a to h

scie sati

> disc Sell

from

achi

Acknowledgements

Credit must be primarily extended to man's development of the scientific method and, thereby, the means of separating our fantasies from nature's truths. The method is the key that will unlock these truths, but only to an open mind. As long as one is only biased it does not make any difference, because if one's bias is wrong a perpetual accumulation of experiments will perpetually annoy one until they cannot be disregarded any longer. They can only be disregarded if one is absolutely sure ahead of time of some precondition that science has to have. In fact it is necessary for the very existence of truth in science that open minds exist which do not allow that nature must satisfy some preconceived conditions.

Credit is due also to the open-minded individuals who helped me in discovering the key for myself: Andrew Timnick, Jack Holland and John Sell. The relentless programming of Mike Reid and the words of insight from Bill Franz are gratefully acknowledged. The closeness of the association between us all has been the catalyst to the successes achieved and those only now dreamed of.

TABLE OF CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	vii
DEFINITION OF SYMBOLS	xii
CHAPTER I - INTRODUCTION	1
CHAPTER II - HISTORICAL	
A. Problems	
 Quantitative Fluorescence Measurements 	
Qualitative Fluorescence Measurements	23
The Effects of Sample Absorption on Other Forms	
of Information Derived From Fluorescence	
Measurements	25
B. Conventional Methods	
1. Sample Dilution	
2. Optimum Choice of Excitation and Emission	20
Wavelengths	0.5
a. Transmission Geometry	
b. Front Surface Geometry	32
c. Right-Angle Geometry	33
4. Designs of Sample Cells	34
5. Two Photon Excitation	34
C. Mathematical Expressions	35
1. Absorption Corrections for Transmission Geometry .	35
2. Absorption Corrections for Front Surface Geometry.	
3. Absorption Corrections for Right-Angle Geometry .	36
CHAPTER III - CORRECTIONS FOR RIGHT-ANGLE GEOMETRY - A	
Detailed Examination	44
A. Introduction	44
 Need for Both Absorbance and Fluorescence 	45
B. Theory	46

	1. The Moving (Vibrating) Mirror Method	46
		16
		16
	c. The Beam Intensity as a Function of	10
		19
	Measured Quantities and the Observation	
	Window	0
	e. Dependence of Corrected Fluorescence on	
	Absorption (Two Approaches) 5	0
		2
		2
		6
		6
		6
		7
	d. The Attenuation by Secondary Absorption 5	7
	 e. Absorption Effects on the Measured 	
	Fluorescence Signal 5	8
	f. The Correction Factors 5	8
	g. A Limitation of the Secondary Absorption	
	Correction 5	^
	3. Method of Cell Rotation 6	
	9	
		-
	c. Primary Correction Factor 69	
	d. Secondary Correction Factor 60	5
	e. Combined Correction Factor 69	9
	f. Satisfying the Assumptions	ò
CHAPTER	IV - AN AUTOMATED INSTRUMENT TO CORRECT FLUORESCENCE	
	MEASUREMENTS FOR PRIMARY AND SECONDARY ABSORPTION	
		,
Α.		
В.		
	Theory	
C.	Instrumental	•
	1. Overview	,
	2. Data Treatment	ś
	3. The Cell Positioner	3
	4. Detection Field Characteristics 105	
	5. Detection Window Calibrations	
	6. Noise Analysis	
D.		
ν.		
	1. Study of Primary Absorption 120	
	Study of Secondary Absorption 129	
CHAPTER	V - CONCLUDING STATEMENTS	
Α.	Summary	
В.	Future Work	
	1. Chemical Systems	
	2. Instrumental Improvements	

A

API

API

RE

]	Page
APPENDIX	A	- System Interfaces										157
APPENDIX	В	- PE Model 512 Specifications . Rapid Syn Stepper Motor Specs .										
APPENDIX	С	- Sample Cell Cleaning Procedure Vessel Prep. For Sample Storage Reagents Used	:	:	:	:	:	:	:			172 173
APPENDIX	D	- List of I/O Instructions Complete Program Listing										
REFERENCE	ES											246

Tabl Tabl Tabl

Tabl

Tabl

Tabl

Tabl

Tabl

LIST OF TABLES

				age
Table 1.	Activation and Deactivation Processes .			4
Table 2a.	Instrumental Variables			6
Table 2b.	Photophysical Variables			6
Table 3a.	Effect of Primary Masking			111
Table 3b.	Effect of Secondary Masking			111
Table 4.	Quartz Sample Cuvette Cleaning Procedure			172
Table 5.	Proper Selection of Slit Widths			174
Table 6.	Rapid Syn Stepper Motor Specifications			171
Table 7.	Perkin-Elmer Model 512 Specifications			169
Table 8.	I/O Instructions			175
Table 9.	List of Reagents			173

Figur Figur

Figur Figur

Figur Figur

Figur Figur

Figur

Figur Figur

LIST OF FIGURES

			Page
Figure	1.	Schematic Diagram of Activation and Deactivation Processes for Molecules	3
Figure	2.	Fluorescence Radiant Flux as a Function of the Penetration Distance of UV-VIS Radiation over a Hypothetical Series of Increasing Fluorophore Concentrations	15
Figure	3.	Apparent Fluorescence Emitting Region as a Function of Fluorophore Concentration	17
Figure	4.	Effect of Primary Absorption Along Excitation Axis with Respect to Apparent Luminosity	19
Figure	5.	Effect of Secondary Absorption Along Emission Axes with Respect to Apparent Luminosity	21
Figure	6.	Detection Geometries	30
Figure	7.	Instrumental Components and Their Arrangement for the Moving Mirror Method	40
Figure	8.	Instrumental Components and Their Arrangement for the Cell Shift Method	42
Figure	9.	Geometrical and Optical Configuration for the Collection of Fluorescence Radiation by the Moving Mirror Method	48
Figure	10.	Limiting Conditions for the Fluorescence Observation Angles for Point Sources Across the Sample Cell	55
Figure	11.	Geometry for a Right Angle Spectrofluorometer with a Square Cell	62

Fig Fig

Fig

Fig

Fig Fig

Fign Fign

> Fig. Fig.

Fig

Figu

Figu Figu Figu

Pigu

Pigu

Pigu Pigu

		rage
Figure 12.	Regions of Observation for the Method of Cell Rotation	64
Figure 13.	Attenuation of Radiation	68
Figure 14.	Cell Positions Available Using the Cell Rotation Method	76
Figure 15.	Block Diagram of Instrumentation Used in the Cell Rotation Method.	79
Figure 16.	Flowchart of Physical Devices Employed in the Cell Rotation Method.	81
Figure 17.	Stepper Motor and Lock-in Platform	83
Figure 18.	Post and Cell Holder Platform	85
Figure 19.	The Cell Holder	87
Figure 20.	Flowchart of System Program	90
Figure 21.	Positions of Emission Detection Fields	92
Figure 22.	Photograph of Cell Positioner as Employed by the Cell Rotation Method	95
Figure 23.	Elliptical Cell Rotation	97
Figure 24.	Cell Displacement in X & Y-Dimension as a Function of Lead Screw Rotation	99
Figure 25.	Vertical (z. Axis) Truing	102
Figure 26.	Stepper Motor Platform Alignment Tool	104
Figure 27.	Study of Detection Field Using Primary Masks	107
Figure 28.	Study of Detection Field Using Both a Primary and Secondary Mask	109
Figure 29.	Calibration of Emission Window	114
Figure 30.	Calibration of Excitation Window	116
Figure 31.	Potential Misalignment Problems Encountered During Tune-Up in the Cell Rotation Method	122

Fig

Fig Fig

Fig

Fig Fig

Fig

Fig Fig

Pigu Pigu

Pigu Pigu

		Page
Figure 32.	Exploded View of Noise Monitored at Various Output Voltage Levels	124
Figure 33.	Signal to Noise Ratio for Full Range of Analog to Digital Converter Output	126
Figure 34.	Reproducibility of Cell Position One with Multiple Rotations	128
Figure 35.	Instrumental Output With Concentration for Quinine Sulfate	131
Figure 36.	Quinine Sulfate - Fluorescence Output With Concentration As Detected in Four Cell Positions	135
Figure 37.	Study in Linearity of Primary Absorption with Increasing Quinine Sulfate Concentration	137
Figure 38.	Quinine Sulfate - Fluorescence Emission Scan as Detected in Four Cell Positions and Absorption Corrected	139
Figure 39.	Study in Linearity of Secondary Absorption With Increasing Fluorescein Concentration	141
Figure 40.	Fluorescence Emission Scan for Mixtures of Quinine Sulfate and Fluorescein	144
	Fluorescein 2 x 10 ⁻² M B. Quinine Sulfate 1 x 10 ⁻² M Fluorescein 6 x 10 ⁻² M C. Quinine Sulfate 1 x 10 ⁻² M Fluorescein 2 x 10 ⁻⁶ M	
Figure 41.	${\tt Modified\ M1709\ Omnibus\ Interface\ Foundation\ Module\ .}$	158
Figure 42.	Analog To Digital Conversion Circuitry	160
Figure 43.	Four Channel CMOS Multiplexer Circuitry	162
Figure 44.	Spectrofluorometer Output Amplification Circuitry	164

Figure

Figure

										Page
igure'	45.			Circuitry per Motor						166
igure	46.	Ozone	Exhaust	System						168

(0

LIST OF SYMBOLS

E	Herein refers to quantized energy equal to the product of
	Planck's constant and the frequency of the radiation.
h	is Planck's constant.
ያ ቀ	Refers to the frequency of radiation.
¥	Known as fluorescence quantum efficiency and is defined as a
	ratio of the total energy emitted to the total energy absorbed
	as a function of time and independent of excitation wave-
	length.
$^{\mathrm{C}}_{\mathbf{f}}$	is the fluorophore concentration
ø _f	is the fluorescence radiant flux
5 _	is the incident (excitation beam) radiant flux
ó ∘ € b	is the molar absorptivity.
	is the cell pathlength in centimeters.
K	is a product of three constants: $oldsymbol{\epsilon}$, $oldsymbol{\Phi}$ and b.
f(e)	is the geometrical factor dependent on the effective solid
	angle viewed by the detector.
g(λ)	is the response characteristic of the detector varying with
	wavelength.
K'	is a product of five contants, $f(e)$, $g(\lambda)$, \in , Φ , and b, for a
	particular set of experimental conditions.
C _{max}	is the concentration level of a fluorophore above which
шах	nonlinearity is observed in a plot of ϕ_c with C_c .
ϵ_{λ}	is the molar absorptivity at a specific wavelength of excita-
	tion.
Ex	is the excitation radiation or source of said radiation.
Em	is the emission radiation, fluorescence radiation in particu-
	lar.
x, x	are distances of the fluorescence detector axis from the
a. 16	inner surface of the excitation cuvette face; X is the
	shorter penetration distance, X is the longer penetration
	distance.
x, YA	are distances of the excitation beam axis from the emission
م ی	port cuvette face; Yex is the shorter penetration distance, Ye
	is the longer penetration distance.
∆d	is the distance between the focal points of fields of detec-
	tion along either the excitation or emission optical axes:
	refers to distance between foci of positions 1 & 4, 2 & 3, or
	1 & 2 and 3 & 4.
(0)	is an ideal (non-existing) cell position which is attained by
	correcting for primary and secondary absorption attenuations.
	correcting for primary and secondary absorption attenuations.

(1) is a position referred to in the method of cell rotation possessing the least primary absorption and the least secondary absorption with regard to other attainable cell positions.

is a position refered to in the method of cell rotation possessing the least primary absorption and most secondary

absorption with regard to other attainable cell positions. is a position referred to in the method of cell rotation possessing the most primary absorption and the most secondary absorption with regard to other attainable cell psotions.

is a position referred to in the method of cell rotation possessing the most primary absorption and the least secondary absorption with regard to other attainable cell positions.

is the wavelength of excitation radiation.

(2)

(3)

(4)

Θœ

ΘA

Θ;

Δω

Øwa

ø_{_(1)}

is the wavelength of emission (or fluorescence) radiation. refers in general to the distance of the detection axis from the inner source excitation face of the sample cell.

refers to the component of radiant flux being detected in a slice of solution volume perpendicular to the propagation axis of excitation.

is the number of component slices of detected radiant flux across the emission window.

is an idealized component slice of detected radiant flux across the emission window; here the radiant flux is assumed identical for each slice regardless of penetration distance. is the sample transmittance at a specified wavelength.

is equal to the ratio x_{ce}/b , a dimensionless emission window parameter.

parameter. is equal to the ratio x_g/b, a dimensionless emission window parameter.

is equal to the ratio $Y_{\!\!\!\boldsymbol{\mathcal{M}}}\!/b$, a dimensionless excitation window parameter.

is equal to the ratio $Y_{\mbox{\ensuremath{\mbox{A}}}}/b$, a dimensionless excitation window parameter.

is the fraction radiant flux in each slice of the detected emission beam; it describes the ratio ϕ/ϕ .

refers to the difference in magnitude between W_{∞} and W_{β} , $W_{\beta}-W_{\alpha}$.

refers to the difference in magnitude between Θ_{α} and Θ_{α} ; Θ_{α}

is the fluorescence radiant flux detected at ω_{∞}

is the fluorescence radiant flux detected at we refers to the absorption of excitation radiant energy as a function of penetration distance along the detected excitation propagation axis.

is the geometric factor required to extrapolate the absorption of excitation radiation from the inner cell surface to the focus of position one.

is the detected fluorescence radiant flux at position one.

| point | for the detected fluores corrected for primary about the fluorescence radiation | for th

Ce

S/N

is the detected fluorescence radiant flux at position one corrected for primary absorption. is the fluorescence radiant flux detected at Θ_{∞} .

is the fluorescence radiant flux detected at es.

refers to the absorption of emission radiant energy as a function of penetration distance along the detected emission propagation axis.

is the geometric factor required to extrapolate the absorption of fluorescence radiation from the inner cell surface to the focus of position one.

is the effective field generated emission beam radiant flux prior to penetration of solution toward the emission port. is the concentration of the secondary absorber, either the

fluorophore itself or another chromophore.
is the detected fluorescence radiant flux at position one

is the derected find escender absorption.

is the correction factor derived from primary absorption

measurements; (GF) ΔA , o is the correction factor derived from secondary absorption measurements; (GF) ΔA .o

portion of the detected fluorescence radiant flux at position one corrected for both primary and secondary absorption.

is the detected fluorescence radiant flux at position two. is the detected fluorescence radiant flux at position four refers to quinine sulfate

is the ratio of detected fluorescence signal to the background noise. $% \left\{ 1\right\} =\left\{ 1$

o: v:

so

ra el

(i

li:

CHAPTER I

INTRODUCTION

When a beam of electromagnetic radiation passes through a material or sequence of different materials (i.e., the sample and its containing vessel), its energy may be channeled into a variety of processes (Figure 1). Part of the radiation will be absorbed and transduced into whatever system dependent deactivation processes (Table 1) are in effect, part will be reflected, part will be transmitted, and a part will be scattered in various ways (i.e., Tyndall, Rayleigh and Raman scattering). Absorption takes place in discrete units of quanta, the energies of which are equal to the product h V. where V is the frequency of the radiation and h is Planck's constant. Quanta of visible or ultraviolet radiation are of sufficient energy to raise a molecule to an excited electronic state, from which this energy may be converted into rotational, vibrational or kinetic energy (i.e., heat) or into chemical energy (i.e., photochemical reactions, aggregation phenomena) or part of the energy may be re-emitted as quanta of lower energy (i.e., as fluorescence or phosphorescence).

For analytical applications, fluorescence has been the most utilized of the molecular deactivation processes due to its facility for characterizing excitable chemical systems and its remarkable

Figure 1. Schematic Diagram of Activation and Deactivation Processes For Molecules

- Key: (1) Activation step, excitation of singlet ground state, So, to the first excited singlet state, S[‡].
 - (2) Radiationless deactivation of S*
 - (3) Radiational deactivation of S* (fluorescence)
 - (4) Intersystem crossing S* to the ground triplet state, To
 - (5) Intersystem crossing To → S*
 - (6) Radiationless deactivation of To
 - (7) Radiational deactivation of To (phosphorescence)

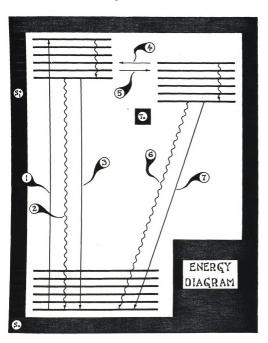
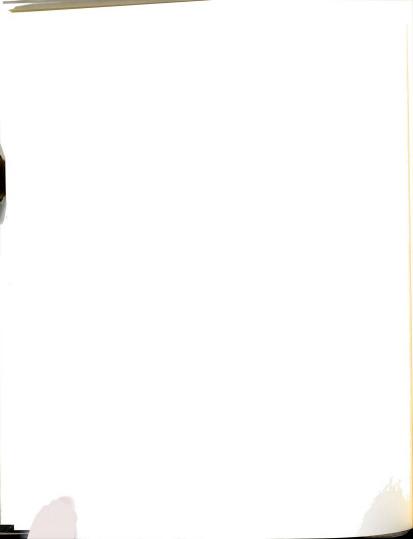


FIGURE 1

Table 1. Activation and Deactivation Processes

Reactants	Rate Constant	Products	Description	Type (Figure 1)
S ₀ + h y a	k _a	S*	Excitation Step	1
s* + s ₀	ksq	2So	Quenching due to Collision with So	2
S* + Y	k _{sy}	So + Y	Quenching due to Collision with Y	2
S *	k _{sp}	Products	Photochemical Reaction	2
S* + So	k _{sd}	(So) ₂	Dimerization	2
S* + Y	k _{sf}	So + Y*	Forster-type intermolecular energy transfer	2
S*	k _f	So + h ឃ f	Fluorescence	3
S *	*si	То	Intersystem crossing (spin forbidden)	4
То	-k _{ti}	S *	Intersystem crossing (spin forbidden)	5
To + So	ktq	250	Quenching due to collision with S	6
To + Y	kty	So + Y	Quenching due to Collision with Y	6
То	ktp	Products	Photochemical reaction	on 6
To + So	ktd	(So) ₂	Dimerization	6
To + Y	ktf	So + Y	Forster-type intramolecular	6
То	-k _p	So + h V p	Energy Transfer Phosphorescence	7

Symbols defined: So = ground singlet state of molecule; S^{\bullet} = excited singlet state of molecule; To = lowest triplet state of molecule; h = planck's constant; J^{\bullet} = frequency of absorbed radiation; J^{\bullet} frequency of fluorescence radiation; J^{\bullet} p = frequency of phosphorescence radiation; J^{\bullet} = solvent or impurity molecule; Y^{\bullet} = excited nonluminescing solvent or impurity molecule; $(So)_{2}$ = non-luminescing dimer.



sensitivity. The initial excitation or absorption of radiation by a molecule in solution is dependent on the energy difference between its electronic states. In general, the molecules will absorb a narrow band of radiation the wavelengths of which are equivalent to the energy level separation between two electronic energy states and associated vibrational and rotational energy levels. Since for each electronic state there are many vibrational and rotational levels, an absorption band is observed instead of absorption at a single wavelength.

Scientific literature over recent years spanning a wide variety of areas such as trace metal determination, analyses for traces of organic materials, and particularly for determining trace constituents of biological systems, attests to the ever increasing interest in and importance of fluorescence.

Instrumentation for the measurement of fluorescence has evolved over the last several decades to where it now routinely provides a means for obtaining accurate qualitative and quantitative information about these molecules.

In brief, fluorometry, no matter how simple or complicated the instrumentation, consists of three basic components: a source of radiant energy with which to irradiate (excite) the sample; a sample holder; and a detector to observe the fluorescence emitted by the sample. The complexity of the instrument depends on the degree to which the frequency and radiant flux of the exciting radiation need be controlled, the degree to which specific frequencies of fluorescence can be selected and the sensitivity and precision with which the selected fluorescence radiant flux can be measured.

Table 2a. Instrumental Variables

- A. Source Stability
- B. Source Spectral Distribution
- C. Excitation Monochromator
 - Intensity Variation
 Bandwidth Control
 - 3. Stray Excitation Radiation
- D. Cell Geometry
- E. Emission Monochromator
 - 1. Intensity Variation
 - 2. Bandwidth Control
 - 3. Stray Excitation Radiation
- F. Detector
 - Sensitivity
 - 2. Linearity
 - Stability
- 4. Spectral Response
- . Amplifier
 - 1. Stability
- 2. Linearity
- H. Read Out
- Stability
- 2. Linearity

Table 2b. Photophysical Variables

- A. Quantum Efficiency
 - 1. Radiationless Collisions
 - 2. Internal Conversion
- Phosphorescence
- B. Absorption1. Primary
 - 2. Secondary
- C. Reflections and Refractive Index
- D. Light Scattering
- E. Re-Emission
- E. Re-Emission

In filter fluorometers, selection of the frequency is made by inserting appropriate filters in the beams of the exciting and fluorescence radiation. If a monochromator is used to select the frequency of either beam, the instrument by definition becomes a spectrofluorometer. It can then be used to measure the spectral distribution of the fluorescence radiation (i.e., "fluorescence emission spectrum"), or the variation of fluorescence radiant flux with frequency of the exciting radiation (i.e., "Fluorescence excitation spectrum").

Spectrofluorometry has the advantages over spectrophotometry of being potentially far more analytically sensitive and providing two spectra as criteria for identification and characterization instead of one. It has the obvious limitation that not every absorbing substance fluoresces.

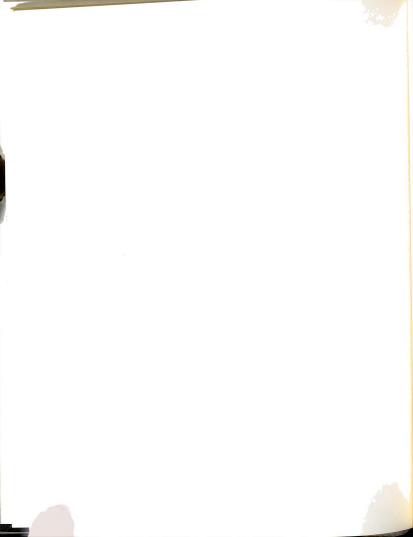
Molecules that fluoresce do so with a characteristic quantum efficiency, $\mathbf{\Phi}$, defined as a ratio of the total quanta emitted to the total quanta absorbed per unit time and is independent of the excitation wavelength.

Where both the quantity in the numerator and denominator are measured in a given time frame for a specific emission and excitation transition, respectively. The relationship between fluorescence measured and the fluorophore concentration, $C_{\mathfrak{g}}$, is given as:

$$\phi_f = \Phi \cdot \phi_o \quad (1 - e^{-\epsilon bc} f)$$
 (1)

and expanded,

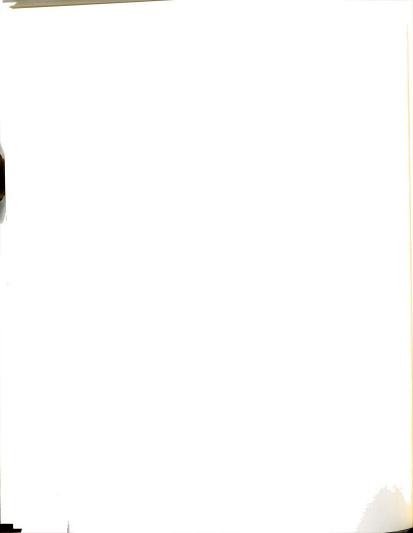
$$= \mathbf{\Phi} \cdot \mathbf{\phi}_{0} \cdot (1-1 + \mathbf{\epsilon}_{0} \mathbf{b}_{1} - \frac{(\mathbf{\epsilon}_{0} \mathbf{b}_{1})^{2}}{2!} + \frac{(\mathbf{\epsilon}_{0} \mathbf{b}_{1})^{3} - \dots)}{3!}$$
(2)

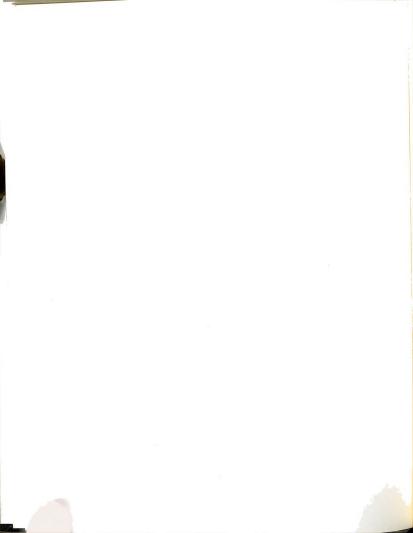

Where : p_f = fluorescence radiant flux; p_0 = incident radiant flux; e = molar absorptivity; e = pathlength of cell; e = molar concentration of fluorophore.

For dilute solutions in which only a small fraction of the exciting radiation is absorbed (\mathfrak{E} bc_f is small and only the first term in Equation 2 is significant):

$$\beta_f = k \cdot \beta_o \cdot c_f$$
 (3)

Where k represents the product of the constants Φ, \in and b. A plot of $\mathscr{D}_{\mathbf{f}}$ vs $\mathbf{C}_{\mathbf{f}}$ should yield a straight line. The linearity, however, breaks down at higher concentrations when \mathbf{E} bc $\mathbf{C}_{\mathbf{f}} > 0.01$ and higher order terms in Equation 2 become significant. Table 2 provides a listing of instrumental and photophysical factors which can account for observed deviations from linearity.


The above equation demonstrates \mathscr{A}_f is directly related to \mathscr{A}_o . To obtain higher analytical sensitivity, \mathscr{A}_o can be increased. With modern photomultipliers and amplifiers the detection of very low concentrations of fluorescent substances is feasible. A fundamental distinction of spectrofluorometry from spectrophotometry becomes apparent in that for the latter the detection limit is set by the minimum detectable difference in radiant flux between the incident and transmitted radiation and extremely precise measurements of radiant flux are required to attain as high a sensitivity. Furthermore, in spectrophotometry, a ratio \mathscr{A}_o is evaluated. Increasing \mathscr{A}_o will increase \mathscr{A} in a proportionate amount so that the ratio is constant for a particular concentration.


Outside of instrumental factors quenching and inner filter effects (i.e., primary and secondary absorptions) are the major influences on the accuracy of quantitative fluorometric measurements. Lack of appreciation of the elementary principles governing these two effects, or confusion between the two, has in the past led to the use of unsatisfactory equipment or procedures and to the incorrect interpretation of fluorescence measurements. Quenching includes all those processes that result in lowering the quantum efficiency from that of the isolated ideal state by diverting radiant energy absorbed by the molecule into channels other than the fluorescence emission process. Primary absorption involves absorption of the exciting radiation by the fluorophore or other chromophores in the background matrix. Secondary absorption involves absorption of the fluoresced radiation either by self-absorption due to partial overlap of the absorption and emission bands or by absorption by other chromophores. The combined effects of the absorption processes have been called the innter filter effects in the period prior to clear definition of causation. This term is still used by some authors.

Over recent years, investigators have evaluated these inner filter effects and have, to varying degrees, succeeded in compensating for the associated attenuations. Historical aspects leading up to the current state-of-the-art instrumentation, optical geometries and data correction procedures follow.

The goal of this present work was to design an improved computerized instrument to make accurate and correct corrections in fluorescence measurements for primary and secondary absorption effects and to

evaluate its performance. To this end, a novel method employing cell rotation was developed which allows regulation of the thickness of sample through which the excitation and emission beams pass.

CHAPTER II

HISTORICAL

A. Problems

A lucid and exhaustively detailed account of the problems caused by excessive sample absorption, the conventional methods applied in dealing with excessive sample absorption, and the mathematical expressions used to correct spectra attenuated by primary and secondary absorptions is compiled in Christmann's Ph.D. dissertation².

Inner filter effects diminish the quality, and therefore, the usefulness of the fluorescence data obtained from a particular chemical system. Both quantitative fluorescence measurements and qualitative spectral determinations are adversely affected. The discussion will focus individually on these aspects of spectrofluorometry.

1. Quantitative Fluorescence Measurements.

The analytical versatility of fluorescence spectroscopy is due not only to its inherently high sensitivity, but also to the relationship between observed fluorescence and fluorophore concentration in ideal situations. This point is made in many current analytical textbooks that include even rudimentary descriptions of the processes of photo-uminescence. This relationship can be represented as follows:

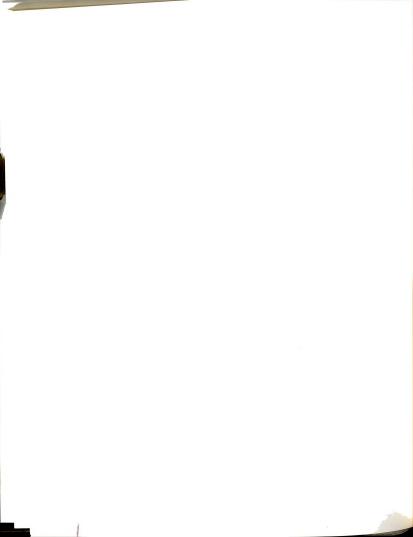
Where f(e) is the geometry depending on the effective solid angle viewed by the detector, $g(\lambda)$ is the response characteristic of the detector varying with wavelength, and ϵ , b and c have their usual Beer's law connotations.

When the fluorophore is very dilute (i.e., when the primary absorbance of the solution is less than 0.01¹, only the first term of the power series is significant. The expression reduces to the linear form:

$$\not g_f = f(e).g(\lambda).\not g_0.\Phi.E.b.c.$$
 (5)

Fluorescence radiant flux is a linear function of concentration and of incident radiant flux. The term K' for a particular set of experimental conditions is equal to a collection of constants, $f(e).g(\lambda).\Phi.E.b$.

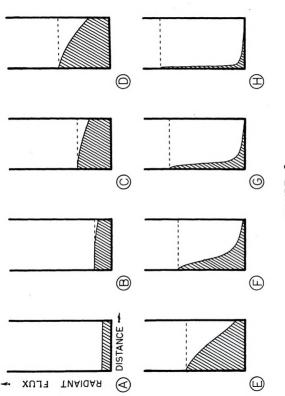
At higher fluorophore concentrations it becomes necessary to inlude additional terms from the power series. Examination of the xpanded equation shows that the terms alternate in sign. As more terms re evaluated (for higher concentrations), those which are negative egin to influence the overall value significantly.

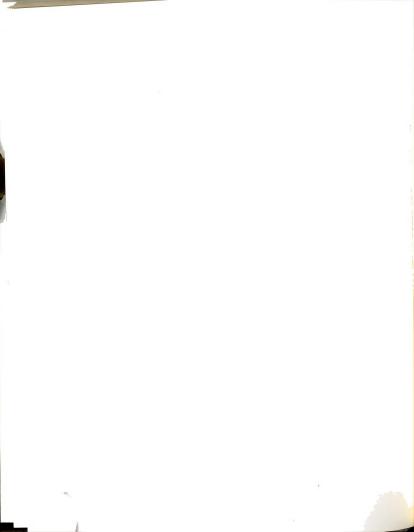

The concentration level above which non-linearity becomes apparent can be determined by:

$$C_{\text{maximum}} = \frac{0.01}{\epsilon_{\lambda}b}$$
 (7)

Where $\boldsymbol{\epsilon}_{\lambda}$ is the molar absorptivity at the wavelength of excitation and b is the sample pathlength along the axis of excitation. For establishing a standard curve it is important to determine the fluorophore concentration at which the $\boldsymbol{\phi}_f$ vs. C_f plot becomes significantly nonlinear for the accuracy desired.

At sufficiently high concentrations the fluorescence radiant flux reaches a peak and then decreases rapidly. This observation demonstrates that fluorescence radiant flux is a function of the penetration distance of the exciting radiation and increasing fluorophore concentration (Figure 2). Recently investigators have described this phenomenon as an apparent shifting of the most intensely fluorescing region of the sample solution toward the excitation face of the cell as the penetration depth of the exciting radiation is reduced by increased absorption (Figure 3). It has been shown that the position of the geometrical detection window is directly related to the curvature of the fluorescence response 10. Departure from linearity is mainly due to primary absorption (Figure 4). Other key processes involved are self-quenching and secondary absorptions (Figure 5).


The primary absorption process is responsible for supplying energy that is subsequently reemitted as fluorescence radiation (Table 1). Its molecular basis had been first identified in the early thirties. Later studies 11-13 further described these forms of energy transition, both



Fluorescence Radiant Flux as a Function of the Penetration Distance of UV-VIS Radiation Over a Hypothetical Series of Increasing Fluorophore Concentrations Figure 2.

Key: (A) very dilute, no detectable ϕ_c attenuation across emission window; (H) very concentrated, extreme ϕ_f attenuation; (B) through (G) successive intermediate concentrations.

IGURE 2

Figure 3. Apparent Fluorescence Emitting Region As a Function of Fluorophore Concentration

Key: EX = Excitation Radiation

EM = Detected Fluorescence Radiation

CONC = Fluorophore Concentration

) = Emission Port Detector

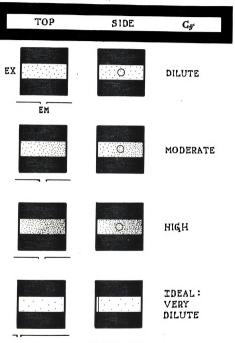
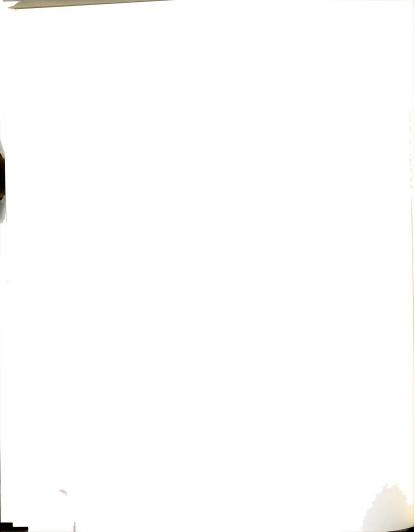



FIGURE 3

Figure 4. Effect of Primary Absorption Along Excitation Axis With Respect to Apparent Luminosity

Top = Reference medium (negligible primary absorption)

Bottom = Sample medium (detectable primary absorption)

Key: $\mathbf{X}_1, \mathbf{X}_2$ = distances of fluorescence detector axis from the excitation cuvette face

EX = Excitation Source Radiation

EM = Emission Radiation

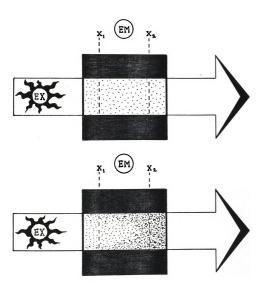


FIGURE 4

Figure 5. Effect of Secondary Absorption Along Emission Axis With Respect to Apparent Luminosity

Top = Reference medium (negligible secondary absorption)

Bottom = Sample medium (detectable secondary absorption)

Key: Y_1, Y_2 = distances of excitation beam axis from the emission port cuvette face

EX = Excitation Source Radiation

EM = Emission Radiation

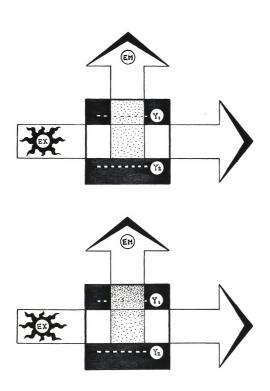
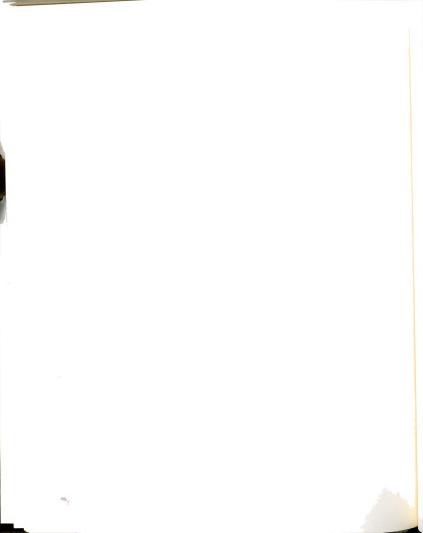
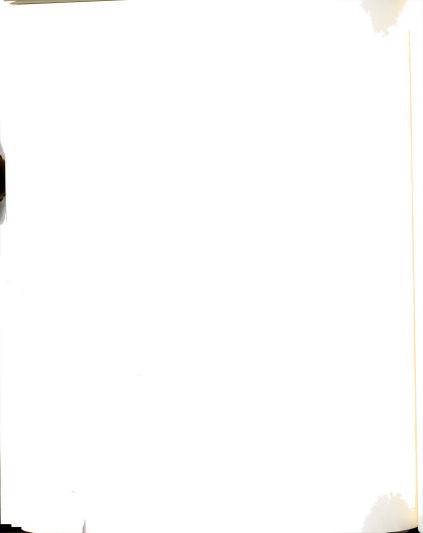
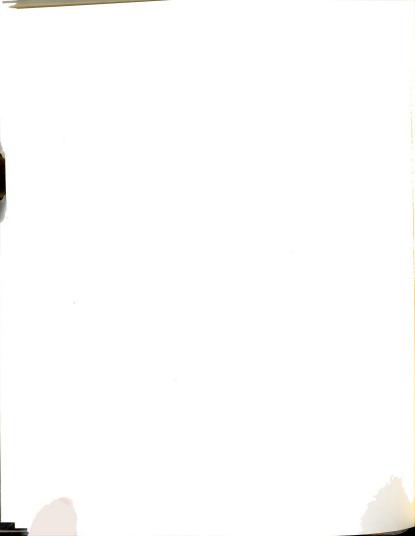




FIGURE 5

theoretically and experimentally. It was not until the seventies ^{9,11} that an instrument was developed to correct fluorescence measurements conveniently for this attenuation. Prior to the advent of correction procedures, accurate analysis could only be attained by working with dilute solutions where the attenuation caused by primary absorption was negligible. However, the limitation of measuring only dilute solutions is not a universal remedy. This point will be further discussed in the section under conventional methods.

The secondary absorption processes include self-absorption and absorption of fluorescence by other chromophores in the matrix. Both processes will cause attenuation of the $\phi_{\rm f}$ vs. ${\rm C_f}$ analytical curve. Self-absorption is a result of overlap between a molecule's absorption and emission bands. The effect is noticeable when the fluorescence is measured on the short wavelength side of an emission band so that the fluorophore itself may absorb its own fluorescence radiation. This attenuation is observed as an exponential decrease of the relative portion of radiation transmitted by the solution at the emission wavelength with increasing concentration of the fluorophore 14. Usually fluorescence is measured outside of this region of the spectrum unless it is necessary to use this region to avoid more severe interferences from other absorbing species. Fluorescence absorption by other solution components depends on their respective concentrations and overall characteristics of the absorption spectra. When possible the background matrix should be prepared without inclusion of such component species. If they cannot be eliminated and these effects are significant, then a correction for the attenuation must be applied.


Performance of routine fluorescence analyses requires that the calibration (standard) curve is prepared with a set of standards possessing an identical background matrix. If this practice is not observed, there is no compensation made for the different degrees of primary and secondary absorption encountered 15,16.

2. Qualitative Fluorescence Measurements

Fluorescence and ultraviolet-visible spectrometry provide similar information regarding qualitative analyses. The excitation spectrum of a fluorescent molecule theoretically is similar to its uv-vis absorption spectrum 17,18. This signifies that fluorophores may be characterized by direct comparison to universally available uv-vis standard spectra reference files such as those published by Sadtler Research 19 and APT²⁰.

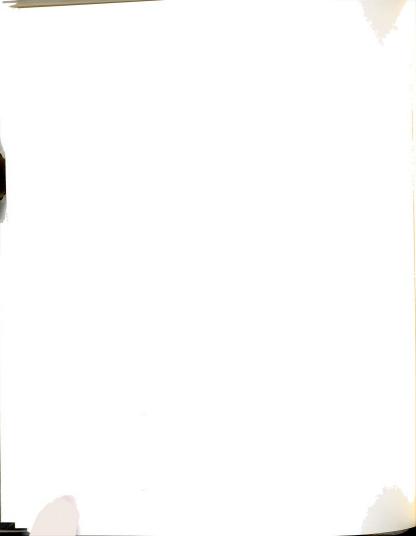
In theory, the emission spectrum should be a mirror image of the excitation spectrum. However, since an excitation spectrum is normalized with respect to energy along the wavelength or wavenumber axis and that the emission spectrum is not, severe distortions from the expected may result 17,18. Also when complex transitions are involved, as in the case of quinine sulfate, emission spectra will not be a mirror image of excitation spectra.

Instrumental factors such as the variation of the source energy with wavelength and variations in the spectral sensitivity of the detection system distort the fluorescence excitation and emission spectra¹²,13,21-26. Several commercially available spectrofluorometers correct for these effects.

Photophysical factors such as primary and secondary absorption can result in severe spectral distortions 12 . In dilute solutions of primary absorbance of less than 0.01 these factors are usually negligible. An exception would be a system containing a strong secondary radiation absorbing species which is transparent to the excitation radiation. As primary absorption begins to exceed 0.01 a decrease in the fluorescence excitation spectrum relative to the uv-vis absorption spectrum is observed 27 . As was noted in making quantitative measurements, even higher increases in absorption will reduce the effective penetration distance of uv-vis radiation through the media (Figure 2). This will cause the ${\cal P}_{\bf f}$ vs. ${\bf C}_{\bf f}$ plot to pass through a maximum and proceed to bow down toward the concentration axis. This may grossly distort the excitation spectrum further departing from it's expected "true" characteristics.

Attenuations caused by the absorption of emission radiant energy will incorporate a negative error in relative quantum yield determinations employing area integration techniques²⁶.

Self-absorption can be differentiated from other chromophores since the loss of radiant flux will be greater on the short wavelength side of the fluorescence emission spectrum.


Secondary absorption by the background matrix will reduce the observed fluorescence emission. The matrix components will affect the emission spectrum only in the spectral regions where they themselves absorb. In this case quantum yields will also be low.

The Effects of Primary and Secondary Absorption on Other Forms of Information Derived From Fluorescence Measurements

Thermodynamic quantities and associated chemical equilibrium constants have been extracted from fluorescence data 28 . Unfortunately, these data, unless corrected for both instrumental and photophysical errors, will give erroneous values for such quantities. Calculations of this nature assume linearity in the $\phi_{\rm f}$ vs. ${\rm C_f}$ interrelationship throughout the concentration range under study. The most highly regarded determinations of these quantities 2 involved preparation of calibration curves to encompass the concentration range. In all cases, background matrices were matched to that of the sample.

If there are absorption changes, the fluorescence data collected over time as a reaction proceeds must be continually corrected. In a monitored reaction one must be aware of the potential for a changing background matrix. These changes must be accounted for prior to evaluation of rate constants and activation parameters used in establishing system specific rate laws. In recent years correction factors for primary and secondary absorption have been applied to static systems 2,9,29,30. An automatic and rapid absorption correcting instrument adaptable to repetitive scanning of dynamic chemical systems has not yet been reported. Until the advent of such instrumentation, the meaningfulness of these quantities should be viewed with suspicion.

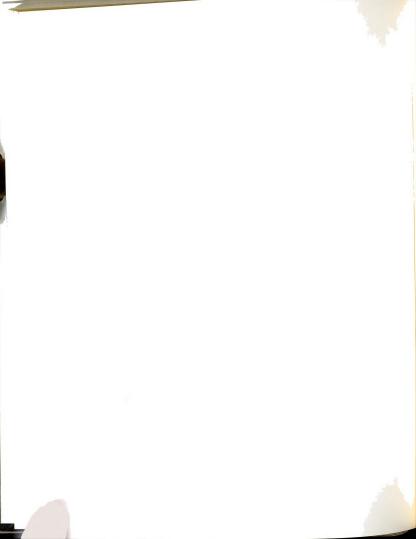
B. Conventional Methods

Various approaches, both in experimental procedure and in instrumentation, have been devised in overcoming or correcting for primary and secondary absorption. The following methods will be discussed: sample dilution; optimum choice of excitation and emission wavelengths; detection geometries (i.e., transmission, front-surface, right-angle (Figure 6); non-typical designs of sample cells; and two-photon excitation. Limitations encountered in each method will be emphasized.

1. Sample Dilution

A common "textbook" approach for minimizing excessive sample absorption was to dilute the sample until the linear portion of the ϕ_r with $C_{\rm p}$ curve was attained 17,31 . For many chemical systems, this was the easiest method for reducing the attenuations due to these absorban-This remedy was not found universally applicable. Chemical systems containing a fluorophore at very low concentrations and a highly absorbing background matrix are an example. Further dilution of such a system must encounter the trade-off of decreasing $C_{\mathbf{r}}$ below detection sensitivity of the instrument and never attaining the linear region of the calibration curve. Also, since a wide variety of chemical species are concentration dependent (i.e., possible conformational changes, alterations in intermolecular or intramolecular bonding, formation of different solvent structures) unidentified chemical events can reduce the concentration of the fluorescing species or may cause other significant changes in fluorescence. As a result, errors of unknown magnitude are introduced into the measurements.

As simple as dilution appears, extreme care must be exercized to avoid contamination of the sample by the dilution procedure. Purity of all media used in dilution must be ascertained and an identical background matrix should be included. These precautions will give more confidence to the resulting measurements.

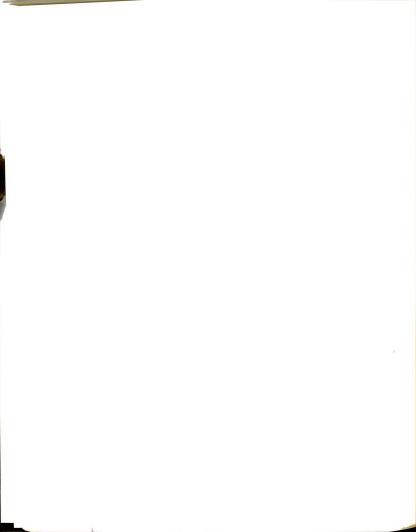

2. Optimum Choice of Excitation and Emission Wavelengths

The use of filters and monochromators has made possible the selection of narrow bandwidths of either the excitation or emission radiation. The chosen excitation or emission wavelengths are those at which primary and secondary absorption interferences are minimal. This approach is convenient with commercially available spectrofluorometers since they have both an excitation and an emission monochromator.

Problems with this approach arise when the sample complexity precludes the existence of such wavelengths where it may be impossible to find wavelengths where primary and secondary absorption effects are negligible. Where one chromophore does not absorb, another may. The absorption and emission characteristics of other fluorophores may cause spectral interferences.

A fundamental limitation is in the reduction of sensitivity by selection of wavelengths shorter or longer than the excitation or emission maxima.

Wavelengths should be chosen to minimize Rayleigh scattering. The magnitude of the scatter peak depends upon the absorption characteristics of the solvent and sample, the size and number of particles suspended, and the wavelength of the exciting radiation.



Also wavelengths that encompass intense Raman scattering should be avoided. Raman scatter is the result of interaction of photons with the vibrational energy levels of solvent or solute molecules which results in inelastic scattering of photons of lower or higher energy. A blank is used to determine the radiant flux of the Raman bands which can be subtracted from the sample fluorescence radiant flux. Often it is possible to minimize Raman interferences by exciting the sample not at the peak of the excitation band, but at a shorter wavelength on the shoulder of the excitation band. This reduces sensitivity to some extent, but in the process moves the Raman band toward shorter wavelengths, thus reducing its interference with the emission band of interest.

Many commercial double beam spectrofluorometers subtract fluorescence radiation from a reference solution containing only the background matrix from the sample solution. This will eliminate the scatter bands and the effect of matrix chromophores and fluorophores which do not interact significantly with the fluorophore of interest.

3. Detection Geometries

Cell geometry describes the cell orientation as it relates to the excitation beam and emission optics. The evolution of geometries applied to account for the absorption artifacts will be briefly presented here and with regard to applied correction factors in the following section.

Figure 6. <u>Detection Geometries</u>

- A. Transmission
 B. Front Surface
 C. Right Angle

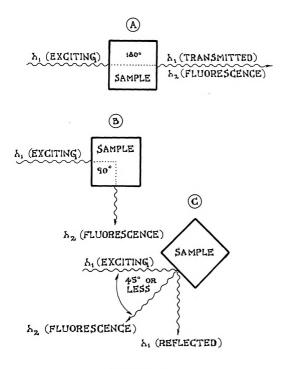
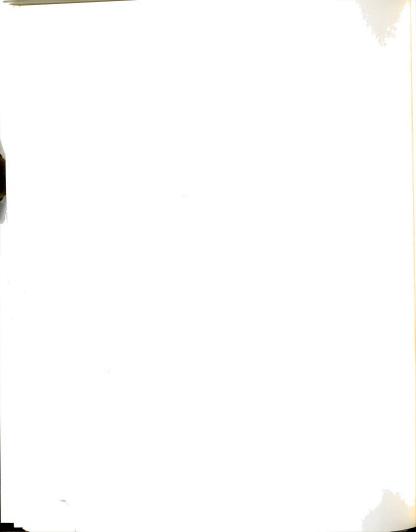



FIGURE 6

a. Transmission Geometry

The arrangement in transmission geometry is shown in Figure 6a. Fluorescence is viewed along the same axis that the excitation radiation propagates. Generally an emission monochromator is required to isolate only fluorescence wavelengths.

The advantage, aside from the simplified instrumental set-up, is that attenuation of of measured fluorescence due to primary absorption is much less pronounced than in instruments using a right-angle geometry 32 . The actual primary absorption over a constant distance, $\triangle d$, is unchanged between geometries, but as this attenuation increases and. subsequently, the maximal (apparent) fluorescing region compresses toward the source of exciting radiation a dramatic difference between the two geometries becomes apparent. In the right-angle mode of detection the region of maximal fluorescence on increasing primary absorption will be at the entrance cell wall for the excitation beam from where it is virtually impossible to isolate emission radiation. With the transmission arrangement all emitted radiation within the detection window is monitored. Negative deviations from the ideal linear ϕ_r and C_r plot are thus reduced in the ideal case, dependent only on the inverse square loss of the emitted radiation as its origins become more remote from the viewing detector.

The major drawback to transmission geometry remains, however, the quality of the emission optical systems needed for viable separation of stray light from the desired fluoresced radiation.

A disadvantage relative to right angle detection is the apparent increase in the effect of secondary absorption 32. This is caused by an

increase in the average pathlength traversed by the fluorescence radiation in the transmission geometry. This average is further increased if the primary absorption is high³³. The reason, discussed in the problems section, for this observation is depicted in Figures 2 and 3.


b. Front Surface Geometry

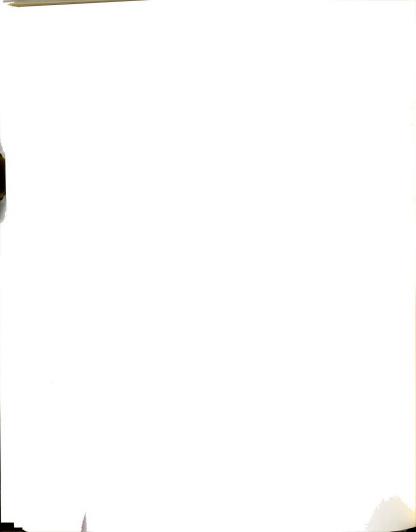
The arrangement in front-surface geometry is shown in Figure 6c. Fluorescence is viewed at a 45 (or smaller) angle of reflection from the axis of propagation for the excitation radiation.

Frontal illumination has the advantage of permitting the measure-

ment of the emission spectrum of a solution containing a high concentration of a fluorescent substance. Obtaining such a spectrum with right-angle or transmission geometries may be impossible since in very concentrated solutions a large portion of the exciting light is absorbed close to the region of entry into the cell. For concentrated systems, this geometry is the only feasible way of keeping the fluorescing region in the detection window. This greatly reduces the primary and secondary absorptions that are encountered by further penetration of the solution. However, this approach only reduces the magnitude of these absorptions, they are not eliminated. Various investigators have demonstrated that, indeed, secondary absorption can be quite high with some systems 33,35. Later, suggestions were made for exciting only at absorption maxima and thereby reducing the high concentration of fluor-ophore required 17,35.

When dilute solutions of a fluorophore are measured, the observed fluorescence is proportional to concentration and an excitation spectrum unattenuated by primary absorption is recorded. At higher concentrations where primary absorption begins to attenuate the ϕ_r with C_r

olot, distortions appear in the excitation spectrum.


The major disadvantages inherent in this mode of detection are high econdary absorption effects, an increase in the probability of quenching because of the high concentrations, significant distortions of the mission spectra due to re-emission of absorbed radiation^{32,34} and reduction of fluorescence if analyte association occurs. In addition, non-orthagonality between excitation and emission beams and their respective cell faces can induce severe polarization artifacts and multiple internal reflections.

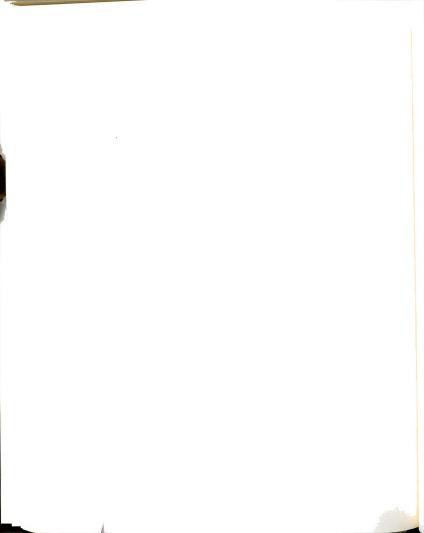
c. Right-Angle Geometry

The arrangement in right-angle geometry is shown in Figure 6b. Pluorescence is viewed at an angle of 90° to the propagation axis of the excitation radiation.

The major advantage of right-angle detection, where the detector conitors only the illuminated liquid and not the illuminated cell face, s that interference by stray excitation radiation arising from either effections at the cuvette faces or any fluorescence of the cuvette tself is minimized.

A limitation is the fact that the excitation radiation has to pass hrough a depth of solution, Δd , before reaching the region viewed by he detector where its effective radiant flux may be reduced by primary oscrption. This arrangement is suitable for moderately absorbing plutions, which generally refers to dilute solutions of the fluoronce. Considerably larger concentrations of a transparent solute in the background matrix can be tolerated with no adverse effect.

4. Designs of Sample Cells


The normal cell employed with commercial spectrofluorometers has dimensions of 1 cm \times 1 cm \times 4.5 cm height. Occasionally instruments using cells of different dimensions have been reported.

Absorption interferences can be reduced by taking advantage of shorter pathlengths since primary absorption is proportional to distance of solution traversed. In many cases, the analysis can be confined to the linear portion of the φ_f with C_f curve 36 . In addition to absorption, deviation from linearity may be caused by light scattering and fluorescence of the cell walls when right-angle geometry is applied. Care must be taken that the detector monitors only a region within the solution, otherwise large distortions may result.

Fiber optics have been used as channeling devices for both excitation and emission radiation. The fiber optic bundles are attached directly to the faces of the cuvette. This approach has been observed to account for a three-fold decrease in primary absorption artifacts

5. Two-Photon Excitation

A novel method has been developed to eliminate virtually all interference of primary absorption³⁸. In principle, photons possessing half of the energy required for absorption are passed through the media containing the fluorophore. When two such photons impact on a fluorophore molecule simultaneously, they are absorbed and the system successfully reaches its first excited singlet state. The investigators have found that very concentrated solutions could be monitored without excess absorption artifacts.

Disadvantages² include considerably more expensive and complex instrumentation, continued presence of secondary absorption effects, and the requirement for a laser source to increase the probability of simultaneous impact of low energy photons. The method provides an interesting, although impractical for routine analyses, approach to the problem of primary absorption.

C. Mathematical Corrections

The objective of the conventional methods described in the last section was to eliminate artifacts due to excessive absorption. None of the instrumental arrangements was found to be a universal remedy. A direct means of eliminating these attenuations may prove to be elusive, but an indirect means has already been introduced. If either the primary or secondary absorption can be described by a mathematical expression, then a correction factor can be derived and applied to the fluorescence measurements.

1. Absorption Corrections for Transmission Geometry

Crude attempts to describe primary absorption were made as early as 1930³⁹. Little success was achieved. The expressions used were later found to be simplistic and incomplete. Soon after in 1938^{40,41}, more elaborate expressions were derived in terms of primary and secondary absorbances. It was later deduced that these were based on an incorrect assumption. All of the excitation radiation absorbed does not, as the expressions indicated, contribute to the emitted fluorescence. Background matrix components sometimes absorb and may not fluoresce. In 1944⁴² similar equations were derived. This time agreement was satisfactory in the comparison of calculated and measured ϕ_r values.

However, the systems were composed of a single fluorophore in a non-absorbing solvent. In $1973^{4/3}$ a strictly theoretical work appeared accounting for these absorptions, but that an accurate compensation for the factors would require homogeneous, monochromatic and collimated excitation radiation and monochromatic and collimated fluorescence radiation.

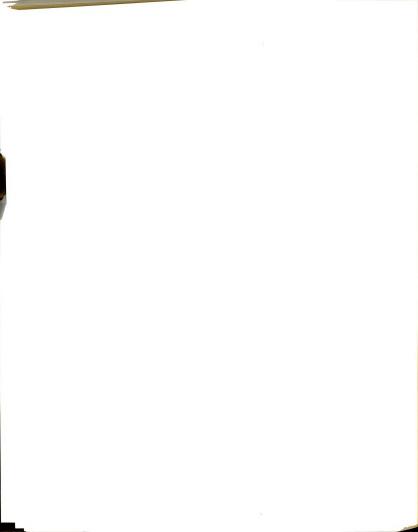
2. Absorption Corrections for Front-Surface Geometry

For front-surface geometry the first expressions to account for both primary and secondary absorptions appeared in 1938 40 , 41 . Similar descriptions of these effects appeared later in 1951 44 and again in 1973 43 . None provided experimental evidence. From 1956 to 1959 $^{45-48}$ a series of papers presented very elaborate corrections and experimental verification. Effects such as multiple reabsorptions and re-emissions were considered and incorporated into the correction schemes. In 1961 49 these expressions were adapted to account for the apparent receding of the maximal fluorescing region from the front face on dilution. Limitations at the detectable extremes of fluorophore concentration were discussed.

Other work reported on corrective expressions for this geometry was concerned with correcting fluorescence quantum yields 32 , $^{50-53}$.

3. Absorption Corrections for Right-Angle Geometry

The first theoretically derived expressions to account for primary and secondary absorption appeared in 1938⁴⁰. They were later found to be too simplistic. They failed to include the possibility of absorbing species other than the single fluorophore. Also, the geometrical models used failed to describe accurately the actual experimental arrangement.

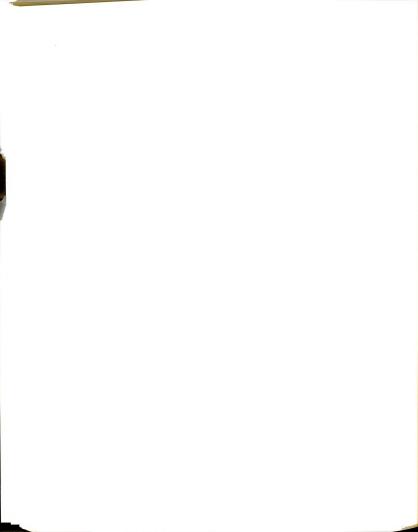


During the early fifties renewed interest in this area was awakened. One theoretical paper 144 was presented that based all of the fluorescence as originating from a point source. Experimental evidence was lacking. Two more papers quickly followed 55,56 and offered more elaborate expressions. Both ignored the excitation and emission window dimensions, critical in avoiding attenuations by the cell walls.

The late fifties offered a theoretical description of primary absorption based only on the solution (sample) absorption of excitation radiation and dimensions of the emission window²⁷. Both the fluorophore and it's background matrix were considered.

In the early sixties 59 a more extensive treatment of derivations based on this measurement geometry was published. Both calculated and analytically measured curves of φ_f with C_f from several chemical systems were in agreement below a primary absorbance of 0.5. Large deviations were found to occur at higher concentrations. Inaccuracy in defining the applied detection geometry and failure to incorporate secondary absorption effects were limitations in extending plot linearity into higher concentrations.

Further documented attempts at experimental verification were not to follow until the $\operatorname{early}^{57}$ and mid seventies 11,58 . Finally an accurate explanation of the validity of this approach had surfaced. Holland found primary absorption to be independent of the nature of the absorbing species and the excitation and emission wavelengths. A computer centered spectrofluorometer (capable of making simultaneous absorption and fluorescence measurements) was developed for testing a newly developed mathematical model, more detailed than the ones previously proposed, that was derived to account for this absorption. This provided



the basis for calculating the required correction factor. Holland, Kelly and co-workers 11,29 found that this model resulted in primary-absorption-corrected fluorescence that was linear with the fluorophore concentration in solutions with total absorbances as high as 2.0. However, a limitation of this approach was not including a correction factor for the effects of secondary absorption.

In the mid sixties⁶⁰ a theory that developed expressions for primary and secondary absorption as a function of observed signal to noise ratio in photoluminescence spectrometry was formulated. Investigators² later questioned the validity of the expressions since they were partly derived from another theory describing self-absorption in flame photometry.

A comprehensive theoretical work⁴³ in the early seventies appeared to account completely for the geometry, all components responsible for both primary and secondary absorptions, and reflections within the sample cuvette. Soon afterwards, experimental verification was forth-coming⁶¹. The above theoretical expressions were adapted to procedures requiring fluorescence measurements to be made at three cell positions. Here the sample cell was manually shifted with respect to the excitation and emission optical axes. The positions are illustrated in Figure 8. A correction factor was calculated for the attenuation of the fluorescence signal as a function of distance along either axis. This procedure was called the "cell shift method" ^{2,61}. Practical use of this method was severely limited by problems in the manual re-positioning of the sample cell⁶⁶.

Over the last two years, a series of publications appeared by Christmann and co-workers^{30,62,63} offering a detailed critical

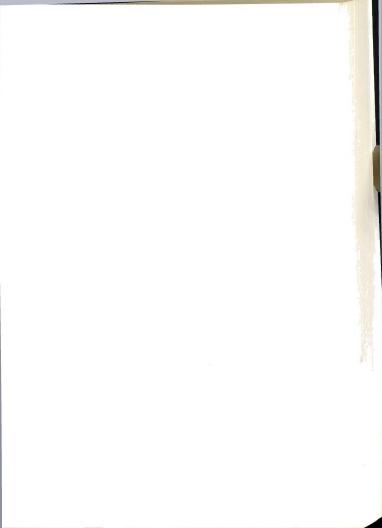


Figure 7. Instrumental Components and Their Arrangement for the Moving Mirror Method

Cell compartment including:

EDCB.

Reference Cell Sample Cell Emission Collimation Baffles Quantum Counter Image Rotation Device

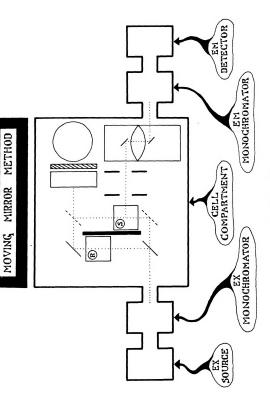
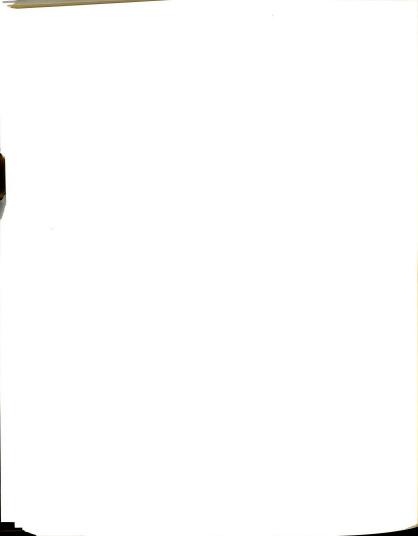


FIGURE 7



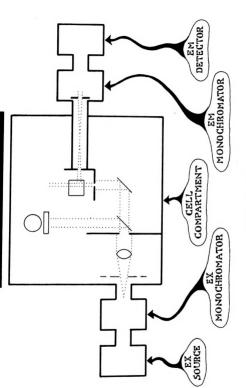


Figure 8. Instrumental Components and Their Arrangement for the Cell Shift Method

Cell Compartment including:

E D C B A

Chopper Quantum Counter Beam Splitter Cell, Sample Emission Collimator

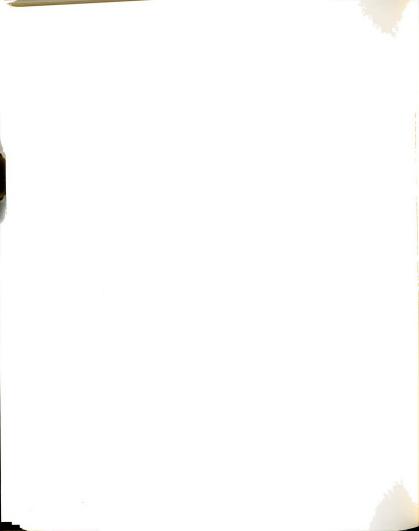

METHOD

SHIFT

FIGURE 8

evaluation of the cell shift method. An automated computer controlled instrument (Figure 16) was constructed to compare conveniently the calculated with experimental results. A cell positioner was built that was computer controlled and highly accurate in cell repositionment. The method was shown accurate to two percent or better up to a sample absorbance of 2.7. Limitations to application of this method are noted when re-emission, reflection, and scattering phenomena are significant. A correction factor was determined to account for internal reflections.

CHAPTER III

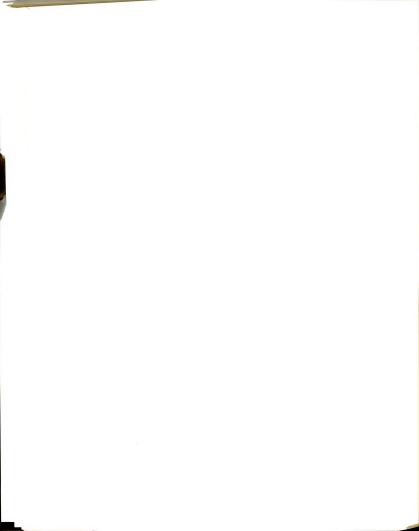

CORRECTIONS FOR RIGHT-ANGLE GEOMETRY

A DETAILED EXAMINATION

A. Introduction

Correction factors for primary absorption have been derived and tested by investigators during recent years 2,33,27,58,62. Accurate corrections for the interference have been demonstrated for sample absorbances at the excitation wavelength as high as 2.. Instrumentation in all of the above cases involved right-angle geometry for fluorescence measurement. As long as secondary absorption is negligible these corrections are adequate. When the sample solution is no longer transparent to the emitted fluorescence radiation, correction of primary absorption alone is not enough. To account for components that absorb fluorescence radiation a second correction factor was applied. Both corrections are essential to preserve precision and accuracy of the measurements.

A variety of attempts to describe and correct for secondary absorption have been $made^{14}$,61,64. In some cases no experimental verification is provided. In other cases the accuracy of the model is not clearly demonstrated. The cell shift $method^2$,61 provided both clear



experimental evidence and accuracy in employing a correction for secondary absorption.

The major drawback of the cell shift method was, however, its slowness in data acquisition and processing. The object of this investigation has been to develop a novel and rapid technique to correct for primary and secondary absorption effects. This approach involves cell rotation instead of cell shifting. The geometry used is identical to that of the cell shift method; however, movement between positions is very fast, thus this technique useful with not only static chemical systems, but also dynamic systems. The design and performance evaluations of this instrument and technique will be described in subsequent chapter(s).

1. Need for Both Absorbance and Fluorescence

The problem of absorption by the sample system requires that absorption corrections are made at each wavelength. Since absorption is wavelength dependent, knowledge of the absorption as well as the fluorescence at each data point is necessary. To avoid errors introduced when measuring absorbance and fluorescence by two different instruments, it is essential that simultaneous absorption and fluorescence measurements are made with one instrument system. By use of such a simultaneous measurement technique, as introduced by Holland and coworkers 11, high confidence could be placed in the interrelationship between absorption and emission, since both measurements are made with the same solution, at the same time, and with the same optical system. The complexity of the instrumentation and the multiplicity of corrections applied to account for both instrumental and photophysical

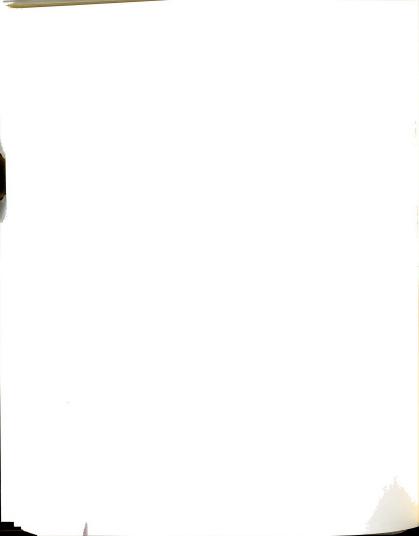
factors made it essential to integrate the spectrofluorometer with a computer into one system that could record the fluorescence and absorption measurements and calculate and apply the various corrections.

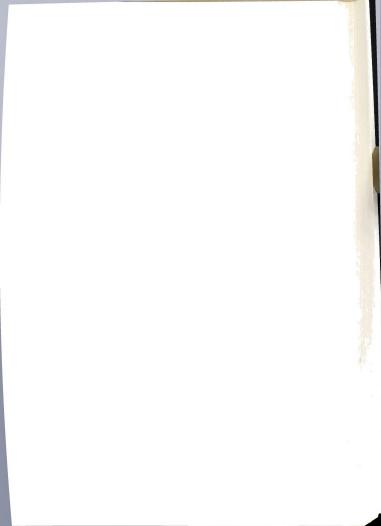
B. Theory

1. The Moving (Vibrating) Mirror Method

a. Geometry

The optical configuration employed in this method is shown in Figure 9. A focusing lens is positioned to give a 1:1 image ratio at the entrance slit and a field lens which is compatible with the optical speed of the emission monochromator. The edges of the mask at \mathbf{X}_1 and \mathbf{X}_2 confine the observation window to a fixed fraction of the total fluorescence viewing area.


b. The Basic Assumptions: 11


(1) The measured quantities (R, S, and F) are expressed in terms directly proportional to the absolute number of quanta involved (N). As shown below, the proportionality constants for the reference and sample beams are equal but may be different for the fluorescence beam.

$$R = kN_r$$

(2) The absorption processes within the cell exponentially attenuate the excitation beam.

$$\phi_{(x)} = \phi_0 e^{-kx}$$

Geometrical and Optical Configuration for the Collection of Fluorescence Radiation by the Moving Mirror Method Figure 9.

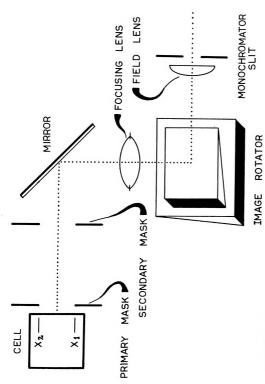
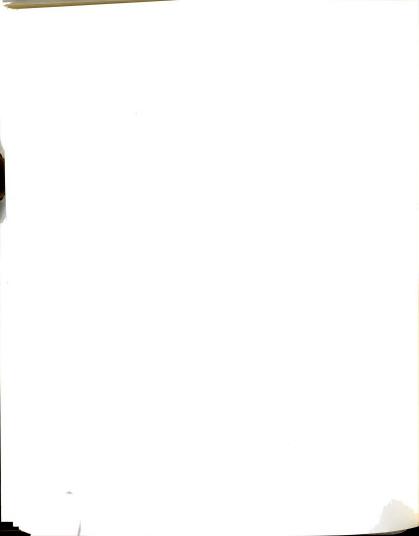



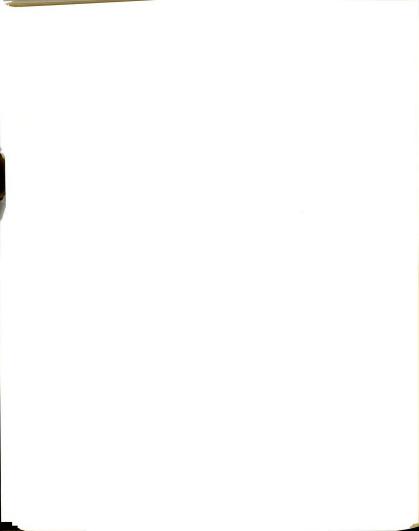
FIGURE 9

(3) For the duration of any observation period, the quanta fluoresced by any absorbing fluorophore species are linearly related to the quanta absorbed by that species

$$F = k'' \Phi (\phi - \phi)$$

Where Φ = quantum efficiency and k" = geometric and instrumental constant.

(4) The ratio of the fluorophore absorbance to the total absorbance in the cell is equal to the ratio of the quanta, $\mathbf{Q_f}$, absorbed by the fluorophore to the total quanta absorbed, $\mathbf{Q_T}$.


$$\frac{A_f}{A_T} = \frac{Q_F}{Q_T}$$

(5) A fixed fraction of the fluorescence radiation generated within the observation window is viewed by a detector with uniform sensitivity.

F measured = k"' · F window

- (6) Only the fluorescence of a single fluorophore is measured and any absorbance of this fluorescence is negligible.
- (7) The effects of scattered light, refractive indices, and anisotropic characteristics are assumed to be negligible.
- c. The Beam Intensity as a Function of Measured Quantities

 Assuming that the excitation beam is attenuated exponentially, the radiant flux at any point on the beam axis in the cell may be represented as a function of the distance from the point of entry.

In measuring absorption, the beam usually passes through the entire cell, and thus x is equal to the pathlength b. If a partial penetration of the cell is considered, the following expression can be derived 11 :

$$\phi_{x} = Re^{(\frac{x}{b}lnT)}$$

$$= RT^{(x/b)}$$

Substitution of x/b by $\pmb{\omega}$, the fractional distance across the cell, produces:

representing the radiant flux of the beam at any fraction of the cell length, ω , from the plane of entry.

d. Emission Radiation (Fluorescence) in Terms of Measured Quantities and the Observation Window.

Since F is assumed equal to the product of a constant and the quanta absorbed within the observation window, and that the fraction of the total quanta absorbed by the fluorophore is $A_f/(A_f + A_c)$, the derived expression for fluorescence becomes:

$$F = \frac{2.3 \text{ K } A_{f} \text{ R } (T^{\omega_{2}} - T^{\omega_{1}})}{1nT}$$

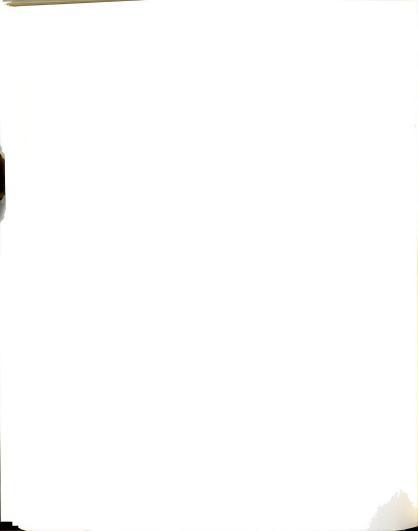
- e. <u>Dependence of Corrected Fluorescence on Absorption</u>. (Two Approaches)
- (1) Absorption-corrected fluorescence may be represented as the sum of segments $\Delta \omega$ wide across the window from ω_1 to ω_2 . Here it is assumed that the source-corrected fluorescence ratio F/ \rlap/o_0

actually describes the limiting condition as sample absorption approaches zero. The following expressions were presented:

$$F_{co} = \frac{\frac{F_{\omega 1}}{\rho \omega_{1}}}{\frac{\sigma}{\rho \omega_{1}}} + \frac{\frac{F(\omega_{1} + \Delta \omega)}{\rho(\omega_{1} + \Delta \omega)}}{\frac{\omega_{1}}{\rho \omega_{2}}} + \dots + \frac{\frac{F_{\omega 2}}{\rho \omega_{2}}}{\frac{\sigma}{\rho \omega}}$$

$$= \sum_{\omega_{1}} \frac{\omega_{1}}{\rho \omega} = 2.3 \text{ K A}_{f} \cdot \sum_{\omega_{1}} \frac{\omega_{1}}{\omega} \times \frac{\omega_{2}}{\rho \omega}$$

$$= 2.3 \text{ K A}_{f} \cdot (\omega_{1} - \omega_{2})$$


(2) Absorption-corrected fluorescence may also be defined as the observed fluorescence divided by the average radiant flux of the excitation beam across the window from 1 to 2. The following expressions were reported:

$$F_{co} = \int_{\boldsymbol{w}_{1}}^{\mathbf{F}} \frac{\mathbf{g}_{\boldsymbol{w}_{2}} \mathbf{d}_{1}}{\boldsymbol{w}_{2}^{2} \boldsymbol{w}_{1}^{2}} \boldsymbol{w}$$

$$= \frac{\mathbf{F} \quad \ln \mathbf{T} (\boldsymbol{w}_{2}^{2} - \boldsymbol{w}_{1}^{2})}{\mathbf{R} \left(\mathbf{T}^{\boldsymbol{w}_{2}^{2}} - \mathbf{T}^{\boldsymbol{w}_{1}^{2}}\right)}$$

$$= 2.3 \quad \mathbf{K} \quad \mathbf{A}_{F} (\boldsymbol{w}_{2}^{2} - \boldsymbol{w}_{1}^{2})$$

(3) Both approaches led to the same solution. The $\Delta \omega$ value will be a constant for any system where the observation and detection geometry are not changed, therefore:

The important implication here is that fluorescence values corrected in the above manner will be linear with the absorbance of the fluorophore even if one or more chromophores are present.

f. The Primary Absorption Correction Factor

The absorption correction factor is defined as:

$$f_{a} = \frac{\ln T \left(\frac{\omega}{2} - \frac{\omega}{1} \right)}{\left(T^{\omega T_{2}} - T^{\omega T_{1}} \right)}$$

and the corrected fluorescence becomes simply:

$$F_{co} = (\frac{F}{R}) \times f_a$$

Note that a similar correction factor had been introduced earlier 27.

g. Limitations

Use of the determined correction factor, f_a , was considered valid only if the assumptions used in its derivation are reflected in the chemical and experimental measurement conditions. Assumption (1) is found valid from consideration of their instrumental arrangement. Assumptions (2), (3), (4), (6) and (7) could be satisfied by the correct choice of fluorophores and chromophores. The remaining assumption, (5), required further consideration.

Ideally, all lateral information along the excitation beam axis between \mathbf{X}_1 and \mathbf{X}_2 should reach the detector. However, such a goal cannot be reached without geometric modifications due to emission monochromator slit orientation. The approach used was suited to the case where the slit height of the monochromator is larger than the horizontal dimension of the fluorescence window. Here, this end was

accomplished by a 90° rotation of the fluorescence cell image through the use of front surface mirrors. As mentioned in introducing the applied geometry, a 1:1 image ratio was attained at the entrance slit to the monochromator.

The second requirement assumed that the fluorescence must be observed at a fixed observational angle at any point across the fluorescence window. This goal was closely approached by placement of a second mask, with the same window dimensions, ω , as the window in the primary mask, at a distance, d, from the source of fluorescence as shown in Figure 10. The e and δ angles are represented as the limiting values for the observation angles across the fluorescence window. The differences between e and δ for various d values were expressed as relative percent error. Ideally, it would be desired to collect only radiation which is parallel to the optical axis. However, the large secondary mask distance would be prohibitive and greatly reduce efficiency in radiation collection. A compromise was reached allowing a maximum error of 1%. This resulted in a secondary mask distance of 4.0 cm. The error in observation angles across the cell was small while permitting the passage of a reasonable amount of fluorescence to the detector.

The last requirement inherent in assumption (5) dealt with the uniformity of the detector sensitivity. Once this was ascertained as satisfactory, all of the requirements of this assumption were fulfilled. With use of the proper fluorophores in conjunction with the instrumental configuration outlined, correction of raw fluorescence data could be found to give an extended linear relationship between fluorescence and the fluorophore absorbance. Evidence presented demonstrated that the absorption-corrected fluorescence is linear with

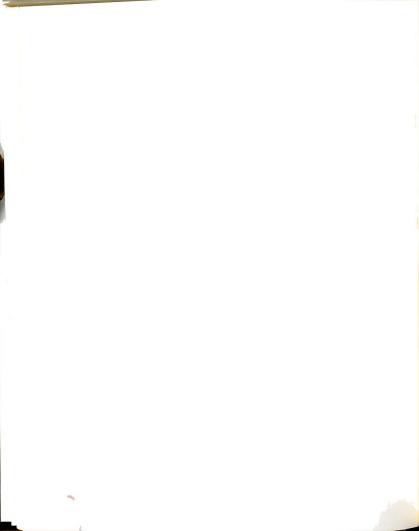
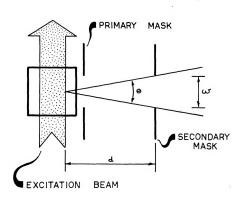



Figure 10. $\frac{\text{Limiting Conditions for the Fluorescence Observation of}}{\text{Fluorescence Radiation by the Moving Mirror Method}}$



FIGURE 10

fluorophore absorbance, up to a solution absorbance of 2.

3. The Cell Shift Method

a. Geometry

The geometry used in this method is illustrated in Figure 11. A square cell of internal dimensions b x b cm was employed. The minimum and maximum pathlengths (cm) for absorption of exciting radiation at λ are X_{∞} and X_{β} , respectively. The minimum and maximum pathlengths (cm) for absorption of fluorescence radiation at λ ' and y_{∞} , respectively.

b. The Basic Assumptions 30

In addition to the cell geometry, it was intially convenient to make the following assumptions.

- (1) The excitation beam is homogeneous, collimated, and nonochromatic with a wavelength λ .
- (2) The emission beam is collimated and monochromatic with wavelength $\,\lambda^{\,\prime}.\,$
- (3) Fluorescence photons which are absorbed in the cell are not re-emitted by the sample.
- (4) Scattered light, refractive index effects, and relections within the cell are negligible.
- $\hbox{ (5)} \quad \hbox{The sample is homogeneous and contains a single} \\$ $\hbox{luorophore although other chromophores may be present.}$
- ${\rm (6)} \quad {\rm Both \ primary \ and \ secondary \ absorption \ processes}$ bey Beer's Law.

c. The Attentuation by Primary Absorption

A derivative form of the correction factor determined by Holland and coworkers ¹¹ for primary absorption was applied. However, the usefulness of such corrected measurements was limited to where the absorbance at the excitation wavelength is not higher than 2.0 A. The problem deduced was that the primary absorption-corrected fluorescence is directly proportional to the fluorophore concentration only if the sample is completely transparent to the emitted fluorescence. Because many real samples contain components which absorb the fluorescence of the analyte, consideration was given to the attenuation caused by secondary absorption.

d. The Attenuation by Secondary Absorption

The fluorescing volume of solution, which is viewed by the detector was represented as a collection of n parallel and equally spaced plane sources of light, each at a different distance y_i (cm) from the emission face of the cell. Each of these planes contributes a component of radiant flux to the emission beam such that beam flux at the cell face can be given as:

$$\phi = \sum_{i=1}^{n} \phi_i$$

In a case where secondary absorption is negligible and if assumptions (1), (2) and (5) are valid, each plane contributes an equal component to the emission beam. But, if secondary absorption occurs, the power contributed from each plane is attenuated in accordance with the Beer-Lambert law.

The steps in the derivation of attenuation by secondary absorption

are detailed in the 1980 paper by Christmann and coworkers 30 . The result obtained was:

$$\lim_{n\to\infty} f = \frac{T^{\Theta_{\beta}} - T^{\Theta_{\infty}}}{\Delta e \ln T}$$

This indicated that the fraction of radiant flux in the emission beam transmitted to the cell wall is an explicit function of sample transmitance at the emission wavelength λ' and excitation window parameters e_{β} and e_{∞} .

e. Absorption Effects on the Measured Fluorescence Signal

It was found that actual measurements required that condicions of assumptions (1) and (2) must be relaxed. In instrumental setup the excitation and emission beams are nearly collimated over small distances, but never truly monochromatic.

f. The Correction Factors

When the spectral bandpasses for excitation and emission are nade sufficiently narrow, the sample transmittances at the respective ravelengths λ and λ ' do not vary significantly over the particular randpasses. The expression for the fluorescence signal current was given as:

All wavelength dependent factors are included within the integral. In the case where $T_{\mbox{\scriptsize K}}$ and $T_{\mbox{\scriptsize K}}'$ go to unity, the fluorescence signal becomes totally absorption free:

$$i_o = 2.303 \text{ K } A_{fh} (\omega_g - \omega_c) \cdot \int \cdot \int o \cdot o \cdot o$$

The relationship between $\dot{\xi}_{\mathrm{fpa}}$ and $\dot{\xi}_{\mathrm{o}}$ then becomes:

$$i_{0} = \left[\frac{(\omega_{\mathbf{S}} - \omega_{\mathbf{K}}) \ln T_{\mathbf{h}}}{(T_{\mathbf{h}})^{\omega_{\mathbf{S}}} - (T_{\mathbf{h}})^{\omega_{\mathbf{K}}}} \right] \left[\frac{(e_{\mathbf{S}} - e_{\mathbf{K}}) \ln T_{\mathbf{h}'}}{(T_{\mathbf{h}'})^{e_{\mathbf{M}}} - (T_{\mathbf{h}'})^{e_{\mathbf{K}}}} \right] \cdot i_{fpa}$$

$$= f_{a1} \cdot f_{a2} \cdot i_{fpa}$$

Where \mathbf{f}_{a1} is the primary absorption correction factor and \mathbf{f}_{a2} is the secondary absorption correction factor.

g. A Limitation of the Secondary Absorption Correction

When the absorbed fluorescence is re-emitted by the sample, this type of correction breaks down in a violation of assumption (3). This was considered to be a potentially serious limitation of this secondary absorption correction because many fluorophores have highly overlapping absorption and emission spectra, and thus absorb and reemit their own fluorescence.

Solutions in which the re-emission of absorbed fluorescence radiation is negligible permit correction of right-angle fluorescence measurements for secondary absorption interference. When both primary and secondary absorption correction factors are applied, totally absorption-free fluorescence information is generated.

4. Method of Cell Rotation

a. Geometry

A diagram of right-angle geometry is shown in Figure 11. The fields of detection are shown for both the emission axis (top) and excitation axis (bottom) of Figure 12. For the following mathematical treatment it is assumed that the sample cell wall is transparent to the radiation, and of negligible thickness.

b. Basic Assumptions

- (1) The excitation radiation is homogeneous in wavelength, δ ,, and is collimated.
- (2) The emission radiation is observed as a collimated monochromatic beam of fixed dimensions with wavelength, \mathbf{A}_2 . The width of the window of emission observation is much less than the total cell dimension (width) such that distinct slices with varying cell positions are obtained.
- (3) Photons of emission radiation which are absorbed by the sample solution will not be re-emitted.
- (4) Effects due to scattering of excitation radiation, changes in refractive index, and internal reflections are all negligible.
- (5) Samples are composed of a single fluorophore, but may contain other chromophores.
- (6) The cuvette walls are matched in transmission characteristics for both excitation and emission radiation, and the walls parallel to the viewing optics do not affect the observed fluorescence.

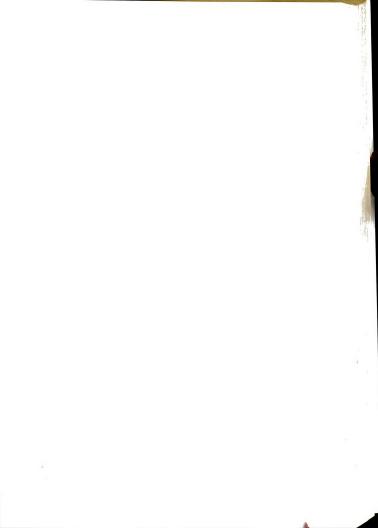


Figure 11. Geometry for Right-Angle Fluorometric with a Square Cell of Internal Dimensions b x b cm.

Key: Χ_α = pathlength (cm) for absorption of exciting radiation at nm, minimum detected in window.

X_A = pathlength (cm) for absorption of exciting radiation at nm, maximum detected in window.

Y = pathlength (cm) for absorption of fluorescence radiation at 'nm, maximum detected in window.

Y_B = pathlength (cm) for absorption of fluorescence radiation at 'nm, minimum detected in window.

^፲ef: ሤፈ = Xェ/b ሤል = Xይ/b

ex = Yx/b

08 = 18/b

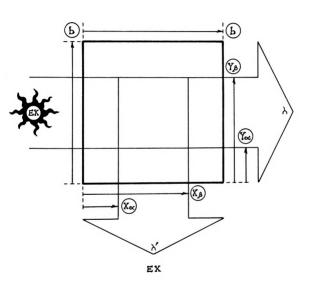


FIGURE 11

Figure 12. Regions of Observation for the Method of Cell Rotation

- A. Along emission axis.
- B. Along excitation axis.

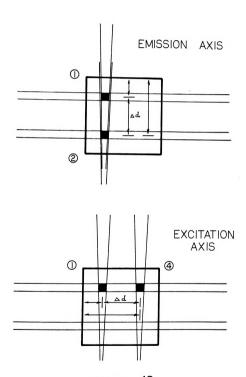


FIGURE 12

(7) Both primary and secondary absorption processes bey Beer's Law.

c. Primary Correction Factor

The top half of Figure 13 shows a typical case where primary bsorption is manifested. Two illuminated slices are detected, one at $\omega_{\mathbf{k}}$ and one at $\omega_{\mathbf{k}}$. The change in absorbance between $\omega_{\mathbf{k}}$ and $\omega_{\mathbf{k}}$ is efined as follows:

$$\Delta A_2 = \ln(\frac{\phi_c}{\phi \omega_B}) - \ln(\frac{\phi_c}{\phi \omega_A})$$


$$= \ln(\phi \omega_A) - \ln(\phi \omega_B)$$

$$= \ln(\frac{\phi \omega_A}{\phi \omega_B})$$

he calculated change in absorbance between the entry plane and $\omega_{\mathbf{k}}'$ is btained as follows:

$$\Delta A_1 = \Delta A_2 \left(\frac{\omega_{\alpha}}{\omega_{\beta} - \omega_{\alpha}} \right)$$
$$= \ln(\frac{\delta_0}{\delta_{\omega_{\alpha}}})$$

$$\frac{\phi_{\omega}}{\phi_{o}}$$
 $\propto \frac{\phi_{f}\omega_{o}}{\phi_{o}}$

This allows correction for primary absorption according to the following expression:

$$\phi_{\text{of1}} \circ = \phi_{f(1)} \cdot e^{\left(\frac{\omega_{\alpha}}{\omega_{\beta} - \omega_{\alpha}}\right) \cdot \Delta A_{2}}$$

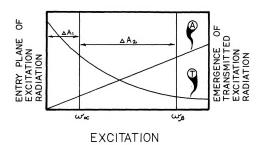
Where $\cancel{\varphi}_{\text{cfl}}$ o is primary absorption corrected fluorescence and $\cancel{\varphi}_{\text{f(1)}}$ is the uncorrected fluorescence reading at position (1). The above correction factor is determined while holding secondary absorption constant. This situation occurs between positions 1 and 4 of Figure 12.


d. Secondary Correction Factor

The bottom half of Figure ¹³ shows a typical case where secondary absorption is manifested. Two illuminated slices of volume are detected, at fractional distances of \mathbf{e}_{∞} and $\mathbf{e}_{\underline{\mathbf{e}}}$. The change in absorbance between these planes, $\mathbf{e}_{\underline{\mathbf{e}}}$ and $\mathbf{e}_{\underline{\mathbf{e}}}$, may be defined as follows:

$$\begin{split} \Delta A_{2}^{\dagger} &= \ln \frac{\phi_{0}^{\dagger}}{\phi_{0}} - \ln \frac{\phi_{0}^{\dagger}}{\phi_{0}} \\ &= \ln (\phi_{0}) - \ln (\phi_{0}) \\ &= \ln (\phi_{0}) - \ln (\phi_{0}) \end{split}$$

The calculated change in absorbance between the exit plane (since $Y_{\infty} = (b-Y_{\underline{a}})$) and $e_{\underline{a}}$ is obtained as follows:


$$\triangle A_1' = \triangle A_2' \left(\frac{\Theta, B}{\Theta_{\infty} - \Theta, B} \right)$$
$$= \ln \left(\frac{\emptyset_{\Theta}'}{\Theta_{\Theta}} \right)$$

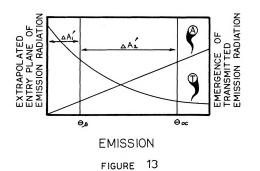


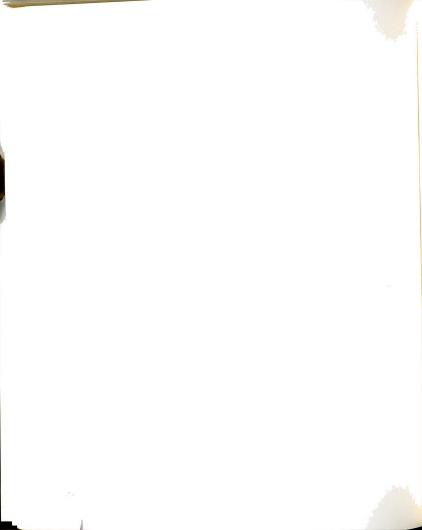
Figure 13. Attenuation of Radiation

- A. Along excitation axis
- B. Along emission axis

In this manner, it is possible to determine $\not p_0$. Since the attenuation of fluorescence caused by secondary absorption is measured directly, the following terms are equal:

$$\phi_{e_{\infty}} = \phi_{fe_{\infty}}$$
 $\phi_{e_{\beta}} = \phi_{fe_{\beta}}$

The secondary absorption is corrected for according to the following expression:


$$\phi_{\text{cf2}} \circ = \phi_{f(1)} \cdot e^{\left(\frac{e_{\infty} - e_{\beta}}{e_{\infty} - e_{\beta}}\right) \cdot \Delta A_{2}}$$

Where ${\mathscr P}_{{\rm cf}\, 2}$ o is secondary absorption corrected fluorescence. The above correction factor is determined while maintaining primary absorption constant. This occurs between positions 1 and 2 of Figure 12.

e. Combined Correction Factor

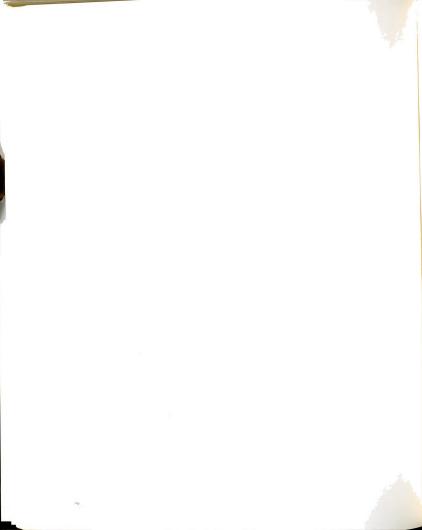
As in the case of many chemical systems both primary and secondary absorption attenuations are observed. The following expression accounts for both:

Where t_{10} is determined under conditions where secondary absorption is constant and t_{20} is determined under conditions where primary absorption is constant.

f. Satisfying the Assumptions


Assumption (1) is closely approximated with use of an excitation monochromator. A very narrow band of wavelengths are passed and the beam is essentially collimated over the short distances spanned within the cell.

Assumption (2) has been somewhat relaxed in a compromise between having the detected emission beam collimated and maintaining a practical distance prior to entry into the emission monochromator. Masking studies have found the detection fields approximately rectangular as viewed from the top in either case represented in Figure 12. The width of the window of emission observation is considerably less than the total cell dimension. Monochromatic emission radiation is obtained with a high quality emission monochromator.


Assumption (3) is valid when chemical systems are chosen that do not possess overlapping absorption and emission spectra, which would cause re-emission of absorbed fluorescence. The limitation resulting from re-emission is, of course, dependant on the degree of overlap between the absorption and emission spectra.

Assumption (4) is valid only with use of proper sample cell materials and cell orientation in the instrument. Of the cited problems, internal reflections are thought to be the most significant. Corrections for this factor have been derived and implemented in recent work upon the cell shift method².

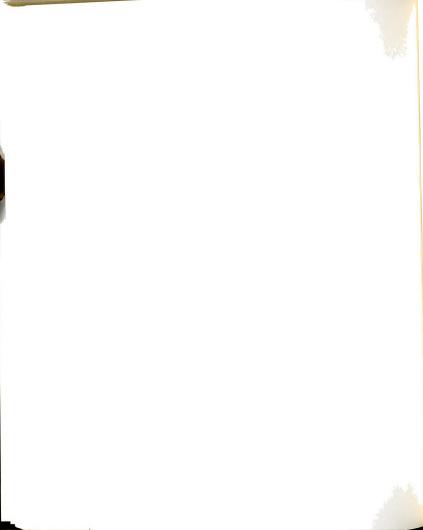
Assumption (5) involves proper choice of chemical systems. This would be no problem with prepared samples, but either biologically or environmentally derived samples may incorporate other fluorophores of unknown concentration.

Assumption (6) has been found valid by rotating through all the cell facets at each position. No significant differences were observed. The cell walls parallel to the viewing optics were shielded by the design of the cell holder to prevent their interference with the observed fluorescence.

CHAPTER IV

AN AUTOMATED INSTRUMENT TO CORRECT FLUORESCENCE MEASUREMENTS FOR PRIMARY AND SECONDARY ABSORPTION EFFECTS VIA THE METHOD OF CELL ROTATION

A. Introduction

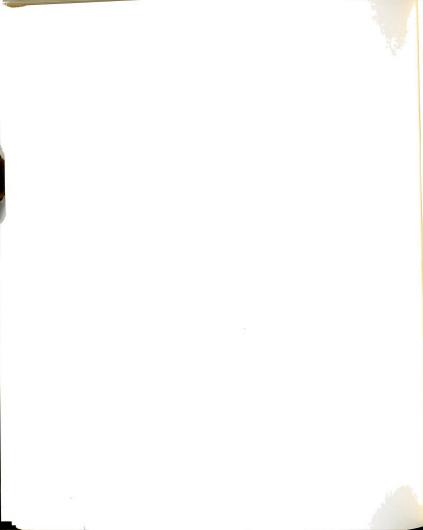

Earlier it was emphasized that a variety of factors exist which can affect the linearity of the measured fluorescence with fluorophore concentration relationship. Investigators have demonstrated experimentally that such factors can be mathematically described and that fluorescence measurements can be corrected. Multiplication of the sample signal by the appropriate correction factors produces extended linearity in the above fluorescence with concentration plot. Linearity up to sample absorbances of slightly higher than 2.7 has been achieved².

The "cell shift" approach as introduced by Novak⁶¹ involved manual cell positioning which was found to be very time consuming and prone to significant errors. Development of an automated cell positioning device by Christmann² reduced these problems and allowed a detailed examination of the cell shift technique^{62,63}. This device did have limitations, however. The 12V permanent magnet DC motors used in driving perpendicular slides through two 0.5 mm pitch lead screws were susceptible to overheating. The dovetail tracks supporting the slides

required constant inspection of the state of lubrication. Build-up of dust or metal (aluminum) oxide, or thinning of the lubricating grease, could cause seizure of the slide against the track. Any increase in friction or a seizure results in greatly elevated current input to the motor. If the current is substantially above the motor tolerance, the heat generated over even short periods of time can burn out the motor coils. Such problems make a system like this impractical for prolonged use in repetitive routine measurements.

A more efficient, high speed, and very reproducible means of cell positioning has been developed in this current work. The positioning device can be used repeatedly over long periods of time with no detriment. The relatively small spacial requirements of this device allow ready conversion of commercially available spectrofluorometers to instruments that can automatically correct for both primary and secondary absorption attenuations. Instrument sensitivity can be easily optimized with fine-tuning adjustments in three-dimensional space. The device can be made adaptable over a wide range of temperatures or atmospheres with negligible decrease in performance. The device is computer interfaced to conveniently initiate and control the cell positioning, data acquisition and correction, overlay graphing capabilities and print out, and data storage. In this portion of the thesis, the basic design and operation of this integrated computer/cell-positioner/spectrofluorometer system are described.

B. Theory


The positions achieved by the method of "cell rotation" are shown in Figure 14. One full rotation permits measurements to be obtained in any of the positions, one through four. Position zero is obtained only by correcting for both primary and secondary absorptions. This position is not a physical location of the cell at any time, but a calculated ideal. At each of the four internal positions, a fixed volume of solution is excited by the radiation source and observed by the fluorescence emission detector. Varying the thickness of solution through which the exciting radiation must pass, from position one to four or from position two to three, provides information on the primary absorption. Varying the thickness of solution through which the emission radiation must pass, from position one to two or from position four to three, provides information on secondary absorption.

Derivations of expressions to account for sample absorption were presented in the previous chapter. The following expression was used to correct simultaneously for the primary and secondary components of absorption:

$$\phi_{cf12} = \phi_{f1} \cdot e^{(GF) \cdot \Delta A_T}$$

Where Δ A $_{\rm T}$ is Δ A $_{\rm 1}$ and Δ A $_{\rm 1}$ combined, and GF is the normalized geometrical factor. Recall that:

$$\Delta A_2 = \ln(\frac{\cancel{p}_{f1}}{\cancel{p}_0}) - \ln(\frac{\cancel{p}_{f1}}{\cancel{p}_0})$$

Figure 14. Cell Positions Available Using the Cell Rotation Method.

The normal measurement sequence is counterclockwise beginning with position one and finishing with position one. The cell compartment walls are broken at the excitation and emission ports. The small square within the sample cuvette indicates the region under observation by the detector. Position zero is obtained by correcting for primary and secondary absorption by application of the correction factors.

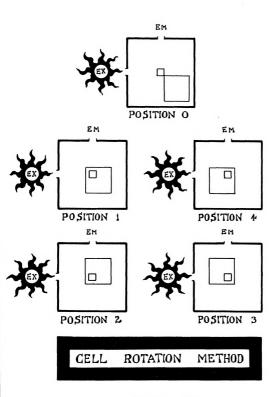
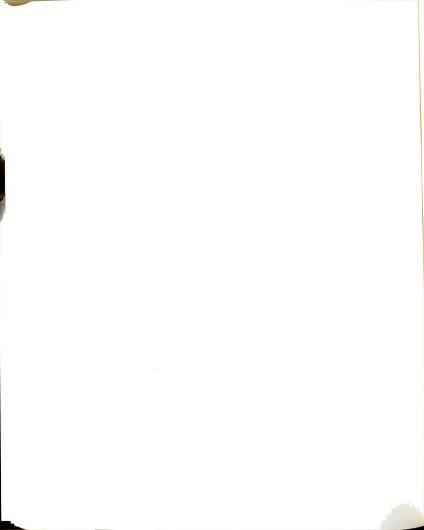
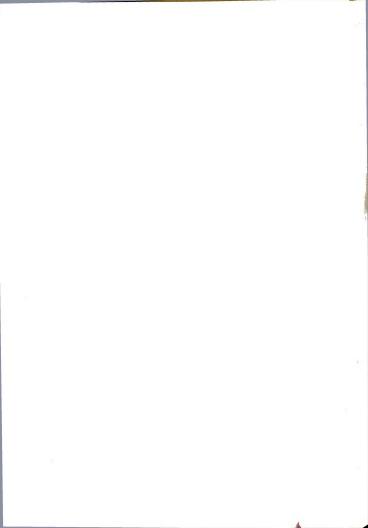


FIGURE 14

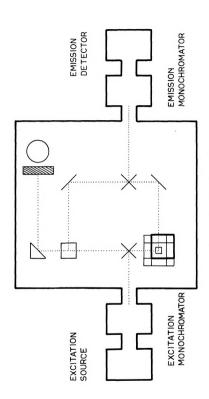

$$\begin{split} & \Delta \, \mathbb{A}_2 \, \, ^{1} = \, \ln(\frac{\phi_{\mathbf{f}1}}{\phi_{\mathbf{o}}}) \, - \, \ln(\frac{\phi_{\mathbf{f}2}}{\phi_{\mathbf{o}}}) \\ & \Delta \, \mathbb{A}_{\mathbf{f}} = \, \ln(\frac{(\phi_{\mathbf{f}1})^2}{(\phi_{\mathbf{f}2})(\phi_{\mathbf{f}4})} \, = \, \frac{2 \, \ln(\phi_{\mathbf{f}(1)})}{(\phi_{\mathbf{f}(2)})(\phi_{\mathbf{f}(4)})} \end{split}$$


Where ΔA_2 and ΔA_2 ' are functions of the emission and excitation window parameters. Assumptions inherent in this expression are that the excitation and emission beams are collimated and of narrow spectral bandwidth relative to the sample absorption bands, and that stray excitation radiation, scattering phenomena, internal reflections, and re-emission of absorbed fluorescence are negligible in isolated viewing situations.

C. Instrument Design

Overview

The specifications for the Perkin-Elmer Model 512 double beam spectrofluorometer are listed in the Appendix (Table 7). The basic components of the absorption-corrected spectrofluorometer and their arrangement are shown in Figure 15. A flowchart of all physical devices employed in the cell rotation system is presented in Figure 16. Associated interfaces are detailed in the appendix in Figures 41 through 45. The system designed for removing ozone from two simultaneously operating spectrofluorometers is detailed and shown in the appendix in Figure 46. Design details of the cell rotation device are given later in this chapter in Figures 17-19. The stepper motor and power supply specifications are listed in Table 6 of the Appendix. A standard PDP 8/e computer has been dedicated to system control and output is available


Block Diagram of Instrumentation Used in the Cell Rotation Method Figure 15.

Cell Compartment Contents

Reference cell or scatter plate Chopper mirror

Quantum counter or scatter plate

Filter - Red Pass Photomultiplier Tube Sample cell - showing off - center rotation (stepper motor & post). Lattice mirror.

CELL ROTATION METHOD

FIGURE 15

CELL COMPARTMENT

Flowchart of Physical Devices Employed in the Cell Rota-Figure 16. tion Method

Detailed specifications of the following components are included in the appendix:

- 1. Stepper motor
- 2. Spectrofluorometer output amplifier
- 3. Multiplexer.
- 4. Analog to digital converter.
 5. Pulse controller for stepper motor
- 6. Ozone exhaust system.

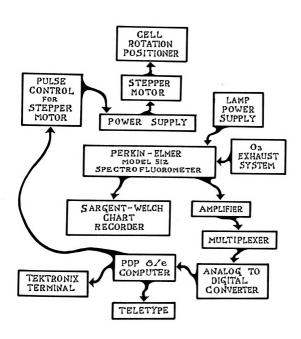
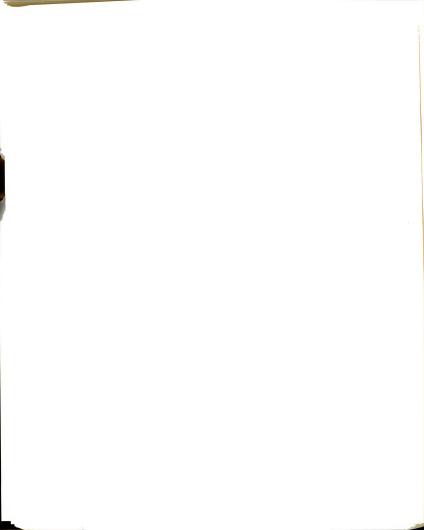



FIGURE 16

Figure 17. Stepper Motor and Lock-In Platform

The motor is held by a series of eight 8-32 brass sorews. The lower plate is a inch aluminum stock, employed for stability. Stepper motor specifications are available in the appendix.

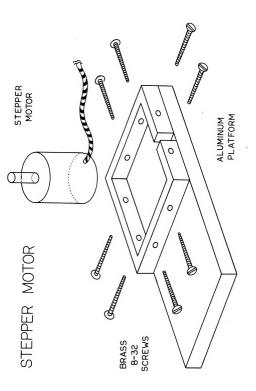
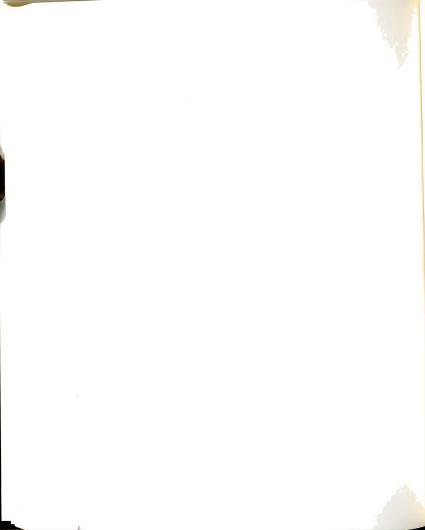



FIGURE 17

Figure 18. Post and Cell Holder Platform

The $\frac{1}{2}$ inch aluminum post is secured to the stepper motor rod with two rings of three 8-32 screws each. See text for z axis truing. The cell holder platform, is held to the top of the post with a single 8-32 screw. The cell holder is locked into the desired position with a series of eight 8-32 screws. The exact position determines the profile and dimensions of rotation, circular or elliptical.

POST AND CELL HOLDER PLATFORM

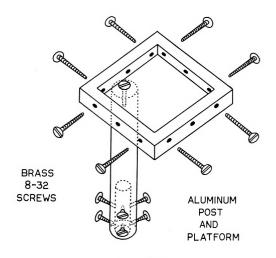
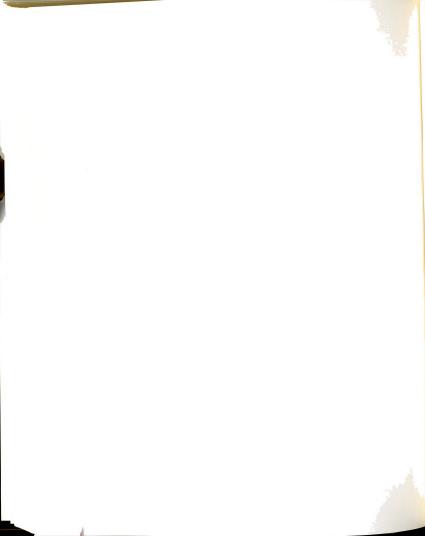



FIGURE 18

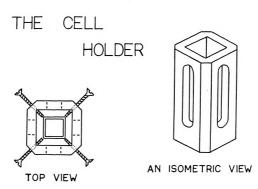

each. See text form, is held to screw. The cell on with a series n determines the ular or ellipti-

Figure 19. The Cell Holder

The holder is symmetrical. The walls are of $\frac{1}{4}$ inch aluminum. The slots are 1/64 inch in from either cell wall as shown in the top view. The holder is painted ultra flat black to minimize reflections. The cell is supported by a series of eight nylon 10-42 screws.

rom either cell
lder is painted
s. The cell is
42 screws.

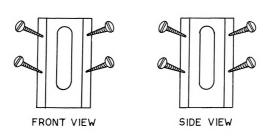
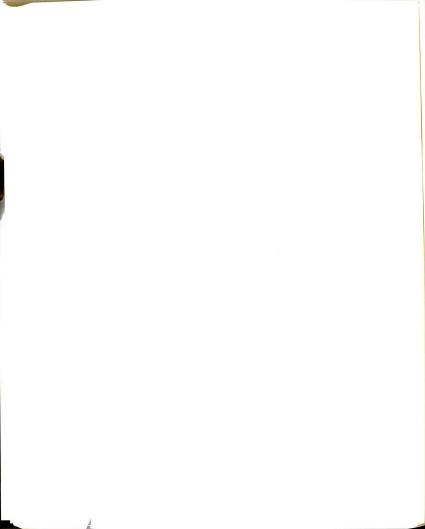


FIGURE 19



via a Sargent-Welch chart recorder, a teletype, or a Tektronix video terminal.

2. Data Treatment

Fluorescence is detected by a photomultiplier (PE R-446F). The photocurrents generated are converted to voltages. The instrument output, without modification, is connected to a Sargent-Welch chart recorder (Model SR). The analog output is also connected through a follower with gain of x100 (amplifier interface) to a four channel CMOS multiplexer (switching interface for dual instrument access - Datel Systems MX series MSD-409) and subsequently into an analog to digital converter (Analogic - 0-10 V high speed 12 bit MP 2112) for processing by the computer (PDP 8/e). The software used is shown in a flowchart in Figure 20. The software incorporates two functions: (1) data display, correction routines, storage and output; (2) control of cell positioner, setting of scan and plot parameters, initiation of scan, and collection of scan data.

The correction routine of the program automatically cycles through scans at positions (1), (2), and (4) as shown in Figure 21. Each position can be independently examined and output. Position scans can be overlapped for visual comparisons. Corrected spectra can be independently examined, overlapped with any uncorrected position scans, and output. Long term storage of position and corrected spectra is accomplished with a floppy disk drive system (Data Systems, Inc.). Generally all data runs are stored on floppy disks in a data library for future reference.

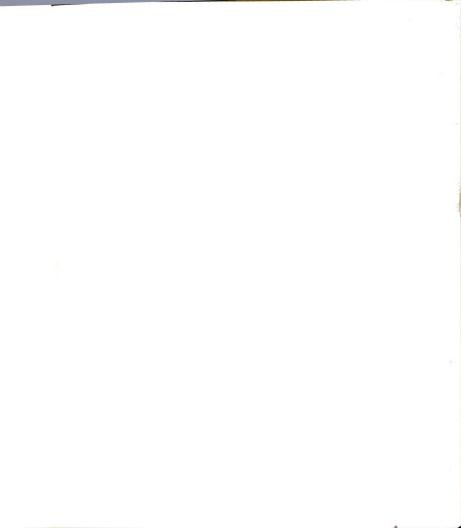


Figure 20. Flowchart of System Program

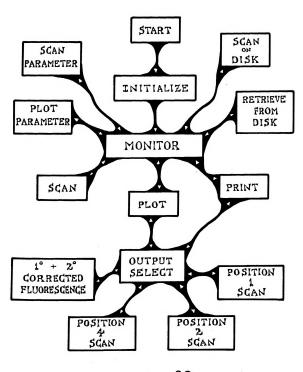
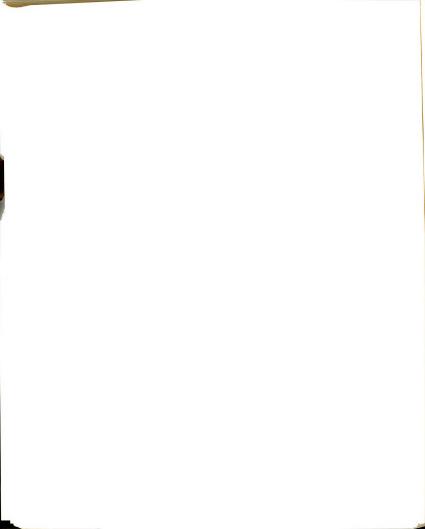


FIGURE 20

Figure 21. Positions of Emission Detection Fields.


Key: 1. Least Primary Absorption, least secondary absorption.

- 2. Least Primary Absorption, most secondary absorption.
 - 3. Most primary absorption, most secondary absorption.
- 4. Most primary absorption, least secondary absorption.
- Corrected for attenuations by primary and secondary absorptions.

EMISSION huz DETECTION (o) TRANSMITTED SOURCE hv, EXCITATION EXCITATION

dary absorption.
dary absorption.
ary absorption.
dary absorption.
y and secondary

FIGURE 21

3. The Cell Positioner

This device, detailed in Figures 17-19, and photographed in Figure 22, was designed to provide a very rapid and highly reproducible means of automatically correcting for both primary and secondary absorption effects. The durable construction and the choice of stepper motor was to allow continual service over long periods of time without the need for re-alignments.

The positioner has a range for Δ d between 0.2 cm to 1.0 cm along either of two perpendicular axes. This permits a large choice in the rotation patterns, both in magnitude and in ellipticity. While holding the chosen major axis constant for Δ d and decreasing Δ d along the minor axis one may readily obtain rotation patterns as shown in Figure 23. The cell displacement along either axis is a function of the respective lead screw rotations, and is found to be highly reproducible. This is shown in Figure 24.

This figure demonstrates the linearity and accuracy of the positioner along either of the optical axes. Vernier calipers were employed to ascertain cell displacements in X and Y dimensions from the stationary outer walls of the cell holder platform. These displacements were plotted against lead screw revolution. Linear regression gives a correlation coefficient (essentially) equal to unity in both cases.

The precision of the positioner was determined by measuring A/D converter output after each of five successive 360° rotations and averaging to obtain the error distribution. Possible shifting of the average was determined by several sets of five successive readings taken consecutively. The error bars between sets did not alter in magnitude and differences between the averages were negligible.



Figure 22. Cell Positioner as Employed by the Cell Rotation Method

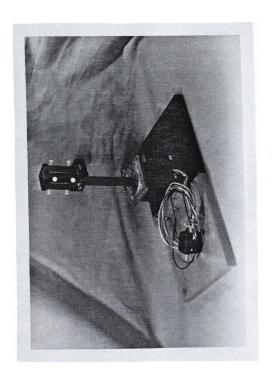


FIGURE 22

į

Figure 23. Elliptical Cell Rotation

All measurements reported in this thesis were conducted with larger or smaller circular rotation patterns. Other possible rotation patterns include ellipses with major axes along either the X- or Y- direction. Extremes of ellipticity would allow study of either the primary absorption or secondary absorption alone.

ELLIPTICAL CELL ROTATION

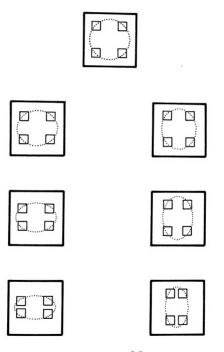


FIGURE 23



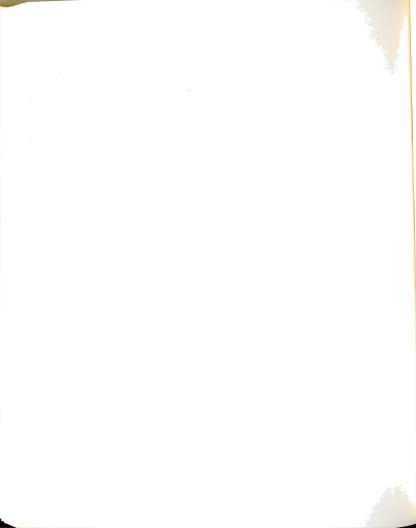
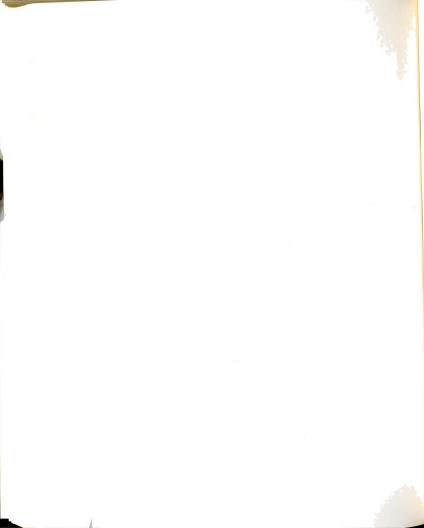
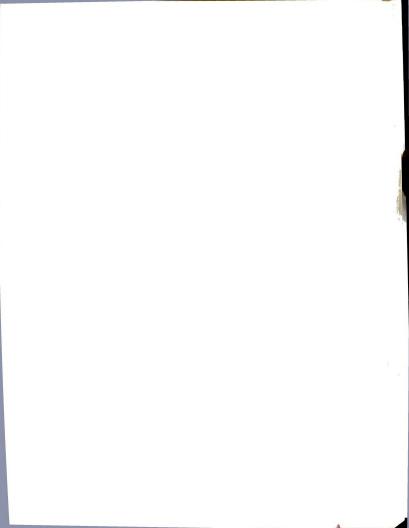


Figure 24. $\frac{\text{Cell Displacement in X- and Y-Dimension as a Function of}}{\text{Lead Screw Rotation}}$

Off center positioning and securing of the cell holder on the post platform is accomplished by perpendicular sets of 8-32 brass lead screws. Circular rotation patterns possessing Δd values anywhere from 2 mm to 10 mm can be set by matching lead screw revolutions. Note that in a circular pattern Δd primary is equal to Δd secondary.





The sample cell is held by eight nylon screws against the four beveled edges as shown in Figure 19. The cell is suspended vertically with the four slots of the holder centered. The walls of the slots are 1/64 inch in from the inner faces of the cell. Several thin coats of ultra flat black paint were used to minimize reflections. The rugged design of the holder was intended to prevent transferred distortions to the cell edges while being locked in position.

The post cell holder platform is tightly held on the post by one brass 8-32 screw. The post is countersunk into the base of the platform to aid in locking the two components together. The lower end of the post contains a cylindrical opening, the inside diameter of which is 0.003 inch larger than the outside diameter of the stepper motor drive rod. The six lock screws are arranged in two sets of three as diagrammed in Figure 18. They are used both to align vertically the post, and subsequently the sample cell itself, and to secure the post on the rod. The lack of vertical truing can lead to a 2 to 3 fold decrease in the detected fluorescence signal, as shown in Figure 25.

The stepper motor is tightly locked on the heavy aluminum platform by a series of eight 8-32 screws as shown in Figure 17. The platform possesses an extension that permits use of a clamp device to attach it to the instrument table. An alignment tool has been designed to aid in rapid initial positioning of the entire stepper motor platform. This tool is shown in Figure 26. Both the stepper motor and platform, readily fit into the lower half of the Perkin-Elmer Model 512 spectro-fluorometer cell compartment.

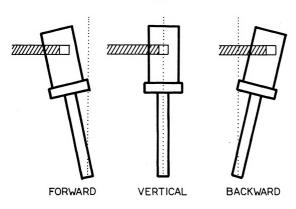


Figure 25. Z Axis Truing

The cell holder post is designed to allow fine tuning along the vertical axis. In a rotating system, this is critical to aid in preventing a forward and backward wobble of the cell surfaces perpendicular to the excitation and emission optical axes.

The post can be raised or lowered to accomodate different volumes of solution. A shift of 1 inch is possible with maintenance of all six lock-in screws.

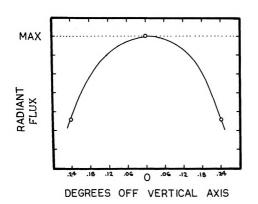
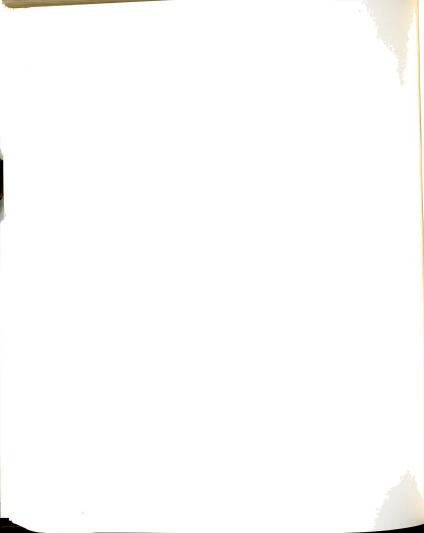
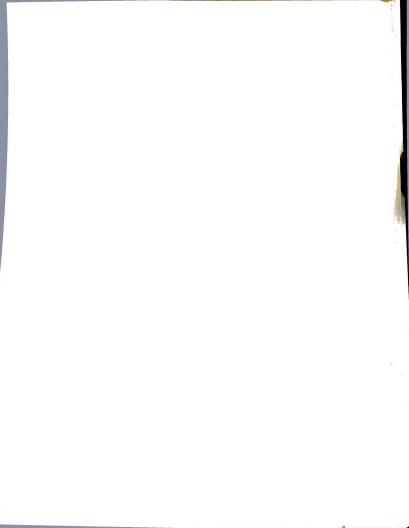




FIGURE 25

Figure 26. Stepper Motor Platform Alignment Tool

This device permits rapid alignment (coarse) of the field of detection within the cell. Once the approximate position is reached the stepper motor platform is locked onto the bench. In the secured state any vibrations encountered by the cell following a rotation are minimal.

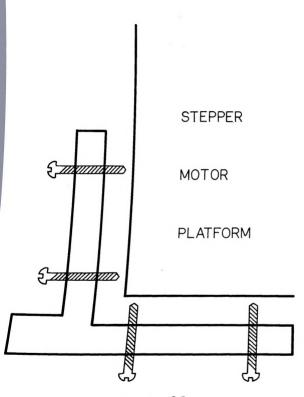
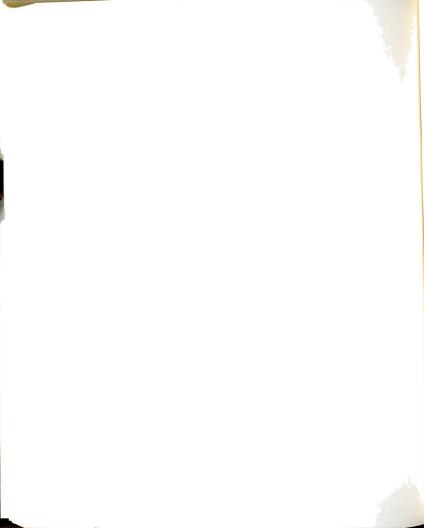
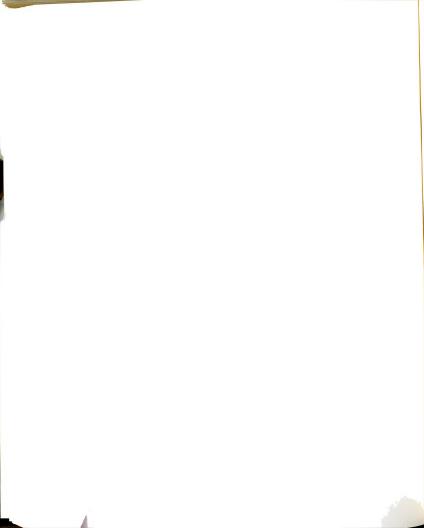



FIGURE 26

A shield to prevent access of stray external radiation divides the upper and lower halves of the cell compartment. A slot in the shield facilitates the post positioning in alignment of the cell with the optical axes. A black sliding disk is secured to the post over the slot to keep unwanted radiation from penetrating to the top half of the cell compartment.

The specifications for the stepper motor are provided in Table 6 (Appendix). The rotation rate is 2.5 msec per 1.8° or 125.0 msec to shift between adjacent cell positions (90° apart). The stepper motor is rotated counterclockwise by a preset sequence of fifty pulses for each 90° turn. These pulses proceed through an interface that increases pulse width (Figure 45, Appendix) for compatibility with the power translator (Superior Electric Company, Slo-Syn Translator Model STM-1800).


4. Detection Field Characteristics

Study of the narrowness of the field of detection was completed.

Both primary and secondary masks were used at a separation of 3 cm. The thickness of the primary masks was 1/32 inch. The thickness of the secondary mask was 1/8 inch.

Primary masks were attached 3/8 inch from the outside surfaces of the cell walls flush with the outer walls of the cell holder as shown in Figure 27. They were secured in place with rubber cement. Each mask covered ½ of the surface area and had been painted ultra flat black to absorb most of the incident radiation.

A single secondary mask was placed in the emission port filter clip s shown in Figure 28. This mask possessed a milled 4 inch vertical

Figure 27. Study of Detection Field Using Primary Masks

The masks were 3/8 inch from the outer faces of the sample cuvette and they extended halfway across the cell as shown in each of the four positions. They were painted ultra flat black to absorb most of the incident radiation.

The differences between measurements made with the masks and without them were negligible. This supports the belief that the field of detection is quite narrow.

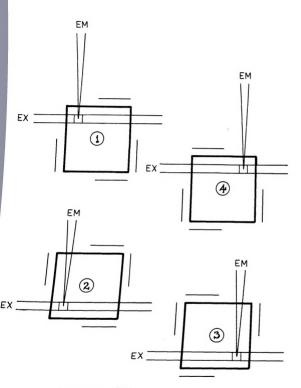
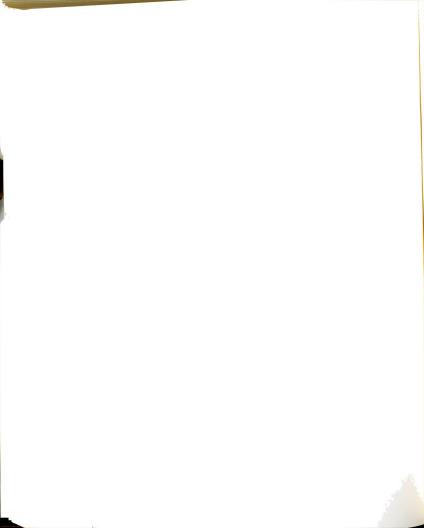



FIGURE 27

Figure 28. Study of Detection Field Using Both a Primary and Secondary Mask

The primary mask was situated 3/8 inch from the outer face of the sample cuvette while in position one. The secondary mask was placed in the emission port filter clip. The primary mask extended across half of the cell face in both cases. The secondary mask was centered on the detection "hot spot" of the parabolic mirror. A verticle slot of ½ inch width was not found to appreciably attenuate the measured signal. This further supports the contension that the field of detection is very narrow.

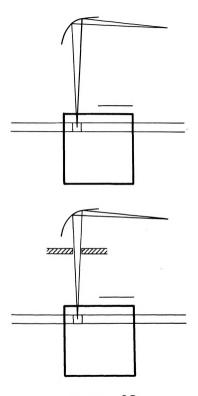


FIGURE 28

slit which was centered on the detection "hot spot" of the recessed parabolic mirror. This mask was also painted ultra flat black.

Table 3a illustrates the effect of the primary masks. A comparison of measurements made with and without the masks indicate negligible differences. This demonstrates that no attenuation is evident and that the masked region of the solution has no emitted radiation reaching the fluorescence detector.

Table 3b illustrates the effect of the secondary mask. Providing that the verticle slot is 1 inch (or wider) and is centered on the "hot spot", the differences observed with and without the mask are negligible. Inclusion of both primary and secondary masks verifies that the field of detection is quite narrow. This provides a basis for the initial assumption that the emission radiation is observed as a very narrow bandwidth and collimated beam with a fixed limited angle of admittance.

5. Detection Window Calibrations

The emission window was calibrated to determine the maximum allowable Δ d between positions one and four, two and three. The chosen positions must be such that no significant attenuation is encountered by having the field of detection interact with either cell wall. Measurement of changes in fluorescence radiant power across the cell interior were made in increments of 0.5 mm. The sample studied was 1×10^{-6} M quinine sulfate in a background matrix of 0.1 N $\rm H_2SO_4$ prepared with house distilled water. This sample was chosen because very little attenuation of the excitation beam occurs.

The solution was excited at 250 nm and the emission was monitored

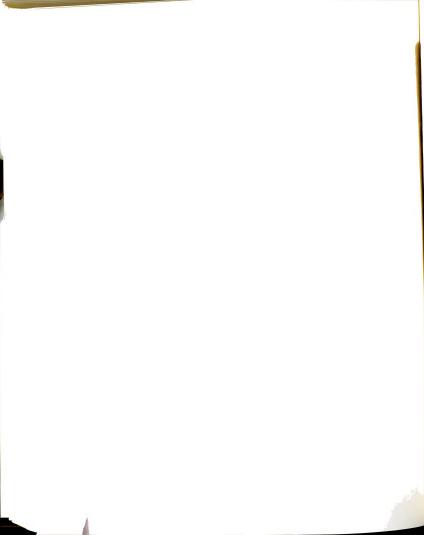


Table 3a. Effect of Primary Masking

Conc. Q.S.	Mask	Cell Positions				
		(1)	(2)	(3)	(4)	
$1 \times 10^{-6} M$	No	365	368	308	310	
$1 \times 10^{-6} M$	Yes, 1°	362	367	310	310	
$2 \times 10^{-6} \text{ M}$	No	718	713	559	562	
$2 \times 10^{-6} \text{ M}$	Yes, 1°	720	717	560	564	

Table 3b. Effect of Secondary Masking

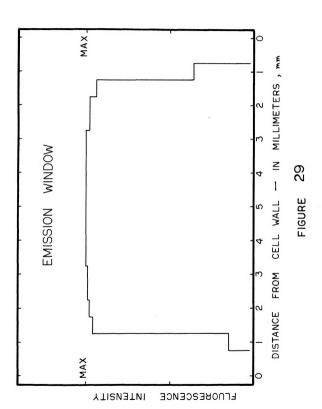
Conc. Q.S.		Cell Positions				
	Mask	(1)	(2)	(3)	(4)	
$1 \times 10^{-6} \text{ M}$	Yes, 1°	360	365	306	307	
$1 \times 10^{-6} \text{ M}$	Yes, 1°+2°	360	362	306	309	
$2 \times 10^{-6} \text{ M}$	Yes, 1°	720	718	565	562	
$2 \times 10^{-6} \text{ M}$	Yes, 1°+2°	716	716	560	557	

Note: Quinine Sulfate in 0.1 N H₂SO₄ Sensitivity 0.1x Slits EX/EM 10/10 nm Ref. Attenuation Control 600V

(Adjusts reference radiant power to use full range of A/D converter output for largest analyte peak, 0000 to 4096).

at 460 nm. The fluorescence profile along the emission window is shown in Figure 29. To avoid attenuations positions were chosen 3mm removed from either cell wall. This led to the routine use of a 4 mm cell centered Δ d value along this axis.

The excitation window was calibrated to determine the maximum allowable Δd between positions one and two, three and four. In this case, the chosen positions must be such that negligible attenuations are encountered by having the excitation beam interact with either the front or back cell surfaces. The fluorescence radiant flux was measured at increments of 0.5 mm across this window. At each of these increments the emission window axis was also calibrated from wall to wall. On completion a full matrix of values for the excitation/emission window mapping were obtained. The fluorescence profile along the excitation window is shown in Figure 30. It became apparent that a 4 mm cell centered Δd value was also the maximum along this axis.


The above mapping was generated with the cell originally in position one. Rotations of the cell within the cell holder were made to study the quality of the matching between the four vertical cell surfaces. Minor differences within 2 mm of the cell walls were detected. Otherwise all four cell surfaces were matched. If significant differences were to exist then the correction procedures used would have to account for the transmission differential for two adjacent surfaces after each cell rotation. Use of a circular rotation pattern resulting in d's of 4 mm avoids the need for such two surface matching corrections.

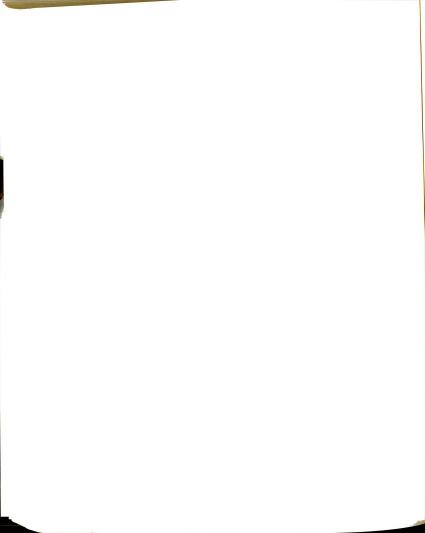
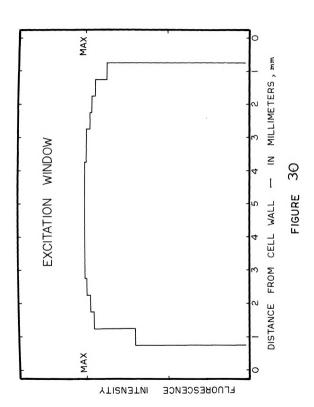


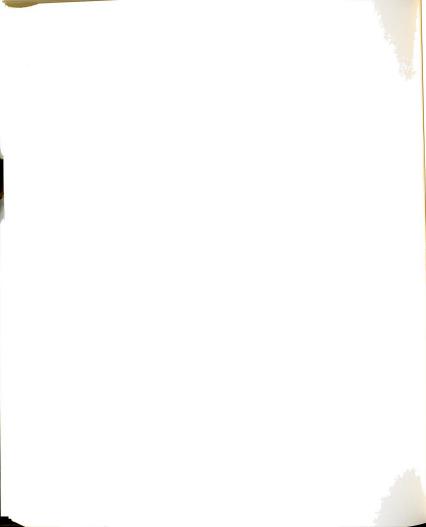
Figure 29. Emission Window Sample Cell

The plot represents the detected fluorescence radiant flux as a function of distance from the inner cell walls. The quartz cell has dimensions of 1 cm by 1 cm by 4.5 cm. Attenuations close to the cell walls led to the routine choice of 0.4 cm centered for Δd along this axis.



Excitation Window Sample Cell Figure 30.

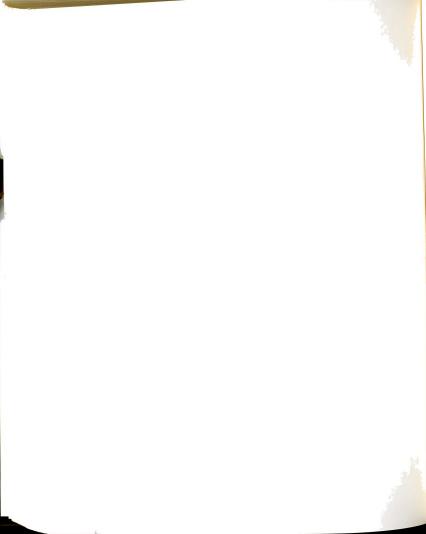
The plot represents the detected fluorescence radiant flux as a function of distance from the inner cell walls. The quartz cell has dimensions of 1 cm by 1 cm by 4.5 cm. Attenuations the inner cell walls. The quartz cell has dimensions of 0.4 cm centered for Δ d along this axis. close to the cell walls led to the routine choice of 0.4 cm centered for Δ d along this axis.


6. Error Analysis

There will always be a certain amount of error or irreproducibility in making instrumental measurements. Understanding of the various causative factors is necessary to develop means of eliminating, reducing or accounting for them. The following is a summary of commonly encountered sources of noise and their significance in the present system.

Fluctuations in temperature of the instrumental components and sample solution can cause variations in ϕ_{Γ} . The instrument warms up to a constant running temperature in twenty minutes. The source lamp temperature is maintained constant by a fan and by a specially designed ozone exhaust pumping system. The cell positioner is well shielded from the lamp chamber. The stepper motor maintains a constant temperature whether "stepping" or holding position. Thus this source of error is expected to be minimal.

Stray excitation radiation which reaches the emission detector would increase $\phi_{\rm f}$ values. This problem is virtually eliminated by the use of an emission monochromator employing a small bandpass. Specifications for the Model 512 Perkin-Elmer Spectrofluorometer indicate less than 2% stray light penetration exists at a wavelength of 350 nm. This is a systematic error.


Internal reflections of excitation or emission radiation from sample cuvette surfaces can result in p_f signal attentuation. Although the assumption of negligible reflections has been thus far made in calculating correction factors for primary and secondary absorption, this is not always true. Reflections, when significant, are a source of

inaccuracy. Typical glass sample cuvettes reflect about 4% of the radiation transmitted by the sample back into the sample by the airglass interface of the cell wall. The reflected excitation radiation would enhance the $\mathcal{P}_{\mathbf{f}}$ signal. Also a portion of the emission radiation initially emitted away from the emission detector will be reflected back and added to the $\mathcal{P}_{\mathbf{f}}$ signal. The inaccuracy in the measured $\mathcal{P}_{\mathbf{f}}$ due to these effects is a function of the transmittance at each of these wavelengths. Recently investigators have reported 2,11,62,63 application of mathematical models and subsequently derived correction factors to account for reflectance phenomena. The present sample cuvette walls are of quartz to avoid absorption of ultraviolet radiation. Glass normally employed in cuvette walls will absorb ultraviolet radiation. A problem at this time, however, is that the reflection characteristics of the quartz-air interface are unknown. This can be calculated if the refractive index of the type of quartz is known.

Random error is caused by variations in source radiation output, flicker noise if measurement of $p_{\rm f}$ is conducted in the energy mode. This problem is essentially eliminated by taking readings in the ratio mode that is available with the Model 512 Perkin-Elmer Spectrofluorometer. This mode automatically compensates for light source intensity variations. The manner in which the ratio mode operates is detailed in the Model 512 instruction manual. All measurements throughout the current work have been conducted in the ratio mode.

Baseline or 0% noise includes three types of noise associated with transducers and amplifiers. They are all involved with uncertainty in making the zero adjustment. They include dark current shot noise, dark

current excess noise and amplifier excess noise. In modern spectrofluorometers, 0% noise is seldom significant except at the wavelength extremes of the instrument and at the limits of detection for fluorescence. This noise is independent of the baseline setting.

Johnson noise is due to Brownian motion of electrons in resistive components of spectrofluorometers. This noise in photomultiplier tubes and amplifiers is so small in magnitude relative to other sources of noise that for all practical purposes it can be neglected. It is not dependent on the magnitude of the current and may occur in the absence of a current.

Signal shot noise is due to two factors: 1) random rate of arrival of photons at the photocathode; and 2) random emission of photoelectrons down the dynode chain. This noise increases in magnitude with increases in the size of the quantity being measured. Although the significance of this noise for the Model 512 has not been ascertained, it is probably the major source of noise.

Cell positioning uncertainty has been determined to be a probable limiting source of random error in high quality spectrophotometers 66 . Due to their similarity, spectrofluorometers are prone to suffer from this type of error. However, in spectrofluorometers the resultant error is much less significant. The specifications of the stepper motor (which controls the cell position through rotation) indicate that the reposition accuracy after one complete rotation (scanning in positions one, two, and four) is 3% of each last step before a halt. Since each step is 1.80° and three halts are involved the maximum position inaccuracy would be $+ 0.16^{\circ}$. Several hundred such cycles of measurement

resulted in negligible misalignments. However, even if such potential misalignments were to become significant in such a cummulative fashion, full scans are run at each of the three positions virtually eliminating this type of error. Figure 31 shows the cumulative effects of rotation misalignments.

Software for system data collection normally involves taking forty readings, calculation of the average value and error bar (difference between high and low values in set of forty) for each data point stored. If spectrofluorometer outputs are held constant at various levels one observes a regular senusoidal oscillation with time as shown in Figure 32. The oscillation is at 60 cycles/second and remains constant as shown also in a plot of A/D converter output with voltage in Figure 34. The fluorescence signal to noise ratio with voltage is shown in Figure 33.

It becomes apparent from the preceding discussion and from the data that the limiting factor of system error is in the 60 Hz line noise. Due to S/N ratios obtained it is preferable to monitor data at voltage levels above 2.0 V. The software has an available smoothing routine to average data over a full cycle of the 60 Hz noise and thus eliminate this problem. (Another means of eliminating this noise is with a 60 Hz notch filter).

D. Results of Correction Factor Analysis

1. Study of Primary Absorption

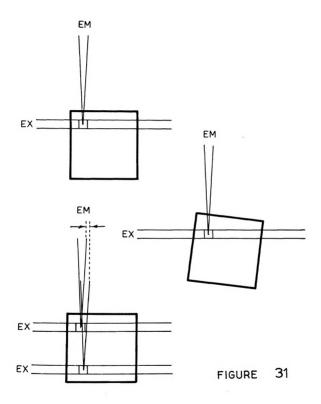

The range of linearity in the $\not\! p_f$ vs C_f plot was found to extend to approximately $1x10^{-5}$ M quinine sulfate in a background matrix of 0.1 N H_0SO_n . Utilizing a Fluke 8020 A digital multimeter detection was

Figure 31. $\frac{\text{Potential Misalignment Problems Encountered During Cell}}{\text{Rotation Method Tune-Up}}$

The top diagram shows expected alignment of cell walls with the propagation axes of the excitation radiation and detected emission radiation. The middle diagram shows skewing of the sample cell. A few degrees off from the perpendicular can severely attenuate the detected fluorescence. The bottom diagram shows a problem with Z axis truing. Here the cell faces are not vertical and significant attenuations of the fluorescence signal may result. The process of eliminating these potential problems is described in Chapter III.

Figure 32. $\frac{\text{Exploded View of Noise Monitored at Various Output}}{\text{tage Levels}} \, \frac{\text{Vol-}}{\text{tage Levels}}$

60 Hz line noise is the predominant source of error at the selected output voltage levels. The magnitude of the error bar due to this noise is constant regardless of analog to digital converter output.*

*The magnitude of 60 Hz oscillation is approximately 30/4096 relative to the maximum A/D converter output at 10 volts.

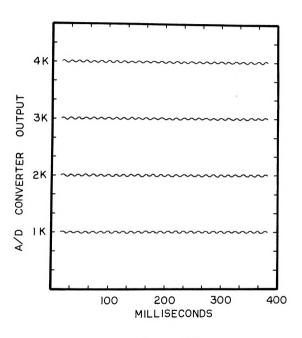



FIGURE 32

These ratios are independent of sample solution measured; H_0,0 ethanol, 0.1 M_ $_{\rm H}$ SO $_{\rm H}$, 10.0 M_ $_{\rm H}$ SO $_{\rm H}$, quinine sulfate in addic media were monitored for S/N characteristics. The correlation coefficient of the 0.1 N H_SO $_{\rm H}$ data is 0.9933 indicating a linear rise in S/N with Voltage.

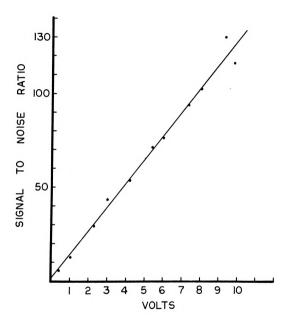


FIGURE 33

Figure 34. Reproducibility of Cell Position One with Multiple Rotations.

The full range of A/D converter output was investigated, The readings taken after each of five successive 360° rotations were averaged to determine the magnitude of error inherent in realignment. Error bars were calculated as the difference between the high and low values registered in any of the five rotations.

The difference between readings of subsequent rotations was negligible. The measurements vary over a constant sinusoidal component of 60 cycle per second line noise irregardless of voltage input to the A/D converter. A solution of 1x10 $^{-6}$ M quinine sulfate in 0.1 N H,S0 $_{\rm H}$ was used, output level voltage was varied by the high voltage reference attenuation adjust.

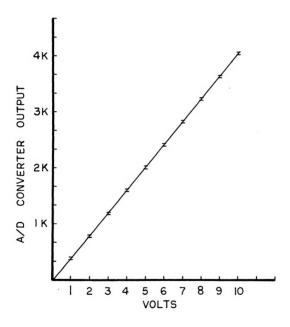


FIGURE 34

was possible down to $1x10^{-9}$ M. Figure 35 shows in plots A through E the extent of the above detectable linear range.

Primary absorption differences for quinine sulfate over a range of concentrations is shown in Figure 36. Significant primary absorptions are encountered at 1×10^{-7} M and above. Only two curves are apparent even though measurements were conducted at all four cell positions. This is the case since excitation at 250 nm is absorbed by the sample, but the emission at 460 nm is not absorbed. As was expected there is no secondary absorption thus matching position 1 and 2 readings and position 3 and 4 readings.

A plot of the logarithmic difference between the window edge positions along the excitation optical axis with concentration is shown in Figure 37. The plot is observed to be linear over the range of concentrations measured. Since this expression, $(\ln(\cancel{p}_f/\cancel{p}_0)_1 = \ln(\cancel{p}_f/\cancel{p}_0)_1)$, appears to describe adequately the attenuation of incident excitation radiation with distance, a correction factor can be determined.

An emission scan of 1×10^{-6} M quinine sulfate in 0.1 N $\rm H_2SO_4$ in four cell positions is shown in Figure 38. Scans in position 1 and 2 are well matched, as are scans in positions 3 and 4. Application of the correction routine for primary and secondary absorptions resulted in curve 0.

2. Study of Secondary Absorption

A plot of the logarithmic difference between the window edge positions along the emission detection axis with concentration is shown in Figure 39. The plot is linear over the range of concentrations

Figure 35. $\frac{\text{Instrumental Output with Concentration for Quinine}}{\text{fate}} \frac{\text{Sul-}}{\text{fate}}$

	_						
Α.	1	x	10 ⁻⁹	to	1	x	10 ⁻⁸ M 10 ⁻⁷ M 10 ⁻⁶ M 10 ⁻⁵ M 10 ⁻⁴ M
в.	1	х	10 7	to	1	х	10 6M
C.	1	х	10 6	to	1	х	10 M
D.	1	х	10 -	to	1	х	10 M
E.	1	x	10-5	to	1	x	10 ⁻⁴ M

Specifications:

Solvent 0.1 N $\rm H_2SO_{II}$ Excitation Wavelength 350 nm Emission Wavelength 450 nm Reference Attenuation 600 V Sensitivity 0.1x Ratio Mode Slits 20/20 nm

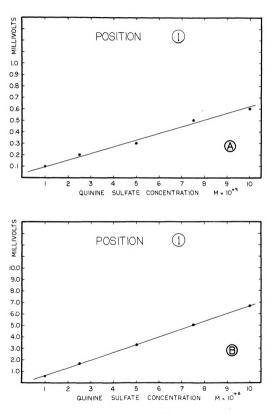
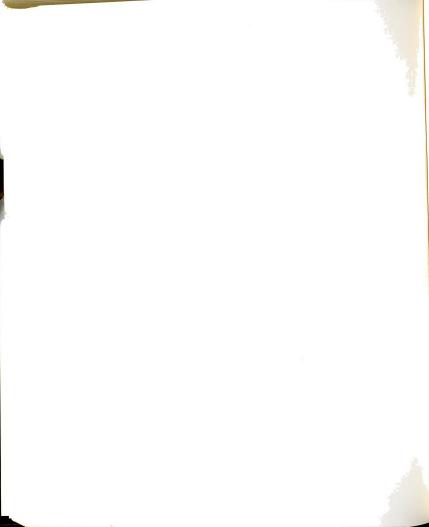



FIGURE 35

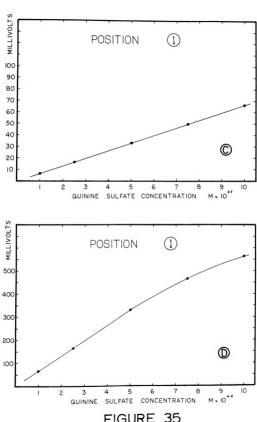
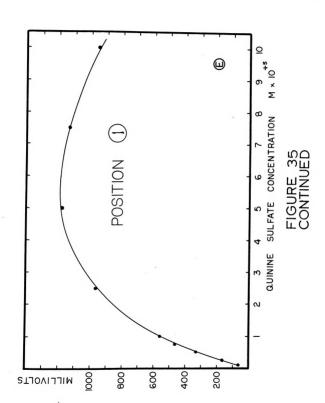



FIGURE 35 CONTINUED

Quinine Sulfate - Fluorescence Emission Scan as Detected in Four Cell Positions and Absorption Corrected. Figure 36.

Specifications:
Concentration quinine Sulfate 1 x 10⁻⁶ M
Concentration quinine Sulfate 1 x 10⁻⁸ Solvent 0.1 M H SO₁
Solvent 0.1 M H SO₁
Excitation Wavelength 460 nm
Emission Wavelength 460 nm
Reference Attennation 650 V
Sensitivity 0.1x
Ratio Mode
Silfs 10/10 mm

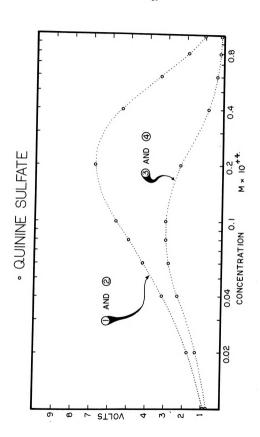
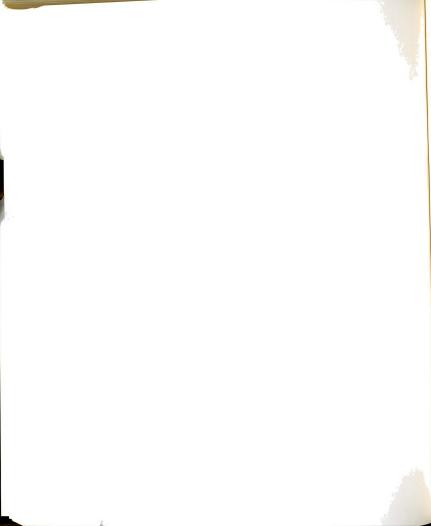
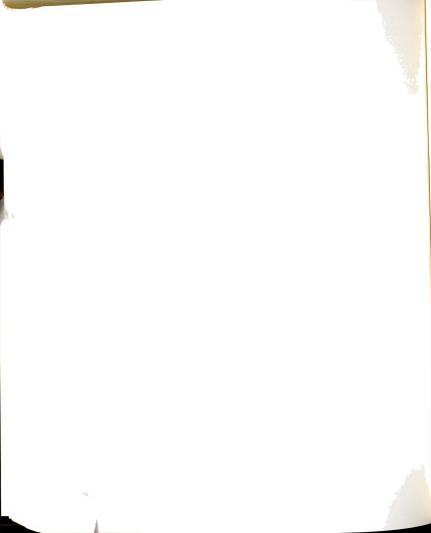



FIGURE 36

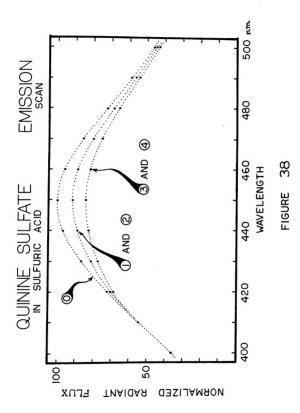

Study in Linearity of Primary Absorption with Increasing Quinine Sulfate Concentration Figure 37.

The plot represents the change in $\ln(F/R)_1$ $\ln(F/R)_{ij}$ with concentration. The quining sulfate concentration range extends from 1 × 10 M to 1 × 10 M. The background matrix consists of 0.1 N H $_{\rm S}$ Ou in house distilled water.

Jm (F/R)₁ ✓ ~

پ(۲۱۲) م 7 م

9



Quinine Sulfate - Fluorescence Emission Scan as Detected in Four Cell Positions and Absorption Corrected Figure 38.


Concentration quinine Sulfate 1 x 10⁻⁶ M Solvent 0.1 N H₂SO₁ Exoitation Wavelength 250 nm Emission Wavelength 460 nm Specifications:

Reference Attenuation 650 V Sensitivity 0.1x Ratio Mode

Slits 10/10 nm

Study in Linearity of Secondary Absorption with Increasing Fluorescein Concentration Figure 39.

The plot represents the change in ln(F/R), - ln(F/R), with concentration. The fluorescein (sodium salt) concentration range extends from 1 x 10^M M to 1 x 10^M. The background matrix consists of 1 x 10^M quinine sulfate and 0.1 N $_{\rm S}{\rm Sol}_{\rm H}$ in house distilled water.

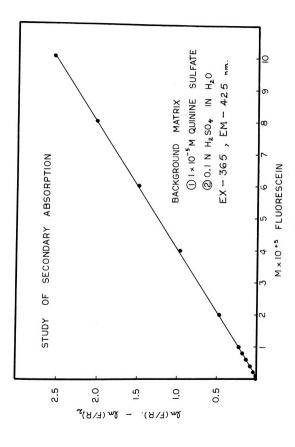
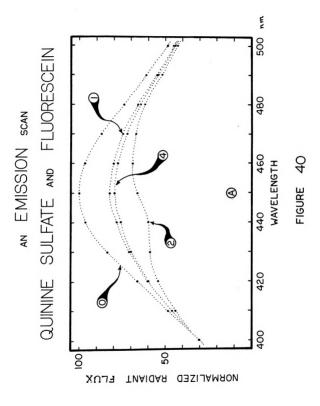
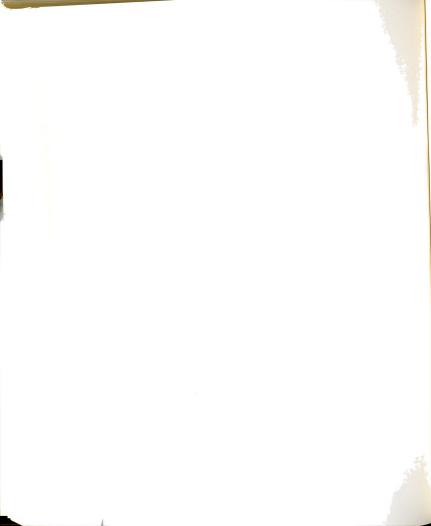


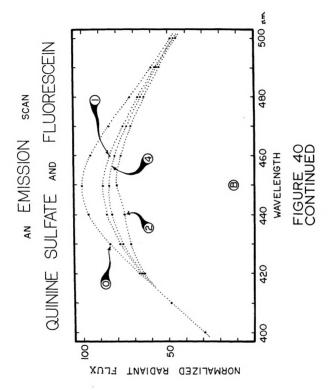
FIGURE 39

measured. The expression, $\ln(\cancel{p}_f/\cancel{p}_0)_1$ - $\ln(\cancel{p}_f/\cancel{p}_0)_2$, describes the attenuation of radiation at the emission wavelength with distance. From this a correction for secondary absorption can be determined.

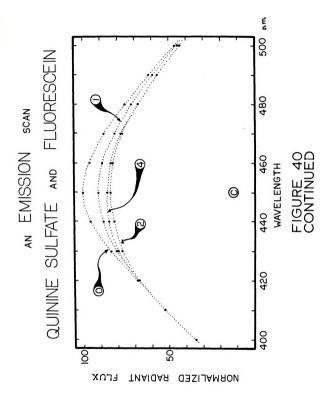
A series of scans were conducted for mixtures of quinine sulfate and fluorescein as shown in Figures 40A, B, and C. In each case, the correction routine for primary and secondary absorption was applied to generate curve 0.


Figure 40A-C. Fluorescence Emission Scan for Mixtures of Quinine Sulfate and Fluorescein 10-5 M

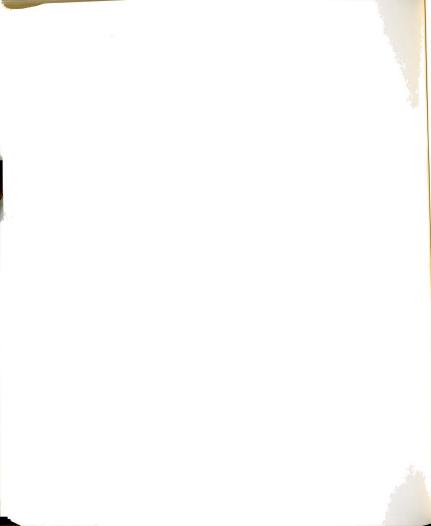

Ξ		Σ	
2 × 1	10 ' M_5	1 x ₆ 10	10 C
Quinine Sulfate	Fluorescein 2 x	Quinine Sulfate 1 x 10 M	y d ninopossini
Α.		B.	


Fluorescein b x 10 m-5 M C. Quinine Sulfate 1 x610 M Fluorescein 2 x 10 M

Specifications:


Solvent 0.1 N H₂SO₁
Excitation Naveleingth 365 nm
Emission Scan 400-500 nm
Reference Attenuation 600 V
Sensitivity 0.1 x
Ratio Mode
Slits 10/10 nm

CHAPTER V


CONCLUDING STATEMENTS

A. Summary

The original goal of this research has been realized. An instrument interactive with the laboratory PDP 8/e computer has been constructed to correct automatically for attenuation of the detected fluorescence signal caused by the sample's characteristic primary and secondary absorption. The instrument's ease of operation and overall performance have been evaluated.

At the outset of this project, emphasis was placed on ease of operation, reliability, precision, accuracy, rapid data acquisition, rapid spectral correction, and the adaptability for conversion of commercially available spectrofluorometers into absorption correcting units without the need for costly reconstruction.

Design of an integral system was implemented. The flowchart of all physical devices employed in the computer controlled absorption correcting spectrofluorometer is shown in Figure 16. Most of the devices involved are readily available in typical, modern analytical laboratories. Components such as the stepper motor and its power supply are commercially available. The circuitry required to adapt the computer's stepper motor command pulses to the power drive of the motor is straight

forward and inexpensive as shown in Figure 45 (appendix). The heart of the correction system, the cell positioner, can easily be constructed from diagrams detailing the three sections shown in Figures 17-19.

A spectrofluorometer incorporating right-angle geometry was selected as most appropriate since sample transmission at both the excitation and emission wavelengths can be accurately computed from fluorescence monitored at the three cell positions thus obviating the need for a second instrument.

The cell positioner was designed to meet the requirements for the necessary data acquisition in computation of and correction for primary and secondary absorbance. The present arrangement has a preset range for Δd between 0.2 to 1.0 cm along either the excitation or emission optical axis. The practical maximum limit to the usable Δd values with normal 1 cm by 1 cm cells has been determined from window profiling to be within a 0.4 cm by 0.4 cm volume element centered within the cell.

The stepper motor requires only 125 msec to fully shift and halt in a position 90° removed in a counterclockwise direction. Although the shift is moderately rapid between positions there is no apparent problem with introducing air bubbles at this rate.

The simple design and massive construction of the cell positioner were essential for durability over prolonged periods of measurement, for maintenance of a high degree of precision and accuracy, and to minimize vibration caused misalignments.

The relatively small size of the cell holder of the positioner assembly will potentially allow its incorporation into the sample cell compartments of other commercially available right-angle spectrofluorometers. The pedestal design should be amenable to controlled

environments covering a wide range of solution temperatures or noncorrosive atmospheres (i.e., nitrogen, helium, argon).

Accommodation of smaller samples is possible by vertical adjustments of the post on the motor drive rod and a series of shim plates, each 1/8 inch thick and 5 by 10 inches in surface area. The maximum attainable height within the current cell compartment is 2 cm, at which position the sample volume requirements are cut by a factor of two.

The detection aperture for fluorescence must be quite narrow for use of normal 1 cm by 1 cm cells allowing Δ d values sufficiently large to permit accurate calculation of the primary and secondary absorption correction factors.

The collimation of the excitation and emission radiation required for correction by the method of cell rotation is a potential limiting factor in this technique. However, narrowness of the detection field in the Perkin-Elmer Model 512 is sufficient to allow accurate calculations. Other units may not be so fortunate. In the cell shift method²,61, this factor was suspected by the authors as being the method's greatest practical limitation due to the resultant reduction in measurement precision and sensitivity.

The precision of the absorption corrected fluorescence is obviously dependent on the inate measurement precision of the spectrofluorometer. In this case the Perkin-Elmer Model 512 again was more than adequate. Fortunately, the measurement precision characteristic of modern spectrofluorometers is excellent. This, therefore, will not be a limit to other applications of this technique.

B. Future Work

Chemical Systems

- a. Repetitive scans for generating an absorption corrected fluorescence spectrum can be collected over a period between 5 and 15 minutes depending on the wavelength range scanned with current instrumentation. This permits study of dynamic chemical systems that undergo changes in such a timescale. Examples would be systems that directly alter a fluorophore concentration through reaction, cases where the environment (background matrix) interacting with the fluorophore is undergoing change, or where association/dissociation phenomena are observed involving the fluorophore molecules.
- The determination of a diagnostic, the partial quantum efficiency, is feasible with minor alteration of the current setup. A quantum counter would have to be aligned to monitor the rotating cell's transmittance at each cell position. Since the counter responds linearly to the number of photons which enter the counter, the difference between the quantities p_{ω_1} and p_{ω_2} is proportional to the quanta absorbed within the window $(\omega_1 - \omega_2)$. After comparison of the quantum counter and emission PMT outputs for identical radiant flux and wavelength settings, the emission PMT could be converted to a signal which was proportional to the number of quanta emitted at a particular wavelength. The partial quantum efficiency can be calculated by dividing the number of photons emitted by the number of photons absorbed within the window. Such information would provide insight on an environment's influence upon a fluorophore (i.e., changes in pH or ionic strength, aggregation or dissociation phenomena over a range of concentrations) as well as rapid identification as to whether or not primary

and/or secondary absorption is occurring.

- c. Increasing temperature of a sample solution usually decreases fluorescence radiant flux because the increased random motion of molecules increases the probability of collisional deactivation of an excited molecule. Controlled cooling of the cell compartment, and subsequently the sample itself, may provide greater insight into the effect of temperature on both quantitative and qualitative fluorescence analyses. It is anticipated that lower temperatures may significantly increase the fluorescent emission, and thus the detectability of lower fluorophore concentrations.
- d. A novel technique available with the current instrumental arrangement for measurement of particle concentrations is absorption corrected nephelometry. This technique is based on the scattering of incident radiation by particles suspended in the solution. The beam of radiation is monitored at a 90 $^{\circ}$ angle with the right-angle geometry. Because of the angle of measurement this technique is most suited for determining very low concentrations. For optimum scattering efficiency using ultraviolet and visible regions of the spectrum the optimum particle size is in the range of about 10 to 10,000 $^{\circ}$ A, or colloidal size 5 .
- e. Clinically it is very important to determine accurately the concentrations of various drugs present in pharmaceutical preparations. Many drugs exhibit fluorescence after reaction with organic species that will form fluorophore products. When fluorescence is used as the analytical technique absorption corrections are necessary to prevent output signal attenuations. Due to this problem, the apparent

drug concentrations appear to be substantially lower than the actual concentrations. An instrument with absorption correcting capability should significantly improve the safety margin in the packaging and dispensing of such drug preparations.

- f. In general, inorganic ions do not exhibit fluorescence. Fortunately, many of these same ions are capable of forming with aromatic organic molecules chelate complexes which may be highly fluorescent, even if the organic species itself does not exhibit fluorescence. This approach has in the past provided the basis for very sensitive analyses of many elements including most of the transition elements. Absorption corrected measurements would significantly increase the accuracy of such determinations, particularly in concentrations ranging to 1x10⁻⁶ M and higher for the chelate complexes.
- g. Bioluminescence, the emission of visible light by living systems, is one of the most fascinating of natural phenomena and can readily be studied by the absorption correcting instrument. The mechanistic aspects of the chemistry involved in luminescent bacteria, glowing toadstools, protozoa that can light up ocean waves, luminous clams, fantastically illuminated worms, and the common firefly have all been the objects of curiosity. The chemical problem is an interesting one. The firefly's emitted radiation with a wavelength of 560 nm has an energy of 214 kJ/einstein. A natural question is then, "What kind of chemical reaction can lead to an energy yield that high?". It is far too much energy to be provided by the splitting of ATP. Even the oxidation of NADH by oxygen would barely provide the necessary energy.

A clue comes from the fact that chemiluminescence is very common when $\mathbf{0}_2$ is used as an oxidant in non-enzymatic processes. The slow oxidation of alcohols, aldehydes, and many nitrogen compounds is accompanied by emission of radiation visible to the eye. Chemiluminescence is especially pronounced in those reactions that are thought to occur by free radical mechanisms. The recombination of free radicals provides enough energy to permit the release of visible radiation. Any loss of this emitted radiation through absorption can automatically be corrected for.

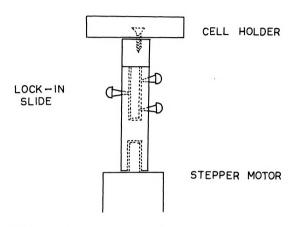
h. The spectra of certain types of enzyme solutions differ radically depending on the presence or absence of molecular oxygen (0_2) . Pea seedling diamine oxidase and hog kidney diamine oxidase are two such enzymes. Anaerobic studies can be accomplished by degassing the solution and maintaining an oxygen free environment in the cell compartment. A positive (in excess of 1 ATM) atmosphere of N_2 or Ar within the cell chamber will create such an environment. Aerobic studies require only that the inert atmosphere be removed and that oxygen be permitted to diffuse into the solvent matrix. The kinetics of the enzyme/substrate interactions could be better understood with controlled oxygen (one of the substrates required) diffusion over time. Here absorption corrected data are essential.

2. Instrumental Improvements.

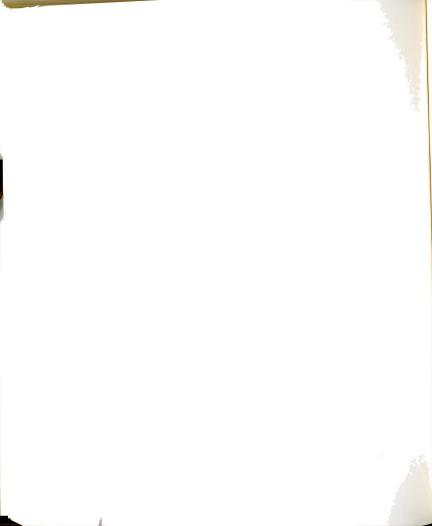
a. The cell rotation method must be further characterized and compared to the cell shift method². Of particular interest would be knowledge of the concentration ranges where the various correction factors are valid. This would include corrections as applied to primary


and secondary absorption, internal reflections, and re-emission. By comparison with results obtained using the cell shift method one could determine the advantages and the disadvantages to correction by either approach.

- b. A sample cell with dimensions of 2.0 cm by 2.0 cm would permit much larger values of Δ d along each of the optical axes. Current Δ d limitation is 0.4 cm, centered, in either dimension. The expected increase would be to 1.4 cm for both axes. The larger observation windows would allow significantly more accurate determinations of both primary and secondary absorption. Previously the largest routinely used window was achieved by Christmann with the cell shift method². An 0.8 cm window had been attained.
- c. An X-Y positioner analogous to that employed by Christmann in the cell shift method has been constructed. Instead of employing DC motors which are prone to positional errors and are not practical for repetitive scanning, two stepper motors were used. In half-step mode each motor takes 8,000 steps per cm along each optical axis. Such an arrangement would allow 64,000,000 potential setting positions across the surface of a 1 cm by 1 cm cell. Thus full and highly accurate maps of window calibrations could be routinely made. Also realignments for the various cell positions would be very reproducible.
- d. A unique system has been designed possessing a stationary sample cell. This system would employ a pulsed tunable laser as the excitation source. Fiber optics (UV-VIS) would be used to guide emitted fluorescence from three cell positions to a series of three scanning



monochromators (matched). The outputs of the monochromators would go to a set of three PMT's (matched) from which outputs would go to a multiplexer to allow high speed switching and essentially simultaneous scanning of the three cell positions required for implementing corrections for primary and secondary absorption. Such a system would be characterized by high speed in achieving absorption corrected spectra, by ideal positional alignment since the cell does not move to allow emission readings from different positions, and by very high sensitivity due to the pulsed laser source.


- e. The sensitivity of the current instrumental arrangement could be increased several orders of magnitude by application of a pulsed tunable laser as the source. A pulsed laser would used to eliminate the problems of solution heating and saturation of excited energy levels encountered with use of continuous wave lasers. Minor modification of the cell compartment would be required in adapting the laser source.
- f. With the aid of a pulsed laser source, fluorescence lifetimes could also be measured. This would enable the instrument to resolve multi-component mixtures in a sample by time resolved fluorescence spectrometry.
- g. Use of a solid state array detector in place of the photomultiplier tube could reduce the time required to obtain a fluorescence spectrum. The intrinsically low levels of emission radiant flux characteristic of the instrument would indicate that a long integration time would be necessary with this kind of detector, but that data might be obtained more quickly than with a scanning monochromator system².

h. Small sample volumes may preclude using current cell positioner design. A modification of the cell holder post should allow use of volumes as low as 1.5 ml. The modification is illustrated below:

Normally available (1 cm \times 1 cm \times 4 cm) cells can still be used, thus avoiding the expense of having specially designed cells made by the manufacturer.

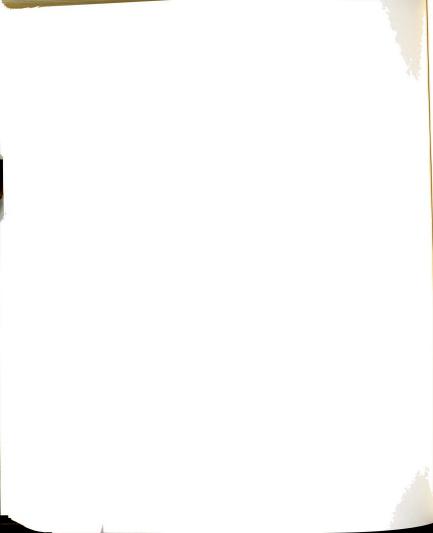


Figure 41. Modified M1709 Omnibus Interface Foundation Module

This module is a general interface card that allows the user to interface a variety of equipment to the PDP-6/e computer. The custom designed M1709 is detailed. The module provides all necessary omnibus interface logic (i.e., bus drivers/receivers, device selectors, interrupt/skip circuitry).

OMNIBUS INTERFACE FOUNDATION MODULE AS MODIFIED OI B API BBK 5 B BLI B 8H1 B INTERNAL I/O 07 B BPI 06 B DK1 USE B CDI 09 B DL(10 B DMI 11 B DP1 B CH2 INITIALIZE B CRI 2 PATA 00 D ARI DATA OI B ASI DATA 02 B AUI DATA 03 B AVI DATA 04 B BRI DATA OS B BSI DATA 06 B BUI DATA 07 B 8/1 2 DATA OS B DA 7 +3 V DATA 09 B DSI DATA IO B DUI DATA II B DVI 7

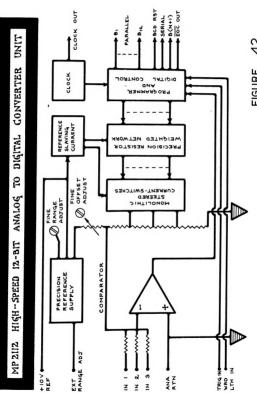

FIGURE 41

Figure 42. Analog to Digital Conversion Circuitry

The Analogic MP 2112 is high-speed and low cost. Full 12-bit conversions are completed in less that $M_{\rm SM}$ which provide throughput speed up to 140,000 conversions per second. Allowing up to that $M_{\rm SM}$ is the sample-and-hold amplifier to settle in onjunction with the $M_{\rm SM}$ is the resulting throughput rate is 100 kHz. Other characteristics include a differential insently of $\frac{1}{2}$ LSB, a \pm 0.075 relative accuracy, less than 7 ppm/°C gain temperature coefficient, and both parallel and serial outputs.

FIGURE

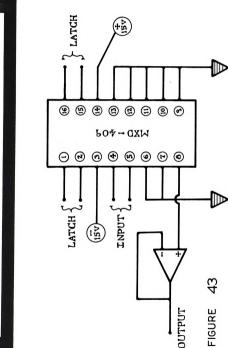


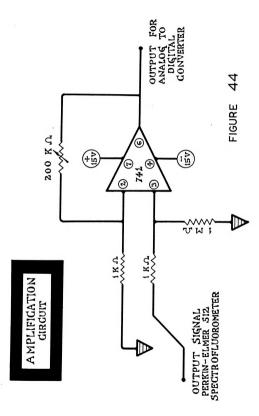
Figure 43. Four Channel CMOS Multiplexer

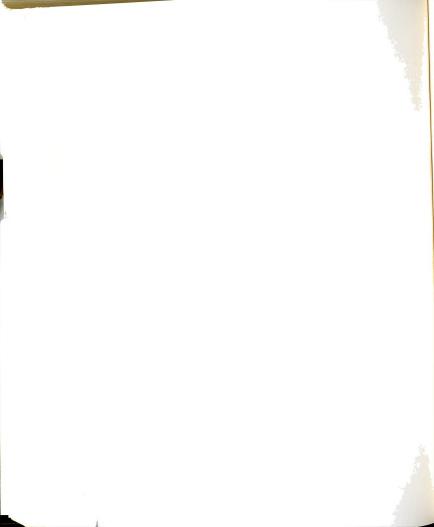
The MXD-409 analog multiplexer (Datel Systems, Inc.) is a 4 channel monolithic device manufactured with a dielectrically isolated complementary MOS process. The circuits incorporate analog and digital input protection which protects the units from both overvoltage and rate amalog and digital input protection which protects the units from both overvoltage and rate amalog and digital input protection. loss of power. The digital inputs are DTL/TTL/CMOS compatible and address the proper diannel by means of a 2 bit binary code. Another important feature of these multiplexers is the use of break-before-make switching to insure that no two channels are ever momentarily shorted together.

Transfer accuracies of 0.01% can be achieved at channel sampling rates up to 200 kHz and over \pm 107 signal ranges. Power consumption is only 7.5 mW at standby and 15 mW at 100 kHz switching Power supply range is + 5V to +20V.

CHANNEL CMOS MULTIPLEXER MXD-409

CIRCUIT

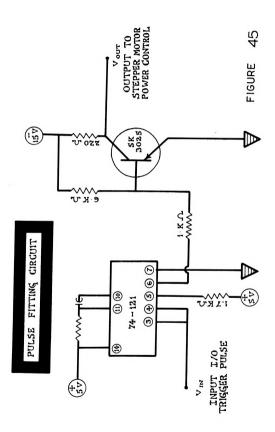


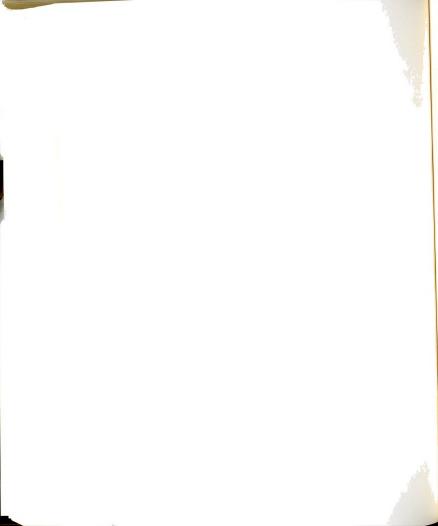


tion Circui
Amplifica
44.
Figure

To boost Perkin-Elmer model 512 spectrofluorometer output to required voltage levels for = one kilo-ohm resistor, ½ watt power rating.
= two hundred thousand ohm maximum variable resistor, ½ watt power rating.
= one meg. ohm resistor, ¼ watt power rating.
= operational amplifier. analog to digital conversion circuitry.

Key: 1 K $_{0}^{3}$ = 2 Coo K $_{0}^{3}$ = 1 M $_{0}^{3}$ = 7 4 1





Pulse Fitting Circuit Figure 45.

This circuit is interfaced between the I/O port of the PDP 8/e computer and the power supply of the stepper motor. The timing (RC) circuit is set for a value of 70 s for each pulse.

74-121 = one shot. SK-3025 = PNP transistor with 1 amp capacity. All resistors are of 4 watt capacity. Key:

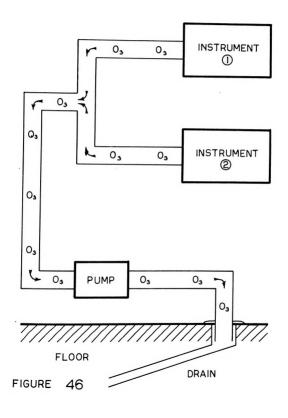


Figure 46. Ozone Exhaust System

This system was designed to eliminate the buildup of ozone in our laboratory when two spectrofluorometers are operating concurrently. The ozone is pumped beneath the floor into a drainage line. Since the half-life of ozone is about 17s, this method effectively reduces any potential hazards.

Table 7. Model 512 Specifications

The Model 512 Fluorescence Spectrophotometer Specifications

Į. General Specifications

Main Unit

1) Monochromators... Excitation and emission Optical system : Czerny-Turner mount.

aperture value F3.5

Diffraction grating: 600 lines/mm, blazed at 300 nm 2) Spectral bandpass : 3, 10, 20 nm (changeable in 3 steps)

3) Wavelength range

Emission measurement 200 to 900 nm and zero order Absorption measurement 250 to 640 nm

4) Wavelength accuracy: +1 nm. zero order: +3 nm

5) Wavelength reproducbility: Within 0.2 nm

6) Wavelength backlash: Wavelength backlash, when turning from long wavelength to short wavelength: within

0.5 nm

: 60, 120, 240, 480 nm/min 7) Scan speed

8) Light source : Xenon lamp 150 W

: Photomultiplier R-446F 9) Detector 10) Photometric system : Direct (ENERGY)

Ratio recording

Subtraction mode %T mode

Absorption mode

: 0.1, 0.3, 1, 3, 10, 30, 100 11) Sensitivity (selectable in 7 steps)

12) Response : Fast, medium slow

(Changeable in 3 steps) : 67 cm W x 39 cm D x 27 cm H

13) Dimensions

14) Weight : 54 kg : 10 mv for potentiometer recorder 15) Signal Output

1 volt for digital voltmeter Xenon Lamp Power Suply h.

1) Constant-current (7.5 A) pulse ignition type : 25 cm W x 29 cm H x 35 cm D

Dimensions : 22 kg 3) Weight

II. Fluorescence Mode Specifications 1) Stray light

: Excitation monochromator = 1% at & = 250 nm Emission monochromator = 2%

at & = 350 nm : The Raman band of HoO will show 2) Sensitivity

a 25% pen deflection under the following conditions:

High voltage = 700-800 V Sensitivity = X100

Energy mode Excitation wavelength = 350 nm

Slit = 10 nm

Emission Slit = 10 nm

Response = medium
Noise level = within 5% or less of
full scale
(Make measurement at wavelength
at Raman Peak)

3) Stability in Ratio Mode: (Power must be on for at least 30 minutes) Drift is 1%/hour under the following conditions.

- Diffuser plates should be in both sample and reference beams.
- Wavelength of excitation should be 400 nm, slit = 10 nm.
- Wavelength emission = 400 nm, slit = 10 nm

III. Subtract Mode Specifications

Flatness of zero baseline 1% under the following conditions:

- 1 ppm quinine solution placed in both beams.
 - excitation = 350 nm,
- slit = 10 nm. emission = 380-580 nm
- scan, slit = 10 nm
- 2. Subtract Dial Magnification: More than 5 times

IV. Transmission Mode Specifications

1) 100% Line flatness : +2% from 250 to 640 nm

2) Stability : 1% drift/hour at 100 T; 0.1% drift/hour at 0%T (Measurement

should be done at 30 minutes after power turn-on).

3) Photometric Accuracy: : +0.77%T

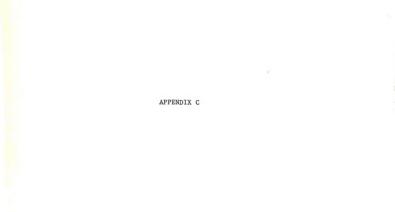

ABSORBANCE: +0.01 from 0 to 0.5A, +0.03 from 0.5 to 1.0A.

Table 6. Stepper Motor (Rapid-Syn) Specifications

Model Number 23D - 6102 Accuracy 3% noncummulative Resistance/ Ø 5.1 ohms Rated Voltage 5.1 V Current per phase 1.0 amp Inductance per phase 10.0 milli henries Time for single step 2.5 milli sec Holding Torque 53 oz in Maximum Running Torque 35 oz in Detent Torque 5 oz in 25 lbs Maximum Thrust Load Maximum Overhang Load 15 lbs 87 gm cm² Rotor Inertia Weight 20 oz Length 2.0 in 1.8° (full step mode) Degrees per step 28 V Source voltage

Table 4. Quartz Sample Cuvette Cleaning Proceudre

I. Aqueous Solutions

A. Rinse cell thoroughly with lukewarm tap water.

B. Give final rinse with chemically pure distilled water.

C. Occasionally it may be necessary to cleanse first with detergent solutions or similar liquids and 3-5% aqueous hydrochloric acid.

II. Aqueous Protein Solutions

A. Soak cell in solution of 0.5% hydrochloric acid (pH 1-2) and pepsin (1g/100 ml). Soak overnight if necessary. B. Follow procedure for aqueous solutions.

III. Organic Solutions

A. Rinse cell with suitable water soluble organic solvent such as acetone, dioxane or alcohol, possibly mixed with lye or acid. B. Follow procedure for acueus solutions.

IV. Heavy Metal Traces

A. Wash cell with tap water.

B. Dip cell into clean lukewarm concentrated nitric acid (aqua regia if appropriate).

C. Give final rinse with chemically pure, distilled water.

V. Preservation of Cuvette Windows

A. Follow the appropriate procedure above for the type of sample solution run in the cell.

B. Remove all traces of water by using a suction pump (aspirator).

C. Dip the cell into chromosulfuric acid (a saturated solution of potassium bichromate in pure concentrated sulfuric acid) at a temperature of 35°C. Let soak if necessary, for no more than one hour.

D. Remove cell from acid and allow residual acid to drip from cell, or remove it by suction. Leave cell in open air to allow humidity in air to dilute any residual acid in cell corners.

E. Rinse cell thoroughly with lukewarm tap water.

F. Give final rinse with chemically pure distilled water.

G. Allow to dry in dust free air.

H. Polish outside of cell windows wiht optical cleaning tissue free of chlorine or acid traces.

I. Store cell in dust free location until next use.

Table 9. Reagents List

Sulfuric Acid - Mallinckrodt. Lot KLMK
Ethanol - Anhydrous from MSU Chem. Stores
Fluorescein (sodium salt also known as uranine) - Fisher
Scientific Company; laboratory grade
Quinine Sulfate Dihydrate - Aldrich, high purity lot LD
Distilled H₂O - house

Table 5. Proper Selection of Slit Widths

Purpose	Excitation Slit	Emission Slit	Comments
Excitation Spectra	Narrow	Wide	Both of the slit widths can be wide for measuring samples possessing broad
Emission Spectra	Wide	Narrow	peaks
Quantitative Analyses	Wide	Wide	For obtaining high S/N ratio the slit widths should be as wide as possible.

Table 8. List of I/O Instructions

Information for the use of FLROT (11-30-81)

Start-Up

- 1. The core image file is on the disk marked "SYS:" in pencil.
- This disk goes in the left slot of the floppy disk drive.

 2 With the disk in the drive, boot the system by loading
 7600 octal in the switch register, press the clear button
 on the front panel (this should cause the drive to click),
 and then press the continue button on the panel.
- The computer should cause the terminal to respond with A "." which indicates that OS-8 is active.

Under OS-8

 To load the core image file of FLROT.PA from OS-8, type: R FLROT
The computer should respond with a <bell> "*". When this happens the FLROT program is in control of the computer.

FLROT

- Whenever the computer responds with a "<bel>*", it means
 that the program monitor is in control. With the program
 monitor in control, the user has the following commands
 available:
 - Table 1
 - EM: Sets the scan parameters for an emission scan
 - EX: Sets the scan parameters for an excitation scan
 - SC: Initiates the scan sequence
 - XA: Changes the number of units per inch of the xaxis
 - PR: Prints the results of the scan
 - DI: Displays the results of the scan
 - SA: Saves the current table on dsk:
 - GE: Gets a named table from DSK:
 - TO: Returns to OS-8

Each of these commands consists of a two letter beginning which is given above and a terminator which is either a ":" or a <CRP. The first two letters of a command must match one of the command above or the computer will respond with a "?".

- 2. Below is a more detailed description of each of the commands
 - This command allows the user to select scan parameters for an emission scan. The computer asks for the starting wavelength and the excitation wavelength (excitation=).

Each of these values is a decimal integer terminated by a space.

EX

This command allows the user to select the scan parameters for an excitation scan. The computer asks for the same information as in the emission scan except it substitutes "emissions" for "excitations". The parameters are entered in the same manner.

SC

The scan command (SC:) initiates the scanning sequence. The delimitter to end the command must be depressed at the same time the scan is started. Position 1 is scanned first and when this is finished, the cell is rotated and the computer types "reset monochromator". The user must reset the monochromators to the starting wavelength and depress the space bar at the same time the next scan is started. The computer then scans position two. The same sequence is followed after this position is scanned to scan position 4. When position four has been scanned, the computer types "finished" and automatically smooths all three scans. When the smoothing is finished, the computer returns to the monitor.

XA The XA command allows the user to change the number of scan units per inch. There are 10 inches across the screen.

PR

The print command allows the user to print out the values of a particular variable from the scan. The list of variables is in Table 2.

Table 2

RR: P1 SS: P2 FF: P4 A1: P0

Where:

т				I
I		I		I
Ī	P1	I	P4	I
Ť		I		I
I	P2	<u>I</u>	Р3	^I
		I		I
I		1		
Ī		I		I

Table 8 (cont'd)

The variable is selected by typing the two letter symbol from the table above and following it with a ";" or \angle CR>.

DI

The display routine draws a graph of any of the variables from Table 2 from an entire scan.

PROGRAM LISTING

On the following pages, a listing of the source files of the system are presented.


```
XLIST
                                             PALB-VIOA NO DATE PAGE 1
                         /FLOURESCENCE PROGRAM
                                                           11/19/81
                     /PREFLOURO
   2
   -
               0010
                     +10
       00010
              0000
                     FROM,
                              0
       00011
               0000
   5
                     TO,
                              ō
              0020
                     *20
   7
       00020
                     USR,
                              200
                     MONPTR, CDFCIF CODFLD
   'n
       00021
               6223
                              JMP I .+1
               5423
                              500
  10
       00023
               0200
                                      /ROUTINE TO INPUT FILENAME
       00024
                     STRGIN, PACKER
  11
               0605
       00025
               7403
                     EDD
                             HLT
                                      /ERROR RETURN
/ENTRY POINT FOR DEVICE HANDLER
  12
                             0
  13
       00026
               0000
                     ENTRY.
```

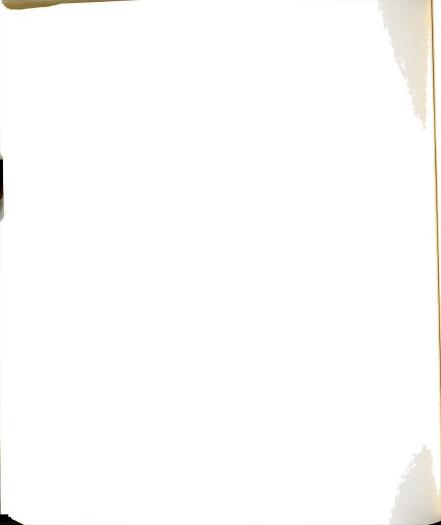
```
/FLOURESCENCE PROGRAM
                                  11/19/81 PAL8-V10A NO DATE PAGE 3
                     / INITIALIZATION CODE FOR FLOURESCENCE PROGRAM
                     / 1. )CALLS USR IN
  15
                     / 2. ) FETCHES DEVICE HANDLER
  16
                     / 3. ) JUMPS TO THE MONITOR IN FIELD 2
  18
              0200
                     *200
  19
       00200
             6201
                     BEGIN.
                            CDF 0
CIF 10
  50
       00201
              6212
  21
       00202
              4623
                             JMS I USRIN
  22
       00203
              0010
                             10
 23
       00204
              7200
                             CLA
 24
       00205
                             CDF 0
              6201
                             CIF 10
 25
       00206
              6212
 26
       00207
              4420
                             JMS I USR
 27
       00210
              0001
       00211
              0423
                    DEVNUM, DEVICE DSK
 28
 29
       00212
              1300
 30
                    NTRE,
                             1001
       00213
              1001
 31
              5025
       00214
                             JMP ERR
 32
                             CLA
 33
       00215
                             TAD NTRE
              1213
 34
       00216
 35
       00217
                             DCA ENTRY
              3026
       00220
              6223
                             CDFCIF CODFLD
 34
              5622
                             JMP I .+1
 37
       00221
              0200
                             200
 38
       00555
                   USR IN
                            7700
 39
      00223
              7700
```



```
/FLOURESCENCE PROGRAM
                                  11/19/81 PALB-V10A NO DATE PAGE 4
  40
              0400 +400
  41
                     /TABLE STORAGE ROUTINE
  45
  47
               4030
                              WFCW=4030
  44
              0030
                             RFCW=0030
 49
 46
                           CODE TO SAVE A RUN
 47
                           48
 49
       00400
              1371
                     SAVRUN, TAD P20
 50
       00401
              3010
                             DCA FROM
 51
       00402
              1371
                             TAD P20
 52
       00403
              3370
                             DCA FROM
 53
       00404
              1366
                             TAD P3000
 54
       00405
              3011
                             DCA TO
 55
       00406
              1367
                             TAD P30
 56
      00407
              3336
                             DCA TO1
 57
       00410
              1373
                             TAD PPP12
 5B
      00411
              4330
                             JMS MOVEBK
 59
      00412
              1256
                             TAD FNLNTH
 60
      00413
              4424
                             JMS I STRGIN
 61
      00414
              0600
                             FILNAM
 62
      00415
              1261
                             TAD FNAME
 63
      00416
              3226
                             DCA SBLCK
 64
      00417
              3227
                             DCA SBLCK+1
 65
      00420
              1662
                             TAD I DEV
 66
      00421
              0260
                             AND FILINF
                             CDF 0
CIF 10
 67
      00422
              6201
 68
      00423
              6212
 69
      00424
              4420
                             JMS I USR
 70
      00425
              0003
                             3
                             FILNAM
 71
      00426
              0600
 72
      00427
              0000
                             o
                             JMP ERR
 73
      00430
              5025
 74
      00431
              7200
                             CLA
 75
      00432
              1226
                             TAD SBLCK
DCA BLKNUM
 76
      00433
              3240
      00434
              6203
                             CDFCIF 0
                             JMS I ENTRY
 78
      00435
              4426
 79
      00436
              4030
                    FCW.
                             WECW
 80
      00437
              0000
                    BUFPTR,
                            0
 81
      00440
              0000
                    BLKNUM, O
                             JMP ERR
 82
      00441
              5025
                             TAD FNAME
 83
      00442
                             DCA FN
 84
      00443
              3252
                             TAD I DEV
 85
      00444
              1662
                             AND FILINF
 86
      00445
              0260
                            CDF 0
 87
      00446
             6201
 88
      00447
             6212
89
      00450
             4420
                             JMS I USR
 90
      00451
             0004
                            FILNAM
 91
      00452
             0600
 92
      00453
             0020
                            JMP ERR
93
      00454
             5025
94
      00455
             5021
                            JMP MONPTR
```



```
/FLOURESCENCE PROGRAM
                                  11/19/81 PAL8-V10A ND DATE PAGE 4-1
   95
        00456
              0004
                      FNLNTH, 4
  96
        00457
               0600
                      GFLNAM, FILNAM
  97
        00460
               0017
                      FILINF, 17
  98
        00461
               0600
                      FNAME,
                              FII NAM
  99
        00462
               0212
                      DEV,
                              DEVNUM+1
  100
 101
                      /CODE TO RETRIEVE A TABLE FROM DISK
 100
 103
       00463
               7200
                      GETRUN, CLA
 104
       00464
               1256
                              TAD FNLNTH
 105
       00465
               4424
                              JMS I STRGIN
       00466
 106
               0600
                              FILNAM
 107
       00467
               7200
                              CLA
 108
       00470
               1261
                              TAD FNAME
 100
       00471
               3301
                              DCA SBLOCK
       00472
               3302
                              DCA SBLOCK+1-
 111
       00473
               1662
                              TAD I DEV
 112
       00474
               0260
                              AND FILINE
 113
       00475
               6201
                              CDF 0
 114
       00476
               6212
                              CIF 10
 115
       00477
               4420
                             JMS I USR
 116
       00500
               0002
                     SBLOCK, FILNAM
       00501
               0600
 118
       00502
               0000
                              0
 119
       00503
               7200
                              CLA
 120
       00504
               1301
                              TAD SBLOCK
 121
       00505
               3312
                              DCA BLOCKM
 122
       00506
               6203
                              CDFCIF O
 123
       00507
               4426
                              JMS I ENTRY
 124
       00510
               0030
                     RRFCW,
                              RFCW
 125
       00511
              0000
                     BUFFPT, O
 126
       00512
               0000
                     BLOCNM, O
 127
       00513
              5025
                              JMP ERR
 128
       00514
              7200
                              CLA
 129
       00515
              1366
                              TAD P3000
 130
       00516
              3010
                             DCA FROM
131
       00517
              1367
                              TAD P30
                             DCA FROM
132
       00520
              3370
133
       00521
              1371
                             TAD P20
DCA TO
134
       00522
              3011
135
       00523
              1371
                             TAD P20
136
       00524
              3336
                             DCA TO1
137
       00525
              1373
                             TAD PPP12
138
       00526
              4330
                              JMS MOVEBK
139
       00527
              5021
                              JMP MONPTR
140
       00530
              0000
                    MOVEBK,
                             0
141
      00531
              7041
                             CIA
142
      00532
              3372
                             DCA BKLNTH
143
      00533
              1370
                             TAD FROM1
144
      00534
              4342
                             JMS TRIN
145
      00535
              4351
                             JMS TROUT
146
      00536
              0000
                    TO1,
147
      00537
              2372
                             ISZ BKLNTH
148
      00540
              5333
                             JMP . -5
JMP I MOVEBK
149
      00541
              5730
```



/FLOURESCENCE PROGRAM 11/19/81 PALB-VIOA NO DATE PAGE 4-2 00542 0000 00543 1364 00544 3345 TRIN, TAD CDFCDF DCA CFLD CFLD, TAD I FROM 5742 JMP I TRIN TROUT, DCA SLOC TAD I TROUT TAD CDFCDF DCA . +3 ISZ TROUT TAD SLOC O DCA I TO CDF O JMP I TROUT SLOC, P3000, P30,

FROM1, ō

P20, 2

00573 0012

PPP12, 12


```
/FLOURESCENCE PROGRAM
                                    11/19/81 PALB-VIOA NO DATE PAGE 5
 176
                0600
                      *600
       00400
               0000
                      FILNAM, ZBLOCK 5
 178
                      /ROUTINE TO PACK CHARACTERS FOR DUTPUT BY TYPIST /CALLING SEGUENCE:
 179
 100
                             JMS PACKER
 181
                      /NOTES:
 182
                                 C(AC)=TWICE THE NUMBER OF CHARACTERS TO BE
 INPUTTED
 102
                                 RETURN ADRESS EQUALS A POINTER TO THE STRI
NG L DCATION
 194
 105
       00405
               0000
                      PACKER, O
 184
       00404
               7041
                        CIA
 197
       00407
               2205
                         DCA NOOCHR
                                         /MINUS THE NUMBER OF STORAGE WORDS
 100
       00610
                1605
                         TAD I PACKER
                                         /GET STRING ADDRESS
 189
       00611
               3304
                        DCA STARTI
 190
                                         /BUMP RETURN ADDRESS
       00612
               2205
                         ISZ PACKER
 191
       00613
               7200
                        CLA
 107
       00614
               4710
                      READIN, JMS I INCHAR /GET NEXT CHARACTER
                        DCA TEMCHR
 193
       00615
               3300
                                         /SAVE AT TEMCHR
 194
       00616
               1300
 195
                        TAD CLF
       00617
               1202
 194
       00420
               7440
                        SZA
                                         /IS IT A (LF)?
 197
       00421
               1303
                          TAD NEGS
 198
       00622
               7640
                        SZA CLA
                                         /IS IT A CCR>?
 199
       00423
               7410
                         SKP
 200
       00624
                         JMP SPCCHR
                                         /TREAT SPECIALLY
               5255
                      READ2N, JMS I INCHAR /GET SECOND CHARACTER
 201
       00425
               4710
                                         CAUE
 202
       00424
               3301
                        DOA THOURS
                        TAD TMCHR2
       00627
               1301
                        TAD CLF
204
       00430
               1302
                                         /IS IT A LF?
205
       00631
               7440
                        C7A
                         TAD NEGS
204
       00432
               1303
                        SZA CLA
                                         /IS IT A CR?
207
       00433
               7440
                         CKD
200
       00634
               7410
                        JMP SPCR2
                                         /TREAT SPECIALLY
209
       00635
               5261
                                         /GET SECOND CHARACTER
       00636
               1301
                      SHIFTR, LSR
                                         /SHIFT SIGNIFICANT BITS TO MGL
211
       00637
               7417
212
       00640
               0005
213
       00641
               7200
                        CLA
                                         /GET FIRST CHARACTER
214
       00642
               1300
                        TAD TEMCHR
                                         /MASK 6 BITS OUT
/SHIFT BACK TO AC
215
       00643
               0306
                        AND KK77
216
       00644
               7413
                        SHL
217
       00645
               0005
                        DCA I STARTI
                                         /STORE IN STRING
218
       00646
               3704
                        ISZ STARTI
ISZ NODCHR
                                         /BUMP STRING POINTER
219
       00647
               2304
                                         /DECREMENT #OF WORDS LEFT
220
       00650
               2305
                                         /IF ROOM READ NEXT CHARACTER
                         JMP READIN
221
       00651
               5214
                                         /STRING FULL
       00652
               7201
                      ENDSTR, CLA IAC
222
                                         /PUT A ONE AT THE END OF STRING
                       DCA I STARTI
223
       00653
               3704
                                         /RETURN
224
       00654
               5605
                        JMP I PACKER
                      SPCCHR, TAD TEMCHR /GET CHAR
DCA TMCHR2 /STORE IN SECOND CHAR
DCA TEMCHR /CLEAR FIRST CHAR
       00655
               1300
225
226
       00656
               3301
227
       00657
               3300
                                        STORE IN STRING
228
       00660
               5236
                        JMP SHIFTR-1
                                        /SPEC CHAR LOWER HALF
229
       00661
               7300
                      SPCR2, CLA CLL
                                         /GET UPPER HALF
230
       00662
               1300
                       TAD TEMCHR
```



```
/FLOURESCENCE PROGRAM
                                          11/19/81 PALS-VIOA NO DATE PAGE 5-1
 231
         00663
                  0306
                            AND KK77
                                                 /MASK DUT SIGNIFICANT DIGITS
         00664
 232
                  7006
                            RTL
 233
         00665
                  7006
                            RTL
 234
         00666
                  7006
                            RTL
                            DCA I STARTI
ISZ STARTI
TAD TMCHR2
 235
                                                /STORE IN STRING
         00667
                  3704
                                               /STORE IN STRING
/BUMP STRING POINTER
/GET SECOND CHAR
/PUT IN FIRST CHAR
/DECREMENT #0F WORDS LEFT
/IF ROOM READ NEXT CHAR
/APPEND STRING ENDER
 236
         00670
                  2304
 237
         00671
                  1301
                            DCA TEMCHR
ISZ NOOCHR
JMP READ2N
 238
         00672
                  3300
 239
         00673
                  2305
 240
         00674
                  5225
                            TAD CC100
DCA I STARTI
JMP I PACKER
 241
         00675
                  1307
                                                STORE IN STRING
 242
         00676
                  3704
 243
         00677
                  5605
                                                /RETURN
 244
         00700
                  0000
                          TEMCHR, O
 245
         00701
                          TMCHR2, 0
                  0000
         00702
                  7766
                         CLF, -12
NEG3, -3
 246
         00703
 247
                  7775
                          STARTI, O
 248
         00704
                  0000
                          NOOCHR, O
 249
         00705
                  0000
 250
                  0077
                          KK77.
                                    77
         00706
                                  100
         00707
                  0100
                          CC100
 251
        00710
                 0711
                          INCHAR, CHINPT
 252
 253
                          /CHARACTER INPUT ROUTINE
 254
                         CHINPT, O
        00711
                 0000
6031
 256
                                    KSF
 257
         00712
                                    JMP . -1
         00713
 258
                  5312
259
         00714
                 6036
                                    KRB
260
         00715
                  6046
                                    TLS
                                    JMP I CHINPT
        00716
                 5711
261
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALS-VIOA NO DATE PAGE A
                      /FL11 FLUORO
                                          7/19/73 (AUTO SMOOTHING ADDED)
               0002 FIELD 2
 263
 264
                      / CODE FIELD DECLARATION:
 265
               0020
                              CODFLD=20
 266
               0005
                      *5
 267
       20005
               7400
                     FLIN, 7400 /FLOATING IN
 268
       20006
               7200
                                   /FLDATING OUT
                      *7 /THIS MUST BE 7
 269
               0007
       20007
                      FLTPT, 5600 /START OF FLOATING POINT INTERPRETTER
 270
               5600
 271
               0020
                      *20
 272
       20020
                      EMFLG, 0 /ON EM THIS IS 1
EMFLG2, 0 /SAME AFTER SCAN
START, 0 /STARTING MONOCHROMETER PARAM
               0000
 273
       20021
               0000
 274
        20022
               0000
 275
        20023
                      STARTZ, 0
               0000
 274
        20024
               0000
                               /ENDING WAVE VALUE
                      END, 0
                      END2, 0
MORX, 0
 277
        20025
               0000
 278
       20026
                                 /FIXED MONOCHROM WAVE VALUE
               0000
 279
        20027
               0000
                      MORYS, O
 280
        20030
               0000
                      WAVE,
                              0.
 281
        20031
               0000
                      NOVAL.
                             ō
                                       # OF DATA POINTS
 282
        20032
               0000
                      WICH, O /TEMP WAVE CHANNEL HOLDER
 283
       20033
               7773
                      N5, -5
        20034
               0000
                      TEMP1, 0
 204
 285
       20035
               0000
                      TEMP2, 0
       20036
               0000
                      TEMP3, 0
 284
                     SPARSE, SPASE /TYPE TWO SPACES
               1453
 207
       20027
               0062
                           /LEAVE HOLE FOR FLOATING POINT
                      *62
 288
                      TEMP4, 0
 289
       20042
               0000
       20063
               0000
                      TEMP5, 0
 290
                      TEMP6, 0
 291
       20064
               0000
               0042
                      EXCH.
                              42
                                       /EXCITATION CHANNEL
 292
       20065
                              43
                                       /EMISSION MONOCHROM CHANNEL
 293
       20066
               0043
                      EMCH,
 204
       20047
               0540
                     ROUND, OFF
                                   /ROUND OFF ROUTINE
       20070
               1050
                      A2D, ADAVER
                                    /A-D ROUTINE
 295
                     P4000, 4000
 294
       20071
               4000
                      INPUT, ENPUT
                                     /GENERAL CHAR INPUT
 207
       20072
               4722
                                      /POINTER TO MONITOR (MAY BE CHANGED
       20073
               0200
                     MONIT, MONITR
 298
 BY ARORTS)
                     MONSAV, MONITR /PERMANENT POINTER TO MONIT
 200
       20074
               0200
       20075
               0004
                      INTVAL, 4
                                /WAVE LENGTH OR WAVENUMBER INTERVAL
 300
               0004
                      INTVL2, 4
       20076
 301
                                      /SINGLE PREC DIG OUT.
/SINGLE PRECISION INPUT
                     NUMBUT, DECPRT
       20077
               4000
 202
                     NUMIN, SINGLE /SINGLE PRECISION INPUT
TYPIST, TYPSTG /PACKED CHAR STRING PRINTER
               3340
 202
       20100
       20101
               4063
 304
                                        /GENERAL CHAR PRINTER
                     PRINTI, TTOUT
               0317
 305
       20102
                      IITYCR, TYCR
                                     /CR, LF
               0342
 306
       20102
                     YORN, YESNO
NULE1, NULE
               0347
 307
       20104
                                    /WAVE NUMBER TO LAMBDA
               0600
 200
       20105
                      TTOINT, KBRK
                                     /INTERRUPT ON ^C
               0271
 309
       20106
                     R1, 0
310
       20107
               0000
                     F1. 0
311
       20110
               0000
312
       20111
               0000
                     S1, 0
313
       20112
               0000
                     R2, 0
               0000
                     F2, 0
314
       20113
               0000
                     52, 0
315
       20114
                     N12, -12
316
       20115 7766
```



```
/FLOURESCENCE PROGRAM
                                    11/19/81 PALB-VIOA NO DATE PAGE 6-1
 317
        20116 0747
                      GEXSET, EXSETQ
                                        /"EXCITATION="
 210
        20117
                1310
                      GEMSET, EMSETG
 319
        20120
                0740
                       QSTART, STARTQ /"START="
 220
        20121
                0744
                      GEND, ENDG
 221
        20122
                1470
                      SETUP, UPSET
GOTCHA, GOTCH1
                                        /SETUP FOR DUTPUT
/GET RSF FOR DUTPUT
 322
        20123
                1601
 323
        20124
                4447
                      DUTSTG, STIGMA
                                           /STRING OF OUTPUT OPTIONS
 324
        20125
                3363
                      RFLOT, RFL
 325
        20124
                3360
                      SFLOT, SFL
FFLOT, FFL
 324
        20127
                3366
 227
        20130
                2540
                      BUF1, BUFF1
 328
        20131
                0754
                      ONEFLT, FLUTE1
                                          /FLOATING POINT 1
 329
        20132
                3566
                      BUF3, BUFF3
 220
        20133
                0004
                      P4, 4
 331
        20134
                0213
                      ENTURP, INTPRT /INTERPRETTER FOR COMMAND OPTIONS
                      NLAT=57 /LAST CHAR ON FLOATING NUMERICAL INPUT
NASTY, -252
 332
                0057
        20135
 222
                7524
 334
        20136
                0012
                      P12, 12
                      YUNDRM, UNDRM
 335
        20137
                3522
                                        /UNNORMALIZE
                      NORM, NORMAL
 334
        20140
                3322
                                      /NORMAL I ZE
                      DRPLOT, PLOTX
                                         /PLOTTERDRIVER
 227
        20141
                5200
                      NEGA1, NEG11 /ROUTINE TO CIA FOR NU AND NOP FOR LE
 338
        20142
                4330
  (WAVELENGTH=LE)
       20143 4333 LINCOM, LINKER /" TO CML FOR NU AND NOP FOR LE (WAV
 339
ENUMBER = NU.)
 340
       20144
                0334
                      TYOM, GMOM /TYPE ?
                      BUF2, BUFF2
P310, 310
 241
        20145
               3563
                                  /200D
 247
       20146
                0310
                      DIAG, DINOG
                                     /PRINT MESSAGES CONCERNING BACKGROUND,
 242
       20147
               4460
 ART, PM, ETC.
 244
       20150
               0207
                      BELL, 207
                      USEREG, REGUSE /ROUTINE TO OUTPUT A CONTROL US TO
 345
       20151
               1317
RETURN TO TEXT MODE
                      XOFFI, XOFF /OFFSET BUFFER
               3627
246
       20152
                     XUFFI, XOFF /OFFSET BUFFER
LOGT, LOGTT /LOG(R/S)
SMFLG, 1 /AUTO SMOOTHING FLAG
SMITCH, SMUST2
FTEMPO, 0; 0; 0
               2407
 347
       20153
 348
       20154
               0001
               5042
 349
       20155
 350
       20156
               0000
               0000
 351
       20157
               0000
 352
       20140
               0000 FTEMP1, 0; 0; 0
 252
       20161
 354
       20162
               0000
       20163 0000
355
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALS-VIOA NO DATE PAGE 7
                0200 +200
 357
        20200
               4551
                      MONITR, JMS I USEREG
  358
        20201
                4340
                         JMS TYCK
                                    /PRINT CR. LE
 359
        20202
               1150
                         TAD BELL
 360
        20202
                4317
                         JMS TTOUT
 361
        20204
                1311
                         TAD ASTR
 362
        20205
                4317
                         JMS TTOUT
                                     /PRINT *
 363
        20206
               1212
                         TAD CMNDS
                                     /POINTER TO LIST OF COMMAND OPTIONS
 364
        20207
                4212
                         JMS INTERT
                                        /GO TO THE INTERPRETTER
 365
        20210
               0000
                         O /THIS LOC WILL HAVE THE COMMAND FOUND BY THE I
NTERP
       FITER
 366
        20211
               5410
                         JMP I
 367
        20212 4400
                                       /POINTER TO LIST OF OPTIONS (THIS M
                      CMNDS, CMDSTQ
UST BE SET BY USER)
 368
 369
        20213 0000 INTPRT, 0
                                     /INTERPRETTER, INPUT AND PROCESS A COM
MAND
 370
        20214 3304
                        DCA LOCLOC
                                       /ETER WITH POINTER TO OPTION STRING
IN AC
 371
        20215 3307
                        DCA CHREE
                                    /CLEAR COMMAND WORD FOR PREMATURE DELT
MITER
 372
        20216
               4257
                        .IMS CHARIN
                                       /GET THE FIRST COMMAND CHAR
 373
        20217
               0310
                        AND P77
 374
        20220
               7106
                        CLL RTL
                                    /MOVE TO LEFT HALF
 375
        20221
                7006
                        DTI
 376
        20222
               7004
                        RTI
 377
        20223
               3307
                        DCA CHRPR
 37B
        20224
               4257
                        JMS CHARTN
                                       CET SECOND CHAR
 379
        20225
                        AND D77
 380
        20226
               1307
                        TAD CHREE
 381
        20227
               3307
                        DCA CHRPR
 385
       20230
               4257
                        JMS CHARIN
 363
       20221
                                   /KEEP READING AND ECHDING UNTIL DELIMIT
               5230
                        JMP . -1
FR
      CR OR
384
       20232
               4437
                     JMS I SPARSE /TYPE A FEW SPACES AFTER *
DELIMR, TAD LOCLOC /A DELIMITER WAS FOUND
 385
       20223
               1204
                       DCA TEMPRM
 384
       20234
               3305
 387
       20235
                      CHECKI, TAD I TEMPRM
               1705
                                 /GET A COMMAND WORD FROM THE OPTION STRIN
               7440
 388
       AFCOC
                       S7A
œ`
389
       20237
                     JMP . +4
ERRERR, JMS GMGM
              5243
 390
       20240
               4334
                                          /FND OF COMMAND OPTION STRING ST
GNALED BY A O
 391
       20241
              4342
                        JMS TYCE
                                    /PRINT ? CR LF
                       JMP INTPRT+2 /AND TRY AGAIN
CIA /MAKE COMMAND NEGATIVE
 392
       20242
               5215
       20243
               7041
202
                        TAD CHRPR
                                    /AND SEE IF IT EQUALS ENTERED COMMAND
394
       20244
               1307
205
                       SNA CLA
       20245 7650
                         JMP . +4
396
       20246
               5252
                       ISZ TEMPRM /THESE COMMANDS DON'T MATCH SO MOVE TO
397
       20247
NEYT
     COMMAND
                       ISZ TEMPRM
200
       20250 2205
                       JMP CHECKI
399
       20251
               5235
                       IS7 TEMPRM
                                     /FOUND CORRECT COMMAND WORD
400
              2305
                       TAD I TEMPRM /GET ASSOCIATED COMMAND
DCA I INTERT /PLACE COMMAND AT RETURN ADDRESS
401
       20253
              1705
402
       20254
               3613
                       ISZ INTPRT
JMP I INTPRT
                                    /INCREMENT RETURN ADDRESS
403
       20255
              2213
404
       20256
              5413
                                         /RETURN
                     CHARIN, O /READ AND ECHO CHAR, LOOK FOR CR OR : AS
405
       20257
              0000
DEL IMITERS
              4777
                       JMS ENPUT
                                      /INPUT A CHAR AND TYPE IT
406
       20260
                       TAD N272
                                   /IS IT A COLON
407
       20261
              1314
408
       20262
              7450
                       SNA
                       JMP DELIMR-1 /YES TAD P55 /ND, IS IT A CR
409
       20243 -
              5232
410
       20264 1315
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALS-VIOA NO DATE PAGE 7-1
  411
        20265 7650
                         SNA CLA
  412
        20266 5233
                          JMP DELIME
        20267 1306
                        TAD FCHAR
  413
                                     /NOT DELIMITER, RETURN WITH CHAR JUST
 TAIDLIT
  414
        20270 5657
                         JMP I CHARIN
  415
        20271
                0000 KBRK, 0 /INPUT AND INTERRUPT SERVICER
  416
        20272
                6031
                        KSF
  417
        20273
                         JMP I KBRK /NO INPUT
                5671
  418
        20274
                6036
                         KRB
  419
        20275
                3306
                         DCA FCHAR
  420
        20276
                1306
                         TAD FCHAR
  421
        20277
                1316
                         TAD CHTRLC /-CODE FOR ^C
  422
        20300
                7650
                        SNA CLA
  422
        20301
                5473
                        JMP I MONIT
  424
        20302
                1306
                       TAD ECHAR
                                     /GET THE CHAR AND RETURN
  425
        20303 5671
                         JMP I KBRK
  426
        20304 0000
                      LOCLOC, O
  427
        20305 0000
                      TEMPRM, O
  428
        20306 0000
                      FCHAR, O
  420
        20307
               0000
                      CHRPR, O
  430
        20310 0077
                       P77, 77
  431
        20311 0252
                      ASTR, 252 /*
  430
        20312
               0215
                      CR215, 215 /CR
                      CR215, 215 /CR
LF212, 212 /LF
N272, -272 /-COLON
P55, 55 /COLON-CR
CNTRLC, -203 /-CODE FOR ^C
TTOUT, 0 /SUBROUTINTE TO PRINT A CHAR
 433
        20313 0212
 434
        20314
              7506
 435
        20315 0055
 424
        20316
               7575
 427
        20317
               0000
 120
        20320 6046
                        TIS
 439
        20321
               6041
                       TSF
 440
        20322
               5321
                        JMP . -1
 441
        20323
               7041
                        CIA /CHECK FOR CR
 440
        20324
              1312
                        TAD CR215
 443
        20225
              7640
                        SZA CLA
 444
        20326
               5331
                        JMP +3
 445
        20327
               1313
                        TAD LF212
JMP TTDUT+1
 444
        20330
               5320
 447
                        JMS KBRK /LOOK FOR ABORT
        20331
               4271
                      JMS KBRK 71
CLA
JMP I TTOUT
GMGM, O
JMS TYCR
 440
        20332
               7200
 449
        20333
               5717
 450
        20334
              0000
               4342
 451
        20335
                        TAD GM /PRINT A ?
JMS TTOUT
JMP I GMGM
               1341
 452
        20334
 453
        20227
               4317
 454
        20240
               5724
 455
        20341
               0277
                      QM, 277
                      TYCR, O
 454
        20342
               0000
                               /TYPE CR, LF
 457
       20343
               7200
                        CLA
                        TAD CR215
 45B
       20344
               1312
                       JMS TTOUT
 459
       20345
               4317
                        JMP I TYCK
 460
       20346
               5740
 461
       20347
               0000
                      YESNO, O /YES OR NO ROUTINE: NO=RETURN, YES=RETUR
N+1
 462
       20350
               7201
                        CLA TAC
                        TAD YESNO
 463
       20351
               1347
       20352
               3363
                       DCA YUP
 464
                        TAD YESNO
       20353 1347
 445
```

```
11/19/81 PAL8-V10A NO DATE PAGE 7-2
/FLOURESCENCE PROGRAM
                      DCA NOPE
466
       20354 3365
                      TAD YESTRG
467
       20355 1361
AAR
       20356
              4213
                      JMS INTPRT
              0000
                      ō
469
       20357
              5757
                      JMP I .-1
470
       20360
       20361
                    YESTRO, .+1
3105 /YES
471
              0342
              3105
472
       20342
              0000
                    YUP, 0
473
       20343
                      1617 /ND
474
       20364
              1617
              OOOO NOPE, O
475
       20365
                     O /STRING ENDER
476
       20366
              0000
```



```
/FLOURESCENCE PROGRAM
                                  11/19/81 PALS-VIOA NO DATE PAGE R
        20377 4722
 478
               0400
                      *400
 479
              1264
                     CALIB, TAD G200
                                        /SET UP MONOCHROMETER CALIBRATION
 480
        20401
               4501
                        JMS I TYPIST
                                       /PRINT "SET TO 200"
 481
        20402
               4472
                        JMS I INPUT
 482
        20403
               7300
                        CLA CLL
                                       /WAIT FOR TTO RESPONSE AND THEN DISC
ARD INPUT
 483
       20404
               1045
                        TAD EXCH
                                   /EXCITATION CHANNEL
 484
        20405
               4234
                        IMS CAD
                                  /INPUT D1 RELATING TO LE1 (200NM)
 485
        20406
               3044
                        DCA EXD1
 486
        20407
                        TAD EMCH /EMISSION CHANNEL
               1044
 487
        20410
               4234
                        JMS CAD
 488
       20411
               3270
                        DCA EMD1
 489
       20412
               4503
                        JMS I IITYCR
 490
       20413
               1265
                        TAD 0650
                                   /SET TO 650
 491
       20414
               4501
                        JMS I TYPIST /PRINT
 492
       20415
                        JMS I INPUT
               4472
 493
       20416
               7300
                        CLA CLL
 494
       20417
               1065
                        TAD EXCH
 495
       20420
               4234
                        JMS CAD
                                  /GET D2 FOR LE2
 496
       20421
               7041
                        CIA
 497
       20422
               1266
                        TAD EXD1
 498
       20423
               7041
                         CIA
 400
       20424
               3267
                        DCA EXD2D1
 500
       20425
               1066
                        TAD EMCH
 501
       20426
               4234
                        JMS CAD
 502
       20427
               7041
                        CIA
 503
       20430
               1270
                        TAD EMD1
 504
       20431
               7041
                         CIA
 505
       20432
              3271
                       DCA EMD2D1
JMP I MONIT
                       DO /A-D INPUT AND AVERAGE
NOP /**** ADSC /SET CHANNEL FROM AC
LCA CLL
DCA TEMP1
 506
       20433
               5473
                     CAD, O
 507
       20434
              0000
50B
       20435
              7000
509
       20436
              7300
510
       20437
              3034
                       DCA TEMP2 /CLEAR LOW AND HIGH SUMMATION REGISTER
511
       20440
              3035
512
                       TAD NS
       20441
                       DCA TEMP3
513
       20442
              2036
                       NOP /**** ADSF /WAIT FOR CHANNEL CHANGE
514
       20443
              7000
                       NOP /****
                                   JMP . -1
       20444
                        JMS I A2D
                                    /GET A TIME AVERAGED A-D VALUE
516
       20445
              4470
517
       20446
              7100
                       CLL
                       TAD TEMP2
                                    /LEAST SIG
518
       20447
              1035
519
       20450
              3035
                       DCA TEMP2
520
       20451
              7430
                       SZL
                       ISZ TEMP1
521
       20452
              2034
                                    /CARRY TO MOST SIG
       20453
                       1SZ TEMP3
                                  /COUT
522
              2034
              5245
                       .IMP
                            -7
523
       20454
              1035
                       TAD TEMP2 /GET ANSWER
524
      20455
                       MOL
525
      20456
              7421
                       TAD TEMP1
526
      20457
              1034
527
      20460
              7407
                       DVI
528
      20441
              0005
                       5
                       JMS' I ROUND
                                     /ROUND AND GET ANSWER
529
      20462
              4467
                       JMP I CAD
530
      20463
              5634
                    9200, 99200
531
      20464
              0556
```



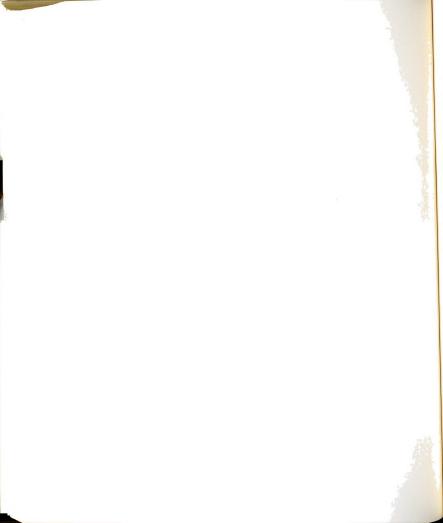
```
/FI DURESCENCE PROCESM
                                   11/19/81 PALS-VIOA NO DATE PAGE R-1
  532
        20465
                      Q650, QQ650
EXD1, 1742
                0564
  533
        20466
                1742
  524
        20447
                3616
                      EXD2D1, 3616
                                      /CALIBRATION CONSTANTS
  535
        20470
                      EMD1, 2553
  534
        20471
               3731
                      EMD2D1, 3731
        20472
               0000
                      LE2DIG, O
                                  /CHANGE WAVELENGTH TO CORRESPONDING DIGI
TAL NUMBER FOR
 538
        20473 7425
                        MGL MUY
                                  /COMPARISON WITH A-D MONOCHROMETER CHANN
E1
 539
        20474
               0000
                      D2D1, 0
                                 /SET BY EM OR EX ROUTINES
 540
        20475
               7407
                        DVI
 541
        20476
               7020
                        7020
                                /(650-200)*8
 540
        20477
               4467
                        JMS I ROUND
 543
        20500
               1202
                        TAD D1
 544
        20501
               5672
                        JMP I LE2DIG
                                         /RETURN WITH ANSWER AFTER ADDING
INTECEPT
 545
       20502
               0000 D1, 0 /A-D VALUE CORRESPONDING TO 200NM WHICH IS O
 PSEUDO WAVELENGTH
                     EM, CLA IAC /SET FOR EMISSION
 544
       20503
               7201
 547
       20504
               3020
                       DCA EMFLG
                                    /SET EMSISSION FLAT
 548
        20505
               1271
                        TAD EMD2D1
                                     /SET UP CALIBRATION CONSTANTS
 549
        20504
               2274
                        DCA D2D1
 550
       20507
               1270
                        TAD FMD1
 551
        20510
                        DCA D1
               3302
 552
                                     /"EXCITATION="
        20511
                        TAD GEXSET
               1116
 553
                     EITHER, DCA TEMP6
       20512
               2044
                                     /START=
 554
       20513
               1120
                        TAD OSTART
                       JMS I TYPIST
JMS I PARM1
 555
       20514
               4501
                                      /NU OR LE INPUT ROUTINE
 554
       20515
               4777
                       DCA START
                                     /SET STARTING WAVE PARAMETER
 557
       20516
               3022
                                   /ASK "END="
 558
       20517
               1121
                        TAD GEND
 559
       20520
               4501
                       JMS I TYPIST
                        JMS I PARM1
 560
       20521
               4737
 561
       20522
               3024
                       DCA END
 562
       20523
               1064
                       TAD TEMPA
 543
                       JMS I TYPIST
                                       /ASK FOR WAVE VALUE OF FIXED MONO
       20524
               4501
               4737
                       JMS I PARM1
 564
       20525
                       DCA MORX
 565
       20526
              3026
                       JMP I MONIT
       20527
              5473
                                    /DONE
 566
       20530
              3020
                     EX, DCA EMFLG
                                      /CLEAR EM FLAG TO SET FOR EMISSION
 567
                       TAD EXD2D1
                                     /SET UP MONCHROM CALIBRATION CONSTANT
 568
              1267
s
 569
       20532
              3274
                       DCA D2D1
       20533
                       TAD EXD1
 570
              1266
 571
       20534
              3302
                       DCA D1
                       TAD GEMSET /ASK "EMISSION="
 572
       20535
 573
              5312
                       JMP EITHER
       20536
                                    /OR NUIN WAVE LENGTH OR NUMBER INPUT
 574
                     PARMI, LEIN
       20537
              0624
 ROUTINE
                            /ROUND OFF DIVISION ROUTINE (JMS RIGHT AFT
 575
       20540
              0000 DFF, 0
ER DIVISOR)
576
       20541
              3355
                       DCA REMAIN /SAVE REMAINDER
577
       20542
              7344
                       CLA CLL CMA RAL
TAD DFF
                                         /-2
              1340
 578
       20543
              3372
                       DCA REMANZ
                                    /POINTS TO DIVISOR
 579
       20544
                       TAD I REMAN2
580
       20545
              1772
                                 /DIVISOR BY 2
                       CLL RAR
581
       20546
              7110
                       CIA CLL
582
       20547
              7141
                       TAD REMAIN
583
       20550
              1355
       20551
              7701
                       CLA MQA
584
585
       20552
              7430
                       SZL
                             /ROUND OFF
586
       20553
              7001
```



```
5740 JMP I OFF
0000 REMAIN, 0
2305 GG200, TEXT "SET TO 200"
587
        20554
                5740
588
        20555
589
        20556
590
        20557
                  2440
591
        20560
                  2417
592
        20561
                  4062
593
        20562
594
        20563
                  0000
595
                  0563 +.-1
0001 1 /STRING ENDER
2305 QQ650, TEXT "SET TO 650"
596
        20563
20564
597
598
599
        20565
                  2440
        20566
                  4066
600
        20567
601
        20570
603
        20571
                 0000
0571
0001
       0571 *.-1
20571 0001 1
20572 0000 REMAN2, 0
604
605
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALB-V10A NO DATE PAGE 9
  606
                0600
                       *600
        20600
  607
                0000
                       NULE, O
                                 /CHANGE WAVENUBER IN AC TO WAVELENGTH
  400
        20601
                3220
                         DCA NULES
  609
        20602
                1220
                         TAD NULES
  610
        20402
                7425
                         MGL MUY
  411
        20604
                3100
                         3100
                                /1600 IN DCTAL (8+200)
  612
        20605
                3034
                         DCA TEMP1
                                       /WAVELENGTH IS 8*(LE-200)
                                                                      MITTH OF
 IN NANOMETERS
 413
        20606 7501
                         MGA /WAVE NUMBER IS 8*NU WITH NU IN 100 INVERSE
CM
                         CIA CLL /DOUBLE PRECISION SUBTRACT
 614
        20607
              7141
 415
        20610
                1071
                                      /LEAST SIG PART OF 64*10E5
 414
        20611 7421
                         MGL /FORMALA IS 64*10E5*NUMBER-B*200*NUMBER ALL
 DIVIDED BY NUMBER
 617
        20612
               1034
                         TAD TEMP1
 410
        20613
                7040
                         CMA
 619
        20614
               7430
                        SZL
 420
        20615
               7001
                         IAC
 621
        20616
               1223
                         TAD P3032 / MOST SIG PART OF A4ES
        20617
               7407
                        DUI
 623
        20620
               0000
                      NULE2, 0
 624
        20421
               4467
                        JMS I ROUND
                                      /ROUND DEF AND GET ANGUER
 625
                        JMP I NULE
        20422
               5400
 626
        20623
               3032
                      P3032, 3032
 627
        20624
               0000
                      LEIN. O /INPUT WAVELENGTH AND SEE IF INBOUNDS
JMS I NUMIN /INPUT AN INTEGER WAVELENGTH IN NM
TAD N310 /SUBTRACT 200 /LOWER BOUNDS
 426
        20425
               4500
 629
        20626
               1265
 630
       20627
               7510
                        SPA
 631
       20420
               5242
                        JMP LERR /ERROR
 430
       20421
               2244
                        DCA NUTN
 633
       20632
               1244
                        TAD NUTN
 634
       20633
               1266
                        TAD N702
                                     /-450 TO MAKE UPPER LIMINT 650
 635
               7740
       20424
                        SMA CLA SZA
 636
                        JMP LERR
       20635
               5242
 637
                        TAD NUIN /OK
       20434
               1244
638
       20637
               7106
                        CLL RTL /SD MULT BY 8
639
       20640
               7004
                        RAL
640
       20641
               5624
                        JMP I LEIN
                     LERR, JMS I TYGM /ERROR
JMP LEIN+1 /TYRY AGA
641
       20642
               4544
642
       20643
                                     /TYRY AGAIN
               5225
643
       20644
                     NUIN, O /INPUT WAVE NUMBER
               0000
644
                        JMS I NUMIN
       20645
               4500
645
       20646
               3224
                        DCA LEIN
646
       20647
               1224
                        TAD LEIN
647
       20650
               1267
                        TAD N232 /-154 LOWER LIMIT
648
       20651
               7710
                       SPA CLA
649
              5263
                        JMP NERR /TOO SMALL
       20652
650
       20653
               1224
                        TAD LEIN
                        TAD N764
                                   /-500 UPPER LIMIT
651
       20654
              1270
652
       20655
              7740
                       SMA SZA CLA
653
       20656
              5263
                        JMP NERR
654
      20657
              1224
                       TAD LEIN /OH
655
      20660
              7106
                       CLL RTL
656
              7004
                             /SCALE UP BY 8
      20661
                       RAL
                       JMP I NUIN
657
      20662
              5644
                    NERR, JMS I TYGM /ERROR
              4544
658
      20663
659
              5245
                       JMP NUIN+1 /TRY AGAIN
      20664
      20665
              7470
                    N310, -310 /200
660
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALB-V10A NO DATE PAGE 9-1
               7076 N702, -702
                                     /-450
                7546
                     N232, -232 /-154
               7014
 663
        20670
                      N764, -764
                                   /500
                      OUTRNG, TAD GSTART /SET NEW
JMS I TYPIST /ASK "START="
JMS I PARM2 /LEIN OR NUIN
               1120
                                             /SET NEW OUTPUT LIMITS
 665
               4501
        20673
                4737
 667
        20674
               3034
                         DCA TEMP1
 668
        20675
               1034
                         TAD TEMP1
 669
        20676
                7141
                         CIA CLL
 670
        20677
                1022
                         TAD START
 671
        20700
                7450
                         SNA
 672
        20701
               5305
                       Z01, JMP DK11
                                        /SNL CLA FOR NU
                     JMS I LINCOM
ZO2, SZL CLA /SNL CLA FOR NU
JMP DUTRNG /ERROR ASK AGAIN
 673
        20702
                4543
 674
        20703
               7630
 675
        20704
               5271
 676
        20705
               1034
                      OK11, TAD TEMP1
 677
        20706
               3023
                         DCA START2
 67B
        20707
                         TAD GEND
               1121
 679
        20710
               4501
                         JMS I TYPIST
 680
        20711
               4737
                         JMS I PARM2
 681
        20712
               3034
                         DCA TEMP1
 682
        20713
               1034
                         TAD TEMP1
 683
        20714
               7141
                         CIA CLL
 684
        20715
               1024
                         TAD END
 685
        20716
                7450
                        SNA
 686
        20717
               5323
                        JMP DK12
 687
        20720
                4543
                         JMS I LINCOM
 688
        20721
               7620
                      ZO3, SNL CLA /OF SZL CLA FOR NU
JMP OK11+2 /ERROR ASK AGAIN
OK12, TAD TEMP1 /OK
 689
        20722
               5307
 690
        20723
               1034
 691
        20724
               3025
                        DCA ENDS
 692
        20725
               1021
                        TAD EMELG2
                        SNA CLA
 693
        20726
               7650
                         JMP . +3
 694
        20727
               5332
                        TAD GEXSET /TYPE "EXCITATION="
 495
        20730
               1116
 696
        20731
               7410
                        SKP
                        TAD GEMSET
 697
        20732
               1117
                        JMS I TYPIST /ASK FOR NEW VALUE OF FIXED MONOCHR
 698
       20733 4501
OM
               4737
 699
                         JMS I PARM2
       20734
                       DCA MORX2
 700
        20735
               3027
                        JMP I MONIT
 701
        20736
               5473
                     PARM2, LEIN /OR NUIN
STARTG, TEXT "START="
 702
        20737
               0624
 703
        20740 2324
 704
        20741
               0122
 705
       20742
               2475
 706
       20743
               0000
 707
               0743
                        *. -1
 708
       20743 0001
                     ENDQ, TEXT "END="
 709
        20744
               0516
 710
        20745
               0475
 711
        20746
               0000
                        * -1
 712
               0746
        20746
 713
               0001
                     EXSETQ, TEXT "EXCITATION= "
 714
        20747
               0530
       20750
               0311
                                 11/19/81 PAL8-V10A NO DATE PAGE 9-2
/FLOURESCENCE PROGRAM
       20751
               2401
       20752
               2411
 717
 718
       20753
               1716
 719
       20754
               7540
 720
       20755
               0000
               0755
                        * . -1
 721
 722
       20755
               0001
                     FLUTE1, 1
                                   /FLOATING POINT: 1
 723
       20756
               0001
                        2000
 724
       20757
               2000
       20760
               0000
```



```
/FLOURESCENCE PROGRAM
                                 11/19/81 PALS-VIOA NO DATE PAGE 10
 724
               1000 +1000
 727
       21000
              7240
                     SCAN, CLA CMA /SCAN AND COLLECT DATA
 728
       21001
              3010
                       DCA 10
 729
                       DCA NOVAL /DATA POINT COUNTER
TAD START /MOVE SCAN PARAMETERS TO PERMANENT STOR
       21002
              3031
 730
       21003
              1022
AGE
 731
       21004
              3023
                       DCA START2
 732
       21005
               1024
                       TAD END
 733
       21006
              3025
                       DCA END2
 734
       21007
              1075
                       TAD INTVAL
 735
       21010 3076
                       DCA INTVL2
                                      /MOVE ALL PARAMETERS TO STORAGE SO L
ATER CHANGES WILL
 736
       21011
              1026
                       TAD MORX
                                   /NOT FOUL UP DUTPUT
 737
       21012
              3027
                       DCA MORX2
 738
       21013
              1020
                       TAD EMFLG
 739
       21014
              3021
                       DCA EMFLG2
 740
       21015
              1022
                       TAD START
741
       21016
              3030
                       DCA WAVE
                                      /SET RETURN ADDRES FOR AUTO SMOOTH
742
       21017
               1155
                       TAD SMITCH
 743
       21020
              3073
                       DCA MONIT
 744
       21021
              1020
                       TAD EMFLG
745
       21022
              7650
                       SNA CLA
 746
       21023
              5226
                        JMP +3
                       TAD EMCH /EMISSION CHANNEL
747
       21024
              1066
 749
       21025
              7410
                       SKP
749
       21026
              1065
                       TAD EXCH
                       DCA WLCH /SET MONCHROM CHANNEL
750
       21027
              3032
                     SCANZ, JMS I DATAIN /BIG ENOUGH, TAD DATA
751
       21030
              4720
752
       21031
              1030
                       TAD WAVE
753
       21032
              7141
                       CIA CLL
                       TAD END
754
       21033
              1024
755
       21034
              7450
                       SNA
                       JMP I FNSCN /FINISHED
756
       21035
              5646
                       JMS I LINCOM
757
       21034
              4543
                     ZO4, SNL CLA /OR SZL CLA
JMP I FNSCN /DONE
              7620
758
      21037
      21040
759
              5646
                       TAD INTVAL
760
       21041
              1075
                       JMS I NEGA1
                                     /EITHE NOP FOR LE OR CIA FOR NU
       21042
              4542
761
              1030
                       TAD WAVE
762
      21043
                       DCA WAVE
763
      21044
              3030
                       JMP SCAN2
                                   /REPEAT
764
      21045
              5230
                    FNSCN, DONEO
GFIN, GFING
765
      21046
              1124
766
      21047
              1200
                                   /FINISHED
              0000
                     ADAVER, O /A TO D ROUTINE
767
      21050
              7300
                       CLA CLL
TAD PP4
748
      21051
769
      21052
              1303
770
      21053
              7041
                       CIA
                       DCA 17
771
      21054
              3017
                       DCA TEMP4
772
      21055
              3042
                       DCA TEMP5
773
      21056
              3063
                             TAD DELTIM /BET CLOCK FOR TIME INTERVAL
                     KLOCK,
              1321
774
      21057
                       DCA 177
775
      21060
              3177
                       ADCV
776
      21061
              6532
                       ADSF
              6531
      21062
                       JMP . -1
              5262
778
      21063
                       CLA
779
      21064
              7200
                       ADRB
780
      21065
              6534
```



```
/FLOURESCENCE PROGRAM
                                 11/19/81 PALB-V10A ND DATE PAGE 10-1
       21066 7100
 781
                       CLL
 782
       21067
               1062
                       TAD TEMP4
 783
       21070
               3062
                       DCA TEMP4
 784
       21071
               7430
                       571
 785
       21072
               2063
                       ISZ TEMP5 /CARRY TO HIGH PRECISION
 786
       21073
               2177
                       ISZ 177
                           177 /TIMING LOOP
-1 /WAIT DN CLOCK
 787
       21074
               5273
                       JMP.
                       ISZ 17
 788
       21075
               2017
 789
       21076
               5257
                       JMP KLOCK
 790
       21077
               1062
                       TAD TEMP4
 791
       21100
               7421
                       MQL
 792
       21101
               1063
                       TAD TEMP5
                     DVI /AVERAGE
PP4, 4
 793
       21102
               7407
 794
       21103
               0004
 795
       21104
               4467
                       JMS I ROUND
 796
       21105
               7001
                       IAC
 797
       21106
               7440
                       SZA
 798
       21107
               5315
                       JMP . +6
                                  /NOT SATURATED
 799
       21110
               1150
                       TAD BELL
                                  /UH OH, SATURATED, SOUND ALARM
 800
       21111
               6041
                       TSF
 801
       21112
               7410
                       SKP
 802
       21113
               6046
                       TLS
 803
       21114
               7200
                       CLA
 804
       21115
               7041
                       CIA
                             /RESUBTRACT 1
 805
       21116
               7140
                       CMA CLL
                       JMP I ADAVER
 806
       21117
               5650
 807
       21120
              1230
                     DATAIN, INDATA
                                     /2NM/SEC ON THE PERKIN ELMER
 808
       21121
               4647
                     DELTIM, 4647
                     LEDIG1, LE2DIG
 809
       21122
              0472
 810
       21123
              1124
                             DONEO
                     DONEO, CLA IAC
 811
       21124
              7201
              4777
                              JMS TURN
 812
       21125
 813
       21126
              4503
                             JMS I IITYCR
 814
       21127
              1371
                             TAD GRESET
                             JMS I TYPIST
 815
       21130
              4501
 816
       21131
              4472
 B17
       21132
              7200
                             CLA
 818
       21133
             3010
                             DCA 10
 819
       21134
             3031
                             DCA NOVAL
                             TAD START
 820
       21135
              1022
                             DCA WAVE
 821
       21136
             3030
              1342
                              TAD DONE 1-1
 922
       21137
                             DCA FNSCN
 823
       21140
             3246
                              JMP SCAN2
 824
       21141
             5230
                             DONE 1
 825
       21142
              1143
             7325 DONE1,
                             CLA CLL IAC CML RAL
JMS TURN
 826
       21143
 827
       21144
                              JMS I IITYCR
             4503
 828
       21145
                             TAD GRESET
 829
       21146
              1271
                             JMS I TYPIST
 830
       21147
              4501
 831
       21150
              4472
                             CLA IAC
 832
       21151
              7201
                             DCA 10
 833
       21152
              3010
                             DCA NOVAL
 834
       21153
              3031
                             TAD START
835
       21154
             1022
/FLOURESCENCE PROGRAM
                               11/19/81 PAL8-V10A ND DATE PAGE 10-2
                             DCA WAVE
TAD DONES-1
836
      21155 3030
837
       21156 1361
                             DCA FNSCN
              3246
838
      21157
                             JMP SCAN2
              5230
839
       21160
                             DONE3
840
       21161
              1162
              7200 DONE3,
                             CLA
841
       21162
                             JMS TURN
842
       21163
                             TAD DONEO-1
843
       21164
              1323
                             DCA FNSCN
844
       21165
              3246
                             TAD OF IN
845
       21166
              1247
                             JMS I TYPIST
846
       21167
              4501
847
       21170 5473
      21171 1207 GRESET, GGRSET
848
```



```
/FLOURESCENCE PROGRAM
                                11/19/81 PALB-V10A NO DATE PAGE 11
       21177 1222
 850
              1200 +1200
 851
       21200
              0015
                     GFING.
 852
       21201
              0012
                             12
 853
       21202
              0611
                             TEXT "FINISHED"
 854
       21203
              1611
855
       21204
              2310
 856
       21205
              0504
857
       21206
              0000
858
              1206
       21206
859
              0001
 860
       21207
              2205
                     GGRSET, TEXT "RESET MONOCHROMATORS"
861
       21210
              2205
862
       21211
              2440
863
864
              1517
       21213
              1617
845
       21214
              0310
866
              2217
867
              1501
848
       21217
              2417
869
       21220
              2223
870
       21221
              0000
871
              1221
                             *. -1
872
       21221
              0001
873
              0000
                    TURN,
       21222
                             0
                             CDFCIF 10
874
       21223
              6213
                             JMS I ROCEL
875
       21224
              4627
876
       21225
              7200
                             CLA
                             JMP I TURN
877
       21226
              5622
                    ROCEL, ROCELL
INDATA, 0 /DAT COLLECTION SUBROUTINE
878
       21227
              3067
879
       21230
880
       21231
              7326
                      CLA CLL CML RTL
                                             /SET MULTIPLEXER CHANNEL
                       ADSC
881
              6533
              7200
                       CLA
682
      21233
                       TAD N12 /AVERAGE 10 OF THEM
883
       21234
              1115
                       DCA 13
884
      21235
              3013
885
                       DCA S1 /CLEAR SUMMATION REG
      21236
              3111
      21237
                      DCA S2
886
              3114
                    SMPWT, JMS I A2D
CLL /SUM UP
887
              4470
                      CLL TAD S1
      21241
              7100
888
889
      21242
              1111
                       DCA SI
890
      21243
              3111
891
              7430
                       SZL
      21244
      21245
                       ISZ S2
892
              2114
                       ISZ 13 /COUNT DATA POINTS
893
      21246
              2013
              5240
                       JMP SMPWT
894
895
      21250
                      TAD S1
896
      21251
              7421
                      MGL
                            /NOW AVERAGE
897
              1114
                      TAD S2
              4270
                       JMS SAVOR
898
      21253
                      ISZ 10
899
      21254
              2010
                       ISZ 10
900
      21255
                      ISZ NOVAL /COUNT NUMBER OF COMPOSITE POINTS
901
      21256
             2031
             1010
                      TAD 10
902
      21257
                      TAD N2775 /LIMIT OF DATA STORAGE
903
             1266
      21260
```



```
/FLOURESCENCE PROGRAM
                                 11/19/81 PAL8-V10A NO DATE PAGE 11-1
                        SPA CLA
JMP I INDATA
TAD GFULL /DATA TABLE FULL
 904
        21261
               7710
 905
        21262
               5630
 906
        21263
               1267
 907
        21264
                4501
                        JMS I TYPIST
 908
        21265
               5473
                        JMP I MONIT
 909
        21266
               5003
                      N2775, -2775
 910
       21267
               1300
                      GFULL, GGFUL
 911
        21270
               0000
                      SAVOR, O
               7407
                        DVI
 913
       21272
               0012
                        12
 914
        21273
               4467
                        JMS I ROUND
 915
        21274
               6231
                        CDF 30
DCA I 10
                                 /AVERAGE AND STORE
 916
       21275
               3410
                        CDF CODFLD
JMP I SAVOR
 917
       21276
               6221
 918
       21277
               5670
 919
       21300
               0015
                      GGFUL, 15
 920
       21301
               0012
 921
       21302
               2401
                        TEXT "TABLE FULL"
 922
       21303
               0214
 923
       21304
               0540
 924
       21305
               0625
 925
       21306
               1414
 924
       21307
               0000
 927
               1307
                        *. -1
 928
       21307
               0001
 929
       21310
               0515
                     EMSETG, TEXT "EMISSION= "
       21311
               1123
931
       21312
               2311
932
       21313
               1716
       21314
               7540
934
       21315
               0000
935
               1315
                       *. -1
       21315
934
               0001
                       237 /CODE FOR CONTROL US
937
       21316
               0237
                       REGUSE, O
938
       21317
               0000
939
       21320
               7200
                       CLA
TAD . -3
940
       21321
               1316
                       JMS I PRINT1
JMP I REGUSE
941
       21322
               4502
942
       21323
               5717
                     *55
943
               0055
944
       20055
              0000
                     0
                            /SET SO NO CR ON OUTPUT
945
       20056
              0000
                     0
                     ≠7345
944
               7345
       27345
                     JMS I PRINT1 /CHANGE FLOATING POINT OUTPUT
947
               4502
948
       27346
               7000
                       NOS
949
       27347
              7000
                       NOP
                     *7170
950
               7170
                            /TO CHANGE RUBOUT TO BACKARROW FOR CONSISTENC
951
       27170
             7441
                     -337
952
             0122
                     337-215
       27171
                     *7144
953
               7144
                       JMS I INPUT
954
       27144
              4472
                       NOP
955
       27145
              7000
                       NOP
                              /OVERLAY OF FLOATING INPUT
956
       27146
              7000
                     *7150
957
              7150
```

/FLOURESCENCE PROGRAM

958 27150 7200 CLA

11/19/81 PAL8-V10A NO DATE PAGE 11-2

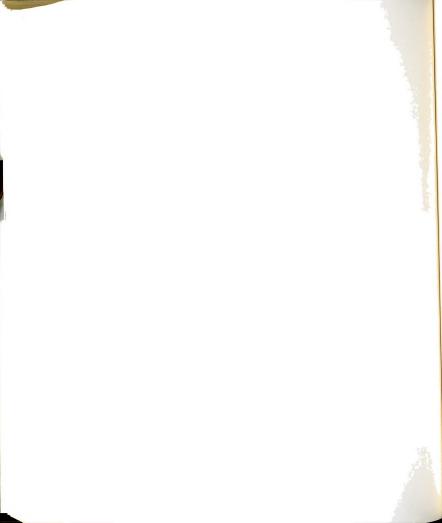
959 27151 7000 NDP /INPUT ALREADY HAS BEEN ECHDED


```
/FLOURESCENCE PROGRAM
                                    11/19/81 PAL8-VIOA NO DATE PAGE 12
  960
                 1400 *1400
                       PRINT, JMS GODDIE /GET THE DUTPUT PARAM
PRINTU, JMS I IITYCR
JMS I DIAG
JMP PRING-3 /JUMP PAST THIS ISLAND.
  961
        21400
                4242
  962
        21401
                4503
  963
        21402
                4547
  964
        21403
                         IAD GSTART /PRINT ASSOCIATED DATA
JMS I TYPIST
TAD START2
JMS UNPO
                5030
  965
                       ADVIS, 0
TAD GSTART
        21404
                0000
  966
        21405
                1120
  967
        21406
                4501
  968
        21407
                1023
  969
        21410
                4322
  970
                       PRTDEC=NUMOUT
                0077
  971
        21411
                         JMS SPASE /TYPE SOME SPACES TAD GEND
                4253
  972
        21412
                1121
                         JMS I TYPIST
  973
        21413
                4501
        21414
  974
                1025
                         TAD END2
  975
        21415
                4322
                          JMS UNDO
  976
                          JMS SPASE
        21416
                4253
  977
        21417
                         TAD EMFLG2
                1021
  978
        21420
                7650
                        SNA CLA
  979
        21421
                5224
                         JMP . +3
TAD GEXSET /EM SCAN
  980
        21422
                1116
  981
        21423
                         SKP
                7410
  982
                         TAD GEMSET /EX SCAN
        21424
                1117
               4501
  983
        21425
                          JMS I TYPIST
 984
        21426
                         TAD MORX2
               1027
 985
        21427
                4322
                         JMS UNDO
 986
        21430
                3010
                         DCA 10 /CLEAR LINE COUNTER
 987
        21431
                5604
                         JMP I ADVIS
 988
                4522
                         JMS I SETUP
                                        /SETUP R.S.F POINTERS
        21432
 989
                4523
                         JMS I GOTCHA
                                         /GET FIRST RSF VALUES
        21433
 990
                5240
                         JMP . +4
        21434
 991
        21435
                4523
                      PRING, JMS I GOTCHA
 992
                2016
        21436
                         ISZ 16
 993
        21437
                5247
                         JMP
                              +10
 994
                         JMS I IITYCR /ONLY 4 PER LINE SO GIVE CR, LF
        21440
                4503
 995
        21441
                2010
                         ISZ 10
 996
        21442
                1010
                         TAD 10
 997
        21443
                4477
                         JMS I PRIDEC /PRINT LINE NUMBER
 998
        21444
                4253
                         JMS SPASE
 999
        21445
                1257
                         TAD N4
1000
                         DCA 16
JMS 1 PRUNE /DO THE CONVERSION AND OUTPUT IT
JMS I FOUT
        21446
                3016
1001
        21447
                4666
1002
        21450
                4406
1003
        21451
                4253
                         JMS SPASE
1004
        21452
                5235
                         JMP PRING
1005
        21453
                0000
                      SPASE, 0
                                  /SPACE PRINTER
1006
        21454
                1260
                         JMS I TYPIST
JMP I SPASE
1007
        21455
                4501
1008
                5653
        21454
        21457
                7774
                      N4, -4
1009
                      SPASG, .+1
1010
        21460
                1461
        21461
                4040
                         4040
1011
                0001
1012
       21462
                0000
                      GODDIE, O /GET CONVERSION TYPE
       21463
1013
                         TAD DUTSTG /STRING LOCATIN FOR DUTPUT OPTIONS
       21444
                1124
1014
```



```
/FLOURESCENCE PROGRAM
                           11/19/81 PALB-V10A NO DATE PAGE 12-1
1015
        21465
                4534
                        JMS I ENTURP /INTERPRETTER
PRUME 0
JMP I GODDIE
        21466
21467
                0000
1017
                5663
                       UPSET, O /ROUTINE TO SETUP RSF POINTERS
CLA CMA
DCA 15 /DATA PICKUP
1018
        21470
                0000
1019
        21471
                7240
1020
        21472
                3015
1021
        21473
                1031
                         TAD NOVAL
        21474
1022
                7040
                         CMA
                         DCA TEMP5 /-# DF POINTS-1
TAD START
1023
        21475
                3063
                1022
1024
        21476
                       SETUPS, DCA WAVE
1025
        21477
                3030
                         TAD START2
        21500
                1023
1026
                         CIA CLL
TAD WAVE
1027
        21501
                7141
                1030
1028
        21502
        21503
                         SNA
1029
                7450
                5670
4543
                         JMP I UPSET /RETURN
1030
        21504
                         JMS I LINCOM
1031
        21505
                         SZL CLA
JMP I UPSET
1032
        21506
21507
                7630
                5670
7325
        21510
                          CLA STL RAL IAC
1034
                1015
                          TAD 15
1035
        21511
                         DCA 15
        21512
                3015
1036
                          ISZ TEMPS
                2063
1037
        21513
                7410
                         SKP
103B
        21514
                         JMP I MONIT /ALREADY OUT OF DATA
1039
        21515
                5473
                1076
                          TAD INTVL2
1040
        21516
                          JMS I NEGA1 /NOP OR CIA
                4542
1041
        21517
                1030
                         TAD WAVE /UPDATE WAVE
JMP SETUP3
1042
        21520
                5277
1043
        21521
                                 /CHANGE PSEUDO WAVE PARAMETER INTO REAL P
                0000
                       UNDO, 0
        21522
1044
ARAMETER
1045
        21523
21524
                7417
                         LSR
                       2
Z77, TAD P310 /ADD IN 200 IF WAVELENGTH
1046
                0002
1047
        21525
                1146
```

JMS I PRTDEC


21527


```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE 13
 1050
                1600
                     *1600
 1051
       21600
                4000
                      PMCP. 4000 /START OF PM TABLE
               0000
        10c15
                      GCTCH), O /GET RSF VALUES, FLOAT
ISZ TEMPS /GUT OF DATA?
 1053
         21602
               2063
 1054
        21603
                7410
                        SKP
 1055
        21604
                        JMP I MONIT /YES
                5473
 1056
        21605
                1030
                        TAD WAVE
CIA CLL
TAD END2
 1057
        21606
               7141
1058
        21407
               1025
1059
        21610
               7450
                        SNA
                        JMP GUD2 /OK, LAST POINT
               5215
                        JMS I LINCOM
        21012
               4545
1062
               7620
                      SNL CLA
JMP I MONIT /PAST END, DONE
GUD2, CDF 30 /MOVE IN DATA
        21613
1063
        21614
               5473
        21615
1064
               6231
1065
               1415
                        TAD I 15
        21616
1066
                        DCA R1
        21617
               3107
1067
                        TAD I 15
        21620
               1415
106B
        21621
               3111
                        DCA S1
1069
        21622
                        TAD I 15
               1415
1070
                        DCA F1
        21623
               3110
1071
        21624
               6221
                        CDF CODFLD
1072
        21625
                              JMP GOTU
               5226
                                                /***** TAD EMFLG2 /CHECK
FOR EM OR EX
1073
              1107
                     GOTU, TAD R1
       21626
1074
        21627
              4540
                        JMS I NORM /FLOAT ANS SAVE R
1075
        21630
              3363
                        RFL
1076
        21631
               1111
                        TAD S1
1077
        21632
               4540
                        JMS I NORM
1078
        21633
               3360
                        SFL
1079
                        TAD F1
       21634
               1110
1080
        21635
               4540
                        JMS I NORM
1081
        21636
               3366
1082
       21637
               1076
                              TAD INTVL2
1083
       21640
               4542
                               JMS I NEGA1
1084
        21641
               1030
                               TAD WAVE
1085
       21642
               3030
                              DCA WAVE
1086
       21643
               5601
                      JMP I GOTCH1
GGFAC, TEXT " SCALE FACTOR= "
1087
       21644
               4040
1088
       21645
               2303
1089
       21646
               0114
1090
       21647
               0540
1091
       21650
               0601
1092
       21651
               0324
1093
       21652
               1722
1094
       21653
               7540
1095
       21654
               0000
1096
               1654

★. −1

1097
       21654
               0001
               4040 GGMARX, TEXT " MAX="
1098
       21655
1099
               1501
       21656
1100
       21657
               3075
1101
       21660
               0000
1102
               1660
                     *. -1
       21660
               0001 1
1103
               0521 GEG2, TEXT "EQUIVALENCE WAVELENGTH (WAVENUMBER)="
1104
       21661
```


/FLOURESCENCE PROGRAM

11/19/81 PAL8-V10A NO DATE PAGE 13-1


```
/FLOURESCENCE PROGRAM
                                  11/19/81 PALB-V10A NO DATE PAGE 14
1125
                2200 +2200
1126
        22200
                0000
                     RR, O /OUTPUT RAW R
        22201
                4407
                        JMS I FLTPT
1128
        22202
                5525
                        FGET I RFLOT
1129
        22203
                0000
                        FEXT
1130
        22204
                5600
                         JMP I RR
1131
        22205
                0000
                      SS, 0 /OUTPUT S
JMS I FLTPT
1132
        22206
                4407
        22207
                5526
                      FGET I SFLOT
:134
        22210
                0000
                        FEXT
1135
        22211
                5605
                      JMP I SS
FF, 0 /FLUDR
1134
        22212
                0000
                         JMS I FLTPT
1127
        22213
                4407
113F
        22214
                5527
                        FGET I FFLOT
1139
        22215
                0000
                        FEXT
                        JMP I FF
1140
        22214
                5412
                      CO, O /CORRECTED FLUOR F/R
1141
        22217
                0000
                      AB9, 0 /ABS
JMS I FLTPT
                               /ABSOBENCE, -LOG(S/R)=LOG(R/S
1142
                0000
1143
        22221
                4407
1144
        22222
               5525
                        FGET I RFLOT
                               FPUT FTEMPO
1145
                A15A
                               FMPY I RFLOT
1144
        22224
               3525
                              FPUT I RFLOT
1147
        22225
                4525
1148
        22224
                5527
1149
                               FPUT FTFMP1
        22227
                6161
                               FMPY I SFLOT
1150
        22230
               3526
                               FPUT I FFLOT
FGET I RFLOT
1151
        22231
                6527
                5525
1152
                        FDIV I FFLOT
                4527
1153
        22233
               0000
                        FEXT
1154
        22234
                        CLA CMA
1155
        22235
                7240
                        TAD 44
                1044
1156
        22234
                7500
                        SMA
1157
        22227
                        JMP . +7
CLA /AB=0 R/S<=1
               5247
1158
        22240
        22241
               7200
1159
        22242
               4540
                        JMS I NORM
1160
               0044
                        44
1161
        22243
                        JMS I NORM
        22244
               4540
                        LOGAB
1163
        22245
               2357
        22246
               5620
                        JMP I AB9
1164
                                              /FOR ALGORITHM SEE FLOATING
1165
        22247
               4540
                      JMS I NORM /N LOG2
POINT
       MANUAL
               0044
        22250
1166
                       JMS I FLTPT
1167
        22251
               4407
                        FMPY LOG2
FPUT I BUF1
FGET I RFLOT
               3321
1168
        22252
               6530
        22253
1169
               5525
        22254
1170
                        FDIV 1 FFLOT
               4527
1171
        22255
               0000
                        FEXT
1172
       22256
                        CLA IAC /MAKE 1<=X<2
               7201
                        DCA 44
               3044
1174
       22260
                        JMS I FLTPT
               4407
1175
       22261
                        FSUB I ONEFLT /SUTRACT 1 TO GET "Y" FOR SERIES (S
               2531
1176
       22242
EE MANUAL)
       22263
               6532
                        FPUT I BUF3
       22264
               3354
                        FMPY LB
1178
       22245
               1351 FADD L7
1179
```



```
/FLOURESCENCE PROGRAM / 11/19/81 PAL8-VIOA NO DATE PAGE 14-1
1180
        22266
               3532
                        EMPY I RUES
1181
        22267
               1346
                        FADD L6
1182
        22270
               3532
                        FMPY I BUF3
1183
               1343
        22271
                        FADD L5
1184
        22272
               3532
                        EMPY I BUES
1185
        22273
               1340
                        FADD L4
1186
        22274
               3532
                        EMPY I BUES
1187
               1335
                        FADD L3
        22275
1188
        22276
               3532
                        FMPY I RUES
1189
        22277
               1332
                        FADD L2
1190
        22300
               3532
                        FMPY I BUF3
1191
        22301
               1327
                        FADD L1
                       FADD I BUF1 /THIS IS THE NATURAL LOG
1192
        22302
               3532
1193
        22303
               1530
1194
        22304
               6357
                        FPUT LOGAR
                                          /SAVE FOR USE WITH AB
1195
        22305
               5156
                              FGET FTEMPO
FPUT I RFLOT
FGET FTEMP1
1196
        22306
               6525
1197
        22307
               5161
1198
        22310
               6527
                             FPUT I FFLOT
FGET LOGAB
FMPY GEOFAC
1199
        22311
               5357
1200
       22312
             3362
                                            /MULTIPLY BY A GEOMETRIC FAC
TOR
1201
       22313
               0000
                       FEXT
1202
       22314
               4765
                             JMS I EXPNT
                              JMS I FLTPT
1203
        22315
               4407
1204
        22316
               3525
                              FMPY I RFLOT
1205
        22317
               0000
                              FEXT
1206
       22320
               5620
                        JMP I AB9
                     LOG2, 0 /NATURAL LOG OF 2
1207
        22321
               0000
1208
       22322
               2613
                       2613
1209
       22323
               4414
                       4414
1210
       22324
               0002
                     COMMON, 2 /LN 10 TO MAKE COMMON LOGS
1211
       22325
               2232
                       2232
1212
       22326
               7307
                       7307
1213
       22327
               0000
                     L1, 0
1214
       22330
              3777
                       3777
                     7742
1215
       22331
               7742
                       L2, 7777
1216
       22332
               7777
1217
       22333
               4000
                       4000
1218
       22334
               4100
                       4100
                       L3, 7777
1219
       22335
1220
       22336
              2517
                       2517
1221
       22337
               0307
                       0307
                       L4, 7776
1222
       22340
              7776
1223
       22341
               4113
                       4113
1224
       22342
              7211
                       7211
1225
       22343
              7776
                       L5, 7774
1226
       22344
              2535
                       2535
1227
       22345
              3301
                       3301
                       L6, 7775
1228
       22346
              7775
1229
       22347
              4746
                       4746
1230
       22350
              0771
                       0771
                     L7, 7774
2236
1231
       22351
              7774
1232
       22352
              2236
1233
       22353
              4304
                       4304
                    LB, 7771
1234
       22354 7771
/FLOURESCENCE PROGRAM 11/19/81 PALS-VIOA NO DATE PAGE 14-2
       22355
              4544
                     4544
1235
                     1735
1236
       22354
              1735
                     LOGAB, O
1237
       22357
              0000
       22360
              0000
                      0
1238
              0000
                     0
1239
       22341
              0000
                     GEDFAC, 0000; 3000; 0000
1240
       22342
              3000
1241
       22363
              0000
1242
       22344
       22365 2415 EXPNT, FEXP
1243
```

5 May 2 1 1 2 1 2


```
/FLOURESCENCE PROGRAM
                                     11/19/81 PAL8-V10A NO DATE
                                                                       PAGE 15
 1244
                 2400
                       *2400
 1245
         22400
                       GCBUFF, O
                 0000
 1246
         22401
                 0000
                       0
 1247
         22402
                 0000
 1248
         22403
                       FBF, 0
                 0000
 1249
         22404
                0000
                       0
 1250
         22405
                0000
                       0
 1251
         22406
                       LOGAB1, LOGAB
                 2357
 1252
         22407
                 0000
                       LOGIT, O
1253
         22410
                0000
                       0
1254
        22411
                 0000
1255
                       FAKB, O
                 0000
         22413
                0000
                       0
1257
        22414
                0000
                       0
1258
        22415
                0000
                       FEXP,
                                0
1259
                 4407
                                JMS I FLTPT
1260
                3277
                                FMPY LG2E
FPUT FTEMPO
        22417
                6156
1261
        22420
1262
                0000
                                FEXT
                                JMS I YUNDRM
1263
        22422
                4537
1264
        22423
                3045
                                DCA 45
        22424
                1045
                                TAD 45
1265
                                DCA FLAG2
1266
        22425
                3310
1267
        22426
                                JMS I NORM
                4540
1268
        22427
                0045
                                45
        22430
                4407
                                JMS I FLTPT
1269
                                FPUT FTEMP1
FGET FTEMP0
1270
        22431
                6161
        22432
                5156
1271
                2161
                                FSUB FTEMP1
1272
        22433
        22434
                6156
                                FPUT FTEMPO
1273
1274
        22435
                3156
                                FMPY FTEMPO
1275
        22436
                6161
                                FPUT FTEMP1
1276
        22437
                1274
                                FADD D
1277
        22440
                6311
                                FPUT FTEMP2
1278
        22441
                5271
                                FGET C
1279
        22442
                4311
                                FDIV FTEMP2
1280
        22443
                2156
                                FSUB FTEMPO
1281
        22444
                1263
                                FADD A
                6311
                                FPUT FTEMP2
1282
        22445
                                FGET B
1283
        22446
                5266
1284
        22447
                3161
                                FMPY FTEMP1
1285
        22450
                1311
                                FADD FTEMP2
        22451
                6311
                                FPUT FTEMP2
1286
1287
        22452
                5156
                                FGET FTEMPO
                                FDIV FTEMP2
FMPY FLOT2
        22453
                4311
1288
        22454
                3305
1289
                                FADD FLOTI
1290
        22455
                1302
1291
        22456
                0000
                                FEXT
        22457
                1310
                                TAD FLAGE
        22460
                1044
                                TAD 44
1293
        22461
22462
                3044
                                DCA 44
JMP I FEXP
1294
1295
                5615
        22463
22464
                                0004; 2372; 1402
                0004
1296
                2372
1297
```

22465 1402


1299	22466	7774	в,	7774; 2157; 5157
1300	22467	2157		
1301	22470	5157		
1302	22471	0012	C,	0012; 5454; 0343
1303	22472	5454		
1304	22473	0343		
1305	22474	0007	D,	0007; 2566; 5341
1306	22475	2566		
1307	22476	5341		
1308	22477	0001	LG2E,	0001; 2705; 2435
1309	22500	2705		
1310	22501	2435		
1311	22502	0001	FLOT1,	0001; 2000; 0000
1312	22503	2000		
1313	22504	0000		
1314	22505	0002	FLOT2,	0002; 2000; 0000
1315	22506	2000		
1316	22507	0000		
1317	22510	0000	FLAG2,	0
1318	22511	0000	FTEMP2,	0; 0; 0
1319	22512	0000		
1320	22513	0000		
1321	22514	0007	FLT100,	7; 3100; 0
1322	22515	3100		
1323	22516	0000		

11/19/81 PAL8-V10A NO DATE PAGE 15-1

/FLOURESCENCE PROGRAM

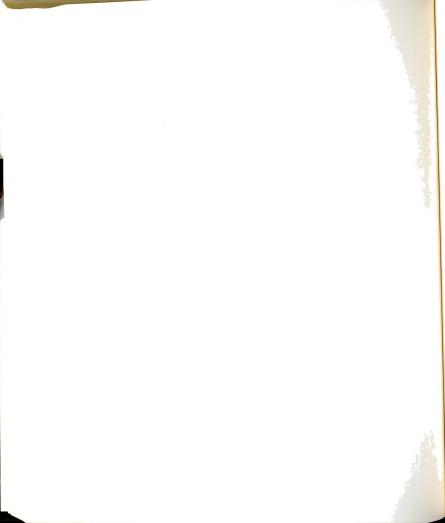

```
/FLOURESCENCE PROGRAM
                                11/19/81 PAL8-V10A NO DATE PAGE 16
1324
                 3000
                       *3000
 1325
         23000
                7000
                       N1000, -1000
 1326
         23001
                 0000
                       FCNT, O
 1327
         23002
                0000
                       RCNT, O
 1328
         23003
                3344
                       GNEW, GGNEW
 1329
        23004
                1124
                       PLOT, TAD DUTSTG /PLOT THE REQUESTED INFO
1330
         23005
                 4534
                          JMS I ENTURP /GET REQUEST
 1331
         23006
                0000
                       PLOPT, 0
 1332
        23007
                 4547
                          JMS I DIAG /PRINT DIAGNOSTICS
 1333
         23010
                1364
                          TAD PLTRET /SETUP RETURN ADDRESS RETPLT
 1334
         23011
                3073
                         DCA MONIT
 1335
        23012
                4522
                         JMS I SETUP
1336
        23013
                4540
                          JMS I NORM
1337
        23014
                3161
                          YCAL /CLEAR YMAX BUFFER
1338
        23015
                4540
                          JMS I NORM
1339
        23016
                3627
                          XOFF
                                /CLEAR OFFSET BUFFER
                       GORSH, JMS I GOTCHA /GET RSF
JMS I PLOPT /CALCUALTE Y
JMS I FLTPT
1340
        23017
                4523
1341
        23020
                4606
1342
        23021
                4407
                                     /COMMAND TO TAKE THE ABSOLUTE VALUE OF
1343
                0010
                         FABS=10
 THE FAC
1344
        23022
                0010
                         FABS
1345
        23023
                2361
                         FSUB YCAL
1346
        23024
                0000
                         FEXT
1347
        23025
                1045
                         TAD 45
134B
        23026
                7710
                         SPA CLA
JMP GORSH
1349
        23027
                5217
1350
        23030
                4407
                         JMS I FLTPT
                         FADD YCAL /BIGGER
FPUT YCAL
1351
        23031
                1361
1352
        23032
                6361
1353
        23033
                0000
                         FEXT
                         JMS I TTOINT
1354
        23034
                4506
                         CLA
JMP GORSH
1355
        23035
1356
        23036
                5217
                       RETPLT, TAD MONSAY /COME HERE AFTER FINDING MAX
1357
        23037
                1074
                         DCA MONIT /RESET ABORT
TAD QPLTMX /MAX=
1358
        23040
                3073
1359
        23041
                1371
                         JMS I TYPIST
1360
        23042
                4501
1361
        23043
                4407
                         EGET YCAL
1362
        23044
                5341
1363
        23045
                0000
                         FEXT
                         JMS I FOUT /PRINT LARGEST Y VAL
TAD GFAC /ASK FOR " SCALE FACTOR="
1364
        23046
                4406
1365
        23047
                1372
                         JMS I TYPIST
JMS I FLIN
1366
        23050
                4501
        23051
                4405
                         JMS I FLTPT
1368
       23052
                4407
                         FPUT YCAL
1369
        23053
                6361
1370
       23054
                0000
                         FEYT
                         TAD NLAT /GET LAST CHAR
TAD NASTY /WAS ASTERISK?
1371
        23055
                1057
1372
       23056
                1135
                         SZA CLA
1373
        23057
                7640
1374
       23060
                5266
                         JMP . +6
                         IAC
                              /SET PEN UP FOR OVERPLOT
1375
       23061
                7001
                         JMS I DRPLOT /MOVE PEN TO ORIGIN
1376
       23062
                4541
1377
       23063
                0000
                         0
1378
       23064
               0000
                         ō
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALS-V10A NO DATE PAGE 16-1
1379
                5277
                         JMP PLTARE
        23065
                         TAD P117
1380
        23066
                1366
1381
                       ZOG, CLA /I
        23067
                 7200
1382
        23070
                1023
                         MGL DVI
1383
        23071
                 7427
1384
        23072
                0120
                         120
1385
        23073
                7405
                         CLA MUY
1386
        23074
                0120
                         120
1387
        23075
                7701
                         CLA MGA
                       DCA PLTEM /START2 ROUNE
PLTARE, CLA CMA
JMS I DRPLOT /INITIALIZE
JMS I SETUP
                                        /START2 ROUNDED TO THE NEXT LOWER 10
1388
        23076
                3347
1389
        23077
                7240
1390
        23100
                4541
1391
        23101
                4500
                         CLA IAC
DCA 10 /SET PEN STATUS
TAD RET2 /SET RETURN
DCA MONIT
1392
        23102
                7201
1393
        23103
                3010
                1370
1394
        23104
1395
        23105
                3073
                       GORSH2, JMS I GOTCHA
JMS I PLOPT /GET Y VALUE
JMS I FLTPT
1396
        23106
                4523
1397
        23107
                4606
                4407
1398
        23110
1399
                3361
                         FMPY YCAL
        23111
                1552
                         FADD I XOFFI
                                         /ADD IN OFFSET (0 OR 500)
1400
        23112
                0000
                         FEXT
1401
        23113
                4537
                         JMS I YUNDRM
1402
        23114
                3353
                         DCA YREG
1403
        23115
                          TAD YREG
1404
        23116
                1353
1405
        23117
                7141
                         CIA CLL
                                       /CHECK FOR OFF SCALE
        23120
                1365
                          TAD PP1750
1406
                7630
                         SZL CLA
1407
        23121
                5327
                          JMP PLOKE
1408
        23122
                         TAD PP1750 /TOD BIG
1409
        23123
                1365
1410
        23124
                3353
                         DCA YREG
1411
        23125
                1150
                         TAD BELL
        23126
                4502
                          JMS I PRINT1 /SOUND ALARM
1412
        23127
                1353
                       PLOKE, TAD YREG
1413
                                    /OFFSET TO ALLOW FOR TICS ON BASELINE
                1136
                         TAD P12
1414
        23130
        23131
                3353
                         DCA YREG
1415
        23132
                1030
                         TAD WAVE
1416
                7041
                         CIA
1417
        23133
                1367
                         TAD PLTEM
1418
        23134
                4542
                         JMS I NEGA1
1419
        23135
                1076
                         TAD INTVL2
1420
        23136
                7041
                         CIA
        23137
1421
                         JMS I NORM /X COORDINATE
        23140
                4540
1422
1423
        23141
                0044
                         44
                4407
                         JMS I FLTPT
1424
        23142
                         FDIV I XSCL3
1425
        23143
                4760
1426
        23144
                0000
                         FEXT
1427
        23145
                4537
                         JMS I YUNDRM
                         TAD P12 /ALLOW FOR TICS
        23146
                1136
1426
                         DCA XREG
        23147
                3352
1429
                         TAD 10 /PEN STATUS
        23150
                1010
1430
                       JMS I DRPLOT
XREG. 0
1431
        23151
                4541
        23152
                0000
1432
                0000
                         YREG, O
```


/EL OLIDECCENCE DECORAM

11/19/81 PAL8-V10A NO DATE PAGE 16-2


1434	23154	3010	DCA 10						
1435	23155	4506	JMS I TTDINT	/LOOK	FOR INT	ERRUPT			
1436	23156	7200	CLA /						
1437	23157	5306	JMP GORSH2						
1438	23160	3613	XSCL3, XSCAL	/PLOT	BUFFER	XAXIS	SCALE	FACTOR.	
1439	23161	0000	YCAL, 0						
1440	23162	0000	0						
1441	23163	0000	0						
1442	23164	3037	PLTRET, RETPLT						
1443	23165	1750	PP1750, 1750						
1444	23166	0117	P117, 117						
1445	23167	0000	PLTEM, 0						
1446	23170	3200	RET2, RET2I						
1447	23171	1655	GPLTMX, GGMARX						
1448	23172	1644	GFAC, GGFAC						


```
/FLOURESCENCE PROGRAM
                                    11/19/81 PAL8-V10A NO DATE PAGE 17
1449
                3200
                       *3200
1450
        23200
                       RET21, TAD NLAT /RETURN HERE AFTER PLOT
                1057
1451
        23201
                1135
                          TAD NASTY /IF * ON SCALE FACTOR, AVOID DRAWING B
ASELINE
1452
        23202
                7650
                          SNA CLA
1453
        23203
                5264
                          JMP LASPLT /WAS OVERPLOT SO DON'T BOX
1454
        23264
                1313
                          TAD PP117
1455
        23205
                7000
                       ZP3, NOP /CLA
                         TAD END2
1456
        23206
                1025
1457
        23207
                7427
                         MQL DVI
1458
        23210
                0120
                          120
1459
        23211
                7605
                         CLA MUY
1460
        23212
                0120
                         120
1461
        23213
                7701
                         CLA MGA
                         DCA PLTEM2
                                       /ROUNDOFF END TO NEAREST TEN
1462
        23214
                3240
1463
                          TAD RET3 /SET NEW ABORT ADDRESS
        23215
                1314
1464
        23216
                3073
                        DCA MONIT
1465
                          TAD PLTEM2
        23217
                1240
1466
                          JMS XXPL /CALCULATE PLOT POSITION OF END
        23220
                4276
1467
        23221
                3224
                          DCA PLTEND
1468
        23222
                7001
                          IAC
                         JMS I DRPLOT /MOVE TO END OF PLOT
1469
        23223
                4541
1470
        23224
                0000
                       PLTEND, 0
1471
        23225
                0012
1472
                1224
                          TAD PLTEND
        23226
1473
                         DCA PLUT10
        23227
                3231
                          JMS I SIDE /PLOT SIDE (10 TICS)
1474
        23230
                4715
                       PLUTIO, 0 /X COORD OF SIDELINE

12 /YCOORD OF SIDELINE

12 /DIRECTION AND LENGTH OF TIC
1475
                0000
        23231
                0012
1476
        23232
1477
        23233
                0012
1478
        23234
                0144
                          144
                         TAD I PLTEMI /NOW PLOT TOP
DCA PLTEM2+4
1479
                1716
        23235
1480
        23236
                3244
                         JMS I BASTOP
1481
        23237
                4717
                       PLTEM2, 0 /X STARTING POINT
        23240
                0000
1482
        23241
                7660
                         -120
1483
                         1762 /Y COORD
1484
        23242
                1762
                                  /Y COORD OF TIC
1485
        23243
                1774
                         1774
                            /X ENDING POINT
1486
        23244
                0000
                         0
                         JMS I SIDE
1487
        23245
                4715
                        12 /X COORD OF SIDELINE
1762 /Y COORD OF SIDELINE
-12 /DIRECTION AND LENGTH OF TIC
1488
        23246
                0012
        23247
                1762
1489
1490
        23250
                7766
                        -144
                              /DIRECTION AND DISTANCE BETWEEN TICS
1491
        23251
                7634
                         TAD PLITEMS
                1240
1492
        23252
                3263
                         DCA MKKR
1493
        23253
                         TAD PLTEM2+4
1494
        23254
                1244
                3257
                         DCA . +2
1495
        23255
                         JMS I BASTOP
                4717
1496
        23256
        23257
                0000
                         0
1497
                         120
        23260
                0120
1498
                0012
                         12
1499
        23261
1500
        23262
                0000
                         0
                       MKKR, O /ENDING POINT OF PLOT
LASPLT, TAD MONSAV
DCA MONIT /RESET ABORT POINTER
1501
        23263
                0000
        23264
                1074
1502
        23265
                3073
1503
```



```
/FLOURESCENCE PROGRAM
                                  11/19/81 PAL8-V10A NO DATE PAGE 17-1
                         TAD PLTEND
TAD P62 /50=ONE HALF INCH
1504
        23266
                1224
1505
         23267
                1320
1506
        23270
                3273
                         DCA . +3
1507
        23271
                7001
                         IAC
1508
        23272
                4541
                         JMS I DRPLOT
1509
        23273
                0000
                       NORM7, O
1510
        23274
                0000
                         0
....
        23275
                5472
                         JMP I MONIT
1512
        23276
                       XXPL, O /CALCULATE X COORD OF PLOT
                0000
1513
        23277
                7041
                         CIA
1514
        23300
                1716
                         TAD I PLTEMI
1515
        23301
                7041
                         CIA
                4540
                         JMS I NEGA1 /NOP OR CIA
1514
        23302
1517
        23303
                4540
                         JMS I NORM
                         44
1518
        23304
                0044
                         JMS I FLTPT
1519
                4407
                         FDIV I XSCALI /SCALE
FEXT
1520
        23306
                4721
1521
        23307
                0000
                         JMS I YUNDRM
                4537
1522
                         TAD P12
1523
        23311
                1136
                         JMP I XXPL
1524
        23312
                5676
                       PP117, 117
RET3, LASPLT
SIDE, PLTSID
PLTEMI, PLTEM
BASTOP, PLTBAS
1525
        23313
                0117
1526
        23314
                3264
1527
        23315
                3400
1528
        23316
                3167
1529
        23317
                3447
                0062
                       P62, 62
1530
        23320
                       XSCALI, XSCAL
NORMAL, O /NORMALIZE NUMBER IN AC
1531
        23321
                3413
        23322
                0000
1532
                         DCA 46
        23323
                3046
        23324
                3045
                         DCA 45
1534
        23325
                1337
                         TAD PP27
1535
                         DCA 44 /EXPONENT
TAD I NORMAL
        23326
1536
                3044
                1722
1537
        23330
                3340
                         DCA SINGLE
1538
        23331
                2322
                         1SZ NORMAL
1539
                         JMS I FLTPT
        23332
                4407
1540
                7000
                         FNOR
1541
        22223
                         FPUT I SINGLE
        23334
               6740
1542
                        FEXT
: 544
1545
        23337
                0027
                       FF27, 27
                      SINGLE, O /INTEGER INPUT
JMS I FLIN
1546
        23340
               0000
1547
                4405
        23341
                4537
                        JMS I YUNDRM
1548
        23342
               5740
                        JMP I SINGLE
1549
        23343
               1605
                      GONEW, TEXT "NEW?"
1550
       23344
               2777
1551
        23345
               0000
        23346
1552
                3346
                       *. -1
1553
               0001
1554
        23346
                      GOPER, 15
        23347
                0015
1555
       23350
               0012
                        12
1556
                        TEXT "UNITS/INCH? "
1557
        23351
               2516
```


/FLOURESCENCE PROGRAM


11/19/81 PAL8-V10A NO DATE PAGE 17-2

1559	23353	2357		
1560	23354	1116		
1561	23355	0310		
1562	23356	7740		
1563	23357	0000		
1564		3357	*1	
1565	23357	0001	1	
1566	23360	0000	SFL,	4
1567	23361	0000	0	
1568	23362	0000	0	
1569	23363	0000	RFL,	1
1570	23364	0000	0	
1571	23365	0000	0	
1572	23366	0000	FFL,	4
1573	23367	0000	0	
1574	23370	0000	0	


```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE-18
1575
               3400 *3400 /LAST OF PLOT GARBAGE (ROUTINES TO PLOT BASE
LINES AND SIDES)
       23400
               0000 PLTSID, 0 /PLOT SIDELINE
1576
                        TAD P12
1577
        23401
               1136
1578
        23402
               7040
                        CMA
1579
                        DCA TEMP1 /10 TICS
        23403
               3034
        23404
                        JMS GOTP
1580
               4243
                        DCA PLUT /X COORD
1581
        23405
               3223
                        JMS GOTP
1582
        23406
                4243
1583
        23407
               3224
                        DCA PLUT+1 /Y COORD
                        JMS GOTP
1584
        23410
               4243
                        DCA 17 /DIRECTION OF TIC
1585
        23411
               3017
        23412
               4243
                        JMS GOTP
1586
                        DCA 16 /DIRECTION OF PLOT
JMP .+4 /ENTER IN MIDDLE OF LOOP TO PLOT FIRST TI
1587
        23413
               3016
1588
        23414
               5220
1589
                      PLUT4, TAD PLUT+1
        23415
               1224
        23416
               1016
                        TAD 16
1590
        23417
               3224
                        DCA PLUT+1
1591
1592
        23420
               7240
                        CLA CMA
1593
        23421
               3010
                        DCA 10
        23422
                4541
                        JMS I DRPLOT
1594
1595
        23423
               0000
                      PLUT, 0
        23424
               0000
                        0
1596
                        ISZ 10
1597
        23425
               2010
                        JMP PLUT2
1598
        23426
               5240
                        TAD PLUT /PLOT TIC
        23427
               1223
1599
                        TAD 17
        23430
               1017
1600
                        DCA PLUTS
        23431
               3235
1601
                        TAD PLUT+1
1602
        23432
               1224
                        DCA PLUT3+1
        23433
               3236
1603
                        JMS I DRPLOT
        23434
               4541
1604
                      PLUT3, 0
1605
        23435
               0000
        23436
               0000
                        0
1606
                        JMP PLUT-1 /MOVE PEN BACK
1607
        23437
                5222
                      PLUT2, ISZ TEMP1 /PLOT AGAIN/?

JMP PLUT4 /YES
        23440
               2034
1608
1609
        23441
                5215
                         JMP I PLTSID /NYET, RETURN
        23442
               5600
1610
                      GOTP, O
        23443
               0000
1611
                        TAD I PLTSID
1612
        23444
               1600
                        ISZ PLTSID
        23445
               2200
1613
                        JMP I GOTP
        23446
               5643
1614
                      PLTBAS, O /PLOT BASELINE OR TOP
        23447
               0000
1615
                        JMS GOTB
        23450
               4315
1616
                        DCA TEMP2
        23451
               3035
1617
                        JMS GOTB
        23452
               4315
1618
                        JMS I NEGA1
        23453
               4542
1619
                        DCA 17
        23454
               3017
1620
                        JMS GOTB
        23455
               4315
1621
                        DCA PLOD1+1 /YCOURD
1622
        23456
               3276
                        JMS GOTB
        23457
                4315
1623
                        DCA PLOOS /Y COORD TIC
        23460
               3305
1624
                        JMS GOTB
        23461
                4315
1625
                        DCA 16 /END POINT
JMP .+4 /ENTER L
PLTBS1, TAD TEMP2
TAD 17 /SET NEW X
        23462
               3016
                                    /ENTER LOOP TO PLOT FIRST TIC
1626
        23463
               5267
1627
        23464
               1035
1628
        23465
               1017
1629
```



```
DCA TEMP2
TAD TEMP2
1630
        23466
               3035
        23467
1631
               1035
        23470
                        JMS I XXPLI
1632
               4721
        23471
               3275
                        DCA PLOO1 /X COORD
1633
        23472
               7240
                        CLA CMA
DCA 10
1634
1635
        23473
               3010
        23474
                        JMS I DRPLOT
1636
               4541
        23475
                      PL001, 0
1637
               0000
1638
        23476
               0000
                        0
                        ISZ 10
1639
        23477
               2010
        23500
                        JMP PLOO2
1640
               5307
                        TAD PLOO1 /PLOT TIC
1641
        23501
               1275
                        DCA . +2
JMS I DRPLOT
1642
        23502
               3304
        23503
               4541
1643
1644
        23504
               0000
                        0
                      PL005, 0
1645
        23505
               0000
                        JMP PLOO1-1 /RESET PEN POSITION
               5274
1646
        23506
                      PLOOS, TAD TEMP2 /DONE?
               1035
1647
        23507
1648
        23510
               7041
                        CIA
        23511
               1016
                        TAD 16
1649
                        SZA CLA
        23512
1650
               7640
                        JMP PLTBS1 /AGAIN
               5264
        23513
1651
                        JMP I PLTBAS /DONE
        23514
               5647
1652
                      GOTB, O
        23515
               0000
1653
        23516
               1647
                        TAD I PLTBAS
1654
               2247
                        ISZ PLTBAS
        23517
1655
               5715
                        JMP I GOTB
        23520
1656
               3276
                      XXPLI, XXPL
        23521
1657
                      UNDRM, O /UNNORMALIZE NUMBER IN FAC
TAD 45 /RETURN WITH # IN AC
               0000
1658
        23522
        23523
               1045
1659
                        SPA SNA CLA
JMP I UNORM /NUMBER <=0
JMS I FLTPT
        23524
               7750
1660
       23525
               5722
1661
       23526
               4407
1662
                        FADD AHALF /ROUND OFF
       23527
               1355
1663
       23530
               0000
                        FEXT
1664
       23531
               1044
                        TAD 44
1665
                        SPA SNA CLA
       23532
               7750
1666
                        JMP I UNORM /LESS THAN 1
       23533
               5722
1667
                        TAD 44
       23534
               1044
1668
       23535
               7041
                        CIA
1669
                        TAD P14
               1354
       23536
1670
       23537
               7500
                       SMA
1671
                        JMP . +3
       23540
               5343
1672
                        CLA CMA /OVERFLOW
       23541
               7240
1673
                        JMP I UNORM
1674
       23542
               5722
       23543
               3350
                        DCA . +5
1675
                        TAD 46
        23544
               1046
1676
       23545
               7421
                        MQL
1677
                        TAD 45
        23546
               1045
1678
                         ASR
        23547
               7415
1679
        23550
               0000
                        0
1680
                        SHL
               7413
        23551
1681
               0001
                        1
        23552
1682
                        JMP I UNORM
               5722
        23553
1683
                      P14,14
        23554
               0014
1684
```



```
/FLOURESCENCE PROGRAM
```

11/19/81 PALB-V10A NO DATE PAGE 18-2

```
1685
       23555 0000
                    AHALF, O
1686
        23556
               2000
                       2000
1687
       23557
               0000
                       0
1488
        23560
               0000
                     BUFF1, 0
1689
        23561
               0000
1690
       23562
               0000
1691
       23563
               0000
                     BUFF2, 0
1692
       23564
               0000
                     o
1693
       23565
               0000
                     ō
1694
       23566
               0000
                     BUFF3, O
1695
       23567
               0000
                     0
1696
       23570 0000
                     ō
```

```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE 19
 1697
                 6554
                       +6554
                                   /IN FLOATING POINT INTERPRETTER
 1698
                     FAB /ABSOLUTE VALUE
6000 /NEGATE FAC
                3620
 1699
        26555
                6000
 1700
                3600
                       *3600
 1701
        23600
                       XAX, TAD GPER
                1216
                                        /AK "UNIT/INCH?"
 1702
                        JMS I TYPIST
        23601
                4501
 1703
        23602
                4405
 1704
        23603
                4407
                         JMS I FLTPT
 1705
        23604
                         FDIV I A100
FPUT XSCAL
                4617
        23605
                A213
 1707
        23606
                0000
                         FEXT
 1708
        23607
                7325
                         CLA STL IAC RAL /3
 1709
        23610
                1213
                         TAD XSCAL
DCA XSCAL
 1710
        23611
                3213
                                    /MULT BY 8
 1711
        23612
                5473
                         JMP I MONIT
 1712
        23613
                0001 XSCAL, 1
                                 /SCALE FACTOR DEFAULT WITH 20 UNITS PER I
NCH
1713
        23614
                3146
                        3146
1714
        23615
                3146
                        3146
1715
        23616
                      GPER, GGPER
                3347
1716
               2514
                      A100, FLT100
        23617
                0000
                      FAB, O
                        AB, O /ROUTINE TO TAKE ABSOLUTE VALUE OF FAC
DCA 47 /CLEAR OUT 3RD WORD OF PREC.
        23620
1718
        23621
               3047
1719
        23622
                1045
                        TAD 45
1720
        23623
                7710
                        SPA CLA
                        JMS I .+2 /NEGATE
JMP I FAB
1721
        23624
               4626
1722
        23625
               5620
1723
        23626
               6000
                      6000
                              /LOCATION IN FLOATING POINT OF ROUTINE NEGAT
ER
1724
        23627
               0000
                      XDFF, 0
1725
        23630
               0000
        23631
               0000
1726
1727
                     OFFSET, 0
        23632
               0000
1728
        23633
               1237
                        TAD PDD500
1729
        23634
               4540
                        JMS I NORM /SET OFFSET TO 500 (HALF SCALE)
1730
               3627
                       XOFF
       23635
1731
       23636
               5632
                        JMP I OFFSET
1732
              0764
                     PDD500, 764
       23637
```



```
/FLOURESCENCE PROGRAM
                                  11/19/81 PALB-V10A NO DATE PAGE 20
1733
                4200 +4200
1734
       24200
               4540
                      AVERAGE, JMS I NORM /CLEAR SUMMATIN BUFFER
1735
       24201
                4237
                        AVBUFF
1736
                        TAD DUTSTG
                                      /CHOOSE OUTPUT OPTION
       24202
                1124
1737
                4534
                        JMS I ENTURP
       24203
1738
               0000
                      AVPARM, 0
       24204
                4547
                        JMS I DIAG
                                      /PRINT DIAGNOSTIC MESSAGES
1739
       24205
1740
       24206
               3544
                        DCA I TYOM
                        JMS I SETUP
1741
       24207
                4522
1742
                        TAD AVRET
       24210
                1236
1743
                3073
                        DCA MONIT /SET ABORT RETURN
       24211
                        JMS I GOTCHA
JMS I AVPARM
1744
       24212
                4523
1745
       24213
                4604
1746
                4407
                        JMS I FLTPT
       24214
1747
       24215
                1237
                        FADD AVBUFF
1748
       24216
                6237
                        FPUT AVBUFF
1749
       24217
                0000
                        FEXT
1750
       24220
               2544
                        ISZ I TYGM
1751
       24221
                5212
                        JMP
                      RETAV, TAD MONSAV
                1074
1752
       24222
                3073
                        DCA MONIT
       24223
                        TAD I TYGM
1754
       24224
                1544
                        JMS I NORM
1755
       24225
                4540
1756
                3560
                        BUFF1
       24226
                        JMS I FLTPT
1757
       24227
                4407
                        FOET AVBUFF
FDIV 1 BUF1
1758
       24230
                5237
       24231
                4530
1759
1760
       24232
                0000
                        FEXT
                        JMS I IITYCR
1761
        24233
                4503
                        JMS I FOUT
       24234
                4406
1762
                        JMP I MONIT
       24235
                5473
1763
                      AVRET, RETAV
1764
       24236
                4222
1765
        24237
                0000
1766
       24240
                0000
1767
       24241
                0000
                      LE, DCA TEMP4
1768
        24242
                3062
                        TAD INTO /ASK FOR SIZE OF INTVAL
        24243
                1267
1769
                        JMS I TYPIST
1770
       24244
                4501
1771
        24245
                4500
                        DCA INTVAL
1772
        24246
                3075
                                     /START OF STRING OF LE. NU CHANGES
                        TAD SWOOP
1773
       24247
                1300
                        DCA TEMP1
        24250
1774
                3034
                      LES, TAD I TEMP1
                                              /GET AN ADDRESS
1775
        24251
                1434
                        SNA
                              /END WITH 0
1776
       24252
                7450
                        JMP I MONIT
        24253
                5473
                        DCA TEMP2
1778
        24254
                3035
                        TAD TEMP1
1779
        24255
                1034
        24256
                        IAC
1780
                7001
                        TAD TEMP4
1781
        24257
                1062
                        DCA TEMPS
1782
        24260
                3036
                        TAD I TEMP3
1783
        24261
                1436
                        DCA I TEMP2
1784
        24262
                3435
                        ISZ TEMP1
ISZ TEMP1
ISZ TEMP1
1785
       24263
                2034
        24264
                2034
1786
1787
        24265
               2034
```



```
/FLOURESCENCE PROGRAM
                                 11/19/81 PALB-VIOA NO DATE PAGE 20-1
1788
       24266
                        JMP LE3
               5251
                     INTG, .+1
TEXT "INTERVAL= "
1789
       24267
               4270
1790
       24270
               1116
1791
       24271
               2405
1792
       24272
               2226
1793
       24273
               0114
1794
       24274
               7540
1795
       24275
               0000
1796
               4275
                       *. -1
1797
       24275
               0001
1798
       24276
               7201
                     NU, CLA IAC
                     JMP LE
SWOOP, . +1
1799
       24277
               5242
1800
       24300
               4301
1801
       24301
               0537
                      PARM1/ADDRESS
1802
       24302
               0624
                      LEIN/LENGTHCOMMAND
1803
       24303
               0644
                      NUIN/NUMBER COMMAND
1804
       24304
               0737
                        PARM2
1805
       24305
               0624
                        LEIN
1806
       24306
               0644
                        NUIN
1807
       24307
               1031
                        SCAN2+1
1808
       24310
               3067
                      Z06
1809
       24311
               7200
                       CLA
1810
       24312
               7000
                       NOP
1811
       24313
               4331
                      NEG11+1
1812
       24314
               7000
                      NOP
1813
       24315
               7041
                      CIA
                      LINKER+1
1814
       24316
               4334
1815
       24317
               7000
                      NOP
                     CML
ZP3
1816
       24320
               7020
1817
       24321
               3205
1818
       24322
               7000
                       NOP.
                       CLA
1819
       24323
               7200
                       Z77
1820
       24324
               1525
                       TAD P310
1821
       24325
               1146
1822
       24326
               7000
                       NOP
                     0
1823
       24327
               0000
                     NEGII, O /AC NEGATER DUE TO BASIC DIFF BETWEEN LAM
1824
       24330
               0000
BDA AND WAVENUMBER
                       NOP /CIA
JMP I NEG11
1825
       24331
               7000
1826
       24332
               5730
                      LINKER, 0 /LINK COMPLEMENTER FOR SAME REASON
1827
       24333
               0000
                       NOP
1828
       24334
               7000
                       JMP I LINKER /NOP MAY BE CML
```



```
/FLOURESCENCE PROGRAM
                                     11/19/81 PALS-V10A NO DATE
                                                                      PAGE 21
  1830
                 4400
                        *4400
                                 /STRINGS OF COMMAND OPTIONS
  1831
         24400
                        CMDSTG, 0301 /CA
                 0301
  1832
         24401
                 0400
                                 CALIB
 1833
         24402
                 0515
                                 0515
 1834
         24403
                 0503
                                 EM
 1835
         24404
                 0530
                                 0530
 1836
         24405
                 0530
                                 ĒΧ
 1837
         24404
                 1725
                                 1725
 1838
         24407
                 0671
                                 DUTRNG
 1839
         24410
                 2303
                                 2303
 1840
         24411
                 1000
                                 SCAN
 1841
         24412
                 2022
                                 2022
 1842
         24413
                 1400
                                 PRINT
 1843
         24414
                 2417
                                2417
 1844
         24415
                 5106
                                088
                                           OSB
 1845
         24416
                                2315
                                        /SM
                                              FOR AUTO SMOOTH
 1846
         24417
                 5025
                                SMUST
 1847
         24420
                 0411
                                0411
 1848
         24421
                 5003
                                DISPLA
                                           /PLOT ON SCOPE
 1849
         24422
                 2014
                                2014
 1850
         24423
                 5000
                                PLOTO
 1851
         24424
                 0126
                                0124
 1852
         24425
                 4200
                                AVERAGE
 1853
         24426
                 1405
                                1405
 1854
         24427
                 4242
                                LE
 1855
        24430
                1625
                                1625
 1856
        24431
                                NII
 1857
        24432
                3001
                                3001
                                        /XA
 1858
        24433
                3600
                                XAX
                                       /SET X-AXIS SCALE
 1859
        24434
                6161
                                A1A1
                                       /11
 1860
        24435
                5010
                                SM11
1861
        24436
                6167
                                6167
                                        /17
 1862
        24437
                5014
                                SM17
1863
        24440
                2217
                                2217
                                        /RO
1864
        24441
                4512
                               ROTAT
1865
        24442
                2301
                               2301
1866
                                         /SAVE A RUN
        24443
                5100
                               SAVE
1867
        24444
                0705
                               0705
                                         /CF
1868
        24445
                5103
                               GET
                                        /GET TABLE FROM DISK
        24446
1869
                0000
                               0
1870
        24447
                      STIGMA,
                               2222
                2222
                                        /STRINGS OF OUTPUT OPTIONS FOR PLOT.
 PRINT
        PUNCH.
1871
        24450
                2200
                         RR
                                /AND AVERAGE
                2323
                        2323
1872
        24451
1873
        24452
                2205
                         SS
1874
        24453
               0606
                         0606
        24454
               2212
1875
                         FF
1876
        24455
               0161
                               0161
1877
        24456
               2220
                               AB9
                                        /PRIMARY CORRECTED ABSORBANCE
1878
        24457
               0000
                        0
1879
        24460
               0000
                      DINDG, O
                                  /ROUTINE TO PRINT BRIEF DIAGNOSTICS TO MI
NIMIZE
       USER ERROR
        24461
               4715
                        JMS I VISAD
                                         /PRINT SOME ADVICE
1880
                        JMS I IITYCR
TAD QDIG /PRINT "SMODTH?"
1881
        24462
               4503
       24463
               1270
1882
               4501
                        JMS I TYPIST
1883
       24464
                        TAD SMFLG
1884
       24465
               1154
```


/FLOURESCENCE PROGRAM 24466 4277

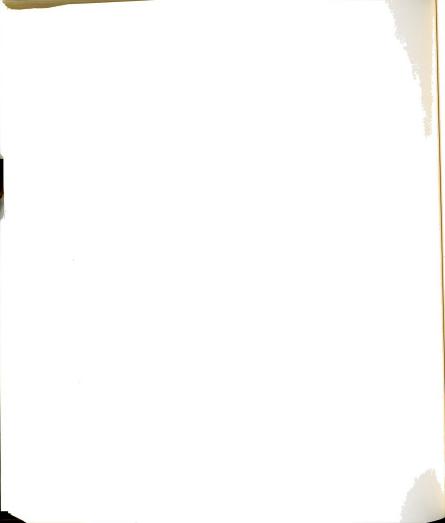
11/19/81 PAL8-V10A NO DATE PAGE 21-1

/TELL IF AUTO SMOOTHED

```
4277 JMS NDGIN /T
5660 JMP I DINOG
4471 QDIG, .+1
2315 TEXT "SMDOTH?:
1886
         24467
1887
         24470
1888
         24471
1889
         24472
                  1717
1890
         24473
                  2410
1891
         24474
                  7772
1892
         24475
                  4040
1893
         24476
                  4000
1894
                  4476
                            *. -1
         24476
1895
                  0001
1896
         24477
                  0000
                         NOGIN, O
                         NUGIN. 0 /PRINT Y IF AC I
CLL CLA IAC RAL /SET TO 2
TAD GGY
JMS I TYPIST
JMP I NUGIN
GGY, +1
3140 /Y
1897
         24500
                  7650
                                           /PRINT Y IF AC IS 1
                  7305
1305
1898
         24501
1899
         24502
1900
         24503
                  4501
1901
         24504
                  5677
1902
         24505
                  4506
1903
         24506
                  3140
1904
         24507
                  0001
                            1640 /N
1905
         24510
                  1640
1906
         24511
                  0001
1907
         24512
                  6213
                         ROTAT, CDFCIF 10
                                   JMP I .+1
1908
         24513
                  5714
1909
         24514
                  3000
1910
         24515
                 1404 VISAD, ADVIS
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE 22
1911
                5000
                      *5000
               1205 PLOTG, TAD XPLOT /PLOT ON PLOTTER
1912
       25000
1913
       25001
                3141
                        DCA DRPLOT
                      JMP I LPLOT
DISPLA, TAD SCPLOT /PLOT ON SCOPE
1914
        25002
                5607
1915
        25003
                1206
1916
        25004
                5201
                        JMP . -3
1917
        25005
                5200
                      XPLOT, PLOTX
1918
        25006
                4600
                      SCPLOT, PLOTSC
LPLOT, PLOT
SM11, TAD P13 /SET UP FOR 11 POINT CURVE SMODTH
1919
        25007
               3004
1920
        25010
               1223
1921
        25011
                3112
                        DCA R2
                        TAD WPON
JMP I SMOR
1922
        25012
                1220
1923
        25013
                5622
                      SM17, TAD P21
1924
        25014
                1224
1925
        25015
               3112
                        DCA R2
1924
        25016
                1221
                        TAD WPON+1
JMP I SMOR
1927
        25017
                5400
                      WPON, W1
1928
        25020
               5551
1929
        25021
                6663
                        Ci
                      SMOR, SMOOTH
1930
        25022
               5400
                      P13, 13
1931
        25023
                0013
1932
        25024
               0021
                      SMUST, TAD GSMUST /ASK " SMOOTH? "
JMS I TYPIST
JMS I YORN
                      P21, 21
1933
        25025
                1234
1934
        25026
               4501
1935
        25027
                4504
1936
        25030
               7410
                        SKP /NO
                7201
                        CLA IAC
1937
       25031
                                      /SET AUTO SMOOTHING FLAG ACCORDINGLY
                        DCA SMFLG
1938
        25032
               3154
                      JMP I MONIT
GSMUST, :+1
TEXT "SMOOTH? "
1939
        25033
                5472
                5035
1940
        25034
       25035
                2315
1941
1942
        25036
                1717
               2410
1943
        25037
1944
                7740
       25040
1945
       25041
                4000
1946
                5041
                        *. -1
       25041
               0001
1947
                      SMUST2, TAD (SMUST3) /COME HERE AT END OF ALL SCAN
               1377
1948
       25042
                                     /RESET MONITR POINTER FOR LOOPING
1949
                        DCA MONIT
       25043
               3073
                        TAD SMFLG /SHOULD WE SMOOTH?
1950
       25044
                1154
1951
       25045
                7650
                        SNA CLA
       25046
                5274
                        JMP SMUST7
                                        /NO
1952
                                       /SETUP R, S, F POINTER (0=R)
                3267
                        DCA SMUST4
1953
       25047
                        CLA CMA CLL RTL /-3 FOR R.S.F
1954
        25050
                7344
                        DCA SMUSTS
1955
        25051
               3270
                                         /SETUP FOR 17 POINT SMOOTH
                      SMUSTB, TAD P21
                1224
1956
       25052
                        DCA R2
1957
       25053
               3112
                        TAD WPON+1
1958
       25054
                1221
                        DCA S2
               3114
1959
       25055
                        TAD NOVAL
1960
       25056
                1031
                        CMA
1961
       25057
                7040
                        TAD R2
                1112
1962
       25060
                        SMA
1963
       25061
                7500
                        JMP SMUST7
                                        /NO POINTS
1964
       25062
               5274
                        DCA TEMP1
1965
       25063
               3034
```



/FLOURESCENCE PROGRAM

11/19/81 PAL8-V10A NO DATE PAGE 22-1

```
25064
1966
                7240
                          CLA CMA
TAD SMUST4
JMP SMUST6
                                         /O=R 1=S 2=F
/HOP INTO SMOOTHING ROUTINE
1967
        25065
                 1267
1968
                       SMUST4. 0
SMUST5, 0
SMUST3, ISZ SMUST4
1969
        25067
25070
                0000
                0000
1970
1971
                                                /COME HERE WHEN DONE WITH A PA
        25071
                2267
RT OF
       DATA
                                         /DONE ALL 3?
/NO GO DO NEXT SET
/ALL DONE
1972
        25072
                2270
                          ISZ SMUSTS
JMP SMUSTB
1973
        25073
                 5252
1974
        25074
                7200
                        SMUST7, CLA
1975
        25075
                 1074
                          TAD MONSAV
1976
        25076
                3073
                          DCA MONIT
                                         /RESET MONITOR POINTER
/AND QUIT
1977
        25077
                 5473
                          JMP I MONIT
1978
        25100
                 6203
                       SAVE
                                 CDFCIF 0
1979
                 5702
                                 JMP I . +1
        25101
1980
        25102
                0400
                                 SAVRUN
1981
        25103
                6203
                       GET,
                                 CDFCIF 0
1982
        25103
                5705
                                 JMP I .+1
GETRUN
1983
        25105
                0463
1984
        25106
                6203
                       058,
                                 CDFCIF 0
1985
        25100
                5710
                                 JMP I .+1
1986
        25110
                7600
                                 7600
```



```
/FLOURESCENCE PROGRAM
                                11/19/81 PALS-VIOA NO DATE PAGE 23
1987
        25176
1988
               5071
1989
               5400
                      *5400
1990
        25400
               3114
                     SMOOTH, DCA S2
1991
        25401
               1031
                       TAD NOVAL /SMOOTH FIVE POINTS ASSUMING CUBIC FIT
 PS_OSSIBLE
1992
        25402
               7040
                       CMA
                                /SEE "METHODS IN NUMERICAL ANALYSIS" BY NI
ELSEN
1993
        25403
               1112
                       TAD R2 /# OF POINTS IN SMOOTHING INTERVAL
1994
        25404
               3034
                       DCA TEMP1
1995
        25405
               1034
                        TAD TEMP1
1994
        25406
               7700
                       SMA CLA
                       JMP SMOO2 /NOT ENOUGH POINTS
TAD SMOOCH
1997
        25407
               5216
1998
        25410
               1330
1999
        25411
               4501
                       JMS I TYPIST /"INPUT 0, 1, 2 FOR R, S, F"
2000
        25412
               4500
                        JMS I NUMIN
2001
        25413
               1033
                       TAD N5
2002
        25414
               7510
                       SPA
2003
        25415
               5220
                        JMP . +3
2004
        25416
               4544
                     SMDD2, JMS I TYGM
JMP I MONIT /INCORRECT ENTRY
2005
        25417
               5473
                       TAD P4
2006
        25420
               1133
                              DCA 10 /PICKUP POINTER
2007
        25421
               3010
                     SMUST6,
2008
        25422
               1112
                       TAD R2
                       CLL RAR
2009
        25423
               7110
                                /CREATE TRUNCATED N/2
2010
        25424
               3113
2011
        25425
               1113
                       TAD F2
                       CLL RAL
2012
        25426
               7104
                                /3*[N/2]
2013
        25427
               1113
                       TAD 10
2014
        25430
               1010
                       DCA 11 /PUT-BACK POINTER
2015
        25431
               3011
                       TAD R2
2016
        25432
2017
        25433
               7041
                       CIA
2018
        25434
               2025
                       DCA TEMP2
        25435
               4252
                       JMS SMIFT
                                  /NOW GET IN FIRST 5 POINTS
2019
        25436
                       ISZ TEMP2
2020
               2035
               5235
                       JMP
2021
        25437
       25440
                     SMOD3, JMS SMIFT /NOW GO THRU SMOOTHING LOOP
2022
               4252
                       JMS I YUNDRM /UNDRMALIZE NEW MIDDLE VALUE
       25441
2023
               4537
                       CDF 30
2024
       25442
               6231
                       DCA I 11
2025
       25443
               3411
                       CDF CODFLD
               6221
ACOC
       25444
                                  /STORE IN DATA TABLE
                       187 11
2027
       25445
               2011
202B
       25446
               2011
                       157 11
                       ISZ TEMP1
2029
       25447
               2034
                       JMP SMD03
       25450
               5240
2030
                       JMP I MONIT
               5473
2031
       25451
                    SMIFT, 0 /SHIFT IN NEW VALUES AND FORM SMOOTHED POI
2032
       25452
              0000
NT WHICH IS
                       TAD S2 /ESSENTIALLY A WEIGHTED AVERAGE OF THE 5
2033
       25453
               1114
NEARBY POINTS
       25454 3036
                       DCA TEMP3
                                   /PDINTER TO WEIGHT FACTORS
2034
                       CLA IAC STL RAL
                                         /3
2035
       25455 7325
                                  /FOR SPACING UP POINTER TO WEIGHT FACTOR
                       DCA 16
2036
       25456
             3016
                       TAD F2
2037
       25457
               1113
2038
       25460
               7041
                       CTA
                                /SPACE UP 5, THEN SPACE DOWN FIVE
                       DCA 15
2039
       25461
              3015
                       DCA R1
2040
       25462
              3107
                       DCA F1 /CLEAR SUMMATION BUFFER
2041
       25463 3110
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE 23-1
 2042
        25464
                3111
                         DCA S1
 2042
         25465
                1327
                         TAD PUSHER
                                     /PUSH-DOWN STORAGE BUFFER
 2044
         25466
                3062
                         DCA TEMP4
 2045
         25447
                1062
                         TAD TEMP4
 2044
         25470
                3017
                         DCA 17 /PICKUP POINTER
 2047
        25471
                1112
                         TAD R2
 204B
         25472
                7041
                         CIA
 2049
        25473
                3063
                         DCA TEMPS
 2050
        25474
                1417
                       SMU, TAD I 17
                                       /GET A POINT
 2051
        25475
                        DCA I TEMP4
TAD I TEMP4
                3462
                                      /PUSH IT DOWN
 2052
        25476
                1462
 2053
        25477
                         ISZ TEMP4 /GET BACK POINT FOR AVERAGE
JMS I NORM
                2062
 2054
        25500
                4540
 2055
        25501
                0044
                          44
 2054
        25502
                4407
                         JMS I FLTPT
 2057
        25503
                3436
                         FMPY I TEMP3 /MULT BY WEIGHT
FADD R1
 2058
        25504
                1107
        25505
 2059
                6107
                         FPUT R1
2040
        25506
                0000
                        FEXT
2061
                         TAD TEMPS
        25507
                1036
        25510
                         TAD 16 /MOVE UP OR BACK
                1016
                        DCA TEMP3
2043
        25511
                3036
2064
        25512
                2015
2065
                        JMP . +3
CLL CMA CLA RTL /-3 FOR SPACING BACK DOWN TAB
        25513
                5316
2066
        25514 7346
LE OF
       FACTORS
                                   /(LAST 5 FACTORS SAME AS FIRST FIVE)
2067
        25515
25516
                3016
                        DCA 16
ISZ TEMP5
JMP SMU
2068
                2063
2069
        25517
                5274
2070
        25520
               6231
                        CDF 30
TAD I 10
ISZ 10
2071
        25521
                1410
2072
        25522
               2010
                                      /MOVE IN NEW POINT INTO PUSHDOWN BUFF
ER
2073
                        ISZ 10
CDF CODFLD
        25523 2010
        25524
2074
              6221
                        DCA I TEMP4
2075
               3462
        25525
2076
        25526
               5652
        25527
               6717
                      PUSHER, PUSHY
SMOOCH, .+1
TEXT "ENTER 0.1, DR 2 FOR R.S. OR F:"
2077
2078
        25520
               5531
2079
        25531
               0516
        25532
               2405
2080
2081
        25533
               2240
2082
        25534
               6054
2083
        25535
               6154
        25536
               4017
2084
        25537
2085
               2240
        25540
               6240
2084
        25541
2087
               0617
2088
        25542
               2240
        25543
               2254
2089
2090
        25544
              2354
2091
        25545
               4017
2092
        25546
               2240
2093
               0672
        25547
        25550
               0000
```

25550 0001




```
/FLOURESCENCE PROGRAM
                                   11/19/81 PAL8-V10A NO DATE PAGE 23-2
2097
       25551
               7775 W1,7775
                                /-36/429
                                                   ALL SUCCEEDING FACTORS ARE
 DIVIDED BY 429
2098
       25552 5241
                         5241
2000
        25553
               0755
                      0755
W2, 7773
2536
2100
        25554
               7773
               2534
        25556
2102
                7023
                         7023
        25557
                      W3, 7775 /44
3220
2103
        25560
2104
                3220
        25561
2105
                        3210
               3210
        25562
                      W4, 7776
2106
               7776
                                   / 69
2107
        25563
25564
25565
                        2445
               2445
                        4576
                4576
               7774
                      W5. 7776
2109
                                    /84
2110
        25566
25567
25570
                        3104 /
               3104
               0154
7776
                        0154
                      W6, 7776
2112
                                 /89
        25571
               3243
                        3243
2113
        25572
2114
               4020
                        4020
```

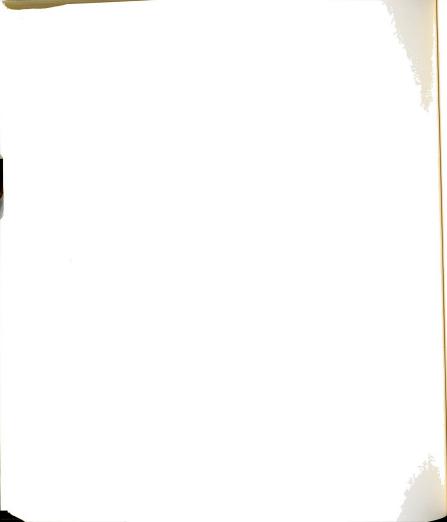
```
/FLOURESCENCE PROGRAM
                                  11/19/81 PAL8-V10A NO DATE PAGE 24
2115
               6663 *6663
        26663 7775 C1, 7775 /THESE ARE WEIGHT FACTORS FOR 17 POINT SMD
2116
OTH
2117
        26664
               5726
                        5726
2118
        26665
               4233
                        6233
2119
                      C2, 7773
        26666
               7773
               5476
2120
        26667
                      5476
2121
               4735
                      4735
        26670
2122
                      7773
        26671
               7773
2123
        26672
               2614
                      2614
        26673
2124
               2210
                      2210
        26674
2125
               7774
                      7774
2126
        26675
               3442
                      3442
2127
        26676
               0503
                      0503
2128
        26677
               7775
                      7775
2129
       26700
               2531
                      2531
2130
       26701
               4365
                      4365
2131
        26702
               7775
                      7775
2132
       26703
               3274
                       3274
                        5022
2133
       26704
               5022
       26705
2134
               7775
                      7775
                       3672
2135
       26706
               3672
2136
       26707
               2020
                       2020
       26710
2137
               7776
                      7776
                       2051
       26711
2138
               2051
       26712
               1513
7776
                     1513
C9, 7776
2139
       26713
2140
       26714
               2102
                       2102
2141
       26715
2142
                       4430
       26716
               0000
                     0
2143
                     PUSHY, 0
2144
       26717
               0000
```



```
/FLOURESCENCE PROGRAM
                                    11/19/81 PAL8-V10A NO DATE PAGE 25
 2145
                        /FL33 FLUORD
 2146
                 4600
                        *4600
                               /NEW SCOPE VERSION OF PLOTSC
 2147
         24600
                 0000
                       PLOTSC, O /PLOT ON SCOPE
 2148
        24601
                 7500
                         SMA
 2149
        24402
                 5221
                          JMP SC1
 2150
        24603
                 7200
                         CLA /INITIALIZE /BUT DON'T MOVE UNTIL FIRST ACTUA
 L PLOT
 2151
         24604
                 3244
                         DCA SCSAVX
 2152
         24605
                 3245
                         DCA SCSAVY
 2153
         24606
                 5600
                          JMP I PLOTSC
                                    /VECTOR PLOT POINTS
 2154
         24407
                 0000
                       PLOLD, O
        24610
 2155
                 1245
                         TAD SCSAVY /OLD Y COORD
 2154
        24611
                 7421
                         MQL
         24612
                 7325
                         STL CLA IAC RAL
 215B
        24613
                         JMS PLPT /OUTPUT Y COORD
TAD SCSAVX
                 4276
 2159
        24614
                 1244
 2160
        24615
                7421
                         MQL
                         CLA CLL IAC RAL /2
JMS PLPT /OUTPUT X COORD (THE 3 AND THE 2 ARE D
        24414
                7305
        24617
                4276
 UTPUT
       CODES)
 2163
        24620
                5607
                         JMP I PLOLD
                       SC1, DCA SCBRYT /1 MEANS UNWRITTEN PLOT
 2164
        24621
                3244
                         TAD CS1
TAD CS1
JMS PRINT3 /SET FOR VECTOR PLOT
MS PLOLD /PLOT TO OLD COORD.
THES .76
 2165
        24422
                1242
 2166
        24623
                4250
 2167
        24624
                4207
 2148
        24425
                4256
                                       /GET X TIMES . 76
 2169
        24626
                3244
                         DCA SCSAVX
 2170
        24627
                4256
                                       /SAME FOR Y
 2171
        24630
                3245
                         DCA SCSAVY
 2172
        24631
                         TAD SCBRYT
                1244
        24632
                7650
 2173
                         SNA CLA
                                    /IS BRIGHT PLOT
 2174
        24633
                5236
                         JMP . +3
2175
        24634
                1242
                         TAD GS1
2176
                4250
                         JMS PRINT3 /IS DARK
        24635
                4207
                         JMS PLOLD
                                      /OUTPUT NEW COORD.
2177
        24636
2178
                1243
                         TAD US1
        24637
2179
                4250
                         JMS PRINT3 /SET BACK TO NORML PRINT MODE
        24640
2180
                5600
                         JMP I PLOTSC /DONE, RETURN
        24641
                      GS1, 235 /VECTOR PLOT
US1, 237 /NORMAL TEXT
2181
        24642
               0235
               0237
2182
        24443
               0000
                       SCSAVX, O
2183
        24644
                      SCSAVY, O
SCBRYT, O
                                    /X AND Y COORD.
2184
        24645
               0000
2185
        24646
               0000
                                     /IS ONE FOR DARK, O FOR BRIGHT
2186
        24647
               0000
                       SCXN, O
                                /SCRATCH
2187
        24650
               0000
                       PRINTS, O
        24651
               6046
                         TLS
2188
        24652
2189
               7200
                         CLA
                         TSF
2190
        24653
               6041
2191
        24654
               5253
                        JMP
                         JMP I PRINTS
2102
        24455
               5450
                      SCSCAL, O /GET COORD TIMES . 76
TAD I PLOTSC
        24656
2193
               0000
2194
        24657
               1.600
                         ISZ PLOTSC
2195
        24660
               2200
2196
               7425
                        MGL MUY
        24661
                        1370 /760
2197
               1370
        24662
2100
        24443
               7407
                        DVI
2199
               1750 PD1750, 1750 /1000
        24664
```

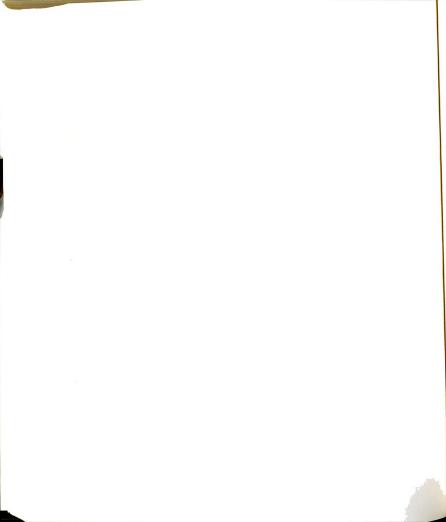


```
/FLOURESCENCE PROGRAM
                           11/19/81 PALB-V10A NO DATE PAGE 25-1
 2200
        24665 7701
                        CLA MGA
 2201
        24666
                7141
                        CIA CLL
                        TAD PD1750 /CHECK TO SEE IF IT IS OVER 1000D
 2202
        24667
                1264
 2203
        24670
                7620
                        SNL CLA
 2204
                        JMP . +3
CLA MGA
        24671
                5274
 2205
        24672
                7701
                                  /LEGITIMATE
 2204
        24673
                5656
                        JMP I SCSCAL
 2207
        24674
               1264
                        TAD PD1750
 2208
        24675
               5656
                      JMP I SCSCAL /TOO BIG
PLPT, O /OUTPUT VECTOR COORDINATES
 2200
        24676
               0000
2210
        24677
               3247
                       DCA SCXN /CODE
2211
        24700
                       SHL
6 /GET TOP 5 BITS
TAD PD240 /MORE CODES
               7413
2212
        24701
               0006
2213
        24702
               1311
2214
        24703
               4250
                        JMS PRINTS
2215
        24704
               1247
                        TAD SCXN
2216
        24705
               7413
                        SHL
        24706
2217
              0004
2218
        24707
                       JMS PRINTS
               4250
2219
        24710
                        JMP I PLPT
               5676
        24711
                     PD240, 240
2220
               0240
2221
        24712
                     SCHOME, O
               0000
2222
                       TAD PD33
        24713
               1320
2223
        24714
               4250
                        JMS PRINTS
                                      /CLEAR SCREEN AND HOME
                       TAD PD14
JMS PRINT3
2224
        24715
               1321
2225
        24716
               4250
2226
        24717
               5712
                       JMP I SCHOME
2227
       24720
               0033
                     PD33, 33
2228
       24721
               0014
                     PD14, 14
2229
       24722
               0000
                     ENPUT, O /INPUT AND ECHO A CHAR
2230
       24723
               7200
                       CLA
2231
       24724
               4777'
                       JM9 KBRK
                                   /REST OF MONITOR IS AT 200
2232
       24725
               7450
                       SNA
2233
       24726
                       JMP
                             -2
              5324
                       JMS TTOUT
2234
       24727
               4776
                                   /ECHO IT
2235
       24730
              1375
                       TAD (-212
2236
       24731
                       TAD FCHAR
                                   /GET BACK CHAR AND TEST FOR LINE FEED
               1774
                       SNA CLA
JMP ENPUT+1
2237
       24732
               7650
2238
       24733
               5323
                                     /IGNORE LINE FEEDS COMPLETELY
2239
       24734
               1774
                       TAD ECHAR
       24735
                      JMP I ENPUT
2240
             5722
```



```
/FLOURESCENCE PROGRAM
                                   11/19/81 PALS-V10A NO DATE PAGE 26
2241
        24774
                0306
2242
        24775
                7566
2242
        24776
                0317
2244
        24777
                0271
2245
                5200
                      *5200
2246
2247
                       /DIGITAL 8-12-U
2248
                       /PLOT SUBROUTINE
2249
                       /CALLING SEQUENCE
2250
2251
                           C(AC)=-1; INITIALIZE
C(AC)= 0; PLOT WITH PEN DOWN
C(AC)= 1; PLOT WITH PEN UP
2254
                              JMS PLOTY
                              Y CO-ORDINATE (IN STEPS) (RETURN IF AC=-1)
Y CO-ORDINATE (IN STEPS)
2255
2254
2257
2258
        25200
                0000 PLOTX, 0
                                SPA
                                                  /MOVE THE PEN?
2259
        25201
                7510
                                                  /NO: CONTINUE
/ADD PEN STATUS
                                JMP PLOTA
2260
        25202
                5220
2261
        25203
                1361
                                TAD PLOTEN
                                CLL RTR
2242
        25204
                7112
                                                            /ANY CHANGE?
2263
        25205
                7710
2264
        25206
                5227
                                JMP PLOT1
                                                   /ND: CONTINUE
2265
                7620
                                SNL CLA
                                JMP
                                     . +4
                                                            /LOWER THE PEN
2266
        25210
                5014
                                DCA PLOTPN
                                                   /RAISE THE PEN
2267
        25211
                3361
                6504
                                PLPU
        25212
SACC
                                     . +3
                5216
                                JMP
2240
        25213
                                ISZ PLOTPN
                                                  /LOWER THE PEN
2270
        25214
                2241
                6524
                                PLPD
2271
        25215
                                JMS PLOTHT
                                                   /WAIT FOR FLAG
2272
                4370
        25214
                5227
                                JMP PLOT1
                                                   /CONTINUE
2272
        25217
2274
                7200 PLOTA
                                CLA
        25220
                                PLPU
                                                   /RAISE THE PEN
2275
        25221
                6504
                3361
                                DCA PLOTPN
2276
        25222
                                                  /O TO X CO-ORDINATE
/O TO Y CO-ORDINATE
                3362
                                DCA PLOTNX
2277
        25223
                                DCA PLOTNY
2278
        25224
                3363
                4370
                                JMS PLOTWT
JMP I PLOTX
2279
        25225
2280
        25226
                5600
2281
2282
                       /DIGITAL 8-12-U
                       /PAGE 2
2284
                       /PICK UP ARGUMENTS
2285
2284
        25227 1362 PLOT1, TAD PLOTNX
                                                  /FETCH PREVIOUS X CO-ORDINAT
2287
2288
        25230
                7141
                                CIA CLL
                                TAD I PLOTX
                                                   /FORM NX-NPX
                1600
        25231
2289
                                                   /L=0: NX<NPX
                                SNL
                7420
2290
        25232
2291
                7041
                                CIA
        25233
                                                   /ABSOLUTE VALUE OF DIFFERENC
                                DCA PLOTDX
2292
        25234
                3364
2293
        25235
                7004
                                DCA PLOTMY
                                                   /SAVE SIGN BIT
        25234
                3367
2294
                1600
                                TAD I PLOTX
                                                  /SET NEW
2295
        25237
```


/FLOU	RESCENCE	PROC	DAM			PALB-V10A ND DATE PAGE 26-1
			NAII.		11/19/81	PALB-VIOA NO DATE PAGE 26-1
220/						
2276	25240	3362		DCA	PLOTNX	/PREVIOUS X
2297	25241	2200		ISZ	PLOTX	/INCREMENT POINTER
2298 E	25242	1363		TAD	PLOTNY	/PREVIOUS X /INCREMENT POINTER /FETCH PREVIOUS Y CO-ORDINAT
2299	25243	7141		CIA	CLI	
2300	25244	1600		TAD	T PLOTY	/FORM NV-NRV
2301	25245	7420		SNI		// ORD NEW CARY
2302	25246	7041		CIA		/C=O: NPTCNT
2303	25247	3345		DCA	DI OTDY	(1000) (100 · · · · · · · · · · · · · · · · · ·
E		0000		DUM	FLUIDI	/FORM NY-NPY /<=0: NPY <ny absolute="" differenc<="" of="" td="" value=""></ny>
2304	25250	1367		TAD	PLOTMV	/CAUE CION DIT
2305	25251	7004		RAI		/SAVE SIGN BIT /BIT 10(1)= DRUM-DOWN(POSITI
						/BIT IO(I)= DRON-DUWN(PUSITI
2306	25252	3367		DCA	DIDTMU	/BIT 11(1)=PEN-LEFT (POSITIV
				DUA	FLOTIN	/BIT II(I)=PEN-LEFT (PUSITIO
2307	25253	1600		TAD	T DI OTY	CET NEU
2308	25254	3343		DCA	DIOTNY	/DELINEM
2309	25255	2200		IC7	PLOTINI	/PREVIOUS Y
2210	26257	400		102	PLUIX	/INCREMENT PUINTER
2310	25258	1364		IAD	PLOTEX	
2311	2525/	/141		CIA	CLL	
2312	25260	1365		TAD	PLOTDY	
A X	25261	7620		SNL	CLA	/SET NEW /PREVIOUS Y /INCREMENT POINTER /L=0: DELTA Y < DELT
2214	25242				PLOTZ PLOTDX PLOTDX PLOTDY PLOTDX PLOTDX PLOTDY PLOTDY PLOTMV PLOTT1 .+4	
2314	20202	32/3		JMP	PLU12	/REVERSE NUMBERS
2313	25263	1364		TAD	PLUTDX	/REVERSE NUMBERS
2316	25264	3366		DCA	PLOTNA	
2317	25265	1365		TAD	PLOTDY	
2318	25266	3364		DCA	PLOTDX	
2319	25267	1366		TAD	PLOTNA	
2320	25270	3365		DCA	PLOTDY	
2321	25271	7001		IAC		/SET MAJOR MOTION /INSTRUCTION
2322	25272	0367		AND	PLOTMV	/INSTRUCTION
2323	25273	1342	,	TAD	PLOTT1	
2324	25274	5300		JMP	. +4	
2325						
2326						
2327			/DIGITA	L 8-1	2-U	
2328			/PAGE 3	1		
2329						
2330	25275	1347	PLOTS.	TAD	PLOTMU	
2331	25276	7110		CLI	RAR	
5335	25277	1245	2	TAD	PLOTTO	
2222	25300	3344		DCA	PLOTNA	
2222	25300	17//		TAD	T DI OTNA	
2334	25301	1/66		IAD	1 PLUINA	
2335	25302	3340		DCA	PLU14	
2336	25303	1367		TAD	PLUTMV	/SET COMBINED MOTION
2337	25304	1350		TAD	PLOTT3	1
2338	25305	3367		DCA	PLOTMV	
2339	25306	1767		TAD	I PLOTMV	
2340	25307	3331		DCA	PLOTDB	
2341	25310	1364		TAD	PLOTDX	
2342	25311	7110		CLL	RAR	
2343	25312	3366		DCA	PLOTNA	
2344	25313	1364	PLOTS.	TAD	PLOTMV RAR PLOTT2 PLOTNA I PLOTNA I PLOTNV PLOTT3 PLOTMV I PLOTMV I PLOTMV PLOTDB PLOTDS RAR PLOTDX RAR PLOTDX	
2345	25314	7040		CMA		
2244	25215	3347		DCA	PLOTMU	
2247	25214	2247	PL DT2	167	PLOTMU	
2240	25210	7410	1 2013/	DAD.	20	
2248	25317	5400	PLOT3,	IMP	T PLOTY	/ALL DONE
2349	25320	1344			PLOTNA	, rece some
2300	23321	1200		· AD	LOTTE	


```
2351
        25322
                1365
                                TAD PLOTDY
2352
        25323
                3366
2353
                                TAD PLOTNA
                1366
2354
                                CMA CLL
        25225
                7140
                                TAD PLOTDX
SZL CLA
JMP PLOT4
2355
        25326
                1364
2356
        25327
                7430
2357
        25330
                5340
                                                  CINCLE MOTTON
2358
        25331
                0000
                      PLOTDB,
                                ō
                                                  /COMBINED MOTION
2359
        25332
                1364
                                TAD PLOTEX
2360
                                CIA
TAD PLOTNA
        25333
                7041
2361
        25334
                1366
                                DCA PLOTNA
JMS PLOTWT
JMP PLOT3
2362
        25335
                3346
2363
        25336
                4370
2364
        25337
                5316
2365
        25340
                0000
                      PLOT4,
2366
                                JMP . -3
2367
        25341
                5336
2366
2369
        25342
                5343
                      PLOTT1,
                                +1
                                PLPR
                                                   /PEN-RIGHT
2370
        25343
                4511
2371
        25344
                6521
                                PLPL
                                                  /PEN-LEFT
                       PLOTT2,
                                +1
2372
        25345
                5346
2373
                6512
                                PLDU
                                                   /DRUM-UP
        25346
2374
        25347
                6514
                                PLDD
                                                  /DRUM-DOWN
2375
        25350
                5351
                      PLOTTS,
                                +1
2376
        25351
                A513
                                PLDU PLPR
                                                   /UP-RIGHT
2377
        25352
                6523
                                PLUD PLPL
                                                   /UP-LEFT
2378
        25353
                6515
                                PLDD PLPR
                                                  /DOWN-RIGHT
                                JMS . +1
                                                           /DOWN-LEFT
2379
        25354
                4355
                0000
                                0
2380
2381
        25356
                6514
                                PLDD
        25357
                6521
                                PLPL
2382
        25360
                5755
                                JMP I .-3
2383
2384
2385
                       /DIGITAL 8-12-U
2386
2387
                       /PAGE 4
2388
        25361
                0000
                      PLOTPN,
2389
2390
        25362
                0000
                       PLOTNX,
2391
        25363
                0000
                       PLOTNY,
        25364
                0000
                       PLOTDX,
2393
        25365
                0000
                       PLOTDY,
2394
        25366
                0000
                      PLOTNA,
2395
        25367
                0000
                      PLOTMV,
2396
2397
        25370
                0000
                      PLOTWT,
                                0
                                                   /WAIT FOR DONE FLAG
2398
        25371
                6501
                                PLSF
                                                           /NOT YET
                                JMP . -1
PLCF
2399
        25372
                5371
                                                   CLEAR FLAG
2400
        25373
                6502
                                                   /EXIT
                                JMP I PLOTHT
        25374
                5770
2401
```




```
/FLOURESCENCE PROGRAM
                                    11/19/81 PALB-V10A ND DATE PAGE 27
 2402
                4000
                       *4000
 2403
                       /THIS ROUTINE DOES WHAT DIGITAL'S 8-22-U UNSIGNED DE
 CIMAL PRINT
 2404
                       /SHOULD HAVE. IT IS NOT DEPENDENT ON 8-19-U AND NEE
 DS NO
 2405
                       /CHANGES TO RUN.
                                         IT ALSO TYPES BLANKS FOR LEADING Z
 EROES.
 2406
                       /CHANGE SZA AT ARROW+7 TO NOP TO GET LEADING ZEROES
 2407
                       /CALL WITH JMS DECPRT--NUMBER TO BE PRINTED IN AC
 2408
 2409
        24000 0000 DECPRT.
 2410
        24001
                3240
                                  DCA VALUE
                                                       /SAVE INPUT
 2411
        24002
                3261
                                  DCA DIGIT
                                                       /CLEAR
 2412
        24003
                3255
                                  DCA FLAGE
 2413
        24004
                1250
                                  TAD CNTRZA
 2414
        24005
                2242
                                  DCA CNTRZB
                                                       /SET COUNTER TO FOUR
 2415
        24006
                1247
                                  TAD ADDRZA
 2416
        24007
                3214
                                 DCA ARROW
                                                      /SET TABLE POINTER
 2417
        24010
                7410
                                 CVD
 2418
        24011
                3260
                                 DCA VALUE
                                                      /SAVE
 2419
        24012
                7100
                                 CLI
 2420
        24013
                1260
                                 TAD VALUE
 2421
        24014
                      ARROW.
                1251
                                 TAD TENPWR
                                                      /SUBTRACT POWER OF TEN
 2422
        24015
                7430
                                 S71
 2423
        24016
                2261
                                 ISZ DIGIT
                                                      /DEVELOP BOD DIGIT
 2424
        24017
                7430
                                 SZL
 2425
        24020
                5211
                                 JMP ARROW-3
                                                      /I nne
 2426
        24021
                7200
                                 CLA
                                                       /HAVE BCD DIGIT
 2427
        24022
                1261
                                 TAD DIGIT
                                                       /GET DIGIT
 2428
        24023
               7440
                                 SZA
                                                      /BLANK LEADING ZERDES
2429
        24024
               5236
                                 JMP
                                      +12
2430
        24025
               1255
                                 TAD FLAGE
2431
        24026
               7640
                                 SZA CLA
2432
        24027
               5237
                                 JMP
2433
        24030
               1262
                                 TAD CNTRZB
2434
        24031
               7001
                                 IAC
2435
        24032
               7650
                                 SNA CLA
2436
        24033
               5237
                                 JMP
2437
        24034
               1256
                                 TAD K20
2438
        24035
               7410
                                 SKP
2439
        24036
               2255
                                 ISZ FLAGE
2440
        24037
               1257
                                 TAD K260
                                                      /MAKE IT ASCII
2441
        24040
               4502
                        JMS I PRINT1
2442
        24041
               7200
                                CLA
2443
        24042
               3261
                                 DCA DIGIT
                                                      /CLEAR
2444
        24043
               2214
                                 ISZ ARROW
                                                      /UPDATE POINTER
2445
        24044
               2262
                                 ISZ CNTRZB
                                                      /DONE ALL FOUR?
2446
       24045
               5212
                                JMP ARROW-2
                                                      /NO: CONTINUE
2447
       24046
               5600
                                 JMP I DECPRT
                                                      /YES: EXIT
2448
       24047
               1251
                     ADDRZA,
                                TAD TENPWR
2449
       24050
               7774
                     CNTRZA
2450
       24051
               6030
                     TENPWR,
                                -1750
                                                      /ONE THOUSAND
2451
       24052
               7634
                                -0144
                                                      /ONE HUNDRED
2452
       24053
                                -0012
                                                      /TFN
               7766
2453
       24054
               7777
                                -0001
                                                     / DNE
2454
       24055
               0000
                     FLAGE,
                                0
2455
                     K20,
                                -20
       24056
               7760
               0260
2456
       24057
                     K260
                                260
```

/FLOURESCENCE PROGRAM

11/19/81 PAL8-V10A ND DATE PAGE 27-1

2457 24060 0000 VALUE, 0 2458 24061 0000 DIGIT, 0 2459 24062 0000 CNTRZB, 0

/FLOURESCENCE		PROGRAM		1 1	/19/81 P	ALB-V10A	NO DATE	PAGE 28
2460								
2461			/DIGITAL	8-20-	-U			
2462			/CHARACT	ER STE	ING TYPE-	TUT		
			CONT. UT	TH CT	ING ADDRE	EC TN		
2463			/CALL WI	in Sir	THE MUDICE	DELICI OD	rn.	
2464			/C(AC);	ALL CI	DES MAY B	E DEVELUP	ED	
2465			/RETURN	FOLLO	ING THE J	MS		
2466								
2447	24063	0000	TYPSTG,	0				
2468	24064	3351		DCA	TEMQ	/9	STORE INIT	IAL ADDRESS
2400	24084	3331						
					FLAG	10	LEAR FLAG	
	24065	3353		DCA	FLAG		ICK UP DA	
2470			TSCC1,		I TEMG	/ P	TUK OF DA	THE DECLIT
2471	24067	7012		RTR		/H	TOTALE 6 B	ITS RIGHT
2472		7012		RTR				
	24071	7012		RTR				
24/3	24071 24072	4077		IMC	TRACES	/T	TYPE FIRST	CHARACTER
24/4	240/2	42//		7.0	TEMO	/6	TCK UP DA	TA
2475	24073	1751		IAD	I IEIIG	(7	TYPE BECOM	CHARACTER TA ID CHARACTER
2476	24073 24074	4277		JM5	18002	/ 1	THE DECOM	D CHARACTER
								STORAGE ADD
2477	24075	2351		ISZ	TEMG	/1	INCREMENT	STURAGE ADD
RESS								
0470	24076	5244		. IMP	TSCC1	/0	O BACK FO	IR MORE
	240/0	2200						
2479								
2480	24077	0000	TSCC2,	0			MASK OFF 6	DITC
2481	24100	0354		AND	K77	/ [BAVE CHARA	OTED
2482	24101	3352		DCA	K77 TEMR FLAG	/5	SAVE CHARA	CIER
2483	24102	1353		TAD	FLAG	/1	TEST "SPEC	IAL" FLAG
	24103			57A	CLA			
2484	24103	7840		IMD	TYPEP	/9	SET: TYPE	SPECIAL
	24104	5314		7.0	CLA TYPSP TEMR	/1	NO REQUIR	R CHARACTER
2486	24105			IAD	LETTE			
					.+3 PRINT6 I TSCC2	/	IS IT ZERO YES: SET F	12
2487	24106	7450		SNA		//	VEC. CET E	I AG
2488	24107	5312		JMP	. +3	,	/NO: PRINT	TT
2489	24110	4333	TYPAT,	JMS	PRINT6		/NO: PRINT	1 1 .
2400	24111	5677		JMP	1 TSCC2	/1	RETURN	
	24112			157	FLAG	/3		[AL" FLAG
2491	24112	2353		IMD	I TSCC2	/1	EXIT	
	24113	5677		OH	1 10002			
2493				200	FLAG	/	CLEAR "SPE	ECIAL" FLAG
2494	24114		TYPSP,			',	TEST FOR	10"
2495	24115	1352			TEMR	,	IEST TOR	•
2494	24116	7041		CIA				
2497	24117	7450		SNA				
	24120	5010		. IMP	TYPAT	/	O: TYPE "	5"
2498	24120	5310		01				
2499								
2500								
2501								
2502								
2302	24121	7001		IAC		/	TEST FOR	01
		7650		SNA	CLA			
2504				IMD	I TYPSTG	/YES	EXIT CO	DE
2505	24123	5663		JITIF	CHIDNA		ALTER INS	TRUCTION
2506	24124	1360		IAL	SKIPMA SWITCH	,	TO BE "SM	
2507	24125	3335		DCA	SWITCH	1.	TYPE CHAR	ACTER
2507	24126	1352		TAE	TEMR	/	ITPE CHAR	HU I EN
2506	24120	4333		JMS	PRINT6			
2509				TAT	SKIPPA	/	ALTER INS	TRUCTION
	24130	1361		DCA	SWITCH	/	TO BE "SP	Α"
2511		3335		DCF	I TSCC2		RETURN	
2512	24132	5677		JMF	1 15002	,		

24133 0000 PRINT6,

/FL00	RESCENCE	PRUGE	КАП	1	1/19/81	PAL8-	VIOA NO DATE	PAGE 28-1
2515	24134	1255			M40			
2516	24135	7510					/COMPARE W	
DES				SPA			/UR SMA FO	R SPECIAL CO
2517	24136	1356		TAD	C100			
2518	24137	1357		TAD	C240			
2519	24140	4502	JMS I	PRINT:	1			
2520	24141	1747	TAD I	FCHAR:	I			
2521	24142	1350	TAD CN	TRLP				
2522	24143	7640	SZA CL	A				
2523	24144	5733		JMP	I PRINT	6		
2524	24145	3747	DCA I	FCHAR	I			
2525	24146	5663	JMP I	TYPSTO	3			
2526								
2527			/CONSTAN	TS ANI	TEMPOR	ARY RE	DISTERS	
2528	24147	0306	FCHARI	FCHA	AR .			
2529	24150	7560	CNTRLP,	-220	/ABORT	TYPE I	OUT ONLY ON ^	P
2530	24151	0000	TEMQ.	0			/CONTAINS	STRING ADDRE
SS								
2531	24152	0000	TEMR,	0			/CONTAINS	6 BIT CHARAC
TER								
2532	24153	0000	FLAG,	0			/"SPECIAL"	FLAG
2533	24154	0077	K77,	77				
2534	24155	7740	M40,	-40				
2535	24156	0100	C100,	100				
2536	24157	0240	C240,	240				
2537	24160	7500	SKIPMA,	SMA				
2538	24161	7510	SKIPPA	SPA				

11/19/81 PAL8-V10A NO DATE PAGE 29

/FLOURESCENCE PROGRAM

```
2539
               0001 FIELD 1
2540
               3000
                     *3000
2541
2542
                      /CODE TO ROTATE THE CELL
2543
2544
       13000
               4235
                     ROTATE, JMS NEWNUM
2545
       13001
               0225
                              AND MASK3
2546
       13002
               4205
                              JMS ROTIT
2547
       13003
                              CDFCIF CODFLD
               6223
254B
       13004
                              JMP I MONPT
               5646
2549
       13005
               0000
                     ROTIT,
2550
       13006
               3244
                              DCA CURTEM
2551
       13007
               1243
                              TAD CURENT
2552
       13010
               7041
                              CIA
2553
               1244
                              TAD CURTEM
       13011
2554
       13012
               1245
                              TAD FOUR
2555
       13013
               0225
                              AND MASK3
2556
       13014
               7040
                              CMA
2557
       13015
                              DCA ROTX
               3226
2558
       13016
               2226
                              ISZ ROTX
                               JMP . +4
2559
       13017
               5223
2560
       13020
               1244
                              TAD CURTEM
2561
       13021
               3243
                              DCA CURENT
2562
       13022
               5605
                              JMP I ROTIT
                              JMS TURNIT
2563
       13023
               4247
2564
       13024
               5216
                              JMP . -6
2565
       13025
               0003
                    MASK3,
2566
       13026
               0000
                     ROTX,
                              0
2567
       13027
               7775
                     SRDLAY,
                              7775
                              7716
2568
       13030
               7716
                     FOURTH
2569
       13031
               0000
                     FIFTY,
                              0
2570
       13032
               0000
                     COUNT
                              0
2571
       13033
               7577
                     MUSEC,
                              7577
2572
       13034
               0000
                     DELMU,
                              0
2573
       13035
               0000
                     NEWNUM,
                              0
                              KSE
2574
       13036
               6031
                              JMP . -1
2575
       13037
               5236
2576
       13040
               6036
                              KRB
2577
       13041
               6046
                              TLS
                              JMP I NEWNUM
2578
       13042
               5635
                     CURENT, 0
2579
       13043
               0000
2580
       13044
               0000
                     CURTEM,
                              0
2581
       13045
               0004
                     FOUR,
                     MONPT
                              200
2582
       13046
               0200
                     TURNIT,
2583
       13047
               0000
                              0
                              CLA
2584
       13050
               7200
                                               /FIFTY STEP
                              TAD FOURTH
2585
       13051
               1230
                                               /COUNTER
                              DCA FIFTY
2586
       13052
               3231
                                               /GET TIME DELAY
                     READSR,
                              TAD SRDLAY
2587
       13053
               1227
                                               /SET UP TIME DELAY COUNTER
                              DCA COUNT
2588
       13054
               3232
                              TAD MUSEC
2589
       13055
               1233
                     TLOOP,
                                                /MICRO LOOP
                              DCA DELMU
2590
       13056
               3234
                              ISZ DELMU
2591
       13057
               2234
                               JMP . -1
2592
       13060
               5257
                                                /INCREMENT TIME DELAY COUNTE
                              ISZ COUNT
2593
               2232
       13061
                                   11/19/81 PAL8-V10A NO DATE
/FLOURESCENCE PROGRAM
                                JMP TLOOP
2594
        13062
               5255
2595
        13063
               6530
                               PULS
                                                /INCREMENT FIFTY STEP COUNTE
                               ISZ FIFTY
2596
        13064
2597
        13065
               5253
                                JMP READSR
2598
        13066
               5647
                               JMP I TURNIT
2599
        13067
               0000
                      ROCELL
                               ٥
2600
        13070
               4205
                               JMS ROTIT
US
                               CDCIF CODFLD
2601
        13071
               0000
        13072
                               JMP I ROCELL
2602
2603
                      PAUSE
```


PAL8-V10A NO DATE PAGE 31

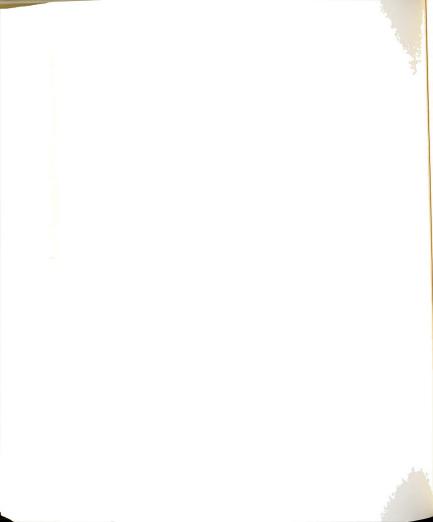
	A	2463	C2	6666	FFLOT	0127	LE	4242
	AB9	2220	C240	4157	FIFTY	3031	LEDIG1	1122
	ADAVER	1050	C9	6713	FILINE	0460	LEIN	0624
	ADDRZA	4047	D	2474	FILNAM		LERR	0642
	ADVIS	1404	DATAIN		FLAG	4153	LE2DIG	0472
	AHALE	3555	DECPRI		FLAGE	4055	LE3	4251
	ARROW	4014	DELIME		FLAG2	2510	LF212	0313
	ASTR	0311	DELMU	3034	FLIN	0005	LGSE	2477
	AVBUFF		DELTIM		FLOT1	2502	LINCOM	0143
	AVERAG		DEV	0462	FLOT2	2505	LINKER	4333
	AVPARM		DEVNUM		FLTPT	0007	LOCLOC	0304
	AVRET	4236	DIAG	0147	FLT100		LOGAB	2357
	A100	3617	DIGIT	4061	FLUTE1	0756	LOGAR1	2406
	A2D	0070	DINOG	4460	FN	0452	LOGABI	
	B	2466	DISPLA		FNAME	0461	LOGIT	0153
	BASTOP	3317	DONEO	1124	FNLNTH			2407
	BEGIN	0200	DONE 1	1143	FNSCN	1046	LOG2	2321
	BELL	0150	DONES	1162	FOUR	3045	LPLOT	5007
	BKLNTH	0572	DRPLOT		FOURTH		L1	2327
	BLKNUM	0440	DRFLUI D1	0502	FOUT	0006	L2	2332
	BLOCKM		D2D1				L3	2335
	BUFFPT			0474	FROM	0010	L4	2340
	BUFF1	0511	EITHER		FROM1	0570	L5	2343
		3560	EM	0503	FTEMPO	0156	L6	2346
	BUFF2	3563	EMCH	0066	FTEMP1	0161	L7 '	2351
	BUFF3	3566	EMD1	0470	FTEMP2	2511	L8	2354
	BUFPTR	0437	EMD2D1	0471	F1	0110	MASK3	3025
	BUF1	0130	EMFLG	0020	F2	0113	MKKR	3263
	BUF2	0145	EMFLG2	0021	GEDFAC	2362	MONIT	0073
	BUF3	0132	EMSETG	1310	GET	5103	MONITR	0200
	0	2471	END	0024	GETRUN		MONPT	3046
	CAD	0434	ENDQ	0744	GOODIE	1463	MONPTR	0021
	CALIB	0400	ENDSTR	0652	GDRSH	3017	MONSAV	0074
	CC100	0707	END2	0025	GORSH2	3106	MORX	0026
	CDFCDF	0564	ENPUT	4722	COTB	3515	MORX2	0027
	CFLD	0545	ENTRY	0026	GOTCHA	0123	MOVEBK	0530
	CHARIN	0257	ENTURP	0134	GOTCH1	1601	MUSEC	3033
	CHECKI	0235	ERR	0025	GOTP	3443	M40	4155
	CHINPT	0711	ERRERR	0240	GOTU	1626	NASTY	0135
	HRPR	0307	EX	0530	GS1	4642	NEGA1	0142
	LF	0702	EXCH	0065	GUD2	1615	NEG11	4330
(MDSTG	4400	EXD1	0466	IITYCR	0103	NEG3	0703
(MNDS	0212	EXD2D1	0467		0710	NERR	0663
¢	NTRLC	0316	EXPNT	2365	INDATA	1230	NEWNUM	3035
¢	NTRLP	4150	EXSETG	0747	INPUT	0072	NLAT	0057
d	NTRZA	4050	FAB	3620	INTPRT	0213	NDGIN	4477
ć		4062	FABS	0010	INTG	4267	NOOCHR	0705
ć	0	2217	FAKB	2412	INTVAL	0075	NOPE	0365
		0020	FBF	2403	INTVL2	0076	NORM	0140
		2324	FCHAR	0306	KBRK	0271	NORMAL	3322
		3032	FCHARI		KK77	0706	NORM7	3273
		0312	FCNT		KLOCK	1057	NOVAL	0031
		3043	FCW		K20	4056	NTRE	0213
		3044	FEXP		K260	4057	NU	4276
		6663	FF		K77	4154	NUIN	0644
			FFL			3264	NULE	0600
		4156						

NULE1	0105	PLOT3	5316	QFIN	1047	SCAN2	1030
NULE2	0620	PLOT4	5340	GFING	1200	SCBRYT	
NUMIN	0100	PLPT	4676	GFLNAM	0457	SCHOME	4712
NUMBUT		PLTARE	3077	GFULL	1267	SCPLOT	5006
N1000	3000	PLTBAS	3447	QM	0341	SCSAVX	4644
N12	0115	PLTBS1	3464	GMGM	0334	SCSAVY	4645
N232	0667	PLTEM	3167	QNEW	3003	SCSCAL	4656
N272	0314	PLTEMI	3316	GPER	3616	SCXN	4647
N2775	1266	PLTEM2	3240	GPLTMX	3171	SC1	4621
N310	0665	PLTEND	3224	QQFAC	1644	SETUP	0122
N4	1457	PLTRET	3164	GGFUL	1300	SETUP3	1477
N5	0033	PLTSID	3400	QQMARX	1655	SFL	3360
N702	0666	PLUT	3423	GGNEW	3344	SFLOT	0126
N764	0670	PLUT10	3231	GGPER	3347	SHIFTR	
OFF	0540	PLUT2	3440	GORSET	1207	SIDE	3315
OFFSET	3632	PLUT3	3435	GGY	4505	SINGLE	3315
	0705	PLUT4	3435	99200	0556	SKIPMA	
DK11						SKIPPA	4161
OK12	0723	PMCP	1600	99650	0564		0565
ONEFLT		PPP12	0573	GRESET	1171	SLOC	
058	5106	PP117	3313	GSMUST	5034	SMFLG	0154
OUTRNG	0671	PP1750	3165	QSTART	0120	SMIFT	5452
DUTSTG	0124	PP27	3337	0200	0464	SMITCH	
PACKER		PP4	1103	Q650	0465	SMOOCH	5530
PARM1	0537	PRINT	1400	RCNT	3002	SMOOTH	
PARM2	0737	PRINTU	1401	READIN		SM002	5416
PDD500		PRINT1	0102	READSR	3053	SM003	5440
PD14	4721	PRINTS	4650	READ2N	0625	SMOR	5022
	4664	PRINT6	4133	REGUSE	1317	SMPWT	1240
PD240	4711	PRING	1435	REMAIN	0555	SMU	5474
PD33	4720	PRTDEC	0077	REMAN2	0572	SMUST	5025
PLOKE	3127	PRUNE	1466	RETAV	4222	SMUST2	5042
PLOLD	4607	PUSHER	5527	RETPLT	3037	SMUST3	5071
PL001	3475	PUSHY	6717	RET2	3170	SMUST4	5067
PL002	3507	P117	3166	RET2I	3200	SMUST5	5070
PL005	3505	P12	0136	RET3	3314	SMUST6	5421
PLOPT	3006	P13	5023	RFCW	0030	SMUST7	5074
PLOT	3004	P14	3554	RFL	3363	SMUSTB	
PLOTA	5220	P20	0571	RFLOT	0125	SM11	5010
PLOTDB	5331	P21	5024	ROCEL	1227	SM17	5014
PLOTDX	5364	P30 .	0567	ROCELL	3067	SPARSE	
PLOTDY	5365	P3000	0566	ROTAT	4512	SPASE	1453
PLOTMY	5367	P3032	0623	ROTATE		SPASQ	1460
PL STINA	53a6	P310 .	0146	ROTIT	3005	SPCCHR	
PLOTNX	5362	P4	0133	ROTX	3026	SPCR2	0661
PLOTNY	5363	P4000	0071	ROUND	0067	SRDLAY	3027
PLOTPN	5361	P55	0315	RR	2200	SS	2205
PLOTO	5000	P62	3320	RRFCW	0510	START	0022
PLOTSC	4600	P77	0310	R1	0107	STARTI	0704
PLOTT1	5342	GCBUFF	2400	R2	0112	STARTG	
PLOTT2	5345	GDIG	4470	SAVE	5100	START2	0023
PLOTT3	5350	QEMSET	0117	SAVOR	1270	STIGMA	4447
PLOTUT	5370	GEND	0121	SAVRUN	0400	STRGIN	
PLOTX	5200	GEG2	1661	SBL CK	0426	SWITCH	4135
PLOT1	5227	GEXSET	0116	SBLOCK	0501	SWOOP	4300
PLOT2	5275	QFAC	3172	SCAN	1000	S1	0111
FLUIZ	JEIJ	di no	0				

XSCALI 3321
XSCAL3 3160
XXPL 3521
YCAL 3161
YESNO 3161
YESNO 3161
YORN 0161
YORN 0161
YORN 0262
Z01 0701
Z02 0701
Z02 0701
Z03 0721
Z04 1037
Z04 3067
Z77 1525

PALB-VIOA NO DATE PAGE 31-2


S2 TEMCHR	0114
TEMPRM	0305
TEMP1	0034
TEMP2	0035
TEMP3	0036
TEMP4	0062
TEMP5	0063
TEMP6	0064
TEMQ	4151
TEMR TENPWR	4152 4051
TLOOP	3055
TMCHR2	0701
TO	0011
TO1	0536
TRIN	0542
TROUT	0551
TSCC1 TSCC2	4066
TTOINT	4077 0106
TTOUT	0317
TURN	1222
TURNIT	3047
TYCR	0342
TYPAT	4110
TYPIST	0101
TYPSP	4114
TYPSTG	4063 0144
UNDO	1522
UNDRM	3522
UPSET	1470
USEREG	0151
USR	0020
USRIN	0223
US1	4643
VALUE	4060 4515
VISAD WAVE	0030
WECH	4030
WLCH	0032
WPON	5020
W1	5551
W2	5554
₩3 ₩4	5557
₩4	5562
W5 W6	5565 5570
XAX	3600
XOFF	3627
XOFFI	0152
XPLOT	5005
XREG	3152
XSCAL	3613


```
1281 1296#
1142# 1164 1206
295 767# 806
A
AB9
                              1877
ADAVER
ADCV
            776
ADDRZA
           2415
                 2448#
ADRB
            780
ADSC
            881
ADSF
ADVIS
            965#
                 987 1910
AHALF
           1663
                 1685#
                 2421# 2425 2444 2446
ARROW
           2416
ASR
           1679
ASTR
            361
                431#
1747 1748 1758 1765#
AVBUFF
           1735
AVERAG
           1734# 1852
AVPARM
           1738# 1745
AVRET
           1742
                 1764#
A100
           1705
                 1716#
A2D
            295#
                  516
                         887
           1283
                 1299#
BASTOP
           1481
                        1529#
BEGIN
             19#
BELL
            344#
                  359
                         799 1411
BKLNTH
            142
                  147
                         174#
BLKNUM
             76
                   81#
BLOCKM
            121
                  126#
BUFFPT
            125#
                 1688# 1756
BUFF1
            327
BUFF2
            341
                 1691#
BUFF3
            329
                 1694#
BUFFTR
            80#
BUF1
            327# 1169 1193 1759
BUF2
            341#
            329# 1177
                        1180
                              1182
                                   1184 1186
                                                1188 1190 1192
BUF3
           1278
                 1302#
                                     507#
                                            530
CAD
            484
                  487
                         495
                               501
CALIB
            479# 1832
CC100
           241
                  251#
          2601
CDCIF
                         168#
77
            151
                  160
                                     874
                                          1907
                                                1978 1981 1984 2547
                               122
CDFCIF
             8
                   36
CFLD
            152
                  153#
                         382
                               405#
                                     414
CHARIN
            372
                  378
            387#
CHECKI
                  256#
                        261
CHINPT
           252
                                     394
                               381
CHRPR
            371
                  377
                         380
                  204
CLF
            195
                         246#
CMDSTG
           367
                 1831#
CMNDS
           363
                  367#
CNTRLC
           421
                  436#
                 2529#
CNTRLP
          2521
                 2449#
CNTRZA
          2413
                       2445 2459#
CNTRZB
          2414
                 2433
CO
          1141#
                         265# 917 1071 2026 2074 2547 2601
CODFLD
                   36
             8
COMMON
          1210#
COUNT
          2570# 2588
                       2593
                        458
CR215
           432#
                 442
```



```
CURENT
          2551
                 2561 2579#
2553 2560 2580#
CURTEM
          2550
C 1
          1929
                 2116#
C100
                 2535#
          2517
C2
          2119#
C240
          2518
                 2536#
00
          2140#
           1276
                1305#
DATAIN
            751
                  807#
DECPRT
           302
                2409# 2447
...IMR
           385#
                  407
                        412
DELMU
          2572# 2590
                       2591
DELTIM
           774
                  808#
DEV
            65
                   85
                              111
DEVNUM
            28#
                   99
DIAG
           343#
                 963
                       1332
                              1739
DIGIT
          2411
                 2423
                       2427
                              2443
                                    2458#
DINDG
           343
                 1879#
                       1886
DISPLA
          1848
                 1915#
DONEO
           765
                  810
                        811#
                               843
DONE 1
           822
                  825
                        826#
DONES
           837
                  840
                        8414
                                    1469 1508 1594 1604 1636 1643
DRPLOT
           337# 1376
                       1390 1431
          1913
DSK
            28
DVI
            527
                  540
                        622
                               793
                                     912 1383 1457 2198
D1
            543
                  545#
                        551
                               571
D2D1
            539#
                  549
                        569
EITHER
            553#
                  573
ĒĤ
            546# 1834
EMCH
           293#
                  486
                        500
                               747
ENDI
           488
                  503
                        535#
                               550
EMD2D1
            505
                  536#
                        548
                                     744
EMFLG
           272#
                  547
                        567
                               738
                  692
EMEL G2
           273#
                        739
EMSETG
           318
                  929#
                               732
                                     754
END
           276#
                  561
                        684
ENDQ
           320
                  709#
ENDSTR
           222#
                               974
                                    1058
                                           1456
END2
           277#
                  691
                        733
                              2238
ENPUT
           297
                  406
                       2229#
                                    2240
ENTRY
            13#
                  35
                         78
                               123
ENTURP
           331# 1015
                       1330
                              1737
ERR
            12#
                   32
                         73
                                02
                                      93
                                            127
ERRERR
           390#
EX
           567#
                1836
                        494
                               749
EXCH
           292#
                  483
EXD1
           485
                  497
                        533#
                               570
EXD2D1
           499
                  534#
                        568
EXPNT
          1202
                 1243#
EXSETG
           317
                  714#
                       1722
FAB
          1698
                 1717#
FABS
          1343#
                1344
                                                 1191 1193 1276 1281
                             1185
                                    1187
                                          1189
          1179 1181
                       1183
FADD
                                          1747 2058
                                    1663
          1285
                 1290
                       1351
                              1400
FAKB
          1255*
FRF
          1248#
                                     428# 2236 2239 2528
FCHAR
           413
                  419
                        420
                               424
```


FCHARI	2520	2524	2528#								
FCNT	1326#										
FCW	79#										
FDIV	1153	1171	1279	1288	1425	1520	1705	1759			
FEXP	1243	1258#									
FEXT	1129	1134	1139	1154	1172	1201	1205	1262	1291	1346	
FEAT	1353	1363	1370	1401	1426	1521	1543	1664	1707	1749	
	1760	2060	13/0	. 40.							
FF	1136#		1875								
FFL	326	1081	1572#								
FFLOT		1138	1148	1151	1153	1171	1198				
	1128	1133	1138	1144	1148	1152	1170	1195	1197	1199	
FGET	1271	1278	1283	1287	1362	1758					
FIFTY	2569#		2596	120/	1302	1,00					
		86	97#	112							
FILINF	66	71	91	96	98	106	117	177#			
FILNAM	61		2491	2494	2532#	100					
FLAG	2469		2439	2454#	EJJEH						
FLAGE	2412	2430	1317#	2434#							
FLAG2	1266	1292	1547	1703							
FLIN		1367	134/	1703							
FLOT1	1290	1311#									
FLOT2	1289			1137	1143	1167	1175	1203	1259	1269	
FLTPT		1127	1132	1368	1398	1424	1519	1540	1662	1704	
	1342	1350	1361	1368	1370	1424	1317	1040			
	1746	1757	2056								
FLT100		1716									
FLUTE1	328	723#		1178	1180	1182	1184	1186	1188	1190	
FMPY	1146	1150	1168		1274	1284	1289	1399	2057		
	1192	1200	1204	1260	12/4	1204	1207	10,,	200		
FN	84	91#									
FNAME	62	83	98#	108							
FNLNTH	59	95#	104								
FNOR	1541				000	844					
FNSCN	756	759	765#	823	838	044					
FOUR	2554	2581#	,								
FOURTH		2585									
FOUT		1002	1364	1762		1177	1194	1196	1198	1261	
FPUT	1145	1147	1149	1151	1169	1286	1352	1369	1542	1706	
	1270	1273	1275	1277	1282	1286	1332	1307	1046		
	1748	2059									
FROM	4 6		130	154							
FROM1	52	132	. 143	172#							
FSUB	1176	1272	1280	1345		1273	1274	1280	1287		
FTEMPO		1145	.1195		1271		1284	1200	1207		
FTEMP1	353#	1149	1197	1270	1272	1275	1318#				
FTEMP2	1277	1279	1282	1285	1286	1288	1310#				
F1	311#	1070	1079	2041							
F2	314#	2010	2011	2013	2037		- 1				
GEOFAC	1200	1240#					4				
GET	1868	1981#									
GETRUN	103#	1983									
GOODIE	961	1013#	1017								
GORSH		1349	1356								
GORSH2	1396	1437									
GOTB	1616	1618	1621	1623	1625		1656				
GOTCHA	3224	989	991	1340	1396	1744					
GOTCHA GOTCH1	322	1052#	1086								
GOTP	1580	1582	1584	1586	1611#	1614					
9015	1000										


```
GOTU
           1072
                 1073#
                 2175
GS1
           2165
                        2181#
GUD2
                 1064#
           1060
LITYCE
                          813
                                             994
            306#
                  489
                                828
                                       962
                                                 1761
                                                         1881
            192
INCHAR
                   201
                         252#
905
INDATA
            807
                   879#
            297#
                                816
                                      831
                                             054
INPUT
                  481
                          492
INTERT
            331
                  364
                          369#
                                392
                                       402
                                             403
                                                    404
                                                          448
                 1789#
INTO
           1769
                               1772
INTUAL
            300#
                  734
                          760
INTVL2
            301#
                        1040
                               1082
                                     1420
KRRK
            309
                  415#
                         417
                                425
                                      447
                                            2231
KK77
            215
                  231
                         250#
KLOCK
                  789
           2437
                 2455#
K20
                 2456#
KOAO
           2440
                 2533#
K77
           2481
LASPLT
           1453
                 1502# 1526
           1768#
                 1799
                        1854
F
LEDIG1
            809#
                                                                       1802
            574
                  627#
                          640
                                                                 702
LEIN
           1805
LERR
            631
LEZDIG
            537#
                  544
                          809
LE3
           1775#
                 1788
LF212
            433#
                  445
LG2E
           1260
                 1308#
                                            1061
LINCOM
            339#
                  673
                          687
                                757
                                     1031
LINKER
            339
                 1814
                        1827# 1829
LOCLDC
                  385
                         426#
LOGAB
           1163
                 1194
                        1199
                              1237# 1251
LOGAB1
           1251#
            347#
LOGT
LOCTT
            347
                 1252#
LDG2
           1168
                 1207#
           1914
                 1919#
PLOT
            211
                 1045
LSR
Ĺī
           1191
                 1213#
ĽŽ
           1189
                 1216#
L3
           1187
                 1219#
L4
           1185
                 1222#
L5
           1183
                 1225#
           1181
                 1228#
L6
L7
           1179
                 1231#
Ľ8
           1178
                 1234#
MASKS
           2545
                 2555
                        2565#
MKKR
           1493
                 1501#
                                       701
                                             743
                                                          908
                                                                1039
                                                                       1055
MONIT
            298#
                  423
                          506
                                566
                                                   1511
                                                          1711
                                                                1743
                                                                       1753
           1063
                 1334
                        1358
                               1395
                                     1464
                                            1503
                 1777
                        1939
                               1949
                                     1976
                                            1977
                                                   2005
                                                          2031
           1763
MONITR
            298
                  299
                          357#
MONPT
           2548
                 2582#
MONPTR
                    94
                          139
              8#
                               1752
                                     1975
MONSAV
            299# 1357
                        1502
MORX
            278#
                  565
                          736
                  700
                          737
                                984
MUBAS
            279#
             58
                   138
                          140#
                                149
MOVEBK
           2571# 2589
MUSEC
```



```
MUY
            538
                  610 1385 1459 2196
MAO
           2515
                  2534#
NASTY
                  1372
                         1451
NEGA1
                         1041 1083
1824# 1826
            220#
                   761
                               1083
                                     1419 1516 1619
NEG11
            338
                  1811
                         247#
NEG3
            197
                   204
NEDD
           649
                   653
                          65B#
NEWNUM
                  2573#
                        2578
NI AT
            332#
                  1371
                         1450
NOGIN
           1885
                  1896#
                        1901
NOOCHR
            187
                   220
475#
                          239
                                249#
NOPE
            466
NORM
            336# 1074
                        1077
                               1080
                                     1160
1755
                                           1162
                                                   1165 1267 1336 1338
           1422
                  1517
                               1734
                         1729
                                            2054
NORMAL
            336
                               1539
                                      1544
                  1532#
                        1537
NORM7
           1509#
                                                   1960
NOVAL
            281#
                   729
                          819
                                834
                                       901
                                            1021
                                                         1991
NTRE
             31#
                    34
           1798#
                  1856
NU
NUIN
                   633
                          637
                                     657
            632
                                643#
                                             659
                                                   1803
                                                        1806
            308
                   607#
                          625
NULE
NULEI
            308#
            608
                   609
NULE2
                          623#
NUMIN
            303#
                   628
                         644 1771 2000
NUMBUT
            302#
                   970
N1000
           1325#
            316#
                   883
N12
N232
            647
                   662#
N272
            407
                   434#
N2775
            903
                   909#
N310
            629
                   660#
N4
            999
                  1009#
N5
            283#
                  512
                        2001
N702
            634
                   661#
N764
            651
                   663#
OFF
            294
                   575#
                          578
                                587
OFFSET
           1727# 1731
OK11
            672
                   676#
OK12
            686
                   690#
ONEFLT
            328#
                 1176
058
           1844
                  1984#
DUTRNG
            664#
                   675
                        1838
                        1329
DUTSTG
            323# 1014
                               1736
                                      224
                                             243
PACKER
             11
                   185#
                         188
                                190
                                574# 1801
PARM1
            556
                   560
                         564
PARMS
            666
                   680
                         699
                                702# 1804
PDD500
           1728
                  1732#
PD14
           2224
                  2228#
PD1750
           2199#
                 2202
                        2207
PD240
           2213
                 2220#
PD33
           2222
                 2227#
PLCF
           2400
PLDD
           2374
                 2378
                        2381
PLDU
           2373
                  2376
PLOKE
           1408
                  1413#
                        2167 2177
PLOLD
PLOD1
           2154# 2163
           1622
                1633
                        1637# 1641
PL002
           1640
                 1647#
```



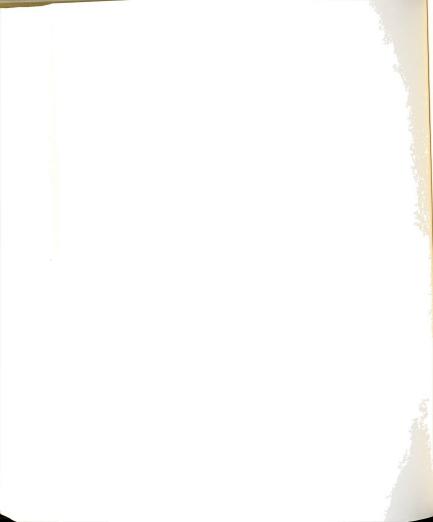
```
PL 005
           1624 1645#
1331# 1341 1397
PLOPT
PLOT
           1329# 1919
PLOTA
           2260
                 22746
PLOTER
           2340
                 2358#
PLOTEY
           2292
                 2310
                       2315
                              2318
                                   2341
                                          2344 2355 2359 2392#
PLOTDY
           2303
                 2312
                       2317
                             2320
                                   2351
                                          2393#
PLOTMV
           2294
                 2304
                       2306
                             2322
                                   2330
                                         2336 2338
                                                      2339 2346 2347
           2395#
PLOTNA
           2316 2319
                       2333 2334 2343 2350 2352
                                                            2361
           2394#
                       2296
PLOTNY
           2277
                 2287
                             2390#
PLOTNY
           2278
                 2298
                       2308
                             2391#
PLOTPN
           2241
                 2267
                       2270
                             2276 2389#
PLOTO
           1850
                 1912#
PLOTEC
           1010
                 2147# 2153 2180 2194 2195
PLOTT1
           2323
                 2369#
PLOTTE
                 2372#
PLOTT3
           2337
                 2375#
                 23/5#
2279 2363 2397# 2401
PLOTWT
           2272
PLOTX
           337
                 1917
                       2258# 2280 2289 2295 2297 2300 2307 2309
           2349
PLOT1
                 2273 2287#
           2264
PLOT2
           2314
                 2330#
PL DT3
           2347# 2364
PLOT4
           2335
                 2357
                       2366#
PLPD
           2271
PLPL
           2371
                 2377
                       2382
PLPR
           2370
                 2376
                       2378
PLPT
           2158
                 2162
                       2209# 2219
PLPU
           2268
                 2275
PLSE
          2398
PLTARE
           1379
                 1389#
PLTBAS
          1529
                 1615# 1652 1654 1655
PLTBS1
          1628#
                 1651
PLTEM
          1388
                 1418
                       1445# 1528
PLTEMI
          1479
                 1514
                       1528#
PLTEM2
          1462
                 1465
                       1480
                             1482# 1492 1494
PLTEND
          1467
                 1470# 1472
                             1504
PLTRET
          1333
                 1442#
PLTSID
          1527
                 1576# 1610 1612 1613
PLUD
          2377
          1581
                 1583 1589 1591 1595# 1599 1602 1607
PLUT
PLUT10
          1473
                 1475#
PLUT2
          1598
                 1608#
PLUTS
          1601
                 1603
                       1605#
PLUT4
          1589#
                 1609
PMCP
          1051#
PPP12
                  137
                        175#
            57
PP117
          1454
                 1525#
                       1443#
PP1750
          1406
                 1409
PP27
          1535
                 1545#
PP4
           769
                  794
PRINT
           961# 1842
PRINTU
           962#
                 941
                        947 1412 2441 2519
PRINT1
           305#
                       2179 2187# 2192 2214 2218 2223 2225
PRINTS
          2166
                2176
PRINT6
          2489
                2509
                       2514# 2523
```


PRING	964	991#	1004		
PRTDEC	970#	997	1048		
PRUNE	1001	1016#			
PULS	2595				
PUSHER	2043	2077#			
PUSHY	2077	2144#			
P117	1380	1444#			
P12	334#	1414	1428	1523	1577
P13	1920	1931#			
P14	1670	1684#			
P20	49	51	133	135	173#
P21	1924	1932#	1956		
P30	55	131	171#		
P3000	53	129	170#		
P3032	621	626#			
P310	342#	1047	1821		
P4	330#	2006			
P4000	296#	615			
P55	410	435#			
P62	1505	1530#			
P77	373	379	430#		
QCBUFF	1245#				
GDIC	1882	1887#			
GEMSET	318#	572	697	982	
GEND	320#	558	678	972	
QEQ2	1104#				
GEXSET	317#	552	695	980	
GFAC	1365	1448#			
GFIN	766#	845			
GFING	766	851#			
GFLNAM	96#				
GFULL	906	910#			
GM	452	455#			
GMGM	340	390	450#	454	
GNEW	1328#				
GPER	1701	1715#			
GPLTMX	1359	1447#			
QQFAC	1087#	1448			
GGFUL	910	919#			
QQMAR X	1098#	1447			
GGNEW	1328	1550#			
GGPER	1555#	1715			
GORSET	848	860#			
GGY	1899	1902#			
00500	531	589#			
99650	532	597#			
GRESET	814	829	848#		
GSMUST	1933	1940#			
GSTART	319#	554	664	966	
G200	479	531#			
9650	490	532#			
RCNT	1327#				
READIN	192#	221			
READSR	2587#	2597			
READ2N	201#	240			
REGUSE	345	938#	942		
REMAIN	576	583	588#		
REMAN2	579	580	605#		


```
RETAU
          1752# 1764
RETPLT
          1357# 1442
RET2
          1204
                1446#
RET21
           1444
                 1450#
RETS
          1463
                1526#
RECW
            44#
                 124
RFL
           324 1075
                      1569#
RELIDT
           324# 1128 1144 1146 1147 1152 1170 1196 1204
RUCEI
           875 878#
878 2599# 2602
DOCEL I
ROTAT
          1864
                1907#
          2544#
ROTATE
          2546 2549# 2562 2600
2557 2558 2566#
ROTIT
ROTX
           294# 529
                              624
                                   795
                                          914
ROUND
                       542
                       1871
RR
          1126# 1130
RRFCW
           1248
R1
           310# 1066
                       1073 2040 2058 2059
                      1925 1957 1962 1993 2008 2016 2047
80
           313# 1921
                1978#
SAVE
          1866
           898
                 911#
                       918
SAVOR
SAURUN
            49# 1980
                        71#
SBLCK
            63
                  64
                               75
           109
CBI DCK
                 110
                       117#
                              120
SCAN
           727# 1840
SCAND
           751#
                 764
                       824
                              839 1807
SCBRYT
          2164 2172
                      2185#
SCHOME
          2221# 2226
SCPLOT
          1915 1918#
                      2169 2183#
SCSAVX
          2151
                2159
SCSAVY
          2152
                2155
                      2171 2184#
SCSCAL
          2168
                2170
                      2193# 2206 2208
SCXN
          2186# 2210
                      2215
          2149 2164#
SC1
SETUP
           321#
                988
                      1335 1391 1741
SETUP3
          1025# 1043
           325
                107B
                      1566#
SEL
SFLOT
           325# 1133
                      1150
SHIFTE
           211#
                228
                      2211 2216
SHI
           216
                1681
SIDE
          1474
                1487
                      1527#
SINGLE
           303
                1538
                      1542 1546# 1549
SKIPMA
          2506
                2537+
SKIPPA
          2510
                2538#
           158
                 163
                       169#
SLOC
SMELG
           348# 1884
                      1938 1950
                2022
                      2032# 2076
SMIFT
          2019
SMITCH
           349#
                 742
          1998
                2078*
SMOOCH
                1990#
SMOOTH
          1930
          1997
                2004
SM002
SMOD3
          2022# 2030
SMOR
          1923 1927
                      1930#
SMPWT
           887#
                 894
          2050# 2069
CMII
SMUST
          1846
                1933#
                1948#
SMUSTO
           349
          1948 1971#
SMILETS
```



```
SMUST4
            1953
                  1967 1969# 1971
SMUSTS
            1955
                  1970# 1972
SMUST 6
            1968
                  2007#
SMUST
            1952
                         1974#
                  1964
SMUSTR
            1956#
                  1973
SM11
            1860
                  1920#
SM17
            1862
                  1924#
SPARSE
            2874
                   384
SPASE
                                998 1003 1005# 1008
            287
                   971
                          976
SPASO
            1006
                  1010#
SPCCHR
            200
                   225#
SPCR2
            209
                   229#
SRDLAY
            2567#
                  2587
SS
            1131#
                  1135
                         1873
START
            274
                   557
                                 730
                                       740
                                              820
                          670
                                                     835
                                                          1024
STARTI
                          219
            189
                   218
                                223
                                       235
                                              236
                                                     242
                                                           248#
STARTO
            319
                   703#
START2
            275#
                   677
                          731
                                 968
                                      1026
                                             1382
STIGMA
            323
                  1870#
STRGIN
             11#
                    60
                          105
SWITCH
           2507
                  2511
                         2516#
SWOOP
            1773
                  1800#
            312#
                                890
                                       895
                                             1068
                                                    1076
                                                          2042
                   885
                          889
            315#
                   886
                          892
                                897
                                      1959
                                             1990
                                                    2033
TEMCHR
            193
                   194
                          214
                                225
                                       227
                                              230
                                                     238
                                                           2446
TEMPRM
            386
                   387
                          397
                                398
                                       400
                                              401
                                                     427#
TEMP 1
            284#
                   510
                          521
                                526
                                       612
                                              617
                                                     667
                                                           668
                                                                  676
                                                                        681
            682
                   690
                         1579
                                1608
                                      1774
                                             1775
                                                    1779
                                                          1785
                                                                 1786
                                                                        1787
            1965
                  1994
                         1995
                               2029
TEMP2
            285#
                   511
                          518
                                519
                                       524
                                             1617
                                                    1628
                                                          1630
                                                                 1631
                                                                       1647
            1778
                  1784
                         2018
                               2020
TEMP3
            286#
                   513
                          522
                                1782
                                      1783
                                            2034
                                                    2057
                                                          2061
                                                                 2043
TEMP4
            289#
                          785
                                783
                                       790
                                             1768
                                                    1781
                                                          2044
                                                                 2045
                                                                       2051
           2052
                  2053
                         2075
                                792
                                            1037
TEMP5
            290#
                          785
                                      1023
                                                    1053
                                                          2049
                                                                 2068
TEMP6
            291#
                   553
                          562
TEMO
           2468
                  2470
                         2475
                               2477
                                      2530#
TEMR
           2482
                  2486
                         2495
                               2508
                                      2531#
TENPWE
           2421
                  244B
                         2450#
TLOOP
           2589#
                  2594
                                224
                                       237
                                              245#
TMCHR2
            202
                   203
                          210
TO
              5#
                    54
                          134
                                165
TO1
             56
                   136
                          146#
TRIN
            144
                   150#
                          156
                                     . 167
TROUT
            145
                   157#
                          159
                                162
TSCC1
           2470#
                  2478
                         2480#
                               2490
                                      2492
                                            2512
TSCCZ
           2474
                  2476
TTOINT
            309#
                  1354
                         1435
                                              449
                                                     453
                                                           459 2234
TTOUT
            305
                   360
                         362
                                437#
                                       444
                                       877
TURN
            812
                   827
                          842
                                873#
TURNIT
           2563
                  2583#
                        2598
                                              440
TYCE
            306
                   358
                         391
                                451
                                       4548
TYPAT
           2489#
                 2498
                                       559
                                              563
                                                    665
                                                           679
                                                                  698
                                                                        815
TYPIST
            304#
                   480
                          401
                                455
            830
                   846
                         907
                                967
                                       973
                                              983
                                                    1007
                                                          1360
                                                                 1366
           1770
                  1883
                        1900
                               1934
                                      1999
TYPSP
           2485
                  2494#
TYPSTG
            304
                  2467# 2505
                               2525
```




```
TYGM
                            1740 1750 1754 2004
           340#
                 641
975
                        658
                             1044# 1049
1667 1674
UNDO
           949
                        985
UNDRM
           335
                 1658# 1661
                                         1683
UPSET
           321
                 1018# 1030
                             1033
USEREG
                 357
           345#
USR
                  26
                        69
                               89
             7#
                                    115
            21
USRIN
          2178
LICI
                2182#
VALUE
          2410
                2418 2420
                            2457#
VISAD
          1880
                 1910#
           280#
                 741
                       752
                             762
                                               836 1025 1028 1042
WAVE
                                    763
                                          821
                 1084
          1056
                       1085
                            1416
WECH
            43#
                  79
WLCH
           282#
                 750
WPON
          1922 1926 1928# 1958
WI
          1928
                2097#
          2100#
W2
          2103#
W3
          2106#
W4
W5
          2109#
          2112#
H6
XAX
          1701# 1858
XOFF
           346
                 1339
                      1724# 1730
XOFFI
           346#
                1400
XPLOT
          1912
                 1917#
XREG
          1429
                 1432#
YSCAL
          1438
                 1531 1706 1709 1710 1712#
XSCALI
          1520
                 1531#
XSCL3
          1425
                 1438#
XXPL
          1466
                 1512# 1524
                            1657
XXPLI
          1632
                 1657#
                                  1362 1369 1399 1439#
YCAL
          1337
                 1345 1351
                             1352
YESNO
           307
                 461#
                       463
                             465
YESTRG
           467
                  471#
YORN
           307# 1935
                       1410
                            1413 1415
                                         1433#
YREG
          1403
                1404
                       1402 1427 1522 1548 2023
YUNDRM
           335# 1263
YUP
           464
                 473#
ZP3
          1455# 1817
701
           672#
202
           674#
Z03
           688#
Z04
           758#
Z06
          1381# 1808
          1047# 1820
_24775
_25177
          2235
          1948
```

V5A

REFERENCES

REFERENCES

- Winefordner, J.D., Schulman, S.G., O'Haver, T.C.; "Luminescence Spectrometry in Analytical Chemistry"; John Wiley and Sons: New York, 1972.
- Christmann, D.R., Ph.D. Dissertation, Michigan State University, 1980.
- Wehry, E.L., <u>Anal. Chem.</u> 1980, <u>52</u>, 75R-90R and previous biennial reviews.
- Skoog, D.A., West, D.M., "Principles of Instrumental Analysis"; Holt, Rinehart, and Winston: New York, 1971, p. 233.
- Olsen, E.D., "Modern Optical Methods of Analysis", McGraw Hill, Inc.: New York, 1975.
- Hercules, D.M., Ed., "Fluorescence and Phosphorescence Analysis -Principles and Applications". Interscience: New York. 1966.
- Willard, H.H., Merrit, L.L., Dean, J.A., "Instrumental Methods of Analysis", 5th Ed., D. Van Nostrand: New York, 1974, p. 141.
- 8. Lam, R.B., Leary, J.J., Appl. Spectrosc., 1979, 33, 17-19.
- Holland, J.F., Ph.D. Dissertation, Michigan State University, 1971, pp. 97-105.
- 10. Ohnesorge, W.E., Anal. Chim. Acta 1964, 31, 484-7.
- Holland, J.F., Teets, R.E., Kelly, P.M., Timnick, A., <u>Anal</u>. <u>Chem</u>. 1977, <u>49</u>, 706-10.
- 12. Parker, C.A., Rees, W.T., <u>Analyst</u>, 1962, <u>87</u>, 83-111.
- 13. Parker, C.A., <u>Nature</u>, 1958, <u>182</u>, 1002-4.
- 14. Henderson, G., J. Chem. Educ. 1977, 54, 57-9.

- 15. Lamola, A.A., Joselow, M., Yamane, T., Clin. Chem. 1975, 21, 93-7.
- Griebel, R.J., Knoblock, E.C., Koch, T.R., <u>Clin</u>. <u>Chem</u>. 1979, <u>25</u>, 1983-4.
- Parker, C.A., "Photoluminescence of Solutions", Elsevior: Amsterdam, 1968, pp. 220-34.
- 18. Gill, J.E., Photochem. Photobiol. 1969, 9, pp. 313-22.
- The Sadtler Standard Spectra By Sadtler Research Laboratories, Inc., Researchers, Editors and Publishers, USA.
- 20. API Spectra By American Petroleum Institute, Research Project 44 (formerly), Thermodynamics Research Center Data Project (currently), Thermodynamics Research Center, Department of Chemistry, Texas A & M University, College Station, Texas.
- 21. Parker, C.A., Anal. Chem. 1962, 34, pp. 502-5.
- White, C.E., Ho, M., Weimer, E.Q., <u>Anal</u>. <u>Chem</u>. 1960, <u>32</u>, pp. 438-40.
- 23. Rosen, P., Edelman, G.M., Rev. Sci. Instr. 1965, 36, pp. 809-15.
- 24. Argauer, R., White, C.E., Anal. Chem. 1964, 36, pp. 368-71.
- 25. Witholt, B., Brand, L., Rev. Sci. Instr. 1968, 39, pp. 1271-8.
- 26. Parker, C.A., Rees, W.T., Analyst 1960, 85, pp. 587-600.
- 27. Parker, C.A., Barnes, W.J., Analyst 1957, 82, pp. 606-20.
- 28. Ellis, D.W., J. Chem. Educ. 1966, 43, pp. 259-62.
- Holland, J.F., Teets, R.E., Timnick, A., <u>Anal</u>. <u>Chem</u>. 1973, <u>45</u>, pp. 145-53.
- Christmann, D.R., Crouch, S.R., Holland, J.F., Timnick, A., <u>Anal. Chem.</u> 1980, <u>52</u>, pp. 291-5.
- 31. Guilbault, G.G., "Practical Fluorescence, Theory, Methods, and Techniques", Dekker: New York, 1973, pp. 17-19.
- 32. Birks, J.B., <u>J. Res. Natl. Bur. Stand. Sect. A</u>, 1976, <u>80</u>, pp. 389-99.
- McDonald, R.J., Selinger, B.K., <u>Photochem. Photobiol.</u> 1971, <u>14</u>, pp. 753-7.
- 34. Demas, J.N., Crosby, G.A., J. Phys. Chem. 1971, 75, pp. 991-1024.

- Berlman, J.B., "Handbook of Fluorescence Spectra of Aromatic Molecules", Academic Press: New York, 1971, pp. 35.
- 36. Chen, R.F., Hayes, J.E., Jr., Anal. Biochem., 1965, 13, pp. 523-9.
- Mitchell, D.G., Garden, J.S., Aldous, K.M., <u>Anal. Chem.</u> 1976, <u>48</u>, pp. 2275-7.
- 38. Wirth, M.J., Lytle, F.E., Anal. Chem., 1977, 49, pp. 2054-7.
- 39. Weber, K., Z. Elektrochem. 1930, 36, pp. 26-36.
- 40. Sen-Gupta, S.B., J. Indian Chem. Soc. 1938, 15, pp. 263-73.
- 41. Ghosh, I.C., Sen-Gupta, S.B., Z. Phys. Chem. 1938, B41, pp. 117-41.
- Rollefson, G.K., Dodgen, H.W., <u>J. Chem. Phys.</u> 1944, <u>12</u>, pp. 107-11.
- Van Slageren, R., Den Boef, G., Van Der Linden, W.E., <u>Talanta</u>, 1973, <u>20</u>, pp. 501-12.
- 44. Forster, T., "Fluoreszenz Organisher Verbindungen", Vandenhoeck-Ruprect: Gottingen, Germany, 1951.
- 45. Budo, A., Ketskemety, I., J. Chem. Phys. 1956, 25, pp. 595-6.
- 46. Budo, A., Ketskemety, I., Acta Phys. 1957, 7, pp. 207-23.
- 47. Budo, A., Dombi, J., Horvai, R., <u>Acta Phys. Et. Chem. Szeged.</u> 1957, <u>3</u>, pp. 3-15.
- Dombi, J., Hevesi, J., Horvai, R., <u>Acta Phys. Et. Chem. Szeged</u>. 1958, <u>5</u>, pp. 20.
- 49. Melhuish, W.H., <u>J</u>. <u>Phys</u>. <u>Chem</u>. 1961, <u>65</u>, pp. 229-35.
- 50. Birks, J.B., Phys. Rev. 1954, 94, pp. 1567-73.
- 51. Rohatgi, K.K., Singhal, G.S., Anal. Chem. 1962, 34, pp. 1702-6.
- 52. Rohatgi, K.K., Singhal, G.S., Photochem. Photobiol.. 1968, 7, pp. 361-7.
- 53. Alan Mode, V., Sisson, D.H., Anal. Chem. 1974, 46, pp. 200-3.
- Budo, A., Dombi, J., Szollosoy, L., <u>Acta Phys. Et. Chem. Szeged</u>, 1956, <u>2</u>, pp. 18.
- Braunsberg, H., Osborn, S.B., <u>Anal. Chim. Acta</u>, 1952, <u>6</u>, pp. 84-95.


- 56. Lauer, J.L., J. Opt. Soc. Amer. 1951, 41, pp. 482-3.
- 57. Gill, J.E., Appl. Spectrosc. 1970, 24, pp. 588-90.
- Kelly, P.M., Ph.D. Dissertation, Michigan State University, 1976, pp. 20-46.
- Thomas, J.F., Mukai, M., Tebbens, D.B., <u>Natl</u>. <u>Cancer</u>. <u>Inst</u>. <u>Monogr</u>. 1962, <u>9</u>, pp. 127-33.
- St. John, P.A., McCarthy, W.J., Winefordner, J.D., <u>Anal. Chem.</u> 1966, 38, pp. 1828-35.
- 61. Novak, A., Coll. Czech. Chem. Comm. 1978, 43, pp. 4869-78.
- 62. Christmann, D.R., Crouch, S.R., Timnick, A., <u>Anal</u>. <u>Chem.</u>, 1981, <u>52</u>, pp. 276-280.
- Christmann, D.R., Crouch, S.R., Timnick, A., <u>Anal</u>. <u>Chem</u>. 1981, <u>52</u>, pp. 276-280.
- 64. Leese, R.A., Wehry, E.L., Anal. Chem. 1978, 50, pp. 1193-7.
- Britten, A., Archer-Hall, Jr., Lockwood, G. <u>Analyst</u>, 1978, <u>103</u>, pp. 928-36.
- Rothman, L.D., Crouch, S.R., Ingle, J.D., Jr., <u>Anal. Chem.</u> 1975, <u>47</u>, pp. 1231.

