DISCERNING THE ROLE OF DENITRIFICATION, ANAMMOX, AND N₂O PRODUCTION IN AQUATIC SYSTEMS

By

Kateri Rose Salk-Gundersen

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Integrative Biology—Doctor of Philosophy

2017
ABSTRACT

DISCERNING THE ROLE OF DENITRIFICATION, ANAMMOX, AND N₂O PRODUCTION IN AQUATIC SYSTEMS

By

Kateri Rose Salk-Gundersen

This dissertation investigates (1) the magnitude and relative importance of denitrification and anammox in aquatic nitrogen (N) loss, (2) microbial pathways of nitrous oxide (N₂O) production, (3) impact of ecosystem restoration on N loss and export, and (4) linkages of N loss with harmful algal blooms (HABs). Study ecosystems included a mesotrophic lake, a wetland undergoing restoration, an embayment of Lake Erie, and a coastal seagrass bed. A variety of stable isotopic techniques were employed to achieve these research objectives.

Chapter one focuses on Muskegon Lake, a Great Lakes Area of Concern that is targeted for water quality improvements. This system experiences seasonal hypolimnetic hypoxia that is driven by water column stratification and respiration enhanced by high rates of epilimnetic primary production. Hypoxic conditions were associated with production of N₂O, which was produced predominantly by nitrification as evidenced by site preference, the difference in δ¹⁵N between the central and outer N atoms in N₂O. Upon seasonal water column mixing, atmospheric N₂O emissions from Muskegon Lake were among the highest reported in estuarine and lacustrine environments, suggesting that lakes are an underappreciated source of N₂O.

Chapter two evaluates the role of restoration activities on N loss in a floodplain wetland upstream of Muskegon Lake. Current restoration efforts of this former agricultural field include dredging of organic-rich sediment and hydrologic reconnection to adjacent Bear Creek. ¹⁵N tracer incubations and modeling via the isotope pairing technique (IPT) indicate that restoration activities will likely result in a twofold reduction in denitrification rate in wetland sediments,
which are driven largely by a decrease in coupled nitrification-denitrification. Despite a decrease in the N loss capacity of the wetland sediments, hydrologic reconnection has the capacity to decrease the downstream N load by as much as 10%. However, a reduction in N availability under restoration conditions resulted in a threefold increase in N₂O:N₂ yield, potentially increasing the N₂O footprint of this Great Lakes Area of Concern following restoration.

Chapter three highlights the development and empirical testing of a new revision to the IPT that accounts for the activity of dissimilatory NO₃⁻ reduction to NH₄⁺ (DNRA) as well as denitrification and anammox. This work, conducted in eastern Australia, provides the first complete accounting of NO₃⁻ reduction in a seagrass environment. Without employing the revised IPT, denitrification in this system would have been overestimated by as much as 600%. DNRA outcompeted denitrification for NO₃⁻, indicating that this high C:N system functions to recycle and retain N rather than facilitate its loss. Furthermore, the suppression of denitrification allowed anammox to dominate N loss, an unexpected result in comparison to other coastal systems and suggests anammox may be important in other seagrass systems.

Chapter four evaluates the drivers of dramatic shifts in nutrient abundance and N cycling in Sandusky Bay, Lake Erie, and the impact of these transitions on HAB formation. Isotope tracer assays quantified rates of N loss and N fixation. Denitrification and anammox were found to drive large swings in N:phosphorus ratios from > 10,000 to < 16, the threshold for N limitation. N limitation stimulated N fixation, which indirectly supported the development of a HAB in the late summer. Denitrification and nitrification contributed equally to N₂O production, and emissions of N₂O were highest when N supply was greatest. Climate change is expected to increase the frequency of episodic rain events, which will likely (1) enhance N₂O emissions and nitrate export from Sandusky Bay and (2) stimulate offshore HABs in Lake Erie.
This dissertation is dedicated to Knute, who has supported my work in countless ways.
ACKNOWLEDGEMENTS

The completion of this dissertation was made possible by the efforts of many. In particular, I wish to extend my gratitude to the following people:

My doctoral advisor, Nathaniel Ostrom, whose expertise and guidance allowed me to progress immensely as a scientist. Your criticism, encouragement, and trust have given me countless opportunities to develop my conceptual expertise, analytical skills, writing, grantsmanship, and network of scientific peers. Thank you for helping me join the small but mighty band of isotope biogeochemists.

My graduate committee, Peggy Ostrom, Al Steinman, Bopi Biddanda, and Steve Hamilton. Each of you have brought unique expertise and insight into my graduate work. The products of this dissertation (including myself) are richer as a result of your efforts. Thank you for your edits, questions, and support.

Scientists who have welcomed me into their research groups, showing me the value of strong collaboration. Thank you to Bopi Biddanda, Al Steinman, Dirk Erler, Brad Eyre, George Bullerjahn, Mike McKay, Mark McCarthy, and Silvia Newell.

My various coauthors and helpers in the field and laboratory: Anthony Weinke, Leon Gereaux, Adam McMillan, Alex Dutcher, James Smit, Maggie Oudsema, Mary Ogdahl, Natasha Carlson-Perret, Jamie David, Iain Alexander, Matheus Carvalho, Taylor Tuttle, and Emily Davenport. Without your assistance, this work would not have been pushed forward with such force as it was. Most of all, thank you to Hasand Gandhi, whose knowledge of instrumentation and patience in training an eager student know no limits.

My family and friends, who have enthusiastically supported my work but have also
shown me the value of a good laugh, a good adventure, and a good beer. Thank you to my parents, who have encouraged my fascination for lakes and academics from the very beginning. Thank you to my companions at Michigan State, who will no doubt become lifelong friends. Lastly, thank you to my husband, Knute Gundersen, who continuously motivates me to do my best work. Thank you for your unconditional support and celebration of my accomplishments.

This dissertation was supported by the NSF Graduate Research Fellowship [No. DGE1424871], EPA Great Lakes Restoration Initiative [No. GL00E00460-1], NSF/AAS East Asia and Pacific Summer Institutes [No. IIA-1414842], ARC Grants [DP160100248, LP110200975, and LP150100519], Michigan State University (MSU) Water Research Initiation Grant, MSU College of Natural Science Doctoral Recruiting Fellowship, MSU Department of Integrative Biology John R. Shaver Research Fellowship, MSU Rose Graduate Fellowship in Water Research, MSU College of Natural Science Marvin Hensley Endowed Fellowship, and an Annis Water Resources Institute research grant. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the Environmental Protection Agency, the National Science Foundation, or the Australian Research Council.
TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER 1: ECOSYSTEM METABOLISM AND GREENHOUSE GAS PRODUCTION IN A MESOTROPHIC NORTHERN TEMPERATE LAKE EXPERIENCING SEASONAL HYPOXIA ... 1

ABSTRACT ... 1

INTRODUCTION ... 2

METHODS ... 5

Study site ... 5

Buoy observatory measurements ... 6

Field sampling procedure .. 7

Ecosystem metabolism measurements ... 8

Nutrient concentrations and trace gas analysis .. 10

Statistical analyses .. 12

RESULTS ... 12

DISCUSSION .. 19

Hypoxia development and ecosystem metabolism ... 19

Seasonal variation in εobs ... 21

Greenhouse gas concentrations and emissions .. 22

Determination of microbial origin of N₂O .. 24

Conclusion ... 28

APPENDIX .. 29

LITERATURE CITED .. 33

CHAPTER 2: WETLAND RESTORATION AND HYDROLOGIC RECONNECTION RESULT IN ENHANCED WATERSHED NITROGEN RETENTION AND REMOVAL ... 42

ABSTRACT ... 42

INTRODUCTION ... 42

METHODS ... 45

Study site ... 45

Intact sediment cores .. 47

Analyses ... 49

Modeling .. 49

Statistical analysis .. 50

RESULTS ... 51

DISCUSSION .. 53

LITERATURE CITED .. 61
CHAPTER 3: UNEXPECTEDLY HIGH DEGREE OF ANAMMox AND DNRA IN SEAGRASS SEDIMENTS: DESCRIPTION AND APPLICATION OF A REVISED ISOTOPE PAIRING TECHNIQUE ... 67
 ABSTRACT .. 67
 INTRODUCTION .. 68
 METHODS .. 73
 Study site .. 73
 Sediment slurry incubations .. 73
 Intact sediment incubations ... 74
 Analyses .. 76
 IPT modeling ... 76
 Statistical modeling .. 80
 RESULTS ... 80
 Application of R-IPT-DNRA ... 80
 Rates of NO₃⁻ reduction processes ... 83
 DISCUSSION ... 85
 Evaluation of R-IPT-DNRA when DNRA is active 85
 Anammox, denitrification, and DNRA in seagrass ecosystem sediments 87
 Effect of organic carbon quality on N cycling 92
 Conclusion ... 93
 APPENDIX ... 95
 LITERATURE CITED .. 99

CHAPTER 4: DRAMATIC SHIFTS IN N CYCLING DRIVE HAB FORMATION AND MITIGATION OF N LOADING IN SANDUSKY BAY, LAKE ERIE ... 106
 ABSTRACT .. 106
 INTRODUCTION .. 107
 METHODS .. 109
 Field sampling .. 109
 Isotope tracer assays ... 112
 Analyses .. 113
 Modeling .. 116
 RESULTS ... 116
 DISCUSSION ... 123
 Nutrient stoichiometry ... 123
 N removal processes ... 124
 N₂O production and emissions ... 126
 N fixation ... 128
 Harmful algal blooms ... 129
 Conclusions ... 130
 LITERATURE CITED .. 132
LIST OF TABLES

Table 1. \(\varepsilon_{\text{obs}} \) values in Muskegon Lake measured by the \textit{in situ} (2012) and bottle incubation (2013) methods ... 15

Table 2. Isotopic composition of \(\text{N}_2\text{O} \) in the troposphere (Yoshida and Toyoda 2000), epilimnion/mixed water column in Muskegon Lake, and hypolimnion of Muskegon Lake 18

Table 3. DIN concentrations in the Bear Lake Wetland Restoration Area and adjacent Bear Creek ... 47

Table 4. Posterior estimates of denitrification, \(\text{N}_2\text{O} \) production, and \(\text{NH}_4^+ \) flux under restoration scenarios. HR = hydrologic reconnection, HR+D = hydrologic reconnection and dredging, CI = credible interval ... 53

Table 5. Parameters and equations used in the R-IPT (Risgaard-Petersen et al. 2003) and the R-IPT-DNRA .. 79

Table 6. Nitrogen loss rates calculated using the IPT for intact sediments and sediment slurries. ND = not detected ... 90
LIST OF FIGURES

Figure 1. Muskegon Lake. Inset shows the location of Muskegon Lake (star) and its watershed (light gray) within the state of Michigan, USA. The white circle in the middle of the lake represents the location of the Muskegon Lake Observatory Buoy (MLO; www.gvsu.edu/buoy/). .. 7

Figure 2. (a-b) Temperature and (c-d) dissolved O$_2$ concentration from April to November in 2012 (left panel) and 2013 (right panel). Data were collected by the MLO sensors placed at various depths in the water column. Hypoxia (dissolved O$_2$ <63 μM) is indicated by a dotted line.. 13

Figure 3. Water column profiles at the MLO in (a-d) 2012 and (e-h) 2013. Temperature and dissolved O$_2$ concentration were measured continuously throughout the water column on each sampling date. CH$_4$ and N$_2$O concentrations were measured at four depths on each sampling date. Error bars represent standard error.. 14

Figure 4. Primary production (GPP), respiration (R), and P/R in Muskegon Lake in 2012 and 2013. P and R rates (open and closed symbols, respectively) were calculated according to Bocaniov et al. (2012) on four occasions each year from May through September. P/R ratios (bars) were calculated by dividing P by R. The horizontal line represents P/R=1 15

Figure 5. (a) CH$_4$ and N$_2$O emissions and wind speeds for each sampling date in 2012 and 2013 and (b) CH$_4$ and N$_2$O emissions converted to CO$_2$ equivalent for each date. Wind speed was measured by the MLO. CH$_4$ and N$_2$O emissions were multiplied by their radiative forcing to obtain CO$_2$ equivalents (IPCC 2007). The vertical dashed line represents the division between the two sampling years.. 17

Figure 6. Linear regression of SP, δ^{18}O, and δ^{15}N of measured N$_2$O with the inverse concentration of N$_2$O at each sampling point. In situ N$_2$O concentrations and isotopic values are plotted with the atmospheric N$_2$O concentration and isotopic composition (rightmost value; Yoshida and Toyoda 2000). The isotopic composition of microbially produced N$_2$O is represented as the y-intercept value (Yamagishi et al. 2007).. 19

Figure A1. Nutrient concentrations in 2013. (a) NH$_4^+$, (b) NO$_3^-$, and (c) SRP concentrations were measured at four depths on each sampling date.. 31

Figure A2. Principal component analysis for 2013 data. Points represent principal component scores for each sampling depth on a given date. Vectors represent loadings for each variable on a scale of zero to one and are plotted for illustrative purposes only. CH$_4$ = CH$_4$ concentration, N$_2$O = N$_2$O concentration, Temp = temperature, DO = dissolved O$_2$, pH = pH, Chlor = chlorophyll a fluorescence, NO$_3$ = NO$_3$ concentration, NH$_4$ = NH$_4^+$ concentration, SRP = soluble reactive phosphorus concentration.. 31
Figure A3. Relationship between ΔN₂O and apparent oxygen utilization (AOU). AOU was calculated as the difference between the saturation concentration and the *in situ* concentration of dissolved O₂. ΔN₂O was calculated as the difference between the *in situ* concentration and the saturation concentration of N₂O at each sampling point. A positive correlation \((R^2 = 0.58)\) supports the interpretation of a N₂O production source from nitrification.

Figure A4. Trends in N₂O concentration and isotopic composition. (a) δ¹⁸O-N₂O and δ¹⁵N-N₂O are negatively correlated \((R^2 = 0.68)\). (b) δ¹⁸O-N₂O and isotopic site preference (SP) are positively correlated \((R^2 = 0.60)\) with a slope of 0.78 (solid line). N₂O reduction produces a characteristic δ¹⁸O-N₂O vs. SP slope of 0.45 (dotted line).

Figure 7. Map of the Bear Lake Wetland Restoration Area (BLWRA). Restoration activities in the West Pond include removal of the berm that separates Bear Creek from the wetland and sediment dredging. Insets show the location of the ponds in the downstream portion of the watershed (left) and in Michigan, USA (right).

Figure 8. Posterior estimates of (a) denitrification, (b) coupled nitrification-denitrification, (c) N₂O production rates, and (d) NH₄⁺ flux. Rates were measured from incubations of 6 and 12 h duration under three restoration scenarios: (1) no restoration (control), (2) simulated hydrologic reconnection (HR), and (3) simulated hydrologic reconnection and dredging (HR+D). Open circles represent measured rates and closed circles represent the mean of the posterior estimate for each treatment-duration combination. Lines represent the 95 % credible interval around each posterior mean estimate. In (d), positive values indicate a net release of NH₄⁺ to the water column from the sediment, and negative values indicate a net uptake of NH₄⁺ by the sediment from the water column. Note the different scales for the axes among panels. Statistical groupings of posterior estimates at the p < 0.05 level are indicated by letters.

Figure 9. (a) NO₃⁻ and (b) NH₄⁺ mitigation capacity of the wetland with respect to the potential load delivered by Bear Creek. Denitrification and NH₄⁺ flux were measured from incubations of 6 and 12 h duration under restoration scenarios of simulated hydrologic reconnection (HR) and simulated hydrologic reconnection with dredging (HR+D). Closed circles represent the mean of the posterior estimate for each treatment-duration combination. Lines represent the 95 % credible interval around each posterior mean estimate. Fractions of Bear Creek water reaching the wetland sediment (0.1, 0.5, and 1.0) are represented by light gray, dark gray, and black lines, respectively.

Figure 10. (a) The original IPT model (shaded; Nielsen 1992) that quantifies N₂ production via denitrification and a subsequent revision to the IPT (R-IPT; Risgaard-Petersen et al., 2003) that includes the production of N₂ via anammox as well as denitrification. (b) The IPTₐₙₐN₂O model (Hsu and Kao 2013), which adds the capacity to quantify N₂O production via denitrification to the R-IPT. (c) A revision to the IPT model (Song et al. 2016) which enables quantification of the production of NH₄⁺ via DNRA to the R-IPT. (d) The R-IPT-DNRA model (this study), which adds the ability to quantify N₂O production via denitrification and NH₄⁺ production via DNRA to the R-IPT while simultaneously distinguishing canonical anammox and coupled DNRA-anammox.
Figure 11. Increase in the fraction of 15N in the NH$_4^+$ pool by treatment. F15NH$_4^+$ increased linearly over time for control (df = 8, p < 0.01, R2 = 0.58) and seagrass (df = 8, p < 0.05, R2 = 0.41) treatments. Although there was a trend, there was insufficient replication to confirm a linear relationship for the phytoplankton treatment (df = 1, p = 0.14, R2 = 0.90).

Figure 12. Comparison of (a) anammox and (b) denitrification rates from the R-IPT (Risgaard-Petersen et al. 2003) to rates from the R-IPT-DNRA method presented here for control, phytoplankton, and seagrass treatments. The solid line represents a 1:1 relationship. Insets represent the total range of under/overestimation by anammox and denitrification across treatments, with the mean represented by the thick line.

Figure 13. Overestimation of denitrification rate (D$_{14}$) by the R-IPT model compared to the R-IPT-DNRA model as a function of the production of 30N$_2$ by anammox relative to total 30N$_2$ production (A$_{30}$/P$_{30}$).

Figure 14. Rates of (a) DNRA, (b) N$_2$ production by anammox, (c) N$_2$ production by denitrification, and (d) N$_2$O production by denitrification. Rates were determined from incubations of three different durations and under three organic carbon treatments (control – no addition, addition of phytoplankton detritus, and addition of seagrass detritus). Error bars represent +1 standard deviation. DNRA rate data were not available at the 6 h time point with phytoplankton addition. Note the difference in y-axis scales among panels.

Figure 15. N$_2$ production by anammox and denitrification, N$_2$O production by denitrification, and DNRA as a proportion of (a) total NO$_3^-$ reduction and (b) total N loss to N$_2$ and N$_2$O. Proportions of each process were measured at three different incubation durations under three carbon treatments (control – no addition, addition of phytoplankton detritus, and addition of seagrass detritus).

Figure A5. Isotope fraction of (a) 29N$_2$ and (b) 30N$_2$ in anoxic slurry incubations following addition of 15NH$_4^+$, or 15NH$_4^+$ + 14NO$_3^-$, or 15NO$_3^-$ over the course of 18 h. The control treatment received no amendment. An increase in F29 indicates anammox activity, whereas an increase in F30 indicates denitrification activity.

Figure 16. Sampling locations in Sandusky Bay (circles) and Sandusky River monitoring station (USGS site 04198000, cross).

Figure 17. (a) NO$_3^-$, (b) NH$_4^+$, (c) PO$_4^{3-}$, (d) N:P (NO$_3^-$ + NH$_4^+$: PO$_4^{3-}$) ratio, and (e) chlorophyll a concentration in six sites in Sandusky Bay in 2015. (f) Discharge of the Sandusky River at Fremont obtained from USGS monitoring station 04198000. The dotted line in (d) indicates a N:P ratio of 16 (note log scale on y axis).

Figure 18. (a) Denitrification, (b) anammox, and (c) N$_2$O production at Sandusky Bay station 1163 in 2015. Rates were measured by the isotope pairing technique. Error bars represent +1 SD. Letters indicate groupings of statistically significant differences at p < 0.05.
Figure 19. (a) N$_2$O saturation and (b) diffusive emissions of N$_2$O to or from the atmosphere at six stations in Sandusky Bay. A saturation of 100% is represented by the horizontal dotted line in (a). Data on May 28 and October 12 were available only for station 1163. Error bars represent +1 SD ...121

Figure 20. N$_2$O isotopomers in Sandusky Bay. (a) δ^{15}N and δ^{18}O in black and gray, respectively, (b) SP values, and (c) δ^{15}N$^\alpha$ and δ^{15}N$^\beta$ in gray and black, respectively ...122

Figure 21. N fixation rates at Sandusky Bay station 1163 in 2015. Error bars represent +1 SD. Letters indicate groupings of statistically significant differences at $p < 0.05$122
CHAPTER 1

ECOSYSTEM METABOLISM AND GREENHOUSE GAS PRODUCTION IN A MESOTROPHIC NORTHERN TEMPERATE LAKE EXPERIENCING SEASONAL HYPOXIA

ABSTRACT

Many lacustrine systems, despite management efforts to control eutrophication, are hypoxic during stratified periods. Hypoxia is a major concern, not only for its impact on aquatic life but also for its potential to stimulate production of the greenhouse gases, methane (CH$_4$) and nitrous oxide (N$_2$O). We investigated the drivers of hypoxia in Muskegon Lake, a temperate dimictic freshwater estuary that experiences frequent hypolimnetic mixing due to atmospheric forces, riverine inputs, and intrusion of oxic water from coastal upwelling in Lake Michigan. Primary production (GPP) and respiration (R) rates obtained from a δ^{18}O mass balance model were similar to other mesotrophic environments (0.56-26.31 and 0.57-13.15 mmol O$_2$ m$^{-3}$ d$^{-1}$, respectively), although high P/R (\geq 2 in mid-summer) indicated there is sufficient autochthonous production to support hypoxia development and persistence. The isotopic enrichment factor for respiration (ϵ_{obs}) varied markedly and was least negative in August of both sampling years, consistent with high R rates. Hypoxic conditions were associated with accumulation of N$_2$O but not CH$_4$, and emissions of N$_2$O are among the highest reported from lakes. The average N$_2$O site preference (SP) value of 25.4‰ indicates that the majority of N$_2$O was produced by nitrification via hydroxylamine oxidation, despite the presence of resilient hypoxia. While it has been hypothesized that denitrification acts as a sink for N$_2$O in hypoxic lakes, it is clear that Muskegon Lake functions as a strong source of N$_2$O via nitrification. Further considerations of lakes as global sources of N$_2$O thus warrant a closer evaluation of nitrification-fueled N$_2$O production.
INTRODUCTION

Hypoxia is a major water quality concern for inland waters and is often accompanied by nuisance algal blooms, declines in fisheries, and decreased recreational value (Diaz and Rosenberg 2008). The development of hypoxia is primarily a product of several physical and biological factors in lakes and coastal oceans: (1) a stratified water column, (2) basin shape, and (3) respiration (R) in excess of O₂ supply. Stratification occurs as surface waters become warmer than bottom waters, and a thermocline isolates the cooler lower water column (hypolimnion) from wind-driven mixing with the atmosphere. When stratification minimizes the influx of O₂ to the hypolimnion, sinking primary production or sediment organic matter drives respiratory O₂ demand. This leads to a depletion of O₂ to hypoxic levels (<63 μM) (CENR 2000). Nutrient-rich agricultural runoff stimulates primary production (GPP) and subsequent R in lakes and coastal environments, which has led to an increase in the extent, intensity, and duration of hypoxia in aquatic systems worldwide (Livingstone and Imboden 1996; Jankowski et al. 2006; Diaz and Rosenberg 2008; Rabalais et al. 2010; Friedrich et al. 2014). Lake Erie and the Gulf of Mexico are examples of two systems in which hypoxia is enhanced when the water column is stratified in the shallow portions of their basins and GPP is high (Rabalais et al. 2010; Scavia et al. 2014). Ecosystem metabolism, often characterized by the ratio of GPP to R (P/R), can thus be an important indicator of the propensity of a system to develop hypoxia (Hanson et al. 2003; Williamson et al. 2008). Systems with high P/R generally display a high degree of eutrophy (del Giorgio and Peters 1994), and given requisite physical conditions, are prone to hypoxia.

Changes in land use and nonpoint source pollution have resulted in increases in the incidence of hypoxia in freshwaters, raising concerns about the production of greenhouse gases, particularly CH₄ and N₂O (Kaushal et al. 2014). Because both CH₄ and N₂O have anaerobic
production pathways, there is potential for these gases to accumulate in the hypoxic or anoxic hypolimnia of stratified lakes and be emitted rapidly during storm-driven or seasonal periods of mixing (Michmerhuizen et al. 1996; Riera et al. 1999; Bastviken et al. 2004). CH₄ and N₂O have global warming potentials that are 25 and 298 times higher than CO₂ over a period of 100 years, respectively (IPCC 2007). Thus, small increases in the atmospheric emissions of one or both of these gases could have a dramatic impact on the greenhouse gas budget from lakes. Despite this possibility, CH₄ and N₂O emissions from lakes are markedly understudied relative to CO₂ (Seitzinger et al. 2006; IPCC 2013). Measurements of the rates of atmospheric N₂O emissions from lakes are particularly sparse, with fewer than ten published studies (Lemon and Lemon 1981; Huttunen et al. 2003; Wang et al. 2006; Whitfield et al. 2011; Miettinen et al. 2015; Yang et al. 2015). However, N₂O emissions from lakes have the potential to rival those from reservoirs, rivers, streams, and wetlands (Whitfield et al. 2011; Morse et al. 2012; Audet et al. 2014; Beaulieu et al. 2014), which merits a closer examination of the role of lakes in the global N₂O budget.

Determining the N₂O budget from lakes depends on an understanding of the microbial pathway by which it is produced. N₂O is produced via three microbial processes that occur under a range of redox conditions: denitrification, nitrifier-denitrification, and hydroxylamine oxidation (Wrage et al. 2001). Denitrification is generally restricted to very low O₂ levels, and as a heterotrophic process, requires a carbon supply (Knowles 1982). The microbial denitrification pathway involves a stepwise reduction of nitrate (NO₃⁻) to N₂ gas, in which nitrite (NO₂⁻), nitric oxide (NO) and N₂O are produced as intermediates. It is estimated that 7-16% of nitrogen applied to the terrestrial biosphere is denitrified in lakes (Seitzinger et al. 2006), of which a small yet variable portion (typically 0.1-6.0%) is not completely reduced to N₂ and released as N₂O
Nitrifiers reduce NO$_2^-$ by the same pathway as denitrifiers (nitrifier-denitrification), producing N$_2$O as an intermediate product (Poth and Focht 1985; Wragge et al. 2001). In the third pathway, nitrifiers produce N$_2$O as a product of the decomposition of hydroxylamine (NH$_2$OH; Wragge et al. 2001). This process is autotrophic and, in contrast to denitrification, can occur in oxic environments. In pure cultures of nitrifiers, the production of N$_2$O is maximized as O$_2$ declines, although production ceases under anoxic conditions (Goreau et al. 1980; Frame and Casciotti 2010). Therefore, hypoxia provides the ideal conditions for maximal N$_2$O production, although the precise microbial production mechanism involved is often uncertain.

Stable isotope analyses of N$_2$O are used to distinguish N$_2$O production mechanisms (Ostrom and Ostrom 2011). The relative abundance of a stable isotope within a particular material or reservoir is reported in standard delta notation:

$$\delta = \frac{R_{sam} - R_{std}}{R_{std}} \times 1000$$

(1)

where R_{sam} is the isotope ratio of the sample, R_{std} is the isotope ratio of the standard, and δ is reported as per mil (‰). Because N$_2$O is a linear asymmetric molecule, the isotopic composition of the N atom in the central position (α) and the N atom in the outer position (β) may be distinct. The difference between $\delta^{15}N^\alpha$ and $\delta^{15}N^\beta$ in N$_2$O is referred to as site preference (SP). In contrast to bulk $\delta^{15}N$ and $\delta^{18}O$ values, SP is a conservative tracer of microbial N$_2$O production mechanisms that is independent of the substrate isotopic composition (Sutka et al. 2003; Toyoda et al. 2005; Sutka et al. 2006; Sutka et al. 2008). In general, denitrification and nitrifier-denitrification produce N$_2$O with constant SP values of -10 to 0 ‰, whereas hydroxylamine oxidation produces N$_2$O with a SP value of 33 to 37 ‰ (Toyoda et al. 2005; Sutka et al. 2006; Frame and Casciotti 2010; Ostrom and Ostrom, 2011).
nitrifier-denitrification is indistinguishable on the basis of SP, likely because the enzymes catalyzing these processes are identical (Stein 2011). Therefore, production of N₂O from denitrification and nitrifier-denitrification will henceforth be referred to collectively as denitrification. Fractionation in SP has been demonstrated with a purified fungal nitric oxide reductase enzyme but not within microbial culture which likely reflects maintenance of NO in cells at low concentration and steady state (Yang et al. 2014). Therefore, SP is expected to hold as a conservative, non-fractionating measure of N₂O production mechanism under \textit{in situ} environmental conditions. SP analysis has been demonstrated as an effective approach for distinguishing microbial N₂O production from denitrification vs. hydroxylamine oxidation in a variety of terrestrial and aquatic environments (e.g., Westley et al. 2006; Yamagishi et al. 2007; Opdyke et al. 2009; Sasaki et al. 2011).

In this study, we examined the relationships among ecosystem metabolism, hypoxia, and greenhouse gas production and atmospheric emissions in Muskegon Lake, MI. The relationship between P/R, the oxygen isotopic enrichment factor for respiration (ε_{obs}), and the development of hypoxia was also determined. In addition, we evaluated the influence of hypoxia and water column mixing on the production and atmospheric fluxes of CH₄ and N₂O. Further, we determined the microbial pathway of N₂O production in Muskegon Lake through SP analysis and related biogeochemical indicators.

METHODS

\textit{Study site}

Muskegon Lake is a 17 km² drowned river-mouth lake in western Michigan with a mean depth of 7 m and a maximum depth of 23 m (Freedman et al. 1979; Carter et al. 2006). The lake
drains the Muskegon River Watershed, a 7,032 km\(^2\) basin comprised mainly of forest and agricultural land (Tang et al. 2005), and discharges directly into Lake Michigan by means of a narrow shipping channel (Figure 1). The hydraulic residence time of Muskegon Lake is highly dependent on the rate of water inflow from the Muskegon River, ranging from 14 to 70 days with a mean of 23 days (Freedman et al. 1979; Carter et al. 2006). Historical nutrient loading led to eutrophication and water quality degradation of Muskegon Lake, and as a consequence it was designated a Great Lakes Area of Concern in 1985 (Steinman et al. 2008; U.S. EPA 2013). There has been subsequent improvement in water quality, but Muskegon Lake remains characterized by relatively high nutrient concentrations, periodic nuisance algal blooms, and summer hypoxia in the hypolimnion (Steinman et al. 2008; Biddanda 2012).

Buoy observatory measurements

Time series data for water temperature (2, 4, 6, 7, 9, and 11 m), dissolved O\(_2\), pH, chlorophyll *a* fluorescence (2, 5, 8, and 11 m), and wind speed (1 m above water) were obtained for the period of May to November in 2012 and 2013 from the Muskegon Lake Observatory (MLO). The MLO buoy was deployed in the central part of the lake (Figure 1) and collected water and meteorological data during the ice-free periods. The water depth at the MLO was approximately 12 m and 11.25 m in 2012 and 2013, respectively, due to differences in lake water level between the two years. Water sensors at the MLO collected data every 15 to 30 min, and meteorological sensors collected data every 5 min. Additional information on the MLO can be found in Biddanda (2012), McNair et al. (2013), and Vail et al. (2015).
Field sampling procedure

Water samples for nutrient, P/R, and greenhouse gas analysis were collected at the MLO (Figure 1) between 9:00 am and 12:00 noon on an approximately monthly basis from May to September in 2012 and 2013. In addition, intense temporal sampling was conducted three times over a four-day period in August 2013. Water samples were taken by Niskin bottle (General
Oceanics, Inc., Miami, FL) at 2, 5, 8, and 11 m (2012) or 10.25 m (2013) depth. For nutrient analysis, water was filtered (0.45 μm) and frozen upon return to the lab. Water for determination of δ18O-O2 and greenhouse gas analyses was transferred into 250 mL glass serum bottles and sealed without headspace with butyl rubber septa. Biological activity was halted by adding 1 mL of saturated HgCl2 solution to each bottle. Water column profiles of temperature, dissolved O2, pH, and chlorophyll a fluorescence were taken using a YSI 6600 sonde (Yellow Springs Instruments, Inc., Yellow Springs, OH).

Ecosystem metabolism measurements

Respiration rates were determined from lake water collected at 2 m using a Niskin bottle. Water from the Niskin bottle was placed into a 20 L carboy and subsequently dispensed into 300 mL acid-washed BOD bottles that were sealed with glass stoppers without headspace. The BOD bottles were incubated in the dark at in situ temperature. Dissolved O2 concentrations were then measured in triplicate each day for four days from sacrificed bottles. O2 concentration was measured via Winkler autotitration using a Radiometer Analytical Titrablab 650 with platinum combined Ag/AgCl reference electrode (Weinke et al. 2014).

The δ18O of dissolved O2 was determined using water from 2, 5, 8, and 11 m into which HgCl2 was added at the time of collection (2012) or from water at 2 m that was preserved with HgCl2 at the same time points as the BOD bottles (2013). Water was transferred from BOD bottles into pre-evacuated 200 mL glass vessels fitted with high vacuum stopcocks according to Emerson et al. (1991) and Roberts et al. (2000). The vessels were stored at room temperature for at least 4 h to allow the water and headspace to come to equilibrium. The headspace was then introduced to an evacuated 3 mL sampling loop and then onto a 5 m packed molecular sieve (5
Å) column (Alltech, Inc., Deerfield, IL) using He carrier gas within a gas chromatograph (HP-5980, Hewlett Packard, Ramsey, MN) interfaced to an Isoprime isotope ratio mass spectrometer (Elementar Americas, Inc., Mount Laurel, NJ) for determination of the δ^{18}O of O$_2$. Analytical reproducibility of standards was 0.3 ‰.

The oxygen isotopic enrichment factor for respiration, ε_{obs}, was determined using a Rayleigh model from two sets of data, (1) in situ observations of δ^{18}O-O$_2$ by depth in 2012 and (2) four-day bottle incubations from which δ^{18}O-O$_2$ was measured in 2013:

$$\varepsilon_{\text{obs}} = \frac{\delta_{\text{so}} - \delta_s}{\ln(\text{O}_2\text{Sat})}$$

Where and δ_s is the in situ δ^{18}O-O$_2$ value or the δ^{18}O-O$_2$ value at a given time point in a bottle incubation, δ_{so} is the initial δ^{18}O-O$_2$ value, and O$_2$Sat is the fractional saturation of O$_2$ (Mariotti et al. 1981; Ostrom et al. 2014). When ln(O$_2$Sat) is regressed against δ_s, the slope is equivalent to ε_{obs}.

Rates of GPP, R, and P/R ratios in the epilimnion were estimated using a steady-state, mass balance model (hereafter the 18O model; Bocaniov et al. 2012):

$$\text{GPP} = \left(\frac{F}{Z_m}\right)\cdot O_2\left(\alpha_g \cdot ^{18:16}O - \alpha_r \cdot ^{18:16}O\right) - O_{2s}\left(\alpha_g \cdot \alpha_s \cdot ^{18:16}O_a - \alpha_r \cdot ^{18:16}O\right)$$

$$\text{R} = \left(\frac{F}{Z_m}\right)\cdot O_2\left(\alpha_g \cdot ^{18:16}O - \alpha_p \cdot ^{18:16}O_w\right) - O_{2s}\left(\alpha_g \cdot \alpha_s \cdot ^{18:16}O_a - \alpha_p \cdot ^{18:16}O_w\right)$$

where Z_m is the depth of the mixed layer, O$_2$ is the measured concentration of dissolved O$_2$, O$_{2s}$ is the concentration of O$_2$ at atmospheric saturation, $^{18:16}$O is the measured oxygen isotope ratio of dissolved O$_2$, $^{18:16}$O$_w$ is the measured oxygen isotope ratio of H$_2$O, and $^{18:16}$O$_a$ is the isotopic ratio of atmospheric oxygen (23.5 ‰). α_g, α_s, α_p, and α_r are the fractionation factors associated with gas transfer (0.9972), gas solubility in water (Benson and Krause 1984), photosynthetic...
reaction rates of 18O-H$_2$O to 16O-H$_2$O (1.000), and respiration (1 + ε_{obs}/1000), respectively. δ^{18}O-H$_2$O was determined by off-axis integrated cavity output spectroscopy using a Los Gatos Research Liquid Water Isotope Analyzer (Lis et al. 2008). Analytical reproducibility of standards was 0.2 ‰. When direct measurements of δ^{18}O-H$_2$O were not available, mean values from the remainder of the sampling period were used.

The oxygen gas transfer rate (F) was calculated according to Wanninkhof (1992):

$$F = k_w(C_w - C_a)$$

(5)

where C_w is the dissolved O$_2$ concentration at the surface (measured at 2 m depth) and C_a is the calculated dissolved O$_2$ concentration in equilibrium with the atmosphere (Wanninkhof 1992; Walker et al. 2010). The gas transfer coefficient (k_w, in m s$^{-1}$) is calculated as:

$$k_w = 0.31U_{10}^2 \left(\frac{Sc}{600} \right)^{-1/2}$$

(6)

where Sc is the Schmidt number for O$_2$ determined by the kinematic viscosity of freshwater divided by the diffusion coefficient of O$_2$ (Wanninkhof 1992) and U_{10} is the wind speed 10 m above the surface determined using the measured wind speed 1 m above the surface and the power law relationship outlined in Walker et al. (2010). Wind speed was measured by the MLO and averaged over the dissolved O$_2$ residence time in the mixed layer (2-5 d). Because buoy data were not available on 6 May 2013, wind speed data were obtained from instruments at the Muskegon County Airport (8 km from MLO) and adjusted by the roughness lengths of flat land and water (World Meteorological Organization 2008).

Nutrient concentrations and trace gas analysis

Samples collected in 2013 were analyzed for the concentration of nitrate + nitrite (NO$_3^-$), ammonium (NH$_4^+$), and soluble reactive phosphorus (SRP). All nutrient analyses were
performed according to Standard Methods (APHA 2005). SRP was analyzed spectrophotometrically using the ascorbic acid method, NO₃⁻ was determined colorimetrically after cadmium reduction, and NH₄⁺ was analyzed using the phenate method. NO₃⁻ and NH₄⁺ were analyzed using a wet chemistry continuous flow analyzer (Skalar Analytical B.V., Breda, the Netherlands).

Water samples for CH₄ and N₂O concentration analysis were introduced by syringe injection at atmospheric pressure into glass serum bottles that had been flushed with He prior to sample introduction. The water sample was equilibrated with the remaining headspace overnight by gentle shaking. The headspace was then analyzed by GC-ECD-FID (Shimadzu Greenhouse Gas Analyzer GC-2014, Shimadzu Scientific Instruments, Columbia, MD) for N₂O and CH₄ concentration. The dissolved concentration was calculated based on the headspace equilibrium concentration (Hamilton and Ostrom 2007). Diffusive atmospheric emissions of CH₄ and N₂O (F) were calculated by equations 5 and 6, substituting the measured concentration, saturation concentration, and Schmidt number of CH₄ and N₂O for those of dissolved O₂.

The isotopic composition of N₂O was analyzed upon introduction of sample water into an enclosed 0.75 L glass vessel that was previously purged of atmospheric air using a gentle flow of He. Dissolved gases were subsequently stripped from the water by sparging the sample with He (Sansone et al. 1997), which carried sample gases into a Trace Gas sample introduction system interfaced to an Isoprime isotope ratio mass spectrometer (Elementar Americas, Inc., Mount Laurel, NJ). Analytical reproducibility for replicate samples was 0.5 ‰ for bulk δ¹⁵N and δ¹⁸O, 0.75 ‰ for δ¹⁵Nα δ¹⁵Nβ, and 1.3 ‰ for SP.

The microbial origin of N₂O produced in Muskegon Lake was evaluated by several approaches. First, a Keeling plot was employed to calculate the isotopic composition of
microbially-produced N\textsubscript{2}O (end-member) by regressing the isotopic ratios of N\textsubscript{2}O vs. the inverse concentration of N\textsubscript{2}O in measured samples and the atmospheric end-member (Pataki et al. 2003; Yamagishi et al. 2007). Second, apparent oxygen utilization (AOU; \textit{O}\textsubscript{2\text{saturation}} – \textit{O}\textsubscript{2\text{measured}}) and \textit{ΔN}\textsubscript{2}O (\textit{N}\textsubscript{2}O\textit{measured} – \textit{N}\textsubscript{2}O\textit{saturation}) were compared to provide evidence for nitrification-fueled N\textsubscript{2}O production (Yoshinari 1976; Nevison et al. 2003; Bange et al. 2010). Third, \textit{Δ18O} (\textit{δ}18O-N\textsubscript{2}O - \textit{δ}18O-O\textsubscript{2}) was calculated to evaluate the relative contributions of hydroxylamine oxidation and denitrification (Ostrom et al. 2000).

\textit{Statistical analyses}

All statistical analyses were conducted using R statistical software (version 3.0.2). Principal component analysis was performed on 2013 data to analyze correlation among temperature, pH, greenhouse gas concentrations, dissolved \textit{O}\textsubscript{2}, nutrient concentrations, and chlorophyll \textit{a} fluorescence (Appendix). Prior to principal component analysis, each variable was standardized to equalize variance across variables. Differences in N\textsubscript{2}O isotopic composition between the epilimnion and hypolimnion were evaluated by Welch 2-sample t-tests following tests for distribution normality and equal variance. The relationship between AOU and \textit{ΔN}\textsubscript{2}O was evaluated by linear regression.

\textbf{RESULTS}

Muskegon Lake displays a dimictic stratification pattern, with periods in the spring and fall of homogenous temperature and \textit{O}\textsubscript{2} concentration throughout the water column (Figure 2). The summer period is characterized by higher surface water temperatures than in the spring and fall and low concentrations of \textit{O}\textsubscript{2} in the hypolimnion. When the water column is stratified, the
thermocline is located between 6 and 8 m. A weak to strong thermocline was present on all sampling dates except 6 June 2012, 20 September 2012, and 11 June 2013 (Figures 3a, 3e). June sampling dates coincided with wind-driven episodic mixing events, and 20 September 2012 coincided with the fall mixing period. \(\text{O}_2 \) concentrations in the hypolimnion during stratified periods regularly decreased to hypoxic levels (Figures 2, 3b, 3f).

Figure 2. (a-b) Temperature and (c-d) dissolved \(\text{O}_2 \) concentration from April to November in 2012 (left panel) and 2013 (right panel). Data were collected by the MLO sensors placed at various depths in the water column. Hypoxia (dissolved \(\text{O}_2 \) <63 μM) is indicated by a dotted line.
Figure 3. Water column profiles at the MLO in (a–d) 2012 and (e–h) 2013. Temperature and dissolved O₂ concentration were measured continuously throughout the water column on each sampling date. CH₄ and N₂O concentrations were measured at four depths on each sampling date. Error bars represent standard error.

Epilimnetic GPP and R rates obtained by the ^18O model ranged from 0.56 - 26.31 mmol O₂ m⁻³ d⁻¹ and 0.57 - 13.15 mmol O₂ m⁻³ d⁻¹, respectively (Figure 4). The lowest GPP and R rates occurred during September 2012 and May 2013. The highest GPP rate occurred in August of both years, and the highest R rate occurred in August 2012 and September 2013. P/R ranged from 0.79 - 2.36, with the highest ratios occurring in August in each year and the lowest ratios occurring during May, June, and September (Figure 4).

The isotopic enrichment factor for respiration, ε_{obs}, varied by over 10 % within each sampling season (Table 1). ε_{obs} was most negative in June 2012, May 2013, and September 2013. ε_{obs} was least negative in August of both years. The range in ε_{obs} values was less negative in 2012 when the in situ method was used than in 2013 when the bottle incubation was used.
Figure 4. Primary production (GPP), respiration (R), and P/R in Muskegon Lake in 2012 and 2013. P and R rates (open and closed symbols, respectively) were calculated according to Bocaniov et al. (2012) on four occasions each year from May through September. P/R ratios (bars) were calculated by dividing P by R. The horizontal line represents P/R=1.

Table 1. ε_{obs} values in Muskegon Lake measured by the \textit{in situ} (2012) and bottle incubation (2013) methods.

<table>
<thead>
<tr>
<th>Date</th>
<th>ε_{obs} (%)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-Jun-12</td>
<td>-16.1</td>
<td>\textit{In situ}</td>
</tr>
<tr>
<td>10-Jul-12</td>
<td>-7.9</td>
<td>\textit{In situ}</td>
</tr>
<tr>
<td>28-Aug-12</td>
<td>-2.3</td>
<td>\textit{In situ}</td>
</tr>
<tr>
<td>20-Sep-12</td>
<td>-4.1</td>
<td>\textit{In situ}</td>
</tr>
<tr>
<td>6-May-13</td>
<td>-21.1</td>
<td>Bottle incubation</td>
</tr>
<tr>
<td>12-Aug-13</td>
<td>-11.3</td>
<td>Bottle incubation</td>
</tr>
<tr>
<td>16-Sep-13</td>
<td>-23.7</td>
<td>Bottle incubation</td>
</tr>
</tbody>
</table>
NH₄⁺, NO₃⁻, and SRP concentrations ranged from 2.3 - 44.5 μg L⁻¹, 163.3 - 373.7 μg L⁻¹, and 0.8 - 17.5 μg L⁻¹, respectively (Appendix Figure A1). NH₄⁺, NO₃⁻, and SRP concentrations were negatively correlated with O₂ concentration and chlorophyll a fluorescence (Appendix Figure A2), indicating an accumulation of nutrients in the hypolimnion.

CH₄ and N₂O were supersaturated in the water column at all times (1.1 - 4.8 and 3,700 - 30,000 times atmospheric equilibration concentration, respectively). CH₄ was fairly homogeneous throughout the water column on each sampling date with the exception of a single extremely high concentration at the lowest sampling depth in September 2012 (Figure 3c). Excluding this point, the highest concentrations of CH₄ throughout the water column occurred in May 2013 (Figure 3g). N₂O concentrations were also high throughout the water column in May 2013 (Figure 3h). Hypolimnetic N₂O concentration were negatively associated with O₂ concentration, displaying accumulation in the hypolimnion during hypoxic periods (Figure 3).

CH₄ and N₂O atmospheric emissions by diffusive evasion were low yet variable throughout the majority of sampling dates in both years with the exception of two dates during which emissions were 10 - 100 times higher than other sampling dates (Figure 5a). The first period of high emissions occurred in September 2012 during a period of strong wind, and the second occurred in May 2013 when concentrations of both gases were high throughout the water column. When converted to CO₂ equivalents by multiplying emissions by 298 and 25 for N₂O and CH₄, respectively (IPCC 2007), the radiative forcing of CH₄ emission was 2.1 - 22.9 times that of N₂O (Figure 5b).
The isotopic composition of N\textsubscript{2}O (mean ± SD) in the epilimnion and mixed water column (δ15N: 4.5 ± 0.7 ‰, δ18O: 50.1 ± 1.9 ‰, SP: 20.0 ± 2.4 ‰) and hypolimnion (δ15N: 0.0 ± 0.3 ‰, δ18O: 54.3 ± 0.9 ‰, SP: 23.1 ± 1.8 ‰) were distinct (Table 2). Relative to the epilimnion and mixed water column, Welch 2 sample t-tests indicated that hypolimnetic δ15N-N\textsubscript{2}O values
were significantly lower (t = 15.02, df = 9.9, p < 0.0001), δ^{18}O-N_{2}O values were significantly higher (t = -5.5, df = 10.4, p < 0.0001), and SP values were significantly higher (t = -2.59, df = 10.3, p < 0.01). The δ^{15}N, δ^{18}O, and SP of microbially-produced N_{2}O in Muskegon Lake, determined by the y-intercepts of the Keeling plot, were -3.2 ‰, 58.8 ‰, and 25.4 ‰, respectively (Figure 6). AOU was positively correlated with ΔN_{2}O (Appendix Figure A3; linear regression, R^2 = 0.58, t = 6.97, df = 35, p < 0.0001). The mean Δ^{18}O value for N_{2}O was 22.1 ± 6.0 ‰.

Table 2. Isotopic composition of N_{2}O in the troposphere (Yoshida and Toyoda 2000), epilimnion/mixed water column in Muskegon Lake, and hypolimnion of Muskegon Lake.

<table>
<thead>
<tr>
<th>Date</th>
<th>Depth m</th>
<th>O\textsubscript{2} uM</th>
<th>N\textsubscript{2}O nM</th>
<th>δ^{18}O-N\textsubscript{2}O ‰</th>
<th>δ^{15}N-N\textsubscript{2}O ‰</th>
<th>δ^{15}N\textsubscript{α}-N\textsubscript{2}O ‰</th>
<th>δ^{15}N\textsubscript{β}-N\textsubscript{2}O ‰</th>
<th>N\textsubscript{2}O SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tropospheric N\textsubscript{2}O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43.7 ± 0.9</td>
</tr>
<tr>
<td>Epilimnion/Mixed water column</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.0 ± 0.6</td>
</tr>
<tr>
<td>11-Jun-13</td>
<td>2</td>
<td>281</td>
<td>10.96</td>
<td>47.9</td>
<td>5.4</td>
<td>14.4</td>
<td>-3.7</td>
<td>18.1</td>
</tr>
<tr>
<td>11-Jun-13</td>
<td>5</td>
<td>259</td>
<td>11.47</td>
<td>48.6</td>
<td>4.8</td>
<td>12.7</td>
<td>-3.1</td>
<td>15.8</td>
</tr>
<tr>
<td>11-Jun-13</td>
<td>10.25</td>
<td>188</td>
<td>13.05</td>
<td>51.3</td>
<td>3.5</td>
<td>13.8</td>
<td>-6.7</td>
<td>20.6</td>
</tr>
<tr>
<td>12-Aug-13</td>
<td>2</td>
<td>317</td>
<td>10.61</td>
<td>48.4</td>
<td>5.1</td>
<td>14.8</td>
<td>-4.6</td>
<td>19.4</td>
</tr>
<tr>
<td>12-Aug-13</td>
<td>5</td>
<td>297</td>
<td>13.09</td>
<td>50.3</td>
<td>4.5</td>
<td>16.4</td>
<td>-7.4</td>
<td>23.8</td>
</tr>
<tr>
<td>14-Aug-13</td>
<td>2</td>
<td>264</td>
<td>13.11</td>
<td>53.6</td>
<td>5.2</td>
<td>16.2</td>
<td>-5.9</td>
<td>22.0</td>
</tr>
<tr>
<td>14-Aug-13</td>
<td>5</td>
<td>262</td>
<td>10.47</td>
<td>49.7</td>
<td>4.1</td>
<td>14.1</td>
<td>-5.9</td>
<td>20.0</td>
</tr>
<tr>
<td>16-Sep-13</td>
<td>8</td>
<td>209</td>
<td>11.42</td>
<td>51.0</td>
<td>3.4</td>
<td>13.5</td>
<td>-6.7</td>
<td>20.2</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.77 ± 0.58</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50.1 ± 0.7</td>
</tr>
<tr>
<td>Hypolimnion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.5 ± 0.7</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.5 ± 0.7</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3 ± 0.7</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5 ± 0.7</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5 ± 0.7</td>
</tr>
</tbody>
</table>

Figure 6. Linear regression of SP, δ18O, and δ15N of measured N\textsubscript{2}O with the inverse concentration of N\textsubscript{2}O at each sampling point. *In situ* N\textsubscript{2}O concentrations and isotopic values are plotted with the atmospheric N\textsubscript{2}O concentration and isotopic composition (rightmost value; Yoshida and Toyoda 2000). The isotopic composition of microbially produced N\textsubscript{2}O is represented as the y-intercept value (Yamagishi et al. 2007).

DISCUSSION

Hypoxia development and ecosystem metabolism

Hypoxia is a consequence of extensive nutrient loading, requires the development of stratification, and is predominant in lakes with shallow hypolimnia. In Muskegon Lake, hypoxia was first documented during a period of extensive nutrient loading the late 1970s (Freedman 1979), but hypoxia may be a natural phenomenon in this system. The water column is stratified from June through September or October, but episodic intrusion of oxygenated Lake Michigan water during westerly seiches is demonstrated by increases in hypolimnetic O\textsubscript{2} concentrations by as much as 150 μM on daily to weekly timescales (Figure 2; B. Biddanda, A. Weinke, S. Kendall, and D. Koopmans, personal communication). The observed decline of hypolimnetic temperature from the onset of stratification to early August, an unusual trend in stratified...
systems, provides additional evidence of upwelling-induced intrusion of cold Lake Michigan water into Muskegon Lake. Following such hypolimnetic oxygenation events, O$_2$ concentrations decline rapidly (often within 12 h) to hypoxic conditions (Figure 2). Thus, hypoxia exhibits resilience in Muskegon Lake despite a short hydraulic residence time and evidence of the episodic intrusion of cold, oxic water. The persistence of hypoxia in Muskegon Lake points to a strong driving factor for O$_2$ consumption in the hypolimnion.

The balance of GPP and R and its seasonal variation provides insight into the development of hypoxia. Although rates of GPP and R are lower than many hypoxic systems (Ostrom et al. 2005; Bocaniov et al. 2012), observations of P/R in Muskegon Lake suggest there is sufficient excess primary production to fuel hypolimnetic respiration and hypoxia development. P/R in the epilimnion was ≥ 1 throughout the majority of the sampling period (Figure 4), demonstrating net autotrophy during the growing season between May and September. Two earlier studies of pelagic metabolism in Muskegon Lake similarly demonstrated a consistent trend of P/R > 1 during this time period as well (Weinke et al. 2014; Dila and Biddanda, 2015). In particular, GPP was two-fold higher than R in August of both sampling years (2.00 and 2.36 in 2012 and 2013, respectively). A portion of this surplus production from the epilimnion likely sinks into the hypolimnion and fuels water column or sediment respiration in subsequent days to years. Thus, despite evidence of episodic intrusion of oxic water into the hypolimnion, high P/R values indicate a supply of organic matter that reaches the hypolimnion to fuel strong O$_2$ consumption and persistent hypoxia.

While water column respiration has been demonstrated as the primary driver of hypoxia in systems such as Lake Erie and the Gulf of Mexico (Conroy et al. 2011; McCarthy et al. 2013; Ostrom et al. 2014), respiration in organic matter-rich sediments can enable hypoxia to establish
at more moderate nutrient loading than would be expected (Turner et al. 2008). A combination of water column and sediment respiration thus likely fuels hypoxia establishment and resilience in Muskegon Lake. While water quality indicators have neared or exceeded remedial action plan targets for reducing eutrophication (Michigan DEQ 2011), summer hypoxic conditions have persisted and will likely persist for many years. Two potential explanations are that (1) remediation of eutrophication in Muskegon Lake is insufficient to reduce hypoxia or (2) hypoxia is a natural feature of this system.

Seasonal variation in ε_{obs}

The magnitude of isotopic fractionation of O_2 during respiration, ε_{obs}, is generally assumed to be a constant, but substantial variation has been observed in this study and other estuarine and coastal marine ecosystems (Quiñones-Rivera et al. 2007; Lehman et al. 2009; Fry and Boyd 2010; Ostrom et al. 2014). Isotopic fractionation during respiration takes place when O_2 is consumed by oxidative respiratory enzymes such as cytochrome oxidase (Feldman et al. 1959). If diffusion limits the supply of O_2 to the respiratory enzyme, then the expression of isotopic fractionation by the enzyme is reduced (Ostrom et al. 2014). For instance, isotopic discrimination approaching 0 ‰ has been observed for respiration in sediments where diffusion is expected to be slow, limiting the movement of O_2 into the cell (Brandes and Devol 1997). In contrast, isotopic discrimination in the water column is generally quite large and assumed to be constant (e.g., -21.2 ‰), because diffusion is not expected to limit the supply of O_2 to the respiratory enzyme (Quiñones-Rivera et al. 2007; Fry and Boyd 2010). In Muskegon Lake, ε_{obs} was evaluated by two approaches: bottle incubation and the *in situ* method. ε_{obs} values obtained by bottle incubation reflect only water column respiration, whereas ε_{obs} values obtained by the *in
The in situ method reflect both water column and sediment respiration. Indeed, the \(\varepsilon_{\text{obs}} \) values obtained from the in situ method were less negative than those obtained from the bottle incubation method (Table 1), likely reflecting a greater influence of sediment respiration on the \(\varepsilon_{\text{obs}} \) values than in the bottle method. Nonetheless, values for \(\varepsilon_{\text{obs}} \) obtained by the bottle incubation method varied by over 10 \%\text{\textperthousand}, even in the absence of sediment respiration and were least negative during the summer stratified period in Muskegon Lake. This is in agreement with Ostrom et al. (2014), who proposed that \(\varepsilon_{\text{obs}} \) in the water column might in fact approach 0 \%\text{\textperthousand} when R rates are high and that \(\varepsilon_{\text{obs}} \) may correlate with rates of total respiration beneath the thermocline (water column and sediment respiration). Low \(\varepsilon_{\text{obs}} \) values in August are thus indicative of high R, supported by the highest water column R observed at this time in 2012 (Figure 4).

The observation of marked seasonal variation in \(\varepsilon_{\text{obs}} \) indicates that \(\varepsilon_{\text{obs}} \) in the water column should not be assumed to be constant, as is often the case. For example, if an \(\varepsilon_{\text{obs}} \) value of -21.2 \%\text{\textperthousand} had been incorporated into the \(^{18}\text{O}\) model rather than the measured value of -11.3 \%\text{\textperthousand} in August 2013, the GPP and R rates for Muskegon Lake would have been overestimated by factors of 2.0 and 3.3, respectively. Further, the subsequent calculation of P/R would have yielded a value of 1.41 rather than 2.36. Accurate assessments of ecosystem metabolism by models that utilize \(\varepsilon_{\text{obs}} \) thus require that variation in \(\varepsilon_{\text{obs}} \) be incorporated into P/R models.

Greenhouse gas concentrations and emissions

On a global basis, freshwater ecosystems support a variety of microbial processes that emit \(\text{CH}_4 \) and \(\text{N}_2\text{O} \), important greenhouse gases (IPCC, 2007). Fluxes of greenhouse gases arising from the lower water column and sediments vary as a function of wind mixing and with the development and deterioration of thermal stratification (e.g., Fallon et al. 1980). In many
systems, CH$_4$ accumulates in anoxic waters beneath the thermocline as a result of anaerobic methanogenesis in both the water column and sediments (Bastviken et al. 2004). This suggests that O$_2$ and CH$_4$ should be negatively correlated. Contrary to observations in other temperate dimictic lakes (Fallon et al. 1980; Striegl and Michmerhuizen 1998), profiles of CH$_4$ in Muskegon Lake revealed no apparent connection between hypoxic conditions and high CH$_4$ concentrations (Figure 3). With the exception of one date that occurred during a seasonal mixing event near the sediment-water interface (20 September 2012), accumulation of CH$_4$ within the hypolimnion was not observed in Muskegon Lake. This lack of hypolimnetic accumulation could relate to low CH$_4$ production, elevated oxidation of CH$_4$, or evolution of CH$_4$ to upper water column and atmosphere (Fallon et al. 1980; Striegl and Michmerhuizen 1998; Huttunen et al. 2006).

Despite the lack of hypolimnetic accumulation, diffusive CH$_4$ emissions from Muskegon Lake were comparable in magnitude and range to those in other lakes of similar size (Bastviken et al. 2004; Ortiz-Llorente and Alvarez-Cobelas, 2012). Owing to strong winds and high epilimnetic concentrations, high emissions of CH$_4$ were observed in September 2012 and May 2013 (Figures 3c, 3g, 5a). While CH$_4$ emissions were measured at a single location in Muskegon Lake and thus provide limited ability to extrapolate to the lake as a whole, our results indicate that sampling on a seasonal basis is important to capture variability in CH$_4$ emissions from lakes.

In contrast to CH$_4$, hypolimnetic production of N$_2$O was evident by a negative correlation between N$_2$O and O$_2$ (Appendix Figure A2), indicating that periods of hypoxia and water column turnover could be strong regulators of N$_2$O emissions from this system. Indeed, N$_2$O was markedly supersaturated in the hypoxic hypolimnion, potentially setting the stage for high emissions to the atmosphere during periods of water column turnover. Diffusive emissions of
N₂O measured at the MLO were lowest during stratified periods and highest during the development or breakdown of stratification. Periods of exceptionally high emissions, up to two orders of magnitude greater than those during the stratified period, are among the highest reported for natural lakes (Lemon and Lemon 1981; Huttunen et al. 2003; Wang et al. 2006; Whitfield et al., 2011; Miettinen et al. 2015; Yang et al. 2015). In fact, only one study has reported higher atmospheric fluxes of N₂O than those observed in Muskegon Lake (Wang et al. 2006). While limited spatial sampling restricts the ability to evaluate the absolute N₂O emissions from Muskegon Lake, our results illustrate wide variation in N₂O fluxes on seasonal time scales. Total annual fluxes may thus be dominated by a few brief periods of high emissions during mixing events following hypolimnetic accumulation (Figure 5a), emphasizing the importance of temporal sampling to capture important periods of N₂O emissions from lakes.

When diffusive emissions of CH₄ and N₂O are converted into CO₂ equivalents (IPCC 2007), the radiative forcing of CH₄ always exceeded that of N₂O in Muskegon Lake (Figure 5b). However, the radiative forcing of N₂O in this study closely approached that of CH₄ on several occasions, indicating that N₂O is an important contributor to total greenhouse gas emissions from this environment. Nonetheless, the number of publications reporting lacustrine CH₄ emissions is over six-fold greater than those reporting N₂O emissions (Whitfield et al. 2011; Ortiz-Llorente and Alvarez-Cobelas 2012), reflecting a need for greater attention to N₂O in studies that measure greenhouse gas emissions.

* Determination of microbial origin of N₂O

The marked differences in the δ¹⁵N, δ¹⁸O, and SP of N₂O between epilimnetic/mixed water column samples and hypolimnetic samples point to distinct sources, namely atmospheric
exchange and microbial N$_2$O production, respectively (Table 2). It is therefore expected that the isotope composition of N$_2$O samples collected from Muskegon Lake reflects a mixture between atmospheric and microbially derived N$_2$O, with microbial production stimulated by hypoxic conditions in the hypolimnion (Goreau et al. 1980; Knowles 1982). Treating the atmospheric isotopic composition (Table 2; Yoshida and Toyoda 2000) and the microbial isotopic N$_2$O composition (unknown) as isotopic end members in Muskegon Lake, regressing the isotopic composition of measured N$_2$O by the inverse N$_2$O concentration yields the isotope composition of microbially-produced N$_2$O as the y-intercept (Figure 6; Pataki et al. 2003; Yamagishi et al. 2007). While δ^{15}N-N$_2$O (-3.2 ‰) and δ^{18}O-N$_2$O (58.8 ‰) values obtained from the mixing model are heavily dependent on the isotopic composition of source material, SP (25.4 ‰) has been shown to be a conservative tracer, enabling the distinction of production from hydroxylamine oxidation (nitrification) from that by denitrification (Ostrom and Ostrom 2011). SP was therefore used as the primary indicator of the microbial N$_2$O production mechanism in this study. When SP values of 33 ‰ and -10 to 0 ‰ are considered as end-members for N$_2$O production via hydroxylamine oxidation and denitrification, respectively (Sutka et al. 2006; Frame and Casciotti 2010), the observed SP of 25.4 ‰ indicates that 77-82% of in $situ$ production of N$_2$O is derived from hydroxylamine oxidation.

Because reduction of N$_2$O by denitrification is likely under low-oxygen conditions and has a marked fractionation effect on its isotopic composition (Popp et al. 2002; Westley et al. 2006; Ostrom et al. 2007; Yamagishi et al. 2007), reduction must be considered as a possible influence on SP in Muskegon Lake that may bias interpretations of microbial sources. If substantial reduction occurs, δ^{15}N and δ^{18}O values of N$_2$O tend to positively correlate because the conversion of N$_2$O to N$_2$ preferentially leaves 15N and 18O in the residual N$_2$O. Similarly, N$_2$O
reduction results in elevated SP values in the residual N₂O pool because the isotopic
discrimination is more pronounced in the α than the β position (Westley et al. 2006). However, a
negative correlation was found between δ¹⁵N-N₂O and δ¹⁸O-N₂O in Muskegon Lake (Appendix
Figure A4a; linear regression, R² = 0.68, t = 4.87, df = 11, p < 0.001), which suggests that N₂O
reduction is not an important process. Moreover, while the δ¹⁸O-N₂O and SP values were
positively correlated, the observed slope of 0.78 differed substantially from the expected slope of
0.45 arising from the fractionation of N₂O during reduction (Appendix Figure A4b; Ostrom et al.
2007; Opdyke et al. 2009). Therefore, we conclude on the basis of stable isotopic indicators that
N₂O reduction was not important in removing N₂O from Muskegon Lake, supporting our
interpretation of hydroxylamine oxidation as the predominant N₂O production pathway on the
basis of SP. Further, while it has been posited that lakes may act as sinks for N₂O under anoxic
conditions (Lemon and Lemon 1981; Beaulieu et al. 2014; 2015), N₂O reduction was not
demonstrated as an appreciable pathway in Muskegon Lake. A potential explanation for the
absence of appreciable N₂O reduction is the evidence of intrusion of oxic water into the
hypolimnion; although hypoxia reestablishes quickly in this system, complete anoxia does not
develop for long periods, which could inhibit the complete reduction of N₂O by denitrification.

Stoichiometric relationships can also be examined to determine N₂O production
pathways. A positive relationship between AOU and ΔN₂O has been attributed to N₂O
production by nitrification, as AOU is a tracer of organic matter remineralization that produces
the substrates for nitrification (Yoshinari 1976; Nevison et al. 2003; Bange et al. 2010). Indeed,
AOU was positively correlated with ΔN₂O, and NO₃⁻ and NH₄⁺ concentrations increased in the
hypolimnion throughout the stratified period (Appendix Figure A1, A2), providing a further
indication that nitrification is the primary N$_2$O production mechanism under hypoxic conditions in Muskegon Lake.

Additional insight into the microbial origin of N$_2$O can be provided by its δ^{18}O composition. The oxidation of NH$_4^+$ to hydroxylamine incorporates an initial oxygen atom from O$_2$, and further oxidation to NO$_3^-$ derives oxygen from H$_2$O (Dua et al., 1979; Hollocher et al., 1981; Andersson and Hooper, 1983; Kumar et al., 1983). N$_2$O production by hydroxylamine oxidation therefore reflects the isotopic composition of O$_2$, whereas denitrification produces N$_2$O with a δ^{18}O value influenced both by O$_2$ and H$_2$O. Given that O$_2$ is generally enriched in 18O by at least 23.5 ‰ relative to H$_2$O, Δ^{18}O values are high when hydroxylamine oxidation dominates and are lower when denitrification dominates. For example, Ostrom et al. (2000) observed a shift in Δ^{18}O values from approximately 23 ‰ at the surface to approximately 13 ‰ at 300 m depth in the Pacific Ocean that was interpreted as a transition in N$_2$O production from hydroxylamine oxidation to denitrification. Similarly, Muskegon Lake Δ^{18}O values (22.1 ± 6.0 ‰) are consistent with production via hydroxylamine oxidation.

The microbial origin of N$_2$O from hydroxylamine oxidation was confirmed by multiple lines of isotopic and stoichiometric evidence, demonstrating that Muskegon Lake is as a nitrification-driven source of N$_2$O to the atmosphere. Previous studies have shown that denitrification can dominate N$_2$O production in some eutrophic lakes (Lemon and Lemon 1981; Wang et al. 2006) and that increased availability of organic carbon and nutrients has the capacity to stimulate denitrification (Taylor and Townsend 2010). Further, Beaulieu et al. (2014; 2015) have demonstrated that reservoirs have the capacity to alternate between a source and a sink of N$_2$O depending on the degree of hypolimnetic anoxia and the timing of water column turnover. Our results conversely indicate the capacity for ample supplies of organic matter and nutrients to
fuel N2O production via denitrification lakes is not ubiquitous. Together, this body of work demonstrates that N2O dynamics in lakes are more complicated than previously thought, and constraining the role of lakes in the global N2O budget will entail (1) distinguishing between nitrification and denitrification pathways of N2O production, (2) evaluating N2O reduction as a potential sink for N2O, and (3) investigating water column turnover events as opportunities for brief yet intense periods of N2O emissions.

Conclusion

Hypoxia persists in Muskegon Lake despite episodic intrusions of oxic water from Lake Michigan into the hypolimnion. We demonstrate net autotrophy in the epilimnion and substantial variation in εobs in late summer, consistent with delivery of autotrophic material to the hypolimnion followed by high rates of respiration. The presence of hypoxia in Muskegon Lake not only supports N2O production via nitrification but also results in exceptionally high N2O emissions to the atmosphere, among the highest reported from lakes, during seasonal water column mixing events. A complete understanding of the impact of hypoxic lakes on the global greenhouse budget will rely on quantification of atmospheric fluxes, particularly during seasonal transitions in stratification. This study adds to the emerging narrative of inland waters as sources of globally significant greenhouse gas emissions to the atmosphere.
APPENDIX
Principal component analysis was performed on 2013 data (N$_2$O and CH$_4$ concentration, temperature, dissolved O$_2$ concentration, pH, chlorophyll a concentration, and nutrient concentrations (NO$_3^-$, NH$_4^+$, and SRP) to identify principal components (PCs) that maximize the correlation among measured variables. Observations were separated by date and depth. Data were standardized to eliminate scale differences. The loadings for each variable were calculated as the correlation of the original variable with each PC, and the scores for each observation were calculated by multiplying by the eigenvector for each PC.

Principal component analysis revealed that two PCs explained 74% of the variance in the dataset (Fig. A2). N$_2$O concentration was positively associated with PC1 and PC2, whereas CH$_4$ was positively associated with PC2 only. The loadings for chlorophyll a and dissolved O$_2$ concentration were similar in magnitude and direction, indicating these two variables were closely related in Muskegon Lake. Similarly, temperature and pH were also closely related to one another. Nutrient variables (NO$_3^-$, NH$_4^+$, and SRP) were all positively correlated to PC1 but were not strongly correlated with PC2. When plotted by their scores for the two PCs, observations sorted into four apparent groupings: (1) all depths on 6 May, characterized by high greenhouse gas concentrations, low temperature and nutrient concentrations, and high dissolved O$_2$ concentrations; (2) epilimnion samples, characterized by low greenhouse gas concentrations and high temperature, pH, chlorophyll, and dissolved O$_2$ concentrations; (3) hypolimnion samples during the stratified period, characterized by high N$_2$O concentrations, high nutrient concentrations, and low chlorophyll and dissolved O$_2$ concentrations; and (4) metalimnion samples, characterized by intermediate characteristics between epilimnion and hypolimnion samples.
Figure A1. Nutrient concentrations in 2013. (a) NH$_4^+$, (b) NO$_3^-$, and (c) SRP concentrations were measured at four depths on each sampling date.

Figure A2. Principal component analysis for 2013 data. Points represent principal component scores for each sampling depth on a given date. Vectors represent loadings for each variable on a scale of zero to one and are plotted for illustrative purposes only. CH4 = CH$_4$ concentration, N2O = N$_2$O concentration, Temp = temperature, DO = dissolved O$_2$, pH = pH, Chlor = chlorophyll a fluorescence, NO3 = NO$_3$ concentration, NH4 = NH$_4^+$ concentration, SRP = soluble reactive phosphorus concentration.
Figure A3. Relationship between ΔN₂O and apparent oxygen utilization (AOU). AOU was calculated as the difference between the saturation concentration and the *in situ* concentration of dissolved O₂. ΔN₂O was calculated as the difference between the *in situ* concentration and the saturation concentration of N₂O at each sampling point. A positive correlation ($R^2 = 0.58$) supports the interpretation of a N₂O production source from nitrification.

Figure A4. Trends in N₂O concentration and isotopic composition. (a) δ^{18}O-N₂O and δ^{15}N-N₂O are negatively correlated ($R^2 = 0.68$). (b) δ^{18}O-N₂O and isotopic site preference (SP) are positively correlated ($R^2 = 0.60$) with a slope of 0.78 (solid line). N₂O reduction produces a characteristic δ^{18}O-N₂O vs. SP slope of 0.45 (dotted line).
LITERATURE CITED

Andersson KK, Hooper AB (1983) O₂ and H₂O are each the source of one O in NO₂⁻ produced from NH₃ by *Nitrosomonas*: ¹⁵NMR evidence. FEBS Lett 164(2):236-240. doi:10.1016/0014-5793(83)80292-0

CHAPTER 2

WETLAND RESTORATION AND HYDROLOGIC RECONNECTION RESULT IN ENHANCED WATERSHED NITROGEN RETENTION AND REMOVAL

ABSTRACT

Restoration of wetlands presents a potential water quality benefit via removal of nutrients, including excess nitrogen (N) and phosphorus (P), but there is potential for complex and unresolved changes in nutrient cycling following restoration. In this study, we evaluated N removal and release in a former agricultural wetland under scenarios of hydrologic reconnection to the watershed and sediment dredging. We modeled potential downstream impacts of restoration activities in the context of N management. Denitrification, N\textsubscript{2}O production, and anammox were measured via the isotope pairing technique in intact sediment cores, and probabilistic estimates of N cycling under restoration scenarios were modeled in a Bayesian framework. Anammox was not detected in this system, but denitrification and N\textsubscript{2}O production were stimulated shortly following simulated dredging, indicating a temporary response to sediment disturbance. Owing to a decrease in NH\textsubscript{4}+ availability under hydrologic reconnection, coupled nitrification-denitrification was inhibited. Despite a decrease in denitrification activity, the wetland has the capacity to remove up to 10% of stream NO\textsubscript{3}- via denitrification following hydrologic reconnection. Restoration activities are predicted to mitigate NH\textsubscript{4}+ delivery to a downstream eutrophic lake, yet permanent N removal will be reduced due to the decoupling of nitrification and denitrification.

INTRODUCTION

Wetlands have the potential to provide significant ecosystem services, including wildlife habitat, nutrient retention, and groundwater recharge (Keddy 2000). Many natural wetlands in
the United States have been converted to agricultural production (Dahl 2000) but are now being targeted for restoration that in many cases is supported by financial incentives such as the Wetlands Reserve Program (USDA 2012). Agricultural wetland restoration presents benefits such as the creation of wildlife habitat (Bunn and Arthington 2002; Zelder and Kercher 2005). However, many restored wetland sediments in agricultural landscapes bear residual nutrients that impact the capacity for the wetland to retain phosphorus (P) and nitrogen (N). Restoration efforts must thus consider not only habitat benefits but also the implications for water quality in the face of eutrophication of many watersheds (Ardón et al. 2010a; Welti et al. 2012).

Wetlands are well known for their ability to remove substantial quantities of P and N (Fennessy and Cronk 1997; Reddy et al. 1999; Saunders and Kalff 2001). Although wetlands have a tremendous capacity to remove nutrients, restoration may induce a decrease in water quality, at least temporarily. Nutrient release can occur following reflooding and hydrologic reconnection (Aldous et al. 2005; Lindenberg and Wood 2009; Morse et al. 2012), particularly in systems with a history of nutrient loading such as agricultural soils (Newman and Pietro 2001; Pant and Reddy 2003; Steinman and Ogdahl 2011). Downstream release of P is common, whereas N has a greater capacity to be removed by sediments in restored wetlands (Ardón et al. 2010a; 2010b; Steinman and Ogdahl 2011). While mitigation of P loading has received greater attention owing to its role as a primary limiting nutrient for phytoplankton growth in freshwater environments (Schindler 1974; Carpenter et al. 1998), N is emerging as an important co-limiting nutrient that has recently been implicated in the growth and persistence of harmful algal blooms in lakes (Conley et al. 2009; Chaffin and Bridgeman 2014; Steffen et al. 2014; Paerl et al. 2016). The potential for wetlands to mitigate or exacerbate downstream N delivery is thus a key
determinant of downstream water quality, and N management should be incorporated alongside P management into restoration activities.

Denitrification is the predominant process that permanently removes N from wetlands (Seitzinger et al. 2006). Denitrification is the stepwise reduction of NO$_3^-$ to N$_2$, with intermediates of NO$_2^-$, NO, and N$_2$O (Knowles 1982). Of particular concern is the proportion of N that is not completely reduced to N$_2$ and is lost as N$_2$O, a potent greenhouse gas (IPCC 2007). Thus, enhanced denitrification may have the unintended consequence of increasing greenhouse gas emissions. N$_2$O production rates and the N$_2$O:N$_2$ production ratio are likely to change following wetland restoration, owing to differences in NO$_3^-$ supply, quality and quantity of organic carbon, and hydrologic pulses (Welti et al. 2012; Sun et al. 2014). Denitrification can be augmented by direct coupling with nitrification, which oxidizes NH$_4^+$ to NO$_3^-$. Coupled nitrification-denitrification can make up a significant proportion of total denitrification in wetlands (Scott et al. 2008).

Anammox, the transformation of NH$_4^+$ and NO$_2^-$ to N$_2$ (van de Graaf et al. 1995), is an additional N removal process that is not well understood in wetland systems. This process is expected to be minor compared to denitrification in wetlands owing to the inferior ability of anammox bacteria to compete for substrates in organic-rich sediments (Thamdrup and Dalsgaard 2002; Humbert et al. 2012). However, anammox genes have been detected in wetlands (Zhu et al. 2011; Humbert et al. 2012; Waki et al. 2015) and hotspots of anammox activity have been observed at land-freshwater interfaces (Zhu et al. 2013). A complete understanding of the N removal regime of wetlands and their potential impact on water quality will therefore benefit from examination of both denitrification and anammox.
In this study, we aimed to quantify N removal and release by wetland sediments under restoration scenarios, using statistical modeling to produce probabilistic estimates of the rates of each N cycling process. Additionally, we evaluated potential downstream impacts of wetland restoration activities in the context of watershed N and P management. Together, this work provides an analysis of wetland N removal and release capacity before restoration activities occur, which can help guide management decisions and expectations.

METHODS

Study site

This research was conducted in the Bear Lake Wetland Restoration Area (BLWRA) in western Michigan, USA that is currently being subject to restoration activities (Figure 7). Historically, the BLWRA was a deltaic wetland that was hydrologically connected to Bear Creek on its north side. In the early 1900s, an earthen berm was constructed between Bear Creek and the wetland, and the wetland was drained and placed into celery production. Agricultural activities ceased and the pumps were turned off in 2002, allowing the wetland to be re-inundated as two separate ponds. The main purpose of the restoration was to create habitat for wildlife, although an additional benefit could be improved water quality. This study focused on the West Pond (0.09 km²), which had not been subject to sediment dredging prior to 2016. Additional restoration activities, completed in the two years following this study, were completed to (1) dewater the pond, (2) dredge the sediment to a depth of approximately 0.5 m to remove the agriculturally-impacted layer, and (3) re-inundate the pond. Future restoration will remove the berm to reconnect the surface hydrology of the wetland and Bear Creek, assuming the nutrient
concentrations in the refilled ponds are lower than those in adjacent Bear Creek (Steinman and Ogdahl 2016).

Restoration has the potential to impact water quality in Bear Lake, a eutrophic drowned river mouth lake located approximately 250 m downstream of the West Pond that is connected via Bear Creek. Bear Lake is within the geographic boundary of the Muskegon Lake Area of Concern and is subject to evaluations of eutrophication and nutrient loading (USEPA 2013). Previous studies have examined the potential effects of hydrologic reconnection on P retention and release from the BLWRA (Smit and Steinman 2015; Steinman and Ogdahl 2016), and the examination of N cycling was compared with those results to evaluate potential downstream nutrient impacts on Bear Lake.

Figure 7. Map of the Bear Lake Wetland Restoration Area (BLWRA). Restoration activities in the West Pond include removal of the berm that separates Bear Creek from the wetland and sediment dredging of. Insets show the location of the ponds in the downstream portion of the watershed (left) and in Michigan, USA (right).
Intact sediment cores

Sediment was collected at a sampling location in the northwest side of the pond (Figure 7) using a modified piston corer described by Smit and Steinman (2015). Intact sediment cores were collected in polycarbonate tubes (7 cm i.d.) to a depth of 25 cm. Cores were then divided into three treatment groups: “Control,” which simulates conditions without restoration, “HR,” which simulates a hydrologic reconnection of the wetland to Bear Creek, and “HR+D,” which simulates hydrologic reconnection and dredging of the top layer of sediment. Water from the West Pond was added to Control cores and water from Bear Creek was added to HR and HR+D cores to a depth of 20 cm inside the core tube (Table 3). The top 5 cm of sediment was removed from the cores in the HR+D treatment. Though 5 cm is shallower than the depth to which sediments are currently being dredged, it represents the removal of the most likely labile and microbially active sediment layer. Cores were pre-incubated 12 h in the dark at in situ temperature prior to the addition of 15N-NO$_3^-$ under gentle bubbling with air to maintain oxic conditions in the overlying water.

Table 3. DIN concentrations in the Bear Lake Wetland Restoration Area and adjacent Bear Creek.

<table>
<thead>
<tr>
<th>Location</th>
<th>NH$_4^+$-N µM</th>
<th>NO$_2^-$-N + NO$_3^-$-N µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undredged Field</td>
<td>29.45</td>
<td>46.40</td>
</tr>
<tr>
<td>Bear Creek</td>
<td>1.35</td>
<td>22.34</td>
</tr>
</tbody>
</table>

Following pre-incubation, a water sample was taken for DIN concentration analysis (NO$_3^-$, NO$_2^-$ and NH$_4^+$) by filtering through a 0.45 µm Millipore filter and freezing until analysis. 15N-NO$_3^-$ was then added to obtain a final concentration of 100 µM in the overlying water of
each sediment core. Cores were then capped with a rubber plug and equipped with a motorized stirring device inserted through a port in the plug. Stirring of the water overlying the core was maintained just below the sediment resuspension threshold. An equilibration period of 30 min was employed to allow for homogenization of NO$_3^-$ between the overlying water and with the NO$_3^-$ reduction zone in the sediment porewater (Dalsgaard et al. 2000). Cores from each treatment were sacrificed in triplicate at intervals of 0, 6, and 12 h. Upon sacrifice, dissolved O$_2$ was measured using a YSI 6600 sonde (Yellow Springs Instruments Inc., Yellow Springs, OH). A DIN sample was collected and processed as described above. Then, the top 2-4 cm of the sediment core were slurried with a glass rod to mix the overlying water with porewater, and samples were collected for dissolved N$_2$ and N$_2$O analysis.

Samples for the determination of δ^{15}N$_2$ were collected according to Hamilton and Ostrom (2007); briefly, dissolved gases were equilibrated with a He atmosphere, and the headspace was transferred into a pre-evacuated 12 mL Exetainer. Samples for analysis of dissolved N$_2$ concentration were siphoned into 12 mL Exetainers to overflowing and amended with 200 µL of saturated ZnCl$_2$ solution to halt biological activity. All Exetainers were stored underwater at room temperature to minimize diffusion of atmospheric N$_2$ during storage. Samples for analysis of the δ^{15}N$_2$O and N$_2$O concentration were siphoned into 250 and 60 mL serum bottles, respectively, to overflowing and sealed without a headspace. Biological activity was halted by addition of 1 and 0.25 mL of saturated HgCl$_2$ solution, respectively, to each serum bottle. Prior to analysis, a headspace of 20 mL He was injected into each 60 mL serum bottle, with atmospheric pressure maintained by allowing 20 mL of water to exit via a vent needle. Serum bottles were allowed to equilibrate under gentle shaking for at least 12 h prior to analysis.
Analyses

The concentration of NO$_3^-$ was determined by ion chromatography on a Dionex DX500 (APHA 2005). NH$_4^+$ concentrations were analyzed by the automated phenate method (APHA 2005) on a Bran + Luebbe Autoanalyzer (SEAL Analytical, Mequon, WI). The isotopic composition of N$_2$ was analyzed by gas chromatograph (HP-5980, Hewlett Packard, Ramsey, MN) interfaced to an Isoprime isotope ratio mass spectrometer (Elementar Americas, Inc., Mount Laurel, NJ). Analytical reproducibility was 0.3 ‰. Concentrations of dissolved N$_2$ were analyzed by membrane inlet mass spectrometry according to Eyre et al. (2002). The headspace of the 60 mL serum bottles was analyzed for the concentration of N$_2$O by GC-ECD (Shimadzu Greenhouse Gas Analyzer GC-2014, Shimadzu Scientific Instruments, Columbia, MD). The original dissolved concentration of N$_2$O in each sample was calculated based on the headspace equilibrium concentration (Hamilton and Ostrom 2007). The isotopic composition of N$_2$O was analyzed by introducing the sample into a Trace Gas sample introduction system following He sparging and cryogenic trapping interfaced to an Isoprime isotope ratio mass spectrometer (Elementar Americas, Inc., Mount Laurel, NJ). Analytical reproducibility for replicate samples was 0.5 ‰ for bulk δ^{15}N and δ^{18}O, 0.75 ‰ for δ^{15}N$_\alpha$ δ^{15}N$_\beta$, and 1.3 ‰ for SP.

Modeling

Rates of N removal were determined according to the isotope pairing technique (IPT). The original IPT calculates the denitrification rate (including coupled nitrification-denitrification) based on the production of 29N$_2$ and 30N$_2$ following addition of 15NO$_3^-$ (Nielsen 1992). Subsequent revisions of the IPT include calculation of rates of anammox and N$_2$O production by incorporating the analysis of 45N$_2$O and 46N$_2$O production (Risgaard-Petersen et al.
Briefly, N₂ production by denitrification and anammox, respectively, were calculated as:

\[(r_{14-N₂O} + 1) \cdot 2 \cdot r_{14-N₂O} \cdot P_{30}\]

and

\[2 \cdot r_{14-N₂O} \cdot (P_{29} - 2 \cdot r_{14-N₂O} \cdot P_{30})\]

where \(r_{14-N₂O}\) is the ratio of \(^{14}\)N to \(^{15}\)N in N₂O, \(P_{29}\) is the production of \(^{29}\)N₂, and \(P_{30}\) is the production of \(^{30}\)N₂. N₂O production in the absence of \(^{15}\)N amendment was calculated as:

\[r_{14-N₂O} \cdot (2 \cdot P_{46} + P_{45})\]

where \(P_{45}\) and \(P_{46}\) are the production of \(^{45}\)N₂O and \(^{46}\)N₂O, respectively. Coupled nitrification-denitrification, a subset of total denitrification, was calculated as:

\[P_{14} \cdot (1 - r_{14w}/r_{14-N₂O})\]

where \(P_{14}\) is the total production of \(^{14}\)N-N₂ and \(^{14}\)N-N₂O and \(r_{14w}\) is the ratio of \(^{14}\)N to \(^{15}\)N in the water overlying the core. NH₄⁺ flux into or out of the sediment was calculated as the NH₄⁺ concentration in the overlying water at the end of the incubation minus the NH₄⁺ concentration in the overlying water at the start of the incubation.

Statistical analysis

A two-way interaction effects ANOVA was used to test for differences in denitrification, N₂O production, and NH₄⁺ flux among the different restoration scenarios and incubation durations. Statistical models and posterior distributions were analyzed in a Bayesian framework using R (version 3.2.4) and JAGS (Su and Yajima 2015). For each test, 1,200 Markov-chain Monte Carlo iterations were run on three chains after a burn-in of 200 and thinned by two, yielding 1,500 samples in the posterior distribution. Credible intervals (95%) were constructed.
around the mean of each group. The probability of a significant difference between groups was determined by calculating the proportion of iterations in which the posterior estimate of one group was smaller than another (Turner et al. 2010). The difference between groups was considered significant when less than 5% of the posterior estimates were smaller than those of another group. Posterior estimates of 95% credible intervals for denitrification and N₂O production generally encompassed measured rates, whereas posterior estimates for NH₄⁺ flux tended to occupy a narrower range than the observed fluxes.

RESULTS

Anammox was not detected in wetland sediments. The absence of anammox activity was confirmed by comparing the proportion of ¹⁵N in N₂ with that of N₂O (qN₂ and qN₂O, respectively; Trimmer et al. 2006). Anammox activity is suggested if qN₂ is lower than qN₂O, illustrating disproportionate production of ²⁹N₂ relative to ⁴⁵N₂O (Erler et al. 2008). In our study, qN₂ values were consistently higher than qN₂O values, indicating production of ⁴⁵N₂O that outweighed production of ²⁹N₂.

Denitrification was the only appreciable mechanism of N removal in Bear Creek wetland sediments. Posterior estimates generated by statistical modeling indicated that denitrification rates were lower in the HR and HR+D scenarios than in the Control scenario across both incubation durations (Figure 8; Table 4). Incubation duration had a significant effect on the denitrification rate in the HR+D scenario, where denitrification rates in the 6 h incubation were significantly higher than in the 12 h incubation (Figure 8a, Table 4). Coupled nitrification-denitrification (mean ± SD), a subset of total denitrification, was significantly higher in the
Control scenario (60.4 ± 10.9 µmol N m⁻² h⁻¹) than in the HR and HR+D scenarios (18.6 ± 10.3 and 16.6 ± 11.3 µmol N m⁻² h⁻¹, respectively; Figure 8b).

Figure 8. Posterior estimates of (a) denitrification, (b) coupled nitrification-denitrification, (c) N₂O production rates, and (d) NH₄⁺ flux. Rates were measured from incubations of 6 and 12 h duration under three restoration scenarios: (1) no restoration (control), (2) simulated hydrologic reconnection (HR), and (3) simulated hydrologic reconnection and dredging (HR+D). Open circles represent measured rates and closed circles represent the mean of the posterior estimate for each treatment-duration combination. Lines represent the 95% credible interval around each posterior mean estimate. In (d), positive values indicate a net release of NH₄⁺ to the water column from the sediment, and negative values indicate a net uptake of NH₄⁺ by the sediment from the water column. Note the different scales for the axes among panels. Statistical groupings of posterior estimates at the p < 0.05 level are indicated by letters.

The N₂O production rate was below 0.10 µmol N m⁻² h⁻¹ for all treatments and incubation durations except the HR+D scenario in the 6 h incubation, which was significantly greater than any other treatment and duration (Figure 8c, Table 4). As a percentage of total denitrification, N₂O production was similar between incubation durations within a single restoration scenario. In
the control, HR, and HR+D scenarios, N₂O made up (mean ± SD) 0.06 ± 0.05 %, 0.19 ± 0.04 %, and 0.21 ± 0.08 % of total denitrification, respectively.

NH₄⁺ flux data indicated a net release (positive flux) or net uptake (negative flux) of NH₄⁺ from the sediment depending on the restoration scenario. The NH₄⁺ fluxes for the Control scenario for both incubation durations and for the HR scenario for the 6 h duration were positive. The NH₄⁺ fluxes for the HR scenario for the 12 h incubation durations and for the HR+D scenario for both incubation scenarios were negative and were significantly different from the positive fluxes but not from one another. In terms of magnitude, NH₄⁺ flux was the dominant N cycling process of those studied (Figure 8d, Table 4).

Table 4. Posterior estimates of denitrification, N₂O production, and NH₄⁺ flux under restoration scenarios. HR = hydrologic reconnection, HR+D = hydrologic reconnection and dredging, CI = credible interval.

<table>
<thead>
<tr>
<th></th>
<th>Denitrification (µmol N m⁻² h⁻¹)</th>
<th>N₂O production (µmol N m⁻² h⁻¹)</th>
<th>NH₄⁺ flux (µmol N m⁻² h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5% CI</td>
<td>Mean</td>
<td>95% CI</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>59.1</td>
<td>78.2</td>
<td>93.1</td>
</tr>
<tr>
<td>12 h</td>
<td>67.0</td>
<td>87.2</td>
<td>102.0</td>
</tr>
<tr>
<td>HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>24.7</td>
<td>40.9</td>
<td>56.0</td>
</tr>
<tr>
<td>12 h</td>
<td>7.0</td>
<td>24.8</td>
<td>41.1</td>
</tr>
<tr>
<td>HR+D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 h</td>
<td>37.9</td>
<td>56.0</td>
<td>71.5</td>
</tr>
<tr>
<td>12 h</td>
<td>-2.4</td>
<td>14.7</td>
<td>30.1</td>
</tr>
</tbody>
</table>

DISCUSSION

This study evaluated N cycling pathways in intact sediment cores from a restored wetland and the potential response of restoration activities on these processes. By analyzing N cycling in
experiments that represented different restoration scenarios, we modeled the potential effects of restoration on N cycling in the context of watershed nutrient management. N cycling was evaluated with a Bayesian analysis, which offers the advantage of providing probabilistic estimates of environmental processes by quantifying the uncertainty associated with modeled parameters (Kéry 2010).

We demonstrate that the west pond of the BLWRA, like other wetland systems, has a substantial capacity to remove N from the watershed via N\textsubscript{2} production (Saunders and Kalff 2001; Seitzinger et al. 2006). While the IPT model has the capacity to quantify both denitrification and anammox, denitrification was the only N\textsubscript{2} production process detected in this system. The absence of anammox activity is not surprising, as denitrification tends to outcompete anammox in organic-rich sediments (Ahn 2006; Algar and Vallino 2014). Indeed, sediment in this location in the BLWRA contains a high amount of organic matter (~20 % by mass), and this organic content is consistent from 0 to 43 cm depth (Steinman and Ogdahl 2016). Further, while anammox is a prominent N removal process in marine environments, it has been observed at a much lower frequency in freshwaters (Burgin and Hamilton 2007; Hu et al. 2011).

Denitrification rates differed significantly among experimental treatments, which included introduction of water from Bear Creek and removal of sediments from intact cores. Across treatments, posterior estimates of denitrification rates varied over three orders of magnitude, indicating strong responsiveness of denitrification activity to hydrologic changes that is common to other wetland systems (Ardón et al. 2010a). When sediment cores were exposed to water from Bear Creek under simulated hydrologic reconnection (HR and HR+D treatments), there was a two-fold decrease in the mean denitrification rate relative to the control (Figure 8a, Table 4). This decreased rate could be due to a difference in NO\textsubscript{3} supply via two mechanisms.
First, the concentration of NO3− in Bear Creek water was \(\sim ½\) of that present in the wetland water column (Table 3). If these results are indicative of the BLWRA, they suggest that hydrologic reconnection would decrease the NO3− supply to denitrifiers in the sediment, resulting in lower rates of denitrification (Tiedje et al. 1982). Second, the NH\textsubscript{4}+ concentration in the stream was \(\sim 20\) times lower than that of the wetland, and the rate of coupled nitrification-denitrification was significantly reduced under hydrologic reconnection scenarios (Figure 8b). This suggests that a dramatic decrease in NH\textsubscript{4}+ supply following hydrologic reconnection could limit nitrification activity, which in turn could limit the supply of NO3− to denitrification. Reconnection therefore may result in a decoupling of nitrification and denitrification, reducing the capacity for denitrification to remove N from the wetland.

Incubation length had a significant effect on denitrification and N\textsubscript{2}O production under simulated hydrologic reconnection with dredging. Denitrification and N\textsubscript{2}O production rates were greater for the 6 h duration than for the 12 h duration in the HR+D scenario. While the removal of wetland sediments throughout the range of depths encompassed by dredging activities (5 cm this study, \(\sim 0.5\) m expected) is not expected to alter the quantity of organic matter in the surface sediment (Steinman and Ogdahl 2016), physical disturbance and reoxygenation of the sediment has been shown liberate labile pools of particulate and dissolved carbon and N (Aller 1994). The stimulation of denitrification and N\textsubscript{2}O production shortly following dredging could represent rapid utilization of newly exposed substrates followed by a return to more modest rates as rate-limiting substrates are consumed. In the context of restoration, we may expect dredging to result in a temporary spike in N\textsubscript{2} and N\textsubscript{2}O production prior to a return to a quasi-equilibrium characterized by more moderate rates (Morse et al. 2012).
In general, the BLWRA displayed N$_2$O production typical of wetland environments (Huttunen et al. 2003; Morse et al. 2012; Audet et al. 2014), and changes in N$_2$O production were suggestive of changes in substrate availability in the context of restoration activities. For a wetland that has historically been subject to high levels of nutrient loading, denitrification was remarkably efficient; the proportion of N lost as N$_2$O (0.06 to 0.21 %) is typical of benthic sediments that are not heavily nutrient-impacted (Seitzinger and Kroeze 1998). While the N$_2$O:N$_2$ ratio remained comparatively low across all restoration scenarios, a threefold increase in the proportion of N lost as N$_2$O and a spike in N$_2$O production in the HR+D scenario is indicative of a decrease in the degree to which denitrification proceeds to completion. This observation could relate to a change in the energetic yield of N$_2$O reduction compared to other steps in denitrification following sediment disturbance (Tiedje et al. 1982), which could result in a brief yet substantial increase in greenhouse gas production by the wetland following restoration.

Restoration scenarios resulted in a shift from net NH$_4^+$ release to net NH$_4^+$ uptake from BLWRA sediments, providing insight into the behavior of nitrification in this system. In the absence of hydrologic reconnection, NH$_4^+$ was released from the sediment and high NH$_4^+$ concentrations were present in the water, indicating there was ample NH$_4^+$ supply provided by mineralization to fuel nitrification. With a non-limiting supply of NH$_4^+$, nitrification supplied a steady source of NO$_3^-$ for denitrification as indicated by high coupled nitrification-denitrification rates in the Control scenario. Under conditions of hydrologic reconnection, however, the supply of NH$_4^+$ from the overlying water decreased by 20-fold, and the sediments shifted from net NH$_4^+$ release to net NH$_4^+$ uptake from the 6 h to the 12 h incubation duration in the HR scenario and displayed net uptake of NH$_4^+$ throughout both incubation durations in the HR+D scenario. This shift suggests that demand for NH$_4^+$ by nitrification exceeded its supply, resulting in less NO$_3^-$
generated by nitrification. Coupled nitrification-denitrification was thus hindered and total denitrification rates decreased.

To estimate the possible changes in the \(\text{NO}_3^- \) and \(\text{NH}_4^+ \) load to Bear Lake that would result from reconnecting the wetland to Bear Creek, we modeled several scenarios relating the N cycling capacity of the wetland sediment to the N load from Bear Creek. These scenarios are hypothetical, as our experiments were conducted prior to current restoration efforts. However, the modeling does offer opportunities to evaluate the impacts of management decisions, develop a baseline for expectations about downstream nutrient delivery, and monitor progress in the context of expected impacts (Maack 2001). We evaluated \(\text{NO}_3^- \) mitigation capacity as the proportion of stream nitrate removed by the wetland (\(\text{NO}_3^-_{\text{rem}} \)):

\[
\text{NO}_3^-_{\text{rem}} = \frac{\text{denitrification rate} \cdot \text{wetland sediment surface area}}{\text{stream NO}_3^- \cdot \text{stream discharge} \cdot \text{fraction}}
\]

(11)

where the denitrification rate under restoration scenarios (\(\mu \text{mol m}^{-2} \text{ h}^{-1} \)) was incorporated as the posterior estimate of the mean and 95 % credible interval, wetland sediment surface area (m\(^2\)) and measured stream \(\text{NO}_3^- \) concentration (\(\mu \text{mol L}^{-1} \)) were incorporated as constant parameters, and stream discharge (L h\(^{-1}\)) was incorporated as the mean discharge rate of Bear Creek (Cadmus Group and AWRI 2007). A “fraction” term was added to represent the portion of Bear Creek water that will enter the wetland following hydrologic reconnection, which is currently unknown but will be engineered to maximize hydrologic exchange. A range of fractions between 0.1 and 1 were thus incorporated to represent the maximum probable range of hydrologic exchange between Bear Creek and the wetland. \(\text{NH}_4^+ \) retention capacity was modeled similarly by replacing the denitrification rate and stream \(\text{NO}_3^- \) concentration with \(\text{NH}_4^+ \) flux rate and stream \(\text{NH}_4^+ \) concentration.
The BLWRA has the potential to intercept a substantial amount of NO$_3^-$ and NH$_4^+$ from Bear Creek. Wetland denitrification can remove up to 10 % of stream NO$_3^-$ (Figure 9a), providing a potential water quality benefit to downstream Bear and Muskegon Lakes given sufficient diversion of Bear Creek water through the wetland. Although several studies have reported the capacity of riparian wetlands to remove up to 100 % of NO$_3^-$ inputs (Fennessy and Cronk 1997; Ardón et al. 2010a), clearly this assumption cannot be made across all wetland restoration settings. Although BLWRA denitrification rates are typical of many wetland environments, the NO$_3^-$ load and discharge from Bear Creek are sufficiently high to limit the capacity for denitrifying bacteria to fully consume stream NO$_3^-$. An a priori assessment of the wetland N removal capacity, as was conducted here, can therefore be helpful in establishing expectations for the potential impact of restoration activities on water quality. Three out of four restoration scenarios project a net uptake of NH$_4^+$, translating to a capacity of the wetland to retain all incoming NH$_4^+$ from Bear Creek, potentially with an initial pulse of NH$_4^+$ released from the wetland following hydrologic reconnection (Figure 9b). These results are consistent with previous studies, which suggest is not uncommon for wetlands to shift back and forth between the retention and release of NH$_4^+$ following restoration (Ardón et al. 2010a).

Restoration activities in the BLWRA are predicted to result in major changes in N cycling, illustrating a probable shift in the biogeochemistry of this watershed. However, restoration activities must be evaluated in the context of P cycling in addition to N cycling. Analysis by Smit and Steinman (2015) indicates that hydrologic reconnection could result in enhanced release of P to downstream Bear Lake (20 to 81 µmol P m$^{-2}$ h$^{-1}$ across treatments), while dredging activities could substantially limit this release owing to the exposure of sediments with higher P sorption capacity. While it appears that P loading will likely remain an ongoing
issue for the eutrophication of Bear Lake, restoration activities are predicted to decrease downstream N loading from the BLWRA. Our analyses indicate that N retention and removal in this wetland depend on nitrification; hydrologic reconnection could reduce the supply of NH$_4^+$ available for nitrification, resulting in a shift from net NH$_4^+$ release to uptake and a decoupling of nitrification and denitrification. Despite the decreased rate of permanent N removal from the wetland under restoration scenarios, the total projected amount of N removed from the wetland via denitrification is roughly equivalent to the total projected amount of P released. Furthermore, the magnitude of NH$_4^+$ uptake under restoration scenarios is tenfold that of denitrification and P release, demonstrating a high capacity for the wetland to reduce downstream N loading. The marked shift in N cycling displayed here indicates that nitrification is a strong regulator of permanent N removal that can be heavily influenced by NH$_4^+$ availability.

Figure 9. (a) NO$_3^-$ and (b) NH$_4^+$ mitigation capacity of the wetland with respect to the potential load delivered by Bear Creek. Denitrification and NH$_4^+$ flux were measured from incubations of 6 and 12 h duration under restoration scenarios of simulated hydrologic reconnection (HR) and simulated hydrologic reconnection with dredging (HR+D). Closed circles represent the mean of the posterior estimate for each treatment-duration combination. Lines represent the 95 % credible interval around each posterior mean estimate. Fractions of Bear Creek water reaching the wetland sediment (0.1, 0.5, and 1.0) are represented by light gray, dark gray, and black lines, respectively.
Changes in wetland N cycling carry implications for downstream receiving water bodies. In the case of Bear Lake, as well as other lakes that are either limited by N or co-limited by P and N (Paerl et al. 2016), reducing N loads through reconnection may drive the lake to stronger N limitation, which may contribute to larger blooms of toxic cyanobacteria (Chaffin and Bridgeman 2014). However, because reduced forms of N are needed for toxin production genes to be expressed (Kuniyoshi et al. 2011), N cycling in the BLWRA may actually inhibit bloom toxicity, even as the reduction in N concentrations stimulates bloom formation. These results, in combination with those of Smit and Steinman (2015) and Steinman and Ogdahl (2016) suggest that nutrient management must consider both N and P, not just a single nutrient (Conley et al. 2009; Paerl et al. 2016). The current study provides a mechanistic understanding of N mitigation in a wetland undergoing restoration, and reveals that future studies need to investigate not only denitrification but also the processing of NH$_4^+$ and its effects on nitrification.
LITERATURE CITED
LITERATURE CITED

CHAPTER 3

UNEXPECTEDLY HIGH DEGREE OF ANAMMOX AND DNRA IN SEAGRASS SEDIMENTS: DESCRIPTION AND APPLICATION OF A REVISED ISOTOPE PAIRING TECHNIQUE

ABSTRACT

Understanding the magnitude of nitrogen (N) loss and recycling pathways is crucial for coastal N management efforts. However, quantification of denitrification and anammox by a widely-used method, the isotope pairing technique, is challenged when dissimilatory NO$_3^-$ reduction to NH$_4^+$ (DNRA) occurs. In this study, we describe a revised isotope pairing technique that accounts for the influence of DNRA on NO$_3^-$ reduction (R-IPT-DNRA). The new calculation procedure improves on previous techniques by (1) accounting for N$_2$O production, (2) distinguishing canonical anammox from coupled DNRA-anammox, and (3) including the production of 30N$_2$ by anammox in the quantification of DNRA. We apply this technique to simultaneously quantify rates of anammox, denitrification, and DNRA in intact sediments adjacent to a seagrass bed in subtropical Australia. The effect of organic carbon lability on NO$_3^-$ reduction was also addressed by adding detrital sources with differing C:N (phytoplankton- or seagrass-derived). DNRA was the predominant pathway, contributing 49-74% of total NO$_3^-$ reduction (mean 0.42 µmol N m$^{-2}$ h$^{-1}$). In this high C:N system, DNRA outcompetes denitrification for NO$_3^-$, functioning to recycle rather than remove N. Anammox exceeded denitrification (mean 0.18 and 0.04 µmol N m$^{-2}$ h$^{-1}$, respectively) and accounted for 64-86% of N loss, a rare high percentage in shallow coastal environments. Owing to low denitrification activity, N$_2$O production was ~100-fold lower than in other coastal sediments (mean 7.7 nmol N m$^{-2}$ h$^{-1}$). All NO$_3^-$ reduction pathways were stimulated by seagrass detritus but not by phytoplankton detritus, suggesting this microbial community is adapted to process organic matter.
that is typically encountered. Our new model, the R-IPT-DNRA, is widely applicable in other environments where the characterization of co-existing NO$_3^-$ reduction pathways is desirable.

INTRODUCTION

Coastal ecosystems are important regions of nitrogen (N) loss, the conversion of bioavailable N to gaseous N, particularly as N loading to marine environments has intensified in response to agricultural activities (Schlesinger 2009). While it is known that coastal systems remove significant quantities of inorganic N from watershed loading (e.g., Seitzinger et al. 2006; Murray et al. 2015; Eyre et al. 2016), the magnitudes, pathways, and environmental controls on N loss are not completely resolved. The potential for natural microbial processes to mitigate the detrimental effects of N loading such as eutrophication and harmful algal blooms will depend on a more complete understanding of N loss mechanisms in coastal environments (Howarth 2008).

Denitrification via the respiratory reduction of NO$_3^-$ to N$_2$ is generally recognized as the predominant mechanism for N loss in coastal marine systems (Seitzinger et al. 2006). This heterotrophic process occurs in hypoxic to anoxic environments and requires a supply of NO$_3^-$ and organic carbon (Knowles 1982). A variable but usually small fraction of reduced NO$_3^-$ is not fully reduced to N$_2$ and is released as N$_2$O, a potent greenhouse gas with nearly 300 times the global warming potential of CO$_2$ over a 100-year timespan (IPCC 2007). The factors regulating the N$_2$O:N$_2$ production ratio include O$_2$ concentration, carbon availability, and substrate concentration (Betlach and Tiedje 1981; Knowles 1982; Davidson and Verchot 2000; Hwang et al. 2006), although the relative importance of these factors in concert is not well understood (Murray et al. 2015).
An alternate N loss pathway, anaerobic ammonium oxidation (anammox), was discovered only two decades ago (van de Graaf et al. 1995) and has since been recognized as a globally important process that rivals denitrification in its removal of N from offshore marine systems. A chemoautotrophic process, anammox produces N\(_2\) via the reaction of NO\(_2^-\) and NH\(_4^+\) with no direct organic carbon demand. Anammox does not produce an appreciable amount of N\(_2\)O (Kartal et al. 2012). Anammox is now estimated to contribute 1/3 to 1/2 of global marine N loss from sediments and anoxic water columns (Dalsgaard et al. 2005). However, owing to its recent discovery, the environmental controls of anammox in a variety of natural environments are not well constrained, particularly as they relate to the interplay between anammox and denitrification.

The isotope pairing technique (IPT) is a widely used technique for measuring N loss rates (i.e., those that would naturally occur in the absence of \(^{15}\)N addition) from aquatic sediments. The original isotope pairing technique quantifies N\(_2\) production via denitrification (Fig. 10a; Nielsen 1992). Following the discovery of anammox as an additional N\(_2\) production pathway, a revision to the isotope pairing technique (R-IPT) that distinguished N\(_2\) production by denitrification and anammox was developed (Fig. 10a; Risgaard-Petersen et al. 2003). Contemporary applications of the isotope pairing technique utilize the R-IPT rather than the IPT. An addition to the isotope pairing technique has enabled the quantification of N\(_2\)O production (IPT\(_{\text{ana N}_2\text{O}}\); Fig. 10b; Hsu and Kao 2013). In practice, the isotope pairing technique is carried out by adding \(^{15}\)NO\(_3^-\) to the ambient NO\(_3^-\) pool of a sediment slurry, water sample, or intact sediment core. Supposing random isotope pairing, rates of denitrification and anammox are then calculated based on the \(^{14}\)N/\(^{15}\)N ratio in the NO\(_3^-\) pool undergoing reduction (\(r_{14}\)) and the isotopic composition of nitrogenous end products (N\(_2\) and N\(_2\)O).
a IPT (shaded; Nielsen, 1992) and R-IPT (Risgaard-Petersen et al., 2003) that quantifies N\textsubscript{2} production via denitrification and a subsequent revision to the IPT (R-IPT; Risgaard-Petersen et al., 2003) that includes the production of N\textsubscript{2} via anammox as well as denitrification.

b IPT\textsubscript{anaN2O} (Hsu and Kao, 2013), which adds the capacity to quantify N\textsubscript{2}O production via denitrification to the R-IPT.

c A revision to the IPT model (Song et al. 2016) which enables quantification of the production of NH\textsubscript{4}+ via DNRA to the R-IPT.

d The R-IPT-DNRA model (this study), which adds the ability to quantify N\textsubscript{2}O production via denitrification and NH\textsubscript{4}+ production via DNRA to the R-IPT while simultaneously distinguishing canonical anammox and coupled DNRA-anammox.

Figure 10. (a) The original IPT model (shaded; Nielsen 1992) that quantifies N\textsubscript{2} production via denitrification and a subsequent revision to the IPT (R-IPT; Risgaard-Petersen et al., 2003) that includes the production of N\textsubscript{2} via anammox as well as denitrification. (b) The IPT\textsubscript{anaN2O} model (Hsu and Kao 2013), which adds the capacity to quantify N\textsubscript{2}O production via denitrification to the R-IPT. (c) A revision to the IPT model (Song et al. 2016) which enables quantification of the production of NH\textsubscript{4}+ via DNRA to the R-IPT. (d) The R-IPT-DNRA model (this study), which adds the ability to quantify N\textsubscript{2}O production via denitrification and NH\textsubscript{4}+ production via DNRA to the R-IPT while simultaneously distinguishing canonical anammox and coupled DNRA-anammox.
In addition to N loss via denitrification and anammox in coastal sediments, N recycling processes can compete with N loss pathways for inorganic N substrates. The dissimilatory reduction of NO$_3^-$ to NH$_4^+$ (DNRA) has a similar energetic yield as denitrification and also occurs under low O$_2$ conditions (Tiedje et al. 1982). DNRA makes up a significant proportion of total NO$_3^-$ reduction in coastal sediments (Burgo and Hamilton 2007; Dong et al. 2011; Giblin et al. 2013) and tends to outcompete denitrification in high carbon, low NO$_3^-$ systems (Algar and Vallino 2014; Kraft et al. 2014; Brin et al. 2015; Hardison et al. 2015; van den Berg et al. 2015). In coastal marine systems where DNRA dominates, N is retained rather than lost, which could result in sustained or enhanced eutrophication (Hardison et al. 2015).

A key assumption of the isotope pairing technique is that NO$_3^-$ is the only appreciable source of 15N, but this assumption is violated when 15NH$_4^+$ is produced by DNRA. The coupling of DNRA-anammox, in this case, results in production of 30N$_2$ that is incorrectly attributed to denitrification, resulting in an underestimate of anammox and an overestimate of denitrification. Song et al. (2016) have recently proposed a revision to the isotope pairing technique that simultaneously quantifies the NO$_3^-$ reduction processes of denitrification, anammox, and DNRA, thus resolving the issues from the isotope pairing technique that occur when DNRA is active (Fig. 10c). This approach hinges on the evaluation of the ratio of 14N/15N in the NH$_4^+$ pool (r_{14a}). Further improvements to these models can be made by (1) quantifying N$_2$O production, (2) distinguishing coupled DNRA-anammox from uncoupled (canonical) anammox, and (3) including the production of 30N$_2$ by anammox in the quantification of DNRA (Fig. 10d).

Simultaneous quantification of denitrification, anammox, N$_2$O production, and DNRA will enable an examination of the competitive interactions among these processes under varying environmental conditions. For instance, organic carbon has been identified as a predominant
control on the relative importance of NO$_3^-$ reduction pathways in marine systems (Algar and Vallino 2014). It is expected that anammox should dominate NO$_3^-$ reduction at low C:N ratios, denitrification at intermediate C:N ratios, and DNRA at high C:N ratios (Thamdrup and Dalsgaard 2002; Dalsgaard et al. 2005; Algar and Vallino 2014; Hardison et al. 2015). However, this relationship is not definitive (Trimmer et al. 2003; Trimmer and Nicholls 2009), and few studies have simultaneously measured these processes (e.g., Erler et al. 2013), particularly with regard to carbon quality (i.e., C:N ratio and organic carbon lability).

There have been a number of N cycling studies in subtropical seagrass environments (e.g., Eyre et al. 2011a; 2011b; 2013; 2016), but to our knowledge, there have been no published studies on anammox rates or N$_2$O production in intact sediments from seagrass ecosystems. Further, seagrass ecosystems are exemplified by a largely refractory pool of organic carbon (Khan et al. 2015) that could serve as the basis of an investigation of the effect of carbon quality on N loss and recycling processes. While microbial activity is expected to be dampened in bare sediments compared to vegetated sediments, microbial communities tend to have similar taxonomic composition and metabolism in both settings (Boschker et al. 2000; Jones et al. 2003; Holmer et al. 2004). In addition, sediments adjacent to seagrass stands tend to have stable redox conditions (Enríquez et al. 2001), making them an ideal environment in which to apply a new revision to the IPT that includes denitrification, anammox, N$_2$O production, and DNRA.

This study has three objectives: (1) revise the isotope pairing technique to simultaneously quantify rates of anammox, denitrification, N$_2$O production, and DNRA; (2) generate the first estimates of anammox and N$_2$O production in intact sediments in a seagrass ecosystem; and (3) assess the competitive interactions among DNRA, denitrification, and anammox under differing organic carbon quality.
METHODS

Study site

This study was conducted in Shaws Bay, New South Wales, Australia (28.8675 S, 153.5871 E), a subtropical estuarine system. Throughout the course of the study, non-vegetated (i.e., no plant or root biomass) sediments were collected from in and around the edge of a seagrass bed (consisting primarily of Zostera muelleri) that covers approximately 0.02 km2 of the eastern part of the bay (Ballina Shire Council 2000). Sediment and water collections took place in June and July 2014.

Sediment slurry incubations

The presence of anammox and denitrification activity in Shaws Bay sediments was evaluated by sediment slurry assays following the approach outlined in Thamdrup and Dalsgaard (2002) and Trimmer et al. (2003). Briefly, sediments from 0 – 10 cm depth were collected from the edge of the seagrass bed and homogenized. Sediments were then transferred to an anoxic glove box, combined in a 1:1 volumetric ratio with He-sparged site water, and pre-incubated overnight. Following pre-incubation, sediment slurries were incubated in 12 mL Exetainers™ without a headspace either unamended or after addition of 15NH$_4^+$, 15NH$_4^+$ + 14NO$_3^-$, or 15NO$_3^-$ at a concentration of 100 µM. Biological activity was halted with addition of 100 µL of saturated solution of HgCl$_2$ at 6 h intervals for a total of 18 h. The isotope ratio of N$_2$ was then analyzed using a Thermo Trace GC Ultra with a 30 m x 0.32 mm CarboPLOT column interfaced to a Thermo Delta V Plus isotope ratio mass spectrometer (IRMS). Anammox activity was confirmed by an increase in the isotope fraction of 29N$_2$ in the 15NH$_4^+$ + 14NO$_3^-$ and 15NO$_3^-$ incubations, and
denitrification activity was confirmed by an increase in the isotope fraction of 30N$_2$ in the 15NO$_3^-$ incubation (Appendix Fig. A5).

Intact sediment incubations

Intact sediment cores (21-30 cm depth) were collected in 9 cm i.d. transparent PVC tubes, leaving approximately 1 cm of water overlying each core. Upon return to the lab, sediment core tubes were placed into an enclosure containing site water held at *in situ* temperature (16.5 °C). Oxic conditions throughout the enclosure were maintained by bubbling, and water was circulated throughout the enclosure with an aquarium pump. The water inside the sediment core tubes was circulated throughout the experiment by magnetic stir bars placed 5 cm above the sediment surface and rotated just below the resuspension threshold by an external magnet. Sediment core tubes were left uncapped and pre-incubated overnight (Ferguson et al. 2004).

Immediately prior to initiation of the incubation, a sample for dissolved inorganic N (NH_4^+ and NO$_3^-$ + NO$_2^-$, hereafter NO$_x$) analysis were taken from each core, filtered through a 0.45 µm cellulose acetate syringe filter into a 10 mL polyethylene vial, and frozen until analysis. Cores were then sealed with a cap equipped with a syringe port and a vent port with on-off valves. 15N-NO$_3^-$ was added to obtain a final concentration of 100 µM in the overlying water of each core via the syringe port. Cores were left either unamended (control) or amended with 1.5 g m$^{-2}$ of dried seagrass or phytoplankton detritus, which was added through the syringe port. Seagrass detritus consisted of dead seagrass and epiphytes was collected from the benthos of Shaws Bay, rinsed with deionized water, dried at 60 °C, and ground finely with a mortar and pestle. This represented the type of detritus regularly encountered in the system. Phytoplankton
detritus consisted of laboratory-cultured phytoplankton that was rinsed and dried at 60 °C. The C and N contents of Shaws Bay sediment, seagrass detritus, and phytoplankton detritus were measured using a Thermo Finnigan Flash EA 1112 interfaced with a Thermo Conflo III and a Thermo Delta V Plus IRMS. Sediment from Shaws Bay had a C:N molar ratio of 20.1 (0.15% C; 0.008% N). Seagrass detritus had a C:N molar ratio of 40.7 (34.9% C; 1.0% N), and phytoplankton detritus had a C:N molar ratio of 7.7 (40.3% C; 6.1% N).

Cores were allowed to equilibrate for 30 min to ensure homogenization of the NO$_3^-$ pool in the overlying water and NO$_3^-$ reduction zone at the sediment-water interface (Dalsgaard et al. 2000). At intervals of 0, 6, 12, and 19.5 h, cores from each organic carbon treatment were sacrificed in triplicate. Dissolved oxygen concentration and pH of the overlying water were measured with a Hach HQ40D dissolved O$_2$/pH probe that was calibrated to manufacturer specifications prior to use. A final dissolved nutrient sample was collected, as above, and an additional 30 mL sample was filtered and frozen for 15N-NH$_4^+$ analysis. The top 2-4 cm of the core were then slurried with a glass rod, and samples were collected for dissolved gas analysis. Samples for isotopic and concentration analysis of dissolved N$_2$ were collected in 12 mL Exetainers and 7 mL glass vials, respectively, to overflowing. 20 µL of a saturated solution of HgCl$_2$ was then added to halt biological activity, and the container was capped with a screw top septum (Exetainer) or a ground-glass stopper (glass vial) without a headspace. NO$_2^-$ was not detected in samples, and thus inorganic N$_2$O production in response to HgCl$_2$ addition was not considered a concern. A 2 mL He headspace was added to the Exetainers at atmospheric pressure and allowed to equilibrate for at least 12 h prior to analysis. N$_2$ samples were stored underwater at in situ temperature until analysis to minimize diffusion of atmospheric N$_2$ during storage. Samples for the isotopic and concentration analysis of N$_2$O were introduced by siphon into 300
mL glass serum bottles to overflowing and capped without a headspace with screw cap septa. One mL of a saturated solution of HgCl₂ was added to halt biological activity. A 25 mL headspace of He was added at atmospheric pressure using a vent needle, and N₂O samples were allowed to equilibrate for least 12 h prior to analysis.

Analyses

Concentrations of NH₄⁺ and NOₓ were measured colorimetrically on a Lachat QuickChem 8000 four channel Flow Injection Analyzer according to Eyre (2000). Headspace gas samples from the Exetainers were analyzed for the isotopic composition of N₂ on a Thermo Trace GC Ultra with a 25 m x 0.32 mm PoraPLOT Q column interfaced to a Thermo Delta V Plus IRMS. Concentrations of dissolved N₂ were analyzed by membrane inlet mass spectrometry (Eyre et al. 2002). The concentration and isotopic composition of N₂O were analyzed by a Thermo Fisher GasBench II interfaced to a Thermo Delta V Plus IRMS following He sparging and cryogenic trapping. The isotopic composition of NH₄⁺ was analyzed following oxidation to NO₂⁻ by hypobromite and subsequent reduction to N₂O by sodium azide and acetic acid according to Zhang et al. (2007). The isotope ratio of the N₂O was analyzed by IRMS as above. NO₂⁻ was not detected in the samples and did not require removal prior to ¹⁵NH₄⁺ analysis.

IPT modeling

N₂ production via denitrification and anammox (Pᵣ₄) was calculated according to the R-IPT (Figure 10a, Table 5; Risgaard-Petersen et al. 2003). N₂O production via denitrification was
calculated according to the IPT\textsubscript{anoN2O} and was also included in P_{14} (Figure 10b, Table 5; Hsu and Kao 2013). The ratio of $^{14}\text{NO}_3^{-}:^{15}\text{NO}_3^{-}$ in the NO$_3^{-}$ reduction zone (r_{14}) was estimated by determining the ratio of $^{14}\text{N}:^{15}\text{N}$ in N$_2$O. Unlike r_{14} derived from the NO$_3^{-}$ pool, r_{14} derived from the N$_2$O pool produces values for N$_2$ and N$_2$O production that are independent from the amount of $^{15}\text{NO}_3^{-}$ added and allows for variation among individual cores (Trimmer et al. 2006). The r_{14} derived from N$_2$O thus represents a more direct representation of N undergoing reduction than r_{14} derived from NO$_3^{-}$.

If DNRA occurs, $^{15}\text{NO}_3^{-}$ is reduced to $^{15}\text{NH}_4^{+}$, introducing ^{15}N into the NH$_4^{+}$ pool. If ^{15}N labeling of the NH$_4^{+}$ pool is high enough, this violates a central assumption of the isotope pairing technique, as both denitrification and anammox are capable of producing $^{30}\text{N}_2$ if DNRA is active. The isotope pairing technique equations were therefore revised to account for the influence of DNRA, which we call the R-IPT-DNRA (Fig. 10d; Table 5). A key addition of this approach is the quantification of the degree of ^{15}N labeling of the NH$_4^{+}$ pool, namely the ratio of $^{14}\text{NH}_4^{+}:^{15}\text{NH}_4^{+}$ (r_{14a}). The R-IPT-DNRA utilizes r_{14a} to quantify production of $^{28}\text{N}_2$, $^{29}\text{N}_2$ (via coupled DNRA-anammox and canonical anammox), and $^{30}\text{N}_2$ by anammox, respectively:

\begin{align*}
A_{28} &= (r_{14} * A_{29})/(r_{14}/r_{14a} + 1) \quad (12) \\
A_{29\text{-DNRA}} &= A_{29}/(1 + r_{14a}/r_{14}) \quad (13) \\
A_{29\text{-ana}} &= A_{29} - A_{29\text{-DNRA}} \quad (14) \\
A_{30} &= (P_{29} - 2P_{30} * r_{14})/(r_{14a} - r_{14}) \quad (15)
\end{align*}

Quantification of $A_{29\text{-DNRA}}$ and $A_{29\text{-ana}}$ enables the distinction of production of N$_2$ via coupled DNRA-anammox from canonical anammox, respectively:

\begin{align*}
A_{14\text{-DNRA}} &= A_{29\text{-DNRA}} + 2A_{28} * (A_{29\text{-DNRA}}/A_{29}) \quad (16)
\end{align*}
\[A_{14-ana} = 2A_{28} \times (A_{29-ana}/A_{29}) \]

Detailed derivations of equations are listed in the Appendix.

Genuine DNRA rates were calculated as:

\[\text{DNRA} = r_{14} (P_{15NH4+} + A_{30}) \]

where \(P_{15NH4+} \) indicates the production in \(^{15}\text{NH}_4^+\) over time and \(A_{30} \) indicates the production of
\(^{30}\text{N}_2\) by anammox (Table 5). Given the short length of the incubations and the fact that
incubations were run in the dark, it is unlikely that significant assimilation of \(\text{NO}_3^- \) and
subsequent remineralization of organic matter to \(\text{NH}_4^+ \) occurred. However, it is not possible to
distinguish \(\text{NO}_3^- \) assimilation and subsequent remineralization to \(\text{NH}_4^+ \) from DNRA using the R-IPT-DNRA, so the rate of DNRA could include this coupled process.

Rates of \(\text{N}_2 \) production by anammox and denitrification and \(\text{N}_2\text{O} \) production by
denitrification are together termed “total N loss.” Adding the rate of DNRA to these processes is
termed “total \(\text{NO}_3^- \) reduction.”
Table 5. Parameters and equations used in the R-IPT (Risgaard-Petersen et al. 2003) and the R-IPT-DNRA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Designation</th>
<th>R-IPT</th>
<th>R-IPT-DNRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>29</sub></td>
<td>Production of <sup>29</sup>N<sub>2</sub> (measured directly)</td>
<td>r<sub>14</sub><sup>2</sup> · P<sub>30</sub></td>
<td>r<sub>14</sub><sup>2</sup> · (P<sub>30</sub> − A<sub>30</sub>)</td>
</tr>
<tr>
<td>P<sub>30</sub></td>
<td>Production of <sup>30</sup>N<sub>2</sub> (measured directly)</td>
<td>2r<sub>14</sub> · P<sub>30</sub></td>
<td>2r<sub>14</sub> · (P<sub>30</sub> − A<sub>30</sub>)</td>
</tr>
<tr>
<td>P<sub>45</sub></td>
<td>Production of <sup>45</sup>N<sub>2</sub>O (measured directly)</td>
<td>P<sub>30</sub></td>
<td>P<sub>30</sub> − A<sub>30</sub></td>
</tr>
<tr>
<td>P<sub>46</sub></td>
<td>Production of <sup>46</sup>N<sub>2</sub>O (measured directly)</td>
<td>r<sub>14</sub> · A<sub>29</sub></td>
<td>r<sub>14</sub> · A<sub>29</sub> <sup>1</sup></td>
</tr>
<tr>
<td>r<sub>14</sub>*</td>
<td>Ratio of <sup>14</sup>N/<sup>15</sup>N in NO<sub>3</sub> (measured directly in N<sub>2</sub>O)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r<sub>14a</sub></td>
<td>Ratio of <sup>14</sup>N/<sup>15</sup>N in NH<sub>4</sub> (measured directly)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D<sub>28</sub></td>
<td>Production of <sup>28</sup>N<sub>2</sub> via denitrification</td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
</tr>
<tr>
<td>D<sub>29</sub></td>
<td>Production of <sup>29</sup>N<sub>2</sub> via denitrification</td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
</tr>
<tr>
<td>D<sub>30</sub></td>
<td>Production of <sup>30</sup>N<sub>2</sub> via denitrification</td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
<td>P<sub>29</sub> − D<sub>29</sub></td>
</tr>
<tr>
<td>A<sub>28</sub></td>
<td>Production of <sup>28</sup>N<sub>2</sub> via anammox</td>
<td>A<sub>29</sub> <sup>1</sup></td>
<td>1 + r<sub>14a</sub>/r<sub>14</sub></td>
</tr>
<tr>
<td>A<sub>29-DNRA</sub></td>
<td>Production of <sup>29</sup>N<sub>2</sub> via coupled DNRA-anammox</td>
<td>A<sub>29-DNRA</sub></td>
<td>A<sub>29-DNRA</sub></td>
</tr>
<tr>
<td>A<sub>29-ana</sub></td>
<td>Production of <sup>29</sup>N<sub>2</sub> via canonical anammox</td>
<td>A<sub>29-ana</sub></td>
<td>A<sub>29-ana</sub></td>
</tr>
<tr>
<td>A<sub>30-ana</sub></td>
<td>Production of <sup>30</sup>N<sub>2</sub> via anammox</td>
<td>A<sub>30-ana</sub></td>
<td>A<sub>30-ana</sub></td>
</tr>
<tr>
<td>D<sub>14</sub></td>
<td>Genuine <sub>N</sub><sub>2</sub> production via denitrification</td>
<td>2D<sub>28</sub> + D<sub>29</sub></td>
<td>2D<sub>28</sub> + D<sub>29</sub></td>
</tr>
<tr>
<td>A<sub>14</sub></td>
<td>Genuine <sub>N</sub><sub>2</sub> production via anammox</td>
<td>2A<sub>28</sub></td>
<td>2A<sub>28</sub> + A<sub>29-DNRA</sub></td>
</tr>
<tr>
<td>A<sub>14-DNRA</sub></td>
<td>Genuine production of <sub>N</sub><sub>2</sub> via coupled DNRA-anammox</td>
<td>A<sub>29-DNRA</sub> + 2A<sub>28</sub> <sup>1</sup> · (A<sub>29-DNRA</sub>/A<sub>29</sub>)</td>
<td></td>
</tr>
<tr>
<td>A<sub>14-ana</sub></td>
<td>Genuine production of <sub>N</sub><sub>2</sub> via canonical anammox</td>
<td>A<sub>29-ana</sub> + 2A<sub>28</sub> <sup>1</sup> · (A<sub>29-ana</sub>/A<sub>29</sub>)</td>
<td></td>
</tr>
<tr>
<td>D<sub>14-NNO</sub></td>
<td>Genuine N<sub>2</sub>O production via denitrification</td>
<td>r<sub>14</sub> · (2P<sub>46</sub> + P<sub>45</sub>)</td>
<td>r<sub>14</sub> · (2P<sub>46</sub> + P<sub>45</sub>)</td>
</tr>
<tr>
<td>P<sub>14</sub></td>
<td>Total genuine <sub>N</sub><sub>2</sub> + N<sub>2</sub>O production</td>
<td>D<sub>14</sub> + A<sub>14</sub> + D<sub>14-NNO</sub></td>
<td>D<sub>14</sub> + A<sub>14</sub> + D<sub>14-NNO</sub></td>
</tr>
</tbody>
</table>

*Estimated from the direct measurement of ¹⁴N/¹⁵N in N₂O (Trimmer et al. 2006)
**Modified from Song et al. (2013)
***From Hsu and Kao (2013)
Statistical modeling

A simple linear regression was used to evaluate a potential linear increase in the fraction of 15N in NH$_4^+$ over time. The effect of carbon treatment and incubation duration on each N cycling rate was tested by main effects two-way ANOVA and analyzed in a Bayesian framework using the programs R (version 3.1.2) and JAGS (Su and Yajima, 2015). For each test, 1,200 Markov-chain Monte Carlo iterations were run on three chains after a burn-in of 200 and thinned by two, yielding 1,500 samples in the posterior distribution. Credible intervals (95%) were constructed around the mean of each treatment-time group. The probability of a significant difference between treatment-time groups was determined by calculating the proportion of iterations in which the posterior estimate of one group was smaller than another (Turner et al., 2010). The difference between groups was considered significant when less than 5% of the posterior estimates were smaller than those of another group.

RESULTS

Application of R-IPT-DNRA

An increase in 15N was detected in the NH$_4^+$ pool in intact sediment cores, indicating DNRA was occurring in Shaws Bay sediments. The fraction of 15N in the NH$_4^+$ pool increased linearly over time for control (df = 8, p < 0.01, R2 = 0.58) and seagrass (df = 8, p < 0.05, R2 = 0.41) treatments. Although there was a trend, there was insufficient replication to confirm a linear relationship for the phytoplankton treatment (df = 1, p = 0.14, R2 = 0.90) (Fig. 11). The degree of 15NH$_4^+$ labeling was sufficient to generate the production of 30N$_2$ from anammox (A_{30}), which made up 6 – 87% of the total production of 30N$_2$ (P_{30}). When rates modeled by the R-IPT
were compared to those modeled by the R-IPT-DNRA, anammox rates across treatments were underestimated by $1.7 - 15.0\%$ and denitrification rates across treatments were overestimated by $6.8 - 690.4\%$ by the R-IPT (Fig. 12). The degree of overestimation of denitrification was tightly controlled by the proportion of $^{30}\text{N}_2 (\text{P}_{30})$ attributed to anammox (A_{30}) (Fig. 13). As a percentage of total anammox rates, DNRA-dependent anammox rates were $4.85 \pm 1.85\%$ for the control, $13.51 \pm 1.96\%$ for the phytoplankton treatment, and $3.17 \pm 0.91\%$ for the seagrass treatment.

Figure 11. Increase in the fraction of ^{15}N in the NH_4^+ pool by treatment. $F^{15}\text{NH}_4^+$ increased linearly over time for control ($\text{df} = 8$, $p < 0.01$, $R^2 = 0.58$) and seagrass ($\text{df} = 8$, $p < 0.05$, $R^2 = 0.41$) treatments. Although there was a trend, there was insufficient replication to confirm a linear relationship for the phytoplankton treatment ($\text{df} = 1$, $p = 0.14$, $R^2 = 0.90$).
Figure 12. Comparison of (a) anammox and (b) denitrification rates from the R-IPT (Risgaard-Petersen et al. 2003) to rates from the R-IPT-DNRA method presented here for control, phytoplankton, and seagrass treatments. The solid line represents a 1:1 relationship. Insets represent the total range of under/overestimation by anammox and denitrification across treatments, with the mean represented by the thick line.

\[x = 7.17 \times 10^{5.28y} \]
\[R^2 = 0.98 \]

Figure 13. Overestimation of denitrification rate (D14) by the R-IPT model compared to the R-IPT-DNRA model as a function of the production of \(^{30}\text{N}_2 \) by anammox relative to total \(^{30}\text{N}_2 \) production (A\text{30}/P\text{30}).
Rates of NO$_3^-$ reduction processes

DNRA rates (mean ± SD) were 0.42 ± 0.22, 0.88 ± 0.60, and 1.03 ± 0.90 µmol N m$^{-2}$ h$^{-1}$ for control, phytoplankton, and seagrass treatments, respectively (Fig. 14a). Anammox rates were 0.18 ± 0.10, 0.26 ± 0.10, and 0.60 ± 0.52 µmol N m$^{-2}$ h$^{-1}$ for control, phytoplankton, and seagrass treatments, respectively (Fig. 14b). Denitrification rates were 0.04 ± 0.04, 0.08 ± 0.08, and 0.16 ± 0.13 µmol N m$^{-2}$ h$^{-1}$ for control, phytoplankton, and seagrass treatments, respectively (Fig. 14c). N$_2$O production was 0.008 ± 0.004, 0.012 ± 0.014, and 0.018 ± 0.018 µmol N m$^{-2}$ h$^{-1}$ for control, phytoplankton, and seagrass treatments, respectively (Fig. 14d). However, rates of NO$_3^-$ reduction were not uniform across incubation duration, and figures are divided by incubation duration to illustrate these differences. The addition of seagrass detritus resulted in significantly greater rates of anammox, denitrification, and DNRA in the first 6 h of the incubation relative to the control (p < 0.05), whereas the addition of phytoplankton detritus did not result in greater rates of N cycling compared to the control. DNRA was the most important NO$_3^-$ reduction process, comprising 49-74% of total NO$_3^-$ reduction across carbon treatments and incubation durations (Fig. 15a). Proportions of N loss processes were also similar across treatment and incubation duration (Fig. 15b). N$_2$ production by anammox comprised 13-38% of NO$_3^-$ reduction and 64-86% of total N loss, whereas N$_2$ production by denitrification comprised 6-13% of NO$_3^-$ reduction and 11-31% of total N loss. N$_2$O production comprised < 3% of NO$_3^-$ reduction < 9% of total N loss.
Figure 14. Rates of (a) DNRA, (b) N₂ production by anammox, (c) N₂ production by denitrification, and (d) N₂O production by denitrification. Rates were determined from incubations of three different durations and under three organic carbon treatments (control – no addition, addition of phytoplankton detritus, and addition of seagrass detritus). Error bars represent +1 standard deviation. DNRA rate data were not available at the 6 h time point with phytoplankton addition. Note the difference in y-axis scales among panels.
Figure 15. N₂ production by anammox and denitrification, N₂O production by denitrification, and DNRA as a proportion of (a) total NO₃⁻ reduction and (b) total N loss to N₂ and N₂O. Proportions of each process were measured at three different incubation durations under three carbon treatments (control – no addition, addition of phytoplankton detritus, and addition of seagrass detritus).

DISCUSSION

Evaluation of R-IPT-DNRA when DNRA is active

In Shaws Bay sediments where DNRA was a substantial N cycling pathway, quantifying DNRA simultaneously with anammox and denitrification yielded more accurate rate estimates than quantifying anammox and denitrification alone. High proportional rates of DNRA resulted in overestimation of denitrification and underestimation of anammox rates by the R-IPT model relative to the R-IPT-DNRA model. The degree of over/underestimation was an order of
magnitude greater, on average, for denitrification than for anammox. Further, the overestimation of denitrification increased exponentially as the proportion of 30N$_2$ produced by anammox (A_{30}/P_{30}) increased. This result is in agreement with Song et al. (2016), who propose that rates of denitrification are more greatly overestimated when anammox makes up the majority of N loss. Although previous studies have suggested that the majority of N loss in marine sediments is dominated by denitrification (Trimmer and Engström 2011) and the overestimation of denitrification is unlikely to be appreciable in shallow marine systems (Song et al., 2016), our results indicate this assumption is not always valid. Thus, denitrification rates determined by the R-IPT model in marine sediments where DNRA is active could be significantly overestimated. The variability in this overestimation cannot be identified without quantifying DNRA via analysis of the isotopic composition of NH$_4^+$ (r_{14a}). Published studies of R-IPT-derived denitrification rates, in sediments where appreciable DNRA is suspected, should thus be interpreted with caution, and future studies should utilize the R-IPT-DNRA to obtain accurate anammox and denitrification measurements.

The R-IPT-DNRA model calculated anammox rates in Shaws Bay sediments, but future applications of the R-IPT-DNRA model could be impeded if substantial 15N labeling of the NH$_4^+$ pool occurs. If the in situ NH$_4^+$ concentration is low and the DNRA rate is large, the abundance of NH$_4^+$ could increase to the point of stimulating anammox beyond the rate accounted for in the model. While DNRA rates were considerable in this study, 15NH$_4^+$ made up 7.7 ± 5.4% of the total NH$_4^+$ pool at the end of the incubation and was therefore unlikely to have stimulated anammox activity beyond the rates accounted for in the R-IPT. The concentration and isotopic composition of NH$_4^+$ should be carefully monitored to evaluate if anammox rates derived from the R-IPT-DNRA model may have been enhanced.
The application of the R-IPT-DNRA model allows coupled DNRA-anammox and canonical anammox to be distinguished, a unique attribute of this modeling approach in comparison to that presented by Song et al. (2016). Despite high relative rates of both DNRA and anammox, coupled DNRA-anammox (A14-DNRA) made up a small proportion (< 15%) of total anammox in Shaws Bay. While DNRA generated 22 ± 14% of ambient NH₄⁺ on an hourly basis, the lack of strong coupling between DNRA and anammox suggests that remineralization supplies the majority of NH₄⁺ to anammox in Shaws Bay.

Anammox, denitrification, and DNRA in seagrass ecosystem sediments

In this study we have quantified, for the first time, the co-occurrence of DNRA, anammox and denitrification in intact sediments from a seagrass-dominated environment. Typical of seagrass ecosystems, sediment in Shaws Bay has a moderately high C:N ratio compared to other coastal ecosystems (Eyre et al. 2013; Khan et al. 2015) and receives detrital organic matter with a higher C:N ratio than that of the sediment. DNRA was the predominant NO₃⁻ reduction pathway in Shaws Bay sediments, illustrating that this high C:N environment functions to retain N that might otherwise be denitrified. Similar N retention has been reported previously in seagrass communities (Eyre et al. 2013). Although the energy yield of denitrification is higher than that of DNRA, the stoichiometry of organic C and NO₃⁻ consumption for each reaction is such that high C:N environments favor DNRA over denitrification (Tiedje et al. 1982; Burgin and Hamilton 2007; Kraft et al. 2014; van den Berg et al. 2015).

Anammox contributed an average of 74% of total N loss in Shaws Bay sediments, an unusually high proportion compared to other coastal sediments (Table 6). Proportions this high
have previously been reported only in deep sea sediments and were attributed to the limitation of

denitrification by low organic carbon availability (Thamdrup and Dalsgaard 2002; Dalsgaard et

al. 2005; Trimmer and Nicholls 2009; Trimmer et al. 2013). While seagrass ecosystems are

highly productive and contain large amounts of organic matter, there are driving factors that may

function to suppress denitrification in Shaws Bay, namely the refractory nature of seagrass

organic matter (Eyre et al. 2013) and competition for limited NO$_3^-$ supply by the high rates of

DNRA observed. Competition between DNRA and denitrification points to a potential

mechanism that allows anammox to be the prominent N loss pathway.

Sediments in Shaws Bay were characterized by low rates of N loss that are atypical of

shallow sediments (Table 6). However, rates of other microbial processes demonstrate an active

microbial community in Shaws Bay that functions to recycle rather than remove N from the

system. The slope of O$_2$ demand vs. N$_2$ production in Shaws Bay was an order of magnitude

lower than that found across a range of Australian sand-, mud-, seagrass-, and macroalgae-
dominated sediments (Eyre et al. 2013). This trend emphasizes that while the sediment microbial

community is actively respiring organic matter, N loss rates are diminished in Shaws Bay

relative to other coastal sediments. Several factors could contribute to the suppression of N loss

in this system. Owing to the high C:N ratios of organic matter in the system, DNRA likely

maintains NO$_3^-$ limitation by outcompeting denitrifiers for substrate (Burgin and Hamilton 2007;

van den Berg et al. 2015). In addition, the assimilative demand for N by heterotrophic

microorganisms processing high C:N organic matter could outcompete denitrifiers for NO$_3^-$

(Oakes et al. 2011). Furthermore, sulfide is found in seagrass systems owing to the activity of N-

fixing sulfate reducers (Hemminga and Duarte 2000) and could inhibit nitrification and suppress
coupled nitrification-denitrification (Joye and Hollibaugh 1995). Finally, although the organic
matter source is similar, there may be dampened microbial activity in bare sediments adjacent to seagrasses compared to sediments within the seagrass bed (Boschker et al. 2000; Jones et al. 2003; Holmer et al. 2004).

N_2O production comprised between 1.1 and 8.6% of total N loss, a typical range for aquatic sediments (Seitzinger and Kroeze 1998; McCrackin and Elser 2010). However, given that denitrification rates were markedly low, the total rate of N_2O production was ~100-fold lower than production as indicated by atmospheric emission rates measured in other coastal environments (Murray et al. 2015 and references therein). The total range of N_2O production across carbon treatments in Shaws Bay was 0.002 to 0.008 μmol N_2O m$^{-2}$ h$^{-1}$ (median = 0.003), whereas previous measurements in mangroves, salt marshes, and estuaries ranged from 0.1 to 6.0, -2.5 to 8.9, and 0.1 to 8.3 μmol N_2O m$^{-2}$ h$^{-1}$, respectively (Murray et al. 2015 and references therein). To our knowledge, this is the first published measurement of N_2O production in sediments from a seagrass-dominated system. While this study does not address the regulation of N_2O production and atmospheric flux by seagrasses themselves, it does provide a representation of N_2O production in a coastal system that receives relatively refractory high C:N organic matter derived from seagrasses. If our results are representative of other seagrass systems, seagrass environments could have a much smaller impact on the global N_2O budget than other coastal environments. However, given that denitrification rates in Shaws Bay seem to depart from the relatively higher rates reported from other seagrass systems (reviewed in Murray et al. 2015), additional studies are needed to constrain the role of seagrass systems on the global N_2O budget.

Table 6. Nitrogen loss rates calculated by the isotope pairing technique for intact sediments and sediment slurries. ND = not detected.

<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
<th>Dentrification rate μmol N m$^{-2}$ h$^{-1}$</th>
<th>Anammox rate μmol N m$^{-2}$ h$^{-1}$</th>
<th>f_{an}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact sediments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaws Bay, Australia</td>
<td>Bare sediment</td>
<td>0.04</td>
<td>0.18</td>
<td>0.74</td>
<td>This study</td>
</tr>
<tr>
<td>Shaws Bay, Australia</td>
<td>Sediment + seagrass</td>
<td>0.16</td>
<td>0.60</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Shaws Bay, Australia</td>
<td>Sediment + phytoplankton</td>
<td>0.08</td>
<td>0.26</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>12 coastal sites, Greenland</td>
<td>36 to 100 m depth</td>
<td>1.38 to 11.04</td>
<td>0.04 to 3.83</td>
<td>0.01 to 0.35</td>
<td>Rysgaard et al. 2004</td>
</tr>
<tr>
<td>Alsback, Gullmarsfjorden, Sweden</td>
<td>116 m depth</td>
<td>6.08</td>
<td>6.64</td>
<td>0.48</td>
<td>Trimmer et al. 2006</td>
</tr>
<tr>
<td>Gravesend, Thames estuary, U.K.</td>
<td></td>
<td>192.9</td>
<td>48.94</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Constructed wetland, Australia</td>
<td>Intake zone</td>
<td>965.9</td>
<td>66.1</td>
<td>0.06</td>
<td>Erler et al. 2008</td>
</tr>
<tr>
<td></td>
<td>Outflow zone</td>
<td>651.5</td>
<td>199.40</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Colne Estuary, U.K.</td>
<td>Hythe (head)</td>
<td>390 to 400</td>
<td>ND to 157</td>
<td>0.00 to 0.30</td>
<td>Dong et al. 2009</td>
</tr>
<tr>
<td></td>
<td>Alresford Creek (middle)</td>
<td>50 to 80</td>
<td>ND</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brightlingse (mouth)</td>
<td>5 to 10</td>
<td>ND</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Irish Sea</td>
<td>Continental shelf, 50-100 m depth</td>
<td>3.44</td>
<td>1.38</td>
<td></td>
<td>Trimmer and Nicholls 2009</td>
</tr>
<tr>
<td>North Atlantic</td>
<td>Continental slope, 500-2000 m depth</td>
<td>0.42</td>
<td>0.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mae Klong Estuary, Thailand</td>
<td>Salinity 0-35 PSU</td>
<td>3.3</td>
<td>ND</td>
<td>0.00</td>
<td>Dong et al. 2011</td>
</tr>
<tr>
<td>Cisadane Estuary, Indonesia</td>
<td>Salinity 0-35 PSU</td>
<td>22.5</td>
<td>ND</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Vunidawa-Rewa Estuary, Fiji</td>
<td>Salinity 0-35 PSU</td>
<td>0.6</td>
<td>ND</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>St. Lawrence Estuary, Canada</td>
<td>345 m depth</td>
<td>11.3</td>
<td>5.5</td>
<td>0.33</td>
<td>Crowe et al. 2012</td>
</tr>
<tr>
<td>Danshuei River, Thailand</td>
<td>Intertidal zone</td>
<td>42.3</td>
<td>13</td>
<td>0.12</td>
<td>Hsu and Kao 2013</td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>176 m depth</td>
<td>13.25</td>
<td>ND</td>
<td>0.00</td>
<td>Trimmer et al. 2013</td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>384 m depth</td>
<td>9.57</td>
<td>ND</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>610 m depth</td>
<td>0.61</td>
<td>2.01</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>688 m depth</td>
<td>0.3</td>
<td>0.77</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Great Barrier Reef, Australia</td>
<td>29 m depth</td>
<td>2.08</td>
<td>4.86</td>
<td>0.70</td>
<td>Erler et al. 2013</td>
</tr>
<tr>
<td>Sediment slurries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norsminde Fjord</td>
<td>1 m depth</td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Randers Fjord</td>
<td>1 m depth</td>
<td>340</td>
<td>22</td>
<td>0.06</td>
<td>Risgaard-Petersen et al. 2003</td>
</tr>
<tr>
<td>Young Sound</td>
<td>36 m depth</td>
<td>8</td>
<td>2</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>695 m depth</td>
<td>2</td>
<td>4</td>
<td>0.70</td>
<td>Dalsgaard et al. 2005</td>
</tr>
<tr>
<td>Logan/Albert River, Australia</td>
<td>Upstream to river mouth transect</td>
<td>0.5 to 8.5</td>
<td>0 to 0.8</td>
<td>0.00 to 0.09</td>
<td>Meyer et al. 2005</td>
</tr>
</tbody>
</table>
Table 6 (cont’d)

<table>
<thead>
<tr>
<th>Location</th>
<th>Details</th>
<th>Denitrification rate μmol N L$^{-1}$ h$^{-1}$</th>
<th>Anammox rate μmol N L$^{-1}$ h$^{-1}$</th>
<th>f_{anam} anammox total N loss</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact sediments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aarhus Bay, Denmark</td>
<td>16 m depth</td>
<td>3.46</td>
<td>0.02</td>
<td>Thamdrup and Dalsgaard 2002</td>
<td></td>
</tr>
<tr>
<td>Skagerrak, Denmark</td>
<td>380 m depth</td>
<td>4.13</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>695 m depth</td>
<td>1.25</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thames estuary, United Kingdom</td>
<td>Salinity 2 PSU</td>
<td>100</td>
<td>1.5</td>
<td>0.015</td>
<td>Trimmer 2003</td>
</tr>
<tr>
<td></td>
<td>Salinity 10 PSU</td>
<td>118</td>
<td>9.5</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salinity 10 PSU</td>
<td>155</td>
<td>7</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salinity 26 PSU</td>
<td>116</td>
<td>3</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salinity 30 PSU</td>
<td>59</td>
<td>1</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salinity 30 PSU</td>
<td>36</td>
<td>0.5</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Sediment slurries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East China Sea</td>
<td>19 m depth</td>
<td>14</td>
<td>2</td>
<td>0.125</td>
<td>Song et al. 2013</td>
</tr>
<tr>
<td></td>
<td>85 m depth</td>
<td>2</td>
<td>8</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

*Denitrification measured by N$_2$:Ar

**Unpublished data from Eyre et al. 2011b
Effect of organic carbon quality on N cycling

The addition of seagrass detritus stimulated rates of anammox, denitrification, and DNRA in Shaws Bay sediments, but low C:N phytoplankton detritus did not. This is in direct contrast to other results that suggest that labile organic matter stimulates N loss in estuarine sediments to a greater extent than relatively refractory organic matter does (Brettar and Rheinheimer 1992; Caffrey et al. 1993; Fulweiler et al. 2008; Oakes et al. 2011; Fulweiler et al. 2013). However, Babbin et al. (2014) demonstrated that N loss in the East Tropical North Pacific oxygen minimum zone was greater when water was amended with sinking particulate matter than with highly labile amino acids or sucrose. This suggests that microbial communities may be preferentially adapted to decompose and recycle organic matter that is commonly encountered.

Given that this system encounters seagrass detritus to a greater extent than phytoplankton detritus, the sediment microbial community could be predisposed to utilize this refractory organic matter source.

Alternatively, because seagrass detritus includes the associated epiphytic community, the stimulation in N cycling in the first 6 h following addition of seagrass could represent selective consumption of epiphytic material (Dahllof and Karle 2005). Bacteria in seagrass sediments metabolize organic matter derived from a mix of seagrass and benthic macro- and microalgae, with a greater reliance on seagrass in more pristine sites and a mixed to algal-dominated signature in anthropogenically-impacted sites (Boschker et al. 2000; Holmer et al. 2001; Jones et al. 2003; Holmer et al. 2004; Bouillon and Boschker 2006; Williams et al. 2009). Shaws Bay is considered only slightly impacted by anthropogenic activities (Ballina Shore Council 2000), so microbial communities likely rely mainly on seagrass-derived organic matter. This relationship is expected to hold in both vegetated sediment and adjacent bare sediments (Boschker et al. 2000;
Jones et al. 2003; Holmer et al. 2004), meaning that the organic matter utilization measured in unvegetated sediments we sampled in Shaws Bay is expected to be seagrass-derived. Although we do not know whether the epiphytic component or seagrass itself enhanced N cycling in the seagrass detritus addition treatments, our results indicate that the addition of a C source common to the environment stimulates N cycling.

In this study, the proportions of anammox and denitrification contributing to N loss remained the same regardless of carbon treatment and total N loss rate. This is somewhat unexpected given that denitrification, a heterotrophic process, uses organic carbon directly, whereas anammox, an autotrophic process, does not (Jetten et al. 1999). Although the anammox reaction itself does not require carbon, a supply of carbon may be crucial to support heterotrophic nitrogen cyclers that provide substrates for anammox (Trimmer et al. 2003; Dalsgaard et al. 2005; van Hulle et al. 2012). Further, there is evidence that anammox bacteria are capable of coupling organic acid oxidation and NO$_3^-$ reduction and compete with denitrification for both substrates (Guven et al. 2005; Kartal et al. 2007). Together, these pathways represent a means by which anammox activity can be stimulated upon addition of seagrass detritus and explain how the proportion of anammox making up total N loss can remain consistent across carbon treatments.

Conclusion

We present a revision to the isotope pairing technique (R-IPT-DNRA) that enables the simultaneous measurement of rates of anammox, denitrification, N$_2$O production, and DNRA in intact sediments when these processes co-occur. This approach presents a significant advance for the understanding of N processing in coastal systems, where N mitigation efforts depend on a
detailed understanding of N loss and recycling pathways. The R-IPT-DNRA model is likely to be more accurate than the traditional application of the isotope pairing technique in environments that receive inputs of carbon-rich, relatively refractory organic matter such as the seagrass ecosystem in this study. Under these conditions, DNRA is energetically favored over denitrification, and the introduction of 15N into the NH$_4^+$ pool via DNRA can cause a substantial overestimation of denitrification rates if DNRA is not taken into account.

In Shaws Bay, a carbon-rich and N-poor seagrass-dominated coastal ecosystem, the dominance of DNRA conserves N in the system, effectively outcompeting denitrifiers for NO$_3^-$. In turn, the NH$_4^+$ production by DNRA sets the stage for anammox to dominate overall N loss. N$_2$O production made up a typical proportion of denitrification, yet absolute rates were markedly low compared to other coastal ecosystems owing to low overall rates of denitrification. This N cycling regime was stimulated by the addition of seagrass detritus but not by relatively labile phytoplankton detritus, suggesting that microbial communities in coastal sediments are adapted to process the organic matter that is typically encountered.
Figure A5. Isotope fraction of (a) 29N$_2$ and (b) 30N$_2$ in anoxic slurry incubations following addition of 15NH$_4^+$, or 15NH$_4^+$ + 14NO$_3^-$, or 15NO$_3^-$ over the course of 18 h. The control treatment received no amendment. An increase in F29 indicates anammox activity, whereas an increase in F30 indicates denitrification activity.
R-IPT-DNRA Derivations

Base Equations

\[x = \frac{14^{14}NO_3^-}{14^{14}NO_3^- + 15^{15}NO_3^-} \]

\[y = \frac{15^{15}NO_3^-}{14^{14}NO_3^- + 15^{15}NO_3^-} \]

\[u = \frac{14^{14}NH_4^+}{14^{14}NH_4^+ + 15^{15}NH_4^+} \]

\[u = \frac{15^{15}NH_4^+}{14^{14}NH_4^+ + 15^{15}NH_4^+} \]

\[\frac{1 - F_N}{F_N} = r_{14} = \frac{x}{y} \]

\[x = r_{14} \cdot y \]

\[\frac{1 - F_A}{F_A} = r_{14a} = \frac{u}{v} \]

\[u = r_{14a} \cdot v \]

Derivation of \(A_{28} \)

\[A_{28} = \frac{x \cdot u}{v} \]

\[A_{29}(x \cdot v + u \cdot y) = A_{29} \cdot x \cdot u \]

\[A_{28} \cdot x \cdot v = u(A_{29} \cdot x - A_{29} \cdot y) \]

\[\frac{A_{28} \cdot x \cdot v}{r_{14a} \cdot v} = A_{29} \cdot x - A_{28} \cdot y \]

\[A_{28} \left(\frac{x}{r_{14a}} + y \right) = A_{29} \cdot x \]

\[A_{28} \left(\frac{r_{14} y}{r_{14a}} + y \right) = A_{29} \cdot r_{14} \cdot y \]

\[A_{28} \cdot y \left(\frac{r_{14}}{r_{14a}} + 1 \right) = A_{29} \cdot r_{14} \cdot y \]

\[A_{28} = \frac{A_{29} \cdot r_{14}}{r_{14a} + 1} \]
Derivation of A_{30}

$$A_{30} = \frac{v(P_{29} \cdot y - 2x \cdot P_{30})}{y \cdot u - v \cdot x}$$

$$A_{30} = \frac{v \cdot P_{29} \cdot y - v \cdot 2r_{14} \cdot y \cdot P_{30}}{y \cdot r_{14a} \cdot v - v \cdot r_{14} \cdot y}$$

$$A_{30} = \frac{v \cdot y(P_{29} - 2P_{30} \cdot r_{14})}{v \cdot y(r_{14a} - r_{14})}$$

$$A_{30} = \frac{P_{29} - 2P_{30} \cdot r_{14}}{r_{14a} - r_{14}}$$

Derivation of A_{29}-DNRA

A_{29}-DNRA: probability of pairing 14NO$_3^- + ^{15}$NH$_4^+ = x*v$

A_{29}-ana: probability of pairing 15NO$_3^- + ^{14}$NH$_4^+ = u*y$

$$A_{29-\text{DNRA}} = A_{29}\left(\frac{x \cdot v}{x \cdot v + u \cdot y}\right)$$

$$\frac{A_{29}}{A_{29-\text{DNRA}}} = \frac{x \cdot v + u \cdot y}{x \cdot v}$$

$$\frac{A_{29}}{A_{29-\text{DNRA}}} = 1 + \frac{u \cdot y}{x \cdot v}$$

$$\frac{A_{29}}{A_{29-\text{DNRA}}} = 1 + \frac{r_{14a}}{r_{14}}$$

$$A_{29-\text{DNRA}} = \frac{A_{29}}{1 + \frac{r_{14a}}{r_{14}}}$$

$$A_{29-\text{ana}} = A_{29} - A_{29-\text{DNRA}}$$
LITERATURE CITED
LITERATURE CITED

CHAPTER 4

DRAMATIC SHIFTS IN N CYCLING DRIVE HAB FORMATION AND MITIGATION OF N LOADING IN SANDUSKY BAY, LAKE ERIE

ABSTRACT

Recent water crises in Lake Erie point to an urgent need for greater understanding of harmful algal blooms (HABs) and their drivers. While much of the focus on the control of HABs in Lake Erie is on phosphorus (P) management, nearshore areas such as Sandusky Bay become limited by nitrogen (N) in the summer and are characterized by distinct HAB compositions (i.e., *Planktothrix* over *Microcystis*). We hypothesized that microbial N removal processes drive rapid N depletion in Sandusky Bay, and N limitation stimulates N fixation that supports HAB persistence. Stable isotope tracer approaches were employed to quantify rates of denitrification, anammox, N₂O production, and N fixation. During periods of high discharge and nutrient delivery from the Sandusky River, Sandusky Bay acted as a conduit for nutrient loading into Lake Erie, which could stimulate offshore HABs. These periods were also exemplified by high N₂O emissions from the Bay, as substrates for denitrification and nitrification were abundant. As water residence time increased throughout the season, N removal processes drove marked decreases in NO₃⁻ and the development of N limitation. Denitrification, anammox, and N₂O production made up 84, 14, and 2 % of total N removal, respectively. N fixation was active under N limitation (maximum 2.2 µmol N L⁻¹ h⁻¹), representing bioavailable N generation that could indirectly support *Planktothrix* blooms in late summer. Dramatic shifts in N availability in Sandusky Bay will likely be intensified by climate change, and the observed trends can inform management of HABs and N₂O production in Lake Erie.
INTRODUCTION

Harmful algal blooms (HABs) are increasing in frequency on a global scale and are stimulated by excessive nutrient loading to aquatic systems (Bricker et al. 2008; Heisler et al. 2008). Lake Erie, in particular, has been subject to increased incidence and expansion of cyanobacterial HABs in recent years (Michalak et al. 2013; Ho and Michalak 2015, Bullerjahn et al. 2016). These blooms are dominated by cyanobacteria that accumulate the powerful hepatotoxin, microcystin (Carmichael and Boyer 2016). cHABs are not a monoculture, and cHAB taxa often show large temporal and spatial variability (Bozarth et al. 2010; Bridgeman et al. 2012). A greater knowledge of the drivers of cHABs, including nutrient cycling, will allow for better prediction and management in Lake Erie and other ecosystems.

Phytoplankton biomass and cHABs in Lake Erie have historically been correlated with P loading from river inflows (Kane et al. 2014; Kim et al. 2014). Calls to control eutrophication in Lake Erie have proposed targets for reduced P loading but have largely ignored N (Scavia et al. 2014). However, there is a growing dialogue surrounding the dual management of N and P in lacustrine systems (Gobler et al. 2016; Paerl et al. 2016), particularly as co-limitation of phytoplankton growth by both N and P has been demonstrated in the late summer in Lake Erie (Moon and Carrick 2007; Chaffin et al. 2013; Monchamp et al. 2014; Steffen et al. 2014a; Davis et al. 2015). Further, N concentration and speciation influences toxin production by cHABs (Davis et al. 2010; Horst et al. 2014; Monchamp et al. 2014; Davis et al. 2015). Delineating the role of N in controlling HABs, therefore, involves investigation of not only total N availability but also spatial and temporal variation in multiple species of N.

Several N transformations may drive variation in N availability. Denitrification permanently removes dissolved inorganic N (DIN) through the stepwise reduction of nitrate...
(NO$_3^-$) to dinitrogen gas (N$_2$; Knowles 1982). Anammox is a competing N removal process that converts nitrite (NO$_2^-$) and ammonium (NH$_4^+$) to N$_2$, but this process has not been extensively studied in freshwater environments (Yoshinaga et al. 2011; Zhu et al. 2013). N removal processes are expected to be particularly active in aquatic systems that receive high DIN inputs (Seitzinger et al. 2006). N removal can be accompanied by release of the potent greenhouse gas, nitrous oxide (N$_2$O), which is produced by both denitrification and nitrification (Wrage et al. 2001). The global warming potential of N$_2$O is 300 times that of carbon dioxide over a 100-year time span, and its release could exacerbate climate change (IPCC 2007). N fixation, conversely, is capable of generating bioavailable N when DIN is scarce, and its activity has been inferred in Lake Erie (MacGregor et al. 2001; Monchamp et al. 2014; Steffen et al. 2014a; Davis et al. 2015) but not quantified for several decades (Howard et al. 1970).

While the colonial cyanobacterium *Microcystis* dominates the HAB community in offshore regions of Lake Erie, filamentous *Planktothrix* has been shown to persist in N-limited bays and tributaries (Conroy et al. 2007; Davis et al. 2015). Both cHAB taxa are incapable of N fixation and require combined N for growth. *Planktothrix*, in particular, is a superior scavenger for N (Conroy et al. 2007) and responds strongly to additions of DIN (Donald et al. 2011; 2013). Under N limitation, *Planktothrix* may be able to outcompete other phytoplankton for small N inputs or rely on a commensal relationship with diazotrophs. The persistence of *Planktothrix* in nearshore zones likely operates under a fundamentally different paradigm than offshore *Microcystis* blooms, and mitigation may require attention to the distinct biogeochemical functioning of these genera in the nearshore vs. offshore.

Sandusky Bay, a south shore embayment of Lake Erie, serves as an ideal location in which to examine the relationship between N cycling and cHABs. This system is hypereutrophic.
(Ostrom et al. 2005; Davis et al. 2015), with the cyanobacterium *Planktothrix* dominating phytoplankton biomass from May to October (Davis et al. 2015). Growth of *Planktothrix* in Sandusky Bay is stimulated by additions of NO$_3^-$, NH$_4^+$, and urea, indicating that formation of cHABs in this system relies on a supply of bioavailable N (Chaffin and Bridgeman 2014; Davis et al. 2015). However, Sandusky Bay experiences large variations in NO$_3^-$ concentrations and N:P ratios throughout the summer (Davis et al. 2015), suggesting that the dynamic N cycling may influence cHAB formation in this system. Evaluating the mechanisms that promote the persistence of *Planktothrix* in this system will benefit from an examination of N removal processes and N fixation that directly influence the availability of DIN. A thorough understanding of these processes will also inform the capacity for Sandusky Bay to act as a nutrient filter, which may curtail the formation of cHABs in offshore regions of Lake Erie.

As N cycling processes have been largely ignored in lieu of P in Lake Erie, we sought to examine of the potential role of N in cHAB formation. The objectives of this study in Sandusky Bay were to (1) determine the driving factors influencing N limitation, namely denitrification, anammox, and N$_2$O production, (2) examine N fixation as a possible source of bioavailable N under N limitation, and (3) determine how HAB formation and persistence relate to N cycling. We hypothesized that microbial N removal processes drive rapid N depletion in Sandusky Bay, and N fixation that occurs under N limitation allows bloom persistence.

METHODS

Field sampling

Sample collection occurred weekly (water column nutrient and chlorophyll (chl) a concentration analyses) or monthly (water column N$_2$O analyses, water column and sediment N
cycling assays) from May to October, 2015 through partnership with the Ohio Department of Natural Resources (ODNR). Sampling occurred at six stations: two stations in the inner portion of Sandusky Bay (ODNR4, ODNR6), three stations in the outer portion of Sandusky Bay (ODNR2, ODNR1, and EC 1163, hereafter 1163), and one station directly outside Sandusky Bay in the western basin of Lake Erie (Bells; Figure 16). Tributary discharge data from the primary water source to Sandusky Bay, the Sandusky River, were obtained from the USGS stream monitoring station near Fremont, OH (site 04198000; Figure 16). Water residence time in Sandusky Bay was estimated by dividing the Bay volume (1.6 - 2.6 m depth, 162 km² area; Richards and Baker 1985) by the Sandusky River discharge rate.

Figure 16. Sampling locations in Sandusky Bay (circles) and Sandusky River monitoring station (USGS site 04198000, cross).
At each sampling location, water column physical and chemical parameters (pH, conductivity, temperature, dissolved oxygen) were measured and recorded using a YSI 600QS sonde (YSI Inc., Yellow Springs, OH). Water samples were collected by Van Dorn bottle at 1 m depth for analysis of N\textsubscript{2}O, NO\textsubscript{3}-, NH\textsubscript{4}+, phosphate (PO\textsubscript{4}3-), and chl \textit{a} concentrations. Samples for N\textsubscript{2}O concentrations and isotopic analysis were transferred into 60 and 250 mL glass serum bottles, respectively, by filling from the bottom to overflowing and sealing with no headspace with butyl rubber septa. Biological activity was halted by adding saturated HgCl\textsubscript{2} solution to a final concentration of 0.4 % by volume. Samples for dissolved nutrient analysis were filtered (0.2 \textmu m) and frozen upon return to lab. Samples for determination of chl \textit{a} concentrations were collected on 0.2 \textmu m polycarbonate membrane filters and frozen. Station 1163 has an extensive monitoring history and was chosen for additional water and sediment assays. An additional 20 L carboy was filled with surface water from station 1163 for N fixation assays and sediment incubations.

Sediment cores for the evaluation of denitrification, anammox, and N\textsubscript{2}O production rates by the isotope pairing technique (IPT) were collected at station 1163 using a modified piston corer as described by Davis and Steinman (1998). Intact sediment cores were collected in polycarbonate tubes (7 cm i.d.) to a depth of 25 cm. Water (1 cm) was maintained overlying the sediment during transport to preserve redox gradients. Upon return to the lab, water from station 1163 was gently added to cores to a depth of 20 cm. Cores were pre-incubated for 12 h in the dark at \textit{in situ} temperature under gentle aeration to maintain oxic conditions in the overlying water.
Isotope tracer assays

Following pre-incubation of sediment cores, a sample was taken from the overlying water for DIN concentration analysis (NO$_3^-$, NO$_2^-$ and NH$_4^+$), filtered through a precombusted GF/F filter and frozen until analysis. 15N-NO$_3^-$ (100 µmol L$^{-1}$) was then added to the overlying water in each core. Cores were then capped and gently stirred throughout the duration of the experiment. An initial equilibration period was employed to allow homogenization of NO$_3^-$ between the overlying water and the NO$_3^-$ reduction zone in the sediment porewater (Dalsgaard et al. 2000). Cores were sacrificed in triplicate or quadruplicate at intervals of 0, 3 or 4, and 6 h. Dissolved O$_2$ in the overlying water was monitored to evaluate the maintenance of oxic conditions throughout the incubation using a YSI 600QS sonde (YSI Inc., Yellow Springs, OH). A final sample for DIN analysis was collected when each core was sacrificed and processed as described above.

Samples for the determination of δ^{15}N$_2$ were collected according to Hamilton and Ostrom (2007); briefly, dissolved gases were equilibrated with a He atmosphere, and the headspace was transferred into a pre-evacuated 12 mL Exetainer. Samples for analysis of dissolved N$_2$ concentrations were siphoned into 12 mL Exetainers to overflowing and amended with 200 µL of saturated ZnCl$_2$ solution to halt biological activity. All Exetainers were stored underwater at room temperature to minimize diffusion of atmospheric N$_2$ during storage. Samples for analysis of the δ^{15}N$_2$O and N$_2$O concentrations were siphoned into 250 and 60 mL serum bottles, respectively, to overflowing and sealed without a headspace with a butyl rubber septum. Biological activity was halted by adding saturated HgCl$_2$ solution to a final concentration of 0.4 % by volume.

N fixation assays were conducted by the dissolution method, which involves the addition of 15N$_2$-equilibrated water to a water sample rather than a 15N$_2$ bubble (Großkopf et al. 2012).
Preparation of 15N$_2$-equilibrated water involved sparging water in a serum bottle equipped with a butyl rubber septum with He to remove ambient N$_2$, followed by injection of 15N$_2$ (98 % atom fraction, Sigma-Aldrich Lot #MBBB0968V) while maintaining atmospheric pressure with a vent needle. Water from station 1163 was transferred into 1.18 L serum bottles and amended with 15N$_2$-equilibrated water to a final dissolved atom fraction of 1.14 - 2.33 %. Bottles were inverted 100 times to ensure uniform mixing and then incubated at *in situ* light and temperature conditions for 24 h. Samples were then vacuum filtered through precombusted GF/F filters. Filters were then dried at 60° C, acidified with 10 % HCl to remove carbonates, and dried again.

To evaluate the potential contamination of 15N$_2$ gas with 15NO$_3^-$ or 15NH$_4^+$ (Dabundo et al. 2014), a mass scan of the isotopically enriched gas was performed on an Isoprime isotope ratio mass spectrometer (IRMS; Elementar Americas, Inc., Mount Laurel, NJ). The mass scan revealed that potential impurities made up < 1 % of the enriched gas, and maximum contamination reported by Dabundo et al. (2014) could have made up less than 5 % of measured N fixation rates if all available 15NO$_3^-$ and 15NH$_4^+$ was assimilated.

Analyses

Concentrations of NO$_3^-$ + NO$_2^-$, NO$_2^-$, NH$_4^+$, and PO$_4^{3-}$ were measured on field-filtered sample water using standard U.S. EPA methods (353.1, 353.2, 350.1, and 365.1, respectively) on a SEAL Analytical QuAAttro continuous segmented flow analyzer (SEAL Analytical Inc., Mequon, WI). NO$_3^-$ concentration was determined as the difference between NO$_3^-$ + NO$_2^-$ and NO$_2^-$. Seven known concentration standard solutions (including 0) were used for the standard curve ($R^2 > 0.999$), and every-tenth sample was spiked with a known amount of analyte to ensure high accuracy and precision throughout the analysis (> 95 % recovery). Samples with
concentrations exceeding the highest standard were diluted and reanalyzed. Values were averaged over two or three replicates. Method detection limits were 0.165, 0.044, 0.558, and 0.044 µmol L\(^{-1}\) for NO\(_3^-\) + NO\(_2^-\), NO\(_2^-\), NH\(_4^+\), and PO\(_4^{3-}\), respectively. Extractive chl \(a\) concentration was measured following Welschmeyer (1994). Filters containing phytoplankton seston were extracted with 90\% aqueous acetone overnight at -20 °C followed by measurement of the clarified extract by fluorometry (model TD-700, Turner Designs, Sunnyvale, CA).

Prior to N\(_2\)O concentration analysis, a headspace of 20 mL He at atmospheric pressure was created in each 60 mL bottle by removing 20 mL water by syringe while simultaneously adding He. Serum bottles were allowed to equilibrate under gentle shaking for at least 12 h prior to analysis. The headspace was then analyzed by GC-ECD (Shimadzu Greenhouse Gas Analyzer GC-2014, Shimadzu Scientific Instruments, Columbia, MD) for N\(_2\)O concentration. The dissolved concentration was calculated based on the headspace equilibrium concentration (Hamilton and Ostrom 2007). Diffusive atmospheric emissions of N\(_2\)O \((F)\) were calculated by equations 19 and 20:

\[
F = k_w(C_w - C_a)
\]

where \(C_w\) is the dissolved N\(_2\)O concentration at the surface (measured at 1 m depth) and \(C_a\) is the calculated dissolved N\(_2\)O concentration in equilibrium with the atmosphere (Wanninkhof 1992; Walker et al. 2010). The gas transfer coefficient \((k_w, \text{ in m s}^{-1})\) is calculated as:

\[
k_w = 0.31 U_{10}^2 (Sc/600)^{-1/2}
\]

where \(Sc\) is the Schmidt number for N\(_2\)O determined by the kinematic viscosity of freshwater divided by the diffusion coefficient of N\(_2\)O (Wanninkhof 1992) and \(U_{10}\) is the wind speed 10 m above the surface determined using the measured wind speed 1 m above the surface and the
power law relationship outlined in Walker et al. (2010). Wind speed data were collected from Erie-Ottawa International Airport (KPCW), located 2 km north of ODNR6.

The isotopic composition of N\textsubscript{2}O was analyzed upon introduction of sample water into an enclosed 0.75 L glass vessel that was previously purged of atmospheric air using a gentle flow of He. Dissolved gases were subsequently stripped from the water by sparging the sample with He (Sansone et al. 1997), which carried sample gases into a Trace Gas sample introduction system interfaced to an IRMS. The relative abundance of a stable isotope within a particular material or reservoir is reported in standard delta notation:

\[
\delta = \frac{R_{\text{sam}} - R_{\text{std}}}{R_{\text{std}}} \times 1000
\]

(21)

where \(R_{\text{sam}} \) is the isotope ratio of the sample, \(R_{\text{std}} \) is the isotope ratio of the standard, and \(\delta \) is reported as per mil (‰). The isotopic composition of the N atom in the central position (\(\alpha \)) and the N atom in the outer position (\(\beta \)) was analyzed separately. The difference between \(\delta^{15}\text{N}^{\alpha} \) and \(\delta^{15}\text{N}^{\beta} \) in N\textsubscript{2}O, referred to as site preference (SP), was also calculated. SP is a conservative tracer of N\textsubscript{2}O production mechanism and can be used to quantitatively apportion N\textsubscript{2}O production sources, primarily through isotope mixing models that consider denitrification (SP = -10 to 0 ‰) and nitrification via hydroxylamine oxidation (SP = 33 to 37 ‰) as end members (Toyoda et al. 2005; Sutka et al. 2006; Frame and Casciotti 2010). Analytical reproducibility for replicate samples was 0.5 ‰ for bulk \(\delta^{15}\text{N} \) and \(\delta^{18}\text{O} \), 0.75 ‰ for \(\delta^{15}\text{N}^{\alpha} \) and \(\delta^{15}\text{N}^{\beta} \), and 1.3 ‰ for SP.

Concentrations of dissolved N\textsubscript{2} were analyzed by membrane inlet mass spectrometry (MIMS; Eyre et al. 2002). The isotopic composition of N\textsubscript{2} was analyzed by introducing the sample to an evacuated 800 µL sampling loop and then onto a packed molecular sieve (5 Å) column (Alltech, Inc., Deerfield, IL) using He carrier gas within a gas chromatograph (HP-5980,
Hewlett Packard, Ramsey, MN) interfaced to an Isoprime IRMS. Analytical reproducibility of standards was 0.3 ‰.

The concentration and isotopic composition of particulate organic matter (POM) from N fixation assays was analyzed by scraping the contents of dried and acidified filters into tin cups and introducing samples to an elemental analyzer interfaced to an Isoprime IRMS. Analytical reproducibility of standards was 0.2 ‰.

Modeling

Denitrification, anammox, and N\textsubscript{2}O production rates were calculated by the IPT\textsubscript{anaN2O} (Hsu and Kao 2013), which builds on the R-IPT (Risgaard-Petersen et al. 2003) by enabling quantification of N\textsubscript{2}O production simultaneously with denitrification and anammox. N fixation rates were calculated according to Montoya et al. (1996).

Statistical modeling was carried out in R (version 3.2.4). Correlations between nutrient concentrations and discharge as well as N\textsubscript{2}O isotopes by date were analyzed by linear regression. Potential differences in denitrification, N\textsubscript{2}O production, and N fixation by date were analyzed by one-way ANOVA.

RESULTS

NO\textsubscript{3} concentrations ranged from below detection to > 600 μmol L-1 across sites during the sampling period (Figure 17a). The greatest NO\textsubscript{3} concentrations occurred in June and July, followed by a decline to non-detectable levels in late August that continued through October. The magnitude of these shifts was greater for the inner bay stations (ODNR4, ODNR6) than the outer bay and coastal Lake Erie stations (ODNR1, ODNR2, 1163, Bells). NO\textsubscript{3} concentration
was positively correlated with Sandusky River discharge (Fig. 2f; df = 81, $R^2 = 0.18$, $p < 0.0001$). NH$_4^+$ concentration ranged from below detection to 17.5 µmol L$^{-1}$ across sites during the sampling period (Figure 17b). The greatest NH$_4^+$ concentrations occurred in the inner bay, but these spikes occurred episodically throughout the sampling season and were not correlated with Sandusky River discharge or with NO$_3^-$ concentration. PO$_4^{3-}$ concentrations ranged from below detection to 4.25 µmol L$^{-1}$ across sites during the sampling period (Figure 17c). Higher PO$_4^{3-}$ concentrations generally occurred in the inner bay, and overall concentrations were correlated with Sandusky River discharge (df = 81, $R^2 = 0.06$, $p = 0.01$). The ratio of DIN to dissolved inorganic P (N:P; NO$_3^-$ + NH$_4^+$ to PO$_4^{3-}$) was variable throughout the sampling period, exceeding 10,000 in July and falling to values below Redfield stoichiometry (16) in late August and September (Figure 17d). Chl a concentrations ranged from 3.5 to nearly 150 µg L$^{-1}$ across sites during the sampling period (Figure 17e). Maximum chl a concentrations occurred in late August to early September, approximately one month after the peak in NO$_3^-$ and PO$_4^{3-}$ concentrations. Water residence time was as low as eight days when discharge from the Sandusky River was greatest in June and Early July (Figure 17f). As discharge decreased in late July and remained low for the remainder of the summer and early fall, water residence time increased to several months.
Figure 17. (a) NO$_3^-$, (b) NH$_4^+$, (c) PO$_4^{3-}$, (d) N:P (NO$_3^-$ + NH$_4^+$: PO$_4^{3-}$) ratio, and (e) chlorophyll a concentration in six sites in Sandusky Bay in 2015. (f) Discharge of the Sandusky River at Fremont obtained from USGS monitoring station 04198000. The dotted line in (d) indicates a N:P ratio of 16 (note log scale on y axis).
Sediment denitrification rates at station 1163 ranged from 10.02 - 64.81 µmol N m$^{-2}$ h$^{-1}$ over all sampled dates, decreasing over time (Figure 18a). Denitrification rates varied significantly by date (ANOVA, $F = 6.53$, $df = 24$, $p < 0.01$), and rates on June 22 were significantly higher than other dates (Tukey HSD post-hoc test). Sediment anammox activity was detected on all sampling dates but not in all replicate sediment cores. Anammox rates at station 1163 ranged from 0.52 - 8.10 µmol N m$^{-2}$ h$^{-1}$ across sampled dates, displaying no clear temporal trend (Figure 18b). The majority of measured anammox rates were less than 7 µmol N m$^{-2}$ h$^{-1}$, with the exception of two cores on July 27 that displayed anammox rates of 15.15 and 30.75 µmol N m$^{-2}$ h$^{-1}$. Owing to high variability among replicates, anammox rates did not vary significantly by date (ANOVA, $F = 2.60$, $df = 24$, $p = 0.08$). N$_2$O production rates at station 1163 ranged from 0.09 - 2.34 µmol N m$^{-2}$ h$^{-1}$ across sampled dates, decreasing over time (Figure 18c). N$_2$O production rates varied significantly by date (ANOVA, $F = 6.85$, $df = 24$, $p < 0.01$), and rates on June 22 were significantly higher than other dates (Tukey HSD post-hoc test). Denitrification, anammox, and N$_2$O production made up an average of 84 %, 14 %, and 2 % of total N removal, respectively.

N$_2$O was supersaturated in the surface water by more than 10 % in all sites on June 22 and July 27 and for three sites (ODNR4, 1163, Bells) on August 31 (Figure 19a). The greatest degree of N$_2$O supersaturation (up to 676 %) occurred on June 22, corresponding to the date with the greatest measured N$_2$O production rate. N$_2$O saturation was positively correlated with NO$_3^-$ concentration ($df = 16$, $R^2 = 0.42$, $p < 0.01$). N$_2$O fluxes to the atmosphere were positive at all sites on all sampled dates except ODNR6 and ONDR2 on August 31, with highest fluxes occurring on June 22 (Figure 19b).
Figure 18. (a) Denitrification, (b) anammox, and (c) \(\text{N}_2 \text{O} \) production at Sandusky Bay station 1163 in 2015. Rates were measured by the isotope pairing technique. Error bars represent +1 SD. Letters indicate groupings of statistically significant differences at \(p < 0.05 \).
The δ^{15}N and δ^{18}O of N$_2$O did not exhibit variation as a function of date or station (Figure 20a). N$_2$O SP data clustered within two distinct groups: (a) four samples from ODNR4 and ODNR1 with values > 45 ‰ and (b) the majority of samples with values ranging within 7.0 to 34.3 ‰ (Figure 20b). N$_2$O samples in the former group were not associated with anomalous δ^{15}N or δ^{18}O values (Figure 20a) but were associated with the highest δ^{15}N$^\alpha$ and lowest δ^{15}N$^\beta$ values of the dataset (Figure 20c). SP values in the latter group increased throughout the sampling period (linear regression, df = 14, $R^2 = 0.20$, $p = 0.048$), but this increase was not accompanied by an increase in δ^{15}N, δ^{18}O, δ^{15}N$^\alpha$, or δ^{15}N$^\beta$ (Figure 20).

Water column N fixation rates at station 1163 ranged from 0.74 – 2.16 µmol N L$^{-1}$ h$^{-1}$ over all sampled dates (Figure 21). N fixation rates varied significantly by date (ANOVA, $F = 48.81$, df = 8, $p < 0.0001$), and rates on June 22 and October 12 were significantly higher than those on July 27 and August 31 (Tukey HSD post-hoc test).
Figure 20. N$_2$O isotopomers in Sandusky Bay. (a) δ^{15}N and δ^{18}O in black and gray, respectively, (b) SP values, and (c) δ^{15}N$^\alpha$ and δ^{15}N$^\beta$ in gray and black, respectively.
DISCUSSION

Nutrient stoichiometry

Sandusky Bay displayed considerable shifts in nutrient concentrations, N:P ratios, and chl \(a \) concentrations, indicative of a system characterized by dynamic changes in hydrology and biogeochemical activity. Maximum chl \(a \) concentrations (> 100 µg L\(^{-1}\)) were similar to other hypereutrophic systems (Zhang et al. 2011; Wheeler et al. 2012; Steffen et al. 2014b), as were large swings in NO\(_3^-\) concentrations (Xu et al. 2010; McCarthy et al. 2016). As discharge from the Sandusky River decreased throughout the summer, N:P ratios fell from a maximum of over 10,000 to below 16, the threshold for N limitation. This decline was largely driven by decreases in NO\(_3^-\) concentration, as the range in PO\(_4^{3-}\) and NH\(_4^+\) concentration was comparatively narrow (Figure 17). Depletion of NO\(_3^-\) can be attributed to both assimilatory and dissimilatory NO\(_3^-\) reduction. If phytoplankton were solely responsible for the decline in NO\(_3^-\), nutrients would be expected to be drawn down in molar proportions of approximately 16N:1P (Redfield 1934; Sterner and Elser 2002). However, N:P ratios in Sandusky Bay fell sharply throughout the summer, while PO\(_4^{3-}\) concentrations were relatively constant by comparison. Although this trend
could be influenced by luxury uptake of N by phytoplankton and internal P loading from sediments (Filbrun et al. 2013; McCarthy et al. 2016), the dramatic depletion in DIN compels an examination of microbial N removal processes as a major mechanism for N drawdown in Sandusky Bay.

N removal processes

Denitrification and anammox were evaluated as processes likely responsible for consuming appreciable quantities of NO$_3^-$ in Sandusky Bay. The primary N removal mechanism in Sandusky Bay was denitrification, which made up an average of 84 % of total N removal across sampling dates. Denitrification rates were positively associated with N availability, which has also been observed in estuaries, lakes, and continental shelves (Seitzinger et al. 2006). Denitrification rates measured in Sandusky Bay are among the highest rates reported for the Laurentian Great Lakes (McCarthy et al. 2007; Small et al. 2014; 2016), reinforcing the capacity for Sandusky Bay and other shallow embayments and river mouths to act as hotspots of N removal in the Great Lakes system.

Anammox activity in Sandusky Bay was highly variable, even among replicate sediment cores from the same site and date. The range of observed anammox rates (0 - 30.75 µmol N m$^{-2}$ h$^{-1}$) is similar to those reported for shallow estuarine environments (Dong et al. 2009; 2011; Hsu and Kao 2013). Consequently, marked variability may be characteristic of anammox activity in freshwater environments, even across small spatial and temporal scales (Yoshinaga et al. 2011; Zhu et al. 2013; 2015). Anammox made up an average of 14 % of total N removal across the sampling period, indicating anammox activity in Sandusky Bay, with a mean depth of 1.6 - 2.6 m (Richards and Baker 1985), may be typical of shallow estuarine (Thamdrup and Dalsgaard 2002;
Dalsgaard et al. 2005) and freshwater systems (Schubert et al. 2006; McCarthy et al. 2016). A recent study using 16s RNA showed that anammox genera were active across western and central basins of Lake Erie (Small et al. 2016). Together, anammox rate and genomic data demonstrate that although denitrification is generally the dominant N removal mechanism, there is potential for anammox to be an significant N removal pathway in Sandusky Bay and other nearshore regions within the Great Lakes.

While denitrification and anammox were the primary drivers of N depletion in Sandusky Bay, water residence time was evaluated as an additional contributing factor. Estimates of water residence time when discharge was greatest in June and early July was as low as eight days. By late July, however, water residence time increased to several months and continued to increase as discharge remained low for the remainder of the summer and early fall. Although N removal rates were greatest in late June when NO$_3^-$ concentrations were highest, the capacity for N removal to substantially deplete NO$_3^-$ was hindered by the short residence time within the Bay. N removal rates in late June were capable of consuming approximately 2 % of ambient NO$_3^-$ daily, so water residence times of 1 - 2 weeks would allow for the removal of only ~1/4 of NO$_3^-$ from Sandusky Bay prior to release into Lake Erie. Export of nutrients from Sandusky Bay to Lake Erie is exemplified by increases in NO$_3^-$ concentrations at the Lake Erie Bells station concomitant with increases in NO$_3^-$ in the Bay (Figure 17a). The development of N limitation in mid-July through August occurred when water residence time lengthened to several months, which provided the opportunity for N removal processes to extensively consume NO$_3^-$. Thus, Sandusky Bay acts as a conduit for N delivery from the Sandusky River to Lake Erie under short water residence time but acts as a sink for NO$_3^-$ under long water residence time. This pattern is
consistent with observations in other river mouths and coastal embayments of the Great Lakes (McCarthy et al. 2007; Larson et al. 2013).

N₂O production and emissions

N₂O displayed a wide range in production rate, concentration, and atmospheric flux on a seasonal basis (Figure 18c, 19). The greatest degree of N₂O saturation and highest N₂O production rate occurred when NO₃⁻ concentrations were highest, suggesting that nutrient delivery from the Sandusky River drives N₂O production in Sandusky Bay. The range of observed N₂O fluxes are typical of other inland lakes (Whitfield et al. 2011; Yang et al. 2015 and references therein). However, the maximum observed atmospheric emissions of N₂O from Sandusky Bay were remarkably high, considering the highest published global emissions from lacustrine environments occur in littoral zones dominated by emergent macrophytes (Wang et al. 2006) and in stratified systems that develop hypoxia or anoxia (Salk et al. 2016; Wenk et al. 2016). The influx of NO₃⁻ from the Sandusky River coupled with a shallow water column and high rates of N cycling drives substantial benthic N₂O production and release (Figure 17a, 18c, 19). Moreover, active N cycling in this and other shallow embayments in the Great Lakes (McCarthy et al. 2007; Small et al. 2016) suggests that emissions from these locations may make up the majority of N₂O emissions from the Great Lakes.

The isotopic composition of N₂O in Sandusky Bay provided insight into its microbial production pathways. With the exception of four samples that were characterized by remarkably high SP values (> 45 ‰), N₂O produced in Sandusky Bay appeared to be derived from a mixture of denitrification (SP = -10 to 0 ‰) and nitrification (SP = 33 to 37 ‰) pathways (Toyoda et al. 2005; Sutka et al. 2006; Frame and Casciotti 2010), with SP values ranging from 7 to 34 ‰. SP
values increased throughout the sampling period, indicating either a greater proportional contribution of nitrification to N₂O production or reduction of N₂O to N₂ by denitrification. Concomitant increases in δ¹⁵N and δ¹⁸O with SP are expected when N₂O reduction occurs (Westley et al. 2006; Jinuntuya-Nortman et al. 2008; Well et al. 2012; Wenk et al. 2016), but this trend was not apparent in Sandusky Bay (Figure 20). Consequently, we conclude that increasing SP is associated with an increased contribution of nitrification to N₂O production, which ranged from approximately 50 % up to 100 % of N₂O production from the beginning to the end of the sampling season. This pattern can be attributed to a decrease in overall denitrification activity throughout the sampling season combined with a small proportion of denitrification end-product released as N₂O (2 % of total N removal, on average). N₂O production in Sandusky Bay is thus governed by variation in denitrification activity, which allows production from nitrification to dominate when denitrification rates are low. Nitrification has previously been observed as the primary N₂O production mechanism in Muskegon Lake, another lake in the Great Lakes basin (Salk et al. 2016) as well as several ocean environments (Charpentier et al. 2007; Fujii et al. 2013), illustrating the importance of nitrification as a source of N₂O fluxes from aquatic systems.

The high SP values (> 45 ‰) observed in four N₂O samples could result from N₂O reduction or an unusual production signal. Because these samples were not associated with elevated δ¹⁵N or δ¹⁸O and reduction is associated with substantial fractionation in the isotopic ratios of SP, N, and O (Lewicka-Szczebak et al. 2015 and references therein), reduction was unlikely to have appreciably influenced N₂O SP in these samples. High SP, on the other hand, was associated with high δ¹⁵Nα and low δ¹⁵Nβ. This observation is consistent with Breider et al. (2015), who found that N₂O produced in the oxygen minimum layer in the western North Pacific was characterized by higher SP values than in the oxic layer. This increase in SP was
accompanied by a shift toward higher $\delta^{15}N_\alpha$ and lower $\delta^{15}N_\beta$ values with no overall change in $\delta^{15}N$. Similarly, a pattern of increasing SP, increasing $\delta^{15}N_\alpha$, and decreasing $\delta^{15}N_\beta$ has also been observed in purified fungal nitric oxide reductase despite observations of constant SP in fungal cultures (Sutka et al. 2008; Yang et al. 2014). These authors proposed that SP generally does not isotopically fractionate under in situ conditions because the internal concentration of the substrate, nitric oxide, is held constant in cells. If, however, the substrate concentration within cells is not held constant, as in enzyme cultures, SP could vary. It is possible that during periods of hydrologic and biogeochemical transition in Sandusky Bay, the capacity for denitrifiers and nitrifiers to produce N$_2$O changes and intracellular concentrations of hydroxylamine and/or nitric oxide fluctuate. Therefore, changes in intracellular substrate concentrations could result in the unusually high SP values observed at ODNR4 and ODNR1 in August and September.

N fixation

N fixation in the water column of Sandusky Bay was an active process not only during periods of N limitation but also when bioavailable N was replete. The greatest rates of N fixation occurred in July and August as N limitation developed in Sandusky Bay. Planktothrix made up the majority of phytoplankton biomass during this period, suggesting that N fixation may generate bioavailable N that is utilized by non-diazotrophs. Additionally, N fixation was detected when NO_3^- and NH_4^+ was abundant in June, an unusual observation considering high NO_3^- concentrations are expected to inhibit N fixation (Holl and Montoya 2005). Trace metal co-limitation has been proposed as a mechanism for the inhibition of NO_3^- uptake in offshore Lake Erie (North et al. 2007; Havens et al. 2012), although common metal cofactors between nitrate reductase and nitrogenase render the simultaneous suppression of NO_3^- uptake and stimulation of
N fixation unlikely (Romero et al. 2013). However, alleviation of trace metal colimitation by iron addition has been shown to influence NO$_3^-$ uptake and N fixation differently between nearshore and offshore zones in Lake Victoria (Guildford et al. 2003), and a similar mechanism may operate in Sandusky Bay. The data in this study offer a contemporary depiction of N fixation in an area of Lake Erie exemplified by active N cycling, establishing that N fixation is active not only under N limitation but also under N-replete conditions. The occurrence of N fixation also signals a mechanism for the generation of bioavailable N that could allow *Planktothrix* to thrive under N limitation.

Harmful algal blooms

Blooms of *Planktothrix* were evident in Sandusky Bay, particularly during August and early September (Figure 17e; T. Tuttle, personal communication). Sandusky River discharge decreased in the mid-summer, leading to an increase in the water residence time in the Bay that allowed N removal and N uptake processes to deplete nutrient concentrations. Chl a, a proxy for total phytoplankton abundance (Becker et al. 2009, Millie et al., 2009, Davis et al. 2012), reached maximum levels approximately one month after maximum NO$_3^-$ and PO$_4^{3-}$ concentrations were observed (Figure 17). This pattern suggests that low flushing rates play a positive role in the production of phytoplankton biomass, perhaps by creating a stable physical environment in which phytoplankton can prosper (Michalak et al. 2013). Further, low nutrient availability during this period coupled with highest measured N fixation rates indicates that N fixation is integral to phytoplankton growth and also cHAB persistence. Analysis of nitrogenase (*nifH*) transcripts in metatranscriptomic datasets from Sandusky Bay reveals that the pelagic N-fixing population was comprised largely of N-fixing *Aphanizomenon* and *Dolichospermum* (T.
Tuttle, personal communication). However, these diazotrophs were minor components of the cyanobacterial assemblage, while *Planktothrix* was the major component of phytoplankton in the summer, even during periods of DIN scarcity (Davis et al. 2015; T. Tuttle, personal communication). The persistence of *Planktothrix* blooms in Sandusky Bay when DIN is low may be supported by uptake of small inputs of N (Chaffin and Bridgeman 2014; Donald et al. 2011; 2013; Davis et al. 2015), perhaps from sediment NH$_4^+$ regeneration (Paerl et al. 2011; McCarthy et al. 2106), and/or a commensal relationship with diazotrophs that are active during this period.

Conclusions

In 2015, Sandusky Bay underwent a rapid and dramatic transition from excess N abundance to N limitation by mid-summer, a pattern that has been observed in other years (Conroy et al. 2007; Davis et al. 2015). During periods of short water residence time, Sandusky Bay acted as a conduit for nutrient loading into the central basin of Lake Erie despite high N removal rates. This period was also exemplified by high N$_2$O emissions from the Bay, owing to the abundance of N substrates for denitrification and nitrification. As water residence time increased, N removal (mainly via denitrification) drove marked decreases in NO$_3^-$ concentrations and the development of N limitation. N fixation was active during periods of N limitation, representing a mechanism for bioavailable N generation that could indirectly support blooms of *Planktothrix* that reached their maximum during this period. Discharge of nutrients from Sandusky Bay into Lake Erie in the early summer could stimulate the formation of blooms offshore, whereas filtering of nutrients later in the season could limit nutrient export.

Climate change-induced shifts in precipitation have the capacity to intensify the strong transitions in N cycling in Sandusky Bay. Overall precipitation in the summer is decreasing in
the Lake Erie catchment, whereas incidences of extreme precipitation are increasing (Prein et al. 2016). Thus, discharge into Sandusky Bay is expected to become more episodic in the future, with the hydrology of the Bay dominated by periods of long water residence time but punctuated by pulses of high discharge and nutrient loading. These changing hydrologic patterns have implications for N cycling and cHAB formation in Lake Erie. High N loading has the potential to drive brief yet substantial N₂O emissions from Sandusky Bay. Periods of low discharge will likely stimulate cHAB formation in Sandusky Bay, while episodic high discharge events will favor delivery of nutrients that may support cHABs in the central basin of Lake Erie and exacerbate water quality issues downstream, such as hypoxia in the St. Lawrence Estuary (Lehmann et al. 2009; Michalak et al. 2013).
LITERATURE CITED

136

