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ABSTRACT

A FRAMEWORK FOR TEXTURE ANALYSIS BASED ON SPATIAL FILTERING

By

James Michael Coggins

A texture analysis method motivated by a theory of human visual

information processing and based on spatial filtering is defined and

evaluated for classification and segmentation of textured images.

The problem of texture analysis is viewed as an attempt to

duplicate the texture analysis performance of human vision. This

performance is considered to be a consequence of certain information

reductions (filtering) performed in early stages of vision which are

modelled by a sequence of filters defined in" the spatial frequency

domain. The implementation of the model results in a sequence of

spatial domain filtered images which contain limited spectral

information from the original image.

Features which are interpreted as measurements of average local

energy are defined and evaluated in texture classification experiments.

The energy features are found to outperform power spectral features;

this is attributed to the use of phase information in the filtered

images. This contrasts with previous studies in which phase was

assumed to be unimportant for texture analysis. The channel filtering

features are found to be insensitive to global, constant gray level

changes, making some preprocessing operations unnecessary. Procedures

are demonstrated for determining that two images portray the same

I texture at different magnifications or orientations.



A method for computing a texture feature vector for a neighborhood

about each pixel in the image is defined and demonstrated in texture

segmentation experiments. An image is segmented by identifying

clusters in the feature space and labelling each pixel by the cluster

in which its feature vector lies. A cluster validity statistic is used

to determine an appropriate number of clusters. The results indicate

that the channel filtering feature space is an appropriate

representation of image texture for segmentation.
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Chapter 1

Introduction

1.1 Computational Vision

Computer applications involving visual input include problems in

aerial image interpretation [Darling and Joseph. 1968: Kettig and

Landgrebe, 1976: Landgrebe, 1981], biomedical image analysis [Bacus,

1976; Pressman, 1976; Hall et al, 1977; Landeweerd and Gelsema, 1977:

Mui et a1, 1977; Jain et a1, 1980: Trussel, 1981], industrial processes

[Perkins, 1978; Tennenbaum et al, 1978; Agin, 1980], and robotics and

scene analysis [Duda and Hart, 1973: Marr and Nishihara, 1978; Barrow

and Tennenbaum, 1981; Stevens, 1980: Aggarwal et a1, 1981]. Hardware

for acquiring, storing, and displaying images is available, and current

computers are capable of performing some image analysis tasks in

real-time. The development of algorithms for processing images has

proven to be a slow and difficult task [Gurari and Wechsler. 1982].

Image analysis methods have been developed in the fields of pattern

recognition [Duda and Hart, 1973; Fu, 197A, 1977: Pavlidis, 1977],

image processing [Pratt, 1978: Rosenfeld and Kak, 1981] and artificial

intelligence [Winston, 1977; Nilsson, 1980]. The inquiries in these

three fields involving approaches to automatic image analysis,

interpretation. and understanding are sometimes referred to



collectively as “computational vision” [Brady, 1982: Barrow and

Tennenbaum, 1981].

In order to cape with the variety and complexity of activities

associated with vision, several subproblems within computational vision

have been identified including image enhancement, edge detection,

segmentation, image registration, and texture analysis. These

subproblems have been attacked separately and have tended to evolve

into subfields themselves. This has the advantage that many different

techniques with different characteristics are available as tools for

use in applications. The separation of the subproblems has the

disadvantage that similarities in the solutions to different problems

may be overlooked and that diverse solutions to the subproblems of

vision complicate the construction of unified computational vision

systems.

1.2 Texture

Human observers are capable of some image segmentation and

discrimination tasks under conditions (such as brief exposure to a test

image) which prevent detailed scrutiny of the image. This ability is

referred to as “effortless” or "pre-attentive” visual discrimination.

When an image does not portray any particular object or form, only

certain aspects of the overall pattern of gray level changes in the

image is effortlessly perceived. "Texture" sometimes refers to the

pattern of gray level variations produced by some image generation

procedure. However, different procedures may yield images which are

not effortlessly discriminable to human observers. In this thesis, two



images which do not portray particular objects or forms will be

considered to have the same "texture" if they are not effortlessly

discriminable to human observers.

Texture is recognized as being fundamental to the perception of

regions and surfaces in images [Brady, 1982: Stevens, 1980]. Textural

information can potentially be used by automatic vision systems in

region identification, image segmentation and classification tasks.

Texture analysis is a major component in discussions of general

computer vision systems [Sklansky, 1978: Wechsler, 1980: Barrow and

Tennenbaum, 1981: Brady, 1982].

The potential importance of texture for automatic vision systems

has inspired many attempts to develop algorithms for texture analysis.

Unfortunately, the characterization of texture in terms of human

performance does not suggest a simple measurement on images which can

duplicate human texture perception. This lack of precise guidance has

led to a proliferation of ad hoc texture analysis methods based on

diverse mathematical, statistical and heuristic measurements on images.

Most texture analysis methods duplicate human performance reasonably

well for some image classes, but they fail to duplicate human

performance in more general problems.

1.3 Guidance from Studies of Human Vision

Since a texture analysis algorithm is supposed to duplicate the

performance of human vision, it seems reasonable to look to vision

science for guidance in developing such algorithms. Computational

methods need not emulate the human visual system, but knowledge of the



limitations and strategies present in human vision could guide the

development of useful algorithms.

Some texture analysis algorithms have been guided by results of

psychophysical experiments designed to find an upper bound on the

complexity of texture perception. The nature of texture is described

by specifying a statistical property which indiscriminable textured

images appear to have in common. This type of description is intended

to constrain the nature of texture by a criterion which is independent

of human performance, but the generality or minimality of such a

criterion is difficult to establish. Such results have guided many

texture analysis studies, but bounds on the complexity of

indistinguishable stimuli do not necessarily suggest a particular

algorithm which will reproduce human performance.

While algorithms for computational vision need not emulate human

vision at the neural level, knowledge of the overall strategies used by

the visual system for analyzing images could provide more definite

guidance for developing algorithms. We will use one such theory in

this dissertation to motivate the development of a new approach to

texture analysis.

This theory characterizes early stages of the human visual system

as being composed of quasi-independent mechanisms,called channels,

which decompose an image into certain bands of spatial frequency and

orientation [Ginsburg, 1971]. This decomposition is modelled by a

spatial filtering operation using filters defined in the spatial

frequency domain [Ginsburg, 1978, 1980b]. The result of the

decomposition is a sequence of filtered images in the spatial domain

which contain limited spectral information from the original image.



The channel filtering theory is not simply a generalization of

human visual behavior; it is an attempt to describe the information

content and possible processing strategies in early human vision. The

theory implies that many aspects of visual perception are consequences

of the information reduction (filtering) performed by the perceptual

system [Ginsburg, 1978, 1980b]. Thus, in order to characterize texture

perception, it may be most effective to determine first how the human

visual system filters the information in an image. The particular

decomposition of an image performed in early stages of vision can

explain why certain stimuli are discriminable and others are confused.

l.h Spatial Filtering

The channel filtering theory asserts that the early processing of

an image by the human visual system is effectively modelled by a

spatial filtering operation. Spatial filtering is a technique which

has been useful in several areas of computational vision. Two

equivalent implementations of spatial filtering exist; one involves

convolution in the spatial domain, and the other involves

multiplication in the spatial frequency domain. The use of spatial

filtering as a computational tool for image analysis is attractive

because of its well-known mathematical basis, because of the

availability of efficient algorithms for performing the Fourier

transform, and because of the existence of intuitively satisfying

interpretations for the Fourier transform and for spatial filtering.

Some uses for spatial filtering in computational vision are

two-dimensional extensions of well-known one-dimensional operations



[Papoulis, 1962]. Low-pass filtering has been used to remove noise

from an image [Rosenfeld and Kak, 1981]. High-pass filtering has been

applied to edge detection, and in fact, a certain filtering approach

has been shown to be an "optimal" edge detection method [Shanmugam et

al, 1979]. Band-pass filtering has been applied to form and edge

detection [Ginsburg, 1976, 1978, 1979a, 1980a, 1980b: Crowley and

Parker, 1978: Marr et a1, 1979; Marr and Hildreth, 1980]. Spatial

filtering was also used in an implementation of a theory of stereo

vision which involved Operations similar to those required in image

registration [Marr and Poggio, 1979]. Several approaches to texture

analysis, such as those based on edge detection or template matching

can be implemented using spatial filtering operations [Laws, 1980].

In this study, a computational vision system will be defined by

specifying its filtering properties in the spatial frequency domain.

The filter characteristics to be used are adopted from studies of human

vision, but this study will not attempt to determine in detail the

correspondence between human vision and the computational vision

system. Methods for texture classification and segmentation based on

the computational vision system will then be defined and evaluated.

1.5 Organization of This Dissertation

This dissertation will begin by reviewing the results of previous

research in texture analysis. Chapter 2 reviews attempts to define or

at least to delimit the nature of "texture". This review includes

results from vision science and principles derived from human intuition

and experience with texture perception. In Chapter 3, texture analysis



algorithms proposed in the literature will be reviewed. Chapter A will

present a new texture analysis method based on spatial filtering.

Chapters 5 and 6 present the results of experiments which evaluate the

proposed method for classifying and segmenting textured images. The

conclusions of this study will be summarized and further research will

be suggested in Chapter 7.



Chapter 2

Toward a Definition of “Texture”

2.1 Introduction

In order to use textural information, the computer vision system

requires an operational definition of "texture". In the absence of a

sufficiently precise general definition, the operational definition of

texture is implicitly supplied in the features computed from an image.

This feature space then constitutes a model of "texture”.

How can an operational definition for texture be constructed? A

reasonable first step is to observe the texture analysis performance of

the human visual system [Haralick et al, 1973; Barrow and Tennenbaum,

1981]. Texture is a common and important aspect of human visual

perception. Everyday experiences with texture analysis and recognition

tasks provide an extensive background of intuition regarding the nature

of “texture". One common manifestation of this intuition is in the

adjectives we use to describe textures. For computational texture

analysis, however, the nature of texture must be precisely quantified.

Texture analysis has sometimes been approached as the problem of

quantifying our intuition and our vocabulary about texture.

Some early attempts to construct automatic texture analysis

procedures referenced certain results from vision science which



appeared to limit the complexity of human texture perception. Textured

areas which did not differ in certain simple statistical measurements

were found to be indiscriminable to human observers. These

psychophysical results provided a useful upper bound on the complexity

of texture in human vision but little guidance concerning what

approaches should be effective for computational purposes. Section 2.2

reviews these influential findings and recent extensions and

modifications to them.

Several intuitive properties of texture and of texture perception

were identified, and image analysis techniques were proposed which

seemed to measure aspects of an image which were relevant to those

properties. These results provide some valid insights into the nature

of texture, though they actually tell more about how textures are

perceived than about what texture is or how to compute texture. A

summary of these results is presented in Section 2.3.

The intuitive insights into the nature of texture have not

produced. a characterization from which simple computational procedures

can be developed. Researchers attempting to present new texture

analysis techniques have found it awkward and difficult to describe the

properties of images which their techniques are supposed to measure.

Section 2.A will discuss the Catalog of Texture Definitions in Appendix

A.

2.2 Studies of Human Texture Perception

Experiments by Julesz [Julesz, 1962, 1965, 1975; Julesz et al,

1973] have influenced the development of texture analysis methodology.
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In these experiments, human observers are presented an image composed

of subimages which are generated by different rules. The subject's

task is to find the different subimages. The composite image is

displayed to the observer for very brief periods (100 ms) in order to

prevent the observer from scrutinizing the image to find the different

areas. Since the test images typically contained many repetitions of

some micropattern and since the segmentation was to be performed

without scrutinizing the image, the subimages were considered to have

different ”textures" and the experiments were interpreted as tests of

pre-attentive human texture analysis ability. The tests would

demonstrate the complexity of the processing performed in the visual

system before detailed analysis involving cognition or memory could

begin.

Notice that in such experiments, including [Julesz, 1962, 1965,

1975: Julesz et a1, 1973: Pratt et al, 1978; Richards and Polit, 197A],

“texture" is treated as an intrinsic property of an image determined by

the image generation procedure. Pre-attentive human vision is then

tested, and can succeed or fail in the texture discrimination task.

The results of these tests were examined to find some properties of the

generated images which could predict whether the human visual system

could preattentively discriminate different subimages.

One generalization of the results of these preattentive

discrimination experiments became known as the "Julesz Conjecture".

This conjecture asserted that image areas which do not differ in their

second-order gray level joint probability distributions cannot be

preattentively discriminated by human observers. The conjecture was

seen to imply that computational methods no more complex than the



ll

computation of second-order gray level distributions should be

sufficient to rival human performance in texture discrimination tasks.

Texture analysis researchers used this conjecture as a justification

for limiting the complexity of their techniques to fairly simple

computations.

Unfortunately, the Julesz Conjecture was wrong. Later studies

[Caelli and Julesz, 1978a, 1978b: Julez et a1, 1978; Julesz, 1981:

Gagalowicz, 1981] have produced many examples of images which have

identical second- and even higher-order gray level joint probability

distributions but which are visually discriminable.

Revisions to the original Julesz Conjecture have been attempted.

One recent attempt [Julesz, 1981] involves the assumption of special

geometrical structures called "textons" which, allegedly, are detected

in early stages of vision. The textons involve local geometrical

structures and include "corner”, "closure”, and "connectivity".

Detection of these special features is assumed to enable discrimination

of textures which have identical second-order distributions.

Another recent paper [Gagalowicz, 1981] modifies the original

conjecture by suggesting that the actual co-occurrence matrices (an

estimate of the second-order gray level distribution; see Section 3.2)

derived from Ithe given image should be used to characterize textural

properties rather than the underlying probability distribution. The

argument is that two discriminable texture fields can be produced from

the same probability distribution if the generating process is not

ergodic [Papoulis, 1965]. In such a case, the random differences

between the images due to the non-ergodicity of the generating

procedure can be a textural discriminating factor.
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In spite of the problems which have been discovered with texture

characterization based on second-order distributions, methods based on

the Julesz Conjecture are still used in texture analysis applications.

One study [Pratt et al, 1978] attempts to characterize the cases when

the conjecture fails and when the conjecture works. They conclude that

the Julesz conjecture is a reasonable approximation to human

performance in many texture discrimination problems.

2.3 Properties of Texture and of Texture Perception

Introspective observation of human texture perception has provided

some insight into the nature of texture. These observations do not

constitute a definition of texture: instead, they serve to guide and

constrain the development of computational texture analysis methods.

The use of constraints in the absence of precise definitions is a

basic approach in artificial intelligence (AI) research. As

computational vision problems (such as texture analysis) have been

found to resist attempts to define fundamental terms, the AI approach

of finding and exploiting constraints has been adopted [Zucker, 1981].

The intuitive guidance for texture analysis methods can be

summarized in four principles (cf. [Beck, 1980]).

1. Texture is a property of areas: the texture of a point is

undefined. Thus, operations on a random sampling of pixels would not

be an appropriate texture analysis procedure since texture does not

exist in context-free intensities. Texture is a global property of a

region, but the region under consideration can be a fairly small

subimage of a larger scene. Analysis of textures over small areas
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occurs when one attempts to find a boundary between two textured areas

[Haralick, 1975; Thompson, 1977].

2. Texture involves the spatial distribution of gray levels

throughout a region. This spatial property could be characterized by

statistical features computed over regions or by maintaining position

(or relative position) information throughout processing. A

one-dimensional gray level histogram is not, by itself, an appropriate

texture analysis tool because it captures no spatial information.

Two-dimensional histograms, or co-occurrence matrices (Section 3.2),

are more reasonable texture analysis tools because a spatial parameter

is incorporated in the histogram computation.

The minimum size of an image which adequately characterizes a

texture depends on several factors including the apparent size of

”objects" in the image, the resolution of the image acquisition system,

and the size of the ”operators” used in the texture analysis procedure.

The perception of texture depends on the assumption of a frame of

reference [Haralick, 1979] governing the sizes of gray level changes

'which are to be considered significant and the spatial scale which is

to be Operated upon. Since texture information can be found at many

different scales, recent papers have advocated multi-level or

hierarchical descriptions of regions for texture analysis [McCormick

and Jayaramamurthy, 1975: Crowley and Parker, 1978; Ehrich and Foith,

1978: Tomita, 1981; Zucker and Kant, 1981]. Alternatively, the

frame(s) of reference can be adopted from human performance [Ginsburg

and Coggins, 1981].

3. Texture is perceived in image regions which contain many

equally significant gray level changes. This implies that the gray
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levels in a "textured” region have low redundancy and high information

content [Resnikoff, 1981]. A textured region can be created by

inserting large numbers of "objects” such as edges, regions of constant

gray level, or micropatterns [Hall et al, 1977]. Alternatively,

texture can be created by removing all "enumerable objects" [Richards

and Polit, 197A]. In either case, a "texture" is perceived when

significant individual forms are not present.

A. Textural properties of regions are invariant through moderate

changes in overall brightness, orientation, and size (as in

magnification/shrinkage). While these changes are observable, an

original texture and a modified version of the same texture are

recognizable as being samples of the same texture. (Some interesting

points about textural invariance are made in [Modestino et al, 1981;

Ginsburg and Coggins, 1981].)

Another potential source of guidance is in the perceived qualities

of texture. Textural qualities are typically expressed by adjectives

such as coarse, streaked, sharp, irregular, fine, cellular, rippled,

directional, etc. One texture study [Tamura et a1, 1978] investigated

rank correlations between human evaluations of natural textures and

statistical features designed specifically to quantify textural

adjectives. Six perceptual dimensions of texture were specified, as

follows: coarseness (coarse vs. fine), contrast (high contrast vs.

low contrast), directionality (directional vs. non-directional),

line-likeness (line-like vs. blob-like), regularity (regular vs.

irregular) and roughness (rough vs. smooth). In psychophysical

experiments, subjects evaluated 16 natural textures from [Brodatz,

1966] along the six dimensions. Correlations among these six features
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indicated that the features were not independent. In fact, the

features cluster into two groups [Ginsburg and Coggins, 1981]. One

group (coarseness, contrast, and roughness) appears to be affected by

the apparent size of the texture while the other group (directionality,

line-likeness, and regularity) appears to be affected by directional

dependencies in the image. The clustering of the subjective features

suggests that more general or fundamental descriptions of textured

images may exist. Statistical features designed to duplicate the human

evaluations of image textures along the six intuitive dimensions

yielded poor results.

2.A Comments on the Catalog of Texture Definitions

Appendix A contains a collection of attempts by texture analysis

reSearchers to define “texture". It should be noted that many papers

dealing with methods for quantifying visual texture do not even attempt

to define the concept of “texture". The selections in the appendix are

typical of the definitions which do appear.

Usually, attempts to define “texture” are either constructed

specifically for a particular texture analysis approach [Appendix A,

items 1, 3, A], or they are so general that they are of little

practical value [item 2]. Some “definitions” simply characterize

“texture” by certain aspects of the human perception of textures [items

A-6].

Texture can be characterized as a global property [items 5, 7], a

local property [item 2], a random phenomenon [item 3], a non-random

phenomenon [item 9]. a property of a region which remains when all
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”objects” are removed [item 6], a property of a region when many

"objects" are present [item 5], a property determined by structural

arrangements of objects [items 1, A, 5, 9], a property determined by

statistical distributions [items 3, 7].

Unfortunately, these attempts to define texture have not suggested

simple computational texture measurements [item 10].

2.5 Summary

Texture is a commonly perceived quality of regions and surfaces,

but no precise, general definition of texture exists. Texture analysis

research has been guided by some results concerning the complexity of

texture analysis in human vision and by intuitive properties of

texture. These results serve to constrain the nature of texture, but

not to define texture or to suggest what computational approaches might

be appropriate for texture analysis. An attempt to directly quantify

the textural qualities perceived by human observers yielded poor

results. Due to the lack of more precise guidance, awkward and even

contradictory “operational definitions” of texture have appeared in the

literature.



Chapter 3

Models and Methods in Texture Analysis

3.1 Introduction

The process of analysis or measurement of texture is inseparable

from the process of creating an operational definition of texture. The

features computed from an image and the decision procedures applied to

the features constitute a working definition of ”texture". Existing

reviews of texture analysis methods [Hawkins, 1969: Rosenfeld and Troy,

197A; Sklansky, 1978: Haralick, 1979: Wechsler, 1980] concentrate on

the mathematical or computational techniques on which the methods are

based. This review will organize the methods according to the nature

of the operational definition of “texture" implied by the methods.

3.2 Local Analysis Methods

The unifying aspect of texture analysis methods reviewed in this

section is a dependence on small groups of neighboring pixels. This

local information may then be averaged or accumulated over a region for

use in characterizing the texture of the region.

This approach is typical of many "statistical” texture analysis

procedures. Among these are the gray level run length method

17
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[Galloway, 1975], the gray level difference method [Weszka et al, 1976]

and the gray level co-occurrence method [Haralick et al, 1973]. All

three methods involve counting the occurrences of a simple local

property over the entire region. In each case, the local property is

easy to identify and each instance of the property involves only a few

pixels. Since the local property depends on the gray levels of the

pixels, accumulations are stored in a matrix whose size depends on the

number of gray levels available in the quantization procedure.

Statistics are then computed from the matrix for use as texture

features.

In the gray level run length method, the local property is the

number of linearly adjacent pixels with a specific gray level. The

matrix Rd(i,j) gives the number of runs of length j of pixels with gray

level i in direction d. Four such matrices can be computed, for d-O,

A5, 90, and 135 degrees.

In the gray level difference method, the local property is the

absolute difference between the gray levels of pixels at a specified

displacement d-(dx,dy) from each other. The matrix Gd(i) gives the

number of times that a gray level difference of i occurs between pixels

at displacement d from each other.

In the gray level co-occurrence method, the local property

consists of the gray levels of two pixels with a given displacement

d-(dx,dy). The matrix Hd(i,j) gives the number of occurrences of a

pixel with gray level i at displacement d from a pixel with gray level

j.

The displacement vectors for the difference and co-occurrence

methods could be any vectors which can occur within the image. In
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practice, however, fairly small vectors (|d|<10) are used. Since the

co-occurrence matrix is sensitive to gray level changes over a certain

distance, the use of small displacement vectors involves an assumption

that texture exists in the gray level distributions in local areas of

an image.

In the co-occurrence method especially, the matrices for several

displacement vectors can be added together to remove certain

orientation dependencies. For example, Haralick uses a definition

which involves the sum of the co-occurrence matrices for vectors

i(dx,dy) and (-dx,-dy) [Haralick, 1979]. This particular definition

results in a symmetric co-occurrence matrix.

In comparative evaluation studies [Weszka et al, 1976; Conners and

Harlow, 1980a] involving these texture analysis methods, the

co-occurrence method was found to be superior, with the gray level

difference method a close second. These comparative studies have

influenced the frequent use of the co-occurrence method in

applications.

Some of the problems associated with local analysis methods are as

follows:

(1) The choice of the displacement vectors is critical.

(2) The visual significance of the features computed from .the

matrices is sometimes difficult if not impossible to understand. This

difficulty has led to attempts to capture textural adjectives directly

in statistical features [Tamura et al, 1978: Conners, 1979].

(3) The local analysis methods are sensitive to ”noise" due to

their dependence on actual gray level values. In addition, the gray

scale resolution determines the size of the accumulation matrices
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independent of the image size, making comparison of textural properties

of images digitized under different circumstances difficult.

(A) Local analysis methods are insensitive to global aspects of

the image such as brightness gradients and directional tendencies.

Another type of local analysis method attempts to characterize the

pattern of gray levels encountered in one-dimensional scans of the

image. This scan can be analyzed as a one-dimensional function using

time series techniques [McCormick and Jayaramamurthy, 197A: Deguchi and

Morishita, 1978] or heuristic analysis of extrema in the function

[Ehrich and Foith, 1978: Mitchell et al. 1977: Mitchell and Carlton,

1978]. In the time series analysis method, autoregression coefficients

are the texture features. This method has been used for synthesis of

certain types of streaked textures, but its applicability to less

directional or less regular textures is questionable [Haralick, 1979].

Heuristic analysis of the one-dimensional scan involves identifying

gray level extrema and associated properties such as the height and

width of the peaks and the distance to the next higher peak. The

texture features computed from such methods include the average height

(contrast) of peaks and the density of peaks of a particular height.

The density of edges in a local region can also be used as a

texture feature [Rosenfeld and Thurston, 1971: Rosenfeld et al, 1972:

Rosenfeld and Troy, 197A]. A simple local edge operator such as the

gradient can be used to identify edge pixels. The gradient computation

can be adjusted to be a function of distance to obtain a hierarchical

characterization of edge densities in the image.

Edge detection can be expressed as a spatial filtering operation

by defining a set of templates in the spatial domain and convolving
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them with the image. One such template is the Sobel operator [Pratt,

1978]. Laws [1980] uses several templates (including Sobel operators

and gradients) to detect edges at different orientations and with

different contrasts.

3.3 Global Analysis Methods

Global tendencies in an image such as the average sizes of objects

or areas or directional preferences are difficult to capture using

local analysis methods. Since such global information seems to be

related to texture (in particular, to coarseness and directionality),

methods which describe global properties of the image could be useful

in texture analysis.

Global size and directional tendency information can be derived

from the autocorrelation function [Hayes et al, 197A]. LetiI(x,y) be

the image function which gives the gray level at position (x,y) for 0

<= x,y <8 N-l and is 0 otherwise. The values of'I(x,y) are integers

with 0 <- IKx,y) <= G-l. The (normalized) autocorrelation function

R(dx,dy) is the product of the image function with a shifted [by

d-(dx,dY)] copy of itself. That is,

  

  

N-l N-l

I \

R (dx,dy)= ---- [ > > I(X.y) *I(x+dX.Y+dY) J

R0 / /

x-O y=0

where R0 is a normalizing factor. The maximum value of R(dx,dy) occurs

at R(0,0). If the image contains large areas of constant gray level,

the autocorrelation function will decrease slowly with distance from

(0,0); if the image contains mostly small areas of constant gray level
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(the texture is "busy") then the autocorrelation function will drop off

sharply. If the image is periodic, the autocorrelation function will

rise and fall with the same period as the pattern in the image.

The value of R(dx,dy) is related to the co-occurrence matrix

Hd(gl,gZ) where d-(dx,dy) as follows:

  

I \ \

R(dx,dy)= ---- [ > > gl*gZ*Hd(gl,gZ) ]

R0 / /

9180 92-0
  

Thus, the autocorrelation function can be derived from the entire

ensemble of N**2 co-occurrence matrices of the image, but the converse

is not true. For a given displacement, the co-occurrence matrix

provides a more detailed characterization of the spatial distribution

of gray levels than the autocorrelation at the same displacement.

The Fourier transform has been used more frequently than the

autocorrelation function as a texture analysis tool [Lendaris and

Stanley, 1970; Bajcsy, 1973: Bajcsy and Lieberman, 1976: Weszka et al,

1976: Conners and Harlow, 1980a; D'Astous and Jernigan, 1981; Eklundh,

1979]. The two-dimensional Discrete Fourier Transform (DFT) of an NxN

image I(x,y) is defined as follows:

  

  

N-l N-l

\ \

F (u,v)= > > I(x,y) exp[-j2h’(ux+vy)] .

/ / /¢

x=0 y-O

The Fast Fourier Transform algorithm can be used to compute the

two-dimensional DFT [Johnson and Jain, 1981]. The Fourier spectrum can

also be expressed in magnitude-phase form as
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F(u,v) = M(u,v) exp[jP(u,v)]

An intuitively appealing interpretation of the Fourier transform is

based on the representation of an image as a weighted sum of sinusoidal

gratings (Figure 1) [Rosenfeld and Kak, 1981; Duda and Hart, 1973].

The parameters u and v determine the frequencies of the horizontal and

vertical sine waves in the gratings. The amplitude of the sine waves

(the contrast of the grating) is given by M(u,v), and their phase is

given by P(u,v).

We note that the autocorrelation function and the power spectrum

(M(u,v)z) are a Fourier transform pair. Thus, by the argument given

earlier, the ensemble of N2. possible co-occurrence matrices also

determines the magnitude spectrum [Julesz and Caelli, 1979].

As spatial frequency (distance from. (0,0) increases, the

wavelength of a cycle decreases. Thus, high spatial frequency is

associated with small areas and low spatial frequency is associated

with large areas in the image. This association means that a coarse

texture - one composed of large areas of constant gray level - will

have strong low spatial frequency components and a fine texture will

have strong high spatial frequency components.

Because of the associations between size and spatial frequency,

several texture features have been defined on the power spectrum. The

phase spectrum has been largely ignored because of associations between

phase and position. Since textures can be identified regardless of the

position of particular components in the visual field or the position

of a (sufficiently large) window in a uniformly textured plane, phase

information has been assumed to be unimportant for texture analysis but



.
.
2
1

I
t
'
l
l
-
1
1
.
.

i
n
fi
l
l

I
I
I
.

1
|



24

 

 

 

I
(c)

    
 

 

Figure 1: Sinusoidal Gratings.

(a) 3 cycles per image horizontal (b) 8 cycles per image horizontal

(c) Combination of five spatial frequencies with arbitrarily

selected amplitudes. This is an example of a "one-dimensional texture".

(d) 8 cycles per image horizontal and 8 cycles per image vertical
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useful for pattern recognition [Richards and Polit, 197A (Appendix A,

item 6): Bajcsy and Lieberman, 1976]. Some recent studies have

attempted to reexamine the potential of phase information for texture

analysis, but the results have not been encouraging [Eklundh, 1979;

Julesz and Caelli, 1979: Zucker and Cavanaugh, 1980: D'Astous and

Jernigan, 1981]. It will be argued later that the apparent failure of

phase information in texture analysis is due to its improper use.

Two types of features are computed from the power spectrum:

spatial frequency energy and orientation energy [Weszka et al, 1976:

Haralick, 1979]. Spatial frequency energy features have the form

(using polar coordinates)

7.11 (kl-Ar
‘2.

F :.-. 3 F (rcoselrsine) 0L" ((9

K 0 r1

These features give the total energy in a limited band of spatial

frequencies. Orientation energy features have the form (again in polar

coordinates)

r 0K+A9

00‘ I 3 Fz(rc0593rsine) gigolr‘

0

9K

These features give the total energy in limited orientation bands,

which indicate directional tendencies in the image.

These global analysis methods have several disadvantages.

(1) The shapes and widths of the spatial frequency and orientation

bands are free parameters which are arbitrarily specified.

(2) Differences in illumination, contrast, or gray level

resolution cause significant changes in the power spectrum. This

problem can be alleviated by preprocessing techniques such as histogram
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equalization, but this can cause a loss of gray level resolution and

image fidelity [Haralick, 1979] and can dramatically change the

appearance of the image.

(3) Computation of the Fourier transform or autocorrelation

function over irregularly shaped regions (as are commonly encountered)

involves some difficulty [Wechsler, 1980].

(A) Every entry in F(u,v) is determined by all of the image

function. It is not possible to extract spatially-limited information

from F(u,v) by any method short of an inverse Fourier transform. This

implies that the spatial frequency domain features cannot be used for

texture segmentation without recomputation of the Fourier transform for

each subimage to be analyzed [Bajcsy, 1973; Bajcsy and Lieberman,

1976].

3.A Intermediate Analysis Methods

Several texture analysis methods are based on the relationships

among particular types of objects ("primitives”) in an image. These

methods typically involve definition of primitives, extraction of

primitives from -a textured image, and characterization of the texture

by formal language or heuristic methods.

In the formal languages approach, textures are considered to be

language classes for which separate grammars can be inferred. Texture

analysis is seen to consist of extracting the primitives and then

parsing the image according to the texture grammars. Unfortunately,

both of these operations are nontrivial, even in simple test cases.
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Alternatively, the primitives can be analyzed by heuristic

methods, often involving statistical measurements of the structure of

the primitives. For example, ”generalized co-occurrence matrices"

[Davis et a1, 1979; Haralick, 1979] can capture some aspects of the

spatial distribution of primitives. A generalized co-occurrence matrix

gives the number of times different primitives occur in the image at a

particular displacement. The same features used for the gray level

co-occurrence method can be computed from generalized co-occurrence

matrices.

An orderly review of intermediate analysis methods is obtained by

examining them in order of increasing complexity of the primitives.

One method based on formal language techniques uses 9x9 pixel

windows as the primitive [Lu and Fu, 1978a, 1978b]. The texture is

characterized by a stochastic tree grammar which specifies the

assignment of gray levels to the windows. Error-correcting parsing

methods are used to eliminate noise, and functions to compute the

”distance". between languages are used to measure differences between

texture classes.

Another simple primitive is an area of constant or nearly constant

gray level [Tsuji and Tomita, 1973; Tomita and Yachida, 1973; Tomita,

et a1, 1973]. Features such as size, gray level, curvature and

directionality are computed to characterize the regions. Textures are

identified by multiple modes in the histograms of feature values.

Labelling each region by the mode in which it appears provides a first

approximation to the textured regions. Generalized co-occurrences or

split-and-merge techniques can then be used to refine the segmentation.
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One obvious disadvantage of this approach is that its complexity

increases rapidly with the fineness of the texture and with the gray

scale resolution due to the large number of primitive areas which must

be evaluated.

An edge can also be used as a primitive. One recent texture

analysis method attempts to characterize repetitive patterns of edge

pixels in an image [Vilnrotter et a1, 1981] using an "edge repetition

array" constructed from horizontal and vertical scans of the image.

The array is then analyzed to find repetitive edge structures. In

another approach, texture is characterized by computing generalized

co-occurrences of edge pixels [Rosenfeld, 1979]. A spatial frequency

domain form extraction method [Crowley and Parker, 1978] which

identifies edges whose contrast exceeds a threshold is also suggested

for texture analysis.

A more complex type of primitive involves geometric shapes such as

lines, curves, angles, open polygons, and closed polygons. These

primitives are difficult to use, but in some cases complex geometrical

texture patterns can be synthesized from simple grammars and fairly

complex primitives [Carlucci, 1972: Siromoney et al, 1972].

A theoretical scheme for an intermediate-level structural analysis

of texture is presented in [Zucker, 1976]. In this theory, an observed

texture is considered a transformation of an "ideal texture" which is

typically a polygonal tesselation of the plane. The ideal texture

governs the placement of primitives, and transformation rules determine

the relationships between primitives (such as superposition, adjacency,

etc.). This theory is an idealized characterization of "structural"

texture analysis, but there seem to have been no practical spinoffs of
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the theory.

Other intermediate-level analysis methods have been suggested

based on combinations of statistical and structural methods [Tomita,

1981: Conners and Harlow, 1980b].

3.5 Image Modelling Methods

This class of methods for characterizing texture assumes that the

textured image is a realization of some stochastic process which is

governed by a few parameters. Texture analysis is viewed as a

parameter estimation problem: given an image I(x,y), estimate the

parameters of the assumed random process so that the probability of

obtaining I(x,y) is maximized. The estimates of the parameters serve

as texture features for classification problems. The estimates can

also be used to synthesize other images with similar (in the sense of

the model) texture.

One type of image synthesis model is based on stochastic

tesselations of the plane [Schachter et al, 1978a: Ahuja and Rosenfeld,

1981]. These random mosaic models produce polygonal regions in the

image plane. Conceptually, the models produce a textured image either

by generating random lines through the image or by generating random

points and growing regions around them. In [Modestino et al, 1981],

gray scale random textured images are generated which are reminiscent

of the random mosaic images. This model allows control of gray level

correlations between adjacent regions as well as control of the

polygonal generation process. A log-likelihood texture analysis and

segmentation procedure based on the synthesis method is presented and
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demonstrated on compound images composed of subimages generated by the

model. The segmentation results are good. Further experiments reveal

some difficulties in generalizing the method to discriminate natural

textures.

A different, very flexible image generation model is developed in

[Pratt et al, 1978; Gagalowicz, 1978; Pratt et al, 1981]. In this

model, an image is considered to be the output of a homogeneous spatial

operator responding to noise input. The noise input supplies the

randomness in the texture and the spatial operator supplies local

structure. Characterization of a texture then requires specification

of a noise distribution and a spatial operator.

Several statistical models for image generation and image

modelling are reviewed in [Kashyap, 1980; Garber and Sawchuk, 1981;

Chellappa and Kashyap, 1981a, 1981b].

One class of well-known texture models is based on the Markov

random field [Rosenblatt and Slepian, 1962: Besag, 197A: Hassner and

Sklansky, 1978; Cross and Jain, 1981; Chellappa and Kashyap, 1981a,

1981b; Garber and Sawchuk, 1981; Schmitt and Massaloux, 1981].

One-dimensional Markov random field models have been used to synthesize

images for psychophysical experiments [Julesz 1962, 1965] and for

theoretical comparisons of texture analysis methods [Conners and

Harlow, 19803]. In one recent study [Cross and Jain, 1981], parameters

of a Markov process were fitted to natural textures from [Brodatz,

1966]. The parameters were then used in the model to generate random

images. The results are typical of the fundamental problem with

model-based approaches to characterizing textures: while some

successful model-based parameterizations can be found, and the model
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can be used to randomly generate some images which appear similar to a

prototype, in general, natural images are not bound to conform to the

restrictions of a particular model. This fundamental problem severely

limits the potential for model-based approaches in general texture

analysis problems.

3.6 Summary

A critical review of texture analysis methods has been presented.

The large number and the variety of texture analysis methods is caused

in part by the lack of a general definition of texture and by the

difficulties encountered when existing methods have been applied to

general texture analysis problems. Many methods have been developed on

an ad hoc basis guided by intuition.

The few comparative evaluations which exist conclude that the

co-occurrence method is the best statistical approach to texture. The

co-occurrence matrix is widely used in applications and as a basis for

more sophisticated techniques including generalized co-occurrences,

visually interpretable texture features, and combined

statistical-structural approaches to texture.

Features from the Fourier transform of the image have been

suggested, but their performance has been poor. The comparative

studies conclude that the statistical features provide better results

than power spectral features, and attempts to develop texture features

from the phase spectrum have been unsuccessful.

The performance of existing texture analysis methods depends on

the data. Acceptable performance can be obtained for some specific



32

problems, but the approaches lack generality. Many approaches have

disadvantages such as insensitivity to some aspects of texture or

susceptibility to irrelevant gray level variations (”noise").



Chapter A

A Texture Analysis Method Based on a Theory of Human Vision

A.l Introduction

In this chapter, the channel filtering theory of early human

vision will be used to motivate a new approach to texture analysis.

First, however, we pause to explain why and how this theory of human

vision will be used to guide the development of a texture analysis

method. Then, the channel filtering theory and its potential

significance for computational vision will be briefly presented. A

feature space for texture analysis will then be developed and its

plausibility will be examined.

A.2 A Critical Re-evaluation of Texture Analysis Methodology

Computational vision methods are not evaluated for use in

applications based on whether the methods accurately emulate the

mechanisms (or sometimes even the performance) of human vision.

Methods are sometimes evaluated by correlations with human performance,

but correlation does not imply equivalence or causality. High

correlations with human performance might be obtained using processes

very different from those present in human vision. But if correlation

33
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with human performance is desirable, it seems reasonable to base the

computational techniques on whatever is known about human vision.

Insights into human vision can serve to motivate computational texture

analysis procedures.

How should information concerning human vision be used to guide

computational vision research? Ideally, we would know the overall

strategies used in human vision to analyze an image. We could then

implement a vision system which might well rival human performance on

many visual tasks. But the computer vision system would not

necessarily emulate the human visual system at the neural level. The

operation of low-level components of a complex system may give no

useful information about the overall strategies used in the system.

(This is discussed at length by Hofstadter [1979].) Once the overall

strategies in vision are identified, their implementation can be

tailored to whatever devices or constraints are relevant.

In some approaches to computational vision, a technique which

appears to reproduce or explain human performance is developed, then

neural mechanisms are postulated which correspond to some aspects of

the computational methods [Julesz et al, 1973; Julesz, 1981; Marr et

al, 1979; Marr and Hildreth, 1980: Marr, 1980; Hildreth, 1980]. The

use of vision science to construct post hoc justifications for existing

methods is not effective since the value of a proposed technique for

computational vision is determined by correlations between observed and

desired performance. Correspondences between a proposed computational

method and hypothesized mechanisms of human vision are ultimately

irrelevant.
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In this study, the opposite approach is used. Information from

vision science will be used to guide the development of a new method

for texture analysis, not to bolster or to validate an existing method.

A theory which attempts to describe the possible processing strategies

in early human vision will be used to guide the development of the.

computational procedure.

A.3 Spatial Frequency Channels

In the late 1960's, researchers found that the threshold

visibility of sinusoidal gratings (Figure 1) depends on the spatial

frequency of the gratings [Campbell and Robson, I968; Pantle and

Sekuler, 1968; Blakemore and Campbell, 1969; Campbell and Maffei,

1970]. The potential power of Fourier analysis as a tool for studying

human vision was noted immediately [Campbell and Robson, 1968].

Attempts were made to determine how well spatial frequency domain

analysis of visual stimuli correlated with actual human performance.

One key issue involved whether the visual system combines spatial

frequency information linearly, and thus whether visual analysis of

complex objects could be expressed easily in terms of the spatial

frequencies in the complex stimuli. Another important issue was

whether the analysis of a stimulus by the visual system involves

several independent mechanisms (called channels) which analyze

different aspects of the stimulus. It was hypothesized that the

channels might have a convenient spatial frequency domain

representation. This hypothesis sparked additional activity in which

neurological and psychophysical experiments were interpreted as
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providing evidence for or against various single-channel or

multi-channel models of early stages of human visual processing. For

reviews of this activity, see [Graham, 1981; Ginsburg, 1978].

These results were unified and extended in [Ginsburg, 1978,

1980b]. An implementation of the multi-channel theory was used to

illustrate the action of spatial frequency domain filters on various

images containing complex forms, visual illusions, multistable images,

and certain visual textures. In addition, the contrast sensitivity of

abnormal visual systems was found to have unique properties in the

spatial frequency domain. The channels in the visual system are

modelled by filters defined in the spatial frequency domain, but a

critical feature of this particular channel analysis is the assumption

that phase information is an essential part of the internal

representation of visual stimuli. Thus, the decomposition of an image

is modelled by a sequence of spatial domain filtered images [Ginsburg,

1971].

These studies did not develop algorithms for automatic image

analysis, but other papers [e.g. Ginsburg, 1973, 1979a] suggested that

filtering in spatial frequency channels might be useful for machine

pattern recognition, including texture analysis.

The assumption of a channel decomposition of an image suggests two

computational implementations [Hall, 1972; Nathan, 1970: Ginsburg,

1979b]. In one, a series of point spread functions, or templates, is

convolved with the image to obtain a series of distorted (filtered)

versions of the original image. Alternatively, the convolution can be

performed in the spatial frequency domain by applying an inverse

Fourier transform to the product of the filter transfer function (the



37

Fourier transform of the point spread function) and the Fourier

transform of the image. This process is illustrated in Figure 2. The

resulting sequence of filtered images is exactly the same as those

produced by spatial convolution. The choice of the method is largely a

matter of convenience and computational efficiency. For this study,

the spatial frequency domain method will be used due to the

availability of fast algorithms for the discrete Fourier transform

[Johnson and Jain, 1981] and due to the intuitive value of defining the

filters in the spatial frequency domain [Ginsburg and Coggins, 1981:

Graham, 1981].

The next issue is to decide the shapes, sizes, locations, and

number of the channels. The filtering properties of the human visual

system are not precisely known, but psychophysical and neurological

data can be used to guide the selection of the filter parameters. This

study will use filters whose parameters are within the constraints

specified in [Ginsburg, 1978]. The transfer functions for spatial

frequency channels are defined by a Gaussian function (on a log scale):

their center frequencies are one octave apart and their width is

between 1 and 2 octaves. The number of spatial frequency channels used

depends on the size of the image (see Appendix B for details). Figure

3 shows two representations of a spatial frequency channel filter in

the spatial frequency domain (u-v plane). The height of the surface

above the u-v plane (Figure 3a) and the intensity of the gray levels

(Figure 3b) represent the filter amplitudes, |F(u,v)|, which are

between 0 and 1. Four orientation channels are implemented with center

orientations directed horizontally, vertically, and along the two

diagonals (see Appendix B for details). Figure A shows two
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Figure 2: Diagram of the Spatial Filtering Procedure.

This procedure is repeated once for each channel.



zero-frequency component is in the center of the region.

filter transfer function in the spatial frequency domain.

(a) A transect plot portraying the amplitude of the real part of the

(b) An image representation of the same filter transfer function.

The

Figure 3: A Spatial Frequency Filter.
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(b) An image representation of the same filter transfer function.

zero-frequency component is in the center of the region.

(a) A transect plot portraying the amplitude of the real part of

the filter transfer function in the spatial frequency domain.
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representations of an orientation filter in the u-v plane.

Other channel filtering models for human vision have been

developed [Sachs et al, 1971; Richards and Polit, 197A: Mostafari and

Sakrison, 1976; Wilson and Bergen, 1979]. We note also that some

arguments against a Fourier model of vision have appeared [Julesz and

Caelli, 1979; Ochs, 1979: Zucker and Cavanaugh, 1980].

The sequence of filtered images obtained from a 128x128 sample of

a ceiling tile image [Brodatz, 1966] are shown in Figure 5. Each

channel responds to gray level changes over different sized regions or

at different orientations. Energy from large objects is displayed in

low spatial frequency channels; energy from small objects is displayed

in high spatial frequency channels. Orientation channels respond to

gray level changes with a directional preference. Since the phase

information from the original image is retained in the filtered images,

the spatial distribution of the spectral energy in each channel is

apparent in the positions of gray level variations in the filtered

images. The use of phase information captures in the filtered images

the gray level spatial distribution information which is essential to

texture.

The specification of the channels completes the definition of the

initial information processing stage of a computational vision system.

The output of this stage is a series of channel-filtered images, each

of which contains limited spectral information from the original image.

The next task is to exploit the channel decomposition, reducing the

series of filtered images down to a set of texture features which can

be used to duplicate some texture analysis capabilities of human

vision.
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Figure 5: An Example of Channel Filtering.

(3) Original 128x128 TILE image. (b)-(l) filtered images with

center frequencies (in cycles per image) and orientations (in degrees)

as follows: (b) 0 degrees (c) 45 degrees (d) 90 degrees

(e) 135 degrees (f) 1 c/i (g) 2 c/i (h) A c/i (i) 8 c/i

(j) 16 c/i (k) 32 c/i (l) 64 c/i
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A.A Constraints on Possible Texture Features

Pragmatic requirements constrain the nature of the features we are

willing to compute from the filtered images. The features must be very

simple since we now have a whole series of images to analyze rather

than a single image on which more extensive analysis can be performed.

We would like to find some evidence from vision science to suggest that

simple features which duplicate human performance could exist.

Several observations suggest that texture is a consequence of

crude information reduction in vision which simple computational

methods should be sufficient to capture. First, textures can be

analyzed and discriminated by the human visual system quickly and

effortlessly, but only very simple, crude mechanisms have been found in

the early stages of mammalian visual systems [Hubel, I963; Ginsburg,

1978; Graham, 1981]. Second, texture is perceived most clearly in an

image area which has many intensity changes and thus small areas of

constant intensity [Crowley and Parker, 1978; Resnikoff, 1981].

Individual edges and their placement are not critical for identifying

textures. In fact, very different generation procedures can yield

images which are not preattentively discriminable. ”Texture" appears,

then, to be the result of a crude information reduction which occurs in

an image area with no distinctive individual features.

This crude information reduction is evident in several

indiscriminable textures presented by Julesz (Figure 6). In these

images, a simple check of the edge structure of the micropatterns would

immediately yield discrimination of the different regions, yet these
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Figure 6: Indiscriminable Textures which Could Be Discriminated

Based on the Edge Structure of the Micropatterns.

(Each image contains two micropatterns which are reflections

of each other. From Julesz, 1973.)
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are among the most difficult patterns to visually discriminate, even

given the nature of the difference between the micropatterns. Simple

pixel-level operations could be constructed to discriminate the image

fields in Figure 6, but the criteria for the discrimination would no

longer be "texture". The ability to discriminate micropatterns does

not necessarily imply that textures composed of the micropatterns are

easy to discriminate [Beck, 1980; Ginsburg, 1978].

Further evidence for the simplicity of human texture perception

comes from psychophysical experiments involving "one-dimensional

textures" (Figure 1c). In these images, the gray levels in each column

are constant and the gray levels along each row are determined by a

weighted sum of sinusoidal functions. Psychophysical experiments show

that arbitrary one-dimensional textures can be matched with images

containing only a few (A) selected spatial frequencies [Richards and

Polit, 197A]. Another study shows that human similarity judgements

between one-dimensional textures are predicted better by the outputs of

four spatial frequency channels than by the actual spatial frequencies

present in the textures [Harvey and Gervais, 1981].

An observation made in passing by Julesz et a1 [1973:Figure 6]

provides further evidence that texture is a consequence of simple

operations on images. Two patterns generated by a geometrical method

involving repetitions .of four-dot micropatterns were presented in an

image. The generation method insures that the two patterns have

identical "second-order statistics", and it was observed that the

patterns are not effortlessly discriminable to human observers. Julesz

then presented a "blurred“ version of the image in which the patterns

were found to be discriminable. In addition, it was noted that the
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blurred patterns have different second-order statistics. The

significance of this observation is that "blurring" is an alternative

characterization of certain spatial filtering operations. Blurring can

enable discrimination using simpler measurements than were required on

the original image.

Thus, there is evidence that simple operations on channel-filtered

images could be effective for texture analysis.

A.5 Properties of Channel-Filtered Images

In addition to the evidence for the simplicity of ”texture"

presented in the last section, we can obtain guidance in constructing

texture features from certain properties of the channel-filtered images

which are consequences of the filter definitions and of the spatial

filtering operation. Four properties which have proven useful from

preliminary studies are as follows:

1. The mean gray level of the channel-filtered images can be

fixed in advance. In the implementation used in this study, the mean

gray level of the filtered images is made equal to the mean gray level

of the original image by setting the value of the zero-frequency

component of the filters to 1, thereby passing the zero-frequency

component (average gray level) of the original image unchanged. This

property makes possible meaningful displays and comparisons of the

channel filtered images. Keeping the average gray level of the

filtered images the same simplifies the construction of features which

are invariant over global, constant gray level changes.
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2. The gray level frequency histograms of the filtered images

tend to be symmetrical about the mean gray level due to the symmetrical

response of the filters to objects in the original image. Asymmetry in

the gray level histograms is caused by the interaction of the responses

of spatially close objects.

3. The magnitude of the deviation of the gray level of a pixel in

a filtered image from the mean gray level is directly related to the

spectral energy contained in a neighborhood of that pixel in the

original image. Since phase information is retained in the filtered

images, the spatial distribution of the spectral energy passed by the

filter is reflected in the gray level distribution in the filtered

image. Thus, the spectral energy in different spectral bands arising

from small spatial areas can be measured from the sequence of filtered

images without recomputing a Fourier transform for each local area of

interest.

A. The differences between the channel-filtered images lies in

their sensitivities to gray level variations in the original image over

regions of different sizes and orientations. The channel

decomposition, then, allows separate measurements of local energy over

spatial domain neighborhoods of different sizes and orientations.

A.6 Definition of Texture Features

Property 3 above implies that the gray levels in each filtered

image can be interpreted as representing the spectral energy arising

from local areas of the original image. This interpretation motivates

the selection of features for use in texture analysis experiments in
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this thesis. The features will measure the average local spectral

energy in an image by computing the spread of the gray level frequency

histogram of the filtered images.

A number of features can be defined to measure the spread of the

histograms. We have used eight such features in classification

experiments (Figure 7). The first feature is the average absolute

deviation from the mean gray level. Features 2-A are functions of the

second through fourth moments of the gray level histogram. Feature 2

is actually the standard deviation of the gray levels. We note that

the third moment is not strictly a measure of spread, but it is

included for completeness. Functions of the moments are used rather

than the actual values of the moments because of computational

difficulties encountered in preliminary experiments caused by the large

magnitudes of the third and fourth moments. Features 5-8 are heuristic

spread measurements which assume that the histogram is symmetric.

Property 2 from the previous section states that this assumption is

generally reasonable, but can fail in specific cases. The threshold

values of .25, .50, .75, and 1.0 used in the feature definitions are

arbitrarily selected.

Similar features are investigated by Laws [1980], though the

filters in that study are defined as small spatial domain templates.

The sequence of filters satisfies the requirement that texture be

measured at several different scales. Each gray level in the filtered

images is determined by a neighborhood in the original image, so the

filtered images are consistent with the spatial property of texture.

Statistics of the gray level histograms of filtered images are easy to

compute, so they satisfy the pragmatic requirement that channel
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Figure 7: Texture Feature Definitions.
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filtering features be simple. Moreover, the features have reasonable

visual interpretations in terms of spectral energy, size, and

orientation. In addition, these features can be computed for any

subimage without repeating the channel filtering Operation; this

property will be important for texture segmentation (Chapter 6).

A.7 How Will the Texture Features Be Used?

An image will be represented by a feature vector consisting of the

values of one of the texture features computed over each filtered

image. The feature vector will map the image into a point in the

feature space: this point will represent the image's texture. The

distance between points in the feature space will be used as a measure

of the textural difference between images.

In most approaches to texture analysis, a number of features are

defined and then they are applied in various combinations to classify

texture samples [e.g. Weszka et al, 1976: Faugeras and Pratt, 1980;

Haralick and Shanmugam, 1973]. This approach is more likely to

produce, at some point, ”good" classification results than using each

feature in isolation. But combining various features whose properties

are not well understood leads to problems in interpreting results. In

this study, the features will be used separately, expecting that the

results for all of them (except perhaps Feature 3) will be similar.

Selection of the "best" feature from these will have to be based on

computational considerations and compatibility with solutions to other

image analysis problems such as form extraction, image registration, or

edge detection.
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A.8 Summary

Existing texture analysis methods use little guidance from

properties of human visual perception. A theory concerning the early

information processing in human vision was used to motivate the

development of a new feature space for texture analysis. The theory

asserts that an image is decomposed by the human visual system into

channels which are modelled by spatial filtering operations. Since

phase is retained in the channel-filtered images, the spectral energy

caused by gray level variations in local spatial areas can be measured

from the channel-filtered images. Features which measure this local

energy were defined for use in texture analysis studies.



Chapter 5

Evaluation of Channel Filtering Features for Texture Classification

5.1 Introduction

This chapter will present the results of several experiments

designed to evaluate the channel filtering features, to compare their

performance against some other texture features proposed in the

literature, and to illustrate properties of the feature space which may

be useful in applications.

The experiments in this chapter are texture classification

problems using a supervised learning paradigm. Sets of test images are

labelled according to an external criterion which, for these

experiments, is a visual evaluation of the image texture. The sets of

images are then analyzed by the channel filtering method, resulting in

a feature vector for each image. These feature vectors are then input

to a classification algorithm, and the estimated error rate is used to

evaluate the class separations in the feature space.

Most of the experiments in this chapter use 25 samples of each

image class. The samples are extracted as subimages from a large

(256x256 pixels) image which represents a single texture class.

Nonoverlapping subimages are extracted as far as possible, then the

sampling origin is shifted by half the subimage size to complete the
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set if necessary. The number of samples is fairly small, but since the

large images are homogeneous, with no complications such as shadows,

receding surfaces, or magnification, this number of samples from

throughout the image should adequately characterize the image texture.

However, in interpreting the estimated error rates, we must keep in

mind that the estimates are based on a small number of samples.

In all of the experiments in this chapter, different texture

features are used in separate classification problems. The feature

vector for each image consists of the values of one of the texture

features F1...F8 defined in Figure 7 computed over all of the

channel-filtered images. The dimensionality of that vector depends on

the size of the images being analyzed: for 6Ax6A images, eleven

channels (four orientation, seven spatial frequency) are used: for

32x32 images, ten channels (four orientation, six spatial frequency)

are used.

For the experiments in this chapter, a Nearest Neighbor Classifier

will be used. The decision rule is to classify an unlabelled point

into the class of its nearest labelled neighbor in the feature space,

where the distances are determined by the Euclidean distance metric.

This decision rule results in piecewise linear decision boundaries.

The error rate of the classifier will be estimated using the

Leave-One-Out rule, which is often used when sample sizes are small.

In this method, each point in turn is treated as a test sample with all

other points as training samples. The results will be presented as a

confusion matrix for each feature. The (i,j)th entry of the matrix

gives the number of times a sample from class i was classified as class

j.
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The performance of the channel filtering features will be compared

to the performance of another feature, the total power spectral energy

(PSE) in the sequence of filtered spectra. This feature has been used

with ideal band-pass channels in previous studies (Section 3.3). This

feature uses no phase information, by definition, but it uses the same

power spectral information as the channel filtering features. The

effect of using phase information in the channel filtering features

will be determined by comparing the error rates of PSE and channel

filtering features.

The experiments will first establish the performance of the

proposed texture features on classification of natural images whose

sizes are 6Ax6A, 32x32, and l6xl6 pixels. Then the effect of histogram

equalization on the natural images will be evaluated. The sensitivity

of the features to changes in the average gray level, magnification,

and orientation of the textured images will be evaluated.

Computational simplifications of the channel filtering procedure using

fewer channels and using channels with an ideal band-pass

characteristic will also be evaluated. The features will also be

applied to a particular set of images to compare their performance to

that of the co-occurrence method.

5.2 Evaluations of the Features on Natural Images

In this sequence of experiments, eight images from [Brodatz, 1966]

will be used to provide an initial test of the proposed texture

analysis method. The data for these experiments consists of subimages

of eight 256x256 images illustrated in Figure 8. The images (and their
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Figure 8: Natural Image Classes.

(3) TILE (b) ROCK (c) SAND (d) PAPE

(e) CORK (f) GRAS (g) WOOD (h) SCRE
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Figure 8: (cont'd)
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abbreviations) are as follows: ceiling tile (TILE), beach .pebbles

(ROCK), beach sand (SAND), handmade paper (PAPE), pressed cork (CORK),

grass lawn (GRAS), wood grain (W000), and straw screening (SCRE).

These images were selected to provide a variety of textural properties

and a range of difficulty in discrimination. The images were digitized

using a Spatial Data Systems Eyecom image processing system. No

preprocessing was applied to the digitized images for the experiments

in this section.

5.2.1 Experiment 1: Natural Images, 6Ax6A subimages

In the first experiment, 25 samples of size 6Ax6A were extracted

from the 256x256 images. Sixteen of the samples were nonoverlapping,

and nine more were extracted by shifting the sampling origin by

(32,32). The 256x256 images are visually discriminable. The feature

space will now be tested on smaller images which could, in principle,

provide a more difficult discrimination problem since a smaller texture

sample is available for analysis. Each of the 200 samples were

filtered and the eight features in Figure 7 were computed on all of the

filtered images.

The classification results for all of the features are given in

Table 1. The PSE feature provides 69% correct classification while all

of the channel filtering features (except feature 3) provide better

than 90% correct classification. Feature 3 is the only channel

filtering feature which does not measure the spread of the gray level

frequency histogram of the filtered images and therefore cannot be

easily interpreted as a local energy measure. Feature 3 yields 79.52
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Table 1: Classification of Eight Natural Image Classes

Using 6Ax6A Subimages.

PSE TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE l9 2 3 1 O 0 O O

ROCK 3 l8 1 0 1 0 1 1

SAND A 0 1A 2 O l A O

PAPE O 0 l 22 l 1 O 0 69%

CORK 0 O O O 15 10 O 0 accuracy

GRAS 0 O O l 9 l3 2 0

W000 2 O 5 O O A 1A 0

SCRE O 0 0 0 0 2 O 23

F1 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 22 2 l 0 O O O O

ROCK 1 2A 0 O O O O 0

SAND 0 0 25 O O O O O

PAPE O 0 0 25 O 0 0 O 982

CORK 0 O O 0 25 0 0 0 accuracy

GRAS 0 0 0 0 O 25 0 0

W000 0 O O 0 0 O 25 0

SCRE O 0 0 O O O 0 25

F2 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 22 2 l 0 O O 0 O

ROCK 0 25 0 O O 0 0 O

SAND 0 0 23 O 0 2 0 0

PAPE O 0 0 25 0 O O 0 97.5%

CORK 0 0 O 0 25 0 0 0 accuracy

GRAS O O 0 O O 25 0 0

W000 0 0 O 0 0 0 25 O

SCRE O O O O 0 O 0 25

F3 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 25 0 O 0 0 0 0 0

ROCK 2 16 0 O 1 5 1 0

SAND 0 0 16 2 l O 3 3

PAPE 0 O 0 25 O 0 O 0 79.52

CORK O 0 l O 17 A 1 2 accuracy

GRAS 0 O 0 2 11 12 O 0

W000 O O l 0 0 O 23 l

SCRE O O O O O 0 O 25

FA TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 23 1 l O 0 0 0 O

ROCK 0 25 O O 0 0 O O

SAND O O 23 0 O 2 0 0

PAPE O O O 25 O 0 0 O 98%

CORK O O O 0 25 0 0 0 accuracy

GRAS 0 O 0 0 0 25 0 0

W000 O O O O 0 0 25 O

SCRE O 0 O O O O O 25
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Table l (cont'd)

F5 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 21 1 l O O 2 O O

ROCK 5 20 0 0 0 0 O 0

SAND 1 0 22 0 O 2 O 0

PAPE O 0 O 25 0 O O O 92%

CORK O O O 0 2A 1 O 0 accuracy

GRAS O O 1 0 0 2A 0 O

WOOD O O O 1 O l 23 O

SCRE O 0 0 0 O O 0 25

F6 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 22 l 1 0 0 l O O

ROCK 3 22 0 0 0 0 0 O

SAND O 0 2A 0 O 1 0 O

PAPE O O 0 25 O O 0 O 96.5%

CORK O 0 O 0 25 0 O 0 accuracy

GRAS O 0 O 0 O 25 O 0

W000 0 O O 0 0 O 25 O

SCRE 0 O O 0 0 0 0 25

F7 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 23 1 1 0 0 0 0 O

ROCK 1 2A 0 0 0 O O O

SAND 0 O 25 O 0 0 O 0

PAPE O 0 0 25 0 0 0 0 98.5%

CORK O 0 0 0 25 O O 0 accuracy

GRAS O O O 0 O 25 O 0

W000 O O O 0 O O 25 O

SCRE 0 O O O O O 0 25

F8 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 22 0 l O O 2 O 0

ROCK 0 25 O O 0 0 0 O

SAND O 0 l9 0 2 A 0 O

PAPE O O O 25 O O O O 912

CORK 0 O 2 2 21 0 0 0 accuracy

GRAS 0 O 5 O O 20 O 0

W000 0 O O 0 O 0 25 0

SCRE O O 0 0 O O 0 25

correct classification in this experiment.

Some insight into the structure of the patterns in the feature

space can be obtained by plotting the average, over the 25 subimages,

of the feature value in each channel. Figure 9 shows the plot for
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feature l for the eight natural image classes. The plot of the mean

feature values in each channel has unique properties for each image

class. For example, ROCK is the only class with high feature values in

low frequency channels due to the presence of large objects in the ROCK

image. SCRE has a unique pattern in orientation channels; the

horizontal channel (number l) has a high value and the other

orientation channels have low values. This reflects the horizontal

directional tendency and the regularity of SCRE. In addition, SCRE has

low feature values in spatial frequency channels except for the channel

centered at 32 cycles per image which captures the periodicity 'of the

bars in the screen. For other texture classes. the description of the

mean feature value plot might not be as easy or convenient. These

examples show how the values of the channel filtering features can be

interpreted as visible image properties.

In the remaining experiments. the results of only the PSE feature

and feature I will be reported. The channel filtering features (except

feature 3) were found in preliminary experiments to have similar

performance. Feature 1 is selected for reporting because its behavior

was typical of the channel filtering features, because it is a simple

feature to compute. and because the feature has its own intuitive

interpretation.

5.2.2 Experiment 2: Natural Images, 32x32 subimages

The second experiment involves 32x32 samples of the same eight

256x256 images. The same procedures as in the first experiment were

used except that six spatial frequency channels (rather than seven)
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Table 2: Classification of Eight Natural Image Classes

Using 32x32 Subimages.

PSE TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE l9 0 5 l O O O O

ROCK A II I O O l 6 2

SAND 2 0 l9 3 O O l O

PAPE l O O 23 O O O O 68%

CORK O O 0 0 2l 2 O 2 accuracy

GRAS O O O O h 12 8 l

WOOD 0 O A O I ll 9 O

SCRE O O O O 0 h 0 2]

Fl TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 20 l 2 O O 2 O D

ROCK 0 22 0 O O O 3 0

SAND l O 22 0 O 2 O O

PAPE O O O 25 O O O 0 9l%

CORK 0 O 0 O 25 O O 0 accuracy

GRAS O 0 6 O 0 l9 0 O

WOOD 0 l 0 O O 0 2A 0

SCRE 0 O 0 O O O O 25

were computed. The decreased size of the subimages means that no

information beyond the Nyquist frequency of IS cycles per image width

is available, so the highest-frequency channel from the previous

experiment (center frequency 6h cycles per image width) is not usable.

The classification results for the PSE feature and feature I are

given in Table 2. The PSE feature provides 692 correct classification.

which is almost the same as for the 6Ax6A subimages, but the errors

occur between different classes. In spite of the reduction in the size

of the subimages from those used in the previous experiment, the

results show that there is only slight degradation in the performance

of the channel filtering features; feature I provides 9l$ correct

classification. About half of the errors occur between the GRAS and

SAND classes. These results imply that the 32x32 subimages contain

enough textural information to enable good classification results on

the eight natural image classes. This result increases our confidence
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in the adequacy of the 6Ax6A subimage size for characterizing the

textural properties of the natural images.

5.2.3 Experiment 3: Natural Images, l6xl6 subimages

In this experiment, 50 samples of size l6xl6 are extracted from

four of the natural images (TILE, ROCK, SAND, PAPE). For subimages of

this size, only five spatial frequency channels are useful. Because of

this limitation and the small size of the subimages, the number of

samples per class was doubled for this experiment.

The classification results for the PSE feature and feature I are

given in Table 3. In this experiment, the PSE feature achieved 83%

correct classification with errors distributed mostly among TILE, ROCK,

and SAND. The improved performance of the PSE feature using these

small subimages may be due to the larger variance in the average gray

levels of small subimages. The increased variance can result in the

(accidental) formation of clusters from the same image class which

enhance the classification accuracy using the nearest-neighbor

classifier. The sensitivity of the PSE feature to changes in the

average gray level of an image will be demonstrated in Experiment 6.

Channel filtering feature I yields 68% correct classification with more

than half of the errors occurring between TILE and SAND. In fact, the

TILE and SAND classes are practically indistinguishable. The results

indicate that l6xl6 subimages do not capture enough of these texture

patterns to enable accurate nearest-neighbor classification using the

channel filtering features.
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Table 3: Classification of Four Natural Image Classes

Using l6xl6 Subimages.

PSE TILE ROCK SAND PAPE

TILE 39 2 9 0

ROCK 7 Al 2 o 832

SAND 3 l Al 5 accuracy

PAPE l O A A5

Fl TILE ROCK SAND PAPE

TILE 20 7 22 l

ROCK 8 38 h 0 682

SAND l6 l 32 1 accuracy

PAPE l 0 3 56

5.2.h Summary

This sequence of experiments has served as a test of the channel

filtering features on a variety of natural textures which were not

preprocessed. Images of different sizes were extracted from large

images which are visually interpreted as having different textures.

The results show that a nearest-neighbor classifier using channel

filtering features is able to identify the image classes with 90% or

greater accuracy when the subimages are as small as 32x32. An attempt

to extend this to l6xl6 subimages failed when classes TILE and SAND

proved indistinguishable to channel filtering features and error rates

between other pairs of classes were also higher.

5.3 The Effect of Histogram Equalization

One common preprocessing technique applied in existing texture

analysis studies is histogram equalization [Haralick et al, l973]. The

technique is used in texture studies to standardize the average gray
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level and contrast of the images, though the method has also been used

for contrast enhancement. For some images, histogram equalization can

dramatically change the image's appearance while for other' images,

histogram equalization has little or no effect. The procedure takes an

image with G gray levels and an arbitrary gray level frequency

histogram and produces an image with G' gray levels (G'<G) and a

flattened gray level histogram [Rosenfeld and Kak, l98l].

This series of experiments will determine the effect of histogram

equalization on the texture of an image as measured by the channel

filtering features. The image classes for this experiment will consist

of the eight natural image classes from the previous experiments and

equalized versions of those images which will be coded TILQ, ROCQ,

SANQ, PAPQ, CORQ, GRAQ, WOOQ, and SCRQ (Figure IO). The equalized

images are of size 256x256 with l28 gray levels (instead of 256 gray

levels in the original images). The histogram equalization procedure

is applied to the entire 256x256 image, not on each sample subimage.

This serves to limit the effect of histogram equalization on the

subimages since without this constraint the procedure could produce

widely varying effects on different subimages of the same image class.

Of special importance is the fact that the 256x256 ROCQ image is

almost identical to the 256x256 ROCK image. In experiments in which

both image classes are used, we will require ROCK and ROCQ to be

evaluated as the same texture class, and we will ignore

misclassifications between them in computing error rates, leaving a

seven-class discrimination problem.

The experiments to be reported evaluate the performance of the

feature space on classification problems involving the equalized images



Figure 10:

(a) TILQ

(e) CORQ

(b) ROCQ

(f) GRAQ

(c) SANQ

(g) WOOQ

Histogram-Equalized Natural Images

(d) PAPQ

(h) SCRQ
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Figure 10: (cont'd)
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alone and combined with the original image classes for subimage sizes

6Ax6A and 32x32.

5.3.l Experiment A: Histogram Equalized Images, 6Ax6A subimages

From the eight histogram-equalized images, 25 samples of size

6Ax6A are extracted, each of the 200 samples is filtered and features

are computed from the filtered images. Using the nearest-neighbor

classifier and estimating the error rate using the leave-one-out rule,

the results shown in Table A are obtained. The PSE feature gives 63%

correct classification. Feature l achieves 962 correct classification

with all but one of the errors occurring between GRAQ and SANQ. This

result indicates that 6Ax6A subimages are adequate to provide good

discrimination of the histogram-equalized textures.
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Table A: Classification of Eight Histogram Equalized

Natural Image Classes Using 6Ax6A Subimages.

PSE TILQ ROCQ SANQ PAPQ CORQ GRAQ wooo SCRQ

TILQ 12 l 9 0 O 3 0 0

ROCQ 3 16 1 o o 1 A o

SANQ 2 O 12 0 l 9 l O

PAPQ o o 1 23 1 o o o 63%

CORQ D O 3 l l6 5 O 0 accuracy

GRAQ l 0 l0 0 6 7 l O

wooq o A 1 o o A 16 o

SCRQ l 0 O 0 O O 0 2A

Fl TILQ ROCQ SANQ PAPQ CORQ GRAQ wooq SCRQ

TILQ 25 0 0 0 O O 0 0

ROCQ 0 2A 0 o o o 1 o

SANQ 0 0 2i 0 O A 0 O

PAPQ 0 0 0 25 O 0 O O 96*

CORQ 0 0 0 0 25 0 O 0 accuracy

GRAQ O 0 3 0 O 22 0 0

wooq o o o o o o 25 o

SCRQ 0 0 0 0 0 0 0 25

Another important question is whether the equalized images are

perceived by the channel filtering features to be different from the
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Table 5: Classification of TILE, ROCK, SAND, PAPE and

TILQ, ROCQ, SANQ, PAPQ Using 6Ax6A Subimages.

(percent accuracy reflects merging of ROCK and ROCQ)

PSE TILE ROCK SAND PAPE TILQ ROCQ SANQ PAPQ

TILE l9 2 3 l O O O O

ROCK 3 8 l O 0 l3 0 O

SAND 5 0 I7 3 O O O O

PAPE 0 O 2 22 l O O O 75.5%

TILQ 2 0 O 1 IA 0 8 0 accuracy

ROCQ 3 l0 l O 2 9 O O

SANQ O O O A 5 0 I5 I

PAPQ 0 O O D O D 1 2A

Fl TILE ROCK SAND PAPE TILQ ROCQ SANQ PAPQ

TILE 22 l l O O l 0 O

ROCK O 2 O O O 23 O O

SAND O O 25 O O O 0 O

PAPE O 0 O 25 O O O O 98.52

TILQ O O 0 O 25 0 O 0 accuracy

ROCQ 0 2l 0 O O A O O

SANQ O O O 0 O O 25 O

PAPQ O O O O O O O 25

original images. Table 5 shows the results obtained by taking 6Ax6A

subimages of TILE, ROCK, SAND, PAPE and their equalized versions.

Ignoring misclassifications between classes ROCK and ROCQ as explained

earlier, we find that the PSE feature yields 75.5% correct

classification, and feature 1 yields 98.5% correct classification.

Table 6 shows the results obtained by taking 6Ax6A subimages of CORK,

GRAS, WOOD. and SCRE and their equalized counterparts. The PSE feature

gives 68.5% classification accuracy while the channel filtering feature

I yields loot correct classifications. This result shows that except

for the ROCK-ROCQ, histogram equalized images are perceived by the

channel filtering features as having different textures from the

original classes.
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Table 6: Classification of CORK, GRAS, HOOD, SCRE and

CORQ, GRAQ, WOOQ, SCRQ Using 6Ax6A Subimages.

PSE CORK GRAS WOOD SCRE CORQ GRAQ WOOQ SCRQ

CORK l3 9 0 O 3 O O O

GRAS 8 l2 3 O O 2 O O

WOOD O A l9 0 O I l O

SCRE O 2 0 23 0 0 O O 68.52

CORQ 2 O O 0 l7 6 O 0 accuracy

GRAQ A 2 o o 7 11 1 o

HOOQ O 2 6 0 O 2 l5 0

SCRQ o o o o o o o 25

Fl CORK GRAS WOOD SCRE CORQ GRAQ NOOQ SCRQ

CORK 25 O O O O O O O

GRAS 0 25 O O O O O O

HOOD O O 25 O O O O 0

SCRE O O 0 25 O O O O lOOX

CORQ O O 0 O 25 O O 0 accuracy

GRAQ O O O O O 25 O O

HOOQ 0 O 0 O O 0 25 O

SCRQ O O O O O O O 25

5.3.2 Experiment 5: Histogram Equalized Images, 32x32 subimages

The experiments of the previous section were repeated using 32x32

subimages. In the experiment using all eight histogram equalized image

classes (Table 7), the PSE feature yields 6A2 correct classification.

Feature l yields 80% correct classification, but 2A of the A0

misclassifications occur between SANQ and GRAQ, indicating that those

classes are indistinguishable to this feature. Using 32x32 subimages

from the original textures, only 6 misclassifications occurred between

SAND and GRAS. This result indicates that the histogram equalization

procedure confuses the differences which exist between the SAND and

GRAS images, so that the histogram equalized versions cannot be

discriminated by the channel filtering procedure using 32x32 subimages.
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Table 7: Classification of Eight Histogram-Equalized

Image Classes Using 32x32 Subimages.

PSE TILQ ROCQ SANQ PAPQ CORQ GRAQ NOOQ SCRQ

TILQ IA 0 O O 5 O O

ROCQ 2 l3 l O O 2 5 2

SANQ A 0 IA l l 5 O 0

PAPQ O O l 23 l O O 0 6A%

CORQ 0 O 2 A 17 2 O 0 accuracy

GRAQ 2 3 8 l l 9 l O

WODQ 0 A l O 0 A l6 0

SCRQ I l O 0 O l O 22

Fl TILQ ROCQ SANQ PAPQ CORQ GRAQ HOOQ SCRQ

TILQ 2l 0 l O O 3 O 0

ROCQ O 20 O O O O 5 O

SANQ l 0 l2 0 0 l2 0 O

PAPQ O O O 25 O O O 0 802

CORQ O O O O 25 0 O 0 accuracy

GRAQ 2 0 l2 0 0 ll 0 O

WOOQ 0 A O 0 O 0 2l 0

SCRQ O 0 O O O O O 25

The classification results between the original and equalized

versions of the image classes yielded results similar to those obtained
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Table 8: Classification of TILE, ROCK, SAND, PAPE and

TILQ, ROCQ, SANQ, PAPQ Using 32x32 Subimages.

(percent accuracy reflects merging of ROCK and ROCQ)

PSE TILE ROCK SAND PAPE TILQ ROCQ SANQ PAPQ

TILE l9 0 5 l O O O O

ROCK 2 6 O O I l6 0 O

SAND 2 O 20 3 0 O O O

PAPE I O l 23 O O O O 80.5%

TILQ O O O O 15 0 lO 0 accuracy

ROCQ 2 l2 l O 2 8 O O

SANQ 0 O l O A 0 l9 1

PAPQ O 0 O O O O 2 23

Fl TILE ROCK SAND PAPE TILQ ROCQ SANQ PAPQ

TILE 2l 0 3 O l O 0 O

ROCK O 3 O O O 22 0 O

SAND 2 O 23 O O O O O

PAPE O O O 25 0 O 0 O 952

TILQ I O 0 O 22 O 2 0 accuracy

ROCQ 0 2l 0 O O A O 0

SANQ O O O O l 0 2A 0

PAPQ O O 0 O O O O 25

in the 6Ax6A experiment reported earlier. In the experiment using

TILE, ROCK, SAND, PAPE and their equalized versions, and ignoring

misclassifications between ROCK and ROCQ (Table 8) the PSE feature

yields 80.52 correct classification and feature 1 yields 95% correct

classification. Table 9 gives the results of the experiment using

32x32 samples from CORK, GRAS, WOOD, SCRE and their equalized

counterparts. The PSE feature yields 69% correct classification

results. Feature l yields 97% correct classification results with all

misclassifications occurring between WOOD and NOOQ. Using 6Ax6A

subimages, no misclassifications occurred between HOOD and WOOQ,

suggesting that the channel filtering features have some difficulty

discriminating these classes.
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Table 9: Classification of CORK, GRAS, WOOD, SCRE and

CORQ, GRAQ, NOOQ, SCRQ Using 32x32 Subimages.

PSE CORK GRAS WOOD SCRE CORQ GRAQ NOOQ SCRQ

CORK 20 2 O 2 O l O O

GRAS A ll 0 l O l O O

WOOD l l0 ll 0 0 l 2 O

SCRE O A 0 2i 0 O 0 O 69%

CORQ 3 2 l 0 I0 I O 0 accuracy

GRAQ 3 7 2 l 1 lo I O

HOOQ O 0 5 O O A l6 0

SCRQ O O O l 0 l O 23

Fl CORK GRAS HOOD SCRE CORQ GRAQ WOOQ SCRQ

CORK 25 0 O O O O O O

GRAS O 25 O 0 O O O O

WOOD O 0 22 0 O O 3 O

SCRE O O 0 25 O O 0 O 97%

CORQ O O O O 25 0 D 0 accuracy

GRAQ O D O O O 25 O 0

WOOQ O 0 3 O O O 22 O

SCRQ O O O O O O O 25

5.3.3 Summary

This section has presented experiments which evaluate the ability

of the channel filtering features to discriminate histogram-equalized

images from each other and from the corresponding unequalized images.

The results show that histogram-equalized images are perceived by the

channel filtering features to have different textures from the original

images. In addition, histogram equalization was found to confuse some

discriminable (unequalized) image classes. These observations imply

that histogram equalization should be used with caution as a

preprocessing procedure when channel filtering features are used for

texture analysis.

The performance of the PSE feature continues to be poor relative

to the channel filtering features.
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5.A Experiment 6: Uniform Gray Level Changes

The conclusion of the previous section suggests that histogram

equalization should not be used to preprocess images for the channel

fiiltering features. Without preprocessing, however, irrelevant gray

level variations can interfere with texture analysis unless the

features are insensitive to such variations. Since the channel

filtering features are defined relative to the average gray level of

the image, we might expect them to be insensitive to changes in the

average gray level. This experiment will test this hypothesis.

The data to be used for the following experiment consists of four

artificial image classes in which the gray level at each pixel is an

independent random variable from a Gaussian distribution. The means

and variances are selected to enable the effects of changes in the mean

and changes in the variance to be determined. The image classes are

illustrated and the generation parameters are given in Figure II. The

parameter values used insure that three standard deviations about the

mean gray level are within the allowed gray level range of O to 255.

Gray levels generated outside that range were rejected.

Twenty-five subimages of size 6Ax6A for each class were used in

this experiment. The results for the PSE feature and channel filtering

feature l are given in Table ID. The PSE feature discriminates all

four classes perfectly, indicating that the PSE feature is sensitive to

both the variance and the average gray level of the images. This

implies that the PSE feature is not a good texture measurement since

average gray level changes should not affect the image texture unless



 

 

 
    

 
Figure 11: Gaussian White Noise Images

(3) GWNl: mean 160, sd 30 (b) GWNZ: mean 160, sd 10

(c) GWN3: mean 96, sd 30 (d) GWNA: mean 96, sd 10
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Table l0: Classification Results Showing the Effect of

Average Gray Level Changes.

PSE GWNl GNNZ GNN3 GWNA

GWNI 25 0 O O

GNNZ O 25 O O

GWN3 O O 25 O

GHNA O O O 25

Fl GWNl GWNZ GWN3 GWNA

GWNI l7 0 8 0

GWNZ O 9 0 l6

GWN3 lO 0 l5 0

GWNA 0 lO 0 IS

the change is so severe that the gray level distribution is modified by

limitations of the image acquisition system. In the evaluations by the

channel filtering features, the classes which have different means but

identical variances are confused. Feature l misclassifies an: of the

subimages, and all of the misclassifications are between classes with

different means and identical variances. Classes with different

variances are discriminated with lOOZ accuracy by the channel filtering

features.

This experiment has demonstrated that the channel filtering

features are insensitive to moderate variations in the average gray

levels of the regions being analyzed. The features were found to be

sensitive to differences in the gray level variance as might be

expected since the variance determines the spectral energy, which is

measured by the channel filtering features. Changes in the mean affect

only the zero-frequency component and are eliminated by computing the

features relative to the mean gray level of the filtered images. This

result also verifies that the discrimination performance observed in

earlier experiments using images which were not preprocessed were not

due to average gray level differences between the image classes. The
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PSE feature was found to be sensitive to both the mean and the variance

of the gray level distribution. This enabled the PSE feature to

discriminate all four Gaussian white noise classes when properties of

human texture perception indicate that certain classes should be

confused.

5.5 Experiment 7: Magnification Changes

This experiment will attempt to determine whether and how changes

in the apparent size (magnification) of a textured image can be

identified by the channel filtering method. The objective is to take a

textured image and a magnified version of the same image and determine

from the channel filtering features that the two images are from the

same texture class.

The data for this experiment are taken from the TILE, ROCK, SAND

and PAPE image classes used previously. Twenty-five subimages of size

32x32 from each class will be compared with twenty-five subimages of

size 6Ax6A generated by expanding each pixel from the 32x32 subimages

into a 2x2 pixel block. This means that the 6Ax6A images are 2X

magnifications of the 32x32 subimages. The magnified image classes

will be abbreviated TI2X, ROZX, SA2X, and PAZX.N

The difference between images which is of interest in this

experiment is not simply a change in image size. For example, a 6Ax6A

image and another 6Ax6A image which portrays a magnified 32x32 area

provide different coverage of the texture pattern, so the variance of

the features may differ for the two classes. This difference could

enable the nearest-neighbor classifier to discriminate the classes even
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Table II: Size Change Experiment Using 6 Spatial Frequency Channels.

PSE TILE ROCK SAND PAPE TIZX ROZX SAZX PAZX

TILE l8 0 A 3 0 O O O

ROCK 3 22 O O O O 0 O

SAND 2 O 20 3 O O O O

PAPE l 0 2 22 O O O O

T|2X O O O 0 18 O A 3

ROZX O l O O 3 2] 0 O

SAZX O O O O 2 O 20 3

PAZX O O O O 1 O 3 2i

Fl TILE ROCK SAND PAPE TIZX ROZX SAZX PAZX

TILE l6 0 8 O 1 O O O

ROCK 0 11 O O 0 IA 0 O

SAND 5 O 20 O O O O O

PAPE O O O 25 O O 0 O

TIZX l O O O 17 O 7 O

ROZX 0 1A 0 O 0 l1 0 O

SAZX O 0 0 O 5 0 20 O

PAZX O O O O O 0 0 25

though they portray the same texture. Thus, we will require the

classes to provide equivalent coverage of the texture pattern. This

restriction makes the fundamental frequency of an object in the

textured image appear in the same channel at both magnification levels.

In the spatial frequency domain, the effect of this magnification is to

add a high frequency channel which contains noise caused by the 2x2

pattern of the magnified pixels.

Another critical factor is the number of spatial frequency

channels to use in the classifier. Orientation channels cannot be

used: since they contain information from all spatial frequencies, they

can provide discriminating information between image classes which

portray the same texture. Clearly, the number of channnels to use for

this problem must be less than or equal to the number of channels

available from the smaller subimage size, in this case six. Table II

shows that using six spatial frequency channels, all of the image
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classes are discriminable. This discrimination is based on the spatial

frequency information available in the sixth channel. Channel 6 has a

center frequency of 32 cycles per image, which is beyond the Nyquist

frequency for 32x32 images. Thus, only a fraction of the spatial

frequency information for channel 6 is present in the image. For 6Ax6A

images, the center frequency of channel 6 is the Nyquist frequency, so

more spatial frequency information is available in the channel.

The results after eliminating channel 6 from consideration,

leaving five spatial frequency channels for the classifier, are shown

in Table l2. The PSE feature provides overall classification accuracy

of SIX. Using channel filtering features, the image classes which

portray the same texture are completely confused in spite of the

difference in magnification. Merging theimage classes which portray

the same textures yields a four class discrimination problem with 50

samples per class. In this four-class problem, feature I achieves
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Table l2: Size Change Experiment Using 5 Spatial Frequencerhannels.

(percent accuracy reflects merging of classes

which portray the same texture)

PSE TILE ROCK SAND PAPE TIZX ROZX SAZX PAZX

TILE l8 0 6 l O O O O

ROCK 3 22 O 0 O O O O

SAND 2 0 20 3 O O 0 O

PAPE l 0 3 2l 0 0 O O 81%

TIZX 0 0 O 0 l8 0 6 1 accuracy

ROZX O l O O 3 2] O 0

SAZX O O O O 2 0 20 3

PAZX O 0 0 O l O 3 21

Fl TILE ROCK SAND PAPE Tl2X ROZX SA2X PAZX

TILE 2 O 2 0 20 O l O

ROCK O O O O O 25 O O

SAND 2 O 2 0 O 0 21 O

PAPE O O 0 10 O O O 15 95.5%

TI2X 22 0 O 0 2 O l 0 accuracy

ROZX O 25 0 O O O O O

SAZX 2 O 20 O l 0 2 0

PAZX O O 0 l6 0 O O 9

95.52 classification accuracy.

This experiment has demonstrated the ability of the channel

filtering features to identify textures through magnification changes.

Certain restrictions were imposed for processing images to test whether

the images might portray the same texture at different magnifications.

These restrictions were justified by the interpretations of the spatial

frequency filters. Further research may provide insights which will

relax these restrictions and enable simpler, more natural procedures

for identifying texture through magnification changes.

5.6 Experiment 8: Orientation Changes

This experiment will test whether the channel filtering method can

determine when two images portray the same texture at different

orientations. The method to be used involves determining the minimum
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distance between patterns using any cyclical shift of the feature

values from orientation channels. This minimum distance gives the best

fit of one texture to another through the orientations tested.

The data for this experiment consists of four 256x256 images

containing regular bar patterns at horizontal (ZOOO), vertical (2090)

and diagonal (ZOAS and Zl35) orientations (Figure I2). The bars are

about 6 pixels wide. The results of nearest-neighbor classification on

25 samples per class using only the four orientation channels and

without any shifting are shown in Table I3. The classes are perfectly

discriminated by both the PSE feature and feature Fl. Using the

minimum distance between patterns produced by a circular shift of the

orientation features, the results in Table IA are obtained. This table

shows that the circular shift enables both features to confuse the

diagonal bar patterns and to confuse the horizontal/vertical bar

patterns. The features are still able to separate the diagonal bar

patterns from the horizontal/vertical bar patterns. The results

indicate that the diagonal bar patterns are somehow different from the

horizontal and vertical patterns. This may be attributed to the

slightly different bar width caused by the rectangular quantization
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Figure 12: Bar Images for Orientation Experiment

(a) O-degree bar pattern (b) AS-degree bar pattern

(c) 90-degree bar pattern (d) l35-degree bar pattern
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Table I3: Orientation Experiment Using No Channel Shifting.

PSE zooo zons 2090 2135

2000 25 0 0 0

ZOA5 0 25 0 0

2090 0 0 25 0

Zl35 0 0 0 25

FI Z000 20A5 2090 Zl35

2000 25 O 0 0

20A5 0 25 0 0

2090 0 0 25 0

Zl35 0 0 0 25

grid and to the different bar lengths in the diagonal orientations due

to the square image shape.

In this experiment, the PSE feature provides the same results as

the channel filtering features. This is because the power spectral

energy of all the subimages is concentrated in a single orientation

channel which is different for each class. Since the differences

between these image classes is apparent in the power spectrum, the PSE

feature is able to duplicate the performance of the channel filtering

features.

This experiment shows that a circular treatment of orientation

channels can easily detect orientation differences of 90 degrees, but

that due to the square shape of the images and the quantization grid,
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Table IA: Orientation Experiment Using Circular Channel Shifting.

PSE ZOOO ZOA5 2090 2135

2000 O O 18 7

ZOA5 0 O O 25

2090 O 0 l8 7

Z135 O O O 25

F1 2000 ZOA5 2090 2135

2000 O 0 l8 7

ZOA5 O O O 25

2090 O 0 l8 7

2135 O O O 25

A5 degree orientation differences are more difficult to detect. The

perceived difference between diagonal and horizontal/vertical channels

might be overcome by computing features only within a circular

subimage.

5.7 Experiment 9: Phase Spectrum Changes

In this experiment, the phase spectra of the Gaussian white noise

subimages (Section 5.A) will be modified to determine the effect of

such changes on the textural evaluations by the PSE feature and the

channel filtering features. Only the phase spectra will be modified:

the modified images will have the same power spectra as the Gaussian

white noise images.

Determining the nature of the modifications which could be made

was a difficult task. Since each entry in the phase spectrum affects

the entire image, even slight perturbations can have drastic effects

[Oppenheim and Lim, l98l]. The most troublesome constraint in

generating the images for this experiment was that the phase-modified

images had to remain in the gray scale 0 to 255. Otherwise, the

phase-modified images would have to be scaled, and scaling changes the
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power spectrum of the image.

The method which was finally found satisfactory was to change the

phase angles of entries near the zero-frequency component in the

Fourier transform as illustrated in Figure l3. Due to the small number

of entries changed and the low energy associated with those entries,

the effect on the space domain image is minimal. The entries which are

changed affect spatial frequency channels centered at l, 2, A, and 8

cycles per image. The orientation channels are also slightly affected.

Figure lA shows the result of the changes in GWNI (mean I60,

standard deviation 30) which yield a new phase-modified image labelled

PHMI. The figure also shows the original and modified filtered images

for two spatial frequency channels. The effect of the phase

modification is to increase the regularity of the filtered images,

resulting in lightened or darkened patches at the center of each side

and a barely visible diamond shape in the PHMI image. Since only the

lowest spatial frequency channels are affected by the modifications,

the changes apparent in the PHMI image are large in size. Due to the

low energy in the affected spectral region, however, the contrast of

the changes is small.
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Figure 13: Phase Spectrum Modification Procedure.

Phase spectrum entries around the zero-frequency component

(marked with an X) were replaced with the values shown above.
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 (E)

Figure 14: Effect of Phase Modifications on GWNl.

(a) GWNl. (b) PHMl. (c) Filtered image of GWNl using the spatial

frequency channel centered at A cyles per image (c/i).

(d) Filtered image of PHMl using 4 c/i filter.

(e) Filtered image of GWNl using 8 c/i filter.

(f) Filtered image of PHMl using 16 c/i filter.
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Table l5: Classification Results on Four Phase-Modified

Gaussian White Noise Classes.

PSE PHHI PHMZ PHM3 PHMA

PHMI 25 0 0 0

PHMZ 0 25 0 0

PHM3 0 0 25 0

PHMA 0 0 0 25

Fl PHMI PHMZ PHM3 PHMA

PHMI I8 0 7 0

PHMZ 0 9 0 l6

PHM3 9 0 l6 0

PHMA 0 IA 0 II

In the classification experiment, the phase modification was

performed separately on each of the 25 samples of the Gaussian white

noise images. The classification results are given in Table IS. The

PSE feature obtains perfect discrimination of the four classes.

Channel filtering feature I does not discriminate image classes which

came from Gaussian white noise images with identical means. This is an

additional demonstration of the invariance of the channel filtering

representation of texture to changes in average gray level. This

result will be used to allow us to merge pairs of the phase modified

classes in the next experiment.

The effect of the phase modification on the texture features will

be demonstrated by using Vthe Gaussian white noise classes and the

phase-modified Gaussian white noise classes together in a

classification experiment. The results of this experiment are shown in

Table I6. The PSE feature confuses each Gaussian white noise class

with its phase-modified version. This can be attributed to the fact

that the PSE feature does not use phase, thus the differences which

exist between the image classes are ignored. The results from channel

filtering feature I are more clearly illustrated in Table I7, where the
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Table I6: Classification Results Illustrating the Effect of

Phase Specturum Changes on Gaussian White Noise Images.

PSE GWNI GWNZ GWN3 GWNA PHMl PHHZ PHM3 PHMA

GWNI O O O O 25 O O O

GWNZ O 3 O O O 22 O O

GWN3 O O O O O O 25 O

GWNA O O O O O O O 25

PHMl 25 0 O O O O O O

PHMZ O 22 O O O 3 O O

PHM3 O O 25 O O 0 O O

PHMA O O O 23 O O O 2

Fl GWNI GWNZ GWN3 GWNA PHMI PHMZ PHM3 PHHA

GWNl 15 O 7 0 3 O 0 O

GWNZ O A O 8 0 ll 0 2

GWN3 9 0 l3 0 O O 3 O

GWNA O 5 O 9 O 3 O 8

PHMI 3 O O 0 l6 0 6 O

PHM2 O 10 0 l 0 A O 10

PHM3 O O 3 0 8 0 1A 0

PHMA O 3 O 5 O 8 O 9

image classes which have been found indiscriminable to feature I in

previous experiments are merged. Taking these identities into account

leaves a four-class discrimination problem with 50 samples per class.

In this four-class problem, feature I separates the classes with

different variances. In addition, the phase-modified class with

standard deviation 30 is separated from the unmodified class with

standard deviation 30.

This experiment has illustrated the effects of a small phase

spectrum change on textural evaluations using the channel filtering
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Table I7: Phase Modification Experiment with

Indiscriminable Classes Merged.

FI GWNl PHMI GWN2 PHMZ

GWN3 PHM3 GWNA PHMA

GWNI,3 AA 6 0 0

PHMl,3 6 AA 0 0

GWN2,A 0 0 26 2A

PHM2,A 0 0 l9 31

method. The PSE feature is completely insensitive to phase changes, by

definition. This was borne out in the results of this experiment.

However, the phase modified images were discriminated from the original

image classes by the channel filtering feature for the classes with

standard deviation 30. Due to the lower energy in the images with

standard deviation ID, the effect of the phase change in the image is

decreased. The smaller effect is not detectable using feature Fl.

5.8 Second-Order Statistics and Channel Filtering

In this section, the results of experiments designed to compare

the performance of the co-occurrence and channel filtering methods will

be presented. Four image classes will be generated using a procedure

based on the four-disk method of [Caelli and Julesz, l9783, I9786].

Pairs of 9x9 micropatterns are generated by a geometrical method such

that two images constructed of randomly rotated copies of the

micropatterns will have identical second-order gray level

distributions. In this experiment, however, the micropatterns will not

be rotated through random angles: instead, rotations through random

multiples of 90 degrees will be used. This results in images with

slightly different second-order statistics and thus slightly different

power spectra. The micropatterns to be used and the corresponding
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Figure 15: Four-Dot MicrOpatterns and CorreSponding Image Classes.

(The squares in the micropattern diagrams correSpond to black

pixels. The labels correspond to the usage in Table 18.)

(a) MicrOpattern 1A (b) Micropattern 13 (c) Part of image JUlA

(d) Part of image JUlB (e) MicrOpattern 2A (f) MicrOpattern 2B

(g) Part of image JUZA (h) Part of image JUZB
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image classes are illustrated in Figure I5. The image classes are

visually discriminable.

5.8.l Experiment l0: Application of the Co-occurrence Method

The definition of the co-occurrence matrix [Haralick, I979]

involves the selection of a displacement vector. Since there exist

N2 possible displacement vectors for an NxN image, some guidance in

selecting the displacement vector is required. The choice of the

displacement vector is critical. The displacement vectors to be used

in this experiment will be chosen by a (suboptimal) strategy which

takes advantage of known differences between the micropatterns.

The black pixels in the micropatterns in Figure l5 are numbered to

demonstrate the similarities between micropatterns of each pair. The

placement of only, one dot (labelled O and 0') differs in the

micropatterns of each pair. This implies that there exists a

black-black co-occurrence which involves a different displacement
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Table I8: Black-Black Displacement Vectors in Four-Dot Micropatterns.

(arrows indicate vectors which discriminate the micropatterns)

Micropattern IA Micropattern 18

Points Displacement Points Displacement

o-I (-2, A) 0'-I (-2, 0)

0-2 ( 2. 0) o'-2 ( 2,-A)

0-3 ( 1, 2) <********> o'-2 ( I,-2)

l-2 ' ( A,-A) I-2 ( A,-A)

1-3 (39-2) 1.3 ( 39-2)

2-3 (-1,-2) 2-3 (-I.-2)

Micropattern 2A Micropattern 28

Po'nts Displacement Points Displacement

0"] ('19 3) 0"] ("0-1)

0-2 ( I, I) 0'-2 ( I,-3)

0-3 ( 2, 2) <********> o'-3 ( 2,-2)

1‘2 ( 2,-2) 1'2 ( 2.'2)

1-3 ( 3,-1) l-3 ( 3,-1)

2'3 I I. 1) 2'3 ( I. 1)

vector in the two micropatterns. This displacement vector will be used

to discriminate the image classes. (Note: due to symmetry in the

co-occurrence matrix definition, vectors (dx,dy) and (-dx,-dy) are

considered to be identical.) Table I8 shows the displacement vectors

between all pairs of black pixels in each micropattern. This

information can be used to select an appropriate displacement vector to

distinguish the micropatterns. For example, the (I,I) displacement

vector can be used to discriminate the micropattern pairs.

Micropatterns 2A and 28 contain black-black co-occurrences at

displacement (I,I) but micropatterns IA and IB do not. Similarly, the

(l,2) vector can discriminate the micropatterns of the first pair, and

the (2,2) vector can discriminate the micropatterns of the second pair.

These three displacement vectors, selected specifically to capture the

differences between micropatterns, will be used to compute

co-occurrence matrices for the textures.
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For these displacement vectors, there are no interactions between

different copies of the micropatterns for black-black co-occurrences.

Thus, we can compute the expected number of black-black co-occurrences

in the image from rotations of individual micropatterns as shown in

Table I9. The number of micropatterns occurring in the 256x256 image

is known (78A), so we can estimate the number of micropatterns

occurring at each of the four allowed orientations (I96). By counting

the number of black-black co-occurrences in each micropattern at each

orientation, we can then compute for each displacement vector the
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Table I9: Computation of Expected Number of Black-Black

Co-occurrences in 256x256 Four-dot Images.

Number of black-black Expected no. black-black

co-occurrences at each orientation co-occurrences in image

DISPLACEMENT

(l,l)-(-l,-l) Rotation angle

0 90 I80 270 total

Micropattern ----------------

IA 0 0 0 0 0 02196 . 0

IB 0 0 0 0 0 0*]95 a 0

2A 2 0 2 0 A ha196 . 73g

28 2 0 2 0 A A*]96 . 78A

DISPLACEMENT

(1.2)‘('1.-2) Rotation angle

0 90 180 270 total

Micropattern ----------------

IA 1 0 l 0 2 2*]95 . 392

I8 0 0 0 0 o 0*196 . 0

2A 0 0 0 0 0 0*]95 . 0

28 0 0 0 0 0 0*]96 . 0

DISPLACEMENT

(2.2)'('2.'2) Rotation angle

0 90 180 270 total

MicrOpattern ----------------

IA 0 0 0 0 0 02196 . 0

IB 0 0 0 0 O 0*196 . 0

2A I l I I A AAIQB 3 735

28 0 2 0 2 A A*]96 3 73A

expected number of black-black co-occurrences in the entire image.

The result of this computation shows that the expected number of

black-black co-occurrences at displacement (l,2) is different for the

first pair of images (Figure I5a). Thus, the number of black-black

co-occurrences at displacement (l,2) should be able to discriminate

image classes IA and ID. The other vectors do not provide

discriminating information between IA and IB. In the second image pair

(Figure I5b), the expected numbers of black-black co-occurrences are

equal for all three displacement vectors. Even the (2,2) displacement
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vector, which could discriminate the micropatterns, cannot discriminate

images 2A and 28. The vectors which differ in the second pair of

micropatterns have the same length, but their orientations are 90

degrees apart. Since the micropatterns are rotated by random multiples

of 90 degrees, the difference between the micropatterns is confused in

the images. These results use only black-black co-occurrences to help

select reasonable displacement vectors for use in the co-occurrence

method. The three vectors will now be used to compute co-occurrence

matrices for use in classification problems.

The performance of the co-occurrence matrix method will now be

demonstrated on 25 6Ax6A subimages from each class. Since the images

are binary, the co-occurrence matrices are of size 2x2, and since the

definition of the co-occurrence matrix tobe implemented [Haralick,

I979] imposes symmetry on the matrix, the co-occurrence matrix involves

three different values: the numbers of black-black, black-white, and

white-white co-occurrences in the image. These numbers are used as

features. The nearest-neighbor classification results are given in

Table 20. The (I,I) displacement vector discriminates the two pairs

but does not discriminate between textures in the same pair. The (l,2)

vector can identify texture IA, but the other classes are confused.

The (2,2) vector discriminates between the pairs, but the

discrimination within each pair is poor: the (2,2) vector was

originally intended to discriminate the second image pair. However,

since the black-black co-occurrences are known not to contribute to the

discrimination of these classes, the discrimination which does occur

can be attributed to white-black and white-white co-occurrences. The

results using all three co-occurrence matrices combined are also shown.
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Table 20: Classification of Four-dot Textures

Using Co-occurrence Matrices.

(1,1) JUIA JUIB JU2A JU28

JUIA 2 23 o o

JUIB 2 23 o o

JU2A o o 1 2A

JU28 o o 9 16

(1.2) JUIA JUIB JU2A JUZB

JUIA 25 o o o

JUIB o 1 A 20

JU2A o 2 A 19

JU28 o 2 o 23

(1,3) JUIA JUIB JU2A JU28

JUIA 1 2A 0 o

JUIB 7 18 o o

JU2A o o 18 7

JU28 o o 9 16

ALL JUIA JUI8 JU2A JU28

JUIA 25 0 0 0

JUIB 0 25 0 0

JUZA 0 0 l3 l2

JU28 0 0 7 l8

This result uses nine features: the three values in each of the three

co-occurrence matrices. The images of the first pair are identified,

but the second pair is not well separated.
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Table 2l: Classification of Four-dot Textures

by Channel Filtering.

PSE JUIA JUI8 JU2A JU28

JUIA II IA 0 0

JUI8 I7 8 0 0

JU2A 0 0 I7 8

JU28 0 0 9 l6

Fl JUIA JUI8 JU2A JU28

JUIA 25 0 0 0

JUI8 0 25 0 0

JUZA O O 25 O

JUZB O O O 25

5.8.2 Experiment ll: Application of Channel Filtering

The channel filtering approach was applied to the same samples of

the four four-disk textures. The classification results are shown in

Table 2I. The PSE feature discriminates the different pairs, but

cannot discriminate the textures within each pair. Feature I achieves

I002 correct classification on all four classes. In this experiment,

it is of some interest to determine whether the discrimination of the

texture classes is due to the action of orientation channels, spatial

frequency channels, or both. Since these images are composed of dots,

it might seem that no orientation or size selectivity exists between

the image classes. Table 22 gives the classification results using

only the six spatial frequency channels, and Table 23 gives the results

using only the four orientation channels. The results show that both

orientation and spatial frequency information contribute to the

discrimination of the classes. These contributions can be understood

by considering the interpretation of spatial filtering as a moving

average operation. Each gray level in a filtered image is the result



102

Table 22: Classification of Four-dot Textures Using

Six Spatial Frequency Channels.

PSE JUIA JUIB JU2A JU28

JUIA l2 l3 0 0

JUI8 l3 I2 0 0

JU2A 0 0 2l A

JU28 0 0 7 l8

Fl JUIA JUIB JUZA JU28

JUIA 2A l 0 0

JUI8 0 25 0 0

JU2A 0 0 2A I

JU28 0 0 l 2A

of an averaging operation over an area of the original image defined by

the filter point spread function. The result of this averaging can be

expressed for these particular images as a consequence of the local dot

density. Variations in the dot density in local areas of different

sizes and orientations provides the discriminating information between

the image classes. Since the number of dots in a local area determines

the average gray level of the area (which is a component of the power

spectrum), this interpretation is consistent with the characterization

of the channel filtering features as “average local energy" measures.
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Table 23: Classification of Four-dot Textures Using

Four Orientation Channels.

PSE JUIA JUIB JUZA JU28

JUIA 13 12 O O

JUIB I3 12 O O

JU2A O O 18 7

JU28 O O 9 16

F1 JUIA JUIB JUZA JU28

JUIA 25 O O O

JUIB 3 22 O O

JU2A O O 25 O

JU28 O O O 25

5.8.3 Summary

This series of experiments compared the performance of the

co-occurrence method to the channel fitering method for discriminating

a particular set of textured images. A procedure for selecting

displacement vectors for co-occurrence matrices was applied. The

displacements were chosen to detect known differences in the

micropattern structures. For one image pair, the combined

co-occurrence results were satisfactory: for the other, the

co-occurrence matrices performed poorly. The method for selecting the

displacement vectors was not optimal or exhaustive, but the results

demonstrate that the selection of displacement vectors is critical and

that the performance of a particular displacement vector cannot be

reliably predicted from its performance on micropatterns. In these

experiments, only certain black-black co-occurrences could be

investigated in detail. Some results indicated that the white-white

and black-white co-occurrences might also contribute to class

discriminations. The problem of selecting suitable displacement
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vectors is a major disadvantage to the use of the co-occurrence method.

Channel filtering feature Fl yielded I002 classification results.

Both spatial frequency and orientation channels were found to

contribute to this result. The performance of the PSE feature

indicates that the different image pairs have significantly different

power spectra, but the power spectra of the images within each pair are

not discriminable. These observations imply that the performance of

feature Fl is not due to power spectral differences: it is the use of

phase information which enables discrimination of all of the classes.

5.9 Computational Simplifications

In this section, two computational simplifications of the channel

filtering approach will be tested to determine if such simplifications

cause any significant degradation in classification performance.

5.9.I Experiment I2: Using Fewer Channels

One possible simplification is to use fewer channels. Since

texture is perceived in regions containing small areas of constant gray

level, the low-frequency channels, which respond to gray level

variations over large areas, might be eliminated without degrading

performance. In addition, the highest spatial frequency channel does

not capture any spectral information which is not available in other

channels.

In this experiment, the two lowest spatial frequency channels and

the highest spatial frequency channel will be eliminated. The 6Ax6A

images will be filtered by four orientation channels and four spatial
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frequency channels (center frequencies A, 8, I6, and 32 cycles per

image). The results of using these eight channels on the eight natural

image classes are given in Table 2A. The 65.5% correct performance of

the PSE feature is slightly worse than its performance using all ll

channels. Feature l provides 98% correct classification, the same as

with all of the channels present.

Using only eight spatial frequency channels does not appear to

degrade the performance of the channel filtering features. The minimum

number of channels required for texture discrimination depends on the

particular set of textures.

5.9.2 Experiment l3: Ideal Band-Pass Channels

The filtering operation using Gaussian filters requires that the

filter amplitudes and the image spectrum be multiplied. If the filter
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Table 2A: Classification Results on Natural Images

Using Eight Channels.

PSE TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE l7 2 A I 0 0 l 0

ROCK 3 I5 I 0 2 0 0 A

SAND A 0 l2 2 0 0 7 0

PAPE 0 0 2 22 I 0 0 0 65.52

CORK 0 0 0 0 I6 9 0 0 accuracy

GRAS 0 I l 0 8 l2 2 l

WOOD 2 0 5 I 0 A l3 0

SCRE 0 0 0 0 0 l 0 2A

Fl TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 22 l 2 0 O 0 0 0

ROCK 0 25 0 0 0 0 0 0

SAND I 0 2A 0 0 0 0 0

PAPE 0 0 0 25 0 0 0 0 98%

CORK 0 0 0 0 25 0 0 0 accuracy

GRAS 0 0 0 0 0 25 0 0

W000 0 0 0 0 0 0 25 0

SCRE 0 0 0 0 0 0 0 25

amplitudes were all either zero or one, the multiplications could be

avoided. In this experiment, channels with an ideal band-pass

characteristic will be applied to the natural image classes.

The spatial frequency channels to be used are the same as those

defined for power spectral energy features in [Weszka et al, I976].

The channels pass all spatial frequencies in nonoverlapping bands whose

lower and upper bounds, in cycles per image, are as follows: [2.A],

[A.8], [8,I6] and [I6,32]. The orientation channels to be used pass

all spectral information within A5 degrees of horizontal, vertical, and

both diagonal orientations. The use of ideal band-pass filters causes

additional ripples in the filter responses due to the abrupt filter

cutoffs in the spatial frequency domain. The response is still

symmetrical about the mean gray level, however. In [Marr and Hildreth,

I979] these ripples were found to interfere with edge and form

detection in filtered images. Table 25 shows that the ideal band-pass
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Table 25: Classification Results on Natural Images

Using Ideal Bandpass Channels.

PSE TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 21 1 3 0 0 0 0 O

ROCK A 20 O 0 0 0 0 1

SAND A O 19 0 0 O 2 O

PAPE O 0 2 22 O 1 0 O 77*

CORK 0 0 0 0 I9 6 0 0 accuracy

GRAS O O 2 0 9 1A 0 O

WOOD 1 0 6 O 1 2 15 0

SCRE 0 0 O O O 1 0 2A

F1 TILE ROCK SAND PAPE CORK GRAS WOOD SCRE

TILE 23 1 1 O 0 0 0 0

ROCK 1 2A 0 0 0 0 0 O

SAND 1 0 2A 0 0 O 0 O

PAPE 0 0 0 25 O 0 O 0 983

CORK 0 0 0 0 25 0 0 0 accuracy

GRAS 0 0 0 0 0 25 0 O

WOOD 0 0 O 0 O 0 25 0

SCRE 0 0 0 0 0 O 0 25

filters do not seem to degrade texture analysis performance: feature I

provides 98% correct classification results. The PSE feature achieves

77% correct results, which is better than the 69% performance recorded

using Gaussian channels. The PSE feature gave similar performance in

another study using ideal band-pass filters. [Weszka et al, I976].

5.l0 Summary

This chapter has presented the results of experiments designed to

demonstrate properties of the channel filtering feature space. The

performance of the method on natural and artificial image classes, on

images which differ in average gray level, magnification, orientation,

and phase spectra was examined. Some computational simplifications of

the channel filtering method were also presented and found not to

seriously degrade the performance of the features. Throughout the
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experiments, the power spectral energy in each channel was used as a

feature to demonstrate the effect of using phase information in the

channel filtering features. The channel filtering features provide

superior performance. A comparison of the channel filtering method

with the co-occurrence method on one set of images demonstrated that,

even when the displacement vectors for the co-occurrence matrix are

chosen specifically to capture differences between the micropatterns in

a textured image, the channel filtering method outperforms the

co-occurrence matrix method.



Chapter 6

Evaluation of Channel Filtering Features for Texture Segmentation

6.l Segmentation

The previous chapter evaluated the channel filtering features in

texture classification problems. In more realistic situations, the

images being analyzed contain an unknown number of textured regions

which must be identified, thus segmenting the image. This texture

segmentation problem is different from a general image segmentation

problem in which the objective is to identify objects in a scene.

Segmenting an image into textured regions is more difficult than

classifying textured images in three ways. First, the number of

classes is specified in advance in classification problems whereas in

segmentation problems the number of classes is unknown. This requires

a segmentation algorithm to include some means for determining the

actual (or at least an appropriate) number of classes from the data.

Second, the objects being classified in classification problems are

subimages. In segmentation problems, the objects to be classified are

individual pixels. The number of classifications required in

segmentation is very large. For example, segmenting a 128xl28 image

requires each of the l6,38A pixels to be classified. This large number

of classifications will require some simplifications in the methods to

109
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be used. Third, in classification experiments the subimages being

classified are known to contain a single texture, but in segmentation

experiments, the neighborhoods of some pixels will involve more than

one texture.

The segmentation procedure in this chapter will require a

determination of the texture in a neigborhood about each pixel. A

channel filtering feature will be used for this purpose. A feature

vector will be computed for each pixel in the image. The number of

texture classes present will be determined from the feature vectors,

and all of the pixels in the image will be classified. Figure l6 shows

a block diagram of the segmentation procedure.

6.2 Computing Texture Features for Segmentation

Ideally, a “resolution-preserving textural transform” [Haralick,

I975] would be applied to the image which would replace the gray levels

by texture feature values computed over some neighborhood about each

pixel. Such an ideal is often not practically attainable, but a

reasonable solution exists using the channel filtering approach. By

applying two operations to the filtered images, the gray level at each

pixel of the filtered images can be replaced by a new gray level which

is related to the value of channel filtering feature I. In the first

step, we replace each gray level as follows:

Ik' (x.y)- 2* |E-Ika,y)|

where Ik(.,.) is the kth filtered image and E is the mean gray level

of the filtered images. This step produces an image, Ik'(.,.), in

which the gray levels are related to the absolute deviation from the
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mean gray level. Simply taking the absolute deviation would result in

an image with about half the original number of gray levels. Since

gray levels are integer values, the absolute deviation is scaled to

increase the precision of the averaging step which occurs next. In the

experiments, 872 was added to the pixel values to enhance the

visibility of the Ik'(.,.) image.

The second step involves computing a moving average over the

'Ik'(.,.) images. In the definition of channel filtering feature I,

the absolute deviation from the mean is averaged over the entire

subimage. For segmentation experiments, the averaging is performed

over small neighborhoods about each pixel. Therefore, we wish to

replace each pixel in Ik'(.,.) with the average gray level in a

neighborhood about the pixel. This can be accomplished either by a

convolution in the spatial domain or by a filtering operation in the

spatial frequency domain. The window which defines the neighborhood

must be large enough to capture an adequate texture sample, but not so

large that transitions between different textures are blurred over a

large area. The result of the averaging is a I'feature image" in which

the gray level at each pixel is a measure of the texture present at the

corresponding location of the original image.

The experiments in this chapter will use 8x8 and I6xl6 square

windows in computing the feature images. In these experiments, the

spatial domain averaging method is used.

The feature images defined here correspond to the ”texture energy

planes“ of Laws [I980]. In that study, the filters were defined as

spatial domain templates which were convolved with the original image.

The filtered images had an average gray level of zero, resulting in a



113

slightly different computational procedure for producing the feature

images. The present study differs from Laws [1980] in the use of

spatial frequency domain filters rather than spatial domain templates,

in the decomposition of the image by isolating bands of spatial

frequency and orientation rather than by detection of "edges", "spots",

and "rings", and in the use of results from vision science to guide the

development of the computational methods.

Note that the computation of the feature images does not require

each neighborhood to be filtered separately. This contrasts with some

earlier approaches to texture segmentation in which the entire

computational procedure is repeated for each neighborhood considered

[Haralick, I975: Bajcsy, I973: Bajcsy and Lieberman, 1976].

6.3 Segmentation Using Feature Images

The feature images provide an evaluation of the texture in small

neighborhoods about each pixel in the image. Corresponding to each

pixel is a feature vector in which the number of features equals the

number of channels used. The texture segmentation problem has now been

transformed into the feature space. The next problem is to assess the

structure of the patterns in the feature space. This assessment will

be made by applying a clustering algorithm [Anderberg, I973: Everitt,

197A]. Previous uses of clustering in segmentation problems are

discussed in [Mitchell and Carlton, I978: Schachter et al, I978b:

Rosenfeld, I98l; Coleman, 1979: Davis and Mitiche, I982]

The clustering algorithm to be used, called CLUSTER [Dubes and

Jain, I976], is a partitional clustering procedure which attempts to
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mimimize a squared-error criterion. CLUSTER was selected because the

clusters it produces are not limited to hierarchical relationships and

because this algorithm does not require user-specified parameters.

CLUSTER provides partitionings of the data with the number of clusters

going from 2 to a user-specified bound (8 in this study). Each

partitioning of the data corresponds to a segmentation of the given

image. It will be necessary to evaluate these clusterings to determine

which ones are appropriate representations of the data, and several

statistics are provided by CLUSTER for this purpose.

Clustering algorithms are computationally very demanding. Most of

them are designed to cluster only a few hundred points. To segment a

128x128 image using clustering alone would require the algorithm to

process I6,38A points. To reduce computational requirements, only 6A

pixels spaced I6 rows and I6 columns apart will be clustered. This

simplification assumes that the textured regions to be segmented will

not be irregularly shaped or very small in area. Additionally, only

eight channels, the four orientation channels and spatial frequency

channels 3-6 (center frequencies A, 8, l6, and 32 cycles per image)

will be used. These eight channels were found in section 5.9.I to

provide good classification results. This provides a sample of 6A

points in 8 dimensions for clustering. The cluster centers will be

used to define a minimum-distance classifier to classify the remaining

pixels. The classification results will be displayed as a segmented

image in which gray levels denote the cluster labels assigned to each

pixel.

Note that the segmentation is completely determined by the

structure of the points in the feature space according to the
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clustering algorithm. This differs from interpretation~guided

segmentation [Barrow and Tennenbaum, I98l] where semantic information

is used to guide the segmentation process.

6.A Evaluating the Segmentations

The number of segments obtained in an image depends on the

clustering algorithm. A problem facing users of any clustering

algorithm is the question of cluster validity [Dubes and Jain, I979].

Since any clustering algorithm will produce clusters regardless of the

distribution of points in the feature space, the user must determine

whether the partitioning obtained is a consequence of structure in the

points or an artifact of the clustering algorithm. A related problem

is to determine the actual number of clusters present in the data.

CLUSTER provides several statistics which can be used to

qualitatively assess the validity of a clustering. One statistic,

which measures the spread of a cluster in the feature space is the

average within-cluster distance which is defined for cluster k as

follows:
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where N(k) is the number of points in cluster k, C(k,.) is the cluster

center for cluster k, D is the dimensionality of the feature space, and

X(i,j) is the value of the jth feature for the ith pattern.

A measure of the “validity" of cluster k which takes into account

the compactness and the isolation of the cluster is defined as
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Large values of S(k) indicate compact, well-isolated clusters. This

statistic will be used to determine the acceptability of a clustering.

An acceptable clustering is one in which the value of S(k) for all

clusters exceeds a threshold. We have empirically determined a

threshold of 1.70 for S(k) by tuning the threshold in preliminary

experiments to yield approximately the number of clusters perceived by

preattentive human vision. This particular value is only an

approximation: we found a threshold of ‘2.0 to reject too many

reasonable clustering solutions and a threshold of 1.5 to accept too

many clusterings.

The threshold value requires that for each cluster the minimum

distance to another cluster center be at least l.70 times the average

within-cluster distance. The clusterings which are accepted by this

criterion will be ranked by the value of the average of S(k) over all

clusters weighted by the number of points in the clusters. Clusterings

with higher average S(k) values will be preferred.

6.5 Segmentation Experiment I: Dot Textures

The data for this experiment consists of a 128xI28 binary image

illustrated in Figure l7. The left half of the image is a regular dot

pattern in which the dots are separated by 3 pixels from their
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Figure 17: Dots Image for Segmentation Experiment 1.
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horizontal and vertical neighbors. The right half of the image is a

random dot pattern in which the probability that each pixel is black is

independent of the other pixels and is approximately equal to l/9.

(The exact probability is the number of dots in the regular texture

divided by half the number of pixels in the image, which results in

identical average gray values for both textures). This image was

segmented using 8x8 and I6xI6 windows in the averaging step for

computing the feature images.

The segmented images produced using 8x8 windows are shown in

Figure 18, and the segmented images produced using l6xl6 windows are

shown in Figure I9. The figures show only the segmentations for 2, 3,

A, and 5 clusters because the gray levels used for labelling each

segment become too difficult to see when more classes are present.

Note that the actual gray levels in the segmented images have no

significance other than to distinguish the regions.

The two-cluster segmentations for both window sizes accurately

distinguish the regions of different texture: over 982 of the pixels

are correctly labelled. The 8x8 segmentation contains a few small

areas in the random texture which are classified with the regular

texture. These misclassifications do not appear in the I6xl6

segmentation because the probability that a region of random dots will

resemble a regular texture is lower for larger regions. The

segmentation results corresponding to more than two clusters break up

the random texture into irregularly shaped regions. The regular

texture is not subdivided. None of the segmented regions lie across

the boundary between the textures.
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Figure 18: Segmented Images for Dots Using 8x8

Averaging Windows.

(b) 3-cluster solution

(d) 5-cluster solution

(a) 2-cluster solution

(c) A-cluster solution
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Figure 19: Segmented Images for Dots Using 16x16

Averaging Windows. (a) 2-c1uster solution

(b) 3-cluster solution (c) A-cluster solution

(d) 5-cluster solution
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We now need to determine which of the segmentations are reasonable

using the validity test defined earlier. The number of points in each

cluster, the value of S(k) for each cluster, and the weighted average

values of S(k) are shown in Table 26 for the 8x8-averaged feature

images and in Table 27 for the l6xl6-averaged feature images. In both
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Table 26: Evaluation of Clustering on Dots Image

Using 8x8 Averaging Windows.

(* indicates accepted clustering solutions)

A N(k) S(k) k N(k) S(k)

2 CLUSTERS 7 CLUSTERS

I 32 6.93 I 32 5.75

2 32 2.31 2 3 2.19

AVG A.62 A 3 3 1.19

A 9 I.3A

3 CLUSTERS 5 9 1.13

1 32 6.17 6 5 1.31

2 19 I.AI 7 3 1.53

3 13 1.2A AVG 3.55

AVG 3.76

8 CLUSTERS

A CLUSTERS 1 32 5.75

1 32 6.08 2 3 1.98

2 20 I.A8 3 3 1.19

3 8 1.15 A 9 1.A1

A A 2.20 5 3 1.66

AVG 3.78 6 5 1.31

7 3 1.53

5 CLUSTERS 8 6 1.29

1 32 6.08 AVG 3.59

2 13 1.05

3 8 I.lA

A A 2.16

5 7 0.975

AVG 3.6A

6 CLUSTERS

I 32 5.75

2 7 1.53

3 3 1.19

A 11 1.2A

5 6 1.07

6 5 1.A7

AVG 3.53

cases, only the two-cluster solution is accepted. The tables also show

that the S(k) value for cluster I, which corresponds to the regular

texture, is always very high. Since the cluster of points from the

regular texture is always compact and well-isolated, the regular

texture is never subdivided in the segmented images.
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Table 27: Evaluation of Clustering on Dots Image

Using l6xl6 Averaging Windows.

(* indicates accepted clustering solutions)

k N (k) S (k) k N (k) S (k)

2 CLUSTERS 7 CLUSTERS

1 32 9.39 1 32 8.06

2 32 3-79 2 7 1.39

AVG 6.59 * 3 8 1.58

A 5 l.8A

3 CLUSTERS 5 2 1.77

I 32 8.86 6 7 1.71

2 22 1.33 7 3 1.35

3 10 1.62 AVG A.83

AVG 5.1A

8 CLUSTERS

A CLUSTERS 1 32 8.06

1 32 8.27 2 7 1.59

2 11 1.22 3 8 1.58

3 9 1-39 A 5 1.93

A 12 1.28 5 2 1.87

AVG A.78 6 6 1.97

7 2 1.91

5 CLUSTERS 8 2 1.91

1 32 8.05 AVG A.91

2 8 1.39

3 3 1-53

A 6 I.56

5 10 1.26

AVG A.73

6 CLUSTERS

1 32 8.06

2 7 1.A5

3 7 1-63

A 6 1.58

5 7 1.1A

6 5 2.97

AVG A.87

6.6 Segmentation Experiment 2: Gaussian White Noise

This experiment will apply the segmentation procedure to a 128x128

image which is visually perceived to contain a single homogeneous

texture. The gray level at each pixel is generated independently using
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a Gaussian distribution with mean 128 and standard deviation 30. The

image is illustrated in Figure 20. The same filtering and segmentation

procedure as in the previous experiment was applied. The segmented

images from 8x8-averaged feature images are shown in Figure 21 and the

results from I6xI6-averaged feature images are shown in Figure 22. In

both cases, the images are segmented into irregular patches. The

patches for the 8x8 case are generally smaller than those for the l6xl6

case.

The statistics for evaluating the clusterings are given in Table

28 for 8x8 averaging and in Table 29 for l6xl6 averaging. None of the

clusterings pass the threshold test. In fact, none of the individual

clusters appear to be valid. Since all multiple-class solutions are

rejected, we conclude that the image contains a single texture.

6.7 Segmentation Experiment 3: Natural Image Composite

Figure 23 shows the 128x128 image to be used for this experiment.

The image is composed of four natural texture classes: WOOD, PAPE, SCRE

and SAND. The results of segmentation based on 8x8 averaging for the

feature images is shown in Figure 2A, and the results for l6xl6

averaging are shown in Figure 25.

Different results are obtained by using different averaging

windows. The two-cluster solution using 8x8 averaging groups the W000

and SCRE areas in one cluster and the PAPE and SAND areas in the other.

This clustering appears to be determined by the irregularity of PAPE

and SAND and the directional tendencies of W000 and SCRE. Using l6xl6

averaging, the SCRE texture is alone in one cluster in the two-class
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Figure 20: Gaussian White Noise Image for Segmentation

Experiment 2.
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Figure 21: Segmented Images for Gaussian White Noise

Using 8x8 Averaging Windows.

(b) 3-c1uster solution

(d) S-cluster solution

(a) 2—c1uster solution

(c) A—cluster solution
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Figure 22: Segmented Images for Gaussian White Noise

Using 16x16 Averaging Windows.

(b) 3-cluster solution

(d) 5—cluster solution

(a) 2-c1uster solution

(c) A-cluster solution
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Figure 23: Natural Image Composite for Segmentation

Experiment 3.
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Figure 24: Segmented Images for Natural Image Composite

Using 8x8 Averaging Windows. (a) 2-c1uster solution

(b) 3-c1uster solution (c) A-cluster solution

(d) 5—cluster solution
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Figure 25: Segmented Images for Natural Image Composite

Using l6xl6 Averaging Windows.

(b) 3-c1uster solution

(d) 5-cluster solution

(a) 2-cluster solution

(c) A-cluster solution
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Table 28: Evaluation of Clustering on Gaussian White Noise Image

Using 8x8 Averaging Windows.

A N(k) S(k) k N(k) S(k)

2 CLUSTERS 7 CLUSTERS

1 55 1.26 1 10 1.13

2 9 1.12 2 5 1.66

AVG 1.2A 3 7 1.07

A 7 1.16

3 CLUSTERS 5 15 -0.923

1 38 0.831 6 7 1.02

2 8 1.22 7 13 1.03

3 18 0.939 AVG 1.09

AVG 0.91

8 CLUSTERS

A CLUSTERS 1 9 1.29

1 1A 1.21 2 A 1.AA

2 16 1.11 3 6 1.53

3 18 1.05 A 7 1.01

A 16 1.07 5 13 1.18

AVG 1.11 6 9 1.15

7 6 1.06

5 CLUSTERS 8 10 1.09

1 13 1.18 AVG 1.20

2 10 1.0A -

3 17 1.15

A 10 1.01

5 1A 1.13

AVG 1.11

6 CLUSTERS

1 12 1.08

2 A 1.6A

3 7 1.29

A 8 1.0A

5 23 1.06

6 10 0.9A6

AVG 1.10

segmentation. The regularity and strong orientation dependence appear

to determine this clustering. The segmentations with three and four

clusters are similar for the two window sizes. The 8x8 window tends to

break up the image into smaller areas and to misclassify more pixels

than the I6xl6 window. Edges between textures are more sharply

identified using the 8x8 window, but the 8x8 window is more likely to
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Table 29: Evaluation of Clustering on Gaussian White Noise Image

Using 16x16 Averaging Windows.

k N (k) S (k) k N (k) S (k)

2 CLUSTERS 7 CLUSTERS

1 39 1.12 1 11 1.25

2 25 0.957 2 11 1.3A

AVG 1.06 3 11 1.2A

A 11 1.3A

3 CLUSTERS 5 10 1.2A

1 2A 0.951 6 3 1.28

2 l9 1.0A 7 7 1.20

3 21 0.879 AVG 1.27

AVG 0.95A

8 CLUSTERS

A CLUSTERS 1 10 1.30

1 21 1.06 2 8 1.10

2 15 1.00 3 9 1.37

3 17 0.972 A 11 1.36

A 11 1.03 5 9 1.21

AVG 1.02 6 3 1.28

7 6 1.23

5 CLUSTERS 8 8 1.13

1 13 1.20 AVG 1.25

2 12 1.10

3 15 1.08

A 13 1.2A

5 11 0-973

AVG 1.12

6 CLUSTERS

1 11 1.25

2 1A 1.11

3 11 1.2A

A 11 1.3A

5 10 1.2A

6 7 1.22

AVG 1.23

incorrectly subdivide a homogeneous texture area. One significant

error made using 8x8 averaging is the misclassification of a

low—contrast area of the SCRE panel as WOOD. The same area appears as

a separate segment in the 3 and A class segmentations using 16x16

averaging.
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The statistics for evaluating the clusterings are shown in Table

30 for 8x8 'averaging and in Table 31 for l6xl6 averaging. The

three-cluster solution is the only one which passes the threshold test

in the 8x8 case. With l6xl6 averaging, the solutions for 3, A, and 5

clusters are found to be acceptable. Using the weighted average of



13A

Table 30: Evaluation of Clustering on Composite Natural Image

Using 8x8 Averaging Windows.

(* indicates accepted clustering solutions)

k N(k) S(k) k N(k) S(k)

2 CLUSTERS 7 CLUSTERS

1 35 1.3A 1 1A 1.21

2 29 1.58 2 6 1.52

AVG 1.A5 3 12 2.08

A 10 1.27

3 CLUSTERS 5 A 1.32

1 2A 2.11 6 7 1.33

2 28 1.75 7 11 1.32

3 12 2.22 AVG 1.A5

AVG 1.97 A

8 CLUSTERS

A CLUSTERS 1 1A 1.21

1 21 1.61 2 6 1.52

2 16 1.39 3 12 2.09

3 12 2.19 A 5 1.37

A 15 1.A6 5 A 1.32

AVG 1.63 6 7 1.33

7 11 1.A3

5 CLUSTERS . 8 5 1.76

1 21 1.A6 AVG 1.52

2 15 1.35

3 12 2.17

A 7 1.06

5 9 1.03

AVG 1.A6

6 CLUSTERS

1 IA 1.21

2 7 1.A7

3 12 2.13

A IA 1.11

5 10 1.28

6 7 1.33

AVG 1.A1

S(k) to rank the solutions, we find the three-cluster solution to be

the best, followed in order by the A- and 5-cluster solutions. In the

three-cluster solution, the SAND and PAPE regions are merged in a

single cluster. The irregularity and the contrast of these areas are

similar, so the preference for this solution is plausible. In the

three-class segmentation using 16x16 averaging windows, over 952 of the
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Table 3l: Evaluation of Clustering on Composite Natural Image

Using l6xl6 Averaging Windows.

(* indicates accepted clustering solutions)

k N(k) S(k) k N(k) S(k)

2 CLUSTERS 7 CLUSTERS

1 A8 1.AA 1 5 2.53

2 16 2.26 2 12 2.22

AVG 1.65 3 15 2.05

A 6 1.17

3 CLUSTERS 5 12 1.55

1 31 2.18 6 9 1.09

2 16 2.51 7 5 2.76

3 17 2.95 AVG 1.86

AVG 2.A7 A

8 CLUSTERS

A CLUSTERS 1 5 2.53

1 13 1.92 2 12 2.22

2 16 2.A0 3 15 2.05

3 16 2.59 A .6 1.23

A 19 1.89 5 12 1.53

AVG 2.20 a 6 6 1.A3

' 7 3 1.A0

5 CLUSTERS 8 5 2.76

1 13 1.92 AVG 1.91

2 12 2.22

3 15 2.05

A 19 1.89

5 5 2.76

AVG 2.06 R

6 CLUSTERS

1 5 2.53

2 12 2.22

3 15 2.05

A 15 1.61

5 12 1.56

6 5 2.76

AVG 1.98

pixels are correctly labelled (assuming the SAND and PAPE panels to be

the same class). The 8x8 window segmentation using 8x8 windows

classifies about 863 of the pixels correctly.

The four-cluster solution, which is the second choice for l6xl6

averaging, reasonably captures the four image types used: the

segmentation based on an 8x8 averaging window correctly labels 812 of
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the pixels while using a 16xl6 window, 9l2 of the pixels are correctly

labelled.

6.8 Segmentation Experiment h: SCRE

Figure 26 shows the 128xl28 SCRE natural image which will be'

segmented using the same procedures as the previous experiments. The

image contains a single texture class, but unlike the Gaussian white

noise image, the SCRE image contains some internal structure. The

segmented images using 8x8 averaging windows are presented in Figure 27

and the results using 16xl6 averaging windows are presented in Figure

28. The cluster evaluation statistics are shown in Table 32 for 8x8

averaging and in Table 33 for l6xl6 averaging. None of the clustering

solutions passes the threshold test, but the values of S(k) are larger

than those obtained with Gaussian white noise. There appear to be

emerging clusters, but the presence of some non-isolated clusters in

each solution causes all of the clusterings to be rejected.

6.9 Summary

This chapter presented an algorithm for computing a textural

transform in which the texture of a neighborhood about each pixel is

represented by gray level values in a series of feature images. The

feature images are computed from filtered images using a two-step

procedure in which the second step can be implemented as another

filtering operation. The resulting textural transform was evaluated by

applying a texture segmentation procedure in four experiments. The

segmentation procedure imposed no restrictions on the nature of the
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Figure 26: SCRE Image for Segmentation Experiment 4
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Figure 27: Segmented Images for SCRE Using 8x8

Averaging Windows.

(b) 3—cluster solution

(d) 5—c1uster solution

(a) 2-c1uster solution

(c) 4-cluster solution
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Figure 28: Segmented Images for SCRE Using 16x16

Averaging Windows. (a) 2-cluster solution

(b) 3-cluster solution (c) 4-cluster solution

(d) 5-cluster solution
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Table 32: Evaluation of Clustering on SCRE Image

Using 8x8 Averaging Windows.

k N (k) S (k) k N (k) S (k)

2 CLUSTERS 7 CLUSTERS

1 Ah 1.A5 l 9 1.7h

2 20 1.60 2 12 1.82

AVG 1.50 3 7 1.63

A 5 2.5h

3 CLUSTERS 5 13 1.71

1 27 1.2A 6 6 1.71

2 15 2.02 7 12 1.1A

3 22 1.57 AVG 1.66

AVG 1.5L

8 CLUSTERS

A CLUSTERS 1 9 1.7A

1 18 1.A6 2 6 1.37

2 16 1.88 3 5 2.03

3 19 1.89 h 5 2.h6

A 13 1.33 5 11 1.5“

AVG 1.65 6 6 1.71

7 10 1.95

5 CLUSTERS 8 12 1.51

1 19 1.37 AVG 1.7A

2 1b 1.85

3 17 1.70

A 5 2.70

5 9 1-33

AVG 1.73

6 CLUSTERS

1 9 1.7h

2 1h 1.76

3 17 1.70

h 5 2.5h

5 l3 1.68

6 6 l.7l

AVG 1.78

segmented regions such as a minimum size or connectivity requirement.

A clustering algorithm was applied to some representative pixels, and

the remaining pixels were assigned to the clusters by a minimum

distance classifier.

The segmented images indicate that the feature space is a

reasonable representation of the textures in an image. This conclusion
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Table 33: Evaluation of Clustering on SCRE Image

Using l6xl6 Averaging Windows.

k N(k) S(k) k N(k) S(k)

2 CLUSTERS 7 CLUSTERS

1 57 1.65 1 13 1.73

2 7 1.81 2 A 3.10

AVG 1.66 3 6 1.99

A 12 1.21

3 CLUSTERS 5 A 2.A1

1 32 1.3A 6 16 1.72

2 6 1.99 7 9 1.25

3 26 1.3A AVG 1.72

AVG 1.A0

8 CLUSTERS

A CLUSTERS 1 13 1.73

1 18 1.A9 2 A 3.10

2 A 3.99 3 A 2.50

3 25 1.36 A 11 1.29

A 17 1.59 5 A 2.A1

AVG 1.62 6 16 1.72

7 6 1.AA

5 CLUSTERS 8 6 1.70

1 18 1.53 'AVG 1.80

2 A 3.50

3 1.83

A 9 1.60

5 6 1.6A

AVG 1.73

6 CLUSTERS

1 1A 1.86

2 A 3.63

3 7 1.77

A 17 1.50

5 6 1.28

6 16 1.73

AVG 1.79

was further confirmed by a statistical evaluation of the clusterings.

The evaluation identified reasonable clusterings by requiring all

clusters to be compact and isolated as measured by a test statistic.

Acceptable clusterings were then ranked by an average isolation

statistic. The segmentations corresponding to the preferred

clusterings contained reasonable numbers of clusters and the
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corresponding segmentations generally agree with the image generation

method and visual segmentations of the images.

The experiments used 8x8 and l6xl6 windows for computing the

feature images. Both gave satisfactory segmentation results, though

these window sizes are smaller than the subimages used in the

classification experiments. This suggests that a minimum distance

classification algorithm might be more appropriate than a nearest

neighbor algorithm for the channel filtering feature space.



Chapter 7

Summary and Conclusions

7.1 Summary

Texture is characterized by preattentive human visual performance

of segmentation and classification tasks. This form of perception has

many potential applications in computer vision systems, but the

characterization of ”texture" in terms of human performance does not

lead to simple, effective algorithms 'for texture analysis. No

alternative definition of texture independent of human performance has

provided sufficiently precise guidance to enable development of general

texture analysis algorithms.

Since texture analysis algorithms attempt to model preattentive

human vision, insights from vision science and from intuition have been

used to guide the development of algorithms. The lack of precise

guidance from a definition of texture and the lack of generality in

existing algorithms has resulted in a profusion of diverse approaches

to texture analysis.

A recent theory concerning the early information processing

strategies in human vision was used to motivate a new approach to

texture analysis. A feature space which measures average local energy

was defined from filtered images and used in texture classification

1A3
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problems. The features were applied to artificial images, natural

images, and preprocessed natural images. The performance of the

feature space in various classification tasks was investigated and

compared with the power spectral and co-occurrence methods.

A method for computing a texture feature vector over a small

neighborhood about each pixel in an image was developed for texture

segmentation. A clustering algorithm was applied to the feature

vectors, and a segmented image was produced by labelling each pixel

according to the cluster in which the pixel's feature vector lies.

Since each clustering solution corresponds to a segmented image, a

means for seleCting acceptable clusterings is required. A cluster

validity statistic was used to determine which, if any, of a set of

clusterings provided an acceptable representation of the data. A

related statistic was used to rank the, accepted solutions. Four

texture segmentation experiments were performed using both composite

and homogeneous images.

7.2 Conclusions

7.2.l Classification

The channel filtering features were used to classify subimages of

eight natural textures. The results using 6Ax6A and 32x32 subimages

were good. The features performed poorly when presented l6xl6

subimages. These results indicate that the features are suitable for

classification of natural images based on 32x32 or larger subimages.
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The effect of histogram equalization on the evaluation of natural

textures by the channel filtering features was investigated in a series

of experiments. We found that almost all of the histogram equalized

images were perceived as having different textures from the original

classes. Histogram equalization was also observed to confuse image'

classes which were originally separable. The results suggest that

histogram equalization should be used carefully, if at all, with

channel filtering features.

The channel filtering features were found to be insensitive to

global, constant gray level changes. This implies that histogram

equalization to remove differences in average brightness is

unnecessary.

A procedure for determining whether two images portray the same

texture at different magnifications was developed. The procedure was

tested for 2X magnifications only. Certain aspects of the procedure

might be simplified by using a different classification algorithm, but

the results obtained were good.

A procedure for detecting orientation differences was developed

which gave excellent performance for 90 degree orientation changes but

was less reliable for A5 degree orientation changes due to fundamental

differences in A5 degree rotated patterns caused by the rectangular

quantization grid and the square image shape.

The effect of phase modification was investigated. The experiment

demonstrated that images with identical power spectra could be

discriminated by channel filtering features based on differences in the

phase spectra.
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An experiment comparing the co-occurrence method with the channel

filtering method demonstrated that selection of displacement vectors

for co-occurrence matrices is a serious problem. Even displacement

vectors selected specifically to discriminate micropatterns can fail to

discriminate images composed of the micropatterns. On the other hand,

the channel filtering features were applied in the same way as in other

experiments and produced excellent classification accuracy.

Experiments to test computational simplifications of the channel

filtering procedure showed that the method is "robust" in that the

classification accuracy is not degraded by using ideal band-pass

channels or by eliminating certain channels.

7.2.2 Segmentation

Four experiments were performed to test the utility of the channel

filtering approach for texture segmentation. In the first experiment,

an image composed of a regular dot pattern and a random dot pattern

were segmented. The statistical evaluation of the clustering solutions

indicated that two clusters existed in the feature space. The

labellings of the pixels corresponded closely to the actual image

areas.

Segmentation of a Gaussian white noise image yielded irregularly

shaped, non-contiguous segments throughout the image. The cluster

validity statistic found no acceptable clustering solution, so the

image was correctly identified as portraying a single texture.
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A composite image composed of four natural textures was segmented.

The statistical evaluation indicated that the best solution involved

three clusters. This result was considered reasonable due to the

visual similarity of two of the actual texture classes. The second

best solution involved four clusters and the segmentation generally

corresponded to the actual textures in the image.

Another experiment on a homogeneous natural image resulted in a

correct identification of the image as a homogeneous texture. Emerging

clusters were found, but they were not well-defined enough to pass the

statistical validity test.

7.2.3 General

The channel filtering feature space has been evaluated on a

variety of texture classification and segmentation problems. The

results indicate that the feature space is a good representation of

texture for these problems. Equivalently, the feature space has been

validated as a model for preattentive human vision on a variety of

stimuli. The investigation of this feature space has involved tests in

which visually discriminable image classes were expected to be

discriminated by the features and in which visually indiscriminable

image classes generated in different ways were expected to be confused

by the features.

The classification and segmentation procedures used to evaluate

the feature space did not involve sophisticated heuristics; the results

are consequences of the structure of the feature space. Some results,
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in particular the magnification experiment and the results of the

segmentation experiments, suggest that a minimum distance classifier

may be more appropriate than a nearest neighbor classifier for the

channel filtering feature space. Further investigation of the feature

space may suggest that a different clustering procedure may be more

appropriate for texture segmentation.

The performance of the channel filtering feature demonstrates that

a global filtering model of vision is capable of reasonably

approximating human preattentive vision. This contrasts to results of

previous studies which discounted the value of phase information for

texture analysis and which suggested that the Fourier transform is not

an appropriate tool for texture analysis. This study shows that phase

information provides critical information on the distribution of

spectral energy through the image plane. The use of phase information

enables spatially local analysis of different spectral energy bands.

This information was measured by the channel filtering features and

provided good results.

7.3 Advantages of the Channel Filtering Method

l. The channel filtering features have a satisfying intuitive

basis. Unlike some ad hoc procedures, the significance of the channel

filtering features are explainable in terms of image properties such as

contrast, edge density, local energy, and directionality. The

explanations are a consequence of the intuitive interpretations of the

channels and of the spatial filtering operation.
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2. The channel filtering method provides classification results

superior to those obtained by the power spectral method. The

performance is attributed to the utilization of phase information in

the channel filtering procedure.

3. The channel filtering method has no critical parameters

similar to the choice of displacement vectors for the co-occurrence

method.

A. A method for computing features for texture segmentation

exists which does not require recomputation of the entire filtering

procedure over every subimage of interest. This means that only a

simple feature computation needs to be repeated to evaluate the

textures in different regions. In fact, the texture features for every

pixel can be computed by a procedure, easily amenable to parallel

execution.

5. Simple procedures for classification and for segmentation

produce good results. This indicates that the results are due to the

structure of the feature space and not to a clever classification or

segmentation procedure.

6. There are many opportunities for parallelism in computing the

filtered images and the texture features. This could enable fast

hardware implementations of the channel filtering procedure to be

constructed with a high degree of modularity and at fairly low cost.

7.A Disadvantages of the Channel Filtering Method

1. The computational and storage requirements for sequential,

digital implementation of the channel filtering approach are too
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demanding for many applications. Other implementation methods using

parallel hardware or optical/digital methods may make fast

implementations possible. Among the current difficulties are the

number of Fourier transforms, inverse transforms, and image

multiplications required in the channel filtering procedure. These

operations are very demanding when implemented sequentially.

2. A simple method for generating images which have specified

characteristics in the texture feature space is not known. Such a

procedure would enable further validation of the feature space by

enabling generation of images which are "close" to a given image. This

capability would enable a quantitative determination of how well the

feature space models human preattentive perception. The major

obstacles to development of such a method are the overlapping of the

channels in the spatial frequency domain and the dependence of the

feature values on phase spectrum information.

7.5 Suggestions for Further Research

l. Segmentation results have suggested that the minimum distance

classification algorithm is more appropriate than the nearest-neighbor

algorithm for the channel filtering feature space. Further research is

needed to confirm this hypothesis and to investigate the applicability

of other decision rules.

2. Different clustering algorithms for use in the segmentation

procedure should be investigated. CLUSTER is known to perform poorly

in certain situations, and statistics similar to those used to evaluate

the clusterings in this study can be defined for other algorithms.
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3. Further investigation of the performance of the segmentation

procedure is needed. The averaging windows used to compute the feature

images could be implemented as another filtering operation, perhaps

using a sequence of filters as in the original channel filtering

procedure. The validity of the feature space for images which involve-

distinct forms should also be investigated.

A. The use of channel filtering for receding surfaces should be

investigated. Since the apparent size of the texture on a receding

surface shrinks progressively with distance, the spectral information

from the surface should move steadily toward high-frequency channels.

This would cause the feature vectors for pixels depicting the surface

to be strung out though the feature space. A clustering procedure

which can detect long, stringy clusters, such as the single-link

algorithm, might be useful for analyzing surface structure.

5. Since the feature space developed in chapter A is based on a

theory of human visual information processing, it may be useful to

determine how faithfully the feature space reproduces human texture

vision. Psychophysical experiments could help to guide the selection

of classification and clustering algorithms which would duplicate human

performance.

6. Spatial frequency domain filtering has been used to provide at

least partial solutions for several computational vision problems, now

including texture analysis. Revision of procedures for solving other

computational vision problems using channel filtering as a framework

could enable development of unified computational vision systems.
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Appendix A: A Catalog of Texture Definitions

1. ”We may regard texture as what constitutes a macroscopic region.

Its structure is simply attributed to the repetitive patterns in which

elements or primitives are arranged according to a "placement rule"."

[Tamura et al, 1978]

2. "We suggest the following operational definition of 'texture'.

A region in an image has a constant texture if a set of local

statistics or other local properties of the picture function are

constant, slowly varying, or approximately periodic." [Sklansky, 1978]

3. "A texture will be considered to be a random field X(n,m)

where n and m are integers." (They later specialize to Markov random

fields.) [Conners and Harlow, 1980a]

A. ”The image texture we consider is nonfigurative and

cellular.... An image texture is described by the number and types of

its (tonal) primitives and the spatial organization or layout of its

(tonal) primitives... a fundamental characteristic of texture: it

cannot be analyzed without a frame of reference of tonal primitive

being stated or implied. For any smooth gray-tone surface, there

exists a scale such that when the surface is examined, it has no

texture. Then as resolution increases, it takes on a fine texture and

then a coarse texture.“ [Haralick, l979]

5. “Image texture refers to the visual sensation that one

receives about the structure arrangement of an image region. The

152
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textural properties of a scene are often qualitatively described as

coarse, grainy, striated, or rough. Computer simulations .have been

done in which overlapping particles have been placed at random

locations. When only a few particles are present, the visual

impression is of discrete, countable objects. However, when the number

of objects is increased, the visual impression is of texture rather

than countable objects.‘| [Hall et al, 1977] A

6. "Texture is defined for our purposes as an attribute of a

field having no components that appear enumerable. The phase relations

between the components are thus not apparent. Nor should the field

contain an obvious gradient. The intent of this definition is to

direct the attention of the observer to the global properties of the

display - i.e. its overall "coarseness", "bumpiness", or "fineness".

Physically, nonenumerable (aperiodic) patterns are generated by

stochastic as opposed to deterministic processes. Perceptually,

however, the set of all patterns without obvious enumerable components

will include many deterministic (and even periodic) textures. Because

our criterion for enumerability was subjective rather than objective,

many of our patterns actually contained repetitive elements which were

not immediately obvious but could be identified when the observer

specifically looked for these components. To further minimize very

obvious enumerable periodic components of the patterns, all displays

contained only components whose spatial frequencies were proportional

to prime numbers. We would like to stress that the above constraints

imposed on our textures are all designed to minimize the importance of

phase information - a variable we consider more important for pattern

recognition than for texture perception." [Richards and Polit, l97A]
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7. "Images composed of numerous binary pixels which are only

weakly correlated with their neighbors form one extreme in a continuum

of scene types whose opposite extreme is exemplified by simple line

drawings against a uniform background. In the latter case the image

pixels are highly redundant and the image consequently carries little

information in the sense of Shannon, whereas in the former case,

redundancy is low and the information content is high: normally so high

that the vision system must selectively disregard information in order

to process the scene. The limiting extremes of this continuum of

images are the uniform ("constant”) image all of whose pixels are

identical, and the random image, whose pixel arrangement is completely

determined by a probability distribution. The random image appears to

be homogeneous (and therefore completely redundant) in a global sense;

that is, different subregions large enough to contain many pixels

convey an equivalent subjective impression. This type of homogeneity,

which is different from a locally highly redundant image, is usually

called "texture", and is characteristic of the structure of the

probability distribution of the random image.” [Resnikoff, 1981]

8. ”Texture is an apparently paradoxical notion. On the one

hand, it is commonly used in the early processing of visual

information, especially for practical classification purposes. On the

other hand, no one has succeeded in producing a commonly accepted

definition of texture. The resolution of this paradox, we feel, will

depend on a richer, more developed model for early visual information

processing, a central aspect of which will be representational systems

at many different levels of abstraction. These levels will most
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probably include actual intensities at the bottom and will progress

through edge and orientation descriptors to surface, and perhaps

volumetric, descriptors. Given these multi-Ievel structures, it seems

clear that they should be included in the definition of, and in the

computation of, texture descriptors." [Zucker and Kant, 1981]

9. ”The notion of texture appears to depend upon three

ingredients: (1) some local 'order' is repeated over a region which is

large in comparison to the order's size, (2) the order consists in the

nonrandom arrangement of elementary parts, and (3) the parts are

roughly uniform entities having approximately the same dimensions

everywhere within the textured region." [Hawkins, 1969]

10. "Although these descriptions of texture seem perceptually

reasonable, they do not immediately lead to simple quantitative

textural measures in the sense that lthe description of edge

discontinuity leads to the quantitative definition of an edge in terms

of its location, slope angle, and height.” [Pratt, I978]



APPENDIX B: Definition of Channel Filters

The transfer function of a 2Nx2N spatial frequency channel filter

Fk(u,v), where -N+l (. u,v <= N, is defined as follows:

Imag [ Fk(u,v) ] = O for all u,v,k,

Real [ Fk(0,0) ] = l for all k,

and for (u,v) $ (0,0) ,

2

[In(D(U.v)) - "1940 J

Real [ Fk(u,v) ] = exp [ -.5 * -------------5' --------- ]

6'

2 2 1/2 k-1

where D(u,v) - [u +v ] , 5 - .275, and f‘k- 2 .

For a 2Nx2N image, we will use spatial frequency channels for

ksl,...(logz N + I). This definition yields a series of filters one

octave apart whose widths are slightly more than one octave on each

side of the center frequency. The value of O" was selected to

produce filters whose widths are within the constraints for human

visual filters given in [Ginsburg, 1978].
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The transfer function for a 2Nx2N orientation channel filter Gk(u,v)

where -N+l <- u,v <- N is defined as follows:

Imag [ Gk(u,v) ] I O for all u,v,k,

Rea1 [ Gk(0,0) ] 8 1 for 311 k,

and for (u,v);E(0,0),

2

Real [ Gk(u,v) ] - exp [ -,5 A ----EK---- ]

(71

where ak- Min { l/J‘K- arctan(v/u)| , | (Ink-18°) - arctan(v,u)| },

6 - 17.8533, 1 <- k <- A, and the values of [AK are given in the

table below for each value of k. The value of (5 is chosen to produce

the same overlap between channels as in the spatial frequency channels.

Note that the orientation channels defined here are slightly wider

then the 30 degree wide channels proposed for human vision in

[Ginsburg, 1978].

Values of}9k(in degrees) for each k

k M

l 0 (horizontal)

2 A5

3 90

A 135



List of References



List of References

Agin, G. J., 1980, ”Computer Vision Systems for Industrial Inspection

and Assembly," Comguter, l3: ll-ZO.

Aggarwal, J. K., L. S. Davis and W. N. Martin, 1981,

"Correspondence Processes in Dynamic Scene Analysis,“ Proceedings 91

gas IEEE. 69: 562-572.

Ahuja, N. and A. Rosenfeld, 1981, "Mosaic Models for Textures," IEEE

Transactions 92 Pattern Analysis and Machine Intelligence, 3: l-ll.

Anderberg, M. R., 1973, Cluster Analysis jg; Agglication , New York:

Academic Press.

Bacus, J. W., 1976, "A Whitening Transformation for Two-Color Blood

Cell Images,“ Egttern Recognition, 8: 53-60.

Bajcsy, R., 1973, "Computer Identification of Visual Surfaces,”

Computer Graphics and Imagg Processing, 2: 118-130.

Bajcsy, R. and L. Lieberman, I976, “Texture Gradient as a Depth Cue,”

Comguter Graghics Egg Image Processing, 5: 52-67.

Barrow, H. G

o

. and J. M. Tennenbaum, 1981, "Computational Vision,"

Proceedings _1 525 EI EC. 69: 572-595.
 

Beck, J., 1980, "Texture Segmentation," University of Maryland,

Computer Science Technical Report TR-97l.

Besag, J., 197A, "Spatial Interaction and the Statistical Analysis of

Lattice Systems,” Journal ‘2: the Royal Statistical Society, B36:

192-236.

Blakemore, C. and F. W. Campbell, 1969, "On the Existence of Neurons

in the Human Visual System Selectively Sensitive to the Orientation and

Size of Retinal Images,” Journal 21 Physiology, 203: 237-260.

Brady, M., 1982, "Computational Approaches to Image Understanding,“

Comguting Surveys, 1A: 3-71.

Brodatz, P., 1966, Textures: A Photographic Albgm jg; Artists 95g

Designers, New York: Dover.

I58



159

Caelli, T. M. and B. Julesz, 1978a, "On Perceptual Analyzers

Underlying Visual Texture Discrimination - Part 1," Biological

Cybernetics, 28: l67-l75.

Caelli, T. M. and B. Julesz, l978b, ”On Perceptual Analyzers

Underlying Visual Texture Discrimination - Part 2,” Biological

Cybernetics, 29: 201-21A.

Campbell, F. W. and L. Maffei, 1970, "Electrophysiological Evidence

for the Existence of Orientation and Size Detectors in the Human Visual

System,“ Journal 21 Physiology, 207: 635-652.

Campbell, F. W. and J. G. Robson, 1968, "Application of Fourier

Analysis to the Visibility of Gratings," Journal 91 Physiology, 197:

551-566.

Carlucci, L., 1972, "A Formal System for Texture Languages,” Pattern

Recognition, A: 53-72.

Chellappa, R. and R. L. Kashyap, l981a, “On the Correlation

Structure of Random Field Models of Images and Textures," Proceedings

‘9: Egg IEEE Conference 23 Pattern Recognition 22g Image Processing,

Dallas. 57A-576.

Chellappa, R. and R. L. Kashyap, l98lb, "Synthetic Generation and

Estimation in Random Field Models of Images,” Proceedings 91 £52 IEEE

Conference '23 Pattern Recognition 23g Image Processing, Dallas.

577-532.

Coleman, G. B. and H. C. Andrews, 1979, "Image Segmentation by

Clustering," Proceedings 91 _hg IEEE, 67: 773-785.
 

Conners, R. W., 1979, "Towards a Set of Statistical Features Which

Measure Visually Perceivable Qualities of Textures,” roceedings g: 555

IEEE Conference gfl Pattern Recognition 22g Image Processing, Chicago.

382-390.

Conners, R. W. and C. A. Harlow, 1980a, "A Theoretical Comparison

of Texture Algorithms,“ IEEE Transactions gg Pattern Analysis and

Machine Intelligence, 2: 20A-222.

Conners, R. W. and C. A. Harlow, 1980b, "Toward a Structural

Texture Analyzer Based on Statistical Methods," Comguter Graghics and

Image Processing, 12: 22A-256.

Cross, G. R. and A. K. Jain, 1981, ”Markov Random Field Texture

Models," Proceedings 91 353 IEEE Conference 93 Pattern Recognition 32g

Image Processing, Dallas. 597-602.

Crowley, J. and A. Parker, 1978, "The Analysis, Synthesis and

Evaluation of Local Measures for Discrimination and Segmentation of

Textured Regions," Proceedings 91 335 IEEE Conference 93 Pattern



160

Recognition and Imagg Processing, Chicago. 372-378.

Darling, E. M. and R. 0. Joseph, 1968, "Pattern Recognition from

Satellite Altitudes," IEEE Transactions 93 Systems, flag 22g

Cybernetics, A: 38-A7.

D'Astous, F. and M. Jernigan, 1981, "Phase Information in Texture

Feature Extraction," Proceedings 21 the Interngtional Conference 93

Cybernetics and Society, Atlanta. 182-186.

Davis, L., S. Johns and J. Aggarwal, 1979, "Texture Analysis Using

Generalized Co-occurrence Matrices," IEEE Transactions 93 Pattern

Analysis and Machine Intelligence, 1: 251-259.

Davis, L. and A. Mitiche, I982, "MITES: A Model-Driven Iterative

Texture Segmentation Procedure,“ Comguter ’Graghics ggg Image

Processing, 19: 95-110.

Deguchi, K. and l. Morishita, I978, "Texture Characterization and

Texture-Based Image Partitioning Using Two-dimensional Linear

Estimation Techniques," IEEE Transactions 93 Information Theory, 27:

733-755-

Dubes, R. C. and A. K. Jain, I976, "Clustering Techniques: The

User's Dilemma," Pattern Recognition, 8: 2A7-260.

Dubes, R. C. and A. K. Jain, 1979, "Validity Studies in Clustering

Methodologies," Pattern Recognition, ll: 235-25A.

Duda, R. O. and P. E. Hart, 1973, Pattern Classification and Scene

Analysis, New York: Wiley.

Ehrich, R. and J. P. Foith, 1976, "Representation of Random

Waveforms by Relational Trees," IEEE Transactions gg Comguters, 25, no.

7: 725'736-

Ehrich, R. and J. P. Foith, 1978, "A View of Texture Topology and

Texture Description,“ Comguter Graghics 32g Image Processing, 8:

I7A-202.

Eklundh, J., 1979, "On the Use of Fourier Phase Features for Texture

Discrimination,” Comguter Graghics gag Image Processing, 9: 199-201.

Everitt, 8., 197A, Cluster Analysis, London: Heinemann Educational

Books.

Faugeras, 0. D. and W. K. Pratt, I980, "Decorrelation Methods of

Texture Feature Extraction," IEEE Transactions 25 Pattern Analysis 22g

Machine Intelligence, 2: 323-332.

Fu, K. 5., 197A, Syntactic Methods in Egttern Recognition, New York:

Academic Press.



l6l

Fu, K. S., 1977. Syntactic Pattern Recognition Applications, New York:

Springer-Verlag.

Gagalowicz, A., 1978, "Analysis of Texture Using a Stochastic Model,"

Proceedings 91 £22 Fourth International Conference 23 Pattern

Recognition, Tokyo. 5A1-5AA.

Gagalowicz, A., 1981, "A New Method for Texture Fields Synthesis: Some

Applications to the Study of Human Vision," IEEE Transactions 92

Pattern Analysis and Machine Intelligence, 2: 520-533.

Galloway, M., 197A, "Texture Analysis Using Gray Level Run Lengths,"

Comguter Graghics 22g Image Processing, A(2): 172-179.

Garber, D. and A. Sawchuk, 1981, ”Computational Models for Texture

Analysis and Synthesis," Proceedings 21 3h; DARPA Image Understanding

Workshog, Washington, D. C. 69-88.

Ginsburg, A. P., 1973, ”Pattern Recognition Techniques Suggested from

Psychological Correlates of a Model of the Human Visual System,"

Proceedings 91 £33 IEEE National Aerosgace Electronics Conference,

1972, Dayton, OH: 309-316.

Ginsburg, A. P., 1976, "The Perception of Visual Form: A

Two-Dimensional Filter Analysis" in Information Processing 13 Egg

Visual System, Proceedings of the IV Symposium on Sensory System

Physiology, I. P. Pavlov Institute of Physiology, Leningrad, U. S.

S. R., V. D. Glezer, editor. A6-51.

Ginsburg, A. P., 1978, Visual Information Processing Based gg Sgatial

Filters Constrained 2y Biological Data, Dissertation for Ph. 0.

University of Cambridge, England, 1977. Also published as Air Force

Aerospace Medical Research Laboratory Technical Report AMRL-TR-78-129,

December, 1978.

Ginsburg, A. P., 1979a, ”Visual Perception Based on Spatial Filtering

Constrained by Biological Data,‘I Proceedings gj the International

Conference 92 Cybernetics and Society, Denver. A53-A57.

Ginsburg, A. P., 1979b, ”Spatial Filtering and Mechanisms of

Perception,” Proceedings 21 £22 Tenth Annual Pittsburg Conference 23

Modelling 22g Simulation, Pittsburg. 185-192.

Ginsburg, A. P., 1980a, ”Visual Perception Based on Biological

Filtering of Spatial Information," Proceedings g: the International

Conference gg Cybernetics gag Society, Cambridge, MA. A2A-A28.

Ginsburg, A. P., 1980b, ”Specifying Relevant Information for Image

Evaluation and Display Design: An Explanation of How We See Certain

Objects," Proceedings ‘2: £22 Society 12; Industrial Design, 21:

219-227.



162

Ginsburg, A. P. and J. M. Coggins, 1981, "Texture Analysis Based on

Filtering Properties of the Human Visual System," Proceedings 21 Egg

International Conference 95 Cybernetics 22g Society, Atlanta. 112-117.

Graham, N., 1981, “The Visual System Does a Crude Fourier Analysis of

Patterns, in Mathematiggl Psychology 23g Psychophysiology, Stephen

Grossberg editor. SIAM and AMS Proceedings Series. 1-16.

Gurari, E. M. and H. Wechsler, 1982, ”On the Difficulties Involved

in Segmentation of Pictures,” IEEE Transactions 92 Pattern Analysis and

Machine Intelligence, A: 3OA-306.

 

Hall, E. L., 1972, ”A Comparison of Computations for Spatial Frequency

Filtering,” Proceedings 21 355 IEEE, 60: 887-891.

Hall, E. L., B. K. Rouge and R. P. Kruger, 1977, "Automated Chest

X-Ray Analysis,“ SPIE Applications 91 Ogtics in Medicine 339 Biology,

89: 109-118.

Haralick, R. M., 1975, ”A Resolution-Preserving Textural Transform for

Images,‘I Proceedings 91 Chg IEEE Conference 99 Comguter Graghics,

Egttern Recognition, Egg Datg Structgggs, Los Angeles. 51-5A.

Haralick, R. M., 1979, “Statistical and Structural Approaches to

Texture,” Proceedings 2: 322 IEEE, 67(5): 786-80A.

Haralick, R. M. and K. Shanmugam, 1973, "Computer Classification of

Reservoir Sandstones,“ IEEE Transactions 93 Geoscience Electronics, 11:

171-177.

Haralick, R. M., K. Shanmugam and I. Dinstein, 1973, "Textural

Features for Image Classification,” IEEE Transactions 23 Systems, Man

and Cybernetics, 3: 610-621.

Harvey, L. O. and M. J. Gervais, 1981, "Internal Representation of

Visual Texture and the Basis for the Judgement Similarity,” Journal 2:

Experimental Psychology: Human Perception and Performance, 7: 7A1-753.

Hassner, M. and J. Sklansky, 1978, "Markov Random Fields as Models of

Digitized Image Texture," Proceedings 9: the IEEE Conference 22 Pattern

Recognition Egg Image Processing, Chicago. 3A6-351.

Hawkins, J. K., 1969, "Textural Properties for Pattern Recognition,"

in Picture Processing egg Psychopictorics, B. Lipkin and A.

Rosenfeld, editors, New York: Academic Press.

Hayes, K. C., A. N. Shah and A. Rosenfeld, 197A, ”Texture

Coarseness: Further Experiments," IEEE Transgctions 2g Systemsl Mag Egg

Cybernetics, A: A67-A72.

Hildreth, E. C., 1980, ”Implementation of a Theory of Edge Detection,"

MIT Artificial Intelligence Laboratory AI-TR-579.



163

Hofstadter, D. H., 1979, Godel, Escher, Bach: 99 Eternal Golden Braid,

New York: Basic.

Hubel, D. H., 1963, "The Visual Cortex of the Brain,” Scientific

American, 209(November 1963): 5A-62.

Jain, A. K., S. P. Smith and E. Backer, 1980, "Segmentation of

Muscle Cell Pictures: A Preliminary Study,” IEEE Transactions 99

Pattern Analysis and Machine Intelligence, 2: 232-2A2.

Johnson, L. R. and A. K. Jain, 1981, "An Efficient Z-Dimensional

FFT Algorithm," IEEE Transactions 99 Pattern Analysis and Machine

Intelligence, 3: 698-701.

Julesz, B., 1962, ”Visual Pattern Discrimination," IRE Transactions 99

Information Theory, 8: 8A0-892.

Julesz, B., 1965, "Texture and Visual Perception," Scientific American,

212(February 1965): 38-5A.

Julesz, B., 1975, ”Experiments in the Visual Perception of Texture,"

Scientific American, 232(April 1975): 3A-A3.

Julesz, B., 1981, ”Textons, the Elements (of Texture Perception, and

Their Interactions," Nature, 290(12 March 1981): 91-97.
 

Julesz, B. and T. Caelli, 1979, "On the Limits of Fourier

Decompositions in Visual Texture Perception,” Perception, 8: 69-73.

Julesz, B., E. N. Gilbert, L. A. Shepp and H. L. Frisch, 1973,

"Inability of Humans to Discriminate Between Visual Textures That Agree

in Second-Order Statistics - Revisited," Perception, 2: 391-A05.

Julesz, B., E. N. Gilbert and J. 0. Victor, 1978, "Visual

Discrimination of Textures with Identical Third-Order Statistics,"

Biolggjcal Cybernetics, 31: 137-1A0.

Kashyap, R. L., 1980, "Univariate and Multivariate Random Field Models

for Images,“ Comguter Graghics 999 Image Processing, 12: 257-270.

Kettig, R. and D. Landgrebe, 1976, "Classification of Multispectral

Image Data by Extraction and Classifiction of Homogeneous Objects,"

IEEE Transactions 99 Geoscience Electronics, 1A, no. I: 19-26.

Landeweerd, G. H. and E. S. Gelsema, 1977, "The Use of Nuclear

Texture Parameters in the Automatic Analysis of Leucocytes," Pattern

Recognition, 9: 57-61.

Landgrebe, D. A., 1981, "Analysis Technology for Land Remote Sensing,"

Was a the ELL 69: 628-6A2.



16A

Laws, K. I., 1980, "Textured Image Segmentation," University of

Southern California Image Processing Institute TR-9A0.

Lendaris, G. and G. Stanley, 1970, "Diffraction Pattern Sampling for

Automatic Pattern Recognition,” roceedings 91 199 IEEE, 58: 198-216.

Lu, S. Y. and K. S. Fu, 1978a, "A Syntactic Approach to Texture

Analysis,” Computer Graphics and Imagg Processing, 7: 303-330.

Lu, S. Y. and K. S. Fu, 1978b, ”Stochastic Tree Grammar Inference

for Texture Synthesis and Discrimination," Proceedings 91 199 IEEE

Conference 99 Pattern Recognition 999 Image Processing, Chicago.

3A0-3A5.

Marr, D., 1980, I'Visual Information Processing: The Structure and

Creation of Visual Representations,” Philosophical Transactions 91 199

Royal Sociegy 91 London, 8290: 199-217.

Marr, D. and E. Hildreth, 1980, "Theory of Edge Detection,”

31999991999 91 _99 Royal Society 91 London, 8207: 187-217.

Marr, D. and M. K. Nishihara, 1978, "Visual Information Processing:

AI and the Sensorium of Sight," Technology Review, 81: 28-A9.

Marr, D. and T. Poggio, 1979, ”A Computational Theory of Stereo

Vision,” Philosophic91 Transactions 91 the Royal Society 91 London,

820A: 301-328.

Marr, D., S. Ullman and T. Poggio, I979, ”Bandpass Channels,

Zero-Crossings, and Early Visual Information Processing," Journal 91

199 Ogtical Society 91 America, 69: 91A-916.

McCormick, B. H. and S. N. Jayaramamurthy, I97A, "Time Series Model

for Texture Synthesis,“ International Journal 91 Computer and

Information Science, 3(A): 329-3A3.

McCormick, B. H. and S. N. Jayaramamurthy, 1975, "A Decision Theory

Method for the Analysis of Texture," Inter99tional Jour99l 91 Com9uter

and Information Science, A(l): 1-38.

Mitchell, 0. R. and S. C. Carlton, 1978, "Image Segmentation Using

a Local Extrema Texture Measure," Pattern Recoggition, 10: 205-210.

Mitchell, 0. R., C. Myers and W. Boyne, 1977, "A Max-Min Measure for

Image Texture Analysis,” IEEE Transactions 99 Computers, 25: A08-A1A.

Modestino, J. W., R. W. Fries and A. L. Vickers, 1981, "Texture

Discrimination Based Upon an Assumed Stochastic Texture Model," IEEE

Transactions 99 Pattern Analysis 999 Machine Intelligence, 3: 557-580.

Mostafavi, H. and D. Sakrison, 1976, "Structure and Properties of a

Single Channel in the Human Visual System," Vision Research, 16:



165

957-968-

Mui, J. K., K. S. Fu and J. W. Bacus, 1977, "Automatic.

Classification of Blood Cell Neutrophils," Journal 91 Histochemistry

and Cytochemistry, 25: 633-6AO.

Nathan, R., 1970, "Spatial Frequency Filtering," in Picture Processing

and Egychopictorics, B. Lipkin and A. Rosenfeld, editors. 151-163.

Nilsson, N. J., 1980, Principles 91 Artificial Intelligence, Palo

Alto:Tioga.

Ochs, A. L., 1979, "Is Fourier Analysis Performed by the Visual System

or by the Visual Investigator?” Journal 91 the Optical Society 91

America, 69: 95-98.

Oppenheim, A. V. and J. S. Lim, 1981, "The Importance of Phase in

Signals,” Proceedings 91 199 IEEE, 69: 529-5Al.

Pantle, A. and R. Sekuler, 1968, "Size-Detecting Mechanisms in Human

Vision,“ Science, 162: llA6-llA8.

Papoulis, A., 1962, The Fourier Integral 999 119 A9911cations, New

York: McGraw-Hill.

PaPOUIIS. A., 1965. frobability, Random Variables and Stochastic

Efigsséggfi. New York: McGraw-Hill.

Pavlidis, T., 1977, Structural Pattern Recognition, New York:

Springer-Verlag.

Perkins, W. A., 1978, "A Model-Based Vision System for Industrial

Parts," IEEE Transactions 99 Comguters, 27: 126-1A3.

Pratt, W. K., 1978, Digital Image Processing, New York: Wiley.

Pratt, W. K., O. D. Faugeras and A. Gagalowicz, 1978, "Visual

Discrimination of Stochastic Texture Fields," IEEE Transactions 99

Cystems, Man 999 Cybernetics, 8: 796-80A.

Pratt, W. K., 0. D. Faugeras and A. Gagalowicz, 1981, ”Applications

of Stochastic Texture Field Models to Image Processing," Proceedings 91

199 IEEE, 69: 5A2-55l.

Pressman, N. J., 1976, ”Markovian Analysis of Cervical Cell Images,”

Journal 91 Histochemistry 999 Cytochemistry, 2A(1): 138-1AA.

Resnikoff, H. L., 1981, "Selective Omission of Information and Machine

Intellegence," Presented at the Machine Intelligence and Perception

Symposium at the Annual Meeting of the American Association for the

Advancement of Science, Toronto.



166

Richards, W. and A. Polit, 197A, "Texture Matching," Kybernetic, 16:

155-162.

Rosenblatt, M. and D. Slepian, 1962, "Nth Order Markov Chains with

Any Set of N Variables Independent," Journal 91 199 Society 191

Industrial 999 Agglied Mathematics, 10: 537-5A9.

ROSBOfEIG. A., 1979. "Some Recent Developments in Texture Analysis,"

2:222291999 21 199 IEEE Conference 99 Pattern Recognition and Imag9

2522232129. Chicago. 618-622.

 

Rosenfeld, A., 1981, "Image Pattern Recognition," Proceedings 91 _99

IEEE, 69: 596-605.

Rosenfeld, A. and A. C. Kak, 1981, Digital Picture Processing,

second edition, New York: Academic Press.

Rosenfeld, A. and M. Thurston, 1971, "Edge and Curve Detection for

Visual Scene Analysis," IEEE Trans9ptions 99 Comguters, 20: 562-569.

Rosenfeld, A., M. Thurston and Y. Lee, 1972, "Edge and Curve

Detection: Further Experiments," IEEE Transactions 99 Comguters, 21(7):

677-715-

Rosenfeld, A. and E. Troy, 197A, "Visual Texture Analysis," Comguter

Graphics and Image Processing, A: 172-179.

Sachs, M. B., J. Nachmias and J. G. Robson, 1971, "Spatial

Frequency Channels in Human Vision," Journal 91 199 Optical Society 91

America, 61: 1176-1186.

Schachter, B., A. Rosenfeld and L. S. Davis, 1978a, "Random Mosaic

Models for Textures," IEEE Trans991ions 99 Systems, 999 999

Cybernetics, 8: 69A-702.

Schachter, B., A. Rosenfeld and L. S. Davis, 1978b, "Some

Experiments in Image Segmentation by Clustering of Local Feature

Values,” Pattern Recognition, 11: 19-28.

Schmitt, F. and D. Massaloux, 1981, ”Texture Synthesis Using a Markov

Model," Proceedings 91 199 IEEE Conference 99 Pattern Recognition 999

Image Processing, Dallas. 593-596.

Shanmugam, K. S., F. M. Dickey and J. A. Green, 1979, “An Optimal

Frequency Domain Filter for Edge Detection in Digital Pictures," IEEE

Transactions 99 Pattern Analysis 999 Machine Intelligence, 1: 37-A9.

Siromoney, G., R. Siromoney and K. Krithivasan, 1972, "Abstract

Families of Matrices and Picture Languages,” Comguter Graghics 999

Image Processing, 1: 28A-307.



167

Sklansky, J., 1978, ”Image Segmentation and Feature Extraction,” IEEE

Wm _y___25stems .Ha_n en_d _Y__Cbereetics. 8: 237-2117.

Stevens, K., 1980, "Surface Perception from Local Analysis of Texture

and Contour,” MIT Artificial Intelligence Lab TR-512.

Tamura, H., S. Mori and Y. Yamawaki, I978, ”Textural Features

Corresponding to Visual Perception," IEEE Transactions 99 Systems, 999

and Cybernetics, 8(6): A60-A73.

Tennenbaum, J. M., et a1, 1978, "Prospects for Industrial Vision,” SRI

International Technical Report TR-l75.

Thompson, W., 1977, ”Textural Boundary Analysis," IEEE Transactions 99

Comguters, 26: 272-276.

Tomita, F., 1981, "Hierarchical Description of Textures,” Proceedings

91 the Internation91 Joint Conference 99 Artificial Intelligence,

Vancouver. 728-733.

Tomita, F., M. Yachida and S. Tsuji, 1973, "Detection of Homogeneous

Regions by Structural Analysis," Proceedings 91 the Internation91 Joint

Conference 99 Artificial Intelligence, Palo Alto. 56A-571.

Tomita, F. and M. Yachida, 1973, “A Structural Analyzer for a Class

of Textures,” Comguter Graghics 999 Image Processing, 2: 216-231.

Trussel, H. J., 1981, "Processing of X-Ray Images," Proceedings 91 199

IEEE, 69: 615-627.

Tsuji, S. and F. Tomita, 1973, "A Structural Analyzer for a Class of

Textures," Comguter Graghics 999 Image Processing, 2: 216-231.

Vilnrotter, F., R. Nevatia and K. Price, 1981, ”Structural Analysis

of Natural Textures,“ Proceedings 91 199 DARPA Image Understanding

Workshog, Washington, D. C. 61-68.

Wechsler, H., 1980, "Texture Analysis - A Survey," Signal Processing,

2: 271-282.

Weszka, J., C. Dyer and A. Rosenfeld, 1976, ”A Comparative Study of

Texture Measures for Terrain Classification," IEEE Transactions 99

Systems, 999 999 Cybernetics, 6(A): 269-285.

Wilson, H. R. and J. R. Bergen, 1979, "A Four-Mechanism Model for

Threshold Spatial Vision," Vision Research, 19: 19-32.

Winston, P. H., 1977. Artificial Intelligence, Reading, MA:

Addison-Wesley.

Zucker, S. W., 1976, "Toward a Model of Texture," Comguter Graghics

999 Image Processing, 5(2): 190-202.



I68

Zucker, S. W., 1981, "Computer Vision and Human Perception: An Essay

on the Discovery of Constraints,” Proceedings 91 the IEEE Conference 99

Pattern Recognition 999 Imag9 Processing, Dallas. 1102-1116.

Zucker, S. W. and P. Cavanaugh, 1980, "Constructive Texture

Perception: Orientation Anisotopies in Discrimination," McGill

University Dept. of Electrical Engineering. TR 80-8.

Zucker, S. W. and K. Kant, 1981, "Multiple-Level Representations for

Texture Discrimination," Proceedings 91 199 IEEE Conference 99 Pattern

Recognition 999 Imag9 Processing, Dallas. 609-61A.



.
O
U



 

"1111111111111111111“

  


