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ABSTRACT

NONLINEAR ELASTIC FRAME ANALYSIS BY FINITE ELEMENT

By

Jalil Rahimzadeh-Hanachi

Several methods of analysis of nonlinear elastic framed structures
are discussed. A method of analysis is defined to consist of three
components: (a) a finite element model, (b) local coordinates
(Eulerian or Lagrangian) for the element, and (c) a solution process.
The finite element models are based on a linear longitudinal displace-
ment function and a cubic transverse displacement function. However,
two versions of the contribution to the axial strain by the transverse
displacement are considered: one quartic and one constant.

Both the Eulerian and Lagrangian coordinates are considered for
the specification of the element local displacements. In addition,
two versions are employed for the Lagrangian formulation: one with a
fixed coordinate system and the other a moving (updated) coordinate
system.

Solution processes considered include the Newton-Raphson, the

one-step Newton-Raphson and a straight incremental p;ocedure. Past
contributions are pointed out in the framework as outlined above.
They include the works of Martin, Jennings, Mallet and Marcal, Powell,
Holzer and Somers, Ebner and Ucciferro, Oran, Bathe, Akkoush, et al.,
and others. The finite element results are compared among themselves
and with the numerical solutions corresponding to the "exact" beam-

column formulation.
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In addition, the identification of bifurcation loads is discussed.
The formulation of eigenproblems and the accuracy of their solutions
as estimates of bifurcation loads are also considered. Recognizing
that in practical applications the number of members in a structure
system is likely to be large, emphasis is placed on the effectiveness
of using a single finite element to represent a beam (- column) member
in a framed structure. 1In this regard, the results seem to indicate
that a most effective method would be using the finite element with a
constant axial strain (which of course includes the effects of trans-
verse displacements), Lagrangian, fixed coordinates, and the Newton-

Raphson algorithm.
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND

In recent years the concept of basing structural design on
ultimate strength has gained increasing acceptance. The computation
of the ultimate strength of a structure would generally involve load-
displacement relationships that are nonlinear. 1In other words, non-
linear structural analysis becomes necessary.

Nonlinear behavior of structures may be the result of two
sources: (a) "material nonlinearity" such as a nonlinear stress-
strain relation, and (b) "geometric nonlinearity" which represents
the effect of the distortion of the structure on its response.

In the present study we shall exclude the effects of "material
nonlinearity" and consider only "geometric nonlinearity", although
the exclusion of material nonlinearity would place a limitation on the
direct application of the results to the design of many types of
engineering structures. The study, however, represents a fundamental
step. For slender structures such as suspension bridges and perhaps
arch bridges, elastic nonlinearity is of direct concern.

Nonlinear elastic analysis of framed structures has been the
subject of investigation by a number of researchers. 1In the following
review, past works will be discussed as two groups. One group considers
the basic beam element as a continuum. The "exact" method would use

the correct expression for the curvature of beams, and is called the



"theory of elastica" (Timoshenko [l1]*). But most works have been based
on the use of an approximate expression for the curvature (equal to

the second derivative of the lateral deflection), and the resulting
theory is referred to as "beam-column theory." (Timoshenko [1],

Bleich [2]). The second group consists of those works that use finite
elements to model the members of a frame.

It is instructive to note that, in addition to the basic
element model discussed above, a method of analysis has two more
attributes. The first is the local coordinate system used which could
be either Eulerian or Lagrangian. In the "Eulerian coordinate formu-
lation" local displacements are measured with respect to the chord of
the deformed member, and in the "Lagrangian coordinate formulation"
local displacements are measured with respect to the axis of the un-
deformed member. The second attribute is the method of solution. At
least four methods have been used: the method of "Direct Substitution",
Newton-Raphson, One-step Newton-Raphson, and "Straight Incremental"
(Cook [3], Haisler [4]). The last three methods of solution have been
used here and are described in Chapter III.

1.1.1 WORKS BASED ON THE BEAM-COLUMN MODEL

The essence of the beam-column theory is the inclusion of the
effect of the axial force on the bending moment of a deflected beam.
Discussion of this can be found in various monographs (Timoshenko [1],
Bleich [2]).

Detailed expressions representing the exact solution of the

* Number in brackets refer to entries in the list of references.
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beam-column problem were given by Saafan [5]. He also derived a

tangent stiffness matrix [6] for use in a Newton-Raphson method of
solution. However, the effect of bowing (flexural deformation) on
the axial shortening was neglected in the tangent stiffness matrix.

Conner, Logcher, and Chan [7] , using the principle of
virtual displacement, developed the stiffness and tangent stiffness
matrices in two and three dimensions. The method was based on fixed
Lagrangian coordinates (the local coordinates are fixed, i.e., are not
updated after each incremental loading). It is good only for deforma-
tions involving small rotations. Methods of solution discussed in-
cluded that of successive iteration, Newton-Raphson and the straight
incremental method.

Oran [8,9] formulated for both two and three dimensional
problems the "exact" tangent stiffness matrix in "Eulerian coordinates".
Subsequently, he and Kassimali [10] applied these matrices to obtain
solutions to a number of numerical problems. The Newton-Raphson and
straight incremental methods were used. Nonlinear load-displacement
behavior as well as stability were discussed. The accuracy of the
solutions was shown to be generally excellent even for very large

displacements.

1.1.2 WORKS BASED ON FINITE ELEMENT MODEL

Martin [11] presented one of the earliest finite element formu-
lation to deal with geometrically nonlinear problems. The method is
one of incremental loading, using the well-known geometric stiffness
matrix [12] based on Lagrangian coordinates and updating the geometry
of the structure at every load increment. This is referred to herein

as the updated-Lagrange coordinates. Although in his method of
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solution there is no check on equilibrium, it is a very efficient
approach.

Jennings [13] highlighted his study by including the bowing
effect on the axial strain in the finite element formulation. He
derived stiffness and tangent stiffness matrices based on Eulerian
coordinates for plane frames. Consequently the expressions may be
used for very large displacements.

Mallett and Marcal [14] presented relationships between the
strain energy, the total equilibrium and incremental equilibrium equa-
tion in terms of the usual stiffness matrix and two (nonlinear) incre-
mental stiffness matrices. Lagrange coordinates were used in the
formulation. Expressions for the stiffness matrices for two dimensional
beam elements were derived based on the usual cubic shape function for
the 1lateral displacement. Since the contribution of that displace-
ment to the axial strain is in terms of the square of its derivative,
this Todel is referred to as the "quartic axial strain model." They
presented no numerical results.

Powell [15], in illustrating a general discussion of the theory
of nonlinear structures, presented the stiffness and incremental stiff-
ness matrix for two dimensional beams. He adopted the same shape func-
tions as those by Mallett and Marcal [14] but the stiffness matrices
were derived in Eulerian coordinates.

Akkoush, Toridis, Khozeimeh and Euang [16] used the conceot of
geometric stiffness matrix for a three dimensional beam model in updated-
Lagrange coordinates. It is essentially a generalized version of
Martin's method for space frames. The method was used to generate a com-
plete load-displacement path to study post-buckling and post-limit load

behavior.



Hozler and Somers [17] developed a method for the study of the
nonlinear response of reinforced concrete and steel plane frames up to
collapse. Material nonlinearity was also considered. Their formula-
tion was based on a minimization of the energy function defined by
generalized coordinates and forces in an Eulerian coordinate formula-
tion.

Bathe and Bolourchi [18] developed the stiffness matrices for
three dimensional beam elements subjected to large displacements and
rotations for the application to elastic, elastic-plastic, static or
dynamic analysis. Their formulation was quite rigorously based on
the theory of continuum mechanics. A number of numerical results were
given which will also be considered later in this thesis.

A theoretical and numerical comparison of methods including
those of Martin [11], Jennings [13], Mallett and Marcal [14], and
Powell [15] was undertaken by Ebner and Ucciferro [19]. The study was
limited to two dimensional problems. They presented derivations of
the stiffness matrices related to these methods from a common starting
point and thus made more clear the similarities and differences among
them. Part of the numerical results they obtained for comparison
studies have also been reproduced and discussed here.

Most of the previous studies have dealt with two dimensional
problems and structures with a small number of members. Since in
practice, three dimensional and larger systems are frequently in-
volved, this thesis is an effort to consider this class of problems. The

specific objectives and scope are discussed in the following section.



1.2 OBJECTIVES AND SCOPE

The primary objective of this work is to search for an effective
method for the elastic nonlinear analysis of three dimensional framed
structures, with a view to eventually applying it to structural sys-
tems consisting of a relatively large number of members. It was anti-
cipated that the finite element model would be more efficient than
the more accurate beam-column model; that a formulation based on the
Lagrangian coordinates would be more eff;q}gpt than one based on_ the

S - . . e e ¢ e ®

Egig;%fpﬂc?qréinates; and that the fixed-Lagrange formulation of the
solution would be more efficient thav the upd;?ed-Lagrange one.

These considerations led, in the initial phase of the work,
to a development of the M & M model (Mallett and Marcal) referred to
previously [14] for three dimensional beam elements. However, pre-
liminary results indicated certain basic problems for this model. That
is, for very slender members, it produced grossly inaccurate results.
This motivated a comperative study of the other finite element models
discussed previously.

They include Martin [11], Powell [15], Jennings [13] as well as
a new model [20] developed in the course of the present research of
which this thesis is a part. The new model is based on an "average
axial strain assumption", i.e., the axial strain due to the lateral de-
flection is averaged over the element as discussed in Chapter 2. It is
herein referred to as the FEA (Finite Element Average) model. For the
comparative studies, the beam-column model was used as a basis.

In addition to studies of load-displacement relations, this

study also included the formulation of eigenvalue problems, using

finite element models, from which estimates of "bifurcation load" or



"limit load" can be obtained.

The scope of this report is thus as follows:

1) To prepare computer programs for two dimensional problems
based on the following methods: the beam-column method, the
M & M method, Jennings' method and Powell's method.

2) To develop the stiffness matrices for three dimensional
beams based on the "quartic axial strain assumption".

3) To develop computer programs for three and two dimensional
problems based on the FEA formulation.

4) To formulate and solve eigenvalue problems in order to
obtain estimates of bifurcation or limit loads. Both
linear and quadratic eigenvalue problems were considered.

5) To obtain and compare numerical results, using the devel-
oped programs.

6) To assess the relative merits of the various methods.

In the course of the study, it was found appropriate to divide
the problems into three categories: problems of "spa;; Displacements",
"Intermediate Displacements", and "Large Displacements".

The comparison indicated that, for "Large Displacement" prob-

NS S -
lems, the method would have to be based on either Eulerian coqrdinates
or updated-Lagrange coordinates. For “$ma11 Displacement" problems

(although still involving load-displacement relationships that are

quite nonlinear), the fixed-Lagrange formulation considered here is

satisfactory (that is, both the M & M method and the FEA method). How-
ever, for "Intermediate Displacement" problems, the FEA method still

produces reliable results while the M & M method seems to fail.

The results obtained from eigenvalue problem studies indicated

T, e e &



that, with little primary or no bending, both linear and

quadratic eigenvalue solutions agreed with results obtained from com-
plete load-displacement solutions. For problems with substantial
primary bending, linear eigensolutions still generally produced accep-
table results if the structure-load system is symmetric. For asym-
metric systems the significance of the eigensolutions deteriorated.
However, in some cases certain linear eigensolutions were shown to

represent reasonable estimates for "limit loads."

1.3 NOTATION
A = Area of cross section;
A, B = End nodes of an element;
a1y Ay eeey A5, = Parameters used for definition
of shape functions;
E = Young's modulus;
FEA = Finite Element Average strain
model;
G = Shear modulus;
I, 1 = Moment of inertia of cross section
XX Yy (Figure 2-2);
I,1I = Moment of inertia of cross
n & section (Figure 2-2);
Inc. = Straight incremental;
J = Torsional constant;
[x], [x] = Element and structural linear
stiffness matrices;
[k ], x_1] = Element and structural initial
€ eo strain stiffness matrices;

[x ] - —L L

G Axial load

L = Length of element;
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[n:], [v,]

[n:*], [9:7)

[n2], [n.]
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BC

{q

{0
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ref

}

}

ref

Mallett and Marcal's method;
Element and structural first
order nonlinear stiffness
matrices;

Element and structural first
order geometric stiffness

matrices;

Element and structural second

order nonlinear stiffness
matrices;

Newton-Raphson;
External load vector;
Load step (load increment);

Axial load at the end of ith
load increment in the element;

Critical value of applied load;

Critical load corresponding to
Beam-Column solution;

Critical load corresponding to
eigenvalue solution (using N;);

Critical load corresponding to
eigenvalue solution (using N;*)

~

Critical load corresponding to
quadratic eigensolution;

Reference external load vector;

lai, 92, «v-s Qs D70 Qos eees
Q12JT;

(Element generalized displacement
vector) ;

Structural generalized displace-
ment vector;

Reference structural generalized
displacement vector;

Symbol for exact configuration
of the structure;



{AR}i

[s]
[s.]

u, v, w

ui, vi, w; and

uz, vz, W2

Vol.

X, Y, 2

X, ¥, Z

10

Symbol for structural configura-
tion at the ith iteration;

Unbalanced force vector related
to the ith iteration;

Radius of circle;

Structural secant stiffness
matrix;

Structural tangent stiffness
matrix;

Displacements along local x, vy,
z axes, respectively;

Displacements for nodes 1 and 2
of the beam element along x, y,
z axes, respectively;

Strain energy of the element;

Initial strain energy of the
element;

Torsional strain energy of the
element;

Total strain energy of the element;

Uu + U
€ t

Quadratic, cubic and quartic
parts of strain energy;

Potential energy of external
loads;

Volume;
Local coordinate axes;
Global coordinate axes;

Angle of opening of circular
arch;

Multiplier for asymmetric loading;

Longitudinal strain;

Initial strain at the beginning
of ith load increment;



Tolerance ratio for convergence
check based on displacement
variation;

Tolerance for convergence check
based on unbalanced force vector;

Rotation about x, y, 2z axis,
respectively;

Rotation about x, y, z axis for
nodes 1 and 2, respectively;

Total potential energy:

Chord rotations about z and y
axis, respectively;

Buckling load parameter;
Incremental operator;
Column vector;

Row vector;

Rectangular matrix;



CHAPTER II

FINITE ELEMENT MODELS

2.1 FINITE ELEMENT MODELS FOR THREE AND TWO DIMENSIONAL BEAM ELEMENTS

2.1.1 GENERAL

In this chapter the strain-displacement relations for three
and two dimensional beam elements are presented. Then the stiffness
matrices (including the linear and nonlinear parts) are derived, and

finally the equilibrium equations are written.

2.1.2 STRAIN ENERGY OF THREE DIMENSIONAL BEAM ELEMENTS BASED ON

QUARTIC AXIAL STRAIN FUNCTION

Consider a beam element in space as shown in Figure 2-1. The
x-, y-, z-axes, a right-handed coordinate system, represent the local
or member coordinates. The displacements and rotations corresponding
to these axes are denoted by u, v, w and ¢, ¥, 8, respectively.

The initial position of the element is AB. The length of AB
is equal to 2. The displaced position is A;B; and the projections of
A,B, on the x-y plane and x-z plane are denoted by A;B; and AZBZ-

It should be noted that the following assumptions have been used
in our derivation.

a) The material of the beam element is linearly elastic.

b) Plane sections remain plane after deformation.

c) The cross section of the beam is constant and has two axes

of symmetry.

d) The effect of torsional deformation on normal strain is

negligible.
12
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For a finite element analysis we assume linear shape functions

for u and ¢ and cubic shape functions for v and w, i.e.,

u = aj+azx

vV = ajtaygxta 5x2+a6x 3

(2-1)
w = a7+aex+a9x2+a1°x3
¢ = anitalzx L A e e e s s
The boundary conditions are:
at x=o.
u=u, V=V, W=WwW)
dv dw
— =0 -— = =Y =
dx lldx 1. 0 ¢l
at n=2% (2-2)

u=u, V=Vy, W= Wy

—— =82, === -Y2, ¢ = ¢

Substituting Equation (2-1) into Equation (2-2), we obtain a system of
linear equations for the unknowns a;, a;, ..., asz.
Solving the equations and substituting the results back into

Equation (2-1) we have

v = V1+elx+%’(—261-92+39 Y x24 —]:2' (6,+6,-260 )x3
o ) o (2-3)
1 1
w = wl_W1x+E(2W1+W2—3W°)x2+ E? (-Wl—W2+2Wo)x3
6,9,
¢ = ¢1 + 0, X



14

in which
= V2~V
eo - L
and (2-4)
_ =(wp=w1)
Wo 2

Following the usual beam theory assumption of plane sections
remaining plane, the longitudinal strain at each point of the beam ele-

ment may be written as:

2 2
dv dw
e(x,n,r) = ea(x) +tngrt z =z (2-5)

in which ea(x) is the axial strain at the centroid, and n and [ are
the coordinates of the point with respect to the principal axes of the
cross section plane as shown in Figure 2-2.

The axial strain at the centroid is

du 1 ,dv.? 1 .dw 2
= —— 4 — —_— —_— — -
Ea(x) ax 5 (dx) + > (dx) (2-6)

in which the last two terms represent the nonlinear effects of bending.
Thus it is seen that when v and w are cubic functions of x, Ea(x) is

quartic. Using Equation (2-6), Equation (2-5) becomes:

2 2
du 1 dv. 2 1 ,dw, ? dv dw
€(x,n,t) = ax + 5-(5;) + 3 (a;) +n ax? +C ax? (2-7)

From equations (2-3) we obtain:



Su
dx

Usi

e(x

in which:

Q
]

Hh
I

The

U
€

in which E

By

U
€

_ Uo-u

15

_ ug-u,
£

2
'332‘(— (61+62—260)

2x
=0, + Q,_ (-261"62"'360) + 2

2
2 3 ,
-y, o+ Zﬁ (2¥)1+¥,-3¥ ) + z;- (=¥1-¥+2¥ ) (2-8)

(-201-6,+36 ) + %; (81+6,-26_)

=0

(2¢14Y,-3Y ) + %% (-¥1-¥,42¥ )

=N

ng Equation (2-8), Equation (2-7) may be written as:

ca+tlgeld 2?1 fog 2?2
i) = a3 (b+gx+p7x")  + 5 (e4pXx4g7x7) (2-9)

c 24 f Xx
+n (E+§2'X)+ z (E+E7)

, b=20€, c 2 (-261-624-380)

2

3 (81+62-290) , e = =¥

2 (2W1+?2-3W°) r g =3 (-Wl-W2+2WO)

strain energy of the beam element due to normal strain is:
f 1 [ ]2 2 1 ]2 o1
B VOl.-Z—E e(x,n,2) ] dvol.= fO IAEE[E(XIY]IC) dAadx (2=10)

is the modulus of elasticity and A is the cross sectional area.
substituting Equation (2-9) into Equation (2-10) we have:
2

1_c/n 1, ¢ d 21 f g 2
- UG lagruge®) wiepaie® ] anax

2
12 LI (e 280+r G+ 2] anex ) (2-11)
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The strain energy due to torsion Ut may be written as:
S
v, =35 [T er (gD ax (2-12)
o
in which, G is the shear modulus, J is the torsion constant, anc

from Equation (2-3):
a9 _ &x=%1 (2-13)

In the absence of initial strain the total strain energy is the

sum of U and U, :
€ t

2

1 2. 1. c d » 1, £ g ,. 2
UTOTAL—zE{AfO[a+2(b+Ex+E3x ) +5(e+ix+zfx )y 1 dx

2 2 ¢ 24 > _2,f 2g .
+<f) L (T+gax P4e?(gerdx0 P anax }

+% [ GJ(QL%QL)de (2-14)
o

By integrating (2-14), the expression for the total strain enercy

for a three dimensional beam element is obtained as follows:

EAL

2 2 2 1w, uwy 122
= =(b*+ +
[ 5~ {a“+ab+ae®4 (b +e”) 4Sb e " +abctaef

13 13,1 1 _,1 o2 1 .22
+§b c+3e f+§bce +3efb +3ac +3abd+3af +3aeg

+%b2c2+%b3d+%e2f2+%e3g+§bcef+%b2f2+%c2e2

1 .21 .21 1 3,2 33 2. 1 .3
+§egb +§bde +2acd+2afg+zb cd+%bc +Ze fg+zef

+lefcz+%bcf2+l

2.1 .2 1 1 .2
2 4fgb +zcde +%bceg+3bdef+ ad

5
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1 1 2 3 3 .2 1
+5ag +——c +16b a2 +§b d+ f +——e g +§ef g+169 2p2

1 221 2 2 1 2 2 2 4 1 3
+16d e +Iac 2f +§bdf +gegc +§bdeg+§bcfg+§cdef+€c d

1 2 1 3 1 2 1 2 2 1 2 1
+3bcd +€f g+§efg +gefd +ébcg +gegc +§fgbd

1
+—cdf2+lcdeg+——c a%43pa’ +*—f2g +leg +14 g2+%bdgz

6 6 14 7 14 7

1 2,1 2 2 1 31,31 .21, .2
+EZd f +7egd +7cdfg+§cd +8fg +§cdg +8fgd

1 w1 41 52
+36% 4369 t1g@ 9} *

L p(c34q2 +2cd) I, +(£2 29242£9) T, +2-GT (ba=b1) 2 (2-15)
22 +3 3 EAARCYECARC IS

in which I = f n®an and 1, = [ ?dA are the principal moments of
A ° A
inertia.

It is noted that the total strain energy is a quartic function

of end displacements and rotations.

2.1.3 STIFFNESS MATRICES OF A THREE DIMENSIONAL BEAM ELEMENT

The total energy expression derived in the previous section

may be divided into three parts, i.e.,

= + +
Uporar, -~ Y2 * Us * U4

in which U, contains only gquadratic terms (in terms of degrees of free-
dom of a, b, ¢, &, e, £, g}, and similarly U, and U, contain cubic
and quartic terms, respectively.

It is well-known that the stiffness matrices can be obtained

from the strain energy expression as follows:
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k] = [00; ;1= [

[n1]

[n2]

[n), .1 =[]
i . .
! 99, Bq]
in which qi, qj represent the generalized coordinates such as uj, Vi, ...,
etc. It should be noted that [k] is the usual linear stiffness matrix,
while [n,] and [n,) contain, respectively, linear and quadratic terms

of the dismnlaceinents.

The calculations of [k], [nl], [nz] in Equation (2-16) are
very lengthy, but straightforward. The intermediate computations are
not presented here and expressions for each of the above matrices are
given in Appendix A.

It is of interest to note that if the terms containing rota-
tional displacements are dropped from [nl], i.e., only terms involving
the relative axial displacement (u,=-uj;) are kept, the resulting matrix

is:

[n,*] = 22020 [y ] (2-17)

(u,-uy)
L

has been interpreted to be the axial strain of the member, and

in which [nl*] is the usual "geometric stiffness matrix";

p = AE(E%“)

is the axial load (Przemieniecki [12]). The matrix [nl*] used in the

eigenvalue problem considered here, is given in Appendix C.



—
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2.1.4 STIFFNESS MATRICES OF A TWO DIMENSIONAL BEAM ELEMENT

Since we already have [k], [nl], [nz] for three dimensional
problems, by eliminating the terms corresponding to a third dimension
(e.g., wy, 01, Y1, wao, ¢2, ¥Y,) the expressions for the two dimensional
case (e.g., an element in x-y plane) can be obtained easily.

These expressions are shown in Appendix A. They check with

those reported by Mallett and Marcal [14].

2.1.5 STIFFNESS MATRICES BASED ON "AVERAGE AXIAL STRAIN"

The preceding stiffness matrices were based on a quartic
expression for the axial strain as given by Equations (2-6) and (2-7).
An alternative to this expression is to use the average of the non-
linear strains over the length [20]. 1In this case the expression for
axial strain is written as:

= (52) dx (2-18)

IZ 1 ,dw, 2
2 dx
o

[oR)
|-

Therefore, using Equation (2-7) we obtain the strain at each point of

a section as:

a?v a’w Us=uj
+ + =
a N axe ¢ dx? L

€(x,Nn,2) €

+

% (2612+2922-9162-36190-362604'18902)

+

(2912424, 2-¥ ¥ 5= 341 ¥ o 3¥, ¥ +18¥0 )

+

n [% (-20,-6,+306,) + '2—)2{ (61'*‘92-290)]

+

C [2 (2v149,-3%0) + S5 (-¥1-¥p42¥0) ] (2-19)
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The strain energy in this case is given by:

1 2 u,=-u 1
= + = = A22"H1, -

UTOTAL t 30

[e]

(2912+2622'e162‘36160‘38260+18602)

1

T (29 ,2429,2=y 1¥,=3Y¥ Y, =3¥,¥,+18Y,2 ] dx

+ % In fﬁ [% (=26,~6,+35,) +%’25 (01+6,-26,) ]%dx
o}
E g 2 6
+Z1g jo [T (2¥14¥5=3%0) + 75 (<¥1-¥,+2¥,) ]2ax
1 L4z, 2 -
+5 Gl jo () * dx (2-20)

By using exactly the same procedure as described in section
2.1.3, expressions for [k], [n;], and [n,] have been obtained. Since
the expressions for [k] and [n,] turn out to be the same as for the
quartic cases only the [nz] terms are shown in Appendix A. By
appropriately deleting certain terms in the [nz] matrix, its two

dimensional version is obtained and is shown in Appendix A also.

2.1.6 GLOBAL EQUILIBRIUM EQUATIONS

In the preceding sections we have derived the stiffness
matrices [k], [n,], [n,] for each element in local coordinates. 1If
for each element we transform these matrices to global coordinates and
assemble them in the usual fashion of.the finite element method, the
structural linear and nonlinear stiffness matrices [K], [N1] and [Nz]’
are obtained.

For an elastic and conservative system, the potential energy is:

d_ =0 + Vv (2-21)
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in which UTOTAL is the total strain energy of the structure and V is
the potential of the external loads. Denoting by {Q} and {P} the
generalized displacement vector and the corresponding external load

vector, we may write (see Mallett and Marcal [14]).

Urorar = Lo [% [x] + % (Ni] + ‘ij (v J]{0} (2-22)

v = -lo) {®) (2-23)
and,

o, = Lo) [3 [x] + 2 (] + 35 [v:1] {0} - Lo] () (2-24)

The first variation of the potential energy gives the total

equilibrium eguation, [14]
[s ] {0} = {p} (2-25)
in which [Ss] is the secant stiffness matrix, i.e.,
[s.] = [x] + 5 (] + 5 [n] (2-26)
s 2 3 L2

The second variation of potential energy gives the incremental

equilibrium equation, [14]
[sT] {aQ} = {Av} (2-27)

in which {AQ} and {Ap} denote the incremental displacement and load

vectors, respectively. [ST] is the tangent stiffness, given by

[ST]= ([x] + [M1] + [N2D) (2-28)
{0}

so: ([xk] + [N1] + [Nz]){é} {8} = {Ap} (2-29)
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in whizh {Q} denotes the displacement vector at which the incremental
vector {AQ} is to be measured.

Equation (2-29) may be used to formulate the eigenvalue problem
for buckling analysis. Both Equations (2-25) and (2-29) will be used

for studies of geometrically nonlinear behavior.

2.2 INITIAL STRAIN STIFFNESS MATRIX

2.2.1 GENERAL

The stiffness matrices derived in the preceding sections were
based on the assumption of no initial strain in the structural system;
that is, the total strain energy depends only on the displacements.

As will be shown in the next chapter, for some methods of
solution, it is necessary to consider the strain energy with reference
to a deformed state, i.e., a structure with initial strain. This
initial strain would result in an "initial strain stiffness matrix" in
the analysis.

Let us use a two dimensional beam element as shown in Figure
2-3. The X and Y axes represent the global coordinate system, the X0
and yi axes denote the member coordinates and Ci the member configura-
tion at the beginning of the ith load level.

The current strain energy U

duri . .
TOTAL uring the ith load increment

is formed of two parts:

i
a) U the strain energy at the beginning of this increment.

iri+l
b) 8] the strain energy due to change of the geometry with
reference to configuration Ci
so:
i i+i+l
UrotaL= U+ U (2-30)
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Since in Equation (2-30) iU is independent of the generalized
coordinates it does not enter in the derivation of stiffness matrices
of the system.

i+i+l
U may be written as:

iritl 1 i :
2
= —_ + = + -
U IVOl (FE€®+Ee€e) dvol = U_ er (2-31)
in which
1 2
u =] ZEE€?avol (2-32)
€ 2
vol
i i
v =[] Ece avol (2-33)
\-o Vol
i

€ is the current strain and eo is the physical initial strain at the

beginning of the ith configuration. It should be noticed that both €
and ;o are measured with reference to the chord configuration and not
to the deformed beam element.

As in the previous sections, takinc tne derivatives
of UE in Eguation (2-32) with respect to the generalized coordinates
we can obtain the usual tangent stiffness matrix (see Eguation
(2-28)).

In the same manner the initial strain stiffness matrix could
be derived from (2-33) if we substitute the expression for € in terms
of generalized coordinates.

In this section three initial strain stiffness matrices are
derived. The first two follow directly from the "quartic" and "average"

axial strain assumptions. They are used in the updated Lagrange method

of solution. A third one which corresponds to the usual geometric
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stiffness matrix is used in the straight incremental method of solution.

2.2.2 INITIAL STRAIN STIFFNESS MATRIX BASED ON QUARTIC AXIAL STRAIN

ASSUMPTION
In this case the contribution of each increment to the initial
strain is a quartic function of x, as in Equation (2 7). At
the beginning of the ith increment:
]

i i-1 2

e, om = ] [Sh2 Ldv® 1aw,?, d% 4w
3=1

2-3
ax2lax) *20aR Maxztbaxz (2-34)

in which j denotes the stage of the configuration.

Since the axial strain evaluated at the end of the jth con-
figuration is regarded as a scaler physical quantity, the effect of
successive increments has been added for 3 =1 to j =i - 1.

By substituting Equations (2=34) and (2-7) in Equation (2-33)

we have:

. 3
1 2
du 1 dv 1,dw d%v
Ve, = E jVol{jZl [5:550 *2G +n—;+cdx2]},‘
du 1,dv,2% 1 aw, ? d v _d%w (2-35)
[a;+2(a;) +5(E;) CEET] dvol
BZlU
(2-36)

e 1= [0k, ] = T

The intermediate computations are not shown here. The

major steps and final expressions for [ﬂ ] are given in Apoendix

o
B for both the three and two dimensional cases.
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2.2.3 INITIAL STRAIN STIFFNESS MATRIX BASED ON THE AVERAGE STRAIN

ASSUMPTION
In this case the contribution of each load increment to the
initial strain is based on the previously-mentioned average strain assump-

tion. Thus at the beginning of the ith increment,

. j
i-1 uz—u1 12 dv 2 ax QIQ(Qﬂ)zdx

Ye, Tm = I
=1
2 2
PR W A . (2-37)
ax’? dx

Since the right hand side of Equation (2-37) is independent

of x by using Equations (2-37) and (2-7) in Equation (2-33) we have:

. 4 3]
: il 7w -u, 1 g
i _ (T L dv 1 L gg v,
U. =EA i L ==y olg%) dX+2£ (&) dX]+n_“>
o d=1
£ dul dv,? 1 dw, 2 d?v dw
2 oG @ @ S e (2-38)

: . i . . .

in which UE finally can be shown as a function of generalized
o

coordinates.

Similar to the previous case, by using Equation (2-36) we have:

ke 1= 7P k] (2-39)
(o]

in which

- . 2 . 2
P - EA Z [u2£u1+% (VZQVI) + % (wngI)
j=1

[4
+ 35 (2017-8102+20:%) + o= (2‘1/1 “¥1¥2+2¥,2) ] (2-40)
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for three dimensional and

i-1 3
»=EA]
i=1

i [uz-ul + 1 (vz-vs

Q > + 30 (261 2-€16,+20,%)]  (2-41)

for two dimensional beam elements, and [kG] is shown in Appendix C.

2.2.4 INITIAL STRAIN STIFFNESS MATRIX BASED ON LONGITUDINAL

DISPLACEMENTS ONLY

The geometric stiffness matrix that appears in the literature
cited previously (Martin [11] and Przemieniecki [12]) and given in
Appendix C may be regarded as an initial strain stiffness matrix and
derived as follows.

In this case we take:

i izl ? U,=u
e, om0 = ) [P (2-42)
j=1

Using Equation (2-42) and (2-7) in Equation (2-33) we have:

i-1 7

iy . uz-us du 1 dv? 1 dw -
er—EA {jgl (2L ]}f [dx2dx +5(50 ] ax (2-43)

By following a similar procedure:

i _ i -
[keo] =P [kG] (2-44)

in which

is1d
»=r ] [F] (2-45)
3=1 -

i
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2.3 EIGENVALUE PROBLEMS FOR BUCKLING LOAD ANALYSIS

In Section 2.1.6 we introduced the linear incremental equili-
brium equation (Equation (2-29)). 1In the following section we are
going to use these equations to formulate certain eigenvalue problems
for the calculation of buckling loads.

One usual way to evaluate the critical load of a structure is
to set the incremental load vector {P} to null in Equation (2-29).
This leads us to the following equation.

([x] + [m] + [N2] _{aQ} = {0} (2-46)

{0}

For a buckling load analysis we look for a point ({P}, {Q})
on the load displacement curve (Figure 2-4) which satisfies the above
Equation (2-46). That {5} would be the buckling or critical 1load.

The exact solution of (2-46) in general is complicated because
of its nonlinear nature. But if we assume that the displacement of
the structure is a linear function of applied loads just up to the

point at which buckling occurs, then we have:

—
]

{p [x] {0, ¢} (2-47)

ref

and

{o ¢ [x]-? {r (2-48)

ef

In (2-47) {Pref} is an arbitrary reference load vector. Since
[N,] and [N,] are linear and quadratic functions of displacements, with

{p} = A {Pref}:
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]

[n,({oh] [mde _H (2-49)

and

[Nz ({Oh ] [v2({o DA (2-50)

in which A is a parameter.
Since Equations (2-49) and (2-50) are supposec to be valid

until buckling. we have

N1 cioh ]

[naclo DI,

[n2({oh ]

2
[Nz({Qref}):| >\cr

Thus Equation (2-46) can be written as:

(led + 2 [na] + 22 [N;_]){Q {80} = {o} (2-51)

ref

Equation (2-51) is a quadratic eigenvalue equation. For sufficiently
small displacements, matrix [Nz] may be neglected and Equation (2-51)

reduces to a linear eigenvalue equation:

(x] +x _ [mD {Ag} = {0} (2-52)
cr {Q

ref

Solution of Equation (2-51) or Equation (2-52) would yield

}.

A and, of course, the critical load vector is Acr {p

cr ref



CHAPTER III

METHODS OF SOLUTION

3.1 GENERAL

As mentioned previously, a method of analysis for the non-
linear elastic behavior of framed structures may be regarded as con-
sisting of three parts: (i) model, (ii) local coordinates, and
(iii) method of solution. In the preceding chapter several finite
element models have been formulated in Lagrange coordinates. In this
chapter, the methods of solution that will be applied for the solution

of these models are described.

3.2 NEWTON-RAPHSON METHOD

3.2.1  CONCEPT

Consider a structure subjected to a pre >2fined external load
vector {P}. Let Q pe symbolically the so called exact deformed con-
figuration of the structure. If we assume an iterative process, and
in the ith iteration the approximate configuration Qi is known, we are
interested in improving Qi in such a way that it would get sufficiently
close to Q.

We write the load displacement relation as:
{r} = {£(®} (3-1)

using a first order Taylor series expansion about Qi we have:

ot

{r} = {f(Qi)} + {aQ {80}
; .

o, i

29
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in which, {f(Qi)} may be interpreted as representing the elastic re-

of 4

30 as the tangent

sistance of the structure corresponding to Qi' and {
i Q.
stiffness at Qi' Then the modification to Qi is: *

-1 -
(0} = By (e-sigpd = (2 iam )
1

Q. 99,
39 3
in which,{ARi}is the "unbalanced force vector" at stage Qi'

The modified displacement is:

Q.

i+l T A

The process may be repeated until either AQi+k or ARi+k is

sufficiently small. This process is graphically illustrated in Figure
3-1 for a one degree of freedom system.

The preceding discussion was for the load applied as a single
load increment. For many problems greater accuracy in the solution may
be obtained by applying the load in increments (i.e., AP, 24P, ...,
etc.). For each increment the concept described previously applies,
provided the stress state of the structure at the beginning of load
increment is properly taken into account.

At the beginning of the increment the geometry of structure may
or may not be updated. Both cases are considered in the following

sections.

3.2.2 NEWTON-RAPHSON METHODS FOR FIXED COORDINATES

In this case the geometry of the structure is not updated.
The steps of the calculation are as follows:
1) Set load increment (and check if the intended total load

has been applied).



2)

3)

4)

5)

6)

7)

8)

9)

10)
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Form the structural tangent stiffness matrix as:

Tangent stiffness matrix = [K] + [N;({@}D ] + [N, ({o})]
Solve for {AQ} from:

{AQ} = [tangent stiffness matrix]~!{load increment vector}

Add {AQ} to the latest {Q} to obtain a new {Q}

If convergence check is based on displacement and {AQ} is
sufficiently small, return to 1.

Based on the new {Q} from step 4 evaluate N;({Q}) and

N, ({Qh) .

Form the tangent and secant stiffness matrices and resis-

tance force vector as:

Tangent stiffness matrix = [K] + [Nl({Q})] + [Nz({Q})]

Secant stiffness matrix

[k] + % [Ny ({oh ] + 3 [N ({oh]

Resistance force vector = [Secant stiffness matrix] x {Q}

Evaluate the unbalanced force vector as:

Unbalanced force vector = Increment load vector -

Resistance force vector.

If convergence check is based on unbalanced force vector
and it is sufficiently small, return to 1.
Return to 2 but use the unbalanced force vector for the

load increment vector.



32

3.2.3 NEWTON-RAPHSON METHOD FOR UPDATED COORDINATES

This procedure is to be used to implement the theory as dis-
cussed in Section 3.2.1. The loads are applied in increments. At
the end of each increment the geometry of structure is updated. 1In
addition to the usual stiffness matrices [k], [n;], [n,] there is the
initial strain matrix (resulting from initial strain energy) as ex-
plained previously.

The steps of calculation are as follows:

1) Set load increment (and check if the intended total load
has been applied).

2) Determine the most up-to-date geometry of the structure
by using the latest joint displacements, and update the
linear stiffness matrix.

3) Form the tangent stiffness matrix according to one of the
following cases:

a) For the first load increment:
Tangent stiffness matrix = [K] + [N;({gh] + [N, ({oh ]
b) For other load increments:

Tangent stiffness matrix = [K] + ﬁ(e 7]+ [Ny ({eD ]
o
+ [N2({h ]
in which [Ke ] is the initial strain stiffness matrix.
o
4) solve for {AQ} from:

{AQ} = [tangent stiffness matrix]~!{load increment vector}

5) 1If convergence check is based on displacement and {AQ} is

sufficiently small, return to 1.



6)
7)

8)

9)

10)

11)
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Add {AQ} to the latest {Q} to obtain a new {Q}.
Based on the new {Q} evaluate [N;({Q})] and [N2({gh].
Form tangent and secant stiffness matrices and resistance
force vector as:
a) For the first load increment:

Tangent stiffness matrix = [K] + [Nl({Q})] + [Nz({Q})]

Secant stiffness matrix = [K] + %-[Nx({Q})] + % X

[v2 ({03 ]
b) For other load increments:

Tangent stiffness matrix = [K] + [KE 1+ [Ni{oh ]
o

+ [N2({oh ]
Secant stiffness matrix = [K] + ﬁ(e ]+%%[N1({Q})]
o “~
1
+3 [v2cloh]
Resistance force vector = [Secant stiffness matrix]R{Q}
Evaluate unbalanced force vector from:

Unbalanced force vector = Incremental load vector

- Resistance force vector

If convergence check is based on unbalanced force vector and
it is sufficiently small, return to 1.
Return to 4 but use the unbalanced force vector as the

load increment vector.
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3.2.4 CONVERGENCE CRITERIA

3.2.4.1 GENERAL

In implementing the above Newton-Raphson method a convergence
criterion is needed. 1In this report, two convergence criteria have
been used. The first one is based on the unbalanced force vector and

the second one is based on the incremental displacement vector.

3.2.4.2 CONVERGENCE CHECK BASED ON UNBALANCED FORCE VECTOR

In this type of convergence check, a reasonable tolerance (which
has the unit of force or moment) is prescribed first for each group of
components (i.e., force or moment)of the unbalanced force vector.

After the evaluation of the unbalanced force vector in each
iteration the absolute value of each component of the vector is in-
dependently compared with the prescribed tolerance. Convergence is
considered achieved if, for each of the components, this absolute
value is less than or equal to the tolerance.

The feature of this convergence criterion is that it represents
a real test of the equilibrium of the structure and it is an absolute
check. The tolerance for this convergence criterion is denoted by €

f

times unit force or unit moment.

3.2.4.3 CONVERGENCE CHECK BASED ON INCREMENTAL DISPLACEMENT VECTOR

In the displacement convergence check used herein, for each
group of displacement components (i.e., translations or rotations) a
reasonable tolerance ratio is defined. If we denote the incremental
displacement vector by {Ax} and the total displacement vector by {x},

convergence is considered achieved if for both groups the following is



35

simultaneously satisfied.

4
2
I; (bx)

[Z—W] £ Tolerance ratio = Ed
i i

in which i varies from 1 to the number of translation or rotation com=-
ponents of the displacement vector, and ed is the tolerance ratio.

It should be noted that this convergence criterion does not
directly deal with equilibrium of the structure. Furthermore, its
absolute tolerance would decrease as the total displacement increases.

A comparison of the use of the two convergence criteria will

be presented in Chapter IV on numerical results.

3.3 "ONE-STEP" NEWTON-RAPHSON METHOD

This approach in general is the same as what was described in
Section 3.2. The only difference is that we do not iterate more than
once for each load increment. Thus there is no convergence check.
Obviously the advantage of this approach, when compared to
the Newton-Raphson method presented previously,is that it takes less
computation. It should be noted that whenever this method or the straight
incremental method (as described in next section) is used for beam-
column models, the iteration process on the axzial load of each elerent

should be continued until convergence is satisfied.

3.4 "STRAIGHT INCREMENTAL" METHOD

This approach is the same as the One-Steo Newton-Raphson
method except that not even one iteration would be used. Hence, there
is no need to evaluate the secant stiffness matrix, resistance and

unbalanced force vectors. Obviously the accuracy of this method would
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depend on the size of the load increment more than the previously

mentioned methods.

3.5 SOLUTION OF EIGENVALUE PROBLEMS

3.5.1 LINEAR EIGENVALUE PROBLEM

In this report the inverse vector iteration technique as des-
cribed by Rathe and Wilson [21] is used for solutions of the linear eicen-
value problers.The technique may be regarded as a mathematical formula-
tion of the Stodola method [22] in structural mechanics.

The basic equation (2-52) could be written as:
Agq = ABgq (3-2)

in which for simplicity symbols ([ ] and { }) have been dropped and
A = [X], B =-[N;]. It is assumed that A is positive definite and B
may be a diagonal matrix with or without zero diagonal terms.

The technique used for computer implementation is as follows:

(a) Start with a trial vector X1 for the first eigenvector
T
q, (XiBa1# 0.)

(b) For i=1, 2, ..., etc. evaluate

i+l i
Yip1 T BXi4
=T
X. Y.
- _ i+l 73 _
D(Xi+l) = - T - (3-3)
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in which p is the Rayleigh quotient
(c) The iterative process is considered to have converged if:

p(X, 1)-P(X,)

— € €psi (3-4)
p(Xi+1)

-2S

epsi in Equation (3-4) should be less than or equal to 10 if the
answer is required to be accurate up to 2S digits. If Equation (3-4)

is satisfied for i=n the smallest eigenvalue will be taken to be:

Al = o(Xn+1) (3-5)

and the corresponding eigenvector is:

X
q = n+l (3-6)
Y
n+l “n+l

The computer implementation of this technique (Ref. [23]) is

contained in the subroutine EIGENVL listed in Appendix D.

3.5.2 QUADRATIC EIGENVALUE PROBLEM

Using Equation (2-51) the solution for a quadratic eigenvalue

equation may be obtained by finding A for which:

dget | [x] +A [N1] + A% [N2] | =0 (3-7)
{Qref}

Since we are looking for the lowest buckling mode the smallest value of
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A is required.

The solution is carried out by evaluating the left-hand side
of equation (3-7) using increasing values of A, starting from zero
with small increments as shown in Figure 3-2. If for AA,det (AA)> o,
but for AB = AA + A), det(lB)< 0, then the solution A = A lies in the
interval [XA, AB].

A modified Regula-Falsi iteration technique is used to obtain
a closer estimate of the root A and the computer implementation of the
quadratic eigenvalue solution [23] is given in subroutine NLEIGNP of

the computer program in Appendix D.

3.6 COMPUTER PROGRAMS

3.6.1 GENERAL

In this section a general description of the programs developed
for this study is presented. For the Lagrangian coordinate formula-
tions two versions (for three and two dimensional problems) have been
prepared. For Eulerian coordinate formulation only the two dimensional
problem has been programmed for solution. A complete listing of the

programs is given in Appendix D.

3.6.2 PROGR2MS FOR PROBLEMS IN LAGRANGIAN FORMULATION

3.6.2.1 PROGRAM NFRAL3D

The program solves three dimencional problems formulated in
Lagrangian coordinates, discussed in Chapter II, by using the
various methods of solution as presented in Chapter III.

In addition to the usual required data input such as the

physical properties of the system, the input should include the fcllowing:



(a)

(b)

(c)

(d)

(e)
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Coordinates used: Fixed-Lagrange or updated-Lagrange.

Problem type specification (i.e., eigenvalue or incre-

mental load-displacement).

If

(b) is eigenvalue problem, specify either linear or

quadratic.

If
be
If

1)

2)
3)

4)

5)

(c) is linear, specify whether [N;] or [N;*] is to
used.

(b) is incremental load-displacement problem:

Type of solution, either Newton-Raphson or "straight
incremental". (The successive substitution method of
solution can also be handled by the program, but it
was not used in this report.);

Maximum number of iterations;

Type of convergence check and tolerance;

Parameters which specify whether both [Nl] and [Nz]
are to be used, or [Nl] only, or neither of them

in the solution method using updated coordinates;

If [Nz] is to be included, specify whether it is
based on the average strain or quartic strain

formulation.

In the program, the linear stiffness for each element is com-

puted, transformed into structural coordinates, and assembled into the

linear structural stiffness matrix. A linear analysis of the structure

is performed to obtain the displacements.

The structural displacement vector is transformed back into

element end displacements. Now for each element [n;], [n2] and [ke 1.

o

(depending on the type of solution), are computed if needed and the
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matrices [N1], [Nz] and[K€ ] for the structure are assembled. All of
o

the structural stiffness matrices have been assembled in banded format.

Due to symmetry only the upper semi-band is computed.

3.6.2.2 PROGRAM NFRAL2D

The general features of this program are similar to program
NFRAL3D except that it is specifically prepared for two dimensional
problems, and hence more efficient than using NFRAL3D for those prob-
lems. The options available to NFRAL3D are also available in this

program except for linear eigenvalue solutions.

3.6.3 PROGRAM NFRAE2D FOR TWO DIMENSIONAL PROBLEMS IN EULERIAN

COORDINATES

In this program three different models have been used. The
first one is that of the beam=column continuum. It has been studied
by Oran and Xassimali [10], among others. The second and third are
finite element models that have been developed by Powell [15] and
Jennings [13] respectively. No eigenvalue problem has been formulated
for these models.

It should be noted that some of the subroutines which have
been used in these programs are the same. However, since we wish
each program to be self-contained the same subroutine is repeated as

often as necessary in each program in Appendix D.



CHAPTER IV
NUMERICAL RESULTS

4.1 GENERAL

In this chapter we are going to consider a number of numerical
problems of nonlinear load-displacement behavior and buckling (eigen-
value problems) for both two and three dimensional cases. For the
first group we divide the problems into "Large," "Small" and "Inter-
mediate" displacement categories. This is a relative classification.
What we mean by a "Large Displacement" problem is the case in which the
deflection is of the order of the length of the member. By "Sﬁall
Displacement"” we mean it is less than about 2% of the member length.
"Intermediate Displacement" lies in between.

For eigenvalue problems, two types of loading (symmetric and

asymmetric) will be used for different arches and frames.

4.2 NONLINEAR LOAD-DISPLACEMENT BEHAVIOR

4.2.1 LARGE DISPLACEMENT PROBLEMS

4.2.1.1 CANTILEVER BEAM WITH TWO LATERAL LOADS

The geometry, physical properties and loading for this problem
are shown in Figure 4-1. This problem was chosen because it had been
solved by other investigators using many of the different methods dis-
cussed previously [19,101.

This system is also used to consider the effect of the step
size (load increment) on convergence criterion and to illustrate the

limitation of the one-step Newton-Raphson method of solution (l-step-NR).

41
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4.2.1.1.1 COMPARISON OF RESULTS FROM DIFFERENT SOLUTIONS

The displacements under the loads as computed by the various
methods are listed in Table 4-1. Row 1 gives the elastica solution
(Frisch-Fay [24]) and is taken to be the exact solution. Rows 2 and
3 list results of the beam=-column (continuum) theory using, respectively,
the Newton-Raphson (beam-col-NR) and the straight incremental (beam-
col-Inc) method of solution [10]. Rows 4 and 5 are, respectively,
results of Jennings' formulation [13] using the Newton-Raphson and the
straight incremental methods (Jennings'-NR or Inc). The numerical
results in these two rows were taken from Ebner and Ucciferro's re-
port [19].

For the incremental solutions the results obtained by use of
the program written for the Jenning's formulation for this study
(Program NFRE2D) are given in parentheses. It is seen that the latter
results are much closer to the elastica solution.

Rows 6 and 7 correspond, respectively, to the Newton-Raphson
and straight incremental method of solution using Powell's (Powell's-
NR or Inc) formulation [15]. Row 8 corresponds to Martin's method [11].
In Row 9 is given solution corresponding to Mallett and Marcal's [14]
model. The results based on the same model but using the updated
Lagrange coordinate formulation are contained in Row 10. Finally in
Rows 11 and 12 are listed solutions using the FEA model for the fixed
and updated formulations.

The number of elements and number of increments of loading used
are listed in columns 2 and 3 of the table. A consistent convergence
criterion has been used for all the Newton-Raphson methods.

From a comparison of the results in Table 4-1, it is reasonable
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to rank five methods that produce sufficiently accurate results for
this large deflection problem in the following order: (1) Beam-col=NR;
(2) Beam—col-Inc; (3) Jennings'=NR; (4) FEA-updated; and (5) Martin's
method.

The results obtained from the straight incremental solution
of Jennings' model are not as good as those given by the five methods.
However, when larger number of elements and increments were used, the
results may be regarded as acceptable. The results given by all the
other methods are so much off the mark that they are unacceptable.

Out of the preceding five accurate methods, the first three
(the beam-column and Jennings' formulations) have used Eulerian co-
ordinates which require a geometric transformation in every iteration.
This requirement made them less efficient than the last two formulations,
i.e., the FEA-updated method and Martin's method. A further com-

parison of these two will be given in the next section.

4,2.1.1.2 COMPARISON OF MARTIN'S METHOD AND FEA-UPDATED METHODS

For the same problem considered above in Figure
4-1 are plotted the load-displacement curves obtained by Martin's method
and FEA-updated method. Also shown is a curve obtained by the beam-
col-NR method. In the comparison belcw, the beam-coi-NR
solution with a suitable number of elements and convergence criterion
would be regarded as the "exact" one. This is because the elastica
solution is not conveniently obtainable, and for the range of be-
havior considered herein, the beam-column theory results have been
shown to be very close to the elastica solution [19,10].

The beam~-col=NR Curve C. in the figure shows a pattern of

1

"zig-zag" shape in the middle portion. This is because of the
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relatively large tolerance used in the convergence check. For a smaller
tolerence, as we will see later, smoother curves would be obtained. 1In

any case, the last point of C, agrees closely with the elastica solution.

1

and C_, would indicate that for the

A comparison of Curves C2 3

same accuracy the FEA-updated method used five steps (load increments)
while Martin's method used twenty steps. The number of iterations per
step in the FEA-updated method being about three, the total number
of iterations for<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>