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ABSTRACT

MULTIPROCESSING USING PROGRAM STRUCTURES

BY

Edward Louis Lamie

A model which is capable of representing computations on a multi-

processing system is deveIOped. The model takes the appearance of a

directed graph where each node contains both a data vector and a mapping

vector. The capy of a node concept is introduced and is used extensively

throughout the dissertation. various preperties of the model are investi-

gated including equivalence classes of input data and maximally parallel

form. Solutions to the problems of repeatability, interference, and

deadlock are presented. Properties of models which have restrictions

placed on available resources are also studied.
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CHAPTER I

INTRODUCTION

1.1 Background

Since the first electronic digital computer was introduced in the

l9#0's, there have been numerous increases in device speed and reliability.

Most of these advances can be directly attributed to hardware technology

such as miniaturization. However, technology appears to be approaching

a physical limitation as it attempts to greatly increase device speed.

Consider the fact that electricity can travel approximately one foot in

one nanosecond and many of today's computers Operate with speeds in the

order of tens of nanoseconds. Future advances in technology such as

large scale integration will undoubtedly increase device speed. However,

major improvements in device speed and reliability will probably occur as a

result of increased parallelism.

Parallel Operation is not a new concept. It has long been present in

many hardware devices. For example, one technique to increase the speed

of adders and multipliers is to perform many of the bit Operations in

parallel.f Another way to improve system performance is to have the

input/Output devices and their channels Operate in parallel with the central

processing unit. Still another method of increasing computational capa-

bility is to develOp a system which has two or more processors which can

Operate in parallel. The ILLIAC IV is an example of such a system (see

Figure 1.1). It consists of four quadrants wherein each quadrant contains

sixty-four processing (or arithmetic) elements and one control unit. The

 

* See "Design of parallel binary adders", Hellerman (2R)
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four quadrants share a uniprocessor (a Burroughs 6500) and a large disc

memory. Each of the four quadrants can work independently or they can

be joined together in a single array to process large problems. A de-

tailed discussion of the ILLIAC IV can be found in (4, 35).

Besides speed and reliability, there is another important reason

to investigate parallel processing (the term multiprocessing is used

synonomously). That reason is economics. As computer systems become

more complex, effective utilization of the system's resources is necessary

in order for the system to be cost effective. Time sharing and real time

processing present problems where all of these considerations must be 2

taken into account.

That multiprocessing is an important topic is evidenced by the fact

that discussion of this problem appears in most recent texts on Operating

systems (6,14,#5). Even though the justification for using multiprocessing

may be apparent, the techniques fer establishing such systems are not well

develOped. Organizing computations so that a number of processors can be

simultaneously working on them is a complex task. Organizing the compu-

tations so that all n processors of an n processor system are effectively

utilized is an even more complex task.

To illustrate one type of problem which can arise, consider the

following data transformation D1 and D2 where x, y, and z are storage

locations and f, g, and h are Operators.

D1 f(x)—-x

g(x)--y

D2 h(y)-4>z

The data transtrmations D1 and D2 must be done sequentially, but if the

Operations in D1 are performed concurrently, then the result of D2 will
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vary depending on the speed with which the Operations in D1 are performed.

For example, if Operation f is performed quickly, then it is possible to

Change the value of x before Operation g is begun. Another problem which

can arise is that f will attempt to change the value of x at the same

instant that g is attempting to access the value of x.

1.2 Previous Work

Petri nets were develOped by C. A. Petri (45) and are a means of

representing concurrent Operations. A Petri net is a labelled directed

graph that has only two node types call "places" and "transitions".

Performing an Operation is analogous to "firing" a transition in Petri

terminology. If conditions are met as specified by the places, the

transitions can be fired asynchronously. Petri nets have been used to

study conditions leading to deadlock (a situation in which it becomes

impossible to fire any transitions). Special cases of’Petri nets have

been analyzed and solutions to the deadlock problem have been develOped.

However, for many problems including the mutual exclusion relationship

between two transitions, only the general Petri net can be used. Many

of the concepts established by Petri can be found in other models including

Luconi (3A), Karp and Miller (29), Rodriguez (#1), and Slutz (#3). A

major drawback of Petri nets is that they are not sufficiently general

to handle parallel computations. A good example of this is the fact that

the "not" Operation (a transition fires if and only if a place if empty)

cannot be implemented.

Karp and Miller (29) have introduced a mathematical model for

parallel computation which is called "Parallel program schemata". The

model is an asynchronous system which consists of a set of Operations
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which Operate on a set of memory locations. Each schemata can be defined

by two directed graphs, a data flow graph and a control graph. The data

flow graph specifies the domain and range (in terms of memory locations)

of each Operation. Thus there are two types of nodes in this graph, one

type to represent Operations and the other to represent memory locations.

Similarly, there are two types of nodes in a control graph, one to represent

Operations and the other to represent control states. The control graph is

used to specify the order in which the Operations will be initiated. More

specifically, the control states determine when Operations can be initiated.

The control graph is similar to a Petri net. The model developed by Slutz

(#3) is a generalization of the Karp and Miller model. Among other results

obtained by Karp and Miller, decision procedures were established fOr such

properties as equivalence, determinacy, and boundedness.

Dijkstra (19) has prOposed a method of communication between two

or more processors that share memory. All of the processors have access

to special memory locations called semaphores. The semaphores contain

information that is used to block a processor from entering its "critical

state" if any other processor is in its critical state. Thus, the processors

can communicate with each other, but they are prevented from interfering

with each other, i.e., having two processors in their critical states at

the same time. Dijkstra also considers the problem of "deadly embrace",

i.e., two processors need to go into their critical states but each is

waiting for the other to go first. Neither processor ever gets to its

critical state because each is saying, in effect: After you, after you,

after you,.......... Dijkstra is not concerned with the writing of parallel

programs, but rather specification of a system which Operates in parallel.
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Rodriguez (#1) has introduced a parallel program model which he calls

"Program graphs". In this model, the computation elements are repre-

sented by nodes of a directed graph. Storage and transmission of

information are represented by the links between the nodes. The activation

of a node depends entirely on information residing in links that point

to that node. At any point in time, there may be many nodes that are

active. LOOping is achieved with the help of Special node types and

connection rules are specified so that determinism is assured. Program

graphs are shown to be deterministic in general, i.e., for any compu-

tation the final state is unique if started from the same initial state.

Luconi (3#) has prOposed a model fbr'representing communicating

processes which he calls "Asynchronous Computational Structures". These

structures have the ability of sharing memory and allowing the processes

to proceed concurrently. Depicted graphically, Operators reside in named

nodes while information resides in links which are also given a node-like

representation. There are no explicit timing constraints placed on the

Operators, so they can act asynchronously with respect to each other.

Complete functionality (a form of determinism) is proven based on several

conditions. The work of Rodriguez is given as an example of a computational

structure.

Slutz (#3) has develOped a model for parallel algorithms which he

calls "Flow Graph Schemata". The model is depicted as two directed

graphs, one for data flow and the other for control. In the data flow

graph, memory cells are represented by circular nodes. As in other

models, the functions may act asynchronously with respect to each other.

It is also possible for two or more applications of the same function

to be in progress concurrently. This behavior, called pipelining, uses
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a FIFO queue to store invocations of any function. Conditions for

determinism are established and equivalence of certain classes of Flow

Graph Schemata are investigated.

Some attempts to model parallel computations have taken the approach

of adding parallel instructions to an existing programming language such

as ALGOL or PL/I. Anderson (2) has prOposed use of the M3931

statements as one method of explicitly declaring that two or more proce-

dures may be executed in parallel. Similar approaches have been taken

by Dijkstra (l9), Conway (l6), and Dennis and van Horn (18). This type

of approach is satisfactory as long as the parallel procedures do not

Operate on common variables. If the procedures do Operate on common

variables, then precautions must be taken to avoid certain timing pro-

blems such as the possibility of simultaneously changing the value of

a common variable. Anderson (2) has stated that his terminate, 222222:

and release statements solve this problem for his approach.

Although previous papers have prOposed various solutions to problems

posed by multiprocessing, none of them are widely used. This is due

principally to a lack of generality or the cumbersomeness of the models.

It is difficult to imagine any large scale problem being programmed using

any of the previously discussed models. The model described in chapter II

is intended to be useful in the creation of programs that are easily

written and can be efficiently executed on multiprocessor systems. As

such it is a programming scheme rather than a model for machine design.

1.3 Statement of Problem

This research is centered around the develOpment of a model fOr

parallel computation which is called "Program Structures". The model
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is more general, more powerful, and conceptually simpler than the pre-

vious models discussed. Some problems that plague other models are not

relevant here. For example, it is shown that the problem of two processors

being in their critical states simultaneously is not really a problem at

all. Consequently, other problems such as the deadly embrace also disappear

in this model.

This dissertation is directed toward the creation of algorithms or

programs which can be executed on a multiprocessing system. The model

that achieves this situation takes on the appearance of a directed graph

where the nodes contain both information and transformations or mappings

of that imformation. The directed arcs are used to indicate the trans-

mission of the transformed information to other nodes. There is no

explicit control mechanism established to direct the execution of the

program. Control is considered to be taken care of by the prOblem

description itself and thus is an integral part of the parallel program.

Shared memory is used in this model. However, many traditional

problems are avoided by the use of a new feature call the "cOpy" of a

node. In previous models, there could only be one access to a given

piece of information in memory allowed at any one time. Using the

concept of OOpied nodes, there is no limit to the number of simultaneous

accesses to a given piece of information in memory. Besides eliminating

many previous problems, use of this concept has the effect of speeding

up the execution of a program.

A formal description of the model is presented, along with several

examples. Capabilities of the model are discussed as well as a proof

that the model is capable of implementing any flowchart schema. It is

shown that for some Program Structures the set of input data can be
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placed in equivalence classes. An analysis formalism is develOped to

aid in the discussion of various prOperties of Program Structures.

Conditions fer a form of determinism (called repeatability) are estab-

lished and maximal parallelism is investigated. Solutions to problems

of interference and deadlock are presented. Finally, prOperties of

Finite Program Strutures and COpy Free Program Structures are investigated

and conditions for equivalence are presented.



CHAPTER II

FORMAL DEFINITION

2.1 Model Specification

The purpose of this section is to describe Program Structures as

well as some of their components and attributes. In order to do this,

the simplest element, the node, is defined first. After that, the

prOperties of the node are defined and then the definition of Program

Structure is presented.

As has been stated before, this model is depicted as a directed

graph wherein the nodes contain both data values and mappings between

nodes. The directed arcs are used to indicate which nodes are to have

information mapped into them.

Definition 2.1

A 2292 Ni is a set defined as follows:

Ni = {D1, Mi} where D1 is an n-tuple which contains intonation

associated with Ni, where ne'O, and M1 is an m-tuple whose components

are mappings of D1 into various nodes, where ma 0. If f 6 Mi, then f

is a rule which uses some or all of the data in D1'" to determine some

or all of the data values of some Dj. D1 is referred to as the d_a_t_a_

vector and M1 is referred to as the mapping vector.’

For example, Figure 2.1 shows a pictorial representation of a node.

In this example, node N1 might be used to represent a point in space that

 

'1' The set notation f 6 M1 is also used to denote some element in the

m-tuple M1.

10
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passes information on to two other nodes. The mappings f and g would

be previously defined.

In order to facilitate the discussion of prOperties of nodes, several

notations and definitions are now introduced.

Definition 2.2

An element x e D1 is said to be defined if it has a value assigned

to it. Otherwise, that element is said to be undefined. For convenience,

undefined elements will be denoted by a question mark "?".

Definition 2.3

Given a set or vector B, let #(B) be defined to be n, where n is the

number of elements in B.

For example, given D1 6. N1, then #(D1) = j where D1 is a j-tuple.

Frequently there may be many elements in D1 or M1 and it is often

necessary to refer to a Specific element. The next definition provides

the notation to accomplish this.

Definition 2.#

. i .th i . i . .
Given D , the 3 element of D is denoted by Dj' Similarly, the

kth element of M1 is denoted by M; or ft.

It has been established that any element in D1 is either defined

or is undefined. This property is very important when the type of a node

is being determined. The next definition provides notation that can be

used in classifying a node.
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Figure 2.1 A pictorial representation of node N1
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Definition 2.5,

Given D32 6 D1, let @(DE) be defined as follows:

i 1 if D3 is defined

@(D,) a

J

0 otherwise

Now it is possible to determine the type classification of any

node. This classification is not only fundamental, but essential to

the asynchronous Operation of Program Strutures.

Definition 2.6 i

i i #(D ) i i i
If D é N and E @(Dj) = #(D ), then node N is classified

i=1

as a known node. Furthermore, if a node is not a known node, then it is

classified as an unknown node.

This definition simply states that if every element in Di is

defined, then node N1 is a known node.

During the execution of a Program Structure, nodes will have values

mapped into their data vectors. Whenever a node has values specified

for every element in its data vector, then that node becomes a known

node. Until that happens, the node is classified as unknown. The

reason for making this distinction is that when the execution of a

Program Struture is defined, only known nodes can be processed.

The mapping vector of a node is used to transform or manipulate

information in the data vector and then place it in other nodes. The

mapping vector can be the empty set or it can contain one or more

mappings. In any case, the contents of the mapping vector remains
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unchanged throughout the execution of a Program Structure.

Definition egg

The domain of a node N1 will be denoted by Domain (N1). The

gaggg of a node N1 will be denoted by Range (N1). For any node N1,

Domain (N1) D1 where D1 e N1

Range (Nl) = [Dal DJ 6 NJ where N;] is an unknown node and

£33 D1 -»D3}

The primary consequence of this definition is that if f is a mapping

from Ni into Nj, then Nj must be an unknown node. This further eliminates

the possibility of mapping a known node into another known node and changing

the result of a previous computation.

As an example, consider the trigonometric problem in Figure 2.2 where

(x1, y1, d1) and (x2, y2, d2) are known and (x , ) is unknown. The

’3

quantities <11 and d2 are direction vectors and (xi, yi) is a two dimen-

sional coordinate.

The problem can be solved by using two known nodes N1 and N2, and

two unknown nodes N3 and N“. The mappings f, g, and h are used and are

defined as follows:

f(D1) = (D1, D2, Dg, ?, ?, ?) where ? indicates an

undefined value

g(D2) = (?, 2, ?, D2 D2 D2)
1’ 2’ 3

h(D5)
9

(x3, y3, .) where h calculates x3 and y3

From the preceding exmle it is apparent that for any M1 6 NJ",

Ml consists of zero or more mappings from Dlé M1 into the range of N1.
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Figure 2.2 Trigonometric problem using two dimensional coordinates
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In most models of parallel processing, much attention is given to

the control of execution of the model. In some cases, such as the models

prOposed by Rodriguez and Slutz, control is maintained by the use of

control nodes or even a control graph. In the model being proposed here,

control is not a major concern because the data being processed will

serve implicitly as the control. The next concept which is defined will

help achieve this effect.

Definition 2.8

A cOpy of a node N1 is another node which has the identical mapping

vector M1, the same number of elements in the data vector D1, but possibly

the contents of one or more of the data elements differ.

The notion of a cOpy of a node will be used extensively in the

execution of Program Structures. Since it is possible to have a number

of cOpies of a node, some additional notation is necessary to eliminate

any possible confusion.

Definition 2.3

.th i . i,j .
The 3 cOpy of node N will be denoted by N . In particular,

the original node N1 will be denoted by NJ"0 or simply as N1. The same

notation will be used for the mapping and data vectors as well.

Having established these preliminary concepts, it is now possible

to present the definition for the Program Structure.

Definition 2.10

A Program Structure is a triple (K, U, A) where
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F
R

l
l fulfil I N"3 is a known node} and K is called the

set of known nodes

U = {N1’0 ' NJ"0 is an unknown node and U is called the

set of unknown nodes, the set U never decreases in size

and the data elements in each node of U are never changed.

A = iTNl’J ' N1’3 is a cOpy of some node in U, j > 0, N1’3

is unknown, and 3 x a D1'3 3 @(x) = 1} and A is called

the set of active nodes

The most striking difference between Program Structures and earlier

models of parallel computation is the simplicity of the former. This

simplicity does have a price, i.e., the amount of storage required by

Program Structures would probably be greater than that of most other

models if they were implemented on a multiprocessing system. On the

other hand, the amount of internal overhead would most likely be dras-

tically reduced and many problems encountered in other models are

easily overcome by Program Strutures as demonstrated in Chapter V.

The set of known nodes is analogous to a set of "current states"

using Finite State Machine terminology. Since a Finite State Machine is

a sequential machine, there is at most one current state at any instant

in time. Since a Program Structure is intended to resemble a parallel

machine, there can be many current states at any point in time. Similarly,

the set of active nodes is analogous to a set of "next states". The set

of unknown nodes does not have a direct correlation to Finite State

Machines, but it can be regarded as a "master file".
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When a node maps information to another node it might be possible

that the contents of a previously defined element of a data vector

would be altered. To avoid this situation, mappings will be performed

in a special manner. In order to define how mappings are carried out,

the following Operation on sets is required.

Definition 2.11

Given n-tuples B and C where #(B) = #(C), B & C is the Operation

on the components of B and C defined as follows:

If 3 bié B, cié c 3@(bi)=@(ci)=lthenB&C=B

else B & C = D where #(D) = #(B) and

 

hi if @(ci) = o

D: Ed. I d.= c. if@(b.)=O
1 1 l 1

for i = l,2,....#(B) L? if @(bi) = @(ci) = o

Forexample,ifB= {1,2,1}, '23 andC= {?,?,3,?}

thenB&C={1,2,3,?} .

Similarly, ifB= {1, 2, 2,2} andC= {an}, 2, 1?

thenB&C= {1,2,?,?}

Definition 2.12

k,m

The mapping szl’J-v D is performed as follows:

0 .

1. A copy of Nk’o is placed in A only if another copy of Nk’ is
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not in A or if the information portion of those cOpies in A have

values defined in the positions which would be defined by f

2. f(Di’j) = (d1, d ...... 9 dn) is evaluated where n =.#(Dk’m)
29

and N1’3 is a known node

3. Dk‘r «- Dk’r 8. f(D1'3) for all Nk’ré A where r > o

4. If all the elements of data vector Dk’r are defined, then node

Nk’r becomes a known node and is removed from A and added to K

The definition of mapping above makes it impossible for any node to

alter the results of a previously processed node. It is assumed that

creation of copies is an indivisible Operation. If two nodes simultaneously

map to a common node and a cOpy does not exist, then only one cOpy would

be created and placed in A.

Definition 2.13

The performance of the mapping as defined above will be deonted by

Dk’m 6 Hum) where rznl'J —* Dk’m.

The execution of a Program Structure is simply a matter of visiting

the nodes in the set K. When there are no more nodes left to visit,

execution terminates. When visiting a node, all of the mappings in the

mapping vector are performed and information is passed to the specified

nodes. If there are two or more nodes in the set K, then these nodes

may be visited in any order. When visiting a node, it is first removed

from the set K; after being visited, it is destroyed. The following

definitions formalize these notations.



Definition 2.14

A node is said to be processed when that node is visited and all of

its mappings are performed.

The next definition specifies the Operation of a Program Structure.

Before proceeding with it, note that whenever an unknown node has all

of the elements of its data vector defined, it becomes a known node and

is added to the set K.

Definition 2.15

A Program Structure is said to be executed when the nodes in the

set K are processed. Execution is terminated when the set K becomes

empty and there is no node currently being processed.

It is not necessary to prescribe a procedure for executing a

Program Structure since only known nodes can be evaluated. However,

the following prOposition presents a possible algorithm for executing

a Program Structure.

Proposition 2.1

Any Program Structure can be executed using the following algorithm:

1. If K = O and there is no node currently being processed, then

go to step 6

2. Delete a node Nl’k from the set K

3. V f e Ml’k (w.l.o.g. assume f:D1'k--- D5"m where DJ’m 5

Range (Nl’k)) perform Dj,me f(D1’k)

A. If any nodes in A become known, delete them from A and add them

to K
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5. Go to step 1

6. Terminate

Proof: Obvious from definition 2.15.

2.2 Examples

Several examples of Program Structures are now given in order to

make clear some of the preceding definitions. A conventional flowchart

is shown and compared to the equivalent Program Structure in each example.

The first example is the implementation of the Newton-Raphson root

finding algorithm, i.e., given an initial guess x, "improve" x until a

Specified degree of accuracy a is met:

f(xi) . . . .
= x. - where the initial guess 18 x0

f' xi)

The values for the initial guess x, the accuracy a, and a control

value n are input. The conventional flowchart appears in Figure 2.3

while the corresponding Program Structure appears in Figure 2.#.

In figure 2.h the root of the equation will appear in node N2 if a

root is found within n iterations. OtherWise, the most recent value

computed for x will appear in node N“. At any rate, when execution is

terminated either node N2 or node Nl+ (but not both) will appear in set A

and that result could be used by still another Program Structure.

Similarly, in Figure 2.3 the conventional flowchart could be a subprogram

which is used to communicate with a main program or other subprograms.

As a numerical example, suppose that a root is to be fOund for the

equation x2 - 5x + 3 = O. For illustrative purposes, it will be assumed

that each node will require one time unit and only the contents of the
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FPX*— f'(x)

x-v-x - FX/FPX

n-n—n-1
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OUTPUT

'error'

_Ij

cm
Figure 2.3 Conventional flowchart for Newton-Raphson algorithm
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N2 N3

NA

The mappings are defined as follows:

1 1, (x-dx,a) if

f1(x, a, n) = (x, a) f1 (x,dx,a,n) = ldxl >- a

(x, ?) otherwise

f;(x, a, n) = (n)

f2(x, a) = (x, %§%%7, a, ?) f:(x, dx, a, n) = (n)

(7, ?, ?, n-1) if n > O

(?, ?, ?, ?) otherwise
13(n) 2

Figure 2.# Program Structure for Newton-Raphson algorithm
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data vector of a node will be displayed. The contents of set U will not

be shown since it remains constant.

TIME Set K Set A

0 N1,1 5 (x)

.001 (a)

10 (n)

1 N2,1 5 (x)

.001 (a)

113'1 {10 (n)

2 5 (x)

N151 .6 (dx)

.001 (a)

9 (n)

3 .2 4.4 (x)

.001 (a)

. 113'2 { 9 (n)

4 N4,2 4.4 (x)

.095 (dx)

.001 (a)

8 (n)

5 N20} 4-305 (X)

.001 (a)

N313 {8 (n)

6 4.305 (x)

Nth} .002 (dx)

.001 (a)

7 (n)

,4 4.303 (x)

N2 if? (a)

In this example, the root is found after three iterations and the

result is placed in Nz’h. If there were no real roots to the equation

or if the root was not found after n iterations, the last computed value

would be placed in a COpy of Na. COpies of nodes N2 and N3 are in the set K
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at the same time on several occasions; when this happens it does not

matter which node is processed first. This is characteristic of the

asynchronous behavior of a Program Structure.

The Program Structure described in this example could be made "more

parallel"‘f by breaking node N2 into two nodes thus potentially allowing

more nodes to be processed in parallel. The maps in each of the new

nodes could compute f(x) and f'(x) respectively. A third node could be

used to compute dx. The Program Structure in Figure 2.5 is an example

that shows how this might be done. Although this Program Structure

contains more nodes than the previous one, the execution time would

undoubtedly decrease if more than one processor is available to process

the nodes. This would be due to the fact that more Operations could be

performed simultaneously.

The next example of a Program Structure is the implementation of a

Finite State Machine. A definition of Finite State Machines is first

presented.

Definition 2.16

A Finite State Machine M is a quintuple M = (S, I, s, 5’, E? where

S is a finite set of states

I is a finite set of input symbols

8 is the start state (868)

5 is the transition (next state) function

F is a set of final states (FE S)

 

f Maximal Parallelism will be discussed in Chapter IV.
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Figure 2.5 A "more parallel" representation of Figure 2.4
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The input to the machine can be a sequence of symbols on a tape or

simply a string of symbols. Since they are equivalent notions, the

conventional flowchart will input from a tape and the Program Structure

will input from a string. In the conventional flowchart in Figure 2.6

the tape is considered to be device one. The tape is assumed to be in

position to read the first symbol prior to execution. Symbols are read

from the tape one at a time, reading from left to right. Furthermore,

each symbol x is read at most once and the tape will advance to the next

symbol after each read. In this example, this process continues until

the machine enters a final state or when there are no more symbols left

to read. In the Program Structure of Figures 2.7 and 2.8, a string I is

used rather than a tape so the symbols are read from the string in a

similar fashion.

Note that ‘6 (x,s) = ? if there is no next state associated with

x and 8. Also note that the null input is a valid input. If the machine

ends in a final state, that state will be found in node N8 of the Program

Structure. If no node N8 exists in set A when execution steps, then a

final state was not reached.

2.3 Additional Features

No mention has been made of the concepts of input and output. This

has been the case since Program Structures are inherently capable of

input and output Operations. The following definitions merely formalize

this capability.
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Figure 2.6 Implementation of Finite State Machine using a

Conventional Flowchart
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Figure 2.7 Implementation of a Finite State Machine using a

Program‘Structure
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f1(s) = (3)

ram = (I)

r3(s) = (s, ?, 2)

f:(8’ I) = (8)

f:(s, I) = (I)

f6(I, X) = (?, I. X)

‘3“, 1, x) = ( 5(s,x), I)

7 (3,?) ifxéF

f2(s, I, x) =

(?, '2) otherwise

Figure 2.8 Definition of mappings used in the Program Structure of

Figure 2.7
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Definition 2.12

The input to a Program Structure is a set I of nodes such that

I = {Ni ' Ni 6 K prior to execution of the Program Structure}

In other words, the input to a Program Structure is the set

of all nodes which are known before any node is processed. The output

from a Program Structure is defined next.

Definition 2.18

The output from a Program Structure is a set 0 of nodes Nl’J such

that

‘I. Nl’J 6 A when execution is terminated

2. Nl’J is the last capy of N1

3. N1 is specified prior to execution

To give an example of input and output nodes a sequential table

search algorithm is implemented. Given a table T which contains n

elements and a key x, determine whether or not x is in T and if it is,

output the position (or index i) that it occupies in the table T.

Figure 2.9 shows a Program Structure which performs table lookup.

1 2
Nodes N and N are input nodes and nodes N3 and N“ are used as output

nodes. If the table search is successful the position of x will be found

in the last copy of N“. If x is not in the table T, then the value n+1

will be found in the last copy of N3.

{wt NZ}

{N3, N4}

In other words: I

O
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f1(x, 1) = (x, 1, '2, '2)

r2(T, n) = (2, 2, n, T)

 
(x,i+1,n,T)

4 if i'< n

r (x,i,n,T) = (x,i,n,T) if x é T(i)

(x,i+1,?,'l‘) f3(x,i,n,T) =

otherwise (x,i,?,T) otherwise

  

P
a
n
t
-
“
N

Figure 2.9 Use of a Program Structure to perform table lookup
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This means that the output from a Program Structure can be any

arbitrary set of nodes. These nodes are always the last cOpies of nodes

residing in set A when execution is terminated.

There are no unconditional branching features in the nodes of a

Program Structure. However, there is a capability for performing

leaping Operations or iterations which has been apparent in most of

the preceding examples. This capability involves the notion of cycle,

which is defined next.

Definition 2.12

A Program Structure contains a.gy§;g if there exist nodes Ni and N‘-j

such that when Ni becomes known then Nj will become known only if N1 is

processed and cOpies of Ni will become known only if N5 is processed, and

so on. For example: Ni’1 éNjn 7-? 19,2: Nj"2 9Ni’3=> .....f

The concept of cycle'here is analogous to cycles in graph theory

and IOOps in flowchart schemata. This analogy is depicted in Figure 2.10

and in Figure 2.11.

Given any Program Structure, it is not immediately apparent whether

or not execution will halt in a finite number of steps. The next definition

introduces terminology that will be used to discuss this problem.

Definition 2.20

A Program Structure is said to be solvable if execution Of that

Program Structure terminates in a finite number of steps. Otherwise,

a Program Structure is said to be unsolvable.

 

.r Ni’j=>>Nk’m means Nk'm will become known only if Nl’J is processed.
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Figure 2.10 Directed Graph containing a cycle

 

C D

  

   

 

  

   

  

 

C)

Figure 2.11 Flowchart Schema containing a 100p



35

In general, Program Structures may not necessarily be solvable,

but there is one type that is.

Proposition 2.2

Any Program Structure which is cycle-free (contains no cycles)

is solvable.

21:923.:

Assume that there are a total of n nodes in the Program Structure.

Since the Program Structure is cycle-free, this means that each node will

be processed at most one time. Hence, the Program Structure will terminate

execution after processing a maximum of n nodes.



CHAPTER III

COMPUTABILITY

3.1 Implementation of Flowchart Schema

Most of the preceding discussion has concentrated on the internal

aspects of Program Structures. In this section, it is shown that

Program Structures can be used to implement any Flowchart Schema as well

as incorporating any inherent parallelism in the Flowchart Schema.

Definition 3.1

A Flowchart Schema (FS) is a 4-tuple (M, N, p, f) where

M is a finite set of memory cells

N = {5, e, B, A} is a finite set of nodes where

s is the starting node (i.e., the node to be processed first)
 

e is the ending node (i.e., the last node to be processed)

B = (b1, b2, b3, ....) is an n-tuple of branching nodes

A = (a1, a2, a3, ....) is an m-tuple of assignment nodes

and each assignment node modifies the value of one or

more memory cells.

p is an n-tuple Of predicates corresponding with the elements of B

f:N x M - N where f is a control function which Specifies

which node is to be processed next and where

f(x,d) = y where ye N - e (6. means don't care)

andx=sors€ A

f(x’ pi(m)) = y, e N - e where x 6 B, m s M, pi(m) 15 T

yze N - e where pi(m) is F

36
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Theorem 331

A Program Structure can implement any Flowchart Schema.

arses

Since only known nodes can be processed in a Program Structure, the

data vector of each node will be M. The input node will have every element

in its data vector specified. Each node Ni in the Program Structure that

corresponds to an assignment node will have one mapping and it will be

of the form fi:Di--'-Dj and where fi(M) = M'. M' denotes M after assign-

ments have been made. Each node N1 in the Program Structure that corres-

ponds to a branching node will have two mappings of the form

fiwi-eDj where 5,114) = {M' if pi(m) is T

? otherwise

rial-wk where r204) = {w if pi(m) is F

? otherwise

The mapping for the ending node N1 would have the form f1:D1-—-~D1 where

f1(M) = ?. Hence, any Flowchart Schema can be rewritten as a Program

Structure.

In practice, the implementation of a specific FS could be much

less cumbersome. In general, nothing would be gained by such an

implementation unless some degree of parallelism were introduced.

Definition 3.2

The set of all memory cells referenced by assignment node ai will

be denoted by Ci'
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Propositiong3.2

If a1 and aj are any two sequential assignment nodes of a Flowchart

Schema and 01" C3 = 0, then ai and aj can be processed in parallel

without altering the final outcome.

222.91:

Since the processing of one node does not affect the other, the nodes

may be processed in any order.

Thus any parallelism detected at the node level can be implemented

in the Program Structure. In Figure 3.1(a) a1 and aj are sequential

assignment nodes of a Flowchart Schema where Ci/l Cj = fl. When the

Program Structure is created, this parallelism is incorporated by changing

several mappings as indicated by Figure 3.1(b).

3.2 Equivalence Classes of Data

In this sectLon, the set of all inputs are placed into equivalence

classes. To accomplish this, some preliminary definitions are first made.

Definition43g3

A node is called a junction if it must receive information from

two or more nodes in order to become known.

Figure 3.2 provides an illustration of a node that is a junction.

In case node N5 is a junction since it must receive information from both

nodes N3 and NI+ before it will become known. Notice also that if node

N1 is a junction, then #(D1)12 2. However, the converse is not true.
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i

1 J
CinC.=¢ I! N

a.

J

Nk

8k

A

(a) (b)

Figure 3.1 (a) Segment of a Flowchart Schema which can be processed

in parallel

(b) Implementation of parallelism in (a)



Definition_§.4

If node N‘ is a junction, then it is denoted by 8N1.

Definition 3.5
 

Given an input set I, an execution sequence is the series of
 

nodes which must be processed in order to produce values in a given

output set 0.

Definitiong3.6

Two execution sequences are said to be equivalent if they always

produce identical values in the output set 0 from a given input set I.

The processing of a cycle can be regarded as the processing of a

single node when relating to execution sequences. For notational pur-

poses, if a series of nodes Ni, .... , N3 are to be processed n times

 

(a cycle), then that cycle can be referred to as N1, .... , N3.

Proposition 3:3

If N1 and Nj are non-junction nodes that precede a junction SNk,

then the following execution sequences are equivalent:

(1) Ni, N3, SNk

(2) N3, Ni, 8Nk

2221::

If Ni and Nj are both known nodes, then the order in which they

are processed is immaterial.



Ln

y)

 

Figure 3.2 Example of a node that is also a junction
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The next definition helps in the discussion of equivalence

classes of input data which follows shortly.

Definitiong3.2

R is the relation on inputs which has the meaning "has an equivalent

execution sequence as".

Thus for any two inputs I1 and IJ to a Program Structure, I1 R IJ

means that the execution sequence generated by I1 is equivalent to the

execution sequence generated by Ij.

Theoremp3.4

The relation R is an equivalence relation if and only if there is a

unique output set associated with each input set.

2:223

Follows immediately from definition 3.7 and the definition Of an

equivalence relation.

Definition 3.8

[11] = [1'] I I1 R 13} where R is an equivalence relation.

This means that E Ii] is the set of all inputs that have equivalent

execution sequences as Ii. This also means that each input to a Program

Structure is placed in one and only one such set.

That an equivalence relation partitions its field is a well known

prOperty. Consequently, the collection of sets E Ii] forms a

partition on the set of all inputs to a Program Structure.
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Pictorially, the set of all inputs can be regarded as a data space

and the individual inputs can be visualized as data points. The disjoint

collection of data points can be thought of as partitions. A similar

type of analogy can be drawn for the set of all outputs. The major

difference is that the set of all outputs can be rigorously predefined.

It has been an easy matter to show that the set of inputs can be

partitioned. However, it is difficult to show how these partitions can

be formed. The following comment and example are intended to add insight

to this problem. From the definition, it follows immediately that the

number of equivalence classes of an input set is the number of distinct

(non-equivalent) executions sequences.

An example is now being given that shows the appearance of an

execution sequence as well as its meaning. The example uses the

Newton-Raphson root finding algorithm of Figure 2.4.

There are three distinct execution sequences possible in that Program

Structure:

1 2 3 . . . . .
1. N N N - if this execution sequence 18 obtained

then the input value of n was 0

2. N1 N2 N3 8N N3 - If this execution sequence is obtained

then a root was not found after n iterations

3. N1 N2 N3 8N N2 - if this execution sequence is obtained

then a root was found within n interations

Even though there are an infinite number of possible inputs to the

Program Structure, all of these inputs can be partitioned into three

equivalence classes. The three equivalence classes are:



1+1.

1. Ex, n50] where x is any value

2. Ea, n70] where a is an element of the set of all inputs

that will not result in finding a root

3. Eb, n> (D where b is an element of the set of all inputs

that will result in finding a root

In this example, it is not very difficult to partition the set of

inputs. The difficulty arises when a Specific input is to be assigned

to an equivalence class. Obviously, there are two conditions which

determine which equivalence class an input is to be placed into: Nodes

which contain two or more mappings and nodes which contain "complex"

mappings. An example of a complex mapping is as follows:

5 (x, x+y) if x1< 3

f (ng) =

(?, x+y) otherwise

This makes the following prOposition obvious.

PrOposition 3.§_

Every cycle which terminates in a finite number of steps has at

least one node which contains a complex mapping.

The problem of partitioning input data would be greatly simplified

if Program Structures contained no cycles. In the following proposition,

that assumption is made.

Propositionp3.6

If a cycle free Program Structure contains a total of n nodes and
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has no junctions, then the maximum number of possible execution sequences

n-l n-

is l + ES i,) .

i=1

has:

In a cycle free Program Structure no node is processed more than once.

Since there must be at least one input node, i.e., a node that is known

prior to execution, then there is at least one node to be processed which

leaves n-l nodes left to form execution sequences. The number of permu-

tations which can be formed is (n-1)! but the number of execution sequences

is less than this because an execution sequence and its permutation are

regarded as the same. To prOperly count the maximum number of possible

execution sequences, combinations of n-1 nodes must be calculated for

the possibilities of processing 1, 2, 3, ..... n-1 additonal nodes.

To state this more formally, the maximum number of possible execution

sequences is:

(‘2‘) + (.3)

3.3 An Analysis Formalism

There are a number of aSpects of Program Structures which can be

investigated and analyzed. However, due to the graph-like appearance

of Program Structures, it becomes difficult to perform any analysis on

them. In order to circumvent this difficulty, a formalism is now

introduced.
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Definition_3.3

The index set of all nodes will be denoted by N =ifi, 2, 3, ... , n}

Definition_3.10
 

The classificiation set for all nodes will be denoted by
 

x < 1 => the node is unknown

C=[xl0§xf1where and

x = 1 =>-the node is known

Definitiong3.11

The set of test values on the mappings of any particular node will

be denoted by

T = {0, 1’ 3, 1+, 0000...}

A series of transition statements using the above definitions can be

made which describe the behavior of some Program Structure. In the

illustration below, when node N3 is processed, it causes node N# to become

known.

This action can be described by the transition statement

(3, 1, 0) -'-(4, 1, 0)
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Definition 3.12

The transition statement (n, c, t)-"(n', c', t') describes the

action taken when node Nn is processed and where

n, n' 6 N

c, c' 52 C

t, t' 6. T

Each 3-tuple of a transition statement will be referred to as a state.

Since unknown nodes are not processed, they must not affect the

contents of any other node. The following definition specifies the

transition statement for that possibility.

Definitiong3.13

If node N“ is unknown, then (n, 0, d) —~ (n, 0, d) where the symbol

d represents "don't care".

The above definition can be made more general by testing the

classification of a particular node.

thinition_3,14

If x -< 1 for any node Nn , then (n, x, d)-—r-(n, x, d)

A more difficult problem arises when transition statements are

used to describe the transmittal of information to a junction or the

action by a node with a multiple mapping. For example, in Figure 3.3

node N8 will become known only if it receives information from both
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nodes N6 and node N7. One possible way of describing this notion is by

using the following two transition statements:

(6, 1, d) .... (8, 1, d)

(7, 1, d) ——'-(8, 1, d)

Clearly this is unacceptable since it implies that either node N6 or

node N7 can make node N8 become known.

Another possible way of describing this action is by using the

following two transition statements:

(6, 1, d) -—-—> (8, 0, d)

(7, 1, d) -—-(8, 0, d)

This is perhaps a better solution, but it too is unacceptable since it

fails to communicate any information about the behavior of the nodes

To represent a junction, notation will be used that is similar to

"conditional expressions".

Definition 3.15

If node N1 is a junction and it must receive information from nodes

Nj and Nk to become known, then this action is described by the following

transition statement: (j, 1, d) A (k, 1, d) ——-» (i, 1, d) where A

denotes logical and. In other words, (i, 1, d) will be realized only if

the condition indicated is true.

Figure 3.4 gives an example showing how a transition statement is

used to handle a multiple mapping.



(6, 1, d) A (7, 1, d)—+(8, 1, d)

Figure 3.3 Use of a transition statement to describe the transmittal

of information to a junction



SO

(1, 1, d)—+— (2, 1, d) A (3, 1, d)

Figure 3.4 Use of a transition statement to describe the action

taken by a node containing a multiple mapping
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Definitiong3.l6

If node N1 contains a multiple mapping to nodes NJ and Nk then the

action taken by N1 can be described by the following transition statement:

(1, 1, d) ——~(j, d, d) A (k, d, d)

It is assumed that definitions 3.14 and 3.15 can be generalized to

handle more than two nodes.

Figure 2.4 displays a Program Structure which is used to implement

the Newton-Raphson root finding algorithms. The following transition

statements describe the behavior of that Program Structure.

(d, 0, d)-—> (d, 0, d)

(1, 1, d)——_. (2, 1, d) A (3, 1, d)

(2, 1, d)——-. (A, , 2)

(3, 1, 0)

(4, 0, 2) 1K (4,

 

0

(3, 1, 1)—————. (A, 0, 3)

0, 0)

0 , 3)

 

(1+, 1, d)

(4, 1, 1)———» (2, 1, d) A (3, 1, d)

(4, 1, 0)-———>(3, 0, d)

Note that the third value of the triple can be used to describe

the behavior of a complex mapping. A choice of "next states" is

possible depending on that test value.

Figure 3.5 shows how a transition diagram can be drawn based on the

above transition statements.
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Figure 3.5 A transition diagram made form transition statements

of Program Structure in Figure 2.4



CHAPTER IV

CONDITIONS FOR REPEATABILITY

The purpose of this chapter is to investigate ways in which the

uniqueness of the output of a Program Structure can be assured. In

addition to discussing determinism and repeatability, maximal parallelism

is studied.

Definition 4.1

A Program Structure is said to be deterministic if the execution

sequence generated by a particular set of values in the input set is

unique. Fer the purpose of this definition, execution sequences

N1 N2 N3 and N1 N 3 N2 are considered to be different even though one

execution sequence is a permutation of the other.

It should be obvious that in most cases Program Structures are not

deterministic. Determinism is not necessarily a desirable property of

Program Structures. In fact, a deterministic Program Structure has very

little capability for parallel processing.

Proposition 4.1

Any Program Structure can be modified so that it is deterministic.

2:929

If there is more than one input node, rewrite the Program Structure

so that there is only one input node. If any node contains two or more

mappings, then rewrite the mappings so that only one node can become

known as a result of processing any one node.

53
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A lesser form of determinism, call repeatability, is frequently

the more desirable prOperty of Program Structures because parallelism

is achieved and yet the end result is unique.

Definition 4.2

A solvable Program Structure is said to be repeatable if the values

in the output set are always identical regardless of the number of times

the Program Structure is executed using a given set of values in the

input set.

The notion of repeatability has been called "weakly determinate" (14),

"output functional" (34), or even "deterministic" (43) in other models.

Clearly, a deterministic Program Structure is repeatable.

Program Structures are not always repeatable as the example in

Figure 4.1 illustrates. Although the purpose of that Program Structure

may not be clear, it is clear that the output node N5 may contain the

value 2, 3, 4, 5, 6, or 7 depending on when nodes N1 and NI+ are processed.

The reason for this apparently chaotic situation is that it is possible

to have up to six cOpies of node N# in the active set A at some instant

in time. If node N1 is processed after these six cOpies are placed in A,

then there are six known nodes - all cOpies of node N4. The order in

which these known nodes are processed will determine the final output

value in node N5.

However, all is not lost. The Program Structure in Figure 4.1 can

be made repeatable by changing one mapping:

('2, ?) if i< 6

rim) =

(i,?) otherwise
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f1(1) = (?9 1) f2(1) = (1)   

  

A 

f2(i) = (i, '2) i .

:3

fI+(i, 3) a (1+3 , 2)

I: {111,112 } (i+1)ifi<6

f2“) =(

(?) otherwise

0: {N5} ‘

Figure 4.1 Example of a non-Repeatable Program Structure
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The effect of the above mapping is that node N3 passes information

to node Nu only when the cycle is completely finished. Non-repeatability

frequently occurs when a node receives information (which makes it known)

both from a cycle and a node outside the cycle. This suggests a condition

to be applied which can make all Program Structures repeatable. If a

cycle could be "unraveled" so that execution of a cycle could be regarded

as execution of a series of nodes which then passes information on to

another node, then that Program Structure can be thought of as having no

cycles.

The following defintion suggests a type of cycle which is very

useful in develOping repeatable Program Structures.

Definition 4.3

A closed cycle is a cycle such that a node outside the cycle will

receive information from that cycle at most once each time the cycle is

executed. Also, there is one node in the cycle which contains a complex

mapping and this will determine whether the cycle will be executed once

again or whether information is to be passed to a node outside the cycle.

A Program Structure which contains only closed cycles behaves like

a cycle-free Program Structure. Although use of closed cycles can be

helpful in creating repeatable Program Structures, it is not in itself

a complete assurance of repeatability. Fer example, in Figure 4.2 a

cycle-free Program Structure is displayed that is not repeatable. The

output value in node Nu will depend on the order in which nodes N1 ,

2
N , and N3 are executed. The execution sequence N1 N3 N2 N3 will
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produce a different output value than the execution sequence N2 N3 N1 N3.

Note also in this example that the Program Structure does not contain a

junction even though node N3 may graphically appear as such.

This suggests a condition to be applied to cycle-free Program

Structures which will guarantee repeatability.

Theorem 4.2

A cycle-free solvable Program Structure (or one that contains only

closed cycles) is repeatable if for any node NJ.- where fj :Dj-r-Diiand

fk :Dk—rDi, then rjwj) a fk(Dk) ,4. fj(Dj).

sass

To guarantee repeatability of a cycle-free Program Structure, the

theorem simply states that no two mappings may map values into the same

element of a data vector.

Case 1. The Program Structure contains no junctions. Each time a

node is processed, it causes 0 or more nodes to become

known. Since there is no communication or sharing of

information between the nodes, the set of output values

is not affected by the order in which the nodes are

processed. A

Case 2. The Program Structure contains one or more junctions.

Because of the condition stated in the theorem, the

information that must be placed in a junction to make it

become known is unique regardless of the order in which

the nodes that precede the junction are processed. This

has the effect of ensuring that certain nodes will be
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  f1(x) = (x)

9(2) = (z, '2)

 

assume x # y

Figure 4.2 Example of a cycle-free, junction-free Program Structure

which is not repeatable.
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processed before the junction itself is processed.

Consequently, this will have no effect on the set of

values placed in the output set 0.

Note that in both Case 1 and Case 2 above there is only one

execution sequence for any given set of values in the input set I.

This is a necessary, but not a sufficient condition for repeatability.

Although the above theorem adds insight into the nature of repeat-

ability of Program Structures, it contains very restrictive conditions. So

that repeatability can be more easily described, the next concept is

introduced.

Definition 4.4

A critical race occurs whenever there are two or more copies of the

same node in the set A or the set K during execution of a Program Structure.

The term "critical race" is chosen because it resembles a like

situation described in switching theory. The purpose is to show that if

execution of a Program Structure can result in no critical races, then

that Program Structure is repeatable. Note that the Program Structure

illustrated in Figure 4.2 does contain a critical race and it is not

repeatable. The critical race occurs because it is possible to have two

N3
cOpies of node in the set K at the same time. The value placed in the

output set will depend on the order in which the nodes are processed.

Definition 4.5

The value vector of a node N1 will be denoted by V1 = (d:, d:,...,d;)
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where d; is used to represent the value of Dl’J.

Lemma 4.2

Given an input set I, if the value vector Vi is unique for any

node Ni , then that Program Structure is repeatable.

areas:

Suppose Nj is any output node. Since Vj is unique, the values in

the output set are unique.

Theorem 4.4

If critical races cannot occur during the execution of a solvable

Program Structure, then that Program Structure is repeatable.

areas:

The absence of critical races guarantees that all cOpies of any

i 1
’ , N , 0...... ’node N1 are processed in a unique order, i.e., N

Nl’m . Thus the values mapped to each cOpy are also unique. This

further implies that the value vector V1 for any node N1 is unique,

and by Lemma 4.3, the Program Structure is repeatable.

The analysis formalism which was develOped in the previous chapter

can be used to determine whether or not a Program Structure contains any

critical races. For example, consider Figure 4.1. The transition

statements for that Program Structure are:

(1,1,d)-———>- (A,0,1)

(2,1,d)-——>- (3,1,d)

(3,1,1)—'—*(3g19d) A (A’QOQB)
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(3,1,0) ——‘.’ (“9093)

(1+,091) A (4,0,3) _'—+ (Sgogd)

If it is possible to write a series of transitions from the above

statements that will lead to a node more than once before that node is

transformed to another, then the Program Structure contains a critical

race. From the above transition statements, the following series of

transitions is possible:

(2,1,d) —+ (3,1,d)——>- (3,1,1)—+ (3,1,d) A (4,0,3)

'—+(3,1’1)——.'(3919d) A (4,0,3) eeeeoeeoeeo

The state (4,0,3) has been referenced more than once before being

transformed to another node. This means that there can be two or more

cOpies of node N“ in the set A at the same time. This implies that a

critical race exists. Results using the above appear at the end of the

chapter.

The analysis formalism can also be used to help determine the

number of equivalence classes present in a Program Structure. The

number of equivalence classes is closely related to the number of

output nodes. In particular, consider the Program Structure of

Figure 2.4. The transition statements are:

(1,1,d)———>—(2,1,d) ‘A (3,1,d)

(2,1,d) -——- (4,0,2)

(3,1,1)——>(l+,0,3)

(3,1,0) —__+ (Bgogd)



62

(4,0,2) A (4,0,3) -—->- (4,1,d)

(4,1,1)—+(2,1,d) A (3,1,d)

(4.1.0) ———>- (2,0,d) A (3,1,d)

The following series is possible given the above transition statements:

(1) (1,1,d)—->-(2,1,d) A (3,1,d)—>(4,0,2) A (4,0,3)

—~(4,1,d)—~(4,1,1)—+—(2,1,d) A (3,1,d)-+......

(Infinite cycle)

(2) (1,1,d)—>(2,1,d) A (3,1,d)—+(4,0,2) A (3,0,d)

(3) (1,1,d)——*—(2,1,d) A (3,1,d)—+(u,0,2) A (1+,0,3)

——~(4,1,d)-—"'(2,0,d) A (3,1,d)—#0505)

Using the analysis formalism, it appears that the Program Structure

can enter an infinite cycle. However, after studying the Program Structure,

this should not happen since there is a control built in to prevent such

a possibility. This may appear to be a serious anomaly, but in practice

it could be very worthwhile in detecting possible infinite cycles.

At any rate, the analysis formalism indicates that the Program Structure

can terminate in one of three ways. This further suggests that there

are only three distinct execution sequences, and hence three equivalence

classes.

If a Program Structure does contain a critical race, it may be

possible to make an alteration to it in order to insure repeatability.

In Figure 4.3 there is an example of a Program Structure which contains

a critical race. The purpose of the Program Structure is to implement a

Finite State Machine. Upon close inspection, it should be apparent that

6
nodes N5.and N could be processed repeatedly. This could cause multiple

COpies of node N7 to appear in the set A. When these cOpies become known,
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the order in which they are processed will determine the set of values in

the output set. This Program Structure can be made repeatable by adding

a "delay" node N4 to insure that each input symbol prOperly correlates

with the current state. The "fixed up" Program Structure is the one which

appears in Figure 2.7.

Definition 4.6

Two execution sequences are said to be similar if each contains

exactly the same occurences of nodes as the other.

PrOposition 4:5

A solvable Program Structure is repeatable if for any given input

set the following prOperties hold:

1. All possible execution sequences are similar to each other

2. For any nodes Ni’p and Ni"q where p <.q, Ni’p

always precedes Ni’q in all execution sequences.

magi:

Clearly if the above prOperties hold for any Program Structure,

then that Program Structure does not have any critical races. Hence,

repeatability is assured.

One of the objectives in using multiprocessing is to decrease the

processing time of programs. To achieve this, as many nodes as possible

should be processed concurrently. This naturally leads to some considerations

about the "degree of parallelism" in a Program Structure. In other words,

a high degree of parallelism would imply less processing time.



64

    

 
Mappings are assumed to be similar to those in Figure 2.7

Figure 4.3 Program Structure which contains a critical race
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Definition 4.7

A Program Structure is maximally_parallel if for every node which
 

contains more than one mapping, then all of the mappings of that node

are identity mappings.

An identity mapping is one that performs no manipulation of inferma-

tion, but rather cOpies information into another node. For the purpose

of the above definition, complex mappings will be considered as identity

mappings. The following is an example of an identity mapping:

f3(a, b, c, d) = (?, c, ?, a)

In Figures 4.4 and 4.5 a comparison is made between two segments of

a Program Structure. Fer the sake of comparison, assume that identity

mappings require one unit of time and the mappings of Figure 4.4 each

require ten units of time. This means that the program segment in Figure

4.4 could be executed in a minimum of thirty time units. By comparison,

the program segment of Figure 4.5 could be executed in a minimum of thirteen

time units. If a number of processors are available, it then becomes very

advantageous to have a Program Structure in maximally parallel form.

Proposition 4.6

Any Program Structure can be rewritten so that it is in maximally

parallel form.

sass:

The proof consists of a procedure which will effectively force any

Program Structure to be in maximally parallel form.

For each node N1 that contains a multiple mapping and n of the
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fp,fq,frarethesameasfi,f:,f;,inFigure4.4

Figure 4.5 EMple of Maximally Parallel Form
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mappings (n 2 1) are nondi'dentity mappings, perform the following:

1. Create n new nodes that have the same data vector as N1

2. Each of the new nodes will have only one mopping, i.e., each

new node will have one of the n non-identity mappings

3. Replace the non-identity mappings in N1 with identity mappings

that map the data vector of Ni into each of the n new nodes

When this procedure is chleted, the Program Structure will be in maximally

parallel ferm.

Proposition 4.7

The maximally parallel form of any repeatable Program Structure is

also repeatable.

seer

Assume the proposition is false and then show a contradiction. Fer

any node N:1 in the original Program Structure, the value vector V3 is

identical to that of the corresponding node in the rewritten Program

Structure. This is true because the only alteration to the original node

was to change some of the mappings to identify mappings. Then for at

least one node Ni, the value vector V1 is not unique. Suppose N1 is a

new node that was created from original node NJ. Then the value vector

v3 is not unique either since the mapping from N3 to N1 is an identity

mapping. Hence a contradiction.

Much of the previous discussion of repeatability has utilized various

aspects of a Program Structure after it has been executed. It would be of

great practical value if it were known that a particular Program Structure

was repeatable before it was executed. The analysis formalism will be used
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for this purpose.

Definition 4.8

When writing transition statements, a state is considered current

under either of the following circumstances:

1. The node being described is an input node and that state has

not yet appeared on the left side of a transition statement

2. Any state referenced by the right side of a transition statement

until that state appears on the left side of a transition statement

Definition 4.9

A path is a series of transiton statements which leads to a particular

current state.

Proposition 4.8

If x is any state and there exists one or more paths to x while x

is current, then that Program Structure contains a critical race.

e21:

If n represents any node, then x is of the form (n, 0, a) or (n, 1, a)

where a is some test value. Since there are two or more paths to x, this

means that during execution of the Program Structure there can be two or

more cOpies of node n in set A or set K concurrently. Hence, a critical

race exists.

Similar arguments can be made for the following propositions.
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Proposition 4.3

If n represents any node, a f b, and states (n, 1, a) and (n, 1, b)

are both current, than that Program Structure contains a critical race.

Proposition 4.10

If n represents any node, test values a and b are not necessarily

equal, and states (n, 1, a) and (n, 0, b) are both current, than that

Program Structure contains a critical race.

Thus it has been shown that by using the analysis formalism, a

mechanical procedure can be develOped which can detect the presence of

critical races in any Program Structure before it has been executed. This

can be of considerable value when dealing with large programs.



CHAPTER V

IMPLICATIONS

5.1 Elimination of Classical Problems

In this section, solutions to such problems as interference among

nodes and deadlock will be presented. The problem of interference has

received a great deal of attention in the literature, particularly by

Dijkstra (19) and Gilbert and Chandler (22).

Definition 5.1

Two nodes Ni and Nj are said to interfere with node Nk if all of

the following hold:

1. {inf—wk and tjznj—vnk

2. fi(Di) & £5033) = r1031)

3. N1 and N3 can be in set K concurrently

Interference is a problem unique to multiprocessing in that it can

only arise when two or more processors are trying to simultaneously change

the value of some location in memory. The cOpy concept of Program Struc-

tures reduces the seriousness of this problem but it does not entirely

eliminate it.

There are only two ways in which interference can arise in the

execution of a Program Structure. In the first case, two copies of the

same node are processed concurrently. Note that more than one node can

be mapping information into a particular node simultaneously. Consequently,

the timing can be such that both cOpies are mapping into the same node.

The second case is similar to the first except different nodes map into

71
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the same node concurrently.

Even in Program Structures the problem of interference is a potentially

dangerous one. Not only does this situation prevent repeatability, it may

also destroy any value produced by the execution of a Program Structure.

If two nodes map into the same data element at the same time, the result

will be indeterminate; in fact the result may cause erroneous action to be

taken.

Solution of this problem is accomplished in two steps. The first

step establishes a mechanism by which all potentially interfering nodes

are detected. The second step develOps a procedure to eliminate inter-

fering nodes. Most other approaches to this problem simply do not allow

more than one processor to simultaneously access shared memory. The

mechanism used to insure this is called mutual exclusion. The approach

taken here is not so restrictive; interference will be eliminated and

yet many processors can be accessing shared memory simultaneously.

Definition 5.1 specifies the criteria which causes interference so

the problem of detecting possible interference becomes one of determining

whether or not there are any nodes which meet that criteria. This

determiniation can be accomplished in large part by using the analysis

formalism. All nodes which meet the first criterion (i.e., all Ni,

Nj that map information into Nk) can be detected as follows:

(i, d, d)—->-(k, d, d)

(j. d, d)—->(k, d, d)

This amounts to a checking of transition statements to find all nodes that

map into the same node. This of course does not guarantee interference.

In fact, there is no problem if each data element in Nk has one or less
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mappings that reference it. Fer an example of this, consider junctions.

there are always two or more nodes that map into a junction and this in

itself does not necessarily lead to interference.

The second criterion of the definition determines whether or not there

is one or less mapping to each data element of node Nk. If fi(Di) & fj(Dj)==

fi(Di) and criterion one has been met, then there is at least one data

element in Nk that is referenced by both Ni and Nj. Even though both of

the first two criteria have been met there is still no assurance that

interference is even possible. The third criterion establishes that

possibility. If both Ni and N:1 are known concurrently, then they can

be processed concurrently and furthermore it is possible that they will

map information into the same data element of Nk concurrently.

By using the analysis formalism, it is possible to determine whether

or not nodes Ni and Nj can be known concurrently. If there exist paths

to NJ" and N3 where the path to N1 does not depend on Nj and the path to

Nj does not depend on Ni, then Ni and Nj can be known concurrently. As

in the first criterion, this becomes a matter of mechanically checking

the paths to N1 and Nj and making certain the above condition holds.

The preceding discussion is summarized in the following theorem.

Theoremg5,1

There exists an effective procedure which can detect all potentially

interfering nodes.

The solution to this problem is actually a matter of prOperly

synchronizing the processing of certain nodes. When a Program Structure

is being executed, the nodes in the set K can be processed in any order.
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To eliminate interference, all that is necessary is to insure that poten-

tially interfering nodes are not processed concurrently. Since it is

possible to detect all potentially interfering nodes, suppose a list L of

these nodes is created. Furthermore, suppose that this list L is created

such that each element of L is a set of nodes which potentially interfere

with the same node. Interference will be eliminated if the following

change is made in the processing of known nodes.

For any known node Ni, that node can be processed only if either

of the following conditions hold:

a. For allxéL, Niel x OR

b. For all x 6 L where N1 6 x, no other element of x is

currently being processed when Ni is being processed

(i.e., prevent concurrent execution of two or more

potentially interfering nodes)

The above discussion constitutes the proof for the following theorem.

Theorem 5:2
 

The execution of any Program Structure can be synchronized so that

interference of nodes is eliminated.

There is another way in which interference can be eliminated. This

method has the advantage of not altering the way in which nodes are

processed. Suppose nodes Ni and N3 potentially interfere with node Np.

All that is necessary to prevent interference is to create a new node

Nq that is identical to NP and for all f1 e 111 that map into Np, change

the mappings so that they map into Nq. It may be necessary to repeat

this process a number of times and it may substantially increase the
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size of the Pregram Structure. However, execution time would most

likely decrease since the resulting Program Structure would be in a

more parallel form.

Although it is possible that a repeatable Program Structure may

contain interfering nodes, it is not necessary to synchronize execution

in order to eliminate interference. By definition, a repeatable Program

Structure will yield the same output set each time it is executed.

Consequently, if there are interfering nodes, then the interference

they create is incidental and does not contribute in any way to the

values obtained in the output set.

Quite often, the solution to one problem leads to the creation of

another problem. In the situation created by Theorem 5.2, it must be

known whether or not the restraints imposed will reslut in perpetual

blocking of all processors.

Definition,5.2

A Program Structure is said to be deadlocked when it becomes

impossible to process any of the known nodes.

The concept of deadlock is analogous to the "deadly embrace"

described by Dijkstra (19) and Luconi (34) as well as the "hang

up state" discussed by Petri (45) and Rodriguez (41).

Suppose a Program Structure contains interfering nodes and the

synchronizing scheme suggested by Theorem 5.2 is used to eliminate

them. Processing of any interfering node Ni will be delayed only

as long as there are one or more known nodes, then it will always be
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possible to process at least one node. Execution time may be increased,

but deadlock will not occur.

Before discussing the deadlock problem for Program Structures, this

problem will be first viewed with reapect to other models. In particular,

attention is given to problems arising in the use of shared memory and

shared resources.

Traditionally, when a processor has access to shared memory, it can

read or write anywhere in that memory. Since the memory is used as a

means of communication between processors, safeguards must be maintained

to prevent two or more processors from accessing shared memory concurrently.

However, such a mechanism can have the effect of preventing all processors

from ever accessing the shared memory and deadlock results.

Another way deadlock can occur is when processors share resources,

such as input or output devices. For example, suppose one processor has

control over the one available reader and needs to get control of the

printer before it can finish. At the same time, another processor has

control of the one available printer and needs to get control of the reader

before it can finish. Neither processor can proceed and deadlock results.

The most common approaches to the deadlock problem have been to either

develop an algorithm to prevent it or to simply allow it to happen and then

take corrective action. The former approach has received much attention;

one such widely known algorithm is the "banker's algorithm" of Dijkstra (19).

The concept of shared resources is not relevant when discussing Program

Structures. The mappings in each node perform manipulations on information

only; furthermore, the concept of input and output does not rely on external

devices.
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Program Structures do use shared memory. However, the concept is

somewhat different than previous approaches. When a processor is accessing

shared memory, it can only access the information contained in the node it

is currently processing. Consequently, many processors can be accessing

shared memory simultaneously and not affect the final outcome. It is also

possible for two processors to access identical information simultaneously.

The "cOpy of a node" concept makes this possible. This modularity makes

it unnecessary to create algorithms whose purpose is to prevent two or more

processors from accessing shared memory concurrently.

The problem of deadlock is a serious matter in previous multiprocessing

models. However, this problem is of no consequence for general Program

Structures.T' No restrictions have been made as to the amount of available

memory or even the number of available processors. There is no configuration

which can prevent the processing of nodes in the set K. Hence, the next

prOposition follows immediately.

Proposition<5.3

A Program Structure with no restriction on the amount of available

resources cannot be deadlocked.

512 Finite Program Structures

This thesis has investigated Program Structures in their most general

form. In this section, a restricted form of Program Structures will be

studied with an emphasis on problems associated with this form.

 

1’ The next sections deal with special cases of Program Structures where

deadlocks can occur.
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Definition 2.3

A Finite Program Structure (FPS) is a Program Structure which has

access to a finite amount of memory and a finite number of processors.

The definition does not imply that an FPS must deal with a finite

number of nodes. Indeed, an unsolvable FPS is infinite in this sense.

Besides limiting the number of processors, the definition states that

there is a limitation on the total amount of memory available to store

all the unknown, active, and known nodes.

Definition45.4

The amount of memory required by any node N:L will be denoted by

Size (N1). The total amount of memory available to a particular FPS

will be denoted by the mnemonic Mem.

There are several trivial ways in which deadlock can occur in an

FPS. If the number of available processors is zero, then nodes in the

set K cannot be processed. Also, if the amount of memory required by

any node exceeds Mem, then deadlock results because the set U cannot

be placed in memory. These trivial cases will not be considered further.

The "cOpy of a node" concept has proved to be a very powerful feature

in that it can help to eliminate interference between nodes. There is a

negative aspect to this in that imprOper usage can cause deadlocks. Creation

of unnecessary cOpies can occupy all available memory and lead to deadlock.

Assumed Conditions rggarding_FPS
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1. There is at least one processor available for use.

2. Mem 2 3 .2 Size (Ni)

N‘eU

The only way that deadlock can occur in an FPS is by attempting to

occupy more memory than is available. This can happen if too many cOpies

of nodes are created. It is possible to state that for certain FPS

deadlocks can not occur. For the others, a dilemma is faced. If these

FPS are executed, then some will become deadlocked and some will not. Some

care must be exercised when dealing witthPS that might lead to deadlock.

If an FPS does become deadlocked, recovering from it can become a very

expensive propositon.

This suggests two approaches to the problem. If an FPS cannot

become deadlocked, then there is no problem and no restrictions need

to be placed on the execution of that FPS. This implies that for any

FPS there must be some method of determining whether or not a given FPS

is deadlock free. A method of detecting deadlock free FPS is presented

shortly. If an FPS cannot be classified as deadlock free then it is

necessary to alter the execution of that FPS. By prOperly processing

the nodes, it may be possible for such an FPS to not end in deadlock.

Of course, there are some FPS that are hOpeless. That is, no matter

what precautions are taken, deadlock will result. This tapic is also

discussed shortly.

Theorem 5.4

If a Finite Program Structure contains no critical races and assumed

conditions 1 and 2 hold, then that Finite Program Structure is free from

deadlocks.
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has:

Elimination of critical races implies that there cannot be more than

one copy of any node in set A and/or set K. However, when a known node

is being processed it is no longer in the set K but it still requires

use of memory. Since it is permissible for a node to map information

into a cOpy of itself, it is possible that memory would be required

for the amount of two cOpies of that node. Since it is assumed that

Mem 2. 3 2 Size (N1) then there is an adequate amount of memory and

N16 U

it is impossible for deadlock to occur.

By using the analysis formalism it can be readily determined whether

any FPS contains a critical race. According to proposition 4.10 all that

is necessary is to examine the transition statements. If an FPS contains

a critical race, then there exists one or more paths to a current state.

In other words, if the transition statement (x, 1, d)-*-(i, 0, x) is

possible while (i, 0, x) is a current state, then a critical race exists.

Theorem 5.4 has shown that it is possible to determine whether any

FPS is free from deadlock. However, this is not adequate since many FPS

may not fall into this category. If an FPS cannot be classified as deadlock

free, this does not necessarily mean that it is certain to end in

deadlock. A stronger result is needed in order to determine whether

it is possible for any given FPS to be executed and avoid deadlock.

There will be few restrictions placed on the FPS under consideration.

Although properties of execution sequences are utilized, it is not necessary

to make any assumptions about them. Since a general solution to the dead-

lock problem is sought, the results must hold regardless of whether the

FPS is repeatable or even solvable.
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Cycles and junctions are permitted and it is required that all cycles

be closed cycles. This will have the effect of assuring a finite number

of execution sequences for unsolvable FPS. Note that every unsolvable

FPS contains at least one cycle. The presence of a cycle or even an in-

finite cycle does not pose any difficulty in studying the deadlock problem.

The nodes of a closed cycle can be treated as nodes outside a cycle when

considering memory usage. For example, given the following execution

 

sequence which contains a closed cycle: N1 N2 N“ N5 N6 N7 N8N10 N11

The nodes in the closed cycle do not have to receive any special considera-

tion. Each node in the cycle would have to be checked (just as any other

node) to determine whether memory had been exhausted. Further, it is

immaterial how many times the cycle would be executed. If deadlock does

not occur during the first pass through the cycle, then deadlock cannot

occur after n passes where 1 5. n5. 0° .

Definition 5 .5

tj = {(x, y) I x is a node designator, y is a set of node

designators such that for all i 6 y there exists f1:D1-—~Dx}

T1 = {t3 I where tj is a description of the sets A and K after

the jth node in execution sequence i has been processed}

Since tj is a description of the sets A and K, for any x e tj where

x = (a, b), the elements of b are unique. However, it is possible to have

y 5 t3. where y = (c, d) and a = c. For each node in A or K during execution

sequence i there is one or more corresponding entries in Ti. It is a rela-

tively easy matter to determine whether or not a node is known. If
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x 6 t where x = (a, b) and b = (b1, b2, ....., bm) then Na is a known

3

node if there exists a transition statement of the form:

(b1, d, d) A (be, d, d) A A (bm, d, d)—+(a. 1, d)

Proposition,5,5

A critical race does not occur in execution sequence i if for all

tjé Ti and for all x 2 t3. where x = (a, b) there does not exist yé tj

where y = (c, d) and a = c.

Proof:

Follows immediately from the definition of a critical race.

Definition 5.6

D = {- i ' execution sequence i does not lead to deadlock}

The elements of D can be determined by computing the amount of

memory required by nodes represented in each Tl. Fer convenience when

performing this computation, it can be assumed that only one processor

is being used.

Proposition 5.6

If a Finite Program Structure is deadlock free when using one

processor, then it is deadlock free when using two or more processors.

2.1-ass

There must always be at least one processor able to completely

process some node. If this were not true, deadlock could arise when using

only one processor. When multiple processors are used, it could be

possible for all but one to be idle. However, all nodes will ultimately
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be processed and deadlock cannot occur.

Proposition 5.7

If there are n execution sequences for a given Finite Program

Structure and #(D) = n then that Finite Program Structure is free from

deadlock.

magi:

Since every execution sequence generated by the FPS does not lead

to deadlock, then clearly the Finite Program Structure is free from

deadlock.

Proposition_5.8

Suppose there are m equivalence classes of input data for any

given repeatable Finite Program Structure. Let E1 represent the set

of execution sequences for equivalence class i (1 5 i 5 m). For any

equivalence class i, if there exists x E E1 such that x 6 D then that

Finite Program Structure can avoid deadlock.

are

By definition, any two execution sequences in Ei are equivalent.

Then for all inputs in equivalence class i, there exists an execution

sequence which will achieve the desired output and be able to avoid

deadlock. Since the preposition states that this holds for any

equivalence class, then it is possible to process any input and not

end in deadlock.

A corollary to preposition 5.8 is now presented which considers

both repeatable and non-repeatable FPS.
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Corollggy 5.2

A Finite Program Structure can avoid deadlock if for any execution

sequence either it or an equivalent execution sequence does not lead to

deadlock.

Proof:

Follows immediately from preposition 5.8.

The previous discussion and propositions can be summarized in the

following theorem.

Theorem45.10

It is decidable whether any Finite Program Structure can avoid

deadlock if all cycles are closed cycles.

Much of the previous discussion has centered on the detection of

potential deadlock. When it is possible for an FPS to avoid deadlock

then processing of nodes must be synchronized prOperly. This implies

that the order of processing the nodes is predetermined (i.e., knowing

the execution sequences) or making an adjustment to the processing

algorithm so that the prOper order of processing nodes would always be

Observed.

When a deadlock does arise, it may be possible to preempt the

processing of some node in an attempt to recover from this situation.

In other words, when a processor is about to perferm its mappings and

finds no available memory it can return that node to the set K and attempt

to process a different node. However, if prOper synchronization is used,

preemption of nodes will not be necessary.
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533 Copy Free Program Structures

In this section, properties of a Program Structure in which cOpies

are not allowed are investigated.

Definitiong5.?

A Copy Free Program Structure (CFPS) is an FPS where each node

appears exactly once and must be in Set U, A, or K.

In order to utilize the prOperties of the "cepy" concept, an

analogous prOperty is now defined.

Definitiong5.8

Each element of the data vector of any node of a COpy Free Program

Structure is a finite length first-in first-out data queue.

Many of the results established for Program Structures are appli—

cable here. Fcr example, a node is known if each of its data queues

contains one or more elements. The current value is always the value

at the front of the queue. In the mapping fi:Di-----D3 where fi(Di) =

(a, ?, b), the first and third elements ofDJ are referred to as defined

data queues for this mapping. When a mapping is performed at least one

element is added to the rear of each defined data queue. Entries are

duplicated so that the queue length of each defined data queue equals

the maximum queue length of the data vector.

Proposition 5.11

A COpy Free Program Structure is repeatable if for any input set the
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data values arrive at the data queues in a unique predetermined order.

freer

Assume that the value of an output node is composed of the elements

at the rear of the data queues. This preposition then follows immediately

from the definition of repeatability.

A special case of the above proposition would be a situation where

the maximum length of any data queue is one. Of course, if this condition

is met the CFPS is repeatable.

Although preposition 5.11 may seem very restrictive, in practice

it would be a more desirable condition to attain rather than the special

case discussed above. This would be the case since it would be possible

to achieve greater utilization of the processors. In fact, the condition

expressed in the epecial case implies that there is no need to use data

queues, but rather use single valued variables.

In the previous two sections, the problems of interference and

deadlock were discussed. Although the results obtained could be applied

here as well, an additional comment is necessary with respect to deadlock.

Propositiong5.12

A COpy Free Program Structure can be deadlocked only if the maximum

length of one or more data queues is exceeded.

freer

Deadlock can only occur when it becomes impossible to process any

of the known nodes. There are two ways that this can happen:

1. All available processors are delayed because they are processing

nodes which are attempting to map information into one or more
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nodes which have exceeded their maximum queue length.

2. All currently known nodes are being processed and are delayed

for the same reason as (1).

In either case, deadlock occurs as a result of attempting to exceed

the maximum length for one or more data queues.

Note that the exceeding of a maximum queue length does not of

itself guarantee deadlock. It is possible for a CFPS to "recover" when

this situation arises simply by processing the node(s) with maximum

queue length a number of times while there are processors still avail-

able. If this situation does arise, it can seriously degrade system

performance since at least one processor must be idle as long as that

situation exists.

Although Program Structures are intended to represent programming

processes rather than a scheme for machine design, the implementation

of CFPS resembles existing hardware systems. Such a system is the

CDC STAR which is a pipeline processor and is described by Hill and

Peterson (25). In the pipeline computer (depicted in Figure 5.1) there

is a shared memory and a number Of arithmetic units which communicate

with the memory via the input and output pipelines. There are many

technical considerations that are overlooked such as methods of insuring

the determinacy of the system. Also, the pipeline processor might have

a number of Special purpose elements in the arithmetic unit.

When considering functional characteristics, the pipeline processor

bears a great deal of resemblence to CFPS. In fact, the pipeline processor

is a special case of CFPS. The data queues represent the input pipeline

and the mappings represent the output pipeline. The major difference is

that the processors of a CFPS are all identical. This suggests that the
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cost of a CFPS would be higher but this would be compensated by added

flexibility and possibly better thruput.

5.4 Comparison of FPS and CFPS

The Program Structure in its most general form is clearly free from

the deadlock problems exhibited by FPS and CFPS. However, in a practical

sense, it is impossible to implement the general Program Structure due

primarily to limitations on memory size. Consequently, the two special

cases of Program Structure are contrasted in this section.

In both cases, repeatability is assured based on similar conditions

established for general Program Structures. Deadlock can be detected

based on finiteness conditions although it is easier to predict for FPS.

The two major areas of comparison are Speed of execution and amount

of memory required. If there are n nodes in a CFPS, then the maximum

number of nodes which can be processed concurrently is n assuming that

processors are available. For FPS, the maximum could be much higher

because a number of cOpies of the same node could be processed simul-

taneously assuming available processors and memory.

The advantage gained by increased Speed of FPS is somewhat compensated

by increased use of memory. Although additional memory is needed for the

data queues of a CFPS, it would in general be less than that required to

create cOpies of nodes.

When a person describes a solution to a problem by means of a Program

Structure, he may not be aware of whether he is using an FPS or a CFPS.

It may be possible to obtain different results depending on which was used.
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A Finite Program Structure and a COpy Free Program Structure are

equivalent if for any input set the output set is identical for both.

It may seem that if two structures contain exactly the same components

then they would be equivalent. This is not always the case with FPS and

CFPS. Suppose there is a node N4 which has exactly three mappings to it

defined as follows:

f1(a, b, c) = (a, ?, b, c)

f2(d, e)

f3(g, h)

(?, d, e, ?)

(g, h, ?, h)

In an FPS, there would be three cepies of node N8 created and none of

those cepies would become known. However, in the CFPS enough information

has been mapped so that node N4 can become known twice. Clearly, this

can effect the values placed in the output set.

Theorem 5.13

A Finite Program Structure is equivalent to a COpy Free Program

Structure if both of the following hold:

1. Any node N1 is contained in both structures

2. Neither structure contains any critical races

has:

Having the same node in both structures implies that not only are

the node designators identical, but the mapping vectors and the capacity

of the data vectors are identical as well. Showing that for any given

input set the execution sequence generated by the Finite Program Structure
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must be equivalent to that generated by the Cepy Free Program Structure

is sufficient to prove this theorem.

Suppose it is possible for the FPS to generate an execution sequence

that is not equivalent to that generated by the Cepy Free Program Structure

using the same input set. Then there must exist at least one node

Ni’j in the execution sequences of the Finite Program Structure and the

Cepy Free Program Structure which has one or more data elements whose

values are not identical. This can only happen if at some time there are

two or more cepies of the same node in the set K or A or if there are

two or more paths to Ni'j. In either case, this contradicts the fact

that the Finite Program Structure and the Cepy Free Program Structure

are repeatable (absence of critical races implies repeatability). Hence

given any input set the execution sequences generated by the Finite

Program Structure are equivalent to the execution sequences generated

by the Cepy Free Program Structure.

It is not always possible to create a structure which can be used

interchangeably as either an FPS or a CFPS. The last two prepositions

in this section show that it is possible to take any repeatable FPS and

construct an equivalent CFPS and vice versa.

Propositiong5.14

For any repeatable Finite Program Structure there exists an equivalent

COpy Free Program Structure.

22223

An equivalent Cepy Free Program Structure will be constructed
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from some or all of the nodes of the given Finite Program Structure.

If the Finite Program Structure does not contain any critical races then

an equivalent Cepy Free Program Structure would contain exactly the nodes

of the Finite Program Structure. Assuming that critical races do exist,

it may be necessary to alter some of the nodes of the Finite Program

Structure in order to construct an equivalent Cepy Free Program Structure.

This may be necessary because there are no cepies of nodes in a COpy Free

Program Structure. An example has been presented earlier in this section

showing how this can be a problem.

A Cepy Free Program Structure can be made to behave like an Finite

Program Structure by changing the mappings so that a Special distinguishable

marker (say ‘) would replace all undefined elements. The multiple elements

in the data queues would simulate cepies of nodes. Every node that had

at least one element in its data queue would be regarded as a known node.

The processing of nodes would have to prOperly account for this.

Nodes would only be processed when all elements of the data vector

would be defined by merging one or more disjoint rows of the data queues.

After the node is processed all rows involved in the merging would be

deleted. These alterations provide the capability of allowing the Cepy

Free Program Structure to mimic the Operation of the Finite Program

Structure. The only Operation the Cepy Free Program Structure will not

be capable of implementing is processing two copies of the same node

concurrently. Clearly, this Operation is not required to achieve

equivalence.

As an example of how the above alterations could be carried out,
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N5 N3consider node which has information mapped to it from nodes

15033)

27w?) (2», c, c)

f9(b9) = (?, e, ?)

(a, ?, b)

After nodes N3 , N7 , and N9 have been processed, the data vector of node

N5

 

 

 

would appear as: 5

D

a e b

* c d

w e *    

5 could be merged to provide a data vector

5 D5

The first and third rows of D

whose elements are all defined. After node N has been processed,

would contain only one row; the first and third would be deleted.

Note that if the mappings were not modified as suggested in the

 

 

 

preposition, D5 would appear as follows after nodes N3, N7 , and N9

have been precessed: 5

D

a c b

7 c d

? e 7

  

  
In this case, when node N5 is processed the data vector would centain

(a, c, b) rather than (a, e, b).
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Proposition_5.15

For any repeatable Cepy Free Program Structure there exists an

equivalent Finite Program Structure.

23.92::

If there is never more than one entry in any data queue in the COpy

Free Program Structure, then critical races do not exist and an equivalent

Finite Program Structure can be constructed by using exactly these nodes

of the Cepy Free Program Structure.

Assuming that multiple entries in the data queues are possible, an

equivalent Finite Program Structure will be constructed. The nodes of the

COpy Free Program Structure will be used and various alterations will

be made to them. Performance of mappings can cause different actions

to be taken depending on which structure is being used. Another problem

which can arise is that it is possible for more than one cepy of a node

to be known at the same time in a Finite Program Structure whereas the

queueing discipline of the COpy Free Program Structure prevents this.

The multiple cepy problem can be eliminated by changing the execution

algorithm so that the oldest copy of a node is always processed first. This

forces the nodes of a Finite Program Structure to be processed in a

first-in, first-out manner which is identical to the manner they would

be processed in a Cepy Free Program Structure.

The other problem to be resolved is forcing the mappings of the

structure to behave identically. If any mapping to any node maps to n

elements of the data vector (u > 1) all that is necessary is to rewrite

that mapping in terms of n mappings where each maps to exactly one

element. The original mapping would then be replaced by n distinct
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mappings to the same node. Although there may be many more mappings in the

Finite Program Structure, these additional mappings will assure duplicate

results for the Finite Program Structure. Clearly, a Finite Program

Structure has been constructed that behaves as though it were a repeatable

COpy Free Program Structure.

Note that there are other ways in which an equivalent FPS can be

constructed that do not involve the changing of the execution algorithm.

One such method would be the invocation of preposition 4.1, i.e., making

the FPS deterministic. The second step of this process would be to

rewrite the mappings as was done in the previous preposition. In practice,

it would not be desirable to make an FPS deterministic since only one

node could be processed at any time.



CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summagy

This dissertation has presented a novel approach to the problem of

multiprocessing. The notions of shared memory and asynchronous Operation

are widely used in other models. However, in most cases, these techniques

are limited because of the necessity to prevent two or more processors

from concurrently accessing the same memory location.

The concept of the cepy of a node is a new notion. Although seemingly

innocuous, it is this feature that eliminates many of the classical problems

of parallel processing as well as simplifying the entire process.

Chapter I presents an introduction and discusses previous work. A

statement of the problem is also included.

A formal definition of Program Structures is presented in Chapter II

interspersed with several motivational examples.

Some of the capabilities of Program Structures are discussed in

Chapter III and it is shown how the set of all inputs of certain Program

Structures can be partitioned in equivalence classes. A formalism is

introduced which can be used in the analysis of Program Structures. This

formalism proves to be most helpful as a tool and as a notational aid

when studying various SSpects of Program Structures.

Chapter IV discusses criteria necessary to ensure that the output

produced by a Program Structure is unique. This prOperty is called

repeatability and it is assured based on the absence of any critical

races. The maximally parallel form is investigated and it is shown that

any Program Structure can be written in this form.

96
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The problems of interference and deadlock are presented in Chapter

V and solutions to these problems are discussed. Finite Program

Structures and Cepy Free Program Structures are defined and their

prOperties are studied with an emphasis on elimination of deadlock.

Finally, Finite Program Structures and Cepy Free Program Structures are

compared and conditions for equivalence of these structures are established.

6.2 Conclusions

The intention of this dissertation was to develOp a multiprocessing

model that was relatively easy to use and free from the problem associated

with earlier models. Whether or not the model discussed here is easy to

use may be a value judgement but clearly many of the classical prOblems

have been either eliminated or diminished. A major innovation in this

dissertation is the development of the concept of a cepy of a node.

It is this prOperty that makes the notion of shared memory take on a new

meaning.

It is no longer necessary to be concerned with the possibility

of two or more processors accessing shared memory simultaneously.

Consequently, there is no need to establish procedures for mutual

exclusion. It is the copy concept that reduces the seriousness of

problems such as repeatability, interference, and deadlock as well as

aiding in finding solutions for these problems.

Other innovations are the creation of a single node type and

the elimination of a separate control structure. Some models have over

ten node types each with precisely defined input, output and computation,

see (1, 3, 36, 41). Many models have employed two structures to represent

parallel computation; one structure to represent data relationships and
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the other to represent the control mechanism of the model. In this

dissertation, there is only one structure and it serves as both a represen-

tation of data and control. Not only is the model highly readable, it

is also very usable in a wide variety of applications as suggested by the

examples in Chapter II.

6.3 Future Work

A t0pic which has received a great deal of attention in recent years

is "Structured Programming". This is intended to be a technique for

sequential programming where only three types of control structures are

allowed: Linear sequence, selection, and repetition. Selection refers

to conditional Operation and repetition refers to 100ping. These three

types of Operations are closely related to Program Structures and further

investigation could formalize these relationships. If it can be shown that

Program Structures can implement and structured program then many of the

results any techniques recently develOped in this area can be utilized.

In particular, study of translator writing systems using this marriage

could prove most interesting. The paper by Lincoln (32) presents some

ideas in this direction.

Another worthy area of research with respect to Program Structures is

the study of efficiency. No material has been presented which considers

the Speed of execution of a Program Structure or even the amount of memory

required. There can be numerous "bottlenecks" which can degrade system

performance. If these bottlenecks can be detected, various scheduling

schemes could be develOped that would either eliminate them or at least

minimize their effect. Since the amount of memory required by an FPS or a

CFPS is critical, a study of minimum memory requirements would also be in order.
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Finally, another possible area of investigation is proving program

correctness of Program Structures. The problem of proving correctness

should be simplified somewhat due to the modular construction of Program

Structures. There have been a number of tools developed in this dissertation

such as the analysis formalism and equivalence classes of data which could

be most useful. Assertions about the behavior of Program Structures could

be made at the node level and this should have the effect of reducing the

complexity of the problem and making it possible to verify large scale

programs.
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