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ABSTRACT 

 

MODELING THE IMPACTS OF BARRIER REMOVAL ON GREAT LAKES SEA 

LAMPREY 

 

By 

 

Alexander James Jensen 

 

 Barriers in the Great Lakes represent an effective form of control for the invasive sea 

lamprey (Petromyzon marinus) by blocking large extents of river habitat and subsequently 

eliminating the need for the lampricide treatments in these upstream areas.  With increasing 

pressure for barrier removals, the availability of suitable sea lamprey habitat above these barriers 

and the expected population response to dam removals represent key uncertainties in decision-

making.  The development and evaluation of models to predict larval habitat quantities using 

readily-available, reach-scale landscape predictors improved our understanding of common 

influences on stream habitat, but failed to reliably predict habitat proportions upstream of 

barriers in the Lake Michigan drainage basin.  Subsequent simulation-based modeling of the 

Lake Michigan sea lamprey population revealed a disproportionate, exponential response to 

increasing habitat availability, driven in part by decreasing overall lampricide treatment 

frequencies under a fixed control budget.  The same modeling approach was used to generate sea 

lamprey population predictions associated with projected removal of Grand River’s Sixth Street 

Dam under a suite of alternative management actions and biological assumptions.  Based on all 

simulation results, barrier removals appear to necessitate a substantial increase in annual 

lampricide control costs to prevent disproportionate increases in sea lamprey abundance across 

the Lake Michigan basin.   
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THESIS INTRODUCTION 

 

 The parasitic sea lamprey (Petromyzon marinus) has played an important contributing 

role in the ecology and economics of the Great Lakes since its invasion in the early 20
th

 century.  

In conjunction to high fishing pressure and fish habitat loss, peak sea lamprey abundances in the 

1950s and 1960s contributed to the declines of numerous fish populations and commercial 

fisheries across the Great Lakes; the commercial catch of lake trout (Salvelinus namaycush) 

catch declined from 2268 t to 76 t between 1938 and 1954 in Lake Huron, and similar declines 

were reported in both Lakes Michigan and Superior (Smith and Tibbles 1980).  Other species, 

including burbot (Lota lota), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), 

and rainbow trout (Oncorhynchus mykiss) also experienced declines during this time period 

(Smith 1972).   In addition to the co-occurring rise and fall of sea lamprey and teleost 

abundances, respectively, evidence for the effect of sea lampreys on Great Lakes fish includes 

the explicit linking of lamprey wounding rates, mortality rates, and abundance for multiple 

species of Great Lakes fish, including lake whitefish and lake trout (Moore and Lychwick 1980; 

Spangler et al. 1980; Wells 1980).  The removal of top predators also led to longer-term, 

persistent changes in lake-wide ecology.  Released from predation pressure, multiple species of 

native ciscoes (Coregonus spp.) experienced a temporary surge in abundance before shifting 

parasitic pressure by sea lamprey caused subsequent depletions in both Lakes Michigan and 

Huron (Smith 1968). 

 The sea lamprey, native to the northern Atlantic Ocean, invaded the upper Great Lakes in 

the early 20
th

 century after the creation of the Welland Canal.  This artificial waterway 

presumably allowed sea lampreys, previously constrained to Lake Ontario, to bypass Niagara 
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Falls and begin spreading throughout the Great Lakes (Hubbs and Pope 1937).  The first 

evidence of sea lamprey spawning in Lake Erie was confirmed in 1932, and subsequent 

observations of sea lamprey in Lakes Huron and Michigan followed in 1937 and 1936, 

respectively (Hubbs and Pope 1937; Applegate 1950).  The earliest potential observed sea 

lamprey in Lake Superior was reported in 1938, with subsequent observations in 1946 

(Applegate 1950; Smith and Tibbles 1980).  By 1948, sea lampreys were firmly established, with 

confirmed spawning runs in 34, 68, and 4 tributaries in Lakes Huron, Michigan, and Superior, 

respectively (Applegate 1950).   

 Sea lampreys are an anadromous species in their native range, and their pattern of 

migrating to coastal rivers for spawning persists in the Great Lakes.  After the parasitic juvenile 

stage finishes feeding within one of the Great Lakes, individuals commence migration to find 

suitable rivers for spawning (Applegate 1950).   Unlike many anadromous species, sea lampreys 

appear to exhibit a lack of natal homing (Bergstedt and Seelye 1995).  Stream selection is instead 

based on river-specific cues including discharge and the concentration of pheromone-based 

larval cues (Moore and Schleen 1980; Morman et al. 1980; Mullett et al. 2003; Sorensen and 

Vrieze 2003).  Higher river discharge presumably helps migrating individuals sense and orient to 

river plumes, while larval cues indicate suitable habitat based on the occurrence of previous 

successful spawning (Wagner et al. 2009; Meckley et al. 2014).  Upon selecting a river and 

moving upstream, adults find suitable gravel habitat for spawning, construct mounded nests, 

deposit and fertilize eggs in the nests, and subsequently die (Applegate 1950; Manion and 

Hanson 1980).  Successfully hatched sea lamprey larvae from these eggs will leave the nest 

approximately three weeks after spawning, drift downstream, and locate suitable burrowing 

habitat (Applegate 1950). 
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 Sea lamprey ammocoetes, or larvae, are largely sedentary and possess a different 

morphology from their subsequent life stages.  Ammocoetes are relatively unselective filter-

feeders that live in fine substrate sediments (Beamish 1980).  They lack any semblance of the 

oral disc found in the parasitic juvenile stage, and instead use an oral hood to direct water into 

the pharynx for respiration and filter feeding (Youson and Potter 1979).  Larvae prefer fine 

substrate habitat, like silt and sand, for burrowing, and will live and grow within these habitats 

for an average of approximately 5 years (Potter 1980).  Over the course of their larval stage, 

ammocoetes can disperse widely from their original spawning sites; full siblings can be found 

more than 1 km apart within one year after hatch (Derosier et al. 2007).  Once larvae reach a 

threshold length and lipid content, they undergo metamorphosis, in which they develop larger 

and more complex eyes, a toothed-oral disc, a rasping tongue, and more prominent dorsal fins, 

among other features (Youson and Potter 1979; Potter 1980).  Sea lampreys then migrate 

downstream to the Great Lakes, where they typically spend 12 to 20 months feeding on teleosts 

using their newly developed oral disc and piston-like rasping tongue (Applegate 1950).  The 

commencement of the spawning migration, after feeding stage is done, then marks the start of a 

new cycle.       

 Since their invasion in the early 20
th

 century, sea lamprey abundances have been 

controlled to less than 10% of peak abundances due primarily to the application of sea lamprey-

specific pesticides (“lampricides”).  Thousands of chemicals were tested by the Great Lakes 

Fishery Commission (GLFC) for their selective effects on larval sea lampreys since 1953, and 

two chemicals were eventually selected: 3-trifluoromethyl-4-nitrophenol (TFM) and 5,2’-

dichloro-4’nitrosalicylaniiide (Bayluscide) (Howell et al. 1980).  These two chemicals were 

applied in conjunction to Great Lakes rivers, starting in 1958, to reduce numbers of larval sea 



 4    

lampreys and subsequently decrease the number of out-migrating parasites.  The application of 

lampricides has had an observable effect on sea lamprey populations: spawning runs have 

become smaller, wounding rates on teleosts have dropped, and abundance of important fish 

stocks have rebounded (Smith and Tibbles 1980).  Currently, rivers typically are selected 

annually for lampricide application based on treatment efficiency; this system is otherwise 

known as the Empiric Stream Treatment Ranking (ESTR) system (Christie et al. 2003).  

 Decisions to treat specific river systems around each Great Lakes basin are guided by 

assessment surveys to characterize larval densities and habitat quality.  Streams are regularly 

surveyed for relative measures of sea lamprey abundance, using the rapid assessment approach, 

to rank streams for treatment (Hansen and Jones 2008).  Backpack electrofishers are used to 

sample optimal larval habitat, and the number of expected larvae greater than 100 mm in length 

(“large” larvae) at the end of the growing season is calculated from sampled larvae quantities 

using known length frequencies and growth rates.  Streams are then ranked according to cost per 

expected large larva killed, and the highest ranked streams are selected for lampricide 

applications.  Larval habitat quantity is also irregularly sampled alongside these surveys.  Habitat 

is sampled by measuring the proportion of larval sea lamprey-specific habitat types along stream 

transects collected around fixed access points and aggregating these habitat measures to the 

spatial scale of treatment units (Slade et al. 2003). These measures of habitat can help extrapolate 

sampled larval densities to total larval quantities across stream reaches. 

 Dams play a complementary and well-recognized role in sea lamprey control within the 

Great Lakes.  Incidental barriers (i.e., those in place before the invasion of sea lamprey) block 

sea lamprey from accessing abundant quantities of both spawning and larval habitat in tributaries 

(Lavis et al. 2003).  The presence of effective barriers has a two-fold benefit for sea lamprey 
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control by reducing their production from streams and eliminating the need for lampricide 

treatment in select systems (i.e., freeing up resources for use in other tributaries).  An explicit 

strategy of the GLFC in sea lamprey control is the construction of new, purpose-built barriers 

and maintenance of existing dams in Great Lakes tributaries (Great Lakes Fishery Commission 

2011). 

 Intentional fragmentation in river systems also plays a useful conservation role in systems 

other than the Great Lakes.  Purposefully restricting aquatic connectivity within watersheds can 

yield multiple benefits, including limiting the spread of invasive species, restricting the dispersal 

of new diseases, blocking hybridization between wild and hatchery populations, and stopping 

organisms from accessing suboptimal habitats (Rahel 2013).  Barriers have been modified or 

constructed to specifically block the spread of nonnative species like lake trout, brown trout 

(Salmo trutta), and rainbow trout in Montana, California, and Arizona, respectively (Avenetti et 

al. 2006; D’Angelo et al. 2010; Pister 2010).   

 Despite these examples for the positive role of barriers, dams can cause more harm than 

good to aquatic ecosystems and increasingly are being considered for removal.  Correspondingly, 

there is growing opportunity and interest in barrier removals across the United States for a 

multitude of reasons.    First, there is widespread concern over the public safety of existing dam 

infrastructure.  Approximately 80% of dams identified by the National Inventory of Dams will 

be older than the average life expectancy of dams (i.e., 50 years) by 2020 (NRC 1992; ASDSO 

2016).  Furthermore, hundreds of hydroelectric dams will require relicensing from the Federal 

Energy Regulatory Commission, which necessitates the decision to retain or remove the dam 

(Pejchar and Warner 2001).  Concurrently, there is increasing motivation to increase aquatic 

connectivity and restore fish populations, as the declines of several migratory fish populations 
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have been linked to dams (Limburg and Waldman 2009).  These opportunities and motivations, 

among numerous others, have driven dam removals efforts in Great Lakes states, including 

Michigan.  The Michigan Department of Natural Resources has granted millions of dollars to aid 

in dam repair and removal, and otherwise assisted in the removal of numerous additional barriers 

(Michigan Department of Natural Resources 2016) 

 Both the benefits and costs of barrier removals in regions like the Great Lakes have to be 

considered in decision-making, and these aspects can be informed by fisheries research.  Dams 

have both positive and negative effects on Great Lakes fisheries due to their role in 

simultaneously blocking sea lamprey and other desirable, migratory species fish species (e.g., 

salmonids).  The relative magnitudes of these effects, and the expected response of fish 

populations upon barrier removals, need to be understood before making dam removal decisions.  

The effects of barrier removals on sea lamprey populations represents an especially pertinent 

aspect to understand due to their known effects on numerous Great Lakes fish species and a 

detailed understanding of their population dynamics.  An operating model, incorporating both 

sea lamprey population dynamics and control efficacy, has already been developed to formalize 

our understanding of this system and represents a potentially useful tool to inform barrier 

removal decisions (Jones et al. 2009). 

 This thesis is intended to characterize the likely response of sea lamprey populations, 

including the future effectiveness of sea lamprey control, to barrier removals in Lake Michigan.  

Lake Michigan was selected as the focal representative of the Great Lakes based on the detailed 

population dynamics information available for the system.  In chapter 1, I compare the 

performance of multiple modeling approaches in predicting the quantity of sea lamprey larval 

habitat upstream of barriers in Lake Michigan tributaries using predominantly catchment-scale 
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landscape attributes.  The availability of larval habitat is an important determinant of recruitment 

success but is resource-intensive to measure across large spatial extents.  Habitat modeling 

efforts shed light on dominant influences of substrate-based stream habitat in Michigan and may 

inform future population dynamics modeling.  In chapter 2, I apply a modified version of a sea 

lamprey operating model to evaluate the quantitative response of the Lake Michigan sea lamprey 

population to both systematic increases in habitat availability and a specific barrier removal case 

study.  In doing so, I assess the influence of modeling assumptions, including habitat quality, 

habitat use, and alternative management actions, on the expected response, and identify driving 

factors behind simulated changes in abundance.  Population modeling results revealed 

unexpected influences of life history traits and spatial scale on a species’ response to barrier 

removals and demonstrate the utility of similar modeling efforts to inform future barrier removal 

decisions. 

  



 8    

CHAPTER 1: COMPARISON OF MODEL PERFORMANCE IN PREDICTING REACH-

SCALE LARVAL SEA LAMPREY HABITAT ABOVE LAKE MICHIGAN BARRIERS 
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INTRODUCTION 

 

 Quantitative measures of stream habitat features, such as those describing substrate 

characteristics, are often necessary for estimating potential fish production within rivers.  For 

example, the amount of larval habitat, physically defined as substrate dominated by fine 

particles, is an established driver of Great Lakes sea lamprey (Petromyzon marinus) recruitment 

success (Jones et al. 2003; Dawson and Jones 2009; Jones et al. 2009).  However, physical 

habitat measurements are often unavailable and difficult to collect at the appropriate extent and 

resolution for management application, so an alternative is to develop predictive models capable 

of estimating habitat quantities in streams.   

 The use of predictive models to estimate measures of stream habitat can save resources 

that otherwise would be required for physical sampling.  Stream habitat modeling typically 

draws upon the hierarchy theory of streams, in which large-scale catchment characteristics 

constrain local physical, chemical, and biotic components of stream, to predict fine-scale habitat 

features relevant to aquatic resource management (Curry 1972; Hynes 1975).  These established 

hierarchies can be very useful in predicting local stream habitat because it can be difficult to 

measure fine-resolution habitat features, like sea lamprey larval habitat, across broad spatial 

extents (Brenden et al. 2007).  Conversely, large-scale catchment predictors, including predictors 

like land use and topography, are often readily available in databases like the National Land 

Cover Database (Multi-Resolution Land Characteristics Consortium 2015).  Many studies have 

successfully applied hierarchy theory for local stream habitat predictions, including substrate 

composition, using various catchment-scale predictors (Jeffers 1998; Mugodo et al. 2006; 

Frappier and Eckert 2007; Brenden et al. 2007; Wang et al. 2013).  
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 The quantification of sea lamprey larval habitat in stream reaches above dams in the 

Great Lakes basin is a particularly important issue that can be informed by predictive modeling.  

Sea lampreys in the Great Lakes are an invasive species predominantly controlled by the 

application of selective pesticides, specifically 3-trifluoromethyl- 4’-nitrophenol (TFM) and 2’, 

5-dichloro-4’- nitrosalicylanilide (Bayluscide), to streams to kill the resident larval sea lamprey 

(Smith and Tibbles 1980).  Dams also play a key role in sea lamprey control by blocking 

lampreys from sections of stream that would otherwise provide additional spawning and larval 

habitat area (Hunn and Youngs 1980).  These same dams, however, are being considered for 

removal to improve public safety and enhance fishery resources.  Removal of dams could greatly 

increase the amount of available habitat (Lavis et al. 2003) and possibly decrease the 

effectiveness of current control efforts if funds available for lampricide treatments are 

constrained.  Knowledge of sea lamprey population responses to dam removals is needed to 

allow more explicit cost-benefit analyses to inform decisions on barrier removals.  Quantifying 

the amount of available larval habitat above dams, as an important driver of recruitment success, 

is needed to predict the overall response of sea lamprey populations to dam removals.  

 The Great Lakes Fishery Commission (GLFC) has conducted habitat sampling for larval 

sea lamprey in currently infested stream reaches, in which they quantify the proportion of 

different habitat categories based on substrate composition along stream transects (Larval 

Assessment Work Group 2013).  Larval habitat is divided into three primary categories (Type I, 

II, and III), among which only Type I and II habitat are considered suitable for larvae due to the 

presence of fine sediments for burrowing.  More specifically, Type I, II, and III habitat are 

defined as mixtures of fine sands and organic matter, medium to coarse shifting sands, and hard-

packed surfaces (e.g., bedrock, gravel, hardpan clay), respectively (Applegate 1950; Slade et al. 
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2003).  Type I habitat was observed to contain 93% of sampled sea lamprey larvae in Great 

Lakes tributaries and has been found to supports significantly higher larval densities than Type II 

(Mullett 1997).  Because sea lamprey are not present in stream reaches above effective lamprey 

barriers, little sampling has been conducted by the GLFC to characterize larval habitat in these 

areas.  Although previous studies have attempted to predict larval sea lamprey habitat using a 

combination of river and landscape features (Neeson et al. 2007; Neeson et al. 2012), none have 

developed models with the intent to predict habitat in new spatial extents, using landscape-scale, 

widely available GIS-derived covariates.   

 Large-scale landscape predictors and fine-scale habitat elements are measured at very 

different scales; hierarchical models are particularly well-suited to handling these spatial 

discrepancies.  Hierarchical models, also known as multilevel models, are a generalization of 

linear regressions, in which model coefficients themselves are modeled with distinct parameters 

(Gelman 2006a).  The incorporation of random effects in these models, in which spatial scales 

can be treated as nested levels, allow for prediction outside of the existing spatial units or levels; 

this is a valuable feature for predicting habitat in areas outside of the data extent.  Random 

effects represent “a random sample of a larger set of potential effects” instead of representing 

“all possible levels of a factor” (Wagner et al. 2006).  These hierarchical models can be flexibly 

implemented in a Bayesian framework, which also allow for probabilistic interpretation of 

results (Midway et al. 2014).  Multilevel models are therefore suitable for modeling transect-

level sea lamprey habitat features based on reach-level landscape predictors.  

 Proportional data can also be difficult to model using traditional modeling techniques. 

Sea lamprey habitat data are reported as proportions; a logit transformation is commonly used to 

re-scale proportion data to allow estimation within a linear modeling framework (Warton and 
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Hui 2011).  An extension of the logit transformation is beta regression, based on the beta 

distribution; this approach is suited to model response variables that take values between 0 and 1 

(Ferrari and Cribari-Neto 2004).  With a beta regression, a link function (typically logit, but 

sometimes probit or cloglog) connects the response data to the explanatory variable, which are 

then modeled assuming a beta distribution (Liu and Kong 2015) An extension of the beta 

regression, namely zero/one inflated beta regression, is useful for cases where zeroes and ones 

are common in the response variable data.  

 Additional problems in predictive modeling include incorrectly assuming linear 

relationships exist between dependent and independent variables and overfitting from an excess 

of predictor variables.  Nonlinearity and thresholds can be expected in fluvial geomorphology, 

wherein stream features are simultaneously affected by interacting factors at a multitude of 

spatial and temporal scales (Shreve 1979).  Generalized additive modeling using component-

wise gradient boosting is an emerging method to avoid overfitting data and allow nonlinear 

relationships among predictor and response variables (Hofner et al. 2014).  Additive models, 

introduced by Hastie and Tibshirani (1986), allow for smooth, nonlinear, component-wise fitting 

of predictors to response data using specified linear components.  Pairing additive modeling with 

component-wise gradient boosting further allows for implicit variable selection by iteratively 

improving the model one predictor variable at a time (Friedman 2001; Hofner et al. 2014).  This 

modeling approach was successfully applied in Wang et al. (2013) to predict multiple facets of 

fine-scale stream habitat, including substrate composition. 

 I used larval habitat data collected by the GLFC between 2004 and 2008 and a wide 

range of potential landscape-scale covariates attributed to stream reaches to predict the amount 

of Type I and Type II larval habitat (i.e., suitable burrowing habitats) in stream reaches upstream 
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of existing dams.  I first evaluated the ability of three modeling approaches, fit independently to 

the original Type I and Type II habitat proportion response data, to predict both habitat types by 

comparing their model fit, important predictor variables, and predictive capacity: 1) hierarchical 

linear regression in a Bayesian framework using logit-transformed response variables, 2) 

hierarchical zero/one inflated beta regression in a Bayesian framework using the raw 

proportional response variables, and 3) generalized additive modeling, in a Gaussian likelihood 

framework, with component-wise gradient boosting using the logit-transformed response 

variables.   The predictive capacity of each modeling approach was assessed using independent, 

out-of-sample data collected in Lake Michigan tributaries, upstream of existing dams, in the 

summer of 2016.  Following these comparisons, I then evaluated the ability of the generalized 

additive model to predict Type I and Type II habitat when the model was fit to two new, derived 

response variables: the total larval habitat proportion (i.e., the sum of Type I and Type II habitat 

proportions) and the ratio between the two habitat types.  Combining the two new predicted 

response variables represents a unique way to predict individual habitat quantities, in which 

information is shared across the two response variable datasets.   

 The successful quantification of larval habitat in stream reaches upstream of relevant 

barriers can inform simulations of sea lamprey response to dam removals and has the potential to 

subsequently improve barrier removal decisions.  Furthermore, an improved understanding of the 

driving landscape influences on sea lamprey habitat can guide future habitat sampling and 

estimation. 
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METHODS 

 

Historical Data  

 Larval habitat data were collected by GLFC field crews between 2004 and 2008 

according to their current larval assessment sampling protocol (Larval Assessment Work Group 

2013).  Within each treatment unit, defined by the GLFC as a section of stream where a unified 

lampricide treatment can be applied, field crews sampled up to six access points, which were 

simply points along the river where crews could physically access the water.  Sampling locations 

were broadly distributed around sea lamprey-infested watersheds in the Lake Michigan drainage 

basin (Fig. 1.1).  At each access point, control agents sampled two upstream and two 

downstream cross-sectional transects, and divided the total transect length of each into segments 

of one of the following three aquatic habitat types, identified using visual and tactile assessment: 

Type I, Type II, and Type III.  The proportion of Type I and Type II habitat along each transect 

was calculated from these distances and used as the primary response variable in this analysis.  

The GLFC uses total larval habitat areas, calculated from these surveys as the product of 

treatment unit length, average width, and average habitat proportions, in combination with larval 

abundance surveys to estimate total larval abundance within treatment units and inform control 

efforts.    
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Figure 1.1: Distribution of GLFC sampling locations around the Lake Michigan drainage basin 

for the 2004-2008 time period. 
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 All landscape covariate data were obtained from a spatial framework developed by Wang 

et al. (2011), in which landscape and stream network variables were assigned to stream reaches, 

as well as their associated catchments and buffers, across the conterminous United States using 

the National Hydrography Dataset Plus (1:100,000 scale; http://www.horizon-

systems.com/nhdplus).  A wide range of variables were selected to capture aspects of climate, 

elevation, geology, soil, land cover, groundwater contribution, as well as river size and 

connectivity.  These variables were attributed to five possible spatial scales: the reach, local 

buffer (LB), network buffer (NB), local catchment (LC), and network catchment (NC).  Within 

this spatial framework, a reach is defined as an inter-confluence section of a stream, a buffer as 

the portion of the landscape within a set distance of the reach (90 m in this case), and a 

catchment as the entirety of upstream land draining into the lowermost portion of a reach 

(Brenden et al. 2006).  Local and network refer to how the buffers and catchments are bounded; 

local buffers and catchments only extend to the boundaries with the nearest neighboring reaches, 

and network buffers and catchments are the totality of all buffer or catchment area upstream of 

the reach in question (Brenden et al. 2006).  

 Because measures of the predictor variables were attributed to NHDPlus-defined reaches 

and not those defined by the GLFC, the habitat measurements associated with transects were re-

assigned to NHDPlus-defined reaches using GPS coordinates recorded for each 

downstream/upstream transect pair.  This work was performed in ArcMap (PC ARC/GIS 

Version 10.0. Environmental System Research Institute, Redlands, California, 

http://www.esri.com/software/arcgis). 

 

 

http://www.esri.com/software/arcgis
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Landscape Variable Reduction Techniques 

 Variable reduction of the initial candidate set of approximately 300 variables included the 

following steps: 1) remove variables with no observed variation, 2) aggregate detailed 

categorical variables (e.g., attributes like land cover, surficial lithology) into more commonly-

used, functional predictors, 3) remove variables with no proposed mechanistic relationship to 

stream sediment composition, 4) choose just one spatial scale per variable where applicable (LB, 

NB, LC, NC), and 5) remove collinear variables.  The selection of combined variable categories, 

removal of variables with no proposed relationships to sediment composition, and choice of 

spatial scale were based on available scientific literature, professional judgment by experts in the 

field of ecohydrology, and best personal judgment.  Assessment of collinearity was conducted 

using a generalized variance inflation factor (GVIF) analysis applied to the logit-transformed 

Type I and Type II response variables (Fox and Monette 1992), where modified GVIF values 

(GVIF
1/2p

) greater than 3, as a proxy for VIF, indicated the presence of troublesome collinearity 

(Zuur et al. 2010).  GVIF was used in place of the more traditional VIF due to the presence of 

categorical variables in the analysis.  The goal of variable reduction was to obtain a manageable 

set of uncorrelated covariates, supported by personal and professional judgment, to predict sea 

lamprey habitat. 

 

Pre-Modeling Data Transformations  

 Prior to fitting the hierarchical logit regression and generalized additive models to the 

individual Type I and Type II responses, I transformed the proportion data for both habitat types 

using the logit-transformation recommended by Warton and Hui (2011).  Because the log-based 
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transformation cannot inherently handle the presence of zeroes and ones in the dataset, the 

following modified logit-transformation was used: 

𝑙𝑜𝑔
(𝑥+𝑀)

(1−𝑥+𝑀)
    

where x is the proportional response data and M is the minimum non-zero value in the response 

dataset being transformed.  In contrast, untransformed proportion data were used in fitting the 

zero/one-inflated beta regression model.   

 The same modified logit-transformation was applied to the transect-specific total larval 

habitat proportions, which were simply the sum of transect-specific Type I and Type II habitat 

proportions.  The ratio of Type II to Type I habitat proportions was calculated using a similar 

modification to handle zeroes and ones; the minimum non-zero value in each response dataset 

was added to the Type I and Type II habitat proportions before the quotient calculation.  

 All landscape covariates were centered and scaled to increase the ease of model 

convergence and to facilitate coefficient comparison within and among models (Kéry 2010).   

 

Fitting the Original Type I and Type II Response Data 

 Hierarchical Logit Regression Model  

  I constructed this model with three levels in the hierarchy: transect-scale habitat 

proportion measurements, the random effect of access point, and the random effect of reach.  I 

included the effect of access point to account for the fact that transects were not randomly 

sampled throughout each reach; instead, transects were systematically sampled within “clusters” 

(i.e., around the access points).  The random effect of access point helps accounts for the 

expected higher similarity among transects within these “clusters” than among transects from 

separate clusters.  Access point was nested within reach to match the spatial scale of the 
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landscape covariates, and the linear regression of the thirteen covariates was applied to the 

random effect of reach (variables are defined in Table 1.1):  

Hierarchy Level 1 (Transect): 

𝑦𝑖𝑗𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝛼1𝑗𝑘
, 𝜎1

2) 

Hierarchy Level 2 (Access Point): 

𝛼1𝑗𝑘
~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼2𝑘

, 𝜎2
2) 

Hierarchy Level 3 (Reach): 

𝛼2𝑘
~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1𝑘

, 𝜎3
2) 

𝜇1𝑘
=  𝛽1 ∗ 𝑃1𝑘

+  𝛽2 ∗ 𝑃2𝑘
+ . . . + 𝛽𝑛 ∗ 𝑃𝑛𝑘

+  𝛼𝑝 +  𝛼3  

 The model was constructed in WinBUGS (Lunn et al. 2000) and run from R (R Core 

Team 2016) using the R2WinBUGS package (Sturtz et al. 2005, Running ‘WinBUGS’ and 

‘OpenBUGS’ from ‘R’ / ‘S-PLUS’, version 2.1-21, https://cran.r-project.org/package=coda).   

The full WinBUGS script for hierarchical Bayesian model used to predict Type I habitat is 

provided in Appendix A. 
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Table 1.1: Descriptive key of model parameters describing the Bayesian hierarchical logit 

regression and beta regression models. 

 

Variable Description 

Logit Regression 

i Transect-scale 

j Access point-scale 

k Reach-scale 

y Logit-transformed transect-scale habitat measurement 

𝛼1 Random effect of access point, nested within reach 

𝛼2 Random effect of reach 

𝛼3 Linear regression intercept 

𝜇1 Mean reach effect 

𝛽 Slope coefficient for continuous predictor n 

𝑃 Value for continuous predictor  

n Number of continuous predictors 

𝛼𝑝 Coefficient for dam presence 

p Categorical predictor levels 

𝜎1
2 Unexplained model variance 

𝜎2
2 Within access point variance 

𝜎3
2 Within reach variance 

Beta Regression 

𝑖 Transect-scale 

𝑗 Reach-scale 

𝑦 Transect-scale habitat measurement 

𝑝𝑖𝑗 Probability yij=0 

𝑞𝑖𝑗 Conditional probability yij=1|yij≠0 

𝛼𝑖𝑗1, 𝛼𝑖𝑗2 Beta distribution shape parameters 

𝜇𝑖𝑗 Beta distribution mean 

 𝑣𝑖𝑗 Beta distribution variance 

𝛽 Slope coefficient for continuous predictor n 

𝑃 Value for continuous predictor  

n Number of continuous predictors 

𝛼𝑝 Coefficient for categorical predictor 

p Categorical predictor levels 

𝛼1, 𝛼3, 𝛼4 Regression intercept values 

𝛼2𝑗 Random effect of reach 

𝜇1 Mean reach effect 

𝜎1
2 Within reach variance 
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 In running this model, I used uninformative normal priors (N ~ [0, 1000]) for all slope, 

fixed effect, and intercept terms.  Similar priors have been used in other hierarchical, linear 

modeling approaches (Thomas et al. 2006; Midway et al. 2015). Vague uniform priors were 

applied for the three standard variance terms (Unif ~ [0, 20]), as recommended by Gelman 

(2006b) for hierarchical models. 

 Recommended chain length was assessed by running a 1000 iteration chain with no burn-

in and applying Raftery and Lewis’ diagnostics.  Raftery and Lewis’ convergence diagnostics 

indicated the necessary chain and burn-in length for each evaluated model parameter to achieve a 

certain probability of obtaining a model estimate within some margin of error around a set 

quantile; I specified a 95% probability, 5% margin of error, and 50% quantile in my analyses 

(Cowles and Carlin 1996).  Following the burn-in and chain length recommendations from the 

Raftery and Lewis’ diagnostics, I ran the full model and assessed model convergence using 

Geweke’s criterion, in which the absolute value of a z score greater than 1.96, from the 

comparison between the means of the first 10% and last 50% of the MCMC chain for every 

evaluated parameter, indicated a failure to converge at the p=0.05 level of significance (Geweke 

1992).  I also performed visual examinations of the parameter trace and autocorrelation plots.  I 

evaluated the posterior probability distribution for every intercept, fixed effect, and slope 

parameter, in addition to all variance terms and reach-scale model predictions.  MCMC chain 

diagnostics were assessed using the coda package (Plummer et al. 2015, Output Analysis and 

Diagnostics for MCMC, version 0.18-1, https://cran.r-project.org/package=coda).   

  Hierarchical Zero/One Inflated Beta Regression Model 

 I intended the hierarchical zero/one inflated beta regression to account for the influence 

of extreme response variable values (i.e., zeroes and ones), model the response using a non-

https://cran.r-project.org/package=coda
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normal distribution, and account for the random effect of reach.  In fitting the zero/one inflated 

beta regression for the untransformed proportion data, I included the same set of covariates as 

those applied in the hierarchical logit regression model, as well as the random effect of reach.  I 

also allowed for separate intercept terms to account for the zeroes and ones via zero/one 

inflation.  Unlike the logit regression, the random effect of access point was not accounted for 

and predictors were fit to response data at the transect scale; these changes were due to inherent 

limitations in the R package used to fit the model.  The model equations for this beta regression 

with zero/one inflation and the random effect of reach, modified from Liu and Kong (2015), are 

provided below (variables are defined in Table 1.1):  

Hierarchy Level 1 (Transect): 

𝑦𝑖𝑗 = {

𝑝𝑖𝑗                                                                     𝑖𝑓 𝑦𝑖𝑗 = 0

(1 − 𝑝𝑖𝑗)𝑞𝑖𝑗                                                     𝑖𝑓  𝑦𝑖𝑗 = 1

(1 − 𝑝𝑖𝑗)(1 − 𝑞𝑖𝑗)𝐵𝑒𝑡𝑎(𝛼𝑖𝑗1, 𝛼𝑖𝑗2)     𝑖𝑓 𝑦𝑖𝑗 ∈ (0,1)

 

𝜇𝑖𝑗
(0,1) = 𝛼𝑖𝑗1(𝛼𝑖𝑗1 + 𝛼𝑖𝑗2)−1 

𝑣𝑖𝑗 = 𝛼𝑖𝑗1 + 𝛼𝑖𝑗2 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑖𝑗
(0,1)) =  𝛽1 ∗ 𝑃1𝑗

+  𝛽2 ∗ 𝑃2𝑗
+ . . . + 𝛽𝑛 ∗ 𝑃𝑗𝑛 +  𝛼1 +  𝛼𝑗𝑝 + 𝛼2𝑗 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝛼3 

𝑙𝑜𝑔𝑖𝑡(𝑞𝑖𝑗) = 𝛼4 

Hierarchy Level 2 (Reach): 

𝛼2𝑗~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇1, 𝜎1
2) 

 Default diffuse normal priors (N ~ [0,1000]) were used for all model parameters except 

for the variance terms; uniform priors with the model’s default distribution (Unif ~ [0, 20]) were 

used for the variance parameters.  Recommended chain length and initial convergence were 
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again assessed using Raftery and Lewis’ convergence diagnostics run on two separate 1000 

iteration chains with no burn-in.  Following the burn-in and chain length recommendations from 

the Raftery and Lewis’ diagnostics, I assessed final model convergence using Geweke’s criterion 

and examination of the trace and autocorrelation plots. 

 The model was run from R (R Core Team 2016) using the zoib package (Liu and Kong 

2015, Bayesian Inference for Beta Regression and Zero-or One Inflated Beta Regression, version 

1.3.3, https://cran.r-project.org/package=zoib), which runs the MCMC chain using JAGS 

software (Plummer 2014). 

  Boosted Generalized Additive Model 

 For this model, I assumed a Normal distribution for the logit-transformed habitat values, 

and correspondingly applied a normal negative log-likelihood loss function within the model 

framework.  The same landscape predictors as in the previous models were applied in the 

boosted generalized additive model; all variable reduction was conducted during the iterative 

model fitting.  No random effects were included due to the model’s inability to separate random 

and fixed effects in the implicit variable reduction.  The continuous covariate effects were 

incorporated using additive P-spline base-learners (typical in generalized additive modeling) 

with the default 4 degrees of freedom and 20 interior knots; categorical effects were modeled 

using ordinary least squares base-learners (Schmid and Hothorn 2008; Wang et al. 2013).  

Following the recommendations of Hofner et al. (2014), I determined the optimal number of 

boosting iterations (mstop) in model fitting by fitting the full model (mstop=100), applying 10-fold 

cross-validation, and identifying the mstop value that minimized predictive risk.  The model was 

run from R (R Core Team 2016) using the mboost package (Hofner et al. 2016, Model-Based 

Boosting, version 2.6-0, https://cran.r-project.org/package=mboost). 

https://cran.r-project.org/package=zoib
https://cran.r-project.org/package=mboost
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Fitting the Derived Response Variables 

 I fit the same landscape predictors for Type I habitat models to the total larval habitat 

proportions and ratio response variables within a generalized additive model framework.  For the 

total larval habitat response, I again assumed a Normal distribution for the logit-transformed 

values and applied a normal negative log-likelihood loss function.  Based on the observed 

distribution of the ratio between the two habitat types, I decided to fit a Laplace (i.e., double 

exponential) loss function to best characterize the ratio-based response variable.  The Laplace 

distribution exhibits exponential decline moving away from zero in a positive direction and, as 

such, can be successfully applied to long-tailed error distributions (Hofner et al. 2014).   The 

same base-learners and procedure to identify an optimal number of boosting operations, as 

described for fitting the individual habitat response data, were applied in these two models.  

After fitting the model and generated predictions for derived quantities, individual predictions 

for Type I and Type II habitat were calculated by dividing the predicted total larval habitat 

proportion by the appropriate Type II to Type I ratio estimate. 

 

Assessing Variable Influence and Model Fit 

 Variable importance and direction of covariate influence for the logit regression and 

zero/one inflated beta regression models were assessed by examining the coefficient posterior 

distribution, and specifically the 95% highest posterior densities (HPD).  Highest posterior 

density intervals reflect the smallest range of coefficient values that contains a specified 

percentage of the coefficient estimates generated from the MCMC chain, and can be applied to 

determine variable importance in a similar manner to frequentist confidence intervals.  I chose to 

interpret coefficients with a 95% HPD that did not overlap zero as a strong predictor of larval 
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habitat.  The coefficient sign (positive/negative) determined the direction of variable influence.  

 For the boosted generalized additive models, I assessed each variable’s relative 

importance in driving model fit using selection frequencies, representing the number of iterations 

in the model fitting process in which each variable was selected as the best predictor.  The 

direction of variable influence was assessed through the use of partial effects plots, which 

illustrate the nonlinear effect of each variable on the response with all other variables held at a 

constant value. 

 Model fit was assessed by comparing observed and predicted habitat values, on both the 

transect- and reach-scale larval habitat proportions.  The transect scale is the original scale of our 

models’ response variables, and assessing model fit on this scale reflects the realized amount of 

variation among transects within each reach.  Model fit was also assessed on the reach scale, as 

this the scale of interest for future habitat predictions; observed reach-scale habitat proportions 

were obtained by calculating the simple average of all available transect-scale observations 

within each reach.  For the hierarchical logit regression and zero/one inflated beta regression 

models, habitat predictions were generated using just the mean of the model-estimated 

coefficients and the original model data.  Random effects were not incorporated because future 

habitat predictions, in stream access points or reaches outside of those used to fit the models, can 

only be calculated using these fixed coefficients.  Habitat predictions for the boosted generalized 

additive model were obtained using the package’s built-in prediction functionality. 

   Quantification of model fit for both habitat types was achieved by fitting a linear 

regression model between observed and predicted values, and calculating the intercept, slope, 

and model fit (R
2
; equivalent to the squared Pearson’s correlation coefficient between the two 

datasets).  I also performed regression-based equivalence tests to assess whether intercept and 
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slope terms from a linear regression fit to the observed and predicted data fell within some 

specified range around the expected value (Robinson et al. 2005).  The intercept test specifically 

assessed whether the means of the observations and predictions are equivalent; the slope test 

assesses whether the slope term is equal to the expected value of 1.  I chose a relatively broad 

equivalence range of 50% due to the large degree of stochasticity and dynamism typical in in-

stream habitat features; a similar value was applied in Wang et al. (2013).  Finally, based on the 

recommendation of Piñeiro et al. (2008), I calculated the root mean squared deviation (RMSD) 

for the association between the observed and predicted larval habitat proportions; lower RMSD 

values indicate better model fit.  The RMSD correctly assessed the deviation of predicted values 

from the expected 1:1 line between observed and predicted values, as opposed to similar 

measures like mean squared error (MSE).   

 

Evaluating Model Predictive Ability on Out-of-Sample Data  

 As the modeling results of this study were intended to predict habitat quantities in stream 

reaches upstream of dams, and more generally in spatial extents not included in the model 

building dataset, I conducted habitat sampling in stream reaches upstream of existing dams in 

order to create a dataset for external model validation.  This dataset allowed me to assess 

whether the models can successfully predict in these upstream systems, the habitats of interest 

for this study.  Sampling occurred between July 18, 2016 and August 11, 2016.   

 Sampling sites were determined by first selecting river systems in the Lake Michigan 

with the following characteristics: (a) contained a sea lamprey barrier blocking an extensive 

amount of potential lamprey habitat, (b) were previously sampled sometime between 2004-2008 

downstream of the dam, (c) were listed as a high priority by sea lamprey control agents in the 
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GLFC’s Barrier and Larval Control Task Forces, and (d) represented the diverse spatial extent 

captured by the original model dataset.  A diverse spatial extent was crucial to capture the full 

range of covariate variability within the model training dataset.  Six streams were eventually 

selected for sampling: Twin River, Peshtigo River, Whitefish River, Boardman River, Pentwater 

River, and Kalamazoo River.  The Twin and Peshtigo Rivers are in Wisconsin, the Whitefish 

River is in Michigan’s Upper Peninsula, and the remaining three are in Michigan’s Lower 

Peninsula (Fig. 1.2).   
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Figure 1.2: Distribution of 2016 sampling effort across the Lake Michigan basin, and within each 

of the sampled river systems. 
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 Based on resampling simulations of the 2004-2008 transect data (A. Jensen, Michigan 

State University, East Lansing, Michigan, unpublished analysis), four access points were 

determined to be desirable to capture the true expected amount of Type I and Type II habitat 

within a given reach.  This desired number of access points was selected by qualitatively 

assessing the trade-off between minimizing the observed coefficient of variation for observed 

reach-scale Type I and Type II habitat quantities, assuming that four transects were taken at each 

access point, and sampling a maximum number of stream reaches.   

 For each of the six river systems, I aimed to sample a minimum of eight randomly 

selected NHD reaches, upstream of the first effective lamprey barrier, with each reach having at 

least four accessible road crossings. Low crossing densities and inaccessible stream crossings in 

some systems necessarily resulted in stream reaches with less than four access points; a 

minimum of two access points and eight transects were required to include reach data in model 

validation.  Furthermore, some reaches, when examined in the field, were stagnant (lentic), dry, 

or otherwise inaccessible; when feasible, these reaches were replaced by opportunistic sampling 

of nearby stream reaches. 

 The in-stream sampling protocol followed that of the GLFC Sea Lamprey Control Board 

(Larval Assessment Work Group 2013), with one primary exception.  If either upstream or 

downstream transects could not be measured at an access point, compensatory additional 

transects were collected in the accessible direction; a maximum of four transects were collected 

at any one access point. I then used these data to assess the ability of each modeling approach to 

predict reach-scale Type I and Type II habitat quantities using available landscape covariate data.   

The same metrics used to evaluate model fit (e.g., RMSD, equivalence testing, R
2
) were used to 

compare predictive capacity. 



 30    

RESULTS 

 

Data Transformations 

 The logit transformation established approximately normal distributions in the larval 

habitat quantity variables between extreme high and low values, but did not account for the 

dominance of these extreme values on both ends of the distribution (e.g., zeroes and ones in the 

original proportional data) (Fig. 1.3).  The habitat ratio response had a strongly right-skewed 

distribution (Fig. 1.3d).   

 

Variable Reduction  

 At each of the four covariate spatial scales, I aggregated 15 land cover and surficial 

lithology variables into just 5 covariates following recommendations of local experts in Lake 

Michigan limnology (Table 1.2; D. Infante, Michigan State University, East Lansing, MI, 

personal communication, 2015; D. Lusch, Michigan State University, East Lansing, MI, personal 

communication, 2015).  Following all other variable reductions, sixteen variables were finally 

considered for model inclusion prior to analysis of collinearity; this analysis resulted in the 

removal of three covariates for each habitat type (Table 1.3).  The final variable set for each 

habitat type therefore consisted of the following thirteen variables: agriculture land cover, 

impervious land cover, natural vegetation land cover, wetland land cover, catchment area, 

catchment elevation, catchment slope, lithology (fine or coarse for Type I and II habitat, 

respectively), precipitation, soil permeability, groundwater index, road crossing density, and dam 

presence. 
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Figure 1.3: Distributions of transect-scale values of logit-transformed Type I (a), Type II (b), and 

total larval habitat (c) proportions, in addition to the distribution of Type II to Type I habitat 

proportion ratios (d).  
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Table 1.2: Summary of aggregated class-based predictor variables considered for model 

inclusion. 

 

Aggregated Variable Constituent Variables Justification 

% Agriculture Pasture/Hay 

Cultivated Crops 

Agricultural land is expected to 

serve as source of fine sediments 

 

% Natural Vegetation Deciduous Forest 

Evergreen Forest 

Mixed Forest 

Shrubland - Shrub/Scrub 

Herbaceous / Grassland 

 

Riparian buffer zones are known 

to filter run-off, including 

sediments 

% Wetland Woody Wetlands 

Emergent Herbaceous Wetlands 

Wetlands, similar to riparian 

zones, can filter run-off and serve 

as a sediment trap 

 

% Fine Lithology Glacial Till - Clayey 

Glacial Till - Loamy 

Glacial Lake Sediment - Fine 

Small substrate lithology is 

expected to serve as a source of 

fine sediments and inhibit 

groundwater loading 

 

% Coarse Lithology Glacial Outwash - Coarse 

Glacial Lake Sediment - Coarse 

Eolian Sediment - Coarse 

Coarse substrates are expected to 

serve as a source of coarser 

sediments and promote 

groundwater loading 
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Table 1.3: Final set of predictors considered for modeling. Bolded terms indicate those variables 

not considered collinear according to the GVIF analysis, and therefore included in the final 

modeling efforts.  LB, NB, LC, NC, and reach refer to local buffer, network buffer, local 

catchment, network catchment, and reach scales, respectively.  Further details on the resolution 

and year of creation for these predictor datasets can be obtained in Wang et al. 2011. 

 

Variable Unit Scale 

Agricultural Land Cover % NC 

Impervious Surface Land Cover % NC 

Urban Land Cover % NC 

Wetland Land Cover % NC 

Catchment Area km
2 

NC 

Mean Annual Precipitation mm yr
-1 

NC 

Upstream Dam Presence within 100 km Binary (Y / N) NC 

Catchment Slope ° LC 

Mean Elevation m LC 

Coarse Surficial Lithology (Type II) % LC 

Fine Surficial Lithology (Type I) % LC 

Soil Permeability Rate 100*(inches hr
-1

) LC 

Groundwater Contribution to Baseflow % LC 

Road Crossing Density by Stream Length # km
-1

 LC 

Natural Vegetation Land Cover % LB 

Stream Order Categorical Reach 

Stream Type  Categorical Reach 
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Final Dataset Size 

 Only response data with corresponding data for all thirteen independent variables were 

included in the final modeling efforts.  This resulted in 4153 transect-scale measurements for 

both Type I and Type II habitat.  These 4153 transects represented a total of 941 unique access 

points and 428 NHD stream reaches; these groupings were used in the hierarchical modeling and 

the assessment of model fit at the stream reach-scale.  

 

Convergence Diagnostics 

  Based on both the initial and final convergence diagnostics, the logit and beta regression 

models for both habitat types appeared to converge satisfactorily.  The Raftery and Lewis’ 

diagnostics suggested varying chain lengths across the habitat types and models, but consistently 

low recommended burn-in values.  To ensure adequate model convergence, I applied the same 

10,000 iteration chain with a 1,000 iteration burn-for Type I and Type II habitat in the logit 

regression model.  Because model computation took significantly more computing power and 

time, I was less liberal in total chain length for the zero/one inflated beta regression model: I 

chose to run a 5,000 iteration, 500 burn-in model for Type I habitat and an 8,000 iteration, 500 

burn-in model for Type II habitat. 

 For the resulting final models, Geweke’s convergence diagnostics for all intercepts, slope 

coefficients, and variance terms indicated that all parameters converged satisfactorily; the worst 

value across both modeling approaches and habitat types was -1.764, safely below the threshold 

value of 1.96.  There were no apparent issues with autocorrelation, as the observed degree of 

autocorrelation for all model variables decreased either immediately or regularly with increasing 
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lag; examinations of parameter trace plots also revealed reasonably consistent mixing for all 

parameters over the chain length. 

 

Variable Coefficients 

 I used the distribution mean and 95% highest posterior density (HPD) intervals to 

evaluate the relative influence of each covariate coefficient among the logit and beta regression 

modeling approaches and two habitat types (Fig. 1.4).  I selected the mean as the measure of 

central tendency based on the highly symmetric parameter distributions and associated 95% HPD 

intervals.  Among the coefficients for both Type I and Type II habitat, there was a noticeable 

difference between those generated from the logit and beta linear regressions; coefficients 

generated from the beta regressions tended to have less extreme mean values and narrower 95% 

HPD intervals (Fig. 1.4).  This difference resulted in different predictors considered important 

from each modeling approach. For Type I habitat, based on the 95% HPD intervals, the logit 

linear regression indicated that six covariates (agriculture land cover, natural vegetation land 

cover, catchment area, fine lithology, groundwater index, and dam presence) were strong 

predictors; only four (natural vegetation land cover, catchment area, fine lithology, and dam 

presence) had 95% HPD intervals that did not overlap with zero for the beta regression.  For 

Type II habitat, logit regression indicated that eight covariates (agriculture land cover, wetland 

land cover, catchment area, catchment slope, coarse lithology, precipitation, groundwater index, 

and road crossing density) were important predictors; beta regression indicated that seven 

covariates (catchment area, catchment elevation, catchment slope, coarse lithology, precipitation, 

soil permeability, and groundwater index) were strong predictors.  The directions of covariate 

influence, however, were highly similar between the two modeling approaches. 
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Figure 1.4: Plots of the coefficient mean values (points) and 95% HPD intervals (bars), generated 

from both the logit and beta linear regressions, for Type I (a) and Type II (b) habitat. 
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 Selection frequencies, which served as the best available measure of variable importance 

for the boosted additive model, indicated that catchment elevation and mean precipitation were 

the most utilized predictors for Type I and Type II habitat, respectively (Table 1.4).  Catchment 

area and precipitation were the most influential predictors for the derived response variables of 

total larval habitat and Type II to Type I habitat ratios, respectively.   The directional influence 

of the landscape covariates for both habitat types were predominantly nonlinear, with the 

apparent exceptions being natural vegetation land cover and fine lithology for Type I habitat and 

wetland land cover, impervious land cover, and coarse lithology for Type II habitat (Figs. 1.5, 

1.6).   Similar nonlinear trends were observed for the two derived response variables (Appendix 

B). 

 

Table 1.4: Variable selection frequency in the boosted generalized additive model fit to Type I 

habitat, Type II habitat, total larval habitat, and the Type II to Type I habitat ratio.  The bolded 

values indicate the three most frequently selected predictor variables for each response. 

 

Variable 
Selection Frequency 

Type I Type II  Total Habitat Ratio 

Agriculture Land Cover 0.068 0.124 0.108 0.006 

Impervious Land Cover 0.058 0.050 0.028 0.038 

Natural Vegetation Land Cover 0.038 0.024 0.026 0.052 

Wetland Land Cover 0.135 0.074 0.092 0.032 

Catchment Area 0.100 0.144 0.176 0.200 

Catchment Elevation 0.171 0.036 0.034 0.110 

Catchment Slope 0.118 0.030 0.128 0 

Coarse Lithology N/A 0.012 N/A N/A 

Fine Lithology 0.058 N/A 0.048 0.018 

Precipitation 0.086 0.208 0.144 0.318 

Soil Permeability 0.048 0.122 0.108 0.010 

Groundwater Index 0.028 0.126 0.050 0.182 

Road Crossing Density 0.078 0.050 0.046 0 

Dam Presence 0.012 0 0.012 0.034 
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Figure 1.5: Partial effects plots, generated from the generalized additive model for Type I 

habitat, showing the marginal, nonlinear influence of each continuous covariate on the response. 
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Figure 1.6: Partial effects plots, generated from the generalized additive model for Type II 

habitat, showing the marginal, nonlinear influence of each continuous covariate on the response. 
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Model Fit 

 Across the three models fitting the original Type I and Type II habitat data, none of the 

approaches predicted Type I habitat proportions well (Table 1.5; Fig. 1.7).  Focusing on the 

reach-scale as the scale of interest, the logit regression, beta regression, and additive model 

explained just 14.1%, 14.4%, and 16.2% of variation in the observed habitat proportions, 

respectively, and none of the models had both their slope and intercept terms fall within expected 

equivalence regions.  Although the intercepts and slopes of the linear fits between observed and 

predicted values differed noticeably, none of the three models distinguished themselves from one 

another in the other measures of model fit; all three had similar R
2
 and RMSD values.  All three 

models performed better in fitting Type II habitat observations (Table 1.5; Fig. 1.7).   The 

additive model explained the most variation at the reach-scale (37.0%), followed by the logit and 

beta regressions at 26.0% and 24.1%, respectively.  Although there was little difference among 

the model’s RMSD values, equivalence test results suggested that both the logit regression and 

additive model outperformed the beta regression; this is supported by the strong deviation of the 

beta regression’s slope between observed and predicted values from the expected 1:1 line (Fig. 

1.7d).  All three models had higher observed model fits at the reach-scale than for individual 

transect-scale observations. 

  



 41    

Table 1.5: Summary of model fit metrics across the different modeling approaches and habitat 

types. The root mean squared deviation (RMSD) is the observed average deviation of the 

predicted values from the observed.  Intercept (a), slope (b), and R
2
 were calculated from a linear 

regression of observed against predicted values. (D) indicates the model was fit using derived 

response variables, and
 
* indicates the intercept/slope parameter fell within the expected range 

based on equivalence testing. 

 

Model 
Transect-Scale Model Fit Reach-Scale Model Fit 

RMSD a b RMSD a b R
2
 

  Type I Habitat 

Logit Regression 0.273 0.165 0.469 0.184 0.088 1.103* 0.141 

Beta Regression 0.240 -0.144* 1.725 0.156 -0.123* 1.644 0.144 

Boosted Additive 0.257 0.110 0.954* 0.182 0.116 0.826* 0.162 

Boosted Additive (D) 0.234 -0.006* 0.984* 0.150 0.010* 0.966* 0.193 

 
Type II Habitat 

 

Logit Regression 0.338 0.213* 0.641* 0.251 0.199* 0.658* 0.260 

Beta Regression 0.331 -0.274* 1.627 0.249 -0.214* 1.450 0.241 

Boosted Additive 0.315 0.174* 0.704* 0.240 0.206* 0.659* 0.370 

Boosted Additive (D) 0.328 -0.014* 0.851* 0.257 0.059* 0.751* 0.307 
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Figure 1.7: Observed model fit for the Type I (a, c, e) and Type II (b, d, f) habitat values 

generated from the logit regression (a, b), beta regression (c, d), and boosted additive model (e, 

f).  The line represents the linear fit between observed and predicted values. 
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 Among all modeling approaches, the additive model fit to the derived quantities of total 

larval habitat and habitat ratio had the greatest observed model fit for Type I habitat predictions 

and second best fit for Type II habitat (Table 1.5).  This model explained 19.3% of variation in 

observed, reach-scale Type I habitat, had the lowest observed RMSD among modeling 

approaches, and had the nearest fit to the expected 1:1 line between observed and predicted 

values (Fig. 1.8).  For reach-scale Type II habitat, the model explained 30.7% of variation, and 

had the second lowest RMSD value of 0.257.  Again, there was a clear difference in the model fit 

between the transect-scale and reach-scale observations, with noticeably more variation among 

transects than reaches (Fig. 1.8). 
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Figure 1.8: Observed model fit for Type I (a, b) and Type II (c, b) transect-scale (a, c) and reach-

scale (b, d) habitat values generated by the boosted generalized additive model fit to the two 

derived response variables.  The line represents the linear fit between observed and predicted 

values. 
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Sampling Success and Model Predictive Ability 

 All six streams were sampled with varying degrees of success; between 4 and 10 reaches 

were sampled within any given stream, with an average sampling intensity of 2.8 access points 

and 10.3 transects per reach (Fig. 1.2).  Sampling resulted in a total of 47 reaches, 130 access 

points, and 483 transects, composing a dataset over 10% of the size of the model training 

datasest (11.0%,  13.8%, and 11.6% for reaches, access points, and transects, respectively).  

Drought conditions in late July and early August contributed to the difficulty of habitat sampling.  

The distribution of sampling effort across the basin and among reaches within each stream 

system, however, effectively captured the range of covariate variation within the original model 

training dataset (Fig. 1.9).   

 Similar to the model fitting evaluation results, none of the three models fit to the original 

response variables experienced particular success in predicting Type I habitat (Table 1.6; Fig. 

1.10); all models were similar in explaining less than one percent of variation in the response.  

Predictive performance was noticeably higher and variable among models for Type II habitat, 

however.  The boosted additive model performed best by explaining 24.6% of variation in the 

response, followed by the logit and beta regression at 11.7% and 3.8%, respectively. 

 The model fit to derived habitat quantities had similarly limited success in predicting 

Type I and Type II habitat quantities in the new spatial extents.  The additive model explained 

less than one percent of variation in Type I habitat and just 18.0% of variation in Type II habitat 

(Table 1.6; Fig. 1.10). 
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Figure 1.9: Boxplots of observed covariate variation among reaches sampled in each river 

system, where 1 through 6 correspond to the Twin, Peshtigo, Whitefish, Boardman, Pentwater, 

and Kalamazoo River, respectively. LM refers to covariate variation in the original model 

training dataset. 
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Table 1.6: Model predictive fit for Type I and Type II habitat, among each of the modeling 

approaches.  (D) indicates the model was fit to derived response variables, and
 
* indicates the 

intercept/slope parameter fell within the expected range based on equivalence testing. 

 

Model 
Reach-Scale Model Fit 

RMSD a b R
2
 

 Type I Habitat 

Logit Regression 0.159 0.139* 0.031 0.000 

Beta Regression 0.160 0.210 -0.280 0.003 

Boosted Additive 0.145 0.154* -0.073 0.001 

Boosted Additive (D) 0.201 0.160 -0.056 0.001 

     

 Type II Habitat 

Logit Regression 0.254 0.130* 0.500 0.118 

Beta Regression 0.289 -0.057* 0.793 0.040 

Boosted Additive 0.235 0.143* 0.626 0.242 

Boosted Additive (D) 0.301 0.066 0.503* 0.181 
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Figure 1.10: Plots of predictive fit for the logit regression model (a), beta regression model (b), 

boosted additive model (c), and boosted additive model fit to the derived habitat quantities (d).  

Closed circles and solid lines represent data points and linear fits, respectively, between observed 

and predicted values for Type I habitat; open circles and dotted lines represent the same for Type 

II habitat.  
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DISCUSSION 

 

 Among models fit to original habitat data, the boosted additive model clearly performed 

best among the evaluated approaches, followed by the logit regression.  The boosted model 

explained the most variation in the training dataset for both habitat types, and was the most 

accurate in predicting Type II habitat quantities.  Despite the still significant amount of variation 

left unexplained by the model, the ability of the boosted additive model to account for 24.2% of 

variation in the out-of-sample data for Type II dataset supports its potential future utility for 

predicting habitat quantities above barriers.  The markedly greater performance of this approach 

can be attributed to both its application of implicit variable reduction, through the use of iterative 

model fitting, and built-in cross-validation techniques to decrease model size, as well as its 

nonlinear nature.  In fact, the improved ability of the nonlinear model to predict habitat supports 

the theorized predominance of nonlinearities and thresholds in fluvial geomorphology and 

complex river-landscape systems (Shreve 1979; Phillips 2003; Phillips 2006).  Accounting for 

the random effects of access point and reach in the logit and beta regressions did not appear to 

overcome the restrictions imposed by the assumption of linearity.  Furthermore, the use of a beta 

distribution in the beta regression, even with zero-one inflation, did not improve model 

performance; model predictions appeared to be condensed towards observed habitat averages, 

resulting in low model and predictive fits.  

 The boosted generalized additive model fit to the derived habitat quantities, representing 

an attempt to work around possible limitations of the individual Type I and Type II datasets, did 

not improve the predictive fit for either habitat type.  I primarily selected this modeling approach 

to avoid the limited variation, lack of normality, and preponderance of zeroes or similarly small 
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values in modeling Type I habitat.  The derived quantities of total larval habitat and ratio 

between habitat types were meant to uniquely combine Type I and Type II information, fit new 

models, and subsequently back-calculate improved predictions for the two habitat types.  Instead 

of improving predictive performance, this model resulted in model predictions equivalent or 

worse than those for the additive model fit to the original habitat datasets.  These results are not 

entirely surprising, as the distribution of the habitat ratios and log-odds total habitat quantities 

did not readily conform to standard statistical distributions and exhibited a continued dominance 

of extreme values.  

 The apparent mismatch between the assessed model fit and predictive capacity, across 

both habitat types and all four modeling approaches, speaks to the difficulty of predicting across 

new spatial extents.  The intent of this modeling effort, in essence, is simple extrapolation; I built 

a model from habitat data collected downstream of dams in order to predict upstream habitat 

quantities.  The model fit values, especially those for Type II habitat, do compare favorably to 

those reported in past studies attempting to predict substrate habitat, with observed R
2
 ranging 

from 0.22 (Mugodo et al. 2006) and 0.32 (Neeson et al. 2012) all the way to 0.50 (Wang et al. 

2013).  However, the predictive ability for Type I habitat was non-existent and the observed 

correlation between observed and predicted Type II habitat quantities declined when moving 

from the training to validation datasets.  The failure to predict above dams, by itself, might 

indicate a complete inability to extrapolate Type I habitat quantity predictions to any new spatial 

extents, or simply the inability to predict in river headwaters specifically; regardless, the models 

are not useful for predicting Type I habitat in the context of barrier removal scenarios, and only 

the boosted additive model appears able to predict Type II habitat in upstream regions. 
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 The mismatch between predictive capacity and model fit also reinforces the importance 

of out-of-sample data collection for model validation.  If the validation results on the out-of-

sample data are excluded from these analyses, a different story would have emerged: the logit 

and beta regressions appear to perform similarly and all three models appear to explain some 

degree of variation in Type I habitat.  Instead, the zero/one inflated beta regression performs 

exceptionally poorly in predicting both habitat types, and none of the models can predict Type I 

habitat quantity above dams reliably, especially compared to the habitat variation explained by 

similar studies.  This example provides compelling motivation for testing models’ capacity for 

spatial extrapolation when evaluating predictive methods against new data (Miller et al. 2004).   

 The differences in selected important predictors for predicting Type I habitat among the 

three modeling approaches reflect the difficulty of predicting stream habitat quantities using only 

landscape-scale covariates in a complex, fluvial system, as well as the importance of accounting 

for nonlinear relationships in modeling efforts.  The two regression models both agreed natural 

vegetation land cover, catchment area, fine lithology, and dam effect were statistically important 

in influencing fine-substrate habitat quantities    However, the boosted additive model identified 

catchment elevation, wetland land cover, and catchment slope as the strongest predictors for 

Type I habitat.  The apparent lack of consistency between the variables selected by modeling 

approaches may reflect a preponderance of purely correlative (i.e., not mechanistic) relationships 

and explain the poor predictive capacity upstream of barriers.  Given that low velocity regions in 

streams, often created by fine-scale channel characteristics, are required for the deposition of the 

fine sedimentary materials, exclusively catchment-scale characteristics may be insufficient to 

explain trends in this habitat feature (Charlton 2008).  Alternatively, simple nonlinearity within 

the system may explain the difference between the modeling approaches; natural vegetation land 
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cover and fine lithology, both selected as important by the linear modeling approaches, were the 

only two covariates with primarily linear relationships to the response (Fig. 1.5).  Rather than 

emphasizing real drivers of habitat, linear models may ignore important non-linear effects that 

drive habitat variation.   

 The more consistent identification of important covariates across models for Type II 

habitat seems to reflect the increased capacity to predict these habitat quantities and may help 

researchers understand dominant influences on stream habitat features.  The two linear models 

identified catchment area, catchment slope, coarse lithology, precipitation, and groundwater 

index as important predictors for Type II habitat, and the boosted additive model used 

precipitation, catchment area, and groundwater index most frequently.  Furthermore, it is 

worthwhile to note that five of the six top predictors for total larval habitat and habitat ratio 

response variables, representing related but unique measures of stream habitat, were also 

catchment area, precipitation, and groundwater index.   Past studies have also identified both 

catchment area and catchment slope as strong predictors of stream substrate habitat (Jeffers 

1998; Davies et al. 2000; Frappier and Eckert 2007).  Indeed, the selection of these landscape 

features reinforces our understanding of these characteristics’ influence on stream flow.  The 

medium- to coarse-grained sands comprising Type II habitat are typically transported as bedload, 

and are more frequently transport limited rather than supply limited (Charlton 2008).  

Subsequently, stream power, calculated as a function of catchment area and slope, both regulates 

the capacity of a river to transport sediment and influences median substrate size (Bagnold 1980; 

Whiting et al. 1999).  In the case of these analyses, Type II habitat quantities appear to respond 

positively to high catchment areas and negatively to high catchment slopes.  Furthermore, 

groundwater contribution to base flow is known to play a role in regulating extreme flow events 
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in rivers, and particularly in watersheds with limited anthropogenic disturbances like 

urbanization or agricultural development (Resh et al. 1988; Allan 2004).  It is possible that 

increased flow stability in some Lake Michigan systems, indicated by high surficial drainage 

rates related to coarse lithology and subsequently high groundwater contributions, promotes the 

local accumulation of medium- to coarse-grain sand.  Indeed, the direction of groundwater 

influence, across all modeling approaches, is positive.  Finally, although multiple landscape 

attributes likely interact to influence river habitat features, it is worth noting that interactions 

among variables were not explicitly considered in my modeling efforts due to a lack of prior 

knowledge regarding the form these interactions might take. 

 This study reflects a unique attempt to predict GLFC-defined, sea lamprey larval habitat 

quantities in new spatial extents, using only readily-available, landscape-scale, GIS-derived 

covariates and a convenient predictive spatial scale for management.  Past attempts to model to 

model sea lamprey habitat have either been limited to very fine-scale spatial extents (Neeson et 

al. 2007) or focused on evaluating model fit only within the spatial extent used to train the 

models (Neeson et al. 2012).    By building the predictive models using only landscape-scale 

covariates, the models have the capability to predict anywhere within the Lake Michigan basin, 

and perhaps beyond if fundamental landscape-stream relationships happen to hold.  Field 

sampling-based “ground-truthing” is a newly applied methodology in the prediction of sea 

lamprey habitat that assesses this broader modeling utility. Moreover, many previous stream 

habitat modeling efforts have focused on strictly linear approaches, which have been shown by 

this study’s inclusion of multiple modeling approaches to potentially produce spurious 

correlations (Davies et al. 2000; Neeson et al. 2007).  Finally, this study’s predictions are made 

at the spatial scale of NHDPlus stream reaches; this base scale better facilitates the scaling of 
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predictions to larger extents for the purpose of management (Wang et al. 2013).  Sea lamprey 

assessment and control efforts are coordinated across Great Lakes basins, and habitat data have 

to be accessible on similar scales.   

 Regrettably, the failure of the assessed modeling approaches to capably predict both Type 

I and Type II habitat limits their utility in informing sea lamprey management.  Given the 

differing production potential among habitat types, the quantity of both habitat types should be 

known in order to predict future lamprey production with established modeling approaches, like 

the SLaMSE model for the Great Lakes (Jones et al. 2009; Dawson et al. 2016; see chapter 2).  

Depending on the desired scale of analysis, predicting sea lamprey production in new rivers 

without accompanying larval habitat data or subsequent model improvements may require 

locally measured or region-specific average habitat quantities with some realistic measure of 

uncertainty.  This removes the need to rely on potentially unreliable habitat predictions, and 

instead directly incorporates some measure of uncertainty around habitat quantities into model 

predictions. 

 Limitations in the extent, accuracy, and utility of the available response and predictor 

variable data can help explain the observed inadequate predictive capabilities, especially for 

Type I habitat.  First, the observed data forming the basis of modeling efforts may have been 

collected with a significant amount of measurement error, typical in the sampling of local-scale 

stream habitats (Wang et al. 2013).  Second, the available data and selected spatial scale of 

model fitting could have led to inaccurate estimates of observed reach-scale habitat quantities, as 

over 50% of training dataset’s stream reaches were characterized by four or fewer transects.  

Despite findings that a single sampling site on a confluence-to-confluence stream reach can 

represent general conditions throughout the reach (Wang et al. 2006), the heterogeneous nature 
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of stream habitat conditions seems to require a greater intensity of sampling effort than four 

transects.  Furthermore, the lower model fit and much higher degree of scatter for the transect-

scale observations, relative to the reach-scale observations, for both habitat types reflects the 

large amount of variation within reaches and the resulting difficulty in effectively capturing 

reach-scale dynamics.  Temporal stochasticity and disconnects may have played a significant 

role in influencing model and predictive performance.  Although utilized predictor data were 

ideally summarized within a similar time frame as the initial larval habitat data collection (i.e., 

2004-2008), localized land use disturbances on short-time scales, characteristic in stream 

systems with a strong anthropogenic influence, may have added further unexplained variation in 

the dataset; these anthropogenic disturbances can temporarily overwhelm natural catchment 

characteristics in stream influence (Johnson et al. 1997; Allan 2004).  Historical, large-scale land 

use changes and climatic conditions, again uncaptured by my chosen variables, may also be 

exerting remnant influences on localized stream habitat (Langbein and Schumm 1958).  Finally, 

the greater temporal mismatch between the predictors and the larval habitat data collected in 

2016 may help explain the reduced predictive fit, as I did not account for the potential change in 

predictive features like land cover between the collection of the two response datasets.    

 Despite these limitations, there remains room for improvement in future modeling 

endeavors.  Modeling systems without well-established mechanistic relationships can result in 

purely correlative habitat relationships (Miller et al. 2004), and subsequently produce spurious 

predictions.  Given the observed low predictive ability of the evaluated models, especially for 

Type I habitat, it is certainly possible this occurred in these analyses.  This source of error 

translates directly into model improvement, as simpler models with proven mechanistically-

supported landscape covariates may have resulted in improved fit.  Further empirical work 
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should be done to more closely evaluate driving factors of stream habitat in Michigan streams, 

with a focus on untangling linkages among spatial and temporal scales.  Exploring additional 

variable reduction and nonlinear modeling techniques also has the potential to improve modeling 

utility in the future. 

 These modeling efforts to predict upstream larval habitat quantities represented a unique 

effort to generate habitat estimates in Lake Michigan tributaries at a scale useful to management 

and inform future sea lamprey control efforts.  The results have the potential to inform future 

sampling by identifying dominant influences on habitat quantity, but have limited utility in 

generating accurate predictions.  The insights provided from evaluating model predictive 

capacity on out-of-sample data also highlight the importance of “ground-truthing” model 

performance.  Moving forward, the reliability of future habitat predictions can be improved with 

a better understanding of landscape-scale drivers and further work in identifying new variable 

reduction or nonlinear modeling techniques. 
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APPENDIX A  

WinBUGS SCRIPT FOR THE TYPE 1 HABITAT LOGIT REGRESSION 

model{ 

#Introducing Observed Data and the Random Effect of Access Point (AP) 

 for (i in 1:Num_Transects) { 

  T1_Logit[i]~dnorm(mu[i],tau) 

  mu[i]<-AP_effect[AP [i]] 

 } 

#Modeling the Random Effect of Access Point 

 for (i in 1:Num_Access_Points){ 

  AP_effect[i]~dnorm(mean_AP[i],tau_AP) 

  mean_AP[i]<-reach_effect[reachID[i]] 

 } 

#Modeling the Random Effect of Reach  

 for (i in 1:Num_Reaches){ 

  reach_effect[i]~dnorm(mean_reach[i],tau_reach) 

  mean_reach[i]<-beta_Precip*Precip[i]+beta_NatVeg*NatVeg[i]+    

       beta_Agr*Agr[i]+beta_Wetl*Wetl[i]+beta_Imperv*Imperv[i]+ 

       beta_CatchmentArea*Catchment_Area[i]+beta_Slope*Slope[i]+ 

       beta_Elev*Elev[i]+beta_GWIndex*GW_Index[i]+ 

       beta_FineLith*FineLith[i]+beta_SoilPerm*SoilPerm[i]+ 

       beta_StrXing*Str_Xing[i]+alpha_Dam[Dam_Presence[i]] 

 }  

#Prior Specification 

 sigma~dunif(0,20) 

 sigma_AP~dunif(0,20) 

 sigma_reach~dunif(0,20) 

 beta_Precip~dnorm(0,0.001) 

 beta_NatVeg~dnorm(0,0.001) 

 beta_Agr~dnorm(0,0.001) 

 beta_Wetl~dnorm(0,0.001) 

 beta_Imperv~dnorm(0,0.001) 

 beta_CatchmentArea~dnorm(0,0.001) 

 beta_Slope~dnorm(0,0.001) 

 beta_Elev~dnorm(0,0.001) 

 beta_GWIndex~dnorm(0,0.001) 

 beta_FineLith~dnorm(0,0.001) 

 beta_SoilPerm~dnorm(0,0.001) 

 beta_StrXing~dnorm(0,0.001) 

 for(i in 1:2){ 

  alpha_Dam[i]~dnorm(0,0.001) 

 

#Additional Parameters to Track 

 tau<-1/(sigma * sigma) 
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 tau_AP<-1/(sigma_AP * sigma_AP) 

 tau_reach<-1/(sigma_reach * sigma_reach) 
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APPENDIX B 

PARTIAL EFFECTS PLOTS FOR DERIVED RESPONSE VARIABLES 

 

Figure 1.11: Partial effects plots, generated from the generalized additive model for total larval 

habitat, showing the marginal, nonlinear influence of each continuous covariate on the response. 
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Figure 1.12: Partial effects plots, generated from the generalized additive model for Type II to 

Type I habitat ratios, showing the marginal, nonlinear influence of each continuous covariate on 

the response. 
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CHAPTER 2: SIMULATING THE SEA LAMPREY RESPONSE TO DAM REMOVALS IN 

THE LAKE MICHIGAN DRAINAGE BASIN
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INTRODUCTION 

 

 Although dams are globally pervasive and can provide many societal benefits, they can 

be significant barriers to migratory fish.  Indeed, dams have been implicated in the declines of 

numerous populations of diadromous species (Limburg and Waldman 2009). Thanks to growing 

public preference to increase lotic connectivity and benefit aquatic species, dam removal in the 

U.S. is accelerating and numerous large-scale dams have been demolished in systems like the 

Penobscot, Carmel, and Elwha Rivers in Maine, California, and Washington, respectively.  In 

numerous regions of the world, however, stream barriers can actually provide an ecosystem 

service by blocking fish migration, specifically in impeding the spread and success of invasive 

species (Sharov and Liebhold 1998; Vélez-Espino et al. 2011; Rahel 2013).   

 Sea lampreys have been major parasites within the Laurentian Great Lakes since their 

invasion in the early 20
th

 century, and their arrival and subsequent increase in population 

abundance are associated with historic declines in commercially important fish populations, 

including lake whitefish (Coregonus clupeaformis) and lake trout (Salvelinus namaycush) (Smith 

and Tibbles 1980).  The parasitic juvenile stage of this species feeds on Great Lakes fish before 

maturing and migrating to Great Lakes tributaries to spawn; the resulting larvae live as 

burrowing filter-feeders in these streams for several years before metamorphosing and migrating 

back to the lakes to begin their parasitic stage (Applegate 1950).  Sea lampreys are currently 

controlled to more acceptable population levels in the Great Lakes using a combination of 

lampricide application and intentional fragmentation (Smith and Tibbles 1980).  A generally 

fixed budget is spent annually to treat Great Lakes tributaries, typically selected by expected 

treatment effect relative to other tributaries, using lampricides to kill the burrowing larval stages 
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before metamorphosis (Christie et al 2003).  Stream barriers play a significant complementary 

role by preventing migratory spawners from accessing high quality spawning and larval habitat, 

and consequently eliminating the need to treat large sections of rivers for larval sea lampreys 

(Hunn and Youngs 1980).  Indeed, in addition to pre-existing dams, the Great Lakes Fishery 

Commission (GLFC) Sea Lamprey Control Program (SLCP) has actively constructed stream 

barriers with the express purpose of blocking sea lamprey migration (Lavis et al. 2003).   

 Due to the complementary roles of lampricide application and barrier presence, barrier 

removals have the potential to drastically reduce the effectiveness of sea lamprey control.  In the 

Lake Michigan basin alone, dams like the Sixth Street Dam, Union Street Dam, and Calkins 

Bridge Dam currently block hundreds of miles of viable spawning and larval habitat in the Grand 

River, Boardman River, and Kalamazoo River, respectively, and consequently eliminate the need 

for costly control efforts in the form of lampricide applications.  If any of these dams were 

removed without the construction of a replacement lamprey barrier or an increase in the 

lampricide control budget, there would be two options available to control agents: 1) ignore the 

newly available habitat and do not allocate any treatment efforts, or 2) allocate lampricide 

application efforts to the newly available habitat as needed, at the possible expense of neglecting 

other river systems.  The first option is unlikely to be considered for large systems like the Grand 

River, especially in light of a real-life scenario in Lake Michigan’s Manistique River; an initially 

unrecognized barrier failure in this system has been linked to unexpected increases in the lake’s 

total sea lamprey population in the late 1990’s (Schleen and Klar 1999; Klar and Young 2004).  

Assuming a fixed lake-wide control budget for lampricide applications, the second option 

requires a shift in control effort from existing stream systems to the newly available habitat, 

potentially decreasing treatment effectiveness across the basin as a whole. 
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 Although the general risks of barrier removal in the Great Lakes are accepted by fishery 

management agencies, there is a need to better understand the actual magnitude of the sea 

lamprey response to barrier removal, as well as implications for the long-term effectiveness of 

sea lamprey control.  Dam removals are often driven by political and stakeholder considerations 

or advocated under the assumption that removals are inherently positive, despite a historical 

dearth of studies documenting the effect of removals (Born et al. 1998; Doyle et al. 2003).  In 

response to the divisive and sometimes arbitrary nature of past dam removal decisions, 

researchers are increasingly arguing for more careful, comprehensive consideration of the 

potential ecological consequences and an increased role for scientists in providing data on these 

consequences (Johnson and Graber 2002; Doyle et al. 2003).  Barrier managers are also faced 

with many competing objectives and pressures, in addition to ecological ones, that include the 

maintenance of public safety and enhancement of recreational opportunities.  The development 

of formal criteria, supported by the necessary scientific and social information, is one solution 

for managing these trade-offs (Pejchar and Warner 2001).  In the case of barrier removals in the 

Great Lakes, research that equips managers with a more explicit understanding of the effect of 

barrier removals on sea lamprey control can help formalize the balancing of trade-offs inherent 

in decision-making; this, in turn, can lead to more informed barrier removal decisions and 

increasingly positive consequences for society and the environment.  

 Management strategy evaluation (MSE) modeling, using known information about sea 

lamprey life history and control in the Great Lakes, represents a feasible, realistic means to 

capture the expected effects of barrier removals on the long-term effectiveness of sea lamprey 

control.  Management strategy evaluation models are powerful tools for research and 

management because they tie together biological, observational, and management (including 
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control) processes, account for sources of uncertainty in each of these processes, and allow 

researchers to formally compare the ability of competing management strategies to achieve 

specified management objectives (Smith et al. 1999; Harwood and Stokes 2003).  Researchers 

have already developed a MSE model for sea lamprey, specific to the Great Lakes, incorporating 

biological, observational, and management models, each with simulated uncertainty, to assess 

the effect of alternative management strategies (Jones et al. 2009).  Moreover, each model 

component is informed by years or decades of data on life history processes, sampling accuracy, 

and control effectiveness.  This Sea Lamprey Management Strategy Evaluation (SLaMSE) 

model has been used to determine optimal control budgets to achieve target economic injury 

levels (Irwin et al. 2012) and to explicitly compare the effectiveness of alternative management 

strategies at a basin-wide scale (Dawson et al. 2016).  Most importantly, this model can be 

modified to simulate barrier removal by creating new artificial habitat units, each representing 

newly opened sections of streams, and forecasting the effect of the increased habitat availability 

on the equilibrium, lake-wide sea lamprey abundances. 

 Given the established strengths of MSE models and the breadth of information 

incorporated into the existing model for Great Lakes sea lamprey, I used a modified version of 

the SLaMSE model to evaluate the effects of barrier removals on the response of the Lake 

Michigan sea lamprey population. Lake Michigan was selected as the area of focus for this work 

due to the detailed understanding of sea lamprey dynamics in this region (Dawson et al. 2016).  I 

first assessed the system’s general response to increasing habitat availability through the 

systematic, incremental addition of discrete habitat units.  This approach allowed me to evaluate 

basic trends in the sea lamprey population response under varying habitat perturbations and 

characterize the drivers of changing population abundances.  I also modeled a specific Lake 
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Michigan barrier removal scenario, using relevant input data and management scenarios 

prioritized by sea lamprey control agents, to provide useful information for a contentious, 

contemporary barrier removal decision.  Both approaches helped explain how a complex, heavily 

controlled biological system responds to fundamental changes in habitat availability and 

illustrated the ability of an MSE approach to provide applicable predictions of ecological 

responses to barrier removals.  The success of these modeling efforts further supports the use of 

the SLaMSE model in informing future barrier removal scenarios in the Great Lakes. 
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METHODS 

 

Modifying the SLaMSE Model 

 In modifying the SLaMSE model to accommodate habitat additions and unique 

management scenarios, I started with the model used by Dawson et al. (2016).  In addition to the 

original SLaMSE model structure (Jones et al. 2009), the updated model accounted for historical 

trapping effort on 16 Lake Michigan tributaries and assigned streams as regular or irregular 

producers, based on expert professional judgment, with different corresponding Ricker 

recruitment curves (Dawson and Jones 2009).  Regular producers are attributed a more 

productive Ricker curve (i.e., a larger Ricker α value) than irregular producers.   

 New model modifications were also included to match recent analyses of historical data.  

These modifications included the following: 1) allocating 52% and 48% of all Lake Michigan 

spawners to northern and southern tributaries, respectively, prior to assigning spawners to 

individual streams based on drainage area and larval abundance, and 2) increasing the influence 

of drainage area, relative to larval abundance, in determining spawner allocation to individual 

tributaries.  These changes were made to match simulated spawner numbers with observed adult 

distributions in Lake Michigan rivers that received previous spawner assessments (Mullett et al. 

2003; H. Dawson and M.L. Jones, Michigan State University, East Lansing, Michigan, 

unpublished analysis).   

 I made two further modifications to the SLaMSE model to accomplish barrier removal 

simulation objectives: 1) I enabled the flexible addition of new habitat units depending on 

editable data inputs, and 2) I allowed sea lamprey to infest treatment units that were not treated 
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with lampricides.  The second modification allows for estimation of maximum potential parasitic 

sea lamprey production, for a given number of allocated spawners, from selected treatment units. 

 

Assessing Population Responses to Systematically Increasing Habitat Availability 

 I first characterized the general response of the Lake Michigan sea lamprey population to 

barrier removals by systematically adding standardized habitat blocks.  Each block was assigned 

identical attributes, including areas of suitable larval sea lamprey habitat types as defined by the 

GLFC (i.e., Type I and Type II; Slade et al. 2003), drainage area, treatment cost, and 

miscellaneous larval growth and mortality parameters; these are all attributes of existing 

treatment units within the original SLaMSE model.  Block attributes were calculated as averages 

of all existing treatment units in Lake Michigan (Table 2.1).  These habitat additions were 

intended to simulate the effect of opening new river systems to sea lamprey (e.g., removing 

barriers at the river mouths).  

 

 

Table 2.1: Base model inputs for a single standardized habitat block in the systematic habitat 

additions. 

 

Type I Habitat (m
2
) Type II Habitat 

(m
2
) 

Drainage 

Area (km
2
) 

Treatment 

Cost ($) 

72,872 313,403 842.8 127,864 
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 The systematic addition of treatment units was conducted in two ways: 1) combine new 

habitat blocks into an ever larger single treatment unit or 2) add habitat blocks as multiple, 

discrete treatment units.  These two approaches were intended to contrast the effect of opening a 

single large river with the effect of opening numerous small tributaries, with the same overall 

increase in total habitat area.  When additional habitat blocks were combined to form a single 

treatment unit, the total habitat area, drainage area, and treatment cost were correspondingly 

increased in a 1:1 relationship; a treatment unit composed of six habitat blocks would therefore 

have twice the drainage area, treatment cost, and habitat area as one composed of three such 

blocks.  I systematically assessed the effect of increased habitat availability by adding three 

habitat blocks at a time.  This was a convenient scale of analysis because nine additional habitat 

units represent a 10% increase in total habitat availability across Lake Michigan.  In the end, I 

chose to evaluate increasing habitat availability up to an additional 18 habitat units, representing 

a 20% increase in habitat availability across the basin. 

 The influence of two categorical treatment unit attributes, namely producer status and 

geographic region, on the sea lamprey response to barrier removals were formally evaluated by 

running increasing habitat addition simulations for each possible combination of attributes.  New 

habitat areas were either assigned the status of regular or irregular producers and the geographic 

location of northern or southern Lake Michigan, with the corresponding Ricker recruitment 

curves and spawner allocations, respectively.  The range of outcomes observed across each of 

these attribute scenarios reflected the range of variation expected with future dam removals, 

especially as new river systems cannot be readily identified as regular or irregular producers a 

priori. 
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 For each dam removal scenario, I ran the SLaMSE model for 5000 simulations, with a 

100 year time horizon for each simulation; this was intended to capture the full range of 

stochasticity in model results.  For every simulation, the mean number of total lake-wide adult 

spawners across the last ten years was calculated to represent expected equilibrium conditions.  

This mean system response was summarized by calculating the percent change in mean 

abundance from status quo mean abundance using the equation below, in which the original 

value refers to mean status quo abundance unless otherwise stated: 

(𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 − 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
× 100 

The observed range of variation for each model run represented variability among the 

simulation-specific 10-year averages.  I also took advantage of the stochastic nature of the 

simulations to calculate the proportion of the 5000 simulations, for each habitat addition 

scenario, exceeding a high threshold relative to average status quo spawner abundance; I selected 

an abundance of 152,266 based on the 90
th

 percentile of simulated lamprey abundances under 

status quo conditions.  This simulated threshold abundance is similar to the maximum observed 

Lake Michigan adult abundance of 141,730 over a recent 10-year period (2005-2014).  Finally, 

to calibrate the model at the current Lake Michigan control budget of $2.42 million, larval 

survival was adjusted until the base model (i.e., no habitat additions) successfully projected the 

recent observed average adult abundance of 72,200 (M. Siefkes, Great Lakes Fishery 

Commission, Ann Arbor, Michigan, personal communication, 2016). 

 To explain the observed trends in sea lamprey abundance with increasing habitat 

availability, I ran additional simulations to characterize trends in the following model 

components: stream-specific parasite production, control budget allocation among the newly 

added and original treatment units, and lampricide treatment frequency.  Parasitic sea lamprey 
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production reflected the total number of metamorphosed sea lampreys leaving streams in each 

year and iteration.  Tracking stream-specific parasite production facilitated comparison of the 

relative contribution of the new and original treatment units to lake-wide adult abundances.  

Additionally, looking at both control budget allocation and treatment frequency helped to explain 

why the relative contributions of parasite production from new and original treatment units might 

change with increasing habitat availability.   

 I ran these additional simulations 1000 times over the same 100 year timespan; consistent 

with other simulations, only the last ten years of data in each simulation were used to 

characterize trends.  Simulations were run only for increasing habitat availability in which 

regular producing streams were added to northern Lake Michigan, as these attributes produced 

the strongest trends in sea lamprey abundance and were therefore more amenable for elucidating 

population drivers.  I ran these simulations across the full range of increasing habitat availability 

and for both the single large and multiple small river additions. 

 

Modeling Barrier Removal on the Grand River  

 I selected the potential removal of the Sixth Street Dam to demonstrate the utility of 

SLaMSE in informing a relevant, potentially high impact barrier removal scenario.  The Sixth 

Street Dam is located in downtown Grand Rapids, MI, and has served as an incidental lamprey 

barrier on the Grand River, Michigan’s longest river system.  This barrier currently blocks a 

large extent of potential lamprey habitat from access by migrating spawners.  Approximately 96 

km lies between the Sixth Street Dam and the Webber Dam, the next upstream barrier on the 

mainstem, and numerous large tributaries, including the Thornapple, Maple, and Rogue Rivers 

drain into the Grand River between the two dams, in addition to many smaller streams (Fig. 2.1). 
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Figure 2.1: Map of the Grand River mainstem (a) and the modeled Grand River system between 

the Sixth Street Dam and North Lansing Dam (b).  Numbers in (b) correspond to numbered 

treatment unit names in Table 2.2.  
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   Recently, there has been pressure by stakeholders to remove this dam, with the primary 

goal of recreating the historical rapids and establishing new recreational boating opportunities 

(Adair and Sullivan 2015).   Thanks in large part to the current relevance and extent of protected 

upstream habitat, the Sixth Street Dam removal scenario was listed a high priority for modeling 

by SLCP managers (P. Hrodey and M. Siefkes, Great Lakes Fishery Commission, Ann Arbor, 

Michigan, personal communication, 2015).  Furthermore, this system can also be modeled with 

some degree of accuracy given the quantity of compiled data; SLCP surveys for larval habitat 

quantities and native lamprey densities were conducted in 2014 and 2015 (Adair and Sullivan 

2015), in addition to the recent development of treatment cost estimates for the area.    

 To simulate the removal of the Sixth Street Dam, I incorporated sixteen new treatment 

units between the Sixth Street Dam and Webber Dam, each representing distinct Grand River 

tributaries, to the SLaMSE database.  The mainstem of the Grand River was deemed unlikely to 

host significant larval quantities or require treatment (Fig. 2.1; J. Tews, U.S. Fish and Wildlife 

Service, Ludington, MI, personal communication, 2015).  Each included treatment unit was 

known to contain viable habitat for spawning and larval sea lamprey, and had a uniquely 

estimable treatment cost.   

 Additional attributes of the new treatment units were then estimated using all available 

data on the Grand River.  The following inputs were estimated for each treatment unit using 

available data sources from the SLCP: total stream length, average stream width, the proportion 

of Type I and Type II habitat, and treatment cost (Table 2.2).  Total stream length was calculated 

using the Sea Lamprey Control Map, a decision-support tool developed by the SLCP to help 

quantify and visualize the extent of potential sea lamprey habitat blocked by barriers in the Great 

Lakes (Great Lakes Fishery Commission 2016).  Average stream width and the proportion of 
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Type I and Type II habitat for each treatment unit were estimated by calculating the mean of all 

transect data within the system (D. Keffer, U.S. Fish and Wildlife Service, Ludington, MI, 

unpublished data).  If transect data were absent, the mean width from a similarly-sized, nearby 

treatment unit and average habitat proportions across all other treatment units served as 

replacements; this was required for six of the sixteen units.  Treatment unit length, width, and 

habitat proportion data were used in concert to calculate total Type I and Type II habitat area 

values.  Treatment cost estimates were obtained for all sixteen tributary units from SLCP agents.  

Drainage area estimates for each treatment unit, obtained from the National Hydrography 

Dataset Plus (1:100,000 scale; http://www.horizon-systems.com/nhdplus), were calculated then 

scaled to match the total drainage area of the Grand River.  In the case of independent treatment 

units within a single watershed, like the Grand River, treatment units are assigned a proportional 

fraction of the entire watershed’s drainage area, based on the relative size of their drainage areas 

compared to that of all other units.  The drainage areas of the new treatment units, in addition to 

existing units downstream of the Sixth Street Dam, therefore were appropriately adjusted based 

on their individual drainage area estimates.  Other inputs, including river-specific features 

describing sea lamprey growth and mortality rates, could not be estimated using external 

databases and were assigned the same values as existing Grand River treatment units 

downstream of the Sixth Street Dam. 

  

http://www.horizon-systems.com/nhdplus
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Table 2.2: Base model inputs for the new treatment units in the Grand River, upstream of the 

Sixth Street Dam.  Treatment units are ordered top to bottom by increasing upstream distance 

from the Sixth Street Dam.   

 

Treatment Unit 

Tributary 

Length      

(m) 

Width   

(m) 

Type I Habitat 

(Proportion) 

Type II Habitat 

(Proportion) 

Treatment 

Cost ($) 

1. Rogue River 4122 25.79 0.0633 0.1302 131125 

2. Bear Creek 1631 6.86 0.1675 0.3503 49230 

3. Egypt Creek 7093 2.73 0.3013 0.2989 90440 

4. Honey Creek 5659 4.31 0.2329 0.3566 97110 

5. Thornapple River 479 16.70 0.1675 0.3503 387840 

6. Lowell Creek 4172 3.21 0.2407 0.4824 73170 

7. Flat River 412 16.70 0.1675 0.3503 245870 

8. Toles Creek 4544 2.93 0.1324 0.4532 171800 

9. Lake Creek 3359 5.25 0.1675 0.3503 83870 

10. Red Creek  6438 2.99 0.1675 0.3503 196700 

11. Timberlin Creek 2842 2.85 0.2277 0.4010 64485 

12. Sessions Creek 1962 5.25 0.0763 0.1529 73385 

13. Bellamy Creek 13536 6.86 0.1096 0.3468 164700 

14. Trestle Creek 3473 5.25 0.1675 0.3503 68085 

15. Prairie Creek 29846 11.80 0.1320 0.1658 196700 

16. Maple River 133946 18.56 0.1526 0.3838 503161 

17. Looking Glass 

River* 

93979 20.86 0.1195 0.1306 471201 
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 I also accounted for the potential influence of numerous small tributaries along the Grand 

River mainstem, deemed too small or otherwise insignificant to merit consideration as an 

independent treatment unit, on future sea lamprey production.  Using estimates of the expected 

influence of these small tributaries in attracting sea lamprey spawners, based on their observed 

drainage areas, I calculated the probable, proportional increase in available habitat in the 

upstream Grand River that might result if lampreys used these small tributaries.  This increase in 

available habitat was then spread equally among the sixteen new treatment units by artificially 

increasing stream lengths; a similar adjustment was made for relative drainage area.  The total 

cost of treating these small tributaries for larval sea lamprey, again estimated by control agents, 

was also spread equally among the sixteen explicit treatment units.  Across all new treatment 

units, these adjustments resulted in a 2.6% inflation in stream area and drainage area and a 

20.0% increase in total treatment cost.    

 Relevant dam removal scenarios and assumptions for the Sixth Street Dam case study 

were identified following a meeting with SLCP and Michigan Department of Natural Resources 

managers.  Three primary management decisions were selected as the focus for modeling work: 

the decision to modify the Webber Dam to block sea lamprey, the decision to treat or ignore the 

newly available habitat upstream of the Sixth Street Dam, and the decision to maintain or 

increase the current lake-wide control budget (Fig. 2.2).  Because the Webber Dam currently has 

the potential to pass sea lamprey but can be appropriately modified with sufficient justification, I 

evaluated the decision to modify the dam by simulating the effect of including the Looking Glass 

River; the Looking Glass River is the only major tributary system between the Webber Dam and 

the next mainstem barrier.  To include this system, I estimated the necessary inputs using the 

steps outlined for the sixteen new units downstream of Webber Dam (Table 2.2).  The decision 
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to treat or ignore habitat upstream of the Sixth Street Dam is intended to compare the effect of 

potentially pulling treatment effort away from other Lake Michigan tributaries with the effect of 

allowing uninhibited lamprey production above the Sixth Street Dam, respectively.  Finally, if 

the system is in fact treated, I both evaluated the effect of treating the system under the current 

budget of $2.42 million and estimated the necessary budget increase to prevent a lake-wide 

increase in sea lamprey abundance from status quo.  I only evaluated the necessary budget 

increase for the scenario in which the Webber Dam was modified to block sea lamprey. 

 

 

Figure 2.2: Visual representation of the modeling scenario combinations considered in 

simulating the Sixth Street Dam removal. 
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 I also formally assessed the influence of the assumed degree to which sea lampreys 

utilize the newly available larval habitat upstream of the Sixth Street Dam.  Among all inputs, 

larval habitat quantity is especially important to evaluate given its observed role in influencing 

recruitment success (Jones et al. 2003) and explicit incorporation into the SLaMSE model (Jones 

et al. 2009).  I therefore assessed the response of sea lampreys to two levels of assumed habitat 

use within added tributaries for each of the control scenario combinations: 10% and 50% habitat 

use.  The 10% habitat use represents a reasonable approximation of expected lamprey use of total 

river length based on professional judgment (A. Jubar, U.S. Fish and Wildlife Service, 

Ludington, Michigan, personal communication, 2016) and preliminary analyses indicating that 

the observed lengths of existing Grand River treatment units (obtained from the SLCP’s 

database) averaged just 10% of the total tributary lengths calculated from the Sea Lamprey 

Control Map (A. Jensen, Michigan State University, East Lansing, Michigan, unpublished 

analysis).  Expected use of total river length is as low as 10% because linear referencing, in 

which even marginal lotic habitats unsuitable for larval sea lamprey (e.g., drainage ditches, 

ephemeral headwater creeks) are digitized to form stream GIS datasets, can produce 

overestimates of total river lengths.  I chose to assess the influence of 50% habitat use on the sea 

lamprey response in order to evaluate a presumed worst-case scenario for extent of habitat use. 

 The SLaMSE model was run and summarized in the same manner as for the systematic 

habitat additions (i.e., 5000 simulations, 100 year time horizon, ten year averages) for every 

scenario and assumption, and the proportions of simulation results above the same status quo 

threshold were again calculated. 
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RESULTS 

 

Systematic Habitat Increases 

 There was a nonlinear increase in the adult sea lamprey population in response to 

systematically increasing habitat availability (Figs. 2.3, 2.4).  The smallest percent increase in 

mean abundance from status quo conditions with a 20% increase in habitat availability was 

161%; the greatest increase exceeded 800%.  This nonlinear response with increasing habitat 

appeared to be adequately characterized by an exponential function across all combinations of 

types of habitat addition, producer status, and geographic location (Figs. 2.3, 2.4).   

 The type of barrier removal (i.e., whether there is one large-scale barrier removal or 

multiple small-scale events) influenced the sea lamprey population’s response to barrier removal, 

with the addition of a single large stream having the greater effect.  The largest percent increase 

in abundance for the single stream addition was 885%, in comparison to 452% for multiple 

stream additions.  This difference in abundance between the types of habitat addition held true 

across all combinations of producer status and geographic location.  Corresponding with the 

different trends in mean abundance, the proportion of simulations with forecasted abundances 

greater than the high threshold relative to status quo abundance (152,266) also approached one 

more rapidly, relative to the amount of added habitat, when additions were conducted as a single 

large river.  
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Figure 2.3: Adult sea lamprey abundance trends with increasing habitat availability, assuming 

habitat units are added within a single stream unit.  Boxes, whisker bars, and open circles 

represent the 25th and 75th, 10th and 90th, and 5th and 95th percentiles of simulated adult 

abundances, respectively.  Solid horizontal lines and black circles represent corresponding 

median and mean values, respectively, and the dashed line represents the exponential model fit to 

the mean abundance values.  The asterisk indicates mean lamprey abundance from Scenario #1 

of the Grand River case study, with an assumed 10% habitat use (see Figure 2.7).  Gray squares 

indicate proportions of simulations with abundances greater than the status quo 90th percentile. 
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Figure 2.4: Adult sea lamprey abundance trends with increasing habitat availability, assuming 

habitat units are added as independent stream units.  Boxes, whisker bars, and open circles 

represent the 25th and 75th, 10th and 90th, and 5th and 95th percentiles of simulated adult 

abundances, respectively.  Solid horizontal lines and black circles represent corresponding 

median and mean values, respectively, and the dashed line represents the exponential model fit to 

the mean abundance values.  The asterisk indicates mean lamprey abundance from Scenario #1 

of the Grand River case study, with an assumed 10% habitat use (see Figure 2.7).  Gray squares 

indicate proportions of simulations with abundances greater than the status quo 90th percentile.   
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 The status of opened river systems as regular or irregular producers, as well as their 

geographical location, also had implications for the effectiveness of sea lamprey control under 

dam removal scenarios.  Habitat additions to northern Lake Michigan resulted in higher 

abundances than habitat additions in southern Lake Michigan, and new treatment units assigned 

as regular producers produced greater overall abundances than habitat additions assigned as 

irregular producers (Figs. 2.3, 2.4).  Among the two categorical factors of producer status and 

geographic location, producer status of the newly added habitat had a slightly greater effect on 

resulting adult sea lamprey abundances.  With a 20% increase in habitat availability and the 

combination of geographic region and type of habitat addition held constant, regular producer 

habitat additions resulted in 38.2% to 115% greater mean adult sea lamprey abundances relative 

to abundances arising from habitat additions assigned as irregular producers.  With the same 

20% increase in habitat availability, habitat added to northern Lake Michigan resulted in mean 

abundances 23.3% to 92.2% greater than those achieved with habitat added to southern Lake 

Michigan.  

  A combination of novel parasite production from newly added habitat and exponentially 

increasing parasite production from the original treatment units, caused in part by a shifting 

allocation of treatment effort away from original units to new ones, appeared to drive the 

exponential response of adult sea lamprey abundance to habitat increases.  There was a trend of 

increasing average contribution of new treatment units to basin-wide parasite production with 

increasing habitat availability (Fig. 2.5a).  This increasing relative contribution from new habitat 

constituted novel production of parasites due to barrier removals, but did not completely explain 

the magnitude of the sea lamprey response to habitat change, especially if we assume the 

production of parasites from the original Lake Michigan treatment units remained unchanged.  
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Perhaps more importantly, increasing habitat availability also caused a steep, concurrent increase 

in parasite production within the original treatment units (Fig. 2.5b); the nature of the response 

was consistent across both types of habitat addition.  This response may be explained in part by 

the reduced overall annual treatment frequency among original treatment units with increasing 

habitat additions (Fig 2.5c). Concurrently, the average annual allocation of the control budget to 

original treatment units declined from $2.42 million to a median of $2.07 and $1.79 million for 

the single and multiple treatment unit additions, respectively, when 18 habitat units were added 

to the Lake Michigan basin (Fig. 2.6).   
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Figure 2.5: Changing model characteristics with increasing habitat.  Lines and polygons 

represent the median and 10
th

 and 90
th

 percentiles, respectively, across all simulations (a, b) or 

treatment units (c).  The dotted line and lighter polygon illustrate the effect of adding a single, 

large unit, and the solid line and darker polygon illustrate the addition of habitat units as 

multiple, discrete treatment units, respectively. 
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Figure 2.6: Average annual budget expenditure on the original treatment units with increasing 

habitat availability.  The dotted and solid lines illustrate the response when habitat is added as a 

single, ever-larger system and multiple, discrete treatment units, respectively. 
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Case Study: Barrier Removal on the Grand River 

 Treatment unit attributes were successfully estimated for all 17 potential new treatment 

units (Table 2.2).  The length measurements represent values expected for 10% habitat 

utilization; stream length was subsequently adjusted upwards to accommodate the 50% habitat 

use assumption.  Drainage area values are not listed as they varied depending on the simulation 

scenario; the decision to exclude or include the Looking Glass River necessarily altered drainage 

area values for all other Grand River treatment units, as they are expressed relative to the Grand 

River’s total drainage area. 

 All management scenarios pertaining to the dam removal forecasted large increases in 

adult sea lamprey abundance in Lake Michigan, assuming the control budget remains unchanged 

(Fig. 2.7).  Among the simulations, the lowest mean percent increase in adult abundance, over 

that observed under status quo conditions, was 52%.  It occurred when the Webber Dam was 

modified to block sea lamprey, new habitat units were treated, and sea lampreys used 10% of 

available habitat.  For the same scenario, just over 24% of simulations produced abundances 

exceeding the status quo 90
th

 percentile.  The largest mean increase of 269% occurred when an 

unmodified Webber Dam allowed sea lamprey to infest the Looking Glass River, none of the 

new habitat units were treated, and sea lampreys used 50% of potentially available habitat.  

Approximately 87% of simulations resulted in spawner abundances exceeding the threshold for 

this worst case scenario.    
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Figure 2.7: Expected sea lamprey abundances for each of the management scenarios.  Scenarios 

#1 and #2 exclude the Looking Glass River, while Scenarios #3 and #4 account for its influence.  

New treatment units are treated by the SLCP in Scenarios #1 and #3, and ignored in Scenarios #2 

and #4.  Boxes, whisker bars, and open circles represent the 25
th

 and 75
th

, 10
th

 and 90
th

, and 5
th

 

and 95
th

 percentiles of simulated adult abundances, respectively.   The solid horizontal lines and 

black circles represent median and mean values, respectively.  Numbers above the upper whisker 

bars indicate the proportion of simulations greater than the status quo 90
th

 percentile. 
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 The decision to modify the Webber Dam, the decision to treat the upstream Grand River, 

and the assumed degree of habitat use each had substantial effects on equilibrium sea lamprey 

abundances, but the relative magnitude of effects differed.  When the decision to treat and 

assumed habitat use were otherwise held constant among scenarios, the percent difference in 

mean lake-wide sea lamprey abundance between simulations including and excluding the 

Looking Glass River ranged between 13.1% and 19.6%, with higher simulated abundances for 

scenarios including the Looking Glass River.  The decision whether or not to treat the upstream 

Grand River system had a larger effect on sea lamprey numbers than the decision to modify 

Webber Dam.  Compared to simulation scenarios with the new habitat units considered for 

treatment, again assuming that all other factors are held constant, the decision to not treat these 

units resulted in a 40.4% to 52.1% increase in average adult abundance.  Assuming increased 

habitat utilization in the new treatment units had a similarly dramatic effect on equilibrium sea 

lamprey abundances.  With management decisions held constant, the increase in assumed habitat 

utilization from 10% to 50% caused the percent differences in abundances between these habitat 

use assumptions to range from 34.7% to 49.1%.   

 For the dam removal scenario in which the Webber Dam is modified to block sea 

lamprey, substantial increases in the annual Lake Michigan control budget were needed to 

restore mean sea lamprey abundances to levels at or below status quo under the two assumptions 

of habitat use.  Simulations suggested an annual control budget of $2.62 million per year, 

representing a $200,000 increase from the current $2.42 million budget, was needed to decrease 

mean abundances to levels at or just below status quo when assumed habitat use was 10% (Fig. 

2.8).  In comparison, a control budget of $2.78 million was required to accomplish the same 
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objective when assumed habitat use was 50%, representing an annual budget increase of 

$360,000.   

 

 

Figure 2.8: Expected sea lamprey abundances when the Sixth Street Dam is removed, the 

Webber Dam is modified to block sea lamprey, lampreys are assumed to use 10% (a) or 50% (b) 

of maximum potential river length, and the new treatment units are allocated control efforts with 

a steadily increasing Lake Michigan control budget.  Boxes, whisker bars, and open circles 

represent the 25
th

 and 75
th

, 10
th

 and 90
th

, and 5
th

 and 95
th

 percentiles of simulated adult 

abundances, respectively.  The solid horizontal lines and black circles represent median and 

mean values, respectively.  
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DISCUSSION 

 

 This analysis quantitatively characterized the probable response of the Lake Michigan sea 

lamprey population to increasing habitat availability associated with future barrier removals.  

Simulations of systematic habitat additions resulted in an exponential population response to 

changing habitat, revealed causative drivers of this change within the tightly-controlled 

biological system, and illustrated sensitivity to habitat quality attributes.  The simulated influence 

of alternative management actions and expected cost of maintaining status quo sea lamprey 

abundance after removal of the Sixth Street Dam can inform future conservation actions within 

the Grand River watershed.  More broadly, modeling results revealed complex dynamic behavior 

of an intensively managed biological system. 

 The systematic habitat addition simulations showed that a heavily-controlled invasive 

species, like sea lamprey, responds to the localized easing of key management-imposed 

constraints in a complex, disproportionate manner.  The primary constraints on sea lamprey 

population growth in the Great Lakes are habitat limitations created by barriers in large river 

systems and lampricide treatment-induced mortality at the larval stage (Christie et al. 2003; 

Lavis et al. 2003).  When these two constraints were diminished by the addition of habitat and 

the subsequent shifting of treatment efforts to these new habitat patches, sea lamprey production 

increased in both the new and original river systems and Lake Michigan adult abundances 

exhibited a sharp, exponential increase.  The population responded to the new habitat through the 

immediate contribution of additional parasite production from the new treatment unit(s).  

Additionally, the simulated shifts in control effort allocation, following established management 

procedures, seemed to drive a more complex response from the original treatment units.  The 
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necessity to treat new habitat in a zero-sum control system caused an overall decrease in 

treatment frequency across original treatment units, which contributed to increased production 

from the these units and helped drive the overall population response.  The inter-connected 

relaxation of the two critical constraints of habitat and lampricide control determined the sea 

lamprey response to increasing habitat availability.  Similarly complex responses in population 

abundance to changing top-down controls have been observed in outbreaks of mesopredators 

(“mesopredator release”), in which small reductions in the abundance of apex predators trigger 

disproportion increases in mesopredator abundance (Ritchie and Johnson 2009).  

 Compounding these shifts in treatment allocation and parasite production is the likely 

presence of positive feedback.  Positive feedback effects are often observed in complex fisheries 

systems under changing predation pressure or habitat conditions (Rose and Cowan Jr 2000; 

Walters and Kitchell 2001; Kirby et al. 2009; Audzijonyte et al. 2013).  In the Lake Michigan 

system, positive feedback refers to increased recruitment and subsequent parasite production 

from previously spawner-limited river systems due to increased lake-wide production of 

parasites from newly added habitat.  Great Lakes sea lampreys seem to exhibit density-dependent 

recruitment with a large degree of density-independent variation (Jones et al. 2003; Dawson and 

Jones 2009).  Great Lakes sea lamprey populations are currently suppressed to abundances less 

than 10% of historical abundances by the combination of lampricides and barriers, and this 

suppression of adult numbers likely results in spawner-limited tributaries.  Increased spawner 

allocations to each Lake Michigan tributary, driven by elevated spawner abundances across Lake 

Michigan from the addition of habitat, should produce greater future recruitment in these rivers, 

and contribute to increasing lamprey production across the basin.  Of course, the magnitude of 
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this effect will eventually be limited by compensation (i.e., spawner over-saturation), but this 

likely does not occur until after some positive feedback effects are observed.    

 In total, the combined new production from new habitats, increased production from old 

habitats due to shifted control efforts, and positive feedback drove a large response of sea 

lamprey abundance from a comparatively small increase in habitat.  There is evidence for such a 

population response from historical barrier failures in Lake Michigan, as unrestricted 

colonization of 220 km of the Manistique River in the late 1990s and early 2000s was associated 

with approximately a 100% increase in the estimated Lake Michigan sea lamprey abundance 

(Klar and Young 2004).  Although the example represents uncontrolled production from a river 

system, it suggests that increased habitat availability for a controlled species can have 

disproportionate consequences. 

 The simulated effects of positive feedbacks and shifting treatment efforts in driving the 

Lake Michigan sea lamprey population response underscore the importance of explicitly 

considering linked impacts when evaluating barrier removal decisions.  For species that exhibit 

natal homing for spawning, increased spawning and larval habitat in a single stream will 

typically translate into increased productivity for that stream.  Sea lampreys, however, do not 

exhibit natal homing, and the allocation of spawners to rivers in the SLaMSE model reflects this 

reality (Bergstedt and Seelye 1995; Jones et al. 2009).  The effects of increased production from 

a single river for a non-homing species, like sea lamprey, are spread throughout the basin in the 

form of broad, but more modest, increases in spawners in multiple streams, with a corresponding 

increase in average recruitment success.  Furthermore, the need to treat new regions of habitat 

made accessible by barrier removals disrupts the finely tuned balance of control effort among the 

linked river systems and leads to escalating production from pre-existing treatment units.  These 
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results suggest that evaluations of barrier removals focusing on potential fish responses must 

consider broader scale, linked implications of increased fish production, especially for systems in 

which species do not exhibit strict natal homing and control effort is necessarily balanced among 

many streams.   

 My analysis also revealed that barrier removal decisions need to account for factors in 

addition to habitat quantity to accurately assess the effects of barrier removal.  Specifically, the 

decision to remove a dam from a single large river system versus multiple small rivers, while 

providing access to the same overall amount of additional habitat, had a large influence on 

lamprey response, as adding ever-larger single river systems produced much greater increases in 

lake-wide lamprey abundance than adding multiple discrete units.  The difference is due to the 

challenge of incorporating increasingly expensive single-system treatments into an annual stream 

ranking system; in the current scheme, streams in a given year are treated in descending order 

based on the projected cost per expected larva killed until the available budget is exhausted 

(Slade et al. 2003).  As a system becomes more expensive to treat, the probability that there 

would be sufficient budget remaining by the time it ranks for treatment decreases; if there is 

insufficient budget remaining at the point a treatment unit is selected, the unit will be passed over 

and lower ranked, less expensive systems will instead be treated.  There is evidence for this 

occurring in the model results: trends in budget expenditure and treatment frequency among 

original treatment units appeared to flatten and even rise slightly as increasing habitat availability 

in a single large river approaches the final value of 20% (Figs. 2.5c, 2.6).  Furthermore, 

consistent with the differing treatment frequencies for the types of habitat addition, parasite 

production from new habitat for the single river dam removal increased more steeply with 

increasing habitat additions than that for multiple dam removals (Fig. 2.5a).   Within the existing 
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model framework, an increasingly large single river system is simply more difficult to treat than 

multiple, smaller river systems, and ends up producing more parasites than the same amount of 

added habitat spread over several smaller rivers. 

 The geographic location and production potential (i.e., regular or irregular producers) of 

affected areas also played important roles in mediating the sea lamprey response to increasing 

barrier removals.  The geographic location of barrier removals regulates the sea lamprey 

response by dictating spawner allocation to new habitat units.  Given that a fixed 52% of lake-

wide spawners are allocated to northern Lake Michigan tributaries, with smaller overall drainage 

areas relative to the southern tributaries, habitat additions in northern Lake Michigan will result 

in relatively greater spawner allocations to these new habitat units, which in turn increases the 

production potential and required treatment frequency in the new habitat units.  In comparison, 

inherent production potential regulates the response by affecting recruitment dynamics; regular 

producers produce more recruits per spawner, on average, than irregular ones.  This has the same 

effect of increasing production potential and required treatment effort in the new habitat areas.  

In a similar vein, the influence of dams and fragmentation on indicator fish species has been 

shown to be mediated by river attributes including stream size and thermal regime (Cooper et al. 

2016).   The variability in projected abundances among these scenarios, dependent on the 

attributes of the newly available habitat, therefore should be considered when making barrier 

removal decisions. 

 Furthermore, the high degree of variability across simulations for each of the barrier 

removal scenarios reflects very real uncertainty in our understanding of sea lamprey dynamics 

and should be explicitly recognized in decision making. One of the strengths of the MSE 

approach is the incorporation of multiple sources of uncertainty (Bunnefeld et al. 2011); for the 
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SLaMSE model, these sources included stochasticity in biological processes, larval abundance 

assessments, and control efforts.  The resulting variability in model results indicates that the 

calculated mean responses in abundance are by no means guaranteed outcomes.  Instead, the 

results indicate expected trends in the sea lamprey response to barrier removals, with a 

correspondingly wide range of plausible alternative outcomes.  Reporting results as proportions 

of simulations with values above some threshold value, selected in this paper as the upper limit 

of expected status quo conditions, is one useful means of capturing uncertainty in the simulated 

outcomes; decision-makers can then use information like this to assess the risk of key decisions.  

In some cases, precautionary approaches are used to deal with uncertainty over management 

actions (Kell et al. 1999); in others, uncertainty can be formally accounted for using a decision 

analysis process (Irwin et al. 2008).  Modeling approaches like that of SLaMSE are not intended 

to make decisions (Sharov and Liebhold 1998).  Instead, these models provide information on 

the best current understanding of the influence of management actions on biological processes, 

and the uncertainty around this understanding is a critical component of the simulation results 

whenever decisions involve risks. 

 Simulating the removal of the Sixth Street dam can inform decision making efforts on the 

Grand River.  The difference between the treated and untreated habitat scenarios points to the 

value of treating the upstream Grand River in the case of barrier removal.  The decision to ignore 

the upstream habitat resulted in higher sea lamprey abundances, despite the dilution of basin-

wide treatment effort that would have occurred if upstream habitat were to be treated.   The 

decision to modify the Webber Dam also appeared to be secondary in importance to that 

regarding treatment, as the decision to include upstream habitat in treatment efforts had the 

relatively bigger effect on the sea lamprey response.  Finally, the modest control budget 
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increases required to suppress sea lamprey to status quo abundances, relative to the percent 

increases in abundance with no change in budget, seem to justify the recommended increases in 

annual control spending.   Similar to this application of management strategy evaluation to the 

Sixth Street Dam removal, MSE has guided other fisheries-based decisions in the face of 

biological and management uncertainty (Kell et al. 1999; Smith et al. 1999; Irwin et al. 2012; 

Dawson et al. 2016).  Additional SLaMSE-based analyses around the Great Lakes could be used 

to inform management decisions for future barrier removal scenarios.  

 The responsiveness of model results to uncertainty about habitat use by colonizing sea 

lampreys underscores the importance of identifying accurate input values.  Moving from a 10% 

to 50% habitat use assumption, for each of the four evaluated management scenarios, 

meaningfully increased expected mean lamprey abundances.  Although the 10% assumption can 

be considered a reasonable estimate based on professional judgment and preliminary analyses, it 

remains a rough approximation, as does the worst case scenario of 50% habitat use.  Identifying 

reliable habitat area estimates in future modeling endeavors will require both more detailed GIS 

data integrating length and width information along streams and improved empirical 

understanding of habitat use by spawning sea lamprey within tributary systems.  Although not 

utilized in these simulation efforts, results from habitat modeling for sea lamprey-specific 

attributes like larval habitat quality also have the potential to improve future population 

dynamics work (see chapter 1).    

 An important, implicit assumption of all case study simulations is my assumption that 

migrating sea lampreys would utilize all selected upstream tributary systems after the dam 

removal.   This assumption has been largely supported by dam removal studies on coastal river 

systems smaller than the Grand River, in which lampreys were observed to quickly re-colonize 
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previously blocked upstream habitat (Hogg et al. 2013; Lasne et al. 2014).  Additionally, sea 

lampreys appeared to rapidly colonize upstream reaches of the Manistique River in northern 

Michigan, a river section over 220 km in length (Klar and Young 2004).   Upstream migration 

rates for land-locked sea lamprey have been observed to exceed 3 km/d (Wigley 1959) and 

appear to increase with increasing stream size (Kelso and Gardner 2000).   There is also evidence 

that lampreys can access and utilize upstream tributaries on larger river systems.  Tagged and 

released anadromous sea lamprey were observed to travel over 18 km to access upstream 

tributary systems in Portugal’s River Mondego, a river system draining a watershed slightly less 

than half the size of Michigan’s Grand River (Almeida et al. 2002).  

 I also did not simulate the effect of a seasonal barrier on sea lamprey populations.  

Stakeholder groups have proposed the construction of a seasonally-adjusted structure, in place of 

the Sixth Street Dam, to operate as a barrier only during sea lamprey migrations (Adair and 

Sullivan 2015).  I chose not to account for this possibility in simulating the dam removal due to 

the uncertainty surrounding its actual installation and potential success at blocking sea lamprey.  

If the goals of such a barrier are blocking sea lamprey and allowing passage of other non-

jumping, migratory species, the overlapping migration phenologies of Great Lakes fish have 

been demonstrated to prevent the successful balancing of such objectives without the installation 

of an effective fishway (Vélez-Espino et al. 2011).  While certainly not inclusive of all 

possibilities, the simulation scenarios and assumptions selected for model analysis reflected best 

judgment based on the current understanding of the Grand River system and lamprey migratory 

capacities. 

 As with most modeling approaches, there are key limitations with the SLaMSE model 

structure that deserve mentioning.  First, the SLaMSE model is concerned with a single species, 
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and does not take any multi-species interactions within the Great Lakes into account.  Related to 

this, our models assume that sea lampreys in Lake Michigan do not become limited by the 

availability of hosts, even at projected abundances exceeding observed historical levels in the 

1950’s and 1960’s (Smith and Tibbles 1980).  It is reasonable to expect that prey limitation 

would occur at some of the higher forecasted abundances and restrict further production (LaRue 

1980).  The current SLaMSE model also lacks the ability to flexibly treat large treatment units, 

with correspondingly high production potential, outside of the annual stream ranking system.  

The SLCP sometimes selects high-profile river systems for preferential or consecutive treatments 

based on professional judgment, independent of the stream ranking system (Adair and Sullivan 

2015).  It is possible that a more flexible treatment strategy might reduce the effect of adding 

single large habitat units, in both the systematic habitat additions and Grand River case study, by 

reducing parasite production from these larger systems.  Both modeling limitations have the 

potential to forecast future sea lamprey abundances above those which might be observed 

following a real-world barrier removal. 

 Although other modeling-based approaches have been used to inform barrier removal 

decisions and predict fish response to changing habitat availability, few, if any, have matched 

both the extent and resolution of the reported MSE modeling efforts for sea lamprey populations.  

At the broadest extent, barrier removal prioritization efforts, using information like existing 

barrier passability, blocked stream length, and estimated cost of removal, are being advocated to 

optimize barrier removals across varying spatial extents like the coastal rivers of the Pacific 

Northwest (Kemp and O’Hanley 2010).  These models help synthesize multiple sources of 

information and coordinate decisions at scales similar to the Great Lakes, but often make 

simplifying assumptions in relating passability, stream length, and habitat quality to future fish 
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production (Kuby et al. 2005; O’Hanley and Tomberlin 2005; Zheng et al. 2009).  At a smaller 

spatial extent, landscape models are increasingly used to predict some aspect of fish response to 

barrier removal , including projected steelhead (Onchorhynchus mykiss) redd density in the 

Pacific Northwest (Steel et al. 2004) and northern pike (Esox lucius) incidence in northern 

Sweden (Spens et al. 2007).  This type of work also has the potential to inform decision-making 

at a broad scale using indirect measures of productivity, but does not directly inform fish 

abundance. Finer resolution modeling has occurred to predict fish response to individual barrier 

removals using species-specific, population dynamics models for American shad (Alosa 

sapidissima), walleye (Sander vitreus), and American eels (Anguilla rostrata) (McCleave 2001; 

Cheng et al. 2006; Harris and Hightower 2012).  While these models successfully predicted fish 

production from systems under different barrier removal scenarios, they did not connect stream-

specific production to larger population effects or extrapolate findings to other river systems. To 

our knowledge, no previous studies have assessed fish responses to barrier removal using a 

detailed, species-specific management strategy evaluation approach across a spatial extent 

comparable to Lake Michigan, nor have they explicitly considered the implications of barrier 

removals in a coupled management system with trade-offs.  Results from these analyses 

therefore represent unique, spatially explicit, and comprehensive population predictions for a 

suppressed invasive species.   

 The MSE modeling efforts for the Lake Michigan sea lamprey population represent a 

useful quantification of the sea lamprey response to barrier removal and can be used to guide 

future barrier decisions.  Modeling results revealed new insights into interactions and feedbacks 

among the different system components, and highlighted the high degree of uncertainty in the 

expected responses to habitat additions.  This type of MSE approach has the potential to be 
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replicated in other biological systems similar to that of Great Lakes sea lamprey, in which a 

detailed understanding of a controlled species’ population dynamics is already established and 

there is a readily manipulated environmental constraint.  Future SLaMSE-based analyses of 

barrier removals can be improved by implementing some form of prey-based limitation in 

population growth, continuing to increase the quality of input data, and clarifying our 

understanding of sea lamprey migratory capacity in the Great Lakes. 
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MANAGEMENT RECOMMENDATIONS 

 

 The limited success in predicting the quantity of Type I and Type II data in stream 

reaches in the Lake Michigan basin, due in part due to sampling methods and inconsistent 

sample sizes among reaches, reveals an opportunity to improve the utility of future habitat data 

collection for research use.  Designing future sampling efforts to capture habitat dynamics at the 

scale of natural river features like stream reaches and linking collected data to a common spatial 

framework (e.g., National Hydrography Dataset) can facilitate modeling efforts similar to those 

reported in chapter 1.  Furthermore, changing the sampling protocol to identify more detailed 

measures of substrate type (i.e., classify habitat by objective grain size) in place of the current 

habitat types can lead to more effective modeling, as Type I and II habitat refer to observed 

functional habitat types for sea lamprey rather than sharply defined measures of substrate 

composition.  Sampling protocols similar to those used in the U.S. EPA’s Wadeable Stream 

Assessment program may serve as a useful guide for such changes (USEPA 2004; USEPA 

2006).  Finally, in the case of sampling new potential habitats for sea lamprey (e.g., river 

sections upstream of dams), protocols should incorporate sampling the upstream extent of 

spawning habitat and ultimately frame larval habitat quantity relative to this distribution.  Given 

the inability of larvae to disperse upstream of nest sites, actual potential larval habitat only exists 

downstream of the furthest upstream spawning habitat patches.  

 The most important, and simplest, recommendation from the population simulations is 

that an increase in the annual control budget is necessary to avoid a disproportionate sea lamprey 

population response with Great Lakes barrier removals.  The increases in budget required for 

barrier removals like the Grand River represent a small proportional increase in cost relative to 
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the proportional increase in sea lamprey abundance that would otherwise result.  Furthermore, 

decision makers should account for river attributes other than sheer available habitat when 

considering possible effects of barrier removals on sea lamprey populations.  The different 

spawner allocations and simulated effect of adding habitat in northern and southern Lake 

Michigan support the recommendation that expected implications of barrier removals between 

these two regions should vary.  Additionally, the implications of opening multiple small rivers or 

a single large river system for the effectiveness of sea lamprey control need to be carefully 

considered on a case-by-case basis.  Modeling results suggest addition of a single, expensive 

river system can be more difficult to accommodate in the existing ranking system than several 

small additions.  On the other hand, widely spaced small rivers may be more logistically 

challenging to sample and treat, given required travel times between sites.    

 In addition to the projected costs of barrier removals associated with sea lamprey control, 

all relevant objectives of barrier removals should be considered with a similar level of scrutiny.  

Sea lamprey control comprises just one aspect of the numerous biological objectives associated 

with barrier removal, which range from aquatic ecosystem restoration to the enhancement of 

desirable diadromous fish populations.  Beyond these biological objectives are equally pressing 

social and economic concerns, including public safety, recreation, and power generation.  

Researchers are increasingly urging that all of these objectives are formally accounted for and 

compared to formal criteria (Pejchar and Warner 2001; Johnson and Graber 2002).   

 To this end, improving our understanding of the population-level processes influencing 

the abundance of desirable fish species represents a major next step to achieve a formal 

comparison of biological objectives with dam removals.  Simulations of the sea lamprey 

population response to increasing habitat were facilitated by decades of persistent research on 
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life history processes for this species.  Equivalent levels of understanding regarding population 

dynamics processes, or similarly developed simulation-based models, are lacking for desirable 

fish species like lake sturgeon (Acipenser fulvescens) and walleye (Sander vitreus).  

Incorporating an improved understanding of desirable fish dynamics into comparable models is 

critical if we want to explicitly compare the competing objectives of helping certain species and 

inhibiting the success of others. 

 Further research needs include developing an improved mechanistic understanding of 

drivers on sea lamprey habitat and incorporating predator-prey dynamics into our understanding 

of sea lamprey population processes.  Purely modeling-based attempts to predict fine-scale river 

habitat rarely explain more than 50% of variation (Wang et al. 2013); in situ observations and 

manipulative experiments on fine substrate habitat distribution in the Great Lakes basin can 

improve our mechanistic understanding of landscape processes and improve predictive 

performance.  Finally, time-series analyses that explicitly link the abundances of sea lamprey and 

prominent host species should be conducted to inform future population analyses.  An improved 

understanding of population responses at the simulated extremes will improve the utility of 

generated model predictions, particularly in the case of large-scale barrier removals. 
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