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ABSTRACT

DESIGN SENSITIVITY IN DYNAMICAL SYSTEMS

By

Joseph Eugene Whitesell, Jr.

Modal analysis is a standard tool used in the design of

dynamical systems. By numerically determining certain eigen-

values and eigenvectors associated with a linear structural model,

its vibratory behavior can be investigated. The difficulty with

this technique is that it may be costly in computer time if

several redesigns (and re-evaluations of the eigenvalues and

eigenvectors) are needed to find a suitable design.

The thesis presents a technique to represent selected eigen-

values and eigenvectors by a Taylor series in a design variable.

Since, with the technique, the Taylor coefficients can be computed

efficiently and to arbitrary order, the Taylor series can be used

to accurately estimate the consequences of a design change. The

technique, therefore, has the potential to substantially reduce

the number of calculations necessary to re-evaluate the eigensystem

after a design change.

Each Taylor coefficient is determined by evaluating a recursive

formula which is derived through an application of generalized in-

verse theory. If the eigenvector is found through an inverse itera-

tion, the technique is especially efficient. Most of computational

effort spent to find the eigenvector can then be re-applied to find

the Taylor coefficients. Two representative examples illustrate the

power of the method for practical design problems.
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Chapter 1

Introduction
 

The numerical determination of static and dynamic responses

for linear structural models has become a routine procedure in

engineering design [l,2]. Typically a sequence of design and

redesign is followed until certain features such as weight, natural

frequency, mode shape, and deflection and stress magnitudes attain

suitable values. At each stage the designer changes the design

and performs a numerical analysis to evaluate the consequences

of the changes.

This approach relies heavily on human judgement to modify

the design at each stage and since the appropriate design modi-

fications may not be obvious, several redesigns and reanalyses

are often necessary. Alternative methods to improve this pro-

cedure have been proposed. In one method, the full structural

model is replaced by a Taylor series which approximates its

behavior in a neighborhood of the current design [3]. Combined

with interactive computer graphics hardware, this method allows

a designer to preview the consequences of a proposed design while

avoiding a costly reanalysis. Another approach is the optimal

design method [3], which combines nonlinear programming methods

with structural design techniques. The procedure identifies

a cost functional with certain important design features and



attempts to minimize it by changing the design. When the method

is successful, a sequence of numerically determined designs con-

verge to a feasible design for which the selected cost functional

attains a local minimum.

A major difficulty arises when these methods are applied to

large problems since the determination of the system's state

variables and especially their sensitivity values may require

an excessive amount of computation. However, the potential

benefits of these methods provide a strong incentive to develop

improved numerical methods.

l.l Some Historical Notes
 

When the design involves dynamical measures such as natural

frequencies or mode shapes, efficient methods for determining the

sensitivities of eigenvalues and eigenvectors to design changes

become important. Although methods for computing the first

derivative of an eigenvalue with respect to some system parameter

have been known since the nineteenth century work of Jacobi [4],

eigenvector derivatives have a much shorter history. The first

work in this area was done by Fox and Kapoor [5], who presented

two methods for determining an eigenvector derivative for the

symmetric eigenvalue problem (K - AM)u = 0. Unfortunately both

methods are computationally inefficient. The first method,

although it requires only knowledge of the specified eigenvalue

and eigenvector, involves the multiplication of an (n + l)xn

matrix by its transpose and the subsequent solution of a fully



p0pulated symmetric system. The matrix multiplication is a

lengthy computation and usually leads to a loss of any sparseness

possessed by the factor matrices. The second method avoids these

problems, but it expresses the derivative of an eigenvector in

terms of a complete set of eigenvalues and eigenvectors. This

formulation has only theoretical value when the eigensystem is

large since it is difficult to extract a full set of eigenvec-

tors. In refs. [6-8] the work of Fox and Kapoor was extended to

non-symmetric systems but no improvement in computational ef-

ficiency was made.

These computational difficulties were first discussed by

Nelson [9]. As a remedy, he proposed a technique by which the

rank (n - l) matrix L — AI is modified by zeroing certain of its

entries. The modified matrix, which describes a system of

equations which must be solved to determine the eigenvector deri-

vative, is well conditioned and retains the sparseness of the

original system. This is a significant improvement since the

problems of mathematical physics and engineering often involve

sparse matrices. In this thesis further improvement in computing

eigensystem sensitivities are presented. Two representative

examples illustrate the power of the method for practical design

problems.

l.2 Thesis Overview
 

Notation and preliminary mathematical concepts are presented

in Chapter II. In Chapter III a survey of eigensystem differen-



tiability results are presented. The presentation is based on

the literature of the perturbation theory for linear operators.

After two example problems the chapter closes with a discussion

of eigensystem dependence on several parameters.

Chapter IV is concerned with methods for differentiating

eigenvalues and eigenvectors. The chapter states some basic

results, followed by an application of generalized inverse theory

which leads to further improvements in computing eigensystem

derivatives. A recursive numerical method is then described for

efficiently computing eigensystems derivatives of arbitrary

order. Each eigenvalue and eigenvector derivative is determined

by solving a sparse triangular system and involves no more than

0(n2) multiplications.

Chapter V begins with a statement of the design sensitivity

problem in finite element models. The methods of Chapter IV are

then extended to the generalized eigenvalue problem (K - AM)u = 0.

The chapter ends with two examples which involve finite element

formulations.

In the first Example (5.3-l), an eigenvalue problem associated

with a single element plane elastic vibration problem is considered.

After introducing a design variable to the problem, a Taylor

series representing an eigenvalue as a function of the design

variable is determined with the technique presented in this

thesis. The results are compared with direct evaluations of the

eigenvalue at various values of the design variable.



In the second example (5.3-7) an eigenvalue which depends on

the boundary shape of a fixed-fixed vibrating plate is estimated

using a first order approximation. The estimated eigenvalue is

compared with a direct evaluation of the eigenvalue for several

design modifications.

Chapter VI presents concluding remarks and suggestions for

future work.



Chapter 2

Mathematical Preliminaries
 

This chapter contains a summary of definitions and theorems

drawn from linear algebra and functional analysis which are used

in the following chapters. The reader may find this material in

many sources such as refs. [10-14].

In this thesis an n dimensional column vector is denoted by

x. Its transpose to a row vector is denoted by xT. The con-

jugation of xT is denoted by x*. To avoid confusion between

the ith vector in an indexed sequence of vectors and the ith

component in a particular vector, 5i denotes an indexed vector

and xi denotes the ith component of the vector x. The jth com-

ponent of the vector 5i is denoted by xij' An nxm matrix is

denoted by A, B, C etc. The entry in the ith row and jth column

of A is denoted by aij' The ith matrix in an indexed sequence of

matrices is denoted by A1. The entry in the jth row and kth

column of the matrix A1 is denoted by aijk'

The real (complex) field is denoted by 32(3). The real

(complex) vector space of dimension n is denoted by 3?"(@n).

The space of real (complex) nxm matrices is denoted by ‘gynxm

(gnxm) .



2.l Concepts from Linear Algebra
 

Definition (2.l-l): A linear space X is a set of elements called
 

vectors which is closed under addition (if XeX and yeX then

x+y = 2eX) and under multiplication by a real or complex

scalar a (if XeX then ax = yeX).

Definition (2.l-2): Let X be a linear space over a field F and let

V be a set of k vectors {54’52""’5k} of X. Then if for

some set of k scalars {c],c2,...,ck} from F, not all zero,

the linear combination

C154 + c252 + ... + Ckék = 0,

 

the vectors {§I’§Z""’§k} are said to be linearly dependent

over F. If instead

c154 + c252 + ... + ckxk = 0

only if each ci=0 then the vectors {54’52"°”5k} are

linearly independent.
 

Definition (2.1-3): A set of vectors {54’52’°"’5k’°"} is said to

span X if every vector XeX can be expressed as a linear

combination of the set {54’52’°"’5k""}'



Definition (2.l-4): A set of vectors {54’52""’§k} of a linear

space V is said to be a Hamel basis if and only if
 

i) the set spans V and

ii) the vectors {54’52""’5k} are linearly independent.

Definitions (2.l-l) through (2.l-4) are concerned with

only the algebraic properties of a linear space (algebraic

linear space). If these notions are combined with the topo-

logical notions of length, distance and convergence, a space

with both algebraic and topological properties results (topo-

logical linear space).

Definition (2.l-5): A norm on a linear space X is a positive real

valued function
    

with the following properties

1) IIXII f 0 if x f O, lIx|| = 0 otherwise

1'1')||9><II=I9I°I|><|L 96F

iii) ||§1+§2||1|l51||+|l52l|

Definition (2.l-6): An inner product is a scalar function,
 

(-,-), of two elements x,yeX such that

X142 + x3) = (51.52) + (51.253)

54: 052) = aIéqgéz), aeF

x,x) > 0 if x f 0, (x,x) = 0 otherwise.



Definition (2.l-7): Two vectors x and y are orthogonal with
 

respect to an inner product (~,-) if

(x,y) = 0.

Definition (2.l-8): A set of vectors 54 forms an orthonormal
 

§§t_with respect to an inner product (.,.) if

Definition (2.l-9): Two sets of vectors 5i and yfi form a bi;

orthonormal set with respect to an inner product (-,-) if
 

(‘é-l :Xj) : 51i-

Definition (2.l-lO): The transpose of a matrix A is the matrix

T- =

A - B such that aij bji'

matrix A is the matrix A* = B such that aij = bji'

The Hermitian transpose of a
 

Definition (2.l-ll): A matrix A is called symmetric (Hermitian)
 

if A = AT (A = A*) or skew-symmetric (skew-Hermitian) if

A = -AT (A = -A*).



Definition (2.l-l2): A matrix A is upper triangular if aij = O

for i > j, lower triangular if aij = D for i < j and diagonal

 

. = 0 for i f j.if aiJ

Definition (2.l-l3): The matrix A whose elements are all zero with

the exception that a1. = l is given the special symbol, A = e..

J 1J

and is called the ij_matrix unit.
 

Definition (2.l-l4): The product of an mxk matrix A and an kxn

matrix B is the matrix C = AB such that

k

Cij = Z aipbpr
p=l

Definition (2.l-l5): For positive integers, the powers of an nxn

matrix A=A1 are defined by

Definition (2.l-l6): A matrix A is idempotent if A2 = A.
 

Definition (2.l-l7): If the negative integral powers of the nxn

matrix A exist, they are defined by

A.“ = (A-I)n

IO



where A'1 is called the inverse of A and

I
If A" exists the matrix A is called non-singular otherwise

 

it is called singular.

Definition (2.l-l8): The rank r of an mxn matrix A is the maximum

number of linearly independent columns of A.

Definition (2.l-l9): A generalized inverse of an mxn matrix A

of rank r is any nxm matrix AI of rank r such that

 

AAIA = A.

I
The mxm matrix AAI and the nxn matrix A A are each idem-

potent matrices [10].

Theorem (2.l-20): Any solution X of the linear system

AX H

.
<

where A is an mxn matrix of rank r

X is an nxk matrix

Y is an mxk matrix

ll



may be expressed as

X = A Y + A Z

where A satisfies AA = 0 and Z is arbitrary [10].
O 0

Definition (2.1-21): The scalars A and corresponding vectors u

which satisfy the equation

Lu = Au

are called the eigenvalues and corresponding right eigenvectors
  

of the matrix L. The eigenvectors of LT are called the left

eigenvectors of L. The subspace consisting of the origin
 

and all the right (left) eigenvectors corresponding to A

is called the right (left) eigenspace of L corresponding

to A.

Theorem (2.1-22): The eigenvalues of a real symmetric matrix

are real.

Theorem (2.1-23): Corresponding to any real symmetric matrix

is a set of orthonormal eigenvectors.

Definition (2.1-24): A matrix A is similar to a matrix B if there

exists a matrix S such that

12



B = 5' AS.

Theorem (2.1-25): If A and B are similar then they have the same

eigenvalues.

Definition (2.1-26): A matrix A is called diagonable if it is

l

 

similar to a diagonal matrix such that 3‘ AS = A, where the

diagonal matrix A has the eigenvalues A1 of A as its entries

and where the ith column of S and the ith row of S'1 are

respective right and left eigenvectors corresponding to A1.

Definition (2.1-27): A matrix A such that AA* = A*A is called a

normal matrix.

Definition (2.1-28): A matrix S is called orthogonal (unitary) if

sTs = I (s*s = I).

 

Theorem (2.1-29): Every real symmetric matrix A may be diagonalized

by an orthogonal matrix S

S AS = A

where the diagonal matrix A has the eigenvalues, A1 of A,

as its entries.

13



Definition (2.1-30): If f(A) is a polynomial such that

m m-l
f(A) fox + f1A + ... + f A + fm

m-1

then

f(A) Am'I + ... + f
m

fOA + f1 m-lA + fmI

is the corresponding matrix polynomial.
 

Theorem (2.1-31): If f(A) is an analytic function defined on a

simply connected domain Dg; i? and if A is diagonable matrix

such that

-1 l
S AS = A and A = SAS-

then

f(A) = Sf(A)S

where f(A) = :E:f(i.)e .

Theorem (2.1-32): If f(A) and A are as defined in Theorem (2.1-31)

then

14



where A, = SeiiS']. The matrix EH is called the ith rank

one constituent idempotent matrix and AiAj = 5iin and

n

2 A]. = I. Furthermore A]. = g]. y_1.' where u]. is the ith

i=1

column of S (right eigenvector) and v: is the ith row of S"1

(left eigenvector).

Alternatively, if A has 5 distinct eigenvalues A, with

multiplicity mi then

S

f(A) = 2 mpg,

i=1

where

mi mi

51: Z Sens-1:2 Aj’ jg{j|ii = A3,}.

3 J

The matrix 5i is called the ith rank mi constituent idempotent
 

5

matrix and AiAj = 61.in and Z A. = I.

i=1

Theorem (2.1-33): (Interpolation formula) The ith rank mi con-

situent idempotent matrix Ai corresponding to a diagonable

matrix A with 5 distinct eigenvalues is given by

(A-A.I)
S

#‘I

L
A
C
—
J
.

15



Definition (2.1-34): The matrix RZ = R(z) = (A-zI)'] is called the

resolvent matrix of A.

Theorem (2.1-35): (Residue Theorem) Let F be a closed curve in

the complex plane enclosing eigenvalues A1 of a matrix A,

i = 1,k. Then

 

k

_ 1
Z A,- - - 21”.] R(z)dz.

i=1 r

Theorem (2.1-36): (Dunford-Taylor Integral) Let f(z) be an analytic

function defined on a simply connected domain D g g and

let P be a closed curve in ‘6’ enclosing all of the eigen-

values Ai of a matrix A. Then

 

if R is defined for 21 and 22.

Definition (2.1-38): The matrix AA = A - AI is called the charac-

teristic matrix of A. The equation det(AA) = 0 is called
 

the characteristic eqpation of A. The notation det(-)
 

denotes the determinant of a matrix [10].

16



Theorem (2.1-39): (Cayley-Hamilton) Every matrix satisfies its

characteristic equation.

Definition (2.1-40): A function u(x): €+€n is called a

vector-valued function.

Definition (2.1-41): A function A(x): 952+ gm" is called a

matrix-valued function.

Definition (2.1-42): Suppose D is a simply connected domain in if ,

i‘I‘L(x) is an nxn matrix-valued function of x e D and {Ai(x) 1

is a set of eigenvalues of L(x). Then if Ai(x) + A(x])

as x + x1 where A(x]) is an eigenvalue of L(x1) with multi-

plicity m and x1 2 D, the set {Ai(x)}? is called the

A-gY‘OUE.

Now let P be a closed curve in i? enclosing a A-group of

eigenvalues. Then

TIT

P(x) = --217 J{.R(z]x)dz where R(z]x) = (L(x) - 21)"1

P

is called the total projector1 for the A-group [14].
 

 

1Note that P(xo) is identical to the rank m constituent idempotent

matrix corresponding to A(x0). Note also the connection to Theorem

(2.1-35) which shows that the total projector is the sum of the in-

dividual consituent idempotent matrices of the A-group. That P(x) is

also idempotent follows from Theorems (2.1-32) and (2.1-35).

17



Theorem (2.1-43): (Product Rule)

i) If A(x) and B(x) are differentiable matrix-valued functions

such that C(x) = A(x)B(x) then

0
.
0
.

x
l
c
i

ll

3
:

0
.
0
.
.

X
W

+

9
—
0
.

>
<
3
>

C
D

ii) If u(x) is a differentiable vector-valued function such

that v(x) = A(x)u(x) then

where gig-orda—-indicates the differentiation of the individual

entries Cij or Vi with respect to x.

Theorem (2.1-44):'If A(x) is differentiable and n is a positive

integer

n

WEE: -1 dA An- i

i=1

and if A(x) is also non-singular

dA'" _ -n 6A"
3;- - - A ai‘ A

Definition (2.1-45): An eigenvalue A of a matrix A is called simple

if it is not repeated. An eigenvalue A of multiplicity m is

called semi-simple if its eigenspace has dimension m. All the

18
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eigenvalues of a diagonable matrix are semi-simple.

2.2 Concepts from Functional Analysis
 

Definition (2.2-l): Let {xn} be an infinite sequence of elements

in a normed space X such that lim||xn - x|| = 0. Then {xn}

n-mo

is said to converge (strongly) to x.

Definition (2.2-2): A sequence {xn} in a normed space is called

a Cauchy sequence if for any 6 > 0 there is an N(e) such that

||xm - xnll < e for every m, n > N.

Definition (2.2-3): A normed space X is said to be complete if it

contains the limit point of every Cauchy sequence in X. A

complete normed linear space is called a Banach space.
 

Definition (2.2-4): An inner product space is a linear space X
 

on which (x,y) is defined for each pair of elements x,y in

X. A complete inner product space is called a Hilbert

space. (Since every inner product generates a norm, any

Hilbert space is also a Banach Space.)

19



Definition (2.2-5): A linear operator L is a mapping between
 

linear spaces such that

i) The domain 99(L) of L is a linear space and the range

159(L) lies in a linear space over the same field F

ii) For all x,y c @(L) and aeF

L(x + y) = Lx + Ly

L(aX) = aLx.

Definition (2.2-6): The Null Space of L denoted./V(L) is the set
 

of all x c @(L) such that Lx = O.

The following standard mapping notation will be used. A

function f which maps from a set A into a set B, is denoted by f:A + B

l. A function f:A + B is surjective (onto) if and only if each
 

b e B is an image of some element of A.

2. A function f:A + B is injective (one to one) if for each b

e 39(f) there is exactly one a e A such that b = f(a).

3. A function f:A + B is bijective (one to one and onto) if and

only if it is subjective ggg_injective (that is if and only

if every b e B is the unique image of some a e A.)

Definition (2.2-7): A function f:A + B is called a homeOmorphism
 

if it is bijective and if both f and f-]:B + A are continuous.

20
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Definition (2.2-8): Let X and Y be normed spaces and L:£3(L) + Y

a linear operator, where @(L)§ X. The operator is said to

be bounded if there is a positive real number c such that for all

Xe@(L),

IILXII :C ||X||o

Theorem (2.2-9): If a normed space X is finite dimensional, then

every linear operator on X is bounded.

Theorem (2.2-10): If L is a linear operator such that the mapping

L: £Z(L) + Y is injective then there exists the mapping

-1
L :9I’(L) + @(L) which maps each y e 92(L) onto x 59(L)

for which Lx = y.

Theorem (2.2-ll): Let X and Y be linear spaces and L:QD(L) + Y.

Then

a) L']:.§?(L) —> @(L) exists if and only .A/(L) is empty.

b) L"1 is a linear operator.

Definition (2.2-12): Let X be a linear space, a function f defined

for each u e X is a linear functional on X if
 

f[au + 8v] = af[u] + Bf[v]

for all u,v of X and a,8 e F.

21



Definition (2.2-13): The linear space consisting of all the bounded

linear functionals defined on X is called the dual space of
 

X and is denoted by X'.

Theorem (2.2-l4): Let X and Y be Hilbert spaces with inner

products (-,-)x and (-,-)y respectively and L:X + Y a linear

operator. Then corresponding to L there exists a unique

operator L*:Y + X called the adjoint of L which satisfies

* =

(L v,U)X (v,LU)y

for every u e X and v e Y. If L* = L then L is self adjoint.

Definition (2.2-15): A linear self-adjoint operator L is called

positive definite (u,Lu) > 0 unless u 0.

Theorem (2.2-l6): Let A be a non—zero scalar. Let X be a Hilbert

space with inner product (-,-)x and L:X + X a bounded linear

operator. Then if

Lx - Ax = y (I)

Lx - Ax = 0 (2)

L*f - Af = g (3)

L*f - Af = 0 (4)

22



i) (1) has a solution x for every y e X if and only if (2)

has only the trivial solution x = 0.

ii) (3) has a solution f for every 9 e X if and only if (4)

has only the trivial solution f = 0.

iii) (1) has a solution x (is normally solvable) if and only

if (f,y)x = 0 for all solutions of (4).

iv) (3) has a solution f (is normally solvable) if and only

if (g,x)X = 0 for all solutions x of (2)-

Definition (2.2-l7): Let X and Y be Banach spaces. Then a function

f:X + Y is called Frechet differentiable at x e X if there

exists a unique linear operator f'(x):X + Y such that

Hm llflx + h) - f(x) - f'(x)hll . 0.

llh||+O Ilhll

Definition (2.2-18): Let X be a Hilbert space with inner product

(-,-)X and then if f:X-+3? is a Frechet differentiable

real valued function there exists a unique vector in X

denoted by vf(x) called the gradient of f at x such that

f'(x)h = (h,vf(x))x.

Definition (2.2-l9): Let X be a Hilbert space with inner product

(-,-)X and f:X-+3? , then the directional derivative of f at

x is defined by
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provided that this limit exists. If this limit exists for

any direction h then f is called Gateaux differentiable at
 

XeX.

Remark: If f is Frechet differentiable then Df(x,h) exists for

any direction h and

Df(x,h) = '(x)h = (h,vf(x))x.

Theorem (2.2-20): (Projection Theorem [15]) Let X be a Hilbert

space with inner product (-,-)X, let ||-||X be the norm

generated by (-,-)X and let M be a closed subspace of X.

Then corresponding to any x e X there is a unique vector

m e M such that

||v - m*||X §_||v - m||X for all m e M. (2.2-21)

Furthermore (x - m*,m) = 0 is a necessary and sufficient

condition that m* e M is the unique vector which satisfies

(2.2-21).
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Chapter 3

Eigensystem Differentiability
 

In this chapter various results related to the differentia-

bility of eigenvalues and eigenvectors are presented.

3.1 Preliminary Differentiability Results
 

Suppose L(x) is an nxn matrix-valued function (See 2.1-4) whose

elements are analytic functions of x e D _C_ 93’. It is natural to

ask if and when L(x) has eigenvalues and eigenvectors which are

also analytic functions of x. This question, which has been

studied extensively by Rellich, Kato and others [15-17], un-

fortunately does not have a succinct answer, since the problem

inherits all of the complications associated with repeated eigen-

values and defective eigenspaces from the underlying eigenproblem.

Nevertheless it is vital to recognize whether the eigenvalue problem

behaves smoothly if eigenvalue and eigenvector derivatives are to

be used in computations.

The following theorem gives an important sufficient con-

dition for eigenvalue differentiability. Its proof may be found

in cited literature.

Theorem (3.1-l): Let L(x) be an nxn matrix-valued function of x e 3? ,

which is analytic in some neighborhood of x = 0. Then
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a) If A(O) is a non-repeated eigenvalue of L(O),

A(x) is an analytic function in some neighborhood

of x = O and there exist left and right eigenvectors

v(x) and u(x) which are analytic vector-valued func-

tions of x in some neighborhood of x = 0.

b) If A(O) has multiplicity m and {Ai(x)}m1 is the A-group,

Ai(x) may be expanded in a Puiseaux series [18] as

1 2

Ai(x) = A(O) + ulxp + nzxp + ... , p is an integer :_m

Proof: [14, 18 and 19].

It is easy to show that the conditions of Theorem (3.1-l) (a)

are not necessary by constructing a matrix which has repeated

analytic eigenvalues and analytic eigenvectors.

Example (3.1-2): Let

x) (3.I-3)

where the Ai(x) are analytic scalar functions not necessarily

distinct for x e D g; Q and the _u_1.(x) are analytic vector-

valued functions of x e D such that the matrix S(x), whose

ith column is g4(x), is invertible. Then S'I(x) is also
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analytic [l4], and we may take its ith row as v4(x).

Theorem (2.1-32) shows that the Ai(x) are analytic eigen-

values of L(x) and the vi(x) and ui(x) are analytic left and

right eigenvectors of L(x), even if Ai(x1) = Aj(x]), i f j

for some isolated value x1 (exceptional point). So L(x) has

the desired properties.

The matrix L(x) in example (3.1-2), although it has repeated

eigenvalues, is diagonable due to the manner in which it was

constructed [10]. That an analytic matrix is diagonable however,

may not be taken as a necessary or sufficient condition for

eigenvalue analyticity as the next example shows.

Example (3.1-4): The matrix

[0 x O

L(x) = 0 0 x

x 0 l

.. J  

is diagonable for x3 f 4/27 yet its eigenvalues cannot be

written as a Taylor series in x at x = D [14] whereas the

matrix
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L(x) =

is not diagonable for any x 5'8’ but its eigenvalue x is

clearly analytic.

3.2 The Reduction Process
 

To gain further insight into the behavior of eigenvalue

differentiability the reduction process of Kato [14] is useful.
 

Suppose L(x) is an analytic matrix-valued function with the ex-

pansion

L(x) = j[: xl L(l)(0). (3.2-l)

If A(x) is an analytic eigenvalue of L(x) with multiplicity m

then a particular branch of A(x) may be expanded as

A(x) = A(O) + xA(])(O) + x2A(2)(O) + ... + ... . (3.2-2)

Kato has demonstrated that under some circumstances the sequence

of coefficients A(1)(O) may be identified with certain eigen—

values of a sequence of matrices, L(i)(x), which are described

below. The following theorem is central to the process.
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Theorem (3.2-3): Let L(x) be an analytic matrix with expansion

L(x) = Z x‘LI‘)(0) (3.2-4)

i=0

and let A(O) = A be a semi-simple eigenvalue of L(D) = L

of multiplicity m with total projector P(D) = P. If Agl)

is an eigenvalue of L(]) = PL(I)P in the subspace 99(P)

with corresponding constituent idempotent matrix Pg1) then

L(x) has exactly m§1) = dim Pgl) repeated eigenvalues of the

form A + XA§]) + 0(x).

Proof: From the first resolvent equation Theorem (2.1-37) we find

that

(L(x) - AI) R(z,x) = I + (z - A) R(z,x) . (3.2-5)

Suppose that r is a closed curve in ‘8’ which encloses

the A-group eigenvalues of L(x) then

 

(L(x) - AI) P(x) = - I “/7 (z - A)R(z,x)dz (3.2-6)

P
an

follows from applying theorem (2.1-35) to (3.2-5) and re-

calling Definition (2.l-42). Since R(z,x) is analytic in x

[14] (3.2-6) can be written as
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(L(x) - AI) P(x) = jg: xl£(l)(0) (3.2—7)

where

 L(1)(0) = — 1"}f (z - A) R(i)(z,0) dz . (3.2-8)

Since A is a semi-simple eigenvalue both sides of (3.2-7) must

vanish at x = D so L(O)(O) = 0 and

“,8 (L(x) )2 AUPIX) = L(1)(O)

X—>

Now if uj(x) is an eigenvector of Aj(x) where Aj(x) is a member

of the A-group then

  lim (L(x) - All P(x)u.(x) = lim j .

X+0 X J X+0 X J

which shows that A§I)(O) is an eigenvalue of L(])(O). To complete

the proof we must evaluate (3.2-8) for i = 1.

From Theorem (2.1-44)

R(I)(z,0) = - R(z,0) L(])(O) R(z,0)

we may expand R(z,0) as
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R(z,0) = (z — A)-]P(O) + 5(2)

where S(z) has no singularities so

—1
Amen) = [(2 - A>“P<0) + S(zn Wm) [(2 - A) 9(0) + 5(2)].

Integrating (z - A)R(I)(z,0) along r shows that

This theorem can be re-applied to L(])(x) if its eigenvalues

are also semi-simple to derive a higher order expansion for

A(x). In this case we have

A(x) = A+ Xigll + x2 g2) + 0(x2), k = i,m§‘) (3.2-5)

where the Aji are the repeated eigenvalues of

~(2) _ (l) (2) (l) (1)(1)+(l) (l)
L Pj L Pj - Pj L LAL Pj (3.2-6)

in the subspace 3?(P§])). The matrix L: is defined by

n

-l . . .

L: = - ii: (A - A11) Li if L 15 diagonable. (3.2-7)

i=1

The reduction process then consists of repeated applications of

Theorem (3.1-8) to the matrices L(i).
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The reduction process may also be used to generate expan-

sions for the constituent idempotent matrices, so if it can be

shown that each L(i) has semi-simple eigenvalues then the process

may be continued indefinitely to show that the eigenvalues of

L(x) are analytic and to establish the existance of analytic

eigenvectors (See Theorem (4.1-4)).

In the next section, the question of eigenvector differentia-

bility is discussed through examples involving the interpolation

formula Theorem (2.1-33) for constituent idempotent matrices.

3.3 Eigenvector Differentiability
 

Eigenvector differentiability is more complicated than eigen-

value differentiability. This is due, in part, to the possibility

that the dimension of the eigenspace associated with a particular

eigenvalue may change abruptly or disappear entirely. In this

section we shall use the interpolation formula of Theorem (2.1-33)

to study the behavior of eigenvectors corresponding to analytic

semi-simple eigenvalues in two examples. In the first example

the matrix L(x) has no exceptional point (See Example (3.2-2)) in

its domain D.

Example (3.3-l): Suppose the eigenvalues of L(x) can be represented

by the s analytic functions A](x), A2(x),...,AS(x) where Ai(x)

is assumed to have multiplicity mi and where L(x) is analytic

and diagonable for x e D.
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Since L(x) is diagonable, we may express the rank mi con-

stituent idempotent matrices of L by the interpolation

formula of Theorem 2.1-33.

For the ith constituent idempotent matrix, Li’ we have

 L.(x) = j , x e 9 (3.3-2)

“ LI (L(x)-i (x))

If there is no exceptional point in D, the Lj(x) are

analytic on D. Any column of L4(x) which is non-zero on D

represents an analytic eigenvector gg(x) corresponding to

Ai(x) (See Theorem (2.132)). We now assume, without loss of

generality, that x = 0 is in D. Then if g4(0) is an eigen-

vector of L(D) corresponding to Ai(0), Li(x)gg(0) is an

analytic eigenvector corresponding to Ai(x) in some neigh-

borhood of x = 0. This is true since (1)

S

(A.(0)-A

L.(D) .(0) = ‘

‘1 3‘ U (A1.(O)-A
.fl.

 

.(0

J u.(O) =u.(0)7‘0

3‘0

L
I
L
]
.

and the continuity of L4(x) imply that g4(x) is non-zero in

a neighborhood of x = 0 and since (2) by the Cayley-Hamilton

theorem, Li(x)g4(0) is in the null space of L(x) - Ai(x)I.
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Now suppose that x = 0 is an exceptional point in D such

that Ak(0) = Ai(0). Then L4(x) is not continuous at x = 0. It may

have a removable discontinuity at x = 0 however.1 In the fol-

lowing example we study the behavior of L4(x) in a deleted

neighborhood of an exceptional point.

Example (3.3-3): Suppose L(x) is an nxn matrix which is dia-

gonable for x e D with n eigenvalues Ai(x) which are distinct

analytic functions on D. If A 0) = Ai(0) for x = 0 e Dk(

then x = 0 is an exceptional point in D since by hypothesis

Ak(x) and Ai(x) are distinct analytic functions. We will now

investigate the behavior of

 

S

(L )-A.( I

Li(x)y_(0) = n (X 3 X) ) 2(0) (3-3-4)
i=1 (A1(X)-Aj(X))

Jfl

in a deleted neighborhood of x = 0, where g(0) is any

eigenvector taken from the two dimensional eigenspace cor-

responding to Ai(0) = Ak(0).

Both the numerator and denominator of L(x)u(0)

become zero at x = D so

 lim L1.(x)y_(0) = lim d" dx 3(0) (3.3—5)

X+O X+O
9&3IX) dA (x)

de - dxk

 

1For example if L(x) is a normal matrix on x e D then L§(x) = Li(x) [10]

with ||Li(x)|| = l implying that Li(x) has no singularities on D [14].
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after applying L'Hopital's rule. If by hypothesis, Ai(x),

Ak(x) have different slopes at x = O, the denominator of (3.3-4)

is non-zero at O and the limit (3.3-5) exists.1 However,

(3.3-5) is an eigenvector only if its numerator is also non-

zero.

To study the behavior of the numerator of (3.3—5) let

P = P(O) be the total projector corresponding to Ai(0)

= Ak(0). Then (3.3-15) may be written

 lim Li(x)g(0) = lim d ( )- ( ) 3(0) (3.3-6)

+0 +0 . dx x 3%] x _ Hgk x

since g(0) = Pg(0).

Now suppose that g(0) is an eigenvector of

 

” _ dL(O)

. . . dA.(0) 2
corresponding to its eigenvalue ail (See Theorem (2.l-21)).

Then

d d I d o

P 3%”) Pu(0) = aé-l(0)u(0) = 3%”) Pu(0) (3.3-7)

So the numerator of (3.3-6) is non-zero since otherwise

 

1Note also that the matrix L. (x ) has only rank one in the limit as

x+D since A.(x ) is non- repeated in the deleted neighborhood of x = 0.

An eigenvector of L may be selected from the eigenspace of A.(0)

since the range of P is precisely that subspace.
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ppm) 139(0) = %%(0) P_u_(0) (3.3-8)

and

P gh—(O) Pg(0) = 3353(0) Pgm) (3.3-9)

would contradict (3.3-7).

If g(0) is an eigenvector of L corresponding to

(0) a similar analysis shows that the numerator of

A
Q
Q

b
o
x
y

.1-16) does vanish. So if g(0) contains a component

which is an eigenvector corresponding to %§i(0), (3.3-5) is

an analytic eigenvector passing through the exceptional point

x = 0 which corresponds to Ai(x). An analytic eigenvector cor-

responding to Ak(x) can be constructed similarly.

As the final t0pic of this chapter, we consider the question

of differentiability of eigensystems which are functions of

several parameters. As we shall see, the Frechet differentia-

bility of such eigensystems may not be assumed for repeated

eigenvalues even if they are analytic in a single variable.

36



3.4 Differentiation with Respect to Several Parameters
 

The preceding sections concerned differentiability of eigen-

systems with respect to a single variable. The situation is more

complicated when several variables are involved.

Consider the following example [14]:

Let

L(x],x2) = , (x],x2) e 3.2. (3.4-l)

Even though L(x],x2) is symmetric and Frechet differentiable,

2 2)l/2
its eigenvalues A1 2 = :(x1 + x2 are only Gateaux differentiable

when x1 = x2 = 0 [20].

Using Definition (2.2-l9) the directional derivative of

A1 when x1 = x2 = O is determined as

 

((X 'I' th )2 + (X + th )2)I/2 I (X2 + X2)]/2

I I 2 2 l 2
D(A1 2.11) - Ilm

t

’ t+0

- :_(h( + h§)I/2. where n = (h,,n2). (3.4-2)

Since D(A1 2,h) exists for all h, A1 2 are Gateaux differentiable,

but they are not Frechet differentiable since D(A h) is not
1,2’

linear in h.
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This complication has serious consequences if these deri-

vatives are to be used in non-linear programming routines which

use gradients to determine a descent direction. Since the defini-

tion of the gradient of a function depends crucially on the

linearity of the Frechet differential. Recalling Definition

(2.2-20), the Frechet differential of f may be represented in

terms of the gradient of f as

D(f,h) = (Vf,h). (3.4-3)

where (-,-) is the inner product. It is this equivalence which

provides the justification for using the negative gradient as the

direction of steepest descent since if |Ivf|| = l and ||h|| = l

D(f,h) = (vf,h) attains its minimum value for h* = - vf. When

the Gateaux derivative is non-linear in the direction h, the

descent direction is not so easily determined [21, 27].

We may also use Theorem (3.2-3) to compute the directional

derivative for A1 or A2. Since L(x],x2) is Frechet differentiable

we may represent D(L,h) in terms of its gradient VL as
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Then

D(L,h) =

 

to which Theorem (3.2-3) may be applied since L(t) is an ana-

lytic symmetric function of t. The directional derivatives of

the eigenvalues A1 2 at x1 = x2 = O are the eigenvalues of

L = E_D (L,h) P = P %%-P = D(L,h)

SO

_ 2 2 1/2
D(A12,h) - :(h1 + h2) as before.

Remark (3.4-4): If D(L,h) is a symmetric matrix and if B is any matrix

representing an orthonormal basis for 99(P) then the directional

derivatives are also the eigenvalues of

T“ T
8 L8 = B PD(L,h)PB = BTD(L,h)B (3 4-5)

which is a formulation given by Haug and Rousselet [20] which

may be easier to apply than Theorem (3.2-3).

The non-linear dependance of the directional derivatives of

eigenvalues can perhaps best understood by writing L as
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where although the matrix L is linear in hi its eigenvalues cannot

expected to be, unless .9P(P) has dimension one (if the eigen-

value is simple).

The rank one constituent idempotent matrices and eigenvectors

or L(x1,x2) are even 'less' regular than the eigenvalues. To show

this we construct an expansion of L(x],x2) in terms of its con-

stituent idempotent matrices Li(x],x2) (See Theorem (2.l-33).)

L(x],x2) = A](x],x2) L](x],x2) + A2(x],x2) L2(x],x2) (3.4-6)

 

 

where

L - A2 L - A]

L1 = [ifjriigl , L2 = A2 _ A] . (3.4—7)

or

L (x x ) 1 X1 + (XI+X2)1/2 X2

1 1’ 2 g(x$ + x§)I/2 x2 -X] + (x$+x§)]/2

(3.4—8)

1 Xi ' (XI+X§)]/2 X2
L2(x1.X2) 2(X§ + x91/2 x2 _x] _ (x§+x§)i/2

(3.4-9)
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However, the idempotents Li(x],x2) possess no limit as

(x],x2)+(0,0) since

“
3
.
.
.
:

limo L](O,x2)

2 1 1

whereas

lim L1(x1,0) = (3.4-ll)

x +0
1 O 0

and similarly

N
|
-
—
*

limo L2(0,x2)

2 -l 1

whereas

lim L,(x ,0)
X1+O 2 1

This illustrates that although in this example the rank gpg_

constituent idempotent matrices and therefore the eigenvectors
 

can be continued smoothly through the origin along the x] or

x2 axis, their total limits do not exist at the origin. Con—

sequently, the rank one constituent idempotent matrices and eigen-

vectors at not even continuous at x1 = x2 = 0. They do have

directional derivatives since L(t) is symmetric and analytic

in t (see Theorem (4.1-4)).
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3.5 Conclusions
 

The theorems of this chapter provide sufficient conditions

needed to justify the differentiation of eigenvalues and eigen-

vectors in a number of situations important to applications. In

the next chapter formulations for the actual eigensystem deri-

vatives are developed.
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Chapter 4

Differentiation of Eigensystems

As the remarks of the previous chapter illustrate, the

question of eigenvalue and eigenvector differentiability in its

full generality is difficult. Some matrices however, have

properties which lead to relatively simple eigensystem deriva-

tives.

4.1 Differentiation of Fully Analytic Matrices
 

Definition (4.1-1): Let the diagonable matrix-valued function L(x)

have the decomposition

' n

L(x) = ZAi(x)ui(x)vT(x) = z Ai(x)L1.(x) x c 0 gig (4.1-2)
-— -n

i=1 i=1

where the g4(x) and 34(x) belong to an analytic biorthogonal set of

eigenvectors such that 14(x)uj(x)=6ij’ Ai(x) are corresponding

analytic eigenvalues and the Li(x) are rank one constituent

idempotent matrices. Then we say, in this thesis, that L(x) is

fully analytic on D.
 

Remark (4.1-3): Theorem (3.1-l) gives sufficient conditions for

full analyticity of L(x) on D if L(x) has no repeated eigen-

values for any x e D.
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The following theorems form a basis for a study of eigensystem

derivatives of fully analytic matrices and methods to compute

them. The first of these (Theorem (4.1-4)) states a sufficient

condition for full analyticity which is important in applications.

The theorem was originally stated by Rellich [16] but the proof

here follows Kato [14]. (See also [14] for extensions to normal

matrices.)

Theorem (4.1-4) [14, 16]: If L(x) is a Hermitian analytic matrix-

valued function for x e D C_i .9? then L(x) is fully analytic

on D.

Proof: If L(x) is Hermitian on D then the L(i) in Theorem (3.2-2)

are Hermitian and therefore diagonable. The reduction

process can then be continued indefinitely.D

The next two theorems (Theorems (4.1-5 and 6)) present various

algebraic properties of eigensystems derivatives. Part (e) is

essentially the result given by Jacobi [4] although the derivation

is different.

Theorem (4.1-5): Let L(x) be an nxn fully analytic matrix-valued

function for x e D. Then

ll Tl

dL _ dL. dA.

a> o‘z'ziiaiz”z;fi”i
i=1
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C) ggflj: 48:5

d) I %%-gj = (AJ Ai)!I ggj = (A1 - Aj) %%4 95’ i f j

9’ VI%ui=%i

where dependence on x is understood.

Proof: To prove part (a) apply the product rule of differentiation

to equation (4.1-2). Part (b) follows after differentiating

L? = Li' For part (c), differentiate v§(x)uj(x) = 6ij' Part

(d) and (e) are proved by forming the product

T dL _ dA T T dL

-"-i 632% ‘ 2314‘ liLkij + 24k ii as?" 13'

and applying (b) and (C).D

Theorem (4.1-6): Let L(x) be an nxn analytic real matrix-valued

function for x e D g_ 8? such that LT(x) = L(x). Then

l’l ll

dL _ dL. dA.

9) 37-2 A1371+Za§iLi

i=1 i=1
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a?” 93 7 24 dx

d) TdL =(A-A)uT99—=(A A)-d—u-Iu
—i 6% J i—i dx 1 j dx —j

e) 1i 2179—1 =33?

Proof: Similar to (4.1-5) after noting that Theorem (4.1-4)

guarantees that L(x) is fully analytic.o

Remark (4.1-7): In part (c) if i = j we have g; 3&4 = 0, showing

that 3i is orthogonal to ggi. This results from the constant

norm condition imposed by gg(x)gj(x) = 6ij' Note also that

L(x):9P:>3ann.

Further insight into the behavior of eigensystem derivatives

may be obtained by studying the effect of changing an individual

element of a matrix. In the following theorem we will assume that

L(O) is a constant matrix such that L(x) = L(O) + eij x is fully

analytic for x e D.

Theorem (4.1-8): Let L(x) = L(O) + eijx be a fully analytic

matrix-valued function for x e D. Let Ai(x) be an analytic

eigenvalue of L(x), let 34(x) and g (x) belong to an analytic
l
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set of left and right eigenvectors such that g}(x)pj(x) = 6ij

and let Li(x) = gi(x) 31(x) be the corresponding consti-

tuent idempotent matrix. Then

T dL = dA ___ =

a) it 3734. a‘xi‘ lki Bio Lka‘i

T dL _ T du =

b) is $541; ' (At ' As) is aszt lei y—tj

Proof: To prove part a) apply Theorem (3.2-4) e) with g%(x) = eij

and note that xki Ekj is the jith entry in Lk' For part

b) apply Theorem (3.2-4) d). Part c) follows from part a)

and Theorem (2.1-32). Since the sum of eigenvalue deriva-

tives is a constant function of x, the sum of second deri-

vatives with respect to x is zero proving part d).a

Remark (4.1-9): Since the non-zero columns of the idempotent matrices

Li are eigenvectors corresponding to A1, part (a) above es-

tablishes a strong relationship between an eigenvalue's deri-

vatives and its eigenvectors.
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The following Theorem (4.1-10) states a formulation, given

by Fox and Kapoor [5] (See also [12]), which expresses the deri-

vative of an eigenvector of a symmetric matrix as a linear com-

bination of eigenvectors.

Theorem (4.1-l0) [5]: Let L(x) be an analytic real matrix-valued

function for x e 05; 3? such that LT(x) = L(x) Then

n

Elfin) = Z] CjIijIX)
(4.1-ll)

J

with

< ) 0 1: JC. X =

J (xxx) - A360)“ ujm $359460

= gJT-(X) 334m 1 7‘J

. d . . . . .

Proof: Since agfl is a vector in an n dimenSional space, we can

express it as a linear combination of n orthonormal eigen-

vectors of L(x)

Tl

%%i(x) = 2 ck(x)9k(x)

k=1

—j ij j a;— = 0 (See Remark (4.1-6),

we have
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TdU-_ T : Tg_U_'= : °
Ej ail — cj Ed Ed cj and g4 dxi Ci 0,

applying Theorem (4.1-5) (d) completes the proof.D

Although this formulation has theoretical value it is not

useful when a complete set of eigenvectors is not available [9].

However, we may rewrite (4.1-ll) as

n

du. _ -l T dL

6)? ‘ '2. (ii ‘ ii) -”-i 1.13741

i=1

n

= ' IE: [Iii ‘ *i)-]Lj] gF'Ei = ‘ L: 8%”!i (4'1'12)

i=1

The matrix

T]

L: = - jg; [(Aj - Ai)-]Lj]

j=l

as we shall see, in Section 4.3, can be easily computed and will lead

to an efficient means to compute ggi.

4.2 Eigensystem Derivatives with Generalized Inverse

If L(x) is a diagonable fully analytic nxn matrix-valued

function in some neighborhood of x = 0, then we may write
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[L(x) — A(x)I]u(x) = (2 x1(L(1) - x(1)1))(2 x1u(1)) = o

by expanding L(x), A(x) and u(x) in a Taylor series about x = 0.

Collecting terms in x1

m i

Z1x Z (L (111 - A(1'11I)u(~11= o. (4.2—2)

i=0 j=0

Each coefficient of x1 must vanish separately so

i c o 1 o c c

2(LI1'31- A(1'311)u(11= o i = O,l,2,... (4.2-3)

i=0

Ol‘

2LI111uI =2A11‘1)u( i O,l,2,... (4.2-4)

After subtracting the i = j term from (4.2-3) the eigensystem

derivatives are given recursively by

(L - AI)u = o, i = o (4.2—5)

. 1-] . o o o c

(L - AI)u(1) = - (L(1'11- A(1’J)I)u(31, i = l,2,3,...

i=0

(4.2-6)
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Since we have assumed that L(x) is fully analytic, these

equations must be normally solvable (See Theorem (2.2-16)) for

each i. Hence if v is any vector such that v c.AV(LT - AI), then

1:] c c o o o

vT :E: (L(l-J) _ A(i-J)I)U(J) z 0 (4.2-7)

J=0

follows from Theorem (2.2-l6). Solving for A111 results in

A(1) _ vT L(1) u

 

_ __________ 4.2-8)

VTU
(

and i-l 1_]

VT<2 L(i-j)u(.i) _ A(i-i>u(i))

A(i) = J=0 T 3‘1 , i = 2,3,4,...

V U

where v is any vector such that vTu f 0 and v euV(LT - AI) and

u = u(O) lies on u(x), an analytic eigenvector.

We now turn our attention to solving equations (4.2-6) for

u(1). Since the matrix LA = L - AI has rank n - m we use a

generalized inverse L; and apply Theorem (2.1-20) to find that

i-l

”(1): _ Li Z (L(i-j) _ A(1-j)I)U(j) + Z, (4.2_‘|0)

j=0
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where z 530(LA) and Li is any rank n - m matrix satisfying

I _
LALALA - LA'

We shall have immediate use for the following:

Lemma (4.2-ll): Let A, AR and AL be nxn matrices satisfying

AA = 0 and A A = 0. Then if AI
R L

of A,

is any generalized inverse

(4.2-12)

is also a generalized inverse of A.

Proof. Multiplying (4.2-12) on both sides by A results in

#
AA A = A(I - A 1)A1(I - A )A = AA A = A.D

R L

Now suppose P(O) = P is the total projector associated with

A then

since L is diagonable. From Lemma (4.2-ll) if L: is any generalized

inverse of LA then

>
2 A

H

l

'
U

v A

4
3

P
0

. -l3)
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is also a generalized inverse of Lx. Furthermore, since Pu = u

T T
and v P = v , L: satisfies

Liu = 0 (4.2-14)

and

VTL: = o . (4.2-15)

If

1-] o u u o 0

5(1) z _ L: :2: (L(l-J) A(l-J)I)UIJ), 6(0) _ u

j=0

and

u(1) = 9(1) + c.u, i = l,2,3,... (4.2-16)

then Theorem (2.1-20) guarantees that u(11 is a solution of (4.2-6)

for any constants c1 since ciu euV(LA).

We may use the properties (4.2-14 and 15) to simplify

equations (4.2-8 and 9).

If c1 = 0 for all i, then equations (4.2-8 and 9) become

- T (4.2-17)
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where u is the value of an analytic eigenvector at x = 0 and v is

any vector satisfying v euW(LT - AI) and vTu # 0.

If the eigenvector derivatives are to be used explicitly,

then the constants Ci should be selected to satisfy some normal-

ization conditions such as

x) u(x) = 1 (4.2-18)

and

(u(x))* u(x) = 1. (4.2-19)

If we assume (4.2-l8), we obtain

v u = v u + civ u (4.2-20)

also

 

T

follows from (4.2.16) since v L: = 0.

Now suppose u is also normalized so that (4.2-l9) holds.

Then

(u + xu(1) + x2u(2) + ...)*(u + xu(1) + x2u12) + ... ) - l
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must be true and the coefficients of x1, i :_1, must be zero so

2 (u(1'J))*u(J) _ O, 1:]

j=0

or

1-1

(u(0))*u(1) + (u(1))*U(O) = _ (”(1-3))*UIJ)

j=1

Equating real parts of both sides

Re[u*u(1)] = - %-Re[:E: (u(1-1))*u(j)]

u*u - u*fl + ciu*u

and

Ci = u*u(1) _ u“1(1).

Then,

Re[c]] = - Re[u*fi(1)]

and
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i-1

Re[ci] = - %—Re[ :2: (u(1'j))*u(j)] - Re[u*d(1)], i 3_2 (4.2-22)

j=1

must be satisfied for (4.2-18 and 19) to hold.

Remark (4.2-23): If L(x) is a normal matrix then u*u(1) = 0 since

u* = vT. If L(x) is a real symmetric matrix then uT = VT,

c1 = 0

and 111 > ( >_ l (i-J T J
C, - - 2—[ (u ) u 1. i 3_2

To determine u in the event that A = A(D) has multiplicity m

in (4.2-l) we note that since v in (4.2-13) may be selected as any

vector in the m-dimensional null space of LT(0) - A(0)I and since

1(L(x) is fully analytic, JV(L 0) - A(0)I) is spanned by the values

at x = O of m independent analytic vectors, which we may take as the

rows of the m x n matrix VT(0) = VT. Then from (4.2-6)

1.-.! c o 0 o o

vT (L(1'11 - A(1'111)u(11 = 0 (4.2-23)

i=0

0?“

i-l . . . i-l

v1 IE: LII-J)u(J) z VT :5: A(i-J)U(J) (4.2_24)

i=0 i=0
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Similarly we form an n x m matrix U(0) = U where the columns

of U are derived from the analytic right eigenvectors of A and

i-l i-l

v1 2 L(i-J’)U(.i) = VT 2 Um A(i-i) z A(i) (4.2-25)

3:0 1:0

In particular, if i = 1,

VTL(1)U = VTPL(1)PU = v1u A(11 = A(11 (4.2-26)

where A(11 is an m x m diagonal matrix consisting of the m first

derivatives of A and the columns of V and U are normalized so that

VTU = I. Equation (4.2-26) shows that V and U must diagonalize

the matrices L(11 and L111 = PL(1)P. Furthermore, if A(l) has

distinct values on its diagonal then V and U are unique. We now

turn to an example.

Example (4.2-27): Let

The eigenvalues of L(x) are A12 = l :_x and 112) = :_l for all

XlEig 1

Analytic eigenvectors of L(x) may be found from the non-zero

columns of the rank one constituent idempotent matrices L1 and

L2. Using Theorem (2.1-33) we arrive at
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J. I.- l -11
12 2 () 2 2

L (x) = L x =

1 41 1_ 2 _i 1

L2" 2 L 2' '2

Then

[./2 ./2

() 7 (1 7U x = u x = '

52 b7...    

are the analytic unit eigenvectors of L(x) and they are the unique

unit vectors that form the columns in the matrix S which diagonalizes

   

      

./2 /2 - i ./2 ./2 i

/2 /2 ./2 ./2

L2 ”'21 .1 0. f2- '7] -0 4.

Furthermore if v is any vector such that vTu1 # 0 or vTuZ # 0

and v e .4/(L1 - AI) then

0 l o l

vT u1 = l or vT u2 = -1

l 0 l i

T T

58



Since if vT = (x,y) then

 
 

 

 
 

 

(x,y) 0 l 13-1

./2 ./2
/2 x ——-+ y —-

l 0 7 2 2

d: :1

/2 ./2 ./2 ./2

7+y7 X7+Y7

OY‘

(x,y) 0 l %- / /"

_/2 -x —%—+ y —%—

l 0 ‘2'

= =.."

/2 1% £_ :2

X z'y 2 X 2 Y 2

and we have agreement with (4.2-l7) for i = 1. Note that it is

essential that u (or v) lie on the trajectory of an analytic eigen-

vector for this formulation to work.

4.3 Numerical Approach

In numerical work the algorithm (inverse iteration) [22],

(L - AI)ui+] = V, (4.3-1)

Vi = ui/lluilloo (4-3-2)
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is often used to determine an eigenvector u corresponding to the

eigenvalue A where A = A + 8. Solving (4.3-1) we have

= (L - AI)'1v.1 (4.3-3)
ui+i

In practice, the matrix (L - AI) is given an LU factorization and

the iteration (4.3-l) is carried out as a series of back sub-

stitution stages. Since each back substitution stage only in-

volves solving a triangular linear system the LU decomposition

stage is the major effort in the computation [23].

These practical considerations provide a strong incentive

to study the structure of (L - AI)"1 with the hope that it can

be utilized in constructing LI.

If L = L(0) is a diagonable matrix with 5 distinct eigen-

values then

5

~ -1 _ ~ -1

J'=1

s

” -1 _ -1 ” -l
(L - Ail) - - 6 L1 i- )E: (AJ - A1) Lj (4.3-4)

J=1

J'i‘i

follows from Theorem (2.1-32).

Now consider
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. -1 . -1

113(1‘ Ll)“- - 411) (1' L1) = 2:31:62 (1' £14.,“ " Li)

S

~ -1
+ (Aj — x,) [j]. (4.3-5)

1

L
I
L
]
.

';i

The first term of the right side of (4.3-5) vanishes since

(I - L4) Li (I — Li) = 0 is a constant and we have

L1 = (1 — L ) (L — A 1)‘1 (1 — L )
Ai -i i -4

s

-l
= - . - . . 4.3-6IE: (AJ A,) La ( )

J=1

if]

Furthermore, Li is a generalized inverse of LA = L - AiI since

i i

(L - AiI) (1 - Li)(L — xi(1)'1(1 - Lfi)(L - x11) = L - AiI (4.3-7)

Finally since PiIO)’ the total projector of the Ai - group, is

equal to Li we have (dropping the subscript i),

L: = (1 - P)(L - AI)'1(I - P) (4.3-8)

From Lemma (4.2-11) however,

(I - P)L (I - P) = L: (4.3-9)
I

A
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is also a generalized inverse of LA but since I - P is idempotent

L: = Li. Therefore we write

i _ -1
LA - (I - P)(L - AI) (I - P) (4.3-10)

and note that L: satisfies conditions (4.2-14) and (4.2-15), namely

This form of L: is especially convenient since (L - AI)’1 may

be computed previously to determine the eigenvector u and since

the idempotent matrix I - P is easily multiplied by a vector

particularly if P has only rank one, i.e.,

(I - uvT)b = b - (va)u (4.3-ll)

OY‘

61(1 - uvT) = 61 - (bTu)vT. (4.3-12)

In practice, instead of directly inverting (L - AI)'1, an LU

decomposition of L - AI is formed.

The following has proved to be an efficient procedure if

A is non-repeated.
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Form an LU decomposition of L - AI.

Use the LU decomposition in an inverse iteration scheme to

find an eigenvector u.

T) dL
(I - uv ax'“ .Solve for z in LLz

Solve for y in Luy

1)

Z .

y = y - (va)u + c1uiii-(I -UV

where Lu and LL are upper and lower triangular matrices computed

in the LU factorization of L - AI.

If A is a repeated eigenvalue with multiplicity m then it

may be necessary to resort to a technique such as the method of

diagonalizing PL(1)P given in Section 4.2 to find an analytic

eigenvector u, before proceeding with,

3.
. dL

Solve for z in LLz (I - P) 32‘”

Solve for y in Luy I
I

N

0
.
9
.
.

X
:

= (I - P)y + clu.
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Chapter 5

Design Sensitivity in Finite Element
 

Models of Dynamical Structures
 

The finite element method is used extensively for solving

boundary value problems involving partial differential operators.

Its success depends largely on its ability to deal effectively

with complicated domains and boundary conditions. Its major

disadvantage is that it often requires large amounts of computer

time to find solutions. It makes sense then to develop efficient

methods to update existing solutions when small design changes

are made in order to avoid a complete re-analysis.

In this chapter, methods for computing a linear dynamical

system's sensitivity to design changes are discussed and two

illustrative examples are presented. The methods described are

directly applicable to solutions generated by the finite element

method [1, 24-26] or similar methods. To begin we shall outline

how the finite element method can be derived for a static homo-

geneous boundary value problem in the plane.

5.1 The Finite Element Method
 

Consider the boundary value problem

Lu = f in 0,

(5.1-l)

u = 0 on an
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where L: H1(Q) + L2(Q) is the 2nd order partial differential

operator:

= _ 3 9E. - 2.. 9!.

Lu Sin ax] 3y [q 8y] + cu,

1 : 'flz 9—1.1:H (0) {u c L2(Q). ax uX and By uy c L2(Q)}. p9Q:C

and f e L2(Q), and 9 is a connected, closed, and bounded domain in

922 with boundary 39.

Now suppose that we define the following inner product

on H1(n) to be

(u,v)Hl =j;(uxvx + uyvy + uv) (5.1-2)

for any u, v e H1(n), and consider the quantity

A

(LU.v) = (u,v)L

with v = O on 39.

If (u,v)L is integrated by parts over the domain 0, an

application of Green's identities yields

(u,v)L .1; (puxvx + quyvy + cuv) + J£;(-puxv + quyv).

.1; (puxvx + quVy + cuv). (5.1-4)
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It can be shown that [25] if p,q and c are strictly positive and

continuous then positive constants a and B exist such that

OLLIUNHUZ 1 [(u.u)L]1/2 : 8[(U.U)]1/2 (5.1-s)

and so (u,u)L = 0 if and only if u = 0.

Since (u,v)L = (v,u)L (symmetric),

and

(oLu1 + BU1,V)L = a(u],v)L + B(u2,v) (linear)

we have established that (u,v)L is an inner product on

H;(n) = {u e H1(n): u = 0 on an}.

Since (u,v)L is an inner product on H;(Q) we may now apply

the Projection Theorem (2.2-20) to find a numerical solution for u.

To find an approximate solution to 5.1.1 let M C H; be

spanned by the Hamel basis 8 = 1¢l’¢2""’¢m1’ then

m

u = :5: 21¢, (5.1-8)

is a vector in M C Hg. We seek G such that

||LG - f|| 5_ ||Lfi - f|| , for all 8 e M

By Theorem (2.2-20), 6 must satisfy

66



(u. 4.), = (i.ej)
J

Tl

(12::1 2,4,. oJlL = (1243-)

ll

12;] (4,. 63.)sz = (f,¢j) for all oj e B (5.1-9)

which we write in matrix form as

Kz

II

H
‘

(5.1-10)

where kij = (¢i’¢j)L'

The functions ¢i e H$(Q) may be constructed by triangulating

the domain a [25] as shown in Figure (5.1-ll). We then require

¢i(x,y) to satisfy

where "j = (xj’yj) is a vertex in the triangulation of n. This

choice of the 1i will tend to cause K to have a banded structure
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since K is populated by inner products (¢i’ ¢j1L which are non-

zero only if "i and nj are sufficiently close in the triangulation.

Since the matrix K was generated by using the Projection

Theorem (2.2-20) with the inner product (-,-)L on the space Hg(9),

we would, in general expect K to change if the domain 9 were

to change. Thus, it is natural to consider the variable finite ele-

ment problem

K(9)z(9) = f(9) (5.1-12)

where 9 is now considered to be a variable domain. Suppose

T(9) = 9', T: 99:2 +592 (5.1-13)

is a mapping operating on the domain 9 such that

9' = 9(6) = 9(0) + on, o e D (5.1-l4)

where A<:992 is a connected, closed and bounded set whose points

are such that every point in A corresponds to some point in

9(0) (2 392 where the addition operation in (5.1-l3) is vector

addition of the points in 9(0) to the corresponding points in A

and where T is a topological homeomorphism for a e 0. Then if

9(0) is given a triangulation, we may construct a matrix K(a)

such that
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and the variable problem K(a)x(a) = f(a) results. We now define

the directional derivative of K(a) as

 DK(9(0),A) = lim “9(0) + 0‘4) ' W401) (5.1-15)
a

9+0

(If this limit exists for any 9 as defined above then K(a) is

Gateaux differentiable and DK(9(O),A) is its Gateaux derivative.)

5.2 Dynamical Problems
 

The distributed parameter forced vibration problem (without

damping) can be written as

2

L1 Lg-(xgc) + L2u(x,t) = f(x,t) (5.2-1)

3t

B(u) = g(x,t) on 39x1 (5.2-2)

C(u) = r(x,0) in 9 (5.2-3)

where L1 and L2 are self adjoint positive definite operators on 9,

u is taken from a function space V(9xT) defined on the product

space 9xT derived from the spacial domain 9 (k = 2,3) and T

is the temporal domain [O,t]. In addition, boundary conditions
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(5.2-2) defined on a9xT, where 39 is the spatial boundary of 9,

may be given along with initial conditions (5.2-3).

When the finite element method is used to obtain an approxi-

mate solution to (5.2-1, 2 and 3), it is usual to arrive at a

lumped parameter model of the form

M'z'(t) + Kz(t) = f(t) (5.2-4)

where M is an n x n matrix

K is an n x n matrix

z(t) is an n-vector consisting of n = km time varying

coefficients of the spline basis functions 11 e B related to the

triangulation of 9

and f(t) is an n vector resulting from projecting f(x,t) onto

the finite subspace spanned by B.

We are mainly concerned with the variable problem

M(e)'z'(a,t) + K(o()z(a,t) = f(a,t) (5.2-5)

and the related generalized eigenvalue problem [28]

[K(a) — A(a) M(a)]u(a) = 0 (5.2-6)

where 6 accounts for a changing spacial domain

0(a) = 9(0) + 9A
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This problem can be related to the symmetric eigenvalue problem

in standard form through the use of the following transformation [8],

u = M‘1/2v, (5.2-7)

1/2
where M' is the positive definite square root of M'1 and

dependence on a is understood. Then

M'I/ZKM_1/2v = Av (5-2-8)

Since W”2 is positive definite and since K and M are analytic

functions of a e D, W”2 and therefore M'1/2KM'1/2 are analytic

on D. Thus (5.2-6) is equivalent to the variable eigenvalue

problem in standard form of the previous section and the eigen-

values Ai(a) and particular corresponding eigenvectors vi(a) i = l, n,

are analytic for a e D.

It is not convenient to determine the derivatives of Ai(a)

and Vi(a) from (5.2-8) since the transformation M'1/2(a) may be

difficult to compute and the transformed matrix in (5.2-8) is

usually difficult to differentiate. Instead (5.2-6) is used.

After differentiating and rearranging (5.2-6) we arrive at

due- 91:. 9’1-“ -
[K-AMIE; [dd Au a;M]u (5.2 9)
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Solving for gE-with a generalized inverse Di, we obtain

du _ I dK dM dA

d'oT"DA[doT' *T‘aa‘mu”

where

DA=(K-AM)

and

DI-(K MI .

A - - A ) satisfy

0 DID =9

and z e uV(K - AM). We may assume that analytic eigen-

vectors exist such that

1 .i' 1.1

we have

'T 1/2 1/2 = T _
ui M M ”j ”i M ”j - aij‘

Differentiating (5.2-12) gives
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(5.2-12)
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Now suppose u satisfies (5.2-12). Then from Lemma (4.2-ll)

o: = (1 - uuTM)D:(I - MuuT) (5.2-15)

is also a generalized inverse of DA since

DA uuTM = MuuT DA = 0. (5.2-16)

Substituting 0: in (5.2-10) with z = cu gives

= - D:[%§-- Agg]u + cu (5.2-l7)

Multiplying (5.2-l7) by uTM and applying (5.2-12) shows that

_ l d
C - - §1 U a“; U (5.2-18)

Again we must determine 0: to complete the formulation. The

approach is similar to the one used in the standard eigenvalue

problem.

Suppose S is a matrix such that

ST[K - AM]S = A - AI (5.2-l9)
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Then we may expand K - AM as [29]

 

n

K - AM = S(A - AI)ST = jg: (A1 - A)Gi (5.2—20)

i=1

where

U.U.T

_ i 1

G1 - T
u.Mu

l

and

GiMGj = GijGi‘ (5.2-22)

T1

(K - AM)'1 = IE: (A, - i)'1e. (5.2-23)

If PG is the sum of the m matrices Gk associated with eigenvalue

A of multiplicity m then

D: = (I - PGM)(K - AM)‘1(I - MPG) (5.2-24)

is a generalized inverse of K - AM such that

DIMu = 0 (5.2-25)

uTMD: = 0. (5.2-26)
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If u is determined through the inverse iteration algorithm [26]

(K - AM)u = Mv
i+1 i

(5.2-27)

<

l
l

uj/IIU-iII0°

then the algorithm given in (4.3) is essentially unchanged.

The eigenvalue derivative may be found by multiplying (5.2-9)

by vT, v e 34(K - AM) and solving for dA/da

dx v1 (§§-- x§§)u T
a...: T , where v Mu f 0. (5-2-28)

“ v Mu

 

The system (5.1-4) can be modified to include dissipative

terms by adding the term C2 to the left side [28]. We then have the

damped system

n(a)2(u,t) + Ci(a,t) + Kz(o,t) = f(a,t) (5.2-29)

and the related generalized eigenvalue problem

a)M(a) + A(a)C(a) + K(a))u(a) = 0 (5.2-30)

where the positive semi-definite matrix C accounts for viscous

damping.
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The 'damped' eigensystem of equation (5.2-30) is usually

more difficult to solve than the corresponding system (5.2-6)

without damping. However, under special circumstances the eigen-

vectors of the damped system are also eigenvectors of the cor-

responding undamped system. This is true, for example, if C is

some linear combination of K and M, i.e.,

C = 8K + yM, 8,y e32 (5.2-31)

It has been shown that [30]

KM'1c = CM'1K (5.2-32)

is a necessary and sufficient condition for the eigensystem of

(5.2-30) to be uncoupled when transformed to the modal coordinates

of the corresponding eigensystem of (5.2-6). If (5.2-32) holds

for a e D 999 then the eigenvectors of the damped system do

not depend on C(u) and their derivatives may be computed directly

from (5.2-l7).

The eigenvalue derivatives may be determined by differentiating

(5.2-30) and solving for dA/do to obtain

T 2 dM dC dK
(A ETC-1.1+ 1138-1113;)”

vTCu + 2AvTMu

V

 

(5.2-33)

0
.
1
0
.

9
>
2

ll
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Remark: Some caution must be taken when using this formula since

the eigenvalues are not differentiable for particular values of

the matrix C. For example, suppose u is an eigenvector of (5.2-30)

then

AZUTMU + AuTCu + uTKu = 0 (5.2-34)

is satisfied by

 

-uTCu :_[(uTCu)2 — 4uTMu uTKu]1/2

A = T ’ (5.2-35)

2u Mu

If

(uTCu)2 = 4uTMu uTKu (5.2-36)

then the mode corresponding to u is said to be critically damped [31]

and the eigenvalue A is not analytic. This can be verified by

attempting to differentiate (5.2-35).

5.3 Examples
 

This section is devoted to two design sensitivity examples

involving finite element vibration models.

In the first example we will use the methods presented in

Chapters 4 and 5 to compute a Taylor series for the lowest natural

frequency of a triangular plane elastic element. The design

variation consists of a changing node (vertex) position. The
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second example involves a fixed-fixed plate assembled from several

plane elastic triangular elements which is undergoing boundary

shape variations.

Example (5.3-l):

t
q
r
f

Figure (5.3-2).

the stiffness matrix is given as a function of x by

K(x) =

4 0 2(x-l)

4 0

x2-2x+2

symmetric 

-2 —2(x+1) 2

2(x+l) 0 -2(x+1)

-(x-1) -x2 x-l

x -2x+2 x+l -x

x2+2x+2 -(x+l)

x2+2x+2
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Consider the plane elastic element shown in

Following standard procedures and notation [1,2],

(5.3—3)



  
 (XZ’yZ)

(x3’y3)

("190) (190)

Figure 5.3-2 Triangular Element (shown in three design positions)
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where

h
l
d

 

t is the plate thickness,

 

b1 0

_ l

‘11 b1

a] = x3 - x1 2

a2 = x] - x3 x1 - 1

a3 = x2 - x1 -x1 - 1

2A = b1x1 + b2x2 + b3x3 = 2

V = At.

(1) z d_K _

K dx -

0 0 2 0

0 0 2

2x-l -1

2x+2

symmetric

81

and

y2'5’3

y3'yi

=3’1‘3’2

-2x

2x+2  

 

(5.3-4)



  

I0 0 0 0 o 0

o o o o o

(2) _ 1 de _ t 2 o -2 0

K 779
dx 2 0 -2

2 o

symmetric ' 2

K(11=o i>3

For the mass matrix we use

which is a lumped mass formulation [2].

Since the area A is a constant

If the plate thickness t is set equal to 3, M = I and

D (x) = K(x) - A(x)I .
A

The smallest non-zero eigenvalue of K(O) is determined as
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(5.3-5)



and its corresponding unit eigenvector is

  
We may now use (4.2-16 and 17) to determine a Taylor series for A(x).

For L: = D: we use (4.2-13), i.e.

o: = ([1 - uu1]) (K - i1)'1 (1 - uu1)

to find that
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The first 10 Taylor series coefficients to single precision accuracy

are

A(11 = 0.0

A(Z) = -.500000

A(31 = 0.0

A(4) = .138890

A15) = 0.0

A(6) = .001543

A(7) = 0.0

A18) = -.052641

A(91 = 0.0

AI10): .061548

With these coefficients, A(x) may be approximated as

n

A(x) = 2 x1AI1).

i=0

In Table (5.3e6a) a Taylor series representing A(x) is evaluated

for x = 0 to x = 1.5 and for n = 2, 4, 6, 8, 10 and 20. In Table

(5.3-6b) a direct numerical solution for A(x) is presented for

the same values of x. Figure (5.3-7) presents these data

graphically.

A comparison between the values of A(x) given by the Taylor

series and the values of A(x) obtained by direct evaluation show

excellent agreement even when n = 2.
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The efficiency of the technique may make design sensitivity

calculations of eigenvalues and eigenvectors feasible in many

practical situations. For example, if an inverse iteration method

is used to determine the eigenvector at x = 0 then subsequent

determinations of each of the Taylor coefficients A(11 and u(11

involve little extra effort since the generalized inverse D: is

easily determined from 4.2-13 (see Section 4.3). (The method is

especially efficient if the matrix K(x) is only linear or quad~

ratic in x since in these cases most of the matrices K(11 = L111

in Equations (4.2-16 and 17) are null.) Since the Taylor coef-

ficients can be obtained so economically, there is a strong in-

centive to represent the design with a Taylor series. Then

subsequent evaluations of the eigenvalue and eigenvector as the

design is modified can be carried out with substantially less

computational effort.

The next example involves a finite element model assembled

from thirty two plane elastic elements similar to the element of

example (5.3-1). The example illustrates the results of a design

sensitivity calculation for an eigenvalue depending on a vari-

able boundary shape.

Example (5.3-7): Figures (5.3-8) through (5.3-12) illustrate the

sensitivity on the lowest eigenvalue of a dynamic finite model

to changes of the boundary shape. Figure (5.3-8a) shows the

baseline design. The lowest eigenvalue for the baseline

design is calculated as 14.44. (Figure (5.3-8b) illustrates
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the mode shape corresponding to this eigenvalue.) In

Figures (5.3-9) through (5.3-12) the shape of the lower edge

of the model is changed. In each case an estimate of the

new eigenvalue is compared with the result of a finite

element run for the new configuration. The estimates are

based on a single first order directional derivative of the

eigenvalue with respect to some direction h (see Definition

(2.2-10)) which is related to the variable boundary. The

direction h is determined by a gradient projection method as

a direction (in the design space) which causes the eigen-

value to increase without increasing the volume (mass) of

the plate. (For a comprehensive discussion of this and

similar techniques see [3].) Each subsequent variation in

the design is determined by moving along the direction h an

increased distance.

A comparison between a direct evaluation of A and the

first order estimate of A shows good agreement for moderate

changes in the design but for extreme design changes the

estimate is substantially higher than the direct evaluation.

88



89

 

 
 

 
 

 
 

 
 
 

 

(
a
)

T
r
i
a
n
g
u
l
a
t
i
o
n

o
f

F
i
x
e
d
-
F
i
x
e
d

P
l
a
t
e

I
f
“

k
.‘

>
3
k
a

(
b
)

M
o
d
e

S
h
a
p
e

C
o
r
r
e
s
p
o
n
d
i
n
g

t
o

E
i
g
e
n
v
a
l
u
e

=
1
4
.
4
4
3
6

F
i
g
u
r
e

5
.
3
-
8

B
a
s
e
l
i
n
e

D
e
s
i
g
n

 



90

E
s
t
i
m
a
t
e
d

E
i
g
e
n
v
a
l
u
e

2
0
.
0
4
4
0

C
o
m
p
u
t
e
d

E
i
g
e
n
v
a
l
u
e

2
0
.
3
9
7
3

 

 
 

 
 
 

 

F
i
g
u
r
e

5
.
3
-
9

F
i
r
s
t

D
e
s
i
g
n

C
h
a
n
g
e

 
 

 



91

2
5
.
6
4
4
4

E
s
t
i
m
a
t
e
d

E
i
g
e
n
v
a
l
u
e

C
o
m
p
u
t
e
d

E
i
g
e
n
v
a
l
u
e

2
6
.
8
6
5
4

 

 

 

 
 

 
 

F
i
g
u
r
e

5
.
3
-
1
0

S
e
c
o
n
d

D
e
s
i
g
n

C
h
a
n
g
e

 

 



92

E
s
t
i
m
a
t
e
d

E
i
g
e
n
v
a
l
u
e

C
o
m
p
u
t
e
d

E
i
g
e
n
v
a
l
u
e

3
1
.
2
4
4
7

3
4
.
3
9
0
4

 

 

 

 
 
 

F
i
g
u
r
e

5
.
3
-
l
l

T
h
i
r
d

D
e
s
i
g
n

C
h
a
n
g
e

 

 



93

E
s
t
i
m
a
t
e
d

E
i
g
e
n
v
a
l
u
e

3
6
.
8
4
5
1

C
o
m
p
u
t
e
d

E
i
g
e
n
v
a
l
u
e

4
4
.
1
1
9
7

 

 

 
F
i
g
u
r
e

5
.
3
-
1
2

F
o
u
r
t
h

D
e
s
i
g
n

C
h
a
n
g
e

 

 



Chapter 6

Discussion and Further Study

6.1 Discussion
 

Modal analysis has become a standard tool used in the design of

dynamical systems. By numerically determining certain eigenvalues

and eigenvectors associated with a linear structural model a designer

can investigate how a particular structural design will perform

dynamically. The eigenvalues are related to the natural frequencies

of the structure and the eigenvectors indicate the associated

vibratory modes.

If the designer is concerned with dynamical performance,

several redesigns and re-evaluations of the eigenvalues and

eigenvectors may be necessary before a suitable design is found.

Since this procedure is costly in computer time, there has been

an incentive to find improved methods.

This thesis presented a technique to represent an eigenvalue

and eigenvector by a Taylor series in a design variable. Since

the Taylor coefficients can be determined to arbitrary order,

excellent estimates may be easily calculated for design changes

which do not exceed the radius of convergence of the series.

Since the coefficients of the Taylor series can be computed with

substantially less effort than recomputing the eigenvalue or

eigenvector, the procedure has the potential to reduce the number
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of calculations necessary to carry out the design of dynamical

structures. There is also the potential to use the method in the

implementation of optimal design algorithms.

Two representative example problems were presented. In one

of them, twenty Taylor coefficients of a specified eigenvalue

were determined after a single finite element run. These coef-

ficients were used to represent the eigenvalue as a power series

in the design variable. Comparison between separate finite

element runs and the Taylor series showed excellent agreement.

6.2 Methods
 

Each Taylor coefficient is determined by repeatedly evaluating

a simple recursive formula which is derived through an application

of generalized inverse theory. The procedure is simplified by

using a generalized inverse matrix specially selected to annihilate

certain terms in the formulation. The generalized inverse itself

need not be formed explicitly if the eigenvector is determined

through the inverse iteration method, with the result that each

Taylor series coefficient is computed with no more than 0(n2)

multiplications.

The technique was extended to compute derivatives for the

eigenvalues and eigenvectors of the generalized eigenvalue

problem (K a AM)u = 0 and there was some discussion of the damped

2
eigenvalue problem (MA! + AC + K)u = 0.
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6.3 Suggestions for Further Study
 

There are several questions involving eigensystem derivatives

which deserve further study.

Necessary conditions for eigenvalue differentiability are in

short supply. It may be possible to use Equation (4.2-25) to

construct a sequence of necessary conditions for the full analy-

ticity of diagonable matrices similar to the sufficient condition

given by the reduction process. (Equation (4.2-26) amounts to such

a necessary condition.)

A convenient computational method for determining the radius

of convergence for Taylor series representing eigenvalues and

eigenvectors would be useful in applications. Lower bounds have

been given [14] which unfortunately often severely underestimate

the actual convergence radius.

Most of the results of this thesis can be extended to eigen-

value problems involving linear operators on Hilbert spaces. Ex-

cellent references for continued study are Refs [10-14 and 19].
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