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ABSTRACT
DESIGN SENSITIVITY IN DYNAMICAL SYSTEMS
By
Joseph Eugene Whitesell, Jr.

Modal analysis is a standard tool used in the design of
dynamical systems. By numerically determining certain eigen-
values and eigenvectors associated with a linear structural model,
its vibratory behavior can be investigated. The difficulty with
this technique is that it may be costly in computer time if
several redesigns (and re-evaluations of the eigenvalues and
eigenvectors) are needed to find a suitable design.

The thesis presents a technique to represent selected eigen-
values and eigenvectors by a Taylor series in a design variable.
Since, with the technique, the Taylor coefficients can be computed
efficiently and to arbitrary order, the Taylor series can be used
to accurately estimate the consequences of a design change. The
technique, therefore, has the potential to substantially reduce
the number of calculations necessary to re-evaluate the eigensystem
after a design change.

Each Taylor coefficient is determined by evaluating a recursive
formula which is derived through an application of generalized in-
verse theory. If the eigenvector is found through an inverse itera-
tion, the technique is especially efficient. Most of computational
effort spent to find the eigenvector can then be re-applied to find
the Taylor coefficients. Two representative examples illustrate the

power of the method for practical design problems.
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Chapter 1

Introduction

The numerical determination of static and dynamic responses
for linear structural models has become a routine procedure in
engineering design [1,2]. Typically a sequence of design and
redesign is followed until certain features such as weight, natural
frequency, mode shape, and deflection and stress magnitudes attain
suitable values. At each stage the designer changes the design
and performs a numerical analysis to evaluate the consequences
of the changes.

This approach relies heavily on human judgement to modify
the design at each stage and since the appropriate design modi-
fications may not be obvious, several redesigns and reanalyses
are often necessary. Alternative methods to improve this pro-
cedure have been proposed. In one method, the full structural
model is replaced by a Taylor series which approximates its
behavior in a neighborhood of the current design [3]. Combined
with interactive computer graphics hardware, this method allows
a designer to preview the consequences of a proposed design while
avoiding a costly reanalysis. Another approach is the optimal
design method [3], which combines nonlinear programming methods
with structural design techniques. The procedure identifies

a cost functional with certain important design features and



attempts to minimize it by changing the design. When the method
is successful, a sequence of numerically determined designs con-
verge to a feasible design for which the selected cost functional
attains a local minimum.

A major difficulty arises when these methods are applied to
large problems since the determination of the system's state
variables and especially their sensitivity values may require
an excessive amount of computation. However, the potential
benefits of these methods provide a strong incentive to develop

improved numerical methods.

1.1 Some Historical Notes

When the design involves dynamical measures such as natural
frequencies or mode shapes, efficient methods for determining the
sensitivities of eigenvalues and eigenvectors to design changes
become important. Although methods for computing the first
derivative of an eigenvalue with respect to some system parameter
have been known since the nineteenth century work of Jacobi [4],
eigenvector derivatives have a much shorter history. The first
work in this area was done by Fox and Kapoor [5], who presented
two methods for determining an eigenvector derivative for the
symmetric eigenvalue problem (K - AM)u = 0. Unfortunately both
methods are computationally inefficient. The first method,
although it requires only knowledge of the specified eigenvalue
and eigenvector, involves the multiplication of an (n + 1)xn

matrix by its transpose and the subsequent solution of a fully



populated symmetric system. The matrix multiplication is a
lengthy computation and usually leads to a loss of any sparseness
possessed by the factor matrices. The second method avoids these
problems, but it expresses the derivative of an eigenvector in
terms of a complete set of eigenvalues and eigenvectors. This
formulation has only theoretical value when the eigensystem is
large since it is difficult to extract a full set of eigenvec-
tors. In refs. [6-8] the work of Fox and Kapoor was extended to
non-symmetric systems but no improvement in computational ef-
ficiency was made.

These computational difficulties were first discussed by
Nelson [9]. As a remedy, he proposed a technique by which the
rank (n - 1) matrix L - Al is modified by zeroing certain of its
entries. The modified matrix, which describes a system of
equations which must be solved to determine the eigenvector deri-
vative, is well conditioned and retains the sparseness of the
original system. This is a significant improvement since the
problems of mathematical physics and engineering often involve
sparse matrices. In this thesis further improvement in computing
eigensystem sensitivities are presented. Two representative
examples illustrate the power of the method for practical design

problems.

1.2 Thesis Overview

Notation and preliminary mathematical concepts are presented

in Chapter II. In Chapter III a survey of eigensystem differen-



tiability results are presented. The presentation is based on
the literature of the perturbation theory for linear operators.
After two example problems the chapter closes with a discussion
of eigensystem dependence on several parameters.

Chapter IV is concerned with methods for differentiating
eigenvalues and eigenvectors. The chapter states some basic
results, followed by an application of generalized inverse theory
which leads to further improvements in computing eigensystem
derivatives. A recursive numerical method is then described for
efficiently computing eigensystems derivatives of arbitrary
order. Each eigenvalue and eigenvector derivative is determined
by solving a sparse triangular system and involves no more than
0(n2) multiplications.

Chapter V begins with a statement of the design sensitivity
problem in finite element models. The methods of Chapter IV are
then extended to the generalized eigenvalue problem (K - AM)u = 0.
The chapter ends with two examples which involve finite element
formulations.

In the first Example (5.3-1), an eigenvalue problem associated
with a single element plane elastic vibration problem is considered.
After introducing a design variable to the problem, a Taylor
series representing an eigenvalue as a function of the design
variable is determined with the technique presented in this
thesis. The results are compared with direct evaluations of the

eigenvalue at various values of the design variable.



In the second example (5.3-7) an eigenvalue which depends on
the boundary shape of a fixed-fixed vibrating plate is estimated
using a first order approximation. The estimated eigenvalue is
compared with a direct evaluation of the eigenvalue for several
design modifications.

Chapter VI presents concluding remarks and suggestions for

future work.



Chapter 2

Mathematical Preliminaries

This chapter contains a summary of definitions and theorems
drawn from linear algebra and functional analysis which are used
in the following chapters. The reader may find this material in
many sources such as refs. [10-14].

In this thesis an n dimensional column vector is denoted by
x. Its transpose to a row vector is denoted by xT. The con-
jugation of xT is denoted by x*. To avoid confusion between
the ith vector in an indexed sequence of vectors and the ith
component in a particular vector, X; denotes an indexed vector
and X; denotes the ith component of the vector x. The jth com-
ponent of the vector X; is denoted by xij’ An nxm matrix is
denoted by A, B, C etc. The entry in the ith row and jth column
of A is denoted by aij' The ith matrix in an indexed sequence of
matrices is denoted by Ai‘ The entry in the jth row and kth
column of the matrix Ai is denoted by aijk'

The real (complex) field is denoted by ##(®). The real
(complex) vector space of dimension n is denoted by 2" (&").

The space of real (complex) nxm matrices is denoted by 4@ "™

(?nxm) .



2.1 Concepts from Linear Algebra

Definition (2.1-1): A linear space X is a set of elements called

vectors which is closed under addition (if xeX and yeX then
xty = zeX) and under multiplication by a real or complex

scalar a (if xeX then ax = yeX).

Definition (2.1-2): Let X be a linear space over a field F and let
V be a set of k vectors {xy,X,,...,x,} of X. Then if for
some set of k scalars {c]’CZ""’Ck} from F, not all zero,

the linear combination

C]_&]+C2£2+...+Ckx4(-0,

the vectors {X;,X,,...,x } are said to be linearly dependent

over F. If instead
CiXg ¥ CoXp + oen + X, =0

only if each c;=0 then the vectors {x;,X,,...,x,} are

linearly independent.

Definition (2.1-3): A set of vectors {54’52""’5k""} is said to
span X if every vector xeX can be expressed as a linear

combination of the set ESEROPRRRTS IPPRTY



Definition (2.1-4): A set of vectors {54’52""’5k} of a linear
space V is said to be a Hamel basis if and only if
i) the set spans V and

ii) the vectors {54’52""’§k} are linearly independent.

Definitions (2.1-1) through (2.1-4) are concerned with
only the algebraic properties of a linear space (algebraic
linear space). If these notions are combined with the topo-
logical notions of length, distance and convergence, a space
with both algebraic and topological properties results (topo-

logical linear space).

Definition (2.1-5): A norm on a linear space X is a positive real

L]

valued function

with the following properties
i) ||x]] # 0 if x # 0, |[x|| = O otherwise

ii) ||axl| = Ia

x||s aeF

Pi1) [1xg + x, 0| < [Ixg1 + [x,!]

Definition (2.1-6): An inner product is a scalar function,

(+,*), of two elements x,yeX such that

1) (X]aXo *+ X3) = (X75X5) + (X7.%3)

1) (x15%)) = (x,%)* (* denotes conjugation)
111) (é‘l: aéz) = a(l(_'l 352)3 aef

iv) (x,x) > 0 if x # 0, (x,x) = O otherwise.



Definition (2.1-7): Two vectors x and y are orthogonal with

respect to an inner product (.,) if
(x,y) = 0.

Definition (2.1-8): A set of vectors X; forms an orthonormal

set with respect to an inner product (.,-) if

(x55%5) = 855 = :

Definition (2.1-9): Two sets of vectors x; and y. form a bi-

orthonormal set with respect to an inner product (-,-) if

(i.“XJ) = (Sij'

Definition (2.1-10): The transpose of a matrix A is the matrix

AT = B such that aij = bji‘ The Hermitian transpose of a

matrix A is the matrix A* = B such that aij = bgi.

Definition (2.1-11): A matrix A is called symmetric (Hermitian)

if A = AT (A = A*) or skew-symmetric (skew-Hermitian) if
A= -AT (A= -A%).




Definition (2.1-12): A matrix A is upper triangular if aij =0

for i > j, lower triangular if a;

J

if a5 = 0 for i # j.

Definition (2.1-13): The matrix A whose elements are all zero with

the exception that aiJ

and is called the ij matrix unit.

Definition (2.1-14): The product of an mxk matrix A and an kxn

matrix B is the matrix C = AB such that

k
%5 7 20 Piplps-
p=1

Definition (2.1-15): For positive integers, the powers of an nxn

matrix A=A] are defined by

2:

Definition (2.1-16): A matrix A is idempotent if A A.

Definition (2.1-17): If the negative integral powers of the nxn

matrix A exist, they are defined by

A-n - (A-])n

10

. =0 for i < j and diagonal

. = 1 is given the special symbol, A = e..

1



where A'] is called the inverse of A and

If A'] exists the matrix A is called non-singular otherwise

it is called singular.

Definition (2.1-18): The rank r of an mxn matrix A is the maximum

number of linearly independent columns of A.

Definition (2.1-19): A generalized inverse of an mxn matrix A
I

of rank r is any nxm matrix A" of rank r such that

AAIA = A.

I

The mxm matrix AAI and the nxn matrix A"A are each idem-

potent matrices [10].

Theorem (2.1-20): Any solution X of the linear system

AX

"
=<

where A is an mxn matrix of rank r
X is an nxk matrix

Y is an mxk matrix

11



may be expressed as

X=AY + AZ

where AO satisfies AAO = 0 and Z is arbitrary [10].

Definition (2.1-21): The scalars A and corresponding vectors u

which satisfy the equation

are called the eigenvalues and corresponding right eigenvectors

of the matrix L. The eigenvectors of LT are called the left

eigenvectors of L. The subspace consisting of the origin

and all the right (left) eigenvectors corresponding to A
is called the right (left) eigenspace of L corresponding

to A.

Theorem (2.1-22): The eigenvalues of a real symmetric matrix

are real.

Theorem (2.1-23): Corresponding to any real symmetric matrix

is a set of orthonormal eigenvectors.

Definition (2.1-24): A matrix A is similar to a matrix B if there

exists a matrix S such that

12



B =5

AS.
Theorem (2.1-25): If A and B are similar then they have the same

eigenvalues.

Definition (2.1-26): A matrix A is called diagonable if it is

]AS = A, where the

similar to a diagonal matrix such that S~
diagonal matrix A has the eigenvalues A of A as its entries
and where the ith column of S and the ith row of S'] are

respective right and left eigenvectors corresponding to A

Definition (2.1-27): A matrix A such that AA* = A*A is called a

normal matrix.

Definition (2.1-28): A matrix S is called orthogonal (unitary) if
STS = 1 (S*S = 1).

Theorem (2.1-29): Every real symmetric matrix A may be diagonalized

by an orthogonal matrix S
sTAs = a

where the diagonal matrix A has the eigenvalues, A of A,

as its entries.

13



Definition (2.1-30): If f(A) is a polynomial such that

m-1

m
f(x) fOA + f]A + ...+ fm_]x + fm

then

f£(A) Al e f

m
fOA + f] m-]A + fmI

is the corresponding matrix polynomial.

Theorem (2.1-31): If f(A) is an analytic function defined on a
simply connected domain D C € and if A is diagonable matrix

such that

-1 1

ST'AS = A and A = SAS”

then
n
where f(A) = }E:f(xi)eii.
i=1
Theorem (2.1-32): If f(x) and A are as defined in Theorem (2.1-31)

then

14



where A, = SeiiS']. The matrix A, is called the ith rank

one constituent idempotent matrix and AiAj = Giin and

n
:E: A; = I. Furthermore A, = u. 24' where u, is the ith
i=1

column of S (right eigenvector) and vg is the ith row of S']

(left eigenvector).
Alternatively, if A has s distinct eigenvalues A with

multiplicity m; then

S
f(A) = D F(2;)A,

i=1
where
m. m.
A, = :Z: Sejjs‘] =};: Ass Jetilng = ag).
J J

The matrix A; is called the ith rank m. constituent idempotent

s
matrix and AiA—j = Gijﬁi and Z A, =L
i=1

Theorem (2.1-33): (Interpolation formula) The ith rank m; con-
situent idempotent matrix Ai corresponding to a diagonable

matrix A with s distinct eigenvalues is given by

(A-a.1)

S
A1.=]]D—1:§?.
i

[Py N

15



Definition (2.1-34): The matrix RZ = R(z) = (A-zI)'] is called the

resolvent matrix of A.

Theorem (2.1-35): (Residue Theorem) Let I be a closed curve in
the complex plane enclosing eigenvalues A of a matrix A,

i =1,k. Then

k
DA = - R(2)dz
i=1 r
Theorem (2.1-36): (Dunford-Taylor Integral) Let f(z) be an analytic
function defined on a simply connected domain D C € and
let T be a closed curve in € enclosing all of the eigen-

values Ai of a matrix A. Then

Theorem (2.1-37): (First Resolvent Equation)

R(z]) - R(zz) = (z] - 22) R(z]) R(zz)

if R is defined for z] and 22.

Definition (2.1-38): The matrix AA = A - Al is called the charac-

teristic matrix of A. The equation det(AA) = 0 is called

the characteristic equation of A. The notation det(-)

denotes the determinant of a matrix [10].

16



Theorem (2.1-39): (Cayley-Hamilton) Every matrix satisfies its

characteristic equation.

Definition (2.1-40): A function u(x): €->e" is called a

vector-valued function.

Definition (2.1-41): A function A(x): €~ & "M is called a

matrix-valued function.

Definition (2.1-42): Suppose D is a simply connected domain in € ,
L(x) is an nxn matrix-valued function of x ¢ D and {Ai(x)}T
is a set of eigenvalues of L(x). Then if Ai(x) > A(x])
as x > X where A(x]) is an eigenvalue of L(x]) with multi-

plicity m and x; e D, the set {Ai(x)}T is called the

)\-gY‘OUE.

Now let T be a closed curve in € enclosing a A-group of

eigenvalues. Then

P(x) = - 2%7-./-R(z]x)dz where R(z;x) = (L(x) - zI)']
r

1

is called the total projector for the A-group [14].

]Note that P(xo) is identical to the rank m constituent idempotent

matrix corresponding to A(xo). Note also the connection to Theorem

(2.1-35) which shows that the total projector is the sum of the in-
dividual consituent idempotent matrices of the A-group. That P(x) is
also idempotent follows from Theorems (2.1-32) and (2.1-35).

17



Theorem (2.1-43): (Product Rule)
i) If A(x) and B(x) are differentiable matrix-valued functions

such that C(x) = A(x)B(x) then

Q.lo_
xX|O
n
>
Sk
+
Q.|Q.
x|

ii) If u(x) is a differentiable vector-valued function such

that v(x) = A(x)u(x) then

(=N
[=8

= A

I

u A
x T ax Y

aja
x|<
[=R

where %%—or %%-indicates the differentiation of the individual

entries Cij or v, with respect to x.

Theorem (2.1-44): If A(x) is differentiable and n is a positive

integer

and if A(x) is also non-singular

dA™"  ndA" .-n
o = ATE AT

Definition (2.1-45): An eigenvalue A of a matrix A is called simple
if it is not repeated. An eigenvalue A of multiplicity m is

called semi-simple if its eigenspace has dimension m. A1l the

18
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eigenvalues of a diagonable matrix are semi-simple.

2.2 Concepts from Functional Analysis

Definition (2.2-1): Let {xn} be an infinite sequence of elements
in a normed space X such that lim||x - x|| = 0. Then {x}

n-o

is said to converge (strongly) to x.

Definition (2.2-2): A sequence {xn} in a normed space is called

a Cauchy sequence if for any ¢ > 0 there is an N(e) such that

||y = x,1| < e for every m, n > N.
Definition (2.2-3): A normed space X is said to be complete if it
contains the limit point of every Cauchy sequence in X. A

complete normed linear space is called a Banach space.

Definition (2.2-4): An inner product space is a linear space X

on which (x,y) is defined for each pair of elements x,y in
X. A complete inner product space is called a Hilbert
space. (Since every inner product generates a norm, any

Hilbert space is also a Banach Space.)

19



Definition (2.2-5): A linear operator L is a mapping between

linear spaces such that
i) The domain @D(L) of L is a linear space and the range
R(L) lies in a linear space over the same field F

ii) For all x,y ¢ @ (L) and aeF

L(x +y) = Lx + Ly
L(ax) = alx.

Definition (2.2-6): The Null Space of L denoted .# (L) is the set
of all x ¢ @ (L) such that Lx = 0.

The following standard mapping notation will be used. A

function f which maps from a set A into a set B, is denoted by f:A > B

1. A function f:A > B is surjective (onto) if and only if each
b ¢ B is an image of some element of A.

2. A function f:A - B is injective (one to one) if for each b
e & (f) there is exactly one a € A such that b = f(a).

3. A function f:A > B is bijective (one to one and onto) if and
only if it is subjective and injective (that is if and only

if every b ¢ B is the unique image of some a ¢ A.)

Definition (2.2-7): A function f:A > B is called a homeomorphism

if it is bijective and if both f and f']:B + A are continuous.

20
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Definition (2.2-8): Let X and Y be normed spaces and L: (L) - Y
a linear operator, where @(L)C X. The operator is said to
be bounded if there is a positive real number c¢ such that for all

xe @(L),
[ILx [ < e [|x]].

Theorem (2.2-9): If a normed space X is finite dimensional, then

every linear operator on X is bounded.

Theorem (2.2-10): If L is a linear operator such that the mapping
L: @(L) >~ Y is injective then there exists the mapping

-1

L™ :a®(L) ~ @ (L) which maps each y ¢ (L) onto x e @&(L)

for which Lx = y.

Theorem (2.2-11): Let X and Y be linear spaces and L: @ (L) ~ Y.
Then
a) L']:é?(L) + @D (L) exists if and only A4 (L) is empty.
b) L™! is a Tinear operator.

Definition (2.2-12): Let X be a linear space, a function f defined

for each u ¢ X is a linear functional on X if

flou + gv] = of[u] + Bf[v]

for all u,v of X and «,8 ¢ F.

21



Definition (2.2-13): The linear space consisting of all the bounded
linear functionals defined on X is called the dual space of

X and is denoted by X'.

Theorem (2.2-14): Let X and Y be Hilbert spaces with inner
products (-,-)X and (°")y respectively and L:X - Y a Tinear
operator. Then corresponding to L there exists a unique

operator L*:Y > X called the adjoint of L which satisfies
* =
(L v,u)X (v,Lu)y

for every u ¢ Xand v e Y. If L*¥ =1L then L is self adjoint.

Definition (2.2-15): A linear self-adjoint operator L is called

positive definite (u,Lu) > 0 unless u = 0.
Theorem (2.2-16): Let A be a non-zero scalar. Let X be a Hilbert
space with inner product (-,-)X and L:X » X a bounded linear

operator. Then if

Lx - Ax = y (1)
Lx - xx = 0 (2)
L*f - Af = g (3)
L*f - Af = 0 (4)

22



i) (1) has a solution x for every y ¢ X if and only if (2)
has only the trivial solution x = 0.
ii) (3) has a solution f for every g € X if and only if (4)
has only the trivial solution f = O.
iii) (1) has a solution x (is normally solvable) if and only
if (f,y)X = 0 for all solutions of (4).
iv) (3) has a solution f (is normally solvable) if and only

if (g,x)x = 0 for all solutions x of (2).

Definition (2.2-17): Let X and Y be Banach spaces. Then a function

f:X > Y is called Frechet differentiable at x ¢ X if there

exists a unique linear operator f'(x):X » Y such that

lim  Ufx +h) - f(x) - £'(x)h]| _
[1h]]-0 [1hl]

Definition (2.2-18): Let X be a Hilbert space with inner product
(-,-)X and then if f:X +9® is a Frechet differentiable
real valued function there exists a unique vector in X

denoted by vf(x) called the gradient of f at x such that
f'(x)h = (h,Vf(x))X.

Definition (2.2-19): Let X be a Hilbert space with inner product

(-,-)X and f:X -9 , then the directional derivative of f at

x is defined by

23



provided that this Timit exists. If this limit exists for

any direction h then f is called Gateaux differentiable at

X e X.

Remark: If f is Frechet differentiable then Df(x,h) exists for

any direction h and

Df(x,h) = f'(x)h = (h,vf(x))x.

Theorem (2.2-20): (Projection Theorem [15]) Let X be a Hilbert

space with inner product (-,+)y, let [|+[|, be the norm
generated by (-,-)X and let M be a closed subspace of X.
Then corresponding to any x ¢ X there is a unique vector

ﬁ e M such that

[lv = m*[]y < [[v -m||, for all m e M. (2.2-21)

Furthermore (x - m*,m) = 0 is a necessary and sufficient
condition that m* ¢ M is the unique vector which satisfies

(2.2-21).

24



Chapter 3

Eigensystem Differentiability

In this chapter various results related to the differentia-

bility of eigenvalues and eigenvectors are presented.

3.1 Preliminary Differentiability Results

Suppose L(x) is an nxn matrix-valued function (See 2.1-4) whose
elements are analytic functions of x e DC ®. It is natural to
ask if and when L(x) has eigenvalues and eigenvectors which are
also analytic functions of x. This question, which has been
studied extensively by Rellich, Kato and others [15-17], un-
fortunately does not have a succinct answer, since the problem
inherits all of the complications associated with repeated eigen-
values and defective eigenspaces from the underlying eigenproblem.
Nevertheless it is vital to recognize whether the eigenvalue problem
behaves smoothly if eigenvalue and eigenvector derivatives are to
be used in computations.

The following theorem gives an important sufficient con-
dition for eigenvalue differentiability. Its proof may be found

in cited literature.

Theorem (3.1-1): Let L(x) be an nxn matrix-valued function of x ¢ € ,

which is analytic in some neighborhood of x = 0. Then
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a) If a(0) is a non-repeated eigenvalue of L(0),
A(x) is an analytic function in some neighborhood
of x = 0 and there exist left and right eigenvectors
v(x) and u(x) which are analytic vector-valued func-

tions of x in some neighborhood of x = 0.

b) If x(0) has multiplicity m and {Ai(x)}m

j is the A-group,

Ai(x) may be expanded in a Puiseaux series [18] as

1 2
Ai(x) = r(0) + u]xp + uzxp + ... , p is an integer < m

Proof: [14, 18 and 19].

It is easy to show that the conditions of Theorem (3.1-1) (a)
are not necessary by constructing a matrix which has repeated

analytic eigenvalues and analytic eigenvectors.
Example (3.1-2): Let

n
_ T
L(x) = D7 x5 (x)ug(x)y;(x) (3.1-3)
i=1
where the Ai(x) are analytic scalar functions not necessarily
distinct for x ¢ DC % and the u,(x) are analytic vector-
valued functions of x e D such that the matrix S(x), whose

ith column is gﬁ(x), is invertible. Then S'](x) is also
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analytic [14], and we may take its ith row as gd(x).

Theorem (2.1-32) shows that the Ai(x) are analytic eigen-
values of L(x) and the vi(x) and ui(x) are analytic left and
right eigenvectors of L(x), even if Ai(x]) = Aj(x]), it
for some isolated value x, (exceptional point). So L(x) has

the desired properties.

The matrix L(x) in example (3.1-2), although it has repeated
eigenvalues, is diagonable due to the manner in which it was
constructed [10]. That an analytic matrix is diagonable however,
may not be taken as a necessary or sufficient condition for

eigenvalue analyticity as the next example shows.

Example (3.1-4): The matrix

0 X 0
L(x) = 0 0 X
X 0 1

is diagonable for x3 # 4/27 yet its eigenvalues cannot be
written as a Taylor series in x at x = 0 [14] whereas the

matrix
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L(x) =

is not diagonable for any x ¢ € but its eigenvalue x is

clearly analytic.

3.2 The Reduction Process

To gain further insight into the behavior of eigenvalue

differentiability the reduction process of Kato [14] is useful.

Suppose L(x) is an analytic matrix-valued function with the ex-

pansion
L) = 3 Lo, (3.2-1)

If A(x) is an analytic eigenvalue of L(x) with multiplicity m

then a particular branch of A(x) may be expanded as
A(x) = x(0) + XA(])(O) + xzx(z)(o) U (3.2-2)

Kato has demonstrated that under some circumstances the sequence
of coefficients A(l)(O) may be identified with certain eigen-

values of a sequence of matrices, L(i)(x), which are described

below. The following theorem is central to the process.
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Theorem (3.2-3): Let L(x) be an analytic matrix with expansion

-3 L gy (3.2-4)
i=0

and let A(0) = A be a semi-simple eigenvalue of L(0) = L
of multiplicity m with total projector P(0) = P. If Agl)
is an eigenvalue of [(]) = PL(])P in the subspace g?(P)
with corresponding constituent idempotent matrix P§1) then
L(x) has exactly m§]) = dim P§]) repeated eigenvalues of the
form )\ + XA§]) + 0(x).

Proof: From the first resolvent equation Theorem (2.1-37) we find

that
(L(x) = aI) R(z,x) =1+ (z - A) R(z,x) . (3.2-5)

Suppose that I is a closed curve in ¥ which encloses

the rx-group eigenvalues of L(x) then

Zmi

(L(x) - aI) P(x ! ~/~ (z - 2)R(z,x)dz (3.2-6)
T
follows from applying theorem (2.1-35) to (3.2-5) and re-

calling Definition (2.1-42). Since R(z,x) is analytic in x

[14] (3.2-6) can be written as
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(L(x) - A1) px) = 3 %L (o) (3.2-7)

where

(o) = - - f (z - 2) R (2,0) 4z . (3.2-8)

Since A is a semi-simple eigenvalue both sides of (3.2-7) must

vanish at x = 0 so i(o)(O) = 0 and

]1',8 (L(x) )‘( AL)P(x) _ l:(])(O)
X

Now if uj(x) is an eigenvector of Aj(x) where Aj(x) is a member
of the x-group then
(L(x) = aAI (0500 - )

= 1i J
X P(x)uj(x) llg

Tim
x>0
= (1)
A5 (O)uj(O)
which shows that xgl)(o) is an eigenvalue of i(])(o). To complete

the proof we must evaluate (3.2-8) for i = 1.

From Theorem (2.1-44)
R (2,00 = - R(z,0) L (0) R(z,0)
we may expand R(z,0) as
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R(2,0) = (z - 2)"'P(0) + S(z)

where S(z) has no singularities so

1

RO (2,0) = [(z - 0)7(0) + s(2)1 L 0) [z - )7 TR(0) + s(2)1.

Integrating (z - A)R(])(Z,O) along T shows that

This theorem can be re-applied to ﬂ(])(x) if its eigenvalues
are also semi-simple to derive a higher order expansion for

A(x). In this case we have

A(x) = a+ xx§]) + xzxﬁ) +0(x%), k= hmg]) (3.2-5)

where the A§i) are the repeated eigenvalues of

[(2) 2 p(M) (2)p (1) _ p(1) (1) + (1)p (1) -
L Py LR Py LY LLY RS (3.2-6)

in the subspace 3?(P§])). The matrix LI is defined by

n
L= -3 (- A1) i L is diagonable. (3.2-7)
i=1

The reduction process then consists of repeated applications of

Theorem (3.1-8) to the matrices E(i).
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The reduction process may also be used to generate expan-
sions for the constituent idempotent matrices, so if it can be
shown that each E(i) has semi-simple eigenvalues then the process
may be continued indefinitely to show that the eigenvalues of
L(x) are analytic and to establish the existance of analytic
eigenvectors (See Theorem (4.1-4)).

In the next section, the question of eigenvector differentia-
bility is discussed through examples involving the interpolation

formula Theorem (2.1-33) for constituent idempotent matrices.

3.3 Eigenvector Differentiability

Eigenvector differentiability is more complicated than eigen-
value differentiability. This is due, in part, to the possibility
that the dimension of the eigenspace associated with a particular
eigenvalue may change abruptly or disappear entirely. In this
section we shall use the interpolation formula of Theorem (2.1-33)
to study the behavior of eigenvectors corresponding to analytic
semi-simple eigenvalues in two examples. In the first example
the matrix L(x) has no exceptional point (See Example (3.2-2)) in

its domain D.

Example (3.3-1): Suppose the eigenvalues of L(x) can be represented
by the s analytic functions A](x), Az(x),...,xs(x) where Ai(x)
is assumed to have multiplicity ms and where L(x) is analytic

and diagonable for x ¢ D.
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Since L(x) is diagonable, we may express the rank m, con-
stituent idempotent matrices of L by the interpolation
formula of Theorem 2.1-33.

For the ith constituent idempotent matrix, Li’ we have

S L(x)-2.(x)I

L(x) = n ()50 , xebD (3.3-2)
j=1 ()\.i(X)—)\J-(X))
j#i

If there is no exceptional point in D, the Lj(x) are
analytic on D. Any column of Lﬁ(x) which is non-zero on D
represents an analytic eigenvector gd(x) corresponding to
Ai(x) (See Theorem (2.132)). We now assume, without loss of
generality, that x = 0 is in D. Then if gi(O) is an eigen-
vector of L(0) corresponding to Ai(O), Li(x)gd(O) is an
analytic eigenvector corresponding to Ai(x) in some neigh-

borhood of x = 0. This is true since (1)

-2 (0))
u.(0)
(xs (0 (0))

II_
* || IU"
-
O
n
=y
-
o
~
S
o

and the continuity of E4(X) imply that gj(x) is non-zero in
a neighborhood of x = 0 and since (2) by the Cayley-Hamilton

theorem, Li(x)gj(o) is in the null space of L(x) - Ai(x)I.
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Now suppose that x = 0 is an exceptional point in D such
that Ak(O) = Ai(O). Then Ld(x) is not continuous at x = 0. It may
have a removable discontinuity at x = 0 however.] In the fol-
lowing example we study the behavior of L4(X) in a deleted

neighborhood of an exceptional point.

Example (3.3-3): Suppose L(x) is an nxn matrix which is dia-
gonable for x ¢ D with n eigenvalues Ai(x) which are distinct
analytic functions on D. If xk(O) = Ai(O) for x =0eD
then x = 0 is an exceptional point in D since by hypothesis
Ak(x) and Ai(x) are distinct analytic functions. We will now

investigate the behavior of

S -
Li(x)u(0) = [ J u(0) (3.3-4)

in a deleted neighborhood of x = 0, where u(0) is any
eigenvector taken from the two dimensional eigenspace cor-
responding to Ai(O) = Ak(O).

Both the numerator and denominator of L(x)u(0)

become zero at x = 0 so

Tim Li(x)EKO) = Tim
x>0 x>0

u(0)  (3.3-5)

]For example if L(x) is a normal matrix on x ¢ D then L?(x) = Li(x) [10]
with ||Li(x)|] = 1 implying that Li(x) has no singularities on D [14].
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after applying L'Hopital's rule. If by hypothesis, Ai(x),
Ak(x) have different slopes at x = 0, the denominator of (3.3-4)
is non-zero at 0 and the limit (3.3-5) exists.] However,
(3.3-5) is an eigenvector only if its numerator is also non-
zero.

To study the behavior of the numerator of (3.3-5) let
P = P(0) be the total projector corresponding to Ai(O)
= Ak(O). Then (3.3-15) may be written

Tim L,(x)u(0) = 1im dx 0 dx 0 u(0) (3.3-6)
x>0 x>0 da;(x dx, (x
R

since u(0) = Pu(0).

Now suppose that u(0) is an eigenvector of

[=p 40,
X
dx. (0) 2
corresponding to its eigenvalue I (See Theorem (2.1-21)).
Then
p g—i(o) Pu(0) = %i(o)u(o) - 3%1(0) Pu(0) (3.3-7)

So the numerator of (3.3-6) is non-zero since otherwise

1Note also that the matrix L (x) has only rank one in the limit as

x>0 since A, (x) is non- repeated in the deleted neighborhood of x = 0.
Zpn elgenvector of L may be selected from the eigenspace of A, (0)
since the range of P is precisely that subspace.
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dL(0) py(0) = 920D py(o) (3.3-8)
and
p dL(0) py(0) = 924(0) py(g) (3.3-9)
dx - dx - :

would contradict (3.3-7).

If u(0) is an eigenvector of L corresponding to
——k(o) a similar analysis shows that the numerator of
(3.1-16) does vanish. So if u(0) contains a component

dx. (0)

which is an eigenvector corresponding to ax » (3.3-5) is

an analytic eigenvector passing through the exceptional point
= 0 which corresponds to Ai(x). An analytic eigenvector cor-

responding to Ak(x) can be constructed similarly.

As the final topic of this chapter, we consider the question
of differentiability of eigensystems which are functions of
several parameters. As we shall see, the Frechet differentia-
bility of such eigensystems may not be assumed for repeated

eigenvalues even if they are analytic in a single variable.
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3.4 Differentiation with Respect to Several Parameters

The preceding sections concerned differentiability of eigen-
systems with respect to a single variable. The situation is more
complicated when several variables are involved.

Consider the following example [14]:

Let

L(xy %) = C o (xaxy) ¢ €2 (3.4-1)

Even though L(x],xz) is symmetric and Frechet differentiable,

2 2)1/2

its eigenvalues Moo= i_(x] + X5 are only Gateaux differentiable

when Xp = Xy = 0 [20].
Using Definition (2.2-19) the directional derivative of
A] when X| = X, = 0 is determined as

)2)1/2 ;-(XZ + x2)]/2

2
((x]+th]) + (x, + th 1 5

. 2 2
D(x; ,,h) = 1im
1,2 t-0 t

- (2 + )12,

] 5 where h = (h,,h,). (3.4-2)

1272

Since D(A] 2,h) exists for all h, Ay, p are Gateaux differentiable,
but they are not Frechet differentiable since D(A] 2,h) is not

linear in h.
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This complication has serious consequences if these deri-
vatives are to be used in non-linear programming routines which
use gradients to determine a descent direction. Since the defini-
tion of the gradient of a function depends crucially on the
linearity of the Frechet differential. Recalling Definition
(2.2-20), the Frechet differential of f may be represented in

terms of the gradient of f as
D(f,h) = (vf,h). (3.4-3)

where (+,+) is the inner product. It is this equivalence which
provides the justification for using the negative gradient as the
direction of steepest descent since if ||vf|| =1 and ||h]|]| =1
D(f,h) = (vf,h) attains its minimum value for h* = - vf, When
the Gateaux derivative is non-linear in the direction h, the
descent direction is not so easily determined [21, 27].

We may also use Theorem (3.2-3) to compute the directional
derivative for Ay or A, Since L(x],xz) js Frechet differentiable
we may represent D(L,h) in terms of its gradient VL as

aL

_ _ oL _dL
D(L,h) = (VL,h) = -a—x']h-l + gzhz = dt

S th] X, + th2
where L(t) =

X, + th

2 ¥ thy =X - th

1
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Then

—

D(L,h) = X

~N

1

to which Theorem (3.2-3) may be applied since L(t) is an ana-
lytic symmetric function of t. The directional derivatives of

the eigenvalues A o2 at Xp = Xy = 0 are the eigenvalues of
L=PD(L,h) P=PS=P=0(,h)

SO

2)]/2

Y
D(xy,5h) = + (h] + h5

as before.

Remark (3.4-4): If D(L,h) is a symmetric matrix and if B is any matrix

representing an orthonormal basis for 4R (P) then the directional

derivatives are also the eigenvalues of

BTLB = B'PD(L,h)PB = B'D(L,h)B (3.4-5)

which is a formulation given by Haug and Rousselet [20] which

may be easier to apply than Theorem (3.2-3).

The non-linear dependance of the directional derivatives of

eigenvalues can perhaps best understood by writing L as
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[ =P -p Yy oL h P=Y P‘QE Ph.

where although the matfix L is linear in hi its eigenvalues cannot
expected to be, unless 4R (P) has dimension one (if the eigen-
value is simple).

The rank one constifuent idempotent matrices and eigenvectors
or L(x],xz) are even 'less' regular than the eigenvalues. To show
this we construct an expansion of L(x],xz) in terms of its con-

stituent idempotent matrices Li(x],xz) (See Theorem (2.1-33).)

L(x],xz) = A](x],xz) L](x],xz) + Az(x],xz) L2(x],x2) (3.4-6)

where
L - x, L -
LT Lo = T T (3.4-7)
or
L 1 o ge) g
1 (x75%,) 2(x5 + x2)1/2 y sy + ()2
(3.4-8)
_ 1 q - 0 x
L,(x15%)) = - 268 + D2 |, xy - (End) 172
(3.4-9)
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However, the idempotents Li(x],xz) possess no limit as

(x],x2)+(0,0) since

(3.4-10)

1
r\;l_a

Tim L](O,xz) =
x2+0

whereas

Tim L](x],O) = (3.4-11)
x>0
1 0 0

and similarly

lim L
x2+0

(0,x

(3.4-12)

nNo| —

2 2)

whereas

Tim L2(x],0) = . (3.4-13)
x,->0
1 0 1

This illustrates that although in this example the rank one
constituent idempotent matrices and therefore the eigenvectors

can be continued smoothly through the origin along the x; or

Xo axis, their total limits do not exist at the origin. Con-
sequently, the rank one constituent idempotent matrices and eigen-
vectors at not even continuous at Xp = Xy = 0. They do have
directional derivatives since L(t) is symmetric and analytic

in t (see Theorem (4.1-4)).
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3.5 Conclusions

The theorems of this chapter provide sufficient conditions
needed to justify the differentiation of eigenvalues and eigen-
vectors in a number of situations important to applications. 1In
the next chapter formulations for the actual eigensystem deri-

vatives are developed.
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Chapter 4

Differentiation of Eigensystems

As the remarks of the previous chapter illustrate, the
question of eigenvalue and eigenvector differentiability in its
full generality is difficult. Some matrices however, have

properties which lead to relatively simple eigensystem deriva-

tives.

4.1 Differentiation of Fully Analytic Matrices

Definition (4.1-1): Let the diagonable matrix-valued function L(x)

have the decomposition

n
= 2ox 0y (x)yy (X 2 A5 ()L, ( xeDCE€ (4.1-2)

where the gd(x) and gd(x) belong to an analytic biorthogonal set of
eigenvectors such that !}(x)uj(x)=61j, Ai(x) are corresponding
analytic eigenvalues and the Li(x) are rank one constituent
idempotent matrices. Then we say, in this thesis, that L(x) is

fully analytic on D.

Remark (4.1-3): Theorem (3.1-1) gives sufficient conditions for
full analyticity of L(x) on D if L(x) has no repeated eigen-

values for any x ¢ D.
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The following theorems form a basis for a study of eigensystem
derivatives of fully analytic matrices and methods to compute
them. The first of these (Theorem (4.1-4)) states a sufficient
condition for full analyticity which is important in applications.
The theorem was originally stated by Rellich [16] but the proof
here follows Kato [14]. (See also [14] for extensions to normal

matrices.)

Theorem (4.1-4) [14, 16]: If L(x) is a Hermitian analytic matrix-
valued function for x ¢ D C SR then L(x) is fully analytic

on D.

Proof: If L(x) is Hermitian on D then the E(i) in Theorem (3.2-2)
are Hermitian and therefore diagonable. The reduction

process can then be continued indefinitely.o

The next two theorems (Theorems (4.1-5 and 6)) present various
algebraic properties of eigensystems derivatives. Part (e) is
essentially the result given by Jacobi [4] although the derivation

is different.

Theorem (4.1-5): Let L(x) be an nxn fully analytic matrix-valued

function for x ¢ D. Then

n n
dL _ L, dr,
VoHTLMNG T Loa b
i=1
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di. _ dL. dL, _ . dv. . du, T
b) x T ax' by L; x' TYax T Y
T
dv. _ T du
©) g Yy TtV
d) T QL-u = (A A )vT dus . (a As) gx} u i#
=i dx =j J i/Yq dx? i J’dx =5 J
T dL _da;
&) Vigx Yi T dx

where dependence on x is understood.

Proof: To prove part (a) apply the product rule of differentiation
to equation (4.1-2). Part (b) follows after differentiating
2

Ly = L;. For part (c), differentiate v¥(x)uj(x) = Gij' Part

(d) and (e) are proved by forming the product

and applying (b) and (c).o

Theorem (4.1-6): Let L(x) be an nxn analytic real matrix-valued

function for x ¢ D C 9® such that LT(x) = L(x). Then

n n
dL _ dL . da.
a) i :E: Ai o + IE: e Li
i=1 i=1
b)  yex) = Gy, 4, Oy -y QLiT'+9‘i' ul
ax’ dxdb TR axd T Y o YA Yy
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dx' 45 7 7 Y4 dx

d) TdL, - (A A )uT duy - (x; = As) 99} u
Y oy i 7MY A i T A5 axt Yy
T dL da

U5 gx Y T

Proof: Similar to (4.1-5) after noting that Theorem (4.1-4)

guarantees that L(x) is fully analytic.o

Remark (4.1-7): In part (c) if i = j we have g} g%& = 0, showing

that u, is orthogonal to %%i. This results from the constant

norm condition imposed by g}(x)gd(x) = Gij‘ Note also that

L(x): 9@ 2",

Further insight into the behavior of eigensystem derivatives
may be obtained by studying the effect of changing an individual
element of a matrix. In the following theorem we will assume that
L(0) is a constant matrix such that L(x) = L(0) + €5 X is fully

analytic for x ¢ D.
Theorem (4.1-8): Let L(x) = L(0) + €% be a fully analytic

matrix-valued function for x ¢ D. Let Ai(x) be an analytic

eigenvalue of L(x), let li(x) and gi(x) belong to an analytic
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set of left and right eigenvectors such that !}(x)gj(x) = Gij

and let Li(x) = gj(x) gl(x) be the corresponding consti-

tuent idempotent matrix. Then

Tdl . _dy . )
) Ydx YT ok T Y Y T bk
T dL - T du, _
b) Vo gy Uy = (hp - Ag) Yo b = Yoy Yy

Proof: To prove part a) apply Theorem (3.2-4) e) with %%(X) = ey5
and note that Vii Ekj is the jith entry in Lk' For part
b) apply Theorem (3.2-4) d). Part c) follows from part a)
and Theorem (2.1-32). Since the sum of eigenvalue deriva-
tives is a constant function of x, the sum of second deri-

vatives with respect to x is zero proving part d).o

Remark (4.1-9): Since the non-zero columns of the idempotent matrices
L; are eigenvectors corresponding to A, part (a) above es-
tablishes a strong relationship between an eigenvalue's deri-

vatives and its eigenvectors.
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The following Theorem (4.1-10) states a formulation, given
by Fox and Kapoor [5] (See also [12]), which expresses the deri-

vative of an eigenvector of a symmetric matrix as a linear com-
bination of eigenvectors.

Theorem (4.1-10) [5]: Let L(x) be an analytic real matrix-valued

function for x ¢ D C 9 such that LT(x) = L(x). Then

n
gd%‘(") - 2 c;(x)u;(x) (4.1-11)
j=1
with
w- |
C.(x) =
’ () = 256007 ul(6) §F uy(x)

W) Pix) 7

Proof: Since a;d is a vector in an n dimensional space, we can

express it as a linear combination of n orthonormal eigen-
vectors of L(x)

n
Wi = T e (x)y (x)
k=1

using g}(x)u.(x) = 5., and ut du;

CF ij jad T 0 (See Remark (4.1-6),
we have
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T du T T du - - n.
Ui gx' T €y Uy Uy = cyand uy g = ¢y =0

n
(g}
[
<

n

applying Theorem (4.1-5) (d) completes the proof.o
Although this formulation has theoretical value it is not

useful when a complete set of eigenvectors is not available [9].

However, we may rewrite (4.1-11) as

. T dL

o Z“ -y ul SRy

- Coy-loqdl L+ dL )
Z [y - 27050 &y L) G Ui (4.1-12)

The matrix

n

-1
Z] [(AJ - )\'i) LJ]
J:

as we shall see, in Section 4.3, can be easily computed and will lead

to an efficient means to compute %%4-

4.2 Eigensystem Derivatives with Generalized Inverse

If L(x) is a diagonable fully analytic nxn matrix-valued

function in some neighborhood of x = 0, then we may write
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by expanding L(x), A(x) and u(x) in a Taylor series about x = 0.

Collecting terms in X!

- i
DI UED DI AL LIPS TS (4.2-2)
=0 3=0

Each coefficient of x' must vanish separately so

i
Y i-9) _ 5 G-300,0) < g i=0,1,2,... (4.2-3)
or
i
Y =3 2: Ai-3),(3), i=0,1,2,... (4.2-4)
3=0

After subtracting the i = j term from (4.2-3) the eigensystem

derivatives are given recursively by

(L - al)u = 0, i=0 (4.2-5)
. i-] . . . . .
(L=t = 23 @03 0 G-30, (D 22,8,
§=0
(4.2-6)
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Since we have assumed that L(x) is fully analytic, these
equations must be normally solvable (See Theorem (2.2-16)) for

each i. Hence if v is any vector such that v e./V(LT - A1), then
.l=] . - . - .
T :E: (L(1-J) - A(1-J)I)u(J) -0 (4.2-7)
Jj=0

follows from Theorem (2.2-16). Solving for A(i) results in

>\(1) vT L(]) u

= (4.2-8)
v u
and i-1 i-1
VT(Z L(i-3),(3) A(1-3)u(3'))
(1) - =0 - 3= L 0= 2,3,4,. ..
vV u
(4.2-9)

T

where v is any vector such that viu # 0 and v euV(LT - AI) and

u = u(0) lies on u(x), an analytic eigenvector.

We now turn our attention to solving equations (4.2-6) for

U(i).

Since the matrix LA =L - AI has rank n - m we use a

generalized inverse Li and apply Theorem (2.1-20) to find that

i-1
RO SR NG ) (4.2-10)
j=0
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where z euw(LA) and Li is any rank n - m matrix satisfying

I _
LALA A LA'

We shall have immediate use for the following:

Lemma (4.2-11): Let A, AR and AL be nxn matrices satisfying

I

AAR = 0 and A/A = 0. Then if A" is any generalized inverse

L
of A,

#

At = (1 - A )Al

JAS (I - A (4.2-12)

R L)

is also a generalized inverse of A.

Proof. Multiplying (4.2-12) on both sides by A results in

I

anfa = A(I - A )AI(I -A)A=AA=AD

R L

Now suppose P(0) = P is the total projector associated with

A then

since L is diagonable. From Lemma (4.2-11) if Li is any generalized

inverse of LA then

I
L‘; = (I - P)L,(I -P) (4.

r

-13)
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is also a generalized inverse of LA. Furthermore, since Pu = u

T T

and v P=v, LI satisfies

L:u =0 (4.2-14)
and
vTLI = 0. (4.2-15)
If
i-] - . . - -
GG) o Ly (=30, (G-3)py,@3) (0) _
j=0
and
o) 2 50D ey, i=1,2,3,... (4.2-16)

then Theorem (2.1-20) guarantees that u(i) is a solution of (4.2-6)
for any constants c; since c;u €v41LA).

We may use the properties (4.2-14 and 15) to simplify
equations (4.2-5 and 9).

If c; = 0 for all i, then equations (4.2-8 and 9) become

= T (4.2-17)
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where u is the value of an analytic eigenvector at x = 0 and v is
any vector satisfying v suW(LT - aI) and vlu # 0.

If the eigenvector derivatives are to be used explicitly,
then the constants c; should be selected to satisfy some normal-

ization conditions such as

vI(x) u(x) = 1 (4.2-18)
and

(u(x))* u(x) = 1. (4.2-19)

If we assume (4.2-18), we obtain

i) = i) 4 e T (4.2-20)
also

‘. - VT#‘”

v u

T

follows from (4.2-16) since v LI = 0.

Now suppose u is also normalized so that (4.2-19) holds.

Then

(u + xu(]) + xzu(z) + 0 )% (u + xu(]) + xzu(z) + ...) =1
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must be true and the coefficients of x', i > 1, must be zero so

i

Z (1\])*“3)_0 i
j=0
or
i-1
(u(o))*u(i) n (u(i))*u(o) - _.z (u(i-j))*u(j).
Jj=1

Equating real parts of both sides

i-1
Re[u*u(i)] = -.%.Re[:E: (u(i'j))*u(j)]
J=1

and multiplying (4.2-16) by u* results in

(1) 2 i)

+ ciu*u
and
c; = ara (1) - g (). (8.2.21)
Then,
Re[c,] = - Re[ura(1)]
and
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i-1

Re[c,] = - pRel 3 (i Iml)) CreunilVy, 22 (a2-22)

j=1

must be satisfied for (4.2-18 and 19) to hold.

Remark (4.2-23): If L(x) is a normal matrix then u*u(1) = 0 since

u* = vT. If L(x) is a real symmetric matrix then uT = vT,

c] =0

and i1

- %.[ Z (U(1—J))TU(J)], i 1.2°

J=1

(g}
n

To determine u in the event that A = A(0) has multiplicity m
in (4.2-1) we note that since v in (4.2-13) may be selected as any
vector in the m-dimensional null space of LT(O) - A(0)I and since
L(x) is fully analytic, aV(LT(O) - 2(0)I) is spanned by the values

at x = 0 of m independent analytic vectors, which we may take as the

rows of the m x n matrix VT(O) = VT. Then from (4.2-6)
i-] - . - . .
v (L(-3) 0, (-3, (3) - ¢ (4.2-23)
j=0
or
i-1 o . i-1 _
Y L(3=3),3) _ T Y 2 (1-3),@3) (4.2-24)
j=0 j=0
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Similarly we form an n x m matrix U(0) = U where the columns

of U are derived from the analytic right eigenvectors of A and

i-1 i-1
VT z L(]-J)U(J) = VT Z U(‘]) !\(1-‘]) = A(1) (4.2_25)
Jj=0 j=0
In particular, if i =1,
VLY = Tt Mpy = 4Ty ) = (1) (4.2-26)

where A(]) is an m x m diagonal matrix consisting of the m first
derivatives of A and the columns of V and U are normalized so that
VTU = I. Equation (4.2-26) shows that V and U must diagonalize
the matrices L(]) and [(]) = PL(])P. Furthermore, if A(]) has
distinct values on its diagonal then V and U are unique. We now

turn to an example.

Example (4.2-27): Let

1 X 1 0 0 1
L(x) = = L(O) + X L(])(O) = + X

x 1 0 1 1 O
The eigenvalues of L(x) are ay, = 1 * x and Agg) = + 1 for all
Xe® '
Analytic eigenvectors of L(x) may be found from the non-zero
columns of the rank one constituent idempotent matrices L] and

L2. Using Theorem (2.1-33) we arrive at
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1 ]
2 2 0 7 "2
L,(x) = L,(x) =
‘ 11 2 A 1
7 2 7 2
Then _
[ 2 /2
(x) ? (x) ?
u,(x) = Up(X) =
1 ” 2 /o
b 2- --7-

are the analytic unit eigenvectors of L(x) and they are the unique
unit vectors that form the columns in the matrix S which diagonalizes

L (0y:

AR 102 2] -
2 2L To ] |2 21 [ o
2 Y.

L 1 Ye _ Y -

R T I v B AL

Furthermore if v is any vector such that vTu] # 0 or vTu2 70

and v ¢ aV(LT - AI) then

0 1 0 1

VT uy = 1 or vT u, = -1
1 0 1 1
T T
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Since if vT = (x,y) then

(xoy) |0 1 %
V2 V2
V2 X —=+Yy—&
1 0| |5 2 2
= :]
V2 V2 V2 V2
AR I ]
or
(x,y) |0 1 fﬁ—
V2 -X 2, y V2
1 ofl2 K 2
= =_]
7 V2 V2 V2
X7 -Y 72 X2 Y=

and we have agreement with (4.2-17) for i = 1. Note that it is

essential that u (or v) lie on the trajectory of an analytic eigen-

vector for this formulation to work.

4.3 Numerical Approach

In numerical work the algorithm (inverse iteration) [22],
(L - AI)ui+] = V5 (4.3-1)

vi =/l ugll, (4.3-2)
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is often used to determine an eigenvector u corresponding to the
eigenvalue A where A=A+ e, Solving (4.3-1) we have

... = (L - il)"vi (4.3-3)

i+
In practice, the matrix (L - iI) is given an LU factorization and
the iteration (4.3-1) is carried out as a series of back sub-
stitution stages. Since each back substitution stage only in-
volves solving a triangular linear system the LU decomposition
stage is the major effort in the computation [23].

These practical considerations provide a strong incentive
to study the structure of (L - iI)'] with the hope that it can
be utilized in constructing LI.

If L = L(0) is a diagonable matrix with s distinct eigen-

values then

S
~ -1 ~ -]
(L= =20 0y =207 Ly
j=1
S
~ -1 -] ~ -1
(L-a0)7 == L+ Z (xJ - 3) L (4.3-4)
J=1
Jj#i

follows from Theorem (2.1-32).

Now consider
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. -1 . -1

S

£ Y0y - ii)"gj]. (4.3-5)
-1

-

(SR SV

The first term of the right side of (4.3-5) vanishes since

(1 - Ld) L4 (I - Lj) = 0 is a constant and we have

L= (1= L) (L- D7 (1= L)
S
==Y 0 *1)']Lj (4.3-6)
=1
J#1

Furthermore, Li is a generalized inverse of LA =L - AiI since

1 1
(L= D) (I- L)L = A(DTT = L)L = A1) = L= a1 (4.37)

Finally since Pi(O), the total projector of the i; - group, is
equal to L, we have (dropping the subscript i),
I

Ly = (1= P)(L - aD)7 (I - P) (4.3-8)

From Lemma (4.2-11) however,

(1-p)=L" (4.3-9)

(I -P)L N

I
A
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is also a generalized inverse of Lx but since I - P is idempotent

I _

LA = L;. Therefore we write

L= (- P - A )" (I - P) (4.3-10)

and note that LI satisfies conditions (4.2-14) and (4.2-15), namely

This form of LI is especially convenient since (L - XI)'] may
be computed previously to determine the eigenvector u and since
the idempotent matrix I - P is easily multiplied by a vector
particularly if P has only rank one, i.e.,

(I-ul)b=b-(vblu (4.3-11)

or

bT(I - uv') = b - (blu)v'. (4.3-12)
In practice, instead of directly inverting (L - XI)'], an LU
decomposition of L - AL is formed.

The following has proved to be an efficient procedure if

XA is non-repeated.
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1. Form an LU decomposition of L - AL
2. Use the LU decomposition in an inverse iteration scheme to

find an eigenvector u.

T, dL
(I - uv) U -

3. Solve for z in LLz

4. Solve for y in Luy

Z .

du _ Tvo _ o (T
5. - (I ~uv)y=y-(vyut+ cqu

where Lu and LL are upper and lower triangular matrices computed
in the LU factorization of L - Al.

If X is a repeated eigenvalue with multiplicity m then it
may be necessary to resort to a technique such as the method of
diagonalizing PL(])P given in Section 4.2 to find an analytic

eigenvector u, before proceeding with,

R dL
3. Solve for z in LLz (1 -P) I U

]
N

4. Solve for y in Luy

du _
5. Ix - (I - P)y + cyu.
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Chapter 5

Design Sensitivity in Finite Element

Models of Dynamical Structures

The finite element method is used extensively for solving
boundary value problems involving partial differential operators.
Its success depends largely on its ability to deal effectively
with complicated domains and boundary conditions. Its major
disadvantage is that it often requires large amounts of computer
time to find solutions. It makes sense then to develop efficient
methods to update existing solutions when small design changes
are made in order to avoid a complete re-analysis.

In this chapter, methods for computing a linear dynamical
system's sensitivity to design changes are discussed and two
illustrative examples are presented. The methods described are
directly applicable to solutions generated by the finite element
method [1, 24-26] or similar methods. To begin we shall outline
how the finite element method can be derived for a static homo-

geneous boundary value problem in the plane.

5.1 The Finite Element Method

Consider the boundary value problem
Lu = f in q,

(5.1-1)
u=0 ona
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where L: H](Q) - LZ(Q) is the 2nd order partial differential

operator:
-3 o duy 3 .U
- 5§{p ax] 3y [a ay] *cu,
H](Q) = {ueLy(n): M= u,and === u el ()}, PpsqsC
2YVT 93X ay y 2 * Foto
and f ¢ LZ(Q)’ and @ is a connected, closed, and bounded domain in

9?2 with boundary 3@.

Now suppose that we define the following inner product

on H](Q) to be

“/-01\/ + U Wy + uv) (5.1-2)
for any u, v ¢ H](Q), and consider the quantity
A
(Lu,v) = (u,v),

with v = 0 on 3Q.

If (u,v)L is integrated by parts over the domain Q, an

application of Green's identities yields

(u,v)L =~/~(pu v, + qu v + cuv) +~l;f-puxv + quyv).

_/g (puxvx + quyvy + cuv). (5.1-4)
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It can be shown that [25] if p,q and c are strictly positive and

continuous then positive constants o« and g exist such that
ol (w,u)12 < L) 1Y% < sl(u,u)]/? (5.1-5)

and so (u,u)L = 0 if and only if u = 0.
Since (u,v)L = (v,u)L (symmetric),

and

(aug + Bup,v) = a(ug,v) + 8(uy,v) (1inear)

we have established that (u,v)L is an inner product on
H;(Q) = {u e H](Q): u = 0 on 3q}.
Since (u,v)L is an inner product on Hl(Q) we may now apply

the Projection Theorem (2.2-20) to find a numerical solution for u.

To find an approximate solution to 5.1.1 let M C Hé be
spanned by the Hamel basis B = {¢],¢2,...,¢m}, then
m
u = z 256, (5.1-8)

is a vector in M C Hé. We seek & such that

I|Lu - £|| < ||Lu - || » for all u e M

By Theorem (2.2-20), u must satisfy
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J J
n
( 12;] 23655 05) = (F105)
n
;g% (65 ¢J)LzJ = (f,¢j) for all 45 € B (5.1-9)

which we write in matrix form as

Kz

1]
—h

(5.1-10)

where kij = (¢i,¢j)L.
The functions ¢; € Hé(ﬂ) may be constructed by triangulating
the domain @ [25] as shown in Figure (5.1-11). We then require

¢i(x,y) to satisfy

where nj = (xj’yj) is a vertex in the triangulation of Q. This

choice of the ¢i will tend to cause K to have a banded structure
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since K is populated by inner products (¢i’ ¢j)L which are non-

zero only if n, and "j are sufficiently close in the triangulation.
Since the matrix K was generated by using the Projection

Theorem (2.2-20) with the inner product (-,-)L on the space Hé(n),

we would, in general expect K to change if the domain Q were

to change. Thus, it is natural to consider the variable finite ele-

ment problem
K(e)z() = f(Q) (5.1-12)

where Q@ is now considered to be a variable domain. Suppose

T(e) = ', T: R >R (5.1-13)
is a mapping operating on the domain @ such that
Q' = a(a) = 2(0) + an, o eD (5.1-14)

where ACZs?Z is a connected, closed and bounded set whose points
are such that every point in A corresponds to some point in

Q(0) C &2 where the addition operation in (5.1-13) is vector
addition of the points in Q(0) to the corresponding points in A
and where T is a topological homeomorphism for o ¢ D. Then if
Q(0) is given a triangulation, we may construct a matrix K(a)

such that
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K(a) = K(2(a)) = K(2(0) + an)

and the variable problem K(a)x(a) = f(a) results. We now define

the directional derivative of K(a) as

DK(a(0),8) = 1im K(2(0) + an) - K(a(0)) (5.1-15)

)
a0

(If this limit exists for any @ as defined above then K(a) is

Gateaux differentiable and DK((0),A) is its Gateaux derivative.)

5.2 Dynamical Problems

The distributed parameter forced vibration problem (without

damping) can be written as

2
Ly 25(x,t) + Lyu(x,t) = f(x,t) (5.2-1)
at
B(u) = g(x,t) on aaxT (5.2-2)
C(u) = r(x,0) in @ (5.2-3)

where L] and L2 are self adjoint positive definite operators on @,
u is taken from a function space V(axT) defined on the product
space QxT derived from the spacial domain @ (k = 2,3) and T

is the temporal domain [0,t]. In addition, boundary conditions
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(5.2-2) defined on 3axT, where 3Q is the spatial boundary of @,
may be given along with initial conditions (5.2-3).

When the finite element method is used to obtain an approxi-
mate solution to (5.2-1, 2 and 3), it is usual to arrive at a

lTumped parameter model of the form

Mz(t) + Kz(t) = F(t) (5.2-4)

where M is an n x n matrix

K is an n x n matrix

z(t) is an n-vector consisting of n = km time varying
coefficients of the spline basis functions ¢; € B related to the
triangulation of Q
and f(t) is an n vector resulting from projecting f(x,t) onto
the finite subspace spanned by B.

We are mainly concerned with the variable problem

M(a)z(ast) + K(a)z(ast) = Fla,t) (5.2-5)

and the related generalized eigenvalue problem [28]

[K(a) - a(a) M(a)lu(a) =0 (5.2-6)

where o accounts for a changing spacial domain
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This problem can be related to the symmetric eigenvalue problem

in standard form through the use of the following transformation [8],

u = M']/Zv, (5.2-7)
where M']/2 is the positive definite square root of M'] and
dependence on o is understood. Then

M1/ 2172, =y (5.2-8)

Since M']/2 is positive definite and since K and M are analytic

1/2 1/2KM-]/2

functions of a ¢ D, M~ and therefore M~ are analytic
on D. Thus (5.2-6) is equivalent to the variable eigenvalue
problem in standard form of the previous section and the eigen-
values Ai(a) and particular corresponding eigenvectors Vi(“) i=1,n,
are analytic for a ¢ D.

It is not convenient to determine the derivatives of Ai(a)
and Vi(“) from (5.2-8) since the transformation M']/z(a) may be
difficult to compute and the transformed matrix in (5.2-8) is
usually difficult to differentiate. Instead (5.2-6) is used.
After differentiating and rearranging (5.2-6) we arrive at

du _ dK dM  dax
[K - )\M] F: P [a&' - }\E - do M]U (5.2-9)
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Solving

and

and z ¢

vectors

i

for %g-with a generalized inverse Di, we obtain

_ I dK dM _dx
=-0y [gy - g " g Mutz
= (K - AM)
= (K - AM)I satisfy
I -
Dy D, = D,
(K - AM). We may assume that analytic eigen-

exist such that

ul (a)M(a)u. (a) = 6..

J 1]

since after substituting (5.2-7) into

VI(a)vj(a) - 5.,

we have

T
i

u

1]

1/2 ,1/2 - T -
M M uj ui M uj éij'

Differentiating (5.2-12) gives
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T
du.
HE? Muj + u

du.

T dM™ T =
i Ma‘gj—o.

do Y5 T Y5

Now suppose u satisfies (5.2-12). Then from Lemma (4.2-11)

pf = (1 - wuM)Dy (I - MuuT) (5.2-15)
is also a generalized inverse of DA since
D, uu™ = Muu' D, = 0. (5.2-16)
Substituting D] in (5.2-10) with z = cu gives
= -0 rgE - M+ (5.2-17)

Multiplying (5.2-17) by u'M and applying (5.2-12) shows that
c= -1y, (5.2-18)
2 d )
Again we must determine DI to complete the formulation. The
approach is similar to the one used in the standard eigenvalue
problem.

Suppose S is a matrix such that

STK - aMS = A - AI (5.2-19)
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Then we may expand K - AM as [29]

n
K- aM=S(a - AL)ST = }E: (A - A)G;

i (5.2-20)
i=1
where
u.u.T
G. = J 1
! uTMu
i
and
GiMGj = GijGi‘ (5.2-22)
Similarly,
n
Nl -1
(K-2m7" = 3 (a - )76, (5.2-23)
i=1

If PG is the sum of the m matrices Gk associated with eigenvalue

A of multiplicity m then
DY = (1 - PM)(K - M) (I - HPy) (5.2-24)
is a generalized inverse of K - AM such that
DiMu = 0 (5.2-25)
A e

uTMD; - 0. (5.2-26)

75



If u is determined through the inverse iteration algorithm [26]

= Mv

(K = AM)us,q = My,

(5.2-27)

<
|

i = ui/lluillm

then the algorithm given in (4.3) is essentially unchanged.

The eigenvalue derivative may be found by multiplying (5.2-9)

T

by v, ve#K-=-2rM) and solving for dr/da

T ,dK _dM
VLRSI
= 4o 7da’  iere viMu # 0. (5.2-28)

vTMu

dx
da

The system (5.1-4) can be modified to include dissipative
terms by adding the term Cz to the left side [28]. We then have the

damped system

M(a)z(ast) + Cz(ast) + Kz(ast) = F(a,t) (5.2-29)

and the related generalized eigenvalue problem

(Az(a)M(a) + A(a)C(a) + K(a))u(a) =0 (5.2-30)

where the positive semi-definite matrix C accounts for viscous

damping.
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The 'damped' eigensystem of equation (5.2-30) is usually
more difficult to solve than the corresponding system (5.2-6)
without damping. However, under special circumstances the eigen-
vectors of the damped system are also eigenvectors of the cor-
responding undamped system. This is true, for example, if C is

some linear combination of K and M, i.e.,
C = gK + yM, By eR (5.2-31)

It has been shown that [30]

kmTe = o1k (5.2-32)

is a necessary and sufficient condition for the eigensystem of
(5.2-30) to be uncoupled when transformed to the modal coordinates
of the corresponding eigensystem of (5.2-6). If (5.2-32) holds
for o ¢ D C& then the eigenvectors of the damped system do
not depend on C(a) and their derivatives may be computed directly
from (5.2-17).

The eigenvalue derivatives may be determined by differentiating

(5.2-30) and solving for dx/da to obtain

T,.2 dM dC dK
v (A ot et EE)“

da
= (5.2-33)
do vTCu + 2AvTMu
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Remark: Some caution must be taken when using this formula since
the eigenvalues are not differentiable for particular values of
the matrix C. For example, suppose u is an eigenvector of (5.2-30)
then

AzuTMu + AUTCU + uTKu =0 (5.2-34)

is satisfied by

—u'cu i_[(uTCu)2 - auTmy uTKu]]/2
A= T : (5.2-35)
2u Mu
If
(uTcu)? = 4u"Mu uTku (5.2-36)

then the mode corresponding to u is said to be critically damped [31]
and the eigenvalue A is not analytic. This can be verified by

attempting to differentiate (5.2-35).

5.3 Examples

This section is devoted to two design sensitivity examples
involving finite element vibration models.

In the first example we will use the methods presented in
Chapters 4 and 5 to compute a Taylor series for the lowest natural
frequency of a triangular plane elastic element. The design

variation consists of a changing node (vertex) position. The
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second example involves a fixed-fixed plate assembled from several
plane elastic triangular elements which is undergoing boundary

shape variations.

Example (5.3-1): Consider the plane elastic element shown in
Figure (5.3-2). Following standard procedures and notation [1,2],

the stiffness matrix is given as a function of x by

K(x) =
4 0 2(x-1) -2 -2(x+1) 2
4 0 2(x+1) 0O -2(x+1)
t x2-2x#2 -(x-1) X%  x-1 (5.3-3)
x2-2x+2 x+1 -x2
x2+2x+2 -(x+1)
symmetric x2+2x+2
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(x],y])
(0,1) (.5,1) (1,1)

(X55¥5) (x3,¥3)
(‘]so) (]90)

Figure 5.3-2 Triangular Element (shown in three design positions)
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where

s s

t is the plate thickness,
X = X{s
_ T
K(x) --/; B'(x) C B(x) dv,
b] 0 b2 0
_ 1
I a] b] u, b2
a] = X3 = Xy T 2 b]
a2 = Xyt X3 T X - 1 b2
a3 = Xg = Xy T =Xy - 1 b3
2A = b]x] + b2x2 + b3x3 =2 and
V = At.
Then K(]) - dK
dx
0 0 2 0 -2
0 0 2 0
2x-1 -1 -2X
2x+2 1
symmetric 2x+2
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0 0o o0 0 0 o0
0 0 0 0 0
(2) 1 de t 2 0 -2 0 ]
K = 5"m=g (5.3-5)
dx 2 0 -2
2 0
symmetric 2
K(i)=0 i>3

For the mass matrix we use

=

I

I

I
w| e+

—

which is a lumped mass formulation [2].

Since the area A is a constant

If the plate thickness t is set equal to 3, M =1 and
D.(x) = K(x) = a(x)I .

A

The smallest non-zero eigenvalue of K(0) is determined as
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and its corresponding unit eigenvector is

0
1
V2
u(0) = —=
2 | o
-1
0

We may now use (4.2-16 and 17) to determine a Taylor series for A(x).

For LI = DI we use (4.2-13), i.e.

oF = ([ - w']) (K- 207" (I - w)

to find that
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The first 10 Taylor series coefficients to single precision accuracy

are

) < 0.0
2(2) = _ 500000
23) < 0.0
2(4) = 138890
Z(5) = 0.0

2(6) = 001543
(1)

= 0.0
A(8) = _ 052641
(9 - 0.0

A(10)= 061548

With these coefficients, A(x) may be approximated as

n
A(x) = :E: xix(ix
i=0

In Table (5.3-6a) a Taylor series representing A(x) is evaluated
for x =0tox=1.5and forn=2, 4, 6, 8, 10 and 20. In Table
(5.3-6b) a direct numerical solution for A(x) is presented for
the same values of x. Figure (5.3-7) presents these data
graphically.

A comparison between the values of A(x) given by the Taylor
series and the values of A(x) obtained by direct evaluation show

excellent agreement even when n = 2.
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The efficiency of the technique may make design sensitivity
calculations of eigenvalues and eigenvectors feasible in many
practical situations. For example, if an inverse iteration method
is used to determine the eigenvector at x = 0 then subsequent
determinations of each of the Taylor coefficients A(i) and u(i)
involve little extra effort since the generalized inverse DI is
easily determined from 4.2-13 (see Section 4.3). (The method is
especially efficient if the matrix K(x) is only linear or quad-
ratic in x since in these cases most of the matrices K(i) = L(i)
in Equations (4.2-16 and 17) are null.) Since the Taylor coef-
ficients can be obtained so economically, there is a strong in-
centive to represent the design with a Taylor series. Then
subsequent evaluations of the eigenvalue and eigenvector as the
design is modified can be carried out with substantially less
computational effort.

The next example involves a finite element model assembled
from thirty two plane elastic elements similar to the element of
example (5.3-1). The example illustrates the results of a design
sensitivity calculation for an eigenvalue depending on a vari-

able boundary shape.

Example (5.3-7): Figures (5.3-8) through (5.3-12) illustrate the
sensitivity on the Towest eigenvalue of a dynamic finite model
to changes of the boundary shape. Figure (5.3-8a) shows the
baseline design. The lowest eigenvalue for the baseline

design is calculated as 14.44. (Figure (5.3-8b) illustrates
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the mode shape corresponding to this eigenvalue.) In
Figures (5.3-9) through (5.3-12) the shape of the lower edge
of the model is changed. In each case an estimate of the
new eigenvalue is compared with the result of a finite
element run for the new configuration. The estimates are
based on a single first order directional derivative of the
eigenvalue with respect to some direction h (see Definition
(2.2-10)) which is related to the variable boundary. The
direction h is determined by a gradient projection method as
a direction (in the design space) which causes the eigen-
value to increase without increasing the volume (mass) of
the plate. (For a comprehensive discussion of this and
similar techniques see [3].) Each subsequent variation in
the design is determined by moving along the direction h an
increased distance.

A comparison between a direct evaluation of X and the
first order estimate of A shows good agreement for moderate
changes in the design but for extreme design changes the

estimate is substantially higher than the direct evaluation.

88



ubLsag autL|aseg 8-£°G a4nbL4

9¢yy ¥l = aneAusabL3 o3 Burpuodsauuo) adeys apoy (q)

33e|d paxL{-paxiL4 jo uorjeinbuetua] (e)

89



abuey)y ubLsaqg 3s4l{ 6-£°G d4nbL4

€L6€°0¢ anpeAuabry paindwo)

0v%0°02 = anjeAuabL3 pajewrls]

90



abueyy ubrLsaq puodas QL-£°G 34nbL4

¥G98°92 = @anjeAuabL3 payndwo)

v¥p9°G2 = anLeaudbL] pajewlls3

91



abuey) ubrsag patyl LL-€°G d4nbiy

v06€ " ¥€
Lyve L

an|eAuabL3 paindwo)

an|eAuabL3 pajewlys3

92



abueyy ubrsag yjuno4 21-£°G d4nbiL4

L6LL P an|eauabr3 pajndwo)

LG¥8°9€ = an|eAuabL] pajeuwlls]

93



Chapter 6

Discussion and Further Study

6.1 Discussion

Modal analysis has become a standard tool used in the design of
dynamical systems. By numerically determining certain eigenvalues
and eigenvectors associated with a linear structural model a designer
can investigate how a particular structural design will perform
dynamically. The eigenvalues are related to the natural frequencies
of the structure and the eigenvectors indicate the associated
vibratory modes.

If the designer is concerned with dynamical performance,
several redesigns and re-evaluations of the eigenvalues and
eigenvectors may be necessary before a suitable design is found.
Since this procedure is costly in computer time, there has been
an incentive to find improved methods.

This thesis presented a technique to represent an eigenvalue
and eigenvector by a Taylor series in a design variable. Since
the Taylor coefficients can be determined to arbitrary order,
excellent estimates may be easily calculated for design changes
which do not exceed the radius of convergence of the series.

Since the coefficients of the Taylor series can be computed with
substantially less effort than recomputing the eigenvalue or

eigenvector, the procedure has the potential to reduce the number
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of calculations necessary to carry out the design of dynamical
structures. There is also the potential to use the method in the
implementation of optimal design algorithms.

Two representative example problems were presented. In one
of them, twenty Taylor coefficients of a specified eigenvalue
were determined after a single finite element run. These coef-
ficients were used to represent the eigenvalue as a power series
in the design variable. Comparison between separate finite

element runs and the Taylor series showed excellent agreement.

6.2 Methods

Each Taylor coefficient is determined by repeatedly evaluating
a simple recursive formula which is derived through an application
of generalized inverse theory. The procedure is simplified by
using a generalized inverse matrix specially selected to annihilate
certain terms in the formulation. The generalized inverse itself
need not be formed explicitly if the eigenvector is determined
through the inverse iteration method, with the result that each
Taylor series coefficient is computed with no more than O(nz)
multiplications.

The technique was extended to compute derivatives for the
eigenvalues and eigenvectors of the generalized eigenvalue
problem (K - AM)u = 0 and there was some discussion of the damped

eigenvalue problem (sz + AC + K)u = 0.
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6.3 Suggestions for Further Study

There are several questions involving eigensystem derivatives
which deserve further study.

Necessary conditions for eigenvalue differentiability are in
short supply. It may be possible to use Equation (4.2-25) to
construct a sequence of necessary conditions for the full analy-
ticity of diagonable matrices similar to the sufficient condition
given by the reduction process. (Equation (4.2-26) amounts to such
a necessary condition.)

A convenient computational method for determining the radius
of convergence for Taylor series representing eigenvalues and
eigenvectors would be useful in app]iéations. Lower bounds have
been given [14] which unfortunately often severely underestimate
the actual convergence radius.

Most of the results of this thesis can be extended to eigen-
value problems involving linear operators on Hilbert spaces. Ex-

cellent references for continued study are Refs [10-14 and 19].
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