


e VN0

3 1293 10649 0075 LIZRARY

MickizznEizte
Uziversity

This is to certify that the
dissertation entitled
SOME ISOPARAMETRIC HYPERSURFACES IN A
COMPLEX HYPERBOLIC SPACE AND THEIR
COUNTERPARTS IN ANTI-DE SITTER SPACE TIME

presented by
Micheal H. Vernon

has been accepted towards fulfillment
of the requirements for

__Ph.D,  degreein _Mathematics

Major profecsori

Gerald D. Ludden
Date___7/24/85

MSU is an Affirmative Acticn/Equal Opportunity Institution o-127m




MSU

RETURNING MATERIALS:
Place in book drop to
remove this checkout from

LIBRARIES
A S——— your record. FINES will
be charged if book is
returned after the date
stamped below.
.APR_U'SH‘&

IN19 8T




| HESIS

VT

3 1293 10649 0075 LIZRALY

Mickizantate
Uilvers:ly

This is to certify that the
dissertation entitled
SOME ISOPARAMETRIC HYPERSURFACES IN A

COMPLEX HYPERBOLIC SPACE AND THEIR
COUNTERPARTS IN ANTI-DE SITTER SPACE TIME

presented by
Micheal H. Vernon

has been accepted towards fulfillment
of the requirements for

__Ph,D,  degreein _Mathematics

Major 1:n-ofa|s<n':i

Gerald D. Ludden
Date____7/24/85

MSU is an Affirmative Actirn/Equal Opportunity Institution o127




MSU

LIBRARIES
A

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.

© 138738

IN19 BT




SOME ISOPARAMETRIC REAL HYPERSURFACES OF A COMPLEX
HYPERBOLIC SPACE AND THEIR COUNTERPARTS
IN
ANTI-DE SITTER SPACE TIME
By

Micheal Hugh Vernon

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1985



ABSTRACT

SOME ISOPARAMETRIC HYPERSURFACES OF A COMPLEX HYPERBOLIC
SPACE AND THEIR COUNTERPARTS
IN
ANTI-DE SITTER SPACE TIME

By

Micheal Hugh Vernon

In this study, real hypersurfaces of a complex hyperbolic space,
i.e. a complex Riemannian manifold of negative constant holomorphic
sectional curvature, that satisfy certain tensor equations are
classified by utilizing a Lorentzian hyperbolic S'-fiber bundle over
the ambient complex space. All the hypersurfaces classified are
isoparametric (have constant principal curvatures), although this
hypothesis is used primarily for congruence. As a byproduct of the
classification, some information is gained concerning S'-invariant
hypersurfaces of Lorentzian manifolds of negative constant

sectional curvature. The major results are as follows:






Theorem 4

A complete, connected contact hypersurface of a complex
hyperbolic space of complex dimension n and holomorphic sectional
curvature -4 is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic real hyperbolic
subspace of dimension n and sectional curvature -1,

ii) a tube of radius r>0 about a totally geodesic complex
hyperbolic subspace of complex dimension n-1 and holomorphic
sectional curvature -4,

iii) a geodesic hypersphere of radius r>0, or

iv) a horosphere.

Iheorem S
A complete connected hypersurface of a complex hyperbolic

space of complex dimension n and holomorphic sectional curvature
-4 whose second fundamental form commutes with the induced
almost contact structure is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic complex
hyperbolic  subspace of complex dimension p, O<p<n-1, and
holomorphic sectional curvature -4, or

ii) a horosphere.

Corollary.

A semi-symmetric S'-invariant hypersurface of anti-De Sitter
space time is congruent to an S'-fiber bundle over one of the

hypersurfaces of Theorem S.
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INTRODUCTION

The study of hypersurfaces of a given manifold is fundamental to
understanding the geometric structure of its submanifolds and
ultimately the intrinsic geometry of the ambient space. This has been
an especially productive endeavor for hypersurfaces of spaces of
constant sectional curvature and more recently for real hypersurfaces
of complex manifolds that have constant holomorphic sectional
curvature.

In this study, real hypersurfaces of a complex hyperbolic space,
i.e. 2 complex Riemannian manifold of negative constant holomorphic
sectional curvature, that satisfy certain tensor equations are
classified by utilizing a Lorentzian hyperbolic S'-fiber bundle over the
ambient complex space. All the hypersurfaces classified are
isoparametric (have constant principal curvatures), although this
hypothesis is used primarily for congruence. As a byproduct of the
classification, some information is gained concermning S'-invariant
hypersurfaces of Lorentzian manifolds of negative constant sectional
curvature.

The first condition studied is that of a real hypersurface of 2
complex hyperbolic space being contact with respect to the induced
metric. Okumura, [19), studied this condition in 1966 for real

hypersurfaces of complex spaces of constant holomorphic sectional
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curvature. Kon, [13), found a classification of contact hypersurfaces

of complex projective space in terms of Takagi’s work on
isoparametric  hypersurfaces of complex projective space, [27).
However, the classifications of contact real hypersurfaces as tubes
occurred in [19) and then in [22], published in 1983. In these papers, a
contact hypersurface of complex euclidean space is shown to be
either a hypersphere or a certain type of cylinder.

With the publication of [2] in 1982, Kon’s classification of
contact hypersurfaces of a complex projective space can be made in
terms of tubes. However, a complete classification of contact
hypersurfaces of complex projective space can also be made by using
the techniques of section 3 and the congruences of a sphere. For 2
contact hypersurface of a complex hyperbolic space the classification

is given by the following theorem:

Theorem 4

A complete, connected contact hypersurface of a complex
hyperbolic space of complex dimension n and holomorphic sectional
curvature -4 is congruent to one of the following:

i) a tube of radius r>0 about 2a totally geodesic real hyperbolic
subspace of dimension n and sectional curvature -1,

ii) 3 tube of radius r>0 about a totally geodesic complex
hyperbolic subspace of complex dimension n-1 and holomorphic
sectional curvature -4,

iii) a geodesic hypersphere of radius r>0, or

iv) a horosphere.






3
A condition related to that of a real hypersurface of a complex

Riemannian manifold of constant holomorphic sectional curvature
being contact is that of the induced almost contact structure ¢
commuting with the second fundamental form H. Kon obtained a
classification of real hypersurfaces satisfying this condition as well
in [13), again in terms of (27). Romero and Montiel, [16]), found a
complete classification of real hypersurfaces of a complex hyperbolic
space satisfying ¢H=H$ in 1980, in terms of explicitly defined models
in the Lorentzian S'-fiber bundle over the ambient space. In our study,
the classification is essentially new and is in terms of hypersurfaces
of complex hyperbolic space instead of submersions of S'-fiber

bundles as occurs in [16). To wit:

Theorem S

A complete connected hypersurface of a complex hyperbolic space
of complex dimension n and holomorphic sectional curvature -4
whose second fundamental form commutes with the induced almost
contact structure is congruent to one of the following:

i) a tube of radius r>0 about 2 totally geodesic complex

hyperbolic subspace of complex dimension p, O<psn-1, and
holomorphic sectional curvature -4, or

ii) a horosphere.

Semi-symmetric spaces are those whose curvature tensor
annihilates itself when acting as a derivation. Nomizu, [17), in 1967

and Tanno, [15), in 1969 investigated semi-symmetric hypersurfaces



vy



4
of euclidean space. Tanno and Takahashi, [28], widened the

investigation to semi-symmetric hypersurfaces of spheres in 1970.
In 1969, [23]), and in 1971, [24]), Ryan broadened the class of ambient
spaces in this type of investigation to those of constant sectional
curvature. However, as far as the author knows, no work has been
done on semi-symmetric hypersurfaces of an indefinite space which

makes the following corollary of more than passing interest.

Corollary
A semi-symmetric S'-invariant hypersurface of anti-de Sitter

space time is congruent to an S'-fiber bundle over one of the
hypersurfaces of Theorem S.

Other results that are of intrinsic value themselves are generated
enroute to the above theorems and corollary. For instance, the
construction of the model spaces in section 3 is of interest as the
technique is quite general and should yield satisfying
characterizations of isoparametric hypersurfaces in other ambient
spaces. In section 4, not only is the Lorentzian S'-fiber bundle over
complex hyperbolic space used to obtain information concerning
hypersurfaces of the Riemannian complex space, but the Riemannian
structure of complex hyperbolic space is used to obtain information
concerning hypersurfaces of the Lorentzian S'-fiber bundle. In
section 5, a congruence theorem for a certain type of isoparametric
hypersurface in a3 complex hyperbolic space is proven that enables the
classification. Finally, in section 6 a horosphere in complex

!
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9
representations of the S'-fiber bundies over the hypersurfaces of Theorem

S.

The condition of a certain direction on a real hypersurface of complex
hyperbolic space being principal is central to the study. This condition
merits an independent study, and hopefully, the following pages will

facilitate such a study.



0. Geometric Preliminaries

Throughout this study, all manifolds will be assumed to be
smooth (C*) and complete. C*(M) will denote the set of smooth real
valued functions ona manifold M. The base fields of all manifolds
discussed here will be R (the field of real numbers) and C (the field

of complex numbers).
If pis apoint of a manifoid M, TP(N) will designate the tangent

space to M at p, which is the vector space generated by all tangent
vectorsto M at p. Avector field onM is a smooth assignment of a
tangent vector to each point of M. Hence, on the manifolds under
consideration, the set of all vector fields will at eachpoint generate
the tangent space. The set of vector fields ona manifold M will be

referred to as the tangent bundle, T(M). T(M) forms a fiber bundie
over M with Tp(n) as the fiber over a point peM. A subbundle of T(M)

will be called a distribution onM. For eachpeM, there is a
nieghborhood U of p in M for which we can select n vector fields

from T(M) with the property that the correspondingtangent vectors
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are linearly independent in Tq(n) at each qeU.

Aseach Tp(n) is an n-dimensional real vector space, the notion

of tensor applies. In the same way that a tangent vector at peM is

extended to a vector field onM, we canextend the notion of a tensor

on Tp(M) to that of tensor field onM. For instance, let {X;...X p} be

a subset of T(M) such that {X;,...X n}q is linearly independent at each
point q in an open nieghborhoodU of p in M. Define a positive

definite inner product oneach Tq(r‘l), qeU, by <xi,xj>q=sij (where § is

the Kronecker delta). By extending <, > bilinearly to the remainder

of Tq(n), for each qeU, we obtain a tensor field of type (0,2) onU

(and consequently a local orthonormal basis of T(M)). In fact tensors
of this sort are fundamental in semi-Riemannian geometry and when
a certain one is selected to work with ona semi-Riemannian
manifold it is often called the first fundamental form of the
manifold. In many respects its choice really determines the

geometry of a manifold, hence only certain bilinear tensor fields will



be admissable as a first fundamental form ona given manifold.

Definition

A metric tensor (or first fundamental form) ona manifold M is a
non-degenerate symmetric tensor field of type (0,2) onM, that has
the property that the dimension of the negative definite subbundle of
T(M) (with respect to the metric tensor) is constant onM. |

The dimension of the negative definite subbundle is usually
refered to as the jndex of the manifold. Of course, if the index is
constant then the dimensions of the positive definite and neutral

subbundles will remain constant as well. If M is a semi-Riemannian
manifold, then Mn'“ will denote that M is of dimension m and has

index n.

The existence of a global metric tensor field on a manifold and
its nature will determine the intrinsic geometry of the manifold.
This was shown by Gauss for surfaces in R3 and by Riemann for
manifolds that admit a positive definite metric tensor. The full

generalization to manifolds with indefinite metrics occured under






the impetus of relativity.

If a manifold admits a metric tensor it is said to be
semi-Riemannian. Two important special cases will concern us: A
manifold that admits a positive definite metric tensor is called a
Riemannian manifold. A semi-Riemannian manifold of index one is
called Lorentzian (Incidentally, Lorentzian geometry is the
geometry of special relativity.)

The metric tensor ona manifold is used to define the lengths of
vector fields and the angles between them. This allows us to speak
of a local orthonormal basis of T(M), which will be called a frame. If
a metric is indefinite, then there are nontrivial vectors of both
negative and zero length. We shall say that a vector field is
spacelike if it has positive length, timelike if it has negative length

and ligntlike or peutral if it has length zero.

The metric tensor ona manifold also canbe used to measure
how one vector field may vary with respect to any other as a point is
moved about on the manifold. This will ultimately lead to the

curvature of a manifold, so we shall define the vector rate of change
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in any direction on a manifold:

Definiti

A connection ona manifold M is a function

V:T(MRT(M)-T(M)

that satisfies the following properties:

(0.1 va+gY Z=foZ*gVYZ

(0.2) Vy(aY+bZ)=aV yY+bV 2

(0.3) Vy(IY)=(XNY+(V ¥

for all X,Y,ZeT(M), abeR and ,geC*(M).
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VY is called the covariant derivative of Y with respect to X for

the connectionV.

In general there may be many different connectionsona
semi-Riemannian manifold M. However, we shall be interested in
only one, namely the so-called Levi-Civita metric connection:

On a semi-Riemannian manifold M there exists a unique

connectionV such that

(0.4) [X,Y]=X oY-Y oX=Vy Y-V yX for all XYeT(M),

i.e. the connection has zero torsion, and

(0.5) X<Y,2>=<V Y.2>+<Y,V 42> for all X.Y.ZeT(M),

where <, > is the metric tensor field onM. If (0.1)-(0.5) hold for a
connectionV, then V is called the Levi-Civita metric connectionon

M.
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The notion of covariant derivative of arbitrary tensor fields is
crucial in defining aspects of intrinsic geometry of manifolds and
the extrinsic geometry of submanifolds, as we will see. It is defined
inductively as follows:

Let K be a tensor field of degree (r,s) ona semi-Riemannian
s

manifold M; i.e. K is a multilinear mapping of TT Tx(n) into the
i=1

space of contravariant tensors of degree r at x for eachxeM. Define

the covariant derivative of K with respect to XeT(M) by

S

(VxK)(X| ,...,X S)=VX(K(X| ,...,X S))-z K(X' ,...,X i-1 ,Vxxi,x i+ .....X S)
i=1

for any set {X;,..X cJCT(M). By setting

(VK)(X, pees® S.X)=(VXK)(X] poee® S)

we obtain a tensor field VK onM of type (r,s+1). In this paper we
shall investigate only tensors of type (0,0) (C* functions), (1,0)
(vector fields), (1,1) (C* endomorphisms on T(M)), (0,2) (bilinear

forms, e.g. metrics), (1,3) (curvature tensors) and their derivatives.
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In particular, for VeT(M) and feC™(M), V\,f=Vf. From this we can

obtain a (1,0) tensor field (i.e. a vector field) Vf from f by setting
<V1,X>=Xf for all XeT(M). VT is called the gradient of f in M, and is
nothing more than the first covariant derivative of f with respect to
the metric onM. By taking the secondcovariant derivative of f we

can obtain a (0,2) tensor onM: define Hess(f;M):T(M)xT(M)- R by

Hess(TM)(X,Y)=<V y(V1),Y>=XY(1)-V yY(1)=(V 21XX:Y).

forall X,YeT(M). Hess(f;M) is called the hessian of f onM.

The existence of tensors that are covariant constant will force
certain geometric and topological consequences ona manifold, as we
will see later in this survey section. An easy example of a tensor
that is covariant constant is that of a constant function ona

manifold M. Clearly, if f is constant onM then for any vector field V
we must have 0=Vf=V\f. (This is easily verified using the partial

differential operators obtained fom a local coordinate system as a
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local orthonormal basis of T(M).) Conversely, if V,f=Vf=0 for all

VeT(M) it is not hard to show that f is constant onM. In general we
say that a tensor K onM is parallel if VK=0. Notice that (0.5) says
that the Levi-Civita metric tensor of a semi-Riemannian manifold is
parallel.

The idea of "straight” in a semi-Riemannian manifold is closely |
linked to the notion of covariant constant. For instance, given any
line L in RM and peL, there is a unit tangent vector V in the direction
of one of the rays emanating from p alongL. Translating the origin
of R" to p, we can choose a coordinate system of R" in such a way

that L is a coordinate axis, say span{x;). We may then set V=9/3x, so
that V,,V=0.

The notion of "straight” is also related to the idea of distance in
a semi-Riemannian manifold. In an arbitrary manifold, a length
minimizing curve is called geodesic. Let o:[0,r]+M be a curvein a
semi-Riemannian manifold M that is parameterized by arclength. Let
V=0'(t) be its velocity vector field at o(t) for any te[0r). If O is

geodesic, then its acceleration must vanish, i.e. o”(t)=0. Using this
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and the trivial observation of the previous paragraph as motivation
we shall say that a curve o is geodesic if V,,vV=0along ¢ where V is

the velocity vector field of o; i.e. a curve O is geodesic if its

velocity vector field is covariant constant with respect to itself.
For each peM”, there exist n geodesics through p that are mutually

orthogonal at p. Then the velocity vectors of these geodesics at p

are mutually orthogonal tangent vectors and hence form a basis for
Tp(M). Conversely, given an orthonormal basis of Tp(n). there exist n

corresponding geodesics whose velocity vectors at p are the
elements of the given basis. As the geodesics are the means of
measuring distances in a semi-Riemannian manifold we see that a
semi-Riemannian manifold is approximated by its tangent spaces.

That is, given any point peM, there exists a neighborhoodof the origin
in Tp(n) that is diffeomorphic to a neighborhoodof p in M. Not

surprisingly, a diffeomorphism canbe defined in terms of geodesics.
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Definition
Let peM and X be a unit vector in Tp(n). Let ¥(t) be the geodesic

emanating from p with velocity vector X at p (i.e. ¥'(0)=X and

¥(0)=p), with domain (a,b). Set expp(rx)=b'(r) for re(ab).

exp, carries lines through the origin in Tp(n) to geodesics
through peM. Thus, distances in M near p are approximated by
distances in Tp(n). expy, is a convenient tool for discussing
semi-Riemannian analogues of spheres and tubes (as is done in
section 3). Although Tp(l“l) approximates a neighborhoodof peM, the

approximation is in general not very good; that is, the neighborhood
may have to be of very small diameter in order to acheive a given
degree of accuracy. This Is a manifestation of the intrinsic
geometry M. In particular, the degree of accuracywill depend upon
the curvature of M at p.

The curvature of a curve in RZ or a surface in R® is easily

understood intuitively. However, generalizing this conceptto
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Riemannian and semi-Riemannian manifolds requires the definition of

a new tensor field:

Definiti
Let M be a semi-Riemannian manifold with Levi-Civita connection

V. The curvature tensor onM is defined to be a tensor field R of type

(1,3) given by:

for ail X,Y,ZeT(M).

R seems far removed from the usual idea of Gaussian curvature
of curves and surfaces, but is a necessary generalization to discuss
the curvature in semi-Riemannian manifolds of arbitrary dimension.
However, this generalization gives rise to more than just one notion
of curvature. The notion that generalizes Gaussian curvature is that

of sectional curvature.
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Definition
Let X,Y be linearly independent elements of T(M) where M is
semi-Riemannian manifold with metric tensor <, >. The sectional

curvature of the plane TT=span{X,Y} onM is given by

K(TT)= <R(X,Y)X,Y>/[<X X><Y,Y>-<X Y>2),

In case X and Y are orthonormal, K(TT)=<R(X,Y)X,Y>. Not
surprisingly, K(TT)is a geometric invariant, i.e. K(IT)is independent of
the choiceof basis of 1. It is not hard to verify that for a surface in

R3, the Gaussian curvature agrees with the sectional curvature.

If l((ﬂp)=l(p is constant for any choice of non-degenerate plane

section ITp at p, then M is said to have constant sectional curvature

at p. F. Schur showed that if M is a connected semi-Riemannian

manifold that has constant sectional curvature at each point p of M,
then Kp is a constant over M; i.e. Kp=K for all peM. In this case, M is

said to be of constant sectional curvature K.
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For example, a euclidean space with a semi-Riemannian metric

tensor and Levi-Civita metric connectionhas K(T)=0 for every plane
distribution TI. Assuch, R, is said to be flat, that is, a space of

constant sectional curvature 0. If we consider the sphere

sn(r‘Z):{(x 0¥ n) I X 02*){] 24 4% nz:rz}'

with the metric induced by the ambient euclidean space, it is not hard
to show that K(TT)=r"2 for every plane distribution T onS(r™2). This
is an example of a space of positive constant sectional curvature

r 2. The hyperboloid

n
HYr2)={(k k) vk )| -R 23 %{22-T2)

i=1
endowed with the metric

n n
ds=(3 axjedx; /- (1/4r) 3 (x,)2)
i=0 i=0

is an example of a space of constant negative sectional curvature

42
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Complete, simply connectedspaces of constant sectional
curvature are called real space forms. In [32], any Riemannian space
form is shown to be isometric to one of the examples in the
previous paragraph as part of a classification of semi-Riemannian
space forms. We shall have the opportunity to work with the

semi-Riemannian euclidean space R,2™!) equipped with the metric

2n+1
KYP=K g K Y10 il
i=2
and an imbedded Lorentzian hypersurface of R,2MY

lenﬂ (")4(" O'XI - 20+2)| -302-31 2*822*...*8 2m22-_-_|}'

(with the appropriate metric, H,Z"" (-1) is aLorentzian space form
of sectional curvature -1).
Areal space form will have a particularly simple form for its

curvature tensor. If M(c) has constant sectional curvature c, then

R(X,Y)Z=c(<Z,Y>X-<Z X>Y).
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(Aswe already knew, the curvature tensor of a euclidean space

vanishes.) Ons™(1),

R(X,Y)Z=<Z,Y>X-<ZX>Y

and onH(-1)

R(X,Y)Z=<Z X>Y-<ZY>X.

If we compute the covariant derivative of R ona space form we will
find that VR=0. So constant sectional curvature is linked to the idea
of covariant constancy.

In general we will say that a semi-Riemannian space form is
locally symmetric if its curvature tensor is parallel. Thus, local
symmetry is a generalization of constant sectional curvature. Local
symmetry has a generalization, as well. Define a new tensor field
RR by letting R act onitself as a derivation: let X,YeT(M). Define a

(1,3) tensor field R(X,Y)-R by setting



22

(R(X.Y)R)(V.W)Z=[R(X,Y).R(V.W)IZ-R(R(X,Y)V.W)Z-R(VR(X,Y)W)Z

for all V\W,2eT(M). Applying (0.4) and the definition of R, we find
that VR=0 implies that R(X,Y)-R=0 for all X,YeT(M), or simply R-R=0.
A manifold whose curvature tensor satisfies R-R=0 is said to be
semi-symmetric_([25]). Hence, semi-symmetry is a generalization of
local symmetry. A great deal of research has been performed on
semi-symmetric Riemannian manifolds, (see [15], [17], [23]-{26] and
[281-(30]), but little if any onsemi-symmetric Lorentzian spaces as
is done in section 4.

All of the preceeding geometric concepts are aspects of what is
called the intrinsic geometry of a semi-Riemannian manifold, as they
arise from the structures intrinsic to the manifold and not from any
external considerations. However, by immersing one
semi-Riemannian manifold into another, we can study the geometry
of the image of the immersion as viewed from the ambient manifold.
This geometry is called the extrinsic geometry of the immersion.

Animmersed manifold in a semi-Riemannian manifold is called a
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submanifold. (We shall blur the distinction between an immersion
and its image.) It must form a semi-Riemannian manifold with
structures compatible with those onthe ambient manifold; e.g. the
metric induced by the ambient manifold forms a semi-Riemannian
metric onthe submanifold with index at most that of the ambient
manifold.

As the extrinsic geometry of a submanifold is intricately linked |
to the intrinsic geometries of the ambient space and the
submanifold, it canbe determined by "comparing” the two, i.e. by
finding mathematical relations between similar aspects of the two
geometries. Hence, given information about either the intrinsic or
extrinsic geometry of a submanifold or the intrinsic geometry of the
ambient manifold, one canusually determine some information
concerning an unknown geometry.

Let M be an immersed semi-Riemannian submanifold of a

semi-Riemannian manifold M. The Levi-Civita connectionV on M will

induce a connectionV onM that is Levi-Civita with respect to the

metric induced onM by M. For X,YeT(M) we canwrite
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(0.6) VyY=VyY+B(XY)

where the first term is the component tangent to M and the second

term is normal. B forms a symmetric, normal-valued, bilinear form

onT(M)xT(M) and is called the second fundamental form of the
submanifold M. (0.6) is referred to as the Gayss formuyla for M in M. |

If £ is anormal field to M in T(M), then we canwrite the

Weingarten formula for M in f:

(0.7) Vy&=-ApXsViyl

where as before the first term is tangential and the second normal
toM. A& is called the Weingarten map associated to £ and forms a

self-adjoint tangent bundle endomorphism on T(M). V* is called the
pormal connection onM and actually satisfies all the axioms of a
connectionif tangent vectors and normal vectors are used

appropriately ([3]). Due to the unique nature of B, its covariant
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derivative, ¥B, has a separate definition and is defined (as in [3]) by

(V5 BXY,2) =V (BIY,2)-B( VyY.2)-B(Y,V «2)

for all X,Y,2eT(M). ¥ is called the connectionof Van der
Waerden-Bortolotti.

The tensors B:T(M)xT(M)=T(M)* and A:T(M)xT(M)*-T(M) obtained
by (0.6) and (0.7) contain all the information necessary to determine

the extrinsic geometry of M in M, and are intimately related via

(0.8) <€B(XY)>=<ApXY>

for all X,YeT(M) and £eT(M)*. For instance, the curvature tensor & of
M is related by B to the curvature tensor R of M by the Gauss

equation:

(0.9) <R(X.Y)Z,W>=<R(X,Y)2,w> +<B(X.W),B(Y,2)>-<B(X,2),B(Y,W)>
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and the Codazziequation:

(0.10) (R(X,¥)2) +=(¥yBX(Y.2)-(¥yB)X,2)

for all X,Y,ZWeT(M), where * denotes the normal component relative
to M. In these equations we see that the second fundamental form
provides a measure of the difference between the curvature of the
submanifold and that of the ambient space. In case the ambient
manifold is a space form M(k), the Gauss and Codazziequations are

simpler and more explicit:

<R(X,Y)ZW>= k(<ZY><X W>-<Z X><YW>)

+<B(Y,2),B(X,w)>-<B(X,2),B(Y,w)>

and

(VyBX(X.2)=(9yBXY.2)
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for all X,Y,ZWeT(M).
The second fundamental form can be used to define a normal

field that is, in a sense, a measure of how M curves relative to M. Let

X)X be a local orthonormal basis of T(M) consisting of
non-neutral vector fields and set €;=1 if X; Is spacellke and €;=-1 If

X is timelike. The normal field

EH=(VH)Z €iB(Xi,Xi)

is called the mean curvature vector of Min M. It will lengthen and

twist in T(M) accordingto the relative curvature of M. M is said to
be minimal_in M if £y vanishes onM.

Straightness and distance are concepts that serve as useful
tools for comparing the intrinsic and extrinsic geometry of a
submanifold. For example, geodesics in S(r), r>0, are great circles
isometric to S'(r) which are certainly not geodesic in the ambient

space R3. Hence, 5%(r) is not flat in R3 although locally it may
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appear to be so. In contrast, an extrinsically flat surface in R3 is
forcedto be a plane as all its geodesics would have to be
extrinsically straight, that is, lines. The notion of extrinsic flatness

is formulated as follows:

Definiti

If all the geodesics of a submanifold of a semi-Riemannian

manifold are also geodesic in the ambient manifold, then the

submanifold is said to be totally geodesic.

It is easy to see geometrically that the totally geodesic
submanifolds of a euclidean space are euclidean spaces of lower
dimensions, and that the totally geodesic submanifolds of spheres
are merely great spheres of lower dimensions. However, for spaces
in which geometric intuition fails us, it would be nice to have an
analytic criterion of this condition. It happens that there is a nice
characterization of this in terms of the second fundamental form. In

a semi-Riemannian manifold, it canbe shown that a submanifold is
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totally geodesic if and only if its second fundamental form vanishes.

From these examples we catch a glimpse of why the intrinsic
geometry of a manifold is determined by its totally geodesic
submanifolds. Onthe other side of the coin, we cansee that the
length of the second fundamental form serves as a measure of how
far a submanifold deviates from being extrinsically flat and the
length of the mean curvature vector serves as a measure of how far
the submanifold deviates from being minimal.

From (0.8) we see that for a vector field & normal to a totally

geodesic submanifold M, the associated Weingarten map vanishes, i.e.
Ap=0-ly(m). This is an example of a more general condition that can

be imposed ona submanifold, that of requiring the existence of a
normal field to have an associated weingarten map that is

proportional to the identity map onT(M). In general, a normal field
is said to be ymbillic onM if A& is proportional to the identity map
onT(M). If B(X,Y)=<XY>{ y forall X,YeT(M), then M is said to be

totally umbillic in the ambient semi-Riemannian space.
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For example, a sphere S%(r) of radius 1//r in R3 is totally

umbillic with a single global Weingarten map Ap=rl1(s2(r)y (Notice

that there is only one choicefor £ onS2(r) and that £=£‘,52(r).) In

general, S'Yr) is totally umbillic in R™, m>n. Small spheres S™(r’)
are also totally umbillic in SYr), for m<n and r<r".

The submanifolds that will be of primary concern in the
following sections will be those of codimension one in the ambient
space, i.e. hypersurfaces. As there is only one uniquely (up to choice
of orientation) determined normal direction on a hypersurface, many
of the preceeding formulae that express the extrinsic geometry will
simplify considerably.

Let M1 be a hypersurface of the semi-Riemannian manifold M.

Let £ be a global unit normal field onM in M. Then the Gauss and

weingarten fomulae canbe written as

(0.11) VY=V, Ysb(XY)E  and  VyE=-HX
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for all X,YeT(M). Notice that H=A£ and that the second fundamental

form canbe expressed as a (0,2) tensor. However, evenb canbe
discarded when (0.8) is applied: b(X,Y)=<HX,Y>. Hence, almost all
the information concerning the extrinsic geometry of the
hypersurface is embodied in the single (1,1) tensor H. Henceforth, we
shall refer to H as the second fundamental form of the hypersurface.

The Gauss and Codazzi equations for a hypersurface M of a real

space form M(k) are:

R(X,Y)Z=k(<Z,Y>X-<Z X>Y)+<HY,Z>HX-<HX,Z>HY

and

(VHIY=(V yH)X

for all X,Y,2eT(M), which means that the curvature of a hypersurface
is (relatively) easy to analyse. We immediately see that the task of

determining the extrinsic geometry of a hypersurface reduces to
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analysing the behavior of the T(M) endomorphism H.

Of course, many different types of hypersurfaces of Riemannian
space forms have already been classified. However, this is not at all
the case where the ambient space form is semi-Riemannian or in
particular if the ambient space form is merely Lorentzian. The
primary reason for this is that H, although seif-adjoint, may not be
diagonalizable (i.e. have real eigenvalues) on T(M) if M has non-zero
index; a stark contrast to the Riemannian case. In sections 4 and 5,
an initial attack onthis problem is made when semi-symmetric
Lorentzian hypersurfaces of a certain ambient Lorentzian space form
are classified.

However, the main purpose of the subsequent sections is to
classify some hypersurfaces in a certain Riemannian manifold that
does not have constant sectional curvature. Yet, this ambient space
will have a specific notion of curvature being constant if we view it
as a manifold with base field C instead of R. So a short discussion
of complex manifolds should ensue.

Let M be a 2n-dimensional Riemannian manifold with JeEnd(T(M))
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that has the property that J2=- T(M) Then at each point peM, Tp(n)

forms a complex vector space that is isomorphic to C" and J canbe

associated with the endomorphism obtained on C"*R2", viewed as a
real vector space, from multiplication by i=y/-1. J is called an
almost complex structure onM. Clearly, if such a structure exists on
a Riemannian manifold, the manifold is necessarily

even-dimensional.

of course, C™! itself forms such a manifold. In fact, ™! can

lead us to the correct generalization of semi-Riemannian manifolds

over R to those with base field C: by defining a symmetric bilinear

form
q n
Fq(z,w)=-z W, 2 Z W
FO k=q+|

for 23(25.2y ...Z ) and W=(W Wy ....W ). we obtain a non-degenerate
Hermitian metric onC™! that turns €™ into a semi-Riemannian

complex manifold of index q. C™ I with the metric Fq will usually be

written Cq“". (:q“"l canbe made into a real even-dimensional
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semi-Riemannian euclidean space qun*z by using as a metric the

(0,2) tensor <, >=Re(Fq). Now the almost complex structure J is

Hermitian with respect to <, >, that is

<JX,JY>=<X)Y>

for all real vector fields X and Y on qun‘z. so J is both orthogonal
and skew-adjoint. Furthermore, J will be parallel with respect to

the Levi-Civita connectioninduced by this metric. qun*z is an

example of what is called a Kaehler semi-Riemannian manifold.

Definiti

A semi-Riemannian manifold M with an almost complex structure
J and metric <, > is Kaehler provided that
i) <JXJY>=<X)Y> for all X,YeM, and

i) VJ=0.
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Ona Kaehler manifold, J is often referred to simply as a complex

structure.
Other examples canbe derived from Cq"". For instance,

consider the sphere
ST ()=(ze €™ | | 2] 24| 2y |2+..4 | 2 | 220).

we can form a Riemannian submersion of 52™! (1) onto an complex
n-dimensional Riemannian manifold CP™ by identifying all points on
5201 (1) that lie ona complex line through the origin of C™! . The
metric and almost complex structure of CP" canbe induced from the
natural complex structure of C™!. Notice that 52™! (1) rorms a
principal fiber bundle over CPP with fiber S(1). CP"is called
complex projective space.

If M is a Kaehler manifold, then for any peM and XeT(M), the plane

Tlp=span{xp,Jx D} is invariant under J and is said to be a holomorphic

section at p. The sectional curvature K(ﬂp) is called the holomorphic



36

sectional curvature of M by M at p. If the sectional curvature is a

constant for all J-invariant planes Up at peM, i.e. K(Tlp)=l<|> for all

holomorphic sections ﬂp. then M is said to be of constant
holomorphic sectional curvature at p. Asin the real case, it is well

known that if M is of constant holomorphic sectional curvature Kp at

each peM, then KD is a constant over M. In this caseM is said to be of

constant holomorphic sectional curvature. If, in addition, M is

simply connected, M is called a complex space form.
Cq”*' is a complex space form of zeroholomorphic sectional

curvature whereas on CP" a metric (namely the Fubini-Study metric
tensor) canbe constructed that turns CP" into a complex space form
of holomorphic sectional curvature 4. CP" is compact and has
diameter 7r/2under this metric. The primary ambient space in the
following sections is a complex hyperbolic space, CH", that has
constant holomorphic sectional curvature -4. Sections 1, 2 and 3
only use the abstract properties derived from the constant

holomorphic sectional curvature of cH". However, CH" canalso be
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constructed in a fashion similar to that of CP", only in this case the
submersion is from a Lorentzian hyperbolic space form. This
construction is crucial to obtaining the geometric results of the
later sections.

As with real space forms, complex space forms and their
submanifolds admit relatively simple expressions for their curvature
tensors. If M(c) is a complex space form of holomorphic sectional

curvature ¢, then the curvature tensor R of M is given by

(0.12) R(X.Y)Z=(c/4)<Y,Z>X-<X.Z>Y

+<JY,2> IX-<JIX 2> JY+2<X JY> JZ]

for all XY, ZeT(M).

If Mis areal semi-Riemannian manifold immersed in a complex

space form M(c) of complex dimension n, then the Gauss and

Weingarten formulae hold for M as a submanifold of the real

2n-dimensional semi-Riemannian manifold M. Now (0.9) and (0.10)

can be combined with (0.12) to obtain the Gauss and Codazzi
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equations of M in M.
In the sequel we shall be interested in the particular case where
M is a real hypersurface of the Riemannian complex hyperbolic space

form CH'(-4).
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1. Real Hypersurfaces of CH'(-4)

Let CH'(-4), n>2, denote a complex hyperbolic space with the
Bergman metric tensor, i.e. a complex space form of constant
holomorphic sectional curvature -4. Let M2~ be areal
hypersurface of CH", V and ¥ be the metric connectionsonM and
CHM, respectively, so that the Gauss and Weingarten formulae canbe

written as:

(L) VY = Uy Ye<HXY>E , VyE=-HX forall X,YeT(M),

where & is a unit normal field onM in CH" and H denotes the second
fundamental form (in this case the weingarten map of & in End[T(M)]).
We shall refer to the eigenvalues and eigenvectors of H in R and T(M),
respectively, as principal curvatures and principal directions.

If Jis the complex structure of the ambient complex space form,
it induces an endomorphism 4» of rank 2n-2 and a linear functional f

on T(M) given by setting at eachpoint p of M



(1.2)  JX = dX+1(X)E

for all X in Tp(rl). Set U=-JZ. AsM is of codimension one we have

UeT(M). The following equations now hold for all X,Y in T(M):

(1.3) 1(X) = <X,U>

(14) 1(¢x)=0

(15) ¢u=0

(16) $2X = -X+1(X)U

(1.7) <X4Y> = -<xy>

(1.8) <X.dy> = <X, ¥>-1(X)(Y).

(,f,U) is an example of what is called an almost contact structure
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onM. The tensor fields ¢ and U have the following derivatives:

(1.9) VyU = ¢HX

(110) (V)Y = 1(Y)HX-<HX,Y>U.

We also have the usual Gauss and Codazziequations for a real
hypersurface of a complex space form (of holomorphic sectional

curvature -4) in terms of ¢ and H:

(1L1)  R(X.Y)Z = <X,2>Y-<Y,Z>X+<$X 2>$Y-<$Y,2>$X-2<X $Y>$Z

+<HY,Z>HX-<HX,Z>HY

(112)  (VyH)Y-(V yH)X = -f(X)PY+1(Y)$X-2<X $Y>U

for all X,Y,2eT(M), where R is the curvature tensor onM.

An important special case for us will be when U is a principal
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direction on M. Under this assumption, more information canbe
gained concerningthe structure of M. For example, by applying (1.9)

and assuming that HU=oU for some «eC™(M),

VU = $HU =¢(oU) = o-$U = 0

by (1.5). Thus, if Uis principal the trajectories of Uare geodesics in

M. Conversely, if the trajectories of Uare geodesics, then

0=V = ¢HU

which shows that HU € ker($) = span{U} as ¢ is of rank 2n-2 on T(M).
This shows that for a real hypersurface M of CH'(-4), the direction U
is principal if and only if the trajectories of UonM are geodesic,
(14].

The assumption that U is a principal direction will also forcea

strong relationship to hold between H and ¢:







Lemma 1-[14]
Suppose that U is a principal direction onM with principal

curvature «. Then

(1.13) 2(H$H+$)=oc(PH+H$) onM.
Proof:

Assume that HU = U for eC™(M) onM. Applying (1.9), for all

XeT(M),

(VH = Vi HU-HV U = Vy(ocU)-HVy U

= (Xo)U+ocVacU-HPHX = (Xoc)UsocpHX-HHX.

As VyH is self-adjoint, for all YeT(M),

<(VyHIYU> = <Y(V yHU>

= (Xo)f (Y)*oc<$HX,Y>-<HPHX,Y>.



Now using (1.4) and (1.12),

AVHY=(V yHXU> = -2<X $Y>.

Combining these equations yields
=2<X,$Y>=(Xo) (Y)+ox<Y,PHX>- <Y, HPHX>
(Yo (X)-oc<X,dHY>+<X HPHY>
=(Xo)T(Y)-(Yo)T(X)+oc<($H+HP)X,Y>-2<HPHX,Y>
where (1.7) is used to combine terms. Rewrite the above equation as

(114)  2<(HdH+$IX,Y>=(Xo ) (Y)-(Yo )T (X)+ox<(pH+HP)X,Y>.

Replacing X by Uand then Y by Uin (1.14) yields Yec=(Ue)f(Y) and

Xoc=(Uoc)f(X). Substituting these values back into (1.14) gives
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2<(HH+$)X,Y>=(Uc)T(X)T(Y)-(Uo)T (Y)T(X)*oc<($pH+H)X,Y>

=oc<($HHP)X,Y>.

AsX and Y are arbitrary we have the assertion. //

Once Uis principal it is clear that we canextend to a local

orthonormal basis of principal directions {X;...X on-2.U} of T(M)
with {X....X on-5} forming a local orthonormal basis of ker(f).

Assume that each Xi has as principal curvature Ki. i=1,...2n-2. The

next question to ask, since ker(f) is ¢-invariant, are there nontrivial
¢-invariant subspaces of ker(f) that are also H-invariant? Not

surprisingly, the answer is yes.

Lemma 2-{14]
If A is a principal curvature onM, let D, denote the
distribution of principal directions onM with principal curvature A.

If XeD\Nker(f) and AZ-1z0, then $X is also principal.






Proof:

2HPH+IX=2AH$X+2¢X  and o(PH+HP)X=oAPX+ocHX.

So by lemma |,

H$X=(ocA-2)/(2A-o<)-$X

if o2 If =2 then 2A2-2=0 as X and hence $X canbe chosento

be nontrivial in ker(f). This is equivalent to A2=1 and oc=4. //

For the remaining case assume first that <=2 and A=-1. Then, for

XeD_y, (1.13) yields ¢X principal with principal curvature 1.

However, if «=2and A=1, then for XeD,, (1.13) is an identity onthe

distribution span{X,$X,U).

A major consequenceof Lemma 2 is that whenever U is principal

onM, we canchoose a frame {X; ...X -1 $X|..$X n-1.U} onM that
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consists entirely of principal directions with the property that Q

interchanges the distributions span{X;,..X -} and

span{¢X; ....X -1} Theset {X{...X - $X{.-.$X -} formsa
local basis of the distribution ker(f) onwhich ¢ acts as a complex

structure. The principal curvatures of a ¢-invariant plane

span{X;,$X ;} will be related by

(L15)  ¥;=(oN-2)/ (2N~ x)

where HX;=A;X; and H$X;=¥;$X;, whenever oc=2)\;.

The principal curvatures need not be constant even if U is
principal as we will see in example 4 of section 3. This is contrary
to the situation of the ambient space being CP" (see [14]). However,
there are two classes of real hypersurfaces in CH™ that do have U
principal with all the principal curvatures constant and these are the

subjects of section 2.
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2. Contact Hypersurfaces: Algebraic Consequences of the Contact

Condition

Let M be a 2n-1 dimensional Riemannian manifold that admits a
triple of tensor fields (,1,U), (where ¢eEnd[T(M)], f is a linear
functional on T(M) and UeT(M)), satisfying (1.3) and (1.6). As
remarked in the preceeding section, such a triple ((b,f ,U) forms an
almost contact strycture onM. In general, a Riemannian manifold
that admits an almost contact structure also admits a metric
satisfying (1.8). From these formulae (1.4), (1.5) and (1.7) canbe
obtained. This is a generalization of another intrinsic condition that

canbe imposed on a Riemannian manifold: M is said to be a contact

manifold if it admits a linear functional f that satisfies n(df)”" =0,

(Such a manifold also admits an almost contact structure ($,f,),
)

In section 1, we saw that areal hypersurface M of CH" (in fact of
any complex space form) automatically admits an almost contact

structure that is already compatible with the metric induced from
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. the ambient space. In [19], Okumura showed that if M2l s 5
contact real hypersurface of a complex space form of complex

dimension n, then

(2.1) $H+H$=2pd

onM, where p canbe shown to be a constant. By selecting an

appropriate orientation of M, p may be assumed to be positive. In

particular, (2.1) is equivalent to p M«(af)""!=0. In the following

discussion we shall assume that M is a complete, connected, contact
hypersurface of CH'(-4), with n>3, and obtain algebraic
consequencesof (2.1). Specifically, the principal curvatures and
directions will be determined using (2.1).

Combining (1.5) and (2.1) we have $HU=0, which shows that

HUespan{U}, i.e. U is a principal direction. Set HU=U.
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Lemma 3
Ona contact hypersurface of CHY, H| (1) satisfies the

polynomial

(22) AZ-2pA+op-1=0.

Proof:
Combining Lemma | and formula (2.1), we have HéH+¢=cxp$.

Applying (2.1) again,

op=¢+H(2pd-Hp)=+ 2ptHd-H 24.

S0,

0=H2$-2pHd+(poc-1)

onM. Choosing Xeker(f) we canwrite X=¢Y for some Y (namely

Y=-¢X) to see that
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0=HZX-2pHX*(oxp-)X  for all Xeker(f). //

From this we have

Lemma 4-(13]

o is constant onM, if M is contact.
Proof:

From the proof of Lemma 1, we have Xo=(Uox)f(X) for all XeT(M).
Thus, for Xeker(r)={U}* we have Xx=0. So it suffices to show that
Ux=0.

Since 0=Xx=<V,X>, where Vo denotes the gradient field of the

function «x onM, we have Vespan{U). Thus,

Vx=<Vo,U>U=(Uex)U.

Hence,
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Vx(Vo<)=X(Uo<)U*(Uo<)Y3(U

=X(Uoc)U+(Uo)$HX.

This means that

<Vy(Vo).Y>=X(Uo)(Y)+(Uo)<PHX.Y>

and similarly

<Vy (Vo) X>=Y(Uof (X)#(Uoc) <HY,X>.

But, we also know that

<Vx(Vo<),Y>=X<Vo<,Y>-<Vo<,V xY>

=X(Yo<)-V y Y(ox)

and
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<VY (Vo) X>=Y(Xox)-V Y X(x).

Then,

<Vx(Vo<),Y>-<V Y (Vo) X>=X(Yox)-Y(Xox)+V Y X(oc)-VxY(oO

=[X, Y ox)+[Y,XNex)

=0.

Now

0=<VX(VO(),Y>‘<V Y (Vo<).)(>

=X(Uo )1 (Y )+(Uoc)<PHX,Y>-Y(Uoc)f (X)-(Uoc)<pHY,X>

which yields

(23)  X(Uof(Y)-Y(Ue)f (X)=(Uo)<$HY,X>-(Uec)<$pHX,Y>

=(Uoc)<($H+H)Y,X>
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=2p(Uo) <Y, X>,

Substituting UforY and then for X in (2.3) gives

X(Uoc)=U(Uos)f (X)

and

Y(Uox)=U(Uo )T (Y).

Substituting these values into the left hand side of (2.3) yields

0=2p(Uoc)<¢Y,X>.

Choosing X=¢Y=0 shows that Ux=0.//

Thus, M has at most three distinct principal curvatures, all of

which must be constant by (2.2) and Lemma 4. Since CH"(-4) has no
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complete totally umbillic hypersurfaces (see [S]), we are left with

only two cases to consider:

A)(2.2) has two distinct solutions X ZA,, or

B) (2.2) has only one solution A=ex.

Case B) is the easiest to analyse. Let D, and D denote the
eigendistributions of A and x onM. Of course, Dy, is of dimension
2n-2 and D has dimension 1. It is immediate that ¢ acts as a

complex structure onD,. Requiring (2.2) to have only one solution

forces A=p and pz-ap+l=0. The latter equation has real solutions
only when «2-420. In case «2-4>0, we may regard « as a parameter.
By selecting the orientation of M appropriately, we may assume that
o=2coth(2r)and A=p=tanh(r) or coth(r), for some r>0. Otherwise,

set =2 and A=p=1. So with respect to the frame consisting of

principal directions {X;,..X -1 .$X..$X -1 .U} of T(M), (where for
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eachi=l,..n-1, HX;=AX; and H$X,=A¢$X;), H has only three possible

matrix representations:

i) diag(tanh(r)l 5p_p,2coth(2r)),

ii) diag(coth(r)l o,-p,2coth(2r)), or

Ill) diag(l 20-2'2)’

Notice that in each of these cases, HX=AX+«f(X)U, i.e. M is
totally U-umbillic. These hypersurfaces also satisfy the condition
$H=H}. In fact it is not hard to show that a contact hypersurface is
totally U-umbillic if and only if $H=H$. Real hypersurfaces
satisfying this condition in CH” have been classified in [16].
However, the classification for hypersurfaces satisfying B) in this

paper will involve a new geometric characterization.
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The analysis of case A)is considerably more laborious and
basically new. Wwe first notice that if o2-4<0, then M must satisfy
A). In the following we will show that if M satisfies A)and n23,

then o<2-4<0.

Let Dy and D, be the eigendistributions of X and X,
respectively. Since (2.2) has two distinct solutions A; =\,
A +Ao=2p. Now if XeD;, (2.1) shows that $XeD,. Therefore, ¢

interchanges the distributions Dy and D, from which it follows that

each distribution is of dimension n-1.

Lemma S

If M satisfies A)and n23, then Xy Aop=1.
Proof:
This is established in a series of steps. First assume that o=\

fori=1,2.

Step 1-
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If Xand Y are in Di then so is VxY.
Proof of step 1:

we shall prove this in the case i=1. Let X,YeD |- Then,

<V YU>=X<Y,U>-<Y,V yU>
=-<Y,$HX>
:-}\] <Y,¢X>

=0.

This shows that VyYeker(f) so that HVyYeker(f). Let ZeKer(f). Then

<HVxY,Z>=<V xHY,Z>'<(v xH)Y,Z>
=Ny <V Y.Z>-<Y,(V yH)Z>
=A) <V Y.2>=<Y(V H)X-1(XIPZ+(2)PX-2<X $Z>U>

=)\| <VxY.Z> ‘<Y.(V ZH)X>
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:)\l <VXY,2>‘<Y,V sz>*<Y,Hv ZX>
:)\I <VxY.z>")\ 1 <YV ZX>+7\| <Y,V ZX>

:)‘l <va,z>.

Thus, HVXY=x‘ VXY which completes the proof of step 1.

Step 2-

If XeD; and YeD o, then Vy YeD ,@span{U} and Vy XeD; @span{U}.
Proof of step 2:

Let ZeDl . Then,

<Y,2>20 % 0=<VyY,2>+<Y,V 42> % <VyY,2>=0 by step I.

This yields the first inclusion. The secondfollows in exactly the

same way by choosingZeD.
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Step 3-

If XeDy and YeD pn{$pX}*, then VyYeD and VyXeD. (Here we see

the reason for the stipulation n23.)
Proof of step 3:

From the hypotheses,

<VXY,U>=X<Y,U>‘<Y,V xU>
=-<Y,$HX>
==\ <Y x>

=0.

Combining this with step 2 we have step 3.

Let XeDy and YeD ,n{$X}* with |X]=IYI=1. Applying steps 1.2

and 3 we find that

R(X,Y)Y=V X(VY Y)‘V Y (VxY)"V [X,Y] YeD zlspan{U}
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by writing [X,Y]=V «Y-VyX. However, a direct computation using the
Gauss equation reveals that R(X,Y)Y=(X { Ao-1)XeD ;. Therefore,
R(X,Y)Y=0 and since X is nontrivial we must have Aj A,-1=0.

Now if «=}; for i=1 or 2, the same statements hold if D; and D,

are replaced by D, nker(f) and Dnker(f). //

Because of (2.2) we must have A\j Ap=xp-1. So by lemma 5, «p=2

when n23. (2.2) cannow be written as A2-2pA+1=0. This has two
distinct solutions only when 492-4>0. ie. when «?-4<0. Notice
that =0 is ruled out by xp=2.

Hence, if M is a contact hypersurface satisfying A), « canbe

viewed as a parameter. So set «=2tanh(2r), r>0. Then the solutions
of (2.2) are Ay =tanh(r) and A,=coth(r). (Note that
p=(tanh(r)+coth(r))/2 in this case.) So with respect to a suitably
chosen basis of T(M)=D, @D espan{U}, H has the matrix

representation:
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diag(tanh(r)l -y ,coth(r)l -y ,.2tanh(2r)).

Remark: M. Okumura in [19] treats the case o=\ for i<l or2asa
separate case. But from our work so far we see that this occursin

case A) for a specific r, namely r=In(2+43) so that x=A,=¥'3 and

A quick glance at the classification results in [16] will convince

the reader that not all hypersurfaces satisfying

(2.4) ¢H=H

are contact. Yet, in section S we will still be able to obtain the
same sort of characterization for these hypersurfaces as in the
contact case. Alsoin section 4 we shall analyse hypersurfaces of a
Lorentzian space that submerse into hypersurfaces of CH" satisfying

(2.4). So we should spend a little time onalgebraic consequencesof
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(2.4). (For more detail see [16].)
Combining (2.4) with (1.4) yields U principal; say with principal
curvature «. Anargument similar to that of Lemma 4 shows that «

is constant. By combining Lemma 1 with (2.4) we have

(M1 ker(r)>-oH ] ker(r) ker(f)=0-

That is, H satisfies the polynomial

(25) AZ-oc\+1=0

onker(f).

This equation has real solutions only if o?-420. In case «?-4>0
we can again regard o as a parameter and set oc=2coth(2r), r>0. The
solutions of (2.5) are now A=tanh(r) or coth(r). In case x=+2 set

A=t

If Dy is a proper subspace of ker(f), then (2.4) ensures that Dy is
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$-invariant. Since ker(f)=D5®D;/y . D;/y is also $-invariant so that
¢ acts as a complex structure oneach of the even dimensional
distributions D, and D/ . From our analysis of case A) for contact

hypersurfaces we see that a hypersurface satisfying (2.4) is not in
general contact.
The possible matrix representations for the second fundamental

form on real hypersurfaces satisfying (2.4) with respect to a

suitably chosen basis of T(M)=D,eD,/,, @span{U} are now

II) diag(l 20‘2'2)’

Of course, if p=0 or p=n-1 in i) then M is contact. ii) is obviously

contact.
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3. Tubes in Complex Hyperbolic Space: the Model Hypersurfaces

In this section, hypersurfaces of CH(-4) are constructed that
have second fundamental forms with the algebraic properties set
forth in section 2. Hence, we are provided with an ample supply of
contact hypersurfaces as well as those satisfying (2.4). Our initial
discussion will be of a more general nature: tubes in Riemannian
manifolds. (For more detail, see [6], [9], (1] and [31])

Recall first the notions of cut point and cut locus. (A detailed
and analytic discussion of cut loci canbe found in Vol Il of [12].) A
cut point of a point p in a Riemannian manifold M is a point c=¥(t),
where ¥ is a geodesic emanating from p=¥(0), with the property that

for s>t, the length of the curve ¥(J), J=[0,s), is greater than the
distance dy(p,¥(s)). For instance, if PeSZ(r), its only cut point is its

antipodal point.
The cut locus of a point peM, written Cut(p), is the set of all cut
points of p. The cut locus of a point ona sphere is a singleton,

whereas for a point p ona cylinder, Cut(p) is the axial line opposite
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p. Define c(p)=min{d(p,q) | qeCut(p)}.
Let N™ be an immersed submanifold of a Riemannian manifold MM,

Define the unit normal sphere bundle of N by:

SH(N)={XeT(N)*: |X]=1}.

Set c(N)=inf{c(p)|peN}. Now for eachre(0,c(N)), define the tube of

radius r about N in M to be the hypersurface given by

Nr=[equ(rx): qeN, XeSH(N)}

1{!",)())(
Mm 7\\ 5
| [

-—+_F ‘q %ﬁ"l\\\
u ‘ II l ‘ "N
[
\ / \
—— — ‘%\15‘______

Let T(t X q) be parallel transiation of vector fields along the geodesic
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(b’x)q:t-»exp q(t)(). For p=exp q(r)()eNr, T(t X q):Tq(N)-*TD(M) is a linear

isometry. Because parallel translation preserves the fibers of

vector bundles in a Riemannian manifold, ([20], p.66), we have
- 1)= 1

and

(32 TyNETN) @ X 0T N,

where £ denotes the isomorphism of parallel translation

For XeS*(N) and qeN, define R(t)eEnd(T o(N)], for each t>0, by

Ax(DY g=2(tX 7 R(Z(X Y g T(LX IR T(LX X )

where R is the curvature tensor of M. Aswe are primarily interested
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in the tangent space of the tube N, set

Rx(D=Rx(D] (x) -

Finally, define F(t,X)eEnd({X} 1), for each XeS*(N) to be the

solution of the initial value problem:

(33) (aZ/dt2)F(LX IRy (DoF(tX g)=0

F(O,Xq)=P

(d/HYF(LX 1] 4=g=-AxoP+P*

for each qeN, where P:{X}*-T(N) and P1:(X}* > T(NN{X}* are
orthogonal projections of the vector bundle {X}*=T(N) e [T(N}*n{X}]

onto the indicated component distributions, and Ay is the Weingarten
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map of X onN in M. Tosimplify notation we shall write F'(s,X q) for

(/AVIF(LX 1| =g ad F(s.X o) Tor (a2/at2F(LX 1] 4.

Theorem 1 -{11]

The second fundamental form of N at p=equ(rx) is given by

(3.4) H=T(r X JoF (r X JoF(rX ) oxlr X )1 //

@

Hence, in order to find an explicit representation of the second

fundamental form of a tube, we need merely select a suitable basis

of T(N,) using (3.1) and (3.2), solve(3.3) and then compute (3.4). Of

course (3.4) says that H.eEnd[T(N.)] at p=equ(rx) is nothing more

than parallel displacement of the endomorphism

F(r.X q)«»F (r.X q)" eEnd[{qu‘l
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along the geodesic ¥y emanating from q and passing through p.

Now we will assume that M is not an arbitrary Riemannian
manifold, but the ambient space discussed in sections 1 and 2,
namely a complex hyperbolic space. Let N be an immersed

submanifold of CH'(-4). AsCH" is a symmetric space, oncea

suitable basis of {Xq}1 is selected (where geN and XeSt(N)), parallel

displacement along the geodesic ¥y will preserve the basis and the
respective orthogonality relations between its elements.

Furthermore, Hr will have the same matrix representation with
respect to the displaced basis as F'(r,X q)oF(r.X q)" has with respect

to the chosen basis of {qul. This simplifies the calculation of
(3.4) considerably.
Anadditional feature of CH" is that Rx(r) is of a particularily

simple form. Let XeS*(N) and Ye{X,JX} *. Direct computations using

the Gauss equation show that:
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(Rg(DY) =T(tX T TIR(Z(LX Y g T(LX X JT(UX X ]
=T(tX ) - T(tX Y ]

==Y q

and

(Rg(1)IX) g=2(tX q)'I [R(T(LX QX T(LX PXQT(tX X ]
=z(tX q)" [-4z(tX )JX g}

=-4J%q

for all t>0. In conjunction with the following observations the task

of computing a representation of H, will be greatly simplified.
As a hypersurface, N has a single well defined global unit normal
€. From the earlier discussion ontubes, at any point p=equ(rx)eNr.

we can write t,p:t(r,xq)xq. In this way a unique point q and a unique
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direction in S‘(Nq) canbe associated to each point peNp. In order to
simplify notation, set Y*=t(r X q)YeTp(N,,) for any Ye{X q}‘. In
particular, we shall write &% for the global normal on N, and & will

refer to the associated direction in S*(N); i.e. {“p=equ(r{q).

ﬂ,{,/” \‘ 7\
\

| v ety {
1 q-exp  (-rEX) \

f
\ / \/

-
———

In terms of section 1,

U"p=-J£" p=-‘t:(r,xq)J£q

and
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(U EAT,N=E (L QT NINE DY) @ (L g E TN

is the $-invariant subspace, ker(f), of Tp(Nr)'

Also, CH™(-4) as a space of constant negative holomorphic
sectional curvature, is a space of negative sectional curvature.
Since CH'(-4) is simply connected, by Theorem 8.1, Chapter VIII, Vol.
2 of [12], all cut loci will be empty. This means that tubes of any
radii may be constructed about smooth submanifolds. In particular, a
certain class of submanifolds will give us tubes that are

hypersurfaces of the type discussed in section 1.

Proposition 1-

A tube around a proper totally geodesic submanifold of CH" is a
hypersurface that has U as a principal direction.
Proof:

Let NT be a totally geodesic submanifold of CH” of dimension

m<2n Let N, be the tube of radius r about N and p=equ(rl',q)eNr.
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From the previous discussion we can select a local orthonormal

basis Bq of {Z‘_q}l that has Uq=-J£ qasan element and contains a basis

of Tq(N).
By Theorem 1 of [S], N is either a totally real or a complex

submanifold of CH". Hence, Uq is either tangential or normal to N.

Thus, Rz(t), P and P! each have diagonal matrix representations with |

respect to Bq. Because A£=0, (3.3) is now

(35) 1) F/(LL JRp(DF(LL )=0, (0]

ii) F(O.{Q)=P and iii) F’(O,Eq)=P".

Order Bq in such a way that Ra(t) is represented by the matrix
diag(-1 o-2.-4). We shall regard (3.5) as a matrix valued differential

equation and will write its matrix solution as F(t,£ ,)=[f{; (t)] where
if



[£)

i,j7,...2n-1.  50(3.5) i) yields

'"ij (t)—rij (t)=0 for iz2n-1, and

f "2n-l,j (t)-41 21, (1)=0 otherwise.

These ordinary differential equations have solutions of the form:

fij(t)=aij2-t+bij2t for i=z2n-1, and

f2n-1,j =32n-1,] e'Zt*DZn_M- e?! otherwise,

where the a; ] 's and the b; j 's are constants with respect to t.
Both P and P* are diagonal with 0’s and I's on the diagonal (of

course: P+P*=l5 ). Thus, from (3.5) ii) and iii), i (t)=0 for i=j for

any t>0, which shows that F(t,£ q) is diagonal with respect to By for
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all t>0. Hence, F'(t£ q) is also diagonal with respect to Bq.

Therefore, Hp is diagonal with respect to the basis of T,(N,) obtained
by parallel translating Bq along the geodesic ¥y from q to p. Since
(U")p is an element of this basis, U is principal at p. Asp is

arbitrary in N, we are done. //

Actually, Proposition 1 is true for any complex space form. The
nature of the solution to (3.5) will depend upon the holomorphic
sectional curvature of the ambient space and the dimension of the
core of the tube, as we will see in the following examples. In the

case at hand, i.e. the ambient space being CH, if N is a totally
geodesic submanifold, f;;(t)=sinh(t) or cosh(t) depending upon
whether the iith entry of Pis 0 or 1, fori=l,..2n-2, and

f2n-1,2n-1 (t)=sinh(2t) or cosh(2t) depending upon whether the

coresponding entry of P is 0 or 1.
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Example 1:
Let N=H™(-1) be a real space form of constant sectional curvature

-1 immersed in CH" as a totally geodesic and totally real

submanifold. (See the proof of Theorem1 in [S]) Let N, be the tube
of radius r about N in CH". If £* is a unit normal to Nr , at each point

p=exp q(rt'.)eNr we canwrite

Tp(Np) = (&%} = TA(N) @ [{E FnT(N)']

where the isomorphism is parallel translation. AsN is totally real

of dimension n, Uq=—J£quq(N), SO U"peTp(Nr). So let
(X} XX n-1 g} be an orthonormal basis of To(N). If ($.f) is the

almost contact structure induced by J onN,, then

Bp=(Xy "X et K DX g IUT)
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forms an orthonormal basis of T(N). Setting ¢Xi=‘c(r,£q)" [$(%; )]

for eachi=1_..n-1 allows us to write

Bg=(X) X 1oy X X g U}

for an orthonormal basis of {Eq}*. With respect to this basis P, P*

and Ha(t) have matrix representations:

P=diag(l .01\

Pt=diag(0p-¢ .| n-1.0) and

Ry ()=diag(-1 5, 2.-4).

for all te(0,r], as endomorphisms on {Z‘,q}l. Straightforward

calculations yield that (3.5) has the matrix solution:
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F(t,t q)=diag(cosh(t)ln_, sinh(I _; ,cosh(2t)).

Now, from (3.4), the second fundamental form, H, of the tube will

have the following matrix representation with respect to the basis

(3.6) H,=diag(tanh(r)l ,_; .coth(r)i_;.2tanh(2r)).

By selecting a suitable frame onN, we see that the

representation of H, depends only uponr and is hence constant on N.

N, is obviously contact and in fact satisfies A): oc?-4<0.

Example 2:

Let N=Cl-lk, k=0,1....n-1, be a complex space form immersed in
CH™(-4) as a totally geodesic submanifold, (see [S]). In casek=0, we
are regarding a point to be a trivial complex space form. Otherwise,

from [S], the CHK will have constant holomorphic sectional curvature



-r
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-4. Let N, be the tube of radius r about N in CH(-4). Let£" bea

global unit normal to N, so that at each p=exp q(rl',q) we can write

ToNp)= {E" I = To(N) @ [T (N E )]

AsN is a complex submanifold of CH, its tangent space is invariant |

under J; s0 T(rE TN is @ ¢-invariant subspace of Tp(Ne). Let

{X, B V) S k} be an orthonormal basis of Tq(N) and extend to

an orthonormal basis

Bq'-'{x' ,...,X k.Jx] ,...,JX k,X k+1 ,...,X n_' .JX k+1 ,...,JX n1 ,Uq]

of {l‘,q}‘. The last 2n-1-2k elements of Bq form a basis of
Tq(N)‘n(Eq}‘. Due to the invariance under J of Tq(N), we have

$(x; J=ErZ JLIX; for all i=t,..n-1. Sollet
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By=(X) "X Xy X

»* »* ] »* ”*
Xk,.,l ..».x n_‘ .¢x k4.| .....éx n_l o(U )p}

be the orthonormal basis of Tp(Nr) obtained by parallel translation

of By With respect to B, P, P! and Rc(t) have the following matr ix

representations:

P=diag(l 71..0 2n-1-2 )

P*=diag(0 oy 7n-1-2k ) ad

Ry (t)=diag(-1 5n-2.,-4) for all t>0.

The radially symmetric matrix solution to (3.5), with respect to By

has matrix representation:
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F(t.E q)=diag(cosh(t)l 2SI 502y 2,8In0(2r)).

Computing (3.4) for this case yields the following matrix

representation for the second fundamental form on N, with respect

to Bp:

(3.7) Hp=diag(tanh(r)l 5..coth(r)l on_o-2.2coth(2r)).

In the context of section 2, the geodesic hypersphere (k=0) and
the tube around a maximal complex space form (k=n-1) are contact
hypersurfaces and satisfy (2.4). These are our models for totally
U-umbillic hypersurfaces of CH". The remaining casesk=l,..,n-2

satisfy (2.4), but are not contact.

Example 3:
Each of the previous examples, despite their obvious differences
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