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ABSTRACT

SOME ISOPARAMETRIC HYPERSURFACES OF A COMPLEX HYPERBOLIC

SPACE AND THEIR COUNTERPARTS

IN

ANTI-DE SITTER SPACE TIME

39

Micheal Hugh Vernon

In this study, real hypersurfaces of a complex hyperbolic space,

Le. a complex Riemannian manifold of negative constant holomorphic

sectional curvature, that satisfy certain tensor equations are

classified by utilizing a Lorentzian hyperbolic Sl-fiber bundle over

the ambient complex space. All the hypersurfaces classified are

isoparametric (have constant principal curvatures), although this

hypothesis is used primarily for congruence. As a byproduct of the

classification, some information is gained concerning Sl-invariant

hypersurfaces of Lorentzian manifolds of negative constant

sectional curvature. The major results are as follows:





Theorem 4

A complete, connected contact hypersurface of a complex

hyperbolic space of complex dimension n and holomorphic sectional

curvature -4 is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic real hyperbolic

subspace of dimension n and sectional curvature -l,

ii) a tube of radius r>0 about a totally geodesic complex

hyperbolic subspace of complex dimension n-i and holomorphic

sectional curvature -4,

iii) a geodesic hmersphere of radius 00, or

iv) ahorosphere.

W

A complete connected hypersurface of a complex hgperbolic

space of complex dimension n and holomorphic sectional curvature

-4 whose second fundamental form commutes with the induced

almost contact structure is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic complex

hyperbolic subspace of complex dimension p, Ospsn-l, and

holomorphic sectional curvature -4, or

ii) a horosphere.

roll

A semi-symmetric 5‘-invariant hypersurface of anti-De Sitter

space time is congruent to an S'-fiber bundle over one of the

hypersurfaces of Theorem 5.
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INTRODUCTION

The study of hypersurfaces of a given manifold is fundamental to

understanding the geometric structure of its submanifolds and

ultimately the intrinsic geometry of the ambient space. This has been

an especially productive endeavor for hypersurfaces of spaces of

constant sectional curvature and more recently for real hypersurfaces

of complex manifolds that have constant holomorphic sectional

curvature.

In this study, real hypersurfaces of a complex hyperbolic space,

Le. a complex Riemannian manifold of negative constant holomorphic

sectional curvature, that satisfy certain tensor equations are

classified by utilizing a Lorentzian hyperbolic SI—fiber bundle over the

ambient complex space. All the hypersurfaces classified are

isoparametric (have constant principal curvatures), although this

hypothesis is used primarily for congruence. As a byproduct of the

classification, some information is gained concerning SI-invariant

hypersurfaces of Lorentzian manifolds of negative constant sectional

curvature.

The first condition studied is that of a real hypersurface of a

complex hyperbolic space being contact with respect to the induced

metric. Okumura, I19], studied this condition in l966 for real

hypersurfaces of complex spaces of constant holomorphic sectional
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curvature. Kon, [13], found a classification of contact hypersurfaces

of complex projective space in terms of Takagi‘s work on

isoparametric hypersurfaces of complex projective space, [27].

However, the classifications of contact real hypersurfaces as tubes

occurred in [19] and then in [22), published in 1983. In these papers, a

contact hypersurface of complex euclidean space is shown to be

either a hypersphere or a certain type of cylinder.

With the publication of [2] in 1982, Kon’s classification of

contact hypersurfaces of a complex projective space can be made in

terms of tubes. However, a complete classification of contact

hypersurfaces of complex projective space can also be made by using

the techniques of section 3 and the congruences of a sphere. For a

contact hypersurface of a complex hyperbolic space the classification

is given by the following theorem:

MEDIA.

A complete, connected contact hypersurface of a complex

hyperbolic space of complex dimension n and holomorphic sectional

curvature -4 is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic real hyperbolic

subspace of dimension n and sectional curvature -l,

ii) a tube of radius r>0 about a totally geodesic complex

hyperbolic subspace of complex dimension n-1 and holomorphic

sectional curvature -4,

iii) a geodesic hypersphere of radius r>0, or

iv) a horosphere.
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A condition related to that of a real hypersurface of a complex

Riemannian manifold of constant holomorphic sectional curvature

being contact is that of the induced almost contact structure A

commuting with the second fundamental form H. Kon obtained a

classification of real hypersurfaces satisfying this condition as well

in [l3], again in terms of [2?]. Romero and Montiel, [16), found a

complete classification of real hypersurfaces of a complex hyperbolic

space satisfying AHzHA in l980, in terms of explicitly defined models

in the Lorentzian S‘-fiber bundle over the ambient space. In our study,

the classification is essentially new and is in terms of hypersurfaces

of complex hyperbolic space instead of submersions of S'-fiber

bundles as occurs in [16]. To wit:

mm

A complete connected hypersurface of a complex hyperbolic space

of complex dimension n and holomorphic sectional curvature -4

whose second fundamental form commutes with the induced almost

contact structure is congruent to one of the following:

i) a tube of radius r>0 about a totally geodesic complex

hyperbolic subspace of complex dimension p, Ospsn-I, and

holomorphic sectional curvature -4, or

ii) a horosphere.

Semi-symmetric spaces are those whose curvature tensor

annihilates itself when acting as a derivation. Nomizu, [17], in 196?

and Tanno, [15), in 1969 investigated semi-symmetric hypersurfaces



v‘ t



4

of euclidean space. Tanno and Takahashi, [28], widened the

investigation to semi-symmetric hypersurfaces of spheres in 1970.

In l969, I23], and in 197l, [24], Ryan broadened the class of ambient

spaces in this type of investigation to those of constant sectional

curvature. However, as far as the author knows, no work has been

done on semi-symmetric hypersurfaces of an indefinite space which

makes the following corollary of more than passing interest.

MD”.

A semi-wtric sLinvariant Waco of anti-dc Sitter

spaeetimeisconguent toanSI-fiberbmdleoveroneofthe

Ween ofTheoremS.

Other results that are of intrinsic value themselves are generated

enroute to the above theorems and corollary. For instance, the

construction of the model spaces in section 3 is of interest as the

technique is quite general and should yield satisfying

characterizations of isoparametric hipersurfaces in other ambient

spaces. In section 4, not only is the Lorentzian Sl-fiber bundle over

complex hyperbolic space used to obtain information concerning

hypersurfaces of the Riemannian complex space, but the Riemannian

structure of complex hyperbolic space is used to obtain information

concerning hmersurfaces of the Lorentzian SI-fiber bundle. In

section 5, a congruence theorem for a certain type of isoparametric

hypersurface in acomplex hyperbolic space is proven that enables the

classification. Finally, in section 6 a horosphere in complex

i
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representations of the S‘-fiber bundles over the hypersurfaces of Theorem

5.

The condition of a certain direction on a real hypersurface of complex

hyperbolic space being principal is central to the study. This condition

merits an independent study, and hopefully, the following pages will

facilitate such a study.



0. Geometric Preliminaries

Throughout this study, all manifolds will be assumed to be

smooth (C°°) and complete. C°°(M) will denote the set of smooth real

valued functions ona manifold M. The base fields of all manifolds

discussed here will be R (the field or real numbers) and C (the field

of complex numbers).

If p is a point of a manifold M, Tp(M) will designate the tangent

space to M at p. which is the vector space generated by all tangent

vectors to M at p. A vector field onM is a smooth assignment of a

tangent vector to each point of M. Hence, on the manifolds under

consideration, the set of all vector fields will at each point generate

the tangent space. The set of vector fields ona manifold M will be

referred to as the tangent bundle, T(M). T(M) forms a fiber bundle

over M with Tp(M) as the fiber over a point pm. A subbundle of T(M)

will be called aWonM. For each pelt, there is a

nieghborhood U of p in M for which we can select n vector fields

from T(M) with the property that the corresponding tangent vectors



are linearly independent in Tq(M) at each qu.

As each Tp(l‘l) is an n-dimensional real vector space. the notion

of tensor applies. In the same way that a tangent vector at pen is

extended to a vector field on M, we can extend the notion of a tensor

on Tp(M) to that of tensor new on M. For instance. let (x, .....x nI be

a subset of T(M) such that {XI ,...,X n}q is linearly independent at each

point q in an open nieghborhoodU of p in it Define a positive

definite inner product on each Tq(l1). w. by <xi,x j>q=5ij (where 8 is

the Kronecker delta). By extending < , >q bilinearly to the remainder

of Tq(M), for each qu, we obtain a tensor field of type (0,2) on U

(and consequently a local orthonormal basis of T(M)). in fact tensors

of this sort are fundamental in semi-Riemamian geometry and when

a certain one is selected to work with on a semi-Riemamian

manifold it is often called the first fundamental form of the

manifold. In many respects its choice really determines the

geometry of a manifold, hence only certain bilinear tensor fields will



be admissable as a first fundamental form on a given manifold.

AWbrfirst fundamental form) one manifold M is a

non-degenerate symmetric tensor field of type (0,2)onl1, that has

the property that the dimension of the negative definite subbundle of

T(M) (with respect to the metric tensor) is constant onM. ‘

The dimension of the negative definite subbundle is usually

refered to as the indexef the manifold Of course, if the index is

constant then the dimensions of the positive definite and neutral

subbundles will remain constant as well. If M is a semi-Riemannian

manifold, then Mn'“ will denote that M is of dimension m and has

index n

The existence of a global metric tensor field on a manifold and

its nature will determine the intrinsic geometry of the manifold.

This was shown by Gauss for surfaces in R3 and by Riemam for

manifolds that admit a positive definite metric tensor. The full

generalization to manifolds with indefinite metrics occured under





the impetus of relativity.

if a manifold admits a metric tensor it is said to be

W. Two important special cases will concern us: A

manifold that admits a positive definite metric tensor is called a

Wmanifold. Asemi-Riemannian manifold of index one is

called Lgmntzian (incidentally, Lorentzian geometry is the

geometry of special relativity.)

The metric tensor on a manifold is used to define the lengths of

vector fields and the angles between them. This allows us to speak

of a local orthonormal basis of T(M), which will be called a mee, If

a metric is indefinite, then there are nontrivial vectors of both

negative and zerolength. We shall say that a vector field is

Mike if it has positive length. tjmeLilgLif it has negative length

and 11mm orneutLaL if it has length zero.

The metric tensor on a manifold also can be used to measure

how one vector field may vary with respect to any other as a point is

moved about on the manifold. This will ultimately lead to the

curvature of a manifold, so we shall define the vector rate of change
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in any direction on a manifold:

[22! initign

Aggmegjjgn ona manifold M is a function

V:T(l‘1)xT(M)-'T(M)

that satisfies the following properties:

(OJ) VIX‘QY Z=IVxZ*QVY2

(0.2) Vx(aY+bZ)=aV xY+bV x2

for all X,Y,ZeT(M), a,bcR and f,g£C°°(M).



ll

VXY is called theWmY with respect to X for

the connectionV.

in general there may be many different connections ona

semi-Riemannian manifold M. However, we shall be interested in

only one, namely the so-called Levi-Civita metric correction

Ona semi-Riemannian manifold M there exists a unique

connectionV such that

(0.4) [X,Y]£X oY-Y ox=vxv-vyx for all X,YeT(M),

ie. the connection has zero torsion, and

(0.5) x<v.z>=<v xY.Z>+<Y.V xz> for all X.Y.ZeT(M).

where <, > is the metric tensor field on M. lf (OD-(0.5) hold for a

connectionV, then V is called the Leyl-Qiyita metric connectionon

M.
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The notion of covariant derivative of arbitrary tensor fields is

crucial in defining aspects of intrinsic geometry of manifolds and

the extrinsic geometry of submanifolds, as we will see. it is defined

inductively as follows:

Let K be a tensor field of degree (r.s) ona semi-Riemamian

s

manifold 11; ie. K is a multilinear mapping of TI Tx(M) into the

i=l

space of contravariant tensors of degree r at x for each xeM. Define

the covariant derivative of K with respect to XeT(M) by

s

(th<)(><I .-.,x s)=Vx(K(XI ,...,x 5))‘2 k(x, ...,x H ,vxxixm ..-,x 5)

i=1

for any set IX, ,...,X S}CT(M). By setting

(VKXXI ,...,X 5;X):(VXK)(XI ,...,X S)

we obtain a tensor field VK onM of type (r,s+l). In this paper we

shall investigate only tensors of type (0,0) (C°° functions), (1,0)

(vector fields), (1,1) (C°° endomorphisms on T(M)), (0,2) (bilinear

forms, eg. metrics), (1,3) (curvature tensors) and their derivatives.
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In particular, for VcT(M) and f£C°°(M), VVf=Vf. From this we can

obtain a (1,0) tensor field (Le. a vector field) Vf from f by setting

<Vf,X>=Xf for all XeT(M). Vf is called the magma f in M, and is

nothing more than the first covariant derivative of f with respect to

the metric on it. By taking the second covariant derivative off we

can obtain a (0,2) tensor on M: define Hess(f;M):T(M)xT(M)-i R by

Hess(f;M)(X,Y)=<V x(vr),v>---xv(t)-v xv(r)=(v 2f)(X;Y).

for all X,YeT(M). Hess(f;M) is called the nessian of f onM.

The existence of tensors that are covariant constant will force

certain geometric and topological consequencesona manifold. as we

will see later in this survey section. An easy example of a tensor

that is covariant constant is that of a constant function on a

manifold M. Clearly, if f is constant onM then for any vector field V

we must have 0=Vf=VVf. (This is easily verified using the partial

differential operators obtained fom a local coordinate system as a



l4

local orthonormal basis of T(M).) Conversely, if va=Vf=0 for all

VeT(M) it is not hard to show that f is constant on M. in general we

say that a tensor K onM is paLaLlLl if VK=0. Notice that (0.5) says

that the Levi-Civita metric tensor of a semi-Riemannian manifold is

parallel.

The idea of "straight" in a semi-Riemannian manifold is closely ‘

Iirked to the notion of covariant constant. For instance, given any

line L in R" and ch, there is a mit tangent vector V in the direction

of one of the rays emanating from p along L. Translating the origin

of Rh to p, we can choose a coordinate system of Rh in such a way

that L is a coordinate axis, say spantxtl. We may then set V=8l8x1 so

that vvv=o.

The notion of “straight” is also related to the idea of distance in

a semi-Riemannian manifold. in an arbitrary manifold, a length

minimizing curve is called geodesic Let o:[0,rI-iM be a curve in a

semi-Riemannian manifold M that is parameterized by arclength. Let

V=O’(t) be its velocity vector field at 0(t) for any t6[0,r]. if a is

geodesic, then its acceleration must vanish, i.e. o”(t)=0. Using this





IS

and the trivial observation of the previous paragraph as motivation

we shall say that a curve a is geodesic if VVV=0 along 0 where V is

the velocity vector field of 0; Le. a curve 0 is geodesic if its

velocity vector field is covariant constant with respect to itself.

For each peM". there exist n geodesics through p that are mutually

orthogonal at p. Then the velocity vectors of these geodesics at p

are mutually orthogonal tangent vectors and hence form a basis for

TD(M). Conversely, given an orthonormal basis of Tp(M), there exist it

corresponding geodesics whose velocity vectors at p are the

elements of the given basis. As the geodesics are the means of

measuring distances in a semi-Riemamian manifold we see that a

semi-Riemannian manifold is approximated by its tangent spaces.

That is, given any point peM, there exists a neighborhood of the origin

in Tp(M) that is diffeomorphic to a neighborhood of p in M. Not

surprisingly. a diffeomorphism can be defined in terms of geodesics.
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Q2! injtign

Let peM and X be a unit vector in Tp(M). Let 25(t) be the geodesic

emanating from p with velocity vector X at p (i.e. b”(0)=X and

b(0)=p), with domain (a,b). Set expp(rX)=b'(r) for r£(a,b).

expp carries lines through the origin in Tp(M) to geodesics

through peM. Thus. distances in M near p are approximated by

distances in Tp(M). expp is a convenient tool for discussing

semi-Riemannian analogues of spheres and tubes (as is done in

section 3). Although Tp(M) approximates a neighborhood of peM, the

approximation is in general not very good; that is, the neighborhood

may have to be of very small diameter in order to acheive a given

degree of accuracy. This is a manifestation of the intrinsic

geometry M. in particular, the degree of accuracy will depend upon

the curvature of M at p.

The curvature of a curve in R2 or a surface in R3 is easily

understood intuitively. However, generalizing this concept to





l7

Riemannian and semi-Riemamian manifolds requires the definition of

a new tensor field:

E f. 'I'0

Let M be a semi-Riemannian manifold with Levi-Civita connection

V. TheWonM is defined to be a tensor field B of type

(1,3) given by:

R(X,Y)Z=V XVYZ-VYVxZ-ley] Z

for all X,Y,ZeT(M).

R seems far removed from the usual idea of Gaussian curvature

of curves and surfaces, but is a necessary generalization to discuss

the curvature in semi-Riemannian manifolds of arbitrary dimension

However, this generalization gives rise to more than just one notion

of curvature. The notion that generalizes Gaussian curvature is that

of sectional curvature.
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Qefinjtigg

Let X.Y be linearly independent elements of T(M) where M is

semi-Riemannian manifold with metric tensor <, >. Themm

Wof the plane Il=span{X,Y} onM is given by

K(Il)= <R(x,v)x.v>/t<x.x><Y.Y>-<x,v>21.

in case X and Y are orthonormal, K(II)=<R(X,Y)X,Y>. Not

surprisingly, K(TI) is a geometric invariant, i.e. K(TI) is independent of

the choice of basis of II. It is not hard to verify that for a surface in

R3, the Gaussian curvature agrees with the sectional curvature.

lf K(Ilp)=K is constant for any choice of non-degenerate plane
P

section lip at p, then M is said to have constant sectional curvature

at p. F. Schur showed that if M is a corrected semi-Riemannian

manifold that has constant sectional curvature at each point p of M,

then Kp is a constant over M; i.e. Kp=K for all peM. In this case, M is

said to be of constant sectional curvature K.



 
l
l
l
i
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For example, a euclidean space with a semi-Riemannian metric

tensor and Levi-Civita metric connectionhas K(ll)=0 for every plane

distribution 11. As such, an is said to be flat, that is, a space of

constant sectional curvature 0. If we consider the sphere

S“(r'2)={(x 0,...,x n)lX02*"12*---”‘ n2=r2).

with the metric induced by the ambient euclidean space, it is not hard

to show that K(TI)=r'2 for every plane distribution II on 5")(r'2). This

is an example of a space of positive constant sectional curvature

r’z. The hyperboloid

n

HW-r’2)={(x0,x' .....X n)|'X 02*2 xi2=-r2}

l=l

endowed with the metric

n n

d52=IZ dxideil/ti- ('l4r2)2 (x9e

i=0 i=0

is an example of a space of constant negative sectional curvature

-r-z
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Complete, simply connected spaces of constant sectional

curvature are calledW In [32]. any Riemannian space

form is shown to be isometric to one of the examples in the

previous paragraph as part of a classification of semi-Riemannian

space forms. We shall have the opportmity to work with the

semi-Riemannian euclidean space R220“) equipped with the metric

2M

“'9’” 090'“i 91 ‘2 “tilt

i=2

and an imbedded Lorentzian htpersurface of 822"“)

szm' ('I)={(X 0,8, ,...,X 20’2” ’802‘3' 2+8 22*“!!! 2m22="l}.

(with the appropriate metric, RFD" (-l) is a Lorentzian space form

of sectional curvature -l).

A real space form will have a particularly simple form for its

curvature tensor. lf M(c) has constant sectional curvature c, then

R(X,Y)Z=C(<Z,Y>X-<Z,X>Y).





2|

(As we already knew, the curvature tensor of a euclidean space

vanishes.) On S“(l),

R(X,Y)Z=<Z,Y>X-<Z,X>Y

and on H“(-l)

R(X,Y)Z=<Z,X>Y-<Z,Y>X.

If we compute the covariant derivative of R ona space form we will

find that VR=0. So constant sectional curvature is linked to the idea

of covariant constancy.

In general we will say that a semi-Riemannian space form is

locallysymmemmf its curvature tensor is parallel. Thus. local

symmetry is a generalization of constant sectional curvature. Local

symmetry has a generalization, as well. Define a new tensor field

R-R by letting R act on itself as a derivation let X,YeT(M). Define a

(1,3) tensor field R(X,Y)-R by setting
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(R(X,Y)-R)(V,W)Z=IR(X,Y),R(V,W)IZ-R(R(X,Y)V,W)Z-R(V,R(X,Y)W)Z

for all V,W,ZeT(M). Applying (0.4) and the definition of R, we find

that VR=0 implies that R(X,Y)-R=0 for all X,YeT(M), or simply RoR=0.

A manifold whose curvature tensor satisfies R-R=0 is said to be

W([25]). Hence, semi-symmetry is a generalization of

local symmetry. A great deal of research has been performed on

semi-symmetric Riemannian manifolds, (see [15], [17], [231-[26] and

[ZED-[30]), but little if any on semi-symmetric Lorentzian spaces as

is done in section 4.

All of the preceeding geometric concepts are aspects of what is

called the intrinsic geometry of a semi-Riemannian manifold, as they

arise from the structures intrinsic to the manifold and not from any

external considerations. However. by immersing one

semi—Riemannian manifold into another, we can study the geometry

of the image of the immersion as viewed from the ambient manifold.

This geometry is called the extrinsic geometry of the immersion

An immersed manifold in a semi-Riemamian manifold is called a
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submanifold. (We shall blur the distinction between an immersion

and its image.) It must forma semi-Riemannian manifold with

structures compatible with those on the ambient manifold; e.g. the

metric induced by the ambient manifold forms a semi-Riemannian

metric on the submanifold with index at most that of the ambient

manifold.

As the extrinsic geometry of a submanifold is intricately linked I

to the intrinsic geometries of the ambient space and the

submanifold, it can be determined by “comparing" the two, i.e. by

finding mathematical relations between similar aspects of the two

geometries. Hence, given information about either the intrinsic or

extrinsic geometry of a submanifold or the intrinsic geometry of the

ambient manifold, one can usually determine some information

concerning an unknown geometry.

Let M be an immersed semi—Riemannian smmanifold of a

semi-Riemannian manifold M. The Levi-Civita connection? on F1 will

induce a connectionv onM that is Levi-Civita with respect to the

metric induced onM by F1. For X,YeT(M) we can write
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(0.6) vxv=vxv+s(x,v)

where the first term is the component tangent to M and the second

term is normal. 8 forms a symmetric. normal-valued. bilinear form

on T(M)xT(M) and is called theWof the

submanifold M. (0.6) is referred to as theWfor M in F1. _

If I: is a normal field to M in T(M). then we can write the

Wmforflin Ii:

(0.7) Vx£=-A£X+V1x£

where as before the first term is tangential and the second normal

to M. A: is called theWassociated to I; and forms a

self-adjoint tangent bundle endomorphism on T(M). V1 is called the

WonM and actually satisfies all the axioms of a

connection if tangent vectors and normal vectors are used

appropriately ([3]). Due to the unique nature of B, its covariant
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derivative. {78. has a separate definition and is defined (as in [3]) by

(vaXVJ) =V‘X(B(V.Z))-B( vxvz)-B(v.v x2)

for all X,Y.ZeT(M). 6 is called the comeclionof Van der

Waerden-Bortolotti.

The tensors B:T(M)xT(M)-9T(M)1 and A:T(M)xT(M)*-iT(M) obtained

by (0.6) and (0.7) contain all the information necessary to determine

the extrinsic geometry of M in F1, and are intimately related via

(0.8) <£,B(X,Y)>=<A ax,»

for all X,Y£T(M) and ££T(M)‘. For instance, the curvature tensor R of

F1 is related by B to the curvature tensor R of M by the Gauss

mm:

(0.9) <R(X,Y)Z,W>=< RIX,Y)Z.W> +<B(X,W),B(Y,Z)>-<B(X,Z),B(Y,W)>
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and the Cedazzieeuatjen

(0.10) (R(X,V)Z) 1.-.(ttxa)(t,z)-(t't,,a)(x,z)

for all X,Y,Z,WeT(M), where 1 denotes the normal component relative

to M. in these equations we see that the second fundamental form

provides a measure of the difference between the curvature of the

submanifold and that of the ambient space. In case the ambient

manifold is a space form M(k), the Gauss and Codazzi equations are

simpler and more explicit:

<R(X,Y)z,w>= k(<Z,Y><X,W>-<Z,X><Y,W>)

+<B(Y,Z),B(X,W)>-<B(X,Z),B(Y,W)>

and

(vYB)(x,2)=(exB)(v,2)
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for all X,Y,Z,WeT(M).

The second fundamental form can be used to deflne a normal

field that is, in a sense, a measure of how M curves relative to M. Let

X] ,...,X n be a local orthonormal basis of T(M) consisting of

non-neutral vector fields and set (i=1 if Xi is spacelike and ei=-l if

Xi is timelike. The normal field

E"=(I/n)z €iB(Xi,Xi)

is called theWotM in F1. It will lengthen and

twist in T(M) according to the relative curvature of M. M is said to

be mjgjmaL in M if E" vanishes onM.

Straightness and distance are concepts that serve as useful

tools for comparing the intrinsic and extrinsic geometry of a

submanifold. For example, geodesics in 52(r), r>0, are great circles

isometric to S'(r) which are certainly not geodesic in the ambient

space R3. Hence. 32(r) is not I lat in R3 althougi locally it may





28 ..

appear to be so. in contrast, an extrinsically f lat surface in R3 is

 forced to be a plane as all its geodesics would have to be

extrinsically straight, that is, lines. The notion of extrinsic flatness

is formulated as follows:

E ["1'

If all the geodesics of a submanifold of a semi-Riemannian

manifold are also geodesic in the ambient manifold, then the

submanifold is said to bemm

It is easy to see geometrically that the totally geodesic

submanifolds of a euclidean space are euclidean spaces of lower

dimensions, and that the totally geodesic submanifolds of spheres

are merely great spheres of lower dimensions. However, for spaces

in which geometric intuition fails us, it would be nice to have an

analytic criterion of this condition vlt happens that there is a nice

characterization of this in terms of the second fundamental form. in

a semi-Riemamian manifold. it can be shown that a submanifold is
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totally geodesic if and only if its second fundamental form vanishes.

From these examples we catcha glimpse of why the intrinsic

geometry of a manifold is determined by its totally geodesic

submanifolds. On the other side of the coin, we can see that the

length of the second fundamental form serves as a measure of how

far a submanifold deviates from being extrinsically flat and the

length of the mean curvature vector serves as a measure of how far

the submanifold deviates from being minimal.

From (0.8) we see that for a vector field E normal to a totally

geodesic submanifold M. the associated Weingarten map vanishes. i.e.

Afo‘le) This is an example of a more general condition that can

be imposed ona submanifold, that of requiring the existence of a

normal field to have an associated Weingarten map that is

proportional to the identity map on T(M). in general, a normal field

is said to be ymblei; onM if A: is proportional to the identity map

on T(M). lf B(X,Y)=<X,Y>£ M for all X,YeT(M), then M is said to be

totally umpiilig in the ambient semi-Riemannian space.
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For example, a sphere 32(r) of radius 1/Ir in R3 is totally

umbillic with a single global Weingarten map A£=rlT(52(r» (Notice

that there is only one choice fart, on 52(r) and that {452(0) in

general, S"(r) is totally umbillic in R”, m>n Small spheres Sm(r’)

are also totally umbillic in S"(r), for m<n and r<r'.

The submanifolds that will be of primary concern in the

following sections will be those of codimension one in the ambient

space. i.e. hypersurfaces. As there is only one uniquely (up to choice

of orientation) determined normal direction on a hypersurface, many

of the preceeding formulae that express the extrinsic geometry will

simplify considerably.

Let MrH be a hypersurface of the semi-Riemannian manifold M.

Let E be a global unit normal field onM in M. Then the Gauss and

Weingarten fomulae can be written as

(0.11) vxv=vxv+b(x,v)z and vxz=-Hx
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for all X,Y£T(M). Notice that H=A£ and that the second fundamental

form can be expressed as a (0,2) tensor. However, even b can be

discarded when (0.8) is applied: b(X,Y)=<HX,Y>. Hence, almost all

the information concerning the extrinsic geometry of the

hypersurface is embodied in the single (1.1) tensor H. Henceforth. we

shall refer to H as the second fundamental form of the hypersurface.

The Gauss and Codazzi equations for a hypersurface M of a real

space form M(k) are:

R(X,Y)Z=k(<Z,Y>X-<Z,X>Y)+<HY,Z>HX-<HX,Z>HY

and

for all X,Y,ZeT(M), which means that the curvature of a hypersurface

is (relatively) easy to analyse. We immediately see that the task of

determining the extrinsic geometry of a hypersurface reduces to
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analysing the behavior of the T(M) endomorphism H.

or course, many different types of hypersurfaces of Riemamian

space forms have already been classified. However, this is not at all

the case where the ambient space form is semi-Riemamian or in

particular if the ambient space form is merely Lorentzian The

primary reason for this is that H, although self-adjoint, may not be

diagonaiizable (i.e. have real eigenvalues) on T(M) if M has non-zero

index; a stark contrast to the Riemamian case. In sections 4 and 5,

an initial attack on this problem is made when semi-symmetric

Lorentzian hypersurfaces of a certain ambient Lorentzian space form

are classified.

However, the main purpose of the subsequent sections is to

classify some hypersurfaces in a certain Riemamian manifold that

does not have constant sectional curvature. Yet, this ambient space

will have a specific notion of curvature being constant if we view it

as a manifold with base field C instead of B. So a short discussion

of complex manifolds should ensue.

Let M be a 2n-dimensionai Riemamian manifold with JeEnd(T(M))



.
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that has the property that J2="T(M)° Then at each point peM, TD(M)

forms a complex vector space that is isomorphic to Cn and J can be

associated with the endomorphism obtained on CPERZ", viewed as a

real vector space, from multiplication by i=l-i. J is called an

almost complex structure on M. Clearly, if sucha structure exists on

a Riemannian manifold, the manifold is necessarily

even-dimensional.

Of course. Cr)“ itself forms such a manifold. in fact. C'M can

lead us to the correct generalization of semi-Riemamian manifolds

overR to those with base field C: by defining a symmetric bilinear   
form .

q n

Fq(z,w)=-Z szj +2 zkv'vk

i=0 k=q+l

for z=(zo.z, .....z n) and w=(w0m, .....w n). we obtaln a non-degenerate

Hermitian metric onCM that turns Cn+1 into a semi-Riemannian

complex manifold of index q. C““1 with the metric Fq will usually be

written an”. Cqm‘ can be made into a real even-dimensional
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semi-Riemannian euclidean space qum2 by using as a metric the

(0,2) tensor < , >=Re(Fq). Now the almost complex structure J is

Hermitian with respect to < , >, that is

<JX,JY>=<X,Y>

for all real vector fields X and Y on qumz, so J is both orthogonal

and skew-adjoint. Furthermore, J will be parallel with respect to

the Levi-Civita connection induced by this metric. qumz is an

example of what is called a Kaehler semi-Riemannian manifold.

E [. T

A semi-Riemamian manifold M with an almost complex structure

J and metric <, > is Kaehler provided that

i) <JX,JY>=<X,Y> for all X,Y£M, and

ii) VJ=O.
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On a Kaehler manifold, J is often referred to simply as a complex

SII'UCIUI'Q.

Other examples can DB derived from anH . For instance,

consider the sphere

52"+1 (1)={ze CO” | Izol2+|z, [2+...+|z n|2=l}.

We can form a Riemannian submersion of 52”“ (1) onto an complex

n-dimensional Riemamian manifold CPn by identifying all points on

52’“1 (1) that lie ona complex line through the origin of CM . The

metric and almost complex structure of CPn can be induced from the

natural complex structure of Cr)“. Notice that 52ml (l) forms a

principal fiber bundle over CP" with fiber S'(l). CP" is called

complex projective space.

If M is a Kaehler manifold, then for any pcM and XeT(M), the plane

Tip=spanIXp,JX D} is invariant under J and is said to be a holomorphic

section at p. The sectional curvature K(Tlp) is called the holomorphic
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sectional curvature of M by II at p. If the sectional curvature is a

constant for all J-invariant planes Tlp at peM, i.e. K(llp)=Kp for all

holomorphic sections lip, then M is said to be of constant

holomorphic sectional curvature at p. As in the real case, it is well

known that if M is of constant holomorphic sectional curvature Kp at

each peM, then Kp is a constant over M. in this case M is said to be of

constant holomorphic sectional curvature. if, in addition, M is

simply connected, M is called a complex space form.

Cqn+1 is a complex space form of zero holomorphic sectional

curvature whereas onCPn a metric (namely the Fubini-Study metric

tensor) can be constructed that turns CPn into a complex space form

of holomorphic sectional curvature 4. CPn is compact and has

diameter n/Z under this metric. The primary ambient space in the

following sections is a complex hyperbolic space, CH“, that has

constant holomorphic sectional curvature -4. Sections 1, 2 and 3

only use the abstract properties derived from the constant

holomorphic sectional curvature of CH". However, CHn can also be
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constructed in a fashion similar to that of CF", only in this case the

submersion is from a Lorentzian hyperbolic space form. This

construction is crucial to obtaining the geometric results of the

later sections.

As with real space forms, complex space forms and their

submanifolds admit relatively simple expressions for their curvature

tensors. if M(c) is a complex space form of holomorphic sectional

curvature c, then the curvature tensor R of M is given by

(O.l2) R(X,Y)Z=(C/4)[<Y,Z>X-<X,Z>Y

+<JY,2>Jx-<JX,Z>JY+2<x,JY>JZl

for all X,Y,Z£T(M).

if M is a real semi-Riemamian manifold immersed in a complex

space form M(c) of complex dimension n then the Gauss and

Weingarten formulae hold for M as a submanifold of the real

2n-dimensional semi-Riemamian manifold M. Now (0.9) and (0.10)

can be combined with (0.12) to obtain the Gauss and Codazzi
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equations of M in M.

In the sequel we shall be interested in the particular case where

M is a real hypersurface of the Riemannian complex hyperbolic space

form CHn(-4).
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1. Real Hypersurfaces of CH'Y-zi)

Let CH“(-4), n22, denote a complex hyperbolic space with the

Bergman metric tensor, i.e. a complex space form of constant

holomorphic sectional curvature -4. Let "Zn-l be a real

hypersurface of CH“, V and V be the metric connections onM and

CH", respectively, so that the Gauss and Weingarten formulae can be

written as:

(1.1) va = vxv+<Hx,v>i; , w; = -HX for all X,Y£T(M),

where I’, is a unit normal field on M in CHn and H denotes the second

fundamental form (in this case the Weingarten map of I; in End[T(M)l).

We shall refer to the eigenvalues and eigenvectors of H in R and T(M),

respectively, as principal curvatures and principal directions.

if J is the complex structure of the ambient complex space form,

it induces an endomorphism cl» of rank 2n-2 and a linear functional f

on T(M) given by setting at each point p of M



(1.2) JX = tX+r(x)a

for all X in Tp(M). Set U = -J£. AsM is of codimension one we have

U£T(M). The following equations now hold for all X,Y in T(M):

(1.3) f(X) = <x,U>

(1.4) mix) = 0

(1.5) 410 = 0

(1.6) izx = -X+r(x)u

(1.7) <x,<,iv> = -<tix,v>

(1.8) <4sx,<iv> = <x,v>—t(x)r(v).

(¢,f,U) is an example of what is called an almost contact structure
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on M. The tensor fields ‘i’ and U have the foliowing derivatives:

(1.9) vxu = tux

(1.10) (inW = f(Y)HX-<HX,Y>U.

We also have the usual Gauss and Codazzi equations for a real

hypersurface of a complex space form (of holomorphic sectional

curvature -4) in terms of 4) and H:

(1.11) R(X,Y)Z = <x,z>v-<Y,z>x+<ix,z>¢v-<tv,z>ix-2<x,iv>iz

+<HY,Z>HX-<HX,Z>HY

(1.12) (va)v-(VYH)x = -1(X)¢v+r(v)¢x-2<x,¢v>u

for all X,Y,ZcT(M), where R is the curvature tensor onM.

An important special case for us will be when U is a principal
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direction on M. Under this assumption, more information can be

gained concerningthe structure of M. For example, by applying (1.9)

and assuming that HU=o<U for some o<£C°°(M),

qu = int) =<i(o:u) = «to = 0

by (1.5). Thus, if U is principal the trajectories of Uare geodesics in

M. Conversely, if the trajectories of Uare geodesics, then

o=qu=41Hu

which shows that HU e ker(¢) = spanIU} as I is of rank 2n-2 on T(M).

This shows that for a real hypersurface M of CH"(-4), the direction U

is principal if and only if the trajectories of U onM are geodesic,

[14).

The assumption that U is a principal direction will also forcea

strong relationship to hold between H and 1::

 





Lemma 1-I14I

Suppose that U is a principal direction onM with principal

curvature o<. Then

(1.13) 2(H¢H+¢)=o<(tH+H¢) on r1.

Proof:

Assume that HU = o<U for 0:66”(M) on M. Applying (1.9), for all

XeT(M),

(VXH)U = vau-Hvxu = vx(o<u)-Hvxu

= (x«)0+o<vxu-Hixx = (xa)U+o<in-Hixx.

As VXH is self-adjoint, for all Y£T(M),

<(VXH)Y.U> = <Y,(V X11)u>

= (xtx)r(Y)+ot<tHx.v>-<Hi11x,v>.



Now using (1.4) and (1.12).

<(VxH)Y-(VYH)X,U> = -2<x,4>v>.

Combining these equations yields

-2<x,iv>=(x:<)t(v)+o<<v,i11x>-<Y,H¢Hx>

-(Yo<)r(x)-tx<x,iHv>+<x.H¢tiY>

=(x::)t(Y)-(v«)r(X)+o<<(iH+H¢)x,v>-2<H¢Hx,v>

where (1.7) is used to combine terms. Rewrite the above equation as

(1.14) 2<(Ht11+ti)x,v>=(xo:)t(v)-(vo:)r(X)+«<(¢H+H¢)x,v>.

Replacing X by U and then Y by U in (1.14) yields Yo<=(Uo<)f(Y) and

Xo<=(Uo<)f(X). Substituting these values back into (1.14) gives
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2<(H¢H+4>)x.v>=(Uo<)1(x)1(Y)-(Uot)t(Y)t(x)+o<<(¢H+H4»)x,v>

=o<<(¢H+H<i>)x,v>.

As X and Y are arbitrary we have the assertion //

Once U is principal it is clear that we can extend to a local

orthonormal basis of principal directions ix, .....X 2n-2:U} of T(M)

with (X, ,...,X 20-2} forming a local orthonormal basis of ker(f).

Assume that each Xi has as principal curvature hi, i=1,...,2n-2. The

next question to ask, since ker(f) is tit-invariant, are there nontrivial

i-invariant subspaces of ker(f) that are also H-invariant? Not

surprisingly, the answer is yes.

Lemma-[I41

If A is a principal curvature on M, let 0). denote the

distribution of principal directions onM with principal curvature A.

if XernkerU) and 2.2-110, then AX is also principal.





Proof:

2(Hi>H+<j>)x=2>.H<j>><+2t»x and a(¢H+Hi)x=ax«iX+aH¢x

So by lemma 1,

H4>x=(o<x-2)/(2x-o<)—¢x

if 0422‘. If «=22. then 2k2-2=0 as X and hence 0X can be chosen to

be nontrivial in ker(f). This is equivalent to 99:1 and «2=4. //

For the remaining case assume first that 062 and 25-1. Then, for

X504, (1.13) yields 0X principal with principal curvature 1.

However, if 062 and 951. then for X60], (1.13) is an identity on the

distribution span{X,4>X,U}.

A major consequenceof Lemma 2 is that whenever U is principal

on M, we can choose a frame [X] ,...,X ”-1 ,ix, .....tx n-i .U) on M that
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consists entirely of principal directions with the property that A

interchanges the distributions spmiX' ,...,X ".1 } and

spahiixI ,...,ix n.1}. The set {xI ,...x ".1 ,ix, ,...,ix ".1 } forms a

local basis of the distribution ker(f) onwhich A acts as a complex

structure. The principal curvatures of a p-invariant plane

span{Xi,¢Xi} will be related by

(1.15) Ui=(00\1"2)/(2Ai‘0()

where HXi=xiXi and Hixi=31ixio whenever «12%,.

The principal curvatures need not be constant even if U is

principal as we will see in example 4 of section 3. This is contrary

to the situation of the ambient space being CPn (see [14]). However.

there are two classes of real hypersurfaces in CHn that do have U

principal with all the principal curvatures constant and these are the

subjects of section 2.
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2. Contact Hypersurfaces: Algebraic Consequences of the Contact

Condition

Let M be a 2n-l dimensional Riemannian manifold that admits a

triple of tensor fields (try), (where ieEnd[T(M)l, f is a linear

functional on T(M) and UeT(M)), satisfying (1.3) and (1.6). As

remarked in the preceeding section, such a triple (¢,f,U) forms an

almost contact structure on M. in general, a Riemamian manifold

that admits an almost contact structure also admits a metric

satisfying (1.8). From these formulae (1.4). (1.5) and (1.7) canbe

obtained. This is a generalization of another intrinsic condition that

can be imposed on a Riemamian manifold: M is said to be a contact

manifoldif it admits a linear functional f that satisfies f«(df)”' ‘ =0.

(Such a manifold also admits an almost contact structure (tau),

Ill.)

In section 1, we saw that a real hypersurface M of CHn (in fact of

any complex space form) automatically admits an almost contact

structure that is already compatible with the metric induced from



Q
r
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~ the ambient space. in [19], Okumura showed that if MZ'H is a

contact real hypersurface of a complex space form of complex

dimension n, then

(2.1) ¢H+H<j=2pi

on M, where p can be shown to be a constant. By selecting an

appropriate orientation of M, p may be assumed to be positive. in

particular, (2.1) is equivalent to p""f«(df)'H =0. In the following

discussion we shall assume that M is a complete, connected, contact

hypersurface of CH“(-4), with n23, and obtain algebraic

consequencesof (2.1). Specifically. the principal curvatures and

directions will be determined using (2.1).

Combining (1.5) and (2.1) we have AHU=0, which shows that

HUespan{U}. i.e. U is a principal direction Set HU=o<U.
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Lemma 3

On a contact hypersurface of CH”, HI ker(f) satisfies the

polynomial

(2.2) xz—sz+o<p-1=o.

PFOOI:

Combining Lemma 1 and formula (2.1), we have H¢H+¢=o<p¢t

Applying (2.1) again

«Pt=i*H(29i-Ht)=i+ZPHt-H 2t-

50,

0=H2¢-2pH¢+(po<-l)¢

on M. Choosing Xeker(f) we can write X=¢Y for some Y (namely

v=-—¢><) to see that
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0=H2X-2pHX+(o<p-1)X for all Xeker(f). //

From this we have

LemmaA-llsi

o< is constant on M, if M is contact.

Proof:

From the proof of Lemma 1, we have Xo<=(Uo<)f(X) for all X£T(M).

Thus, for Xel<er(f)=lU}1 we have Xo<=0. So it suffices to show that

Uo<=0.

Since O=Xo<=<Vo<,X>, where Vo: denotes the gradient field of the

function o< on M, we have Votcspan{U}. Thus,

Vo<=<Vo<,U>U=(Uo<)U.

Hence,
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VX(V0<)=X(U0<)U+(U0<)\;<U

=X(uo:)0+(uo:)¢Hx.

This means that

<vx(v1x).v>=x(uc<)t(Y)+(utx)<t»ttx,v>

and similarly

<vY(Va),x>=v(uo<)r(x)+(uo:)<¢1iv,x>.

But, we also know that

(VX(VO(),Y>:X<VO(,Y>’<VO(,V xv)

=X(YO()"V Xy(0<)

and
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<VY (Vet),X>=Y(Xo<)-V Y X(o<).

Then,

<VX(V0<),Y>-<V Y (Vat),X>=X(Yo<)'Y(Xo<)+V Y X(o<)-VXY(0<)

=IX.YI(0<)+IY.XI(0<)

=0.

Now

0=<Vx(VO(),Y>‘<V Y (V0f),x>

=x(uo<)1(v)+(uo<)<¢Hx,v>-v(Uot)t(x)-(uot)<i>t1v,x>

which yields

(2.3) x(uo:)t(Y)-v(uo:)r(X)=(uo:)<iHv,x>-(uot)<<ij,v>

=(uo<)<(i11+11i)v,x>
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=2p(utx)<iv,x>.

Substituting UforY and then forX in (2.3) gives

X(Uo<)=U(Uo<)f(X)

and

Y(Uo<)=U(Uo<)f(Y).

Substituting these values into the left hand side of (2.3) yields

o=2p(utx)<iv,x>.

Choosing X=¢Y=0 shows that Uo<=O.//

Thus, M has at most three distinct principal curvatures, all of

which must be constant by (2.2) and Lemma 4. Since CH“(-4) has no
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complete totally umbillic hypersurfaces (see [5]). we are left with

only two cases to consider:

A)(2.2) has two distinct solutions x12)? or

B) (2.2) has only one solution Mot.

Case B) is the easiest to analyse. Let D). and Do, denote the

eigendistributions of it and o< on M. or course. 0,‘ is of dimension

2n—2 and 0‘x has dimension 1. It is immediate that A acts as a

complex structure on D)‘. Requiring (2.2) to have only one solution

forces 2t=p and pz-otp+l=0. The latter equation has real solutions

only when 03-420. in case o<2-4>0. we may regard at as a parameter.

By selecting the orientation of M appropriately, we may assume that

o<=2coth(2r) and A=p=tanh(r) or coth(r), for some r>0. Otherwise,

set o<=2 and A=p=l. So with respect to the frame consisting of

principal directions {Xi ,...,X n-i ,AX, ,...,AX n-l ,U} of T(M), (where for
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each i=1,...,n-l, HXi=XXI and HAXi=xAXi), H has only three possible

matrix representations:

i) diag(tanh(r)l 2n-2,2coth(2r)),

ii) diag(coth(r)l2W2,2coth(2r)), or

III) diag(l 20-22)

Notice that in each of these cases, HX=AX+o<f(X)U, i.e. M is

totallymm. These hypersurfaces also satisfy the condition

AH=HA. In fact it is not hard to show that a contact hypersurface is

totally U-umbillic if and only if AH=HA. Real hwersurfaces

satisfying this condition in CHn have been classified in [16].

However, the classification for hypersurfaces satisfying B) in this

paper will involve a new geometric characterization



57

The analysis of case A) is considerably more laborious and

basically new. We first notice that if 0:2-4<0. then M must satisfy

A). In the following we will show that if M satisfies A) and n23,

then «2-4<o.

Let DI and 02 be the eigendistributions of A] and x2,

respectively. Since (2.2) has two distinct solutions "117‘2:

2:109:29. Now if X60], (2.1) shows that AXeDZ. Therefore,A

interchanges the distributions 01 and 02 from which it follows that

each distribution is of dimension n-i.

Lemmai

If M satisfies A) and n23, then 2., A2=L

PFOOI:

This is established in a series of steps. First assume that «=11

for i=l,2.

Step I"
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If X and Y are in Di then so is VXY.

Proof of step i:

We shall prove this in the case i=1. Let X,YeD 1: Then,

<vxv.u>=x<v,u>-<v.v xu>

=-<Y,AHX>

:-xl (Y,¢X>

=0.

This shows that VxYeker(f) so that HVXYeker(f). Let ZeKer(f). Then

<HVxY,Z>:<V xHY,Z>'<(v xH)Y,Z>

3}] <VxY.Z>'<Y,(V xH)z>

=x, <vxv,z>-<v,(v ZH)X-f(X)AZ+f(Z)AX-2<X,AZ>U>

=x, <vxv,z>-<v,(v 2H)x>
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3A1 (VXY,Z>"<Y,V ZHX>+<Y,HV 2X)

=)\I <VxY,Z>"A I <Y,V ZX>+AI <Y,V 2X)

3A] <VxY,Z>.

Thus, HVXY=A1VXY which completes the proof of step 1.

Step 2-

If XeDl and YcD 2, then VxYeD zospanIU} and VYXEDI OspanIU}.

Proof of step 2:

Let ZeDI . Then,

<v.z>=0 => o=<vxv.z>+<v,v ><z> ... <vxv.z>=o by step 1.

This yields the first inclusion The second follows in exactly the

same way by choosing 2602.
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Step 3-

If X60, and Y60 ZnIAXP, then VXY602 and VY XeDl. (Here we see

the reason for the stipulation n23.)

Proof of step 3:

From the hypotheses.

<VXY,U>=X<Y,U>-<Y,V XU>

=-<Y,AHX>

:-)‘I (Y.¢X>

=0.

Combining this with step 2 we have step 3.

Let xw, and 11:0 ZnIAXP with |va|=1 Applying steps 1,2

and 3 we find that

R(X,Y)Y=V X(VYY)‘V Y(VxY)"V [X,Y] YED 2.5DaI'IIU}
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by writing [X,Y]=V xY-VYX. However, a direct computation using the

Gauss equation reveals that R(X,Y)Y=(>t '2‘2-1)X60 1- Therefore,

R(X,Y)Y=0 and since X is nontrivial we must have A, x2-1=0.

Now if o<=>ti for i=1 or 2. the same statements hold if D, and 02

are replaced by DI nker(f) and Dznker(f). //

Because of (2.2) we must have it] 22=o<p-l. So by lemma 5, ap=2

when n23. (2.2) can now be written as AZ-ZpNFO. This has two

distinct solutions only when 4p2-4>0, i.e. when 0(2’4<0. Notice

that o<=O is ruled out by o<p=2.

Hence, if M is a contact hypersurface satisfying A). o< canbe

viewed as a parameter. 50 set o<=2tanh(2r), r>0. Then the solutions

of (2.2) are A] =tanh(r) and x2=coth(r). (Note that

p=(tarlh(r)+coth(r))/2 in this case.) So with respect to a suitably

chosen basis of T(M)=D, oozospanIU}, H has the matrix

representation
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diag(tanh(r)l “.1 ,coth(r)ln_l ,2tanh(2r)).

Remerg: M. Okumura in [19] treats the case «=11- for i=l or 2 as a

separate case. But from our work so far we see that this occursin

case A) for a specific r, namely r=ln(2+f3) so that o<=it2=l3 and

Aquick glance at the classification results in [16] will convince

the reader that not all hypersurfaces satisfying

(2.4) AH=HA

are contact. Yet, in section 5 we will still be able to obtain the

same sort of characterization for these hypersurfaces as In the

contact case. Also in section 4 we shall analyse hypersurfaces of a

Lorentzian space that submerse into hypersurfaces of CHn satisfying

(2.4). So we should spend a little time on algebraic consequences of
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(2.4). (For more detail see [16].)

Combining (2.4) with (1.4) yields Uprincipal: say with principal

curvature ot. An argument similar to that of Lemma 4 shows that o:

is constant. By combining Lemma 1 with (2.4) we have

(H I ker(t))2'°<H | ker(f)" ker(f)=0°

That is, H satisfies the polynomial

(2.5) AZ-ocl+l=0

on ker(f).

This equation has real solutions only if 03-420. In case 0:2-4>0

we can again regard o< as a parameter and set «=2coth(2r), r>0. The

solutions of (2.5) are now x=tanh(r) or coth(r). In case «=22 set

)t=:1.

if D)‘ is a proper subspace of ker(f), then (2.4) ensures that D,‘ is
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A-invariant. Since ker(f)=D)‘ODI/,‘, Di/Jt is also A-invariant so that

A acts as a complex structure on each of the even dimensional

distributions D,‘ and 01/): . From our analysis of case A) for contact

hypersurfaces we see that a hypersurface satisfying (2.4) is not in

general contact.

The possible matrix representations for the second fundamental

form on real hypersurfaces satisfying (2.4) with respect to a

suitably chosen basis of T(M)=D)‘ODIA ospanIU} are now

i) diag(tanh(r)l 2p.coth(r)l2n-2_2p.2coth(2r)). p=0.....n-l.or

II) diag(l 20‘2’2)‘

Of course, if p=0 or p=n-l in i) then M is contact. ii) is obviously

CORISCI.
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3. Tubes in Complex Hyperbolic Space: the Model Hypersurfaces

In this section hypersurfaces of CH”(-4) are constructed that

have second fundamental forms with the algebraic properties set

forth in section 2. Hence, we are provided with an ample supply of

contact hypersurfaces as well as those satisfying (2.4). Our initial

discussion will be of a more general nature: tubes in Riemamian

manifolds. (For more detail, see [6], [9], [11] and [311)

Recall first the notions of cut point and cut locus. (A detailed

and analytic discussion of cut loci can be found in Vol 11 of [121.) A

cut point of a point p in a Riemamian manifold M is a point c=b’(t),

where 21' is a geodesic emanating from p=b’(0), with the property that

for s>t, the length of the curve b’(J), J=I0,sl, is greater than the

distance d"(p,2f(s)). For instance, if peSz(r), its only cut point is its

antipodal point.

The smuggle of a point peM, written Cut(p), is the set of all cut

points of p. The cut locus of a point on a sphere is a singleton

whereas for a point p on a cylinder, Cut(p) is the axial line opposite
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1). Define C(p)=min{d(p.q) I quut(p)}.

Let Nm be an immersed submanifOld of a Riemannian manifold M“.

Define the unit normal sphere bundle of N by:

S‘(N)={X£T(N)‘: |x|=1}.

Set c(N)=ianc(p) | peN}. Now for each re(0,c(N)), define the IIIQLQI

regime Lebeyjfljnfl to be the hypersurface given by

Nr={equ(rx): qu, XES‘(N)}.

 

  

Let c(t,X g) be parallel translation of vectorfields along the geodesic
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(3x)qzt-¢exp q(tX). For p=equ(rx)£Nr, c(t,X q):Tq(M)-*TD(M) is a linear

isometry. Because parallel translation preserves the fibers of

vector bundles in a Riemamian manifold. ([20). p.66), we have

(3.1) Tp(Nr)=t:(r.><q)({><qI‘)={t:(r.><q)><q}Jl

and

(3.2) t,(~,)stq(~)o1txq11ntq(~)11.

where 5 denotes the isomorphism of parallel translation

For XeS‘(N) and qu, define Rx(t)eEncqu(N)l, for each t>0, by

axe): q=c(t,X q)"I {R(c(t,X q)1 q,e(t,x q)Xq)1:(t,X q)qu

where R is the curvature tensor of M As we are primarily interested
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in the tangent space of the tube Nr, set

Finally, define F(t,X)eEnd({X) 1), for each XeS‘(N) to be the

solution of the initial value problem:

(3.3) (dz/at 2)irttx q)I+Fix(t)oF(t.X q)=o

F(0,Xq)=P

(d/thF(I,X q)] I t:0:"AXOP'.'Pl

for each qu, where P:{X)‘-tT(N) and P1:IX)1-’T(N)10{X}‘l are

orthogonal projections of the vector bundle {X}‘=T(N)e IT(N)‘0{X}‘I

onto the indicated component distributions, and Ax is the Weingarten
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map of X onN in M. To simplify notation we shall write F '(s,X q) for

(d/dt)[F(t,X q)l I H and F”(s.X q) for (02/012)IF(t.x q)l I tzs.

lbeecemI-Ilil

The second fundamental form of Nr at p=equ(rx) Is given by

(3.4) Hr=e(r,Xq)oF'(r,Xq)oF(r,Xq)" .e(r,xq)'l. //

Hence, in order to find an explicit representation of the second

fundamental form of a tube. we need merely select a suitable basis

of MN) using (3.0 and (3.2). solve (3.3) and then compute (3.4). Of

course (3.4) says that HreEndIT(Nr)] at p=equ(rx) is nothing more

than parallel displacement of the endomorphism

F ’(r,X q)oF(r,X q)“I eEndi{Xq)‘I
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along the geodesic 3X emanating from q and passing through p.

Now we will assume that M is not an arbitrary Riemamian

manifold, but the ambient space discussed in sections 1 and 2,

namely a complex hyperbolic space. Let N be an immersed

submanifold of CH“(-4). As CHn is a symmetric space, oncea

suitable basis of {qu1 is selected (where qu and XeS‘(N)), parallel

displacement along the geodesic fix will preserve the basis and the

respective orthogonality relations between its elements.

Furthermore, Hr will have the same matrix representation with

respect to the displaced basis as F’(r,X q)oF(r,X q)" has with respect

to the chosen basis of {Xq}1. This simplifies the calculation of

(3.4) considerably.

An additional feature of CHn is that Rx(r) is of a particularly

simple form. Let XeS*(N) and YeIX.JX} 1. Direct computations using

the Gauss equation show that:
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(exam q=::(1.x qu IR(c(t,X q)Y q,c(t,X q)><q)::(t,>< q)xq1

=t:(t,X q)“I [-‘t:(t,X q)1! ql

:-Yq

and

(Fix(t)JX) q=e(t,X q)'I [R('t:(t,X q)qu,e(t,x q)Xq)e(t,X q)qu

=t(t,X qrI [-47:(t,X q)Jqu

=-4qu

for all t>0. in conjunction with the following observations the task

of computing a representation of Hr will be greatly simplified.

Asa hypersurface, Nr has a single well defined global unit normal

It. From the earlier discussion on tubes, at any point p=equ(rX)eNr,

we can write £p=e(r,Xq)Xq. In this way a unique point q and a unique
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direction in S‘(Nq) can be associated to each point peNr. In order to

simplify notation set Y"=t:(r,X q)YETp(Nr) for any YeIX qil. In

particular, we shall write 1;" for the global normal on Nr, and I, will

refer to the associated direction in S‘(N); i.e. {*p=equ(r£q).

 

 

’
— f i

L3,...— ” «is! 

of N

In terms of section 1,

U”p=-J€," p=-t(r,Xq)J£q

and
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twptlntpthnrtrtqtttqtmnw:qr) . (Ith.£q}*an(N)*)l

is the A-invariant subspace, ker(f), of Tp(Nr).

Also, CH”(-4) as a space of constant negative holomorphic

sectional curvature, is a space of negative sectional curvature.

Since CH”(-4) is simply connected, by Theorem 8.1, Chapter VIII, Vol.-

2 of [12]. all cut loci will be empty. This means that tubes of any

radii may be constructed about smooth submanifolds. In particular, a

certain class of submanifolds will give us tubes that are

hyperswfaces of the type discussed in section 1.

Proposition 1-

Atube around a proper totally geodesic submmifold of CHn is a

hypersurface that has U as a principal direction

Proof:

Let N'“ be a totally geodesic submanifold of CHn of dimension

m<2n Let Nr be the tube of radius r about N and p=equ(r£q)£Nr.
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From the previous discussion we can select a local orthonormal

basis Bq of {liq}l that has Uq=-JI;q as an element and contains a basis

of Tq(N).

By Theorem 1 of I51, N is either a totally real or a complex

submanifold of CH". Hence. Uq is either tangential or normal to N.

Thus, R110), P and P1 each have diagonal matrix representations with I

respect to B . Because A50, (3.3) is now
q

(3.5) i) F"(t.{ q)+R£(t)oF(t.£ q)=o, t£(0,r]

ii) F(0,Eq)=P and iii) F’(0,£q)=P".

Order Bq in such a way that R50) is represented by the matrix

diag(-12n_2,-4). We shall regard (3.5) as a matrix valued differential

equation and will write its matrix solution as F(t,£, Q)=[f” (t)] where



75

i,j=l,...,2n-l. 50 (3.5) i) yields

f "i j (t)-f i j (t)=0 for i=2n-i, and

I”2n_l’j (I)'4I 2n_1.j (0:0 OII'IBI'WISB.

These ordinary differential equations have solutions of the form:

fij(t)=aije't+bijet for i=2n-l, and

- -2t 2t -
f 2n—l,j ’32n-l,j e $20.” 2 OII'IBTWISB,

where the alI ’s and the Pl] '5 are constants with respect to t.

Both P and P1 are diagonal with 0's and 1's onthe diagonal (of

course: P+P‘=I2n_' ). Thus, from (3.5) ii) and iii), fij(t)=0 for i=j for

any t>0, which shows that F(t,l‘, q) is diagonal with respect to Bq for
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all t>0. Hence, F ’(t,£‘, q) is also diagonal with respect to Bq.

Therefore, Hr Is diagonal with respect to the basis of Tp(Nr) obtained

by parallel translating Bq along the geodesic b’: from q to p. Since

(Un)p is an element of this basis, U“ is principal at p. Asp is

arbitrary in Mr, we are done. //

Actually, Proposition 1 is true for any complex space form. The

nature of the solution to (3.5) will depend upon the holomorphic

sectional curvature of the ambient space and the dimension of the

core of thetube, as we will see in the following examples. In the

case at hand, i.e. the ambient space being CH“, if N is a totally

geodesic submanifold, f ii(t)=sirh(t) or cosh(t) depending upon

whether the 11th entry of P is 0 or 1, for i=1,...,2n-2, and

f2n-l,2n-l (t)=sinh(2t) or cosh(2t) depending upon whether the

coresponding entry of P is 0 or i.
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Example I:

Let N=Hn(-l) be a real space form of constant sectional curvature

-l immersed In (2Hn as a totally geodesic and totally real

submanifold. (See the proof of Theoreml in [5].) Let Nr be the tube

of radius r about N in CH“. If as is a unit normal to N, . at each point

p=equ(rt’,)£Nr we can write

rp(~,)=1t:,l* : 1,,(10- tttqilnrqul

where the Isomorphism is parallel translation AsN is totally real

of dill'llZI'lSlOI‘l n Uq=-J£quq(N), so U*peTp(Nr). So let

IxI .x 2,...,x ”-1 DC.) be an orthonormal basis of Tq(N). 11 (A,f) is the

almost contact structure induced by J onNr, then

Bp=txl ”,...,x ,H ”.Afx, ”).....A(x ,H ").u"pl
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forms an orthonormal basis of Tp(Nr). Setting AXi=e(r,£q)" [A(Xj“)I

for each i=1,...,n-i allows us to write

Bq=IXI ,...,X H‘I ,AX‘ ,...,AX “.1 ,Uq}

for an orthonormal basis of IEQP. With respect to this basis P, P:l -

and REM) have matrix representations:

P=diag(l ,H ,0“.I ,1),

P*=diag(0n_1,ln., ,0) and

R£(t)=diag(-I 2H,-4).

for all te(0,r], as endomorphisms on Itqll. Straightforward

calculations yield that (3.5) has the matrix solution
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F(LE, q)=diag(cosh(t)ln.I ,sinh(t)l ".1 ,cosh(2t)).

Now, from (3.4), the second fundamental form, Hr, of the tube will

have the following matrix representation with respect to the basis

(3.6) Hr=diag(tanh(r)l ".., ,coth(r)ln_, ,21anh(2r)).

By selecting a suitable frame onN, we see that the

representation of Hr depends only upon r and is hence constant on ”r-

Nr is obviously contact and in fact satisfies A) «2-4<0.

Example 2:

Let N=CHk, k=0,l,...,n-l, be a complex space form immersed in

CH“(-4) as a totally geodesic submanifold, (see [5]). In case k=0, we

are regarding a point to be a trivial complex space form. Otherwise.

from [5], the CHk will have constant holomorphic sectional curvature



c
l
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-4. Let Nr be the tube of radius r about N in CH“(-4). Let E" be a

global unit normal to Nr so that at each p=equ(r£q) we can write

1,01,): {(6),}: : Tq(N) . IquNPrilqu‘l.

AsN is a complex submanifold of CH". Its tangent space Is invariant I

under J; so e(r,t’,q)[Tq(N)I Is a A-invariant subspace of Tp(Nr). Let

{X1 ,...,X k,JX] ,...,JX k} be an orthonormal basis of Tq(N) and extend to

an orthonormal basis

Bq={Xl ,...,X k,JX] ,...,JX k’xk‘fl ,...,X ".1 ,JX kTI ,...,JX ".1 ,Uql

of {quk The last 2n—l-2k elements of B forma basis of
Q

Tq(N)1n{£q}1. Due to the invariance under J of Tq(N), we have

¢(xi”)=e(r,tq)i.lxil for all i=1,...,n-1. So let
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BD=IXI ”,...,X [,AXI “,...,AX k"

it I it it I

xk,I .....x M .Axm ,...Ax ”.1 .(u )p}

be the orthonormal basis of Tp(Nr) obtained by parallel translation

of Bq. With respect to B P, P1 and RC“) have the following matrix
q.

representations:

F"(“390 21oO 2h-1-2k I»

P‘=diag(02k.12n-|-2k ) and

RE(t)=diag(-12n.2,-4) for all t>0.

The radially symmetric matrix solution to (3.5), with respect to Bq,

has matrix representation
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F(LE, q)=diag(cosh(t)l 2k,sinh(r)l 2n_zk_2,sinh(2r)).

Computing (3.4) for this case yields the following matrix

representation for the second fundamental form on Nr with respect

to Bp:

(3.7) Hr=diag(tanh(r)l 2k,coth(r)l 2n-2k_2,2coth(2r)).

In the context of section 2, the geodesic hypersphere (k=0) and

the tube around a maximal complex space form (k=n-l) are contact

hypersurfaces and satisfy (2.4). These are our models for totally

U-umbillic hypersurfaces of CH". The remaining cases k=l,...,n-2

satisfy (2.4), but are not contact.

Example 3:

Each of the previous examples, despite their obvious differences

as tubes with different cores, do haveone thing in common If the
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bases Bp, p=equ(r£q), are chosen for each r>0 to be compatible (via

2:) with Bq, then we can discuss the limit of the tensor Hr, viewed as

acting on span(Bq), as r-too. Clearly, this matrix limit is given by

(3.8) lim Hr = diag(l 2n-2:2)°

r-ioo

The geometric significance of this is obscure from our view of these

tensors as acting on the tangent space of the core of the tube.

However, in section 6 (originally in [16]), a hypersurface is

constructed in a very abstract way that has a second fundamental

form of the form (3.8). So we know that such a hypersurface exists,

the question is whether we can obtain a more geometric

characterization In this example, we shall construct a model that

can be thought of as a limit of expanding geodesic hyperspheres,

called the horosphere, that also has second fundamental form with

representation (3.8).
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Choosea point ptCHn and any direction ££T(CH”). For each r>0,

let q(r)=expp(rt',p) and 21': be geodesic with initial direction {p that

joins p to q(r). Then p is on each geodesic hypersphere, Gr(q(r)),'

centered at q(r) with radius r. It is known that as q(r) recedes from p

(r-m) the Gr(q(r)) approacha limiting hypersurface. M°°, called the

horosphere(see I7] and [10]).

 

r-No

expanding I

geodesic j

hypersphares

.1

Grtqtr» '7 q(r)

\\__ ..z

p horosphere

Furthermore, the horosphere will have an extrinsic geometry

that is obtained as a limiting hypersurface of these expanding

geodesic hyperspheres. That is, M°° will have a second fundamental

form with a representation (3.8) with respect to a suitable basis of
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TD(M°°). This last point will be proven analytically in section 6,

when subsequent to considerably more theory, we will be able to

show the convergence of the geodesic hyperspheres to a

hypersurface with a second fundamental form of the type (3.8).

Example 4:

In this example a relatively simple hypersurface is constructed

that has U principal, but no principal curvature is constant.

Consider a two dimensional real hyperbolic space form N=H2(-l)

immersed in CH3 as a totally real, totally geodesic submanifold. Let

Nr be the tube of radius r about N. Then by Proposition 1, Nr is a

hypersurface that has the direction U as a principal direction For

each qu, let Sq(r)={xeNr I d(x.q)=rI denote a cross section of Nr over

q.

Let {X, ,X 2}q be an orthonormal basis of the tangent plane Tq(N)

that extends to an orthonormal basis {XI ,X 2,ij ,JX 2,Y,JY} of

T(CH3)| N- If E," is a unit normal field to Nr- then for any peSq(r) we
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can write

(t."),,=:l (piox. 1"+a2tp)ox2)"+ntp)v Sonata)"

where the values al , a2, b and c are C°° functions onSq(r) that

satisfy

1=a l z+a22+b2+c2

at any point peSq(r). Two quick computations will convince the

reader that the principal curvatures are not constant onSq(r).

Select p such that 31 =1 and a2=b=c=0. Then Up has principal

curvature 2tanh(2r) and the other principal curvatures at p are tam(r)

of multiplicity one and coth(r) of multiplicity three. However, if p is

chosen so that a] =a2=c=0 and b=l, then Up has principal curvature

2coth(2r) and the other other principal curvatures at p are tam(r) and
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coth(r), each of multiplicity two.

In fact it can be shown on Sq(r) that Hr is a linear combination

(with coefficients the functions a‘, a2, b and c) of four linearly

independent diagonal matrices that have their non-zero entries

drawn from the set {tam(r),coth(r),2tanh(2r),2coth(2r)}.

The conjecture is now that the hypersurfaces of examples 1, 2

and 3 are the only hypersurfaces that are contact or satisfy (2.4). It

turns out that this is indeed the case, but this cannotbe shownby

viewing CHn only as a complex space form and applying the

techniques of sections 1 and 2. To make further progress CHn must

be thought of as the base manifold of a certain Lorentzian S1 -flber

bundle.



4. The Lorentzian Circle Bundle over CHn(-4) and its SI -invariant

Hypersurfaces

The best understood of all non-Euclidean complex space forms,

complex projective space, (usually written CP"), is constructed

using a natural equivalence on an odd dimensional sphere. 52””.

itself immersed in CP’I. Complex hyperbolic space can be

constructed in a similar way (see [4], and [12], vol II). In this case

CHn is formed by taking the equivalence on a Lorentzian hyperbolic

space form in Cml . instead of on a real Riemannian space form.

Define a hermitian bilinear form F on C“*1 by

n

F(z,w)=-20WO+Z 21-11?!

F)

for all z=(zo,zl ,...,z n) and w=(w0w, ,...,w n) in CO". F forms a

complex Lorentzian metric so that Cml with the metric F forms a

complex Lorentzian space Cf)" . Cn+1 can also be regarded as a real

semi-Riemamian euclidean space, "22nt2. if it is equipped with the

metric Re(F). Anti-De Sitter spacetime is the hyperquadric defined
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b9

11,2“+l ={zecn+1 |F(z,z)=-l}.

The tangent space of anti-De Sitter space is determined by its

immersion into the ambient complex euclidean space; explicitly:

Tz( H12“ )={weCn+1 |Re[F(z,w)]=0}

for any zeszm . As a real hypersurface of Rzzmz, szm has

Re(F) | H'2n+l as a natural Lorentzian metric that is of constant

sectional curvature -I.

An S1 ~action can be defined on szm' (in fact onij ) by

2»thor any ZEszml and MC with I). | =1. At each point zeszm'.

the vector V=iz is tangent to the flow and has length -1. Given a

‘ point 2:11,2M , the flow of v through 2 in 11.73"+1 will be given by the

orbit
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Oz={xt=eit z I teR}

that satisfies the differential equation dxt/dt=ix t, which in turn

shows that 02 lies in the intersection of the negative definite plane

span{2,V} with HP“. Let ~ be the equivalence given by the orbits

of the action i.e. w~z if weOz Then the natural projection

112mm" 4 HF“ /~= CHn

is a Riemamian submersion with fundamental tensor the natural

complex structure J on c."*' , (see [21].). and with time-like totally

geodesic fibers, each of which is a trajectory of the vertical vector

V=iz at any point 2: H12” I . The complex Riemamian space. CH”.

obtained in this way has its complex structure induced from that on

Cjnfl , and has constant holomorphic sectional curvature -4, with the

metric induced from Re(F). Then the differential of the submersion

m, is a linear isometry ([21]); i.e. it preserves the metric tensor on
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the horizontal distribution as it projects onto T(CH”). So we shall

make nodistinction between the metric on H12n+1 and that on CH".

We can now write

TZ(H,2“*I ) S Tfl(z)( CHn ) o span{V}

where the isomorphism is given by m. 0 II span{V}-

n... as a linear isometry of the distribution h’ of horizontal

vector fields on H12”) onto T(CH"), Induces relations between the

connectionsV and V of szm' and CH”, respectively. (See [Bland

[21].) These are:

(4.0 V(x~) Y~:(va)~+<J(x ~),Y ~>V

(4.2) vvtx”i=v(x~,v=(.lx)“'=.l(x"')
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for all X,Ye T(CH“)= h’, and where X'” or (X)"’ denotes the unique

horizontal lift of a vector field X£T(CHn).

lf "Zn-l is a real hypersurface of CH“(-4) then the hypersurface

M,2"=n"I (M) of szm' , is invariant under the SI-action and

nlfi:M-:M is a Riemamian submersion with timelike totally geodesic

fibers. Conversely, if F13” is an Sl-invariant hypersurface of szn" t.

then It IR is a Riemannian submersion of M onto "Zn-l =nIM) with

timelike totally geodesic fibers. Hence, we have the following

commutative diagram of immersions and submersions:

[71‘2" a. HIZWI (-1)

In] '71 I 11

I

112“" --------» curt-4)

where sz 2“" 4CH"(-4) and j:M, 2"»HIZM (-1) are immersions

compatible with the fibration If a global normal I: to M is selected,

its unique lift, 21", is horizontal and forms a global normal to M.
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Henceforth. we will drop this distinction between E and It”.

Let ('7 be the metric connection of M as a hypersurface in H?“

and R be its second fundamental form. The Gauss and Wiengarten

formulae in this case are given by

(4.3) vxv=f7xv-<lixy>t and Vx£=-RX

for all X,Y£T(M). Now combining (1.1), (4.1), (4.2) and (4.3) we have

the following relations between H and H:

(4.4) Ii(x"')=(Hx)"'-r(><)v

for all x:r(n)stvl1nr(fi), and

(4.5) Av =U‘.

Let R be the curvature tensor of M. We shall have the opportunity
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to use the Gauss and Codazzi equations for M In RFD”:

(4.5) A(x,v)z =<x,z>Y—<Y,z>><+< Av,z>F1x-<t‘lx,z>Flv

(4.7) (9XA)V=(9YR)X

for all x,VeT(M). These and the preceeding formulae can be used to

prove the following useful identities:

(4.8) (\‘iwt‘ixxmz =<(i’er1)v.2>F1x-<(ii Wii)x,z>Fw

+<Flv,z>(i'7 Wii)x-<i'lx,z>(i'7 wflw

for all x,v,z,wer(t‘i), and

(4.9) (V(x~)FI)V=I(AH-HA)X]"'

for any XeT(M).
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Let {XI ,....X 2n-l I be a frame onM consisting of principal

directions in T(M) with corresponding principal curvatures

{3129. 2n-l }. Then {XI “,...,X 2”,] ”,V} forms a frame onM with

respect to which F1 is represented by the matrix:

I "1 f(x1) I

O

O

)‘Zn-l f(xzn-1)

I-I(XI ). . . 'f(x2n-I) 0 I.

all of whose entries are functions on M. Hence, even the stipulation

that M be SI-invariant does not guarantee an easy analysis of the

structure of M via an investigation of those subbundles of T(M) held

invariant by F1, for we are not even assured the existence of principal

directions that have real principal curvatures. However, in case U is

a principal direction onM, we can choose U=X2n_1 so that Fl is

represented by the matrix:
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diag(AI,...,)t 2W2, [a I] ).

I-l 0]

As we have seen. there are a number of conditions on M that

forceU to be a principal direction on M. In section 2, we saw this

for the conditions

(2.1) AH+HA=2pA (M Is contact), and

(2.4) AH=HA.

In [16]. (2.4) is shown to be equivalent to It being parallel on M.

Thus, (2.4) satisfied on M shows that M is parallel, which in turn

yields M locally symmetric, which finally implies that M is

semi-symmetric. Symbollically:

(2.4)%VM=0=>VR=O=R-R=0.

Surprisingly, ejl_the implications are equivalences for
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2n+l
Sl-invariant hypersurfaces of H. , not just the first, which will

enable us to contribute a little toward the work began in [17].

[231-[26] and I28H30]. In order to begin the proof of this fact, we

must see that when an Sl-invariant hypersurface M is

semi-symmetric its submersion M=rr(M) is a hypersurface that has U

as a principal direction

Lemmajt

Let M be an SI-invariant hypersurface of szn” and M=11'(M). Then

R-R=0 on Me U is principal on M.

Proof:

Let {XI ,...,X 2”,, } be a basis of principal directions on M for T(M)

with corresponding principal curvatures (it, ,...,A 2”,, }. Adirect

computation shows that at any point peM

(4.10) (ii(xfix]-"')-Fl)(xk"',v)v=1(xj)1(xk)(xi2-xp.j+1)xi“

_ . .2- . ."'f(X')f(Xk)().l Xixl+i)Xl

+2Ak0tj -)‘I )I(Xj ”(Xi )Xk~
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at p if i,j and k are distinct indices.

Assume that U is not principal on M. Then there exist at least

two principal directions not in ker(f), say X, and X2. For k>2, we

have xkz-xkx,+1=0, by setting i=1, j=2 then switching j with k in

(4.10) and reading off the second term in the right hand side. This

shows that szo when k>2. So, after switching the indices back,

from the third term in the right hand side of (4.10), we have

xk(x,-x2)=o,1.e. x,=x2=x.

If there is a third direction say X3, not in ker(f), then again from

the right hand side of (4.10), we must have Ajz-xjxogko, which is

impossible in light of 2:532. Hence, UespanIX,,X2}cD,\, an absurdity.

Therefore, U must be principal on M. //
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For the remainder of this section we will assume that M is an

SI-invariant hypersurface of ”12"” that satisfies the condition

"-R=0. Let M=11'(M) and {XI ,...,X 2n-2'U} be a local orthonormal basis

of T(M) consisting entirely of principal directions that have

corresponding principal curvatures {2.1M}. 2n.2,o<}. In order to

achieve a classification of the SI-lnvarlant hypersurfaces that

satisfy this condition we will need to obtain algebraic consequences

for the curvatures associated to the spacelike distribution on M that

is invariant under Fl, namely:

span{X, ”,...,X 2n-2~I= l/n(ker(f))"'.

Lemme 7

If R-R=0 on an Sl-lnvarlant hypersurface M of H12“ , let in). j

and xk be principal curvatures on M with distinct spacelike principal

directions xi“,xj“' and xk”eT(F1). Then (xiii-1X). 1'11 )xk=o.
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Proof:

By direct computation using (4.6)

(fi(x,“',x j”).t‘i)(xi"',xk“')xj"'

:I(I‘)\ iAj )(I'A iAk)T(Ai)\j‘I)(I’)\ jxknxkfl'

so that (H. in]- )(1-9. ink)=(1-x in] )(l-). W). 11 1-). iszo then we

must have 1-). ixkzl-x 13...: that is Mai-39:0. //

From Lemma 7. if there is a nonzero principal curvature "k with

direction Xke h’, then for curvatures xi and )‘j with distinct spacelike

directions Xi and XI different from Xk either

a) Xi=X or b) Aft/2t
l I"

If case a) holds, then every basis direction different from Xk has the
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same principal curvature and a simple argument similar to the one

employed in the proof of Lemma 6 yields all the nonzero principal

curvatures the same value. If case b) is true, all the principal

curvatures that have spacelike principal directions must be nonzero

and once a nonzerocurvature it has been given only the values X and

V). are allowable as principal curvatures. Hence. we have only four

possible matrix representations with respect to the orthonormal

basis {Xi ,...,X 2n-2:U} for the second fundamental form of a real

“BPPFSUI’IZCQ. M=rr(M), of CH", where R-R=0 on M:

I) H=diag(0 2n-2,0<),

ii) H=diag()tl 2n-2,o<),

iii) H=dlag().,0 2n-3,o<), or

IV) H=diag()tl p,(l/)t)l 2n-2-p'°‘)
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where 2.=0 and the basis may need to be reordered for case iii).

(Notice that in each case, U" is net principal on M.)

Cases 1) and iii) are ruled out by the following lemma:

Lemmafi

If 2. is a principal curvature ona semi-symmetric Sl-invariant

hypersurface M of szm' that has a spacelike principal direction

then 2.2-00.+l=0.

Proof:

Let X be a spacelike principal direction of 2.. Then

(li(x,u ~)-R)(X,V)U ~=().2-00.+I)V. //

In particular, we see that noprincipal curvature can be zerolf it

has a spacelike principal direction Furthermore, the principal

curvature o< must satisfy 0:2-420 on M. However, an analysis of the

values 2. can attain cannot yet proceed as in section 2 as we do not

know if o< and 2t are constant. As far as we are concerned the
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principal curvatures at and 2. are merely functions on M that satisfy

(2.5) xZ-axnzo.

Leumaj

If R-R=0 onM then the principal curvature cx with direction U is

constant on M.

Proof:

The proof is similar to that of Lemma 4.

From the proof of Lemma l, we have Xo<=0 for all Xeker(f).

Hence, it is sufficient to show that Uo<=0 on M.

Following the same steps as in the proof of Lemma 4, we recall

the equation

(2.3) X(Uo<)f(Y)-Y(Uo<)I(X)=(Uo<)<(AH+HA)Y,X>.

Again replacing X by U and then Y by U and then substituting the

results back into (2.3) yields
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0=(Uo<)<(AH+HA)Y,X>

for all X and Y in T(M).

Suppose that 0:2-4>0 on an open set U in M. (Otherwise, o< is

a constant :2 on M. ) Then by (2.5) we have the curvature 2t

satisfying 2.2=l on U. Choose YernkerU). From the proof of

lemma 2,

o=(u«)<(xm.;z)¢v.x>.

22cm

By choosing X=AY we have Uo<=0 or

0: 26%222 = (22.2-a2.+o<2.-2)/(22.-o<)= axle/(em).

A-a

The latter equation is ruled out by hypothesis on U, hence Uo<=0 on

any open subset of M with 0:2-4>0.

Therefore, 0: is constant on M. //

We now know that an SI-lnvarlant hypersurface M of szm' on
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which R-R=0. admits a frame with respect to which its second

fundamental form has the following possible matrix representations:

1) Fl=diag(2.l 2H, [0: 1] ), or

I-1 0]

ii) H=diag(2.lp.(l/2.)l apart“ 1])

H oi

and the second fundamental form of its submersion will have the

corresponding representations with respect to a suitable basis:

I) H=diag(2.l ZD‘Z’O‘)’ OI“

II) H=diag(2.lp,(l/2.)l 2n_z_p,0()

where at and 2t satisfy (2.5) and 03-420. Case I) is obviously a

subcase of ii) with p=0 or 2n-2. As in section 2, if 0:2-4>0, we can

set o<=2coth(2r) and 2.=tanh(r) or coth(r). Of course if o<=.+.2 we may

set 2.=:l=1/2..

Assume that H=diag(2.lp,(l/2.)l 2n-2-pv°‘) with respect to a
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suitably selected orthonormal basis of principal directions. There

are two cases to consider:

1. Suppose that p is odd.

Then there exists Xeo)‘ with ¢X£Dl/)‘. From the proof of Lemma 1

L = 932:2

A 21"“

which implies that

OzaxZ-zixm.

Using (2.5)

o=a(a>t-t)-4x+o<=x(o?-4)

which shows that either x=o or 0(2-4=0, neither of which hold by

hypothesis.

This only leaves the single case:

II. p is even.
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From the above argument we must have D)‘. and hence Dl/A'

invariant under 4». Thus, 4>H=H¢ onl1 whenever its lift is

semi-symmetric in Him”.

Remark:

As the only models we have for S'-invariant hypersurfaces

satisfying §-§=0 are lifts of certain tubes, one might conjecture that

the lift of any tube would satisfy this condition However. a tube of

radius r>0 about a totally geodesic real hyperbolic space form

(example i) has o<=2tanh(2r) and x=tanh(r) or coth(r) which do not

satisfy (2.5). Thus. fi-t‘izo for the lift of this tube.

Incorporating the preceeding discussion with known results in

this area, including those in [4] and “6]. yields the following:



 

SI
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IDBQLEIILZ

Let E3" be an SI-invariant hypersurface of H3“ (-l) and

MZ'H =1'((Ft) be its submersion in CHn(-4). Then the following

statements are equivalent:

l) §Fl=0 on Fl.

2) ii-ii=0 on F1.

3) +H=H4> on M.

4) H is cyclic parallel on l1.

Proof:

1) => 2) is obvious.

2) s 3) follows from the preceeding discussion

3) 4:) l) is in [16].

4) e: f) is in [4]. //

Aclassification of semi-symmetric SI-invariant hypersurfaces is

now possible and will be accomplished in the next section

I
'

1
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5. Congruence and Classifications

Submanifold theory, as with other branches of mathematics, has

its own notion of equivalence. For instance, two hyperspheres of the

same radius with different centers in a euclidean space are different

merely by location. yet obviously have the same extrinsic geometry

and as such are extrinsically equivalent submanifolds of the ambient

euclidean space. We would say that these spheres are comment and

would see the extrinsic equivalence by observing that one sphere can

be mapped lsometrlcally onto the other by making a rigid motion of

the ambient space. in this case, a rigid motion of a euclidean space

is a translation or a rotation or any combination thereof. (We shall

exclude reflections from rigid motions in this study as these

reverse orientation)

We generalize to semi-Riemamian manifolds:
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Definition:

Let F1 be a semi-Riemannian manifold with semi-Riemannian

submanifolds i1 and N. l1 and N are congruent if there exists an

isometry Q of it such that Q I ,1 is an isometry of i1 onto N.

We have seen that for submanifolds of euclidean space,

congruences are given by translations and rotation However. in the

ambient space we have been studying, CH“(-4), the characterization

of congruence is not so simple. The principal SI-fiber bundle over

(2Hn will be taken into account as well as the fiber bundie's own

imbedding in GP" , i.e. from section 4:

leml .., C'WI

UT

CH”

We see that rigid motions of (2.”I will induce rigid motions of CH”.

Recall that the bilinear form F defined in section 4 forms a
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semi-Riemannian metric on (In+1 that turns the complex euclidean

space into a complex Lorentzian space. GP" , where at the origin

(20.0 .....0) is a timelike vector if 2020. The bilinear form Re(F) on

cn+i , forms a semi-Riemamian metric that turns the complex

euclidean space into the real semi-Riemamian euclidean space

“22mg where at the origin (l,0,...,0) and (i,0,...,0) form a basis of.

the negative definite subspace of T0(R22n+2). The isometries of

CF” are precisely the group

U(i,n)={A£GL(n+l; C): F(Az,Aw)=F(z,w) V2,weC,n+' I.

Furthermore, U(i,n) holds HIZM invariant and acts transitively on

H12“. Hence. the elements of U(i,n) will induce isometries of (2Hn

via rr. Using these ideas, we shall see that isoparametric

hypersurfaces of (2Hn that have Uprincipai and the ”same” second

fundamental form are congruent. Consequently, we will obtain nice

geometric characterizations of contact hypersurfaces and

hypersurfaces satisfying (2.4) in CHn as well as a characterization
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of semi-symmetric SI-invariant hypersurfaces of H13“.

Let it and N be isoparametric hypersurfaces of CH“ that each has

the distinguished direction of the induced almost contact structure

as a principal direction (Henceforth. we shall write Ufor this

direction indiscriminately onl1 and N. Hopefully, the domain of U

will remain clear in context.) Suppose that i1 and N have second

fundamental forms with the same matrix representation with respect

to suitably chosen local orthonormal bases of principal directions

of T01) and T(N). Let F14) and Np be the simply connected covering

spaces of the lifts lint" (t1) and NWT" (N), respectively. if izi1-t CHn

and ij-r (2Hn are the isometric immersions in complex hyperbolic

space and i:F1-»H,2""' and EEN-o H.2m' are the induced immersions of

the respective lifts. we have the following commutative diagram of

immersions, submersions and covering maps:
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F1 N

19 lo

1’ 1

F1 ‘* “12“” ‘- fl

1 "Ifi 111 l Tl'lfi

The maps 1093314 H.2"+1 and 330:1)» H?“ are now isometric

immersions of simply connected Lorentzian spaces of codimensionl

into the Lorentzian symmetric space HIZM . that have the same

constant matrix representation for their second fundamental forms

with respect to cannonicaliy chosen orthonormal bases of T(fi) and

T01).
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Lzmmue

Let N and ll be real hypersurfaces of CH“(-4) that have:

i) Uas a principal direction, and

ii) the same constant matrix representation for the second

fundamentai form with respect to suitably chosen bases of principal

directions.

if N and F1 are the simply connected covering spaces of N=rr" (N)

and Fl=1r"(l‘1), then N and F1 are isometric.

Proof:

We shall use the notation of the preceeding paragraph and

diagram.

Let xeN and yefi. By hypothesis and using the ideas of sections i

and 4 we can CHOOSE IOCZI 01‘thonormai 138525

ixI ,...,x ”.1 ,qx, ,...,«ix M ,u} of T"(O(x))(u) and

lit, .....Y Mm, .....4w My} of T"(p(g))(r1)
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that consist entirely of principal directions, with respect to which

the second fundamental forms have the same representations. (We

are allowing ¢ to denote the almost contact structure of both N and

N. The domain of 4) will, hopefully, always be clear in context.) To

simplify notation set X"=[(o.)" (><"’)]X for any XeT(N) and similarly

set Y"=[(p.t)'l (Y ”)19 for any Y£T(l‘l). Let V denote a unit timelike

vector on H12“ and V" denote either [(o.)" (V | Nnx or

[(puYI (V | l1)]y- depending upon the context. Similarly we shall write

U" for either Kala)”I (U'")]x or [(p.)" (U"')]u depending upon the

context.

We now have local orthonormal bases

BX(N)={(XI )“.....(x M Nix, )‘.....(4>x ".1 )‘.u*.v“} of up), and

Bg(t’i)={(Y,)".....(Y maxim)".....(iv n..)".U",V"} of T901).



116

Define a linear isometry iiizTX(N)-0T9(F1) by

i((xi)")=(vi)" and «(ox i)“)=(¢v i)“ for i=l,...,n-l,

i((U")y)=(U")iJ and iii((V")x)=(V")iJ.

and extend linearly. Let Fl and Fi’ denote the second fundamentai

forms of the isometric immersions foo and Top, and similarly let Fl

and Fr denote the second fundamental forms of the immersions fond

I". As o and p are local isometries, Nx and 9'” will agree with Flam

and Wm). Applying (4.4) and (4.5) we have that lP(Nx(Z)) =Fl’g(‘1'(2))

for any ZeTx(N). Let Pi and N' denote the curvature tensors of N and Ft.

By (4.6) i(Rx(x.vizi =fi'g(vx,~iv)tiaz for all X,Y,ZeT x(it).

Let V and 9' denote the connect ions onN and F1. Using (4.7) and

(4.9), it follows that ii! maps the tensor (WI)x to the tensor (Wing.
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Hence by (4.8), ill maps (ON)x to (V’N’) y“ Define the mtn covariant

differential VmFi at x. (as on p.l25, vol. 1 of [12]) by:

(vn)x(x,v;wiz =vw(R(X,V)Z)-ii(v Wx,v)z--i§(x,v wviz

for all X,Y,W,ZeT x(N), and then for m=i,2,... and any set of vectors

{W' ,...,W m-i }CTX(N), SCI

(VmN)x(X,Y;W ‘;...;W m-l ;W )Z

=vwiivm" N)x(x,v;w ,;...;w "H )2)

-(V"‘" ibxivwxym 1;...;w m., )2

-(Vm" iilxixfi Wv;w ,;...;w "H )z

m-i

'2 (gm-i N)X(X,V;W 13-»;Wi-‘ :waizwm ;...;W m-i )Z.

i=l

Assume that ill maps the tensor (om-l N), to the tensor (gm-i My.
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Then in order to have an inductive proof that it will map (N'I‘N)x to

(V’mR')g for any m, it is sufficient to show that 9(VXV)=V'WX)(WY)

for all X,YeTx(N). But this is indeed the case as N and N are

isoparametric and iii preserves the metric.

Now by Corollary 7.3, Chap. Vi , Vol. l of [i2], there is a unique

isometry QzN-oFl such that (dQ)x=iiv. //

The point of Lemma l0 is to get into position to establish a

general congruence theorem for real hypersurfaces of complex space

forms. it is well known that isometric submanifolds of a real space

form that have the same second fundamental form are congruent. So

congruence results for submanifolds of complex space forms can be

established by using known congruence results for the real space

forms that are principal circle bundles over complex space forms.
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M

Let H and N be real hypersurfaces of CH“(-4) that each have U as a

principal direction and all the principal curvatures are constant. if it

and N have the same second fundamentai form, i.e. the corresponding

principal curvatures are the same, then l1 and N are congruent.

Proof:

Let y. and Q be as in the proof of lemma i0. Our commutative

diagram of the immersions, submersions and covering maps. with

the addition of the isometry Q, is now:

Q

Ft «- fl

1p 10

i i

F1 "’ “12”” "' fl

t rr|F1 l 11 i 11‘“

I i

h .. CH" «- N

As HIZM is a totally umbillic hyperquadric of the semi-Riemamian

manifold 822"*28C,”*' with second fundamental form -i on

T(H,2r"'I ), we can chooselocai orthonormal bases of T(N) and T(Fl) as
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in lemma 10 with respect to which the two second fundamental

forms have the same constant matrix representations.

Let xeN and y=Q(x)eFt. We can identify

on” : Tj'(d(x))( ii.2n+1 ). spani‘j'ioix)»

as i(o(x)) and i(p(y)) are unit normals toll?“ at i'(o(x)) and 'i'(p(y)).

respectively. Choosefi and f,’ to be unit normals to N and PI in H.2M

and write

T1(o(x))( Hi2n+1 ) 5 W" ' 593"“ x’

5 «mm» "61000” )~ . SDGNIIU ~10“) ’VO(X) a:000}

and
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q 2 I 2 A I
“(904” ( H1 W I - T (1‘1) 0 spanlt U}

9

Hence, we can regard Pi and N as Lorentzian submanifolds of the

semi-Riemannian manifold 822””. Let 0: be a curve in N beginning at

x and denote normal parallel translation of vector fields along the

curves o< and Q(o<) by Ptx and PQ(o<) respectively. As H13“ is a

totally umbillic hyperquadric of 822’”, parallel translation in

H12n" preserves the second fundamentai form of HIZM.

Define 4.1: Tx(N)‘-o ng’i)1 by 4:1(x) =y and iii*(t‘,,,)=£'u and then

extend linearly to obtain a linear isometry of the two dimensional

normal spaces. A linear isometry ‘I’L0((5)¢T°((s)(m1"TQ(«(s» (l‘i)Jl

can be defined by setting ‘Plo<(s)=PQ(o<(s))° iploP°((s)". At each s in

the domain of o<, (“9)a(s)="‘o<(s) is an isometry that maps the second

fundamentai form of N at «(5) onto that of Fl at mods». Therefore.

the linear isometry @1045) will map the second fundamental form of



‘I
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N in (I,rm at «(5) to that of F1 in (I,n+1 at mods», i.e.

4"“(5)B(X.Y)=B’( (dQ)o((5)X. (00)“(5)Y)

where

vxv=vxv:«3(x,v) for all X,YeT “(5fo

and

vwi-sttxy) for all X,YeT 9(a(s))(l°i)

are the Gauss formulae of N and Ft in c1n+l .

(in fact, BX(X,Y)=< fix»: x-<x,v>x for all ma "(it) with the

analogous statement for T9(F1).)

Now by Theorem 4i, chap. 4 of [201, there exists an isometry i7:
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of tin” such that til ~=Q i7 induces a rigid motion of CHn that maps

N isometricaily to n.//

With Theorem 3 we can classify the hypersurfaces of section 2 in

terms of the examples of section 3.

Iheorgm 4

Let l1 be a complete connected contact hypersurface of CH"(-4).

n23. Then i1 is congruent to one of the foilowing:

i) A tube of radius r>0 around a totally geodesic, totally real

hyperbolic space form H"(-i),

ii) A tube of radius r>0 around a totally geodesic complex

hyperbolic space form CHI"l (-4),

iii) A geodesic hypersphere of radius r>0. or

iv) A horosphere.

Pr00f:

The proof of cases i)-iii) is obvious. An analytic proof of the

existence of a horosphere in CH"(-4) is postponed until the next
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section //

Theorem 5

Let N be a complete connected real hypersurface of CH"(-4) that

satisfies

(2.4) ¢H=Hii.

Then ii is congruent to one of the following:

i) A tube of radius r>0 around a totally geodesic CHp(-4).

Ospsn-i, or

ii) A horosphere.

Proof:

Again i) and ii) are obvious if we grant the existence of a

horosphere in CH"(-4). //

in section 4, semi-symmetric hypersurfaces that are also

S'-invariant are characterized as iif ts of real hypersurfaces in CHn
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that satisfy (2.4). Hence:

r r i

Let M'Zn be a semi-symmetric hypersurface of Him” that is

S'-invariant. Then, i112” is congruent to an S'-fiber bundle over

either a tube about a complex hyperbolic space CHp(-4), p=0,l,...,n-l,

imbedded as a totally geodesic complex submanifold of CH'Y-4), or a

horosphere. //
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6. An Analytic Construction of a Horosphere

Using the congruence results of section 5, we can now place the

model spaces used in [l6] into the context of the preceeding

geometric classification First, recall an elegant and well-known ,

(e.g. [l6] and Hal), analytic method of determining the extrinsic

geometry of a level hypersurface of a C°° function ona space form

imbedded as a hypersurface in a euclidean space, modified to fit the

particular needs of this section

Let f: 82”" 48 be a C°° function and l1,"(c) be an imbedded

Lorentzian space form in 82"" of sectional curvature c. Let Vf

denote the gradient of f in T01) as a function on if, and \’7f denote the

gradient of f as a function on 82"". Let S be the set of all 568 such

that F15=f" (s) is a hypersurface of 82"" . Then for any 553, F15 has

Vf/Wfl as a unit normal field in T(RZrm ). Similarly, let T be the

set of all 568 such that Ms=fisnn'n(c) is a hypersurface of l1.“(c).

Then l'ls will have Vf/lVfl as a unit normal in T( r1,“(c)), for each
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SET.

For a given f, 6f is usually easy to calculate. Once this is done,

(6.l) vr=vi+<vt,c>c

where <, > is the standard metric of RF" and t, is a unit timelike .

normal f ield to l1.“(c) in 82"". (Notice that the choice of positive

coefficient of C is necessitated by the causal nature of I). Let

Hess(f;Rzn" ) denote the hessian of f as an operator on 82"” . For

each 565, the second fundamental form Fl of Fls in 82”” is given by

(6.2) «ix,» =Hess(f: 82"” )(x.Y)/| ml

for all X,YeT(Fls) which for a given f is usually easy to compute. For

each seT. the second fundamental form H of its in i'l.”(c) can be

obtained similarly:
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(5.3) <HX,Y> =Hess(r;r1.“(c) )(x,v)/lv fl

for all x,VeT( HS) and where Hess(f;i11n(c)) denotes the hessian of f

as an operator on T(M,”(c)). Once (6.2) has been computed, (6.l) can

be used to obtain a representation of (6.3), thereby yielding an

explicit calculation of the second fundamental form of "s in t1,"(c).

Example;

Consider the function (Spit,n+1 48, for each p=0,l,...,n, defined by

D

Gp(2)=-i20|2+2 izt I2

I=I

where z=(zo.zl .....z n). For r>0, define a level hypersurface of Cf“

by

Flp(r)={26 CF" IGD(2)=-cosh2(r)}.

mi
The gradient of (3p in C. is computed to be
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VGp(z)=2(zo,zI ,...,z p,0,...,0)

for all 26 (I.n+1 , so that

VGp(z)/2cosh(r)=(sech(r)z),sech(r)zl ,...,sech(r)z p,0,...,0)

is a unit (time-like) normal to Flow) in Cf)" , for all zeFlpU).

Th2 IQVQ I hypersurface

Mp(r)=Flp(r)n HIZM

is nothing more than the model "2',” NH (tam2(r)) of example 4.l

in [l6]. Notice that Mp(r) is isometric to the product

H129" (-cosh2(r))x52”"pH (sinh2(r)). The gradient of Gp on Mp(r) in

T(H.2"" ) is given by (6.l):
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VGp(z)=-2cosh2(r)(tam2(r)zo,...,tanh2(r)2 ptzp+l ,...,z n)

for all 25 Mp(r). Thus,

21(2):-(tanh(r)zo....,tam(r)z p.coth(r)zp,, ,...,coth(r)z n)

is a unit normal to lip(r) in H12n+1 , for all zenp(r).

At this point we can see that the second fundamental form of

l‘lD(r) in HIZM is diagonalizable with respect to a real basis of

Tz(rlp(r))={z,t:(z)}l and has constant principal curvatures tanh(r) and

coth(r) of real multiplicities 2p+i and 2n-2p-l, respectively.

Let Np(r)=rr(rb(r)) and U denote the distinguished vector on Np(r)

viewed as a real hypersurface of CH”. Let H' and H denote the second

fundamental forms of lip(r) and Np(r), respectively. We can write

Un(z)‘-'-J(ffx(£(2)))=m(-i£(2)). i.e. (U~)z='l£(2)-
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An explicit calculation of H’(U"')Z using (6.3) followed by an

application of (4.4) shows that Ufl(z)is principal in T“(Z(Np(r))

with curvature 2coth(2r). Subsequent calculations yield the other

principal curvatures tanh(r) and coth(r) of multiplicities 2p and

2n-2p-2, respectively, each of which having a (It-invariant

eigendistribution From the work of sections 3 and 5 we see that '

Np(r) is congruent to a tube of radius r about a totally geodesic

complex space form in CHn isometric to a CH”. in particular, we

shall need that N0(r) is congruent to a geodesic hypersphere of radius

r.

W

Consider the function G:C,”" 48 given by G(z)= | 20-2, P, where

2420.-.: n)- and the level hypersurface of CF” . 6:6" (l). The

gradient of G in CF" canbe written as
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96(z)=2(zl -zo,z‘ -zo,0,...,0)

for all 25 Ft.

The level hypersurface N=F10H,2”"' is the model hypersurface N

of example 4.2 of Ho]. The gradient of G in HIZM is given by

VG(2)=2(z, .22] ’20-22.....z n)

IOF all ZEN. HQI'ICQ,

£(z)=(zl .221 -zo,22,...,z n)

is a unit normal to N in H12n+1 .

Set Hn*=1T(N), as in example 4.2 of H6]. Explicit calculations

using (6.3) and (4.4) show that U is principal on "n” with curvature

2, and that l is a principal curvature of multiplicity 2n-2, i.e. the
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second fundamental form of "n“ acts as the identity transformation

on ker(f). Thus, fin,‘ is our candidate for a horosphere. in order to

see this and thereby complete the classification analytically we will

show that "n” is a limiting hypersurface of a specific family of

geodesic hyperspheres.

Other than the fact that fin" and a horosphere have the same

second fundamental form, it is not clear that "n” can be realized as

the limiting hypersurface of a certain family of expanding geodesic

hyperspheres. in the following discussion we shall use the

hypersurfaces of Him” constructed in example 5 to show that this

is indeed the case.

Let P=(l,0,...,0)£H, 2"" and consider the geodesic emanating from

rr(P) in CHn given by b’(r)=1'r(cosh(r),sinh(r),0,...,0). (See p. 285 of

[l2], Vol ll.) As in example 3, each geodesic hypersphere of radius r

centered at 2f(r) contains the point 1r(P). We will see that these

hyperspheres convergeto a limiting hypersurface, namely l‘ln'.
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Earlier in this section, we discovered that the hypersurface of

it?n+1 defined by

l'lo(r)={zeH,2n+l | tanl12(r) | zol 2:2 0 hi I 2 }

i=l

is actually the lift (up to a congruence, of course) of a geodesic

hypersphere of radius r. Notice that U(r)er10(r) and that 1r(P) is

equidistant from every point on l‘lo(r). So.1r(P)plays the role of

center of rr(i10(r)) in CH”.

in particular, we see that the family of hypersurfaces

{11'(i“lo(r)) I DO) is not our candidate for the convergent family.

However. all is not lost, for we should be able to find a rigid

movement of CH", induced by an A(r)£U(i,n), that for each r>0 will

translate n(n0(r)) to a geodesic hypersphere of radius r and center

6’(r) in such a way that the family {n(A(r)[(l‘10(r))]) I r>0}will

converge to a limiting hypersurface. This limiting hypersurface will

be Mn”=11" (N), which must then be a horosphere through rr(P).

For each r>0, let A(r)eU(l,n) be defined by
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A(r)=diag{ [cosh(r) -sinh(r)I J n—l }-

lsinh(r) -cosh(r)J

A(r) is a rigid motion that maps Ho(r) onto the lift of the geodesic

hypersphere of radius r centered at 2)’(r), and therefore induces a rigid

motion of CHn that moves the geodesic hypersphere 11(l‘10(r)) that has

radius r and center n(P) onto the geodesic hypersphere that has

radius r and center 2f(r) and contains rr(P).

r—Mo

7i

.!

fl(H( l'}[ ”AND

’U

I

......

-- -

 

 

 fl( Mom}
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Eggpgsition z

N is the limiting hypersurface of the family {A(r)[i10(r)l| r>0} of

hypersurfaces in H.2n“ , i.e.

lim {A(r)lho(r)li = N

r-boo

and is therefore an SI-fiber bundle over a horosphere.

Proof:

For any z=(zo,zl ,...,z n)isi“l0(r) we have

I 20 | 2=cosh2(r)

and

n

2 '2] l2 = sinh2(r).

i=1

Let w=(w0,w' .....w n)£A(r)[l“lo(r)l. Then
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w=(cosh(r)zo-sinh(r)z' ,sinh(r)z o-cosh(r)zl .22....2 n)

for some zerl0(r). in particular, we have

IwO-wl I=(cosh(r)-sinh(r))IzO+zl I=e'rI20+zl I.

Thus,

Iwo-w, I .<. e'r(I20I+ I2, I): e'r(cosh(r)+slrih(r))=l

Which shows that the limiting hypersurface llm {A(r)[l10(r)l} must

r400

satisfy

IZO'ZI Is l for any z=(zo,...,z n)is lim {A(r)ll10(r)l}.

r-OOO

To see the reverse inequality, let Fl>0 be given For each r>R,

consider the disc

S(r.R)={weA(r)lllo(r)l I d(P.W)<Fli
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on the translated lift of the geodesic hypersphere 11(r10(r)). Let

weS(r,R). Since A(r) is an isometry, there is a zell0(r) such that

w=A(r)z and

d((cosh(r),sim(r),0,...,0),z)<Fl.

Hence, Izo-cosh(r)I<Fl, Iz' -sinh(r)I<R, and IzkI<Fl for kzz. Thus,

for r sufficiently large,

IWo‘Wi I: e" I zo+zl I2 e'r(cosh(r)+sim(r)-Fl)=l-e "Fl.

Now we see that for a point z in the llf t of the horosphere within R

units of P, we must have Izo-ZI Izl. But Fl was an arbitrary choice

so that

N: U {lim S(r.R)} = lim {A(r)[l‘lo(r)l}. //

R>0 r-boo r-poo

This establishes the existence of a horosphere analytically in
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CHn and thereby completes the preceeding classification

Notice that the representation of a horosphere as a submersed

level hypersurface depends both on the choice of PeH,2W1 and on the

geodesic emanating from P; equivilantly: upon the choice of normal

to the lift of a horosphere at P. it is interesting to note that we

obtain different bounds for Izo-z, I2 fora limiting hypersurface of

a convergent family of SI-fiber bundles over geodesic hyperspheres

if a different geodesic emanating from P is selected.

in [2], the converseto Proposition l is proved for the ambient

space CP”, which allows a classification of its real hypersurfaces

that have the direction U principal. if we enlarge the class of tubes

to include horospheres (as hyperspheres of infinite radius and

centered at points at inf lnity), i believe the converse to Proposition

l is also true if the ambient space is CH". However, in order to

achieve a clasification of hypersurfaces of CHn that have U as a

principal direction, more general congruence results than those of

section 5 must be found. in light of example 4.
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