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ABSTRACT

BACK EXTRUSION OF POWER LAW, BINGHAM PLASTIC

AND HERSCHEL-BULKLEY FLUIDS

BY

Fernando Alberto Osorio-Lira

A mathematical model was developed to describe the

behavior of non-Newtonian fluids in a back extrusion device

using the Herschel-Bulkley fluid model. With this

mathematical model it is possible to determine the

rheological properties of the fluids. The shear stress and

the shear rate at the wall may also be calculated for each

fluid. The mathematical expressions obtained were expressed

in form of dimensionless terms; graphical aids and tables

were prepared to facilitate the handling of the mathematical

expressions.

The mathematical model was experimentally validated for

pseudoplastic and Herschel-Bulkley fluids. Values obtained

with the back extrusion device gave good results when

compared with those obtained with a Haake viscometer.

Using the mathematical model developed in this study

for a Herschel-Bulkley fluid in a back extrustion device, it

is possible to obtain the yield stress experimentally when

determining the other rheological properties of the fluid.
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NOMENCLATURE

radius of the plunger, m

level of fluid measured from the fluid surface

to O, m

constant in Equation (4), Pa.1 3—1

constant in Equation (4), Pa'a s-l

constant in Equation (5), Pa 5

constant in Equation (5), Pa"1

constant in Equation (5), s-1

constant in Equation (6), Pa

constant in Equation (6), s"1

of the recorder, m/s

-1

chart speed

shear rate, 5

diameter, m

force applied to the plunger, N

buoyancy force, N.

force corrected for buoyancy, N

recorded force while plunger is traveling down, N

recorded force after the plunger is stopped, N

acceleration due to gravity, m/s2

ratio of radius of plunger to that of outer

cylinder, dimensionless

chart length, obtained from the recorder, m

length of annular region = A0 + 5B, m

flow behavior index, dimensionless

initial level of fluid when the plunger has not been

forced down in the sample, m

ix



position of the plunger bottom, measured with respect

to O, m

static pressure, Pa

pressure in excess of hydrostatic pressure at the

plunger base, Pa

pressure at entrance to annulus, Pa

pressure drop per unit of length, Pa/m

total volumetric flow rate through the annulus, m3/s

radial coordinate, measured from common axis of

cylinder forming annulus, m

radius of outer cylinder of annulus, m

reciprocal of n, dimensionless

time, s

time at the end of the test, s

dimensionless shear stress, defined in Equation (11)

dimensionless yield stress, defined in Equation (12)

dimensionless shear stress at the plunger wall

velocity of the plunger, m/s

velocity, m/s



GREEK SYMBOLS

mass density of fluid, kg/m3

sample density, kg/m3

p0 ' er Pa

pressure due to the buoyancy force, Pa

consistency coefficient, Pa sn

plastic viscosity, Pa 5

temperature, 0C

value of dimensionless radial coordinate o for which

shear stress is zero

limits of plug region in Herschel-Bulkley flow, as

shown in Figure 2

Newtonian viscosity, Pa 5

viscosity at infinite shear rate, Pa 5

dimensionless radial coordinate

shear stress, Pa

yield stress, Pa

shear stress at the plunger wall, Pa

flow rate defined in Equation (37)dimensionless

dimensionless velocity defined by Equation (13)

dimensionless velocity outside plug flow region

dimensionless maximum velocity in the plug flow

region

dimensionless velocity at the plunger wall

"del" or "nabla" operator

xi



Chapter 1

INTRODUCTION

Non—Newtonian fluids are of great importance in the

processing industry. Industries in which non-Newtonian

fluids are encountered include rubber, plastics, petroleum,

soap and detergents, pharmaceuticals, biological fluids,

atomic energy, cement, foods, paper pulp, paint, light and

heavy chemicals, fermentation processes, oil field

operations, ore processing, and printing (Skelland, 1967).

From the above, it is evident that an understanding of non-

Newtonian flow may enable a substantial economic improvement

to be made in a wide diversity of processing techniques.

When designing heating, cooling or pumping systems or

controlling the manufacturing process for fluid foods, it is

necessary to know the rheological properties of the fluid.

Instruments used to determine rheological properties,

that are useful from an engineering standpoint, are those

that determine relationship between shear stress and shear

rate. The most used types of viscometers are the capillary

tube or extrusion rheometer, the concentric cylinder rotary

viscometer, the rotating cylinder in an ”infinite" medium,

and the cone-and-plate type of rotary viscometer (Skelland,

1967).

The fact that the Instron Universal Testing Machine

(Instron Corporation, Canton, Massachusetts) is widely used

in the food industry has motivated the use of a back—



extrusion device to determine rheological properties. Back-

extrusion devices have been used to characterize relative

flow properties of food materials; some of these devices

have been designed and calibrated to measure Newtonian

viscosities and others to measure subjective parameters such

as gel strength (Morgan et al., 1979).

To determine flow properties with the back-extrusion

technique, a sample is placed in a vertical cylinder and a

plunger is forced down into the sample at a constant

velocity. This causes the sample to flow upward through the

annulus between the plunger and the wall of the cylinder.

The force applied on the plunger is recorded as a function

of time.

To date, analytical expressions to obtain rheological

properties of non-Newtonian fluids in a back-extrusion

device have not been available. Therefore, the objectives

of this study were: 1) to develop expressions, using the

Herschel-Bulkley fluid model, to describe the behavior of

non-Newtonian fluids in a back—extrusion device; 2) to

develop graphical aids and tables to determine the

rheological properties of non-Newtonian fluids from back-

extrusion data; 3) to experimentally validate the

mathematical model.



Chapter 2

LITERATURE REVIEW

Non-Newtonian fluids are those for which the flow curve

(shear stress versus shear rate) is not linear through the

origin at a given temperature and pressure (Skelland, 1967).

They are commonly divided into three broad groups, although,

these classifications are by no means distinct or sharply

defined:

1. Time-independent fluids are those for which the

rate of shear at a given point is solely dependent upon the

instantaneous shear stress at that point.

2. Time-dependent fluids are those for which the shear

rate is a function of both the magnitude and the duration of

shear and possibly of the time lapse between consecutive

applications of shear stress.

3. Viscoelastic fluids are those that show partial

elastic recovery upon the removal of a deforming shear

stress. Such materials possess properties of both fluids

and elastic solids.

Time-independent fluids, which are considered in this

study, are sometimes referred to as "non-Newtonian viscous

fluids" or alternatively as "purely viscous fluids"

(Skelland, 1967).

A great many empirical or semi—empirical equations have

been proposed to represent the flow behavior of materials.

The choice of an equation for a particular application is to

some extent a matter of taste (Whorlow, 1980). There can be
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legitimate differences of opinion about the relative

importance of (a) a close fit to experimental data; (b) the

use of the smallest number of available constants; (c)

mathematical simplicity leading to straight-forward analyses

of different types of shear flow; and (d) the possibility of

generalizing the equation, into tensor form, for use with

more general types of flow. The equations that will be

mentioned below are only those which have been used in axial

laminar flow in a concentric annulus:

1. The Ostwald-de-Waele Model.

This model, also called the power law model, is the

simplest and most generally useful two-constant model. The

equation for the model can be written as

n

=(gg) m

where

T = shear stress, Pa

n = consistency coefficient, Pa sn

3% = shear rate, 5"1

n = flow behavior index, dimensionless

The power law model has been used for shear-thickening

materials, that is, materials which increase in viscosity as

the shear stress increases. In this case, n > 1. For a

power law fluid with 0 < n < 1, the viscosity decreases as

the shear rate increases. When n = 1 and n = u, this model

simplifies to the Newtonian model.
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2. The Bingham Plastic Model.

Although true Bingham plastic behavior is encountered

somewhat rarely (Skelland, 1967), departure from the exact

Bingham model is sometimes small enough for procedures based

on this model to be useful in design. The model is

T=Ty+np(%‘l—f) [2]

where

r = shear stress, Pa

TY = yield stress, Pa

np = plastic viscosity, Pa 5

3% = shear rate, 5-1

3. The Herschel-Bulkley Model.

Many non-Newtonian fluids are not well approximated by

either the Bingham plastic or the power law model. They are,

however, well represented by a combination model known

variously as the yield-pseudoplastic (Hanks, 1979),

generalized Bingham (Cheng, 1970, 1975), yield power law

(Hanks and Ricks, 1974; Hanks, 1976), or Herschel-Bulkley

model (Herschel and Bulkley, 1926). In this work, the model

will be referred to as the Herschel—Bulkley model and be

written as

1 = + l—_.y n(..) m

where

.
4 ll shear stress, Pa

.
4 l
l

yield stress, Pa



n = consistency coefficient, Pa Sn

93 = shear rate, 5'1
dr

= flow behavior index, dimensionless

When Ty = 0, this model simplifies to the power law model;

when n = 1, this model simplifies to the Bingham plastic

model; and when TY = 0, n = 1 and A = u, this model

simplifies to the Newtonian model.

4. The Ellis Model.

The Ellis model is written as

 

- (n-l) dr [4]
C1+C21

where

T = shear stress, Pa

—1
C1 = constant, Pa.1 5

C2 = constant, Pa-a s—1

n = flow behavior index, dimensionless

Q3 = shear rate, 5'1

dr

This model, with n > 1, shows Newtonian behavior at low

shear stress and power law behavior at high shear stress

(Whorlow, 1980).

5. The Powell-Eyring Model.

The Powell-Eyring model is written as

= g3 _1 . -l l dv
1 C3 (dr)+ C4 Slnh (Eg(d—r)) [5]

where



T = shear stress, Pa

C3 = constant, Pa 5

C4 = constant, Pa—l

C5 = constant, 5'1

93 = shear rate, 5‘1
dr

The equation of this model can accomodate both the low shear

rate and the high-shear—rate Newtonian flow regions

exhibited by some non-Newtonian fluid data (Russell and

Christiansen, 1974).

6. The Williamson Model.

The Williamson model is written as

C (8V/D)

T "' 6 + p £2)

9” [6]
w ’ c7+(BV/D) n

where

IV = shear stress at the wall, Pa

C6 = constant, Pa

C7 = constant, 5"1

V = velocity, ms—l

D : diameter, m

viscosity at infinite shear rate, Pa 5T

e

00

Only the Bingham plastic and Herschel-Bulkley models

can be applied to fluids with yield stress.

In this study on back-extrusion, the following two

facts are involved: (1) a plunger is forced down in a

fluid, and (2) the fluid flows upward through a concentric

annular space. Some authors have studied the two above



facts together as applied only to Newtonian fluids. The

second fact has been studied by several authors and all of

them but Bird et a1. (1960) have considered the axial

laminar flow in fixed concentric annuli. To date, the

behavior of time-independent, non—Newtonian fluids in a

back—extrusion device has not been considered. The findings

of authors who have studied the two facts mentioned above

together follow, then, the findings of those authors who

have studied axial laminar flow in fixed concentric annulus

will be discussed.

Bikerman (1948) developed equations to study the

viscosity of Newtonian fluids by using a glass tube and a

brass plunger. Constant weights on a platform--screwed to

the top of the p1unger—-were used. To ensure the coaxial

position of the plunger in the tube he used six "distance

pins" to keep it centered, and therefore a correction factor

for the resistance to penetration had to be added in his

equations. Bikerman did not obtain expressions for the

shear stress or the shear rate.

Smith et a1. (1949) measured the mechanical properties

of polymer solutions using an electromagnetic transducer--a

plunger oscillating axially with a very small amplitude in a

closed tube. The plunger was driven by a coil in a magnetic

field. From electrical measurements on the coil, the

mechanical resistance and reactance of the system were

calculated by transducer relationships. Equations were

developed for obtaining the dynamic viscosity and rigidity



of the solution. Smith et a1. (1949) did not obtain

equations for shear stress or shear rate.

Harper et a1. (1978) used a simple glass test tube as a

sample holder and a circular stainless steel rod attached to

the load cell of a Model 1122 Instron as a plunger. This

device was used for determining a viscosity index for heat

treated bovine plasma protein suspensions. The equation for

calculating the viscosity index was similar to that)

developed for a concentric cylinder pumping instrument

described by Philippoff (1965) and Ferry (1970). The

calculated viscosity index could be used only as a relative

rheological property (Morgan et a1. 1979). Harpet et a1.

(1978) did not provide equations for determining shear rate

at which the index was measured.

Morgan et a1. (1979) developed mathematical expressions

for describing the behavior of a Newtonian fluid in a back-

extruder. The authors presented analytical expressions to

calculate the shear stress and the shear rate. In addition,

they validated the mathematical relationships by testing

Newtonian viscosity standards.

Ashare et a1. (1965) extended the analysis of a falling

cylinder viscometer to non—Newtonian fluids. They assumed

that the annular gap is so small that the velocity profile

in the gap could be taken to be the same as that for flow in

a plane gap with fixed walls. They also assumed that the

falling cylinder moves downward so slowly that, in solving

the fluids equations of motion, one can use the approximate
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boundary condition that the fluid velocity at the falling

cylinder surface is zero. Correction factors are then

derived to account for each of these assumptions.

Specifically, they used the power law and Ellis models to

reanalyse Fredrickson's (1959) data, obtaining the best

agreement with the Ellis model. End effects are neglected

and it is also assumed that the falling cylinder is equipped

with fins to keep it centered; however, this assumption is

not taken into account in the equations.

The axial laminar flow in an annular system for a

Bingham plastic model was first presented by Van Olphen

(1950). He estimated the solution by introducing

approximations similar to those which have been used in the

case of the Buckingham-Reiner equation (Melrose et al.,

1958). Laird (1957) obtained the correct solution, but he

did not present his results in terms of a dimensionless

expression. Fredrickson and Bird (1958) obtained the exact

solution in terms of dimensionless correlations for a

Bingham plastic fluid flowing in an annulus. They also gave

examples of how to use their charts and tables to determine

rheological properties. Paslay and Slibar (1957) also

solved this problem. Melrose et a1. (1958) solved the

problem by using dimensionless terms (different than the

terms of Fredrickson and Bird, 1958) and presented their

results in the form of charts and tables.

The axial laminar flow in an annular system for a power

law model was first studied by Fredrickson and Bird (1958).
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They presented results obtained by using power series

expansions for limited values of n (flow behavior index)

applied to the arguments of certain integrals which they

could not solve analytically (Hanks and Larsen, 1979).

Vaughn and Bergman (1966) objected to the results obtained

by Fredrickson and Bird (1958) because their experimental

data did not agree with the values predicted by Fredrickson

and Bird (1958). Bird (1965) corroborated the fact that the

power law model did not fit the experimental values obtained

by Fredrickson (1959); however, Tiu and Bhattacharyya (1974)

substantiated, for the first time, the theoretical fully

developed velocity profiles obtained from the solution of

Fredrickson and Bird (1958) by using experimental

measurements of the developing and fully developed velocity

profiles for inelastic power law fluids in an annulus. They

used a technique employing streak photography for measuring

point velocities. The test fluids employed in the

experiment were five aqueous solutions of Methocel 90-HG

(hydroxypropyl-methyl-cellulose) and one dilute Separan AP—

30 solution (partially hydrolyzed polyacrylamide), both from

the Dow Chemical Co. Fundamental fluid properties were

characterized in the form of shear stress versus shear rate

on a R-16 Weissenberg cone-and-plate rheogoniometer. The

above result shows that Fredrickson and Bird method gives an

accurate representation of experimental data when the

viscometric data are truly power law.

Hanks and Larsen (1979) presented a simple algebraic
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solution for the volume rate of flow of a power law non-

Newtonian fluid through a concentric annulus in laminar

flow. They obtained a solution which is valid for

arbitrary, non integer values of s (where s = l/n and n is

the flow behavior index). This simple expression eliminates

the need for either graphical interpolation or numerical

integration, as is necessary in the Fredrickson and Bird

(1958) model. i

The axial laminar flow in an annular system for a

Herschel—Bulkley model was obtained by Hanks (1979). He

presented the theory of laminar flow of such fluids in

concentric annuli together with appropriate design charts

and practical designs examples.

Several other fluid models have been used to study the

flow of axial laminar flow for annular systems. McEachern

(1966) solved the equation of motion for steady axial,

laminar, isothermal flow of an Ellis model fluid in a

conduit of annular cross section. The results of that

investigation also demonstrate that the power law

viscometric representation can be used with the solution of

the annulus problem given by Fredrickson and Bird (1958).

Cramer and Marchello (1969) used the extended Williamson

model to numerically simulate non-Newtonian flow through

annuli.

According to Hanks (1979), there are reported data for

a limited range of a Powell-Eyring model fluid, which were

obtained by a numerical solution of the equation of motion.



 

13

Russell and Christiansen (1974) solved numerically the

equation of motion for a Powell-Eyring model fluid in

annuli. They demonstrated the capability of this equation

to represent data that appear to be approaching Newtonian

flow in both the high and the low shear rate ranges.

Rotem (1962) applied the methods of integration

developed by Rotem and Shinnar (1961) for linear flow of

general non-Newtonian fluids to flow in concentric circular

annuli under laminar flow conditions. According to Rotem

(1962), the solutions presented should apply for any

incompressible, inelastic, non-Newtonian fluid in axial

motion in an annular system without restrictions on the

number of rheological constant used; moreover, the solution

can be extended to the case of a steady, axial motion of the

boundaries. He presented particular solutions for

relationships including two and three rheological constant.

Finally, Savins (1958) used the pseudoplastic

generalized Newtonian liquid to study linear flow in

stationary pipes and annuli.



Chapter 3

Mathematical Development of the Model

The Herschel—Bulkley model was selected for this study

because the flow characteristics of a large number of

industrially important materials may be described by this

model. In addition, the design procedure could be

simplified, if necessary, to the Newtonian, power law, or

Bingham plastic model because these models are special cases

of the more general Herschel-Bulkley model.

3.1 Basic Equations

A Herschel—Bulkley fluid as defined in Equation [3] can

be written as

 

 

n

1:1- + 9.!

y n dr [7]

where

T = shear stress, Pa

TY = yield stress, Pa

n = consistency coefficient, Pa sn

dV —n

d? = shear rate, 5

= flow behavior index, dimensionless

The absolute value of the 3% term is necessary because

the shear stress associated with Ty, n and n must be in the

same direction (Laird, 1957).

Consider a plunger, traveling at a constant velocity,

forced down into a Herschel Bulkley fluid in a cylindrical

container. The fluid flows upward through the annular space

14
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between the plunger and inner wall of the cylinder (Fig. 1).

In the developments which follow, the following assumptions

are made:

a. The density is constant;

b. The fluid is homogeneous;

c. The fluid has achieved steady state flow;

d. There is no elasticity or time-dependent behavior;

e. The flow is laminar and fully developed;

f. The cylinders are sufficiently long that end

effects may be neglected;

g. The temperature is constant.

In addition, the following boundary conditions are

assumed for this analysis:

a. There is no slip at the annulus walls, or v(a) = -

vp and v(R) = 0;

b. The definition of a Herschel Bulkley fluid implies

a region of "plug flow" where the shear stress,'r,

must reduce to zero at the boundary and inside the

plug.

The equations describing the flow of a compressible,

isothermal fluid are the equation of continuity

(Fredrickson and Bird, 1958),

Q
)

3.:— + (V-yv) = o [3]

where

7: mass density of fluid, kg/m3



 

 
 

   
   

Figure 1. Schematic representation of the back-

extrusion device.
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v = velocity, m/s

V = "del" or "nabla" operator

t = time, s

and motion (Fredrickson and Bird, 1958),

Y [§%-+ (v-V)V] = “VP “ (V°T) + yg [9]

where

T = shear stress, Pa

p = static pressure, Pa

9 = acceleration due to gravity, m/s2

For the specific system under consideration, by

applying above assumptions, Equations [8] and [9] may be

written in cylindrical coordinates and simplified to

 

1 d - po-pL

r d? (r T) — L [10]

where

r = radial coordinate, m

L = length of annular region, m

p0 = pressure at entrance of annulus, Pa

pL = pressure in excess of hydrostatic pressure at

plunger base, Pa

T = shear stress, Pa

Introducing K as the ratio of the radius of plunger to

2
RI

radial coordinate,%-, the velocity profile for a Herschel-

that of outer cylinder, K = and p as a dimensionless
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Bulkley is shown in Figure 2, where l_ and A+ represent the

bounds on the plug flow region.

The current analysis will be conducted by introducing

dimensionless variables, similar to those used by

Fredrickson and Bird (1958), as

 

T = %% = dimensionless shear stress [11]

2t

T0 = PRX = dimensionless yield stress [12]

1/n

¢ = -£%:T v = dimensionless velocity [13]

PR

P -P

_ o L
p_|————-———L [14]

po-pL
Note that I. is negative.

From Figure 2 it can be seen that the value of velocity

increases from o = K, where v = to a maximum value at
"Vp'

o=k_; and the value of velocity decreases from o = 1+ to

o = 1.0 where its value is zero. The value of the 3% term is

positive from o = K to o = A and the shear stress value, T,

. . . . . . dv .

1s pos1t1ve 1n thlS region. The value of the 5? term 15

negative from o = 1+ to o = 1.0 and the shear stress value

is negative in this region.

Applying a differential force balance in the region



l9

 

 

 

 

    
   

l
"

0
1
_
.
_
_
0
—
§
-
0
_
O
—
0
_
0
_
0

y
P
-
—
-
—
-
-
—
—
—
—
—

x
P
—
—

y

+

H

Figure 2. Schematic representation of coordinates

describing axial flow in a back-extrusion

device.
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where K < o < l_, the acting shear force is d(2ner). The

change in this force, as r is increased to r + dr, must

equal the change in pressure force across the distance dr.

Then for K < o < A_

d (2erT) = d (Apnrz) [15]

where

AP = po‘pL

Similarly, when 1+ < o < 1 the differential force

balance is

d (‘2nLr1) = d (APtrz) [16]

From Equation [15]

_ 2
d (2rLrT) — d (APnr )

d (er) = rAPdr

and by integrating

0 AR

J a (r1) = AEJ rdr [171

r1 r

in which 1 is the constant of integration. The radial

distance r - AR represents the position at which 1 = 0.

From Equation [17]

2

(mmz - r)

N
1
)

fi
l
m
:

- (r1) = I

therefore,
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2

T:-§—E(r— ) [18]
(15)

1?

Equation [18] may also be obtained from Equation [10].

With the definition of P as

 

- p -p
LP L

one may write Equation [18] as

2 2

_ 43 118). _ -1: (1R) _
T — IZLI ( r r) - 2( r r) [20]

From Equation [16], an expression similar to Equation

[20] is obtained, when 1+ < o < 1, as

 

2 2

1P 1R P 1R
T : Ié-f) (r - ( r) ) = .2. ( r _ ._(__r_)_ ) [206]

Equation [20] is the starting equation for the

derivation of the back extrusion model for a Herschel-

Bulkley fluid.

For the Herschel-Bulkley model, the local shear stress

is related to the local shear rate as

[21]

Using the dimensionless terms defined by Equations [11]

through [13] and the dimensionless radius 0, Equation [21]

may be expressed for the back-extrusion system as
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at n
T = - T i —4

0 Ida [22]

where, from Equation [20]

2

T=Léu o [23]

X_ and A+ represent the bounds on the plug flow region.

They are those value of o for which IT I: T0 in the region

A_ < o < 1 therefore,+;

A [24]

and

’To = X—'- x+ [25]

Then, from Equation [24]

and from Equation [25]

so the following useful relations may be obtained as

— + o [26]

12 = A (A -T ) [27]

+ + o

12 = A A [28]
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It is convenient to express all the final results in

terms of either 1+ or 1-. To follow a similar notation as

used by Fredrickson and Bird (1958), the results will be

expressed in terms of 1+.

3.2 Differential Equations for the Velocity Profile

a) Region where K < o < A-

The equations describing the system are, from Equations

[22] and [23],

n

T

d

+TO + (Ci—g)

)‘2

‘3

Combining these equations and rearranging yields

and T: —-p

A2 5

-(—F_ ' i" " To) [29]

A

0
4
"
.
}

v
)

C
)
-

v

I

where: s = l/n

b) Region where k_ < o < 1+

In this region

91 _

c) Region where 1+ < p < l

The equations describing the system are

where it should be noted that T is negative in this region.

Combining both equations and rearranging yields



2 s

d:

(‘5?)‘(9'L5’TJ [31]

where s = 1/n

Two methods can be used to solve the above differential

equations. One is by using a binomial expansion which was

the method used by Fredrickson and Bird (1958) to solve the

axial laminar flow of power low fluids in concentric annuli.

The problem with this solution, however, is that the values

of 5 (defined as the inverse of the flow behavior index) have

to be integer, and to use non—integer s values it is

necessary to interpolate after solutions have been obtained

for integer s values.

The second method, the one used in this study,

makes use of the integration properties; by interchanging

the order of integration and then by numerical methods it is

possible to solve the problem. This was the method used by

Hanks (1979) to solve the axial laminar flow of Herschel—

Bulkley fluids in concentric annuli. With this method it is

possible to use any value of s.

3.3 Using Integration Properties to Obtain Velocity Profile

a) Region where K < o < 1_

Integrating Equation [29] yields

0

_ 2_ 2 S -s 32
¢_J (AoTOo)o cap-<11, [1

K
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b) Region where k_ < o < l1

From Equation [29]

¢ = c :6

' (o = x_) + (o = 1+) max [33]

c) Region where 1+ < o < 1

Integrating Equation [31] yields

1

_ 2 2 s -s

41" If (0 - A - Too) 0 dr [34]

0

Using Equations [32] and [34], Equation [33] may be expressed

as

A 1

'u 5 - 2 2 5 -s

I (AZ-oZ-Too) 0 8do- I (c -1 -Too) 0 do = ¢P [35]

K 1+

3.4 Volumetric Flow Rate

The volumetric flow rate through the annulus is given

by

R

QT = 2"] V r dr [36]

Changing this expression to dimensionless terms yields

Q s l

T 2n _ _
—3( FR) — <1. - 2 J oodc [37]

11R

K

Then, introducing Equations [32], [33] and [34] in Equation

[37] yields



Interchanging the order of integration in the above

expression, the following expression is obtained:

 

[39]

Integration of the odo terms and algebraic simplification

gives

A

¢ = I (AZ-02) (A2-02-T O)Sp-sd[5-¢ [AZ-K2] +

x " O p '-

1

+ (xi-13) I (oz-Az-Top)so-sdr +

A+

1

if (02-13) (oz-XZ-Too)so-s do

X4-
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Expansion of terms and further simplification yields

A
2 - 2 2 - A

= A
- - S s

_

__ J' (A 0 Too) 0 do - (AZ-cz-T (>502 sdc
K

K O ‘

2 2 2 1 2 1- ¢ (]_-K ) + A (. -A2_T , s -s ,_ 2 2 2 _
O +IA+ L 0‘) C d“ 4— 1+ (0 '4 -TOO)SC‘ Sdr

l

2 2 52- l

+ (o -A -T . 5 - 2 2 2 -J: 0c) 0 do A+ j;+ (o -A ‘Toolso 5 do

Using Equation [35] in the above expression results in

and finally, after more simplification

Using this expression in Equation [37] yields



 

nR

1 2 S 2 [41]

+ (o -A -Too) 0 do

3+

The volume of liquid displaced by the end of the

plunger is

Q = V na2 [42]

T p

and it must be equal to the volume forced up through the

annulus. Therefore,

QT=TTR (“P—13) ¢=Vplla

and, by using Equation [13], with appropriate rearrangement

yields

¢ = d>p K [43]

Equation [43] is solved numerically using the following

calculation steps, given To, K and n:

1. Assume a 1+ value.

2. With x+, and using Equations [26] and [27] calculate o

P

with Equation [35]. Calculate o with Equation [41].

3. With 1+ and ¢p calculated in step 2, check if Equation

[43] is satisfied.

4. If Equation [43] is not satisfied, return to step 1.
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When Equation [43] is satisfied, the dimensionless flow

rate (4), the limit of the plug region (1+) and the

dimensionless velocity at the plunger wall (¢p) are known.

With A+ known, the constant of integration (1) used in

Equation [20] is obtained by using Equation [27]. It is

possible to obtain the velocity profile across the annulus

between the plunger wall and the inner wall of the cylinder

by numerically integrating Equations [32] and [34]. The

dimensionless shear stress across the annulus is calculated

by placing the constant of integration into Equation [23].

Table 1 contains values of 1+ (To' K, n) computed using

the calculation steps described before, for a selected set

of values of K and T0 for values of n from 0.1 to 1.0.

Figures [3] to [12] contain values of o (To, K, n) for a

selected set of values of K and T0 for values of n from 0.1

to 1.0.

3.5 Dimensionless Shear Stress at the Plunger Wall

From Equation [23], be replacing o by K and using

Equation [27], the dimensionless shear stress at the plunger

wall is found to be

1+(l+-TO) [44]
 

3.6 Dimensionless Shear Rate at the Plunger Wall

Replacing p by K in Equation [29] and using Equation

[27], the dimensionless shear rate at the plunger wall is
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(94)) - (MUS-TO) - K - T)
_ K o

s

[45]

3.7 Special Solution for a Power Law Fluid

A simple solution was developed for the volumetric flow

rate of a power law fluid in a back—extruder. For this

special case, Equation [22] can be written

 

 

n
_ dc

T - 1 Id“

and Equation [26] becomes

1_ = 1+

and Equation [28] becomes

2 2
A —A+

Velocity Profile

a) Region where K < o < A

Equation [29] yields

where s = 1/n

b) Region whereA < o < 1

Equation [31] yields

as

[46]

[47]

[48]

[49]



1 12

4+ =J ( c - -; do [50]

o

S S

A 2 1 2

1 (13-0) M (. 45)
K 1

The volumetric flow rate throug the annulus is given by

_ 3 2n _ 3 2-1

QT — 211R —PR) J ¢0d0 — IIR ( PR ) 4

K [52]

1

where 4 = 2] opdo

K

Then, introducing Equations [49] and [50] into [52] gives

2
S

l o 12 S l 1 1 _ 1

4 = 2 odo —o ‘ 0 d3 ' :p Cd“ + Cd: 0 7 do [53]

K
K 1 o

By interchanging the order of integration in the above

expression, the following is obtained:

A 2 5 I o 1 2 s o

o = 2 I (l;- - 0) do 0dr» - -§ (AZ-K2) +J (P’L) do ndI

K o I o k

Simplification yields

N

A1224 5 ¢22 1122>25
4 = 2 J; 5 (1 -o )( -; - 0) do - —§ (1 -K ) 141 5 (o -A )(0-43) db

and more simplifications gives
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1 5+1

4 =I [AZ-ozl o sdp - ¢ [AZ-K2] [54]

K P

The integral in Equation [54] may be evaluated analytically

for arbitrary values of s. If the integrals in Equation

[53] are integrated, each one by parts, the result is

1 ° 12 s 12 J [(12 )sd III] o2's (12-n2)s do [55]_’__- =— --" C '- V

J; odo x ( p 0) do 2 x o 0 2 x

S

2 s 2 1 2 1 - s

[1 OdQJl(A
- L) d0 = - LJ (0 ' L) d0 + %J 02 5 (02-02)

do [56]

1 a p A o A

A 5 1 - 3 ° 2 2

- % I o2"s (xz-oz) do + § J} o2 s (oz-12) do - —§ (1 -K )

K 1

Introducing Equation [51] into the above expression results

in

A s l _ s

o = Azop - 02-5 (xz-oz) do + o2 3 (oz-12) do - op (\z-KZ) [57]

x 1
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. . . ‘1'4 2-2; 2 .2 S
Con51der1ng the integral o (1 -o ) do

K s

and choosing u = ol_s and dv = (AZ-o2) odo and integrating

by parts yields

1 S

J o2 s (AZ-o2) do =

K

N
I
H

(1+5)
1 l-s 2 2

(gjjr)[:x (A ’K ) +

4 (8+1) _

+ (1-8)) (AZ-o2) o 5 do]

K

[58]

1' 2-s. 2 :2 S
In a similar way, considering the integral 0 (o —A ) do

A

and choosing u = o1.s and dv = (oz-12)s do and integrating

by parts yields

1' _ 5 (5+1) 1 (5+1) ,
I 02 5 (02-12) do = % (§%T)El-XZ) - (1-S)J’ (02-12) 0 560] [59]

A A

Combining Equations [58] and [59] with Equation [57] and

simplifying gives

(1+5) A (5+1)
1 l-s 2_ 2 _ 2_ 2 -s ]

(Fa-)[K (A K ) + (1 S)JK (A O ) 0 d0

(5+1) 1 (5+1)
1 2 _ _ 2_ 2 -s

(m)[(1-A ) (1 S)Jx (O A ) 0 do]

0
- II N e

I

N
I
H

N
I
H

0

ll 7
:

G

I

M
u
d

1 +1)
(s+1)_ - 2 2 (S -S y

] 1 )[11'5 (12-x2)(1+5)- (1-42) (1 six ‘4 ’° ‘ p d‘] [60]
3:1



48

Equation [60] must be equal to Equation [54], or

1 5+1

(AZ-oz] o-sdo - (2op (AZ-K2) + 2K22(5+1)J ¢p(S+l) =

K

=-(

(1+5) (5+1) 1 (5+1) _

xl's (AZ-K2) - (1-12) - (1-5)J' Ixz-ozl o sdo

x

Simplifying this expression gives

1 5+1 5+1 _ 1+5

I lxz-ozl o'sdo = 3&3 [:(1-12) —x‘1 5’ (AZ-x2) +2(s+l)¢p(42)]
x

[61]

Placing Equation [61] into Equation [54] yields

(5+1) 1+5
= 1 _ 2 (1-5) 2 2 2(5+1) 2 2 20 8+3 [(1 A ) “K (A “K ) ]+ W 4p” ) ’ 4p (1 ’K )

Then, with final algebraic simplfication, the analytical

equation for volumetric flow rate of a power law fluid in a

back-extruder is

3 pa 5 1 2 (5+1) - 1+5

 

2(s+l) 12 _ (A2_K2)) ] [62]

For the case of a power law fluid, the values of the

limit of the plug region (1+) are obtained from Table 1

using the fact that the dimensionless yield stress (To) is

zero; then using Equation [27], the value of the constant of

integration (1) is known.
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The dimensionless flow rate (4) for a power law fluid

is obtained from Figures (3) to (12) with the dimensionless

yield stress (To) equal to zero. The dimensionless velocity

at the plunger wall (4p) is then calculated with Equation

[43].



Chapter 4

Experimental Applications

4.1 Materials and Methods

To test the mathematical model for non—Newtonian flow

in a back—extrusion device, laboratory experiments were

conducted using graduate cylinders of different diameters as

sample holders, and plexiglass plunger rods with different

diameters. A model TT-BM Instron Universal Testing machine

was used to operate the plunger. The plunger was screwed to

the cross—head of the Instron and the compression load cell

was located in the Instron loading platform. The graduate

cylinder containing the sample was placed on the top of the

compression load cell. A strip-chart was used to record

force as a function of time (position).

The test fluids employed during the experiments were

aqueous solutions of Methocel KlSMS (hydroxypropyl-methyl-

cellulose) from the Dow Chemical Co.--because it behaves as

a power law f1uid--and aqueous solutions of Kelset (sodium-

calcium alginate) from Kelco Co. as a model for a Herschel-

Bulkley fluid. Fundamental fluid propEties were

characterized in the form of shear stress versus shear rate

on a Haake RV-lZ viscometer, interfaced to a Hewlett—Packard

85 computer and 3497 data acquisition system. The MV—I, MV—

II, MV-III and SV-I concentric cylinder sensors were

utilized in conjunction with the MV paddle mixer (or

impeller) to determine rheological properties of the aqueous

solution of Methocel K15MS; the samples were held in the MV

50
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cup for all tests. Due to the high torque values presented

by the aqueous solution of Kelset, rheological properties

were determined by using only the MV paddle mixer and MV

cup. The procedure used to determine the rheological

properties was the same as that described by Ford and Steffe

(1984).

4.2 Data Analysis Procedure

4.2.1 Analytical Determination of Buoyancy Force)

Buoyancy force can be calculated analytically.

Consider Figure 13 showing the plunger at zero velocity.

At equilibrium, the force on the plunger is

F op na2 [63]

and the hydrostatic pressure

APb = Y1 g L [64]

The length of rod that penetrated the fluid is OB, and

the volume displaced by the rod is equal to naZOB. The

displaced volume is forced up around the annulus, so the

following relationship is valid

2 __

na B = nRZ KO 9 na2 A5

01'

A0 = ——————— QB [65]
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also,

L=A—O+O—B [66]

Placing Equation [65] into Equation [66] and

rearranging yield a value for L as

L = QB [67] 

Substituting this relation into Equation [63] results

in

Pb = yl g ——9§2— na2 [68]

(l-K )

OB can be measured or it can be calculated as

l

OB = 591 v [69]
P

SP

where

lch = chart length, obtained from the recorder, m

CSp = chart speed of the recorder, m/s

vp = velocity of the plunger, m/s

with OB obtained from Equation [69], it is possible to

calculate L by using Equation [67].

4.2.2 Force Balance on Plunger

When the plunger is forced down into the sample, fluid

flows upward in the annulus. At a constant plunger

velocity, the total force applied in the plunger is equal to
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the force due to the shear stress on the plunger wall plus

the force due to static pressure pushing upward on the

bottom surface of the plunger. Static force at the base of

the plunger, composed of buoyancy force and the force

responsible for fluid flow in the upward direction (Morgan

et al., 1979), may be expressed as

FT = 2na L Tw + naZAP + ygL'na2 [70]

where IgLTIa2 hydrostatic or buoyancy force = Fb, N

FT = force applied on the plunger, N

2naLrw = force due to the shear stress at the

wall, N

naZAP = force responsible for fluid flow in the

upward direction

The force corrected for buoyancy (Fcb) may be defined as

2
Fcb = FT - ygLna [71]

Then, with simplification,

_ 2
Fcb — 2naL Tw + na AP [72]

Rearranging Equation [72] as

F

2 _ 2 AP
L '- 27] a “(W + 113 ('17)

and dividing both sides by n (9%) Ra, and using Equations

[14] and [11] and the definition of K as K = % yields
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= T + K ['73]

This equation is very important because it relates the

force corrected for buoyancy (Fcb) being applied to the

plunger to the dimensionless shear stres at the wall (Tw),

the pressure drop per unit of length (P), and the geometric

dimensions of the rod and cylinder containing the fluid.

Equation [73] is fundamental when back extrusion

technique is used to determine rheological properties of a

given fluid.

4.2.3 Determination of Yield Stress

From Equation [70], the total force applied to the

plunger is

_ 2

FT — 2naL Tw + na AP + Fb

and using Equation [7], this may be expressed as

dv “ 2
F = 2naL T + 2naLn (——) + na AP + F

T y . dr Fa

b [74]

When the plunger is stopped in the fluid, the situation

depicted in Figure 14 is obtained and Equation [74] becomes,

when vp = 0,

FTe = 2naL Ty + Pb [75]

Fb can be analytically determined by using Equation [68];
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and FT is the recorded force after the plunger is stopped.

e

Then, the yield stress (Ty) can be calculated as

F F

T = Te b

y 2naL

4.2.4

Law Fluid

4.2.4.1

[76]

Determination of Rheological Properties of a Power-

Determination of the Flow Behavior Index

Combining Equations [37] and [42] yields

[77]

If a power law fluid is tested in a back-extrusion

device at two different plunger velocities (vp), then

Equation [77] may be written as

S V

q‘1 =(fi’) _%1_
1 1 1

for the first test, and

 

for the second test.

H
M

M
N

If the plunger and cylinder are the same in both

experiments then the dimensionless radius (K) is constant in

both tests as is R. In this case, the ratio 91/42 will be

equal to oneb-as it can be seen from Figures 3 to 12, for a

power law fluid--which means the dimensionless yield stress

(To) is zero, i.e.



4 P v

732(32) Lv1=1
[78]

2 1 p2

Note, Equation [78] is valid only for Newtonian and power

law fluids.

On the other hand, from Equation [73],

Fcbl

= T + K
TTLlPlRlal wl 1

for the first run, and

Fcbz

IILZPZRZa2 W2

 

for the second run.

If the plunger and cylinder are the same in both

experiments then, the dimensionless radius (K) is constant

as are the plunger radius (a) and cylinder radius (R). From

Equation [44], it is easily shown that (for a power law

fluid) the dimensionless shear stress (TV) is constant

because TO equals zero and K, R and a are constants in both

tests. Then, the ratio of the forces corrected for buoyancy

may be written as

Fcbl L2 P2
— —=1 [79]

Fcb2 Ll P1

 

Like Equation [78], equation [79] is valid only for

Newtonian and power law fluids.

Solving for PZ/Pl in Equation [79], then placing this value

into Equation [78], rearranging and taking logarithms yields



[80]

 

Using Equation [80] it is possible to determine the flow

behavior index which was previously defined as n = l/s.

4.2.4.2 Determination of the Shear Stress at the Plunger

Wall

Knowing the flow behavior index (n), the geometry of

the system (K g), and the fact that for a power-law fluid

21‘

T0 = —5% = 0, it is possible to determine 1+ from Table 1.

With the appropriate value of 1+ and by using Equation [44],

the dimensionless shear stress at the wall is easily

computed. Replacing the known values in Equation [73],

with the force corrected for buoyancy (Fcb) obtained

experimentally, the pressure drop per unit of length, P, is

first calculated. Finally, with Equation [11] the shear

PRT
_ w

stress at the plunger wall, Tw' 15 obtained as Tw - 2
 

4.2.4.3 Determination of the Consistency Coefficient

The consistency coefficient, n, is determined knowing

the flow behavior index and K, and using the appropriate

graphic (4 vs. K) with T0 = 0 and n as a parameter. Recall

that these graphic solutions are presented in Figures 3 to

12.

With P calculated before--during the determination of

the shear stress at the plunger wall--and by using the known

values in Equation [77], the consistency coefficient n is

4R

vpK2

 

obtained as I n

PR( )
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4.2.4.4 Determination of the Shear Rate at the Plunger Wall

Equation [13] gives the definition of the dimensionless

4 = 2n l/n v
pRn+1

velocity as

 

r

Differentiating this equation with respect to o, where o= g

yields

9_4=__2n U“ 212
do PRn+1 do

and simplification gives

44:23. I“ .1. d_v
do P R d:

 

Since Rdo = dr, the final expression for the derivative may

be written as

d
o I]

A

[3
’ 1/n

dv

) d—r [81]

"
U

7
1

Evaluating Equation [81] at r = a yields the shear rate at

the plunger wall as

4: = 231/“ :4
dr _ 2n do [82]

For a power law fluid, the dimensionless shear rate at

p = K) is obtained with the 1+ value

calculated before--during the determination of the shear

9;)
the wall ((do)
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stress at the plunger wall-~and Equation [45] with T0 = 0.

Then, Equation [82] is used to obtain the shear rate at the

plunger wall using the other known values.

4.2.5 Determination of Rheological Properties of a Bingham

Plastic Fluid

4.2.5.1 Determination of the Yield Stress and Plastic

Viscosity

For a Bingham plastic fluid, the flow behavior index,

n, is equal to one. The yield stress for this fluid is

obtained by using Equation [76] and the following steps are

required to determine the plastic viscosity, hp:

1. For a given plunger velocity vp, calculate the quantity

Fcb

nLRa

 

From Equation [73], this quantity may be expressed in terms

of P, Tw and K as

Fcb

wLRa = P (Tw + K) [73a]

2. Assume a value for the dimensionless yield stress To;

3. Using Equation [12] determine the pressure drop per unit

of length P;

4. With To and K use Figure 12 (with n = 1.0) to determine

4;

5. Use Table 1 to determine 1+;

6. Use Equation [44] to determine Tw;

7. Use Equation [77] to determine np;

8. Compute the expression P (Tw + K) and verify if Equation
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[73a] is satisfieid. If the equation is not, return to

step 2. If Equation [73a] is satisfied, the correct

value of the plastic viscosity was calculated in step 7.

For a new plunger velocity vp, return to step 1.

4.2.5.2 Determination of the Shear Rate at the Plunger Wall

To determine the shear rate at the plunger wall for a

Bingham plastic fluid, Equation [82] is used with the known

values calculated before for P, and “p' with n = l. The

dimensionless shear rate is calculated with the 1+ value

calculated in step 5 and Equation [45], using the To value

that satisfied Equation [73a].

4.2.5.3 Determination of the Shear Stress at the Plunger

Wall

The shear stress at the plunger wall (Tw) is obtained

from the dimensionless shear stress at the wall (TV) and

using Equation [11] with the known values of P, R and Tw

expressed as PRT

W 2

4.2.6 Determination of Rheological Properties of a

Herschel-Bulkley Fluid

The rheological properties of a Herschel-Bulkley fluid

may be determined from the following steps:

 

1. For a given plunger velocity vp, determine the

F

. Cb ' 3 o

express1on Tdfiua' where Fcb 15 obtained from Equat1on

[71]. The above quantity may be expressed in terms of

P, Tw and K as



11.

12.

13.

14.
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Fcb
m: P (TV + K) [73a]

Assume a value for the flow behavior index n;

Assume a value for the dimensionless yield stress To;

Using Equation [12] determine the pressure drop per

unit of length P, with the value of yield stress (TY)

obtained from Equation [76];

With TO and K use the appropriate graphic from Figures

3 to 12 to determine 4;

Use Table 1 to determine 4+;

Use Equation [44] to determine Tw7

Use Equation [77] to determine n;

Compute the expression P (Tw + K);

Return to step 3, in order to obtain at least three

values of P (Tw + K) and n at a given n;

Return to step 2, to plot the necessary curves at

different n values that cover the range needed to

obtain the correct n value;

Plot the values of P (Tw + K) versus n with n as

parameter;

Fcb

Draw the line corresponding to the value of gffig

computed in step 1;

Use a new plunger velocity vp and repeat steps 1 to 13

for this new value of v .

P

The rheological properties of the fluid are found when,

for a specific flow behavior index n, the consistency

coefficient is the same in both curves at two different

plunger velocities as illustrated in Figure 15.
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(
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+
K
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Figure 15.

Y

n[Pa 5“]

Illustration of the method for determining

rheological properties of a Herschel-Bulkley

fluid with the back-extrusion technique.
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With n and n known, the shear stress at the wall may be

computed using the values of T0 and 1+ obtained at either

vpl or vp2 for the known flow behavior index n. Equations

[45] and [82] are used to calculate the dimensionless shear

rate and the actual shear rate, at the plunger wall,

respectively. Also, equations [44] and [11] are used to

determine the dimensionless shear stress and the actual

shear stress, and the plunger wall, respectively.

4.2.7 Determination of Rheological Properties of a

Newtonian Fluid

For a Newtonian fluid, the dimensionless yield stress

(To) value is zero, and the flow behavior index (n) is one.

4.2.7.1 Determinaton of Viscosity

With a given dimensionles radius (K), the value of 1+

is obtained from Table 1. Placing the value of 1+ into

Equation [44]--using To = 0--the dimensionless shear stress

at the wall (TV) is obtained. After calculating the force

corrected for buoyancy force (Fcb) with Equation [71],

calculate the pressure drop per unit of length using Equation

[73], for a given plunger velocity (vp).

Use Figure [12] to obtain the dimensionless volumetric

flow rate (4). Placing the known values into Equation [77],

the viscosity is obtained as
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4.2.7.2 Determination of the Shear Rate at the Plunger Wall

Use Equation [45] to determine the dimensionless shear

rate at the plunger wall ((3%) ). Recall that s = 1/n

= l for a Newtonian fluid and T3K= 0. Use the 1+ value as

obtained in 4.2.7.1.

Placing the known values into Equation [82], the shear rate

at the plunger wall is obtained.

4.2.7.3 Determination of the Shear Stress at the Plunger

Wall

Placing the known values into Equation [11], the shear

stress at the plunger wall (IV) is computed as

 



Chapter 5

RESULTS AND DISCUSSION

To validate the mathematical model, experiments were

conducted with two types of fluids. Methocel aqueous

solutions—-used as power law fluids--and Kelset aqueous

solutions--used as Herschel-Bulkley fluids.

5.1 Power Law Fluids

When using Methocel solutions as power law fluids, the

force versus distance diagrams obtained with the chart

recorder were straight lines through the origin of the the

coordinates. When the plunger was stopped, the force

recorded dropped sharply to a constant value of force--the

buoyancy force--indicating that the fluid did not exhibit

time-dependent behavior. The buoyancy force value obtained

from the chart recorder was the same as that predicted using

Equation (68), as seen in Table 2.

Table 2 also shows that the predicted values of L, Fb,

and OB are the same as those measured experimentally. From

the above, Equations (67), (68) and (69) can be used to

predict the length of the annular region (L), the buoyancy

force (Fb) and the position of the lower surface of the

plunger (OB) respectively.

The values of s—-the inverse of the flow behavior index

(n)—-calculated by using Equation (80) are presented in

Table 3 for experiments A, B, C and D. The values of 4+,

do

from experiments A, B, C, D-—were computed following the

Tw'(§2')p=K and o--calculated using the average value of n

67



T
a
b
l
e

2
.

E
x
p
e
r
i
m
e
n
t
a
l

a
n
d

p
r
e
d
i
c
t
e
d

v
a
l
u
e
s

o
b
t
a
i
n
e
d

f
o
r

a
p
o
w
e
r

l
a
w

f
l
u
i
d
.

E
X

P
E

R
I

M
E

N

  

A
B

 T

1
'

u
-

C

 

v
,
m
/
s

m
m
e
a
s
u
r
e
d
’

O
B
c
a
l
c
.

E
q

(
6
9
)
.

m

L
m

m
e
a
s
u
r
e
d
'

I
n

E
q

(
6
7
)
:

I'
ll

c
a
l
c
.

F
b

e
x
p
e
r
i
m
t
.
’

N

P
b

c
a
l
c
.

E
q

(
6
8
"

N

F
N

o
r
!

F
N

c
b
'

‘
5
.
0
0
-
1
0
‘

0
.
2
4

0
.
0
8
1
5

0
.
0
8
0

0
.
2
0
2

0
.
1
9
8

1
.
1
5
6
4

1
.
1
2
2
6

1
.
2
9
3
6

0
.
1
3
7
2

 1
.
6
6
6
7
-
1
0
- 4

5
4

8
.
3
3
3
-
1
0
‘

3
3
.
3
3
3
-
1
0
"
4

0
.
3
3
2

0
.
0
8
0

0
.
0
8
3

0
.
2
1
0

0
.
2
0
5
4

1
.
2
3
0
0

1
.
1
6
4
7

1
.
6
9
5
4

0
.
4
6
5
5

 

1
6
.
6
6
7
-
1
0

3
3
.
3
3
3
-
1
0
‘

0
.
1
5
7

0
.
0
8
0

0
.
0
7
8
5

0
.
2
0
5

0
.
1
9
4
3

1
.
1
5
6
4

1
.
1
0
1
5

1
.
9
9
9
2

0
.
8
4
2
8

 .
.
.
-
.

.
—
-
_
_
.
~

-
.
o
.
.
.
.
-

_
-
_
<

4 4

.
_
—
-
—
W
1

8
3
.
3
3
3
-
1
0
'
4

8
3
.
3
3
3
-
1
0
'
4

0
.
0
8
2

0
.
0
8
2

0
.
0
8
2

0
.
2
0
4

0
.
2
0
3

1
.
1
7
6

1
.
1
5
0
6

3
.
8
0
2
4

2
.
6
2
6
4

 
 
  f

l
u
i
d
:

M
e
t
h
o
c
e
l

K
1
5

M
S

2
%
:

9
:

n
:

1
.
7
5
8
-
1
0
-
2

(
m
)
:

K
:

0
.
7
7
2

(
-
)
.

2
5

(
°
C
)
:

I
1
:

1
0
0
5

(
k
g
/
m
3
)
;

a
:

1
.
3
5
7
-
1
0
'
2

(
M
)
;

£58



69

Table 3. Values of s = l/n for experiments A, B, C, D.

 

 

EXP(i)* EXP(D) EXP(D) EXP(D) EXP(C) EXP(B)

EXPZj) EXPIAS EXPZBS EXPZC) EXP(A) EXP(A)

S 1.4398 1.4201 1.548 1.3726 1.4689

       
 

g = 1.449 and B = 0.6897

*5 found using data from experiments i and j as required by

Equation (80)

Table 4. Values of 1+
W68“ )

.772 gngT =

 

Parameter 1+ Tw (3%)0 4

o
 

 

Value 0.8914 0.2 7283 0.1397 1203.76.10-
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procedure described in 4.2.4, with K = 0.772 and To = O, and

they are shown in Table 4. Following the procedure

described in 4.2.4 the values of pressure drop per unit of

length (P), consistency coefficient (n), shear rate at the

plunger wall ((%¥)r=a)' and shear stress at the plunger wall

(Tw) were also obtained and are presented in Table 5 for

experiments A, B, C and D. To experimentally validate the

mathematical model, the Methocel solution was used as a model

for a power law fluid. Experiments were conducted with a

Haake viscometer to determine the rheological properties of

the Methocel solution. These values were compared to those

value obtained using the extrusion technique.

Table 6 shows the values of the flow behavior index (n)

and the consistency coefficient (n) obtained with different

sensors on the Haake viscometer. Prior to each experiment,

tests were conducted to investigate the possibility of time-

dependent phenomenon for this fluid. Methocel solutions did

not present time-dependence when tested at 120 rpm using the

MV cup and the paddle (impeller) sensor.

For the sensors used in the Haake viscometer, Table 6

shows that the flow behavior index (n) increases as the gap,

between the rotor of the sensor wall and the inner cup wall,

increases; the same fact occurs with the consistency

coefficient (0) values. The order of increasing gap values

is MV-I, MV-II, MV—III and SV-I sensor with MV cup used with

all the sensors. The differences obtained with the above

sensors could be attributed to the presence of wall effects.
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The rheological equation is

3.056(511) 0.6897
‘1’ 2

dr

Table 5. Values of P, n 4%) r= and T for

experiments A, B, C and D w

EXPERIMENT

A B C D

P,[5%1 880.465 2873.49 5329.42 16689.38

n.1Pa Sn] 2.664 2.8653 3.2947 3.40

g; r=a,[s-l] 0.656 3.279 6.557 32.788

Tw' [Pa] 1.99 6.499 12.05 37.746

”average = 3.056 [Pa 50-5897]
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Table 6. Rheological values obtained for Methocel KlSMS

2% sample using the Haake viscometer and back

extrusion.

Haake Values, 20°C

SV-I sensor Back

MV-I MV-II MV-III MV cup Paddle Extrusion

Technique

25°C

n,(-) 0.6081 0.6558 0.6982 0.7049 0.683 0.6897

n,(Pa s“)3.654 3.7144 3.810 4.407 3.45 3.056        
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The MV paddle was used in order to eliminate this possible

wall effects. The MV paddle was used in order to eliminate

this possible wall effects. Rheological properties for

Methocel solution obtained with the MV paddle are also

presented in Table 6; the value of n obtained with the MV

paddle is close to the value obtained with the MV-III

sensor. The value of n was the lowest for the MV paddle,

suggesting that some settling occurred as the gap increased

in value when using the other sensors.

Also shown in Table 6 are the values of n and r1

obtained with the back extrusion technique. The value of

the flow behavior index (n) obtained with this technique was

0.6897, and it can be seen that it is very close to the

value obtained with the MV paddle sensor (n = 0.683). The

value is also closed to that obtained with the MV-III sensor

(0.6982).

The value obtained for the consistency coefficient (0)

with the back extrusion technique is lower than that

obtained with the MV paddle sensor; however, the fact that

the temperature during the back extrusion test was 25°C and

the temperature for Mv paddle test was 20°C may explain this

difference. The consistency coefficient is known to be

strongly dependent on temperature--Arrhenius relationship--

and decreases with increasing temperature. The flow

behavior index (n) is practically independent of

temperature. Based on the results shown in Table 6, it is

possible to conclude that the back extrusion technique is a
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valid tool for studying the rheological properties of power

law fluids.

5.2 Herschel-BulkleylFluids

When using Kelset solution as Herschel-Bulkley fluids,

the force versus distance diagrams obtained in the chart

recorder were straight lines that, when extrapolated to

zero, gave a positive value of force-force due to the

existence of a yield stress in the fluid-~as shown in Figure

14.

To obtain the rheological properties of Kelset

solutions, the samples were tested for time-dependence by

agitating them using the MV paddle run at 20 rpm and 120 rpm

while measuring torque decay over time. Time-dependent

behavior was not found and consistency coefficient (0) and

flow behavior index (n) were evaluated with MV paddle sensor

data. Table 7 shows the shear stress (I) and shear rate 6%?

values obtained using the power law model. The values of n

and n, with the correlation coefficient for n, are shown in

Table 8. A Herschel-Bulkley model was fitted to the data

).shown in Table 7. The values of yield stress (Ty

consistency coefficient (0) and flow behavior index (n),

with the correlation coefficient obtained, are given in

Table 9. To fit the data to the Herschel-Bulkley model, the

values of T and (3%) corresponding to (3%) greater than 10

s.1 were considered. From Table 9 it can be seen that the

Herschel-Bulkley model gives good agreement with the data

shown in Table 7.
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Table 7. Shear stress—shear rate values for 2% Kelset

solution using mixer viscometry technique .

 

 

  

r 42
dr

(Pa) (5.1)

52.45 2.0

69.40 4.0

81.75 6.0

91.83 8.0

100.49 10.0

108.17 12.0

115.12 14.0

121.50 16.0

127.42 18.0

132.97 20.0

156.63 30.0

166.7 35.0

175.94 40.0

184.5 45.0

192.5 . 50.0

200.0 I 55.0

207.25 60.0    
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Table 8. Rheological properties of 2% Kelset solution

using the power law model.

 

 

 

n n n correlation coefficient

(Pa 5 ) (-) (‘)

39.639 0.4040 0.996

   

Table 9. Rheological properties of 2% Kelset

solution using the Herschel-Bulkley

model.

 

r n n correlation coefficient

(pa) (Pa s“) <-) (->

 

 
25.17 24.658 0.4901 0.9996
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The same Kelset solution, from which a sample was used

to obtain its rheological properties with the MV paddle, was

used to conduct experiments with the back~extrusion device.

Special care was necessary when filling the cylinder with

the sample to avoid the presence of air bubbles in the

sample.

Table 10 shows the values obtained for a Kelset

solution with the back extrusion device, at three different

plunger velocities. The values of L, Fb, 58 and TY were

calculated using Equations (67), (68), (69) and (76)

respectively. The chart speed was set before conducting the

experiments and values of lch' FTe and FT were obtained from

the chart recorder upon completion of testing. From the

data shown in Table 10, the values of force corrected for

buoyancy (Fcb) were calculated using Equation (71). Then,

 

nga were calculated for each velocity used

in the test (Table 11).

expressions for

A computer program was developed to calculate the

following: pressure drop per unit of length (P),

dimensionless shear stress at the wall (Tw)' dimensionless

yield stress (To) and dimensionless volumetric flow (9),

when the rheological properties of a fluid are known. The

calculations were done for different plunger velocities

using the value of K = 0.772 for the dimensionless radius of

the plunger. Table 12 shows the result of these

calculations for the rheological properties of Kelset given

in Table 9.
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F

. c

Table 11. Values of the expre551on for nLRa

experiments E, F, G, H and I.

 

 

 

 

 

 

. Fcb

Experiment V wLRa

(2) (11%)

E 3.33 10‘4 25477.0

F 3.33 10'4 24924.26

G 8.33 10'4 34140.79

H 8.33 10'4 35329.59

1 16.667 10‘4 45907.25  
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F

Table 12. Values of P, Tw To’ LR and 4 at

different velocities for the rheological

properties of Kelset shown in Table 9.

F 1.__

ch

Vp P Tw To nLRa 6

m Pa Pa

E —E ( ) ( ) -jfi ()

3.33-10.4 29571.3 0.2445 0.097 30059.23 92.4-10-6

8.33-10.4 37701.16 0.2466 0.076 38402.4 140.78-10-6

16.667-10'4 46658.6 0.248 0.061 47591.77 182.26-10'6      
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The procedure described in section 4.2.6 was used to

determine the rheological properties of a Herschel-Bulkley

fluid in a back extrusion device. Three plunger velocities

Fcb

nLRa

 

were used to generate Figure 16. Also, the expressions

obtained from experiments at three plunger velocities and

 

the expressions obtained in Table 12, are plotted.
c

nLRa’

The experimental results obtained with a Herschel-

Bulkley fluid in a back extrusion device indicate that this

is an easy and reliable technique to determine yield stress.

It can be concluded that, if a time-independent fluid is of

a Herschel-Bulkley type, then its rheological properties can

be determined using the back extrusion technique with the

mathematical model developed in this study. The differences

between the theoretical and experimental values of the

Fcb

nLRa

in the next section.

 

expression -which is equal to P(Tw + K)--are discussed

5.3 Experimental Problems

with the equipment used in this study, there are

restrictions, due to the sensitivity of the loading cell

used, to determine rheological properties of fluid with low

values of apparent viscosity. The speed of response of the

instrument is also critical in obtaining accurate force

measurements. In further experiments a data acquisition

system should be used to collect the data. Also, the

instrument should have a device to filter external signals

that produce a marked noise in the force-distance diagram.

Another important source of error found during the
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:3 Theoretical

S Egperimental 4.

_b

5: VP: 8.33 10 (m/s)

+

{-13

v n: /.8 0.49 /0.2
m

Theoretical

Experimental

Theoretical  
 

n= 0.8

Experimental

5 --—: f

14 20 24.658 30 35 40 45 50

n(Pa s“)

Figure 16. Determination of the rheological properties of

a Herschel-Bulkley fluid using the back-extrusion

technique.
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experiments was the alignment between the cylinder

containing the sample and the plunger rod. If the plunger

has a small inclination, the fluid flowing upward will have

axial and radial velocity components, which would contradict

one of the assumptions used to develop the mathematical

model.

To eliminate end effects due to the flat-bottom

plunger, a pointed or a semi-spherical end could be used.

This would reduce separation of the fluid around the end of

the plunger; but, on the other hand, it would increase the

force due to shear stress, and it would be necessary to

calculate this contribution to the total force.



Chapter 6

Conclusions

The conclusions of this study are:

It is possible to develop mathematical expressions to

describe the behavior of non-Newtonian fluids in a back

extrusion device using the Herschel-Bulkley fluid model.

The mathematical expressions obtained can be expressed

in form of dimensionless terms.

It is possible to use graphics and tables, with the

dimensionless terms, to facilitate the handling of the

mathematical expressions.

with the mathematical model developed it is possible to

determine the rheological properties of Newtonian, power

law, Bingham plastic, and Herschel-Bulkley fluids.

With the methods developed in this study, it is possible

to determine the shear stress at the plunger wall and

the shear rate at the plunger wall at which the

rheological properties are obtained.
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