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ABSTRACT

DESIGN AND TUNING OF CENTRIFUGAL PENDULUM VIBRATION ABSORBERS
FOR NONLINEAR RESPONSE

By

Mustafa Ali Acar

Centrifugal pendulum vibration absorbers (CPVAs) are used to reduce engine-order tor-

sional vibrations in rotating systems. They are widely used in light aircraft piston engines

and helicopter rotors and have recently been introduced for smoothing torsional vibrations

in automotive powertrain applications. These absorbers make use of the centrifugal field

due to rotation, in place of elastic elements, for their restoring force, so that they are tuned

to a particular engine order, rather than a particular frequency, making them ideally suited

for these applications. Increasing demands on fuel economy have led to engine downsiz-

ing and downspeeding, resulting in harsh torsional excitations being exerted on powertrain

components, which are ultimately felt by passengers. In order to maintain durability and

NVH performance specifications for these engines, sophisticated vibration control solutions

are required, many of which currently involve CPVAs.

The contributions made by this study are in three major topics, all related to the design

and performance of CPVAs. The first is the development of a new numerical tool for the rapid

analysis of the response of complex CPVA systems. This algorithm recasts the equations

of motion in a way that significantly extends the applicability and accuracy of the widely

known harmonic balance method. This method essentially automates the analysis of steady

state responses of systems with multiple CPVAs, including their stability characteristics.

This method is much faster than brute-force numerical simulations, and it allows designers to

explore the response of systems that are not amenable to more traditional analysis tools, such

as perturbation methods. The capabilities of this new tool are demonstrated through two

example systems that are known to exhibit rich dynamical characteristics. The second topic



is the investigation of a new configuration that uses CPVAs to eliminate crankshaft torsional

resonances under order excitation. This dynamical system is a combination of a frequency

based element, a shaft torsional vibration mode, and an order based element oscillator, the

CPVA. We show that the linear natural frequencies of this system undergo eigenvalue veering

as the engine speed is varied near the resonance point. The structure of this veering suggests

that with proper tuning of the absorber, one can eliminate the shaft torsional resonance. We

use perturbation methods to show that these results extend to operating conditions where

the CPVA amplitudes are large and its response becomes nonlinear. The third topic deals

with the design and analysis of a new type of kinematic suspension that increases the effective

inertia of the absorber, thereby reducing the packaging space for these absorbers. We show

that by employing non-symmetric cutouts for the rollers used in standard bifilar (two point)

suspensions of CPVAs, we can specify both the rotational and translation motions of the

absorber relative to the rotor. This allows designers to increase the effective inertia of the

CPVA, thereby providing better vibration correction for a given amount of absorber mass.

The dynamical response characteristics for this system are studied using both perturbation

methods and the newly developed harmonic balance method. It is shown that this so-called

“rocking” absorber configuration provides an improvement of about 15% when compared to

its traditional counterpart.
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CHAPTER 1

INTRODUCTION

Internal combustion engines are subject to torsional vibrations caused by the periodic changes

in cylinder pressures during the stroke cycle. These pressure changes are reflected as oscil-

lations in the generated torque through the kinematics of the slider-crank mechanism. The

rate at which these oscillations occur follows the crank angular speed, since the slider-crank

kinematics and the combustion cycle do not change with speed. The resulting excitation is

referred to as engine order excitation, that is, excitation that has a fixed number of cycles

per revolution, rather than a fixed frequency.

These fluctuations on the generated torque are unwanted, probably without exception,

and systems using combustion engines need to be designed by taking this into account. In

a broad sense, the severity of the generated torsional oscillations and the weight restrictions

on the system have competing effects on the outcome of the design. This is why generally

Diesel engines are heavier, as the components of them undergo harsher combustion cycles

when compared to gasoline engines.

In the past, it was mostly small aircraft engines that needed to simultaneously survive

under severe order excitation and be lightweight [4]. Modern automotive engines are now

required to achieve similar capabilities, due to weight and fuel economy considerations. The

energy efficiency of an automobile engine can be significantly improved when designed to

operate at higher than atmospheric intake pressures. This practice ensures higher combustion

efficiency and allows that a given amount of power can be generated at lower speeds, thus

reducing pumping losses [5]. However, this also leads an increase in the torsional vibrations

generated by the engine. Therefore increasing demands for downsizing and downspeeding

engines necessarily require additional solutions for reducing torsional vibrations.

Solutions that are generally employed to deal with said torsional vibrations include single
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or dual mass flywheels, energy inefficient torque converter locking calibrations, as well as

centrifugal pendulum vibration absorbers (CPVAs).

Figure 1.1: Left: CPVAs installed on an helicopter rotor; from Steve Shaw. Right: CPVAs
on a light aircraft engine crankshaft; from [1].

Reduction of torsional vibrations through a CPVA is a dynamic effect and is fundamen-

tally different from the similar gains that can be achieved by adding more rotational inertia

to the rotor, which is undesirable for both weight and responsiveness considerations. The

fact that CPVAs require small, and in some cases no extra, mass addition to the rotating sys-

tem, yet reduce torsional vibration levels for any operating speed as a passive device, render

them good candidates for systems with demanding performance requirements [6, 7, 8, 9].

Design parameters that control the behavior of an individual CPVA are basically its

inertial parameters and kinematics. Kinematics set the absorber dynamic tuning by dictating

how the CPVA mass will move relative to its host structure (see Figure 1.2). Depending

on the amplitude of this motion, nonlinear effects can emerge. While for small amplitude

motion of the mass, the linearized equations of motion provide sufficiently accurate results

for design, the validity of these diminish as the amplitude grows and, more importantly,

phenomena that linear analysis cannot predict may be encountered. Thus, tuning a CPVA
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involves creating a entire path of travel, so that it takes response amplitude into account.

R(S)

ρ
0

θ

S

Figure 1.2: Illustration of four point mass CPVAs, along with their paths on the rotor [2].

Although, the number of parameters that govern a single CPVA is small, the outcome of

the system behavior can be quite complicated depending on the configuration and excitation

characteristics of a particular system. In the literature, one can find that a wide variety

of problems involving CPVAs have been analyzed both theoretically and experimentally. A

thorough chapter in [10] was dedicated to CPVA problems and presents a complete review

of the state of the art on the subject at the date of its publication (1968), including exam-

ples from several aircraft engine applications, theoretical design charts, and detailed design

criteria. DenHartog [11] and Newland [12] are among the early studies that emphasize the

importance of the nonlinear nature of CPVA systems. Both early practical experiences and

subsequent theoretical studies found that circular path CPVAs have a softening characteris-

tic in their tuning order as the amplitude of oscillation grows. This was causing detrimental,

and sometimes disastrous, bifurcations in the system response. A patent by Madden [13]

proposed that implementing cycloidal paths for the CPVA kinematics resulted in hardening

tuning behavior, thus overcoming this problem. The path formulation in [14] generalized

3



circular and cycloidal paths using a control parameter that allowed the path to vary contin-

uously (in design space). These paths included an amplitude independent isolated tuning

order, associated with the tautochronic epicyloid. These types of paths are now in wide use

[7, 15, 16, 9, 17, 18, 19, 20].

This study elaborates the analytical and numerical investigation of several systems in-

volving CPVAs. Chapter 2 describes the application of a harmonic balance method for the

numerical solution of equations governing the steady-state response of systems with multiple

CPVAs of general type. Chapter 3 describes the use of CPVAs for suppressing torsional

resonances, and chapter 4 provides results from a study in which CPVAs both translate and

rotate relative to their host rotor, thereby increasing their effective inertia. These topics are

elaborated on in the following paragraphs.

The harmonic balance method (HBM) is a powerful analysis tool for nonlinear vibrating

systems, provided that the forms of the nonlinearities of the system translate into a man-

ageable set of algebraic equations. The authors of [21] created a framework that modifies

the structure of the equations of motion involving a wide variety of nonlinearities into a

quadratic polynomial form, which then can be approximated using HBM with as many as-

sumed harmonics as the problem needs for satisfactory accuracy. In this study, we employ

this framework for the analysis of CPVAs. The crucial step of this framework is the recasting

of the variables into the required form. It has been shown that the dimensionless equations

of motion for point mass CPVAs with general paths fitted to a rigid rotor can be put into

the quadratic polynomial form. Two benchmark problems with known dynamical charac-

teristics are investigated and the results show that this approach provides a powerful tool

for investigating steady-state responses of these absorber systems, including their stability

characteristics. This will be very beneficial for parameter studies and design evaluations of

CPVA systems that do not allow for the application of perturbation methods, and/or those

that make direct numerical simulations very time consuming.

Chapter 3 considers the effects of CPVAs on torsionally flexible rotors. More specifically,
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it considers the possibility of eliminating shaft torsional resonance by the addition of CPVAs.

The most widely used purpose of CPVAs, as previously discussed, is to reduce essentially

rigid body vibrations of the host structure, the rotor. This means that when analyzing

such systems, the rotor is assumed to be a rigid rotating disc. However, in this study, by

using a lumped inertia approach, we allow the rotor model to capture one or more torsional

resonances of the shaft. As the operating speed of this flexible rotor is varied under order

excitation, the frequency of excitation will vary with the speed, thus creating the possibility

of matching the excitation frequency with a shaft resonance at certain speeds, inducing a

resonant response. Linear modal analysis is used to show that in fact CPVAs can eliminate

such resonances altogether, if properly tuned. Then, using perturbation analysis methods,

the extent to which this effect is applicable when the absorber amplitudes become finite is

investigated. The studies in [17, 22] describe the most similar intention of using CPVAs,

although they consider flexural vibrations of a host structure. They included CPVAs to the

model of coupled flexible turbine blades with the purpose of eliminating blade resonances.

Figure 1.3: The bifilar suspension of a CPVA used as a test specimen at MSU.

In Chapter 4 we propose a kinematic variation to the most common way of implementing

CPVAs, the bifilar suspension mechanism, with the intention of increasing the effective

absorber inertia, and thereby its capacity for reducing vibration for a given amount of mass.
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The bifilar mechanism uses two sets of cutouts on the absorber and on the rotor, and a

pair of rollers, to guide the motion of the absorber along its prescribed path as shown in

Figure 1.3. In this configuration, the absorber does not rotate relative to the rotor, and

thus its rotational inertia about its center of mass (COM) dynamically acts as an increased

inertia of the rotor, while its mass acts like a point mass. The modification included in this

study imposes a certain rotational motion to the absorber, relative to the rotor, by judicious

adjustments of the cutouts. This allows the rotational inertia of the absorber to join the

effort in counteracting the excitation, eventually getting more correction for the same amount

of mass, when the rest of the conditions are the same. Since the rate of rotation imposed

by this method is controlled by the cutouts, it becomes another absorber design parameter,

like the linear and nonlinear tuning path parameters.

1.1 The Absorber Path - Background

The theoretical analysis conducted in the subsequent chapters share certain similar tech-

niques in the modeling and solution procedures. The most common aspect of these is the

way the absorber motion paths are formulated. This background section serves the purpose

of summarizing the path definition used in this and many previous studies.

The dynamic behavior of CPVAs depends on the prescribed paths that constrain the

motion of their centers of mass (COM) with respect to the rotating frame in which they

move. This constraint means that each CPVA in a system has a single degree of freedom.

Therefore, a single generalized coordinate is sufficient to describe the motion of each CPVA.

The choice of the coordinate does not affect the result of the dynamics, however, choosing

a coordinate that simplifies the analysis is of importance. In this study, an arc-length

coordinate along the path (denoted by S) is utilized to describe the paths. The farthest

point from the center of rotor is defined as the vertex of this arc and the origin of the path

coordinate, S = 0, is taken to be at this vertex.
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of all path in this formulation start from the same value, which implies that they all have the
same linear tuning. Except for the circular path, the radius of curvature gradually decreases
as per the path definition, and the location of the center of curvature varies as one moves
along the paths.

In [14], such a path formulation is derived as a family of paths with two parameters which

control the linear and nonlinear tuning of the CPVA. Using these parameters, the radius of

curvature of the path (ρ) along the arc-length is specified as follows.

ρ(S)2 = ρ2
0 − λS

2 (1.1)

where ρ0 is the vertex radius of curvature of the path and λ is a dimensionless real number

that determines the gradual reduction in the radius of curvature as one moves along the

path. Note that the paths are assumed to be symmetric about S = 0. For λ = 0 this

path is a circle, which has constant radius of curvature everywhere, and at λ = 1, it is a

cycloid. Values of λ between 0 and 1 yield epicycloidal paths, one of which is quite special,

as described below.

As described subsequently, in the equations of motion it is convenient to general functions

R(S) and G(S) that depend on the path, where R(S) is the distance from the rotor center
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of rotation to the absorber COM, and

G(S) =

√√√√R2 (S)− 1

4

(
d
(
R2 (S)

)
dS

)2

(1.2)

relates to a projection of the tangent of the path onto the moment arm relative to the center

of rotor at S.

Note that S, ρ(S), ρ0, R(S) and G(S) are all physical quantities of length, and in the

dynamical analysis procedures in following chapters, these are nondimensionalized by their

ratio to the vertex distance of the absorber to the rotor center, i.e. R(0). As the analysis is

conducted in terms of nondimensional quantities, it is also convenient to prescribe the path

kinematics, which determine the absorber tuning, in nondimensional form. One can always

trace back the actual physical dimensions using the scaling factor, R(0).

When using the path formulation Equation (1.1), there is an exact closed form ex-

pression for R(S) in terms of ρ0 and λ, as well as for its nondimensional counterpart

r(s) = R(R(0)s)/R(0)). However, it is convenient to use the following Taylor series ex-

pansion of r(s) in the analysis,

r2(s) = 1 + φ0s
2 + φ1s

4, (1.3)

where

φ0 = 1− ρ̂−1
0 (1.4)

φ1 = −−1 + λ2 + ρ̂0

12ρ̂3
0

with ρ̂0 := ρ0/R(0). (1.5)

Here, φ0 controls small amplitude (linear) behavior of the absorber and φ1 controls nonlinear

characteristics. This expansion provides a good approximation for many useful paths in the

Denman family Equation (1.1), since s = S/R(0) is always less than unity. Note that,

as long as the definition of G(S) (and its dimensionless version g(s)) is kept in its exact

form Equation (1.2) in the equations of motion, this polynomial expression for r(s) does not

compromise the accuracy of the analysis for these paths.
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Unlike a simple circular path, these paths have a finite range that is set by a cusp point at

which g(scusp) = 0. For general paths simple numerical root finding algorithms can calculate

scusp such that g(scusp) = 0. For φ1 = 0, this cusp point is easily determined to be [7]

scusp ≈
1√

−φ0(1− φ0)
. (1.6)

1.1.1 Tuning of point mass CPVAs

The most common way of implementing a CPVA design is to employ rollers inside two

symmetric, inverted, cutouts on the absorber and the rotor, resulting in the common bifi-

lar suspension mechanism; see Figure 1.3. This configuration provides excellent packaging

features and is the most widely used suspension in practice. The standard version of this

suspension ensures that the absorber only translates with respect to the rotor and essentially

renders it a point mass, in terms of its absorbing inertia. In this case, constructing the ab-

sorber path for a desired value of linear tuning ñ becomes easy. Specifically, the quadratic

coefficient of the absorber path, φ0, dictates ñ, as

φ0 = −ñ2. (1.7)

The nonlinear part of the path is governed by φ1 (or, equivalently, λ), as described in

[7, 15, 16, 9, 17, 18, 19, 20], and allows for a variety of nonlinearly softening and hardening

paths.
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CHAPTER 2

APPLICATION OF THE HARMONIC BALANCE METHOD TO THE
EQUATIONS OF MOTION OF SYSTEMS WITH CPVAS

2.1 Introduction

A CPVA is composed of a mass that moves relative to the supporting rotor, supported by

some type of hinge, typically of a bifilar type using two rollers, as shown in Figure 1.3. Older

absorber designs have the absorber center of mass following a circular path [10], but more

modern designs use other paths, generally epicycloids, to better handle large amplitude

responses [7, 14, 16]. The response of these systems are well captured by models with a

degree of freedom for the rotor, and one degree of freedom for each absorber. The governing

equations are highly nonlinear and have complicated expressions (involving polynomial and

square root terms) resulting from the CPVA path kinematics as it moves with respect to the

host rotor. Time integration approaches are easy to apply to this system, yet conducting

parameter studies this way requires extensive computational time, since these systems are

lightly damped, leading to long transients. Moreover, it is not possible to gather information

about unstable responses or possible multiple solutions under given operating conditions

using time simulations. Perturbation methods, on the other hand, are quite powerful in terms

of obtaining insight about the response characteristics with respect to system parameters, as

well as stability characteristics, and these can be applied in some practical parameter ranges.

However, they require careful application of parameter scaling and their error bounds are

linked to the values of physical parameters that are assumed to be small. In addition,

in some practical systems the parameter values do not satisfy the required conditions for

using perturbation methods. Also, for systems with absorbers tuned to different orders, this

approach can be quite cumbersome [18, 19]. Thus, there is a need for more general and
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powerful numerical tools for investigating these systems.

Here we will elaborate the development of a new numerical solution approach with the

intent to circumvent these shortcomings. The approach utilizes a variation of the harmonic

balance method (HBM), one of the many standard procedures used in the analysis of nonlin-

ear oscillatory systems. Before going into the details of the particular method discussed here,

let us summarize the basic idea of the HBM. The procedure starts by assuming a Fourier

series solution truncated to H number of harmonics (plus a DC term, if needed) for the coor-

dinate(s) of the oscillatory system. This series represents a periodic solution corresponding

to a steady-state response, without regard to its stability. Thus, the first and second time

derivatives of this assumed solution are also readily available up to H harmonics. By plug-

ging these solution forms into the equations of motion and collecting the coefficients of all

the harmonics that appear in the resulting expressions, one can obtain algebraic relations

between the system parameters and the amplitudes and phases of the response up to the

Hth harmonic. If this system is under periodic forcing, one would express the truncated

Fourier series such that all of the forcing frequencies has a matching harmonic term in the

assumed solution. Then the resulting algebraic amplitude and phase relations will depend

on the forcing amplitude. If the system under investigation is a free oscillation problem, the

base frequency of the Fourier series (the lowest non-DC harmonic) will be a free variable and

the resulting algebraic equations will result in an implicit relation between response ampli-

tudes, phases, and frequency. An example to such problem is the determination of response

frequency of a simple pendulum as a function of its swing angle [23, 24].

The harmonic balance method presents certain advantages over perturbation methods in

the analysis of nonlinear oscillatory systems. First, it does not impose any limitation on the

dominance of the nonlinearities in the equations, for example, system parameters linked with

the nonlinearities do not have to be small. Secondly, the solutions obtained through HBM

are already in the frequency domain, and thus nonlinear interactions are easily investigated.

Although the method is quite straightforward, there are several shortcomings of the
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HBM, in addition to those associated with other purely numerical tools. First, harmonics

higher than H appear in the formulation once the assumed solutions are substituted into the

nonlinear terms of the equations of motion. These higher harmonics, which carry information

on the dynamics of the system, cannot be used in the solution of the response as they are

higher than the truncation level H of the assumed solution. Thus, some information about

the higher order harmonics is discarded. For example, a cubic nonlinearity would generate

harmonics up to 3H. One can generally select H large enough for sufficient accuracy in

virtually all cases for the present system, although motions near the cusp point can cause

convergence difficulties. The second disadvantage of this method becomes more dominant in

the case where the number of harmonics in the assumed solution is increased to alleviate the

loss of accuracy discussed above. That is, as H is increased, the complexity of the algebraic

expressions generated by the method rapidly increases to the extend that even numerical

solution methods would not be able to solve them efficiently. The third problem with this

method is that if the nonlinearities in the system involve any terms with non-integer powers,

such as square roots, generally it is not possible to reduce the resulting expression in a

summation of harmonics through trigonometric identities.

The method we use in this study, proposed in [21], eliminates the above mentioned prob-

lems related with HBM, to the extend that its usage becomes very suitable to numerically

simulate steady state response characteristics of systems involving CPVAs. The main re-

quirement of this method is that the equations of motion of the system being analyzed can

be put into a standard form through a series of auxiliary variable definitions. This pushes the

information that is normally lost in the HBM operation down to the new algebraic equations

that are defined along with the new auxiliary variables. The equations of motion need to

satisfy the following form after this recasting process,

m(Ż) = c+ l(Z) + q(Z,Z) Z ∈ RNeq (2.1)

where Z is the vector of Neq unknowns, c is a constant vector, m and l are linear operators,
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and q is a quadratic operator. As this form has at most quadratic terms, higher harmonics

generated by this multiplication are limited to 2H. Moreover, this quadratic form allows for

automated generation of the resulting algebraic equations, as well as their gradients, with

respect to Z for any truncation level H, whereas trying to apply the HBM directly to the

original equations of motion with a high truncation level would result in a set of algebraic

equations difficult to manage.

Application of this form of the HBM involves expressing Z in a Fourier series as

Z(t) = Z0 +
H∑
k=1

Zc,k cos(kωt) +
H∑
k=1

Zs,k sin(kωt) (2.2)

and substituting this form into Equation (2.1). Solving the resulting algebraic system of

equations for the Fourier coefficients of each harmonic provides an approximate form for

a periodic solution to the original system. In order to systematically obtain the algebraic

equations, the coefficients are collected in a single vector

U =
[
Z>0 , Z

>
c,1, Z

>
s,1, Z

>
c,2, Z

>
s,2, . . . , Z

>
c,H , Z

>
s,H

]>
. (2.3)

The algebraic system of coefficients then takes the form

ωM(U) = C + L(U) +Q(U,U) (2.4)

where the operators M(.), C, L(.) and Q(U,U) depend only on the original operators m(.),

c, l(.), q(., .) and the number of harmonics assumed in Equation (2.2), H. The details of

the relations between these sets of operators are derived in [21]. This means, as long as the

original system can be put into form Equation (2.1), the system of equations resulting from

the application of the HBM can be automatically generated.

Numerical solutions to the resulting system of quadratic algebraic equations can be ob-

tained using one of many available algorithms. The algorithm used in [21] is a pseudo-

arclength continuation method, codes of which are freely available to public under the pack-

age name called MANLAB [25], where one of the system parameters is chosen as a free
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variable and periodic solutions are obtained by solving the Fourier coefficients as a function

of this parameter.

Moreover, the stability information of these periodic solutions can be obtained through

the methodology used in [26], which first assembles the Hill’s matrix truncated at Hth

harmonics at any given solution point. This matrix contains individual harmonics of the

Jacobian of the original equations of motion as block sub-matrices and will be different at

any solution point, the stability of which being investigated. The algorithm then uses the

eigenvalues of the resulting Hill’s matrix to calculate the Floquet exponents of the corre-

sponding periodic solution in order to assess its stability. Expressing the Jacobian of the

equations of motion in terms of the solutions found using HBM can be quite difficult. In

this work this process is facilitated by the following approach: we reconstruct the calculated

periodic solutions in the time domain, substitute these into the Jacobian expression, and use

a Fast Fourier Transform to obtain the individual harmonics of the Jacobian.

In this chapter, we describe the application of this methodology to a quite generic system

model for a rotor fitted with multiple CPVAs. The model consists of a rigid rotor under

single harmonic order excitation and N point mass CPVAs fitted to this rotor and allowed

to move along paths described by Section 1.1. Several other configurations, such as CPVAs

under the influence of gravity, CPVAs with rocking motion (studied in Chapter (4)) were

also successfully analyzed using this method. Although similar in essence, this simplest form

is chosen for presentation here in order to demonstrate the essential steps in the development

and implementation of this approach.

2.2 Dynamical Model

The system illustrated in Figure 2.1, incorporates point mass CPVAs prescribed to move

along indicated paths with respect to the rotor. The excitation torque applied to the rotor

has order-domain characteristics, namely the frequency of the excitation is a function of
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Figure 2.1: Schematic of a rotor fitted with CPVAs.

rotor angular position, θ(t). This system is modeled using Lagrange’s equations for a rigid

rotor with N CPVAs, resulting in a system with N + 1 degrees of freedom. The equations

of motion of the system are given by

Jθ̈ = T (θ) + T0 − c0θ̇

−
N∑
j=1

mj

(
R2
j (Sj)θ̈ +Gj(Sj)S̈j +

dGj(Sj)

dSj
Ṡ2
j +

dR2
j (Sj)

dSj
Ṡj θ̇

)
(2.5)

mjS̈j +mjGj(Sj)θ̈ +
1

2
mj θ̇

2
dR2

j (Sj)

dSj
= −ca,jṠj (2.6)

where j = 1 : N

where Sj is the (arc length) displacement of the jth absorber COM relative to the vertex on

its path, mj is the mass of absorber j, Rj(Sj) and Gj(Sj) are functions related to the path

of the absorber as defined in Section 1.1, J is the moment of inertia of the rotor, T (θ) is the

applied torque acting on the rotor, ca,j represents the equivalent viscous damping coefficient

for absorber j as it moves along its path, T0 is the constant torque applied to the rotor that

maintains a mean operating rotational speed of Ω by counteracting viscous rotor damping

that is modeled by coefficient c0.
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The forcing term T (θ) in Equation (2.5) has the form of engine order excitation, so that

rather than explicitly depending on time it is a function of rotor position. It is reasonable

to assume that the rotor angle θ(t) can be used as the independent variable in the forcing

term, as

T (t) = T sin(nθ) (2.7)

where n is the engine excitation order. For example, in four-stroke piston engines, n is equal

to one half the number of cylinders.

2.2.1 Non-dimensionalization

Table 2.1: Definition of dimensionless variables.

Variables Definitions Variables Definitions
αj mjR

2
j (0)/J gj(sj) Gj(Sj)/Rj(0)

µa,j ca,j/mjΩ r2
j (sj) R2

j (Sj)/R2
j (0)

µ0 c0/JΩ Γ T/JΩ2

sj Sj/Rj(0) Γ0 T0/JΩ2

The set of equations are non-dimensionalized using the definitions listed in Table 2.1.

As time does not appear explicitly in the equations, it is convenient to replace time as the

independent variable with the rotor position θ. This results in the following definition for

the dimensionless speed of the rotor,

ν(θ) =
θ̇

Ω
. (2.8)

These operations and definitions, along with use of the chain rule, yield the following

dimensionless set of equations that govern the behavior of the rotor speed and the absorber
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displacements

νν′ = −
N∑
j=1

αj

{
gj(sj)

(
νν′s′j + ν2s′′j

)
+ r2

j (sj)νν
′ + ν2s′j

d(r2
j (sj))

dsj
+ ν2s′2j

d(gj(sj))

dsj

− νs′jgj(sj)µa,j

}
+ Γ sin(nθ) + Γ0 − µ0ν (2.9)

νs′′j + ν′
(
s′j + gj(sj)

)
− 1

2
ν
d(r2

j (sj))

dsj
= −s′jµa,j (2.10)

where ()′ =
d()
dθ . Note that these equations now have the familiar form of periodic excitation,

where nθ plays the role usually taken by ωt. These equations have been the basis of many

previous investigations of CPVA systems, including [16, 15, 19, 18, 20, 7, 8].

2.2.2 Reforming the equations for HBM

In order to put the non-dimensional equations of motion given in Equations (2.9 and 2.10)

into the form described in Equation (2.1), a large number of new variable definitions are

required. The procedure starts by inserting the coordinates and their derivatives of the

original equations into the new unknown vector, Z.

z1 = ν (2.11)

z2 = ν′ (2.12)

z(3j) = sj (2.13)

z(3j+1) = s′j (2.14)

z(3j+2) = s′′j . (2.15)
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The next step is to define variables to represent the radial positions of the absorber COM

and their first and second derivatives, as

z(3N+3j) = r2
j (sj) (2.16)

z(3N+3j+1) =
d(r2

j (sj))

dsj
(2.17)

z(3N+3j+2) =
d2(r2

j (sj))

ds2
j

(2.18)

such that

z(3N+3j) = 1− ñ2
jz

2
(3j) + φ1,jz

4
(3j) (2.19)

z(3N+3j+1) = −2ñ2
jz(3j) + 4φ1,jz

3
(3j) (2.20)

z(3N+3j+2) = −2ñ2
j + 12φ1,j .z

2
(3j). (2.21)

In order to account for powers of the absorber position and velocity coordinates that are

higher than quadratic, another set of variables are defined as

z(6N+2j+1) = s2
j = z2

(3j) (2.22)

z(6N+2j+2) = s′2j = z2
(3j+1). (2.23)

The most problematic terms in the equations of motion stem from the functions gj(sj)

and their derivatives
d(gj(sj))

sj
, as the definition of the former involves the square root of an

expression (see Equation (1.2)). To handle this, we define a new set of variables and form a

set of quadratic algebraic equations as follows

z(8N+2j+1) = gj(sj) =

√√√√r2
j (sj)−

1

4

(
d(r2

j (sj))

dsj

)2

(2.24)

z(8N+2j+2) =
d(gj(sj))

dsj
=

1

2gj(sj)

(
d(r2

j (sj))

dsj
− 1

2

d2(r2
j (sj))

ds2
j

)
(2.25)

to obtain

z2
(8N+2j+1) = z(3N+3j) −

1

4
z2
(3N+3j+1) (2.26)

2z(8N+2j+2)z(8N+2j+1) = z(3N+3j) −
1

2
z(3N+3j+1)z(3N+3j+2). (2.27)
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Up to this point, the above operations yield the following form

z′(1) = z(2) (2.28)

z′(3j) = z(3j+1) (2.29)

z′(3j+1) = z(3j+2) (2.30)

0 = −Γ0 − Γ sin(nθ) + µ0z(1) + z(1)z(2) + z(1)

N∑
j=1

αj

{
− z(3j+1)z(8N+2j+1)µa,j

+ z(1)

(
z(3j+1)z(3N+3j+1) + z(3j+2)z(8N+2j+1) + z(6N+2j+2)z(8N+2j+2)

)
+ z(2)

(
z(3j+1)z(8N+2j+1) + z(3N+3j)

)}
(2.31)

0 = µa,jz(3j+1) + z(1)

(
z(3j+2) −

1

2
z(3N+3j+1)

)
+ z(2)

(
z(3j+1) + z(8N+2j+1)

)
(2.32)

0 = 1− z(3N+3j) − ñ
2
jz(6N+2j+1) + φ1,jz

2
(6N+2j+1) (2.33)

0 = −z(3N+3j+1) − 2ñ2
jz(3j) + 4φ1,jz(3j)z(6N+2j+1) (2.34)

0 = −z(3N+3j+2) − 2ñ2
j + 12φ1,jz(6N+2j+1) (2.35)

0 = −z(6N+2j+1) + z2
(3j) (2.36)

0 = −z(6N+2j+2) + z2
(3j+1) (2.37)

0 = z(3N+3j) −
1

4
z2
(3N+3j+1) − z

2
(8N+2j+1) (2.38)

0 = z(3N+3j+1) −
1

2
z(3N+3j+1)z(3N+3j+2) − 2z(8N+2j+1)z(8N+2j+2) (2.39)

The only terms that do not satisfy the required form are left in Equation (2.31), which

governs the rotor dynamics. To handle these, we define

z(10N+3) =
N∑
j=1

αj

{
z(3j+1)z(3N+3j+1) + z(3j+2)z(8N+2j+1) + z(6N+2j+2)z(8N+2j+2)

}
(2.40)

z(10N+4) =
N∑
j=1

αj

{
z(3N+3j) + z(3j+1)z(8N+2j+1)

}
(2.41)
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z(10N+5) = −
N∑
j=1

αj

{
µa,jz(3j+1)z(8N+2j+1)

}
+ z(1)z(10N+3) + z(2)z(10N+4). (2.42)

It is also convenient to have the dimensionless rotor acceleration (νν′) as one of the

components of the solution, since it is an important output of the response, needed to assess

the vibration reduction of the rotor. So, we define it as

z(10N+6) = z(1)z(2). (2.43)

This completes the recasting operation and yields the desired set differential-algebraic

set of equations in their nearly final form. What remains to be done is to deal with the two

excitation terms, Γ0 and Γ sin(nθ). Γ0 is the dimensionless mean torque used to maintain a

steady mean speed (ν ≈ 1), and thus we take Γ0 = µ0, which balances the DC components to

leading order. Then, after the sine and cosine harmonic amplitudes of the unknown vector Z

have been assembled, the harmonic excitation torque amplitude Γ is added to the algebraic

equation in the set Equation (2.4) corresponding the harmonic sin(nθ). This yields the final

form of the equations to be solved:

z′(1) = z(2) (2.44)

z′(3j) = z(3j+1) (2.45)

z′(3j+1) = z(3j+2) (2.46)

0 = −Γ0 − Γ sin(nθ) + µ0z(1) + z(1)z(2) + z(1)z(10N+5) (2.47)

0 = µa,jz(3j+1) + z(1)

(
z(3j+2) −

1

2
z(3N+3j+1)

)
+ z(2)

(
z(3j+1) + z(8N+2j+1)

)
(2.48)
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0 = 1− z(3N+3j) − ñ
2
jz(6N+2j+1) + φ1,jz

2
(6N+2j+1) (2.49)

0 = −z(3N+3j+1) − 2ñ2
jz(3j) + 4φ1,jz(3j)z(6N+2j+1) (2.50)

0 = −z(3N+3j+2) − 2ñ2
j + 12φ1,jz(6N+2j+1) (2.51)

0 = −z(6N+2j+1) + z2
(3j) (2.52)

0 = −z(6N+2j+2) + z2
(3j+1) (2.53)

0 = z(3N+3j) −
1

4
z2
(3N+3j+1) − z

2
(8N+2j+1) (2.54)

0 = z(3N+3j+1) −
1

2
z(3N+3j+1)z(3N+3j+2) − 2z(8N+2j+1)z(8N+2j+2) (2.55)

0 = −z(10N+3) +
N∑
j=1

αj

{
z(3j+1)z(3N+3j+1) + z(3j+2)z(8N+2j+1)

+ z(6N+2j+2)z(8N+2j+2)

}
(2.56)

0 = −z(10N+4) +
N∑
j=1

αj

{
z(3N+3j) + z(3j+1)z(8N+2j+1)

}
(2.57)

0 = −z(10N+5) −
N∑
j=1

αj

{
µa,jz(3j+1)z(8N+2j+1)

}
+ z(1)z(10N+3) + z(2)z(10N+4) (2.58)

0 = −z(10N+6) + z(1)z(2) (2.59)

As noted above, standard numerical tools are used to solve these equations as a single

parameter is varied. For CPVA systems, the most natural parameter to vary is the fluctuating

torque amplitude Γ, since in a physical system all other parameters will be fixed and the

system operation is evaluated by considering the operating range of Γ.

2.3 Case Studies

In order to test the capabilities of this solution approach, certain configurations of the system

that are known to produce rich dynamical behavior are investigated. Perturbation methods

such as the method of averaging can accurately predict the dynamical behavior of these sys-

tems, provided assumptions hold about small values of certain non-dimensional parameters
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[27, 28, 29, 15, 20] . Specifically, it is common to choose the ratio of the total rotational

inertia of the absorbers to the rotor inertia as the main small parameter, since it is typically

less than 0.15 in practice. Other parameters, such as the absorber damping and its detun-

ing away from the engine order, and the excitation torque amplitude, must also be small

when scaled appropriately. However, in systems with an inertia ratio that is not small, one

generally relies on time integration of the equations of motion, which, as mentioned before,

are time consuming and cumbersome for carrying out parameter studies. Also, perturbation

methods assume a single harmonic response of the absorbers, which is a good approxima-

tion in many cases, but is known to break down, for example, when the absorbers move at

amplitudes near the cusp of epicycloidal and cycloidal paths. Here, we show case studies

for systems where the parameter values do not permit the use of perturbation methods, and

also generate solutions that capture several harmonics. Furthermore, the harmonic balance

approach captures unstable responses that cannot be found by time simulations.

2.3.1 Response of Circular Path CPVA with High Inertia Ratio

The first case considered is a rotor equipped with a single circular path CPVA whose inertia is

not small compared with that of the rotor. It is well known [11, 12] that circular path CPVAs

tuned close to the excitation order will undergo a jump instability at a critical excitation

torque amplitude. These jumps do not occur in CPVAs with paths such as cycloids or the

tautochronic epicycloids, unless they are undertuned [7]. This renders the use of circular path

CPVAs impractical at close tunings to the excitation order, as this jump instability results

in a phase shift that causes the CPVA to amplify the rotor torsional vibrations. Therefore,

such absorbers are generally overtuned, which reduces their effectiveness but extends their

operating range. In the present model, we consider a single harmonic engine excitation

of order n = 2 and a rotor/CPVA system for which the inertia ratio is α = 0.9, which

is far too large for the application of perturbation methods. The steady-state response

characteristics of this system as a function of the excitation torque amplitude are given
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in Figure 2.2, for both the dimensionless rotor acceleration and the absorber displacement

response. Amplitudes and phases for several harmonics are shown. Of course, the total

response is a combination of these harmonics, and the response waveform depends on the

relative phases of the harmonics. The response waveforms of several solution points are

presented in Figures 2.4 - 2.7. The overall response as a function of the torque amplitude

Γ has the classic form for a softening nonlinear system, that is, as the torque increases the

amplitude increases until it hits a turning point (a saddle-node bifurcation), and the there

exists another, larger amplitude saddle-node bifurcation, such that there are three branches

of response over a range of torques, the upper and lower of which are generally dynamically

stable and the middle of which is unstable. (For systems with multiple CPVAs the picture

is more complicated, as shown in the next example.) A stability analysis of these periodic

solutions is conducted using the Floquet analysis described above. The indicator of stability

of a given solution is the amplitude of the maximum Floquet multiplier of that solution

obtained through the algorithm. These maximum Floquet multipliers are plotted against Γ

in Figure 2.3. On the lower branch, the order n absorber phase is approximately π, and thus

it counteracts the applied torque, resulting in vibration reduction. On the upper response

branch the CPVA acts like a vibration amplifier, so this response must be avoided in practice.

As can be seen from the harmonic amplitudes, on the lower response branch the absorber

is dominated by the n = 2 harmonic, although other harmonics contribute significantly to

the response on the upper branch. On the other hand, the harmonic content of the rotor

response is dominated by higher order harmonics in all cases, since the n = 2 harmonic

is very small, as it should be when the absorber is operating to reduce the order n rotor

response. Overall, the higher harmonic amplitudes do not sequentially diminish, for instance,

the order n = 6 harmonic amplitude of the rotor response is larger than the order n = 4

amplitude for certain torque ranges.
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Figure 2.2: Harmonic amplitudes of the response of a circular path CPVA system, where
N = 1, ñ1 = 2.01, α1 = 0.9, µa,1 = 0.005, H = 48, n = 2. Only the n, 2n, and 3n harmonics,
out of 48, are shown. The black curve in (a) indicates the reference rotor response at order n
when the absorber is locked. Dashed parts of the curves indicate unstable periodic solutions.
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Figure 2.4: Rotor angle (acting similar to time) domain reconstruction of a periodic solution
of the system in Figure 2.2. This solution belongs the lower stable branch at Γ = 0.45.
The blue curve is the signal generated by evaluating the Fourier coefficients of the HBM
solution, and the red dashed curve is the result of numerical integration started at the same
initial conditions as the beginning of the blue signal. (a) Rotor Acceleration, (b) Absorber
Displacement
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Figure 2.5: Rotor angle domain reconstruction of a periodic solution of the system in Fig-
ure 2.2. This solution belongs the middle unstable branch at Γ = 0.37. The blue curve is
the signal generated by evaluating the Fourier coefficients of the HBM solution, and the red
dashed curve is the result of numerical integration started at the same initial conditions as
the beginning of the blue signal. Note that even numerical solution and integration toler-
ances are sufficient to cause an ultimate deviation from the periodic solution. In this case,
the absorber response grew to a point that the numerical integration crashed. (a) Rotor
Acceleration, (b) Absorber Displacement
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Figure 2.6: Rotor angle domain reconstruction of a periodic solution of the system in Fig-
ure 2.2. This solution belongs the middle unstable branch at Γ = 0.20. The blue curve is
the signal generated by evaluating the Fourier coefficients of the HBM solution, and the red
dashed curve is the result of numerical integration started at the same initial conditions as
the beginning of the blue signal. In this case, the numerically integrated solution eventually
jumps down to the lower stable branch. (a) Rotor Acceleration, (b) Absorber Displacement
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Figure 2.7: Rotor angle domain reconstruction of a periodic solution of the system in Fig-
ure 2.2. This solution belongs the upper stable branch at Γ = 0.15. The blue curve is the
signal generated by evaluating the Fourier coefficients of the HBM solution, and the red
dashed curve is the result of numerical integration started at the same initial conditions as
the beginning of the blue signal. (a) Rotor Acceleration, (b) Absorber Displacement
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2.3.2 Bifurcation to Nonunison Response of Two Identical Tautochronic CPVAs

In general, balancing and space restrictions in applications force designers to distribute the

absorber inertia into several absorbers placed around and along the rotor. The response

characteristics of such groups of CPVAs are of importance, since the maximum torque range

can be achieved when the CPVAs move in a synchronous manner, that is, all absorbers

respond with equal amplitude and phase. In [7], it was shown that sets of multiple iden-

tical CPVAs with tautochronic paths undergoing a synchronous response can undergo an

instability to a non-synchronous response at a certain torque amplitude that depends on the

system parameters. (These tautochronic paths render the absorber essentially linear out to

large amplitudes, such that the dominant system nonlinearity comes from the interactions

between the rotor and the absorbers, rather than from the absorber path, as in the previous

case.) To consider systems of this type, we consider the response of a rotor subjected to

order n = 1.5 torque, fitted with two identical absorbers with tautochronic paths, and a

small inertia ratio so that the perturbation results of [7] can be verified. The purpose of this

case study is to check the ability of the HBM to capture bifurcations to non-synchronous

responses, and to track the resulting non-synchronous responses. The solution branches for

the amplitudes of several harmonics obtained by the HBM are presented in Figure 2.8, for

both the dimensionless rotor acceleration and the normalized absorber displacement. At low

torques the two absorbers respond in a synchronous manner and the rotor responds to this

motion as if the two absorbers were a single absorber with the same total mass, as can be

identified in the plots. As the torque is increased, there is a splitting of the two absorber

responses, where the synchronous response becomes unstable and separate branches of ab-

sorber response emerge, corresponding to distinct responses of each absorber. Note that this

response does not result in a significant increase in the rotor response, but it causes one

absorber to reach its cusp (maximum possible response amplitude) at a lower torque than

the corresponding synchronous response. This leaves the available amplitude range of the
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second absorber unused, thereby limiting the feasible operating torque range of the entire

system.

It is interesting to note that the bifurcation predicted by the perturbation analysis is

sharp, whereas the HBM shows a more initially gradual separation of the branches followed

by a more dramatic separation. This is due to convergence issues in the HBM solvers, but in

fact represents more closely what one would expect to see in practice, where slight differences

between the absorbers will result in a similar effect.
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Figure 2.8: Harmonic amplitudes of the response of the rotor with two identical tautochronic
CPVAs, with N = 2, ñ1,2 = 1.50, α1,2 = 0.1, µa,1,2 = 0.005, H = 16, n = 1.5 and the order
of the first assumed harmonic is 0.5. (a) Rotor Acceleration, (b) Absorber Displacement
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Figure 2.9: Rotor angle domain reconstruction of a periodic solution of the system in Fig-
ure 2.8. The excitation torque Γ = 0.12 in this case correspond to a solution where the
two CPVAs move in unison. The blue curve in (a) is the signal generated by evaluating the
Fourier coefficients of the HBM solution, and the red dashed curve is the result of numerical
integration started at the same initial conditions as the beginning of the blue signal. Nu-
merical integration results of the CPVA signals are indistinguishable from the HBM results
and are not shown for the sake of clarity in the figure. (a) Rotor Acceleration, (b) Absorber
Displacement
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Figure 2.10: Rotor angle domain reconstruction of a periodic solution of the system in
Figure 2.8. This solution is where the two CPVAs are non-synchronous at Γ = 0.14. The
blue curve in (a) is the signal generated by evaluating the Fourier coefficients of the HBM
solution, and the red dashed curve is the result of numerical integration started at the same
initial conditions as the beginning of the blue signal. As above, numerical integration results
of the CPVA signals are not shown. (a) Rotor Acceleration, (b) Absorber Displacement
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2.4 Conclusion

In this chapter we have presented the application of a harmonic balance method for deter-

mining the steady-state response of a rotor systems equipped with CPVAs. The nonlinear

equations of motion for these systems are generally analyzed either with time integration or

using perturbation methods, both of which have limitations in terms of speed or applica-

bility. The current method is adopted from [21], in which the nonlinearities are put into a

quadratic polynomial form. The solution is expressed as a Fourier series for application of

the HBM with a relatively high number of assumed harmonics.

Essentially the method differs from the classical harmonic balance method in that it has

a pre-processor for the problem formulation. It operates on the system equations of motion

and rewrites them as a larger, yet equivalent, set of equations using auxiliary variables. In

this way, the application of the HBM, namely assuming a periodic solution with a given

number of harmonics and constructing an algebraic system of equations that govern the

amplitudes of the harmonics of the dependent variables, can be automated irrespective of

the structure of the original equations of motion.

Estimation of the stability of the periodic steady state solutions obtained in this way

was also made possible using a related algorithm outlined in [26]. The requirement for this

secondary step in the solution process is that each component of the Jacobian of the original

equations of motion must be written in terms of its harmonic coefficients at each periodic

solution, where stability information is sought. The form of the Jacobian of systems with

CPVAs is much more complex than the equations of motion themselves. Therefore, here

we evaluated it numerically by reconstructing the periodic solutions of the states of the

equations of motion using the coefficients obtained by HBM and extracted the Jacobian

harmonic coefficients numerically using a Fast Fourier Transform.

This solution framework was put to test for two different system configurations that

are known to show significant qualitative changes in their response characteristic as the
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excitation amplitude is varied. The results showed that this approach can effectively be used

in the analysis of these CPVA systems. The complexity of the CPVA systems investigated

here was kept at a level that makes the demonstration of the method as clear as possible.

However, more involved configurations have been successfully analyzed with this algorithm.

This tool will allow for the rapid study of absorber systems with parameter values that

render analytical tools inapplicable and/or direct numerical simulations too slow. Such a

tool will be very useful for parameter studies and design purposes.
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CHAPTER 3

LINEAR AND NONLINEAR DYNAMICS OF CPVA SYSTEMS ON
FLEXIBLE ROTOR SYSTEMS

3.1 Introduction

Flexible rotating shafts, such as crankshafts of internal combustion engines, are subject to

engine order excitation, typically composed of several harmonics. Due to the fact that an

engine order excitation frequency is proportional to the engine speed, certain harmonics

of this excitation can coincide with the resonant frequencies of the flexible shaft as the

rotor speed varies, resulting in problematic resonant vibrations which can lead to failure

Figure 3.1. Torsional versions of tuned mass absorbers (TMA) are commonly used to rectify

the adverse effect of these possible resonance conditions [30, 31, 32]. A TMA is tuned to the

problematic resonance frequency and the adapted system has two resonances surrounding the

original untreated resonance. The damping of the TMA limits the new resonance amplitudes,

resulting in reduced vibration levels across the critical speed. Such TMAs are used to address

both flexural and torsional shaft modes. In contrast, CPVAs are torsional vibration reduction

elements widely used in light aircraft engines, and being considered for modern automotive

powertrains as well, where they allow engines to run in efficient low-speed operation with

minimal vibration [9, 33]. Unlike a TMA, CPVAs do not incorporate elastic elements, and

their effective stiffness stems from the centrifugal field. Therefore, they can be tuned to

address a certain engine order over all engine speeds, whereas TMAs are tuned to a certain

frequency and are effective over a limited speed range. Also, CPVAs are generally used to

address torsional vibrations, but can be adapted for more general use [34, 35].

In much of the previous work on CPVAs a rigid rotor assumption has been used, and

the primary intention of the CPVA is to reduce torsional vibration of a rotating shaft that
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Figure 3.1: A crankshaft with torsional failure [3]

arises from a dominant harmonic of engine order excitation [29, 16]. Such analyses are valid

as long as the product of engine order and operating speed remains well below the natural

frequencies of any rotor torsional modes. In this chapter, we consider the response of a

model for a flexible rotor fitted with CPVAs. Linear modal analysis that incorporates rotor

torsional vibration shows that CPVAs can also be used to modify the structure of resonant

frequencies of the coupled rotor-absorber system, due to eigenfrequency veering behavior.

In fact, the analysis indicates that certain resonances can be completely eliminated for all

possible engine speeds [17, 22, 36]. The key plots and ideas that show this behavior are

given in the subsequent sections. While this linear vibration analysis offers significant insight

about the system dynamics, in practice nonlinear effects from the CPVAs must be taken into

account, since these devices are generally designed to operate over large amplitudes.

We consider the simplest model that includes the features of interest, namely a torsional

vibration mode, a CPVA, and engine order excitation. Thus, the rotor is modeled using

two lumped rotational inertial elements connected with a linear torsional spring, so that it

has a speed-independent torsional natural frequency before the addition of the CPVA. In

the model, a CPVA is added to one rotor element while an engine-order excitation torque is

applied to the other. The CPVA is modeled as a point mass that travels along a prescribed

38



path relative to its host rotor. The equations of motion for this model are obtained using

Lagrange’s method, and the equations are non-dimensionalized and scaled with the assump-

tions that the effective inertia of the CPVA is much smaller than that of the rotor system. It

is also assumed that the non-dimensional versions of the amplitude of the excitation torque,

the absorber damping, the relative deflection between the rotors, and the deviation of the

CPVA path from a tautochronic epicyloid curve are also small [7, 14, 19]. These assumptions

are consistent with practical absorber implementations and make the system amenable to

analytical treatment.

These assumptions lead to a set of two weakly coupled, weakly nonlinear, oscillator

equations driven near resonance, which govern the absorber dynamics and the rotor torsional

deflection. Near the speed range where the frequency veering occurs these equations have a

one-to-one internal resonance, and this is precisely the parameter region of primary interest in

applications. The method of averaging is applied to these equations to investigate the system

response as function of the system and excitation parameters. The model shows that the

favorable features of the linearized system model are retained when the absorber amplitudes

become large, so long as the absorber path is taken to be close to a tautochronic epicycloid.

This is crucial for designs in which the absorber mass and/or placement is constrained, or

engine speeds are low, resulting in large amplitude motions of the absorbers.

The remainder of this chapter is organized with the following sections: the dynamical

model, which outlines the assumptions and derivation of the equations of motion, and pro-

vides definitions for dimensionless parameters and the path followed by the absorber mass;

the system response, which describes the scaling of parameters and the application of the

method of averaging; parameter studies, which provides a sampling of responses obtained

from the averaged equations; and conclusions, which summarizes the results and their sig-

nificance.
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3.2 Dynamical Model

J
1

T

m

k1

R(S)

J
2

θ1 θ2

S

Figure 3.2: Illustration of the model for a single rotor torsional mode and a single CPVA.

The system shown in Figure 3.2 and described above is modeled using Lagrange’s equa-

tions, and the equations of motion are given by

J1θ̈1 + k1 (θ1 − θ2) = T (t) (3.1)

m
(
S̈ + θ̈2G (S)

)
− 1

2
mθ̇2

2
d
(
R2 (S)

)
dS

= −caṠ (3.2)(
J2 +m(R2 (S))

)
θ̈2 +mG (S) S̈ +m

d (G (S))

dS
Ṡ2

+mθ̇2Ṡ
d
(
R2 (S)

)
dS

+ k1 (θ2 − θ1) = caṠG (S) (3.3)

where S is the displacement of the absorber mass m relative to its vertex, θ1,2 represent

the angles of the rotor elements, R(S) and G(S) are functions related to the path of the

absorber as described in Section 1.1, J1,2 are the moments of inertia of the rotor elements, k1

is the torsional stiffness of the inter-rotor torsional spring, T (t) is the applied torque acting

on the first rotor element (described in more detail below), and ca represents the equivalent

viscous damping coefficient for the absorber as it moves along its path. Note that the bearing

resistance for the rotors is not included in this model, nor is the mean (DC) component of

the applied torque, but generally these balance to set the mean rotor speed Ω.
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Of primary interest in applications are the rigid body torsional vibration and the relative

deflection between the rotors. To this end we switch to coordinates expressed in terms of

the sum and difference of the absolute angle coordinates of the two rotors, defined as

z(t) =
θ1(t) + θ2(t)

2
, w(t) =

θ2(t)− θ1(t)

2
(3.4)

which results in equations of motion of the form

J1 (z̈ − ẅ)− 2k1w = T (t) (3.5)

m
(
S̈ +G(s) (z̈ + ẅ)

)
− 1

2
m (ż + ẇ)2 d

(
R2 (S)

)
dS

= −caṠ (3.6)(
J2 +m(R2(s))

)
(z̈ + ẅ) + k1z =

−m

(
G(S)S̈ +

d (G (S))

dS
Ṡ2 +

d
(
R2 (S)

)
dS

Ṡ (ż + ẇ)

)
+ caG(s)Ṡ. (3.7)

The forcing term T (t) in Equation (3.1) has the form of engine order excitation, so that

rather than explicitly depending on time it is a function of rotor position. It is reasonable to

assume that the mean rotor angle z(t) can be used as the independent variable in the forcing

term, since relative deflections of the rotor will be small, so that the dominant harmonic of

the torque can be expressed as

T (z) = T sin(nz). (3.8)

3.2.1 Non-dimensionalization

The set of equations are non-dimensionalized using the definitions listed in Table 3.1. As

none of the terms explicitly depend on time in the equations, it is convenient to replace time

as the independent variable with the mean rotor position z. This results in the following

definition for the dimensionless mean speed of the average rotor position:

ν(z) =
ż

σ
. (3.9)
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Table 3.1: Definition of the non-dimensional variables.

Variables Definitions

ω0
(J1+J2)k1

J1J2

s S
R(0)

g(s)
G(S)
R(0)

r2(s)
R2(S)

R2(0)

Γ T
J1Ω2

α
mR2(0)
J2

σ Ω
ω0

These operations and definitions, along with the simplifying assumption J1 = J2, yield the

following dimensionless set of equations that govern the behavior of the rotor rigid body

mode, the relative rotor deflection, and the absorber:

νν′ = −1

2
αν

(
ν′g(s)s′ + r2(s)

(
ν′(1 + w′) + νw′′

)
+ ν

(
g(s)s′′ + s′

(
s′
dg(s)

ds
+
d(r2(s))

ds
(1 + w′)

)))
+

Γ

2
sin(nz) (3.10)

νs′′ + νg(s)w′′ =
1

2
ν
(
1 + w′

)2 d(r2(s))

ds
+ ν′

(
s′ + g(s)(1 + w′)

)
− µas′ (3.11)

ν2σ2w′′ + w = −σ2ν

(
ν′w′ +

1

2
α
(
r2(s)

(
ν′ + ν′w′ + νw′′

)
+ µas

′g(s) + ν′s′g(s) + νs′′g(s) + νs′s′
dg(s)

ds

+
d(r2(s))

ds
νs′
(
1 + w′

)))
, (3.12)

where ()′ =
d()
dz . This dynamic model is the basis for the analysis that follows.
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3.3 System Response

The behavior of the natural frequencies of the linearized system is the primary motivating

factor for extending the analysis to include nonlinear behavior. The inclusion of a CPVA

into a flexible rotor system results in an eigenfrequency veering behavior as the mean rotor

speed is varied. This results in a gap between the two nonzero eigenfrequencies of this three

degree-of-freedom system (one of the eigenfrequencies is always zero due to the rigid body

motion). The width of the gap depends on the inertia ratio parameter α, which acts as the

coupling parameter in this system. To illustrate this, Equations (3.10 - 3.12) are linearized

and the eigenfrequencies are plotted as a function of the dimensionless rotor speed σ for

α → 0 and for α = 0.005 and α = 0.01 in Figure 3.3 . Note that the independent variable

in Equations (3.10 - 3.12) is the mean rotor position z, and therefore the eigenfrequencies

obtained are in the (nondimensional) order domain, rather than the frequency domain, as

can be seen in Figure 3.3 . Moreover, a given excitation order corresponds to a horizontal line

in these plots. If the system parameters are tuned such that a problematic order excitation

line passes through the veering gap, both resonances are avoided [36]. This is an extremely

intriguing possibility, but if this is to be a feasible tuning strategy in practice, the nonlinear

system response must be considered, to which we turn next.

3.3.1 Scaling and Averaging

A scaling scheme is applied to the equations of motion so that the contributions of the terms

that are small in practice fall into the right order for the purpose of applying a perturbation

analysis. To this end, the following scaling definitions are used in Equations (3.10 - 3.12),

where ε� 1 is the central small parameter,

α = ε2, w = εŵ,Γ = ε2Γ̂, µa = εµ̂a, φ = εφ̂ (3.13)

which capture small values for the dimensionless parameters associated with the inertia ratio,

the absorber damping, the relative rotor deflection, the applied torque, and the deviation
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Figure 3.3: Eigenfrequencies of the linearized system versus rotor speed σ for ñ = 2. Blue:
α→ 0, Green: α = 0.005, Red: α = 0.01

from a tautochronic path. The definition of the path used here is described in Section 1.1.

Moreover, the scaled rotor speed ν is close to unity, motivating the definition of a coordinate

that represents the small fluctuations in the mean rotor speed, given by

ν(z) = 1 + ε2ρ(z) + O
(
ε4
)

(3.14)

⇒ ν(z)ν′(z) = ε2ρ′(z) + O
(
ε4
)
. (3.15)

Using the scaling scheme in Equation (3.13) in Equations (3.10 - 3.12) and solving for ρ′

in the expansion in Equation (3.15), we obtain an expression which can be inserted into

the equations that govern the absorber dynamics in Equation (3.18) and the rotor relative

deflection dynamics in Equation (3.19) , resulting in a pair of coupled equations for s and

w. These are presented below, following a few more assumptions.

Note that the absorber is tuned to address the rotor resonance which occurs in the

neighborhood of σ = 1/n for an order n torque, since σ = Ω
ω0

(see Table 3.1). To investigate

the behavior of the system near this operating point, which is precisely the eigenfrequency
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veering zone, two detuning parameters δ1,2 are introduced via

ñ2 = n2 + εδ1 (3.16)

σ2 =
1

n2 + εδ2
, (3.17)

which completes the scaling assumptions. The first of these corresponds to the detuning of

the absorber from the excitation order and the second is associated with variations in the

speed near the resonance.

These assumptions result in the model to be considered for analysis, which is a set of

two weakly coupled, weakly nonlinear, internally resonant, and resonantly driven oscillators

of the form

s′′ + n2s = εf1(s, s′, ŵ′, µ̂a, φ̂, δ1) + O
(
ε2
)

(3.18)

ŵ′′ + n2ŵ = εf2(s, s′, ŵ, ŵ′, σ2, Γ̂, δ2, z) + O
(
ε2
)

(3.19)

where

f1 = 2s3φ̂− sδ1 + n2g(s)ŵ − µ̂as′ − 2n2sŵ′ (3.20)

f2 =
1

2

(
n2g(s)s− 2δ2ŵ2n

2ss′ − s′2dg(s)

ds
− Γ̂ sin(nz)

)
(3.21)

These equations are amenable to perturbation techniques, and here we use the method of

averaging. The standard polar form representation for oscillations of s and w are employed,

as follows:

s(z) = a1(z) cos(nz + β1(z)) (3.22)

s′(z) = −a1(z)n sin(nz + β1(z)) (3.23)

ŵ(z) = a2(z) cos(nz + β2(z)) (3.24)

ŵ′(z) = −a2(z)n sin(nz + β2(z)), (3.25)

which implies the standard constraint equations on s′(z) and ŵ′(z) [27]. These are substi-

tuted into Equations (3.18 - 3.21), and the resulting set of equations are then used to solve
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for a′1,2 and β′1,2. Those results are slowly varying in time with small oscillating terms, are

they are averaged over one period of z, that is, over 2π/n, resulting in equations that govern

the slowly varying amplitudes and phases. These are given by

ā′1 = − ε
n

∫ 2π
n

0
f1 sin(nz + β1(z))dz (3.26)

ā1β̄
′
1 = − ε

n

∫ 2π
n

0
f1 cos(nz + β1(z))dz (3.27)

ā′2 = − ε
n

∫ 2π
n

0
f2 sin(nz + β2(z))dz (3.28)

ā2β̄
′
2 = − ε

n

∫ 2π
n

0
f2 cos(nz + β2(z))dz. (3.29)

Here the integrals are complicated and are not evaluated in closed form. The equilibrium

solutions, given by the zeros of these functions, and their stability, are calculated by numerical

evaluation of these integrals. This allows one to efficiently carry out parameter studies that

include stability information.

3.4 Case Studies

The averaged equations of motion of the system, which govern the slowly varying amplitudes

and phases, are numerically solved for equilibria in the vicinity of the eigenvalue veering,

that is, near resonance. The local stability of these equilibrium points is determined by the

eigenvalues of the Jacobian of these equations. We consider a small sampling of response

curves that demonstrate the method and point out some general trends.

Certain system parameters are kept constant throughout the present case studies, namely

the excitation order, n = 2, the absorber damping, µ̂a = 0.05, and the scaling parameter,

which is the ratio of absorber inertia to rotor inertia, ε = 0.1. Assuming a fixed excitation

order is realistic since it is set by the configuration of the rotating machine. For example, in

a four-stroke internal combustion engine with N cylinders the dominant order of excitation

is n = N/2, although higher order harmonics also exist and are generally important for auto-
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motive crankshaft resonance considerations. Also, these absorbers have much less rotational

inertia than the rotor, and since they stay tuned at all rotor speeds, they are more effective

when lightly damped, so these assumptions are similarly valid in applications.

Without the addition of a CPVA, for an excitation order n the resonance of the rotor

system occurs at a dimensionless speed of σ = 1/n, since σ = Ω
ω0

(see Table 3.1). So, for the

parameters of interest, the response analysis is first carried out at the dimensionless rotor

speed σ = 0.5. At this speed, the excitation torque amplitude, Γ̂, and the linear absorber

tuning, ñ, are varied for paths that are tautochronic, softening, and hardening, in terms

of their nonlinear tuning. The response branches for the amplitudes of the CPVA and the

rotor deflection are plotted in Figures 3.4b, 3.5b, and 3.6b). The stability of these branches

is depicted using color where blue curves are stable and red curves are unstable. For all three

nonlinear path options, it can be seen that near ñ = 2, the shaft deflection is significantly

reduced without a steep increase in the case of detuning. In the cases of softening and

hardening paths, it can be seen that the ñ value corresponding to minimum shaft deflection

shifts as the torque amplitude in increased, as expected. Moreover, in all three cases, unstable

zones are observed to appear and widen as the torque amplitude is increased. At first, it

seems logical to off tune the CPVA at the expense of reduced suppression, so that the unstable

zones are not within the operation range. This is the most common tuning approach when

the CPVAs are used to reduce rotor rigid body torsional vibration. However, one also needs

to inspect the behavior at neighboring rotation speeds before selecting the tuning.

The next two sets of parameter studies are at slightly slower and slightly higher dimen-

sionless rotor speeds. The excitation torque amplitude steps used above are repeated in this

example. The response amplitudes obtained in these cases are plotted in Figures 3.4 - 3.6.

The regions of increased CPVA response are observed at tunings slightly higher than ñ = 2

for σ = 0.48 and at slightly lower than ñ = 2 for σ = 0.52, when compared to the results

from the horizontal eigenvalue branches obtained from the linear eigenvalue analysis. The

asymptotes of these branches separate from each other as the inertia ratio, α, increases.
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Thus, they approach ñ = n as α→ 0. The shaft deflection amplitude caused by these peaks,

on the other hand, is much lower when compared to the reduced shaft resonance response

seen in Figures 3.4b, 3.5b, and 3.6b.
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Figure 3.4: Tautochronic path steady state CPVA (a1) and rotor deflection (a2) steady state amplitude values. Blue: stable,
Red: unstable, Red-dashed: CPVA cusp amplitude. n = 2, ε = 0.1, φ = 0, Γ̂ = 0.01 to 0.85.
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Figure 3.5: Softening path steady state CPVA (a1) and rotor deflection (a2) steady state amplitude values. Blue: stable,
Red: unstable, Red-dashed: CPVA cusp amplitude. n = 2, ε = 0.1, φ = −5, Γ̂ = 0.01 to 0.85.
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Figure 3.6: Hardening path steady state CPVA (a1) and rotor deflection (a2) steady state amplitude values. Blue: stable,
Red: unstable, Red-dashed: CPVA cusp amplitude. n = 2, ε = 0.1, φ = 5 , Γ̂ = 0.01 to 0.85.
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3.5 Conclusion

In this chapter, the nonlinear dynamic response of a flexible shaft equipped with a cen-

trifugal pendulum vibration absorber is investigated. Previous work [36] demonstrated the

linear eigenvalue structure of the system and showed the possibility of eliminating shaft res-

onance using a properly tuned CPVA. This requires a special tuning that is based on the

eigenvalue veering behavior encountered as the rotation speed is varied. In practice, CPVAs

move through large amplitudes and behave nonlinearly, and these effects must be taken into

account to implement this tuning practice, and this is the purpose of the analysis presented

in this chapter.

An idealized model that captures the essential dynamics is considered. The equations of

motion of this model are put into a dimensionless form and certain physical quantities are

scaled according to expected orders of magnitudes for these quantities. As a result, a set

of equations amenable to the method of averaging is obtained. Steady state amplitude and

phase conditions are determined from the averaged equations by numerical integration. A

set of parameter studies is carried out in the neighborhood of the eigenvalue veering zone,

that is, near resonance, which is where the system robustness to nonlinear effects must be

considered. It is shown that the response amplitudes have the desired characteristics, but

that several instability zones were detected that cannot be predicted by a linear analysis.

In previous studies that considered a rigid rotor model, the allowable maximum torque

level was dictated by either these instability zones or by kinematic limits of the path. Gen-

erally, in those cases the absorber was off-tuned at the expense of reduced performance in

order to increase the excitation limit. In contrast, for the present model, which considers

absorbers tuned to address a torsional resonance, the upper limit for the level of off-tuning

selected is set by the veering branches of the eigenvalues, which, if encountered by a engine

order line, would result in a resonance. Increasing the effective inertia of the CPVA can

shift this upper limit such that resonance can be avoided, or the system can be designed so
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that the maximum allowed excitation torque is determined not by the absorber amplitude

limits, but by the stability boundaries of the desired response. In addition, one might avoid

these instabilities if some absorber damping can be introduced into the system. All these

solutions, as usual, will reduce the effectiveness of the absorber. However, depending on the

nature of the instability, i.e., whether the bifurcation is sub- or super-critical, one may be

able to operate into the unstable zones, at least for short periods of time. These issues, and

their relevance to practical designs, are left for future studies.
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CHAPTER 4

INCREASING THE EFFECTIVE INERTIA OF BIFILAR SUSPENSION
CPVAS BY EMPLOYING THEIR ROTATIONAL INERTIA THROUGH

KINEMATIC ALTERATIONS

4.1 Introduction

(a) (b) (c)

Figure 4.1: Illustration of different types of CPVA suspension designs. (a) Ring/Roller Type,
(b) Compound Pendulum Type, (c) Bifilar Suspension Type

Implementing a centrifugal pendulum vibration absorber requires a suspension mecha-

nism that prescribes the relative motion between the absorber and the host rotor. Many

designs have been developed to suspend the pendulum absorber mass to the rotor of interest,

including simple pendulums, ring/roller absorbers, and most commonly a bifilar (two point)

suspension, which employs rollers moving along pairs of identical, but inverted, tracks cut

from the pendulum and the rotor. These suspensions have been known for decades and are

described in [10], some of which are illustrated in Figure 4.1. The bifilar mechanism uses

two sets of cutouts on the absorber and on the rotor to guide the motion of the absorber

along its prescribed path using rollers. This mechanism allows one to use relatively large

absorber masses within the confined spaces of engines, and permits the absorber to follow

noncircular paths, as required for proper tuning of the nonlinear dynamics of the absorber

at large amplitudes [14]. However, the standard bifilar suspension prevents relative rotation
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between the absorber and the rotor, and thus its rotational inertia about its center of mass

(COM) acts as a dead weight that is fixed on the rotor, while its mass acts like a point mass

moving along the COM.

Figure 4.2: Conceptual drawing of the system. Here the black outlined boxes represent
the motion of the absorber for a standard bifilar mechanism while the red dashed boxes
represent the positions of the rocking absorber. S is the arclength coordinate that indicates
the position of the COM of the absorber, and ϕ(S) is the rocking angle of the absorber as a
function of S.

In this study, we investigate a new bifilar suspension mechanism design that allows one

to prescribe both translation and rotation of the absorber relative to the rotor. The concept

of this rocking absorber behavior is depicted in Figure 4.2. The modification included here

imposes a certain rotational motion to the absorber by creating the cutouts accordingly.

This allows the rotational inertia of the absorber to join the effort in counteracting the

excitation, eventually getting more correction for the same amount of mass when the rest of

the conditions are the same. As the rate of rotation imposed in this method is controlled by

the cutouts, it becomes another design parameter, similar to the linear and nonlinear tuning

path parameters, and the absorber mass and placement.

It is well known that the effective inertia of a CPVA, that is, the mass times the square

of the distance of the absorber COM to the rotation center for a point mass case, has a

major role on its performance. The behavior of the CPVA can simply be imagined as a

synchronous energy storage device that works out of phase with the forcing acting on the
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rotor. As the periodic forcing accelerates the rotor, the CPVA absorbs the energy partially,

thus effectively counteracting the forcing. As the forcing tries to decelerate the rotor, the

stored energy is fed back to rotor. This out of phase behavior relies on the fact that the

order of periodic forcing matches the tuning of the absorber. In turn, in any absorber tuning

problem, available absorber inertia plays an important role; the more inertia the absorber

has, the more energy it can absorb and return as it moves. Generally, absorbers are detuned

from the excitation order as a trade-off in performance, so that they can handle a large range

of excitation amplitudes, and so that they are robust to imperfections [7, 16]. The selection

of this detuning is highly correlated to how much absorber inertia is available [7].

In most applications, the available space is a key limiting factor on how much absorber

inertia can be included in a given design. Another consideration is the amount of mass and

rotational inertia added to the rotor by the absorbers, which affects system responsiveness,

weight, and cost. Employing the rotational inertia of the absorber in order to increase the

effective inertia, without adding any extra mass, is therefore highly desirable in practical

applications.

This design was independently conceived by the author, although similar technologies

had very recently been proposed in the literature [37], and had been numerically analyzed in

[38]. In fact, such designs are a natural blend of absorbers that roll and those that translate,

for example, as shown in Figure 4.1. In the present work we provide the first systematic,

quantitative analysis of these systems based on their kinematics, and provide a detailed

analysis of their nonlinear response, which is required to fully understand and appreciate the

benefits of these designs.

In the following sections, we elaborate on the construction of the cutouts that guide

the bifilar suspension rollers for these so-called “rocking” CPVAs. Through these cutouts it

becomes possible to independently prescribe the COM translation path and the constrained

rocking motion of the absorber mass. We next discuss the tuning of these absorbers and

present the dynamical analysis framework for this designs. Finally, we show analysis results
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for a number of sample system configurations that reveal the effects of rocking motion on the

performance of CPVAs, and compare them with their purely translational counterparts.

4.2 Cutout Kinematics

As stated previously, the typical bifilar suspension mechanism employs two rollers between

the absorber and the rotor. Even tough these rollers are free to roll along the cutout surfaces,

in operation they always stay in contact with the absorber and the rotor and no extra

degrees of freedom are created, provided that the tangents of the contact surfaces are always

perpendicular to the normal force due to the centrifugal field and that this condition ensures

that the rollers roll without slip relative to their contact surfaces.

The cutout formulation for a given COM path is obtained in [14] for a standard bifilar

suspension. In that work, the path followed by the center of a roller is taken to be one half

of the path followed by the absorber COM. The cutouts are then obtained by offsetting the

roller path by its radius. The principle of this approach can be illustrated for a flat object

moving parallel to another flat surface with a roller between them. If the motion is rolling

without slip, the translation of the roller center is one half that of the translation of the flat

object, as shown in Figure 4.3 . The reason this principle can directly be carried over to the

standard bifilar mechanism is that the only relative motion between the absorber and the

rotor is planar translation.

∆x

∆x/2

Figure 4.3: Illustration of moving a mass over a flat surface with a roller.
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However, the situation is different for the proposed version of the bifilar mechanism.

Contrary to the translation-only design, it is desired to impose a rotation of the absorber

about its COM, resulting in a motion in which the direction and amplitude of the velocity

vectors on the absorber depend on the local coordinates of the points on the absorber, as

shown in Figure 4.4 .

θ

S

Figure 4.4: Vectors indicating that each point on the absorber will have different velocities
as a result of the combined translation of the COM and rotation about the COM.

This implies that, as the motion of the absorber progresses along its COM path, the

roller contact point will have a specific direction to move that depends on the history of the

rotation moving away from the vertex position.

For a given COM path and rotation rate, the cutouts are obtained by a recursive al-

gorithm, with which for every step, the local coordinates of the roller contact point are

calculated and used as the seed for the direction and magnitude of motion of that point.

The roller center is then moved in that direction by one half of the progression of the ab-

sorber at that point. The corresponding cutout points are also marked at a distance equal

to the roller center in a direction perpendicular to the direction of motion. In the present

work, we consider the case where the absorber rotation is a cubic polynomial in the absorber

translation distance S, although this relationship can be easily generalized.
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In Figure 4.5 we show examples of the cutouts obtained using this approach for the same

COM path and the same vertex roller positions, for four values of the rotation rate. In

the top-left case, the cutouts are calculated for a non-rocking bifilar mechanism, and in the

bottom-right case the rocking rate is chosen so that the rotation at the cusp point is 21◦.

We now turn to an analysis of the dynamics of a rotor-CPVA system with these kine-

matics.
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Figure 4.5: Samples of cutouts for rocking bifilar absorbers for the same COM path with
different rocking rates. Here, the red and green dashed lines represent cutouts on the rotor
while red and green solid lines represent the absorber cutouts. The solid outlined circles
represent the rollers shown at their center position, and the blue dashed line is the COM
path. The rocking rates, moving from top left to bottom right, are set such that the rocking
angle at the cusp becomes 0◦, 7◦, 14◦, 21◦.
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4.3 Dynamical Model

In this section we describe results from analysis of the system response using both the method

of averaging and a generalization of the extended harmonic balance method described in

Chapter (2). Perturbation methods are the preferred approach in the study of dynamics of

pendulum absorbers, since they produce analytical results that provide explicit parameter

dependence as well as physical insight. As long as the small parameter selection is conducted

in a way that the nonlinearities in the equations of motion are represented accurately as small

perturbations, these techniques allow for an accurate assessment of the system dynamics.

On the other hand, the HBM method requires tedious variable recasting during the initial

setup of the analysis, and is purely numerical in nature, but it is more generally applicable

to a wider range of systems. However, once the system of equations are reshaped into the

required form, it can be used to obtain the dynamic response as accurately as numerical

integration methods, while being able to do so as efficiently as perturbation methods.

The first step to either of these solution methods, as well as to the crucial absorber tuning

analysis, is the derivation of the system equations of motion. The system investigated here

is modeled using Lagrange’s equations. The Lagrangian can be expressed accurately by the

total kinetic energy of the rotor-CPVA system, since the rotation of the system dominates

the effects of gravity. The Lagrangian of the system reads as follows:

L =
1

2
Jθ̇2 +

1

2
mj

N∑
j=1

{(
R2
j (Sj)θ̇

2 + Ṡ2
j + 2Gj(Sj)θ̇Ṡj

)
+ r2

g,j

(
θ̇ + ϕ′j(Sj)Ṡj

)2
}

(4.1)

Here, θ is the angular position of the rotor and Sj is the (arc length) displacement of the jth

absorber COM relative to the vertex on its path. Parameters mj and rg,j are the mass and

radius of gyration of absorber j, respectively. The prescribed rocking angle of the absorber

is given by ϕj(Sj), which can be quite general. In this study we take ϕj to be a cubic

polynomial in Sj with only odd powers, in order to obtain a symmetric rocking motion
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about the vertex, as follows,

ϕj(Sj) = B0,jSj +
1

3
B1,jS

3
j . (4.2)

Terms related to functions Rj(Sj) and Gj(Sj) are related to the COM path, as explained

in the Introduction chapter. Note that the kinetic energy of the system is modified by the

rocking absorber motion, with the addition of only a few terms that appear at the end of

the energy expression.

The Lagrangian equations of motion of this system, with the applied torque and damping

forces added, read as follows,J +
N∑
j=1

mj

(
R2
j (Sj) + r2

g,j

) θ̈ +
N∑
j=1

mj

(
Gj(Sj) + r2

g,j

(
B0,j +B1,jS

2
j

))
S̈j

+
N∑
j=1

mj

(
dR2

j (Sj)

dSj
θ̇Ṡj +

dGj(Sj)

dSj
Ṡ2
j + 2B1,jr

2
g,jSjṠ

2
j

)

= T0 + T (t)− c0θ̇ +
N∑
j=1

ca,jGj(Sj)Ṡj (4.3)

mj

(
Gj(Sj) + r2

g,j

(
B0,j +B1,jS

2
j

))
θ̈ +mj

(
1 + r2

g,j

(
B0,j +B1,jS

2
j

)2
)
S̈j

− 1

2
mj

(
dR2

j (Sj)

dSj
θ̇2 + 4r2

g,jB1,j

(
B0,j +B1,jS

2
j

)
Ṡ2
j

)

= −ca,jṠj (j = 1 to N) (4.4)

where T (θ) is the applied torque acting on the rotor, and ca,j represents the equivalent

viscous damping coefficient for absorber j as it moves along its path, T0 is the constant

torque applied to the rotor in order to maintain a mean operating rotational speed Ω, by

counteracting viscous rotor damping that is modeled by coefficient c0.

The forcing term T (θ) in Equation (4.3) has the form of engine order excitation, so it

is most naturally expressed as a function of rotor position, and it is also assumed to be

dominated by a single harmonic, so that we take

T (t) = T sin(nθ) (4.5)
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where n is the engine excitation order.

4.3.1 Non-dimensionalization

Table 4.1: Definition of dimensionless variables.

Variables Definitions Variables Definitions
αj mjR

2
j (0)/J βj rg,j/Rj(0)

b0,j B0,jRj(0) b1,j B1,jR
3
j (0)

µa,j ca,j/mjΩ sj Sj/Rj(0)

gj(sj) Gj(Sj)/Rj(0) r2
j (sj) R2

j (Sj)/R2
j (0)

µ0
c0/JΩ Γ0

T0/JΩ2

Γ T/JΩ2

The equations of motion are non-dimensionalized using the definitions listed in Ta-

ble (4.1). As none of the terms explicitly depend on time in the equations, it is convenient

to replace time as the independent variable with the rotor angular position θ. Also, it is

convenient to introduce the following definition for the dimensionless mean speed of the

rotor:

ν(θ) =
θ̇

Ω
. (4.6)

These operations and definitions, along with use of the chain rule, yield the following

dimensionless set of equations that govern the behavior of the rotor and the absorbers:
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1 +
N∑
j=1

αj

(
β2
j + r2

j (sj) +
(
gj(sj) + β2

j

(
b0,j + b1,js

2
j

))
s′j
) νν′

+

 N∑
j=1

αj

(
gj(sj) + β2

j

(
b0,j + b1,js

2
j

)) ν2s′′j

+

 N∑
j=1

αj

(
dr2
j (sj)

dsj
+
dgj(sj)

dsj
+ 2b1,jβ

2
j sjs

′
j

) ν2s′j

= Γ0 + Γ(θ)− µ0ν +

 N∑
j=1

αjµa,jgj(sj)s
′
j

 ν (4.7)

(
gj(sj) + s′j + β2

j

(
b0,j + b1,js

2
j

)(
1 +

(
b0,j + b1,js

2
j

)
s′j
))

ν′

+

(
1 +

(
b0,j + b1,js

2
j

)2
)
νs′′j

− 1

2

dr2
j (sj)

dsj
ν + 2β2

j b1,j

(
b0,j + b1,js

2
j

)
νsjs

′
j = −µa,js

′
j (j = 1 to N) (4.8)

where ()′ =
d()
dθ .

4.3.2 Absorber Tuning

In the case of a classical, non-rocking bifilar suspension implementation, which causes the

absorbers to act as point masses, the absorber tuning, both linear and nonlinear, is controlled

solely by the parameters that dictate the path followed by the absorber COM. That is, the

tuning is determined by considering constant rotor speed, and the absorber inertial properties

vanish from the absorber equation of motion in this case.

r2(s) = 1 + φ0s
2 + φ1s

4, (4.9)
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where

φ0 = 1− ρ̂−1
0 (4.10)

φ1 = −−1 + λ2 + ρ̂0

12ρ̂3
0

with ρ̂0 := ρ0/R(0). (4.11)

As shown in the path definition, Equation (4.9), the coefficient of the quadratic term, φ0, in

r2(s) depends solely on the radius of curvature, ρ0, of the path at the vertex. The quartic

term, φ1, in r2(s), on the other hand, depends on both ρ0 and the nonlinear path parameter

λ. Since this higher order term in the absorber path vanishes in the linearized dynamics,

only φ0 controls the small-amplitude (linear) tuning. So, one determines ρ0 to obtain a

desired linear tuning and then adjusts λ to set the amplitude dependent (nonlinear) tuning,

including the special case of tautochronic (amplitude independent) tuning. To see a more

detailed definition on paths, see Section 1.1.

In the case of a rocking CPVA, the tuning depends not only on the path parameters, but

also on the rocking parameters and the radius of gyration of the CPVA mass. Here we derive

the expressions that yield the amplitude dependent tuning of these rocking CPVAs using a

model consisting of a rotor and a single rocking absorber. First, we write the Hamiltonian

of a single undamped absorber at constant rotor speed, as

HΩ = Ṡ
∂LΩ

∂Ṡ
− LΩ (4.12)

where

LΩ = L
∣∣∣∣
θ̇=Ω

=
1

2
JΩ2 +

1

2
m
((

R2(S)Ω2 + Ṡ2 + 2G(S)ΩṠ
)

+ r2
g

(
Ω + ϕ′(S)Ṡ

)2 )
. (4.13)

Applying the dimensionless parameter substitutions listed in Table (4.1), we obtain

HΩ =
1

2
αJ

(
−Ω2

(
β2 + r2(s)

)
+

(
1 + β2

(
b0 + b1s

2
)2
)
ṡ2
)
. (4.14)

Note that generally the Hamiltonian is expressed in terms of the generalized coordinates

and momenta, but here it is convenient to keep ṡ instead of replacing it with the associated

momentum variable.
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This Hamiltonian formulation approach allows one to extract the relation between the

instantaneous absorber velocity and the position of the CPVA under the assumption of

constant rotor speed [39]. This can then be integrated to determine the absorber period as

a function of amplitude.

Note that, this single degree of freedom system is conservative. Hence, ḢΩ = 0 or

HΩ = const., which implies

HΩ = HΩ

∣∣∣∣
s=A,ṡ=0

= const. (4.15)

Therefore,

ds

dt
= Ω

√
r2(s)− r2(A)

1 + β2
(
b0 + b1s2

)2 (4.16)

= Ω

√
φ0(s2 − A2) + φ1(s4 − A4)

1 + β2
(
b0 + b1s2

)2 (4.17)

From this, we can find the period of oscillation as a function of the amplitude of oscillation,

A, by calculating the following integral,

T (A) =
4

Ω

∫ A

0


√

1 + β2
(
b0 + b1s2

)2
φ0(s2 − A2) + φ1(s4 − A4)

 ds (4.18)

Numerically evaluating this integral using a trapezoid scheme presents a difficulty, as the in-

tegrand has a pole at the upper integration limit, s = A. Moreover, expanding the integrand

in a series summation also fails to accurately approximate the integrand near the integration

limit. To overcome these integration problems, first we expand only the numerator of the

integrand, which is always positive, in a series summation in s up to order M , as√
1 + β2

(
b0 + b1s2

)2
=

M∑
k=0

aks
k. (4.19)

Then, the integral takes the following form, which can be rewritten as combinations of com-

plete elliptic integrals of the first and second kind [40]. Then, the integral can be evaluated

robustly, that is, without difficulties at the upper limit.

T (A) =
4

Ω

∫ A

0

{ ∑M
k=0 aks

k√
φ0(s2 − A2) + φ1(s4 − A4)

}
ds. (4.20)
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Note that the result is linear in the rotor mean speed, Ω, for any rocking function, indicating

that order tuning is valid for a rocking CPVA. As per its definition, the absorber order tuning

is obtained by taking the reciprocal of the absorber period and dividing it by Ω, as

ñ(A) =
2π

ΩT (A)
. (4.21)

It has been found that the integral in Eqn. (4.20) yields quite different expressions in

cases with nonlinear parameter φ1 = 0, which yields a tautochronic tuning for a non-rocking

CPVA, when compared to those with φ1 6= 0. Even though both cases result in closed

form expressions, the latter involves complete elliptic integrals of the first and second kinds.

Tuning of the absorbers in both cases are given below for M = 4, which is sufficiently

accurate for most applications,√
1 + β2

(
b0 + b1s2

)2
=

M∑
k=0

aks
k (4.22)

≈ a0 + a2s
2 + a4s

4 (4.23)

where

a0 =
(

1 + β2b20

)1/2
(4.24)

a2 = β2b0b1

(
1 + β2b20

)−1/2
(4.25)

a4 =
1

2
β2b21

(
1 + β2b20

)−3/2
. (4.26)

Substitution of the expansion Equation (4.22) into Equation (4.21) yields the following am-

plitude dependent tuning expression,

ñ(A) =
3πφ2

1

√
−F3

2
(
F1
(
−3a0φ

2
1 − F3

(
2a4φ0 − 3a2φ1 + A2a4φ1

))
+ F2F3 (2a4φ0 − 3a2φ1)

) (4.27)

where

F1 = K

(
φ0

A2φ1 + φ0
− 1

)
(4.28)

F2 = E

(
φ0

A2φ1 + φ0
− 1

)
(4.29)

F3 = φ0 + A2φ1 (4.30)
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with K(x) and E(x) being the complete elliptic integrals of the first and second kinds,

respectively, with the elliptic modulus of x. For the case φ1 = 0, taking the COM path to

be tautochronic in the non-rocking case, this result simplifies significantly to

ñ(A) =
8
√
−φ0

8a0 + 4A2a2 + 3A4a4
(4.31)

4.3.2.1 Linear Tuning

Small amplitude tuning is a primary metric in the design of CPVAs. Here, using the expres-

sions obtained by the integration of the absorber period, we can extract the small amplitude

tuning by just evaluating these at A→ 0, yielding

ñ(0) =
2π

ΩT (0)
(4.32)

=

√
−φ0

1 + β2b20
(4.33)

=

√
1− ρ̂0

ρ̂0
(
1 + β2b20

) . (4.34)

It turns out both Equation (4.27) or Equation (4.31) yield the same result for the linear

tuning, which is expected since φ1 is a nonlinear path parameter that does not affect the

small amplitude behavior of the absorber. By rearranging Equation (4.32), one can extract

the vertex radius of curvature needed for a given linear tuning order ñ(0) as

ρ0 = R(0)
(

1 + ñ(0)2
(

1 + β2b20

))−1
, (4.35)

which is seen to depend on the linear rocking rate, b0, and the absorber radius of gyration, β.

However, the cubic rocking rate does not have any effect on the linear tuning, as expected.

This gives the designer the liberty of tailoring the rocking motion such that a given

amount of translation and rocking space for an absorber can be utilized as needed by the

application at hand. First, Equation (4.32) suggests that, for a fixed translation path, an

increase of the linear rocking rate causes the linear tuning order to reduce. Thus, one needs
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to adjust the translation path accordingly. This, however, would also cause the cusp point

of the path to change. On the other hand, the designer might choose to utilize the entire

rocking space available with a purely cubic rocking rate, which implies that the performance

gain from rocking is induced only at higher absorber amplitudes. In essence, having these

individual parameters at the disposal of the designer widens the design space for a given set

of constraints. In order to reveal the trade-offs of these parameters, a detailed dynamical

response analysis needs to be conducted in conjunction with the tuning studies.

4.3.2.2 Tautochronic Tuning

Tautochronic (amplitude independent) tuning of CPVA systems is a preferred starting point

in their design, since it avoids nonlinear effects to leading order. In addition, choosing a

near or exact tautochronic path simplifies the perturbation analysis for dynamical response

characteristics.

With the presence of rocking behavior, one can achieve exact tautochronic tuning only if

the rocking rate of the absorber is linearly dependent on the COM path coordinate s. This

can be seen in Equation (4.31), where the only way to eliminate the absorber amplitude, A,

from the tuning is to set the cubic rocking rate, b1, to zero. That is, for β 6= 0,

(ñ(A) = ñ(0))⇔ (a2 = 0 ∧ a4 = 0)⇔ (b1 = 0) (4.36)

where ∧ implies that both conditions must hold.

In the more general case with φ1 6= 0, the amplitude dependent tuning expression is given

by Equation (4.27). As the term F3 in the numerator of Equation (4.27) is a function of

A unless φ1 = 0, one can not achieve amplitude independent tuning with rocking absorbers

under the condition of φ1 6= 0.
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4.3.3 Scaling and Averaging

A scaling scheme is applied to the equations of motion so that the contribution of terms

that are small in practice fall at the correct order for the purpose of applying a perturbation

analysis. To this end, the following scaling definitions are used in Equations (4.7 and 4.8),

where ε, the ratio of absorber inertia to rotor inertia, is the central small parameter,

αj = εα̂j , βj =
√
εβ̂j ,Γ = εΓ̂, µa,j = εµ̂a,j (4.37)

which captures the small nature of the dimensionless parameters associated with the absorber

inertia (both mass and rotational inertia) relative to the rotor inertia, the absorber damping,

and the applied torque. Moreover, the scaled rotor speed ν is close to unity, motivating the

definition of a coordinate that represents the small fluctuations in the mean rotor speed,

given by

ν(θ) = 1 + ερ(θ) + O
(
ε2
)

(4.38)

⇒ ν(z)ν′(θ) = ερ′(θ) + O
(
ε2
)
. (4.39)

Using the scaling scheme in Equation (4.37) in Equations (4.7 and 4.8), and solving for ρ′

in the expansion in Equation (4.39), we obtain an expression which can be inserted into the

equations that govern the absorber dynamics. This is the uncoupling of the rotor dynamics

from the absorber dynamics, as done in many previous studies of these systems. In addition,

two detuning parameters, δj,1 and δj,2 are introduced, as follows,

ñ2
j = n2 + εδj,1 (4.40)

φ1,j = εδj,2, (4.41)

which account for the facts that the tuning of the absorber is close to the excitation order

n, and that the nonlinear absorber tuning is close to tautochronic. Using these definitions

for the tuning yields the following path, as described in the linear tuning discussion above,

r2
1(s1) = 1−

(
1 + εb20β̂

2
j

)(
n2 + εδj,1

)
s2 + εδj,2s

4. (4.42)
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This completes the scaling assumptions.

These assumptions and expansions in ε result in the model to be considered for analysis

in the single absorber case, i.e. j = 1, which is a forced oscillator with weak nonlinearity,

weak near-resonant excitation, and weak damping, of the form

s′′1 + n2s1 = εf1 + O
(
ε2
)

(4.43)

where

f1 = Γ̂ sinnθ
(
−g1(s1)− s′1

)
− µ̂a,1s′1 − δ1,1s1 + 2δ1,2s

3
1

− 2β̂2
1b

2
1,1s

3
1s
′2
1 − 2β̂2

1b0,1b1,1s1s
′2
1 + α̂1s

′3
1 g
′
1(s1) + α̂1g1(s1)g′1(s1)s′21

+ n2
(
s1

(
β̂2

1b1,1s1
2
(
b1,1s1

2 + 2b0,1

)
− α̂1

(
3g1 (s1) s′1 + g1 (s1) 2 + 2s′1

2
)))

. (4.44)

We can drop the absorber index for clarity, as the remainder of the analysis is conducted for

system with a single absorber.

This equation is amenable to perturbation techniques, and here we use the method of

averaging. The standard polar form representation for the driven response of s is employed,

as follows:

s(θ) = a(θ) cos(nθ + ψ(θ)) (4.45)

s′(θ) = −a(θ)n sin(nθ + ψ(θ)), (4.46)

which imposes the standard constraint equation on s′(θ) [27]. These expressions are sub-

stituted into Equation (4.43) , and the resulting set of equations are then used to solve for

(a, ψ). Those results are then averaged over one period of θ, that is, over 2π/n, resulting in

equations that govern the slowly varying amplitudes and phases, which are given by

ā′ = − ε
n

∫ 2π
n

0
f sin(nθ + ψ(θ))dθ (4.47)

āψ̄′ = − ε
n

∫ 2π
n

0
f cos(nθ + ψ(θ))dθ (4.48)

70



The equilibrium solutions, given by the zeros of these functions, are calculated by numerical

evaluation of these integrals. This allows one to efficiently carry out parameter studies,

including stability considerations.

The averaged equations of motion of the system, which govern the slowly varying ampli-

tudes and phases, are numerically solved for equilibria as a function of system and excitation

parameters in order to determine the performance of the system. The steady state solutions,

i.e., the zeros of Equations (4.47 and 4.48), for the values of ā and ψ̄ are substituted into

the transformation in Equation (4.45) in order to obtain the steady state response of the

absorber. This response can then be used in Equation (4.7), along with the expansion in

Equation (4.39), to solve for ρ′(θ), an approximate representation of the rotor response. This

allows one to quantify the reduction in rotor torsional vibration, hence to determine the per-

formance of the absorber. Since the absorber is designed to operate on order n harmonics,

we pass ρ′(θ) through a Fourier integral to obtain the harmonic n magnitude of the rotor

response by

ρ′n =
n

π

∣∣∣∣∣
∫ 2π/n

0
e−inθρ′(θ)dθ

∣∣∣∣∣ . (4.49)

We now turn to some case studies that demonstrate the analysis tools and provide results

about the benefits of rocking absorbers.

4.4 Case Studies

The interconnected nature of the parameters that control the behavior of the rocking ab-

sorbers expands the size of the parameter space considerably. Here, in order to obtain sample

results, we select certain parameters to be fixed and investigate the effects of the remaining

parameters.

We selected fixed values for the dimensionless absorber inertia ratio (α = 0.1) and for

the dimensionless radius of gyration (β = 0.5), and for the desired linear tuning order

(ñ(0) = 2.05). We also fixed the value of the dimensionless quartic coefficient for the absorber
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path (φ1). This parameter is generally referred as the nonlinear tuning parameter in CPVA

analysis. However, in this setting, the rocking parameters also affect the nonlinear tuning

characteristics, and so we avoid referring it as the sole nonlinear tuning parameter. Finally,

the excitation order n is also chosen to be fixed as 2.0.

Designing for a desired dynamical behavior of the rocking absorber is an iterative pro-

cedure, as it is in the classical non-rocking absorber case. However, in the classical case,

the number of parameters at the disposal of the designer are small compared to the present

system. The basic rules of thumb for tuning non-rocking absorbers specify that the absorbers

should be slightly over-tuned in linear range with respect to the excitation order, ñ(0) > n,

and the nonlinear tuning of the path should be then adjusted to obtain a tautochronic, or

a slightly hardening, path, such that potential undesirable nonlinear affects are avoided,

and the operating torque range is extended. However, increasing the level of either the lin-

ear or nonlinear over-tuning decreases the torsional vibration reduction performance of the

absorber [7, 38].

Introduction of the rocking motion to the design of the absorber affects the above men-

tioned dynamical characteristics for a given choice of path. As discussed in Section 4.3.2,

the linear rocking rate, b0, directly alters the resulting linear tuning. In other words, for a

given linear tuning, the required vertex radius of curvature will be different than that for

the corresponding non-rocking case, as shown in Equation (4.32). Thus, the procedure of

determining the COM path should include consideration of the rocking behavior, since a

given path designed for a non-rocking absorber may result in a relatively conservative or

aggressive absorber behavior when accompanied with rocking.

Here we present the dynamical response characteristics of a small sample of many possible

tuning configurations that involve rocking. Specifically, in these cases we varied the linear

and cubic rocking rates, b0 and b1, respectively. In Table 4.2, the cases analyzed are listed.

As mentioned, ñ(0) and φ1 are held constant. Consequently, the vertex radius of curvature,

the parameter λ, and the cusp of the path are determined by these fixed parameters for
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Table 4.2: Parameter sets for the rocking rate study.

Case b0 b1 λ φ1 scusp

A 0.00 0.00 0.918 -0.40 2.12e-01
B 0.30 0.00 0.919 -0.40 2.04e-01
C 0.60 0.00 0.924 -0.40 1.84e-01
D 0.30 -5.00 0.919 -0.40 2.04e-01
E 0.30 5.00 0.919 -0.40 2.04e-01

each case. As expected, only a change in the linear rocking rate causes any change in these

parameters. The resulting rocking angles and amplitude dependent (nonlinear) tuning of the

absorbers considered in cases A through E are plotted in Figure 4.6. Note that the angle of

rocking is already a dimensionless parameter. Therefore, irrespective of the dimensionality

of the parameters, the resulting rocking angle is absolute (see Table 4.1 for the relations

between the dimensional and non-dimensional parameters). Also note that, in Figure 4.6

the absorber displacement is shown as normalized with respect to its cusp amplitude. The

corresponding cusp values are provided in Table 4.2.

The response characteristics are obtained by varying the dimensionless oscillating torque

amplitude, Γ, over a range where the corresponding absorber amplitude is below the kine-

matic singularity of the path, scusp. Here we investigate the effects of the rocking rates, b0

and b1, on the system dynamics. Order n harmonic amplitudes of the normalized absorber

amplitude, s/scusp, and the corresponding rotor acceleration, νν′, are plotted versus Γ in

Figure 4.7 for the cases displayed in Table 4.2.

As can be seen in Figure 4.7, increasing the linear rocking rate, b0, provides more cor-

rection on the rotor torsional vibration. However, this improvement comes at the price of a

reduced range of operating torque amplitude. That is, with more rocking rate, the absorber

works more aggressively and therefore has a sharper rate of change in amplitude with respect

to the excitation torque, and it reaches its maximum sooner. Moreover, as discussed above,

an increased linear rocking rate also reduces the path cusp amplitude, and thus the absorber
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also has less space to move. Moreover, in cases where the cubic rocking rate was varied,

it showed that the inclusion of cubic rocking can partially mitigate the shortcomings of a

linear-only rocking motion. We used the value of the linear rocking rate from case B and

populated cases D and E with added cubic rocking. It is observed that the increase in per-

cent correction from A to B came with a reduction in the maximum allowable Γ. However,

in case D, where the rocking angle has an additional negative cubic term, not only is there

more correction when compared to the non-rocking case A, but the allowable range of Γ is

also increased. This indicates that with the proper adjustment of rocking parameters, the

torsional vibration reduction of the absorber can be improved without adding any mass and

without sacrificing other performance metrics, such as the maximum allowable excitation

amplitude. As a final observation in the study of cubic rocking rates, in this particular

setting, we do not see any particular advantage in using a positive cubic rocking rate, such

as that considered in case E.
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Figure 4.6: Rocking and tuning values of the CPVA for the cases in Table 4.2.
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Figure 4.7: Harmonic amplitudes of order n of the response of the systems in the cases from
Table 4.2. The black curve in (a) indicates the reference rotor response at order n, when the
absorber is locked at its vertex.
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4.5 Conclusion

The present work is based on a model of a rotor equipped with bifilar CPVAs that are kine-

matically designed to have an imposed rotational motion about their COM that is linked to

the translation of the COM. This configuration increases the effective inertia of the absorber,

thereby providing better vibration reduction for a given amount of absorber mass. The roller

paths and cutouts that will prescribe the desired translational and rotational motions of the

absorber are generated numerically, demonstrating how such absorbers can be realized. The

governing equations of motion of the corresponding model are put into a dimensionless form

and certain physical quantities are scaled according to expected orders of magnitudes for

these quantities. As a result, an equation that governs the absorber motion, and is amenable

to the method of averaging, is obtained. Steady state amplitude and phase conditions are

determined from the averaged equations by numerical methods. A set of parameter stud-

ies is carried out to investigate the performance gains achieved by the addition of absorber

rotation. The results show that, without adding any extra mass, the reduction in torsional

vibrations can be improved by up to 15%. Moreover, it has been found that by using only

a linear rocking rate, torsional vibration reduction is improved, but the maximum torsional

excitation amplitude at which the absorber can work is reduced, just as in the case of lin-

ear over-tuning in the non-rocking case. However, we also found that utilizing a negative

cubic rocking rate in conjunction with a positive linear rate, improved the correction perfor-

mance without sacrificing operating range. This design has the potential for useful practical

implementation.

This approach includes the linear and cubic rocking rates of the absorber as additional

design variables, which allows more flexibility, but more complexity, to the design process. In

a given application, parameter studies are needed to find the optimal absorber parameters,

which must include both performance and stability considerations. The methods demon-

strated in this chapter provide the tools required for such investigations. An extension of
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the current study would be to consider the stability of the synchronous response of a system

of multiple, identical rocking absorbers, similar to that described in [7].
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CHAPTER 5

CONCLUSIONS

In this dissertation, we contributed to three specific topics in the analysis and design of

CPVAs. First, we developed a new framework, based on a harmonic balance method (HBM),

for the numerical estimation for the steady state response and stability characteristics of

systems equipped with CPVAs. We also posed two new design problems regarding CPVA

systems, specifically, their tuning to avoid torsional resonances of the support rotor and

increasing absorber inertia by allowing for absorber rotation by so-called “rocking”, and

presented detailed modeling and dynamical analysis for these two topics.

The nonlinear equations of motion for these systems are generally analyzed either with

direct time integration or using perturbation methods, both of which have limitations in

terms of speed and/or applicability. The HBM method deveoloped herein is adopted from

[21], in which the nonlinearities are put into a quadratic polynomial form. The solution is

then expressed as a Fourier series for application of the HBM with a relatively high number

of assumed harmonics. Essentially, the method differs from the classical harmonic balance

method in that it has a pre-processor for the problem formulation. It operates on the

system equations of motion and rewrites them as a larger, yet equivalent, set of equations

using auxiliary variables. In this way, the application of the HBM, namely assuming a

periodic solution with a given number of harmonics and constructing an algebraic system

of equations that govern the amplitudes of the harmonics of the dependent variables, can

be automated irrespective of the structure of the original equations of motion. Estimation

of the stability of the periodic steady state solutions obtained in this way was also made

possible using a related algorithm outlined in [26]. The requirement for this secondary step

in the solution process is that each component of the Jacobian of the original equations of

motion must be written in terms of its harmonic coefficients at each periodic solution, where
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stability information is sought. The form of the Jacobian of systems with CPVAs is much

more complex than the equations of motion themselves. Therefore, here we evaluated it

numerically by reconstructing the periodic solutions of the states of the equations of motion

using the coefficients obtained by HBM and extracted the Jacobian harmonic coefficients

numerically using a Fast Fourier Transform.

This solution framework was tested for two different system configurations that are known

to show significant qualitative changes in their response characteristic as the excitation am-

plitude is varied. The results showed that this approach is efficient and accurate for use in

the analysis of CPVA systems. The complexity of the CPVA systems investigated here was

kept at a level that makes the demonstration of the method as clear as possible. However,

more involved configurations can and have been successfully analyzed with this algorithm.

This tool will allow for the rapid study of absorber systems with parameter values that

render analytical tools inapplicable and/or direct numerical simulations too slow. Such a

tool will be very useful for parameter studies and design purposes.

We also considered the nonlinear dynamic response of a flexible shaft equipped with a

centrifugal pendulum vibration absorber. Previous work by the author had demonstrated

the linear eigenvalue structure of this system and showed the possibility of eliminating shaft

resonance using a properly tuned CPVA. This requires a special tuning that is based on

the eigenvalue veering behavior encountered as the rotation speed is varied. In practice,

CPVAs move through large amplitudes and behave nonlinearly, and these effects must be

taken into account to implement this tuning in practice, which motivated the current study.

An idealized model that captures the essential dynamics was considered, namely a torsional

resonance and a CPVA. The equations of motion of this model are put into a dimensionless

form and certain physical quantities are scaled according to expected orders of magnitudes

for these quantities. As a result, a set of equations amenable to the method of averaging is

obtained. Steady state amplitude and phase conditions were determined from the averaged

equations by numerical integration. A set of parameter studies was carried out in the neigh-
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borhood of the eigenvalue veering zone, that is, near resonance, which is where the system

robustness to nonlinear effects must be considered. It is shown that the response amplitudes

have the desired characteristics, but that several instability zones were detected that cannot

be predicted by a linear analysis. In previous studies that considered a rigid rotor model, the

allowable maximum torque level was dictated by either these instability zones or by kine-

matic limits of the path. Generally, in those cases the absorber was off-tuned at the expense

of reduced performance in order to increase the excitation limit. In contrast, for the present

model, which considers absorbers tuned to address a torsional resonance, the upper limit

for the level of off-tuning selected is set by the veering branches of the eigenvalues, which,

if encountered by a engine order line, would result in a resonance. Increasing the effective

inertia of the CPVA can shift this upper limit such that resonance can be avoided, or the

system can be designed so that the maximum allowed excitation torque is determined not

by the absorber amplitude limits, but by the stability boundaries of the desired response.

In addition, one might avoid these instabilities if some absorber damping can be introduced

into the system. All these solutions, as usual, will reduce the effectiveness of the absorber.

However, depending on the nature of the instability, i.e., whether the bifurcation is sub- or

super-critical, one may be able to operate into the unstable zones, at least for short periods

of time. These issues, and their relevance to practical designs, are left for future studies.

We also considered a means of increasing the effective inertia of the absorber mass by

allowing it to rotate in a prescribed manner as it moves. To investigate this approach, we

developed a model of a rotor equipped with bifilar CPVAs that are kinematically designed to

have an imposed rotational motion about their COM that is linked to the translation of the

COM. This configuration increases the effective inertia of the absorber, thereby providing

better vibration reduction for a given amount of absorber mass. The roller paths and cutouts

that will prescribe the desired translational and rotational motions of the absorber are gen-

erated numerically. The equations of motion of the model are put into a dimensionless form

and certain physical quantities are scaled according to expected orders of magnitudes for
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these quantities. As a result, an equation that governs the absorber motion, and is amenable

to the method of averaging, is obtained. Steady state amplitude and phase conditions are

determined from the averaged equations by numerical methods. A set of parameter stud-

ies was then carried out to investigate the performance gains achieved by the addition of

absorber rotation. The results show that, without adding any extra mass, the reduction in

torsional vibrations can be improved by up to 15%, although the torque range over which

the system can operate is slightly reduced. In summary, these effects are the result of the

fact that the rocking forces the absorbers to work more aggressively.

This approach includes the linear and cubic rocking rates of the absorber as additional

design variables, which allows more flexibility, but more complexity, to the design process. In

a given application, parameter studies are needed to find the optimal absorber parameters,

which must include both performance and stability considerations. The methods demon-

strated in this chapter provide the tools required for such investigations.

In summary, the results of this dissertation have contributed to the design, analysis,

and new applications of CPVA systems. While these results have not been experimentally

investigated, previous studies have demonstrated the validity of models similar to those used

herein, and therefore one has high confidence that the results are of practical utility.

As a suggestion as future work, the techniques developed during this study can be com-

bined in a simulation and design iteration environment. The HBMmethod proved to be quite

powerful, and with proper design of the solver architecture can be extended to more com-

plicated models for the “rotor”. This extention might include implemention of piston-crank

dynamical models with periodic cylinder pressure excitation as well as simple drivetrain

models. Then the guidelines to tuning of absorbers with flexible rotors can be utilized in

this extended model structure. As the increased performance rocking absorbers are also un-

derstood in detail, this knowledge will provide the engineer more ways to achieve vibration

reduction targets at given design constaints.
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