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ABSTRACT

DYNAMIC NETWORK ANALYSIS WITH APPLICATIONS TO FUNCTIONAL
NEURAL CONNECTIVITY

By
Arash Goilbagh Mahyari

Contemporary neuroimaging techniques provide neural activity recordings with increasing
spatial and temporal resolution yielding rich multichannel datasets that can be exploited for
detailed description of anatomical and functional connectivity patterns in the brain. Studies
indicate that the changes in functional connectivity patterns across spatial and temporal
scales play an important role in a wide range of cognitive and executive processes such as
memory and attention as well as in the understanding the causes of many neural diseases and
psychopathologies such as epilepsy, Alzheimers, Parkinsons and schizophrenia. Early work
in the area was limited to the analysis of static brain networks obtained through averaging
long-term functional connectivity, thus neglecting possible time-varying connections. There
is growing evidence that functional networks dynamically reorganize and coordinate on mil-
lisecond scale for the execution of mental processes. Functional networks consist of distinct
network states, where each state is defined as a period of time during which the network
topology is quasi-stationary. For this reason, there has been an interest in characterizing
the dynamics of functional networks using high temporal resolution electroencephalogram
recordings.

In this thesis, dynamic functional connectivity networks are represented by multiway
arrays, tensors, which are able to capture the complete topological structure of the networks.
This thesis proposes new methods for both tracking the changes in these dynamic networks
and characterizing or summarizing the network states. In order to achieve this goal, a
Tucker decomposition based approach is introduced for detecting the change points for task-

based electroencephalogram (EEG) functional connectivity networks through calculating



the subspace distance between consecutive time steps. This is followed by a tensor-matrix
projection based approach for summarizing multiple networks within a time interval.
Tensor based summarization approaches do not necessarily result in sparse network and
succinct states. Moreover, subspace based summarizations tend to capture the background
brain activity more than the low energy sparse activations. For this reason, we propose
utilizing the sparse common component and innovations (SCCI) model which simultaneously
finds the sparse common component of multiple signals. However, as the number of signals in
the model increases, this becomes computationally prohibitive. In this thesis, a hierarchical
algorithm to recover the common component in the SCCI model is proposed for large number
of signals. The hierarchical recovery of SCCI model solves the time and memory limitations
at the expense of a slight decrease in the accuracy. This hierarchical model is used to separate
the common and innovation components of functional connectivity networks across time. The
innovation components are tracked over time to detect the change points, and the common
component of the detected network states are used to obtain the network summarization.
SCCI recovery algorithm finds the sparse representation of the common and innovation
components of signals with respect to pre-determined dictionaries. However, input signals
are not always well-represented by pre-determined dictionaries. In this thesis, a structured
dictionary learning algorithm for SCCI model is developed. The proposed method is applied
to EEG data collected during a study of error monitoring where two different types of brain
responses are elicited in response to the stimulus. The learned dictionaries can discriminate
between the response types and extract the error-related potentials (ERP) corresponding to

the two responses.
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CHAPTER 1

INTRODUCTION

Empirical studies from electromagnetic recordings and neuroimaging suggest that human
cognition arises from transient synchronization between distant and specific neural popula-
tions [2, 3, 4]. The interactions between these functionally distinct neurocognitive networks,
also known as functional connectivity (FC), have been studied in detail through neuronal
time series recorded from different sensors, e.g. electroencephalogram (EEG) [5], or from
brain voxels, e.g. functional magnetic resonance imaging (fMRI) [6, 7|. EEG measures elec-
trical signals and perturbations of the extracranial magnetic fields, and have fairly good
temporal but poor spatial resolutions. On the other hand, fMRI detects changes in regional
brain activity by measuring blood oxygenation levels, and it has a high spatial but poor
temporal resolution. Recently, methods from complex network theory have been used to
describe the topological structure and attributes of functional connectivity networks [8, 9],
where nodes correspond to distinct brain regions and edges to pairwise associations (or
functional connectivity) between them [10]. Fig. 1.1 shows the schematic representation of
building graphs from the signals recorded by EEG.

The pairwise associations are quantified through large-scale synchronization [11]. Types
of indices used for quantifying large-scale synchrony can be broadly categorized into linear
and nonlinear measures |12|. Linear correlation measures include temporal correlation, spec-
tral coherence, directed transfer function [13|, partial directed coherence [14], and Granger
causality [15], and attempt to quantify the degree of synchronization. These methods are
closely related to each other and rely on a multivariate autoregressive model for describ-
ing the dynamics of multichannel EEG signals. The magnitude of the transfer function
between different channels quantifies the connectivity between the different cortical sites.
These measures have limitations for the following reasons. First of all, they rely on para-

metric modeling of EEG signals and thus suffer from some of the common problems with



parametric models such as determination of the order and robustness of the parameters to
perturbations. Second, they assume stationarity of the underlying signals by defining the
transfer function solely in the frequency domain and the linearity of the interactions between
different channels. This linearity assumption restricts the types of interactions that can be
quantified to amplitude effects and does not allow the separation of the effects of ampli-
tude and phase. Nonlinear correlation measures, on the other hand, attempt to address
this limitation of linear measures by quantifying temporal correlation through measures of
phase synchrony [16, 17] and generalized synchronization measures, including information
theoretic measures [18, 19]. A desirable phase synchrony measure should be able to sep-
arate the phase and amplitude effects from each other and take the nonstationary nature
of brain activity into account. Two different measures for quantifying time-varying phase
synchrony have been proposed to address these issues. The first method uses the Hilbert
transform of the signal to get an analytic form of the signal and estimates instantaneous
phase directly from its analytic form [20]. To estimate the instantaneous phase of a signal
from its analytic form, one has to ensure that the signal is composed of a narrowband of
frequencies. Thus, the Hilbert transform method of computing phase synchrony requires
first bandpass filtering of the signal around a frequency of interest and then applying the
Hilbert transform to obtain the instantaneous phase. This is an indirect way of deriving the
frequency-dependent phase estimates and is prone to error especially in the case of noisy
signals as noise tends to be wideband. The second approach computes a time-varying com-
plex energy spectrum using either the continuous wavelet transform with a complex Morlet
wavelet [21] or the short-time Fourier transform (STFT) [22|. It has been observed that the
two approaches are similar in their results with the time-varying spectrum-based methods
giving higher resolution phase synchrony estimates over time and frequency, especially at
the low frequency range [16]. Although the wavelet- and STFT-based phase synchrony esti-
mates address the issue of nonstationarity, they suffer from a number of drawbacks. In the

case of the wavelet transform, the nonuniform resolution across time and frequency results
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Figure 1.1 Schematic presentation of functional network construction.

in biased energy representations and corresponding phase estimates. In the case of STFT,
there is a tradeoff between time and frequency resolution because of the window function.
Phase-synchrony based on Reduced Interference Distribution (RID)-Rihaczek distribution,
a bilinear time frequency distribution, was proposed to better track dynamic changes in the
synchrony of neural signals [23]|. This measure derives the signal energy distribution in time
and frequency by application of the complex signal notation, and remove the crossterms for
multicomponent signals by applying the Choi-Williams kernel function. In this thesis, we
use RID-Rihaczek based phase synchrony to quantify the functional connectivity.

Once the functional connectivity graphs are constructed, various tools from graph theory
have been adapted to the study of these networks. These methods can be categorized as
local, intermediate and global scale measures. At the global scale, small-world networks
have been used to model brain connectivity. Small-world networks demonstrate clustered
interconnectivity within groups of nodes and a short path length between any two nodes
[24]. Small-world model has been used to study the functional connectivity of healthy and
disease populations from fMRI [25] and magnetoencephalogram (MEG) [26]. For example,
in |27|, the interfere of small-world architecture with brain pathology such as schizophrenia
and Alzheimers diseases is shown. In [28] also, global and local efficiency measures of par-
allel information processing were used to show that the functional connectivity network is
economical in the sense of supporting high efficiency for low cost. Degree correlation and

hierarchy are used to find division-specific organization of anatomical connections between



regions [29]. At the intermediate-scale level, interdensity, the ratio between the actual num-
ber of links in a set and the total number of possible links in the same set, is used frequently
to determine the optimal partition, consisting of separate clusters [30]. A module is defined
as a subset, of units within a network such that connections between them are denser than
connections with the rest of the network. Human brain has a modular organizations with
the connector nodes appearing at the junctions between anatomically segregated cortices
and the provincial hubs located within functionally specialized areas of cortex. At the local
scale, measures such as centrality, clustering coefficient and path length have been computed.
Centrality measures identify hub nodes in neural networks [31].

Until recently, most of the analysis has been carried out with the assumption that func-
tional connectivity networks are static or the connections do not change with time. In static
networks, topological features of functional connectivity networks are defined over long pe-
riods of time, neglecting possible instantaneous time-varying properties of the topologies. In
this analysis, the connectivities over a time and frequency window of interest are averaged
and are assumed to remain unaltered while recent studies have shown that the functional
connectivity in brain networks may exhibit dynamic changes within short time scales due
to task demands, learning and anesthesia |32, 33, 34, 35, 36]. Moreover, there is growing
evidence suggesting that the emergence of a unified neural process is controlled by the contin-
uous formation and destruction of functional connectivity over multiple time scales [37, 38].
Early work in the area of dynamic network connectivity focused on extending measures from
static graph theory to dynamic graphs. Valencia et al. [39] showed brain connectivity pat-
terns vary with time and frequency while maintaining a small-world structure. In other work,
the global and local efficiency measures are applied to graphs across time and some network
metrics are obtained forming a time series [40]. Other methods include finding communities
[41], and extracting features |[40| from graphs at each time and tracking their time series over
time. These methods do not evaluate the dynamic evolution of connectivity over time, and

cannot provide a meaningful summarization of time-varying network topology.



Recent work in cognitive neuroscience, for example, now suggests the presence of two
broad functional brain networks that directly reflect primary systems underlying goal-directed
behavior: incentive salience and cognitive control. The incentive salience network’s primary
function is to scan the environment for the anticipation of reward and detection of potential
danger, and centrally involves the anterior cingulate cortex (ACC), amygdala, and the ma-
jor dopaminergic structures of the brain [42, 43, 44|. The salience network is functionally
integrated with other brain structures that collectively constitute the cognitive control net-
work, notably the lateral (L)PFC, orbitofrontal PFC, and inferior frontal gyrus [44, 45, 46].
After receiving input from the salience network, the control network becomes active to guide
responses, often modifying prepotent behavior [47, 48]. This guidance entails the use of men-
tal representations of potential future outcomes, including weighting the potential positive
and negative outcomes of different response options |48]. Error-processing studied using the
error-related negativity is understood to involve both salience and control processing, and
will be the focus of an initial application of the proposed approach.

In recent years, two complementary approaches to dynamic functional connectivity (dFC)
tracking have been proposed. In the first class of approaches, it is assumed that the network
is in one particular state at each time point and the states fluctuate across time. For
example, Allen et al. [49] proposed a data-driven approach based on k-means clustering
to identify "FC-states" from resting state fMRI. Although clustering approaches provide a
potentially powerful method for determining the spontaneous changes in resting state FC,
they assume a distinct network state at each time point instead of a network state that is both
contiguous in time and made up of multiple building blocks [50|. Similarly, in [51] fluctuations
related to spatial components, obtained through independent vector analysis (IVA) over
time, are investigated through clustering and Markov modeling. In another study [52],
resting state EEG FC networks were grouped into coherent states through cross-correlation
analysis and evolutionary clustering of FC edge time series. In the second class of approaches,

Leonardi et al. [53] propose a principal component analysis (PCA) based approach to reveal



characteristic fluctuations of whole-brain FC, where the eigenconnectivities that account for
the most variation in the collection of dynamic FCNs across time and subjects are denoted
as network states. The retained eigenconnectivities are treated as building blocks of dynamic
FC and the subject-specific time-dependent weights that describe the contribution of each
eigenconnectivity is obtained through orthogonal projection. Similarly, in [54] a PCA based
approach is used to reconstruct the principal resting-state network dynamics from EEG
data. The multivariate data describing time-frequency interdependencies between electrodes
is analyzed through PCA to obtain low-dimensional orthogonal subspace of resting-state
network dynamics. In previous work [55], a PCA based approach for tracking dFC in task-
based EEG was introduced based on average dFC across subjects. In [50], two approaches
to network state identification, i.e. clustering and PCA, have been compared for dynamic
connectivity analysis of resting-state and task-based fMRI. It was shown that resting state
dFC was better described by multiple FC patterns that overlap, whereas task-based dFC
was better represented by sparse separated FC patterns.

While tracking the dynamic nature of FC, the existing techniques mostly assume that
the timing of the various states is known, that at each time point the brain is at a discrete
state, or that the current state is a weighted sum of FC-states [50]. Although these assump-
tions are valid for resting-state FC studies, in the case of task-based studies the FC-states
are assumed to be quasi-stationary over a time interval [52, 56]. Therefore, an important
extension to current approaches would be to introduce methods that can detect the time
points where significant changes to network organization occur. To address this issue, Bas-
sett et al. [57] explored the dynamic organizational changes of graphs during learning using
predetermined data windows spanning multiple temporal scales. Cribben et al. |58| took a
different approach and considered a data-driven technique for partitioning the time course
into intervals based on the underlying FC patterns. This technique, called Dynamic Connec-
tivity Regression (DCR), detects temporal change points in FC and estimates a connectivity

graph for each time interval between pairs of change points. However, this approach relies



on a greedy partitioning scheme for determining the change points and the corresponding
FC states.

For the most part, existing works assume FC networks consist of different states at each
time point while FC networks consist of multiple quasi-stationary time intervals. With this
assumption, it is difficult to find a consistent pattern for EEG connectivity in particular
during event-related potentials (ERP), electrophysiological responses that are commonly
used for detecting the brain response to external stimuli, since it is assumed that FCs are
different from one time sample to another. As a result, the integrated networks of brain
regions corresponding to the task related activity, ERPs in particular, cannot be identified.
So, there is a need for methods which assumes FC networks consists of FC states, or time
intervals, and track the FC networks through identifying these FC states. Another drawback
of existing methods is the vectorization of the FC matrices, which does not distinguish
between nodes, time, and subject information during the analysis. Therefore, any analysis
of FC networks in order to detect FC states and summarize them should be based on separate
information obtained from different modes. Finally, these existing methods usually result in
very dense summarizations of the time intervals since the background activity is not separated
from the foreground networks before FC network tracking. So, FC state summarization
should first extract the foreground network from the background activity to find the sparse

FC state representation.

1.1 Overview of the Contributions

The contributions of this dissertation can be divided into three parts: change-point detection
and network state representation of functional connectivity networks based on tensor analy-
sis, hierarchical sparse common component and innovation (SCCI) recovery algorithm, and
structured dictionary learning. In this thesis, FC networks are assumed to consist of multiple

time intervals or FC states. The boundaries of these FC states are detected through change



point detection. Moreover, the integrated functional connectivity network corresponding to
different tasks are represented by network state representation. In order to obtain a sparse
network state pattern which excludes the background activity, the hierarchical SCCI recov-
ery method is used. Finally, to improve the accuracy of the SCCI recovery methods, the
structured dictionary learning algorithm is proposed here which learns the dictionary from
the training signals.

In Chapter 3, a tensor-based approach is introduced in order to identify the change points
and summarize the detected time intervals of functional connectivity networks. The major

contributions of this work can be summarized as follows:

1. The time intervals during which the functional connectivity network has a common

quasi-stationary pattern across time and subjects are identified.

2. Functional connectivity networks are represented through tensors, which separates the
information carried by nodes, subject and time modes. The change point detection
finds the changes across the connectivity common to all subjects performing the same

task.

3. The summarization through the tensor projection captures the variability common to

all subjects across time.

4. The proposed algorithm is flexible for extensions to higher order representations such

as time and frequency dependent network states across time.

Tensor-based approach does not necessarily separate the background activity from the
foreground network. As a result, the analysis to detect change points and summarize the
time intervals is based on both the background and foreground networks, which leads to
false alarms in change point detection and a very dense summarization matrix. SCCI model
separates the background activity from the foreground network so that the analysis is solely

based on the foreground network. This reduces the number of false alarms in change point



detection and finds sparse summarizations of the time intervals. In Chapter 4, a new
hierarchical algorithm to recover the common and innovation parts in the the SCCI model

more efficiently is proposed with the following contributions:

1. A hierarchical algorithm to recover the common sparse and innovation components
in the SCCI model in a more computationally efficient manner has been developed.
Bounds on the computational complexity and reconstruction error for this new algo-

rithm are derived and compared to the original SCCI model recovery method.

2. A novel way of applying the hierarchical recovery method to separate the innovation
components of the functional connectivity networks from the background network is
proposed by assuming that background activity is the common component across time.
The innovation components of the SCCI model are specific to each time sample and
their support are tracked across time to identify the change in the subspace across
time. Any change in the support of the innovation components are considered as

change points.

3. The hierarchical recovery is also used to summarize the functional connectivity network
within the detected time intervals. The functional connectivity networks within each
time interval are considered to follow the SCCI model. The common component of
the SCCI model represents the summarized functional connectivity network within the
time interval. The performance of the proposed framework is evaluated to find the

state representation of detected time intervals.

The SCCI and H-SCCI model recovery assumes pre-determined dictionaries for the com-
mon and innovation components. However, pre-determined dictionaries do not represent
the signals and FC networks well since the signals may not be sparse with respect to pre-

determined dictionaries. Therefore, in Chapter 5, a structured dictionary learning approach



is proposed to learn the common and innovation dictionaries simultaneously in SCCI model.

The contributions of this chapter are as follows:

1. A structured dictionary learning algorithm is proposed to learn the common and in-

novation dictionaries simultaneously for SCCI model.

2. The structured dictionary learning algorithm is used to learn the common and inno-
vation dictionaries of ERPs. The learned dictionaries are used to extract the ERPs
from the EEG test signals of neighboring electrodes. The learned dictionaries represent
ERPs better than pre-determined dictionaries, which leads to better ERP extraction

from EEG signals.
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CHAPTER 2

BACKGROUND

In this chapter, we will review the background on time-frequency phase synchrony measure

used to construct the functional connectivity networks and tensor algebra.

2.1 Time-Frequency Phase Synchrony

Rihaczek distribution, a member of Cohen’s class of time-frequency distribution, derives the
signal energy in time and frequency by application of the complex signal notation unlike most
members of Cohen’s class which do not carry any phase information. Rihaczek distribution
extends the total complex energy idea ( [ s1(t)s3(t)dt, where s1(t) and sp(t) are two complex
signals at the same frequency) to calculate the interaction energy of a signal within some
frequency band centered at a frequency of interest with the signal itself at a given time
restricted to an infinitesimal time interval, which leads to the time-frequency energy density

function:

Crinacset(1:12) = —=5(1)8" (@) exp (st (2.)
where Cpihaczer(t,w) is the complex energy of a signal around time ¢ and frequency w.
Rihaczek distribution can also be shown to be a bilinear, time and frequency shift invariant
time-frequency distribution that satisfies the marginals, preserves the energy of the signal
with strong time and frequency support properties, that is, the distribution is only nonzero
when both the signal itself and its Fourier spectrum are nonzero.
However, the problem with Rihaczek distribution is that it includes the crossterms of
multicomponent signals. Since the crossterms are located at the same time and frequency

locations as the original signals, they cause biased energy and phase estimates. The ker-
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nel function Choi-Williams (CW) with ¢(0,7) = exp <@) is used in RID-Rihaczek

distribution in order to filter out the crossterms of Rihaczek distribution [59], as:

2
———

Rihaczek kernel

2 .
Cilt,w) = / / exp (@) exp(G)  4(60,7)e=I T grap, (2.2)

where A;(0,7) = [ si(u+%)s!(u— %)ejeudu is the ambiguity function (correlation function)
of the signal s;(t). The value of o can be adjusted to achieve a desired trade-off between
resolution and the amount of crossterms retained.

The phase-synchrony measure used in this thesis is based on RID-Rihaczek distribution.
Synchrony measures the relation between the temporal structures of the signals regardless
of signal amplitude. The amount of synchrony between two signals is usually quantified by
estimating the instantaneous phase of the individual signals around the frequency of interest.
The phase difference between the two signals (or electrodes) s;(t) and s;(t) for the kth trial
is Of, (1) = |06 (t,w) — ¥ (t,w)], where ®;(t,w) = arg [%}

However, the time-varying phase spectrum is not directly useful for measuring the syn-
chrony between the signals. In order to quantify functional integration, the phase locking

value (PLV) [21] is used to measure phase synchrony between electrodes i and j at time ¢

and frequency w, which is the averaged over L realizations/trials, as:

L
1 ‘
PLV( 5t w) = > exp (jq)]&’j)(t,w)> , (2.3)
k=1

If the phase difference varies little across the trials, PLV is close to 1. PLV is a value
between zero and one.

Once the pairwise synchrony values are computed at each time and frequency point, we
can construct a time-varying connectivity graph {G(t); Vt € {t =1,2,...,T}} with

“b
1

wW=wq
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where G(; ;) (t) € [0, 1] represents the connectivity strength between the nodes i and j within
the frequency band of interest, [wq,wp|, and €2 is the number of frequency bins in that band.
It is also possible to define connectivity graphs over both time and frequency by directly
taking the PLV value as the entry in these graphs.

The adjacency matrix Gg(¢) is built from EEG data set described in section 2.2 for each
subject s at each time step ¢ for each pair of electrodes i and j using Eq. 2.4. Gs,(i,j) (t), Vi,j €
{1,2,..., N} indicates the strength of the connection between nodes i and j. The collection

of S subjects at time ¢ forms a 3-way tensor G(t) € RV*NXS where Gg(t) = Gig=s(1).

2.2 EEG Data

The EEG data analyzed in this thesis comes from a study containing the error-related neg-
ativity (ERN), which is a brain potential response that occurs following performance errors
in a speeded reaction time task usually 25-75 ms after the response [60]. EEG data from
62-channels was collected in accordance with the 10/20 system on a Neuroscan Synamps2
system (Neuroscan, Inc.) at a sampling rate of 128 Hz. This study included 91 undergradu-
ate students (34 male) from the University of Minnesota). Full methodological details of the
recording are available in a previous paper [61|. The task was a common speeded-response
letter (H/S) flanker, where error response-locked trials from each subject was utilized. The
EEG data are pre-processed by the spherical spline current source density (CSD) waveforms
to sharpen event-related potential (ERP) scalp topographies and reduce volume conduction
[62]. The CSD has fewer assumptions than many inverse transforms, attenuates volume
conduction, and represents independent sources near the cortical surface [63].

The time-varying connectivity matrices in this study are constructed by computing the
pairwise PLV over an average of 24 trials between 62 channels in the theta frequency band
((4,7) Hz) for all time (2 seconds corresponding to 256 time samples) and all subjects,

resulting in G(t) € R62%62 ¢ € {1,2,...,256},s € {1,2,...,91}.

13



2.3 Tensor Subspace Analysis

Tensors are the extensions of vectors and matrices to higher orders. Each dimension of a
tensor is called a mode, or a way, and the number of variables in each mode determines
the dimension of that mode. Let X € R"1*™2%:-X"d he 3 d-way tensor, where m; is the
dimension along the ¢th mode, and Ti) igigemnsig denotes the (iy,i9,13,...,74)th element of
the tensor X.

For the special case d = 3, Ti) ig,ig is the 77th row, igth column, and igth tube of the
3-way tensor, X € R™M1*"M2XM3 (Fig. 2.1). A subtensor is defined by fixing the indices along
one or more modes. When two indices are fixed in two modes and the index varies in the
other mode, the resulting vector is called a fiber. Fig. 2.1 displays column, row, and tube
fibers of a 3-way tensor. Similarly, when an index is fixed in one mode and the indices vary in
the two other modes, the partition is called a slice. When the i;th row is fixed, the partition
is a mo X mg horizontal slice (Xil..)§ if the ioth column is fixed, the resulting partition is a
mq x mg vertical slice (X ;, ); for the fixed igth tube, a mj x myg frontal slice is obtained

(X ig) [64]. Fig. 2.2 shows the horizontal, vertical, and frontal slices of a 3-way tensor.

(a) (b) (c)
Figure 2.1 (a) Columns, (b) Rows, (¢) Tubes.

A model to represent tensors consists of two parts, a structural part and a residual part.
While the structural part tries to describe the underlying structure of the multiway tensor,

the residual part represents the part of data which is not described by the structural part.
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Figure 2.2 Horizontal, Vertical, and Frontal Slices of a 3-way tensor.

The residual part is analyzed for the goodness of fit. The sum of square of the residual
describes the unexplained variation of the tensor in terms of least square.

Analysis methods available for 2-way tensors (matrices) need to be generalized based on
the idea of factor models in order to analyze multiway tensors [64]. Linear data models
such as Principal Component Analysis (PCA) [65] and Independent Component Analysis
(ICA) [66] are widely used for decomposition of matrices. Depending on the criteria, dif-
ferent types of basis vectors are extracted and appropriate lower dimensional features are
obtained through projection. Multiway data analysis extends these linear methods to cap-
ture multilinear structures and underlying correlations in higher-order datasets, also known
as tensors. Several tensor decomposition methods such as Canonical Decomposition (CAN-
DECOMP) or Parallel Factor analysis (PARAFAC), and Tucker decomposition have been
proposed |64, 67, 68|. Before going on to the details of these decomposition methods, we

need to provide the basic algebra for multiway tensors.

2.3.1 Basic Multiway Tensor Algebra

For the sake of simplicity, the basic tensor algebra concepts will be defined based on 3-way
tensors. However, they can be generalized to higher dimensional tensors.
Unfolding, a.k.a. matricization or flattening, is the process of creating a single matrix

by concatenating the slices of a tensor. X(n) denotes the unfolded tensor X along the nth
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Figure 2.3 Unfolding a 3-way tensor in the first mode.

mode. Fig. 2.3 shows the unfolding process in the first mode for a 3-way tensor.
n-mode product: The n-mode product, X, of a tensor, X € R™M1XM2X--XMq Ty 4
matrix U € R™*/n ig the multiplication of the unfolded tensor in the nth mode by the

matrix U, as:

X xp, U= UTX(n) = Zxil,iz,...,in,...,iden,ina (2.5)
in
where T is the matrix transpose operator.

Kronecker product: The Kronecker product of two matrices A € R"™1*"2 and B €

R™3%™M4 is a myms3 X mgmy matrix, defined as:

a11B  appB ... a1m2B
a1B  a99sB ... a9,,B
A®B= "2 (2.6)

Khatri—-Rao product: The Khatri-Rao product of two matrices A = [aj,a9,...,ay]

and B = [by,bo,...,by,] is given as:

AOB=a;®bj,ag®by,...,an @ bpl. (2.7)

n-rank: The n—rank of the tensor X is the column rank of the matrix obtained by

unfolding the tensor along its nth mode.
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Figure 2.4 Tucker decomposition for a 3-way tensor.

2.3.2 Tucker Decomposition

The Tucker decomposition is a higher order generalization of Singular Value Decomposition
(SVD) for tensors [64]. The Tucker decomposition of the d-way tensor X can be expressed

as:

X =Cx; UM xo U@ x3UB) . x, U@ 4+ ¢

_ M @6 (d)
X = Zil,iQ,ig,...,id Ci17i2;i3a"'a7;d (uil © ui2 © ui3 ©...0 u’id + g’

where C € R"1*72%73%--XTd i5 the core tensor, & € RM1XM2XM3X.-.XMq jg the residual

(2.8)
1589503 5+-50 >

error, and X} is the product of a tensor and a matrix along mode-k. vl ¢ R™M1%T1L
U2 e Rm2%72 . and U@ € R™d*"d are the matrix of the left singular vectors of the
tensor unfolded along the ith mode, called component matrices, and r; < m;. Therefore,
the kth singular vector along mode ¢, u](f) is the kth column of the component matrix U,
Fig. 2.4 shows the Tucker decomposition for a 3-way tensor.

The tensor X' € R"1XM2XM3- XM jg projected to another tensor )) € R"1%"2%73-X7q

using the projection matrices U ¢ Rmixri [69], as:

y=X X1 ﬁ(l)T X9 6(2)T X3 6(3)T co Xy fj(d)T’ (29)
where T is the matrix transpose operator, and the projection matrix U is formed by taking

the first r; columns of U(i), where usually r; < m;.
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Tucker decomposition is more flexible compared to other tensor decomposition methods
such as PARAFAC thanks to its core array C. The core array represents the interaction be-
tween factors from different modes [64]. While the Tucker decomposition cannot determine
the component matrices uniquely, its component matrices are orthogonal. The orthogonal-
ity property of the Tucker decomposition makes it an appropriate decomposition for lower

dimensional subspace projection.

2.3.2.1 Tucker-ALS

Various algorithms such as Alternating Least Squares |70]|, Simultaneous matrix diagonal-
izations [71], Simultaneous generalized Schur decomposition |[72], etc. have been proposed
to calculate these models. The most popular method for computing Tucker decomposi-
tion is Alternating Least Square (ALS) method. The extension of ALS for n-way ten-
sors is called Higher-order Orthogonal Iteration (HOOI) [68]. The basic idea is to esti-
mate one component matrix at a time using SVD of the unfolded tensor. For a 3-way
tensor, the Tucker decomposition for an unfolded tensor in the first mode is written as
Xy = U(l)C(l)(U(2) ® UBHT 4 E(1)- In order to calculate the Tucker decomposition,
U®@) and UB) are randomly initialized. The left singular vector of X(l)(U(S) ® U(Q)) is
the estimation of UM, Then, SVD of X(Q)(U(?’) ® UW) based on the estimated UML) g
calculated to obtain U®). Finally, SVD of X(g)(U(Q) ® U(l)) based on estimated U(Y) and

U yields an estimate for U®B). This process is repeated until convergence.

2.3.2.2 Numerical Convex Hull based Model Selection

Tensor rank estimation problem can be addressed through model selection. The numerical
convex hull algorithm has been proposed to find the best rank of the tensor along each
mode [73|. It is a numerical procedure implementing the visual inspection of scree-like plots

[74]. These hull solutions have the best goodness-of-fit/number-of-free-parameter balance.
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Therefore, the best rank is the one whose measure of the goodness-of-fit is on or close to an
elbow in the higher boundary of the convex hull of this scree-like plot.

The number of free parameters (fp) for Tucker model of a 3-way tensor with size (mq, mo, ms)
and rank (ry,79,73) is myry +marg +msrs +rirors — r% — r% — r% [73]. The goodness-of-fit

parameter is defined as:

TLoN2 N3 2
>it1 j:1§:k=1cuk

My N~ N3 9
2 i Qa1 2t Tk

To find the higher boundary of the convex hull, all possible values of goodness-of-fit and

f= (2.10)

all possible number of free parameter are calculated. For each fp, only the largest goodness-
of-fit value is retained. Then, all n retained goodness-of-fit values are sorted and labeled
with s; (1 = 1,2,...,n). Next, s; is discarded if there exists s; (j < i) such that f; > f;.
Starting from ¢ = 1, discard s;; 1 if its value is below the line connecting s; to s;;9. The
remaining points gives the higher boundary of the convex hull of the goodness-of-fit versus
the number of free parameters. The best model (rank) is the one maximizing the ratio:
fimfi1
fpi—Ipi—1

fiv1—=1i
fpit1-1p;

(2.11)

2.3.3 PARAFAC Decomposition

The d-way tensor X € R"1%™M2%-*Mq js decomposed using PARAFAC with R factors or a

linear combination of R rank-1 tensors as:

X = Zﬁ:l a7(a1) o aq(az) 0...0 aq(nd) +& = Zﬁ:l Ar <57(ﬂ1) ) ég) 0...0 aﬁd)> +& (2.12)

. : i)
where ag) e R™i*1 ig the loading vector along the ¢th mode, and 57(]) = || Z’; i is the
a 72

corresponding normalized loading vector. A, is the eigenvalue representing the weight of the
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Figure 2.5 PARAFAC decomposition for a 3-way tensor.

rth factor, and € € R™1X™M2%XMq ig the residual. The loading matrices are defined as
matrices whose columns are the loading vectors, Al = [agi), ag), e ,a%)]. Fig. 2.5 shows
PARAFAC decomposition for a special case d = 3. For a 3-way tensor, d = 3, three types of

slices along three modes of a three-way tensor are defined as:

Horizontal Slices: The i’ih horizontal slice (Fig. 2.2(a)) is described as:

Xiq.. = Zﬁ:l (17("1)(2'1)(a(2)r o a(S)T). (2.13)

Vertical Slices: The z'tQh vertical slice (Fig. 2.2(b)) is described as:

Xiy. = SE 1 al (in) @, 0 al®),), (2.14)

Frontal Slices: The zgh frontal slice (Fig. 2.2(c)) is described as:
3) /.
X iy = R i) (a0, 0a?,). (2.15)

The advantage of parallel factor analysis (PARAFAC) decomposition is that it provides
a unique model for the multiway array. This model imposes a restriction that the factors in
different modes can only interact factorwise, which results in the same number of factors for
each mode. It also does not have the rotational freedom problem. Therefore, it guarantees
that the pure spectra can be obtained if the right number of components is chosen |75].

There are numerous methods to determine the appropriate number of factors, like core
consistency [76], residual analysis [76], etc [77, 78|. However, these techniques cannot guar-

antee the optimal number of factors for real data |64].
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2.3.3.1 PARAFAC-ALS

The unfolded tensor in the first mode for PARAFAC model is written as X(l) = AWM
(A(3) @A(2)>T + E(l)- In order to calculate the PARAFAC parameters, two matrices
A®) and AG) are randomly initialized. Then, the matrix AW is estimated as: A1) =
X(1)Z (zT z)_l, where Z = AB)©A @), Using the estimated A1), A?) = X 57 (ZT z) -
where Z = AG) @A(l), is estimated. Based on previous estimated factors, AB) is estimated
using AB) = X(3)Z (ZTZ> _1, where Z = A@©AM). This procedure is iteratively repeated

until convergence.
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CHAPTER 3

TENSOR-BASED FUNCTIONAL BRAIN CONNECTIVITY TRACKING

3.1 Introduction

In this chapter, we propose a two step approach to track whole brain dynamic connectivity.
In the first step, we detect the change points in time where significant changes to the network
structure occur. We quantify these changes through a low-rank tensor approximation to the
FCNs constructed across subjects using subspace distance metrics. Once the change points
are detected, the network state for the time intervals between change points is assumed to be
stationary and summarized through tensor-matrix projections across subjects and time. The
key contributions of the proposed work are three fold. First, unlike most of the current work
we determine time intervals during which the FCN has a common quasi-stationary pattern
across time and subjects. Second, most of the current work reduces the high dimensionality
of the FCNs by vectorizing the connectivity matrices into long vectors before identifying the
network states. This approach may lose some important relationships between the nodes
and does not preserve the topological structure of the network. In the proposed work,
we address this problem by keeping the network structure of FCNs intact by using tensor
representations. Through tensor representation, we can capture the variability common to
all subjects across time. Finally, the proposed approach is flexible for extensions to higher

order representations such as time and frequency dependent network states across time.

3.2 Change Point Detection

The first step to tracking the dynamics of functional connectivity is to detect the boundaries
of the of functional connectivity states. Let’s consider the adjacency matrices of all subjects

at time ¢ to form a 3-way tensor G(t),t € {1,2,...,T}, then the sequence G(t) contains 7+ 1
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functional connectivity states [52, 49, 79|, with change points located at {t1,to,...,tr},
where the location and the number of change points are not known a priori. Here, we
propose two methods for determining the location of the change points: similarity-based

change point detection and subspace distance based change point detection.

3.2.1 Change Point Detection Using Similarity Matrix

In this section, we introduce a change point detection algorithm based on calculating the
similarity between graphs at different time steps. The time-varying functional connectivity
graphs across subjects and time, G(t),t = 1,2,...,T, can be considered as a 4-mode tensor
G € RVXNXTXS constructed as channel x channel x time x subject, with N being the

number of channels, T" the total number of time points and S the number of subjects. The

Tucker decomposition of this connectivity tensor yields:

G=Cx,UD xoU® x5 0B x, UM + ¢, (3.1)

RNXNXTXS RNxNxTxS

where C € is the core tensor, and &£ € is the residual error.

To obtain an approximation of G, G € RN*NXTXS e first consider the full Tucker
decomposition with UML) € RVXN U2 ¢ RVNXN UB) ¢ RT*T and UW € RS*S, The
singular values along each mode are ordered by fixing the index of all of the other modes
to 1. Since the first singular values along each mode represent the largest variance of the
data along that mode, we choose the first singular value to order the remaining modes. To
get the approximation tensor, the appropriate number of singular vectors along first and

second modes N is defined as N = Ji, where j;. is the highest index for which ‘Cjk,Ll,l) > 0.

Similarly, the number of singular vectors along the fourth mode is S = sp, where s;. is the

highest index for which ‘CLLLSk > (0. The time mode is not projected to a lower dimensional

space since all time points are necessary to identify the exact boundaries of the network
(1) (1) (1)]

states. The lower dimensional projection matrices are defined as: v = [u; 'uy SIS
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uy..us u;us .
1 U Uy 1 U g
The reconstructed tensor G € RVXNXTXS i ohtained as:

G =G x1 (TWTMT) x5 (TATOT) x5 (THTE) 5, (TOODT). (3.2

~

The 4-mode approximation tensor G can be written as a sequence of 3-mode tensors
G(t);t € {1,2,...,T}. To detect the boundaries of network states, we propose a new tem-
poral clustering algorithm. Unlike regular data clustering, the proposed method considers
both the similarity of the lower dimensional representation of the networks as well as their
closeness in time. The similarity of two networks at time ¢; and t9 is quantified through a

cosine similarity metric between G(t;) and G(tg) as follows:

< > 1.2.....7T 3.3
Aty tg) = )Illlg(tz)ll it1,te € {1,2,...,T}, (3-3)

where (a, b) is the inner product of a and b, and || a || is the Frobenius Norm. Similarly,
—(t~tp)?
the temporal closeness between two graphs is quantified as ©(t1,t9) = e 202 tq,lg €

{1,2,...,T}, where o is a parameter which determines the weighting for different time
separations, and depends on the sampling frequency.

The combined similarity matrix is defined as:
W(t1,ta) = AO(t1,t2) + (1 = N)A(ty, t2);t1, 12 € {1,2,..., T}, (3.4)

where A € (0, 1) determines the trade-off between tensor similarity and time proximity. This
similarity matrix is input to a standard spectral clustering algorithm combined with k-means

to identify the boundaries of the network states |80].

3.2.2 Change Point Detection Using Subspace Distance

In the second approach to change point detection, in order to detect the boundaries of

functional connectivity states ¢, Vk € {1,2,...,7}, we calculate the distance between the
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lower dimensional subspaces that best approximate the connectivity graphs along the three
modes of G(t) for t = 1,2,...,T. This approach is motivated by the fact that most real data
lies in a low dimensional subpace or an union of subspaces [81].

In order to find the change points which are consistent among all subjects, we use a
bootstrapping approach as follows [82]. S subjects are chosen randomly without replacement.
The optimal low rank of the tensor G(t) € RNXNxS (n(t),n(t),s(t)), for the selected
subjects is obtained by the convex hull algorithm. The convex hull algorithm evaluates
the goodness of fit between the original tensor and its low rank approximation for different
combinations of ranks and selects the optimal value numerically |73|. Since the adjacency
matrix G(t) is symmetric, the first and second modes are forced to have the same rank n(t)
|83, 84].

Given the ranks of the tensor along each mode, (n(t),n(t),$(t)), we used higher-order
orthogonal iteration (HOOI) to compute a low-rank approximation of G(t), denoted by G(t),
with rank (7(t), 7(t), 5(t)) |68]. The 3-way tensor G(t) at time step ¢ is decomposed using

Tucker decomposition as follows:

N

G(t) = C(t) x1 UM (1) xa UP (1) x3 UB) (1), (3.5)

where C(t) € R x(t)*5(1) i the core tensor, and UL) € RN*(t) 12 ¢ RVxAlt)
and UB) € RS*3() are the matrix of the left singular vectors. The bases ugl)(t), i €
{1,2,...,n(t)}, u§2)(t); je{l,2,....n(t)}, and ul(gg)(t), ke {1,2,...,5(t)} span the lower
dimensional subspaces. Note that U(l)(t) = U(2)(t) in the case of symmetric connectivity.
Once U(l)(t) Vit € {1,2,...,T} are determined, the distance between subspaces of the
first mode of G(t), Vt € {1,2,...,T} need to be calculated as we are interested in detecting
the changes along the connectivity mode. The subspace distance is calculated between
consecutive time points using U (¢). Since subspaces of the first mode of G(t) and G(t + 1)

may be of different dimensions n(t) and n(t + 1), ordinary subspace distance measures such

as Euclidean distance cannot be used. Thus, we quantify the subspace distance using the
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Grassmann distance [85] between (G(t),G(t + 1)), Vt € {1,2,...,T—1} along the first mode,

as follows:

d(t) = % zr: 62 <U(1)(t),U(1)(t + 1)), (3.6)
k=1

where r = min (n(t),n(t + 1)), and 6y, (U(l)(t),U(l)(t + 1)) is the kth principal angle be-
tween subspaces of the first mode of G(t) and G(t + 1) [85].
In order to decide whether d(t) is a change point, the subspace distance, d(t), needs to

be converted into a binary value, v(t), through thresholding, as follows:

1 d)zpgt20y
v(t) = {0 it d(t)<pg+20g
T
Ha = ﬁ Zt:1 d(t)v (37)

0=/ 15 Sy (d() — pg)?
where the threshold is selected as p1+ 20 since that corresponds to the 95% significance level
based on the observation that the distances are distributed as Gaussian. This process is
repeated B times for different random samplings across the subject mode in order to find
change points which are consistent among all different random samplings. Thus, the binary
time series, v(t), across B samplings are summed up. The final set of change points are the
local maxima (peaks) of this sum. Fig. 3.1 illustrates the steps of change-point detection

algorithm.

3.3 State Representation

After identifying the time boundaries of the functional connectivity states, the goal is to
summarize the functional connectivity patterns across time and subjects within the time in-
terval to derive the state connectome. Previously, this was commonly addressed by averaging
the edges over the time interval [52, 86]. This method has the drawback of emphasizing all

of the edges equally and resulting in very dense network representations.
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Figure 3.1 A flowchart of the change-point detection algorithm described in subsection 3.2.2,
(a) The original FC tensors formed across all subjects at each time point, (b) A random
subset of subjects is selected for bootstrapping, (¢) Full Tucker decomposition of FC ten-
sors corresponding to the selected subjects is performed to determine the best low-rank
approximation along each mode, (d) Low-rank approximation of FC tensors using convex
hull approximation, (e) The Tucker decomposition of the low-rank approximation obtained
from (d), (f) Subspace distance calculation between consecutive time steps using the ba-
sis elements (columns of) Uy, (g) The subspace distances thresholding, (h) Change point
detection.

The functional connectivity states are assumed to be quasi-stationary, which means that
the corresponding connectivity patterns do not change significantly within the network states.
Therefore, the entire network state can be represented by a single adjacency matrix demon-
strating the most significant interactions among various brain regions.

In this section, two approaches based on the tensor-matrix projection are presented to

summarize the functional connectivity states, projection on a single singular vector, and
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projection on a set of singular vectors.

3.3.1 Projection on a Single Singular Vector

For a given time interval (¢3,?;,1) and the 3-mode tensor sequence corresponding to this
interval G(ty),G(t +1),...,G(tgy1), the goal is to extract the topographic map © € RNV*N
which best represents that network state. The 3-mode tensors corresponding to the time

interval (f,t;,1) can be rewritten as a 4-mode tensor by taking the time modality into

c RNxNx(thrl—tk—&-l)xS

account G’ , and decomposed using the full Tucker decomposition,

Ul(l) c RNXN’ U,(2) c ]RNXN’ Ul(3) c R(tk_i_l*thrl)X(tk_i_l*thrl)’ Ul(4) c RSXS, similar
to Equation 3.1.

In order to summarize the subject information to find a general unique model which fits all

subjects, the 4-mode tensor G’ € RVXNX (1=t T1)x5 5o projected by the singular vector
(4)

corresponding to the [th largest singular value in this mode. Likewise, to summarize the

/(3)

time information of the resulting 3-mode tensor, it is projected to the singular vector uj

B @

corresponding to the kth largest singular value of the time mode, n = G’ x3 u) Xy ug

/
W

The values of k£ and [ are usually equal to 1 but may change depending on the data.

3.3.2 Projection on a set of Singular Vectors

Since all subjects perform the same task at the same time, we assume that the connectivity
networks across subjects are consistent for a given time interval. Given the time interval
(g, tgr1), all 3-way tensors G(t) in this time interval are individually fully decomposed using

Tucker decomposition as :

G(t) = C(t) x1 UL (1) xo U (1) x3 UG (1), (3.8)

where C(t) is the core tensor, and ”Cilzl(t)HQ > \|Cil:2(t)]|2 > > ”Cil:N(t)Hz for [ =1

and 2, and ||CZ-3:1(15)||2 > ||Ci3:2(t)||2 > > ||Ci3:5(t)||2 are the singular values along the
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Figure 3.2 Functional Connectivity State Summarization algorithm flowchart described in
subsection 3.3.2.

first, second, and third mode, respectively.

We define ((t) = C(t) x1 UL (¢) xo UR)(¢), which leads to an alternative expression
of Tucker decomposition as G(t) = ¢(t) x3 UB)(t). Due to the orthogonality of UML) (t)
and U@)(t), we can conclude from [[Ciu—1()|* > [|Cig=a(®)[|* > -+ > [ Ciy_g(t)]|? that
G112 = Gigma ()2 = -+ = ¢y —s(DII? [87]. Thus, the subtensor

0(t) = Giymr (1) = S UL (0G(8), (3.9)

where 6(t) € RNXN, is the factor that captures most of the energy of the activation patterns
across subjects at time ¢t. Similarly, §i3:2(t) captures the second largest amount of energy
across all subjects at time ¢ [87, 88|. The subtensor 6(t) is the common functional connectivity

pattern across all subjects at the time step .
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3.3.2.1 Time Summarization

After the connectivity information across all subjects is summarized and represented by
a single adjacency matrix, the network state 6(t), Vt € {tj,tx + 1,--- ,t511} needs to be
summarized across time mode within the detected functional connectivity state boundaries
in order to derive the state connectome.

RYVN*(k+17%+) from the set of matrices

First, we construct a 3-way tensor © €
0(t) € RVXN where the third mode is time. The tensor © is fully decomposed using Tucker

decomposition as follows:

O =19 x4 o) X9 ) ><3U §><3 U( ). (3.10)

The subtensor 7 = Qg 1 = Ztk“Ll U( )623 +, where n € RV*N | captures the largest
amount of energy across all time steps. Thus, it can be used as the common functional

connectivity state across all subjects and time steps within the time interval (¢, 1).

3.3.3 Significance Testing

The subtensor 7 represents the summarization of functional connectivity across subjects and
time within the time interval (¢z,%;,1). In order to characterize the FC within a state more
concisely, we need to determine the significant edges of n. Thus, a hypothesis testing on n
obtained for each time interval is required in order to identify the significant edges. Since
the histogram of the edge values in 7 appear to be bell shape and symmetric, we assume
a Gaussian distribution for the edge values in 7 (see Fig. 3.10). This assumption can be
validated using Kolmogorov Smirnov test [89, 90|, where the null hypothesis is that the edge
values in 7 are drawn from a Gaussian distribution family. A z-test can then be used on
the edges of n to determine the most significant edges. Fig. 3.2 shows an overview of the

proposed summarization algorithm.
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3.3.4 Computational Complexity

The computational complexity of the change point detection algorithm depends mostly on
the complexity of HOOI since HOOI requires the decomposition of the tensor with various
ranks in order to find the optimal low rank. Let’s assume that HOOI decomposes the tensor
with I different sets of ranks. The complexity of each decomposition depends on the selected

rank. The full rank decomposition has the highest computational complexity, which is equal

4
to O (<N+TN+S) ) [91]. Assuming full rank decomposition for all HOOI iterations (the

worst case), the computational complexity of HOOI is at most equal to O (I<N+TN+S>4)
Even though HOOI procedure is performed for every time step, HOOI procedure for all
time steps can be computed in parallel since HOOI for each time step is independent of
another. Similarly, the computational complexity of the full Tucker decomposition and
the (n,n, §)-rank decompositions are O ((W)Zl) and O ((%)4) respectively.
Thus the total computational complexity of the change point detection algorithm step is
0 ((I+ 1)<—rN+N+S)4 + (%)3

The computational complexity of FC state representation consists of two parts, compu-
tational complexity of summarization across subjects and time. Each summarization step
includes the computational complexity of the Tucker decomposition and that of the pro-
jection step. The computational complexity of the multiplication of a matrix with size
dy x do by a vector with size do x 1 is O (dydo) [92]. The computational complexity of
Tucker decomposition across subjects at each time step is O (S(W)Ll), and the com-
putational complexity of the projection of subjects onto a single matrix at each time step
is O (S2N2). The total computational complexity for the subject summarization step is
@) <<N+TN+S)4 + SQNQ) since the summarization of all subjects are independent and can
be done in parallel. Similarly, the total computational complexity of summarization across

4
time is O <<%> + 7'2N2), where 7 =t} 1 — t + 1. Therefore, the total computa-
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tional complexity of the summarization step is

N+ N 1 /N4N 4
o((%”) +<%> +(72+52)N2>.

3.4 Experimental Results For Simulated Data

In this section, the results of the proposed method on simulated networks is provided to
evaluate the performance of the proposed methods.

We generate a simulated dynamic network that resembles the data structure of our EEG
FCNs to evaluate the effectiveness of the proposed approach. A tensor corresponding to a
dynamic network with N = 64 nodes, S = 32 subjects, and T" = 128 time steps is generated.
The change points are fixed at ¢1 = 41 and to = 81.

Within the time interval [1,40], all graphs at each time point and across all subjects are
generated with a two cluster structure. The first cluster consists of nodes (1 — 48), while
nodes (49 — 64) belong to the second cluster. Intra-cluster edges have higher mean edge
value and lower variance compared to inter-cluster edges. The weights of the intra-cluster
edges are selected randomly from A(0.2,0.01) while the weights of the inter-cluster edges are
chosen randomly from A(0.1,0.02). Out of 1128 edges within the first cluster, 500 significant
edges are selected randomly using R-MAT algorithm |93]|. In order for the selected edges
to be significantly important, the weights are selected from N'(y,0.01), where p € (0.2,0.6)
and added to the intra-cluster edge values. Similarly, 50 out of 120 edges from the second
cluster are chosen randomly using R-MAT algorithm, and their weights are determined by
adding random values from N (,0.01) with the same u value to the intra-cluster edges.

For the time interval [41, 80], nodes (1 — 16) at each time step and for all subjects belong
to the first cluster while nodes (17—64) belong to the second cluster. The weights of all intra-
cluster edges are selected randomly from A(0.2,0.01) while the weights of the inter-cluster
edges are generated from N(0.1,0.02). 50 significant edges within the first cluster and 500

significant edges within the second cluster are selected randomly using R-MAT algorithm.
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The weights of the significant edges for all subjects at each time step are formed by selecting
random values from the distribution A (y,0.01), where p € (0.2,0.6), and adding them to
the intra-cluster edges. Graphs for all subjects at each time step within the time interval
[81,128] are generated similar to the graphs within the time interval [1,40].

To evaluate the performance of the proposed algorithm under different conditions, 5
experiments with p values in the range (0.2,0.6) are run. Each experiment is repeated
400 times. The signal to noise ratio (SNR) is calculated for different values of u, where
signal power is defined as the total power of the significant edges (N (p,0.01)), and the
noise power is defined as the total power of inter and intra-cluster edges. Let ns,(i,j)(t) be
the background connectivity strength of subject s between nodes ¢ and j at time ¢, and
ng (1.5)(t) + fs,3ij)(t) be the connectivity of the subject s between nodes i and j at time ¢,
where fg ; 5y(t) ~ N (p,0.01). Then, SNR is defined as

ST i1 DNED DA 20

where S is the total number of subjects, 1" is the total number of time steps, and N is the

SNR =

9

number nodes.

3.4.1 Simulated Network Change Point Detection Using Subspace Distance

The change point detection algorithm is run on all 400 simulations of this dynamic network
model. The binary vector, v(t), across 400 simulations are averaged for each . The peaks

of the average subspace distance for each p indicates the change points as seen in Fig. 3.3.

3.4.2 Simulated Network Functional Connectivity State Projection on a set of
Singular Vectors

Each of the three time intervals that were detected by the subspace distance measure were

summarized individually across 400 simulations. z-test with a p-value of 0.95 is performed on
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Figure 3.3 The average subspace distance of the simulated network for u = 0.90 with two
peaks at t = 41 and t = 81.

Table 3.1 The error probability for simulated dynamic networks described in Section V-A

SNR —10.63dB —7.13dB —4.66dB —-2.71dB —1.11dB

Type I (Miss) 32.8% 17%  108%  102%  9.9%
Type II (False Alarm)  3.53% 2.41% 1.64% 1.46% 1.37%

the summarized graphs. Since the weights of the edges are not recovered during summariza-
tion, there is no ground-truth to compare n to. Therefore, we compare only the location of
the detected significant edges within each time interval, and calculate the probability of type
I (false positive) and IT (false negative) errors averaged across each experimental condition,
(u,0), i.e. different SNRs. The probability of type I refers to the number of those significant
edges which are not detected to the total number of significant edges. The probability of
type I1is the number of detected edges which belong to the background to the total number
of normal edges. Table 3.1 summarizes the results for each SNR value. It can be seen that
as SNR increases, i.e. the strength of the significant edges, the probability of both type [
and I1 errors decreases as expected since the significant edges are easier to detect with large
values of SNR. In practice, most FCNs are expected to have a SNR in the range of 0dB and

as such will result in Type I and II errors below 10%.
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3.5 Experimental Results for Real Data

In this section, the results of the proposed method on EEG functional connectivity networks
is provided to evaluate the performance of the proposed methods. The time-varying connec-
tivity matrices for EEG data in this study are constructed by computing the pairwise PLV
over an average of 24 trials between 62 channels in the theta frequency band for all time
(2 seconds corresponding to 256 time samples) and all subjects using Eq. 2.3, resulting in

G(t) € RO2X62XI1 fo1 the error response.

3.5.1 Functional Connectivity Change Point Detection

The two proposed change point detection algorithms are applied to G(t),t € {1,2,...,256}.

3.5.1.1 Change Point Detection Using Similarity Matrix

In order to detect the change points, the time-varying graphs, Gg(t),t € {1,2,...,256},s €
{1,2,...,S}, for all subjects and all time will be treated as a 4-mode tensor G, which is
decomposed using Tucker decomposition (Eq. 3.1). The approximation tensors é(t);t €
{1,2,...,256} with N = 2,5 = 3 are used to obtain the 256 x 256 similarity matrix ¥. The
matrix ¥ is computed with A = 0.4 and o = 2500 as shown in Fig. 3.4(b). The values of A
and o are empirically chosen to obtain the best separation between clusters.

Once the matrix W is obtained, the critical time points are detected using the spectral
clustering with K = 5. The number of clusters K is selected based on the eigenspectrum of
the similarity matrix |[94|. The detected change points are at {—703, —375, —132, 188,736}
ms.

The time interval (—132,188)ms corresponds to ERN and Pre-ERN time intervals while
the time interval (188,736)ms is Pe. As it appears in Fig. 3.4(a), the positive peak of ERN
in the waveform is close to 188ms, which is in agreement with the end point of the detected

ERN time interval. This method requires A and ¢ to be determined empirically.
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Figure 3.4 (a)Waveform for error trials across all subjects, 0 ms marks the time of the
button-press incorrect response, (b) Similarity matrix, ¥, computed for 2 seconds of EEG
data across 91 subjects in the theta frequency band, (¢) The binary vector resulted from the
subspace distance between the projection operators at consecutive time points, calculated
using the Grassman distance, where red lines mark the identified change points.

3.5.1.2 Change Point Detection Using Subspace Distance

In order to detect the change points using the subspace distance approach, we selected S = 40
subjects out of 91 subjects randomly without replacement to calculate the subspace distance
between consecutive time points and detect change points. This procedure is repeated 106
times. Fig. 3.4 (c¢) shows number of change points at each time point across 106 random
samplings. By choosing the peaks of this time series, change points are detected to be at
{—859, —656, —180, —39, 55, 281, 469, 664} ms. As apparent in Fig. 3.4 (c), the (—39,55)ms

time window corresponds most directly to the ERN, while the two periods after are associated
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with post-ERN activity, including the Pe. Right before ERN time interval, (—39,55)ms, the
functional connectivity network is not stable due to the differences in response time across
subjects. This leads to the observation of multiple peaks right before the 0 time point
which we do not consider as valid change points. This method does not require an empirical
selection of parameters compared to the method using the similarity matrix. However, it
gives multiple change points close to each other right before ERN. The reason why several
change points close to each others are detected is that the participants expect to receive the
response right before ERN and their brains are preparing to react to the stimuli. Thus, the
functional connectivity is transiting from the previous state to the new ERN state. Since
these change points are due to the transition from one state to the next, there is no valid
time intervals between them and they can be ignored.

In order to show the effectiveness of tensor-based methods compared to the traditional
matrix-based methods, the upper triangle part of Gg(t), s € {1,2,...,S} is vectorized and
concatenated across subjects to form a matrix. This process is repeated for all time steps
so that 7" subject-connectivity matrices of size 1953 x 91 are obtained similar to |53]. SVD
is performed on the matrices at each time step similar to the tensor approach without
subject sampling. An optimal rank at each time point is determined using the convex hull
algorithm. Given the rank at each time, the Grassmann distance between consecutive time
steps is computed. Fig. 3.5 shows the Grassman distance between consecutive time steps
based on SVD decomposition of the vectorized adjacency matrices, and based on the tensor
projection method 1. In the graph corresponding to SVD method, a few change points are
obvious, among them, the one close to zero corresponds to the beginning of ERN. However,
other change points such as the end of ERN are not detectable. Although the scales of SVD
and tensor-based methods are different, it can be seen that the tensor decomposition is more

sensitive to the changes in the network structure with more apparent change points before

INote that in this experiment random sampling of subjects is not performed, and these are
distances not the binary vectors. That is why the result given here for the tensor projection
is different from Fig. 3.13
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Figure 3.5 The Grassmann distance between consecutive time steps of the functional con-
nectivity network calculated based on SVD and tensor projection.

and after the response. Both methods yield similar peaks around ERN which verifies the

accuracy of the proposed tensor based method.

3.5.2 Functional Connectivity State Representation

Once the change points are determined, tensor projection along subject and time modes
for all time intervals is performed to obtain the FC-states. However, two different change-
point detection methods give different time intervals. In order to compare the proposed

summarization methods, they are implemented on predetermined time intervals (—100, 0)ms,

(0,100)ms, and (100, 400)ms.

3.5.2.1 Projection on Single Singular Vectors

To obtain a single network representation using one singular vector, we first selected k =1 =1
the singular vectors corresponding to the highest singular values, and a Gaussian distribution
is fitted to the projected connections, n to perform a z-test with p = 0.95. As it is shown
in Fig. 3.7, most connections are between neighboring nodes since the projection to the
subspace spanned by the largest singular value mostly contains edges between physically
adjacent nodes. This is a side effect of volume conduction affecting PLV values and does not

convey the actual long-range relationships we are interested in.
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To get a better representation of the significant connections, we projected the 4-way
tensor onto the singular vectors corresponding to & = | = 2. Gaussian distribution is
fitted to the projected connectivity of three time intervals, N7(—0.01,0.11), AVo(—0.01,0.13),
and N3(—0.08,0.14). Fig. 3.6 shows the histogram and fitted Gaussian distribution for the
time interval (0,100)ms. Fig. 3.8 shows the significant edges of n with p = 0.95. As it
appears, the result is improved significantly. Instead of detecting the connections between
neighboring nodes, the long range connections are detected. In Fig. 3.8(b) ((0,100)ms),
there is increasing connectivity in medial-frontal regions, also the engagement of lateral-
frontal regions is observable as hypothesized [95, 96, 55|. Connections are largest among
medial and lateral prefrontal regions in the (0,100)ms network state relative to the other
network states, consistent with engagement of these regions during the ERN. The significant
edges of the time interval (—100,0)ms (Fig. 3.8(a)) shows the connectivity between parietal
and medial prefrontal cortex regions in the background, and right prefrontal is significantly
connected to the parietal region as well. The most significant edges of the time interval

(100,400)ms (Fig. 3.8(c)) are between left lateral prefrontal to the parietal region.

(0,100)ms

7o

05 04 03 HD2 01 o 0.1 0.2 03 04 05
Edge Weights

Figure 3.6 The histogram of the edges in network state 1y corresponding to ERN time interval
and the fitted Gaussian distribution N5(—0.20,0.09).

The projection onto the singular vectors k = [ = 3 is represented in Fig. 3.9, which does
not show that much difference from the case k = [ = 2. Thus, since k = [ = 2 corresponds to

the second largest singular values, it is used in this analysis to filter out the effect of volume
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conduction while at the same time retaining the most significant activity.

Projection on the First Singular Vectors, (-100,0)ms

N1 .‘VV. l.. P8
WP

Figure 3.7 Projection on single singular vectors: the most significant edges of the projected
FC on the singular vectors k = [ = 1 with p = 0.95 for time intervals (a) (—100,0)ms, (b)
(0,100)ms, (c) (100, 400)ms.

3.5.2.2 Projection on a set of Singular Vectors

In order to detect the significant edges within each interval using the projection on the set

of singular vectors, the upper triangular part of n; is converted to a vector with (623) = 1953
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Projection on the Second Singular Vectors, (-100,0)ms

Figure 3.8 Projection on single singular vectors: the most significant edges of the projected
FC on the singular vectors k = | = 2 with p = 0.95 for time intervals (a) (—100,0)ms, (b)
(0,100)ms, (c) (100, 400)ms.

entries, and Gaussian distributions with different mean and variances are fitted to the vectors.
N71(0.22,0.01), No(—0.20,0.09), and N3(—0.16,0.09) are the Gaussian distributions fitted to
(m,1m2,1m3), respectively. Fig. 3.10 shows the histogram of 79 corresponding to ERN time

interval and the fitted Gaussian distribution. Kolmogorov-Smirnov test is used to measure

the goodness-of-fit for the assumed Gaussian distributions. Kolmogorov Smirnov test with
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Projection on the Third Singular Vectors, (-100,0)ms
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Figure 3.9 Projection on single singular vectors: the most significant edges of the projected

FC on the singular vectors k = | = 3 with p = 0.95 for time intervals (a) (—100,0)ms, (b)

(0,100)ms, (c) (100,400)ms.

a = 0.01 does not reject the null hypothesis that the edges follow a Gaussian distribution.
The summarized functional connectivities (11,72, ,79) are normalized with respect to

the estimated means and variances. z—test with o = 0.05 is performed to determine the

significant edges within the 9 time intervals. Fig. 3.11 shows the significant edges for three

time intervals (—100,0)ms, (0, 100)ms, (100,400)ms.
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Figure 3.10 The histogram of the edges in network state 79 corresponding to ERN time
interval and the fitted Gaussian distribution N3(—0.20,0.09).

Importantly, because polarity is arbitrary for the connectivity state obtained through
tensor projection, the significant tails of the distributions indicate inversely related network
subparts. That is, for a given observed network state, the two tails index regions of relative
increased versus decreased or inhibited connectivity during that state. As will be described
next, two of the states appear to have meaningful activity only on one side. The observed
pattern of significant functional connectivities are consistent with observed and hypothesized
activity associated with the ERN.

First, in Fig. 3.11 (b) (0,100)ms, increased connectivity is observed in medial-frontal
regions, consistent with widely observed ERN amplitude measures. Apparent also is the en-
gagement of lateral-frontal regions as hypothesized, and consistent with previous work [95, 96,
55]. Connections are largest among medial and lateral frontal regions in the (0,100)ms net-
work state relative to the other network states, consistent with engagement of these regions
during the ERN. Interestingly, while some left-lateralized parietal regions are functionally
connected to the frontal regions during the ERN window, a larger central and right later-
alized parietal cluster is deactivated during increases in frontal activity. This is consistent
with a functional state dominated by frontal and lateral-frontal regions. Next, the pattern

for the network state prior to the ERN window (Fig. 3.11 (a)) contains a similar structure,
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with a difference being that, relative to the ERN window, the density of connections among
frontal regions is decreased while connections among parietal regions is increased. This is
consistent with the idea that frontal networks are in the process of becoming functionally
integrated leading up to the ERN, where this type of functional integration is maximal. Fi-
nally, for the remaining window (Fig. 3.11 (c)) only one tail represents a densely connected
state of functional connectivity (where the edges from the other tail are more distributed
and disconnected, inconsistent with an integrated functional network and potentially spuri-
ous). In Fig. 3.11 (¢) (100,400)ms the primary network state continues this shift towards
parietal regions. Broadly, the network states identified before, during, and after the ERN
are consistent with hypothesized ERN-related network dynamics, focused on the formation
of transient frontal networks during error processing.

Similar to the previous section, the result of the tensor projection method is compared
with the result of SVD based method. However, since the change points obtained from the
SVD approach are not exactly the same as the change points from the tensor approach, the
summarized networks would correspond to different time intervals and the comparison would
not be fair. Therefore, the ERN time interval obtained from the tensor based method is used
for comparison purposes. For the SVD approach, the matrices constructed by vectorizing
and stacking the FC matrices of subjects at each time step are projected onto their first sin-
gular vectors to summarize the subject information. The resulting vectors at each time step
are concatenated across time to form a new matrix. The new matrix is projected onto its
first singular vector to summarize the whole information across time and subject. The two
sided top 5% of edges are shown in Fig. 3.12(a) and (b) for SVD and tensor-based methods,
respectively. Substantial previous research, including several reports from our group, sup-
port connections between medial and lateral prefrontal cortex area (especially right-frontal).
This pattern of connections is apparent for the tensor based approach Fig. 3.12(b), with
significant connections centered on electrodes F6, F4. For the SVD based approach pre-

sented in Fig. 3.12(a), on the other hand, the pattern is inconsistent with previous reporting
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Projection on the set of Singular Vectors, (-100,0)ms

Figure 3.11 Projection on a set of singular vectors: the most significant edges of the projected
FC on the set of singular vectors with p = 0.95 for time intervals (a) (—100,0)ms, (b)
(0,100)ms, (c) (100,400)ms.

about activity during the ERN. Most obviously, connections for the SVD are dominated by

a substantially left-lateralized pattern of fronto-central connections.
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Figure 3.12 (a) shows the top 5% of the projection result using SVD method, (b) shows the
top 5% of the projection result using Tucker decomposition.

3.5.2.3 Functional Connectivity State Representation based on the Detected
Change Points

In this section, we present the summarization results of the projection on a set of singular
vectors method based on the real detected change points. Tensor projection along subject
and time modes for all 9 time intervals is performed to obtain the FC-states (11,192, -+ ,79).
In order to detect the significant edges within each interval, the upper triangular part of 7,
is converted to a vector with (623) = 1953 entries, and Gaussian distributions with different
mean and variances are fitted to the vectors. N7(0.22,0.01), N5(0.32,0.01), N3(0.07,0.01),
Ny(—0.44,0.01), N5(—0.08,0.01), Ng(0.24,0.01), AV7(—0.40,0.02), Ng(—0.40,0.01), and Ny
(—0.25,0.02) are the Gaussian distributions fitted to (91,79, - ,n9), respectively. Fig. 3.10
shows the histogram of 75 corresponding to ERN time interval and the fitted Gaussian dis-
tribution. Kolmogorov—-Smirnov test is used to measure the goodness-of-fit for the assumed
Gaussian distributions. Kolmogorov Smirnov test with o = 0.01 does not reject the null
hypothesis that the edges follow a Gaussian distribution.

The summarized functional connectivities (71,79, ,7n9) are normalized with respect to

the estimated means and variances. z-test with a = 0.05 is performed to determine the
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significant edges within the 9 time intervals. Fig. 3.13 (c¢) shows the significant edges for
four time intervals (—180, —39)ms, (—39,55)ms, (55, 281)ms, (281, 469)ms.

3.6 Conclusions

In this chapter, two approaches to dynamic functional connectivity network identification
and characterization based on tensor representation of the FCNs were introduced. The first
approach identified network states through computing a similarity metric which takes both
the similarity of the low-rank approximations to tensors and their proximity in time to ob-
tain a partitioning of the dynamic networks into contiguous time intervals. The second
approach introduces a framework for detecting change points at which the network connec-
tivity patterns show consistent change across subjects through low-rank approximations to
the tensors and computation of subspace distance between these low-rank approximations.
After identifying the boundaries, the network states corresponding to the different time in-
tervals are obtained. In the first approach, this summarization is achieved by projecting the
tensor onto one singular vector along each mode, 7.e. time and subject modes. The second
approach extracts the network states through tensor projection onto a set of singular vectors
across subject and time modes, which is similar to PCA and extracting eigenvectors with
significant energy. The proposed methods are evaluated on EEG data collected during a
study of cognitive control. The network states identified before, during, and after the ERN
are consistent with hypothesized ERN-related network dynamics, focused on the formation
of transient frontal networks during error processing followed by parietal networks. The
summarization results of the first approach obtained by projecting on £ =1 = 2 are as good
as (not as sparse, though,) the summarization results obtained from the second method.
Since the second approach does not require the selection of a particular singular vector, it is
preferred over the first method.

The proposed approach offers several improvements over existing approaches. First, the
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proposed approach does not assume a discrete state model across time and extracts quasi-
stationary network states similar to EEG microstates |97|. Second, by using the tensor
representation of FCNs the topological structure of the networks are preserved and flexibility
for identifying network states across different variables such as frequency and stimulus type

is introduced.
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Figure 3.13 (a) Waveform for error trials across all subjects, 0 ms marks the time of the
button-press incorrect response; (b) The binary vector resulted from the subspace distance
between the projection operators at consecutive time points, calculated using the Grassman
distance, where red lines mark the identified change points; (¢) The most significant edges
of 7 with p = 0.95 for time intervals 1. (—180, —39) ms, 2. (—39,55) ms, 3. (55,281) ms, 4.
(281, 469) ms
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CHAPTER 4

HIERARCHICAL RECOVERY FOR SPARSE COMMON COMPONENT
AND INNOVATION MODEL

4.1 Introduction

Sparse signal approximation refers to the representation of a signal as a linear combination
of a small subset of elements of a dictionary [98|. Sparse signal approximation usually
considers one signal at a time, not taking into account the correlation within a group of
signals. Simultaneous sparse approximation, a.k.a. joint sparse recovery, on the other hand,
finds sparse representations of multiple signals collected through sensors monitoring the same
environment simultaneously using a common dictionary [99, 100, 101]. Joint sparse recovery
has been used in many applications such as sensor networks [102|, neuroelectromagnetic
imaging [103, 104], source localization [105], and image restoration [106].

Different approaches to finding the common sparse representation among a set of signals
have been proposed. Tropp et al. [99| proposed a greedy algorithm, i.e. simultaneous orthog-
onal matching pursuit (S-OMP), which extends orthogonal matching pursuit to joint sparse
recovery. In [100], a convex relaxation approach was used to find the joint sparse approxima-
tion of multiple signals. Blanchard et al. [107| extended well-known sparse approximation
methods, iterative hard thresholding, normalized iterative hard thresholding, hard thresh-
olding pursuit, normalized hard thresholding pursuit, and Compressive Sampling Matching
Pursuit, to the joint sparse recovery problem.

A closely related line of work was proposed in the compressive sensing community. Dis-
tributed compressive sensing (DCS) is an extension of compressive sensing to multiple ob-
servations problem [108, 109]|. Tt simultaneously finds the sparse representation of a set of
compressively sensed signals by assuming a SCCI model for signals. The SCCI model re-

covery is a suitable tool to extract common component of highly correlated signals in many
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applications such as video processing [110, 111, 112] and time-varying networks [113]. The
SCCI model can be used to separate the foreground network from the background activity in
functional connectivity networks because the background activity is the common component
of FC networks across time and subjects. The SCCI model also can be used to extract the
sparse common pattern of the quasi-stationary time intervals, representing FC-states.
However, a major problem with using SCCI model to extract the common component
of a set of signals is that the size of the dictionary increases dramatically with the number
of signals. For a set of J N-dimensional signals, the size of the required dictionary in
SCCI recovery method to find the common component is JN x (J + 1)N, which demands
huge memory and computational resources. In the joint sparse recovery literature, several
methods for addressing this high computational complexity have been introduced. Lee et al
[114] proposed orthogonal subspace matching pursuit (OSMP) for a new joint sparse recovery
method, SA-MUSIC. OSMP is used in the the partial support recovery step of SA-MUSIC
to provide a computationally efficient solution to joint sparse recovery with a performance
guarantee. In [115]|, the performance of the joint sparse recovery of infinite measurement
vectors (IMV), an infinite set of jointly sparse vectors, is improved. Instead of discretizing
the entire infinite set of sparse vectors in IMV models, a reduced finite-dimensional problem
is derived from which the common nonzero location set can be inferred exactly. In [116],
l1 o-norm penalty is used to enforce joint sparsity on the signals. The accelerated proximal
gradient finds efficiently the joint sparse representation of the set of signals. Hyder and
Mahata [117] proposed joint Iy o approximation algorithm (JLZA), an extension of the zero-
norm approximation algorithm, to decrease the computational complexity while ensuring
the robustness to the measurement noise. Even though these algorithms have improved the
computational complexity of simultaneous sparse recovery problem, they all assume that
the set of signals is sparse with respect to the same dictionary and the locations of the
nonzero entries of the vector coefficient are the same among all signals while their values

are different. However, SCCI model focuses on a more general problem with the assumption
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that the collection of signals have a common sparse component with respect to a basis while
the innovation components are sparse with respect to another dictionary with the locations
of the nonzero entries of the coefficient vector being different. Thus, these methods are not
directly applicable to SCCI model.

In this chapter, we propose a hierarchical algorithm to recover the parts of the SCCI
model more efficiently. The proposed algorithm, called Hierarchical SCCI Model Recovery
(H-SCCI), partitions the set of signals into a small number of subsets, and finds the common
component of each subset separately. The common components of the subsets are then used
as a new set of signals to find the common component across all signals. The error bound
and the computational complexity of SCCI model and its hierarchical implementation are
derived and compared, showing how hierarchical implementation outperforms SCCI model
recovery in terms of computational complexity. However, the error bound of H-SCCI is
slightly larger than SCCI model recovery due to the aggregated approximation errors across
the iterations. Although this method is focused on the two-stage implementation of H-SCCI,
it can be easily extended to more stages.

In this chapter, H-SCCI model recovery is used to track dynamic functional connectivity
brain networks over time. FC networks generally consist of a background activity, which is
common across all time steps, and a foreground network which corresponds to the transient
activations [118]. The background activity is similar to the default mode network (DMN)
identified from resting state fMRI, and varies slowly across time such that it can be assumed
to be sparse with respect to frequency domain bases. Thus, the background activity (back-
ground FC pattern) is separated from the foreground by applying H-SCCI model recovery
with DCT as the basis of the common component. Since the innovation components are
unique to each FC network, the dissimilarity of the innovation components of the consecu-
tive FC networks is employed to detect the change points in the network structure. Once
change points are detected, the time intervals can be summarized to obtain their common

FC pattern through another stage of H-SCCI model recovery algorithm.
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Similarly, the proposed algorithm is evaluated on the video background extraction prob-
lem which is of great importance in many automatic video content analysis applications
such as surveillance video coding [119], motion detection [120], object tracking [121, 122],
etc. Video background extraction aims to separate the moving objects, a.k.a. foreground,
from the static objects, a.k.a. background, in order to facilitate the tracking of moving ob-
jects. Even though the subsequent steps of the background extraction are of more interest,
the accuracy of the overall system depends on the performance of background extraction.
Since the background scene does not change noticeably over time, it has a sparse represen-
tation with respect to a frequency basis such as DCT. Thus, H-SCCI with discrete cosine

transform (DCT) basis is used to extract the background scene.

4.2 SCCI Model Recovery

Distributed compressive sensing assumes that signals acquired across multiple sensors are
sparse in a collection of bases, i.e. the set of signals is jointly sparse. Due to the inter-signal
correlation, jointly sparse signals are usually assumed to be composed of a common sparse
component which is shared by all signals, and an innovation component which is unique to
each signal [123]. The encoding part of distributed compressive sensing is not different from
compressive sensing in that each signal is separately projected onto some random, incoherent
bases. However, the decoding is based on simultaneous sparse recovery of all signals, which
can be used for various purposes including the common component extraction. In this thesis,

we only focus on the sparse recovery part of SCCI model.

4.2.1 SCCI Model

Let’s assume that the set of signals A = {x; € RNV € {1,2,...,J}} are jointly sparse.
It is assumed that there is an inter-signal correlation among the signals. The SCCI model

[124, 109], which includes a common component z. € RN and an innovation component
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z; € ]RN, can be written as:

Xj = Z¢ + Zj, jg=12...,J (4.1)

The common component represents the inter-signal correlation among the signals while
the innovation component is unique to each signal. The common and innovation components
of the set of signals A are sparse with respect to two different sets of bases, ¢ and ¢;,

respectively, as:

Ze = @cle,
ZJ:¢J(9], jE{l,Q,...,J},

where 0. and 6; are the coefficient vectors, and the bases ¢. and ¢; are orthogonal. Since

(4.2)

the signal x; is sparse, the coefficient vectors have a small number of nonzero entities,
10cllo = Ke < N and [[0;o = Kj < N.

In order to recover the sparse representation of the set of signals A, all signals are stacked
to form a single optimization problem. Eq. 4.3 shows the compact representation of all

signals and their sparse representations in matrix format.

X — 30,
:c —Xl_ —Gbc ¢1 0 - 0 |
o 9: N =N N N B N IS
m Xy (6 0 - 0 o]

where X € R7V*1 @ ¢ RIN*1 and & ¢ RIVX(JHIN,
The goal is to find the coefficient vector ® such that the error between the signal X and

the sparse representation @O is minimized:
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A

O = argmin ||O|p s.t. | X — PO| <. (4.4)

where € is the bound on the recovery error. The optimization problem in Eq. 4.5 is [p-norm
minimization problem which is NP-hard and non-convex. The lp-norm minimization is usu-
ally relaxed to [j-norm minimization problem. However, in order to make the optimization
problem more general and flexible, A — weighted lj-norm minimization problem is proposed

[124, 109], as:

J
© = argmin Acl[fcfl1 + > Ajll0;]1 st [X— @O <, (4.5)
j=1
where Ac, \; > 0 are the weights of common and innovation components. In [125, 109], it is
shown numerically that this modification improves the performance of the signal recovery.
The weights, A;s, for the innovation components are usually selected to be the same. Without
loss of generality, A;s are selected to be equal to one and the optimal value of A. is determined

numerically [125]. The estimated coefficients, @, are used for the sparse representation of

the set of signals, or for recovering the common component z,.

4.3 Hierarchical SCCI Model Recovery

4.3.1 Hierarchical SCCI Model

The joint sparsity model assumed for the set of signals, A = {x; € RV V) e {1,2,...,J}},
is SCCI, as in Eq. 4.1. In this thesis, in order to make the computation faster, we partition

the set of signals, A, into I' arbitrary, non-overlapping subsets, Ay, such that:

AfyCA 7:1,27...,F,
A=A, (4.6)
ANAj =0 for i #j.
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Once the sparse recovery procedure is explained, the way these subsets are selected will
be clarified in Section 4.3.3.

All signals x; € A have a common component, z., due to the inter-signal correlation.
Consequently, all signals within each subset x; € Ay C A also have the same common
component, z.. In addition, the signals within each subset may have additional inter-signal
correlation, which leads to the common component within the subset A,. Thus, this model
includes a global common component z. € ]RN, a within—subset common component we, €

RN, and a within subset innovation component w; € ]RN, as:

Xj = Zc + Wey +wWj for x; € Ay (4.7)

Uy = Zc + Wy is defined as the common component of the signals within the subset
x; € Ay while z. is the global common component. Similarly, z; = wcy + w; is the
global innovation component. Since we assume the same joint sparsity model as Eq. 4.1, the
common and innovation components are sparse on two sets of bases, ¢. and ¢;, respectively,

as:

u7:¢66U7; 7:1727"'7F7 (48)
W, = ¢j9wj ; {j|XJ S AV}’

where 0. and 0; are the coefficient vectors, with [|0¢[o = K

shows the flowchart of H-SCCI.

4.3.2 Signal Recovery

The goal is to extract the common component z. when J is large. First, the common
component of each subset Ay is extracted similar to SCCI model recovery through lj-norm
optimization algorithm by searching for the components with the sparsest coefficient vectors

and minimum error. All signals of the subset Ay are stacked to form a vector as follows:
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Figure 4.1 Flowchart of the proposed method: Hierarchical SCCI Model for two stages.

i i X.')/ = @f}/@f)/’ A’Y == {Xll,xl27 . 7Xl,7},
O o i i
Y
9 Xll (bc ¢ll 0 T 0
’wll
Xy ¢ 0 ¢, -+ 0 (4.9)
Oy=|tu, | %= I e
0 _Xlry_ _¢C 0 - 0 ¢l,—y_
| Yy

where {l1,1l2,...,l5} is the set of indices for the signals of the yth subset, and 7 is the number
of signals in the yth subset.
The common component for the yth subset, u~, is estimated using Gy = ¢09Au,y through

solving the following optimization equation:

O, = arg min [|©,|; s.t. [|Xy - ,0, <e (4.10)

Once the common components of all subsets u;Vy € {1,2,...,I'} are extracted, they
are considered as a new set of jointly sparse signals with the SCCI model: Gy = z¢ + We y,
where z. is their common component. z. is recovered through another /j-norm optimization
algorithm.

After recovering the common component z., the sparse representation of the innovation

components, z;, are estimated through a single signal recovery problem:
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0; = arg min [|6;])1 s.t. || (xj — zc) — 60| < e. (4.11)

The pseudocode of the hierarchical SCCI model recovery is presented in algorithm 1.

Algorithm 4.3.1 Hierarchical SCCI Model Recovery

Input: {x1,x9,...,xJ}, ¢¢c, {¢1,02,...,0 7}, and I,
Output: The common component z., and the innovation components {z1,zo,...,z}.

Partition J signals into I non-overlapping groups.
for v = 1:T' do
For each partition form the basis matrix (® € RNﬁ/X(;/‘H)N) and the signal vector (X €
RYN>1) in Eq. 4.9 from the signals in the yth subset.
Solve [1-norm minimization in Eq. 4.10.
Generate Gy = z¢ + Wey = ¢00ny from the recovered coefficients (':)7.

end for

Form & € RVIXIHDN 5nq X € RVIXL from iy € RV*L for v =1,2,...,T.
10: Solve /1-norm minimization for the new set of signals to recover z¢ from tGys.
11: Recover the innovation components of the signals using Eq. 4.11

4.3.3 Subset Selection

In order to implement the proposed algorithm, the set of J signals has to be split into I’
groups. Here, we do not assume any a prior: information regarding grouping the signals.
Indeed, there is no need for the set of signals to be partitioned in a specific manner. Random
grouping of the set of signals into I' subsets with equal size leads to the same results. We
illustrate this through an example.

Assume we have a set of 4 jointly sparse signals, A = {x1,X2,x3,%x4}. Our goal is to
find the joint sparse representation of this set of signals. Assume there is an inter-signal
correlation across the whole collection of signals, which is the global common component
zc. In addition, assume that there is an additional within-subset common component w1,
between x1 and x9 which does not exist between these two signals and the remaining signals,
x3 and x4. Note that this common component may also be equal to zero. Similarly, there is
another within-subset common component, w2, between x3 and x4. However, in practice,

we assume that we do not have a priori information about the structure of the grouping and
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the inter-signal correlations. The set of signals can be written in terms of their components

as follows:

X] = Z¢c +W¢ 1 + Wi,
X9 = Z¢c + W¢ 1 + W2, (4.12)
X3 = Z¢c + W¢ 2 + W3,
X4 = Z¢c+ We2 + Wy,

where {w1, wy, w3, wy} are the innovation components of the signals. Assuming that the

common and innovation bases are orthogonal, Eq.4.12 can be rewritten as follows:

X1 = ¢cbe + @0cwy + 950wy,
X2 = ¢clle + @0cwy + @j0wy,
X3 = ¢cble + @0cwy + @j0ws,
x4 = Gl + bj0cy + 60,

First, assume that we randomly partition these four signals into two subsets such that

(4.13)

A1 = {x1,x2} and A9 = {x3,x4}, the common components of the subsets will then be found

through Algorithm 1 as

uyp =zc+Wel = ¢c (90 + ¢gl¢jec,w1)7

N

Ouy

U = Zc +Weo = Gc (90 + ¢gl¢j‘90,w2> .

N

By considering {uj,us} as a new set of jointly sparse signals, the common component of
{uy,usg} is extracted as z, = @0, which is the common component among all four signals.

Next, let’s assume that the four signals are randomly categorized into two different subsets
Ay = {x1,x3} and A9 = {x92,%x4}, then the common components of the subsets will be found
as uy = z, = ¢ and ug = z,. = ¢.0.. If we construct a new subset of jointly sparse signals

from u; and wug, their common component is common among all four signals. Thus, no
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matter how the signals are categorized, the extracted common component is the true one,
zc. If there is no inter-signal correlation within the subsets, i.e. we1 = weo = 0, the

common component of the subsets (regardless of the partitioning) are u; = z. and uy = z.

4.3.4 Computational Cost

The proposed algorithm is significantly faster than existing simultaneous sparse represen-
tation algorithms. However, the computational cost mainly depends upon the algorithm
used in solving the optimization problem. The optimization problems can be solved through
either the vector-matrix multiplication or fast operators [92].

The SCCI model recovery of J signals with N samples requires a JN x (J 4+ 1)N dic-
tionary, ®, to be multiplied by a (J + 1)N-dimensional coefficient vector ®. The cost of
this vector-matrix multiplication is ¥ = O ((J + 1)Nlog ((J + 1)N)). The reason hierarchi-
cal SCCI model recovery is able to reduce the computational cost significantly is that it
splits the dictionary to I" matrices so that the optimization algorithm looks for the sparse
representation of signals over a smaller set of bases.

In the worst case scenario, SCCI model recovery method implemented using the [j-norm
minimization costs IM + O(J(J +1)N?), where I is the number of iterations and
assumed to be fixed for all cases [92]. The advantage of hierarchical SCCI model recovery
method is that it can be implemented through multiple steps, and the J signals can be
partitioned into I' groups. In the following derivations, we will assume that one level of
partitioning is adequate to compute the joint sparse recovery of signals, i.e. the common
components of I' groups, z. + z, are calculated separately in the first stage and the global
common component, zq, is extracted from the I' outcomes of the first stage. Each group
contains % signals in the first stage. Using the [j-norm minimization, each group in the first

; (2(%+1)N)3

stage requires [-~———5—"— + O(%(% + 1)N?) multiplications at most. These optimization

problems are independent of each other and thus can be performed in parallel. In addition,
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3
the second stage cost is bounded by I&)w + O(I(T' 4+ 1)N?). Thus, the total com-

putational cost required to recover the joint common component using Hierarchical SCCI

model is upper bounded by

UV L emeN)d |, (Ng J2+F(F3+F2+J))
For instance, let’s suppose that we have J = 20 jointly sparse signals with N = 256.
SCCI model recovery with lj-norm minimization costs I4.14 x 1011 + O(2.75 x 107). If we
divide the set of signals into I' = 4 groups, this cost becomes 4.43 x 10104+ 0 (3.28 X 106).

The computational cost of regular implementation is 9.36 + O(8.4) times greater than the

hierarchical-based implementation, which is more than 10 times slower.

3
Using OMP for the [1-norm optimization will result in a computational cost of &Jé& +
N3J2(J +1) + O (N(J + 1)) for SCCI model recovery [92]. The hierarchical SCCI model

J a3
4(=N 2
recovery based on OMP costs (FT) + N3#(% +1)+0 (N(% + 1)) in the first stage and

3 3 7o N3
@+N3F2(F+1)+O (N(I' 4 1)) in the second stage. Thus, the total cost is %—l—
3
%(J?’ + J2I + 1%+ T4 + O (N(J 4 2I' +1)). Table 4.1 shows the computational time for
SCCI model recovery and H-SCCI model recovery for different values of N and J. When
J = 8 and there is only one subset I' = 1, and the computational time of SCCI recovery

model and H-SCCI recovery model are very close. However, as J increases, the difference

between computational time becomes more apparent.

Table 4.1 The computational cost of SCCI and H-SCCI recovery model using OMP for
different values of J and N. The numbers in the numerator show the computational cost
of SCCI model recovery and the numbers in the denominator show that of H-SCCI model
recovery.

J

T 8/1 16 32 64 128
N 2 1 8 16

128 2.64¢7+0(1.15€°) 2.06e0+0(2.18¢%) 1.62e1T+0(4.22¢7) 1.29¢124+0(8.32¢%) 1.03e4+0(1.65¢7)

1.21e9+O(1.41e3) 346668+O(1.66633) 3135+ 0(2.18¢3) 1.60e9+0(3.20634> 1.2051,0+O(5‘2552)

256 2.11e940(2.30€%) 1.65¢'1+0(4.35¢%) 1.30e'240(8.45¢%) 1.03e'340(1.67¢%) 8.24e'34+0(3.30e%)

9.70e9+0(2.82¢3) 2.93¢9+0(3.33¢3) 2.51e9+0(4.35¢3) 1.28¢1040(6.40e3) 9.60e10+O(1.05¢%)

512 1.69¢' +0O(4.61e2) 1.32¢'24+0(8.70e) 1.04e'34+0(1.69¢%) 8.27¢134+0(3.33¢%) 6.59¢44+0(6.60e?)

7.76e1040(5.63¢3) 2.34e1040(6.66e3) 2.00e104+0(8.70e3) 1.02e1140(1.28¢%) 7.68e11+0(2.10e%)

1024 1.35¢'240(9.22¢%) 1.05e'34+0(1.74e*) 8.32e134+00(3.38¢e%) 6.61e'4+0(6.66e%) 5.27¢15+0(1.32¢%)

6.21e11 4+ O(1.13e%)

1.88¢11+0(1.33€3)

1.60e 1+0(1.74e%)

8.19e11+0O(2.56e%)

6.15e124+0(4.20e%)
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4.3.5 FError Bound

Joint recovery of the sparse representation of a set of signals faster comes with the tradeoff
of increased error. Since the problem of finding the sparse representation of the set of
signals jointly is divided into I' different joint sparse recovery problems, this increases the
reconstruction error.

Assuming we want to recover @ from the observation vector X, it is shown [126] that

the reconstruction error from the [j-norm optimization problem
min ||O]; st || X—-00| <e

is bounded by:

16 - ©]2 < Cue, (4.15)

where the constant (), depends on dy4, the 4v-restricted isometry constant of ®.
However, most signals are not exactly sparse, rather approximately sparse. The coefficient
vector ® of such signals can be truncated with the v largest coefficients, ®,. Then, the error

bound for the approximately sparse signals follows:

SRl T
N

SCCI model recovers the common and innovation components jointly within one /j-norm

16 — Bl|s < Cy e+ Coy (4.16)

optimization problem, which means the vector ® includes the sparse coefficients of all signals.
Thus, the error bound for SCCI model recovery can be computed in terms of its components,

Zc, Wey and wj, using Eq. 4.16., as:

16 — ©ull1 = S0 I2elk] — ze0[k]]

+ 30 S fwey k] — wey ok + 37y ST [wj (K] — wj K],

where we define the truncated vector ©,, as a vector with Jv nonzero entities. Each coefficient

(4.17)

vector in © corresponding to .J signals are truncated using the v largest values. The truncated
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vector ©, is built from these J truncated coefficient vectors. The upper bound for SCCI

recovery model is:

A C
16 = ©lla < Cpe + =22 (AL zelk] — 2ok
301 AL i (k] — wie k] 527y SR k] — wj o lR]).

In order to calculate the upper error bound of the hierarchical SCCI model recovery,

(4.18)

we partition the dataset into I' subsets. Each subset requires a [j-norm optimization prob-
lem, and the global common component is recovered through another [j-norm optimization
problem, which leads to a total of I' + 1 optimization problems.

Theorem 1: Assume that X = ®0O is a vector of J jointly sparse signals following the
signal model in Eq. 4.7, where ® is the dictionary built from ¢, ¥;s, and ¢;s. @ has
v-restricted isometry constant J,, and || X — ®O||2 < e. Then, the error made by the

hierarchical SCCI model recovering the jointly sparse representation of .J signals is bounded

by:

A C
16 — ©ll2 < Cr e+ 22 (2521 zelk] — zealk]

12301 SR i (k] — ek + 557y S k] — wj oK),

where C1 ,, and Oy, depend on dy, [126].

(4.19)

Proof -
Following the upper error bound provided by Eq. 4.16, the upper error bound for the ~th

subset is:

- 02
16— ©ll2 < Cry e+ =222 (L zelk] — zcolk]

(4.20)
N N
2 k=1 [wen (K] — wery oK+ 2 jevyin subset 2ok=1 w5 k] — wjy [k]|>-

The constants C  ~ and Co, ~ depend on the v-restricted isometry constant, oy, of

the matrix ®,. Since ® is a submatrix of @, the relationship between the local isometry
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dy,y and the global isometry d,, the v-restricted isometry constant of the matrix ®, is as

follows [127]:

Oy = sup Oy . (4.21)
g

Therefore, we can conclude that:

. Cy
165 = ©4la < Crpe + =22 (AL Jzelk] = 2okl + 4L [t k] — eyl

N
+ e th subset St [0 K] = wj k]| ) vy € (1,2, T},

After calculating the sparse representation of I' subsets, the last /[j-norm optimization

(4.22)

step finds the common part among their outputs. The recovery error from this last step is

calculated similarly using Eq. 4.16, as follows:

A Co, N r N
16 — ©cllz < Crpe + 22 (S0 lzelk] — zenlkl] + 51 AL hweq K] = weoolk]])-

(4.23)
Therefore, the total recovery error for the proposed algorithm is bounded by:
16 — @l < 1y + 2 (250 [zelk] — ze0fH]
T N v J N (4.24)
23 1 2= [Weny k] — weqy oKl + 22521 Dok—1 [wjlk] — wj[K] |)~
0J

Comparing the error bounds of SCCI and hierarchical SCCI model recovery in Eq. 4.18
and Eq. 4.19 imply that the upper error bound of hierarchical SCCI model recovery is larger
Cy, N r N
2 (A fzelk) = zeolkll + 20y SR fwe K] = welK]])-

More recently, Needell et. al [128] proposed Regularized Orthogonal Matching Pursuit

than that of SCCI model by

(ROMP) to find a sparse representation of signals with a tighter error bound. The error
bound of SCCI model recovery when ROMP algorithm is used for sparse recovery is equal

to:
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16 - ©ll2 < CvIog (Jlells + J= (LA lzlk] =zl
301 SR i (K] — k] 4+ 32y SR fgl] = o [K]])),

where C' is a constant, and € is the noise, which is zero in the noiseless situation.

(4.25)

Theorem 2: Assume that X = ®0O is a vector of J jointly sparse signals following the
signal model in Eq. 4.7, where ® is the dictionary built from ¢¢, 18, and ¢;s. Then, the
error made by the hierarchical DCS recovering the jointly sparse representation of .J signals

using ROMP algorithm is bounded by:

16 — @12 < CvIogw (Jlella + & (S lzelk] - zealk]
30 e ) = w0 K| +3 oy SR (8] = wj [41]) )

where C'is a constant, and € is the noise, which is zero in the noiseless situation [128].

(4.26)

Proof:

The upper error bound for the vth subset is:

16, = ©4lls < CvIogw (llells + 7 (ZAs I2elk] - zeolk]
30 Ny K] = ey oKl + X e oh subser it hoglk] = wylK]]) ).

After calculating the sparse representation of I' subsets, the last /j-norm optimization

(4.27)

step finds the common part among their outputs. The recovery error from this last step is

calculated similarly as follows:

H(:)C Ocll2 = CVlogy (H l2+ 75 (Zk 1|Zc[ ] — Zc,v[k“
* 2721 Zk=1 |we k] — wc,'y,v[kH)).

The total recovery error of H-SCCI model recovery calculated using ROMP is bounded

(4.28)

by:

16 — @12 < Vg (Jlella + % (S lzelk] — zealk]

(4.29)
30 ey (K] = ey okl 4§ o SR oy lk] = wy K] ).
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4.3.6 Numerical Performance Evaluation

In this section, we present the numerical evaluation of the proposed method to show the
improvement of Hierarchical SCCI model recovery with respect to SCCI model recovery. A
real-world scenario introduced in [109] is used here to compare the computational cost and
the reconstruction error of H-SCCI and SCCI model recovery, numerically.

In order to generate a set of sparse signals with inter-signal correlation, the common and
innovation components of the joint sparsity model (Eq. 4.1) are created separately. To create
the sparse common component, the location of the nonzero entries of the coefficient vector, 6.,
are selected randomly with the sparsity K. ~ Binomial(N, p. = %) The value of the selected
nonzero coefficients are chosen from N (p, o). DCT bases is chosen as the common component
bases, ®. € RN XN, Then, the common component is obtained through z. = ®.0.. Similarly,
the location of the nonzero entries of the coefficient vectors of the innovation components,
0;,Vj, are chosen randomly with the sparsity K; ~ Binomial (N, pj = l). The value of
nonzero coefficients are chosen from N(u,0). The N x N Haar basis is selected as the
innovation component dictionary ®;. The jth signal in the collection is then constructed as
rj =Pl + ©;0;.

In the first experiment, the length of the signal, N, is kept constant and equal to 128
samples. In order to consider the effect of the number of signals, J, on the computational cost,
the number of signals, J, is selected from {8, 16,24,32,40,48,56,64,72,80}. SCCI model
is used to find the common and innovation components of J jointly distributed signals. In
order to use the H-SCCI model, the number of subsets, I', is selected regardless of the value
of J such that % = 8. The experiment is repeated 1000 times. The computational cost and
error are calculated for both methods. Fig. 4.2 shows the mean + /- the standard deviation of
the computational time required to calculate SCCI and H-SCCI models. Fig. 4.3 shows the

mean + /- the standard deviation of mean squared error (MSE) of both SCCT and H-SCCI
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model recoveries. As it can be seen, the computational cost of SCCI model recovery grows
exponentially as the number of signals increases. Yet, the H-sCCI model recovery requires
less amount of time with smaller standard deviation. On the other hand, MSE of H-SCCI
model recovery is becoming saturated, and in this experience in the worst case the MSE
differences between two methods is 9 x 1074 Thus, if there is no restriction on the time to
calculate the joint sparsity model and any memory limitations, SCCI model recovery works
better since MSE is smaller. However, for larger values of J, the hierarchical implementation

recovers the SCCI model much faster at the cost of slightly increased MSE.
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Figure 4.2 The mean + /- the standard deviation of the computational time required to
calculate SCCI and H-SCCI models when the bases of the common components is DCT and
the bases of the innovation components is Haar.
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Figure 4.3 The mean -+ /- the standard deviation of MSE of both SCCI and H-SCCI model
recovery when the bases of the common components is DCT and the bases of the innovation
components is Haar.
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In the second experiment, J jointly sparse signals are generated in the same way as
described in the first experiment. However, the common and innovation bases are chosen to
be identical and equal to NV x N DCT. The computational cost and MSE are calculated for
both SCCI and H-SCCI model recoveries. Fig. 4.4 shows the mean + /- the standard deviation
of the computational time required to calculate SCCI and H-SCCI models. Fig. 4.5 shows
the mean + /- the standard deviation of MSE of both algorithms.

Apparent from Fig. 4.2 and 4.4, the computational time of SCCI model recovery is larger
on average in addition to its standard deviation in the second experiment compared to the
first one. Similarly, the mean and standard deviation of MSE for SCCI model recovery
decrease for the second experiment while they stay the same for H-SCCI model recovery.
Therefore, in situations where the common and innovation components can be assumed to be
sparse with respect to the same set of bases, the performance of H-SCCI model recovery im-
proves more compared to SCCI model in terms of the computational time and reconstruction

error.
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Figure 4.4 The mean + /- the standard deviation of the computational time required to
calculate SCCI and H-SCCI models when the bases of the common components and the
innovation components are identical (DCT).

In the third example, we investigate the effect of the noise on H-SCCI model recovery
and compare the results with SCCI model recovery. J jointly sparse signals are generated in

the same way as described in the first and second experiments. The common and innovation
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Figure 4.5 The mean -+ /- the standard deviation of MSE of both SCCI and H-SCCI model
recoveries when the bases of the common components and the innovation components are
identical (DCT).

bases are chosen to be identical and equal to N x N DCT. However, the number of signals is
fixed and equal to J = 16 in this experiment so that the only variable is the signal-to-Noise
ration (SNR). The experiment is performed for 10 different SNR values and repeated 1000
times for each SNR value. Fig. 4.6 and Fig. 4.7 show the computation time and MSE values
of SCCI and H-SCCI model recoveries for different SNR values. H-SCCI model recovery
outperforms SCCI model recovery in terms of computational time for all SNR values. On
the other hand, MSE of SCCI model recovery is less than that of H-SCCI model recovery
for larger values of SNR whereas MSE of SCCI model recovery becomes larger than that of
H-SCCI model recovery with the decrease in the SNR value. When SNR values are large,
SCCI model is able to recover the sparse representation of the original signals while H-SCCI
model introduces some noise into the recovered signals. However, as SNR values decreases,
H-SCCI model recovery outperforms SCCI model recovery since H-SCCI model first focuses
on the recovery of the sparse representation of the common component. In the first level of
the implementation, H-SCCI model recovery method filters out the innovation components
and a part of the noise. Then, in the second stage, H-SCCI model filters out the remaining
noise and innovation components. Once the common component is recovered, in the final

stage, H-SCCI model recovers the innovation components by filtering out the noise through
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the sparse recovery. Thus, H-SCCI model consists of three levels of sparse approximation,

each acting as a noise filtering by finding the low-dimensional representation of the signals.

Time (sec)

Figure 4.6 The mean + /- the standard deviation of the computational time required to
calculate SCCI and H-SCCI models when the bases of the common components and the
innovation components are identical (DCT) and the signals are contaminated by noisy.

5 o
SNR(dB)

Figure 4.7 The mean + /- the standard deviation of MSE for both SCCI and H-SCCI model
recoveries when the bases of the common components and the innovation components are
identical (DCT) for noisy signals with varying SNR values.

4.4 Applications

In this section, the proposed algorithm is used for two different applications: functional

connectivity network summarization, and video background extraction.
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4.4.1 Video Background Extraction

Background extraction plays an important role in most computer vision and video processing
applications such as surveillance video coding [119], motion detection, object tracking, etc.
Video background extraction aims to separate the moving objects, a.k.a. foreground, from
the static objects, a.k.a. background, in order to facilitate analyzing the trajectory of moving
objects. Even though the subsequent steps of the background extraction are of more interest,
the accuracy of the overall system depends on the performance of the background extraction.
Over the last few years, background extraction has been improved. Per-pixel Gaussian
mixture model [129] combines the space of depth and luminance-invariant color to make a
model of the background over time. The problem with the slow convergence of Gaussian
mixture model is addressed by incorporating the incremental Expectation Maximization
(EM) type of learning into a recursive filter [130]. The visual background extractor (ViBe)
|1] uses a random policy to estimate the sample-based background.

Recently, SCCI model has been used to extract the background scene which is the com-
mon component of all frames in order to compress the video more efficiently [110]. Do et
al. [111] designed a real-time video coding system based on distributed compressive sensing.
Here, we use the H-SCCI model to extract the background scene from a sequence of images
in order to find moving objects. The proposed H-SCCI model recovery algorithm overcomes
restrictions such as time and memory, which helps to extract the background scene of a

larger sequence of images.

4.4.1.1 Implementation

In the first experiment, a sequence of 9, 512 x 512-images of toy vehicles is chosen for
background extraction purposes [131], where the images consist of a common background
scene and moving objects. The images are downsampled to 80 x 80 due to computation time

and memory limitations. All 9 images are vectorized, A = {x; € R6400. 5 e {1,2,...,9}}
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(a) (b) ()

Figure 4.8 The toy vehicle experiment: first column shows three original frames of the
sequence, the second column is the ground truth for the moving objects, the third column
is the corresponding results obtained by ViBe [1| with frames resized to 80 x 80, the fourth
column is the detected moving objects using SCCI model with frames resized to 80 x 80,
the fifth column is the detected moving objects using H-SCCI model with frames resized to
80 x 80, the sixth column is the detected moving objects using H-SCCI model with frames
resized to 128 x 128.
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Figure 4.8 (cont’d)
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with x; = be+1f; where b is the background scene and f; is the moving object corresponding

to the jth frame. The 6400 x 6400 identity matrix Ig40q is used as the bases for the common
and innovation components (background and foreground), ¢, = ¢j = Ig400. The background
of the set of images, A, is extracted first using SCCI model.

The same set of 80 x 80 images is then used to evaluate the performance of the H-SCCI
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model recovery algorithm. The set of 9 images are partitioned into I' = 3 sets by placing
the consecutive images into the same subset. The identity matrix is selected as the bases
for the common and innovation components, ¢. = ¢; = Ig400- The common component of
each subset is extracted separately through the [1-norm optimization problem (Eq. 4.10),
yielding uy,y € {1,2,3}. We use the common components of these three subsets to extract
the global common component, b, solving another /1-norm optimization problem.

H-SCCI model recovery is also applied to the same sequence of images downsampled
to 128 x 128. All images are vectorized to form the signal set A = {x; € RO400. v
{1,2,...,9}}. Every three consecutive images are grouped into one subset. Fig. 4.8 shows
three frames from the original sequence and the foreground extracted by SCCI model and H-
SCCI model for different image sizes. The SCCI model recovery is not capable of extracting
the background from images with size 128 x 128 due to memory and computational time
requirements. The downsampled background obtained from H-SCCI model is compared with
the background extracted using SCCI model. Table 4.2 shows the computational time and
peak signal to noise ration (PSNR) for this set of experiments. In order to calculate PSNR,
the background extracted with SCCI model is considered as the groundtruth and compared
with that extracted from H-SCCI model. However, in the case of 128 x 128 set of images,
SCCI model recovery algorithm is not capable of extracting the background of the images
due to memory and computational time restrictions. Thus, the downsampled background
obtained from H-SCCI model is compared with the background extracted using SCCI model
in order to calculate PSNR. By comparing the third and fourth rows of Fig. 4.8, we can see
that there is some misidentification of the moving objects in the H-SCCI model, which can
be explained through the larger error bound of H-SCCI model recovery. In the fourth row,
there are some artifacts or distortion between the two vehicles, mostly due to the different
location of the vehicles. These distortions show the movement of the vehicles in the sequence
of the images. These distortions do not exist in the foreground detected using SCCI model.

However, as the dimension of the images grows, the distortion from H-SCCI model decreases
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Simple Matching Coefficient

Time(ms)

Figure 4.9 Simple Matching Coefficient: similarity between the support of the coefficients of
the consecutive g(t).

(the fifth row of Fig. 4.8) since there are a larger number of coefficients in @ which allows
the optimization problem to find a better combination of coefficients to reduce the error.
This explains the improvement in MSE and PSNR in Table 4.2. Note that the distortion
can also be decreased through tightening the conditions of the optimization problem, which

will slightly increase the convergence time.

Table 4.2 The computational cost and PSNR for the toy-vehicle experiment

Method Computational Cost (min)  PSNR (dB)
H-SCCI model SCCI model

80 x 80 frames 28 141 33.33

128 x 128 frames 76 - 36

4.4.2 Functional Brain connectivity Network State Representation

In this chapter, we propose to use H-SCCI model recovery to track dynamic FC networks
constructed from multichannel EEG data collected during a study of Error-related negativity

(ERN). The dynamic network is converted to signals or vectors at each time point and the
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(224,828)ms

{-120,-35)ms

Figure 4.10 The significant edges for the time intervals: (a) (—120, —35)ms, (b) (—35,224)ms,
(c) (224, 828)ms, obtained through z-test with p = 0.95.
H-SCCI model framework is applied to this collection of signals to first identify change points

in connectivity and then extract the common sparse components for network summarization.

4.4.2.1 Implementation
The dynamic connectivity networks across time are assumed to follow a time-varying signal
plus background model:

A

G(t) =B+ G(t), (4.30)

where B € R62%62 ig the background FC pattern common across all time steps, and G(t) €
R62%62 5 the innovation component of the connectivity matrix at time t. H-SCCI model
is used to find the background FC pattern, B, and the innovation connectivity matrices,

G(t),t € {1,2,...,256}. First, the upper triangular part of the connectivity matrices are

vectorized, as:

g(t) =b+ g(t), (4.31)
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where g(t),b,g(t) € R993%L The set of 256 signals, g(t),t € {1,2,...,256}, is par-
titioned to I' = 10 subsets, A1 = {g(1),...,g(25)}, Ay = {g(26),...,g(50)}, ..., and
A1 = {g(226),...,g(256)}. Discrete Cosine Transform (DCT) basis is used for the com-
mon component, ¢, € RI93>¥1953 " while Haar wavelet basis is selected for the innovation
component, ¢; € R1953x1953 = The MATLAB package "l1benchmark" is used to solve the
optimization problem in Eq. 4.10, where z. = b, x; = g(t), and z; = g(t). Once the back-
ground FC pattern is determined, Eq. 4.11 is used to obtain the innovation components,
g(t).

Change Point Detection: The innovation components, g(t), are used to detect the change
points. To achieve this goal, the support of g(t), i.e. the indices of the non-zero coefficients
with respect to the basis of representation, is tracked over time. The FCNs are assumed
to be quasi-stationary within a short time interval [52, 56|. Therefore, the support of the
innovation components’ coefficients should not change much within each time interval. Any
change in the support of the coefficients between consecutive time samples is considered
as a change point. Let the vector 7(t) € R¥93%1 he a binary vector such that the ith
element 7;(t) = 1 if éj,i(t) (éj,i(t) is the ith element of the vector éj in Eq. 4.11) is nonzero,
and 7;(t) = 0 otherwise. In order to detect the change points, the similarity between the
supports of the coefficients of the consecutive time samples is quantified using the Simple
Matching Coefficient (SMC) [132]. SMC is a similarity measure between binary vectors,
which takes into account both zero and one attributes. Fig. 4.9 shows the SMC similarity
between consecutive 7(t)s.

From the plot, we can identify several distinct time intervals: (—1000, —921)ms, (—921,
—120) ms, (—120,—35) ms, (—35,224) ms, (224,828) ms, and (828,1000) ms. The time
interval (—35,224) ms includes the ERN response. During error processing (ERN time
interval), the brain is in the process of forming transient frontal networks, which causes the
decrease in the similarity of the support of the coefficients of the innovation components of

FCNs as the network is changing.

77



Network Summarization: Once the time intervals are determined, the FC topographic
map of each time interval needs to be obtained. FC topographic map consists of the signifi-
cant functional connections consistent across the detected time interval, (¢g,¢1). In order to
get the FC topographic map, we apply H-SCCI model recovery algorithm to g(t),t € (tg,t1).

Thus, the connectivity vectors are written as:

g(t)=m+g(t), te (ty,tr), (4.32)
where 7 is the common part of the time interval (¢p,¢1) we are interested in, and g(t)
represents the innovation activity at time ¢.

The signal model assumed for the connectivity matrices within the time interval in
Eq. 4.32 is the SCCI model (Eq. 4.3), where z. = 7, x; = g(t), and z; = §(t). The
resulting optimization problem (Eq. 4.10) for g(t),t € (tg,t1) is solved, yielding the common
pattern of FCs across time within the time interval, m. Since the background FC pattern
is eliminated in the first step (see Eq. 4.31), 7 is the common FC pattern specific to the
time interval. Since the distribution of the common FC patterns is Gaussian, z-test deter-
mines the most significant edges. Fig. 4.10 shows the most significant FCs for three time
intervals, (—120, —35)ms, (—35,224)ms, and (224, 828)ms, determined through z-test with
p =0.95. Fig. 4.10(b) corresponds to ERN time interval showing the significant connections
between medial-prefrontal and medial-central regions engaging electrodes FC1, FCz, FC2,
Cl1, Cz, and C2. This pattern is consistent with widely observed ERN amplitude measures
[95, 96, 55]. There are also some connections between occipital-parietal and frontal regions.
Fig. 4.10(a) corresponds to the pre-ERN time interval. In this state, the brain is preparing
to respond to the external stimulus with connections distributed across the scalp. There are
also some connections among FC1, FCz, and FC2 in addition to the connections among C1,
Cz, and C2. Fig. 4.10(c) corresponds to the error-related positivity (Pe) and P300, showing
strong connections between frontal and parietal regions. Broadly, the network states identi-

fied before, during, and after the ERN are consistent with hypothesized ERN-related network
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dynamics, focused on the formation of transient frontal networks during error processing.

4.5 Conclusions

Joint sparse recovery approximates a set of input signals simultaneously through linear com-
binations of dictionary elements. The joint sparse recovery algorithm uses the minimum
number of bases while it keeps the error between the approximation and the input signals
small. In this chapter, we proposed a hierarchical recovery of SCCI model to jointly re-
cover the set of signals. The proposed method is evaluated on two different datasets, EEG
functional connectivity networks and video background extraction. H-SCCI model is able
to detect the change points and find the common connectivity pattern of each time interval.
The results are consistent with the hypothesized ERN-related network dynamics, focused
on the formation of transient frontal networks during error processing followed by parietal
networks. The experimental results on video data illustrate the reduced computational cost

with some increased distortion in the recovered foreground objects.
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CHAPTER 5

STRUCTURED DICTIONARY LEARNING FOR SPARSE COMMON
COMPONENT AND INNOVATION MODEL

5.1 Introduction

In SCCI, the sparsity of the two parts of the signals is usually described through pre-
determined dictionaries. However, as the literature in dictionary learning indicates, prede-
termined dictionaries are not necessarily optimal [133]. The well-known dictionary learning
algorithms such as KSVD and method of optimal directions (MOD) [134] cannot be directly
used as they do not guarantee the preservation of the special structure of the SCCI dictio-
nary. Recently, Chen et al. [135] proposed Joint Orthogonal Matching Pursuit (JOMP) with
dictionary update for SCCI. In each iteration, only one atom for representing either the com-
mon or the innovation components is selected based on the correlation between the residue
and the atoms of the input dictionary. However, when combined with dictionary learning,
this method only learns a single dictionary for the common and innovation components,
where some atoms belong to the common component and others belong to the innovation
components. As a result, when JOMP recovers the sparse representation of the test data
with respect to this dictionary, it may select the atoms learned for the innovation component
to represent the common component and vice versa.

In this chapter, we propose a two-stage dictionary learning algorithm which addresses
these problems by learning two separate dictionaries for the common and innovation compo-
nents simultaneously. In the proposed method, structured KSVD, after finding the coefficient
vectors, first the common component dictionary is updated. Then, the innovation compo-
nent dictionary is updated using the coefficient vector and the training data. The procedure
to update the common and innovation dictionaries are similar to KSVD, where the up-

dated atom is the singular vector of the error matrix. Unlike KSVD, the structured KSVD
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breaks down the main dictionary to the common and innovation dictionaries and learn these
subdictionaries.

In this chapter, the structured KSVD is used to learn the common and innovation dic-
tionaries for Error-related potentials (ERPs) from training data in order to extract ERP
from the signals recorded by the neighboring electrodes because ERPs are usually similar
across neighboring electrodes due to volume conduction. Therefore, ERP extraction from
background EEG activity can be performed by extracting the common component of the
set of neighboring electrodes using SCCI model. Previously, ERPs have been used exten-
sively for the detection of neural diseases and the design of brain computer interface (BCI)
[136, 137]. The difficulty with extracting ERPs is that their amplitude is small compared
to the background activity. Different approaches such as averaging, independent component
analysis (ICA), and wavelets [138] have been proposed [139]. Since ERPs are time-locked, it
is assumed that averaging will add-up the effect of ERP while attenuating the background
activity. ICA is used to separate the evoked potential from the background activity using the
signals recorded by nearby electrodes [139] assuming that ERP and the background activity
are statistically independent, which is not necessarily true. Wavelet based approaches, on the
other hand, identify the coefficients associated with ERPs statistically [138]. This method
requires selecting the value of the threshold, and assumes ERP is in a subspace of wavelet
space. ERPs are also extracted [140] by principal component analysis with the assumption
that after the averaging the variance of the background activity decreases while the variance
of ERP has a direction which can be found using PCA. This assumption is true only if the
background activity is actual noise whereas it is another brain event which is not of interest.
The proposed algorithm is applied to ERN and the correct-related negativity (CRN) signals.
ERN and CRN are ERPs that are commonly used to index cognitive control [?|. The dis-
tance between the common dictionaries of ERN and CRN shows that these two responses
are sparse with respect to two different set of bases. Finally, the learned dictionaries are

used to extract the two ERPs corresponding to different responses.
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5.2 KSVD Algorithm

In traditional sparse signal recovery, predetermined basis sets such as Fourier, wavelets or
their combinations are commonly used to find the sparse representation of signals. However,
in many applications, the dictionary representing the sparse representation of the signal is
not known. Dictionary learning (DL) has been developed to address this problem [141, 133].
Current dictionary learning algorithms such as KSVD [133] and MOD [134] focus on signals
that have a common sparse representation, and not on SCCI model described in Chapter 4.
Dictionary learning algorithms try to find the sparse coefficient vectors A = [a1, a9, ..., ay]
and the dictionary D = [dy,ds,...,d] for a set of training signals Y = [y1,y2,...,y ] in
the model Y = DA such that:

minp p {HY—DAH%} s. t. Vi |loyllo < K (5.1)

where K is the sparsity level of the coefficient vectors, y; € RN, a; € RE, Y € RV,
D e RV*L A e REXJ and L > N.

KSVD minimizes Eq. 5.1 iteratively by first finding the coefficient vectors, A, while the
dictionary, D, is fixed and then updating D. After initializing the dictionary D(O), in the first
stage, KSVD uses a pursuit algorithm to find the sparse coefficient vector at each iteration k,

&gk), for each signal y;, j € {1,2,...,J} through solving the following optimization problem:

. k k .
min g ol s. . lly; - DBl < e vje 2.y, (5.2)
i
Once the sparse coefficients are computed, KSVD updates each column of D) at a time,
fixing all columns in D) except dl(k), and updating the [th column vector as dl(k+1). In
order to update the [th column d;, w; is defined as the group of indices pointing to the

training signals y;s that use the atom d;, which is equivalent to the nonzero entries of ole,

where ole is the lth row of A, as: w; = {j|1 < j < J, alT(j) # 0}. The overall representation
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error matrix E; is computed as:

E =Y~ dsaf. (5.3)
f#l
The matrix Eﬁ is obtained by selecting the columns of E; with the columns identified in w;.
After applying SVD to the matrix Eﬁ = UAVT, the updated dictionary column dgﬁl is
l

equal to the first column of U whereas the updated coefficient vector ap is the first column

of V multiplied by A(1,1). This process is repeated until the stopping criteria are met.

5.3 Common And Innovation Dictionaries Learning

The challenge with using dictionary learning algorithms such as KSVD in DCS is that they
cannot be applied directly to Eq. 4.5. The dictionary in these equations, ® € RIN % (‘]+1)L, is
constructed from different sets of basis, ¢. € RY*L and b; € RV*L 1 Thyg, some entities of
the dictionary ® are constrained to zero (as it is depicted in Eq. 4.3). However, no dictionary
learning algorithm guarantees to preserve this structure of ® during the update step of the
dictionary. Therefore, we propose a structured dictionary learning algorithm based on K-
SVD to fulfill this constraint and learn the dictionary ® from the training samples. Since
there is one common component, z. among the training signals and the common dictionary
has to be updated based on this common component, we randomly select J training signals
from the whole set of training signals, learn the dictionaries, and repeat the process to update
P.

After initializing the bases ¢. and ¢; and constructing &) at the kth iteration, the

coefficient vector ©F) ¢ R(ZF1Lx1 jq estimated, as:

O = arg min |@F)||ys.t. X — dF0®)|3 <. (54)

where X € R/V*1 ig the input set of training signals as in Eq. 4.3.

INote that we assume one unique ¢ for all J innovation components
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After estimating the coefficient vector, dictionaries ¢. and ¢; are updated separately simi-

lar to KSVD. In order to update ¢,(;k), (bg.k) is assumed to be fixed and qbgk) = [dy,do,...,df].

RNJXI ERNXJ

The vector of input signals X € is rearranged as a matrix Y = [xy,...,x]
and the coefficient vector 8, € RL*1 for the common part is concatenated to form the matrix
Agk) = [éc, e ,éc] e REXJ . Since all training signals have the same common component,
they all either use the [th atom or not. Thus, w,; is defined as a row vector of ones with

size J, 1 € RYY if the common component includes the Ith atom of the common dictionary,

or a row vector of zeros with size J, 0 € RY*J. The error corresponding to the [th atom,

E.; € RV*J s defined as:
Bo =Y =Y dgf! . (5.5)
f#l
The matrix Efl is obtained by selecting the columns of E.; with the columns identified
in we . dl(k—H) is the first eigenvector of Egl = UCACVZ while its corresponding coefficient

vectors are updated by replacing them with the first column of V. multiplied by A.(1,1).
Once all the columns of ¢£k+1) are updated, the second dictionary ¢§-k) is updated in

U is fixed. The dictionary qﬁg-k) = [c1,¢9,...,cy], and the

. ket
a similar manner assuming ¢,

o J ~ ~
vector of coefficients {0§k)}j71 from ©(*) is rearranged to A;k) = [A,...,05] € RLXI. The
set wip = {i]l <i < Hé.j(i) # 0} is formed to indicate the signals that use the /th atom

of the innovation dictionary. The error matrix E;; is then computed based on the signals

identified in w;;, as:
’ N

Bj=Y— Y ¢, (5.6)
J=LIA

where HI,T is the fth row of A. The matrix Efl is obtained by selecting the columns of E;;

with the columns identified in w;;. The first eigenvector of Efl is considered as cl(k+1).
Once ¢>§k“) and ¢§-k+1) are updated completely, the main dictionary &*k+1) s con-

structed again and the coefficient vector Ok+1) g updated using Eq. 5.4. This process is

repeated until convergence. The pseudocode of the structured dictionary learning for SCCI

is presented in algorithm 1.
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5.4 Experimental Results

5.4.1 Synthetic Data

The proposed structured dictionary learning is first evaluated on a set of synthesized signals.
Two random matrices ¢, € R32%32 and ¢j € R32%32 4re generated with i.i.d. uniformly
distributed entries from U(0,1) and U(5,6), respectively. Each column is normalized to a
unit l9-norm. 150 signals {xz}giq, where x; € R32%1 are produced by adding the common
component z. € R32%1 and the innovation components z; € R32%1 The common component
Zc is a linear combination of K. atoms of ¢;, with uniformly distributed i.i.d. coefficients
in random and independent locations. Similarly, the innovation components z; are different
linear combinations of K; atoms of ¢;.

In order to apply KSVD to synthetic signals, the dictionaries ¢, and ¢; are initialized
with the training data. After constructing ® and X, the coefficient vector ® is found
using OMP with K¢ + (K; x 150) coefficients, where K = K. = K varying from 2 to 5.
The maximum number of iterations was set to 20. The computed dictionaries ngSC and ngSj
are compared separately against the generating dictionaries ¢. and ¢;. This comparison is
done by sweeping through the columns of the generating dictionary ¢. (or gbj) and finding
the closest column (in k distance) in the computed dictionary ¢, (or QASJ) The distance is
measured via 1 — |dZT(Ail|, where d; is an atom of ¢c (or ¢;) and d; is the corresponding
atom in the learned dictionary. A distance less than 0.1 for ¢, and less than 0.05 for ¢; are
considered a success. The simulations are repeated 500 times, and the number of successes
in each simulation is computed. Fig. 5.1 displays the percentage of successfully recovered
atoms for the common and innovation dictionaries. Overall, the percentage of recovered
atoms of the common and innovation dictionaries are more than 90%, and as the sparsity
level increases, the accuracy increases. However, the number of the recovered atoms of the
common dictionary is less than that of the innovation dictionary since there are J different

innovation coefficients {0, }‘jjzl to be used in updating the innovation dictionary while there
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Figure 5.1 Percentage of successfully recovered atoms for the common and innovation dic-
tionaries versus the number of sparse coefficients.

is only one common coefficient to be used in updating the common dictionary. Thus, the

atoms of the common dictionary are updated based on only one common coefficient vector.

Algorithm 5.4.1 Structured Dictionary Learning for SCCI

1: Input: Initialize (b((jo) and qbg-o). Choose €. Set k= 0.
2: Output: The common component dictionary ¢¢, and the innovation component dictionary d)j.

3: while The convergence criteria is not met do
4:  Form the basis matrix (‘I’UC) € RN‘]X(‘H'UL) from d)ékj) and ¢§k> Form the signal vector

(X e RJNXl) in Eq. 4.3 from the training signals.

5. Solve [1-norm minimization in Eq. 5.4.

6: forl— 1:L do

7 Compute the error matrix E.; using Eq. 5.5.
8: Update derl using the singular vector of Efl.
9: end for 7
10: for [ = 1:L do

11: Compute the error matrix Ej,l using Eq. 5.6.
12: Update C;H_l using the singular vector of Ef/l.
13:  end for ,
14:  k — k+1

15: end while

5.4.2 EEG Data

The proposed framework is applied to a set of EEG signals containing ERN and the CRN
response, which are ERPs that are commonly used to index cognitive control [?]. The

ERN is a brain potential response that occurs following performance errors in a speeded
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reaction time task usually 25-75 ms after the response [61]. In this study, we focus on the
EEG recordings for 16 female participants. A speeded-response flanker task was employed,
and response-locked averages were computed for each subject [142]. The brain activity is
recorded during the error and correct processing using electroencephalogram with sampling
rate equal to 256Hz with 1 second before the response and 2 seconds after the response.
For each subject, EEG data over multiple trials (repetition of the same visual stimulus) is
recorded (126 trials for ERN, and 1289 trials for CRN). The signals from 62-channels were
collected in accordance with the 10/20 system on a Neuroscan Synamps2 system (Neuroscan,
Inc.).

In this thesis, we assume that the electrodes that are close to each other will follow SCCI
model due to volume conduction. Since we know most of the ERN and CRN activities to
be localized around frontal-central brain regions [143], we select a time frame of (0, 150)ms
corresponding to the ERP from electrodes F2, F4, F3, F5, and FCZ. We randomly select 10
trials from each electrode for CRN and average them to obtain the training dataset, and use
another 10 and average them to get the test dataset. Similarly, the trials of each electrode of
ERN are divided into two sets of training and test dataset. The number of training and test
signals after averaging over trails for 16 subjects and 5 electrodes are 80. The training signals
are used in the structured KSVD to learn the common and innovation dictionaries for ERN
and CRN;, separately. Fig. 5.2 (a) and (b) show the learned common component dictionaries
for CRN and ERN, respectively. In order to evaluate how similar the learned dictionaries
for CRN and ERN are, the distance 1 — |dZTcAlZ| is computed. 12 atoms out of 41 atoms
of the common components dictionary of ERN are close to that of CRN, which indicates
the need to learn the dictionaries for ERN and CRN separately. The learned dictionaries
are used to find the common component of the test CRN and ERN data. Fig. 5.2 (¢) and
(d) show the common component of CRN and ERN, respectively. The error processing
waveform has a negative peak right after the response and becomes positive around 100ms

after the response. However, the waveform from the correct response does not show the
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same negative peak (Fig. 5.2 (¢)). Even though error and correct response waveforms are
different, standard joint sparse representation methods use the same fixed dictionary such
as discrete cosine transform (DCT) to extract them from the electrodes. We also compared
the recovered ERPs to the ones obtained by averaging (Fig. 5.2 (¢) and (d)). The recovered
ERN using using averaging remains negative after 100ms (Fig. 5.2 (d)), and detecting the
ERN boundaries becomes difficult.

Similarly, the same electrodes are used to extract P300, which starts around 200ms after
the response and ends around 400ms after the response. P300 after CRN and ERN are
expected to be different. Thus, the common and innovation dictionaries for P300 of CRN
and ERN are learned from the set of training signals, separately. The learned dictionaries
are used to extract the common component of the test data. Fig. 5.2 (e) and (f) show P300
extracted from the test data using the learned dictionaries. In comparison to averaging, DL
can extract positive peaks in P300 after ERN which is aligned with literature and referred

to as P3e [144].

5.5 Conclusion

In this chapter, we proposed to use the sparse common component and innovations model to
extract ERPs from EEG recordings of closely located electrodes. Since responses to different
stimuli have different characteristics, predetermined dictionaries are not suitable to represent
and distinguish between them. We introduced a structured KSVD algorithm to simultane-
ously learn the common and innovation dictionaries. The proposed structured dictionary
learning algorithm is used to learn the dictionaries representing the common component of
ERN and CRN. The comparison of the learned dictionaries shows the differences between
the dictionaries needed to represent ERN and CRN. Finally, the learned dictionaries are
used to extract the ERPs corresponding to different responses. The results are consistent

with previous findings about the waveforms of ERN and CRN.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

With the advances in high resolution neuroimaging, there has been a growing interest in the
study of functional brain connectivity. Most of the early studies of functional connectivity
brain networks have focused on the computation of graph theoretic indices for static net-
works, i.e. long-time averages of connectivity networks. However, functional connectivity
is a dynamic process and the construction and reorganization of the networks is key to un-
derstanding human cognition. In this thesis, methods to track the functional connectivity
networks over time through detecting the quasi-stationary time intervals, called FC states,
and summarizing the FC states have been developed.

In Chapter 3, tensor theory was used to represent dynamic functional connectivity net-
works across subjects. This representation offers several advantages over existing methods
such as preserving the network structure and accounting for across subject variability. It also
separates the information across different modes such as the connectivity and the time and
subject modes from each other. The change points were detected by tracking the changes
in the connectivity subspace of the consecutive time samples. The time intervals were then
summarized through tensor-matrix projection to find the common pattern across subjects
and time. This framework can be easily extended to higher order modes by considering
the changes in connectivity across frequency or experimental conditions. By taking the fre-
quency information into account, we may be able to identify change points that are sensitive
to different frequency bands and further decompose the different network states into their
frequency components. This formulation will follow the framework introduced in Chapter 3
with the addition of an extra mode thus increasing the computational complexity.

Chapter 4 introduced a new hierarchical implementation method of SCCI recover to
obtain the common and innovation sparse components of a group of signals in a computa-

tionally efficient manner. The hierarchical SCCI recovery algorithm was shown to recover
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the common component much faster than the existing methods. The computational cost and
error bound derived for the proposed method indicate the time efficiency of the proposed al-
gorithm despite the higher error bound. The H-SCCI model recovery was used to extract the
foreground network from the background activity. Since the innovation component uniquely
defines each time step, the support of the innovation components were used to detect the
boundaries of time intervals. By tracking the support of innovation components over time,
change points were defined as the time points when the support of innovation components
change. After identifying the change points, it was assumed that FC networks within each
time interval follows the SCCI model. Thus, H-SCCI model recovery was used to extract
the sparse common pattern for each time interval.

SCCI and H-SCCI model recovery algorithms introduced in Chapter 4 employed pre-
determined dictionaries for the common and innovation component recovery. However, most
signals are not sparse with respect to pre-determined dictionaries. Therefore, in Chapter
5, a structured KSVD algorithm was introduced to simultaneously learn the common and
innovation dictionaries. The proposed structured dictionary learning algorithm was used to
learn the dictionaries representing the common component of ERN and CRN in order to
extract ERN and CRN from EEG recordings of closely located electrodes. Future work will
consider the extension of the structured KSVD algorithm to hierarchical implementation of
SCCI recovery. The hierarchical implementation of SCCI recovery consists of multiple stages
of the common and innovation components recovery. In Chapter 4, the same pre-determined
common and innovation dictionaries were used at all stages to recover the common com-
ponent. However, the signals at different stages are different and may not be sparse with
respect to the same set of dictionaries. The structured dictionary learning algorithm will
be used to learn these dictionaries for each stage specifically. The learned dictionaries will
increase the performance and accuracy of the hierarchical SCCI recovery. The structured
KSVD can also be used to extract the common component of the functional connectivity

networks within a time interval using H-SCCI model recovery as described in Chapter 4.
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APPENDIX

PRINCIPAL ANGLE

Let UD(#) = [ui" (1) uf () ... uly) ()] and Ut +1) = e+ yuVe+1)
ug()Hl) (t + 1)] span the subspaces of G(t) and G(t + 1) along the first mode. Also, define
r =min (A(t), A(t+1)). Then, the kth principle vectors p, € UM (¢) and q; € UL (£ +1)

for k =1,2,...,r are defined as a solution to the following optimization problem:
mazximaize p};qk,
subject to
pr € UM (1), q; e UW(t 4 1), (1)
phuy (1) = - = pfw ) (1) = 0.[lpell = 1.
afu(t+1) = = a4+ 1) = 0. gl = 1.

The kth principal angle is defined as cos(0}.) = plqk; kE=1,2,...,r85].
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