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ABSTRACT
ESTIMATION AND INFERENCE IN COINTEGRATED PANELS
By
Yi Li

This dissertation investigates parameter estimation and inference in cointegrated panel
data model. In Chapter 1, for homogeneous cointegrated panels, a simple, new estimation
method is proposed based on Vogelsang and Wagner [2014]. The estimator is labeled panel
integrated modified ordinary least squares (panel IM-OLS). Similar to panel fully modified
ordinary least squares (panel FM-OLS) and panel dynamic ordinary least squares (panel
DOLS), the panel IM-OLS estimator has a zero mean Gaussian mixture limiting distribu-
tion. However, panel IM-OLS does not require estimation of long run variance matrices and
avoids the need to choose tuning parameters such as kernel functions, bandwidths, leads and
lags. Inference based on panel IM-OLS estimates does require an estimator of a scalar long
run variance, and critical values for test statistics are obtained from traditional and fixed-b
methods. The properties of panel IM-OLS are analyzed using asymptotic theory and fi-
nite sample simulations. Panel IM-OLS performs well relative to other estimators. Chapter
2 compares asymptotic and bootstrap hypothesis tests in cointegrated panels with cross-
sectional uncorrelated units and endogenous regressors. All the tests are based on the panel
IM-OLS estimator from Chapter 1. The aim of using the bootstrap tests is to deal with the
size distortion problems in the finite samples of fixed-b tests. Finite sample simulations show
that the bootstrap method outperforms the asymptotic method in terms of having lower size
distortions. In general, the stationary bootstrap is better than the conditional-on-regressors
bootstrap, although in some cases, the conditional-on-regressors bootstrap has less size dis-

tortions. The improvement in size comes with only minor power losses, which can be ignored



when the sample size is large. Chapter 3 is concerned with parameter estimation and infer-
ence in a more general case than Chapter 1 with endogenous regressors and heterogeneous
long run variances in the cross section. In addition, the model allows a limited degree of
cross-sectional dependence due to a common time effect. The panel IM-OLS estimator is
provided for this less restricted model. Similar as in Chapter 1, this panel IM-OLS estima-
tor has a zero mean Gaussian mixture limiting distribution. However, standard asymptotic
inference is infeasible due to the existence of nuisance parameters. Inference based on panel
IM-OLS relies on the stationary bootstrap. The properties of panel IM-OLS are analyzed

using the stationary bootstrap in finite sample simulations.
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Chapter 1

Integrated modified OLS estimation
and fixed-b inference for homogeneous
cointegrated panels

This paper is concerned with parameter estimation and inference in homogeneous cointe-
grated panels. We propose a simple, new estimation method originated from Vogelsang and
Wagner [2014]. The estimator is labeled panel integrated modified ordinary least squares
(panel IM-OLS). Similar to panel fully modified ordinary least squares (panel FM-OLS) and
panel dynamic ordinary least squares (panel DOLS), the panel IM-OLS estimator has a zero
mean Gaussian mixture limiting distribution. However, panel IM-OLS does not require esti-
mation of long run variance matrices and avoids the need to choose tuning parameters such
as kernel functions, bandwidths, leads and lags. Inference based on panel IM-OLS estimates
does require an estimator of a scalar long run variance, and we propose both traditional
and fixed-b methods for obtaining critical values for test statistics. The properties of panel
IM-OLS are analyzed using asymptotic theory and finite sample simulations. Panel IM-OLS

performs well relative to other estimators.



1.1 Introduction

This paper considers the extension of the pure time series integrated modified ordinary
least squares (IM-OLS) method of Vogelsang and Wagner [2014] for estimating and testing
hypotheses about a cointegrating vector to a balanced panel of N individuals observed over
T time periods. We call the estimator panel IM-OLS. We derive its limiting distribution and
provide a finite sample simulation of panel IM-OLS compared with pooled OLS, panel fully
modified OLS (panel FM-OLS) and panel dynamic OLS (panel DOLS).

It is well-known that in panel cointegration regression, when the regressors are endoge-
nous, the limiting distribution of the pooled OLS estimator is contaminated by second order
bias terms. Inference is difficult in this situation because the nuisance parameters cannot be
removed by simple scaling methods. Consequently, panel FM-OLS and panel DOLS were
proposed, which both deal with the endogeneity problem and lead to zero mean Gaussian
mixture limiting distributions and in turn make standard asymptotic inference available.

The panel IM-OLS estimator is based on pooled OLS estimation of a partial sum transfor-
mation of the cointegrating panel regression. Similar to the panel FM-OLS and panel DOLS
estimators, the panel IM-OLS estimator also has a zero mean Gaussian mixture limiting
distribution, but it has advantage compared with its two counterparts. Panel IM-OLS esti-
mator avoids kernel function and bandwidth choices for long run variance estimation, which
is required by panel FM-OLS, and leads and lags choices to expand the regression, which
is required by panel DOLS. However, for inference, panel IM-OLS does need to estimate a
scalar long run variance parameter.

The limit theory considered here is obtained for a fixed number of cross-sectional units N,

letting T' — oo. This limit theory is widely used in empirical macroeconomics, empirical en-



ergy economics and empirical finance problems. In this case, even though the panel IM-OLS
estimator converges to a zero mean Gaussian mixture distribution, inference based on this
estimator still requires the estimation of a long run variance parameter. As in Vogelsang and
Wagner [2014], there are two solutions for this problem. First, standard asymptotic infer-
ence based on a consistent estimator of the long run variance and second, fixed-b inference.
The latter solution has its own benefit over standard asymptotic theory because fixed-b in-
ference captures the impact of kernel and bandwidth choices on test statistics based upon
them, whereas standard asymptotic theory does not. As will be discussed in detail later, the
pooled OLS residuals of the panel IM-OLS regression need to be further adjusted to obtain
pivotal fixed-b test statistics.

All estimators and tests in this paper are derived for a cross-sectionally uncorrelated
homogeneous panel. For many applications this unrealistic assumption is still commonly
employed when developing panel cointegration methods, especially for estimation proce-
dures. Only a few and partial results concerning both cointegration estimation and inference
are available for cross-sectionally dependent panels to date. One branch of the literature
considers panel data with spatial interaction among cross-sectional units (e.g., Kapoor et al.
[2007]; Yu et al. [2008], [2010], [2012]). An alternative to the spatial approach is the factor
structure approach, which can capture common stochastic shocks and trends (e.g., Bai and
Ng [2004]). Bai and Kao [2006] derive an extension of FM-OLS estimation to panels with
short-run cross-sectional correlation. Pesaran [2006] proposes the Common Correlated Ef-
fects (CCE) approach to estimation of panel data models with multi-factor error structure,
which is further developed by Kapetanios et al. [2011] allowing for nonstationary common
factors. The estimation and inference is challenging for cross-sectionally dependent hetero-

geneous panel with endogenous regressors, but our ongoing work shows that the methods



developed in this paper, with some modifications, will be able to estimate the parameter and
make valid inference in that scenario.

After the theoretical analysis, we provide a finite sample simulation study to assess the
performance of the estimators and tests. Benchmarks are given by pooled OLS, panel FM-
OLS and panel DOLS. In the simulations, panel IM-OLS performs relatively well with smaller
bias and only slightly larger RMSE than other estimators. The simulations of size and power
of the tests show that fixed-b test statistics based on the panel IM-OLS estimator lead to
the smallest size distortions at the price of only minor losses in size-corrected power.

The remainder of the paper is organized as follows. In the next section we present a
standard panel cointegrating regression and review several key results of the benchmark es-
timators. Section 1.3 describes the panel IM-OLS estimator and its asymptotic distribution.
Inference using the panel IM-OLS parameter estimator is discussed. Section 1.4 reports
the finite sample bias and root mean squared error of the various estimators. Section 1.5
assesses the finite sample performance of the test statistics described in Section 1.3. Section

1.6 concludes the paper. Appendix contains the proofs of this paper.



1.2 Homogeneous cointegrated panels for benchmark

estimators

Consider the following data generating process

it = B+ B+ ug (1.1)
Tit = Tit—1+ vt (1.2)
where y;; and u;4 are scalars, x;+ and v;; are k X 1 vectors with sub-index ¢ =1,2,--- | N for

the " cross sectional unit, sub-index t = 1,2,---T for the time period; § is k x 1 vector
of the slope parameters. For notational brevity here we only include the intercept u as the
deterministic component (later when we discuss the panel IM-OLS estimator, we will extend
it into more general deterministic time trends such as pg + p1t +--- + ,up_ltp_l). Define
the error vector as n;; = {ul £, U;J ,. It is assumed that n;; is a vector of I(0) processes, in
which case x;; is a non-cointegrating vector of (1) processes and there exists a cointegrating

/ /
relationship among [yl.t’ x;t} with cointegrating vector [1’ — ﬁ/] .

Assumption 1. Assume that {mt}i\il are cross-sectionally uncorrelated and theirs 2nd order

moment 1s constant.

Note that the Assumption 1 only requires the panels are homogeneous in the 2nd order

moment, it’s possible that the higher order moment structure are heterogeneous across .

Assumption 2. Assume that n;; satisfies a functional central limit theorem (FCLT) of the

form
[rT]

2N " = Bi(r) = QY2Wi(r), re0,1].
t=1



In Assumption 2, [rT] represents the integer part of T, and W;(r) is a (k+ 1) x 1 vector

of independent standard Brownian motions. 91/2 is a (k+ 1) x (k + 1) matrix that satisfies:

0= 0l/2 (91/2)', and

> Quu Quo
Q=Y Elmmy_;) = > 0,
J=—00 Qo Qo

where it is clear that Qy, = €, The assumption Qy, > 0 rules out cointegration in x;;.

Partition B;(r) as

Bu,z’(r)
Bi(r) = :
Bv,i(r)
and likewise partition W;(r) as
wu,i(r)
Wi(r) = :
Wv,z’(r)

where w,, ;(r) and W), ;(r) are a scalar and a k-dimensional standard Brownian motion re-

spectively. Using the Cholesky form of 0L/ 2

!/
it can be shown that 02., = Quu — Quo Qow and Auy = Que (Q;J/ 2) . By this Cholesky



decomposition, we can write

B.(r) By, i(r) OuvWy i (1) + AuoWo 4 (7)
1/2
Bv,i(r) Qm/) Wv,i(r)
Next define the one-sided long run covariance matrix. For each i € [1,2,---, N],

> Ay Auw
A= E(mip—jmy) =
J=1 Avu Avv

Also define the contemporary covariances, that is, for each i € [1,2,--- , N],

/ ZU,U EUU
% = Enitngs) =
ZU’U, E’UU

Note that A = ¥ + A is half long run variance, and it is likewise partitioned as

0 Ay Ay
A= Z E(ni¢—jmiy) =
J=0 Avu Avv

The long run variance, €2, is related to A and X as Q =X + A + A’

Remark 1. 1. If we do have heterogeneity in the 2nd order moment structure, i.e. §2;, A;,

Y and A; are varied for different i, then even though we can estimate those moments

individual by individual, however, finding pivotal fized-b statistics is challenging, and

we haven’t found it yet. In this case, one possible way to make valid inference is using

bootstrap to mimic those non-pivotal distributions. The stationary bootstrap is one

method that we could apply in this scenario.



2. If n;+ are cross-sectionally dependent, then the inference is much more complicated.
Spatial approach and factor structure approach are possible solutions according to dif-
ferent dependence assumptions. We haven’t been able to find a way to deal with the
general cross-sectional dependence case. Howewver, if the dependence only originates
from time fixed-effect dummy variables, then the methods developped in this paper will
go through with some natural modifications, and the bootstrap, both over time as well

as across units, is needed for valid inference.

As mentioned before, the benchmark estimators are the pooled OLS, the panel FM-OLS
and the panel DOLS estimators. To conserve space, we don’t provide detail results of all
those estimators. But we do want to review several key results for those estimators. For
the pooled OLS estimator, when the regressors are endogenous, it has an asymptotic bias
due to the nuisance parameters A,,, which cannot be removed by simple scaling methods.
The panel FM-OLS estimator as considered here is an extension of the FM-OLS estimator of
Phillips and Hansen [1990], which is designed to asymptotically remove A, and to deal with
the correlation between B, ;(r) and B, ;(r). Conditional on B, ;(r) for all i = 1,2,..., N,
the limit of the scaled panel FM-OLS estimator is a mean zero mixture of normals. Asymp-
totically pivotal ¢ and Wald statistics with N (0, 1) and chi-square limiting distributions can
be constructed by estimating 012“}. The panel DOLS estimator considered here is almost
identical to Mark and Sul [2003]. The only difference is that there is no fixed effect in the
data generating process (1.1). The homogeneous panel DOLS estimator of § has the same
limiting distribution as the homogeneous panel FM-OLS estimator. Hence, they are asymp-
totically equivalent. This result was shown by Kao and Chiang [2000], and it also can be

extended to heterogeneous panels.



1.3 Panel integrated modified OLS

1.3.1 Panel IM-OLS estimator

In this section, we present a new estimator for homogeneous cointegrated panels. This
estimator is an extension of Vogelsang and Wagner [2014], who propose the IM-OLS estima-
tor for the time series case. The transformation used by IM-OLS provides an asymptotically
unbiased estimator with a zero mean Gaussian mixture limiting distribution. Compared
with panel FM-OLS, the transformation does not require estimators of €2, so the choice of
bandwidth and kernel is avoided for parameter estimation. We consider a slightly more

general version of (1.1) given by
vit = Did; + 348 + iy, (1.3)

where §; and 8 are p x 1 and k x 1 parameter vectors respectively, x;; continues to follow
(1.2) and for the deterministic component, Dy, we assume that there is a p x p matrix Gp
and a vector of functions, D(s), such that

T
lim VTGP Dygry = D(s) with 0 < / D(s)D(s)'ds < 0o, 0<r<1. (1.4)
0

T—o00

The deterministic component Dy could include an intercept, time trend and polynomials

of the time trend.

Remark 2. 1. Note that, in regression (1.3), the intercept from Dy and 6; together allow

fized effect estimation of the system. In a simpler case, suppose that 0; is the same



constant for all i so that

yit = Di0 + x5y B + ugy.

In this case, the estimation and inference procedures introduced later in the paper go

through with minor changes.

. In regression (1.3), B is a constant for all i, which means the same long-run relation
between y;; and x; applies for all i. As in Philips and Moon [1999], we could also
allow this coefficient differs randomly across i, which leads to the heterogeneous panel
cointegration model. In that case, as long as the error vectors are uncorrelated across
1 and their 2nd order moments are constant, then the results will be similar as what
we have in this paper. Otherwise, if the panel has heterogeneity in both cointegration
relation and 2nd moment structure, then inference is challenging and might need to

apply boostrap.

. We could consider a more traditional panel data setting model like

Yit = Hi + M+ B+ ugy.

In this case, after the time effect A+ being eliminated by cross-sectional demeaning, and
iof it is also a homogeneous panel, then the estimation and inference procedures will be
similar as in this paper. But if there is heterogeneity in the sencond moment structure,
even though the estimation of the B will not be affected, however, the inference is much
more complicated as we disscussed in Remark 1, and bootstrap method could be used

for the inference.
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Computing the partial sum of both sides of (1.3) gives

SY = SP's; + SE B+ SY,

(1.5)

where S% = Zé’:l Yij, and StD , 57, and S} are defined analogously. As in Vogelsang and

Wagner [2014], we need to add z;; as regressors in (1.5) to deal with correlation between wu;

and v;¢, which leads to

Y
Sﬁ

SP'8; + S B + alyy + (S4 — 2hyy)

SP'6; + SE B + alyy + SE.

(1.6)

We now focus on the asymptotic behavior of the pooled OLS estimators of §;, 8 and ~

from (1.6), which we label the panel IM-OLS estimators of d;, 5 and . Define the stacked

vectors and matrices as follows:

SY =

N
&
I

EN

ith block

u /
Si1 — Ty

u /
_SiT — 7]

lep

lep
~——

N block



With the above notation, the matrix form of (1.6) is given by

SY = 579 + 51, (1.7)

and the OLS estimator of (1.7) is given by

. _oN—-1 . -
- (59«"5“7) (sx’sy) , (1.8)
which leads to
i w1 qi\ (it g
e-e:(s 5) (s S) (1.9)
N T LN
=D audy DD i (S —ai) |
i=11=1 i=11=1
/
where ¢;; = [Sz‘xt/ x;t O1xp - StD/ lep} fort=1,2,..., N, t=1,2,...,T. The
/
submatrix of g, {01 xp StD/ lep] , consists of StD’ as its it" block and other

N — 1 zero vector blocks. Define the scaling matrix

TI 0

-1
PIM = I,

0 In®Gp

as a (2k + Np) x (2k + Np) diagonal matrix.

The following theorem gives the asymptotic distribution of (5}, A, .

Theorem 1. Assume that the data are generated by (1.2) and (1.3), that the deterministic

components satisfy (1.4) for alli € [1,2,--- , N|, and that Assumptions 1 and 2 hold. Define

12



0 by stacking the vectors 6;, B and Qvu Then for fixred N, as T — oo

r(5-1)
(5/_‘g2;g{)vu)

Gp (51 - 51) = App (é - 9)

Gp (O = bv) |
kal
Q5
= (APIMS“%'SQE'APIM> (APIMS@IS&> —| Opx1
Opxl
-1
/ -1 N 1 / N
= Oy (H ) 2:1 f() g1 z( )9172'(3) ds 2:1 fO g1 z wu,i(s)ds
1= 1=
/! —1 N / o N 1
= oy (I1) 21 Jo 91.i(s)g1.i(s)'ds 21 Jo [G1,i(1) = Gy i(s)]dwy (s)
1= 1=
Jo wy.i(s)ds
U%gi(r)
- -
ol 0 Op1
where I = Q%Q ; 91,1’(7”) = : , Gl Ji fO g1 Z
| 0 IN®1Ip) Jo D(s)ds
Opxl

13



Conditional on gq ;(r) for all i € {1,2,..., N}, it holds that

¥~ N(0,Vpra), (1.10)
where Vpr)r is given by
N o
Very = oa (1) Z/o g1i(s)gri(s)ds | x
i=1

N 1
> [ 1610 = GLilGra) = Graelas | (L)
i=1
N 1 -1
> [ oimatsyas| !
i=1"0

It is clear that this conditional asymptotic variance differs from the conditional asymp-

totic variance of the panel FM-OLS and panel DOLS estimator of 6 and . Denoting with
/
m;(s) = [D(s)’, W, i(s)/} and with [Ippy; = diag ([p’ Qlln/?) the latter is given by

1 N -

2 -1 -1
Viras = o (Mpey) | [ S miemofas | ppan ™. (2
i=1

It is important to note that we can extend Theorem 1 further to obtain a sequential
result. Since the parameters in 6 require different scaling for the sequential limits, and our
interests are mainly on 3, therefore we only provide the result for (B — 6). That is, if all
the assumptions in Theorem 1 hold, and first T" — oo, then N — oo, we will have following

asymptotic distribution

VNT (B—B) - (1.13)
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where & ~ N (O, V5€q>, and the asymptotic variance Vsﬁeq is given by

Vieq = 0 {(9%2)/} B ( /0 1 A1(r)dr) B ( /0 1 Ag(r)dr) ( /0 1 A1<7~)dr) B (k)

= 5.602.,0,} (1.14)

where A1(r) = (r3/3) I and As(r) = [(1—r— 4 r5) /12] Ij.. The importance of this
result is that it leads to standard inference based on the large T and large N approximation.

The details of the derivation are in the Appendix.

Remark 3. Above is the sequential limit for the homogeneous panel. If our panel has hetero-

geneity in the 2nd moment structure, then the variance, Vsﬁeq, will take the same expression,

N N

P 1 2 . 1 .

but ., = ]\;Z_T)r(L)ON § 101“}72- and Qyy = ]\%%N § ) Qo i-
1= 1=

1.3.2 Inference using Panel IM-OLS

This section provides a discussion of hypothesis testing using the panel IM-OLS estimator.
The zero mean Gaussian mixture limiting distribution of the panel IM-OLS estimator given
in Theorem 1 and the conditional asymptotic variance given in (1.11) offer the theoretical
basis for this discussion. In particular we consider Wald tests for testing multiple linear
hypotheses of the form

H0:R¢9:7"

where R € RI*(ZE+ND) with full rank g and r € R?. Because the vector  has elements

that converge at different rates, we need restriction on R to get formal Wald statistics. We
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assume that there exists a nonsingular ¢ x ¢ scaling matrix Ap such that

lim Ap RAPIM R*

T—o00

where R* has rank q.
In order to carry out statistical inference, we need to scale out the asymptotic variance

of panel IM-OLS. Suppose that 2., is an estimator for o2.,. Then an estimator for Vpyay

is given by
T N -1
Vein = G | T2D D ArinditdyAriv X

t=11=1

T N ,

T 4ZZAP[M[ ~ 51, J [sz—sZt_l] Apir | %

t=11=1

T N -1

ZZ AprmaitditApiv 7

1=1

where S = Y% g;;, and S =0 foralli=1,2,-- , N.
There are several obvious candidates for G2.,. The first is based on the pooled OLS
residuals. Let the pooled OLS residuals be u;; = y;3 — x;tﬁA — Dégi, where 52 and B are the

pooled OLS estimators. Using these residuals, we can define estimators for the error vector

/
A . o =1 T N
it = {uit, Awét] - Then Iy =T >4 i Mt 4 j» and

A Quu,z qu,z . . J /
0= | T =T+ Y K )(r +F>
IR VV,i j=1
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The estimator for o2, is given by

S 1 LT . .o\l
Oyv = N Z Quu,i - qu,i <vi,i> Qvu,i :

1=1

The second estimation approach is to use ASW the first differences of the pooled OLS

residuals of the panel IM-OLS regression (1.6), to directly estimate 2.,

Extending a result in Vogelsang and Wagner [2014], it can be shown that &2., is not a
consistent estimator under traditional assumptions on the bandwidth and kernel functions.
Under traditional bandwidth assumptions, we can show that the limit of 52, is larger than
2., which leads to asymptotically conservative results when we build test statistics by 2.,
and use critical values from the standard normal or a chi-square distribution.

The third estimation approach is based on OLS residuals from a further augmented
regression. As discussed in Vogelsang and Wagner [2014], an estimator of o2, based on
these residuals defined below has a fixed-b limit that is proportional to au v, independent of

2

6, and does not depend upon additional nuisance parameters, whereas the estimators O

and 2., both fail those requirements. Define this estimator as:

N T T .
2*_lz ISk lj — NG A G
uv_N M J ih

-1 —

=2 h=2

where Agzé* = S%* S“t | is the difference of the residuals S%*, obtained by running the

further augmented IM-OLS regression individual by individual, 5%* = SZ% — StD '5; — Sﬁ’ B —
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T t

- -1 J
27 — zhAi. The augmented regressors, zj, are given by z; =t Z qu — 2—31 21 qi,, where

j=1 j=1s=
/
qﬁ:{StD/, Sﬁ/, x;t} foralli=1,2,...,N,t=1,2,...,T.

Using an estimator of ¢2.,, we can define the ¢t and Wald statistic as

. (78 —7)

\/ RApivVprmApiv B

= [(Ri— )] [RapiVerapn®] " [(rI-1)]

where f/p 70 could be Vp IM using 53-1;: which defines £ and W, or Vpras using 612“), which
defines ¢ and W, or VI”;IM using 2%, which defines #* and W*. The asymptotic null
distribution of these test statistics are given in Theorem 2. Standard asymptotic results

based on traditional bandwidth and kernel assumptions are given for ¢, W, ¢ and W, whereas

a fixed-b result is given for #* and W*.

Theorem 2. Assume that the data are generated by (1.2) and (1.3), that the deterministic
components satisfy (1.4), and that Assumptions 1 and 2 hold. Suppose that the bandwidth,
M, and kernel function, k(-), satisfy conditions such that &%m; 1s consistent. Then for fixed

N, asT — o0

o W= X?I’ where Xg 1S a chi-square random variable with q degrees of freedom. When

qg=1,t= Z, where Z is a standard normal distribution.

o Under the above assumptions, &12“} = ai.v (1 + d'vdy), with d- denoting the second kx1
-1
N N
1 1
block of (Zl Ik 91,1(8)91,1(8)’618> (Zl Jo [G1i(1) — Gl,i(S)]dwu,i(S)>' Therefore,
1= 1=
2

it follows that W = where Xg s a chi-square random variable with q degrees of

Xq
Idydy’
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Z

/ )
J1+dldy

Jreedom that is correlated with d~. When q =1, t = where Z is distributed

standard normal and is correlated with d- .

o [f M =bT, where b € (0,1] is held fixred as T — oo, then

N2 Q)

1=1

where Q7 (b) is exactly same form as Qy (]5*,]5*> in Vogelsang and Wagner [2014],1

N
and Xg 1S a chi-square random variable with q degrees freedom independent of% > QF(b).
1=1

When q =1,

N
where Z is standard normal distribution independent of % > Q5 (b).

i=1
e Due to the independence between the numerator and denominator of the limits of W*
and t*, we can further obtain a sequential limit result, where T grows large, followed
sequentially by the limit as N grows large. Define

Tk

— LU
Q_MQ W>

1See Vogelsang and Wagner (2014) page 744 for Qp, (P1, Py), and formula (30) for P*(r).
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where ug = E [QF(b)]. Then as T — oo,

2
Wk = Xg
rQ 1 N 1 Hx
v —— Q¥ (b
NZ;HQQZ()
LXZ as N — oo

When q = 1,

521@:\/@'{*

Z

LS 1om)
Nz rQ™i

=

P
—7Z as N — oo.

2

When appealing to consistency of & ,,, inference using W is standard. In contrast 5%“] is
inconsistent under traditional bandwidth assumptions. Since d;dy > 0, the critical values of
W are smaller than those of the X?I distribution. Thus, using x% critical values for T leads
to a conservative test under the traditional bandwidth assumptions. The fixed-b limiting
distribution of W* is complicated due to the presence of % g:lQ;k(b), which depends on
i—
wy ;(r) fori =1,2,---  N. Therefore, critical values should be simulated taking into account
the cross-sectional sample size, the specifications of deterministic components, the number
of integrated regressors, the kernel function and bandwidth choice. For sake of brevity, in
Table 1.13 and Table 1.14, we only tabulate critical values for the t-statistic for the parameter

associated with z;; in models with an intercept and 2 integrated regressors for the Bartlett

and QS kernels and a grid of bandwidths indexed by b for N = 25. However, when both T
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and N large, inference using W/’; o’ with fi¢) as an estimator of 11y, requires merely Xg critical
values rather than simulated critical values, which is quite convenient. The ¢ statistics have

similar results.

1.4 Finite sample bias and root mean squared error

In this section, we compare the performance of the pooled OLS, panel FM-OLS, panel
DOLS, and panel IM-OLS estimators as measured by bias and root mean squared error
(RMSE) within a small simulation study. We provide results that the individual dummy

variable is not included. The data generating process is given by

Vit = A+ xlyfr+ 22480 +uy
rvly = wljp1 +ouly

¥ = X254 1+ 024

where, for Vi € [1,2,--- | N|, 21,0 = 0, 22,0 = 0, and u; = pru; s—1 + €t + p2 (el + €2),
ujp = 0, and vl = el + 0.5el; 41, v2;4 = €24 + 0.5€2; + 1, where €;, el and e2;; are
1.1.d. standard normal random variables independent of each other. The parameter values
chosen are u = 3, f1 = B2 = 1. Note that the estimators of 51 and (o are exactly invariant
to the value of u, so the value of 1 has no effect on our results. In addition, we use p1 and p9
from the set {0,0.3,0.6,0.9}. The parameter pj controls serial correlation in the regression
error, and po determines whether the regressors are endogenous or not. The kernel function

chosen for panel FM-OLS are the Bartlett and the Quadratic Spectral kernels, and the
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bandwidths are given by M = bT with b € {0.06,0.1,0.3,0.5,0.7,0.9}. We also use the data
dependent bandwidth from Andrews [1991]. The panel DOLS estimator is implemented
using the information criterion based lead and lag length choice as developed in Kejriwal
and Perron [2008], where we use the more flexible version discussed in Choi and Kurozumi
[2012] in which the numbers of leads and lags included are not exactly same. The sample
sizes are N € {5,10,25}, T € {50,100} and the number of replications is 5000.

In Tables 1.1-1.6 we display the results for N = 5,10,25, T" = 50, 100 using the Bartlett
kernel only. General patterns are similar for the QS kernel. In each of those tables, Panel A

reports bias and Panel B reports RMSE.

1.4.1 Sample size N =5

Table 1.1 shows the results for N = 5 with 7" = 50 case. When py = 0 (no endogeneity),
none of the estimators show much bias for any value of p;. When the bandwidth is relatively
small, panel FM-OLS has a little bit larger RMSE than pooled OLS. But, as the bandwidth
increases, the RMSE of panel FM-OLS tends to first increase and then decreases, indicating
a hump-shape in the RMSE, and the turning point is around b = 0.5, i.e. M = 0.5T". Pooled
OLS and panel FM-OLS have smaller RMSE than panel IM-OLS and this holds regardless
of bandwidth for panel FM-OLS. Panel IM-OLS has the largest RMSE in any cases. The
RMSE of panel DOLS is a little bit smaller than that of panel IM-OLS, but it is still larger
than that of pooled OLS and panel FM-OLS.

When ps # 0 (there is endogeneity), the estimators show different patterns. For a given

value of p1, as pg increases, the bias of pooled OLS increases. Panel FM-OLS shows the
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same pattern, but its bias is smaller than that of pooled OLS, which is expected from the
theory. In addition, the bias of panel FM-OLS also depends on the bandwidth and value
of p1, as pp is relatively small, the bias of panel FM-OLS increases as bandwidth increases,
however, as pp is far away from zero, the bias of panel FM-OLS is seen to initially fall as
the bandwidth increases and then tends to increase as the bandwidth become large. But
no matter how large the bandwidth is, the bias of panel FM-OLS does not exceed that of
pooled OLS. On the contrary, the biases of panel IM-OLS and panel DOLS are much less
sensitive to po, especially when pq is relatively small, and are always smaller than those of
pooled OLS and panel FM-OLS. The bias of panel DOLS is similar to the bias of panel
IM-OLS when p; is small whereas for larger values of pi, the bias of panel DOLS tends to
be larger than that of panel IM-OLS. The overall picture in this case is that panel IM-OLS
has smaller bias than panel DOLS which in turn has lower bias than both pooled OLS and
panel FM-OLS. The magnitude of the bias of both panel IM-OLS and panel DOLS are less
sensitive to the values of pg than for pooled OLS and panel FM-OLS.

Considering the RMSE when there is endogeneity, we see that for given value of p1, as pa
increases, the RMSE of pooled OLS increases. Panel FM-OLS shows the same pattern, but
its RMSE is smaller than that of pooled OLS, especially when pq is relatively small. Focusing
on the bandwidth we see that the RMSE of panel FM-OLS has the same pattern as its bias,
if p1 is small, the RMSE of panel FM-OLS increases as bandwidth increases, whereas if pq is
relatively large, the RMSE of panel FM-OLS is seen to initially fall as bandwidth increases
and then tends to increase as the bandwidth becomes large. For RMSE of panel IM-OLS,
it is larger than that of pooled OLS when both p; and po are small, otherwise, it is smaller
than that of pooled OLS. The RMSE of panel DOLS also has similar pattern but it is smaller

than that of panel IM-OLS. The RMSE of panel IM-OLS does not vary with ps when p; is
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small. The comparison of RMSE for panel IM-OLS and panel FM-OLS depend on value of
p1, p2 and b. When both p; and po are small, the RMSE of panel IM-OLS is larger than
that of panel FM-OLS, no matter what bandwidth used. However, when both p; and p9 are
large, the RMSE of panel IM-OLS could be smaller than that of panel FM-OLS with very
large bandwidth.

Also, in Table 1.1, we can see that when there is endogeneity but no serial correlation, then
panel FM-OLS using the data dependent bandwidth performs better than all other estimators
with very small bias and smallest RMSE. And this is true for all different combinations of
N and T, which we can see from Table 1.2 to Table 1.6.

When we increase T' to 100, all the estimators tend to have smaller bias than the 7" = 50
case, which is expected because the estimators are consistent. Almost all of the results are
similar to the T" = 50 case. One slight difference is that when there is endogeneity and
both p; and p9 are large, the bias of panel IM-OLS is a little bit larger than that panel
DOLS, even though they are still less biased than pooled OLS. The other difference when we
increase T' from 50 to 100, is that when both p; and p9 are very large, the RMSEs of panel
IM-OLS and panel DOLS are very similar and both are smaller than that of panel FM-OLS,

no matter what bandwidth used, and in turn smaller than RMSE of pooled OLS.

1.4.2 Sample size N = 10

The results of bias in N = 10 case are similar to the N = 5 case. From Panel B of Table
1.3, most of the results for RMSEs are similar as N = 5 case except that when both p; and

po are large, the RMSEs of panel IM-OLS and panel DOLS are very similar and both are
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smaller than that of panel FM-OLS for both T" = 50 and T" = 100. Also, when pj and p9
are very large, the RMSEs of panel IM-OLS is slightly smaller than that of panel DOLS for

T = 50 and this relation is reversed when 7" = 100.

1.4.3 Sample size N = 25

When we increase the cross section sample size to N = 25, the bias results are similar,
but a different pattern emerges in the RMSEs. From Panel B of Tables 1.5 and 1.6, when
there is endogeneity, in both cases 7' = 50 and T' = 100, the RMSE of pooled OLS is the
largest in any cases. This implies that when there is endogeneity, pooled OLS will have the
largest bias and largest RMSE. Also, we can see that when both p; and po are large, the
RMSEs of panel IM-OLS and panel DOLS are very similar and both are smaller than that
of panel FM-OLS with any bandwidth for both T"= 50 and 7" = 100. Similar as the N = 10
case, when both p; and po are very large, the RMSEs of panel IM-OLS is slightly smaller
than that of panel DOLS when T" = 50, and the RMSEs of panel IM-OLS is slightly larger

than that of panel DOLS when T = 100.

1.4.4 Summary of finite sample bias and RMSE

The simulation shows that, when there is no endogeneity (p2 = 0), pooled OLS dominates
other estimators with no bias and smallest variance. When there is no serial correlation
(p1 = 0), panel FM-OLS with the data dependent bandwidth performs better than other

estimators. When both serial correlation and endogeneity exist (p1 # 0, p2 # 0), the relative
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performance of the estimators depends on the values of N, T, p; and po. Panel IM-OLS
is more effective in reducing bias than the other estimators and both bias and RMSE of
panel IM-OLS are less sensitive to the parameters p; and pg than are the bias and RMSE
of panel FM-OLS. For N small (N = 5,10) and 7" small (7" = 50), panel IM-OLS has the
smallest bias but with larger RMSE as a cost, except that when both p; and po are large
where panel IM-OLS has the smallest RMSE. For N small and T relatively large (7" = 100),
panel IM-OLS and panel DOLS are similar, and dominate pooled OLS and panel FM-OLS.
When N is relatively large (N = 25), pooled OLS has the largest bias and largest RMSE in
all cases, and if T" is small and pq, po are relatively large, then panel IM-OLS is better than
the other estimators in reducing bias and has smallest RMSE. When N and T are large, and
p1, p2 are large, then panel DOLS is a little bit better than panel IM-OLS, which in turn is

better than pooled OLS and panel FM-OLS.

1.5 Finite sample performance of test statistics

In this section we provide some finite sample results about the tests’ performance using
the simulation design from Section 1.4. Here, we only report results for cases where p1 = pa.
The results include t-statistics for testing the null hypothesis Hy : 1 = 1 and Wald statistics
for testing the joint null hypothesis Hy : 51 = 1, 82 = 1. The pooled OLS statistics serve as a
benchmark. The panel FM-OLS statistics were implemented using &Z 1. The panel IM-OLS
statistics were implemented in three ways. The first uses 2., and is labeled panel IM(O),

the second uses 2., and is labeled panel IM(D) and the third uses 52%, and is labeled panel

IM(Fb). We report results for both the Bartlett and Quadratic Spectral kernels. As for the
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choice of bandwidth for panel FM-OLS and panel IM-OLS statistics, we follow Vogelsang
and Wagner [2014]. One bandwidth choice is the data dependent bandwidth rule of Andrews
[1991]. The other choice is the fixed-b bandwidth, that is b = M /T, where M =1,2,--- | T.
Rejections for the pooled OLS, panel FM-OLS, panel DOLS, panel IM(O) and panel IM(D)
are carried out using N(0,1) critical values for all values of M. From Theorem 2, the panel
IM(D) test statistic is asymptotically conservative under traditional asymptotic theory. In
contrast, rejections for panel IM(Fb) are carried out using fixed-b asymptotic critical values.
The empirical rejection probabilities were computed using 5000 replications, and the nominal
level is 0.05 in all cases.

Tables 1.7 to 1.9 and Tables 1.10 to 1.12 report empirical null rejection probabilities using
data dependent bandwidth choices for Bartlett and QS kernel. Tables 1.7 to 1.9 show results
for the t-tests and Tables 1.10 to 1.12 contain results for the Wald tests. In each table Panel
A corresponds to T' = 50 and Panel B to T' = 100. We only briefly summarize some main
findings in the tables. When p; = po = 0 (no serial correlation and no endogeneity), we
can see that pooled OLS tests have rejection probabilities close to 0.05, but there are huge
over-rejections as the value of p; and po increase. For p; = pg = 0, when using the QS
kernel, panel IM(Fb) tests tend to have rejection probabilities less than 0.05, whereas other
tests show some over-rejections. For p; = pg = 0, when using the Bartlett kernel, all the
tests show some over-rejections, but the over-rejection problem is less severe when 7" = 100
than 7" = 50. Note that both panel IM(O) and panel IM(D) show some over-rejections, but
those are less severe than panel FM-OLS, especially when there is strong serial correlation
and strong endogeneity. Generally, panel IM(D) tests have rejection probabilities that are
smaller than those of panel IM(O), which is what we expected because the panel IM(D) test

is conservative under standard asymptotic theory. In addition, increasing the values of pq
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and po leads to over-rejection problems for all the tests. The problem with panel IM-OLS is
that the data-dependent bandwidth is too small to give less size distortions. In contrast to
the pure time series case, there is no test that dominates the others in that scenario.

In order to see the impact of bandwidth and kernel choices on over-rejection problem,
we plot in Figures 1.1-1.3 null rejection probabilities of the t-tests as a function of b € (0, 1].
The first three figures give the results for N € {5,10,25}, T = 100 using the Bartlett
kernel and p; = po = 0.3. In Figure 1.1, with cross-section sample size N = 5, we can
see that with small bandwidths, all tests have some over-rejection problems. Panel IM(D)
is less severe than the other tests because it is conservative. As the bandwidth increases,
all rejection probabilities increase substantially except for panel IM(Fb). The panel IM(Fb)
rejection probabilities are close to 10% for all values of b, which indicates that the fixed-b
approximation performs relatively well for panel IM(Fb). In Figures 1.2 and 1.3, the cross-
section sample size increases to 10 and 25 and the pattern of rejection probabilities are similar
as Figure 1.1. However, when the bandwidth is small, like b = 0.08, panel FM(Fb) has the
least rejection probabilities, around 8% and 7.5%, respectively. In addition, as N increases,
panel IM(Fb) rejection probabilities are close to 10% and 12% when large bandwidth used.

As the values of p1, p2 increase to 0.9, there exists strong serial correlation and endogene-
ity. We can see from Figures 1.4-1.6 that all the tests have serious over-rejection problems
regardless of bandwidth. Interestingly, for small N (N = 5,10), panel FM(Fb) has less of
an over-rejection problem than panel IM(Fb) although both tests are severely size distorted.
As N increases to 25, the rejection probabilities of panel IM(Fb) tend to smaller than that of
panel FM(Fb). In Vogelsang and Wagner [2014], it was pointed out that the over-rejection
problems of IM(Fb) becomes less problematic as T increases. We find similar patterns in

our simulations. In Figures 1.7 to 1.9, we show the results with 7" = 100, and it is clear that
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the panel IM(Fb) over-rejections are reduced although they are still large. We believe that,
similar to the pure time series case, if we further increase T' to 500 or 1000, the rejections
for panel IM(Fb) with non-small bandwidths will be substantially reduced to reasonable size
whereas the other statistics will continue to have over-rejection problems.

Figures 1.10-1.12 give some results for the QS kernel. For brevity we only report results
for N =5, T = 50,100, p; = ps € {0.3,0.9}. Compared with results using Bartlett kernel,
panel IM(Fb) has less over-rejection problems using QS kernel. In Figures 1.10, when serial
correlation and endogeneity are not that strong, panel IM(Fb) tends to have rejections close
to 10%, whereas all other tests have over-rejection problems. In Figures 1.11 and 1.12,
when there is strong serial correlation and endogeneity, all the tests have some over-rejection
problems, however, the QS kernel leads to less size distorted results than the Bartlett kernel.

The overall picture is that the panel IM(Fb) test is the most robust statistic in terms
of controlling over-rejection problems although for given sample sizes, N, T, increasing the
values of py, po causes over-rejections to emerge. Large sample sizes of both N and T in
conjunction with large bandwidths and the QS kernel are desirable when serial correlation
and endogeneity are strong.

Now, we turn to the analysis of the power properties of the tests. For the sake of brevity
we only display results for the case p; = ps = 0.6 for the Wald test for N = 5, T" = 50
and using the QS kernel. Patterns are similar for other values of py, pa for ¢ tests for other
combinations of N, T with the Bartlett kernel. Starting from the null values of 51 and (9
equal to 1, we consider under the alternative 51 = o = § € (1, 1.4], using (including the
null value) a total of 21 values on a grid with mesh 0.02. We focus on size-corrected power
because of the potential over-rejection problems under the null hypothesis. This allows us

to see power differences across tests while holding null rejection probabilities constant at
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0.05. This is useful for the theoretical power comparisons, but such size-corrections are not
feasible in practice.

In Figure 1.13 we display size adjusted power of the panel FM(Fb) and panel IM-OLS
Wald tests using the QS kernel with b = 0.3. For all other values of b, the patterns are very
similar. From Figure 1.13, we can see that panel IM(Fb) has the least power across the four
tests. The use of 52% to obtain asymptotically fixed-b inference and less finite sample size
distortions comes at the price of a small reduction in power.

Figure 1.14 shows the effect of the bandwidth on size adjusted power of the panel IM(Fb)
test by plotting power curves for eight values of b = 0.02,0.06,0.1,0.3,0.5,0.7,0.9,1.0. We
can see that panel IM(Fb) power depends on the bandwidth and tends to decrease as band-
width increases, but power is not that sensitive to the bandwidth. In addition, when b > 0.5,
the power of panel IM(Fb) is almost constant. In Figure 1.15, we display power using the
Bartlett kernel, and it is clear that all tests almost have similar power, and the power is not
sensitive to b.

Figure 1.16 gives power comparisons across the various tests: pooled OLS, panel FM-OLS,
panel DOLS, panel IM-OLS. In Figure 1.16, panel IM(Fb) test is shown for b = 0.06,0.1, 1.0,
and using the Andrews data dependent bandwidth. The panel FM-OLS test is implemented
with the Andrews data dependent bandwidth. We note that the pooled OLS and panel FM-
OLS tests have the largest size-adjusted power, with the power of panel DOLS test being
slightly smaller and panel IM-OLS tests have the smallest power. But the power difference
between panel IM-OLS and all other tests are relatively small.

Finally, Figures 1.17-1.19 provide size adjusted power comparisons similar to Figures
1.13, 1.14 and 1.16 but with N = 10. The main feature is that size adjusted power increases

with V. In addition, as N increases, the power of panel IM(Fb) becomes less sensitive to the
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bandwidth. With a larger N, the power rankings are the same as before, but the difference

of the power between panel IM-OLS and panel FM-OLS is smaller.

1.6 Summary and conclusions

This paper considers the extension of the integrated modified ordinary least squares
(IM-OLS) method of Vogelsang and Wagner [2014] for estimation and inference about a
cointegrating vector in homogeneous cointegrated panels. We label the estimator panel
IM-OLS. It is a tuning parameter free estimator that is based on a partial sum transformed
regression augmented by the original integrated regressors themselves. The advantage is that
it leads to a zero mean mixed Gaussian limiting distribution without requiring the choice
of tuning parameters (like bandwidth, kernel, numbers of leads and lags). For inference
based on panel IM-OLS estimates, a long run variance still needs to be scaled out. Using a
consistent estimator of the corresponding long run variance leads to tests having standard
asymptotic distributions. Fixed-b inference is another way to obtain pivotal test statistics.
Critical values of fixed-b ¢ and Wald tests need to be simulated taking into account the
specification of deterministic components, the number of integrated regressors, the kernel
function and the bandwidth choice.

We provide a finite sample simulation study in which the performance of the panel IM-
OLS estimator and test statistics are compared with pooled OLS, panel FM-OLS and panel
DOLS. Typically, panel IM-OLS shows good performance in terms of bias and RMSE espe-
cially in the following two scenarios: (i) the panel has large sample size; (ii) small sample size

panel with strong serial correlation and endogeneity. The size and power analysis of the tests
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show that the fixed-b test statistics are more robust, in terms of having lower size distortions
than all other test statistics, especially for larger sample sizes. This robustness comes at the
cost of minor power losses provided serial correlation and endogeneity is not that strong.
When there is strong serial correlation and endogeneity, all tests have severe over-rejection
problems, and we prefer panel IM-OLS test with QS kernel and large bandwidth in this case.

Further research will study panel IM-OLS estimator for panels that have identical de-
pendent unit in cross section, panels that have non-identical dependent unit in cross section,

for higher order cointegrating regressions and for nonlinear cointegration relationships.
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Tables and Figures

Table 1.1: Finite sample bias and RMSE of the various estimator of g1, N = 5, T' = 50,
Bartlett kernel

pi p2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0  -0.0002 -0.0001 -0.0004 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003  -0.0003
0.3 0.0057 -0.0004 -0.0006 -0.0004 0.0003  0.0021  0.0030  0.0036  0.0040  0.0001
0.6 00116 -0.0008 -0.0003 -0.0006 0.0009  0.0044  0.0063  0.0075  0.0082  0.0005
09 00175 -0.0011 -0.0002 -0.0007 0.0015 0.0068 0.0096 0.0113  0.0124  0.0010
03 0  -0.0003 -0.0002 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
0.3 0.0100 -0.0001 -0.0001  0.0013  0.0017  0.0039  0.0055  0.0064 0.0071  0.0016
0.6 00202 00001  0.001  0.0029 0.0038 0.0083 00113 00132 0.0145  0.0035
0.9 00304 00002  0.0002  0.0045 0.0059 0.0126 0.0171  0.0200 0.0219  0.0055
06 0  -0.0004 -0.0003 -0.0008 -0.0005 -0.0005 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005
03 00200 00024  0.0034  0.0083 0.0075 0.0091 00116 00134 00146  0.0076
0.6 00404 00051  0.0068  0.0172 0.0155 0.0188  0.0238  0.0274  0.0297  0.0158
0.9 00608 0.0078  0.0090  0.0260 0.0235 0.0285 0.0360  0.0413  0.0448  0.0240
0.9 0 -0.0009 -0.0007 -0.0007 -0.0011 -0.0011 -0.0012 -0.0011 -0.0010 -0.0010 -0.0011
0.3 00715 00404  0.0521  0.0598 0.0568 0.0511  0.0529  0.0561  0.0587  0.0575
06 01438 00815 01031  0.1206 0.1147 0.1035 0.1069  0.1131  0.1183  0.1162
0.9 02162 01226 01534  0.1815 0.1726 0.1559  0.1610  0.1702  0.1780  0.1749
Panel B: RMSE

0 0 00115 00202 00147 00119 00120 00124 00124 00124 00124  0.0120
03 00134 00202 00151 00119 00121 00128 00131 00133 00134  0.0121
0.6 00180 00202 00156 00121 00124 0.0141 0.0151  0.0157  0.0160  0.0123
0.9 00239 0023 00158 00123 00130 0.0160 0.0179  0.0190  0.0197  0.0127
03 0 00161 0028 00211 00168 00170 0.0175 0.0175 0.0175 0.0175  0.0169
03 00198 0028  0.0213  0.0169 0.0172 0.0183 0.0189 00192 00194 0.0171
06 00283 0028 00215 00173 0.0179  0.0208 00227 0.0238 00246  0.0177
0.9 0038 00287  0.0217 00180 0.0192 0.0244  0.0279  0.0300  0.0313  0.0188
0.6 0 00270 0.0490  0.0358  0.0283 00287 0.0297 0.0297 0.0296 0.0295  0.0286
0.3 00352 00491  0.0365  0.0298 0.0301 0.0318 0.0330 0.0337  0.0341  0.0300
0.6 00529 00494  0.0378  0.0345 0.0341  0.0379  0.0416  0.0439  0.0455  0.0341
09 00735 00499  0.0391  0.0411  0.0401  0.0464  0.0529  0.0571  0.0598  0.0402
0.9 0 00843 01638 01090 00887 0.0910 0.0967 0.0973  0.0967  0.0958  0.0904
0.3 01131 01689 01231 01089 01091 01113 01131 0.1142  0.1149  0.1090
0.6 01736 0.1839  0.1563  0.1552 0.1518 0.1475 0.1512  0.1557  0.1591  0.1526
0.9 02432 02068 0198 02111 02041 01935 01992  0.2071 02134  0.2059
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Table 1.2: Finite sample bias and RMSE of the various estimator of g1, N =5, T = 100,
Bartlett kernel

p1 P2 P-OLS P-IM P-DOLS Panel FM-OLS
b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0 0.0001  0.0001 0.0000 0.0001  0.0001  0.0000 0.0000 0.0000 0.0000 0.0001

0.3  0.0030  0.0000 0.0001 0.0002  0.0005 0.0012 0.0017 0.0020 0.0021 0.0001

0.6  0.0060  0.0000 0.0002 0.0003  0.0009 0.0024 0.0033 0.0039 0.0043 0.0002

0.9 0.0089 -0.0001 0.0001 0.0004  0.0013 0.0036 0.0050 0.0058 0.0064 0.0003

0.3 0 0.0001  0.0002 0.0002 0.0001  0.0001 0.0001 0.0000 0.0000 0.0000 0.0001
0.3  0.0052  0.0002 0.0003 0.0008  0.0010  0.0022 0.0029 0.0034 0.0038 0.0007

0.6 0.0104 0.0002 0.0004 0.0015  0.0020 0.0043 0.0059 0.0069 0.0075 0.0014

0.9 0.0156  0.0003 0.0004 0.0022  0.0030 0.0064 0.0088 0.0103 0.0113 0.0021

0.6 0 0.0002  0.0003 0.0002 0.0002  0.0002 0.0001 0.0001 0.0000 0.0000 0.0002
0.3 0.0107 0.0011 0.0011 0.0034 0.0032 0.0047 0.0061 0.0071 0.0078 0.0035

0.6 0.0212  0.0018 0.0015 0.0067  0.0062 0.0093 0.0122 0.0142 0.0155 0.0069

0.9 0.0317  0.0026 0.0016 0.0099  0.0093 0.0139 0.0183 0.0212 0.0232 0.0102

0.9 0 0.0008  0.0012 0.0002 0.0008  0.0008 0.0006 0.0005 0.0004 0.0004 0.0008
0.3 0.0431 0.0174 0.0174 0.0325 0.0294 0.0261 0.0286 0.0314 0.0335 0.0331

0.6 0.0854 0.0336 0.0335 0.0642 0.0580 0.0515 0.0567 0.0623 0.0666 0.0654

0.9 0.1277  0.0499 0.0486 0.0959  0.0866 0.0769 0.0849 0.0933 0.0997 0.0976

Panel B: RMSE

0 0 0.0056  0.0102 0.0082 0.0058  0.0059 0.0061 0.0062 0.0062 0.0061 0.0058
0.3 0.0067  0.0102 0.0085 0.0058  0.0059 0.0064 0.0066 0.0067 0.0067 0.0058

0.6 0.0091 0.0102 0.0087 0.0059  0.0061 0.0070 0.0076 0.0079 0.0081  0.0059

0.9 0.0121 0.0102 0.0089 0.0061  0.0065 0.0080 0.0090 0.0096 0.0099 0.0060

0.3 0 0.0080  0.0145 0.0131 0.0083  0.0083 0.0087 0.0088 0.0088 0.0087 0.0082
0.3 0.0101 0.0145 0.0133 0.0083  0.0085 0.0092 0.0096 0.0098 0.0099 0.0083

0.6 0.0145 0.0145 0.0135 0.0086 0.0089 0.0105 0.0115 0.0121 0.0125 0.0085

0.9 0.0198 0.0145 0.0137 0.0090  0.0096 0.0123 0.0142 0.0153 0.0160  0.0089

0.6 0 0.0136  0.0251 0.0254 0.0142  0.0144 0.0150 0.0151 0.0151 0.0150 0.0142
0.3 0.0184 0.0252 0.0258 0.0149  0.0150 0.0162 0.0170 0.0174 0.0177 0.0148

0.6 0.0278  0.0252 0.0262 0.0164 0.0166 0.0193 0.0214 0.0228 0.0237 0.0165

0.9 0.0387 0.0253 0.0264 0.0187  0.0188 0.0235 0.0272 0.0296 0.0311 0.0188

0.9 0 0.0474  0.0932 0.0855 0.0501  0.0513 0.0541 0.0545 0.0541 0.0537  0.0499
0.3  0.0669  0.0950 0.0881 0.0616  0.0609 0.0619 0.0637 0.0648 0.0656 0.0618

0.6 0.1046  0.0997 0.0957 0.0865 0.0822 0.0800 0.0848 0.0888 0.0917 0.0874

0.9 0.1471  0.1071 0.1045 0.1164 0.1086 0.1031 0.1111 0.1182 0.1234 0.1180
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Table 1.3: Finite sample bias and RMSE of the various estimator of g1, N = 10, T" = 50,
Bartlett kernel

1 P2 P-OLS P-IM P-DOLS Panel FM-OLS
b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0 -0.0001  0.0000 -0.0001 -0.0001  -0.0001  -0.0001  0.0000 0.0000  0.0000 -0.0001

0.3 0.0055  -0.0002  -0.0003  -0.0003 0.0003  0.0017  0.0026  0.0033 0.0037  0.0002
0.6 0.0111  -0.0005 0.0000 -0.0005 0.0006  0.0035  0.0053  0.0065 0.0074 0.0004
0.9 0.0167  -0.0008 0.0001 -0.0007  0.0010  0.0053  0.0080  0.0098 0.0111  0.0006
0.3 0 -0.0001  0.0001 -0.0001  -0.0001 -0.0001 -0.0001  0.0000 -0.0001 0.0000 -0.0001
0.3 0.0092  0.0001 0.0002 0.0012  0.0014 0.0032  0.0046  0.0056  0.0063  0.0014
0.6 0.0186  0.0002 0.0004 0.0024  0.0030 0.0064  0.0092 0.0112 0.0126  0.0028
0.9 0.0279  0.0003 0.0005 0.0037  0.0045  0.0097 0.0138  0.0168 0.0189  0.0043
0.6 0 -0.0001  0.0001 -0.0003  -0.0002 -0.0002 -0.0001 -0.0001 -0.0001 0.0000 -0.0002
0.3 0.0182 0.0024 0.0036 0.0074 0.0064 0.0074 0.0096 0.0114 0.0127  0.0066
0.6 0.0365  0.0047 0.0066 0.0149  0.0130  0.0150  0.0193  0.0229 0.0254 0.0134
0.9 0.0548  0.0070 0.0085 0.0224  0.0196  0.0225  0.0290  0.0343 0.0382  0.0202
0.9 0 0.0001  0.0005 -0.0001 0.0001  0.0000 0.0001  0.0003  0.0004 0.0005 0.0001
0.3 0.0672  0.0386 0.0488 0.0560  0.0530  0.0469  0.0482  0.0512 0.0541  0.0538
0.6 0.1343 0.0768 0.0959 0.1119 0.1060 0.0937 0.0960 0.1020 0.1077  0.1075
0.9 0.2014  0.1149 0.1419 0.1679  0.1590  0.1405  0.1439  0.1528 0.1613  0.1612
Panel B: RMSE
0 0 0.0069  0.0118 0.0088 0.0071 0.0072  0.0074  0.0075  0.0075 0.0074  0.0072
0.3 0.0091  0.0118 0.0090 0.0071  0.0072  0.0077  0.0081 0.0083  0.0084  0.0072
0.6 0.0138  0.0118 0.0092 0.0072  0.0073  0.0086  0.0097  0.0104 0.0110 0.0073
0.9 0.0193  0.0119 0.0094 0.0073  0.0076  0.0099  0.0119  0.0133 0.0142  0.0075
0.3 0 0.0098  0.0168 0.0125 0.0101  0.0102 0.0105 0.0106  0.0106 0.0105 0.0101
0.3 0.0139  0.0168 0.0127 0.0102  0.0103  0.0111 0.0118  0.0122 0.0125 0.0103
0.6 0.0220 0.0168 0.0128 0.0105 0.0108 0.0129 0.0148 0.0161 0.0171 0.0107
0.9 0.0312  0.0168 0.0130 0.0110  0.0116  0.0154  0.0187  0.0212 0.0229 0.0114
0.6 0 0.0166  0.0290 0.0215 0.0172  0.0174  0.0180  0.0181 0.0181  0.0179  0.0173
0.3 0.0253  0.0291 0.0221 0.0189  0.0187  0.0198  0.0210  0.0218 0.0225 0.0187
0.6 0.0418  0.0294 0.0233 0.0233  0.0223  0.0244  0.0278  0.0305 0.0325 0.0225
0.9 0.0600 0.0299 0.0244 0.0293 0.0273 0.0307 0.0365 0.0411 0.0444 0.0277
0.9 0 0.0548  0.0994 0.0688 0.0568  0.0579  0.0610 0.0616  0.0612 0.0606  0.0576
0.3 0.0878  0.1068 0.0854 0.0806  0.0792  0.0776  0.0790  0.0807 0.0820  0.0795
0.6 0.1477  0.1261 0.1210 0.1276 ~ 0.1227  0.1138  0.1163  0.1213  0.1259  0.1240
0.9 0.2129  0.1529 0.1620 0.1805  0.1724  0.1564  0.1602  0.1684 0.1760 0.1744
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Table 1.4: Finite sample bias and RMSE of the various estimator of 51, N = 10, T = 100,
Bartlett kernel

p1 P2 P-OLS P-IM P-DOLS Panel FM-OLS
b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0 0.0000  -0.0001 0.0000 0.0000 0.0000  -0.0001 -0.0001 -0.0001 -0.0001  0.0000

0.3  0.0027 -0.0001 0.0000 0.0000  0.0002  0.0009 0.0013  0.0016  0.0018  0.0000

0.6  0.0055 -0.0002 0.0001 0.0001  0.0005 0.0018 0.0026  0.0033  0.0037  0.0000

0.9  0.0083 -0.0003 0.0000 0.0002  0.0008  0.0027  0.0040  0.0049  0.0056  0.0000

0.3 0 -0.0001  -0.0001 0.0000 -0.0001  -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
0.3  0.0046 -0.0001 0.0001 0.0005  0.0006  0.0015  0.0022  0.0027  0.0031  0.0004

0.6  0.0093 -0.0001 0.0002 0.0010  0.0013  0.0031 0.0045  0.0055  0.0063  0.0009

0.9 0.0140  0.0000 0.0002 0.0015  0.0020  0.0048  0.0068  0.0084  0.0094  0.0014

0.6 0 -0.0001  -0.0002 0.0000 -0.0001  -0.0001 -0.0001 -0.0002 -0.0002 -0.0002 -0.0001
0.3 0.0092  0.0005 0.0009 0.0026  0.0023  0.0034  0.0046  0.0056  0.0063  0.0027

0.6 0.0186  0.0011 0.0012 0.0052  0.0047  0.0069  0.0094  0.0113  0.0127  0.0055

0.9 0.0280  0.0017 0.0013 0.0079  0.0071 0.0104  0.0142 0.0170  0.0191  0.0082

0.9 0 -0.0001  -0.0005  -0.0005  -0.0001 -0.0002 -0.0003 -0.0003 -0.0004 -0.0004 -0.0001
0.3  0.0381 0.0141 0.0146 0.0281  0.0251 0.0213  0.0233  0.0260  0.0282  0.0286

0.6 0.0763 0.0287 0.0287 0.0563 0.0504 0.0429 0.0470 0.0523 0.0568 0.0574

0.9 0.1145  0.0433 0.0417 0.0846 ~ 0.0757  0.0645  0.0707  0.0787  0.0853  0.0862

Panel B: RMSE

0 0 0.0034  0.0059 0.0047 0.0035  0.0035  0.0036  0.0037  0.0036  0.0036  0.0035
0.3  0.0045  0.0059 0.0049 0.0035  0.0035  0.0038  0.0039  0.0040  0.0041  0.0035

0.6  0.0068  0.0059 0.0050 0.0035  0.0036  0.0042  0.0048  0.0051 0.0054  0.0035

0.9 0.0096  0.0059 0.0051 0.0036  0.0038  0.0050  0.0059  0.0066  0.0071  0.0036

0.3 0 0.0048  0.0084 0.0075 0.0050  0.0050  0.0052  0.0052  0.0052  0.0051  0.0049
0.3  0.0069  0.0084 0.0075 0.0050  0.0051 0.0055  0.0058  0.0060  0.0061 0.0050

0.6 0.0110 0.0084 0.0077 0.0051 0.0053 0.0064 0.0073 0.0080 0.0085 0.0051

0.9  0.0157  0.0084 0.0078 0.0053  0.0057  0.0076  0.0093  0.0105  0.0114  0.0053

0.6 0 0.0083  0.0146 0.0145 0.0086  0.0087  0.0089  0.0090 0.0089  0.0089  0.0085
0.3 0.0128  0.0146 0.0148 0.0090  0.0090  0.0097 0.0103  0.0108  0.0111  0.0090

0.6  0.0213  0.0147 0.0151 0.0102  0.0101 0.0119  0.0137  0.0152  0.0162  0.0103

0.9 0.0307 0.0148 0.0152 0.0121 0.0117 0.0148 0.0181 0.0206 0.0223 0.0123

0.9 0 0.0299  0.0548 0.0519 0.0311  0.0317  0.0331 0.0333  0.0330 0.0326  0.0310
0.3 0.0494  0.0566 0.0540 0.0425  0.0410 0.0399  0.0414  0.0428  0.0439  0.0429

0.6 0.0845  0.0620 0.0608 0.0661  0.0611 0.0559  0.0598  0.0641 0.0676  0.0671

0.9 0.1223  0.0703 0.0692 0.0930  0.0848  0.0755  0.0818  0.0890  0.0949  0.0946
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Table 1.5: Finite sample bias and RMSE of the various estimator of g1, N = 25, T" = 50,
Bartlett kernel

p1 P2 P-OLS P-IM P-DOLS Panel FM-OLS
b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0 -0.0001  0.0001 -0.0001 -0.0001  -0.0001  0.0000 0.0000 0.0000 0.0000  -0.0001

0.3  0.0054 -0.0002  -0.0002  -0.0003  0.0002  0.0015 0.0023  0.0030  0.0034  0.0001
0.6  0.0108 -0.0004 0.0000 -0.0005 0.0005  0.0030  0.0047  0.0060  0.0069  0.0003
0.9 0.0162 -0.0007 0.0001 -0.0007  0.0008  0.0045  0.0071 0.0090  0.0104  0.0004
0.3 0 -0.0001  0.0001 -0.0001  -0.0001 -0.0001 -0.0001  0.0000  0.0000 -0.0001 -0.0001
0.3  0.0088  0.0002 0.0002 0.0010  0.0012  0.0027  0.0040  0.0050  0.0057  0.0012
0.6  0.0177  0.0003 0.0004 0.0021  0.0026  0.0055  0.0080  0.0100  0.0115  0.0024
0.9 0.0266  0.0003 0.0005 0.0033  0.0039  0.0083  0.0121 0.0151 0.0173  0.0037
0.6 0 -0.0001  0.0002 -0.0002  -0.0002 -0.0002 -0.0001 -0.0001 -0.0001 -0.0001 -0.0002
0.3 0.0172  0.0024 0.0034 0.0067  0.0058  0.0065  0.0085  0.0102  0.0116  0.0060
0.6  0.0345  0.0045 0.0062 0.0137  0.0118  0.0131 0.0170  0.0205  0.0232  0.0122
0.9 0.0518  0.0066 0.0080 0.0206  0.0178  0.0197  0.0256  0.0308  0.0348  0.0184
0.9 0 0.0000  0.0008 -0.0002  -0.0001 -0.0002 -0.0001  0.0000  0.0001 0.0001  -0.0002
0.3 0.0644  0.0378 0.0467 0.0534  0.0505  0.0441 0.0451 0.0480  0.0510  0.0512
0.6 0.1289 0.0747 0.0919 0.1070 0.1011 0.0884 0.0901 0.0959 0.1018 0.1026
0.9 0.1933 0.1116 0.1354 0.1605  0.1518  0.1327  0.1351 0.1439  0.1527  0.1540
Panel B: RMSE
0 0 0.0040  0.0068 0.0049 0.0041  0.0041 0.0042  0.0042  0.0042  0.0042  0.0041
0.3  0.0068  0.0068 0.0051 0.0041  0.0041 0.0045  0.0049  0.0052  0.0055  0.0041
0.6  0.0118  0.0068 0.0052 0.0042  0.0042  0.0054  0.0065  0.0075  0.0083  0.0042
0.9 0.0171 0.0068 0.0053 0.0042  0.0043  0.0066  0.0086  0.0103  0.0115  0.0043
0.3 0 0.0056  0.0097 0.0071 0.0058  0.0058  0.0059  0.0060  0.0059  0.0059  0.0058
0.3  0.0106  0.0097 0.0072 0.0059  0.0060  0.0066  0.0073  0.0079  0.0083  0.0059
0.6 0.0190 0.0097 0.0072 0.0062 0.0065 0.0084 0.0103 0.0120 0.0132 0.0064
0.9 0.0278  0.0097 0.0074 0.0067  0.0072  0.0107  0.0140  0.0167  0.0188  0.0071
0.6 0 0.0096  0.0167 0.0122 0.0099  0.0100 0.0102  0.0102  0.0101 0.0100  0.0099
0.3 0.0199 0.0169 0.0128 0.0120  0.0116  0.0122  0.0135 0.0146  0.0155  0.0117
0.6 0.0364 0.0173 0.0141 0.0171  0.0157  0.0170  0.0204 0.0234  0.0258  0.0160
0.9 0.0536 0.0180 0.0152 0.0232 0.0208 0.0229 0.0284 0.0333 0.0370 0.0213
0.9 0 0.0322  0.0578 0.0397 0.0332  0.0337  0.0351 0.0352  0.0349  0.0345  0.0336
0.3 0.0725  0.0691 0.0618 0.0633  0.0610  0.0567  0.0576  0.0597  0.0619  0.0616
0.6 0.1338  0.0946 0.1012 0.1128  0.1073  0.0959  0.0976  0.1030  0.1084  0.1087
0.9 0.1975  0.1260 0.1427 0.1651  0.1566  0.1384  0.1410  0.1494  0.1578  0.1587
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Table 1.6: Finite sample bias and RMSE of the various estimator of 51, N = 25, T = 100,
Bartlett kernel

p1 P2 P-OLS P-IM P-DOLS Panel FM-OLS
b=0.06 0.1 0.3 0.5 0.7 0.9 AND
Panel A: Bias
0 0 0.0000  -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0001  0.0000

0.3  0.0027  -0.0002 0.0000 0.0000  0.0002  0.0007  0.0011 0.0015  0.0017  0.0000

0.6  0.0054 -0.0002 0.0001 0.0000  0.0004 0.0015 0.0023  0.0030  0.0034  0.0000

0.9  0.0081 -0.0003 0.0000 0.0001  0.0006  0.0023  0.0035  0.0045  0.0052  0.0000

0.3 0 -0.0001  -0.0001 0.0000 0.0000  0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
0.3  0.0044 -0.0001 0.0001 0.0004  0.0005  0.0013  0.0019  0.0024  0.0028  0.0004

0.6  0.0089 -0.0001 0.0002 0.0008  0.0011 0.0027  0.0040  0.0050  0.0057  0.0008

0.9 0.0134 -0.0001 0.0002 0.0013  0.0017  0.0040 0.0060  0.0075  0.0086  0.0012

0.6 0 -0.0001 -0.0002  -0.0001  -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
0.3 0.0087 0.0004 0.0008 0.0023 0.0020 0.0029 0.0040 0.0050 0.0057 0.0024

0.6  0.0175  0.0009 0.0011 0.0047  0.0041 0.0059  0.0082  0.0101 0.0115  0.0049

0.9 0.0264 0.0015 0.0012 0.0071  0.0062  0.0089  0.0123  0.0151 0.0173  0.0074

0.9 0 -0.0003  -0.0009  -0.0001  -0.0003 -0.0002 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003
0.3 0.0360 0.0130 0.0142 0.0263  0.0235  0.0194  0.0212 0.0238  0.0261 0.0269

0.6 0.0722 0.0270 0.0271 0.0530 0.0472 0.0391 0.0427 0.0479 0.0525 0.0540

0.9 0.1084  0.0409 0.0390 0.0796  0.0709  0.0588  0.0642  0.0720  0.0789  0.0811

Panel B: RMSE

0 0 0.0020  0.0035 0.0026 0.0020  0.0021 0.0021 0.0021 0.0021 0.0021 0.0020
0.3  0.0034  0.0035 0.0027 0.0020  0.0021 0.0023  0.0025  0.0026  0.0027  0.0020

0.6  0.0059  0.0035 0.0028 0.0021  0.0021 0.0027  0.0033  0.0038  0.0041  0.0021

0.9 0.0085  0.0035 0.0029 0.0021  0.0023  0.0033  0.0043  0.0051 0.0058  0.0021

0.3 0 0.0028  0.0050 0.0041 0.0029  0.0029  0.0030 0.0030  0.0030  0.0030  0.0029
0.3  0.0053  0.0050 0.0042 0.0029  0.0030  0.0033  0.0037  0.0040  0.0042  0.0029

0.6 0.0095 0.0050 0.0043 0.0031 0.0032 0.0042 0.0052 0.0060 0.0066 0.0030

0.9 0.0140  0.0050 0.0044 0.0032  0.0035  0.0053  0.0070  0.0083  0.0094  0.0032

0.6 0 0.0049  0.0087 0.0081 0.0050  0.0051 0.0052  0.0053  0.0052  0.0051  0.0050
0.3  0.0102  0.0087 0.0083 0.0056  0.0055  0.0061 0.0068  0.0073  0.0078  0.0056

0.6 0.0186  0.0087 0.0085 0.0070  0.0067  0.0081 0.0100  0.0116  0.0129  0.0072

0.9 0.0273 0.0088 0.0086 0.0089 0.0083 0.0107 0.0139 0.0165 0.0185 0.0092

0.9 0 0.0181 0.0328 0.0297 0.0186 0.0189 0.0196 0.0197 0.0195 0.0192 0.0186
0.3 0.0407 0.0354 0.0333 0.0326 0.0304 0.0279 0.0293 0.0311 0.0327 0.0330
0.6 0.0753 0.0426 0.0412 0.0568 0.0515 0.0445 0.0479 0.0526 0.0567 0.0578
0.9 0.1113 0.0527 0.0504 0.0827 0.0743 0.0631 0.0684 0.0759 0.0824 0.0843
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Table 1.7: Empirical null rejection probabilities, 0.05 level, t-tests for hg : f1 = 1, N = 5,

data dependent bandwidths and lag lengths.

p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb) | DOLS IM(O) IM(D) IM(Fb)
Panel A: T' = 50
0 0.0514  0.1294 0.0762 0.0724 0.0544 0.0744 0.1264 0.0836 0.0808 0.0624  0.0422
0.3 0.2178  0.1792 0.1032 0.0974 0.0796 0.132 0.1632 0.0984 0.0936 0.0746 0.101
0.6 0.6064  0.2452 0.2214 0.1462 0.1212 0.2694 0.2176 0.1908 0.1246 0.109 0.1924
0.9 0.9366 0.6068 0.777 0.4804 0.422 0.7628 0.5736 0.7336 0.4462 0.4042 0.7052
Panel B: T' = 100
0 0.0472 0.1416 0.0588 0.0586 0.0516 0.0524 0.1402 0.062 0.0626 0.0524  0.0458
0.3 0.2082 0.227 0.0794 0.0774 0.0678 0.1038 0.2158 0.0756 0.0726 0.0602 0.0866
0.6 0.5914 0.3256 0.1584 0.111 0.0952 0.1776 0.2976 0.1326 0.094 0.0784 0.1308
0.9 0.934 0.4804 0.7266 0.3376 0.286 0.6198 0.4494 0.6974 0.3112 0.2626 0.561
Table 1.8: Empirical null rejection probabilities, 0.05 level, t-tests for hg : 1 = 1, N = 10,
data dependent bandwidths and lag lengths.
p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb)| DOLS IM(O) IM(D) IM(Fb)
Panel A: T'= 50
0 0.051 0.1142 0.0654 0.0708 0.0642 0.0762 0.1116 0.0712 0.08 0.072 0.0516
0.3 0.2846  0.1652 0.0902 0.0982 0.0908 0.1418 0.1454 0.0848 0.0912 0.0852 0.1054
0.6 0.7924  0.2188 0.2422 0.1482 0.1352 0.3306 0.1898 0.1994 0.1256 0.1222 0.2892
0.9 0.9924  0.7518 0.9332 0.5832 0.5276 0.8576 0.7094 0.908 0.5464  0.5094  0.8362
Panel B: T' = 100
0 0.0476 0.139 0.0542 0.0582 0.0534 0.0536 0.137 0.0558 0.0628 0.057 0.046
0.3 0.2882 0.2252 0.0758 0.0794 0.075 0.1096 0.21 0.0662 0.0728 0.0688 0.0908
0.6 0.787 0.308 0.1802 0.1098 0.0984  0.1776 0.281 0.1466 0.0938 0.0848 0.1366
0.9 0.9896 0.4982 0.9002 0.3888 0.3396 0.6724 0.4598 0.8742 0.3588 0.316 0.6254
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Table 1.9: Empirical null rejection probabilities, 0.05 level, t-tests for hg : 1 = 1, N = 25,
data dependent bandwidths and lag lengths.

p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb)| DOLS IM(O) IM(D) IM(Fb)
Panel A: T' = 50
0 0.0482  0.1022  0.0566  0.0622  0.0592  0.0664 0.099 0.0622  0.0706  0.0682  0.0404
0.3 0.5116  0.1534 0.0822 0.0848 0.0826  0.1292 | 0.1358 0.0724  0.0796 0.079 0.0972
0.6 09786 0.2362 0.3852  0.1428  0.1328 0.335 0.2042  0.2952  0.1204  0.1202  0.2966
0.9 1 0.962 0.9976  0.8058 0.7674  0.9542 | 0.9448 0.9966  0.7804  0.7474  0.9476
Panel B: T' = 100
0 0.0476  0.1354  0.0554 0.0612  0.0588  0.0558 | 0.1332 0.0562  0.0638  0.0612 0.046
0.3  0.5124  0.2032  0.0766 0.08 0.079 0.1106 0.188 0.067 0.0726  0.0716  0.0954
0.6 09744 0.2752 0.2708 0.1128 0.1056  0.1844 | 0.2478  0.2064  0.0988 0.095 0.1424
0.9 1 0.6172  0.9958  0.5474 0.5132  0.7944 | 0.5736 0.993 0.5224  0.4876  0.7528

Table 1.10: Empirical null rejection probabilities, 0.05 level, Wald-tests for hg : 1 =1, 89 =
1, N =5, data dependent bandwidths and lag lengths.

p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb)| DOLS IM(O) IM(D) IM(Fb)
Panel A: T'= 50
0 0.05 0.1552  0.0794  0.0804 0.0574 0.0794 | 0.1514 0.0938  0.1006  0.0696 0.04
0.3 0.3026 0.2344 0.1254  0.1188  0.0952 0.1746 | 0.2086  0.1168  0.1156 0.088 0.122
0.6 0.822 0.3362  0.3098  0.1996 0.161 0.3802 0.297 0.2578 0.167 0.1408  0.2664
0.9 0.9972 0.8098 0.9486 0.7018 0.6244 0.9414 | 0.7728 0.9202 0.6646  0.6006  0.9068
Panel B: T' = 100
0 0.049 0.185 0.0626  0.0636  0.0478 0.056 0.1832  0.0686 0.071 0.052 0.0418
0.3 0.2898 0.3258 0.0908 0.0912 0.0772  0.1302 | 0.3048 0.085 0.0812 0.067 0.105
0.6 0.8276 0.4574 0.2068 0.1372  0.1142 0.2356 | 0.4216  0.1696  0.1168  0.0952 0.169
0.9 0.9982 0.6786 0.9156 0.5056 0.4282 0.8274 0.6352 0.8962 0.4684 0.3962 0.7724
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Table 1.11: Empirical null rejection probabilities, 0.05 level, Wald-tests for hg : 1 =1, 89 =
1, N = 10, data dependent bandwidths and lag lengths.

p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb)| DOLS IM(O) IM(D) IM(Fb)

Panel A: T' = 50
0 0.0486  0.1396  0.0708  0.0798  0.0704  0.0874 0.134 0.0766  0.0928 0.078 0.049
0.3  0.4166  0.2162 0.109 0.1148  0.1038  0.1782 | 0.1886 0.099 0.1094  0.0976 0.127
0.6  0.9562 0.3076 0.3512  0.1914 0.1706  0.4722 | 0.2586  0.2786  0.1558  0.1494  0.4046

0.9 1 0.916 0.9952 0.8002 0.7398 0.9756 0.8894 0.9888 0.765 0.7182 0.9672

Panel B: T'= 100

0 0.0484 0.1718 0.0602  0.0636  0.0564  0.0546 0.169 0.065 0.068 0.0608  0.0444
0.3 0.4212 0.311 0.085 0.091 0.082 0.1342 0.2854  0.0762  0.0806 0.073 0.1084
0.6 0.9602  0.4354 0.2532  0.1358  0.1186  0.2432 0.3916  0.1936  0.1106  0.0964  0.1782
0.9 1 0.688 0.9916 0.566 0.5024  0.8694 0.6454  0.9854 0.528 0.468 0.8304

Table 1.12: Empirical null rejection probabilities, 0.05 level, Wald-tests for hg : 1 =1, 89 =
1, N = 25, data dependent bandwidths and lag lengths.

p1,p2 P-OLS Bartlett kernel QS kernel
P- P-FM P- P- P- P- P-FM P- P- P-
DOLS IM(O) IM(D) IM(Fb)| DOLS IM(O) IM(D) IM(Fb)

Panel A: T'= 50

0 0.0528 0.132 0.0656 0.073 0.0702  0.0836 | 0.1292  0.0702 0.085 0.0806  0.0472

0.3  0.7142 0.208 0.1128  0.1078 0.105 0.1686 | 0.1796  0.0984  0.1016  0.0982  0.1202

0.6 0.9998 0.3328 0.5454 0.1914 0.1786 0.484 0.2736  0.4302  0.1598  0.1608  0.4234

0.9 1 0.9986 1 0.9474  0.9264  0.9978 | 0.9972 1 0.9344  0.9138  0.9962

Panel B: T' = 100

0 0.0538  0.1706  0.0606  0.0628  0.0596 0.058 0.1674  0.0628 0.069 0.065 0.046

0.3 0.7098 0.2822  0.0868 0.0876  0.0866 0.135 0.257 0.076 0.08 0.0786  0.1074

0.6  0.9998 0.4058 0.3832  0.1362 0.125 0.2498 | 0.3598  0.2922 0.1124 0.1054  0.1796
0.9 1 0.8108 1 0.7578 0.7186 0.9488 0.774 1 0.7304 0.6874 0.93
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Table 1.13: Fixed-b asymptotic critical value for t-test of 5 in regression with intercept and
two regressors, N = 25, Bartlett kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
95% 1.7329 1.9363 2.1731 2.4357 2.7227 3.0220 3.3221 3.6112 3.8807 4.1140
97.5%  2.0630 2.3079 2.5845 2.8934 3.2298 3.5864 3.9396 4.2836 4.5986 4.8755
99% 2.4683 2.7561 3.0980 3.4713 3.8776 4.3055 4.7293 5.1508 5.5243 5.8506
99.5%  2.7275 3.0599 3.4300 3.8481 4.3085 4.7773 5.2548 5.7118 6.1411 6.5021
b 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.40
95% 4.3072 4.4702 4.6004 4.7217 4.8296 4.9306 5.0294 5.1291 5.2242 5.3160
97.5%  5.1085 5.2956 5.4627 5.5963 5.7331 5.8559 5.9673 6.0789 6.1903 6.3132
99% 6.1355 6.3751 6.5593 6.7345 6.8818 7.0326 7.1687 7.3157 7.4607 7.5930
99.5%  6.8015 7.0752 7.2862 7.4722 7.6352 7.7980 7.9644 8.1320 8.2883 8.4333
b 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.60
95% 5.4079 5.5070 5.5967 5.6805 5.7679 5.8447 5.9164 5.9942 6.0680 6.1366
97.5%  6.4189 6.5329 6.6388 6.7461 6.8517 6.9494 7.0410 7.1285 7.2094 7.2829
99% 7.7228 7.8553 7.9922 8.1188 8.2377 8.3674 8.4834 8.5767 8.6779 8.7842
99.5%  8.5820 8.7258 8.8732 9.0041 9.1516 9.2895 9.4089 9.5389 9.6542 9.7574
b 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.80
95% 6.2004 6.2597 6.3208 6.3811 6.4329 6.4885 6.5452 6.5982 6.6506 6.7020
97.5%  7.3600 7.4337 7.5122 7.5804 7.6560 7.7180 7.7900 7.8533 7.9185 7.9721
99% 8.8838 8.9709 9.0515 9.1402 9.2231 9.3065 9.3759 9.4616 9.5297 9.5959
99.5%  9.8619 9.9699 10.0559  10.1605 10.2384  10.3414 10.4381 10.5210 10.6046  10.6947
b 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.00
95% 6.7480 6.7906 6.8332 6.8817 6.9216 6.9658 7.0077 7.0485 7.0834 7.1205
97.5%  8.0248 8.0815 8.1347 8.1868 8.2422 8.2949 8.3433 8.3876 8.4348 8.4781
99% 9.6626 9.7342 9.8024 9.8573 9.9243 9.9824 10.0446  10.1029  10.1630  10.2177
99.5% 10.7659  10.8418 10.9134 10.9985 11.0667 11.1332 11.1945 11.2611 11.3375 11.4049
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Table 1.14: Fixed-b asymptotic critical value for t-test of 5 in regression with intercept and
two regressors, N = 25, QS kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
95% 1.7870 2.0829 2.4752 2.9884 3.6602 4.5278 5.5699 6.6972 7.7744 8.6329
97.5% 2.1270 2.4815 2.9371 3.5436 4.3513 5.3846 6.6572 8.0320 9.3128 10.3492
99% 2.5440 2.9713 3.5281 4.2744 5.2392 6.5058 8.0225 9.6946 11.2728  12.5370
99.5% 2.8123 3.2967 3.9182 4.7454 5.8424 7.2470 8.9767 10.8163  12.6241  14.0653
b 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.40
95% 9.2475 9.6378 9.8866 10.0412  10.1446  10.2071  10.2604 10.2899 10.3154 10.3393
97.5% 11.1166 11.5874 11.8763 12.0800 12.2085 12.2906 12.3468 12.3913 12.4277 12.4530
99% 13.4557  14.0671  14.4533 14.7158 14.8841 14.9774 15.0857 15.1470 15.1848  15.2096
99.5% 15.1063 157767 16.2224 16.5170 16.6887 16.8283  16.9298 16.9828 17.0212 17.0680
b 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.60
95% 10.3527  10.3643 10.3739  10.3828 10.3897 10.3990 10.4029 10.4086 10.4133  10.4200
97.5% 12.4740 12.4893 12.5025 12.5136 12.5235 12.5329 12.5409 12.5420 12.5483 12.5543
99% 15.2323  15.2485 15.2564 15.2734  15.2875 15.2977 15.3124 15.3196  15.3307  15.3435
99.5% 17.0886 17.1114 17.1343 17.1512 17.1645 17.1798 17.1817 17.1869 17.2133 17.2270
b 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.80
95% 10.4231  10.4271  10.4279 10.4262 10.4278 10.4319 10.4349 10.4357 10.4382 10.4410
97.5% 12,5603 12.5697 12.5720 12.5781 12.5785 12.5849 12.5881 12.5913 12.5929 12.5952
99% 15.3526  15.3495 15.3554  15.3513  15.3575 15.3655 15.3730 15.3769  15.3827  15.3920
99.5% 17.2313 17.2400 17.2423 17.2405 17.2307 17.2383 17.2374 17.2485 17.2494  17.2503
b 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.00
95% 10.4437  10.4459  10.4456  10.4464 10.4469 10.4463 10.4480 10.4482 10.4474 10.4481
97.5% 12.5982 12,5994 12.6013 12.6013 12.6019 12.6023 12.6019 12.6021 12.6028 12.6043
99% 15.3955  15.3959  15.3964 15.3969 15.3977 15.4018 15.4060 15.4099 15.4127 15.4150
99.5% 17.2619 17.2727 17.2749 17.2764 17.2739 17.2792 17.2822 17.2859  17.2892  17.2920
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Figure 1.1: Empirical null rejections, t-test, N =5, T'= 100, p; = p2 = 0.3, Bartlett kernel
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Figure 1.2: Empirical null rejections, t-test, N = 10, T' = 100, p1 = pa = 0.3, Bartlett kernel
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Figure 1.3: Empirical null rejections, t-test, N = 25, T'= 100, p1 = pa = 0.3, Bartlett kernel

47



1 I I

panel FM(b)
------------ panel IM-OLS(O)
------- panel IM-OLS({D)
----- panel IM-OLS(fb)[]

‘\ _—"'I-I-I_
‘—‘-" |
05F 3 I
Y __‘.M"— e
LY o i :
\, 7 'x""j:\‘n.-"‘ G
s - it s
\’m Mg, n.-\ﬂ“.ﬂ:""“r"mm

04+ \,._‘m_l'::::w‘.u.mm‘ _

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 09 1

Figure 1.4: Empirical null rejections, t-test, N =5, T' = 50, p; = pa = 0.9, Bartlett kernel
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Figure 1.5: Empirical null rejections, t-test, N = 10, T'= 50, p1 = p2 = 0.9, Bartlett kernel

49



| I
panel FM(b) n
panel IM-OLS(O)
X,  TUSe—m———e | e panel IM-OLS({D)
0950 Nea e | m==== panel IM-OLS(fb)
i
09 % 8
3
t
3
£
v
0.85 v _
¥
[
‘:: o™
v o
0.8 v ",.f" i
(% e
% T e
N . P
X', 'lf‘-‘— “““““““““““
%, ’,—"' lllllllllll
0.75 ‘-,.,:__F_I L el -
07 | | | | | | | | |
0 0.1 02 0.3 0.4 0.5 0.6 07 0.8

Figure 1.6: Empirical null rejections, t-test, N = 25, T' = 50, p1 = p2 = 0.9, Bartlett kernel
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Figure 1.7: Empirical null rejections, t-test, N =5, T'= 100, p1 = p2 = 0.9, Bartlett kernel
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Figure 1.8: Empirical null rejections, t-test, N = 10, T = 100, p1 = pa = 0.9, Bartlett kernel
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Figure 1.9: Empirical null rejections, t-test, N = 25, T'= 100, p1 = pa = 0.9, Bartlett kernel
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Figure 1.10: Empirical null rejections, t-test, N =5, T'= 100, p; = p2 = 0.3, QS kernel
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Figure 1.11: Empirical null rejections, t-test, N =5, T'= 50, p; = pa = 0.9, QS kernel
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Figure 1.12: Empirical null rejections, t-test, N =5, T'= 100, p; = p2 = 0.9, QS kernel
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Figure 1.13: Size adjusted power, Wald test, N =5, T' = 50, p; = pg = 0.6, b = 0.3, QS
kernel
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Figure 1.14: Size adjusted power of panel IM, Wald test, N =5, T = 50, p1 = py = 0.6, QS
kernel
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Figure 1.15: Size adjusted power of panel IM, Wald test, N = 5, T' = 50, p; = py = 0.6,
Bartlett kernel
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Figure 1.16: Size adjusted power, Wald test, N =5, T = 50, p1 = pa = 0.6, QS kernel
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Figure 1.17: Size adjusted power, Wald test, N = 10, T' = 50, p; = p2 = 0.6, b = 0.3, QS
kernel
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Figure 1.18: Size adjusted power of panel IM, Wald test, N = 10, T" = 50, p; = p2 = 0.6,
QS kernel
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Figure 1.19: Size adjusted power, Wald test, N = 10, T'= 50, p; = pa = 0.6, QS kernel
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Proof of Theorem 1

By Assumption 2 above, we can define stacked innovation vector

/
— / /
Nt = [ult, o UNt Vgt “Nt} ’

which dimension is (N + Nk) x 1, and assume that

[rT]
B AW Ao W
723 gy = W) = w(r)] _ (AW () + AaWa(r) |
P By(r) AgaWo(r)
where
l/2 _ | A Aw
W=
Onkx N A2
W
W) = 1]
| Wa(r)
The dimension of the above matrix are as follows: A1 is N X N, A12is N X Nk, Onpx N 1S
/
Nk x N zero matrix, Agg is Nk x Nk; Wi(r) = [wu’l(r), e wu,N(r)] is N x 1 vector,
/
Wy(r) = Wu,1(7’)'7 e WuN(’f’)/} is Nk x 1 vector.

Long run variance of 7 is:

Q=0 <Q717/2>/ = i L (th‘—j) :

j=—00
Also we have:
_ [Q?l 07, | A Mg |A Ok | [ Mgy AreAg, A12A'22]
Tolog 9] [Onkxv Axz] [Aly AL AppAjy  Agphhy ]
where 97171 = A11A’11 + A12A/12 is long run variance of uy = [Ult e UNt} /, 97272 = A22A/22
is long run variance of vy = [Ullt e U?Vt} /, Q?Q = (le)/ = A12A/22 is long run covariance

of uy and vy, From assumption 1, we know that Aj; = [IN ® au.v} NN is N x N diagonal
X

1/2]

Y I NExNE

is k x k matrix.

matrix, Ajg = [IN ® )\UU}NxNk; is N x Nk diagonal matrix, Agg = [IN R0

Nk x Nk diagonal matrix, where 0y, is scalar, Ay, is 1 X k vector, and 911}1/12
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Using diagonal scaling matrix

then we have:

T N
-1 —1 I 4—1

=\ T ZZAquZ‘tqz‘tAm
t=11i=1

Apiy (0-0) =T72ay7 (6-0) =

Ay =

By our assumptions,

-1
AlTQit =

S
T 15¢[TT]
T 2
Opxl

1
—5—1aD
T 2G5S

Opxl

and it follows that

T N
-1 -1 -1
T Z Z AlTQitqgtAlT =

t=11i=1

T3/21,,
TY2],
T1/2IN ®Gp

-1

)

r(5-)
('~Y - Q;ulgvu)

Gp (51 . 51)

Gp (5N . 5N)

T N
Ty D AT 2 (S — i)

65

t=1:=1

o ]
Q2 [T W, 4(s)ds

1/2

Qv Wv,i(r)

Opxl

= Hgl,i(r)v

1 N
/ > Hgii(r)gri(r)Idr.
0 55



Also, by previous assumptions,

1/2 ( it xzﬂ)

so if v = Q5  Qyy, then

T‘1/2S?§— ~1/2,
(3

Byi(r) = By 4(r)y

Uu-ku,i<r) + )‘quv,i(T) -

Combining above results, we have:

OpWy i (1) — Wé,i
Ou ku,z(r) Wllj,i (r)
oy ku,i<r) qu;,z'
T2 ( it x;ﬂ
- (B - B) -
(% - Qw_levu)
Gp (51 _ 51>
Gp (SN . 5N>_

f)/

=A

P

1
IM

’})?/JQWv,i(r)} , ¥
_7 - ((Q%Z>/) B N
_v = ((Qzl;1/;2>l) o (2
__’Y - Q?}QW}

(5-)

1 N
= (/o ;Hgl,i(s)glz Hd?“) (/ ZHgU OukuZ(s)ds)

= Ouy-w

1=

N

D

1 (/ Zgn s)g1,i(s ) (/ zggl’i(s) wi(s)ds

_ n—1 Yo , Y o
= Oy (H ) (;/O gl,l<5)gl,z(5> ds '

|

1
/ [G1,i(1) — Gl,i<5)]dwu,i(3)) =V.

1 0

For the sequential limit of (5 — ﬁ), we first let " — oo, then let N — oo, so we have
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\/NT(B—@) VN I Opk Opsp -+ Opp] Apkyy (9—9)

-1

N
1 |
=Tk Okt Okp - Okp) | 77 D D ArptasdisArr |
t=11=1

Z Z 1Tq1t Sit — xgﬂ)

-1

N , T
1 1 _ _
= Opxk Okxp -+ Okxp) NZ?ZAl%q#qgtAl% X
i=1" t=1
L N T
U
_Z Z Tta zt7)
VN ST o
T—00 n—1
— ouv Ir Okxk Opxp o Opxp) ()7 X
1L 1 T X
N; /O g1, (r)gri(r)dr \/_N; /0 [G1,i(1) = G1,i(r)]dw i(r)

In order to get the distribution of ®, we need to know the limit of the upper and left
k x k block of % Z fO 91,i(r)g1(r )dr and the distribution of the upper k x 1 block of

N
i 2 G0 = 1)) a5 N o0

First, consider the limit of the upper and left & x k block of - Z fO 91,i(r)g1,i(r Ydr.

N
Note that, + v Z fO 91,i(r)g1i(r)dr = + iy [91,i(r)g1.i(r)] dr. The related compo-

,Li

nents for the sequentlal limits is the 1ntegra1 of the upper and left & x k& block of the limit of

N
% Z [gl’i(r)gl,i(r)’], which is given by

1=
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%g/or Wyi(s)ds /07" Wo,i(s)'ds
:% g: / ' ( / ' Wm(u)du) W, i(s)ds
:_Z/ / Wi (u)Wy i (s) duds

NZ//WM i(s) duds+
—Z//Wm i(s) duds

—>/ / ududs - ]k+/ / sduds - I,

ngk = Aq(r)

Therefore, fO Ai(r)dr = (1/12)1;..
Second, consider the distribution of the upper k& x 1 block of

N
\/_N;/o [G1,i(1) = G1,i(r)]dwy ;(r).

It has an asymptotic normal distribution, with zero mean, when conditional on G ;(r)
foralli =1,2,..., N. So we only need to find its asymptotic variance. Also, recall that the

units are cross-sectional independent, so we have

1 XL
ﬁ; /0 G1i(1) — Gra(r)dwyi(r)

1 1 N
_ /0 ~ D [G1i(1) = G1i(M)][Gri(1) = Gy i(r))dr
i—1

as N fixed.
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Note that the variance of the upper k£ x 1 block of

\/—Z/ [G1,i(1) = G1,i(r)]dwy i (r)

is just the upper and left £ x k block of

1 1 N
| S0 = G lGi1) = Ga o)
1=1

which is given by

%gj /r 1 / i Wi (w)duds / 1 / i Wy i(u) duds
NZ/T///W“ (u) dvdtduds
:% / / / / Woi(0) Wy i (u) dvdtduds+

% / / / / Wi (0)Wo 1 (1) dvdtduds

( ///vdvdtduds) I+
0 Jr JO

s rl prs
( ///udvdtduds) I,
0 Jr Ju
1
—(1
2

— ) <1 — 7’4> I, = As(r)

So, we have fO Ag(r)dr = (7/180)1,.
Using above notations, the sequential asymptotic distribution ® is given by

b~ N <0,Juv {(Q}){?)’] o (/01 Al(r)dr> B </01 Ag(r)dr> (/01 Al(r)dr>_1 (Q%Q)_l> |

We denote its variance as

Vi =% | (l)] B (/ 1 Ar(r)ar) N (/ 1 aor) ([ 1 A ) (o)

=5.6- O'UUQ_
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Proof of Theorem 2
In Theorem 2, the Wald statistics considered was W, with W e {W,W,W*}. Those

statistics only differ with respect to the used estimator of the long run variance parameter,

512“, € {63.U,63_v,55fkv}. As in the proof of Theorem 2, 6 represents the vector of panel

o / /
IM-OLS estimators ((5’, A, fy’) , and 6 denotes the vector (6’, A, QZUQ&D . The
estimator for Vprys is given by

T N -1

v, w2 -2 /
Vi = G | T2D.D ApimdindiApiv x
t=1i=1

T N
T_4ZZAP[M [SgT - Szg,t—l} [qu - qu,tl]/APIM X
t=11=1

T N -1

—2
T2 ApivtidisApiv
=1 i=1

Y

o2
= Oy V,

where V is the estimator for

-1

1 N
v = ()" /()291,i(8)91,z‘(8)/d8 X
i—1

1 N
/0 D [G1,i(1) = G1i(9)][G1,i(1) = Gy (s)]ds | x
=1

-1

Under the null hypothesis the Wald statistics and t statistics can be written as
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W = (86— ) [RaApiaVprApR] " (RE-1)
(1(5-0) [rmtenarner] (n(3-1)
— (AR RAppyAphy (5 9))/ {A;RAPIMVPIMAPIMR’ (A;zl),} e
(AR RAp1v ALy (-10)).
and

t= (Ré — T‘) / (\/<RAPIM VPIMAPIMR/>>

- [AJTBIRAPIMA];}M (é_ 6)} / <\/(AR1RAPIM‘7PIMAPIMR/ (AR1>/>> _

Now, by assumption the restriction matrix fulfills

lim A3 RA = R*,
A Ar RApn

and
Appy (6-0) = (Vo)

under the null hypothesis. Therefore, in case of consistent estimation of the conditional long

run variance ag,v using Vp 10 it follows that

Wo— (A}}lRAPIMAJ_D}M (é — g))’ [AI—%lRAP]MVPIMAPIMR/ <A§1>/} -1

X (AElRAPIMAJ_J}M (é - 9))
_ <A1_{13APIMAI_3}M <§ - 9>>/ [AélRAPIMU?L.UVAPIMR/ (AJ_;)/} ;

x <A§1RAPIMAJ;}M <9~ - 9)) % Zg:

= (R (Vpry)) (R*VPUMR*IY1 (R*Y(Vpra))

2

and for ¢ = 1, we have
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*
. "4
; R*U(Vprar)

~ 7
VR Vpry RY

Next, we consider the asymptotic behavior of the test statistic W using #2.,. From the

.y We know that it is an estimator based on AS%, which is the difference
of S, where S% =S¥ — SP'5; — S¥/3 — x!,7. Then, we have

construction of 52

ASY = ASY - AStD’cS — AS B — AdlA
= yit — Dyo; — 2y — vy
= Did; + a8+ uip — Do — a3y — iy
= (= vjr) = vy (5 =) = D} (8 = &) = afy (B - B)
=y~ v (5 =) = D) (8= 6i) —afy (- 8)
It can be shown that the last two parts of the formula can be neglected for long run

variance estimation of Ag% Thus, the long run variance estimator based on AS%, that is

52 ,, asymptotically coincides with long run variance estimator of u;; — v, (F — 7).

2
g,,.
wo , SO an
Qoo
+

infeasible long run variance estimator Q;”, using unobserved 77@7; is consistent: Q;r LN Qr.

/
Let’s define 77;,? = [u;, vg t} , and then its long run variance is Q:r =

1 ~
Note that: uj; — vgt (F—=7) = T]ZT;/ [_ G 7)] , then HAC estimator, Q;‘, for uj; —

vl (¥ — ) can be written as:

with

. -1
=7 = [kak; Iy Opxp -+ OkXp] oy () x

N v
;/O 91,i(8)g1,i(s)'ds ;/0 [G1i(1) — G1i(s)|dwy ()

= oy (971/2> d~,
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where d7 is the second k£ x 1 block of

N 1N
(221/0 gl,i(8>91,i(3)’ds) (Zzl/o [Gu(l)GLi(S)]dwu,i(s)).

This implies that er will converge to:

{1 _ [au.v (955/2)/de [U% QO] [au.v (inl/z)'dv}

-1 / N 1
= o2, ol (dy) (242) Qi (k) ((9;42)) dy = o2, (1+d,d;).

. =2 1
So we have: 73, = «

M=

[012“) (1+ ledV)} =02, (1+ dlydy). This implies that
=1

W (Af_%lRAPIMA]_D}M (é - g))’ :AI—%lRAP]MVPIMAPIMR/ <A§1>/}
X (AI_{lRAPIMA;}M (é - 9))

_ <A§1RAPIMA1_D}M <§ - 9>>/ :A]}lRAPJMag.Uf/AP]MR/ (AJ_;)/} h

2
1 1 (; Ta
% (A" RApr ALy (0-6)) x 5"
.
N (R (Vprar)) (R*VpruRY) ™ (R* (Vprar))
(1+dhydy)
L X
(1+ dhydy)
and when ¢ = 1, we have
~ A
f=
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For the result of the fixed-b test statistic, using 52%,, we have
7k 1 1 (5 d o (a=1\] 7
W = (AR RAppAp, (9—9)) A RAp Vi APIM R (AR)
X (A;{lRAPIMA;}M (é—@))
—1 -1 (5 - 2 N
- (AR RApry AL, (9-9)) AF'RApa02, VApryR (AR )

2
~1 1 (7 Ty
X (AR RAPIMAP]M (9—9)) X fg*v
Ou-v
-1
N (R*¢(Vpra)) (R*VpryRY) ™ (R (Vprar))
N
& > Qi)
=1
L
1 N
~ Zl Q7 (b)
and when ¢ = 1, we have
= Z .
1 N
~ 21 Q7 (b)
1=

Note that numerator and the denominator of the limiting distribution are independent,
because Vogelsang and Wagner [2014] have proved that the numerator is independent with
Q*( )foralli=1,2,---, N, then it follows that the numerator is independent with the sum

Z Q5 (b).
Due to the independence of numerator and denominator in above limiting distribution,

if we know pg, which given by ug = E [QF(b)], then as T — oo followed by N — oo, we

have the following sequentially limit results:

Wio = [T (RB - rﬂ' {‘2‘@” R*VR*’} [T (RB - rﬂ

74



Also, when g = 1, similarly, we have:

e
tNQ

5
O

N -
2|

1=
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Chapter 2

Hypothesis testing in cointegrated
panels: Asymptotic and Bootstrap
method

This paper compares asymptotic and bootstrap hypothesis tests in cointegrated panels
with cross-sectional uncorrelated units and endogenous regressors. All the tests are based
on the panel integrated modified ordinary least square (panel IM-OLS) estimator from Vo-
gelsang et al. [2016]. The aim of using the bootstrap tests is to deal with the size distortion
problems in the finite samples of fixed-b tests. Finite sample simulations show that the boot-
strap method is better than the asymptotic method in terms of having lower size distortions.
In general, the stationary bootstrap is better than the conditional-on-regressors bootstrap,
although in some cases, the conditional-on-regressors bootstrap has less size distortions. The
improvement in size comes with only minor power losses, which can be ignored when the

sample size is large.
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2.1 Introduction

The bootstrap has become common in econometric analysis, especially in performing
hypothesis tests. The basic idea of hypothesis tests is to compare the observed value of
a test statistic with the distribution that it would follow if the null hypothesis were true.
If the distribution is known, then we can perform exact tests. However, in many cases of
interest, the distribution of the test statistic is only known asymptotically or is dependent
upon nuisance parameters. In many cases, bootstrap hypothesis testing works well since the
bootstrap statistics converge to the same asymptotic distributions as the sample statistics
do. Therefore, the nuisance parameter dependent limit distributions can be approximated
by the bootstrap simulations, which makes inference available.

The purpose of the present paper is to compare the fixed-b asymptotic hypothesis test
with two bootstrap hypothesis tests, conditional-on-regressors bootstrap test and stationary
bootstrap test, for panel cointegrated regressions with endogenous regressors. When the
regressors are endogenous, it is well known that a variety of different methods, such as
panel fully modified Ordinary Least Square (panel FM-OLS), panel dynamic Ordinary Least
Square (panel DOLS) and panel integrated modified Ordinary Least Square (panel IM-
OLS), will deliver estimators that have zero mean Gaussian mixture limiting distributions,
which in turn allow asymptotic inference to be carried out (see Kao and Chiang [2000],
Pedroni [2000], Bai et al. [2009], Mark and Sul [2003], Vogelsang et al. [2016]). Among those
methodologies, panel IM-OLS relies on the fixed-b asymptotic theory. Compared with the
traditional asymptotic theory, the fixed-b asymptotic theory can capture the impact of kernel
and bandwidth choices on the sampling distributions of HAC-type test statistics. However,

both of those asymptotic theories often provide poor approximations to the distributions
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of associated test statistics in finite samples, which leads to size distortion problems. To
improve the quality of finite sample inference, in terms of decreasing size distortions, the
bootstrap method is considered in this paper.

Although bootstrap methods are widely employed for analyzing nonstationary time series
data, a surprisingly small proportion are devoted to bootstrap inference in cointegrated
regressions. Li and Maddala [1997] investigated the usefulness of bootstrap methods for small
sample inference in cointegrated regression models. Their simulation results showed that the
substantial size distortions of the asymptotic tests can be corrected by properly implemented
bootstrap methods. Psaradakis [2001] applied the sieve bootstrap procedure to cointegrated
regressions, and his simulation study demonstrated the small-sample superiority of the sieve
bootstrap over both the traditional asymptotic approximation and the blockwise bootstrap.
Chang et al. [2006] considered the sieve bootstrap based on a VAR model for the cointegrated
regressions. They established the bootstrap consistency for both OLS and DOLS, which
leads to valid bootstrap inference. Shin and Hwang [2013] applied the stationary bootstrap to
cointegrated regressions. They established the limiting distribution of the bootstrap ordinary
least square estimator (OLSE) as well as the limiting null distribution of the bootstrap
Wald-type test regarding the cointegration parameter. Also, finite sample size and power
properties of the bootstrap test were studied by a Monte Carlo simulation. Note that in the
above literature, the bootstrap methods are applied in pure time series setting.

The contribution of this paper is twofold. First, the results complement the existing
literature by applying bootstrap inference to panel cointegrated regressions, and second,
comparisons are made between bootstrap and fixed-b methods for inference using panel IM-
OLS. Bootstrap methods are applied to a cointegrated panel with uncorrelated cross sectional

units and homogeneous 2nd order moments. Finite sample size and power properties of the
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bootstrap test are studied by a Monte Carlo simulation. The bootstrap methods applied in
this paper are the conditional-on-regressors bootstrap and stationary bootstrap. We do not
consider the sieve bootstrap for two reasons. First, even though the sieve bootstrap can be
applied in fairly general models and performs well in pure time series setting, Smeekes and
Urbain [2014] questioned the validity of the use of VAR sieve bootstrap in panels with a
moderate cross-sectional dimension. In addition, when estimating the models and carrying
out inference, we do not assume the error terms follow AR or VAR models.

The rest of the paper is organized as follows. Section 2.2 introduces the model, assump-
tions and asymptotic inference based on the panel IM-OLS estimators. In Section 2.3, the
conditional-on-regressors bootstrap and stationary bootstrap procedures are presented. Sec-
tion 2.4 provides a simulation study to compare the size and the power of the bootstrap

tests with the fixed-b asymptotic test. Section 2.5 summarizes the results and concludes the

paper.

2.2 The model, assumptions and asymptotic inference

2.2.1 The model and assumptions

Consider the panel data model given by

yit = Do + 2y B+ uyy (2.1)

Tip = Tip—1 + Vit (2.2)

79



where © = 1,2,--- ,N and t = 1,2,---,T index the cross-sectional and time series units
respectively; y;; and u;; are scalars; Dy is the deterministic component, and § is a p x 1
vector; x4, v;r and B are k x 1 vectors. Suppose that n;; = {Uz‘t Ugt}/ is a (k+1) dimensional
stationary vector process across i, then the model introduced in (2.1) describes a system of
panel cointegrated regressions, i.e. y;; is cointegrated with z;4.

In the above system, we are interested in inference about  based on the panel IM-
OLS estimator. Before we define the panel IM-OLS estimator of 5, we make following

assumptions.

Assumption 3. Assume that {mt}fL are cross-sectionally uncorrelated and 2nd order mo-

ments are constant across i.

Note that the Assumption 3 only requires that the panels are homogeneous in the 2nd

order moment; it’s possible the higher order moment structures are heterogeneous across i.

Assumption 4. Assume that for all i, n;; is a stationary process and it satisfies a functional

central limit theorem (FCLT) of the form

T
TS i = Bilr) = QYPWi(r), e (0,1),
=1

In Assumption 4, [rT] represents the integer part of 1", and W;(r) is a (k+1) x 1 vector

of independent standard Brownian motions. 21/2 is a (k+ 1) x (k + 1) matrix that satisfies

0= 0l/2 (91/2)', and

> QUU Q’LLU
Q= Y E (mmét_j) = > 0,

J=—00 Quu Qo
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where it is clear that Qy, = €, The assumption 2, > 0 rules out cointegration in x;;.
/
Partition B;(r) as B;(r) = [Bu,i(T) B{;,i(ﬂ} , and likewise partition W;(r) as W;(r) =
/
{wui(r) w! Z(”] , where wy, ;(r) and W, ;(r) are a scalar and a k-dimensional standard

Brownian motion respectively. Using the Cholesky form of O/ 2

91/2 B Ouv  Auw
1/2
Op1

o -1
it can be shown that 02., = Quu—Que Qow, and Aduy = Que (Qm,l/ 2) . By this Cholesky

decomposition, we can write

Bu7i(7") Uu-ku,i(r) + )‘UUWv,i(T>

1/2
Byi(r) AW, (1)

Assumption 5. For the deterministic component, Dy, assume that there is a p X p matrix

Gp and a vector of functions, D(s), such that
,
lim ﬁGBlD[ST] = D(s) with 0< / D(s)D(s)/ds < oo, 0<r<1
T—00 0

The deterministic component Dy could include an intercept, time trend and polynomial

of time and other functions of time.
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2.2.2 Inference based on panel IM-OLS

This section provides some key results about the panel IM-OLS estimator and inference
based on it. To conserve space, we don’t provide all the details. After applying a partial
sum transformation and adding the original regressors, z;;, to regression (2.1) , the system

becomes

SY = SP'6 + S B + ahyy + ST, (2.3)

Vogelsang et al. [2016] pointed out that the parameter S in panel cointegrated regression
(2.1) can be consistently estimated by the panel IM-OLS estimator 9, which is the OLS

estimator of regression (2.3). Its limiting distribution is given by

| GD(5—5) _
AE}M@_@): T(B—ﬁ)

(% — Qo Q)

-1

1 N
= Oy-v (H/)_l /O ;gl7z(s)g1 l(s)ds X
N
ZZ:;/O [Gl,i(l) G Z(S)} dw,, ;(s)
=,

82



with NV fixed and T — oo. The scaling matrix A]_D} a7 1s a diagonal matrix given by

Gp 0
—1
Apiv = T- Iy ’
0 I,
and 7 is a diagonal matrix given by
I 0
m=| o
0 O

In addition,

where g1 ;(r) is defined as

91i(r) = | 5 Wyi(s)ds
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Conditional on gy ;(r) for all 7, it can be shown that Wy ~ N (0, Vprps) where Vpryy is given

by
[ !
VPIM =0y (H/)i /O ;gl,l(s)glz(s)ds X

1 N

/0 > [G1i(1) = Gri(9)] [G13(1) = Gri(s)] ds | x
=1
1 N -1

/0 > gri(s)gh(s)ds | Tt
i=1

Consider the null hypothesis Hy : RO = r, where R € R?*(PH2k) with full rank q and
/
r € R4. Define ¢;; = [StD/ Sixt, ngt:| , Szgt = 23-21 qij, and Siqo is a zero vector for all 7.

Suppose that §2., is an estimator for 2., then an estimator for Vpyy/ is given by

T N -1
v, w2 -2 !
Vprn =Gy | T2 ApivaidsApiv X
=1 i=1
N

Aprm [quT - Sz('],t—l} [Sng - Szg,t—l]/APIM X

3
N
M=

ﬂ
Il
—
~.
I
—_

-1

K
M=
M=

/
AprM it G- AP
t

I
—

=1

Here, two potential candidates for &2., are considered. The first candidate, 52.,,, is based

on the first differences of the residuals of the augmented partial sum regression (2.3), i.e.

ou ol D/ x! 5 ! A
it = Sip — St 0= Si B — my,

where & , B and 4 are the panel IM-OLS estimators. Define a HAC estimator using the first
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difference of S %

Another HAC-type estimator is based on the first difference of the residuals from the further

augmented partial sum regression

|) AS%*A St

524 :ii leT:ZT:k(U—h
YN J=2h=2 M

where

~

D .
%* = Sy S; /5 — S BZ — xét% — zll»t)\l-,

z;t 1s given by
t—1 J

Zit _tZQZ] ZZQZ57

Jj=1s=1
and Si, ,@i, 4; and ;\Z (1 =1,2,---,N) are the OLS estimators from the further augmented

regressions given by

SY = SP'5; + SY B + xhyvi + 2l (2.4)

Note that the residual S%* is obtained by estimating regression (2.4) individual by individual.

As discussed in Vogelsang and Wagner [2014], 2% has a fixed-b limit that is proportional

to ag,v, independent of é, and does not depend upon additional nuisance parameters.
Let ¢ and W denote statistics defined using &%M to construct Vpryys, and likewise * and

W* denote statistics defined using 0 » to construct VP 7 Letting  and W denote either

85



f and W or £ and W*, define the t and Wald statistics as:

. (Zié — T)
f=
\/ RAprvVermApiu R

W= (Ré . r)l [RAPIMVPIMAP[MR’} ! (Ré - r) .

The limiting distributions of above test statistics are discussed in Vogelsang et al. [2016].

1. Under traditional bandwidth and kernel assumptions, with N fixed as T" — oo,

2
- Xg
W= —7F—-
1+ dydy
and when ¢ = 1,
- Z
i=

1+ dd,

where X?] is a chi-square random variable with q degrees of freedom that is correlated
with dy, Z is distributed standard normal and is correlated with d-, and dy denotes

the second k£ x 1 block of

—1 N .
fy it | {3 [ 610~ Grato)] e

2. Under fixed-b asymptotics where M = bT', b € (0,1] is held fixed as T" — oo, the
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fixed-b limits of W and { are given by

where

and

3. Under fixed-b asymptotics where M = bT', b € (0,1] is held fixed as T" — oo, the

fixed-b limits of W* and £* are given by

2
W* — Xq
1 N D%
Yo (Prm)
=1
t' = ~ Z
Yo (Prm)



where @Qp(-) is the same as above, and PZ* (r) is similar as P;(r) but its component is
from the further augmented regression (2.4), which is a complicated stochastic process
depend on the kernel function, bandwidth, and W;(r)!. In addition, @, (PZ*(T)) is

independent of )(g and Z.

2.3 Bootstrap hypothesis tests

In this section, we introduce two different bootstrap procedures based on the panel IM-
OLS estimator. For each of these bootstrap procedures, bootstrap test statistics are com-

puted using the same formulas as the original test statistics but with resampled data.
2.3.1 Conditional-on-regressors bootstrap

A formal description of the conditional-on-regressors bootstrap is given below.

1. Calculate the residuals as
4= 84— SP's - SHB—alA

where & , B and 74 are the panel IM-OLS estimators.

2. Obtain the bootstrap resamples (uz‘l,uz‘z, e ,u’!‘T) from ( A;‘l, AZ“Q, LA AZ-“T> by

7

1.1.d. sampling with replacement.

1 For more details about the Qp (152*(7“)) function, please see Vogelsang and Wagner [2014].
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3. Define Sji* = Z?Zl u;‘} And generate the bootstrap samples S%* from
SY* = SP'5 + SY B+ alyi + Sy (2.5)

4. Define the bootstrap statistics as
(Ré* - Ré)
\/ RAprM VA R

Weipg = (Ré* . Ré)' [RAPIMV;IMAPIMR’]_l (Ré* . Ré)

Tk
toBs =

where 0* is the bootstrap panel IM-OLS estimator for regression (2.5), XU/;S 77 18 con-
structed exactly as \U/p 7 but using the bootstrap data.

. B
5. Repeat above steps 2-4 independently B times to obtain samples {té BS j} and

{ | * ‘} f—

6. Compute the equal tail bootstrap p-value as

B B
. ]- >, v 1 v, v
p* () = 2min EZI (t*CBs,j < t) ’EZI (t*CBs,j > t)
j=1 b=1
1 B
P (W)= 52t (Wes, > W)
j=1

where () is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.
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2.3.2 Stationary bootstrap

The stationary bootstrap, proposed by Politis and Romano [1994], is a special type of
block bootstrap where the block size follows a geometric distribution instead of a fixed
number. For a geometric distribution with parameter Prs the expected block size of the
stationary bootstrap is 1/ pp- The stationary bootstrap has been used in the literature of
unit root tests, cointegration tests and cointegrated regression inference (see Swensen [2003],
Paparoditis and Politis [2005], Parker et al. [2006], Shin [2015] and Shin and Hwang [2013]).
It can capture the serial correlation structure in the original sample by block resampling, and
it produces stationary bootstrap samples. A formal description of the stationary bootstrap

inference procedure is given below.

1. Calculate the residuals as
4 =84 —SP's - SH3—alA

where 4, B and 74 are the panel IM-OLS estimators.

2. Define 1;; = <A§%, Afit) fort=1,2,--- T, where AZ-“O = 0, and x;( is zero vector for

all 7.

3. Resample the series {ﬁit};:1 via the stationary bootstrap, obtaining {ﬁ;kt}thl'
/ /
4. Partition 7, = [“;kt U:}/} analogously as n;; = [Uz‘t Ugt] . Obtain the bootstrap

samples {7 }thl by
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and generate the bootstrap samples {y;‘t}le from
i = Db+ i + iy (2.6)

5. Define the bootstrap statistics as
(Ré* - Ré)
\/ RAprMViryAprin R

Wigg = (Ré* . Ré)l [RAPIMV;IMAPIMR’} ! (Ré* . Ré)

Tk
tsps =

where 6* is the bootstrap panel IM-OLS estimator from regression (2.6), ‘U/j‘;IM is
constructed exactly as f/p 70 but using the bootstrapping data.

o B
6. Repeat above steps 3-5 independently B times to obtain samples {tg BS j}» . and
b ]:
B

Wips,)”
7. Compute the equal tail bootstrap p-value as
1 & 1 &
* . e ¥ 7% Y
j=1 j=1

B
o 1 o o
(W) = P (Waps, > W)
j=1

where [(-) is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.

Note that the step 1 of Section 2.3.1 and Section 2.3.2 are both based on the regression
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(2.3), which includes the augmented regressor x;;+ in the regression. It might worth exploring
how the bootstrap works if the residuals are calculated from non-augmented partial sum
regression. That is, for both stationary and conditional-on-regressors bootstrap, the residuals

are obtained from

51 =S¥ — sP's — sy (2.7)

where 0 and B are the panel IM-OLS estimators, and all other steps are the same as its
corresponding procedures. Using these residuals, the stationary bootstrap resampling and
the conditional-on-regressors bootstrap resampling will be more comparable, and it could
capture some of endogeneity in the bootstrap resamples. In next section, we will provide the
bootstrap results based on Section 2.3.1 and Section 2.3.2 as well as the bootstrap results

based on the residuals from regression (2.7).

2.4 Finite sample simulations

In this section, we compare finite sample size and power performance of the bootstrap
tests with the asymptotic tests based on the panel IM-OLS estimators. The data generating

process is the same as in Vogelsang et al. [2016], which is given by

Vit = 1+ 2181 + 224482 + ugy
rlyp =xli 1 +vly

T2 = X254 1 + 02y
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where for all t =1,2,--- | N, u;9p = 0, 21,9 and z2;( are zero vectors, and

Uip = prug -1 + € + p2 (ely + €2y)
vl = el + 0.5€1i7tf1

02 = €2y +0.5e2; 1

where €;;, el;; and e2;; are i.i.d. standard normal random variables independent of each
other. The parameter values are ;= 3, 81 = 85 = 1. In addition, we use p1, ps € {0.6,0.9}.
The parameter py; controls serial correlation in the regression error, and pg determines the
endogeneity of the regressors. In this paper, we only provide results where both p; and po are
relatively large because according to the findings in Vogelsang et al. [2016], if p; and py are
relatively small (p; = pg = 0.3), there are only minor size distortions for fixed-b asymptotic
tests. Therefore, the bootstrap method is not necessary when py and po are small. The kernel
function used in this simulation study is the Bartlett kernel, and the bandwidths are given by
M = bT with b € {0.06,0.1,0.3,0.5,0.7,0.9,1}. We use p, = 0.02(T/50)~1/3 as the block
length parameter in the stationary bootstrap?. The sample sizes are N =5, T' € {50,100}.
The number of bootstrap replications is B = 399, and the number of simulation replications
is 1000.

Using the simulation designed above, we only report results for cases where p; = pa. The

results include t-statistics for testing the null hypothesis Hy : 1 = 1 and Wald statistics

2Politis and White (2004, 2009) considered estimators constructed via stationary bootstrap to obtain an
approximation to the sampling distribution of the mean of a finite sample from the (strictly) stationary real-
valued sequence. They showed that the optimal block length parameter minimizing MSE of the stationary
bootstrap sample mean is ¢T=1/3 for some constant c. In addition, Shin and Hwang (2013) considered
the bootstrap ordinary least square estimator for cointegrating regressions. They established large sample
validity of a bootstrap test regarding cointegration parameters and showed that the block length parameter

0.02(T/50)_1/3 would provide stable size performance for the stationary bootstrap test.
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for testing the joint null hypothesis Hy : 81 = 1,82 = 1. The asymptotic panel IM-
OLS statistics were implemented in two ways. The first uses 2., and is labeled panel
IMOLS(D), and the second uses 2%, and is labeled panel IMOLS(fb). The bootstrap panel
IM-OLS statistics were implemented in four ways. The first two statistics are based on the
bootstrapped 2., and are labeled Cond-BS IMOLS (D) and Stat-BS IMOLS(D) respectively
for the conditional-on-regressors bootstrap and the stationary bootstrap. The second two
statistics are based on the bootstrapped 2%, and are labeled Cond-BS IMOLS(fb) and Stat-
BS IMOLS(fb) respectively. Rejections for panel IMOLS(D) are carried out using N(0,1)
critical values for the t test and X% critical values for the Wald test. Rejections for panel
IMOLS(fb) are carried out using fixed-b asymptotic critical values. In contrast, rejections
for the bootstrap statistics are carried out by comparing the bootstrap p-value with the
nominal level, which is 5% in this simulation.

In order to see if the bootstrap methods can help solve the over-rejection problem of the
asymptotic tests in finite sample, we plot in Figures 2.1-2.8 null rejection probabilities of
the t and Wald tests as a function of b € (0,1]. The first two figures give the results for
N =5, T = 50 using the Bartlett kernel and p; = po = 0.6. In Figure 2.1, all t-tests have
some over-rejection problems, and there is no test that dominates the others in this scenario.
When the bandwidth is small (b = 0.1), panel IMOLS(D) is better than the other tests
because it is conservative. But when bandwidth is relative large (b > 0.2), it turns out that
Cond-BS IMOLS(D) is the best. Even though it is better than all other tests, the Cond-BS
IMOLS(D) rejection probabilities are close to 15%, which is much larger than nominal level
5%. In Figure 2.2, for Wald tests, the stationary bootstrap tests dominate the other tests
for all values of b. Its rejection probabilities are close to 10% for all values of b, which is

much better than the asymptotic tests. Also, Cond-BS IMOLS(D) has rejection probabilities
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around 12% as long as the bandwidth is not very small (b > 0.1).

In Figures 2.3 and 2.4, all the settings are the same as in Figure 2.1 and 2.2 except that
the time series sample size increases from T = 50 to T = 100. Comparing Figures 2.1 and
2.3, Figures 2.2 and 2.4, we see that both t and Wald tests have less size distortion when
sample size increases. In Figure 2.3, the patterns of the rejection probabilities of all t tests
are similar as those in Figure 2.1. And still, there is no test that dominates the others for t
tests. For Wald tests, the pattern is very clear. As we can see from Figure 2.4, for all values
of b, the asymptotic tests have the highest size distortions. But the rejection probabilities
of the stationary bootstrap tests are stable and close to 5%, which implies that stationary
bootstrap successfully solves the over-rejection problem in this scenario. The null rejection
probabilities of the conditional-on-regressors bootstrap tests are higher than 5% but less
than those of the asymptotic tests.

As the values of p1, po increase to 0.9, there exists strong serial correlation and endogene-
ity. We can see from Figures 2.5-2.8 that all the tests have serious over-rejection problems
regardless of bandwidth. For N = 5, a time series sample size 7" = 100 is not large enough for
the stationary bootstrap to obtain reasonable size that is close to 5%. But among all three
tests, the stationary bootstrap tests are better than conditional on regressor bootstrap and
asymptotic fixed-b tests. And this is true for both t and Wald tests, which is not the case
when p; = pg = 0.6. In addition, unlike the results before, Stat-BS IMOLS(D) and Stat-BS
IMOLS(fb) rejection probabilities are not that close any more. Generally speaking, when
both p; and po are very large, Stat-BS IMOLS(D) tends to have the smaller size distortion
than Stat-BS IMOLS(fb). Therefore, when pq, po are large, in order to obtain reasonable
size, we need a very large time series sample size and to use the Stat-BS IMOLS(D) statistics.

From the above, we see that the bootstrap tests generally have less size distortions than
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the asymptotic tests. However, if the power of the bootstrap testing is low, then the bootstrap
methods are less useful. When the alternative is true, some bootstrap methods fail to
simulate critical values that are valid under the null in which case the tests have no power.
Therefore, the analysis of the power properties of the bootstrap tests is necessary. For the
sake of brevity we only display results of the stationary bootstrap for the case p; = po = 0.6
for the Wald test for N =5, T' € {50,100} and using the Bartlett kernel. Starting from the
null values of 81 and (5 equal to 1, we consider under the alternative 51 = o = 5 € (1,1.25],
using (including the null value) a total of 13 values on a grid with mesh 0.02. We focus on
raw power using bootstrapped critical values.

Using N = 5, T' = 50, with Bartlett kernel and b = 0.1, Figure 2.9 provides power
comparisons between Stat-BS IMOLS(D) and Stat-BS IMOLS(fb). The power plots indicate
that when the alternative is true, the stationary bootstrap is still simulating critical values
that are valid under the null. Figure 2.10 displays the same power comparisons as in Figure
2.9 but with T" = 100. The main finding is that power increases as T" increases. From Figures
2.9 and 2.10, we can see that the bootstrap tests have good power.

As mentioned in the end of Section 2.3, we also consider the stationary bootstrap and the
conditional-on-regressors bootstrap based on the residuals from the non-augmented partial
sum regression. Null rejection probabilities of the t and Wald tests as a function of b € (0, 1]
are shown in Figures 2.11-2.18. The general patterns in Figures 2.11-2.18 are close to those
in Figures 2.1-2.8. Overall, the bootstrap methods based on the residuals from the non-
augmented partial sum regression have less size distortion problems than the asymptotic
methods especially for the Wald test with large sample size. But when serial correlation
and endogeneity are both large, it seems that the bootstrap results are depend little on the

choice of the residuals. The power results in this case are displayed in Figure 2.19 and 2.20,
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which are very similar to the power results in Figures 2.9 and 2.10.

2.5 Summary and conclusion

This paper compares bootstrap tests with fixed-b asymptotic tests based on the panel
IM-OLS estimator of Vogelsang et al. [2016] for a homogeneous panel cointegrated regression
with endogenous regressors. The bootstrap methods used are the conditional-on-regressors
bootstrap and the stationary bootstrap. The purpose of using the bootstrap tests is to
improve the quality of finite sample inference. The Monte Carlo simulations show that the
bootstrap methods can effectively reduce size distortions in finite samples. In general, the sta-
tionary bootstrap has less size distortions than the conditional-on-regressors bootstrap and
asymptotic fixed-b tests, especially when there is strong serial correlation and endogeneity
(p1 = p2 = 0.9). It is necessary to have a large time series sample size to obtain reasonable
size of the tests. When the serial correlation and endogeneity is medium (p; = po = 0.6), the
bootstrap methods still have less size distortion, but t and Wald tests have different results.
For Wald tests, the stationary bootstrap is always better than the other two methods. In
contrast, for t-tests, Cond-BS IMOLS(D), the statistic constructed using a HAC estimator
based on the first differences of the residuals from the augmented partial sum regression for
02.,, has less size distortions when the bandwidth is relatively large (b > 0.25). In addition,
the stationary bootstrap statistics are more robust than all other test statistics for all values
of bandwidth. Finally, the power plots from the simulation show that the bootstrap tests
have good power.

Further research will study the panel IM-OLS method for estimation and inference in a

heterogeneous cointegrating panel with endogenous regressors. In that more general scenario,
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finding a fixed-b asymptotic pivotal statistic based on panel IM-OLS will be challenging.
However, the results in this paper indicate that the bootstrap method could be an alternative
solution for hypothesis tests. In addition, if the panel consists of cross-sectional dependent
units, then the bootstrap procedure will need to be modified to resample all individuals
together rather than resample individual by individual. Another topic of future research is

to establish the consistency of the bootstrap for panel IM-OLS tests.
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Figure 2.1: Empirical null rejections, t-test, N =5, T' = 50, p; = p2 = 0.6, Bartlett kernel
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Figure 2.2: Empirical null rejections, Wald test, N = 5, T' = 50, p1 = p2 = 0.6, Bartlett
kernel
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Empirical null rejections, t-test, N=5, T=100, rho,=rho,=0.6, Bartlett kernel
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Figure 2.3: Empirical null rejections, t-test, N =5, T'= 100, p; = p2 = 0.6, Bartlett kernel

102



0.5
0.45

04

Figure 2.4:
kernel

Empirical null rejections, Wald-test, N=5, T=100, rho,=rho,=0.6, Bartlett kemel

panel IMOLS(D)
.......... panel IMOLS(fh)
Cond-B5 IMOLS(D)
Stat-B5 IMOLS(D)

---------- Cond-BS IMOLS(fo)
---------- Stat-BS IMOLS({fo)

Empirical null rejections, Wald test, N = 5, T" = 100, p1 = p2 = 0.6, Bartlett

103



Empirical null rejer:.tiuns,t-test,N=5,T=5I],rhu1=rhnZ=I].9,ElartIett kernel

1 , | , | T T T T T
0.9+ |
] I — e L L
0.7+ |
06 |
05F 1
04r .. :
[]-3 | ’\M |
—— e e |
panel IMOLS(D)
| p— panel IMOLS(fb) i
Cond-BS IMOLS(D)
Stat-BS IMOLS(D)
L | [ Cond-BS IMOLS(fb) |
---------- Stat-BS IMOLS(fb)
: | : | | | | 1 l l
0 01 02 03 04 05 06 07 08 09 !
b

Figure 2.5: Empirical null rejections, t-test, N =5, T' = 50, p; = pa = 0.9, Bartlett kernel
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Figure 2.6: Empirical null rejections, Wald test, N = 5, T' = 50, p1 = po = 0.9, Bartlett
kernel
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Figure 2.7: Empirical null rejections, t-test, N =5, T'= 100, p1 = p2 = 0.9, Bartlett kernel
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Figure 2.9: Raw power, Wald test, N =5, T'= 50, p1 = p3 = 0.6, b = 0.1, Bartlett kernel
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Raw power,Wald test, N=5T=100.rho,=rho,=0.6 Bartlett kemel b=0.1
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Figure 2.10: Raw power, Wald test, N =5, T' = 100, p1 = p3 = 0.6, b = 0.1, Bartlett kernel
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Figure 2.11: Empirical null rejections, t-test, N =5, T' = 50, p; = p2 = 0.6, Bartlett kernel,
residuals from non-augmented partial sum regression
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Empirical null rejections,Wald-test,N=5.T=50,rho,=rho,=0.6,Bartlett kemel
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Figure 2.12: Empirical null rejections, Wald test, N = 5, T" = 50, p; = p2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression

111



Empirical null rejections.t-test.N=5T=100.rho,=rho,=0.6,Bartlett kernel

0-4 I I I T T T T T T
panel IMOLS{D)
.......... panel IMOLS(fb)
Cond-BS IMOLS(D)
035H 5

Stat-BS IMOLS(D)
Cond-BS IMOLS(fb)
Stat-BS IMOLS(fb)

03
0.25F i
02}

0.15

0.1

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

Figure 2.13: Empirical null rejections, t-test, N = 5, T" = 100, p; = p2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression
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Empirical null rejections,Wald-test,N=5T=100 rho,=rho,=0.6,Bartlett kernel
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Figure 2.14: Empirical null rejections, Wald test, N = 5, T' = 100, p; = p2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression

113



Empirical null rejections, t-test N=5,T=50.rho,=rho,=0.9,Bartlett kernel
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Figure 2.15: Empirical null rejections, t-test, N =5, T' = 50, p1 = p2 = 0.9, Bartlett kernel,
residuals from non-augmented partial sum regression
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Empirical null rejections. Wald-test. N=5.T=50,rho =rho,=0.3. Bartlett kemnel
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Figure 2.16: Empirical null rejections, Wald test, N = 5, T" = 50, p; = p2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression
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Empirical null rejections.t-test N=5,T=100,rho,=rho,=0.9 Bartlett kemel
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Figure 2.17: Empirical null rejections, t-test, N = 5, T' = 100, p; = p2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression
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Empirical null rejections.Wald-test,N=5,T=100.rho,=rho,=0.9,Bartlett kemel
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Figure 2.18: Empirical null rejections, Wald test, N = 5, T' = 100, p; = p2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.19: Raw power, Wald test, N =5, T'= 50, p1 = p2 = 0.6, b = 0.1, Bartlett kernel,
residuals from non-augmented partial sum regression
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Figure 2.20: Raw power, Wald test, N = 5, T' = 100, p;
residuals from non-augmented partial sum regression
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Chapter 3

Estimation and Inference for
Heterogeneous Cointegrated Panels
with Limited Cross Sectional
Dependence

This paper is concerned with parameter estimation and inference in a panel cointegrating
regression with endogenous regressors and heterogeneous long run variances in the cross
section. In addition, the model allows a limited degree of cross-sectional dependence due
to a common time effect. The estimator is labeled as panel integrated modified ordinary
least squares (panel IM-OLS). Similar to panel fully modified OLS (panel FM-OLS) and
panel dynamic OLS (panel DOLS), the panel IM-OLS estimator has a zero mean Gaussian
mixture limiting distribution. However, standard asymptotic inference is infeasible due the
existence of nuisance parameters. Inference based on panel IM-OLS relies on the stationary
bootstrap. The properties of panel IM-OLS are analyzed using the stationary bootstrap in

finite sample simulations.
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3.1 Introduction

In the past decade, panel cointegration methods have drawn much attention in empirical
research. The attractive feature of panel cointegration methods is that they permit inves-
tigation of the long-run relationship among nonstationary variables more efficiently than
using time series data alone. However, panel cointegration is more complicated than single
time-series cointegration when cross-sectional dependence and heterogeneity exist. If the
cross-sectional dependence and heterogeneity were ignored, it might lead to poor inference
and inconsistent estimators. It is well known that the application of the first generation
panel unit root tests, which generally assume cross-sectional independence, to the series
with cross-sectional correlation leads to size distortion and low power. This might also be
the case for the panel cointegration estimation and testing. For example, Westerlund and
Edgerton [2008] claim that the tests of McCoskey and Kao [1998], Pedroni [1999], [2004] and
Westerlund [2005] all require independence among the cross-sectional units, and their size
properties become suspect when this assumption does not hold. The homogeneity assump-
tion is often not well supported by the data. Therefore a framework that allows potential
heterogeneity is necessary.

In the panel cointegrated regression literature, the panel fully modified OLS (panel FM-
OLS) and the panel dynamic OLS (panel DOLS) methods are the most popular methods
(see Kao and Chiang [2000], Pedroni [2000], Bai et al. [2009] and Mark and Sul [2003]). They
are the extensions of the single time series fully modified OLS (FM-OLS) and dynamic OLS
(DOLS). Integrated modified OLS (IM-OLS), proposed by Vogelsang and Wagner [2014],
provides a fully parametric and computationally convenient alternative to the FM-OLS and

the DOLS estimators. Vogelsang et al. [2016] extend IM-OLS to panel data models with
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individual dummies and homogeneous second moment structure. The present paper con-
siders an extension of Vogelsang et al. [2016] by allowing time dummies and heterogeneous
variance structure in the model. The benefit of adding time dummies is twofold. First, time
dummies can handle deterministic components and common factor shocks, and second, time
dummies make the model robust to limited degrees of cross-sectional dependence. Allowing
heterogeneous, rather than homogeneous, variance structure makes the framework discussed
in this paper more applicable in empirical research. Bai et al. [2009] and Mark and Sul [2003]
consider similar problems using the panel FM-OLS and the panel DOLS estimators.

The limit theory considered here is obtained for a fixed number of cross-sectional units
N, letting the number of the time periods, T', go to infinity. The setting of N fixed and T" —
oo is widely used in empirical macroeconomics, empirical energy economics and empirical
finance problems (see Christopoulos and Tsionas [2004], Lee [2005], Apergis and Payne
[2009], Narayan and Smyth [2008] and Canzoneri et al. [1999]). Under this scenario, even
though the panel IM-OLS estimator converges to a zero mean Gaussian mixture distribution,
asymptotic inference is complicated by the presence of nuisance parameters. One way to
implement valid hypothesis tests is using bootstrap methods. Although bootstrap methods
are widely employed for analyzing nonstationary time series data, e.g. bootstrap unit root
tests and bootstrap cointegration tests (see Chang [2004], Paparoditis and Politis [2003],
Parker et al. [2006], Westerlund and Edgerton [2007]), surprisingly few papers are devoted
to bootstrap inference in cointegrated regressions. Psaradakis [2001] and Chang et al. [2006]
employ the sieve bootstrap procedure to cointegrated regressions. Li and Maddala [1997]
and Shin and Hwang [2013] apply the stationary bootstrap to cointegrated regression.

In the literature, the sieve bootstrap can be applied in fairly general models and performs

well in pure time series setting, but it requires fitting a finite order AR or VAR model to
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the errors. Smeekes and Urbain [2014] questioned the validity of the use of VAR sieve
bootstrap in panels with a moderate cross-sectional dimension and showed that the AR
sieve bootstrap might be misleading when cross-sectional dependence is present. On the
contrary, the stationary bootstrap requires no parametric structure for drawing bootstrap
samples. In addition, a working paper by Li [2016] shows that the stationary bootstrap
performs well in panel cointegrated regressions with fixed effects and homogeneous variance
structure when cross sectional units are uncorrelated. The bootstrap method used in the
present paper is the stationary bootstrap.

The rest of the paper is organized as follows. Section 3.2 introduces the model, assump-
tions and the panel IM-OLS estimator. In Section 3.3 asymptotic inference and stationary
bootstrap inference are presented. Section 3.4 provides a Monte Carlo simulation to inves-
tigate the finite sample properties of the proposed bootstrap test. Section 3.5 summarizes

the results and concludes the paper. All proofs are collected in Appendices C - F.

3.2 Model set up and estimation

3.2.1 The model and assumptions

Consider the following panel data model

yit = o +aB+eq (3.1)

Tip = Ti—1+ Vi (3.2)
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where ¢+ = 1,2,--- N and t = 1,2,---,T index the cross-sectional and time series units,
respectively; y;+, a; and e;; are scalars; x4+, § and v;; are k x 1 vectors. The regressor, x4,

is potentially endogenous for each individual 7.

Assumption 6. Assume that the error term, e;+, follows a special case of a factor model
eit = Fy\ + uig. (3.3)

In Assumption 6, F} is the common factor and w;; is idiosyncratic component. Assump-
tion 6 is a special case of factor model, as the factor loading A is constant across 7. Under
the above assumption, e;; and ej; are correlated due to the common factor F, therefore
the panel data model is cross-sectional dependent. Because the regressor considered here is
endogenous, v;; is assumed to be correlated with u;;. In addition, there is no restriction on
the correlation between v;; and Fj.

Define the error vector as n;; = {Uz ; U;J/ and suppose that it is a (k + 1) dimensional
stationary vector for each i. In addition, assume that F} is a 1(0) process. This implies that
the model introduced in (3.1) describes a system of panel cointegrated regressions, i.e. y;t
is cointegrated with z;;. It might also be interesting to consider the case that Fy is a I(1)
process. Bai et al. [2009] consider the CupBC (continuously-updated and bias-corrected) and
the CupFM (continuously-updated and fully-modified) estimators for panel cointegration
models with cross-sectional dependence generated by unobserved global stochastic trends,
where F} is non-stationary. In this paper, the interest is in estimation and inference about
[ based on the panel IM-OLS estimator when Fy is stationary. In order to derive the panel

IM-OLS estimator’s limiting distribution, a second assumption is sufficient.
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Assumption 7. Assume that n; is independent across i, and satisfies the Functional CLT

[rT] B..
T3 > nit = Bi(r) = wil?) = 3/2Wi(7“),
t=1 Bv,i(ﬂ

where r € (0,1], and [rT| denotes the largest integer value of rT.

/
In Assumption 7, QE/Q is a (k+1) x (k+ 1) matrix that satisfies 2; = 0L/2 (91/2)

7 7
where

oo

Quu,i qu,i
Q=Y E <77it77§t_j> = >0,

j=—o00 Qvu,i vi,i

where it is obvious that €2, ; = Qém,i' Assume that €, ; is non-singular, which implies that

/

{z;+} are not cointegrated among themselves. Partition B;(r) as B;(r) = [ By(r) B, Z(T)} ,
/

and likewise partition W;(r) as W;(r) = [wu,i(r> Wé’z(r)} , where wy, ;(r) and W, ;(r) are

a scalar and a k-dimensional standard Brownian motion, respectively. Using the Cholesky

form of Q;/ 2,

S Y

1/92 Ouwvi v
Qi/ N /2 |

kal Q’U’U,i

o !/
it can be shown that ag.v’i = Quu,i — Qqu*l Quug and Aypi = Quui (Q 1/2) . In

VU,2 VUL

addition, it follows that

B(r) Bu,i(r) Uu-uiwu,i(r) + )‘uv,z’Wv,i(T)
1/2
Byi(r) SRAAVANED

Note that Ay, ; # 0 for all ¢ because the regressors are allowed to be endogenous. Notice

that the 2nd order moment structure is heterogeneous across i.
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3.2.2 Panel IM-OLS estimator

From regression (3.1) and Assumption 1, the system can be rewritten as

Yit = a; + I;tﬁ + Ft/)‘ + u;t,

and its cross-sectional mean is given by

Ut = a+ T8 + F/\ + ay,

where

) el
y = N Yit
=1
I
o = N O[Z
=1
1 N
Ty = Nzxit
=1
1 N
U = N;ult
1=

Cross-sectional demeaning can be used to remove Ft/ A and provides an estimation equation
that is exactly invariant to Ft’ A. Note that the cross-sectional demeaning is exactly the
same as including time period dummies and projecting them out of the regression. Since

Fy could be unobserved time shock, therefore projecting it out before partial summing is
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crucial. Cross-sectional demeaning gives

Yit — Yt = —a+ (int - 9732) B+ uj — Uy, (3.4)
which is denoted as
it = Wi + B+ gy, (3.5)
where
i = o —«Q

Uit = Yit — Yt

Tip = Ty — Tt

Following Vogelsang and Wagner [2014], compute the partial sum of regression (3.5) to give
S¥ = tu; + Si B+ Siy, (3.6)
where
. t
Sho= Dl
j=1
.. t
= D iy
j=1

t

W=D

j=1
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In order to deal with the endogeneity problem generated by the correlation between w;;
and vy, it is sufficient to add additional regressors into regression (3.6). A natural candidate
is the demeaned regressor i;;, however, this does not work due to the heterogeneity in
the model. This is formally shown in the Appendix. The endogeneity problem, which is
complicated by the heterogeneity in the variance structure, can be solved by adding the

decomposed Z;; into (3.6). The decomposed Z;; can be expressed as

—1 -1 N -1 -1 -1

_I ---—x‘i —x‘ _x‘ DY x .
N 1¢» N i 1.t N its N i+1,0> N Nt

Adding these regressors separately will overcome the heterogeneous variance problem when

dealing with endogeneity. Details are given in the Appendix.

Remark 4. In regression (3.5), if 5 is the only parameter of interest, then it is possible to

demean across time to remove ; before partial summing. That is

yzt = xzt 6 + uzt’

where
1 & 1 &
= it — Z Yik: l"l-t = Lit — Z Liky Wip = Wit = Z Uik
k=1 k=1

Then regression (3.6) becomes to
n +
1 /
Sit - I g+ zt ’

where
t
+:Zyi—§’ Za% szj, Zt ZUZ]'
j=1
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However, in this case, including the components of i;; is not sufficient to deal with the
endogeneity problem. Finding the additional regressors for this partial sum regression is

much more challenging if not impossible, therefore this method is not considered in this

paper.

Remark 5. If the system does have homogeneous 2nd order moment structures, i.e. §3; = €Q;
for any i, j for {1,2,--- N}, then adding Z; to the partial sum regression will be sufficient

for solving the endogeneity problem.

Including the additional regressors in (3.6) gives

' L N-—1 S .
Sz'yt = tu; + S5 B+ — Ty + ~ Z $;'ﬂj + Sji (3.7)
J=1j#i
where
N
J=Lj#i

Stacking all time periods and all individuals’ data together, the matrix form of the system

is given by

S = 59 4 gt (3.8)

129



where

Y U
ST B 11
7
i i
Sir 1T
Sy: ) 0: ’}/N 9 SU: )
SNt H1 N1
SNT KN NT
X/ N—-1_y —1_ —1
S "M W o iyt L 0
X/ N—-1_1t -1 7 —1 7
STy "N Ty Wy 0 Nlyg 2 0
X/ N—1_/ —1 —1
Sir "~ %ir N%r - Niny T o0
% =
X! —1 -1,/ N-—-1_1
Syt Mt w1 o T Ay 0l
X/ —1 —1 N—1_1
SN2 NP2 N2 0 TN Pyg 0 o 2
T/ —1_ 7 —1_ 7 N—1_1
_SNT N NT%r o wn Ay O o T

The panel IM-OLS estimator is the OLS estimator of regression (3.8), which is given by

o= (s757) " (s7s7).
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It follows that

N T N T
, _
= (2D | (DD auSi
i=1 t=1 i=1 t=1
where
r /
— v N-—1_1 -1 —1 7
qit Stt "Nt Ny o Ny b0 - 0]
- /
= o —1_ ./ N-—1_1 =17
2t Sy WT TN Ty o wang 0t - 0]
/
= Ll =1,/ -1, N-—-1_1
ANt SNt Nt NTw 0 TNty 00 - t] '
Define the scaling matrix
T- 1 0
-1 -
PIM = Iy ® I,
1
0 IN(X)Tj

as a (k+ Nk+ N) x (k+ Nk + N) diagonal matrix.

The following theorem gives the asymptotic distribution of the panel IM-OLS estimator.

Theorem 3. Assume that the data are generated by (3.1) and (3.2), and that Assumptions

6 and 7 hold. Define 0 by stacking B, ; and p;. Then for fivred N, as'l' — oo
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(%1 —71)

Apin (é - 9) = (v — )

VT (fin — 1)

_\/T (AN — p1N)

N T -1 N T .
= | T2 ApandiAry TN AT 28}

=1 i=11t=1

@
I
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where

i—1 v,
]:
10?2
;\7 Q’U’U,lwval <T)

Conditional on h;(r) for ¢ = 1,2,--- N, it can be shown that W ~ N (0, Vpyps), where

Vpras 1s given by

1 N -
V = h; ()R (r)dr X
PIM /0 ;
[ L. /
Seabi [ [ - i) [ - )] ar| <
_z:l
1 N -
| Yo nimier
0 =1
and
.
Hi(r) = Hy(r) — N ZHJ(T)
j=1

The derivation of this conditional variance is given in the Appendix.
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3.3 Inference about 0

3.3.1 Inference using panel IM-OLS

This section provides a discussion of hypothesis testing using the panel IM-OLS estimator.

In particular, the hypothesis being considered is given by
HO : RO=r

where R € RIX(KTNE+N) with full rank g and r € RY. Because the vector 0 has elements
that converge at different rates, restrictions on R are necessary. Assume that there exists a

non-singular ¢ X ¢ matrix AR such that
lim A_lRA = R*
T R PIM

with R* has rank q.
In order to carry out statistical inference, the asymptotic variance, Vpjyj s, needs to be

estimated. The outside parts of the sandwich form can be estimated by

-1

N T
2
T2 ApimaidisApiv
1=11t=1

The tricky part is estimating the middle part of the sandwich form of the variance. Suppose

that ¢ au i is an estimator for o2 then an estimator for the middle part of the variance is

UV,
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given by

T N
S ([ 5] (e [ 51 ])

with Sq =S5l - % Z] 1 S?t and S} = 2}2:1 q¢ir- Therefore, the estimator of Vpys takes

the form

N T -1

V. —2 /
Vern = (T2 AprvaadiiApiv X
i=1 t=1

[ T N
T_4t2121&5,v7i (APIM [Sq Szt 1]) (APIM [SZ(JT - giq,tl]>/ X
—1 4=

T -1

N
=)
T3 ) ApivtidsApiv
=1 t=1

2

v re considered.

Here, two potential candidates for &

1. The first candidate, au .vi» 18 based on the residuals of regression (3.7), i.e

e i . N—1 1

_ QY ~ / ! A !/ o~

%*Sit_tﬂi_sﬁﬁ——]v $it7i+ﬁ E: Lt Vj
J=1,j#1

where fi;, # and 4; (¢t = 1,2,--+,N) are the panel IM-OLS estimators. Define a HAC

estimator using the first difference of 5’3

Gwi=T izi: (|j_h|> DS,

2. The second candidate, & u 0,0 is based on the residuals of a further augmented regres-
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sion of the partial sum regression (3.6), i.e

. N — 1 .
~ ! /
J Lj#1
where
t—1 J
Zzt—tZDm > > Dis
j=1ls=1
/
R r! —1 N—-1_1 1
Dit [Sﬁ tojTy o Sy o Nth}’

and fi;, BZ-, Yii and 7; j are OLS from the further augmented regression given by

; L N-1 -
S = tui + Sif Bi + Tl’gt%‘,z‘ ¥ o @i+ Fhi (3.9)
J=Lj#i

Note that for given i, the estimators v;; is the parameter associate with ith individual’s
xj regressor, and ; ; are the parameters associate with ith individual’s all ¢ regressor for
j=1,2,--- N and j # i. They are allowed to be different across different individual because
the further augmented regressions are being done individual by individual. Therefore, the

HAC estimator using 5’3 is defined as

Remark 6. The reason for considering the second wvariance estimator, 52 15 that it

u,1’

delivers an asymptotic pivotal limit in the following two cases: (i) N = 1 (See Vogelsang

and Wagner [2014]); (ii) N > 1 with homogeneous variance structure (See Vogelsang et

[2016]). However, when N > 1 and heterogeneous variance structure exists, 6@2“;2‘ no
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longer leads to an asymptotic pivotal limit. In practice, this estimator should be considered

for N =1 case or N > 1 with homogeneous variance structure case.

Let £ and W denote statistics defined using &3. v.i to construct Vp 707, and likewise ¢ and

W denote statistics defined using 2. . to construct f/p 70 Letting £ and W denote either

UV, 8

f and W or  and W, define the ¢t and Wald statistics as:

(Ré = 7’)
\/ RApivVprvApin B

W= (Ré . r)' [RAPIMVPIMAPIMR’]l (Ré . r) .

¢

Theorem 4. Assume that the data are generated by (3.1) and (3.2), and that Assumptions

6 and 7 hold. Under traditional bandwidth and kernel assumptions, with N fized as T — oo

and when q =1,

(1+ddy)

where X?I 15 a chi-square random wvariable with q degrees of freedom, Z is a standard
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normal random variable,

-1
1 N
ddy =Vpiy, /0 > hi(r)hi(rydr | x
1=1

and

! =2 4
d’Yid'Yi - Juq},id‘lli

vi,idllli’
where dy, is the (i + 1)t k x 1 block of the distribution W.

e Under fized-b asymptotics where M = 0T, b € (0,1] is held fized as T — oo, then the

fized-b limits of W and £ are given by

2
W= 1
Q(b)
and when ¢ =1,
. Z
t = =
Q(b)
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where

is a stochastic process that depends on the kernel function, bandwidth and W;(r).

e Under fized-b asymptotics where M = bT', b € (0, 1] is held fized as T — oo, then

2
W e
Q(b)
and when ¢ =1,
- YA
t = =
Q(b)

where

is a stochastic process that depends on the kernel function, bandwidth and W;(r).
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3.3.2 Inference using the stationary bootstrap

Unfortunately, the statistics £ and W are not asymptotic pivotal, which makes asymptotic
inference infeasible. One possible solution is applying the stationary bootstrap to mimic the
non-pivotal asymptotic distribution of those statistics. The stationary bootstrap, proposed
by Politis and Romano [1994], is a special type of block bootstrap where the block size fol-
lows a geometric distribution instead of a fixed number. For a geometric distribution with
parameter p.., the expected block size of the stationary bootstrap is 1/ pp- The stationary
bootstrap has been used in the literature of unit root tests, cointegration tests and coin-
tegrated regression inference; see Swensen [2003], Paparoditis and Politis [2005] , Parker
et al. [2006], Shin [2015], and Shin and Hwang [2013]. It can capture the serial correlation
structure in the original sample by block resampling, and it produces stationary bootstrap

samples. A formal description of the stationary bootstrap inference procedure is given below.

1. Calculate the residuals based on regression (3.7) as

N
I . N—1 1
_ QY A ! I 2 /o~
%—Sit_tﬂi_SﬁB_Txiﬂi+N Z Tit7j
J=1j#i

where fi;, ,@, 4; and 45 for j =1,--- N and j # i are the panel IM-OLS estimators.

2. Define AS”;:% as a proxy for i, and AZ; as a proxy for ¢;+, which is the cross-sectional
/ /
demeaned v;;. Based on those proxies, define 7j;; = [ Agﬁ A'xét} = {&z ' {’;t} as a

/
proxy for 7j;; = [Uzt U;J fort =1,2,--- 7T, and set S% = 0 and Z;9 be zero vector

for all 7.
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3. Re-sample the series {ﬁzt} via the stationary bootstrap, obtaining {ﬁ*}, which can

/
be partitioned the same as 7j;; into 7% = [{L:t {,:4 )

4. Obtain the bootstrap samples {I:t} by

t

ko Sk

Tit = E :Uz’jv
J=1

and generate the bootstrap samples {yz(t} from !

ck ~ k! D S
Uit = fi + 3 5 + gy

5. After obtaining the bootstrap demeaned variables #}, and §, follow the same pro-
cedure as discussed before to estimate @, denoted by é*, and compute the bootstrap
estimator of the limiting variance Vpr,s, say ‘71’5 737+ Define the bootstrap statistics as

follows

(Ré* . Ré)
\/ RAprMVirApriu R

W = (R0 RO) [RApp VB Apie ] (RO* - RO).

t*

1B . 1B
6. Repeat steps 3-5 independently B times to obtain samples {t;} - and {Wj*} -
J= J=

INote that there is another method to obtain xft One can resample directly from the original regressor
x;; to obtain x;(t and then apply cross-sectional demeaning to ac;(t to obtain ac;(t . However, the size of the
tests based on this method is higher than that of the method introduced in procedure 1 to 4. Therefore, this

method is not included in this paper.
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7. Compute the equal tail bootstrap p-value as

B B
p*(f) = 2min lZI<f*<f> lz_f(t*>f>
B J—=")J’B J
J=1 J=1
B
v 1 v v
(W) = Y r(wrsw),
J=1

where I(-) is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.

3.4 Finite sample simulation

This section investigates finite sample size and power of the bootstrap tests based on the

panel IM-OLS estimators. The data generating process is given by

yit = xligh1 + 2202 + ug
l’lit = .Z‘li’t,l + Ulz‘t
T2 = 1241+ 024
where for all t =1,2,--- | N, ujg = 0, 1,9 and 22;q are zero vectors, and

wip = pruji—1+ pa(ely +e2y) + e
vl = el + 0-561i,t—1

V2 = €2it+0'562i,t—1
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where for " individual, git, el and e2;; are i.i.d. N (O,iQ) random variables. There is
no individual effect term and common time effect term included in the data generating
process because the focus here is on ] and 9, and the estimates of 51 and 9 are exactly
invariant to those terms. The parameter values are f1 = o = 1. In addition, p; and po
are chosen from {0.6,0.9}. The parameter p; controls serial correlation in the regression
error, and pg determines the endogeneity of the regressors. The kernel function used in
this simulation study is the Bartlett kernel, and the bandwidths are given by M = 0T with
b€ {0.1,0.5,1}. For the block length parameter pp in the stationary bootstrap, two different
settings are presented. One is p, = 0.01(4 — NT/50)~13 with j € {1,2,3}, the other is
pp = 0.04(4 — j)(T/50)~1/3 with j € {1,2,3}. The sample sizes are N =5, T' € {50,500}.
The number of bootstrap replications is B = 399, and the number of simulation replications
is 1000.

Results only for cases where p; = po are reported. The results include t-statistics for
testing the null hypothesis Hy : (1 = 1 and Wald statistics for testing the joint null
hypothesis Hy : 1 = B2 = 1. The bootstrap panel IM-OLS statistics were implemented
in two ways. The first one uses the stationary bootstrap procedures with the bootstrap

version of &12“) and is labeled Stat-BS IM-OLS(D). The second one uses the stationary

i
bootstrap procedures with the bootstrap version of 512“}’2- and is labeled Stat-BS IM-OLS(fb).
Rejections for the bootstrap statistics are carried out by comparing the bootstrap p-value
with the nominal level, which is 5% in this simulation.

Tables 3.1 to 3.4 report empirical null rejection probabilities of the t and Wald tests. In
each table Panel A corresponds to 1" = 50 and Panel B to 7" = 500. Some common findings

about the t and Wald tests can be summarized as follows. For both t and Wald tests, Stat-BS

IM-OLS(D) statistics tend to have smaller null rejection probabilities than those of Stat-BS
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IM-OLS(fb) statistics. When the bandwidth parameter b varies, the rejection probabilities
are relatively stable for both t and Wald tests, which shows that the bootstrap method can
successfully capture the impact of the bandwidth on the test statistics. In addition, when
the sample size T" increases from 50 to 500, rejection probabilities approach 0.05 as expected.

As the values of p1, pg increase from 0.6 to 0.9, there exists strong serial correlation and
endogeneity. It can be seen from Tables 3.1-3.4 that the rejection probabilities in all cases
generally increase, but those increases depend on the sample size and the test statistics. If
the time sample is small (7" = 50), the rejection probabilities increase quite a lot for all tests.
In contrast, if the time sample size is large (7" = 500), the Stat-BS IM-OLS(D) statistics
have similar rejection probabilities as p1 = pa = 0.6, whereas the rejection probabilities
increase quite a bit for the Stat-BS IMOLS(fb) statistics. This implies that when the time
sample size is large enough, the Stat-BS IM-OLS(D) statistics can effectively handle strong
serial correlation and endogeneity.

Another important pattern in Tables 3.1-3.4 is that the size of the tests depends heavily
on the tuning parameter Py It is not a surprise because the stationary bootstrap is a moving
block bootstrap with changing block lengths. Theoretically, there is no rule of thumb for
choosing the value of pp to ensure the hypothesis test has correct size. In a given sample,
Politis and White [2004] and Patton et al. [2009] propose a method to obtain an optimal
block length parameter for the stationary bootstrap. However, that optimal block length
parameter is based on minimizing the MSE of the stationary bootstrap sample mean, which
doesn’t necessarily guarantee the correct size of the tests. Therefore, several different values
for pp were used in this simulation study. In Tables 3.1-3.4, for both t and Wald tests,
when p,, is small, corresponding to large average block length, the tests tend to have over

rejection problems. As pp increases, the over rejection problem becomes less severe and
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under-rejection problems appear in some of the cases. To obtain the correct size, the t tests
require p. to be larger than that of the Wald tests.

Next consider the power properties of the tests. When the alternative is true, some
bootstrap methods fail to simulate critical values that are valid under the null in which case
the tests have no power. Therefore, the analysis of the power properties of bootstrap tests
is important. Here, only results for the case p; = po € {0.6,0.9} for the Wald test for
N € {5,15}, T € {50,500} with the Bartlett kernel are provided. If the power of the test
is not an issue for small sample size, like T" = 50, then it will not be a concern when the
sample size is large, like T" = 500. Starting from the null values of 81 and (o equal to 1,
the alternative values being considered are 51 = o = § € (1,1.4], which are total of 21
values on a grid with mesh 0.02 including the null value. Power and size-adjusted power are
reported. Note that size-adjusted power is not feasible in practice, but it allows us to see the
theoretical power differences across tests while holding null rejection probabilities constant
at 0.05.

Figures 3.1-3.4 show that using the bootstrap method, the Stat-BS IM-OLS(D) and Stat-
BS IM-OLS(fb) Wald tests do have power. Figure 3.1 shows the power comparison of the
Stat-BS IM-OLS(D) Wald test for small (T" = 50) and large (7" = 500) sample sizes and
using respective block size parameter values, p, € {0.08,0.00464}, give null rejections close
to 5%. It can be seen that the power of the tests with the larger sample size (T' = 500)
and smaller p,, (pT = 0.00464) grows dramatically fast. This implies that if the sample
size is large enough and the resampling block size parameter pp can be wisely chosen, the
Stat-BS IM-OLS(D) Wald test tends to have very high power. And even if the sample size
is relatively small (T = 50), the power of the test is still acceptable if pp 1s carefully chosen.

Next consider the impact of the serial correlation and endogeneity on the power of the
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Stat-BS IM-OLS(D) Wald test. Figure 3.2 displays the power comparison of the Stat-BS IM-
OLS(D) Wald test for small (p; = p2 = 0.6) and large (p; = p2 = 0.9) serial correlation and
endogeneity with respective block size parameter values, pp € {0.00464,0.00696}, give null
rejections close to 5%. The power of the test with smaller serial correlation and endogeneity
(p1 = p2 = 0.6) is higher than that of the test with larger serial correlation and endogeneity
(p1 = p2 = 0.9). If the sample size is small, the power of the tests is lower as expected.
Figures 3.3 and 3.4 provide size-corrected power comparisons between the Stat-BS IM-
OLS(D) and Stat-BS IM-OLS(fb) Wald tests for the same values of T', p1, pa, b but using
different sample size N. In Figure 3.3, the sample size N is 5, while in Figure 3.4, the sample
size N is 15. These two figures allow us to see power differences across tests while holding
null rejection probabilities constant at 0.05. It can be seen that when the cross sectional
sample size is small, the Stat-BS IM-OLS(fb) test has slightly higher power than that of
the Stat-BS IM-OLS(D) test. However, when the cross sectional sample size increases, the
power of Stat-BS IM-OLS(D) test is much higher. This implies that we should not consider
using the Stat-BS IM-OLS(fb) test when N is large, because it has large size distortions and

lower power in this scenario.

3.5 Summary and conclusions

This paper considers the estimation and inference of a homogeneous cointegrated vector
in a panel data model with individual heterogeneity and heterogeneous variance structure.
In addition, the model allows a limited degree of cross-sectional dependence due to a common
time effect. The estimator is labeled as panel IM-OLS. Tt is a fully parametric estimator that

is based on a partial sum transformed regression augmented by the decomposed demeaned
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original regressor. The advantage is that it leads to a zero mean mixed Gaussian limiting
distribution without requiring the choice of tuning parameters (like bandwidth, kernel func-
tion, numbers of leads and lags). Asymptotic inference is infeasible due to the presence of
nuisance parameters, and the stationary bootstrap is used for hypothesis testing. Monte
Carlo simulations show that the bootstrap method can deliver good size and power for t and
Wald tests, depending on the sample size, serial correlation, endogeneity and the stationary
bootstrap block length resampling parameter. When there is strong serial correlation and
endogeneity, for moderate time sample sizes, the size of the tests are close to nominal level
for certain values of P

Unlike in Vogelsang et al. [2016], the further augmented regression residuals do not lead
to an asymptotic pivotal test, and the bootstrap hypothesis test based on it has more size
distortion. When the cross sectional sample size N is small, the power of the test based on
the further augmented regression residuals is a little bit higher than that of the test based on
augmented regression residuals. However, when the cross sectional sample size N increases,
the power of the test based on the further augmented regression residuals is much lower than
that of the test based on augmented regression residuals. This power loss as N increases
is because the further augmented regression requires adding many additional regressors to
compute the residuals. Therefore, in practice, when N is large and the panel has cross
sectional dependence and heterogeneous variance structure, inference based on the further
augmented regression residuals is not recommended.

One limitation of the present paper is that the cross-sectional dependence is only coming
from a common time effect with a constant factor loading. This might be restrictive in
some applications. Therefore, a model with more general cross-sectional dependence may be

worth considering in the future. In that more general scenario, the theory of the inference
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based on the panel IM-OLS type estimators will rely on more general bootstrap procedures.
If the stationary bootstrap can mimic the non-pivotal limit of the original statistics, then
formally proving the asymptotic equivalence between the stationary bootstrap statistics and

the original test statistics may be a viable research topic in the future.
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Tables and Figures

Table 3.1: Empirical null rejection probabilities, 5% level, t-tests for Hy : 1 = 1, N = 5,

p = 0.6, Bartlett kernel

P Stat-BS(D) Stat-BS(fb)
b=0.1 b=0.5 b=1 | b=0.1 b=0.5 b=1
Panel A: T' = 50
0.01 0.246 0.214 0.226 | 0.346 0.335 0.336
0.02 0.219 0.191 0.198 | 0.31 0.309 0.31
0.03 0.199 0.17 0.173| 0.3 0.308 0.303
0.04 0.184 0.162 0.157 | 0.285 0.286 0.287
0.08 0.127 0.114 0.115 | 0.231 0.239 0.239
0.12 0.102 0.094 0.095 | 0.213 0.209 0.207
Panel B: T' = 500
0.00464 0.152 0.145 0.138 | 0.174 0.176 0.162
0.00928 0.099 0.101 0.102 | 0.123 0.122 0.106
0.01393 0.074 0.075 0.081 | 0.086 0.074 0.085
0.01857 0.053 0.062 0.065 | 0.066 0.065 0.068
0.03713 0.032 0.044 0.033 | 0.037 0.039 0.033
0.05570 0.023 0.028 0.024 | 0.03 0.02 0.025

:pf1 =1, N =5,

Table 3.2: Empirical null rejection probabilities, 5% level, t-tests for Hy
p = 0.9, Bartlett kernel
P Stat-BS(D) Stat-BS(fb)
b=0.1 b=0.5 b=1 | b=0.1 b=0.5 b=1
Panel A: T' = 50
0.01 0.427 0.375 0371 | 0.74 0.745 0.75
0.02 0.405 0.349 0.347 | 0.747 0.743 0.75
0.03 0.395 0.328 0.328 | 0.738 0.733 0.734
0.04 0.356  0.307 0.291 | 0.738 0.74  0.73
0.08 0.333  0.279 0.267 | 0.724 0.724 0.72
0.12 0.307 0.247 0.235| 0.715 0.716 0.715
Panel B: T" = 500
0.00464 0.144 0.138 0.137 | 0.243 0.23  0.23
0.00928 0.095 0.096 0.098 | 0.175 0.172 0.165
0.01393  0.07 0.07 0.074 | 0.144 0.125 0.13
0.01857 0.053 0.061 0.06 | 0.115 0.113 0.114
0.03713 0.031 0.035 0.033 | 0.093 0.08 0.077
0.05570 0.022  0.027 0.024 | 0.073 0.077 0.072
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Table 3.3: Empirical null rejection probabilities, 5% level, Wald-tests for Hy : f1 = 1, 9 = 1,
N =5, p= 0.6, Bartlett kernel

Stat-BS(D) Stat-BS(fb)
b=0.1 b=0.5 b=1 | b=0.1 b=0.5 b=1
Panel A: T'= 50
0.01 0.159 0.142 0.153 | 0.296 0.299 0.302
0.02 0.125 0.122 0.122 | 0.266 0.268 0.269
0.03 0.107 0.109 0.109 | 0.239 0.236 0.236
0.04 0.092 0.101 0.086 | 0.216  0.22 0.214
0.08 0.049 0.047 0.047 | 0.155 0.151 0.157
0.12 0.029 0.031 0.027| 0.1 0.113 0.119
Panel B: T' = 500
0.00464 0.053 0.053 0.051 | 0.081 0.073 0.074
0.00928 0.02  0.023 0.022 | 0.037 0.038 0.039
0.01393 0.01  0.011 0.019 | 0.019 0.019 0.021
0.01857 0.002 0.01 0.007 | 0.008 0.01 0.016
0.03713 0.002 0.003 0.004 | 0.002 0.002 0.005
0.05570 0 0.003 0.003 0 0.002 0.003

Dp

Table 3.4: Empirical null rejection probabilities, 5% level, Wald-tests for Hy : 81 = 1, 89 = 1,
N =5, p=10.9, Bartlett kernel

P Stat-BS(D) Stat-BS(fb)
b=0.1 b=0.5 b=1 | b=0.1 b=0.5 b=1
Panel A: T' = 50
0.01 0.474 0.402 0.393 | 0.876 0.876 0.867
0.02 0.448 0.374 0.368 | 0.874 0.873 0.864
0.03 0.43 0.346 0.348 | 0.874 0.87 0.865
0.04 0.402 0.337 0.316 | 0.869 0.867 0.865
0.08 0.325 0.261 0.25 | 0.859 0.861 0.846
0.12 0.268 0.212 0.21 | 0.848 0.854 0.841
Panel B: T' = 500
0.00464 0.07  0.062 0.069 | 0.16 0.159 0.166
0.00928 0.031  0.04 0.041 | 0.107 0.096 0.097
0.01393 0.014 0.016 0.021 | 0.069 0.063 0.069
0.01857 0.011 0.018 0.013 | 0.057 0.043 0.056
0.03713 0.004 0.006 0.008 | 0.028 0.031 0.029
0.05570 0.003 0.005 0.004 | 0.019 0.019 0.021
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Power, MN=5, tho=0.5, Bartlett kernel, b=0.5 with different T and P
1 T T T T T
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0.7

0.k

0.4

0.4

03

0z

Stat-BS IM(D) with T=50 and p,=0.08
Stat-BS IM(D) with T=500 and p,=0.00464

a1

|:| | 1 I I
1 1.05 1.1 1.15 1.2 125 1.3 1.35 1.4

B

Figure 3.1: Power of bootstrap Stat-BS IM (D), Wald test, N =5, p; = ps = 0.6, b = 0.5,
Bartlett kernel with different 7" and Pr
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Power, N=5, T=500, Bartlett kernel, b=0.5 with different rho and Pr
1 T T T T T

stat-B5 IMID) with rho=0.6 and p=0.00464
Stat-B5 IM{D) with rho=0.9 and p,=0.00696

| | I I
1 1.05 1.1 1.15 1.2 1.25 143 1.35 1.4
B

Figure 3.2: Power of bootstrap Stat-BS IM (D), Wald test, N = 5, T' = 500, b = 0.5, Bartlett
kernel with different p and p.
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Size adjusted Power, N=5, T=50, rho=0.6, Barlett kermel, b=0.5
1 T T

09

0.

0.7

0.6

0.5

0.4

0.3

0.z

0.1

Stat-BS IM-OLS(D) |
Stat-BS IM-OLS(fh)

0 | | ! ! | ! !
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

B

Figure 3.3: Size adjusted power, Wald-tests, N =5, T' = 50, p; = p3 = 0.6, b = 0.5, Bartlett
kernel
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oize adjusted Power, N=15, T=50, rho=0.6, Bartlett kernel, b=0.5

Stat-BS IM-OLS(D) |
Stat-BS IM-OLS(fb)

0 ! | | | | | |
1 1.05 1.1 1.15 1.2 1.25 =) 1.35 1.4

Figure 3.4: Size adjusted power, Wald-tests, N = 15, T = 50, p1 = p2 = 0.6, b = 0.5,
Bartlett kernel
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Proof of failure of using ;; to solve endogeneity problem

This is the proof showing that directly adding #;; to regression (3.6) cannot fully deal
with the endogeneity problem in the model considered in this paper. Suppose, we add ;¢
into the partial sum model, which gives

Sf = tui + za;e,ﬁ + Evi + Sﬁt — &

.Consider the behavior of T2 (S — i) as T — oo,

1 . 1 1 N 1 N
T2 ( it — i’;t%‘) =Tz it — N Z jut — i + N Zl’;‘t%‘
j=1 j=1
1 1 N 1
1 (55— al) — o T (5 )
j=1
1 N
= [Bu i(r) B{;,z(r)%] N Z [B ,J( ) Bu,g(r)%]
j=1

N
1 1, L,
S [W;,jmﬂsv,] (3= 205 )}
N
7é Uu~v,iwu % Z Ou,v ]wu,]

Note that the last inequality holds because when there is heterogeneity in the 2nd moment
structure, it is almost impossible that

= QN = QN

VU, 'U/UZ v, ’LLU]

for all j =1,2,---, N. Therefore, just adding Z;; to regression (3.6) cannot fully deal with

the endogeneity problem. Note that, if the 2nd moment structure is homogeneous, then only
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adding #;; to regression (3.6) will work, because

_1,

_1 _1
ve= QN = TN =y = QN

vv,i 7 UD,8 vv,j M,

for all 1, 7.
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Proof of Theorem 3

In order to derive the asymptotic distribution of the panel IM-OLS estimator, we start
with regression (3.7). First consider the limit of 771/ QSZ% with N fixed and T" — oc.

—1/2 ou
/zt

. N —
it N thyl N Z x]tY]
J=Lj#i

N

_ 1
= TSy Z L 20
j=1

Lo, RN I
= T2 it_xit%)_NZT 2<jt_$jt7j>

= Oy,iWy z(r) + Auw in,i(r) - Wzl; (7 )92 Vi

1
_N Z [UU v ]wu7j ) + Auvijvai<T) o Wé) ( )QU'U jry]]
j=1

VU, 7 UL,

1 /
= Uu.v,iwu,i<7’) N Zau-v,jwu,j (r)] — Wé (7 )ng i QT A ]
7=1

+~ Z U’Uj

1,

2
Y5 — Q'UUJ)\U’U j]

Therefore, when v; = Q gl Qi it follows that

1
Define AI% =T 2Aprpy- The next step of the proof is to obtain the limit of Al_%qit for

VU, UYL vU,8

—1/2
/ u b == Oy, Wy i (1) — N Zau.v,jwu’j(r)
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N fixed and T — oo.

_3 ai 3 oz 1 N _3 ax
T-5SE T3SE - & S T3S,
Tﬁé (;let) 1 le1
N NI 2z,
1 :
T2 (N=1,. L
(.N ) STy
Al_:%ql't = T3 (;lﬂth) = AR
(;V NT 2T Nt
0
) :
T t
) T
L 0 n i 0 |
[ r L & T [lor w
f(] Bv,i(s)ds N 'Zl fo Bv,j(s)dS f() v,i
J:
~ Bui(r)
At Bui(r)
= o -
~ Bon(r)
0
r
i 0

Therefore, as T — oo,
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For fixed N, as T — o0,

r(1-9)
(1 —m)
Aphy (0-0) = 17247 (0-6) = ﬁf_m)
T —m
VT (ﬂ]\;’ — 1N |

- (I's
/

= VU

Mz

>

t=1

—1
hi( dr) X

I
_

)

{ hi(r) |:Uu-v,iwu,i (r)
=1
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Ttath 1) (Tl Z Z

1, o
AlTQitT 2 it
1 N
N Z Oy, jWa,j (r) dr

j=1

i=11t=1



Proof of the derivation of the form of the asymptotic variance ¥

N
We start from rewriting fol > {hi(r) [au.v,iww(r) - % Eévzl Oy, j Wy, j (r)} } dr as

=1

|
)
<
S
S
IS
=
=
=
|
==
=
oI
=
S
|
o\’_‘
—
=
=
|
=] =
=
-
=
L
oW
S
<
=
N——

~
I
—_
.
I
—_

Y 1 Y 1 LN

_;UU.W Yuill) HZ(l)_N;HJ(l) _/O Hi(T)_N;HﬂT) dwy i ()
N 1 N . N

=3 s / [mm%;mm] w0 - | [Hm«) %]ZIHJ(T)] dwm))
N 1 .

_Zzzlauvi/o [H;(1) — Hi(r)]dwu,i(r).

Therefore, the variance of

1 N 1 N
/0 ; {hi (r) |:Uu.v,iwu,i(7”> - N; Ty j Wy j (r)] } dr

will be same as the variance of

ol L. ..
ggum,i/o [H;(1) — H;(r)]dw, ;(r)
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which is v . “ “ "
S o2 [ ) = H( ) - i)
i=1 0

Then, the variance of W is

1 N -1
Vpiv = /()Zhi(’l")hg(r)dr) X
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Proof of Theorem 4

This is the proof of the null limiting distribution of the test statistics in Theorem 4.

First, consider the behavior of & au v, It is based on ASZ%, where

1

. R 1 R
AS zt = AS% — Atji; — 5 — szt% N Z Ax;’tvj
J=1j#i

. s N-—1
= it — fii = i3y — —— N vi¥i + N Z UJWJ

J=1,j#i
N
. L g N1, 1 .
= i + BB+ g — [l — 8 — Tvz{t% N Z Viedj
j=Lj#i

. 1 5 o1 .
= i+ T+ i — N Z Ujt — Hi — Fpl — Vg + N Z U}ﬂj
i1 i—1

j=1
1 & )
+ 5 2 Vi (B =) — (i — i) — (B - 5)
j=1
1 Y .
= [uy —viy i = 7)) = N > [U}: — vy (35 — Vj)] — (f1; — p1q) — &gy (5 - 5)

where u;; = uj; — vgt%. It can be shown that the last three parts of the formula can be

neglected for long run variance estimation of Aggf Thus, the long run variance estimator

based on ASZ“t, asymptotically coincides with long run variance estimator based on u; -
vl (i = i)-
2

w0, . Using
0 vi,i

+ ! . . . + g
Define 7, = [u;g, vgt} , and then its long run variance is (2" =

o~

unobserved ng, an infeasible long run variance estimator, Q;r, is consistent. That is Q;r E
OF
;-

Note that: ujg — Ugt (Fi —vi) = n;;/ [ ] , then HAC estimator, Q?‘, for u;; —

— (% — )
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vgt (4 — i) can be written as

[1 — (% — %-)’] o [— (%-1— w]

with
(%_%‘)j[ol@xk Ok = I o0 Opxg O <o 0]><
/ th(r)h;O")dT Zau-v,i/ |:HZ(1) — HZ(T)] dwu,i('r)
0 - — - 0
i=1 =1
= dy,

where dy, represents the (i + 1)t k x 1 block of the distribution W.

—~

Combining the above results shows that Q;r converges to

2
1=y, ] | 0 L
! 0 vi,z’ _d\I/Z-

uvz +d/ QUU Zd\I/Z

= 12“)2(1—1—0 2 d/ vizd\Il)

U’UZ

= uvz<1+dl d%)

which leads to au wi =0 u v (1 + d’ d7 > This implies that Vp_rM, using O’u v,i» converges
to
. -1
Vprv = (/ Zhﬂr)hi(?“)d?‘) X
0 =1
N 1 . /
{Zoim (1+d,dy,) /0 |1,(1) = ()| [ (1) = ()| dr} x
i=1
1 N -1
(/ Zh&r)hé(r)dr)
0 =1
!
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where

1 N -1
dydy = Vp}M<O th-(r)h;(r)dr) x
=1

N 1 /

{;03 vV, (d{yzd%‘)/o [Hl(l) _Hz(r)] [Hz(l) _HZ(T’)} d?“} X
1 N -1

( / Zhi(mh;mdr)

0 =1

The null limiting distribution of Wald and t statistics can be computed as follows.

W (Ré _ r)/ [RAPIMVPIMAPIMR/] o (Ré - T)

_ :R (é _ 9)}' [RAPIMVPIMAPIM Rl] B {R <é - 9>]

= [ Rarnzhy (0 0)] [zt Rarienapn (a7 | x
:A;%lRAPIMAI_?}M (é - 9)]

/ / n-1 *
= [R*V] [R*VPIM (1+d.d,) (R*)] [R* V]

Xg
(1+ d%dv)

and for ¢ =1,

;o (RQ — 7")
VRApiMVerv Apiv R,
7(0-9)]
VRApiv Ve Apiv R,
AR RApI ARy, (0-0)
\/ AR RApIMVermApiv R AR
R*U
\/R*VPIM (1+ddy) (R
__Z
(1+d,dy)
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Second, consider the fixed-b limit of the ¢ and W. Recall that

N
i _ i gy —girg o Ny L S i
it = Pit — i T it N Lithi Ty Lt
j=Lj#i

L N-1
= tu; + S B+ Txéﬂi N Z %Wj +

j—Lj#i
- tﬂl /8 - Zt’yl Z xjt’yj
J Lj#i
N
N — 1 I n—1
e Zth Qo+ D i i Qou
J=1j#i
N
17 N - 1 / _1 1 / _1 / ~
= S~ T Qi D Tt Qo — dly (0-0)
J=1j71
| N
/ -1 / -1 / N
zt N Z xz‘tQm’Z‘Qvu,i + N Z xthUUJQvu,j — Qi <9 - 9)
j=1

where g;; is defined above.

Then, the first difference of 5’3 can be written as
1 N N
I o—1 ! ()
AST = DSl — 0 DSl — AT Qi+ Z AT o — Dy (0-0)
j=1 j:l

N
1 I o—1 1 I o—1 ' (0
= Uit — 3 > uji - VitSlyy, i towi + 5 > Uity i toug — Dt (8 B 8) ’
=1 J=1
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Consequently,

_1 A _ 1 _ _1 1
= = j: =
1 Al —%/ -1 —% )
+NZT m][rT]vi,j vu,g T qz[rT] (9 9)
j=1
1 N
—4 —% - -1
=T Szu[rT] NZT S;L[’/’T] T zxz[rT]Qm;?i VU, b
j=1
I 1 1
+NZT 2x][rT] vv,jQUU,J_T [TT]APIMAPIM (0 0)
j=1
1 N
-1
U, - N Z (T)vi’iQUU,i
/
+ % ZB m}j 'UUJ h( )\II

N
> [ () + A jWo (1)

1
N
N
1
_Wzl) ()QZ 2y Qvuz Nz Wé, ( )QQ 2, Qvu,j _h;(r)\IJ

vU,i° ‘v i vu,j° “vv,j
=1
1 N
= 0u~v,iwu,i(r> - N Z [Uum,jwu,j(TH - hg(ﬂqj
=1
L\~ Tuogu()
= Oyv,i u,z(r) N Z _ O, Z(T)\II
= w,i
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where

R 1 Oy, j Wy 5 (1) _
Pi(r) = u,z(T) N ) Uu.quvih;@’)ql
1 Ouw,i
J
N
1 9n ’U,jwu,j(r)
— (r) — —
’U,yl( ) szl O-U.UJ
1N -
— o i) | [ oo |
=1
1 N 1 N
/ th(r) Oy v,iwu,i(r) - NZUU v,j u,](r) dr
0 — -
=1 7j=1
In sum,
, 1.- A
T°2% ASh= T_QSZ-‘[TT] = oy Bi(1) (3.10)
t=1

Next, write o

kernel. Define

2

1 ..
in terms of T~ 2.5Y% AL The kernel function used here is the Bartlett

’U,-U,i z[r

N’ Kis = (Kis — K s11) — (Kii1.s — Kip1.5101)-

Simple algebra gives

where

o

2 1 Lo lj — Al 5L A Gl
a0i =T >k ) D505

j=2h=2

T T T
~1 il il ~1
=T (B85 KpdSj, | =T ajb;
j=2 h=2 j=2

T
aj=ASS, bi=> KjpASh
h=2

168



Using summation by parts we can write

which gives

T T

-2 ~1&@ qii =1 &l G

Ouwvyi = T zuT Z KppA :Lh -T Szul Z KQhASth
= h=2

T-1 T T
—1 j : A7 Z ¥y A
=2 h=2 h=2

We need to apply (3.11) to the sums over h:

(3.11)

] h—i-l)

T T T—1
1) > KppASH =Y ASH Ky = SipKpp — SiEpe + > Sty (Kpp — Krjgt)
=2 =2 =2
T ) ) -1
Y KopASf, = ASH Koy = StpKop — SfiKaa + Y Sfj, (Kop — Ko 1)
T T ) )
ST KpASS =Y ASH K = S K — S K + Z St
h=2 h=2
T T
D KjphS =D AN K,
h=2 h=2

T-1

= S K= SiKj2+ Y S (Kjpin — Kjpips) -

h=2
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Plugging in these expressions to &12“}71- gives

T-1

Gnpi = T 'St | S Krp — SiKpy+ Y Sif (Krp — Krpyt)
h=2
T-1
~T S | St Kor — SfiKag + > Sl (Ko — Ko pi1)
h=2
T-1 i
+T1 NS S K — SEE G + Z S Kjpi1)
Jj=2 L
- [ T-1
TN S S K — Si K+ > S (Kjpin — Kjp 1)
= h=2

T-1
= T S KppSlp+ T S (Kpy, — Ky pg1) S,
h=2

+771 Z Kji, T)S?T + terms related to Alﬂl

TlTl

Ty NS Kjn1) = (Kjern — Kjpnen)] St
7=2 h=2

T-1T-1

T—1
= T7'Y N SEAPK S+ T Y SE(Kr — K p)Siy
=

jf2h 2

e Z L(Kpp — Kp thl)Szﬂh + T_lﬁf‘TKTTS'?T + terms related to Alﬂl

~

~n 1.
Note that the terms related to Sjj vanish as T' — oo, because T" 257 converges to 0y,.,, ; F;(0),
which equals zero. For the Bartlett kernel we have

Kts:k(—'t_8|) I R R .
M 0 [t —s| > M

Then it follows that

0, t<s—M

1

w7, s+1—-—M<Lt<s
Kts_Kt,s—i—l = Ml ST

—3 s+1<t<s+ M

0, t>s+M+1
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Kiy1s— Kip1,541 =

—ip, s<t<s—1+M
0, t>s+M
and
%, t=s
N2 Kyg=Q —dp, t=stM
0, otherwise
Using these result we have
9 T-1 T—M-1
~2 -1
Ouvi = T M Z Su Su Z ( i,j+M Su + SZ %J‘FM)
j:2 j=2
T-1
-1 AL AT
+T - Z zg zT Z SzuT zuh
j =T-M h—T—M
+ T_lgg‘ 7 + terms related to zl
9 T-1 T—-M-1
~MT Z S g Z ZJ Z,J+M MT Z Z] ZT
J=2 j=T—-M

+T1" 15 SZ“T + terms related to 21,

where the last term follows from the fact that Kpp = 1.
Under fixed-b asymptotics we set M = b1 where b € (0,1] is held fixed as T" — oc.

Plugging in bT" for M into (312”] ; gives

9 T-1 1 1 9 T—-bT—-1 1 1
~92 — 5 &l —5 &1 — 5 &l —5 &
Gri = 70 T 285T 280 — = Z TT254T 280 o
bT bI <
j=2 j=2
2 T—-1
Z T 2S“T 25 LT 25 LT 25“
] =T-bT

+terms related to T 2 zl
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Using (3.10) and the continuous mapping theorem gives

A

2 2 1 R 2 9 l-b .
o = —/0 [Uu.v,ipi(T)} dr—g/o Oy, i Pi (1) 0y i Py (1 + ) dr

U410 b

2 1 . R R 2
_g/ Uu-v,ipi(r)o-um,ipi(l)dr+ [O-um,ipi(l)}
1-b
2 1 2 1-b . 2 1 . .
= ot |3 [ B =3 [ RmAGhar =2 [ BB+ P
b Jo b Jo b Ji-p
= 00, (3‘(?))
where
R 2 1 R 2 1-b R R 2 1 R R R
O, <Pi(r)) - —/ P-Q('r)dr——/ Pi(r)Pi(r—kb)dr——/ Bi(r)Bi(1)dr + P2(1).
bJo ' b Jo b J1-b !

Therefore, based on &fw ;» the fixed-b limit of the covariance matrix is given by

~ 1 N _1
Vi = ( i Zhi(r)h;(r)dr> %

N - 1 )
(S ctn(000) [ -] - e o
1 N -1
| mirar
0 =1
=Vpry - Q(0)

where
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This implies that

2
W ,
Q(b)
and for ¢ =1,
~ Z
t=> —F—.
Q(b)

Lastly, consider the result for the fixed-b test statistics. Similar as above and Vogelsang
and Wagner [2014], 53-1)1' = 012“) Qb (pi (r)) where Qp(-) is the same as above, and Pj(r) is
similar as P;(r) but its component is from the further augment regression (3.9). Therefore,

the fixed-b limit of the covariance matrix is such that

-1

1 N -

| mirar

03

=Vpra - Q(b)
where
~ 1N _1
QY) = Vpiu i D hi(r)hi(rydr | x
i=1

1=1
1 N -
| mirar
0 =1
This implies that
~ X2
W = ~—q,
Q(b)
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and for ¢ = 1,

(S 9

N

O
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