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ABSTRACT

ESTIMATION AND INFERENCE IN COINTEGRATED PANELS

By

Yi Li

This dissertation investigates parameter estimation and inference in cointegrated panel

data model. In Chapter 1, for homogeneous cointegrated panels, a simple, new estimation

method is proposed based on Vogelsang and Wagner [2014]. The estimator is labeled panel

integrated modified ordinary least squares (panel IM-OLS). Similar to panel fully modified

ordinary least squares (panel FM-OLS) and panel dynamic ordinary least squares (panel

DOLS), the panel IM-OLS estimator has a zero mean Gaussian mixture limiting distribu-

tion. However, panel IM-OLS does not require estimation of long run variance matrices and

avoids the need to choose tuning parameters such as kernel functions, bandwidths, leads and

lags. Inference based on panel IM-OLS estimates does require an estimator of a scalar long

run variance, and critical values for test statistics are obtained from traditional and fixed-b

methods. The properties of panel IM-OLS are analyzed using asymptotic theory and fi-

nite sample simulations. Panel IM-OLS performs well relative to other estimators. Chapter

2 compares asymptotic and bootstrap hypothesis tests in cointegrated panels with cross-

sectional uncorrelated units and endogenous regressors. All the tests are based on the panel

IM-OLS estimator from Chapter 1. The aim of using the bootstrap tests is to deal with the

size distortion problems in the finite samples of fixed-b tests. Finite sample simulations show

that the bootstrap method outperforms the asymptotic method in terms of having lower size

distortions. In general, the stationary bootstrap is better than the conditional-on-regressors

bootstrap, although in some cases, the conditional-on-regressors bootstrap has less size dis-

tortions. The improvement in size comes with only minor power losses, which can be ignored



when the sample size is large. Chapter 3 is concerned with parameter estimation and infer-

ence in a more general case than Chapter 1 with endogenous regressors and heterogeneous

long run variances in the cross section. In addition, the model allows a limited degree of

cross-sectional dependence due to a common time effect. The panel IM-OLS estimator is

provided for this less restricted model. Similar as in Chapter 1, this panel IM-OLS estima-

tor has a zero mean Gaussian mixture limiting distribution. However, standard asymptotic

inference is infeasible due to the existence of nuisance parameters. Inference based on panel

IM-OLS relies on the stationary bootstrap. The properties of panel IM-OLS are analyzed

using the stationary bootstrap in finite sample simulations.
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Chapter 1

Integrated modified OLS estimation
and fixed-b inference for homogeneous
cointegrated panels

This paper is concerned with parameter estimation and inference in homogeneous cointe-

grated panels. We propose a simple, new estimation method originated from Vogelsang and

Wagner [2014]. The estimator is labeled panel integrated modified ordinary least squares

(panel IM-OLS). Similar to panel fully modified ordinary least squares (panel FM-OLS) and

panel dynamic ordinary least squares (panel DOLS), the panel IM-OLS estimator has a zero

mean Gaussian mixture limiting distribution. However, panel IM-OLS does not require esti-

mation of long run variance matrices and avoids the need to choose tuning parameters such

as kernel functions, bandwidths, leads and lags. Inference based on panel IM-OLS estimates

does require an estimator of a scalar long run variance, and we propose both traditional

and fixed-b methods for obtaining critical values for test statistics. The properties of panel

IM-OLS are analyzed using asymptotic theory and finite sample simulations. Panel IM-OLS

performs well relative to other estimators.
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1.1 Introduction

This paper considers the extension of the pure time series integrated modified ordinary

least squares (IM-OLS) method of Vogelsang and Wagner [2014] for estimating and testing

hypotheses about a cointegrating vector to a balanced panel of N individuals observed over

T time periods. We call the estimator panel IM-OLS. We derive its limiting distribution and

provide a finite sample simulation of panel IM-OLS compared with pooled OLS, panel fully

modified OLS (panel FM-OLS) and panel dynamic OLS (panel DOLS).

It is well-known that in panel cointegration regression, when the regressors are endoge-

nous, the limiting distribution of the pooled OLS estimator is contaminated by second order

bias terms. Inference is difficult in this situation because the nuisance parameters cannot be

removed by simple scaling methods. Consequently, panel FM-OLS and panel DOLS were

proposed, which both deal with the endogeneity problem and lead to zero mean Gaussian

mixture limiting distributions and in turn make standard asymptotic inference available.

The panel IM-OLS estimator is based on pooled OLS estimation of a partial sum transfor-

mation of the cointegrating panel regression. Similar to the panel FM-OLS and panel DOLS

estimators, the panel IM-OLS estimator also has a zero mean Gaussian mixture limiting

distribution, but it has advantage compared with its two counterparts. Panel IM-OLS esti-

mator avoids kernel function and bandwidth choices for long run variance estimation, which

is required by panel FM-OLS, and leads and lags choices to expand the regression, which

is required by panel DOLS. However, for inference, panel IM-OLS does need to estimate a

scalar long run variance parameter.

The limit theory considered here is obtained for a fixed number of cross-sectional units N ,

letting T →∞. This limit theory is widely used in empirical macroeconomics, empirical en-

2



ergy economics and empirical finance problems. In this case, even though the panel IM-OLS

estimator converges to a zero mean Gaussian mixture distribution, inference based on this

estimator still requires the estimation of a long run variance parameter. As in Vogelsang and

Wagner [2014], there are two solutions for this problem. First, standard asymptotic infer-

ence based on a consistent estimator of the long run variance and second, fixed-b inference.

The latter solution has its own benefit over standard asymptotic theory because fixed-b in-

ference captures the impact of kernel and bandwidth choices on test statistics based upon

them, whereas standard asymptotic theory does not. As will be discussed in detail later, the

pooled OLS residuals of the panel IM-OLS regression need to be further adjusted to obtain

pivotal fixed-b test statistics.

All estimators and tests in this paper are derived for a cross-sectionally uncorrelated

homogeneous panel. For many applications this unrealistic assumption is still commonly

employed when developing panel cointegration methods, especially for estimation proce-

dures. Only a few and partial results concerning both cointegration estimation and inference

are available for cross-sectionally dependent panels to date. One branch of the literature

considers panel data with spatial interaction among cross-sectional units (e.g., Kapoor et al.

[2007]; Yu et al. [2008], [2010], [2012]). An alternative to the spatial approach is the factor

structure approach, which can capture common stochastic shocks and trends (e.g., Bai and

Ng [2004]). Bai and Kao [2006] derive an extension of FM-OLS estimation to panels with

short-run cross-sectional correlation. Pesaran [2006] proposes the Common Correlated Ef-

fects (CCE) approach to estimation of panel data models with multi-factor error structure,

which is further developed by Kapetanios et al. [2011] allowing for nonstationary common

factors. The estimation and inference is challenging for cross-sectionally dependent hetero-

geneous panel with endogenous regressors, but our ongoing work shows that the methods
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developed in this paper, with some modifications, will be able to estimate the parameter and

make valid inference in that scenario.

After the theoretical analysis, we provide a finite sample simulation study to assess the

performance of the estimators and tests. Benchmarks are given by pooled OLS, panel FM-

OLS and panel DOLS. In the simulations, panel IM-OLS performs relatively well with smaller

bias and only slightly larger RMSE than other estimators. The simulations of size and power

of the tests show that fixed-b test statistics based on the panel IM-OLS estimator lead to

the smallest size distortions at the price of only minor losses in size-corrected power.

The remainder of the paper is organized as follows. In the next section we present a

standard panel cointegrating regression and review several key results of the benchmark es-

timators. Section 1.3 describes the panel IM-OLS estimator and its asymptotic distribution.

Inference using the panel IM-OLS parameter estimator is discussed. Section 1.4 reports

the finite sample bias and root mean squared error of the various estimators. Section 1.5

assesses the finite sample performance of the test statistics described in Section 1.3. Section

1.6 concludes the paper. Appendix contains the proofs of this paper.
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1.2 Homogeneous cointegrated panels for benchmark

estimators

Consider the following data generating process

yit = µ+ x′itβ + uit (1.1)

xit = xit−1 + vit (1.2)

where yit and uit are scalars, xit and vit are k× 1 vectors with sub-index i = 1, 2, · · · , N for

the ith cross sectional unit, sub-index t = 1, 2, · · ·T for the time period; β is k × 1 vector

of the slope parameters. For notational brevity here we only include the intercept µ as the

deterministic component (later when we discuss the panel IM-OLS estimator, we will extend

it into more general deterministic time trends such as µ0 + µ1t + · · · + µp−1t
p−1). Define

the error vector as ηit =

[
uit, v′it

]′
. It is assumed that ηit is a vector of I(0) processes, in

which case xit is a non-cointegrating vector of I(1) processes and there exists a cointegrating

relationship among

[
yit, x′it

]′
with cointegrating vector

[
1, −β′

]′
.

Assumption 1. Assume that {ηit}Ni=1 are cross-sectionally uncorrelated and theirs 2nd order

moment is constant.

Note that the Assumption 1 only requires the panels are homogeneous in the 2nd order

moment, it’s possible that the higher order moment structure are heterogeneous across i.

Assumption 2. Assume that ηit satisfies a functional central limit theorem (FCLT) of the

form

T−1/2
[rT ]∑
t=1

ηit ⇒ Bi(r) = Ω1/2Wi(r), r ∈ [0, 1].
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In Assumption 2, [rT ] represents the integer part of rT , and Wi(r) is a (k+ 1)× 1 vector

of independent standard Brownian motions. Ω1/2 is a (k+ 1)× (k+ 1) matrix that satisfies:

Ω = Ω1/2
(

Ω1/2
)′

, and

Ω =
∞∑

j=−∞
E(ηitη

′
it−j) =

Ωuu Ωuv

Ωvu Ωvv

 > 0,

where it is clear that Ωvu = Ω′uv. The assumption Ωvv > 0 rules out cointegration in xit.

Partition Bi(r) as

Bi(r) =

Bu,i(r)
Bv,i(r)

 ,
and likewise partition Wi(r) as

Wi(r) =

wu,i(r)
Wv,i(r)

 ,

where wu,i(r) and Wv,i(r) are a scalar and a k-dimensional standard Brownian motion re-

spectively. Using the Cholesky form of Ω1/2,

Ω1/2 =

σu·v λuv

0k×1 Ω
1/2
vv

 ,

it can be shown that σ2
u·v = Ωuu −ΩuvΩ

−1
vv Ωvu and λuv = Ωuv

(
Ω
−1/2
vv

)′
. By this Cholesky
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decomposition, we can write

Bi(r) =

Bu,i(r)
Bv,i(r)

 =

σu·vwu,i(r) + λuvWv,i(r)

Ω
1/2
vv Wv,i(r)

 .

Next define the one-sided long run covariance matrix. For each i ∈ [1, 2, · · · , N ],

Λ =
∞∑
j=1

E(ηi,t−jη
′
it) =

Λuu Λuv

Λvu Λvv

 .

Also define the contemporary covariances, that is, for each i ∈ [1, 2, · · · , N ],

Σ = E(ηitη
′
it) =

Σuu Σuv

Σvu Σvv

 .

Note that ∆ = Σ + Λ is half long run variance, and it is likewise partitioned as

∆ =
∞∑
j=0

E(ηi,t−jη
′
it) =

∆uu ∆uv

∆vu ∆vv

 .

The long run variance, Ω, is related to Λ and Σ as Ω = Σ + Λ + Λ′.

Remark 1. 1. If we do have heterogeneity in the 2nd order moment structure, i.e. Ωi, Λi,

Σi and ∆i are varied for different i, then even though we can estimate those moments

individual by individual, however, finding pivotal fixed-b statistics is challenging, and

we haven’t found it yet. In this case, one possible way to make valid inference is using

bootstrap to mimic those non-pivotal distributions. The stationary bootstrap is one

method that we could apply in this scenario.
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2. If ηit are cross-sectionally dependent, then the inference is much more complicated.

Spatial approach and factor structure approach are possible solutions according to dif-

ferent dependence assumptions. We haven’t been able to find a way to deal with the

general cross-sectional dependence case. However, if the dependence only originates

from time fixed-effect dummy variables, then the methods developped in this paper will

go through with some natural modifications, and the bootstrap, both over time as well

as across units, is needed for valid inference.

As mentioned before, the benchmark estimators are the pooled OLS, the panel FM-OLS

and the panel DOLS estimators. To conserve space, we don’t provide detail results of all

those estimators. But we do want to review several key results for those estimators. For

the pooled OLS estimator, when the regressors are endogenous, it has an asymptotic bias

due to the nuisance parameters ∆vu, which cannot be removed by simple scaling methods.

The panel FM-OLS estimator as considered here is an extension of the FM-OLS estimator of

Phillips and Hansen [1990], which is designed to asymptotically remove ∆vu and to deal with

the correlation between Bu,i(r) and Bv,i(r). Conditional on Bv,i(r) for all i = 1, 2, . . . , N ,

the limit of the scaled panel FM-OLS estimator is a mean zero mixture of normals. Asymp-

totically pivotal t and Wald statistics with N(0, 1) and chi-square limiting distributions can

be constructed by estimating σ2
u·v. The panel DOLS estimator considered here is almost

identical to Mark and Sul [2003]. The only difference is that there is no fixed effect in the

data generating process (1.1). The homogeneous panel DOLS estimator of β has the same

limiting distribution as the homogeneous panel FM-OLS estimator. Hence, they are asymp-

totically equivalent. This result was shown by Kao and Chiang [2000], and it also can be

extended to heterogeneous panels.
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1.3 Panel integrated modified OLS

1.3.1 Panel IM-OLS estimator

In this section, we present a new estimator for homogeneous cointegrated panels. This

estimator is an extension of Vogelsang and Wagner [2014], who propose the IM-OLS estima-

tor for the time series case. The transformation used by IM-OLS provides an asymptotically

unbiased estimator with a zero mean Gaussian mixture limiting distribution. Compared

with panel FM-OLS, the transformation does not require estimators of Ω, so the choice of

bandwidth and kernel is avoided for parameter estimation. We consider a slightly more

general version of (1.1) given by

yit = D′tδi + x′itβ + uit, (1.3)

where δi and β are p × 1 and k × 1 parameter vectors respectively, xit continues to follow

(1.2) and for the deterministic component, Dt, we assume that there is a p × p matrix GD

and a vector of functions, D(s), such that

lim
T→∞

√
TG−1

D D[sT ] = D(s) with 0 <

∫ r

0
D(s)D(s)′ds <∞, 0 < r 6 1. (1.4)

The deterministic component Dt could include an intercept, time trend and polynomials

of the time trend.

Remark 2. 1. Note that, in regression (1.3), the intercept from Dt and δi together allow

fixed effect estimation of the system. In a simpler case, suppose that δi is the same
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constant for all i so that

yit = D′tδ + x′itβ + uit.

In this case, the estimation and inference procedures introduced later in the paper go

through with minor changes.

2. In regression (1.3), β is a constant for all i, which means the same long-run relation

between yit and xit applies for all i. As in Philips and Moon [1999], we could also

allow this coefficient differs randomly across i, which leads to the heterogeneous panel

cointegration model. In that case, as long as the error vectors are uncorrelated across

i and their 2nd order moments are constant, then the results will be similar as what

we have in this paper. Otherwise, if the panel has heterogeneity in both cointegration

relation and 2nd moment structure, then inference is challenging and might need to

apply boostrap.

3. We could consider a more traditional panel data setting model like

yit = µi + λt + x′itβ + uit.

In this case, after the time effect λt being eliminated by cross-sectional demeaning, and

if it is also a homogeneous panel, then the estimation and inference procedures will be

similar as in this paper. But if there is heterogeneity in the sencond moment structure,

even though the estimation of the β will not be affected, however, the inference is much

more complicated as we disscussed in Remark 1, and bootstrap method could be used

for the inference.
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Computing the partial sum of both sides of (1.3) gives

S
y
it = SD′t δi + Sx′it β + Suit, (1.5)

where S
y
it =

∑t
j=1 yij , and SDt , Sxit and Suit are defined analogously. As in Vogelsang and

Wagner [2014], we need to add xit as regressors in (1.5) to deal with correlation between uit

and vit, which leads to

S
y
it = SD′t δi + Sx′it β + x′itγ +

(
Suit − x

′
itγ
)

= SD′t δi + Sx′it β + x′itγ + Sũit. (1.6)

We now focus on the asymptotic behavior of the pooled OLS estimators of δi, β and γ

from (1.6), which we label the panel IM-OLS estimators of δi, β and γ. Define the stacked

vectors and matrices as follows:

Sy =


S
y
1

...

S
y
N

 , Syi =


S
y
i1

...

S
y
iT

 ; θ =



β

γ

δ1

...

δN


; Sũ =


Sũ1

...

SũN

 , Sũi =


Sui1 − x

′
i1γ

...

SuiT − x
′
iT γ

 ;

Sx̃ =


Sx̃1

...

Sx̃N

 , Sx̃i =



Sx′i1 x′i1 01×p · · · SD′1 · · · 01×p

...
...

... · · · ... · · · ...

Sx′iT x′iT 01×p︸︷︷︸ · · · SD′T︸︷︷︸ · · · 01×p︸︷︷︸
1st block ith block N th block


.
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With the above notation, the matrix form of (1.6) is given by

Sy = Sx̃θ + Sũ, (1.7)

and the OLS estimator of (1.7) is given by

θ̃ =
(
Sx̃′Sx̃

)−1 (
Sx̃′Sy

)
, (1.8)

which leads to

θ̃ − θ =
(
Sx̃′Sx̃

)−1 (
Sx̃′Sũ

)
(1.9)

=

 N∑
i=1

T∑
t=1

qitq
′
it

−1 N∑
i=1

T∑
t=1

qit
(
Suit − x

′
itγ
) ,

where qit =

[
Sx′it x′it 01×p · · · SD′t · · · 01×p

]′
for i = 1, 2, . . . , N , t = 1, 2, . . . , T . The

submatrix of qit,

[
01×p · · · SD′t · · · 01×p

]′
, consists of SD′t as its ith block and other

N − 1 zero vector blocks. Define the scaling matrix

A−1
PIM =


TIk 0

Ik

0 IN ⊗GD


as a (2k +Np)× (2k +Np) diagonal matrix.

The following theorem gives the asymptotic distribution of δ̃i, β̃, γ̃.

Theorem 1. Assume that the data are generated by (1.2) and (1.3), that the deterministic

components satisfy (1.4) for all i ∈ [1, 2, · · · , N ], and that Assumptions 1 and 2 hold. Define
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θ by stacking the vectors δi, β and Ω−1
vv Ωvu. Then for fixed N , as T →∞



T
(
β̃ − β

)
(
γ̃ − Ω−1

vv Ωvu
)

GD

(
δ̃1 − δ1

)
...

GD

(
δ̃N − δN

)


= A−1

PIM

(
θ̃ − θ

)

=
(
APIMSx̃′Sx̃′APIM

)−1 (
APIMSx̃′Sũ

)
−



0k×1

Ω−1
vv Ωvu

0p×1

...

0p×1


⇒ σu·v

(
Π′
)−1

(
N∑
i=1

∫ 1
0 g1,i(s)g1,i(s)

′ds

)−1(
N∑
i=1

∫ 1
0 g1,i(s)wu,i(s)ds

)

= σu·v
(
Π′
)−1

(
N∑
i=1

∫ 1
0 g1,i(s)g1,i(s)

′ds

)−1(
N∑
i=1

∫ 1
0 [G1,i(1)−G1,i(s)]dwu,i(s)

)
≡ Ψ

where Π =


Ω

1/2
vv 0

Ω
1/2
vv

0 IN ⊗ Ip

, g1,i(r) =



∫ r
0 wv,i(s)ds

wv,i(r)

0p×1

...∫ r
0 D(s)ds

...

0p×1



, G1,i(r) =
∫ r

0 g1,i(s)ds.
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Conditional on g1,i(r) for all i ∈ {1, 2, . . . , N}, it holds that

Ψ ∼ N (0, VPIM ) , (1.10)

where VPIM is given by

VPIM = σ2
u·v
(
Π′
)−1

 N∑
i=1

∫ 1

0
g1,i(s)g1,i(s)

′ds

−1

×

 N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(s)][G1,i(1)−G1,i(s)]

′ds

× (1.11)

 N∑
i=1

∫ 1

0
g1,i(s)g1,i(s)

′ds

−1

Π−1

It is clear that this conditional asymptotic variance differs from the conditional asymp-

totic variance of the panel FM-OLS and panel DOLS estimator of δ and β. Denoting with

mi(s) =

[
D(s)′, wv,i(s)

′
]′

and with ΠPFM = diag

(
Ip, Ω

1/2
vv

)
the latter is given by

VPFM = σ2
u·v
(
Π′PFM

)−1

∫ 1

0

N∑
i=1

mi(s)mi(s)
′ds

−1

(ΠPFM )−1 . (1.12)

It is important to note that we can extend Theorem 1 further to obtain a sequential

result. Since the parameters in θ require different scaling for the sequential limits, and our

interests are mainly on β, therefore we only provide the result for
(
β̃ − β

)
. That is, if all

the assumptions in Theorem 1 hold, and first T →∞, then N →∞, we will have following

asymptotic distribution

√
NT

(
β̃ − β

)
⇒ Φ (1.13)
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where Φ ∼ N
(

0, V
β
seq

)
, and the asymptotic variance V

β
seq is given by

V
β
seq = σ2

u·v

[(
Ω

1/2
vv

)′]−1(∫ 1

0
A1(r)dr

)−1(∫ 1

0
A2(r)dr

)(∫ 1

0
A1(r)dr

)−1 (
Ω

1/2
vv

)−1

= 5.6σ2
u·vΩ

−1
vv (1.14)

where A1(r) =
(
r3/3

)
Ik and A2(r) =

[(
1− r − r4 + r5

)
/12
]
Ik. The importance of this

result is that it leads to standard inference based on the large T and large N approximation.

The details of the derivation are in the Appendix.

Remark 3. Above is the sequential limit for the homogeneous panel. If our panel has hetero-

geneity in the 2nd moment structure, then the variance, V
β
seq, will take the same expression,

but σ2
u·v = lim

N→∞
1
N

N∑
i=1

σ2
u·v,i and Ωvv = lim

N→∞
1
N

N∑
i=1

Ωvv,i.

1.3.2 Inference using Panel IM-OLS

This section provides a discussion of hypothesis testing using the panel IM-OLS estimator.

The zero mean Gaussian mixture limiting distribution of the panel IM-OLS estimator given

in Theorem 1 and the conditional asymptotic variance given in (1.11) offer the theoretical

basis for this discussion. In particular we consider Wald tests for testing multiple linear

hypotheses of the form

H0 : Rθ = r

where R ∈ Rq×(2k+Np) with full rank q and r ∈ Rq. Because the vector θ̃ has elements

that converge at different rates, we need restriction on R to get formal Wald statistics. We
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assume that there exists a nonsingular q × q scaling matrix AR such that

lim
T→∞

A−1
R RAPIM = R∗

where R∗ has rank q.

In order to carry out statistical inference, we need to scale out the asymptotic variance

of panel IM-OLS. Suppose that σ̆2
u·v is an estimator for σ2

u·v. Then an estimator for VPIM

is given by

V̆PIM = σ̆2
u·v

T−2
T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

×

T−4
T∑
t=1

N∑
i=1

APIM

[
S
q
iT − S

q
i,t−1

] [
S
q
iT − S

q
i,t−1

]′
APIM

×
T−2

T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

,

where S
q
it =

∑t
j=1 qij , and S

q
i0 = 0 for all i = 1, 2, · · · , N .

There are several obvious candidates for σ̆2
u·v. The first is based on the pooled OLS

residuals. Let the pooled OLS residuals be ûit = yit − x′itβ̂ −D
′
tδ̂i, where δ̂i and β̂ are the

pooled OLS estimators. Using these residuals, we can define estimators for the error vector

η̂it =

[
ûit, ∆x′it

]′
. Then Γ̂ij = T−1∑T

t=j+1 η̂itη̂
′
i,t−j , and

Ω̂i =

Ω̂uu,i Ω̂uv,i

Ω̂vu,i Ω̂vv,i

 = Γ̂i0 +
T−1∑
j=1

k(
j

M
)
(

Γ̂ij + Γ̂′ij
)
.
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The estimator for σ2
u·v is given by

σ̂2
u·v =

1

N

N∑
i=1

[
Ω̂uu,i − Ω̂uv,i

(
Ω̂vv,i

)−1
Ω̂vu,i

]
.

The second estimation approach is to use ∆S̃uit, the first differences of the pooled OLS

residuals of the panel IM-OLS regression (1.6), to directly estimate σ2
u·v:

σ̃2
u·v =

1

N

N∑
i=1

T−1
T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
∆S̃uij∆S̃

u
ih

 .
Extending a result in Vogelsang and Wagner [2014], it can be shown that σ̃2

u·v is not a

consistent estimator under traditional assumptions on the bandwidth and kernel functions.

Under traditional bandwidth assumptions, we can show that the limit of σ̃2
u·v is larger than

σ2
u·v which leads to asymptotically conservative results when we build test statistics by σ̃2

u·v

and use critical values from the standard normal or a chi-square distribution.

The third estimation approach is based on OLS residuals from a further augmented

regression. As discussed in Vogelsang and Wagner [2014], an estimator of σ2
u·v based on

these residuals defined below has a fixed-b limit that is proportional to σ2
u·v, independent of

θ̃, and does not depend upon additional nuisance parameters, whereas the estimators σ̂2
u·v

and σ̃2
u·v both fail those requirements. Define this estimator as:

σ̃2∗
u·v =

1

N

N∑
i=1

T−1
T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
∆S̃u∗ij ∆S̃

u∗
ih


where ∆S̃u∗it = S̃u∗it − S̃

u∗
i,t−1 is the difference of the residuals S̃u∗it , obtained by running the

further augmented IM-OLS regression individual by individual, S̃u∗it = S
y
it− S

D′
t δ̃i− Sx′it β̃i−
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x′itγ̃i − z
′
itλ̃i. The augmented regressors, zit, are given by zit = t

T∑
j=1

qxij −
t−1∑
j=1

j∑
s=1

qxis, where

qxit =

[
SD′t , Sx′it , x′it

]′
for all i = 1, 2, . . . , N , t = 1, 2, . . . , T .

Using an estimator of σ2
u·v, we can define the t and Wald statistic as

t̆ =

(
Rθ̃ − r

)
√
RAPIM V̆PIMAPIMR′

W̆ =
[(
Rθ̃ − r

)]′ [
RAPIM V̆PIMAPIMR′

]−1 [(
Rθ̃ − r

)]
where V̆PIM could be V̂PIM using σ̂2

u·v, which defines t̂ and Ŵ , or ṼPIM using σ̃2
u·v, which

defines t̃ and W̃ , or Ṽ ∗PIM using σ̃2∗
u·v, which defines t̃∗ and W̃ ∗. The asymptotic null

distribution of these test statistics are given in Theorem 2. Standard asymptotic results

based on traditional bandwidth and kernel assumptions are given for t̂, Ŵ , t̃ and W̃ , whereas

a fixed-b result is given for t̃∗ and W̃ ∗.

Theorem 2. Assume that the data are generated by (1.2) and (1.3), that the deterministic

components satisfy (1.4), and that Assumptions 1 and 2 hold. Suppose that the bandwidth,

M , and kernel function, k(·), satisfy conditions such that σ̂2
u·v is consistent. Then for fixed

N , as T →∞

• Ŵ ⇒ χ2
q, where χ2

q is a chi-square random variable with q degrees of freedom. When

q = 1, t̂⇒ Z, where Z is a standard normal distribution.

• Under the above assumptions, σ̃2
u·v ⇒ σ2

u·v
(
1 + d′γdγ

)
, with dγ denoting the second k×1

block of

(
N∑
i=1

∫ 1
0 g1,i(s)g1,i(s)

′ds

)−1(
N∑
i=1

∫ 1
0 [G1,i(1)−G1,i(s)]dwu,i(s)

)
. Therefore,

it follows that W̃ ⇒ χ2
q

1+d′γdγ
, where χ2

q is a chi-square random variable with q degrees of
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freedom that is correlated with dγ. When q = 1, t̃⇒ Z√
1+d′γdγ

, where Z is distributed

standard normal and is correlated with dγ.

• If M = bT , where b ∈ (0, 1] is held fixed as T →∞, then

W̃ ∗ ⇒
χ2
q

1
N

N∑
i=1

Q∗i (b)

where Q∗i (b) is exactly same form as Qb

(
P̃ ∗, P̃ ∗

)
in Vogelsang and Wagner [2014],1

and χ2
q is a chi-square random variable with q degrees freedom independent of 1

N

N∑
i=1

Q∗i (b).

When q = 1,

t̃∗ ⇒ Z√
1
N

N∑
i=1

Q∗i (b)

where Z is standard normal distribution independent of 1
N

N∑
i=1

Q∗i (b).

• Due to the independence between the numerator and denominator of the limits of W̃ ∗

and t̃∗, we can further obtain a sequential limit result, where T grows large, followed

sequentially by the limit as N grows large. Define

W̃ ∗µQ = µQ · W̃ ∗,

1See Vogelsang and Wagner (2014) page 744 for Qb (P1, P2), and formula (30) for P̃∗(r).
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where µQ = E
[
Q∗i (b)

]
. Then as T →∞,

W̃ ∗µQ ⇒
χ2
q[

1
N

N∑
i=1

1
µQ

Q∗i (b)

]
P−→ χ2

q as N →∞.

When q = 1,

t̃∗µQ =
√
µQ · t̃∗

⇒ Z√
1
N

N∑
i=1

1
µQ

Q∗i (b)

P−→ Z as N →∞.

When appealing to consistency of σ̂2
u·v, inference using Ŵ is standard. In contrast σ̃2

u·v is

inconsistent under traditional bandwidth assumptions. Since d
′
γdγ > 0, the critical values of

W̃ are smaller than those of the χ2
q distribution. Thus, using χ2

q critical values for W̃ leads

to a conservative test under the traditional bandwidth assumptions. The fixed-b limiting

distribution of W̃ ∗ is complicated due to the presence of 1
N

N∑
i=1

Q∗i (b), which depends on

wv,i(r) for i = 1, 2, · · · , N . Therefore, critical values should be simulated taking into account

the cross-sectional sample size, the specifications of deterministic components, the number

of integrated regressors, the kernel function and bandwidth choice. For sake of brevity, in

Table 1.13 and Table 1.14, we only tabulate critical values for the t-statistic for the parameter

associated with xit in models with an intercept and 2 integrated regressors for the Bartlett

and QS kernels and a grid of bandwidths indexed by b for N = 25. However, when both T
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and N large, inference using W̃ ∗µQ , with µ̂Q as an estimator of µQ, requires merely χ2
q critical

values rather than simulated critical values, which is quite convenient. The t statistics have

similar results.

1.4 Finite sample bias and root mean squared error

In this section, we compare the performance of the pooled OLS, panel FM-OLS, panel

DOLS, and panel IM-OLS estimators as measured by bias and root mean squared error

(RMSE) within a small simulation study. We provide results that the individual dummy

variable is not included. The data generating process is given by

yit = µ+ x1itβ1 + x2itβ2 + uit

x1it = x1i,t−1 + v1it

x2it = x2i,t−1 + v2it

where, for ∀ i ∈ [1, 2, · · · , N ], x1i0 = 0, x2i0 = 0, and uit = ρ1ui,t−1 + εit + ρ2 (e1it + e2it),

ui0 = 0, and v1it = e1it + 0.5e1i,t−1, v2it = e2it + 0.5e2i,t−1, where εit, e1it and e2it are

i.i.d. standard normal random variables independent of each other. The parameter values

chosen are µ = 3, β1 = β2 = 1. Note that the estimators of β1 and β2 are exactly invariant

to the value of µ, so the value of µ has no effect on our results. In addition, we use ρ1 and ρ2

from the set {0, 0.3, 0.6, 0.9}. The parameter ρ1 controls serial correlation in the regression

error, and ρ2 determines whether the regressors are endogenous or not. The kernel function

chosen for panel FM-OLS are the Bartlett and the Quadratic Spectral kernels, and the
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bandwidths are given by M = bT with b ∈ {0.06, 0.1, 0.3, 0.5, 0.7, 0.9}. We also use the data

dependent bandwidth from Andrews [1991]. The panel DOLS estimator is implemented

using the information criterion based lead and lag length choice as developed in Kejriwal

and Perron [2008], where we use the more flexible version discussed in Choi and Kurozumi

[2012] in which the numbers of leads and lags included are not exactly same. The sample

sizes are N ∈ {5, 10, 25}, T ∈ {50, 100} and the number of replications is 5000.

In Tables 1.1-1.6 we display the results for N = 5, 10, 25, T = 50, 100 using the Bartlett

kernel only. General patterns are similar for the QS kernel. In each of those tables, Panel A

reports bias and Panel B reports RMSE.

1.4.1 Sample size N = 5

Table 1.1 shows the results for N = 5 with T = 50 case. When ρ2 = 0 (no endogeneity),

none of the estimators show much bias for any value of ρ1. When the bandwidth is relatively

small, panel FM-OLS has a little bit larger RMSE than pooled OLS. But, as the bandwidth

increases, the RMSE of panel FM-OLS tends to first increase and then decreases, indicating

a hump-shape in the RMSE, and the turning point is around b = 0.5, i.e. M = 0.5T . Pooled

OLS and panel FM-OLS have smaller RMSE than panel IM-OLS and this holds regardless

of bandwidth for panel FM-OLS. Panel IM-OLS has the largest RMSE in any cases. The

RMSE of panel DOLS is a little bit smaller than that of panel IM-OLS, but it is still larger

than that of pooled OLS and panel FM-OLS.

When ρ2 6= 0 (there is endogeneity), the estimators show different patterns. For a given

value of ρ1, as ρ2 increases, the bias of pooled OLS increases. Panel FM-OLS shows the
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same pattern, but its bias is smaller than that of pooled OLS, which is expected from the

theory. In addition, the bias of panel FM-OLS also depends on the bandwidth and value

of ρ1, as ρ1 is relatively small, the bias of panel FM-OLS increases as bandwidth increases,

however, as ρ1 is far away from zero, the bias of panel FM-OLS is seen to initially fall as

the bandwidth increases and then tends to increase as the bandwidth become large. But

no matter how large the bandwidth is, the bias of panel FM-OLS does not exceed that of

pooled OLS. On the contrary, the biases of panel IM-OLS and panel DOLS are much less

sensitive to ρ2, especially when ρ1 is relatively small, and are always smaller than those of

pooled OLS and panel FM-OLS. The bias of panel DOLS is similar to the bias of panel

IM-OLS when ρ1 is small whereas for larger values of ρ1, the bias of panel DOLS tends to

be larger than that of panel IM-OLS. The overall picture in this case is that panel IM-OLS

has smaller bias than panel DOLS which in turn has lower bias than both pooled OLS and

panel FM-OLS. The magnitude of the bias of both panel IM-OLS and panel DOLS are less

sensitive to the values of ρ2 than for pooled OLS and panel FM-OLS.

Considering the RMSE when there is endogeneity, we see that for given value of ρ1, as ρ2

increases, the RMSE of pooled OLS increases. Panel FM-OLS shows the same pattern, but

its RMSE is smaller than that of pooled OLS, especially when ρ1 is relatively small. Focusing

on the bandwidth we see that the RMSE of panel FM-OLS has the same pattern as its bias,

if ρ1 is small, the RMSE of panel FM-OLS increases as bandwidth increases, whereas if ρ1 is

relatively large, the RMSE of panel FM-OLS is seen to initially fall as bandwidth increases

and then tends to increase as the bandwidth becomes large. For RMSE of panel IM-OLS,

it is larger than that of pooled OLS when both ρ1 and ρ2 are small, otherwise, it is smaller

than that of pooled OLS. The RMSE of panel DOLS also has similar pattern but it is smaller

than that of panel IM-OLS. The RMSE of panel IM-OLS does not vary with ρ2 when ρ1 is
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small. The comparison of RMSE for panel IM-OLS and panel FM-OLS depend on value of

ρ1, ρ2 and b. When both ρ1 and ρ2 are small, the RMSE of panel IM-OLS is larger than

that of panel FM-OLS, no matter what bandwidth used. However, when both ρ1 and ρ2 are

large, the RMSE of panel IM-OLS could be smaller than that of panel FM-OLS with very

large bandwidth.

Also, in Table 1.1, we can see that when there is endogeneity but no serial correlation, then

panel FM-OLS using the data dependent bandwidth performs better than all other estimators

with very small bias and smallest RMSE. And this is true for all different combinations of

N and T , which we can see from Table 1.2 to Table 1.6.

When we increase T to 100, all the estimators tend to have smaller bias than the T = 50

case, which is expected because the estimators are consistent. Almost all of the results are

similar to the T = 50 case. One slight difference is that when there is endogeneity and

both ρ1 and ρ2 are large, the bias of panel IM-OLS is a little bit larger than that panel

DOLS, even though they are still less biased than pooled OLS. The other difference when we

increase T from 50 to 100, is that when both ρ1 and ρ2 are very large, the RMSEs of panel

IM-OLS and panel DOLS are very similar and both are smaller than that of panel FM-OLS,

no matter what bandwidth used, and in turn smaller than RMSE of pooled OLS.

1.4.2 Sample size N = 10

The results of bias in N = 10 case are similar to the N = 5 case. From Panel B of Table

1.3, most of the results for RMSEs are similar as N = 5 case except that when both ρ1 and

ρ2 are large, the RMSEs of panel IM-OLS and panel DOLS are very similar and both are
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smaller than that of panel FM-OLS for both T = 50 and T = 100. Also, when ρ1 and ρ2

are very large, the RMSEs of panel IM-OLS is slightly smaller than that of panel DOLS for

T = 50 and this relation is reversed when T = 100.

1.4.3 Sample size N = 25

When we increase the cross section sample size to N = 25, the bias results are similar,

but a different pattern emerges in the RMSEs. From Panel B of Tables 1.5 and 1.6, when

there is endogeneity, in both cases T = 50 and T = 100, the RMSE of pooled OLS is the

largest in any cases. This implies that when there is endogeneity, pooled OLS will have the

largest bias and largest RMSE. Also, we can see that when both ρ1 and ρ2 are large, the

RMSEs of panel IM-OLS and panel DOLS are very similar and both are smaller than that

of panel FM-OLS with any bandwidth for both T = 50 and T = 100. Similar as the N = 10

case, when both ρ1 and ρ2 are very large, the RMSEs of panel IM-OLS is slightly smaller

than that of panel DOLS when T = 50, and the RMSEs of panel IM-OLS is slightly larger

than that of panel DOLS when T = 100.

1.4.4 Summary of finite sample bias and RMSE

The simulation shows that, when there is no endogeneity (ρ2 = 0), pooled OLS dominates

other estimators with no bias and smallest variance. When there is no serial correlation

(ρ1 = 0), panel FM-OLS with the data dependent bandwidth performs better than other

estimators. When both serial correlation and endogeneity exist (ρ1 6= 0, ρ2 6= 0), the relative
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performance of the estimators depends on the values of N , T , ρ1 and ρ2. Panel IM-OLS

is more effective in reducing bias than the other estimators and both bias and RMSE of

panel IM-OLS are less sensitive to the parameters ρ1 and ρ2 than are the bias and RMSE

of panel FM-OLS. For N small (N = 5, 10) and T small (T = 50), panel IM-OLS has the

smallest bias but with larger RMSE as a cost, except that when both ρ1 and ρ2 are large

where panel IM-OLS has the smallest RMSE. For N small and T relatively large (T = 100),

panel IM-OLS and panel DOLS are similar, and dominate pooled OLS and panel FM-OLS.

When N is relatively large (N = 25), pooled OLS has the largest bias and largest RMSE in

all cases, and if T is small and ρ1, ρ2 are relatively large, then panel IM-OLS is better than

the other estimators in reducing bias and has smallest RMSE. When N and T are large, and

ρ1, ρ2 are large, then panel DOLS is a little bit better than panel IM-OLS, which in turn is

better than pooled OLS and panel FM-OLS.

1.5 Finite sample performance of test statistics

In this section we provide some finite sample results about the tests’ performance using

the simulation design from Section 1.4. Here, we only report results for cases where ρ1 = ρ2.

The results include t-statistics for testing the null hypothesis H0 : β1 = 1 and Wald statistics

for testing the joint null hypothesis H0 : β1 = 1, β2 = 1. The pooled OLS statistics serve as a

benchmark. The panel FM-OLS statistics were implemented using σ̂2
u+ . The panel IM-OLS

statistics were implemented in three ways. The first uses σ̂2
u·v and is labeled panel IM(O),

the second uses σ̃2
u·v and is labeled panel IM(D) and the third uses σ̃2∗

u·v and is labeled panel

IM(Fb). We report results for both the Bartlett and Quadratic Spectral kernels. As for the
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choice of bandwidth for panel FM-OLS and panel IM-OLS statistics, we follow Vogelsang

and Wagner [2014]. One bandwidth choice is the data dependent bandwidth rule of Andrews

[1991]. The other choice is the fixed-b bandwidth, that is b = M/T , where M = 1, 2, · · · , T .

Rejections for the pooled OLS, panel FM-OLS, panel DOLS, panel IM(O) and panel IM(D)

are carried out using N(0, 1) critical values for all values of M . From Theorem 2, the panel

IM(D) test statistic is asymptotically conservative under traditional asymptotic theory. In

contrast, rejections for panel IM(Fb) are carried out using fixed-b asymptotic critical values.

The empirical rejection probabilities were computed using 5000 replications, and the nominal

level is 0.05 in all cases.

Tables 1.7 to 1.9 and Tables 1.10 to 1.12 report empirical null rejection probabilities using

data dependent bandwidth choices for Bartlett and QS kernel. Tables 1.7 to 1.9 show results

for the t-tests and Tables 1.10 to 1.12 contain results for the Wald tests. In each table Panel

A corresponds to T = 50 and Panel B to T = 100. We only briefly summarize some main

findings in the tables. When ρ1 = ρ2 = 0 (no serial correlation and no endogeneity), we

can see that pooled OLS tests have rejection probabilities close to 0.05, but there are huge

over-rejections as the value of ρ1 and ρ2 increase. For ρ1 = ρ2 = 0, when using the QS

kernel, panel IM(Fb) tests tend to have rejection probabilities less than 0.05, whereas other

tests show some over-rejections. For ρ1 = ρ2 = 0, when using the Bartlett kernel, all the

tests show some over-rejections, but the over-rejection problem is less severe when T = 100

than T = 50. Note that both panel IM(O) and panel IM(D) show some over-rejections, but

those are less severe than panel FM-OLS, especially when there is strong serial correlation

and strong endogeneity. Generally, panel IM(D) tests have rejection probabilities that are

smaller than those of panel IM(O), which is what we expected because the panel IM(D) test

is conservative under standard asymptotic theory. In addition, increasing the values of ρ1
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and ρ2 leads to over-rejection problems for all the tests. The problem with panel IM-OLS is

that the data-dependent bandwidth is too small to give less size distortions. In contrast to

the pure time series case, there is no test that dominates the others in that scenario.

In order to see the impact of bandwidth and kernel choices on over-rejection problem,

we plot in Figures 1.1-1.3 null rejection probabilities of the t-tests as a function of b ∈ (0, 1].

The first three figures give the results for N ∈ {5, 10, 25}, T = 100 using the Bartlett

kernel and ρ1 = ρ2 = 0.3. In Figure 1.1, with cross-section sample size N = 5, we can

see that with small bandwidths, all tests have some over-rejection problems. Panel IM(D)

is less severe than the other tests because it is conservative. As the bandwidth increases,

all rejection probabilities increase substantially except for panel IM(Fb). The panel IM(Fb)

rejection probabilities are close to 10% for all values of b, which indicates that the fixed-b

approximation performs relatively well for panel IM(Fb). In Figures 1.2 and 1.3, the cross-

section sample size increases to 10 and 25 and the pattern of rejection probabilities are similar

as Figure 1.1. However, when the bandwidth is small, like b = 0.08, panel FM(Fb) has the

least rejection probabilities, around 8% and 7.5%, respectively. In addition, as N increases,

panel IM(Fb) rejection probabilities are close to 10% and 12% when large bandwidth used.

As the values of ρ1, ρ2 increase to 0.9, there exists strong serial correlation and endogene-

ity. We can see from Figures 1.4-1.6 that all the tests have serious over-rejection problems

regardless of bandwidth. Interestingly, for small N (N = 5, 10), panel FM(Fb) has less of

an over-rejection problem than panel IM(Fb) although both tests are severely size distorted.

As N increases to 25, the rejection probabilities of panel IM(Fb) tend to smaller than that of

panel FM(Fb). In Vogelsang and Wagner [2014], it was pointed out that the over-rejection

problems of IM(Fb) becomes less problematic as T increases. We find similar patterns in

our simulations. In Figures 1.7 to 1.9, we show the results with T = 100, and it is clear that
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the panel IM(Fb) over-rejections are reduced although they are still large. We believe that,

similar to the pure time series case, if we further increase T to 500 or 1000, the rejections

for panel IM(Fb) with non-small bandwidths will be substantially reduced to reasonable size

whereas the other statistics will continue to have over-rejection problems.

Figures 1.10-1.12 give some results for the QS kernel. For brevity we only report results

for N = 5, T = 50, 100, ρ1 = ρ2 ∈ {0.3, 0.9}. Compared with results using Bartlett kernel,

panel IM(Fb) has less over-rejection problems using QS kernel. In Figures 1.10, when serial

correlation and endogeneity are not that strong, panel IM(Fb) tends to have rejections close

to 10%, whereas all other tests have over-rejection problems. In Figures 1.11 and 1.12,

when there is strong serial correlation and endogeneity, all the tests have some over-rejection

problems, however, the QS kernel leads to less size distorted results than the Bartlett kernel.

The overall picture is that the panel IM(Fb) test is the most robust statistic in terms

of controlling over-rejection problems although for given sample sizes, N , T , increasing the

values of ρ1, ρ2 causes over-rejections to emerge. Large sample sizes of both N and T in

conjunction with large bandwidths and the QS kernel are desirable when serial correlation

and endogeneity are strong.

Now, we turn to the analysis of the power properties of the tests. For the sake of brevity

we only display results for the case ρ1 = ρ2 = 0.6 for the Wald test for N = 5, T = 50

and using the QS kernel. Patterns are similar for other values of ρ1, ρ2 for t tests for other

combinations of N, T with the Bartlett kernel. Starting from the null values of β1 and β2

equal to 1, we consider under the alternative β1 = β2 = β ∈ (1, 1.4], using (including the

null value) a total of 21 values on a grid with mesh 0.02. We focus on size-corrected power

because of the potential over-rejection problems under the null hypothesis. This allows us

to see power differences across tests while holding null rejection probabilities constant at
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0.05. This is useful for the theoretical power comparisons, but such size-corrections are not

feasible in practice.

In Figure 1.13 we display size adjusted power of the panel FM(Fb) and panel IM-OLS

Wald tests using the QS kernel with b = 0.3. For all other values of b, the patterns are very

similar. From Figure 1.13, we can see that panel IM(Fb) has the least power across the four

tests. The use of σ̃2∗
u·v to obtain asymptotically fixed-b inference and less finite sample size

distortions comes at the price of a small reduction in power.

Figure 1.14 shows the effect of the bandwidth on size adjusted power of the panel IM(Fb)

test by plotting power curves for eight values of b = 0.02, 0.06, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0. We

can see that panel IM(Fb) power depends on the bandwidth and tends to decrease as band-

width increases, but power is not that sensitive to the bandwidth. In addition, when b ≥ 0.5,

the power of panel IM(Fb) is almost constant. In Figure 1.15, we display power using the

Bartlett kernel, and it is clear that all tests almost have similar power, and the power is not

sensitive to b.

Figure 1.16 gives power comparisons across the various tests: pooled OLS, panel FM-OLS,

panel DOLS, panel IM-OLS. In Figure 1.16, panel IM(Fb) test is shown for b = 0.06, 0.1, 1.0,

and using the Andrews data dependent bandwidth. The panel FM-OLS test is implemented

with the Andrews data dependent bandwidth. We note that the pooled OLS and panel FM-

OLS tests have the largest size-adjusted power, with the power of panel DOLS test being

slightly smaller and panel IM-OLS tests have the smallest power. But the power difference

between panel IM-OLS and all other tests are relatively small.

Finally, Figures 1.17-1.19 provide size adjusted power comparisons similar to Figures

1.13, 1.14 and 1.16 but with N = 10. The main feature is that size adjusted power increases

with N . In addition, as N increases, the power of panel IM(Fb) becomes less sensitive to the
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bandwidth. With a larger N , the power rankings are the same as before, but the difference

of the power between panel IM-OLS and panel FM-OLS is smaller.

1.6 Summary and conclusions

This paper considers the extension of the integrated modified ordinary least squares

(IM-OLS) method of Vogelsang and Wagner [2014] for estimation and inference about a

cointegrating vector in homogeneous cointegrated panels. We label the estimator panel

IM-OLS. It is a tuning parameter free estimator that is based on a partial sum transformed

regression augmented by the original integrated regressors themselves. The advantage is that

it leads to a zero mean mixed Gaussian limiting distribution without requiring the choice

of tuning parameters (like bandwidth, kernel, numbers of leads and lags). For inference

based on panel IM-OLS estimates, a long run variance still needs to be scaled out. Using a

consistent estimator of the corresponding long run variance leads to tests having standard

asymptotic distributions. Fixed-b inference is another way to obtain pivotal test statistics.

Critical values of fixed-b t and Wald tests need to be simulated taking into account the

specification of deterministic components, the number of integrated regressors, the kernel

function and the bandwidth choice.

We provide a finite sample simulation study in which the performance of the panel IM-

OLS estimator and test statistics are compared with pooled OLS, panel FM-OLS and panel

DOLS. Typically, panel IM-OLS shows good performance in terms of bias and RMSE espe-

cially in the following two scenarios: (i) the panel has large sample size; (ii) small sample size

panel with strong serial correlation and endogeneity. The size and power analysis of the tests
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show that the fixed-b test statistics are more robust, in terms of having lower size distortions

than all other test statistics, especially for larger sample sizes. This robustness comes at the

cost of minor power losses provided serial correlation and endogeneity is not that strong.

When there is strong serial correlation and endogeneity, all tests have severe over-rejection

problems, and we prefer panel IM-OLS test with QS kernel and large bandwidth in this case.

Further research will study panel IM-OLS estimator for panels that have identical de-

pendent unit in cross section, panels that have non-identical dependent unit in cross section,

for higher order cointegrating regressions and for nonlinear cointegration relationships.
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Tables and Figures

Table 1.1: Finite sample bias and RMSE of the various estimator of β1, N = 5, T = 50,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 -0.0002 -0.0001 -0.0004 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003

0.3 0.0057 -0.0004 -0.0006 -0.0004 0.0003 0.0021 0.0030 0.0036 0.0040 0.0001

0.6 0.0116 -0.0008 -0.0003 -0.0006 0.0009 0.0044 0.0063 0.0075 0.0082 0.0005

0.9 0.0175 -0.0011 -0.0002 -0.0007 0.0015 0.0068 0.0096 0.0113 0.0124 0.0010

0.3 0 -0.0003 -0.0002 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004

0.3 0.0100 -0.0001 -0.0001 0.0013 0.0017 0.0039 0.0055 0.0064 0.0071 0.0016

0.6 0.0202 0.0001 0.0001 0.0029 0.0038 0.0083 0.0113 0.0132 0.0145 0.0035

0.9 0.0304 0.0002 0.0002 0.0045 0.0059 0.0126 0.0171 0.0200 0.0219 0.0055

0.6 0 -0.0004 -0.0003 -0.0008 -0.0005 -0.0005 -0.0006 -0.0005 -0.0005 -0.0005 -0.0005

0.3 0.0200 0.0024 0.0034 0.0083 0.0075 0.0091 0.0116 0.0134 0.0146 0.0076

0.6 0.0404 0.0051 0.0068 0.0172 0.0155 0.0188 0.0238 0.0274 0.0297 0.0158

0.9 0.0608 0.0078 0.0090 0.0260 0.0235 0.0285 0.0360 0.0413 0.0448 0.0240

0.9 0 -0.0009 -0.0007 -0.0007 -0.0011 -0.0011 -0.0012 -0.0011 -0.0010 -0.0010 -0.0011

0.3 0.0715 0.0404 0.0521 0.0598 0.0568 0.0511 0.0529 0.0561 0.0587 0.0575

0.6 0.1438 0.0815 0.1031 0.1206 0.1147 0.1035 0.1069 0.1131 0.1183 0.1162

0.9 0.2162 0.1226 0.1534 0.1815 0.1726 0.1559 0.1610 0.1702 0.1780 0.1749

Panel B: RMSE

0 0 0.0115 0.0202 0.0147 0.0119 0.0120 0.0124 0.0124 0.0124 0.0124 0.0120

0.3 0.0134 0.0202 0.0151 0.0119 0.0121 0.0128 0.0131 0.0133 0.0134 0.0121

0.6 0.0180 0.0202 0.0156 0.0121 0.0124 0.0141 0.0151 0.0157 0.0160 0.0123

0.9 0.0239 0.0203 0.0158 0.0123 0.0130 0.0160 0.0179 0.0190 0.0197 0.0127

0.3 0 0.0161 0.0286 0.0211 0.0168 0.0170 0.0175 0.0175 0.0175 0.0175 0.0169

0.3 0.0198 0.0286 0.0213 0.0169 0.0172 0.0183 0.0189 0.0192 0.0194 0.0171

0.6 0.0283 0.0286 0.0215 0.0173 0.0179 0.0208 0.0227 0.0238 0.0246 0.0177

0.9 0.0386 0.0287 0.0217 0.0180 0.0192 0.0244 0.0279 0.0300 0.0313 0.0188

0.6 0 0.0270 0.0490 0.0358 0.0283 0.0287 0.0297 0.0297 0.0296 0.0295 0.0286

0.3 0.0352 0.0491 0.0365 0.0298 0.0301 0.0318 0.0330 0.0337 0.0341 0.0300

0.6 0.0529 0.0494 0.0378 0.0345 0.0341 0.0379 0.0416 0.0439 0.0455 0.0341

0.9 0.0735 0.0499 0.0391 0.0411 0.0401 0.0464 0.0529 0.0571 0.0598 0.0402

0.9 0 0.0843 0.1638 0.1090 0.0887 0.0910 0.0967 0.0973 0.0967 0.0958 0.0904

0.3 0.1131 0.1689 0.1231 0.1089 0.1091 0.1113 0.1131 0.1142 0.1149 0.1090

0.6 0.1736 0.1839 0.1563 0.1552 0.1518 0.1475 0.1512 0.1557 0.1591 0.1526

0.9 0.2432 0.2068 0.1986 0.2111 0.2041 0.1935 0.1992 0.2071 0.2134 0.2059
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Table 1.2: Finite sample bias and RMSE of the various estimator of β1, N = 5, T = 100,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001

0.3 0.0030 0.0000 0.0001 0.0002 0.0005 0.0012 0.0017 0.0020 0.0021 0.0001

0.6 0.0060 0.0000 0.0002 0.0003 0.0009 0.0024 0.0033 0.0039 0.0043 0.0002

0.9 0.0089 -0.0001 0.0001 0.0004 0.0013 0.0036 0.0050 0.0058 0.0064 0.0003

0.3 0 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001

0.3 0.0052 0.0002 0.0003 0.0008 0.0010 0.0022 0.0029 0.0034 0.0038 0.0007

0.6 0.0104 0.0002 0.0004 0.0015 0.0020 0.0043 0.0059 0.0069 0.0075 0.0014

0.9 0.0156 0.0003 0.0004 0.0022 0.0030 0.0064 0.0088 0.0103 0.0113 0.0021

0.6 0 0.0002 0.0003 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002

0.3 0.0107 0.0011 0.0011 0.0034 0.0032 0.0047 0.0061 0.0071 0.0078 0.0035

0.6 0.0212 0.0018 0.0015 0.0067 0.0062 0.0093 0.0122 0.0142 0.0155 0.0069

0.9 0.0317 0.0026 0.0016 0.0099 0.0093 0.0139 0.0183 0.0212 0.0232 0.0102

0.9 0 0.0008 0.0012 0.0002 0.0008 0.0008 0.0006 0.0005 0.0004 0.0004 0.0008

0.3 0.0431 0.0174 0.0174 0.0325 0.0294 0.0261 0.0286 0.0314 0.0335 0.0331

0.6 0.0854 0.0336 0.0335 0.0642 0.0580 0.0515 0.0567 0.0623 0.0666 0.0654

0.9 0.1277 0.0499 0.0486 0.0959 0.0866 0.0769 0.0849 0.0933 0.0997 0.0976

Panel B: RMSE

0 0 0.0056 0.0102 0.0082 0.0058 0.0059 0.0061 0.0062 0.0062 0.0061 0.0058

0.3 0.0067 0.0102 0.0085 0.0058 0.0059 0.0064 0.0066 0.0067 0.0067 0.0058

0.6 0.0091 0.0102 0.0087 0.0059 0.0061 0.0070 0.0076 0.0079 0.0081 0.0059

0.9 0.0121 0.0102 0.0089 0.0061 0.0065 0.0080 0.0090 0.0096 0.0099 0.0060

0.3 0 0.0080 0.0145 0.0131 0.0083 0.0083 0.0087 0.0088 0.0088 0.0087 0.0082

0.3 0.0101 0.0145 0.0133 0.0083 0.0085 0.0092 0.0096 0.0098 0.0099 0.0083

0.6 0.0145 0.0145 0.0135 0.0086 0.0089 0.0105 0.0115 0.0121 0.0125 0.0085

0.9 0.0198 0.0145 0.0137 0.0090 0.0096 0.0123 0.0142 0.0153 0.0160 0.0089

0.6 0 0.0136 0.0251 0.0254 0.0142 0.0144 0.0150 0.0151 0.0151 0.0150 0.0142

0.3 0.0184 0.0252 0.0258 0.0149 0.0150 0.0162 0.0170 0.0174 0.0177 0.0148

0.6 0.0278 0.0252 0.0262 0.0164 0.0166 0.0193 0.0214 0.0228 0.0237 0.0165

0.9 0.0387 0.0253 0.0264 0.0187 0.0188 0.0235 0.0272 0.0296 0.0311 0.0188

0.9 0 0.0474 0.0932 0.0855 0.0501 0.0513 0.0541 0.0545 0.0541 0.0537 0.0499

0.3 0.0669 0.0950 0.0881 0.0616 0.0609 0.0619 0.0637 0.0648 0.0656 0.0618

0.6 0.1046 0.0997 0.0957 0.0865 0.0822 0.0800 0.0848 0.0888 0.0917 0.0874

0.9 0.1471 0.1071 0.1045 0.1164 0.1086 0.1031 0.1111 0.1182 0.1234 0.1180
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Table 1.3: Finite sample bias and RMSE of the various estimator of β1, N = 10, T = 50,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 -0.0001 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000 0.0000 -0.0001

0.3 0.0055 -0.0002 -0.0003 -0.0003 0.0003 0.0017 0.0026 0.0033 0.0037 0.0002

0.6 0.0111 -0.0005 0.0000 -0.0005 0.0006 0.0035 0.0053 0.0065 0.0074 0.0004

0.9 0.0167 -0.0008 0.0001 -0.0007 0.0010 0.0053 0.0080 0.0098 0.0111 0.0006

0.3 0 -0.0001 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 0.0000 -0.0001

0.3 0.0092 0.0001 0.0002 0.0012 0.0014 0.0032 0.0046 0.0056 0.0063 0.0014

0.6 0.0186 0.0002 0.0004 0.0024 0.0030 0.0064 0.0092 0.0112 0.0126 0.0028

0.9 0.0279 0.0003 0.0005 0.0037 0.0045 0.0097 0.0138 0.0168 0.0189 0.0043

0.6 0 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 -0.0001 -0.0001 -0.0001 0.0000 -0.0002

0.3 0.0182 0.0024 0.0036 0.0074 0.0064 0.0074 0.0096 0.0114 0.0127 0.0066

0.6 0.0365 0.0047 0.0066 0.0149 0.0130 0.0150 0.0193 0.0229 0.0254 0.0134

0.9 0.0548 0.0070 0.0085 0.0224 0.0196 0.0225 0.0290 0.0343 0.0382 0.0202

0.9 0 0.0001 0.0005 -0.0001 0.0001 0.0000 0.0001 0.0003 0.0004 0.0005 0.0001

0.3 0.0672 0.0386 0.0488 0.0560 0.0530 0.0469 0.0482 0.0512 0.0541 0.0538

0.6 0.1343 0.0768 0.0959 0.1119 0.1060 0.0937 0.0960 0.1020 0.1077 0.1075

0.9 0.2014 0.1149 0.1419 0.1679 0.1590 0.1405 0.1439 0.1528 0.1613 0.1612

Panel B: RMSE

0 0 0.0069 0.0118 0.0088 0.0071 0.0072 0.0074 0.0075 0.0075 0.0074 0.0072

0.3 0.0091 0.0118 0.0090 0.0071 0.0072 0.0077 0.0081 0.0083 0.0084 0.0072

0.6 0.0138 0.0118 0.0092 0.0072 0.0073 0.0086 0.0097 0.0104 0.0110 0.0073

0.9 0.0193 0.0119 0.0094 0.0073 0.0076 0.0099 0.0119 0.0133 0.0142 0.0075

0.3 0 0.0098 0.0168 0.0125 0.0101 0.0102 0.0105 0.0106 0.0106 0.0105 0.0101

0.3 0.0139 0.0168 0.0127 0.0102 0.0103 0.0111 0.0118 0.0122 0.0125 0.0103

0.6 0.0220 0.0168 0.0128 0.0105 0.0108 0.0129 0.0148 0.0161 0.0171 0.0107

0.9 0.0312 0.0168 0.0130 0.0110 0.0116 0.0154 0.0187 0.0212 0.0229 0.0114

0.6 0 0.0166 0.0290 0.0215 0.0172 0.0174 0.0180 0.0181 0.0181 0.0179 0.0173

0.3 0.0253 0.0291 0.0221 0.0189 0.0187 0.0198 0.0210 0.0218 0.0225 0.0187

0.6 0.0418 0.0294 0.0233 0.0233 0.0223 0.0244 0.0278 0.0305 0.0325 0.0225

0.9 0.0600 0.0299 0.0244 0.0293 0.0273 0.0307 0.0365 0.0411 0.0444 0.0277

0.9 0 0.0548 0.0994 0.0688 0.0568 0.0579 0.0610 0.0616 0.0612 0.0606 0.0576

0.3 0.0878 0.1068 0.0854 0.0806 0.0792 0.0776 0.0790 0.0807 0.0820 0.0795

0.6 0.1477 0.1261 0.1210 0.1276 0.1227 0.1138 0.1163 0.1213 0.1259 0.1240

0.9 0.2129 0.1529 0.1620 0.1805 0.1724 0.1564 0.1602 0.1684 0.1760 0.1744
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Table 1.4: Finite sample bias and RMSE of the various estimator of β1, N = 10, T = 100,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 0.0000

0.3 0.0027 -0.0001 0.0000 0.0000 0.0002 0.0009 0.0013 0.0016 0.0018 0.0000

0.6 0.0055 -0.0002 0.0001 0.0001 0.0005 0.0018 0.0026 0.0033 0.0037 0.0000

0.9 0.0083 -0.0003 0.0000 0.0002 0.0008 0.0027 0.0040 0.0049 0.0056 0.0000

0.3 0 -0.0001 -0.0001 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

0.3 0.0046 -0.0001 0.0001 0.0005 0.0006 0.0015 0.0022 0.0027 0.0031 0.0004

0.6 0.0093 -0.0001 0.0002 0.0010 0.0013 0.0031 0.0045 0.0055 0.0063 0.0009

0.9 0.0140 0.0000 0.0002 0.0015 0.0020 0.0048 0.0068 0.0084 0.0094 0.0014

0.6 0 -0.0001 -0.0002 0.0000 -0.0001 -0.0001 -0.0001 -0.0002 -0.0002 -0.0002 -0.0001

0.3 0.0092 0.0005 0.0009 0.0026 0.0023 0.0034 0.0046 0.0056 0.0063 0.0027

0.6 0.0186 0.0011 0.0012 0.0052 0.0047 0.0069 0.0094 0.0113 0.0127 0.0055

0.9 0.0280 0.0017 0.0013 0.0079 0.0071 0.0104 0.0142 0.0170 0.0191 0.0082

0.9 0 -0.0001 -0.0005 -0.0005 -0.0001 -0.0002 -0.0003 -0.0003 -0.0004 -0.0004 -0.0001

0.3 0.0381 0.0141 0.0146 0.0281 0.0251 0.0213 0.0233 0.0260 0.0282 0.0286

0.6 0.0763 0.0287 0.0287 0.0563 0.0504 0.0429 0.0470 0.0523 0.0568 0.0574

0.9 0.1145 0.0433 0.0417 0.0846 0.0757 0.0645 0.0707 0.0787 0.0853 0.0862

Panel B: RMSE

0 0 0.0034 0.0059 0.0047 0.0035 0.0035 0.0036 0.0037 0.0036 0.0036 0.0035

0.3 0.0045 0.0059 0.0049 0.0035 0.0035 0.0038 0.0039 0.0040 0.0041 0.0035

0.6 0.0068 0.0059 0.0050 0.0035 0.0036 0.0042 0.0048 0.0051 0.0054 0.0035

0.9 0.0096 0.0059 0.0051 0.0036 0.0038 0.0050 0.0059 0.0066 0.0071 0.0036

0.3 0 0.0048 0.0084 0.0075 0.0050 0.0050 0.0052 0.0052 0.0052 0.0051 0.0049

0.3 0.0069 0.0084 0.0075 0.0050 0.0051 0.0055 0.0058 0.0060 0.0061 0.0050

0.6 0.0110 0.0084 0.0077 0.0051 0.0053 0.0064 0.0073 0.0080 0.0085 0.0051

0.9 0.0157 0.0084 0.0078 0.0053 0.0057 0.0076 0.0093 0.0105 0.0114 0.0053

0.6 0 0.0083 0.0146 0.0145 0.0086 0.0087 0.0089 0.0090 0.0089 0.0089 0.0085

0.3 0.0128 0.0146 0.0148 0.0090 0.0090 0.0097 0.0103 0.0108 0.0111 0.0090

0.6 0.0213 0.0147 0.0151 0.0102 0.0101 0.0119 0.0137 0.0152 0.0162 0.0103

0.9 0.0307 0.0148 0.0152 0.0121 0.0117 0.0148 0.0181 0.0206 0.0223 0.0123

0.9 0 0.0299 0.0548 0.0519 0.0311 0.0317 0.0331 0.0333 0.0330 0.0326 0.0310

0.3 0.0494 0.0566 0.0540 0.0425 0.0410 0.0399 0.0414 0.0428 0.0439 0.0429

0.6 0.0845 0.0620 0.0608 0.0661 0.0611 0.0559 0.0598 0.0641 0.0676 0.0671

0.9 0.1223 0.0703 0.0692 0.0930 0.0848 0.0755 0.0818 0.0890 0.0949 0.0946
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Table 1.5: Finite sample bias and RMSE of the various estimator of β1, N = 25, T = 50,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 -0.0001 0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 -0.0001

0.3 0.0054 -0.0002 -0.0002 -0.0003 0.0002 0.0015 0.0023 0.0030 0.0034 0.0001

0.6 0.0108 -0.0004 0.0000 -0.0005 0.0005 0.0030 0.0047 0.0060 0.0069 0.0003

0.9 0.0162 -0.0007 0.0001 -0.0007 0.0008 0.0045 0.0071 0.0090 0.0104 0.0004

0.3 0 -0.0001 0.0001 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000 -0.0001 -0.0001

0.3 0.0088 0.0002 0.0002 0.0010 0.0012 0.0027 0.0040 0.0050 0.0057 0.0012

0.6 0.0177 0.0003 0.0004 0.0021 0.0026 0.0055 0.0080 0.0100 0.0115 0.0024

0.9 0.0266 0.0003 0.0005 0.0033 0.0039 0.0083 0.0121 0.0151 0.0173 0.0037

0.6 0 -0.0001 0.0002 -0.0002 -0.0002 -0.0002 -0.0001 -0.0001 -0.0001 -0.0001 -0.0002

0.3 0.0172 0.0024 0.0034 0.0067 0.0058 0.0065 0.0085 0.0102 0.0116 0.0060

0.6 0.0345 0.0045 0.0062 0.0137 0.0118 0.0131 0.0170 0.0205 0.0232 0.0122

0.9 0.0518 0.0066 0.0080 0.0206 0.0178 0.0197 0.0256 0.0308 0.0348 0.0184

0.9 0 0.0000 0.0008 -0.0002 -0.0001 -0.0002 -0.0001 0.0000 0.0001 0.0001 -0.0002

0.3 0.0644 0.0378 0.0467 0.0534 0.0505 0.0441 0.0451 0.0480 0.0510 0.0512

0.6 0.1289 0.0747 0.0919 0.1070 0.1011 0.0884 0.0901 0.0959 0.1018 0.1026

0.9 0.1933 0.1116 0.1354 0.1605 0.1518 0.1327 0.1351 0.1439 0.1527 0.1540

Panel B: RMSE

0 0 0.0040 0.0068 0.0049 0.0041 0.0041 0.0042 0.0042 0.0042 0.0042 0.0041

0.3 0.0068 0.0068 0.0051 0.0041 0.0041 0.0045 0.0049 0.0052 0.0055 0.0041

0.6 0.0118 0.0068 0.0052 0.0042 0.0042 0.0054 0.0065 0.0075 0.0083 0.0042

0.9 0.0171 0.0068 0.0053 0.0042 0.0043 0.0066 0.0086 0.0103 0.0115 0.0043

0.3 0 0.0056 0.0097 0.0071 0.0058 0.0058 0.0059 0.0060 0.0059 0.0059 0.0058

0.3 0.0106 0.0097 0.0072 0.0059 0.0060 0.0066 0.0073 0.0079 0.0083 0.0059

0.6 0.0190 0.0097 0.0072 0.0062 0.0065 0.0084 0.0103 0.0120 0.0132 0.0064

0.9 0.0278 0.0097 0.0074 0.0067 0.0072 0.0107 0.0140 0.0167 0.0188 0.0071

0.6 0 0.0096 0.0167 0.0122 0.0099 0.0100 0.0102 0.0102 0.0101 0.0100 0.0099

0.3 0.0199 0.0169 0.0128 0.0120 0.0116 0.0122 0.0135 0.0146 0.0155 0.0117

0.6 0.0364 0.0173 0.0141 0.0171 0.0157 0.0170 0.0204 0.0234 0.0258 0.0160

0.9 0.0536 0.0180 0.0152 0.0232 0.0208 0.0229 0.0284 0.0333 0.0370 0.0213

0.9 0 0.0322 0.0578 0.0397 0.0332 0.0337 0.0351 0.0352 0.0349 0.0345 0.0336

0.3 0.0725 0.0691 0.0618 0.0633 0.0610 0.0567 0.0576 0.0597 0.0619 0.0616

0.6 0.1338 0.0946 0.1012 0.1128 0.1073 0.0959 0.0976 0.1030 0.1084 0.1087

0.9 0.1975 0.1260 0.1427 0.1651 0.1566 0.1384 0.1410 0.1494 0.1578 0.1587
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Table 1.6: Finite sample bias and RMSE of the various estimator of β1, N = 25, T = 100,
Bartlett kernel

ρ1 ρ2 P-OLS P-IM P-DOLS Panel FM-OLS

b=0.06 0.1 0.3 0.5 0.7 0.9 AND

Panel A: Bias

0 0 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0001 -0.0001 0.0000

0.3 0.0027 -0.0002 0.0000 0.0000 0.0002 0.0007 0.0011 0.0015 0.0017 0.0000

0.6 0.0054 -0.0002 0.0001 0.0000 0.0004 0.0015 0.0023 0.0030 0.0034 0.0000

0.9 0.0081 -0.0003 0.0000 0.0001 0.0006 0.0023 0.0035 0.0045 0.0052 0.0000

0.3 0 -0.0001 -0.0001 0.0000 0.0000 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

0.3 0.0044 -0.0001 0.0001 0.0004 0.0005 0.0013 0.0019 0.0024 0.0028 0.0004

0.6 0.0089 -0.0001 0.0002 0.0008 0.0011 0.0027 0.0040 0.0050 0.0057 0.0008

0.9 0.0134 -0.0001 0.0002 0.0013 0.0017 0.0040 0.0060 0.0075 0.0086 0.0012

0.6 0 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

0.3 0.0087 0.0004 0.0008 0.0023 0.0020 0.0029 0.0040 0.0050 0.0057 0.0024

0.6 0.0175 0.0009 0.0011 0.0047 0.0041 0.0059 0.0082 0.0101 0.0115 0.0049

0.9 0.0264 0.0015 0.0012 0.0071 0.0062 0.0089 0.0123 0.0151 0.0173 0.0074

0.9 0 -0.0003 -0.0009 -0.0001 -0.0003 -0.0002 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003

0.3 0.0360 0.0130 0.0142 0.0263 0.0235 0.0194 0.0212 0.0238 0.0261 0.0269

0.6 0.0722 0.0270 0.0271 0.0530 0.0472 0.0391 0.0427 0.0479 0.0525 0.0540

0.9 0.1084 0.0409 0.0390 0.0796 0.0709 0.0588 0.0642 0.0720 0.0789 0.0811

Panel B: RMSE

0 0 0.0020 0.0035 0.0026 0.0020 0.0021 0.0021 0.0021 0.0021 0.0021 0.0020

0.3 0.0034 0.0035 0.0027 0.0020 0.0021 0.0023 0.0025 0.0026 0.0027 0.0020

0.6 0.0059 0.0035 0.0028 0.0021 0.0021 0.0027 0.0033 0.0038 0.0041 0.0021

0.9 0.0085 0.0035 0.0029 0.0021 0.0023 0.0033 0.0043 0.0051 0.0058 0.0021

0.3 0 0.0028 0.0050 0.0041 0.0029 0.0029 0.0030 0.0030 0.0030 0.0030 0.0029

0.3 0.0053 0.0050 0.0042 0.0029 0.0030 0.0033 0.0037 0.0040 0.0042 0.0029

0.6 0.0095 0.0050 0.0043 0.0031 0.0032 0.0042 0.0052 0.0060 0.0066 0.0030

0.9 0.0140 0.0050 0.0044 0.0032 0.0035 0.0053 0.0070 0.0083 0.0094 0.0032

0.6 0 0.0049 0.0087 0.0081 0.0050 0.0051 0.0052 0.0053 0.0052 0.0051 0.0050

0.3 0.0102 0.0087 0.0083 0.0056 0.0055 0.0061 0.0068 0.0073 0.0078 0.0056

0.6 0.0186 0.0087 0.0085 0.0070 0.0067 0.0081 0.0100 0.0116 0.0129 0.0072

0.9 0.0273 0.0088 0.0086 0.0089 0.0083 0.0107 0.0139 0.0165 0.0185 0.0092

0.9 0 0.0181 0.0328 0.0297 0.0186 0.0189 0.0196 0.0197 0.0195 0.0192 0.0186

0.3 0.0407 0.0354 0.0333 0.0326 0.0304 0.0279 0.0293 0.0311 0.0327 0.0330

0.6 0.0753 0.0426 0.0412 0.0568 0.0515 0.0445 0.0479 0.0526 0.0567 0.0578

0.9 0.1113 0.0527 0.0504 0.0827 0.0743 0.0631 0.0684 0.0759 0.0824 0.0843
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Table 1.7: Empirical null rejection probabilities, 0.05 level, t-tests for h0 : β1 = 1, N = 5,
data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.0514 0.1294 0.0762 0.0724 0.0544 0.0744 0.1264 0.0836 0.0808 0.0624 0.0422

0.3 0.2178 0.1792 0.1032 0.0974 0.0796 0.132 0.1632 0.0984 0.0936 0.0746 0.101

0.6 0.6064 0.2452 0.2214 0.1462 0.1212 0.2694 0.2176 0.1908 0.1246 0.109 0.1924

0.9 0.9366 0.6068 0.777 0.4804 0.422 0.7628 0.5736 0.7336 0.4462 0.4042 0.7052

Panel B: T = 100

0 0.0472 0.1416 0.0588 0.0586 0.0516 0.0524 0.1402 0.062 0.0626 0.0524 0.0458

0.3 0.2082 0.227 0.0794 0.0774 0.0678 0.1038 0.2158 0.0756 0.0726 0.0602 0.0866

0.6 0.5914 0.3256 0.1584 0.111 0.0952 0.1776 0.2976 0.1326 0.094 0.0784 0.1308

0.9 0.934 0.4804 0.7266 0.3376 0.286 0.6198 0.4494 0.6974 0.3112 0.2626 0.561

Table 1.8: Empirical null rejection probabilities, 0.05 level, t-tests for h0 : β1 = 1, N = 10,
data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.051 0.1142 0.0654 0.0708 0.0642 0.0762 0.1116 0.0712 0.08 0.072 0.0516

0.3 0.2846 0.1652 0.0902 0.0982 0.0908 0.1418 0.1454 0.0848 0.0912 0.0852 0.1054

0.6 0.7924 0.2188 0.2422 0.1482 0.1352 0.3306 0.1898 0.1994 0.1256 0.1222 0.2892

0.9 0.9924 0.7518 0.9332 0.5832 0.5276 0.8576 0.7094 0.908 0.5464 0.5094 0.8362

Panel B: T = 100

0 0.0476 0.139 0.0542 0.0582 0.0534 0.0536 0.137 0.0558 0.0628 0.057 0.046

0.3 0.2882 0.2252 0.0758 0.0794 0.075 0.1096 0.21 0.0662 0.0728 0.0688 0.0908

0.6 0.787 0.308 0.1802 0.1098 0.0984 0.1776 0.281 0.1466 0.0938 0.0848 0.1366

0.9 0.9896 0.4982 0.9002 0.3888 0.3396 0.6724 0.4598 0.8742 0.3588 0.316 0.6254
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Table 1.9: Empirical null rejection probabilities, 0.05 level, t-tests for h0 : β1 = 1, N = 25,
data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.0482 0.1022 0.0566 0.0622 0.0592 0.0664 0.099 0.0622 0.0706 0.0682 0.0404

0.3 0.5116 0.1534 0.0822 0.0848 0.0826 0.1292 0.1358 0.0724 0.0796 0.079 0.0972

0.6 0.9786 0.2362 0.3852 0.1428 0.1328 0.335 0.2042 0.2952 0.1204 0.1202 0.2966

0.9 1 0.962 0.9976 0.8058 0.7674 0.9542 0.9448 0.9966 0.7804 0.7474 0.9476

Panel B: T = 100

0 0.0476 0.1354 0.0554 0.0612 0.0588 0.0558 0.1332 0.0562 0.0638 0.0612 0.046

0.3 0.5124 0.2032 0.0766 0.08 0.079 0.1106 0.188 0.067 0.0726 0.0716 0.0954

0.6 0.9744 0.2752 0.2708 0.1128 0.1056 0.1844 0.2478 0.2064 0.0988 0.095 0.1424

0.9 1 0.6172 0.9958 0.5474 0.5132 0.7944 0.5736 0.993 0.5224 0.4876 0.7528

Table 1.10: Empirical null rejection probabilities, 0.05 level, Wald-tests for h0 : β1 = 1, β2 =
1, N = 5, data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.05 0.1552 0.0794 0.0804 0.0574 0.0794 0.1514 0.0938 0.1006 0.0696 0.04

0.3 0.3026 0.2344 0.1254 0.1188 0.0952 0.1746 0.2086 0.1168 0.1156 0.088 0.122

0.6 0.822 0.3362 0.3098 0.1996 0.161 0.3802 0.297 0.2578 0.167 0.1408 0.2664

0.9 0.9972 0.8098 0.9486 0.7018 0.6244 0.9414 0.7728 0.9202 0.6646 0.6006 0.9068

Panel B: T = 100

0 0.049 0.185 0.0626 0.0636 0.0478 0.056 0.1832 0.0686 0.071 0.052 0.0418

0.3 0.2898 0.3258 0.0908 0.0912 0.0772 0.1302 0.3048 0.085 0.0812 0.067 0.105

0.6 0.8276 0.4574 0.2068 0.1372 0.1142 0.2356 0.4216 0.1696 0.1168 0.0952 0.169

0.9 0.9982 0.6786 0.9156 0.5056 0.4282 0.8274 0.6352 0.8962 0.4684 0.3962 0.7724
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Table 1.11: Empirical null rejection probabilities, 0.05 level, Wald-tests for h0 : β1 = 1, β2 =
1, N = 10, data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.0486 0.1396 0.0708 0.0798 0.0704 0.0874 0.134 0.0766 0.0928 0.078 0.049

0.3 0.4166 0.2162 0.109 0.1148 0.1038 0.1782 0.1886 0.099 0.1094 0.0976 0.127

0.6 0.9562 0.3076 0.3512 0.1914 0.1706 0.4722 0.2586 0.2786 0.1558 0.1494 0.4046

0.9 1 0.916 0.9952 0.8002 0.7398 0.9756 0.8894 0.9888 0.765 0.7182 0.9672

Panel B: T = 100

0 0.0484 0.1718 0.0602 0.0636 0.0564 0.0546 0.169 0.065 0.068 0.0608 0.0444

0.3 0.4212 0.311 0.085 0.091 0.082 0.1342 0.2854 0.0762 0.0806 0.073 0.1084

0.6 0.9602 0.4354 0.2532 0.1358 0.1186 0.2432 0.3916 0.1936 0.1106 0.0964 0.1782

0.9 1 0.688 0.9916 0.566 0.5024 0.8694 0.6454 0.9854 0.528 0.468 0.8304

Table 1.12: Empirical null rejection probabilities, 0.05 level, Wald-tests for h0 : β1 = 1, β2 =
1, N = 25, data dependent bandwidths and lag lengths.

ρ1, ρ2 P-OLS Bartlett kernel QS kernel

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

P-

DOLS

P-FM P-

IM(O)

P-

IM(D)

P-

IM(Fb)

Panel A: T = 50

0 0.0528 0.132 0.0656 0.073 0.0702 0.0836 0.1292 0.0702 0.085 0.0806 0.0472

0.3 0.7142 0.208 0.1128 0.1078 0.105 0.1686 0.1796 0.0984 0.1016 0.0982 0.1202

0.6 0.9998 0.3328 0.5454 0.1914 0.1786 0.484 0.2736 0.4302 0.1598 0.1608 0.4234

0.9 1 0.9986 1 0.9474 0.9264 0.9978 0.9972 1 0.9344 0.9138 0.9962

Panel B: T = 100

0 0.0538 0.1706 0.0606 0.0628 0.0596 0.058 0.1674 0.0628 0.069 0.065 0.046

0.3 0.7098 0.2822 0.0868 0.0876 0.0866 0.135 0.257 0.076 0.08 0.0786 0.1074

0.6 0.9998 0.4058 0.3832 0.1362 0.125 0.2498 0.3598 0.2922 0.1124 0.1054 0.1796

0.9 1 0.8108 1 0.7578 0.7186 0.9488 0.774 1 0.7304 0.6874 0.93
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Table 1.13: Fixed-b asymptotic critical value for t-test of β in regression with intercept and
two regressors, N = 25, Bartlett kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

95% 1.7329 1.9363 2.1731 2.4357 2.7227 3.0220 3.3221 3.6112 3.8807 4.1140

97.5% 2.0630 2.3079 2.5845 2.8934 3.2298 3.5864 3.9396 4.2836 4.5986 4.8755

99% 2.4683 2.7561 3.0980 3.4713 3.8776 4.3055 4.7293 5.1508 5.5243 5.8506

99.5% 2.7275 3.0599 3.4300 3.8481 4.3085 4.7773 5.2548 5.7118 6.1411 6.5021

b 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.40

95% 4.3072 4.4702 4.6004 4.7217 4.8296 4.9306 5.0294 5.1291 5.2242 5.3160

97.5% 5.1085 5.2956 5.4627 5.5963 5.7331 5.8559 5.9673 6.0789 6.1903 6.3132

99% 6.1355 6.3751 6.5593 6.7345 6.8818 7.0326 7.1687 7.3157 7.4607 7.5930

99.5% 6.8015 7.0752 7.2862 7.4722 7.6352 7.7980 7.9644 8.1320 8.2883 8.4333

b 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.60

95% 5.4079 5.5070 5.5967 5.6805 5.7679 5.8447 5.9164 5.9942 6.0680 6.1366

97.5% 6.4189 6.5329 6.6388 6.7461 6.8517 6.9494 7.0410 7.1285 7.2094 7.2829

99% 7.7228 7.8553 7.9922 8.1188 8.2377 8.3674 8.4834 8.5767 8.6779 8.7842

99.5% 8.5820 8.7258 8.8732 9.0041 9.1516 9.2895 9.4089 9.5389 9.6542 9.7574

b 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.80

95% 6.2004 6.2597 6.3208 6.3811 6.4329 6.4885 6.5452 6.5982 6.6506 6.7020

97.5% 7.3600 7.4337 7.5122 7.5804 7.6560 7.7180 7.7900 7.8533 7.9185 7.9721

99% 8.8838 8.9709 9.0515 9.1402 9.2231 9.3065 9.3759 9.4616 9.5297 9.5959

99.5% 9.8619 9.9699 10.0559 10.1605 10.2384 10.3414 10.4381 10.5210 10.6046 10.6947

b 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.00

95% 6.7480 6.7906 6.8332 6.8817 6.9216 6.9658 7.0077 7.0485 7.0834 7.1205

97.5% 8.0248 8.0815 8.1347 8.1868 8.2422 8.2949 8.3433 8.3876 8.4348 8.4781

99% 9.6626 9.7342 9.8024 9.8573 9.9243 9.9824 10.0446 10.1029 10.1630 10.2177

99.5% 10.7659 10.8418 10.9134 10.9985 11.0667 11.1332 11.1945 11.2611 11.3375 11.4049
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Table 1.14: Fixed-b asymptotic critical value for t-test of β in regression with intercept and
two regressors, N = 25, QS kernel

b 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

95% 1.7870 2.0829 2.4752 2.9884 3.6602 4.5278 5.5699 6.6972 7.7744 8.6329

97.5% 2.1270 2.4815 2.9371 3.5436 4.3513 5.3846 6.6572 8.0320 9.3128 10.3492

99% 2.5440 2.9713 3.5281 4.2744 5.2392 6.5058 8.0225 9.6946 11.2728 12.5370

99.5% 2.8123 3.2967 3.9182 4.7454 5.8424 7.2470 8.9767 10.8163 12.6241 14.0653

b 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.40

95% 9.2475 9.6378 9.8866 10.0412 10.1446 10.2071 10.2604 10.2899 10.3154 10.3393

97.5% 11.1166 11.5874 11.8763 12.0800 12.2085 12.2906 12.3468 12.3913 12.4277 12.4530

99% 13.4557 14.0671 14.4533 14.7158 14.8841 14.9774 15.0857 15.1470 15.1848 15.2096

99.5% 15.1063 15.7767 16.2224 16.5170 16.6887 16.8283 16.9298 16.9828 17.0212 17.0680

b 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.60

95% 10.3527 10.3643 10.3739 10.3828 10.3897 10.3990 10.4029 10.4086 10.4133 10.4200

97.5% 12.4740 12.4893 12.5025 12.5136 12.5235 12.5329 12.5409 12.5420 12.5483 12.5543

99% 15.2323 15.2485 15.2564 15.2734 15.2875 15.2977 15.3124 15.3196 15.3307 15.3435

99.5% 17.0886 17.1114 17.1343 17.1512 17.1645 17.1798 17.1817 17.1869 17.2133 17.2270

b 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.80

95% 10.4231 10.4271 10.4279 10.4262 10.4278 10.4319 10.4349 10.4357 10.4382 10.4410

97.5% 12.5603 12.5697 12.5720 12.5781 12.5785 12.5849 12.5881 12.5913 12.5929 12.5952

99% 15.3526 15.3495 15.3554 15.3513 15.3575 15.3655 15.3730 15.3769 15.3827 15.3920

99.5% 17.2313 17.2400 17.2423 17.2405 17.2307 17.2383 17.2374 17.2485 17.2494 17.2503

b 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.00

95% 10.4437 10.4459 10.4456 10.4464 10.4469 10.4463 10.4480 10.4482 10.4474 10.4481

97.5% 12.5982 12.5994 12.6013 12.6013 12.6019 12.6023 12.6019 12.6021 12.6028 12.6043

99% 15.3955 15.3959 15.3964 15.3969 15.3977 15.4018 15.4060 15.4099 15.4127 15.4150

99.5% 17.2619 17.2727 17.2749 17.2764 17.2739 17.2792 17.2822 17.2859 17.2892 17.2920
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Figure 1.1: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.3, Bartlett kernel
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Figure 1.2: Empirical null rejections, t-test, N = 10, T = 100, ρ1 = ρ2 = 0.3, Bartlett kernel
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Figure 1.3: Empirical null rejections, t-test, N = 25, T = 100, ρ1 = ρ2 = 0.3, Bartlett kernel
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Figure 1.4: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.5: Empirical null rejections, t-test, N = 10, T = 50, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.6: Empirical null rejections, t-test, N = 25, T = 50, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.7: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.8: Empirical null rejections, t-test, N = 10, T = 100, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.9: Empirical null rejections, t-test, N = 25, T = 100, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 1.10: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.3, QS kernel
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Figure 1.11: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.9, QS kernel
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Figure 1.12: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.9, QS kernel
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Figure 1.13: Size adjusted power, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, b = 0.3, QS
kernel
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Figure 1.14: Size adjusted power of panel IM, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, QS
kernel
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Figure 1.15: Size adjusted power of panel IM, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6,
Bartlett kernel
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Figure 1.16: Size adjusted power, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, QS kernel
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Figure 1.17: Size adjusted power, Wald test, N = 10, T = 50, ρ1 = ρ2 = 0.6, b = 0.3, QS
kernel
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Figure 1.18: Size adjusted power of panel IM, Wald test, N = 10, T = 50, ρ1 = ρ2 = 0.6,
QS kernel
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Figure 1.19: Size adjusted power, Wald test, N = 10, T = 50, ρ1 = ρ2 = 0.6, QS kernel
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Proof of Theorem 1

By Assumption 2 above, we can define stacked innovation vector

ηt =
[
u1t, · · · uNt, v′1t, · · · v′Nt

]′
,

which dimension is (N +Nk)× 1, and assume that

T−1/2
[rT ]∑
t=1

ηt ⇒ Ω
1/2
η W (r) =

[
Bu(r)

Bv(r)

]
=

[
Λ11W1(r) + Λ12W2(r)

Λ22W2(r)

]
,

where

Ω
1/2
η =

[
Λ11 Λ12

0Nk×N Λ22

]

W (r) =

[
W1(r)

W2(r)

]
.

The dimension of the above matrix are as follows: Λ11 is N ×N , Λ12 is N ×Nk, 0Nk×N is

Nk×N zero matrix, Λ22 is Nk×Nk; W1(r) =
[
wu,1(r), · · · , wu,N (r)

]′
is N × 1 vector,

W2(r) =
[
Wv,1(r)′, · · · , Wv,N (r)′

]′
is Nk × 1 vector.

Long run variance of ηt is:

Ωη = Ω
1/2
η

(
Ω

1/2
η

)′
=

∞∑
j=−∞

E
(
ηtη
′
t−j
)
.

Also we have:

Ωη =

[
Ω
η
11 Ω

η
12

Ω
η
21 Ω

η
22

]
=

[
Λ11 Λ12

0Nk×N Λ22

][
Λ′11 0N×Nk
Λ′12 Λ′22

]
=

[
Λ11Λ′11 + Λ12Λ′12 Λ12Λ′22

Λ22Λ′12 Λ22Λ′22

]
,

where Ω
η
11 = Λ11Λ′11 + Λ12Λ′12 is long run variance of ut =

[
u1t · · · uNt

]′
, Ω

η
22 = Λ22Λ′22

is long run variance of vt =
[
v′1t · · · v′Nt

]′
, Ω

η
12 =

(
Ω
η
21

)′
= Λ12Λ′22 is long run covariance

of ut and vt. From assumption 1, we know that Λ11 =
[
IN ⊗ σu·v

]
N×N

is N ×N diagonal

matrix, Λ12 =
[
IN ⊗ λuv

]
N×Nk

is N ×Nk diagonal matrix, Λ22 =
[
IN ⊗ Ω

1/2
vv

]
Nk×Nk

is

Nk×Nk diagonal matrix, where σu·v is scalar, λuv is 1×k vector, and Ω
1/2
vv is k×k matrix.
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Using diagonal scaling matrix

A1T =

T
3/2Ik 0

T 1/2Ik

0 T 1/2IN ⊗GD

 ,
then we have:

A−1
PIM

(
θ̃ − θ

)
= T−1/2A1T

(
θ̃ − θ

)
=



T
(
β̃ − β

)
(
γ̃ − Ω−1

vv Ωvu
)

GD

(
δ̃1 − δ1

)
...

GD

(
δ̃N − δN

)



=

T−1
T∑
t=1

N∑
i=1

A−1
1T qitq

′
itA
−1
1T

−1T−1
T∑
t=1

N∑
i=1

A−1
1T qitT

−1/2 (Suit − x′itγ)
 .

By our assumptions,

A−1
1T qit =



T−
3
2Sx

i[rT ]

T−
1
2xi[rT ]

0p×1
...

T−
1
2G−1

D SDt
...

0p×1


⇒



∫ r
0 Bv,i(s)ds

Bv,i(r)

0p×1
...∫ r

0 D(s)ds
...

0p×1


=



Ω
1/2
vv
∫ r

0 Wv,i(s)ds

Ω
1/2
vv Wv,i(r)

0p×1
...∫ r

0 D(s)ds
...

0p×1


= Πg1,i(r),

and it follows that

T−1
T∑
t=1

N∑
i=1

A−1
1T qitq

′
itA
−1
1T ⇒

∫ 1

0

N∑
i=1

Πg1,i(r)g1,i(r)
′Π′dr.
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Also, by previous assumptions,

T−1/2 (Suit − x′itγ) = T−1/2Suit − T
−1/2x′itγ

⇒ Bu,i(r)−B′v,i(r)γ

= σu·vwu,i(r) + λuvWv,i(r)−
[
Ω

1/2
vv Wv,i(r)

]′
γ

= σu·vwu,i(r)−W ′v,i(r)
(

Ω
1/2
vv

)′ [
γ −

((
Ω

1/2
vv

)′)−1

λ′uv

]

= σu·vwu,i(r)−W ′v,i(r)
(

Ω
1/2
vv

)′ [
γ −

((
Ω

1/2
vv

)′)−1 (
Ω
−1/2
vv

)
Ωvu

]
= σu·vwu,i(r)−W ′v,i(r)

(
Ω

1/2
vv

)′ [
γ − Ω−1

vv Ωvu

]
so if γ = Ω−1

vv Ωvu, then

T−1/2 (Suit − x′itγ)⇒ σu·vwu,i(r).

Combining above results, we have:

T
(
β̃ − β

)
(
γ̃ − Ω−1

vv Ωvu
)

GD

(
δ̃1 − δ1

)
...

GD

(
δ̃N − δN

)


= A−1

PIM

(
θ̃ − θ

)

⇒

∫ 1

0

N∑
i=1

Πg1,i(s)g1,i(s)
′Π′dr

−1∫ 1

0

N∑
i=1

Πg1,i(s)σu·vwu,i(s)ds



= σu·v
(
Π′
)−1

∫ 1

0

N∑
i=1

g1,i(s)g1,i(s)
′ds

−1∫ 1

0

N∑
i=1

g1,i(s)wu,i(s)ds



= σu·v
(
Π′
)−1

 N∑
i=1

∫ 1

0
g1,i(s)g1,i(s)

′ds

−1 N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(s)]dwu,i(s)

 = Ψ.

For the sequential limit of
(
β̃ − β

)
, we first let T →∞, then let N →∞, so we have
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√
NT

(
β̃ − β

)
=
√
N
[
Ik 0k×k 0k×p · · · 0k×p

]
A−1
PIM

(
θ̃ − θ

)
=
[
Ik 0k×k 0k×p · · · 0k×p

] 1

NT

T∑
t=1

N∑
i=1

A−1
1T qitq

′
itA
−1
1T

−1

×

 1√
NT

T∑
t=1

N∑
i=1

A−1
1T qit

1√
T

(
Suit − x

′
itγ
)

=
[
Ik 0k×k 0k×p · · · 0k×p

] 1

N

N∑
i=1

1

T

T∑
t=1

A−1
1T qitq

′
itA
−1
1T

−1

×

 1√
N

N∑
i=1

1

T

T∑
t=1

A−1
1T qit

1√
T

(
Suit − x

′
itγ
)

T→∞
=⇒ σu·v

[
Ik 0k×k 0k×p · · · 0k×p

] (
Π′
)−1× 1

N

N∑
i=1

∫ 1

0
g1,i(r)g1,i(r)

′dr

−1 1√
N

N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(r)]dwu,i(r)


N→∞
=⇒ Φ

In order to get the distribution of Φ, we need to know the limit of the upper and left

k × k block of 1
N

N∑
i=1

∫ 1
0 g1,i(r)g1,i(r)

′dr and the distribution of the upper k × 1 block of

1√
N

N∑
i=1

∫ 1
0 [G1,i(1)−G1,i(r)]dwu,i(r) as N →∞.

First, consider the limit of the upper and left k × k block of 1
N

N∑
i=1

∫ 1
0 g1,i(r)g1,i(r)

′dr.

Note that, 1
N

N∑
i=1

∫ 1
0 g1,i(r)g1,i(r)

′dr =
∫ 1

0
1
N

N∑
i=1

[
g1,i(r)g1,i(r)

′] dr. The related compo-

nents for the sequential limits is the integral of the upper and left k× k block of the limit of

1
N

N∑
i=1

[
g1,i(r)g1,i(r)

′], which is given by
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1

N

N∑
i=1

∫ r

0
Wv,i(s)ds

∫ r

0
Wv,i(s)

′ds

=
1

N

N∑
i=1

∫ r

0

(∫ r

0
Wv,i(u)du

)
Wv,i(s)

′ds

=
1

N

N∑
i=1

∫ r

0

∫ r

0
Wv,i(u)Wv,i(s)

′duds

=
1

N

N∑
i=1

∫ r

0

∫ s

0
Wv,i(u)Wv,i(s)

′duds+

1

N

N∑
i=1

∫ r

0

∫ r

s
Wv,i(u)Wv,i(s)

′duds

→
∫ r

0

∫ s

0
ududs · Ik +

∫ r

0

∫ r

s
sduds · Ik

=
r3

3
Ik = A1(r)

Therefore,
∫ 1

0 A1(r)dr = (1/12)Ik.

Second, consider the distribution of the upper k × 1 block of

1√
N

N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(r)]dwu,i(r).

It has an asymptotic normal distribution, with zero mean, when conditional on G1,i(r)

for all i = 1, 2, . . . , N . So we only need to find its asymptotic variance. Also, recall that the

units are cross-sectional independent, so we have

var

 1√
N

N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(r)]dwu,i(r)


=

∫ 1

0

1

N

N∑
i=1

[G1,i(1)−G1,i(r)][G1,i(1)−G1,i(r)]
′dr

as N fixed.
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Note that the variance of the upper k × 1 block of

1√
N

N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(r)]dwu,i(r)

is just the upper and left k × k block of

∫ 1

0

1

N

N∑
i=1

[G1,i(1)−G1,i(r)][G1,i(1)−G1,i(r)]
′dr,

which is given by

1

N

N∑
i=1

∫ 1

r

∫ s

0
Wv,i(u)duds

∫ 1

r

∫ s

0
Wv,i(u)′duds

=
1

N

N∑
i=1

∫ 1

r

∫ s

0

∫ 1

r

∫ s

0
Wv,i(v)Wv,i(u)′dvdtduds

=
1

N

N∑
i=1

∫ 1

r

∫ s

0

∫ 1

r

∫ u

0
Wv,i(v)Wv,i(u)′dvdtduds+

1

N

N∑
i=1

∫ 1

r

∫ s

0

∫ 1

r

∫ s

u
Wv,i(v)Wv,i(u)′dvdtduds

→
(∫ 1

r

∫ s

0

∫ 1

r

∫ u

0
vdvdtduds

)
Ik+(∫ 1

r

∫ s

0

∫ 1

r

∫ s

u
udvdtduds

)
Ik

=
1

12
(1− r)

(
1− r4

)
Ik = A2(r)

So, we have
∫ 1

0 A2(r)dr = (7/180)Ik.

Using above notations, the sequential asymptotic distribution Φ is given by

Φ ∼ N

(
0, σ2u·v

[(
Ω1/2
vv

)′]−1(∫ 1

0
A1(r)dr

)−1(∫ 1

0
A2(r)dr

)(∫ 1

0
A1(r)dr

)−1 (
Ω1/2
vv

)−1)
.

We denote its variance as

V
β
seq = σ2

u·v

[(
Ω

1/2
vv

)′]−1(∫ 1

0
A1(r)dr

)−1(∫ 1

0
A2(r)dr

)(∫ 1

0
A1(r)dr

)−1 (
Ω

1/2
vv

)−1

= 5.6 · σ2
u·vΩ

−1
vv .
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Proof of Theorem 2

In Theorem 2, the Wald statistics considered was W̆ , with W̆ ∈ {Ŵ , W̃ , W̃ ∗}. Those

statistics only differ with respect to the used estimator of the long run variance parameter,

σ̆2
u·v ∈

{
σ̂2
u·v, σ̃

2
u·v, σ̃

2∗
u·v
}

. As in the proof of Theorem 2, θ̃ represents the vector of panel

IM-OLS estimators
(
δ̃′, β̃′, γ̃′

)′
, and θ denotes the vector

(
δ′, β′, Ω′vuΩ−1

vv

)′
. The

estimator for VPIM is given by

V̆PIM = σ̆2
u·v

T−2
T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

×

T−4
T∑
t=1

N∑
i=1

APIM

[
S
q
iT − S

q
i,t−1

] [
S
q
iT − S

q
i,t−1

]′
APIM

×
T−2

T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

= σ̆2
u·v · V̆ ,

where V̆ is the estimator for

V =
(
Π′
)−1

∫ 1

0

N∑
i=1

g1,i(s)g1,i(s)
′ds

−1

×

∫ 1

0

N∑
i=1

[G1,i(1)−G1,i(s)][G1,i(1)−G1,i(s)]
′ds

×
∫ 1

0

N∑
i=1

g1,i(s)g1,i(s)
′ds

−1

Π−1.

Under the null hypothesis the Wald statistics and t statistics can be written as

70



W̆ =
(
Rθ̃ − r

)′ [
RAPIM V̆PIMAPIMR′

]−1 (
Rθ̃ − r

)
=
(
R
(
θ̃ − θ

))′ [
RAPIM V̆PIMAPIMR′

]−1 (
R
(
θ̃ − θ

))
=
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIM V̆PIMAPIMR′

(
A−1
R

)′]−1

×(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
,

and

t̆ =
(
Rθ̃ − r

)
/

(√(
RAPIM V̆PIMAPIMR′

))

=
[
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

)]
/

(√(
A−1
R RAPIM V̆PIMAPIMR′

(
A−1
R

)′))
.

Now, by assumption the restriction matrix fulfills

lim
T→∞

A−1
R RAPIM = R∗,

and

A−1
PIM

(
θ̃ − θ

)
⇒ Ψ(VPIM )

under the null hypothesis. Therefore, in case of consistent estimation of the conditional long

run variance σ2
u·v using V̂PIM it follows that

Ŵ =
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIM V̂PIMAPIMR′

(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
=

(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIMσ2

u·vV̆ APIMR′
(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
× σ2

u·v
σ̂2
u·v

⇒ (R∗Ψ(VPIM ))′
(
R∗VPIMR∗′

)−1
(R∗Ψ(VPIM ))

∼ χ2
q

and for q = 1, we have
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t̂⇒ R∗Ψ(VPIM )√
R∗VPIMR∗′

∼ Z.

Next, we consider the asymptotic behavior of the test statistic W̃ using σ̃2
u·v. From the

construction of σ̃2
u·v, we know that it is an estimator based on ∆S̃uit, which is the difference

of S̃uit, where S̃uit = S
y
it − S

D′
t δ̃i − Sx′it β̃ − x

′
itγ̃. Then, we have

∆S̃uit = ∆S
y
it −∆S

D′
t δ̃i −∆Sx′it β̃ −∆x

′
itγ̃

= yit −D′tδ̃i − x′itβ̃ − v
′
itγ̃

= D′tδi + x′itβ + uit −D′tδ̃i − x′itβ̃ − v
′
itγ̃

=
(
uit − v′itγ

)
− v′it (γ̃ − γ)−D′t

(
δ̃i − δi

)
− x′it

(
β̃ − β

)
= u+

it − v
′
it (γ̃ − γ)−D′t

(
δ̃i − δi

)
− x′it

(
β̃ − β

)
.

It can be shown that the last two parts of the formula can be neglected for long run

variance estimation of ∆S̃uit. Thus, the long run variance estimator based on ∆S̃uit, that is

σ̃2
u·v, asymptotically coincides with long run variance estimator of u+

it − v
′
it (γ̃ − γ).

Let’s define η+
it =

[
u+
it , v′it

]′
, and then its long run variance is Ω+

i =

[
σ2
u·v

Ω22

]
, so an

infeasible long run variance estimator Ω̂+
i , using unobserved η+

it is consistent: Ω̂+
i

p−→ Ω+
i .

Note that: u+
it − v′it (γ̃ − γ) = η+′

it

[
1

− (γ̃ − γ)

]
, then HAC estimator, Ω̃+

i , for u+
it −

v′it (γ̃ − γ) can be written as:

[
1 − (γ̃ − γ)′

]
Ω̂+
i

[
1

− (γ̃ − γ)

]

with

(γ̃ − γ) ⇒
[
0k×k Ik 0k×p · · · 0k×p

]
σu·v

(
Π′
)−1 × N∑

i=1

∫ 1

0
g1,i(s)g1,i(s)

′ds

−1 N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(s)]dwu,i(s)


= σu·v

(
Ω
−1/2
vv

)′
dγ ,
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where dγ is the second k × 1 block of

 N∑
i=1

∫ 1

0
g1,i(s)g1,i(s)

′ds

−1 N∑
i=1

∫ 1

0
[G1,i(1)−G1,i(s)]dwu,i(s)

 .

This implies that Ω̃i
+

will converge to:

[
1 −

[
σu·v

(
Ω
−1/2
vv

)′
dγ

]][
σ2
u·v 0

0 Ωvv

] 1

−σu·v
(

Ω
−1/2
vv

)′
dγ



= σ2
u·v + σ2

u·v
(
dγ
)′ (

Ω
1/2
vv

)−1
Ω

1/2
vv

(
Ω

1/2
vv

)′((
Ω

1/2
vv

)′)−1

dγ = σ2
u·v
(
1 + d′γdγ

)
.

So we have: σ̃2
u·v ⇒ 1

N

N∑
i=1

[
σ2
u·v
(
1 + d′γdγ

)]
= σ2

u·v
(
1 + d′γdγ

)
. This implies that

W̃ =
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIM ṼPIMAPIMR′

(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
=

(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIMσ2

u·vV̆ APIMR′
(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
× σ2

u·v
σ̃2
u·v

⇒
(R∗Ψ(VPIM ))′

(
R∗VPIMR∗′

)−1
(R∗Ψ(VPIM ))(

1 + d′γdγ
)

∼
χ2
q(

1 + d′γdγ
)

and when q = 1, we have

t̃⇒ Z√
1 + d′γdγ

.
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For the result of the fixed-b test statistic, using σ̃2∗
u·v, we have

W̃ ∗ =
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIM Ṽ ∗PIMAPIMR′

(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
=

(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))′ [
A−1
R RAPIMσ2

u·vV̆ APIMR′
(
A−1
R

)′]−1

×
(
A−1
R RAPIMA−1

PIM

(
θ̃ − θ

))
× σ2

u·v
σ̃2∗
u·v

⇒
(R∗Ψ(VPIM ))′

(
R∗VPIMR∗′

)−1
(R∗Ψ(VPIM ))

1
N

N∑
i=1

Q∗i (b)

∼
χ2
q

1
N

N∑
i=1

Q∗i (b)

and when q = 1, we have

t̃∗ ⇒ Z√
1
N

N∑
i=1

Q∗i (b)

.

Note that numerator and the denominator of the limiting distribution are independent,

because Vogelsang and Wagner [2014] have proved that the numerator is independent with

Q∗i (b) for all i = 1, 2, · · · , N , then it follows that the numerator is independent with the sum

1
N

N∑
i=1

Q∗i (b).

Due to the independence of numerator and denominator in above limiting distribution,

if we know µQ, which given by µQ = E
[
Q∗i (b)

]
, then as T → ∞ followed by N → ∞, we

have the following sequentially limit results:

W̃ ∗µQ =
[
T
(
Rβ̃ − r

)]′ [ σ̃2∗
u.v

µQ
R∗V̂ R∗′

]−1 [
T
(
Rβ̃ − r

)]
= µQ · W̃ ∗

⇒
χ2
q[

1
N

N∑
i=1

1
µQ

Q∗i (b)

]
P−→ χ2

q as N →∞.
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Also, when q = 1, similarly, we have:

t̃∗µQ =
√
µQ · t̃∗

⇒ Z√
1
N

N∑
i=1

1
µQ

Q∗i (b)

P−→ Z as N →∞.
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Chapter 2

Hypothesis testing in cointegrated
panels: Asymptotic and Bootstrap
method

This paper compares asymptotic and bootstrap hypothesis tests in cointegrated panels

with cross-sectional uncorrelated units and endogenous regressors. All the tests are based

on the panel integrated modified ordinary least square (panel IM-OLS) estimator from Vo-

gelsang et al. [2016]. The aim of using the bootstrap tests is to deal with the size distortion

problems in the finite samples of fixed-b tests. Finite sample simulations show that the boot-

strap method is better than the asymptotic method in terms of having lower size distortions.

In general, the stationary bootstrap is better than the conditional-on-regressors bootstrap,

although in some cases, the conditional-on-regressors bootstrap has less size distortions. The

improvement in size comes with only minor power losses, which can be ignored when the

sample size is large.
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2.1 Introduction

The bootstrap has become common in econometric analysis, especially in performing

hypothesis tests. The basic idea of hypothesis tests is to compare the observed value of

a test statistic with the distribution that it would follow if the null hypothesis were true.

If the distribution is known, then we can perform exact tests. However, in many cases of

interest, the distribution of the test statistic is only known asymptotically or is dependent

upon nuisance parameters. In many cases, bootstrap hypothesis testing works well since the

bootstrap statistics converge to the same asymptotic distributions as the sample statistics

do. Therefore, the nuisance parameter dependent limit distributions can be approximated

by the bootstrap simulations, which makes inference available.

The purpose of the present paper is to compare the fixed-b asymptotic hypothesis test

with two bootstrap hypothesis tests, conditional-on-regressors bootstrap test and stationary

bootstrap test, for panel cointegrated regressions with endogenous regressors. When the

regressors are endogenous, it is well known that a variety of different methods, such as

panel fully modified Ordinary Least Square (panel FM-OLS), panel dynamic Ordinary Least

Square (panel DOLS) and panel integrated modified Ordinary Least Square (panel IM-

OLS), will deliver estimators that have zero mean Gaussian mixture limiting distributions,

which in turn allow asymptotic inference to be carried out (see Kao and Chiang [2000],

Pedroni [2000], Bai et al. [2009], Mark and Sul [2003], Vogelsang et al. [2016]). Among those

methodologies, panel IM-OLS relies on the fixed-b asymptotic theory. Compared with the

traditional asymptotic theory, the fixed-b asymptotic theory can capture the impact of kernel

and bandwidth choices on the sampling distributions of HAC-type test statistics. However,

both of those asymptotic theories often provide poor approximations to the distributions
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of associated test statistics in finite samples, which leads to size distortion problems. To

improve the quality of finite sample inference, in terms of decreasing size distortions, the

bootstrap method is considered in this paper.

Although bootstrap methods are widely employed for analyzing nonstationary time series

data, a surprisingly small proportion are devoted to bootstrap inference in cointegrated

regressions. Li and Maddala [1997] investigated the usefulness of bootstrap methods for small

sample inference in cointegrated regression models. Their simulation results showed that the

substantial size distortions of the asymptotic tests can be corrected by properly implemented

bootstrap methods. Psaradakis [2001] applied the sieve bootstrap procedure to cointegrated

regressions, and his simulation study demonstrated the small-sample superiority of the sieve

bootstrap over both the traditional asymptotic approximation and the blockwise bootstrap.

Chang et al. [2006] considered the sieve bootstrap based on a VAR model for the cointegrated

regressions. They established the bootstrap consistency for both OLS and DOLS, which

leads to valid bootstrap inference. Shin and Hwang [2013] applied the stationary bootstrap to

cointegrated regressions. They established the limiting distribution of the bootstrap ordinary

least square estimator (OLSE) as well as the limiting null distribution of the bootstrap

Wald-type test regarding the cointegration parameter. Also, finite sample size and power

properties of the bootstrap test were studied by a Monte Carlo simulation. Note that in the

above literature, the bootstrap methods are applied in pure time series setting.

The contribution of this paper is twofold. First, the results complement the existing

literature by applying bootstrap inference to panel cointegrated regressions, and second,

comparisons are made between bootstrap and fixed-b methods for inference using panel IM-

OLS. Bootstrap methods are applied to a cointegrated panel with uncorrelated cross sectional

units and homogeneous 2nd order moments. Finite sample size and power properties of the
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bootstrap test are studied by a Monte Carlo simulation. The bootstrap methods applied in

this paper are the conditional-on-regressors bootstrap and stationary bootstrap. We do not

consider the sieve bootstrap for two reasons. First, even though the sieve bootstrap can be

applied in fairly general models and performs well in pure time series setting, Smeekes and

Urbain [2014] questioned the validity of the use of VAR sieve bootstrap in panels with a

moderate cross-sectional dimension. In addition, when estimating the models and carrying

out inference, we do not assume the error terms follow AR or VAR models.

The rest of the paper is organized as follows. Section 2.2 introduces the model, assump-

tions and asymptotic inference based on the panel IM-OLS estimators. In Section 2.3, the

conditional-on-regressors bootstrap and stationary bootstrap procedures are presented. Sec-

tion 2.4 provides a simulation study to compare the size and the power of the bootstrap

tests with the fixed-b asymptotic test. Section 2.5 summarizes the results and concludes the

paper.

2.2 The model, assumptions and asymptotic inference

2.2.1 The model and assumptions

Consider the panel data model given by

yit = D′tδ + x′itβ + uit (2.1)

xit = xit−1 + vit (2.2)
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where i = 1, 2, · · · , N and t = 1, 2, · · · , T index the cross-sectional and time series units

respectively; yit and uit are scalars; Dt is the deterministic component, and δ is a p × 1

vector; xit, vit and β are k×1 vectors. Suppose that ηit =

[
uit v′it

]′
is a (k+1) dimensional

stationary vector process across i, then the model introduced in (2.1) describes a system of

panel cointegrated regressions, i.e. yit is cointegrated with xit.

In the above system, we are interested in inference about β based on the panel IM-

OLS estimator. Before we define the panel IM-OLS estimator of β, we make following

assumptions.

Assumption 3. Assume that {ηit}Ni=1 are cross-sectionally uncorrelated and 2nd order mo-

ments are constant across i.

Note that the Assumption 3 only requires that the panels are homogeneous in the 2nd

order moment; it’s possible the higher order moment structures are heterogeneous across i.

Assumption 4. Assume that for all i, ηit is a stationary process and it satisfies a functional

central limit theorem (FCLT) of the form

T−1/2
T∑
t=1

ηit ⇒ Bi(r) = Ω1/2Wi(r), r ∈ (0, 1].

In Assumption 4, [rT ] represents the integer part of rT , and Wi(r) is a (k+ 1)× 1 vector

of independent standard Brownian motions. Ω1/2 is a (k+ 1)× (k+ 1) matrix that satisfies

Ω = Ω1/2
(

Ω1/2
)′

, and

Ω =
∞∑

j=−∞
E
(
ηitη
′
it−j

)
=

Ωuu Ωuv

Ωvu Ωvv

 > 0,
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where it is clear that Ωuv = Ω′vu. The assumption Ωvv > 0 rules out cointegration in xit.

Partition Bi(r) as Bi(r) =

[
Bu,i(r) B′v,i(r)

]′
, and likewise partition Wi(r) as Wi(r) =[

wu,i(r) W ′v,i(r)

]′
, where wu,i(r) and Wv,i(r) are a scalar and a k-dimensional standard

Brownian motion respectively. Using the Cholesky form of Ω1/2,

Ω1/2 =

σu·v λuv

0k×1 Ω
1/2
vv

 ,

it can be shown that σ2
u·v = Ωuu−ΩuvΩ

−1
vv Ωvu, and λuv = Ωuv

(
Ω
−1/2
vv

)−1
. By this Cholesky

decomposition, we can write

Bi(r) =

Bu,i(r)
Bv,i(r)

 =

σu·vwu,i(r) + λuvWv,i(r)

Ω
1/2
vv Wv,i(r)

 .

Assumption 5. For the deterministic component, Dt, assume that there is a p× p matrix

GD and a vector of functions, D(s), such that

lim
T→∞

√
TG−1

D D[sT ] = D(s) with 0 <

∫ r

0
D(s)D(s)′ds <∞, 0 < r 6 1

The deterministic component Dt could include an intercept, time trend and polynomial

of time and other functions of time.
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2.2.2 Inference based on panel IM-OLS

This section provides some key results about the panel IM-OLS estimator and inference

based on it. To conserve space, we don’t provide all the details. After applying a partial

sum transformation and adding the original regressors, xit, to regression (2.1) , the system

becomes

S
y
it = SD′t δ + Sx′it β + x′itγ + Sũit. (2.3)

Vogelsang et al. [2016] pointed out that the parameter β in panel cointegrated regression

(2.1) can be consistently estimated by the panel IM-OLS estimator θ̂, which is the OLS

estimator of regression (2.3). Its limiting distribution is given by

A−1
PIM

(
θ̂ − θ

)
=


GD

(
δ̂ − δ

)
T
(
β̂ − β

)
(
γ̂ − Ω−1

vv Ωvu
)


⇒ σu·v

(
Π ′
)−1

∫ 1

0

N∑
i=1

g1,i(s)g
′
1,i(s)ds

−1

×

 N∑
i=1

∫ 1

0

[
G1,i(1)−G1,i(s)

]
dwu,i(s)


= Ψ1
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with N fixed and T →∞. The scaling matrix A−1
PIM is a diagonal matrix given by

A−1
PIM =


GD 0

T · Ik

0 Ik

 ,

and Π is a diagonal matrix given by

Π =


Ip 0

Ω
1/2
vv

0 Ω
1/2
vv

 .

In addition,

G1,i(r) =

∫ r

0
g1,i(s)ds

where g1,i(r) is defined as

g1,i(r) =


∫ r

0 D(s)ds∫ r
0 Wv,i(s)ds

Wv,i(r)

 .
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Conditional on g1,i(r) for all i, it can be shown that Ψ1 ∼ N (0, VPIM ) where VPIM is given

by

VPIM = σ2
u·v
(
Π ′
)−1

∫ 1

0

N∑
i=1

g1,i(s)g
′
1,i(s)ds

−1

×

∫ 1

0

N∑
i=1

[
G1,i(1)−G1,i(s)

] [
G1,i(1)−G1,i(s)

]′
ds

×
∫ 1

0

N∑
i=1

g1,i(s)g
′
1,i(s)ds

−1

Π−1.

Consider the null hypothesis H0 : Rθ = r, where R ∈ Rq×(p+2k) with full rank q and

r ∈ Rq. Define qit =

[
SD′t Sx′it x′it

]′
, S

q
it =

∑t
j=1 qij , and S

q
i0 is a zero vector for all i.

Suppose that σ̆2
u·v is an estimator for σ2

u·v, then an estimator for VPIM is given by

V̆PIM = σ̆2
u·v

T−2
T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

×

T−4
T∑
t=1

N∑
i=1

APIM

[
S
q
iT − S

q
i,t−1

] [
S
q
iT − S

q
i,t−1

]′
APIM

×
T−2

T∑
t=1

N∑
i=1

APIM qitq
′
itAPIM

−1

.

Here, two potential candidates for σ̆2
u·v are considered. The first candidate, σ̃2

u·v, is based

on the first differences of the residuals of the augmented partial sum regression (2.3), i.e.

S̃uit = S
y
it − S

D′
t δ̂ − Sx′it β̂ − x

′
itγ̂,

where δ̂, β̂ and γ̂ are the panel IM-OLS estimators. Define a HAC estimator using the first
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difference of S̃uit

σ̃2
u·v =

1

N

N∑
i=1

T−1
T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
∆S̃uij∆S̃

u
ih

 .
Another HAC-type estimator is based on the first difference of the residuals from the further

augmented partial sum regression

σ̃2∗
u·v =

1

N

N∑
i=1

T−1
T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
∆S̃u∗ij ∆S̃

u∗
ih

 ,
where

S̃u∗it = S
y
it − S

D′
t δ̂i − Sx′it β̂i − x

′
itγ̂i − z

′
itλ̂i,

zit is given by

zit = t
T∑
j=1

qij −
t−1∑
j=1

j∑
s=1

qis,

and δ̂i, β̂i, γ̂i and λ̂i (i = 1, 2, · · · , N) are the OLS estimators from the further augmented

regressions given by

S
y
it = SD′t δi + Sx′it βi + x′itγi + z′itλi. (2.4)

Note that the residual S̃u∗it is obtained by estimating regression (2.4) individual by individual.

As discussed in Vogelsang and Wagner [2014], σ̃2∗
u·v has a fixed-b limit that is proportional

to σ2
u·v, independent of θ̂, and does not depend upon additional nuisance parameters.

Let t̃ and W̃ denote statistics defined using σ̃2
u·v to construct ṼPIM , and likewise t̃∗ and

W̃ ∗ denote statistics defined using σ̃2∗
u·v to construct Ṽ ∗PIM . Letting t̆ and W̆ denote either
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t̃ and W̃ or t̃∗ and W̃ ∗, define the t and Wald statistics as:

t̆ =

(
Rθ̂ − r

)
√
RAPIM V̆PIMAPIMR′

W̆ =
(
Rθ̂ − r

)′ [
RAPIM V̆PIMAPIMR′

]−1 (
Rθ̂ − r

)
.

The limiting distributions of above test statistics are discussed in Vogelsang et al. [2016].

1. Under traditional bandwidth and kernel assumptions, with N fixed as T →∞,

W̃ ⇒
χ2
q

1 + d′γdγ

and when q = 1,

t̃⇒ Z√
1 + d′γdγ

where χ2
q is a chi-square random variable with q degrees of freedom that is correlated

with dγ , Z is distributed standard normal and is correlated with dγ , and dγ denotes

the second k × 1 block of

∫ 1

0

N∑
i=1

g1,i(s)g
′
1,i(s)ds

−1 N∑
i=1

∫ 1

0

[
G1,i(1)−G1,i(s)

]
dwu,i(s)

 .

2. Under fixed-b asymptotics where M = bT , b ∈ (0, 1] is held fixed as T → ∞, the
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fixed-b limits of W̃ and t̃ are given by

W̃ ⇒
χ2
q

1
N

N∑
i=1

Qb

(
P̃i(r)

)
t̃⇒ Z√

1
N

N∑
i=1

Qb

(
P̃i(r)

)

where

Qb

(
P̃i(r)

)
=

2

b

∫ 1

0
P̃ 2
i (r)dr − 2

b

∫ 1−b

0
P̃i(r)P̃i(r + b)dr

−2

b

∫ 1

1−b
P̃i(r)P̃i(1)dr + P̃ 2

i (r)

and

P̃i(r) = wu,i(r)− g′1,i(r)

∫ 1

0

N∑
i=1

g1,i(s)g
′
1,i(s)ds

−1

×

 N∑
i=1

∫ 1

0

[
G1,i(1)−G1,i(s)

]
dwu,i(s)



3. Under fixed-b asymptotics where M = bT , b ∈ (0, 1] is held fixed as T → ∞, the

fixed-b limits of W̃ ∗ and t̃∗ are given by

W̃ ∗ ⇒
χ2
q

1
N

N∑
i=1

Qb

(
P̃ ∗i (r)

)
t̃∗ ⇒ Z√

1
N

N∑
i=1

Qb

(
P̃ ∗i (r)

)
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where Qb(·) is the same as above, and P̃ ∗i (r) is similar as P̃i(r) but its component is

from the further augmented regression (2.4), which is a complicated stochastic process

depend on the kernel function, bandwidth, and Wi(r)
1. In addition, Qb

(
P̃ ∗i (r)

)
is

independent of χ2
q and Z.

2.3 Bootstrap hypothesis tests

In this section, we introduce two different bootstrap procedures based on the panel IM-

OLS estimator. For each of these bootstrap procedures, bootstrap test statistics are com-

puted using the same formulas as the original test statistics but with resampled data.

2.3.1 Conditional-on-regressors bootstrap

A formal description of the conditional-on-regressors bootstrap is given below.

1. Calculate the residuals as

Ŝuit = S
y
it − S

D′
t δ̂ − Sx′it β̂ − x

′
itγ̂

where δ̂, β̂ and γ̂ are the panel IM-OLS estimators.

2. Obtain the bootstrap resamples
(
u∗i1, u

∗
i2, · · · , u

∗
iT

)
from

(
∆Ŝui1, ∆Ŝ

u
i2, · · · , ∆Ŝ

u
iT

)
by

i.i.d. sampling with replacement.

1For more details about the Qb

(
P̃∗i (r)

)
function, please see Vogelsang and Wagner [2014].
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3. Define Su∗it =
∑t
j=1 u

∗
ij . And generate the bootstrap samples S

y∗
it from

S
y∗
it = SD′t δ̂ + Sx′it β̂ + x′itγ̂ + Su∗it . (2.5)

4. Define the bootstrap statistics as

t̆∗CBS =

(
Rθ̂∗ −Rθ̂

)
√
RAPIM V̆ ∗PIMAPIMR′

W̆ ∗CBS =
(
Rθ̂∗ −Rθ̂

)′ [
RAPIM V̆ ∗PIMAPIMR′

]−1 (
Rθ̂∗ −Rθ̂

)

where θ̂∗ is the bootstrap panel IM-OLS estimator for regression (2.5), V̆ ∗PIM is con-

structed exactly as V̆PIM but using the bootstrap data.

5. Repeat above steps 2-4 independently B times to obtain samples
{
t̆∗CBS,j

}B
j=1

and{
W̆ ∗CBS,j

}B
j=1

.

6. Compute the equal tail bootstrap p-value as

p∗
(
t̆
)

= 2min

 1

B

B∑
j=1

I
(
t̆∗CBS,j ≤ t̆

)
,

1

B

B∑
b=1

I
(
t̆∗CBS,j > t̆

)
p∗
(
W̆
)

=
1

B

B∑
j=1

I
(
W̆ ∗CBS,j > W̆

)

where I(·) is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.
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2.3.2 Stationary bootstrap

The stationary bootstrap, proposed by Politis and Romano [1994], is a special type of

block bootstrap where the block size follows a geometric distribution instead of a fixed

number. For a geometric distribution with parameter p
T

, the expected block size of the

stationary bootstrap is 1/p
T

. The stationary bootstrap has been used in the literature of

unit root tests, cointegration tests and cointegrated regression inference (see Swensen [2003],

Paparoditis and Politis [2005], Parker et al. [2006], Shin [2015] and Shin and Hwang [2013]).

It can capture the serial correlation structure in the original sample by block resampling, and

it produces stationary bootstrap samples. A formal description of the stationary bootstrap

inference procedure is given below.

1. Calculate the residuals as

Ŝuit = S
y
it − S

D′
t δ̂ − Sx′it β̂ − x

′
itγ̂

where δ̂, β̂ and γ̂ are the panel IM-OLS estimators.

2. Define η̂it =
(
∆Ŝuit, ∆xit

)
for t = 1, 2, · · · , T , where Ŝui0 = 0, and xi0 is zero vector for

all i.

3. Resample the series {η̂it}Tt=1 via the stationary bootstrap, obtaining
{
η̂∗it
}T
t=1.

4. Partition η̂∗it =

[
u∗it v∗′it

]′
analogously as ηit =

[
uit v′it

]′
. Obtain the bootstrap

samples
{
x∗it
}T
t=1 by

x∗it =
t∑

j=1

v∗ij ,
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and generate the bootstrap samples
{
y∗it
}T
t=1 from

y∗it = D′tδ̂ + x∗′it β̂ + u∗it. (2.6)

5. Define the bootstrap statistics as

t̆∗SBS =

(
Rθ̃∗ −Rθ̂

)
√
RAPIM V̆ ∗PIMAPIMR′

W̆ ∗SBS =
(
Rθ̃∗ −Rθ̂

)′ [
RAPIM V̆ ∗PIMAPIMR′

]−1 (
Rθ̃∗ −Rθ̂

)

where θ̃∗ is the bootstrap panel IM-OLS estimator from regression (2.6), V̆ ∗PIM is

constructed exactly as V̆PIM but using the bootstrapping data.

6. Repeat above steps 3-5 independently B times to obtain samples
{
t̆∗SBS,j

}B
j=1

and{
W̆ ∗SBS,j

}B
j=1

.

7. Compute the equal tail bootstrap p-value as

p∗
(
t̆
)

= 2min

 1

B

B∑
j=1

I
(
t̆∗SBS,j ≤ t̆

)
,

1

B

B∑
j=1

I
(
t̆∗SBS,j > t̆

)
p∗
(
W̆
)

=
1

B

B∑
j=1

I
(
W̆ ∗SBS,j > W̆

)

where I(·) is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.

Note that the step 1 of Section 2.3.1 and Section 2.3.2 are both based on the regression
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(2.3), which includes the augmented regressor xit in the regression. It might worth exploring

how the bootstrap works if the residuals are calculated from non-augmented partial sum

regression. That is, for both stationary and conditional-on-regressors bootstrap, the residuals

are obtained from

Ŝuit = S
y
it − S

D′
t δ̂ − Sx′it β̂ (2.7)

where δ̂ and β̂ are the panel IM-OLS estimators, and all other steps are the same as its

corresponding procedures. Using these residuals, the stationary bootstrap resampling and

the conditional-on-regressors bootstrap resampling will be more comparable, and it could

capture some of endogeneity in the bootstrap resamples. In next section, we will provide the

bootstrap results based on Section 2.3.1 and Section 2.3.2 as well as the bootstrap results

based on the residuals from regression (2.7).

2.4 Finite sample simulations

In this section, we compare finite sample size and power performance of the bootstrap

tests with the asymptotic tests based on the panel IM-OLS estimators. The data generating

process is the same as in Vogelsang et al. [2016], which is given by

yit = µ+ x1itβ1 + x2itβ2 + uit

x1it = x1i,t−1 + v1it

x2it = x2i,t−1 + v2it

92



where for all i = 1, 2, · · · , N , ui0 = 0, x1i0 and x2i0 are zero vectors, and

uit = ρ1ui,t−1 + εit + ρ2 (e1it + e2it)

v1it = e1it + 0.5e1i,t−1

v2it = e2it + 0.5e2i,t−1

where εit, e1it and e2it are i.i.d. standard normal random variables independent of each

other. The parameter values are µ = 3, β1 = β2 = 1. In addition, we use ρ1, ρ2 ∈ {0.6, 0.9}.

The parameter ρ1 controls serial correlation in the regression error, and ρ2 determines the

endogeneity of the regressors. In this paper, we only provide results where both ρ1 and ρ2 are

relatively large because according to the findings in Vogelsang et al. [2016], if ρ1 and ρ2 are

relatively small (ρ1 = ρ2 = 0.3), there are only minor size distortions for fixed-b asymptotic

tests. Therefore, the bootstrap method is not necessary when ρ1 and ρ2 are small. The kernel

function used in this simulation study is the Bartlett kernel, and the bandwidths are given by

M = bT with b ∈ {0.06, 0.1, 0.3, 0.5, 0.7, 0.9, 1}. We use p
T

= 0.02(T/50)−1/3 as the block

length parameter in the stationary bootstrap2. The sample sizes are N = 5, T ∈ {50, 100}.

The number of bootstrap replications is B = 399, and the number of simulation replications

is 1000.

Using the simulation designed above, we only report results for cases where ρ1 = ρ2. The

results include t-statistics for testing the null hypothesis H0 : β1 = 1 and Wald statistics

2Politis and White (2004, 2009) considered estimators constructed via stationary bootstrap to obtain an
approximation to the sampling distribution of the mean of a finite sample from the (strictly) stationary real-
valued sequence. They showed that the optimal block length parameter minimizing MSE of the stationary

bootstrap sample mean is cT−1/3 for some constant c. In addition, Shin and Hwang (2013) considered
the bootstrap ordinary least square estimator for cointegrating regressions. They established large sample
validity of a bootstrap test regarding cointegration parameters and showed that the block length parameter

0.02(T/50)−1/3 would provide stable size performance for the stationary bootstrap test.
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for testing the joint null hypothesis H0 : β1 = 1, β2 = 1. The asymptotic panel IM-

OLS statistics were implemented in two ways. The first uses σ̃2
u·v and is labeled panel

IMOLS(D), and the second uses σ̃2∗
u·v and is labeled panel IMOLS(fb). The bootstrap panel

IM-OLS statistics were implemented in four ways. The first two statistics are based on the

bootstrapped σ̃2
u·v and are labeled Cond-BS IMOLS (D) and Stat-BS IMOLS(D) respectively

for the conditional-on-regressors bootstrap and the stationary bootstrap. The second two

statistics are based on the bootstrapped σ̃2∗
u·v and are labeled Cond-BS IMOLS(fb) and Stat-

BS IMOLS(fb) respectively. Rejections for panel IMOLS(D) are carried out using N(0, 1)

critical values for the t test and χ2
2 critical values for the Wald test. Rejections for panel

IMOLS(fb) are carried out using fixed-b asymptotic critical values. In contrast, rejections

for the bootstrap statistics are carried out by comparing the bootstrap p-value with the

nominal level, which is 5% in this simulation.

In order to see if the bootstrap methods can help solve the over-rejection problem of the

asymptotic tests in finite sample, we plot in Figures 2.1-2.8 null rejection probabilities of

the t and Wald tests as a function of b ∈ (0, 1]. The first two figures give the results for

N = 5, T = 50 using the Bartlett kernel and ρ1 = ρ2 = 0.6. In Figure 2.1, all t-tests have

some over-rejection problems, and there is no test that dominates the others in this scenario.

When the bandwidth is small (b = 0.1), panel IMOLS(D) is better than the other tests

because it is conservative. But when bandwidth is relative large (b > 0.2), it turns out that

Cond-BS IMOLS(D) is the best. Even though it is better than all other tests, the Cond-BS

IMOLS(D) rejection probabilities are close to 15%, which is much larger than nominal level

5%. In Figure 2.2, for Wald tests, the stationary bootstrap tests dominate the other tests

for all values of b. Its rejection probabilities are close to 10% for all values of b, which is

much better than the asymptotic tests. Also, Cond-BS IMOLS(D) has rejection probabilities
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around 12% as long as the bandwidth is not very small (b > 0.1).

In Figures 2.3 and 2.4, all the settings are the same as in Figure 2.1 and 2.2 except that

the time series sample size increases from T = 50 to T = 100. Comparing Figures 2.1 and

2.3, Figures 2.2 and 2.4, we see that both t and Wald tests have less size distortion when

sample size increases. In Figure 2.3, the patterns of the rejection probabilities of all t tests

are similar as those in Figure 2.1. And still, there is no test that dominates the others for t

tests. For Wald tests, the pattern is very clear. As we can see from Figure 2.4, for all values

of b, the asymptotic tests have the highest size distortions. But the rejection probabilities

of the stationary bootstrap tests are stable and close to 5%, which implies that stationary

bootstrap successfully solves the over-rejection problem in this scenario. The null rejection

probabilities of the conditional-on-regressors bootstrap tests are higher than 5% but less

than those of the asymptotic tests.

As the values of ρ1, ρ2 increase to 0.9, there exists strong serial correlation and endogene-

ity. We can see from Figures 2.5-2.8 that all the tests have serious over-rejection problems

regardless of bandwidth. For N = 5, a time series sample size T = 100 is not large enough for

the stationary bootstrap to obtain reasonable size that is close to 5%. But among all three

tests, the stationary bootstrap tests are better than conditional on regressor bootstrap and

asymptotic fixed-b tests. And this is true for both t and Wald tests, which is not the case

when ρ1 = ρ2 = 0.6. In addition, unlike the results before, Stat-BS IMOLS(D) and Stat-BS

IMOLS(fb) rejection probabilities are not that close any more. Generally speaking, when

both ρ1 and ρ2 are very large, Stat-BS IMOLS(D) tends to have the smaller size distortion

than Stat-BS IMOLS(fb). Therefore, when ρ1, ρ2 are large, in order to obtain reasonable

size, we need a very large time series sample size and to use the Stat-BS IMOLS(D) statistics.

From the above, we see that the bootstrap tests generally have less size distortions than
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the asymptotic tests. However, if the power of the bootstrap testing is low, then the bootstrap

methods are less useful. When the alternative is true, some bootstrap methods fail to

simulate critical values that are valid under the null in which case the tests have no power.

Therefore, the analysis of the power properties of the bootstrap tests is necessary. For the

sake of brevity we only display results of the stationary bootstrap for the case ρ1 = ρ2 = 0.6

for the Wald test for N = 5, T ∈ {50, 100} and using the Bartlett kernel. Starting from the

null values of β1 and β2 equal to 1, we consider under the alternative β1 = β2 = β ∈ (1, 1.25],

using (including the null value) a total of 13 values on a grid with mesh 0.02. We focus on

raw power using bootstrapped critical values.

Using N = 5, T = 50, with Bartlett kernel and b = 0.1, Figure 2.9 provides power

comparisons between Stat-BS IMOLS(D) and Stat-BS IMOLS(fb). The power plots indicate

that when the alternative is true, the stationary bootstrap is still simulating critical values

that are valid under the null. Figure 2.10 displays the same power comparisons as in Figure

2.9 but with T = 100. The main finding is that power increases as T increases. From Figures

2.9 and 2.10, we can see that the bootstrap tests have good power.

As mentioned in the end of Section 2.3, we also consider the stationary bootstrap and the

conditional-on-regressors bootstrap based on the residuals from the non-augmented partial

sum regression. Null rejection probabilities of the t and Wald tests as a function of b ∈ (0, 1]

are shown in Figures 2.11-2.18. The general patterns in Figures 2.11-2.18 are close to those

in Figures 2.1-2.8. Overall, the bootstrap methods based on the residuals from the non-

augmented partial sum regression have less size distortion problems than the asymptotic

methods especially for the Wald test with large sample size. But when serial correlation

and endogeneity are both large, it seems that the bootstrap results are depend little on the

choice of the residuals. The power results in this case are displayed in Figure 2.19 and 2.20,
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which are very similar to the power results in Figures 2.9 and 2.10.

2.5 Summary and conclusion

This paper compares bootstrap tests with fixed-b asymptotic tests based on the panel

IM-OLS estimator of Vogelsang et al. [2016] for a homogeneous panel cointegrated regression

with endogenous regressors. The bootstrap methods used are the conditional-on-regressors

bootstrap and the stationary bootstrap. The purpose of using the bootstrap tests is to

improve the quality of finite sample inference. The Monte Carlo simulations show that the

bootstrap methods can effectively reduce size distortions in finite samples. In general, the sta-

tionary bootstrap has less size distortions than the conditional-on-regressors bootstrap and

asymptotic fixed-b tests, especially when there is strong serial correlation and endogeneity

(ρ1 = ρ2 = 0.9). It is necessary to have a large time series sample size to obtain reasonable

size of the tests. When the serial correlation and endogeneity is medium (ρ1 = ρ2 = 0.6), the

bootstrap methods still have less size distortion, but t and Wald tests have different results.

For Wald tests, the stationary bootstrap is always better than the other two methods. In

contrast, for t-tests, Cond-BS IMOLS(D), the statistic constructed using a HAC estimator

based on the first differences of the residuals from the augmented partial sum regression for

σ2
u·v, has less size distortions when the bandwidth is relatively large (b > 0.25). In addition,

the stationary bootstrap statistics are more robust than all other test statistics for all values

of bandwidth. Finally, the power plots from the simulation show that the bootstrap tests

have good power.

Further research will study the panel IM-OLS method for estimation and inference in a

heterogeneous cointegrating panel with endogenous regressors. In that more general scenario,
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finding a fixed-b asymptotic pivotal statistic based on panel IM-OLS will be challenging.

However, the results in this paper indicate that the bootstrap method could be an alternative

solution for hypothesis tests. In addition, if the panel consists of cross-sectional dependent

units, then the bootstrap procedure will need to be modified to resample all individuals

together rather than resample individual by individual. Another topic of future research is

to establish the consistency of the bootstrap for panel IM-OLS tests.

98



APPENDIX

99



Figures

Figure 2.1: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.6, Bartlett kernel
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Figure 2.2: Empirical null rejections, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, Bartlett
kernel
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Figure 2.3: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.6, Bartlett kernel

102



Figure 2.4: Empirical null rejections, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.6, Bartlett
kernel
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Figure 2.5: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 2.6: Empirical null rejections, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.9, Bartlett
kernel
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Figure 2.7: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 2.8: Empirical null rejections, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.9, Bartlett
kernel
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Figure 2.9: Raw power, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, b = 0.1, Bartlett kernel
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Figure 2.10: Raw power, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.6, b = 0.1, Bartlett kernel
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Figure 2.11: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.6, Bartlett kernel,
residuals from non-augmented partial sum regression
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Figure 2.12: Empirical null rejections, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.13: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.14: Empirical null rejections, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.6, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.15: Empirical null rejections, t-test, N = 5, T = 50, ρ1 = ρ2 = 0.9, Bartlett kernel,
residuals from non-augmented partial sum regression
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Figure 2.16: Empirical null rejections, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression

115



Figure 2.17: Empirical null rejections, t-test, N = 5, T = 100, ρ1 = ρ2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.18: Empirical null rejections, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.9, Bartlett
kernel, residuals from non-augmented partial sum regression
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Figure 2.19: Raw power, Wald test, N = 5, T = 50, ρ1 = ρ2 = 0.6, b = 0.1, Bartlett kernel,
residuals from non-augmented partial sum regression
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Figure 2.20: Raw power, Wald test, N = 5, T = 100, ρ1 = ρ2 = 0.6, b = 0.1, Bartlett kernel,
residuals from non-augmented partial sum regression
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Chapter 3

Estimation and Inference for
Heterogeneous Cointegrated Panels
with Limited Cross Sectional
Dependence

This paper is concerned with parameter estimation and inference in a panel cointegrating

regression with endogenous regressors and heterogeneous long run variances in the cross

section. In addition, the model allows a limited degree of cross-sectional dependence due

to a common time effect. The estimator is labeled as panel integrated modified ordinary

least squares (panel IM-OLS). Similar to panel fully modified OLS (panel FM-OLS) and

panel dynamic OLS (panel DOLS), the panel IM-OLS estimator has a zero mean Gaussian

mixture limiting distribution. However, standard asymptotic inference is infeasible due the

existence of nuisance parameters. Inference based on panel IM-OLS relies on the stationary

bootstrap. The properties of panel IM-OLS are analyzed using the stationary bootstrap in

finite sample simulations.
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3.1 Introduction

In the past decade, panel cointegration methods have drawn much attention in empirical

research. The attractive feature of panel cointegration methods is that they permit inves-

tigation of the long-run relationship among nonstationary variables more efficiently than

using time series data alone. However, panel cointegration is more complicated than single

time-series cointegration when cross-sectional dependence and heterogeneity exist. If the

cross-sectional dependence and heterogeneity were ignored, it might lead to poor inference

and inconsistent estimators. It is well known that the application of the first generation

panel unit root tests, which generally assume cross-sectional independence, to the series

with cross-sectional correlation leads to size distortion and low power. This might also be

the case for the panel cointegration estimation and testing. For example, Westerlund and

Edgerton [2008] claim that the tests of McCoskey and Kao [1998], Pedroni [1999], [2004] and

Westerlund [2005] all require independence among the cross-sectional units, and their size

properties become suspect when this assumption does not hold. The homogeneity assump-

tion is often not well supported by the data. Therefore a framework that allows potential

heterogeneity is necessary.

In the panel cointegrated regression literature, the panel fully modified OLS (panel FM-

OLS) and the panel dynamic OLS (panel DOLS) methods are the most popular methods

(see Kao and Chiang [2000], Pedroni [2000], Bai et al. [2009] and Mark and Sul [2003]). They

are the extensions of the single time series fully modified OLS (FM-OLS) and dynamic OLS

(DOLS). Integrated modified OLS (IM-OLS), proposed by Vogelsang and Wagner [2014],

provides a fully parametric and computationally convenient alternative to the FM-OLS and

the DOLS estimators. Vogelsang et al. [2016] extend IM-OLS to panel data models with

121



individual dummies and homogeneous second moment structure. The present paper con-

siders an extension of Vogelsang et al. [2016] by allowing time dummies and heterogeneous

variance structure in the model. The benefit of adding time dummies is twofold. First, time

dummies can handle deterministic components and common factor shocks, and second, time

dummies make the model robust to limited degrees of cross-sectional dependence. Allowing

heterogeneous, rather than homogeneous, variance structure makes the framework discussed

in this paper more applicable in empirical research. Bai et al. [2009] and Mark and Sul [2003]

consider similar problems using the panel FM-OLS and the panel DOLS estimators.

The limit theory considered here is obtained for a fixed number of cross-sectional units

N , letting the number of the time periods, T , go to infinity. The setting of N fixed and T →

∞ is widely used in empirical macroeconomics, empirical energy economics and empirical

finance problems (see Christopoulos and Tsionas [2004], Lee [2005], Apergis and Payne

[2009], Narayan and Smyth [2008] and Canzoneri et al. [1999]). Under this scenario, even

though the panel IM-OLS estimator converges to a zero mean Gaussian mixture distribution,

asymptotic inference is complicated by the presence of nuisance parameters. One way to

implement valid hypothesis tests is using bootstrap methods. Although bootstrap methods

are widely employed for analyzing nonstationary time series data, e.g. bootstrap unit root

tests and bootstrap cointegration tests (see Chang [2004], Paparoditis and Politis [2003],

Parker et al. [2006], Westerlund and Edgerton [2007]), surprisingly few papers are devoted

to bootstrap inference in cointegrated regressions. Psaradakis [2001] and Chang et al. [2006]

employ the sieve bootstrap procedure to cointegrated regressions. Li and Maddala [1997]

and Shin and Hwang [2013] apply the stationary bootstrap to cointegrated regression.

In the literature, the sieve bootstrap can be applied in fairly general models and performs

well in pure time series setting, but it requires fitting a finite order AR or VAR model to
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the errors. Smeekes and Urbain [2014] questioned the validity of the use of VAR sieve

bootstrap in panels with a moderate cross-sectional dimension and showed that the AR

sieve bootstrap might be misleading when cross-sectional dependence is present. On the

contrary, the stationary bootstrap requires no parametric structure for drawing bootstrap

samples. In addition, a working paper by Li [2016] shows that the stationary bootstrap

performs well in panel cointegrated regressions with fixed effects and homogeneous variance

structure when cross sectional units are uncorrelated. The bootstrap method used in the

present paper is the stationary bootstrap.

The rest of the paper is organized as follows. Section 3.2 introduces the model, assump-

tions and the panel IM-OLS estimator. In Section 3.3 asymptotic inference and stationary

bootstrap inference are presented. Section 3.4 provides a Monte Carlo simulation to inves-

tigate the finite sample properties of the proposed bootstrap test. Section 3.5 summarizes

the results and concludes the paper. All proofs are collected in Appendices C - F.

3.2 Model set up and estimation

3.2.1 The model and assumptions

Consider the following panel data model

yit = αi + x′itβ + eit (3.1)

xit = xit−1 + vit (3.2)
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where i = 1, 2, · · · , N and t = 1, 2, · · · , T index the cross-sectional and time series units,

respectively; yit, αi and eit are scalars; xit, β and vit are k × 1 vectors. The regressor, xit,

is potentially endogenous for each individual i.

Assumption 6. Assume that the error term, eit, follows a special case of a factor model

eit = F ′tλ+ uit. (3.3)

In Assumption 6, Ft is the common factor and uit is idiosyncratic component. Assump-

tion 6 is a special case of factor model, as the factor loading λ is constant across i. Under

the above assumption, eit and ejt are correlated due to the common factor Ft, therefore

the panel data model is cross-sectional dependent. Because the regressor considered here is

endogenous, vit is assumed to be correlated with uit. In addition, there is no restriction on

the correlation between vit and Ft.

Define the error vector as ηit =

[
uit v′it

]′
and suppose that it is a (k + 1) dimensional

stationary vector for each i. In addition, assume that Ft is a I(0) process. This implies that

the model introduced in (3.1) describes a system of panel cointegrated regressions, i.e. yit

is cointegrated with xit. It might also be interesting to consider the case that Ft is a I(1)

process. Bai et al. [2009] consider the CupBC (continuously-updated and bias-corrected) and

the CupFM (continuously-updated and fully-modified) estimators for panel cointegration

models with cross-sectional dependence generated by unobserved global stochastic trends,

where Ft is non-stationary. In this paper, the interest is in estimation and inference about

β based on the panel IM-OLS estimator when Ft is stationary. In order to derive the panel

IM-OLS estimator’s limiting distribution, a second assumption is sufficient.

124



Assumption 7. Assume that ηit is independent across i, and satisfies the Functional CLT

T−
1
2

[rT ]∑
t=1

ηit ⇒ Bi(r) =

Bu,i(r)
Bv,i(r)

 = Ω
1/2
i Wi(r),

where r ∈ (0, 1], and [rT ] denotes the largest integer value of rT .

In Assumption 7, Ω
1/2
i is a (k + 1) × (k + 1) matrix that satisfies Ωi = Ω

1/2
i

(
Ω

1/2
i

)′
where

Ωi =
∞∑

j=−∞
E
(
ηitη
′
it−j

)
=

Ωuu,i Ωuv,i

Ωvu,i Ωvv,i

 > 0,

where it is obvious that Ωuv,i = Ω′vu,i. Assume that Ωvv,i is non-singular, which implies that

{xit} are not cointegrated among themselves. Partition Bi(r) as Bi(r) =

[
Bu,i(r) B′v,i(r)

]′
,

and likewise partition Wi(r) as Wi(r) =

[
wu,i(r) W ′v,i(r)

]′
, where wu,i(r) and Wv,i(r) are

a scalar and a k-dimensional standard Brownian motion, respectively. Using the Cholesky

form of Ω
1/2
i ,

Ω
1/2
i =

σu·v,i λuv,i

0k×1 Ω
1/2
vv,i

 ,
it can be shown that σ2

u·v,i = Ωuu,i − Ωuv,iΩ
−1
vv,iΩvu,i and λuv,i = Ωuv,i

(
Ω
−1/2
vv,i

)′
. In

addition, it follows that

Bi(r) =

Bu,i(r)
Bv,i(r)

 =

σu·v,iwu,i(r) + λuv,iWv,i(r)

Ω
1/2
vv,iWv,i(r)

 .

Note that λuv,i 6= 0 for all i because the regressors are allowed to be endogenous. Notice

that the 2nd order moment structure is heterogeneous across i.
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3.2.2 Panel IM-OLS estimator

From regression (3.1) and Assumption 1, the system can be rewritten as

yit = αi + x′itβ + F ′tλ+ uit,

and its cross-sectional mean is given by

ȳt = ᾱ + x̄′tβ + F ′tλ+ ūt,

where

ȳt =
1

N

N∑
i=1

yit

ᾱ =
1

N

N∑
i=1

αi

x̄t =
1

N

N∑
i=1

xit

ūt =
1

N

N∑
i=1

uit.

Cross-sectional demeaning can be used to remove F ′tλ and provides an estimation equation

that is exactly invariant to F ′tλ. Note that the cross-sectional demeaning is exactly the

same as including time period dummies and projecting them out of the regression. Since

Ft could be unobserved time shock, therefore projecting it out before partial summing is
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crucial. Cross-sectional demeaning gives

yit − ȳt = αi − ᾱ +
(
x′it − x̄

′
t

)
β + uit − ūt, (3.4)

which is denoted as

ÿit = µi + ẍ′itβ + üit, (3.5)

where

µi = αi − ᾱ

ÿit = yit − ȳt

ẍit = xit − x̄t

üit = uit − ūt.

Following Vogelsang and Wagner [2014], compute the partial sum of regression (3.5) to give

S
ÿ
it = tµi + Sẍ′it β + Süit, (3.6)

where

S
ÿ
it =

t∑
j=1

ÿij

Sẍit =
t∑

j=1

ẍij

Süit =
t∑

j=1

üij .
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In order to deal with the endogeneity problem generated by the correlation between uit

and vit, it is sufficient to add additional regressors into regression (3.6). A natural candidate

is the demeaned regressor ẍit, however, this does not work due to the heterogeneity in

the model. This is formally shown in the Appendix. The endogeneity problem, which is

complicated by the heterogeneity in the variance structure, can be solved by adding the

decomposed ẍit into (3.6). The decomposed ẍit can be expressed as

−1

N
x1t, · · ·

−1

N
xi−1,t,

N − 1

N
xit,

−1

N
xi+1,t, · · ·

−1

N
xNt.

Adding these regressors separately will overcome the heterogeneous variance problem when

dealing with endogeneity. Details are given in the Appendix.

Remark 4. In regression (3.5), if β is the only parameter of interest, then it is possible to

demean across time to remove µi before partial summing. That is

ÿ+
it = ẍ+′

it β + ü+
it ,

where

ÿ+
it = ÿit −

1

T

T∑
k=1

ÿik, ẍ
+
it = ẍit −

1

T

T∑
k=1

ẍik, ü
+
it = üit −

1

T

T∑
k=1

üik.

Then regression (3.6) becomes to

S
ÿ+

it = Sẍ
+′
it β + Sü

+
it ,

where

S
ÿ+

it =
t∑

j=1

ÿ+
ij , S

ẍ+
it =

t∑
j=1

ẍ+
ij , S

ü+
it =

t∑
j=1

ü+
ij .
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However, in this case, including the components of ẍit is not sufficient to deal with the

endogeneity problem. Finding the additional regressors for this partial sum regression is

much more challenging if not impossible, therefore this method is not considered in this

paper.

Remark 5. If the system does have homogeneous 2nd order moment structures, i.e. Ωi = Ωj

for any i, j for {1, 2, · · · , N}, then adding ẍit to the partial sum regression will be sufficient

for solving the endogeneity problem.

Including the additional regressors in (3.6) gives

S
ÿ
it = tµi + Sẍ′it β +

N − 1

N
x′itγi +

−1

N

N∑
j=1,j 6=i

x′jtγj

+ Sũit (3.7)

where

Sũit = Süit −
N − 1

N
x′itγi +

1

N

N∑
j=1,j 6=i

x′jtγj .

Stacking all time periods and all individuals’ data together, the matrix form of the system

is given by

Sÿ = Sẍθ + Sü, (3.8)
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where

Sÿ =



S
ÿ
11

...

S
ÿ
1T

...

S
ÿ
N1

...

S
ÿ
NT



, θ =



β

γ1

...

γN

µ1

...

µN



, Sü =



Sũ11

...

Sũ1T

...

SũN1

...

SũNT



,

Sẍ =



Sẍ′11
N−1
N x′11

−1
N x′21 · · · −1

N x′N1 1 · · · 0

Sẍ′12
N−1
N x′12

−1
N x′22 · · · −1

N x′N2 2 · · · 0

...
...

... · · · ...
... · · · ...

Sẍ′1T
N−1
N x′1T

−1
N x′2T · · · −1

N x′NT T · · · 0

...
...

...
...

...
...

...
...

Sẍ′N1
−1
N x′11

−1
N x′21 · · · N−1

N x′N1 0 · · · 1

Sẍ′N2
−1
N x′12

−1
N x′22 · · · N−1

N x′N2 0 · · · 2

...
...

...
...

...
...

...
...

Sẍ′NT
−1
N x′1T

−1
N x′2T · · · N−1

N x′NT 0 · · · T



.

The panel IM-OLS estimator is the OLS estimator of regression (3.8), which is given by

θ̂ =
(
Sẍ′Sẍ

)−1 (
Sẍ′Sÿ

)
.
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It follows that

θ̂ − θ =
(
Sẍ′Sẍ

)−1 (
Sẍ′Sü

)
=

 N∑
i=1

T∑
t=1

qitq
′
it

−1 N∑
i=1

T∑
t=1

qitS
ũ
it


where

q1t =

[
Sẍ′1t

N−1
N x′1t

−1
N x′2t · · ·

−1
N x′Nt t 0 · · · 0

]′
q2t =

[
Sẍ′2t

−1
N x′1t

N−1
N x′2t · · ·

−1
N x′Nt 0 t · · · 0

]′
...

...
...

qNt =

[
Sẍ′Nt

−1
N x′1t

−1
N x′2t · · ·

N−1
N x′Nt 0 0 · · · t

]′
.

Define the scaling matrix

A−1
PIM =


T · Ik 0

IN ⊗ Ik

0 IN ⊗ T
1
2


as a (k +Nk +N)× (k +Nk +N) diagonal matrix.

The following theorem gives the asymptotic distribution of the panel IM-OLS estimator.

Theorem 3. Assume that the data are generated by (3.1) and (3.2), and that Assumptions

6 and 7 hold. Define θ by stacking β, γi and µi. Then for fixed N , as T →∞
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A−1
PIM

(
θ̂ − θ

)
=



T
(
β̂ − β

)
(γ̂1 − γ1)

...

(γ̂N − γN )

√
T (µ̂1 − µ1)

...

√
T (µ̂N − µN )


=

T−1
N∑
i=1

T∑
t=1

A−1
1T qitq

′
itA
−1
1T

−1T−1
N∑
i=1

T∑
t=1

A−1
1T qitT

−1
2Sũit



⇒

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

∫ 1

0

N∑
i=1

hi(r)
σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

 dr



= Ψ
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where

hi(r) =



∫ r
0

[
Ω

1
2
vv,iWv,i(s)− 1

N

N∑
j=1

Ω
1
2
vv,jWv,j(s)

]
ds

−1
N Ω

1
2
vv,1Wv,1(r)

...

N−1
N Ω

1
2
vv,iWv,i(r)

...

−1
N Ω

1
2
vv,NWv,N (r)

0

...

r

...

0



.

Conditional on hi(r) for i = 1, 2, · · · , N , it can be shown that Ψ ∼ N (0, VPIM ), where

VPIM is given by

VPIM =

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

 N∑
i=1

σ2
u·v,i

∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×
∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

and

Ḧi(r) = Hi(r)−
1

N

N∑
j=1

Hj(r).

The derivation of this conditional variance is given in the Appendix.
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3.3 Inference about θ

3.3.1 Inference using panel IM-OLS

This section provides a discussion of hypothesis testing using the panel IM-OLS estimator.

In particular, the hypothesis being considered is given by

H0 : Rθ = r

where R ∈ Rq×(k+Nk+N) with full rank q and r ∈ Rq. Because the vector θ̂ has elements

that converge at different rates, restrictions on R are necessary. Assume that there exists a

non-singular q × q matrix AR such that

lim
T→∞

A−1
R RAPIM = R∗

with R∗ has rank q.

In order to carry out statistical inference, the asymptotic variance, VPIM , needs to be

estimated. The outside parts of the sandwich form can be estimated by

T−2
N∑
i=1

T∑
t=1

APIM qitq
′
itAPIM

−1

.

The tricky part is estimating the middle part of the sandwich form of the variance. Suppose

that σ̆2
u·v,i is an estimator for σ2

u·v,i, then an estimator for the middle part of the variance is
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given by

T−4
T∑
t=1

N∑
i=1

σ̆2
u·v,i

(
APIM

[
S̈
q
iT − S̈

q
i,t−1

])(
APIM

[
S̈
q
iT − S̈

q
i,t−1

])′
,

with S̈
q
it = S

q
it −

1
N

∑N
j=1 S

q
jt and S

q
it =

∑t
k=1 qik. Therefore, the estimator of VPIM takes

the form

V̆PIM =

T−2
N∑
i=1

T∑
t=1

APIM qitq
′
itAPIM

−1

×

T−4
T∑
t=1

N∑
i=1

σ̆2
u·v,i

(
APIM

[
S̈
q
iT − S̈

q
i,t−1

])(
APIM

[
S̈
q
iT − S̈

q
i,t−1

])′×
T−2

N∑
i=1

T∑
t=1

APIM qitq
′
itAPIM

−1

.

Here, two potential candidates for σ̆2
u·v,i are considered.

1. The first candidate, σ̂2
u·v,i, is based on the residuals of regression (3.7), i.e.

Ŝũit = S
ÿ
it − tµ̂i − S

ẍ′
it β̂ −

N − 1

N
x′itγ̂i +

1

N

N∑
j=1,j 6=i

x′jtγ̂j

where µ̂i, β̂ and γ̂i (i = 1, 2, · · · , N) are the panel IM-OLS estimators. Define a HAC

estimator using the first difference of Ŝũit:

σ̂2
u·v,i = T−1

T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
4Ŝũij4Ŝ

ũ
ih.

2. The second candidate, σ̃2
u·v,i, is based on the residuals of a further augmented regres-
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sion of the partial sum regression (3.6), i.e.

S̃ũit = S
ÿ
it − tµ̃i − S

ẍ′
it β̃i −

N − 1

N
x′itγ̃i,i +

1

N

N∑
j=1,j 6=i

x′jtγ̃i,j − z
′
itλ̃i

where

zit = t
T∑
j=1

Dij −
t−1∑
j=1

j∑
s=1

Dis,

Dit =

[
Sẍ′it t −1

N x′1t · · ·
N−1
N x′it · · ·

−1
N x′Nt

]′
,

and µ̃i, β̃i, γ̃i,i and γ̃i,j are OLS from the further augmented regression given by

S
ÿ
it = tµi + Sẍ′it βi +

N − 1

N
x′itγi,i −

1

N

N∑
j=1,j 6=i

x′jtγi,j + z′itλi. (3.9)

Note that for given i, the estimators γi,i is the parameter associate with ith individual’s

xit regressor, and γi,j are the parameters associate with ith individual’s all xjt regressor for

j = 1, 2, · · · , N and j 6= i. They are allowed to be different across different individual because

the further augmented regressions are being done individual by individual. Therefore, the

HAC estimator using S̃ũit is defined as

σ̃2
u·v,i = T−1

T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
4S̃ũij4S̃

ũ
ih.

Remark 6. The reason for considering the second variance estimator, σ̃2
u·v,i, is that it

delivers an asymptotic pivotal limit in the following two cases: (i) N = 1 (See Vogelsang

and Wagner [2014]); (ii) N > 1 with homogeneous variance structure (See Vogelsang et

al. [2016]). However, when N > 1 and heterogeneous variance structure exists, σ̃2
u·v,i no
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longer leads to an asymptotic pivotal limit. In practice, this estimator should be considered

for N = 1 case or N > 1 with homogeneous variance structure case.

Let t̂ and Ŵ denote statistics defined using σ̂2
u·v,i to construct V̆PIM , and likewise t̃ and

W̃ denote statistics defined using σ̃2
u·v,i to construct V̆PIM . Letting t̆ and W̆ denote either

t̂ and Ŵ or t̃ and W̃ , define the t and Wald statistics as:

t̆ =

(
Rθ̂ − r

)
√
RAPIM V̆PIMAPIMR′

W̆ =
(
Rθ̂ − r

)′ [
RAPIM V̆PIMAPIMR′

]−1 (
Rθ̂ − r

)
.

Theorem 4. Assume that the data are generated by (3.1) and (3.2), and that Assumptions

6 and 7 hold. Under traditional bandwidth and kernel assumptions, with N fixed as T →∞

•

Ŵ ⇒
χ2
q

1 + d′γdγ

and when q = 1,

t̂⇒ Z√
(1 + d′γdγ)

where χ2
q is a chi-square random variable with q degrees of freedom, Z is a standard
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normal random variable,

d′γdγ =V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

 N∑
i=1

σ2
u·v,i

(
d′γidγi

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×
∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

,

and

d′γidγi = σ−2
u·v,id

′
Ψi

Ωvv,idΨi
,

where dΨi
is the (i+ 1)th k × 1 block of the distribution Ψ.

• Under fixed-b asymptotics where M = bT , b ∈ (0, 1] is held fixed as T → ∞, then the

fixed-b limits of Ŵ and t̂ are given by

Ŵ ⇒
χ2
q

Q̂(b)

and when q = 1,

t̂⇒ Z√
Q̂(b)
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where

Q̂(b) =V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

 N∑
i=1

σ2
u·v,iQb

(
P̂i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×
∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

is a stochastic process that depends on the kernel function, bandwidth and Wi(r).

• Under fixed-b asymptotics where M = bT , b ∈ (0, 1] is held fixed as T →∞, then

W̃ ⇒
χ2
q

Q̃(b)

and when q = 1,

t̃⇒ Z√
Q̃(b)

where

Q̃(b) =V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

 N∑
i=1

σ2
u·v,iQb

(
P̃i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×
∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

is a stochastic process that depends on the kernel function, bandwidth and Wi(r).
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3.3.2 Inference using the stationary bootstrap

Unfortunately, the statistics t̆ and W̆ are not asymptotic pivotal, which makes asymptotic

inference infeasible. One possible solution is applying the stationary bootstrap to mimic the

non-pivotal asymptotic distribution of those statistics. The stationary bootstrap, proposed

by Politis and Romano [1994], is a special type of block bootstrap where the block size fol-

lows a geometric distribution instead of a fixed number. For a geometric distribution with

parameter p
T

, the expected block size of the stationary bootstrap is 1/p
T

. The stationary

bootstrap has been used in the literature of unit root tests, cointegration tests and coin-

tegrated regression inference; see Swensen [2003], Paparoditis and Politis [2005] , Parker

et al. [2006], Shin [2015], and Shin and Hwang [2013]. It can capture the serial correlation

structure in the original sample by block resampling, and it produces stationary bootstrap

samples. A formal description of the stationary bootstrap inference procedure is given below.

1. Calculate the residuals based on regression (3.7) as

Ŝũit = S
ÿ
it − tµ̂i − S

ẍ′
it β̂ −

N − 1

N
x′itγ̂i +

1

N

N∑
j=1,j 6=i

x′jtγ̂j

where µ̂i, β̂, γ̂i and γ̂j for j = 1, · · · , N and j 6= i are the panel IM-OLS estimators.

2. Define 4Ŝũit as a proxy for üit, and 4ẍit as a proxy for v̈it, which is the cross-sectional

demeaned vit. Based on those proxies, define ˆ̈ηit =

[
4Ŝũit 4ẍ

′
it

]′
=

[
ˆ̈uit ˆ̈v′it

]′
as a

proxy for η̈it =

[
üit v̈′it

]′
for t = 1, 2, · · · , T , and set Ŝũi0 = 0 and ẍi0 be zero vector

for all i.
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3. Re-sample the series
{

ˆ̈ηit

}
via the stationary bootstrap, obtaining

{
ˆ̈η?
}

, which can

be partitioned the same as ˆ̈ηit into ˆ̈η? =

[
ˆ̈u?it

ˆ̈v?′it

]′
.

4. Obtain the bootstrap samples
{
ẍ?it
}

by

ẍ?it =
t∑

j=1

ˆ̈v?ij ,

and generate the bootstrap samples
{
ÿ?it
}

from 1

ÿ?it = µ̂i + ẍ?′it β̂ + ˆ̈u?it.

5. After obtaining the bootstrap demeaned variables ẍ?it and ÿ?it, follow the same pro-

cedure as discussed before to estimate θ, denoted by θ̂?, and compute the bootstrap

estimator of the limiting variance VPIM , say V̆ ?PIM . Define the bootstrap statistics as

follows

t̆? =

(
Rθ̂? −Rθ̂

)
√
RAPIM V̆ ?PIMAPIMR′

W̆ ? =
(
Rθ̂? −Rθ̂

)′ [
RAPIM V̆ ?PIMAPIMR′

]−1 (
Rθ̂? −Rθ̂

)
.

6. Repeat steps 3-5 independently B times to obtain samples
{
t̆?j

}B
j=1

and
{
W̆ ?
j

}B
j=1

.

1Note that there is another method to obtain ẍ?it. One can resample directly from the original regressor

xit to obtain x?it and then apply cross-sectional demeaning to x?it to obtain ẍ?it . However, the size of the
tests based on this method is higher than that of the method introduced in procedure 1 to 4. Therefore, this
method is not included in this paper.
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7. Compute the equal tail bootstrap p-value as

p?
(
t̆
)

= 2min

 1

B

B∑
j=1

I
(
t̆?j ≤ t̆

)
,

1

B

B∑
j=1

I
(
t̆?j > t̆

)
p?
(
W̆
)

=
1

B

B∑
j=1

I
(
W̆ ?
j > W̆

)
,

where I(·) is the indicator function. Reject the null hypothesis if the equal tail boot-

strap p-value is less than 5%.

3.4 Finite sample simulation

This section investigates finite sample size and power of the bootstrap tests based on the

panel IM-OLS estimators. The data generating process is given by

yit = x1itβ1 + x2itβ2 + uit

x1it = x1i,t−1 + v1it

x2it = x2i,t−1 + v2it

where for all i = 1, 2, · · · , N , ui0 = 0, x1i0 and x2i0 are zero vectors, and

uit = ρ1ui,t−1 + ρ2(e1it + e2it) + εit

v1it = e1it + 0.5e1i,t−1

v2it = e2it + 0.5e2i,t−1
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where for ith individual, εit, e1it and e2it are i.i.d. N
(
0, i2

)
random variables. There is

no individual effect term and common time effect term included in the data generating

process because the focus here is on β1 and β2, and the estimates of β1 and β2 are exactly

invariant to those terms. The parameter values are β1 = β2 = 1. In addition, ρ1 and ρ2

are chosen from {0.6, 0.9}. The parameter ρ1 controls serial correlation in the regression

error, and ρ2 determines the endogeneity of the regressors. The kernel function used in

this simulation study is the Bartlett kernel, and the bandwidths are given by M = bT with

b ∈ {0.1, 0.5, 1}. For the block length parameter p
T

in the stationary bootstrap, two different

settings are presented. One is p
T

= 0.01(4 − j)(T/50)−1/3 with j ∈ {1, 2, 3}, the other is

p
T

= 0.04(4− j)(T/50)−1/3 with j ∈ {1, 2, 3}. The sample sizes are N = 5, T ∈ {50, 500}.

The number of bootstrap replications is B = 399, and the number of simulation replications

is 1000.

Results only for cases where ρ1 = ρ2 are reported. The results include t-statistics for

testing the null hypothesis H0 : β1 = 1 and Wald statistics for testing the joint null

hypothesis H0 : β1 = β2 = 1. The bootstrap panel IM-OLS statistics were implemented

in two ways. The first one uses the stationary bootstrap procedures with the bootstrap

version of σ̂2
u·v,i and is labeled Stat-BS IM-OLS(D). The second one uses the stationary

bootstrap procedures with the bootstrap version of σ̃2
u·v,i and is labeled Stat-BS IM-OLS(fb).

Rejections for the bootstrap statistics are carried out by comparing the bootstrap p-value

with the nominal level, which is 5% in this simulation.

Tables 3.1 to 3.4 report empirical null rejection probabilities of the t and Wald tests. In

each table Panel A corresponds to T = 50 and Panel B to T = 500. Some common findings

about the t and Wald tests can be summarized as follows. For both t and Wald tests, Stat-BS

IM-OLS(D) statistics tend to have smaller null rejection probabilities than those of Stat-BS
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IM-OLS(fb) statistics. When the bandwidth parameter b varies, the rejection probabilities

are relatively stable for both t and Wald tests, which shows that the bootstrap method can

successfully capture the impact of the bandwidth on the test statistics. In addition, when

the sample size T increases from 50 to 500, rejection probabilities approach 0.05 as expected.

As the values of ρ1, ρ2 increase from 0.6 to 0.9, there exists strong serial correlation and

endogeneity. It can be seen from Tables 3.1-3.4 that the rejection probabilities in all cases

generally increase, but those increases depend on the sample size and the test statistics. If

the time sample is small (T = 50), the rejection probabilities increase quite a lot for all tests.

In contrast, if the time sample size is large (T = 500), the Stat-BS IM-OLS(D) statistics

have similar rejection probabilities as ρ1 = ρ2 = 0.6, whereas the rejection probabilities

increase quite a bit for the Stat-BS IMOLS(fb) statistics. This implies that when the time

sample size is large enough, the Stat-BS IM-OLS(D) statistics can effectively handle strong

serial correlation and endogeneity.

Another important pattern in Tables 3.1-3.4 is that the size of the tests depends heavily

on the tuning parameter p
T

. It is not a surprise because the stationary bootstrap is a moving

block bootstrap with changing block lengths. Theoretically, there is no rule of thumb for

choosing the value of p
T

to ensure the hypothesis test has correct size. In a given sample,

Politis and White [2004] and Patton et al. [2009] propose a method to obtain an optimal

block length parameter for the stationary bootstrap. However, that optimal block length

parameter is based on minimizing the MSE of the stationary bootstrap sample mean, which

doesn’t necessarily guarantee the correct size of the tests. Therefore, several different values

for p
T

were used in this simulation study. In Tables 3.1-3.4, for both t and Wald tests,

when p
T

is small, corresponding to large average block length, the tests tend to have over

rejection problems. As p
T

increases, the over rejection problem becomes less severe and
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under-rejection problems appear in some of the cases. To obtain the correct size, the t tests

require p
T

to be larger than that of the Wald tests.

Next consider the power properties of the tests. When the alternative is true, some

bootstrap methods fail to simulate critical values that are valid under the null in which case

the tests have no power. Therefore, the analysis of the power properties of bootstrap tests

is important. Here, only results for the case ρ1 = ρ2 ∈ {0.6, 0.9} for the Wald test for

N ∈ {5, 15}, T ∈ {50, 500} with the Bartlett kernel are provided. If the power of the test

is not an issue for small sample size, like T = 50, then it will not be a concern when the

sample size is large, like T = 500. Starting from the null values of β1 and β2 equal to 1,

the alternative values being considered are β1 = β2 = β ∈ (1, 1.4], which are total of 21

values on a grid with mesh 0.02 including the null value. Power and size-adjusted power are

reported. Note that size-adjusted power is not feasible in practice, but it allows us to see the

theoretical power differences across tests while holding null rejection probabilities constant

at 0.05.

Figures 3.1-3.4 show that using the bootstrap method, the Stat-BS IM-OLS(D) and Stat-

BS IM-OLS(fb) Wald tests do have power. Figure 3.1 shows the power comparison of the

Stat-BS IM-OLS(D) Wald test for small (T = 50) and large (T = 500) sample sizes and

using respective block size parameter values, p
T
∈ {0.08, 0.00464}, give null rejections close

to 5%. It can be seen that the power of the tests with the larger sample size (T = 500)

and smaller p
T

(p
T

= 0.00464) grows dramatically fast. This implies that if the sample

size is large enough and the resampling block size parameter p
T

can be wisely chosen, the

Stat-BS IM-OLS(D) Wald test tends to have very high power. And even if the sample size

is relatively small (T = 50), the power of the test is still acceptable if p
T

is carefully chosen.

Next consider the impact of the serial correlation and endogeneity on the power of the
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Stat-BS IM-OLS(D) Wald test. Figure 3.2 displays the power comparison of the Stat-BS IM-

OLS(D) Wald test for small (ρ1 = ρ2 = 0.6) and large (ρ1 = ρ2 = 0.9) serial correlation and

endogeneity with respective block size parameter values, p
T
∈ {0.00464, 0.00696}, give null

rejections close to 5%. The power of the test with smaller serial correlation and endogeneity

(ρ1 = ρ2 = 0.6) is higher than that of the test with larger serial correlation and endogeneity

(ρ1 = ρ2 = 0.9). If the sample size is small, the power of the tests is lower as expected.

Figures 3.3 and 3.4 provide size-corrected power comparisons between the Stat-BS IM-

OLS(D) and Stat-BS IM-OLS(fb) Wald tests for the same values of T , ρ1, ρ2, b but using

different sample size N . In Figure 3.3, the sample size N is 5, while in Figure 3.4, the sample

size N is 15. These two figures allow us to see power differences across tests while holding

null rejection probabilities constant at 0.05. It can be seen that when the cross sectional

sample size is small, the Stat-BS IM-OLS(fb) test has slightly higher power than that of

the Stat-BS IM-OLS(D) test. However, when the cross sectional sample size increases, the

power of Stat-BS IM-OLS(D) test is much higher. This implies that we should not consider

using the Stat-BS IM-OLS(fb) test when N is large, because it has large size distortions and

lower power in this scenario.

3.5 Summary and conclusions

This paper considers the estimation and inference of a homogeneous cointegrated vector

in a panel data model with individual heterogeneity and heterogeneous variance structure.

In addition, the model allows a limited degree of cross-sectional dependence due to a common

time effect. The estimator is labeled as panel IM-OLS. It is a fully parametric estimator that

is based on a partial sum transformed regression augmented by the decomposed demeaned
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original regressor. The advantage is that it leads to a zero mean mixed Gaussian limiting

distribution without requiring the choice of tuning parameters (like bandwidth, kernel func-

tion, numbers of leads and lags). Asymptotic inference is infeasible due to the presence of

nuisance parameters, and the stationary bootstrap is used for hypothesis testing. Monte

Carlo simulations show that the bootstrap method can deliver good size and power for t and

Wald tests, depending on the sample size, serial correlation, endogeneity and the stationary

bootstrap block length resampling parameter. When there is strong serial correlation and

endogeneity, for moderate time sample sizes, the size of the tests are close to nominal level

for certain values of p
T

.

Unlike in Vogelsang et al. [2016], the further augmented regression residuals do not lead

to an asymptotic pivotal test, and the bootstrap hypothesis test based on it has more size

distortion. When the cross sectional sample size N is small, the power of the test based on

the further augmented regression residuals is a little bit higher than that of the test based on

augmented regression residuals. However, when the cross sectional sample size N increases,

the power of the test based on the further augmented regression residuals is much lower than

that of the test based on augmented regression residuals. This power loss as N increases

is because the further augmented regression requires adding many additional regressors to

compute the residuals. Therefore, in practice, when N is large and the panel has cross

sectional dependence and heterogeneous variance structure, inference based on the further

augmented regression residuals is not recommended.

One limitation of the present paper is that the cross-sectional dependence is only coming

from a common time effect with a constant factor loading. This might be restrictive in

some applications. Therefore, a model with more general cross-sectional dependence may be

worth considering in the future. In that more general scenario, the theory of the inference
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based on the panel IM-OLS type estimators will rely on more general bootstrap procedures.

If the stationary bootstrap can mimic the non-pivotal limit of the original statistics, then

formally proving the asymptotic equivalence between the stationary bootstrap statistics and

the original test statistics may be a viable research topic in the future.
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Tables and Figures

Table 3.1: Empirical null rejection probabilities, 5% level, t-tests for H0 : β1 = 1, N = 5,
ρ = 0.6, Bartlett kernel

p
T

Stat-BS(D) Stat-BS(fb)

b=0.1 b=0.5 b=1 b=0.1 b=0.5 b=1
Panel A: T = 50

0.01 0.246 0.214 0.226 0.346 0.335 0.336
0.02 0.219 0.191 0.198 0.31 0.309 0.31
0.03 0.199 0.17 0.173 0.3 0.308 0.303
0.04 0.184 0.162 0.157 0.285 0.286 0.287
0.08 0.127 0.114 0.115 0.231 0.239 0.239
0.12 0.102 0.094 0.095 0.213 0.209 0.207

Panel B: T = 500
0.00464 0.152 0.145 0.138 0.174 0.176 0.162
0.00928 0.099 0.101 0.102 0.123 0.122 0.106
0.01393 0.074 0.075 0.081 0.086 0.074 0.085
0.01857 0.053 0.062 0.065 0.066 0.065 0.068
0.03713 0.032 0.044 0.033 0.037 0.039 0.033
0.05570 0.023 0.028 0.024 0.03 0.02 0.025

Table 3.2: Empirical null rejection probabilities, 5% level, t-tests for H0 : β1 = 1, N = 5,
ρ = 0.9, Bartlett kernel

p
T

Stat-BS(D) Stat-BS(fb)

b=0.1 b=0.5 b=1 b=0.1 b=0.5 b=1
Panel A: T = 50

0.01 0.427 0.375 0.371 0.74 0.745 0.75
0.02 0.405 0.349 0.347 0.747 0.743 0.75
0.03 0.395 0.328 0.328 0.738 0.733 0.734
0.04 0.356 0.307 0.291 0.738 0.74 0.73
0.08 0.333 0.279 0.267 0.724 0.724 0.72
0.12 0.307 0.247 0.235 0.715 0.716 0.715

Panel B: T = 500
0.00464 0.144 0.138 0.137 0.243 0.23 0.23
0.00928 0.095 0.096 0.098 0.175 0.172 0.165
0.01393 0.07 0.07 0.074 0.144 0.125 0.13
0.01857 0.053 0.061 0.06 0.115 0.113 0.114
0.03713 0.031 0.035 0.033 0.093 0.08 0.077
0.05570 0.022 0.027 0.024 0.073 0.077 0.072
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Table 3.3: Empirical null rejection probabilities, 5% level, Wald-tests for H0 : β1 = 1, β2 = 1,
N = 5, ρ = 0.6, Bartlett kernel

p
T

Stat-BS(D) Stat-BS(fb)

b=0.1 b=0.5 b=1 b=0.1 b=0.5 b=1
Panel A: T = 50

0.01 0.159 0.142 0.153 0.296 0.299 0.302
0.02 0.125 0.122 0.122 0.266 0.268 0.269
0.03 0.107 0.109 0.109 0.239 0.236 0.236
0.04 0.092 0.101 0.086 0.216 0.22 0.214
0.08 0.049 0.047 0.047 0.155 0.151 0.157
0.12 0.029 0.031 0.027 0.1 0.113 0.119

Panel B: T = 500
0.00464 0.053 0.053 0.051 0.081 0.073 0.074
0.00928 0.02 0.023 0.022 0.037 0.038 0.039
0.01393 0.01 0.011 0.019 0.019 0.019 0.021
0.01857 0.002 0.01 0.007 0.008 0.01 0.016
0.03713 0.002 0.003 0.004 0.002 0.002 0.005
0.05570 0 0.003 0.003 0 0.002 0.003

Table 3.4: Empirical null rejection probabilities, 5% level, Wald-tests for H0 : β1 = 1, β2 = 1,
N = 5, ρ = 0.9, Bartlett kernel

p
T

Stat-BS(D) Stat-BS(fb)

b=0.1 b=0.5 b=1 b=0.1 b=0.5 b=1
Panel A: T = 50

0.01 0.474 0.402 0.393 0.876 0.876 0.867
0.02 0.448 0.374 0.368 0.874 0.873 0.864
0.03 0.43 0.346 0.348 0.874 0.87 0.865
0.04 0.402 0.337 0.316 0.869 0.867 0.865
0.08 0.325 0.261 0.25 0.859 0.861 0.846
0.12 0.268 0.212 0.21 0.848 0.854 0.841

Panel B: T = 500
0.00464 0.07 0.062 0.069 0.16 0.159 0.166
0.00928 0.031 0.04 0.041 0.107 0.096 0.097
0.01393 0.014 0.016 0.021 0.069 0.063 0.069
0.01857 0.011 0.018 0.013 0.057 0.043 0.056
0.03713 0.004 0.006 0.008 0.028 0.031 0.029
0.05570 0.003 0.005 0.004 0.019 0.019 0.021
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Figure 3.1: Power of bootstrap Stat-BS IM (D), Wald test, N = 5, ρ1 = ρ2 = 0.6, b = 0.5,
Bartlett kernel with different T and p

T
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Figure 3.2: Power of bootstrap Stat-BS IM (D), Wald test, N = 5, T = 500, b = 0.5, Bartlett
kernel with different ρ and p

T
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Figure 3.3: Size adjusted power, Wald-tests, N = 5, T = 50, ρ1 = ρ2 = 0.6, b = 0.5, Bartlett
kernel
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Figure 3.4: Size adjusted power, Wald-tests, N = 15, T = 50, ρ1 = ρ2 = 0.6, b = 0.5,
Bartlett kernel
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Proof of failure of using ẍit to solve endogeneity problem

This is the proof showing that directly adding ẍit to regression (3.6) cannot fully deal

with the endogeneity problem in the model considered in this paper. Suppose, we add ẍit
into the partial sum model, which gives

S ÿit = tµi + Sẍ′it β + ẍ′itγi + Süit − ẍ′itγi

.Consider the behavior of T−
1
2

(
Süit − ẍ′itγi

)
as T →∞,

T−
1
2
(
Süit − ẍ′itγi

)
= T−

1
2

Suit − 1

N

N∑
j=1

Sujt − x′itγi +
1

N

N∑
j=1

x′jtγi


= T−

1
2
(
Suit − x′itγi

)
− 1

N

N∑
j=1

T−
1
2
(
Sujt − x′jtγi

)
⇒
[
Bu,i(r)−B′v,i(r)γi

]
− 1

N

N∑
j=1

[
Bu,j(r)−B′v,j(r)γi

]
= σu·v,iwu,i(r) + λuv,iWv,i(r)−

[
Ω

1
2
vv,iWv,i(r)

]′
γi

− 1

N

N∑
j=1

[
σu·v,jwu,j(r) + λuv,jWv,j(r)−

(
Ω

1
2
vv,jWv,j(r)

)′
γi

]

=

σu·v,iwu,i(r)− 1

N

N∑
j=1

σu,v,jwu,j(r)


−W ′v,i(r)Ω

1
2
′

vv,i

(
γi − Ω

− 1
2
′

vv,iλ
′
uv,i

)
+

1

N

N∑
j=1

[
W ′v,j(r)Ω

1
2
′

vv,j

(
γi − Ω

− 1
2
′

vv,jλ
′
uv,j

)]

6= σu·v,iwu,i(r)−
1

N

N∑
j=1

σu,v,jwu,j(r)

Note that the last inequality holds because when there is heterogeneity in the 2nd moment

structure, it is almost impossible that

γi = Ω
− 1

2
′

vv,iλ
′
uv,i = Ω

− 1
2
′

vv,jλ
′
uv,j

for all j = 1, 2, · · · , N . Therefore, just adding ẍit to regression (3.6) cannot fully deal with

the endogeneity problem. Note that, if the 2nd moment structure is homogeneous, then only
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adding ẍit to regression (3.6) will work, because

γi = Ω
− 1

2
′

vv,iλ
′
uv,i = Ω

− 1
2
′

vv,jλ
′
uv,j = γj = Ω

− 1
2
′

vv λ′uv

for all i, j.
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Proof of Theorem 3

In order to derive the asymptotic distribution of the panel IM-OLS estimator, we start

with regression (3.7). First consider the limit of T−1/2Sũit with N fixed and T →∞.

T−1/2Sũit = T−1/2

Süit − N − 1

N
x′itγi +

1

N

N∑
j=1,j 6=i

x′jtγj


= T−1/2

Suit − 1

N

N∑
j=1

Sujt − x
′
itγi +

1

N

N∑
j=1

x′jtγj


= T−

1
2
(
Suit − x

′
itγi
)
− 1

N

N∑
j=1

T−
1
2
(
Sujt − x

′
jtγj

)

⇒
[
Bu,i(r)−B′v,i(r)γi

]
− 1

N

N∑
j=1

[
Bu,j(r)−B′v,j(r)γj

]
= σu·v,iwu,i(r) + λuv,iWv,i(r)−W ′v,i(r)Ω

1
2 ′
vv,iγi

− 1

N

N∑
j=1

[
σu·v,jwu,j(r) + λuv,jWv,i(r)−W ′v,j(r)Ω

1
2 ′
vv,jγj

]

=

σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

−W ′v,i(r)Ω1
2 ′
vv,i

[
γi − Ω

−1
2 ′
vv,iλ

′
uv,i

]

+
1

N

N∑
j=1

W ′v,j(r)Ω
1
2 ′
vv,j

[
γj − Ω

−1
2 ′
vv,jλ

′
uv,j

]

Therefore, when γi = Ω
−1

2 ′
vv,iλ

′
uv,i = Ω−1

vv,iΩvu,i, it follows that

T−1/2Sũit =⇒ σu·v,iwu,i(r)−
1

N

N∑
j=1

σu·v,jwu,j(r).

Define A−1
1T = T−

1
2APIM . The next step of the proof is to obtain the limit of A−1

1T qit for
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N fixed and T →∞.

A−11T qit =



T−
3
2Sẍit

T−
1
2

(−1
N x1t

)
...

T−
1
2

(
N−1
N xit

)
...

T−
1
2

(−1
N xNt

)
0
...
t
T
...

0



=



T−
3
2Sxit − 1

N

N∑
j=1

T−
3
2Sxjt

−1
N T−

1
2x1t

...
N−1
N T−

1
2xit

...
−1
N T−

1
2xNt

0
...
t
T
...

0



⇒



∫ r
0 Bv,i(s)ds−

1
N

N∑
j=1

∫ r
0 Bv,j(s)ds

−1
N Bv,1(r)

...
N−1
N Bv,i(r)

...
−1
N Bv,N (r)

0
...

r
...

0



=



∫ r
0

[
Ω

1
2
vv,iWv,i(s)− 1

N

N∑
j=1

Ω
1
2
vv,jWv,j(s)

]
ds

−1
N Ω

1
2
vv,1Wv,1(r)

...

N−1
N Ω

1
2
vv,iWv,i(r)

...

−1
N Ω

1
2
vv,NWv,N (r)

0
...

r
...

0


= hi(r).

Therefore, as T →∞,

A−1
1T qit ⇒ hi(r).
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For fixed N , as T →∞,

A−1
PIM

(
θ̂ − θ

)
= T−

1
2A1T

(
θ̂ − θ

)
=



T
(
β̂ − β

)
(γ̂1 − γ1)

...

(γ̂N − γN )√
T (µ̂1 − µ1)

...√
T (µ̂N − µN )


=

T−1
N∑
i=1

T∑
t=1

A−1
1T qitq

′
itA
−1
1T

−1T−1
N∑
i=1

T∑
t=1

A−1
1T qitT

−1
2Sũit


⇒

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

∫ 1

0

N∑
i=1

hi(r)
σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

 dr


= Ψ
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Proof of the derivation of the form of the asymptotic variance Ψ

We start from rewriting
∫ 1

0

N∑
i=1

{
hi(r)

[
σu·v,iwu,i(r)− 1

N

∑N
j=1 σu·v,jwu,j(r)

]}
dr as

∫ 1

0

N∑
i=1

hi(r)
σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

 dr

=

∫ 1

0

N∑
i=1

hi(r)− 1

N

N∑
j=1

hj(r)

σu·v,iwu,i(r)dr
=

N∑
i=1

σu·v,i

∫ 1

0

hi(r)− 1

N

N∑
j=1

hj(r)

wu,i(r)dr
=

N∑
i=1

σu·v,i

∫ 1

0
wu,i(r)d

Hi(r)− 1

N

N∑
j=1

Hj(r)


=

N∑
i=1

σu·v,i

wu,i(r)
Hi(r)− 1

N

N∑
j=1

Hj(r)

 |10 −∫ 1

0

Hi(r)− 1

N

N∑
j=1

Hj(r)

 dwu,i(r)


=
N∑
i=1

σu·v,i

wu,i(1)

Hi(1)− 1

N

N∑
j=1

Hj(1)

− ∫ 1

0

Hi(r)− 1

N

N∑
j=1

Hj(r)

 dwu,i(r)


=
N∑
i=1

σu·v,i

∫ 1

0

Hi(1)− 1

N

N∑
j=1

Hj(1)

 dwu,i(r)− ∫ 1

0

Hi(r)− 1

N

N∑
j=1

Hj(r)

 dwu,i(r)


=
N∑
i=1

σu·v,i

∫ 1

0
[Ḧi(1)− Ḧi(r)]dwu,i(r).

Therefore, the variance of

∫ 1

0

N∑
i=1

hi(r)
σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

 dr

will be same as the variance of

N∑
i=1

σu·v,i

∫ 1

0
[Ḧi(1)− Ḧi(r)]dwu,i(r)
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which is
N∑
i=1

σ2
u·v,i

∫ 1

0
[Ḧi(1)− Ḧi(r)][Ḧi(1)− Ḧi(r)]′dr.

Then, the variance of Ψ is

VPIM =

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

 N∑
i=1

σ2
u·v,i

∫ 1

0
[Ḧi(1)− Ḧi(r)][Ḧi(1)− Ḧi(r)]′dr

×
∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

.
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Proof of Theorem 4

This is the proof of the null limiting distribution of the test statistics in Theorem 4.

First, consider the behavior of σ̂2
u·v,i. It is based on 4Ŝũit, where

4Ŝũit = 4Sÿit −4tµ̂i −4S
ẍ′
it β̂ −

N − 1

N
4x′itγ̂i +

1

N

N∑
j=1,j 6=i

4x′jtγ̂j

= ÿit − µ̂i − ẍ′itβ̂ −
N − 1

N
v′itγ̂i +

1

N

N∑
j=1,j 6=i

v′jtγ̂j

= µi + ẍ′itβ + üit − µ̂i − ẍ′itβ̂ −
N − 1

N
v′itγ̂i +

1

N

N∑
j=1,j 6=i

v′jtγ̂j

= µi + ẍ′itβ + uit −
1

N

N∑
j=1

ujt − µ̂i − ẍ′itβ̂ − v
′
itγ̂i +

1

N

N∑
j=1

v′jtγ̂j

=
(
uit − v′itγi

)
− 1

N

N∑
j=1

(
ujt − v′jtγj

)
− v′it (γ̂i − γi)

+
1

N

N∑
j=1

v′jt
(
γ̂j − γj

)
− (µ̂i − µi)− ẍ′it

(
β̂ − β

)

=
[
u+
it − v

′
it (γ̂i − γi)

]
− 1

N

N∑
j=1

[
u+
jt − v

′
jt

(
γ̂j − γj

)]
− (µ̂i − µi)− ẍ′it

(
β̂ − β

)

where u+
it = uit − v′itγi. It can be shown that the last three parts of the formula can be

neglected for long run variance estimation of 4Ŝũit. Thus, the long run variance estimator

based on 4Ŝũit, asymptotically coincides with long run variance estimator based on u+
it −

v′it (γ̂i − γi).

Define η+
it =

[
u+
it , v′it

]′
, and then its long run variance is Ω+

i =

[
σ2
u·v,i 0

0 Ωvv,i

]
. Using

unobserved η+
it , an infeasible long run variance estimator, Ω̂+

i , is consistent. That is Ω̂+
i

p→
Ω+
i .

Note that: u+
it − v′it (γ̂i − γi) = η+′

it

[
1

− (γ̂i − γi)

]
, then HAC estimator, Ω̃+

i , for u+
it −
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v′it (γ̂i − γi) can be written as

[
1 − (γ̂i − γi)′

]
Ω̂+
i

[
1

− (γ̂i − γi)

]

with

(γ̂i − γi)⇒
[
0k×k 0k×k · · · Ik · · · 0k×k 0 · · · 0

]
×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1
N∑
i=1

σu·v,i

∫ 1

0

[
Ḧi(1)− Ḧi(r)

]
dwu,i(r)


= dΨi

where dΨi
represents the (i+ 1)th k × 1 block of the distribution Ψ.

Combining the above results shows that Ω̃+
i converges to

[
1 −d′Ψi

] [σ2
u·v,i 0

0 Ωvv,i

][
1

−dΨi

]
= σ2

u·v,i + d′Ψi
Ωvv,idΨi

= σ2
u·v,i

(
1 + σ−2

u·v,id
′
Ψi

Ωvv,idΨi

)
= σ2

u·v,i
(

1 + d′γidγi

)
,

which leads to σ̂2
u·v,i ⇒ σ2

u·v,i

(
1 + d′γidγi

)
. This implies that V̂PIM , using σ̂2

u·v,i, converges

to

V̂PIM ⇒

(∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

)−1
×{

N∑
i=1

σ2u·v,i
(
1 + d′γidγi

) ∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

}
×

(∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

)−1
=VPIM

(
1 + d′γdr

)
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where

d′γdγ = V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×


N∑
i=1

σ2
u·v,i

(
d′γidγi

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

.

The null limiting distribution of Wald and t statistics can be computed as follows.

Ŵ =
(
Rθ̂ − r

)′ [
RAPIM V̆PIMAPIMR′

]−1 (
Rθ̂ − r

)
=

[
R
(
θ̂ − θ

)]′ [
RAPIM V̆PIMAPIMR′

]−1 [
R
(
θ̂ − θ

)]
=

[
A−1
R RAPIMA−1

PIM

(
θ̂ − θ

)]′ [
A−1
R RAPIM V̆PIMAPIMR′

(
A−1
R

)′]−1

×[
A−1
R RAPIMA−1

PIM

(
θ̂ − θ

)]
⇒ [R∗Ψ]′

[
R∗VPIM

(
1 + d′γdγ

)
(R∗)′

]−1
[R∗Ψ]

=
χ2
q(

1 + d′γdγ
)

and for q = 1,

t̂ =

(
Rθ̂ − r

)
√
RAPIM V̆PIMAPIMR′

=

[
R
(
θ̂ − θ

)]
√
RAPIM V̆PIMAPIMR′

=
A−1R RAPIMA

−1
PIM

(
θ̂ − θ

)
√
A−1R RAPIM V̆PIMAPIMR′A

−1
R

⇒ R∗Ψ√
R∗VPIM

(
1 + d′γdγ

)
(R∗)′

=
Z√(

1 + d′γdγ
) .
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Second, consider the fixed-b limit of the t̂ and Ŵ . Recall that

Ŝũit = S
ÿ
it − tµ̂i − S

ẍ′
it β̂ −

N − 1

N
x′itγ̂i +

1

N

N∑
j=1,j 6=i

x′jtγ̂j

= tµi + Sẍ′it β +
N − 1

N
x′itγi −

1

N

N∑
j=1,j 6=i

x′jtγj + Süit

− tµ̂i − Sẍ′it β̂ −
N − 1

N
x′itγ̂i +

1

N

N∑
j=1,j 6=i

x′jtγ̂j

− N − 1

N
x′itΩ

−1
vv,iΩvu,i +

1

N

N∑
j=1,j 6=i

x′jtΩ
−1
vv,jΩvu,j

= Süit −
N − 1

N
x′itΩ

−1
vv,iΩvu,i +

1

N

N∑
j=1,j 6=i

x′jtΩ
−1
vv,jΩvu,j − q

′
it

(
θ̂ − θ

)

= Suit −
1

N

N∑
j=1

Sujt − x
′
itΩ
−1
vv,iΩvu,i +

1

N

N∑
j=1

x′jtΩ
−1
vv,jΩvu,j − q

′
it

(
θ̂ − θ

)
where qit is defined above.

Then, the first difference of Ŝũit can be written as

4Ŝũit = 4Suit −
1

N

N∑
j=1

4Sujt −4x
′
itΩ
−1
vv,iΩvu,i +

1

N

N∑
j=1

4x′jtΩ
−1
vv,jΩvu,j −4q

′
it

(
θ̂ − θ

)

= uit −
1

N

N∑
j=1

ujt − v′itΩ
−1
vv,iΩvu,i +

1

N

N∑
j=1

v′jtΩ
−1
vv,jΩvu,j −4q

′
it

(
θ̂ − θ

)
.
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Consequently,

T−
1
2

[rT ]∑
t=1

4Ŝũit = T−
1
2

[rT ]∑
t=1

uit −
1

N

N∑
j=1

T−1
2

[rT ]∑
t=1

ujt

− T−1
2x′i[rT ]Ω

−1
vv,iΩvu,i

+
1

N

N∑
j=1

T−
1
2x′j[rT ]Ω

−1
vv,jΩvu,j − T

−1
2 q′i[rT ]

(
θ̂ − θ

)

= T−
1
2Sui[rT ] −

1

N

N∑
j=1

T−
1
2Suj[rT ] − T

−1
2x′i[rT ]Ω

−1
vv,iΩvu,i

+
1

N

N∑
j=1

T−
1
2x′j[rT ]Ω

−1
vv,jΩvu,j − T

−1
2 q′i[rT ]APIMA−1

PIM

(
θ̂ − θ

)

⇒ Bu,i(r)−
1

N

N∑
j=1

Bu,j(r)−B′v,i(r)Ω
−1
vv,iΩvu,i

+
1

N

N∑
j=1

B′v,j(r)Ω
−1
vv,jΩvu,j − h

′
i(r)Ψ

= σu·v,iwu,i(r) + λuv,iWv,i(r)−
1

N

N∑
j=1

[
σu·v,jwu,j(r) + λuv,jWv,j(r)

]
−W ′v,i(r)Ω

1
2 ′
vv,iΩ

−1
vv,iΩvu,i +

1

N

N∑
j=1

[
W ′v,j(r)Ω

1
2 ′
vv,jΩ

−1
vv,jΩvu,j

]
− h′i(r)Ψ

= σu·v,iwu,i(r)−
1

N

N∑
j=1

[
σu·v,jwu,j(r)

]
− h′i(r)Ψ

= σu·v,i

wu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

σu·v,i
− σ−1

u·v,ih
′
i(r)Ψ


= σu·v,i · P̂i(r)
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where

P̂i(r) = wu,i(r)−
1

N

N∑
j=1

σu·v,jwu,j(r)

σu·v,i
− σ−1

u·v,ih
′
i(r)Ψ

= wu,i(r)−
1

N

N∑
j=1

σu·v,jwu,j(r)

σu·v,i

− σ−1
u·v,ih

′
i(r)

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×

∫ 1

0

N∑
i=1

hi(r)

σu·v,iwu,i(r)− 1

N

N∑
j=1

σu·v,jwu,j(r)

 dr
 .

In sum,

T−
1
2

[rT ]∑
t=1

4Ŝũit = T−
1
2 Ŝũi[rT ] =⇒ σu·v,iP̂i(r). (3.10)

Next, write σ̂2
u·v,i in terms of T−

1
2 Ŝũ

i[rT ]
. The kernel function used here is the Bartlett

kernel. Define

Kts = k

(
|t− s|
M

)
42Kts = (Kts −Kt,s+1)− (Kt+1,s −Kt+1,s+1).

Simple algebra gives

σ̂2
u·v,i = T−1

T∑
j=2

T∑
h=2

k

(
|j − h|
M

)
4Ŝũij4Ŝ

ũ
ih

= T−1
T∑
j=2

4Ŝũij T∑
h=2

Kjh4Ŝũih

 = T−1
T∑
j=2

ajbj

where

aj = 4Ŝũij , bj =
T∑
h=2

Kjh4Ŝũih.
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Using summation by parts we can write

T∑
t=2

atbt =

 T∑
s=1

as

 bT − a1b2 +
T−1∑
t=2

[(
t∑

s=1

as

)
(bt − bt+1)

]
(3.11)

which gives

σ̂2
u·v,i = T−1ŜũiT

T∑
h=2

KTh4Ŝũih − T
−1Ŝũi1

T∑
h=2

K2h4Ŝũih

+ T−1
T−1∑
j=2

Ŝũij
 T∑
h=2

Kjh4Ŝũih −
T∑
h=2

Kj+1,h4Ŝũih


We need to apply (3.11) to the sums over h:

(1)
T∑
h=2

KTh4Ŝũih =
T∑
h=2

4ŜũihKTh = ŜũiTKTT − Ŝ
ũ
i1KT2 +

T−1∑
h=2

Ŝũih
(
KTh −KT,h+1

)

(2)
T∑
h=2

K2h4Ŝũih =
T∑
h=2

4ŜũihK2h = ŜũiTK2T − Ŝũi1K22 +
T−1∑
h=2

Ŝũih
(
K2h −K2,h+1

)

(3)
T∑
h=2

Kjh4Ŝũih =
T∑
h=2

4ŜũihKjh = ŜũiTKjT − Ŝ
ũ
i1Kj2 +

T−1∑
h=2

Ŝũih
(
Kjh −Kj,h+1

)

(4)
T∑
h=2

Kj+1,h4Ŝũih =
T∑
h=2

4ŜũihKj+1,h

= ŜũiTKj+1,T − Ŝũi1Kj+1,2 +
T−1∑
h=2

Ŝũih
(
Kj+1,h −Kj+1,h+1

)
.
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Plugging in these expressions to σ̂2
u·v,i gives

σ̂2
u·v,i = T−1ŜũiT

ŜũiTKTT − Ŝũi1KT2 +
T−1∑
h=2

Ŝũih
(
KTh −KT,h+1

)
−T−1Ŝũi1

ŜũiTK2T − Ŝũi1K22 +
T−1∑
h=2

Ŝũih
(
K2h −K2,h+1

)
+T−1

T−1∑
j=2

Ŝũij

ŜũiTKjT − Ŝũi1Kj2 +
T−1∑
h=2

Ŝũih
(
Kjh −Kj,h+1

)
−T−1

T−1∑
j=2

Ŝũij

ŜũiTKj+1,T − Ŝũi1Kj+1,2 +
T−1∑
h=2

Ŝũih
(
Kj+1,h −Kj+1,h+1

)
= T−1ŜũiTKTT Ŝ

ũ
iT + T−1

T−1∑
h=2

ŜũiT (KTh −KT,h+1)Ŝũih

+T−1
T−1∑
j=2

Ŝũij(KjT −Kj+1,T )ŜũiT + terms related toŜũi1

+T−1
T−1∑
j=2

T−1∑
h=2

Ŝũij
[
(Kjh −Kj,h+1)− (Kj+1,h −Kj+1,h+1)

]
Ŝũih

= T−1
T−1∑
j=2

T−1∑
h=2

Ŝũij4
2KjhŜ

ũ
ih + T−1

T−1∑
j=2

Ŝũij(KjT −Kj+1,T )ŜũiT

+T−1
T−1∑
h=2

ŜũiT (KTh −KT,h+1)Ŝũih + T−1ŜũiTKTT Ŝ
ũ
iT + terms related toŜũi1

Note that the terms related to Ŝũi1 vanish as T →∞, because T−
1
2 Ŝũi1 converges to σu·v,iP̂i(0),

which equals zero. For the Bartlett kernel we have

Kts = k

(
|t− s|
M

)
=

{
1− |t−s|M , |t− s| 6M

0 |t− s| > M

Then it follows that

Kts −Kt,s+1 =


0, t 6 s−M
1
M , s+ 1−M 6 t 6 s

− 1
M , s+ 1 6 t 6 s+M

0, t > s+M + 1
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Kt+1,s −Kt+1,s+1 =


0, t 6 s−M − 1
1
M , s−M 6 t 6 s− 1

− 1
M , s 6 t 6 s− 1 +M

0, t > s+M

and

42Kts =


2
M , t = s

− 1
M , t = s±M

0, otherwise

Using these result we have

σ̂2
u·v,i = T−1

 2

M

T−1∑
j=2

ŜũijŜ
ũ
ij −

1

M

T−M−1∑
j=2

(
Ŝũi,j+M Ŝũij + ŜũijŜ

ũ
i,j+M

)
+ T−1

− 1

M

T−1∑
j=T−M

ŜũijŜ
ũ
iT −

1

M

T−1∑
h=T−M

ŜũiT Ŝ
ũ
ih


+ T−1ŜũiT Ŝ

ũ
iT + terms related to Ŝũi1

=
2

MT

T−1∑
j=2

ŜũijŜ
ũ
ij −

2

MT

T−M−1∑
j=2

ŜũijŜ
ũ
i,j+M −

2

MT

T−1∑
j=T−M

ŜũijŜ
ũ
iT

+ T−1ŜũiT Ŝ
ũ
iT + terms related to Ŝũi1,

where the last term follows from the fact that KTT = 1.

Under fixed-b asymptotics we set M = bT where b ∈ (0, 1] is held fixed as T → ∞.

Plugging in bT for M into σ̂2
u·v,i gives

σ̂2
u·v,i =

2

bT

T−1∑
j=2

T−
1
2 ŜũijT

−1
2 Ŝũij −

2

bT

T−bT−1∑
j=2

T−
1
2 ŜũijT

−1
2 Ŝũi,j+M

− 2

bT

T−1∑
j=T−bT

T−
1
2 ŜũijT

−1
2 ŜũiT + T−

1
2 ŜũiTT

−1
2 ŜũiT

+terms related to T−
1
2 Ŝũi1.
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Using (3.10) and the continuous mapping theorem gives

σ̂2
u·v,i ⇒

2

b

∫ 1

0

[
σu·v,iP̂i(r)

]2
dr − 2

b

∫ 1−b

0
σu·v,iP̂i(r)σu·v,iP̂i(r + b)dr

−2

b

∫ 1

1−b
σu·v,iP̂i(r)σu·v,iP̂i(1)dr +

[
σu·v,iP̂i(1)

]2
= σ2

u·v,i

[
2

b

∫ 1

0
P̂ 2
i (r)dr − 2

b

∫ 1−b

0
P̂i(r)P̂i(r + b)dr − 2

b

∫ 1

1−b
P̂i(r)P̂i(1)dr + P̂ 2

i (1)

]
= σ2

u·v,iQb
(
P̂i(r)

)
where

Qb

(
P̂i(r)

)
=

2

b

∫ 1

0
P̂ 2
i (r)dr − 2

b

∫ 1−b

0
P̂i(r)P̂i(r + b)dr − 2

b

∫ 1

1−b
P̂i(r)P̂i(1)dr + P̂ 2

i (1).

Therefore, based on σ̂2
u·v,i, the fixed-b limit of the covariance matrix is given by

V̂PIM ⇒

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×


N∑
i=1

σ2
u·v,iQb

(
P̂i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

=VPIM · Q̂(b)

where

Q̂(b) = V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×


N∑
i=1

σ2
u·v,iQb

(
P̂i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

.
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This implies that

Ŵ ⇒
χ2
q

Q̂(b)
,

and for q = 1,

t̂⇒ Z√
Q̂(b)

.

Lastly, consider the result for the fixed-b test statistics. Similar as above and Vogelsang

and Wagner [2014], σ̃2
u·v,i ⇒ σ2

u·v,iQb
(
P̃i(r)

)
where Qb(·) is the same as above, and P̃i(r) is

similar as P̂i(r) but its component is from the further augment regression (3.9). Therefore,

the fixed-b limit of the covariance matrix is such that

ṼPIM ⇒

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×


N∑
i=1

σ2
u·v,iQb

(
P̃i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

=VPIM · Q̃(b)

where

Q̃(b) = V −1
PIM

∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

×


N∑
i=1

σ2
u·v,iQb

(
P̃i(r)

)∫ 1

0

[
Ḧi(1)− Ḧi(r)

] [
Ḧi(1)− Ḧi(r)

]′
dr

×∫ 1

0

N∑
i=1

hi(r)h
′
i(r)dr

−1

.

This implies that

W̃ ⇒
χ2
q

Q̃(b)
,
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and for q = 1,

t̃⇒ Z√
Q̃(b)

.
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