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ABSTRACT 

TORQUE GENERATION DURING THE UNSTEADY EXPANSION PROCESS IN CURVED 
CHANNELS OF A WAVE DISC ENGINE 

By 

Raul Quispe-Abad 

Worldwide demand for power has been growing exponentially, but its production is 

causing undeniably negative effects; environmental regulations are changing and becoming 

stricter. The desire for economical but environmentally friendly engines is focusing on toward 

alternative methods to produce power. “The Wave Disc Engine” (WDE) is a proposed 

technology to surpass these requirements. The reduction of mechanical parts in the drive train 

compared with an IC engine and the use of CNG or any other renewable fuel gas make this WDE 

an attractive technology to generate power. This new engine concept is a radial rotor in which 

the typical processes of an Internal Combustion Engine (Compression, Combustion, and 

Expansion) are realized. Several prototypes were built between 2011 and 2013. For torque 

production, the unsteady expansion process of outflowing combusted gases is harnessed. This is 

a new engine concept with incipient research, investigating the mechanism to generate power 

under unsteady-state conditions. This research work focuses on determining factors that 

contribute to produce torque in radial rotor channels under unsteady-state conditions. 

Computational fluid dynamic numerical simulations and analytical method were employed in 

this investigation. 

The study initially focuses on the influence of channel parameters (width, height and 

length); and concludes that channel length and pressure side area all influence torque generation. 

Both length and pressure side area combine to raise the efficiency and power generated. 



Because of the unsteady expansion of the gas, an alternative approach was used to 

evaluate the performance. The Exergetic efficiency produced results for the channel geometry 

and conditions tested in the range of 31 to 67%. In addition to that, the approach revealed 

between 82 to 89% of the exergy, initially contained in the channel, still has the potential to be 

converted into torque in subsequent stages. 

In addition, a zero dimensional macroscopic approximate balance equation was derived 

based on the first law of thermodynamics to calculate the unsteady generated work from the 

unsteady expansion process. Results show prolonging the duration of unsteady expansion 

process enhances the isentropic extracted work toward the maximum value. In addition to that, 

the gas expands more efficiently at lower pressure ratios. 

The impact on the tangential force by the parameters: beta angle, area of influence, and 

static pressure on pressure and suction sides of a constant cross-section channel, are investigated. 

The first two parameters change inversely but when combined show similar values at each 

pressure and suction wall location. Also, most of the generated torque was found in zones near 

the channel outlet. 

Furthermore, the torque generation composed of the action of two effects: the change of 

the angular momentum of the fluid within channel and the outflow rate of the angular 

momentum at the channel outlet is investigated. These two components are referred as unsteady 

and steady effects respectively based on the mechanism to produce torque. Results show the 

torque production benefits when the channel opens quickly. The increase of rotational velocity 

approximates the quick opening. Unsteady effects produce a significant part of the generated 

torque and the steady effect can be small at high speed. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

“The Wave Disc Engine” has been considered an attractive technology to produce power. 

Several reasons could point out to make this a very promising technology. The use of this new 

Wave Disc Generator Technology was predicted to be as 74 million low-cost WDG hybrid 

vehicles on American roads, using CNG or any other renewable fuel gas, and the impact of this 

would save 3.5 million barrels of imported oil per day [1]. Another reason was the reduction of 

mechanical parts in the drive train of this new technology compared with an IC engine. 

Additionally, the supremacy of unsteady over steady flow as a mechanism of mechanical energy 

transfer in fluid flows where there is not combustion and body forces [2]. 

Since this is a new engine concept with little knowledge of the mechanism to generate 

power under unsteady-state conditions, based on the knowledge of the author, this research work 

focuses on the investigation of the unsteady expansion process to produce torque in radial rotor 

channels. 

 

1.2. Structure of the Dissertation 

This dissertation is a compilation of several investigations to determine factors that contribute to 

produce torque in radial rotor channels under unsteady state conditions. It starts reviewing 

previous work investigating the mechanism to generate power under unsteady conditions. As an 

extension of this, some previous work on re-utilization of burned gases is presented. Chapter 2 

discusses the influence on torque generation by varying channel geometric parameters. Chapter 3 

proposes exergetic approach to evaluate the performance of an unsteady expansion process 

generating torque and characterizes losses and remaining useful exergy. Chapter 4 analyzes the 
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unsteady expansion process based on the first law of thermodynamics using an approximate 

derived equation. Chapter 5 investigates pressure distribution on channel walls as a result of 

instant and gradual opening conditions. In addition, force distribution as the result of geometric 

parameter (beta angle distribution at pressure and suction sides) and channel outlet opening 

method, is included in the investigation. Also, the combination of line-contour orientation 

(expansion wave) with channel length increase (θ angle), is discussed. Chapter 6 discusses the 

torque generation composed of two terms: rate of change and outflow rate of the angular 

momentum to give understanding of the working mechanisms in torque generation. Chapter 7 

provides conclusions and recommendation for future work. 

 

1.3. Methods 

This research was accomplished with data generated from two sources: numerical simulations 

and an approximate derived equation. Numerical simulations were performed using the 

commercial software, fluent with 2- and 3-dimensional cad models. Chapter 2 results are based 

on a 2-dimensional cad model in which boundary layer effects on top and bottom are not taken 

into account, only those from pressure and suction sides of the channel. Results in Chapters 3, 5 

and 6 are based on a 3-dimensional cad model. Details of numerical simulation set up are given 

in Appendix D. The working fluid used throughout the entire dissertation was air that follows the 

ideal gas law. 

 

1.4. The Inspiration for the Wave Disc Engine idea 

The idea for the WDE came to be through a series of well-developed modifications. The 

axial wave rotor has been used widely in its four-port version: straight channels with the flow 

going in and out through the rotor in axial direction; one of the applications was as a topping 
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device for gas turbine cycles (Figure 1-1(a)). This design presented a disadvantage during the 

scavenging process due to the flow leaving in axial direction, causing recirculation of one-burned 

gases [3]. A substitute configuration was proposed by Jenny and Bulaty, where the rotor had a 

conical shape with oblique channels and the flow entering and leaving the channels at the front 

and rear, respectively, and the axial effect still highly interferes with the scavenging process [3]. 

A breakthrough in new configurations, locating the combustion process inside the channels of 

the wave rotor, was later proposed to simplify the porting (Figure 1-1 (b)) [3]. According to 

literature, NASA’s wave rotor research was focused on the concept of combustion inside of 

wave rotor channels [3], [4], [5] . Further modification was proposed in 2004 [3]; this was the 

introduction of the Wave Disc Engine (WDE) concept (Figure 1-1 (c)). The WDE is a radial-

flow rotor concept which addresses the uncorrected imperfection in the second modification of 

the wave rotor (Figure 1-1(b)). Thus, this new design will improve both the scavenging process 

through centrifugal forces, and the self-aspirating advantage. Initially the idea of radial rotor with 

straight channel was suggested, then, curved radial channels were proposed, due to their 

advantages over straight channels. One benefit is the greater length which might be allocated 

with the same disc diameter. Curved channels allow the adjustment of the inlet and outlet 

channel angles to improve the work extraction [3]. The compression process is accomplished 

within the channel by compression waves, and so this process can be done without a compressor. 

Another idea was the WDE attached to an external turbine, a proposal configured to enhance the 

work extraction of the exhaust gases (Figure 1-1 (d)). 
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Figure 1-1: Steps toward the WDE 
 

Another configuration envisioned is a compact WDE with two turbochargers (Figure 

1-2). 

This research project at the MSU turbomachinery Lab, to build a prototype, was funded 

by ARPA-E from January 2010 to January 2012, and then extended to May 2013 with $2.5 and 

$0.5 million, respectively, and since inception investigation have been dedicated to the research 

of this proposed engine concept. 

 
 

(a) (b) 

 
 

(c) (d) 
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Figure 1-2: Future compact configuration of the WDE connected to two turbochargers 
 

1.5. Working Principles of the WDE 

This new engine concept is a radial rotor in which the typical processes of an Internal 

Combustion Engine (Intake, Compression, Combustion, and Expansion) are executed. The intake 

process delivers the fresh air-fuel mixture and fills the channel while creating turbulence to 

augment the mixing process before ignition of the mixture. The onset of this process overlaps the 

scavenging period and the mass flow rate of the incoming fresh mixture is intensified due to the 

suction effect produced by the exhaust gases (Figure 1-3 (a)). The outlet of the channel then 

begins to close and at that time the fresh mixture is ready to fully fill the channel (Figure 1-3(b)). 

The later stage of this process also overlaps the compression stage when the outlet port of the 

channel is fully closed (Figure 1-4(a)). Fresh mixture still enters the channel until it is fully 

closed. 
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Figure 1-3: Overlap period for early Intake with Scavenging period 
 

The Compression process starts when the outlet port quickly closes. A compression wave 

or shock wave is created that travels back toward the inlet port and compresses unsteadily the 

fresh mixture entering the channel (Figure 1-4(b)). The degree of compression by the wave 

depends on the velocity of the incoming flow into the channel. 

Figure 1-4: Intake process and early stage of Compression process 
 

  
(a) (b) 

  
(a) (b) 
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The next process is combustion. The outlet and inlet ports of the channel are closed, and the 

combustion happens in an enclosed channel. Therefore, it is called constant volume combustion 

(Figure 1-5 (a) and (b)). The time available for combustion is constrained by the geometry of the 

engine and the rotational velocity. Thus, complete combustion of the mixture is limited by this 

time allotted. 

Figure 1-5: Beginning and end of the Combustion process 
 

The unsteady expansion is the final process in the cycle and torque generation begins with 

gradual opening of the channel outlet (Figure 1-6(a)). This process is limited as well by the 

available geometric time of the engine at a particular rpm. The scavenging overlaps the intake 

process and begins; following a short interval, the front of the expansion wave strikes the inlet 

wall of the channel (Figure 1-6 (b)). 

 

  
(a) (b) 
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Figure 1-6: Unsteady expansion process 
 

Figure 1-8 shows an example of the available geometric time per cycle.  The available time was 

calculated based on the WDE-II rotor design built by the WDE research group at MSU (Figure 

1-7) and is valid only for this particular rotor. It appears the available geometric time for 

Combustion and Expansion + scavenging + Inlet (P0) are 68.6% and 24.4%, respectively, of the 

total cycle time. These percentages are kept constant as the rpm increases but the absolute time 

for each processes decreases. 

 

 

 

 

 

  
(a) (b) 
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Figure 1-7: (a) WDE-II Rotor designed and built by the MSU WDE research group & (b) space 
distribution for processes 
 

Figure 1-8: Geometric time available per cycle for the Unsteady Expansion Process for a 2 cycle 
per revolution WDE-II Rotor 
 

  

(a) (b) 
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1.6. Previous work on the WDE 

1.6.1. Thermodynamic Cycle of the WDE 

A transient thermodynamic model was proposed to explicitly calculate the cycle 

efficiency of the WDE. The formula was stated to calculate the work produced by the burned gas 

during the expansion process [6]:  

𝑊𝑊𝑒𝑒 = −� 𝑚̇𝑚𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑡𝑡𝑡𝑡𝑡𝑡.𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑡𝑡3 − 𝐸𝐸𝑡𝑡4
𝑡𝑡4

𝑡𝑡3
  

Where 𝑡𝑡3 and  𝑡𝑡4 represent the initial and final state of the pure expansion process. This equation 

was used to derive the final expression of the thermal efficiency in terms of mass-average 

temperature. 

𝜂𝜂 = 1 − 𝛾𝛾
𝑇𝑇�4 − 𝑇𝑇�1
𝑇𝑇�3 − 𝑇𝑇�2

 

The unsteadiness of the expansion process was considered in this formula but the 

expression was changed to have as a function of mass-average temperature values. 

 

1.6.2. Mechanism for Torque Generation 

Previous work on studying the mechanism was presented by Sun [7]. It stated the torque 

generation principle for a traditional steady turbine is not valid for the WDE operating in 

unsteady flow conditions.  This principle refers to a fluid particle passing through a blade 

passage; centrifugal force creates a pressure gradient toward the center of the curvature; as a 

result of this, force is applied to the blade. According to Newton’s Law, the normal direction for 

steady state conditions: 

𝜕𝜕p
𝜕𝜕𝜕𝜕

=
𝜌𝜌.𝑉𝑉𝜃𝜃2

R
 

(1-1) 
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The principle was tested for steady and unsteady conditions using the concept from 

Equation (1-1). Unsteady condition test did not prove the validity in the two channel shapes 

tested. Thus, it was concluded the steady state principle does not apply for torque generation 

under unsteady state conditions [7] and more factors need to be considered for torque generation 

mechanism. 

Another topic in this study was the direction of the pressure gradient when the expansion 

wave travels inside the channel [7]. A positive pressure gradient is generated when the expansion 

wave moves toward the inlet and the pressure decreases from the inlet to the outlet. A negative 

pressure gradient generates an opposite effect. Conclusions were summarized in Table 1-1 and 

blade angles refers to the inlet or outlet angles of the blade [7]. 

Table 1-1: General principle of torque generation according to the travelling direction of 
expansion wave [7] 
 

Another conclusion from this research [7], was the influence of the outlet opening in 

channel geometries. The efficiency of the expansion increased with the extension of the 

expansion duration, and these higher values were the result of having a smaller outlet opening. 

This was defined as the smallest distance from the trailing upper wall to the lower wall of the 

suction surface.  
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1.6.3. Unsteady Expansion in channels 

Previous work shows efficiency is reduced for two primary reasons: Kinetic Energy 

leaving the channel outlet and incomplete work extraction from the burned gases [7]. Preliminary 

research was conducted for a hypothetical variation of the average density in the channel, 

considering different time duration of the expansion process (Figure 1-3). In this figure, the 

magnitude of the outlet velocity in the channel decreases as the duration time of the expansion 

process increases. 

A work extraction investigation by Sun [7] concludes greater work is generated in the 

WDE during the expansion process. The work generated is negligible in other WDE processes 

during the CFD simulation. Therefore, focusing on the unsteady expansion process for work 

generation is valuable. For this investigation, the performance of channel geometry (efficiency) 

was calculated using the energy heat addition as ideal (maximum) work: the net internal energy-

the difference between initial and final state of the expansion process-through the patching of 

pressure and temperature. 

Sun [7], focusing on the CFD investigation of unsteady expansion, concluded that, in a 

single channel, the source of losses were primarily from Kinetic Energy leaving the channel, and 

under-expansion of exhaust gases. The next finding was that convergent channels show the best 

performance, from 2.2% to 3.3%. 

 

1.6.4. Re-utilization of exhaust gases 

Options to re-utilize exhaust gases to improve engine efficiency are found in the 

literature: 
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1.6.4.1. Return channel 

Re-directing the pressure and kinetic energy of the gases for additional work extraction, 

to take advantage of the exhaust gases during the unsteady expansion, to the entrance of a lower 

pressure contiguous channel, is the return channel’s purpose. 

Several works have been done on this concept. A numerical study by Sun [7] found that 

efficiency increases 56.1% by re-using the exhaust energy in a return channel. This study was 

performed using a convergent channel, and the comparison with a base-line design configuration 

is provided in Table 1-2. 

Table 1-2: Results from numerical simulation [7] 

 

1.6.4.2. Parallel row of turbine blades 

A MSU research team began investigating this new concept in 2010, sponsored by 

ARPA-E (Advanced Research Projects Agency-Energy) of the US Department of Energy. Using 

CFD, one study was accomplished for the WDE with the combination of re-injection passage 

and a second row of turbine blades [8]. This configuration delivered the highest efficiency (5.5% 

efficiency), but which of them made the greatest contribution was not stated. However, the 

exhaust gases did not yet fully expand within the external blade passages, and adding additional 

rows of turbine blades was suggested. 
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Another CFD investigation for two stage rotor configuration (first stage: a convergent 

channel/ second stage: a turbine blade) with guide vanes between them, found the efficiency 

increased from 3.96% to 11.01% for a 2 cycles per rotation engine [7]. See Table 1-3 for 

comparison with a single stage rotor (only convergent channel). 

Table 1-3: Comparison of a single stage and 2 stage rotors WDE 
 

A multi-stage serial radial turbine, the hybrid wave engine, was investigated by Dyntar 

[9]. This proposed configuration was planned for use in MEMS technology (micro engines). The 

parallel flow configuration (Figure 1-9(a)) was dismissed because the mass flow rate of exhaust 

gases from the gas generator was high and therefore, not suitable for this application. The high 

flow rate passing through the blades do not properly transfer the energy into torque. Thus, this 

work proposed the serial flow configuration, where the exhaust gases expand in two steps in the 

same set of blades (Figure 1-9 (b)). The flow experiences two stages of expansion: at high-

pressure and low-pressure, and the total maximum efficiency reported was 10% [9]. 
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Figure 1-9: Parallel and Serial flow configuration of a radial turbine. Source [9] 
 

1.7. Expansion efficiency 

The isentropic efficiency of a turbine is one performance factor criteria to evaluate the 

performance of an expansion process, and is calculated in terms of the work done by the fluid 

passing through the blade passage [10]: 

𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
=

𝑊𝑊𝑎𝑎

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 

(1-2) 

Equation (1-2) is used in turbomachines when the expansion process is at steady state 

conditions; this means all fluid particles passing through the turbine undergo the same 

thermodynamic conditions from inlet to outlet.  

Previous work [7] defined a method to evaluate the unsteady expansion process: 

𝜂𝜂 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

=
𝑊𝑊𝑎𝑎

𝑄𝑄
 

(1-3) 

The heat addition is calculated based on [7]: 

𝑄𝑄 = 𝑈𝑈𝑓𝑓 − 𝑈𝑈𝑖𝑖 (1-4) 

  
(a) Parallel flow configuration (b) Serial flow configuration 
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Where 𝑈𝑈𝑖𝑖 is the internal energy in the channel before patching and 𝑈𝑈𝑓𝑓 is after patching.  
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CHAPTER 2. INFLUENCE OF CHANNEL PARAMETERS: WIDTH, 

HEIGHT AND LENGTH AT CONSTANT CROSS-SECTION CHANNELS 

This section determines torque generation influence by changing geometric parameters of 

cross-section (width and height) and length of the channel. 

All channels initiate the unsteady expansion process at the same total energy. Due to the 

geometric parameter change, the kinetic energy of the fluid within the channel might vary but 

does not affect the results because they are negligible. Thus, the internal energy is the influential 

factor to preserve identical initial conditions of the fluid within the channel. The working fluid is 

air which follows the ideal gas law, and because of that, the internal energy contained in the 

channel depends on two factors: temperature and mass. To meet these two conditions, the 

unsteady expansion process in all cases starts at the same temperature and pressure (2100 [K] 

and 709275 [Pa], respectively). There is an additional requirement to keep the same mass: 

channel volume must be identical; to achieve this geometrical state, the length of the channel was 

varied to adjust to the volume-goal value. 

Additional parameters such as outlet blade angle (βout), tip speed (U), outer and inner 

radiuses (OR and IR) were kept constant (Figure 2-2(b)). Table 2-1 depicts a summary of the 

geometry characteristics for each case. All cases had channels rotating at 10,000 rpm, with 

channel outlet instantly opening. 

Equation (1-3) was used to evaluate the performance of the unsteady expansion process 

in all cases. 

In Table 2-1, cases 1 to 3 show the variation of height when theta angle is increased with 

channel width kept constant; and thus channel length becomes longer. The channel height was 
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reduced to keep the volume-goal value constant. Figure 2-2 (a) schematically portrays the 

changes in Table 2-1 with the application of theta and beta angles (Figure 2-2(b)). 

Table 2-1: Geometry conditions for each constant cross-section channel 
 

For cases 1 to 3, the expansion duration time was extended as theta increased (Figure 2-3) 

and this is linked to the channel length increase. The length increase is compared with respect to 

theta=40deg case-1 and is as follows: 9.2% and 18.5%, respectively. The same trend is observed 

in travel-time of expansion wave to reach the channel inlet wall (Figure 2-4 (b)), and as theta 

value increases, the head of the expansion waves has a greater distance to travel. Additionally, 

the combination of length increase with height decrease resulted in 1.6% and 3.6% rise of 

pressure side area with respect to case-1, respectively (Figure 2-1). However, suction side area 

decreased in 1.4% and 3.0% respectively. The results of increase and decrease of areas did not 

produce an important improvement on the net tangential force. Thus, those cases (1 to 3) 

produced similar values of expansion efficiency (Figure 2-4(a)). The biggest increase in 

efficiency was 0.7%. A gain based on extended duration of expansion process was counteracted 

by the reduced channel height to generate torque. 
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Figure 2-1: Comparison of channel outlet, pressure side and suction side areas with respect to 
reference case-1. 
 

Figure 2-2: (a) Constant cross-section channel configurations for cases-1 to 3 and (b) meaning of 
θ and βout angles. 
 

In the following cases, (4 and 5) was considered the extension of the channel length but 

with the same channel height as case-1 (reference case). The changing parameter was the 

channel width. As a result of this, the areas of the pressure side were increased 11.3% and 23% 

with respect to the base line case, respectively. Also, the areas of the suction side were increased 

8.6% and 17.3%, respectively. In addition, the expansion duration time and the EWTT were 

 

  
(a) (b) 

IR OR 
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enlarged (Figure 2-3 and Figure 2-4 (b)). Another parameter to point out is expansion efficiency 

with an improvement of 1.4% and 3.7% in respect to the base line case-1 (Figure 2-4). The 

reduced width did not diminish significantly the case with the highest efficiency (3.7%) due to 

the boundary layer affecting more cross-sectional area if case-5 is compared to case-3. 

Figure 2-3: Duration of expansion process for constant cross-section channels varying their 
geometric parameters (Var =geometric parameter changed) 
 

The last change in geometric dimension of the cross-section pertains to case-6, with the 

same theta value as the base line case-1, but with the width reduced to increase the height value 

and still preserve the volume-goal value. The modifications produced an increase in pressure and 

suction side areas of 13.1% and 13.6%, respectively. Results in Figure 2-4(a) show an 

improvement of 0.62%, in expansion efficiency. However, the duration of expansion process and 

EWTT carry the same value as in case-1 (Figure 2-4(b)). The contribution of additional pressure 

side area was not substantial enough to generate extra torque if the duration of expansion process 

is not extended. 

The pressure side area increase produces a rise in the net tangential force if this condition 

is met: PPS > PSS. The rise of θ angle or channel length results in pressure side area increase even 
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if height is either reduced or kept constant. However, the reduced height produced lower values 

of area increase. For example, 3.6% and 23.5% were the results for case-3 and -5 respectively. 

The rise of the channel length extends the duration time of the unsteady expansion 

process and the head of the expansion wave will propagate longer distances. Thus, the duration 

increase of the expansion process contributes to extend the application time of the tangential 

force on the pressure and suction sides. 

Results show that the highest efficiency happened when the duration time and the 

pressure side area, were increased. Therefore, the length of the channel and pressure side area, 

influence the expansion efficiency. Both parameters combine to raise efficiency. A method to 

improve it is by increasing geometric parameters: θ angle (channel length) and channel height. 

Figure 2-4: (a) Expansion efficiency [%] and (b) Expansion wave travel time to reach channel 
inlet (EWTT) [s] for constant cross-section channels varying their geometric parameters. 
 

Results of energy generated in Figure 2-5(a) refer to the gas expansion of one channel, 

and this value is translated into a rotor’s specific number of channels. Thus, these results are 

interpreted as the power generated by the engine rotor and values are plotted in Figure 2-5. 

  
(a) (b) 
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A note from Figure 2-4(a) is concerned with the expansion efficiency results in which 

low values are based on the criterion of the internal energy change. Using a different approach to 

evaluate the unsteady expansion process is desirable, and this will be the next chapter topic. 

Figure 2-5: (a) Energy generated by one channel, (b) Power generated by engine rotor of 24 
channels rotating at 10,000 rpm 
 

  

  
(a) (b) 
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CHAPTER 3. EXERGY ANALYSIS OF THE UNSTEADY EXPANSION 

PROCESS 

3.1. The necessity of an alternative method to evaluate the expansion efficiency 

Typically for steady state processes in turbomachines, turbine or compressor efficiency is 

calculated based on the idea a unit of mass goes from an initial state at the inlet to final state at 

the outlet. All fluid elements experience the same trajectory in the thermodynamic diagram 

during a specific process (expansion or compression). Based on these conditions, the actual and 

the ideal (maximum) work are determined to calculate the efficiency. In the case of the WDE 

configuration for the expansion process, gases only leave the channel during the expansion and 

thus each fluid element traverses different paths along the channel. Therefore, every fluid 

particle undergoes different thermodynamic conditions. The application of the criterion above 

might give misleading results in the evaluation of the performance of the device. 

In previous research [7], the performance of a single channel was approached based on 

the internal energy increased due to patching; this was considered as a heat addition. Thus, the 

work generated was compared to this value. 

Up to now, all efficiency concepts were based on the energy approach of the First Law of 

thermodynamics. An alternative approach to evaluate the efficiency based on the combination of 

the First and Second law of thermodynamics, and this method is supported by Dincer and Rosen 

[11] (2013), Rosen and Etele [12] (2004), and many other researchers. Thermodynamic losses 

happening inside the system usually are not appropriately identified and evaluated with the 

energy analysis approach [11], and especially when the system is so highly unsteady it requires 

special attention. Exergy approach assists in overcoming the drawbacks of the energy analysis 

[11]. 
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3.2. Exergy analysis of a single channel 

Exergy is defined as: “… the maximum theoretical work obtainable from an overall 

system consisting of a system and the environment as the system comes into equilibrium with the 

environment (passes to the dead state)” [13]. Exergy concept does not specify the method to 

generate the work-either steady or unsteady-but only refers to the maximum potential associated 

with the initial state respect to a reference state (dead state). The dead state defined through all of 

this research is T0=300 [K] and p0= 101325 [Pa]. Exergy (E) is calculated based on Equation 

(3-1) [13]: 

𝐸𝐸 = (𝑈𝑈 − 𝑈𝑈0) − 𝑝𝑝0(𝑉𝑉 − 𝑉𝑉0) − 𝑇𝑇0(𝑆𝑆 − 𝑆𝑆0) + 𝐾𝐾𝐾𝐾 + 𝑃𝑃𝑃𝑃 (3-1) 

For the case of a control volume in which fluid properties are not uniform, equation (3-1) 

is written in Integral form: 

𝐸𝐸 = � �𝜌𝜌(𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

−�𝜌𝜌(𝑢𝑢0 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

 �− 𝑝𝑝0 � �𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

−  �𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶0

 �

−  𝑇𝑇0  � �𝜌𝜌(𝑠𝑠 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

−�𝜌𝜌(𝑠𝑠0 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

 � + �𝜌𝜌�
�𝑉𝑉�⃗ �

2

2
�𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶

+ �𝜌𝜌(𝑧𝑧 − 𝑧𝑧0)𝑔𝑔𝑔𝑔𝑉𝑉
𝐶𝐶𝐶𝐶

 

And considering that the control volume does not change and all cell elements in the 

channel keep the same z-coordinate, it yields: 
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𝐸𝐸 = � �𝜌𝜌(𝑢𝑢 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

−�𝜌𝜌(𝑢𝑢0 − 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

 �

−  𝑇𝑇0  � �𝜌𝜌(𝑠𝑠 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

−�𝜌𝜌(𝑠𝑠0 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

 �

+  �𝜌𝜌�
�𝑉𝑉�⃗ �

2

2
�𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶

 

(3-2) 
 

All terms in Equations (3-1) and (3-2) are based on a stationary control volume chosen 

according to Figure 3-1. All variables with the subscript “0” are calculated at dead state 

conditions. Also, the subscript “ref” means the variable is calculated at reference values of 

Temperature (288.16 [K]) and absolute pressure (101325 [Pa]).   

As a starting point for this single channel analysis, Exergy was calculated based on 

Equation (3-1) and the gas initial conditions in the channel at different pressure ratios and results 

are plotted in Figure 3-2. These values should be considered as the upper limit value (maximum 

work) in the expansion process based on Exergy definition stated above. Thus, in Figure 3-2, the 

blue triangles are the maximum expected work at every specific pressure ratio for this channel. 

Then, an expansion case is simulated numerically for the same geometry and gas initial 

conditions (10,000 rpm with instant opening at PR=7) and the work extracted is plotted in the 

graph as well. If this value is compared to the exergy at the same PR, it would result in 4.81% 

efficiency of expansion for this simulated case. The approach to determine the efficiency using 

the internal energy patching criteria predicts a lower value of 3.6%. Efficiency based on the 

exergy method predicts higher values and can be considered a more realistic value because the 

extracted reference work value is the maximum. Afterwards, exergetic efficiency will be defined 

to evaluate the performance of unsteady processes.   



26 
 

Figure 3-1: Control volume considered for exergy rate balance 
 

Figure 3-2: Exergy (maximum work available) for a constant cross-section curved channel at 
10,000 rpm at several Pressure ratios (PR) 
 

The next step is to monitor the exergy in the channel along with the flow time. Each 

exergy value was calculated at each time step interval of 1E-08 [s] using Equation (3-2) under 

these conditions: Instant Opening at 10,000 rpm (IO@10K); Gradual Opening at 10,000 

(GO@10K), 20,000 (GO@20K), 30,000 (GO@30K), 40,000 (GO@40K) and 50,000 

(GO@50K) rpm.  The results are shown in Figure 3-3, and reveal the increase of initial exergy 

value as the tip speed of the channel increases. In the calculation for exergy, the kinetic energy 
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component raises Exergy 7.2% (@50Krpm) compared to GO@10K. Two limits can be 

recognized, based on the conditions tested: at the lowest rotational velocity (GO@10K), and 

instant opening of the channel outlet (IO@10K). The history of exergy shows that as the rpm 

increases the behavior tends to resemble as the instant opening case. 

Figure 3-3: Exergy variation along expansion time for a constant cross-section channel at several 
rotational velocities and PR=7 
 

3.3. Exergy rate analysis at transient state 

Since the expansion is an unsteady process, tracking exergy variables as the expansion 

progresses, and as an overall value, is appropriate to consider the exergy rate analysis. The 

control volume is according to Figure 3-1, and the general exergy rate balance equation is [13]:  

𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

= �(1 −
𝑇𝑇0
𝑇𝑇𝑗𝑗

)
𝑗𝑗

𝑄̇𝑄𝑗𝑗 − �𝑊̇𝑊𝑐𝑐𝑐𝑐 + 𝑝𝑝
𝑑𝑑𝑉𝑉𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

� + �𝑚̇𝑚𝑖𝑖𝑒𝑒𝑓𝑓𝑓𝑓
𝑖𝑖

−�𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓
𝑒𝑒

− 𝐸̇𝐸𝑑𝑑 
(3-3) 

Based on the working features of this engine and simplifications for the purpose of this 

analysis, some idealizations are applied: 

 

rpm increases 
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(a) The boundaries of the control volume are considered adiabatic and channel walls are treated 

as if there is no heat flux through them during CFD simulations. 

(b) The control volume size does not increase and stays stationary throughout the process 

(c) There is only one outflow that goes through the channel outlet and no incoming flow. 

After these constraints, Equation (3-3) becomes: 

𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

= −𝑊̇𝑊𝑐𝑐𝑐𝑐 − 𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓 − 𝐸̇𝐸𝑑𝑑 (3-4) 

Equation (3-4) is the standard form that will be used for all calculations in this chapter.  

The final term (𝐸̇𝐸𝑑𝑑) in this equation is exergy destruction rate and represents the speed at which 

exergy is destroyed at a specific flow time, and must be equal or greater than zero but never a 

negative value. 𝐸̇𝐸𝑑𝑑 is calculated indirectly when solving for it in Equation (3-4) and the other 

terms should be known: 

𝐸̇𝐸𝑑𝑑 = −
𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

− 𝑊̇𝑊𝑐𝑐𝑐𝑐 − 𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓 (3-5) 

The second term on the right hand side of (3-4) represents the flow exergy rate at exit (e): 

𝐸̇𝐸𝑓𝑓𝑓𝑓 = 𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓 

And is calculated based on Equation (3-6): 

𝐸̇𝐸𝑓𝑓𝑓𝑓 = 𝑚̇𝑚𝑒𝑒[ℎ − ℎ0 − 𝑇𝑇0(𝑠𝑠 − 𝑠𝑠0) +
𝑉𝑉2

2
+ 𝑔𝑔𝑔𝑔] (3-6) 

Where: 

 𝑒𝑒𝑓𝑓𝑓𝑓 = ℎ − ℎ0 − 𝑇𝑇0(𝑠𝑠 − 𝑠𝑠0) + 𝑉𝑉2

2
+ 𝑔𝑔𝑔𝑔 , is called specific flow exergy and all properties are 

taken at the channel outlet. All variables with the subscript “0” are calculated at the dead state 

conditions. 



29 
 

Equations (3-4), (3-5), and (3-6) refer to uniform properties at every instant in time, but 

the unsteady expansion process demonstrates that properties are not uniform in the channel; for 

this reason two terms in those equations will be written in integral form: 

(a) The term 𝐸𝐸𝑐𝑐𝑐𝑐 will be computed based on Equation (3-2) 

(b) The term 𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓 will be computed based on: 

𝑚̇𝑚𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓 = 𝐸̇𝐸𝑓𝑓𝑓𝑓 = �� 𝜌𝜌𝑉𝑉𝑟𝑟(ℎ − ℎ𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 −� 𝜌𝜌𝑉𝑉𝑟𝑟(ℎ0 − ℎ𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 �

−  𝑇𝑇0  �� 𝜌𝜌𝑉𝑉𝑟𝑟�𝑠𝑠 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 −� 𝜌𝜌𝑉𝑉𝑟𝑟�𝑠𝑠0 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 � + � 𝜌𝜌𝑉𝑉𝑟𝑟 �
�𝑉𝑉�⃗ �

2

2
�𝑑𝑑𝐴𝐴

𝐶𝐶𝐶𝐶
 

𝐸̇𝐸𝑓𝑓𝑓𝑓 = �� 𝜌𝜌𝑉𝑉𝑟𝑟(ℎ − ℎ𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 −� 𝜌𝜌𝑉𝑉𝑟𝑟(ℎ0 − ℎ𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 �

−  𝑇𝑇0  �� 𝜌𝜌𝑉𝑉𝑟𝑟�𝑠𝑠 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 −� 𝜌𝜌𝑉𝑉𝑟𝑟�𝑠𝑠0 − 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟�𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

 �

+ � 𝜌𝜌𝑉𝑉𝑟𝑟 �
�𝑉𝑉�⃗ �

2

2
�𝑑𝑑𝐴𝐴

𝐶𝐶𝐶𝐶
 

(3-7) 

Once values are calculated for each time step, a criterion is chosen to determine the end 

of the expansion process in order to calculate Ecv, Ed, Efe and Wcv, which account for the entire 

process. This criterion will lead to the comparison of several cases and are as follows: 

(a) When the absolute pressure at the channel inlet reaches the area-weighted average value of 

101325 [Pa], or 

(b) When all cases undergo the same net exergy change (ΔE) 

The following formulas calculate values for the entire process: 

𝛥𝛥𝛥𝛥𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖 (3-8) 
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Where 𝐸𝐸𝑓𝑓 is determined based on criteria chosen above to terminate the expansion 

process. 

𝐸𝐸𝑓𝑓𝑓𝑓 = � 𝐸̇𝐸𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑
𝑡𝑡

0
= �𝐸̇𝐸𝑓𝑓𝑓𝑓,𝑖𝑖 ∗ ∆𝑡𝑡

𝑖𝑖

0

 
(3-9) 

𝑊𝑊𝑐𝑐𝑐𝑐 = � 𝑊̇𝑊𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑
𝑡𝑡

0
= �𝑊̇𝑊𝑐𝑐𝑐𝑐,𝑖𝑖 ∗ ∆𝑡𝑡

𝑖𝑖

0

 
(3-10) 

𝐸𝐸𝑑𝑑 = � 𝐸̇𝐸𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡

0
= �𝐸̇𝐸𝑑𝑑,𝑖𝑖 ∗ ∆𝑡𝑡

𝑖𝑖

0

 
(3-11) 

The exergy analysis follows to compare cases described by using variables which 

represent the overall process. In Figure 3-4, percentages of the overall variables are plotted based 

on the two criteria. All percentages are calculated based on the net exergy change for either 

criterion case. Both criteria to establish the termination of the expansion process show similar 

trends of the overall variables and percentage values as well. Therefore, equal net exergy is 

chosen as the criteria used in discussions (Figure 3-4 (b)). 

The trend of the overall value percentage for Ed is opposite to Wcv (Figure 3-4). The 

increase in the rotational velocity enhances work generation but reduces the exergy destruction 

value. One factor associated with this effect is how quickly the outlet opens, and this will be 

discussed later. 
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Figure 3-4: Percentage values of the Wcv, Ed and Efe with respect to equal ΔE in several cases 
during the expansion process. 
 

In the graph above, flow exergy has the highest percentages-ranging between 80 to 90% 

for this particular channel geometry-showing high potential to produce more power in 

subsequent stages. Another note of the graph is the increase in work generation due to gas 

expansion in the channel reducing the flow exergy value leaving the channel, indicating the 

production of work either in the channel or in further stages. However, results in Table 3-1 

suggest converting the maximum possible available exergy into work because some exergy will 

be destroyed if not present in the flow exergy. An explanation of this follows. 

  
(a) End process based on inlet pressure (b) Equal ΔE 
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Table 3-1: Comparison of percentage values with respect to the GO@10K case 
 

Column Ai shows produced work at case “i” with respect to GO@10K case (net 

difference). In column Bi, the Ai results is added to the % flow exergy of case “i”, respectively, 

and is expected to have the same Bi for all cases if exergy is not destroyed (ideal condition).  The 

justification for this idea is if exergy is not utilized in the channel then it will be used as flow 

exergy. According to Table 3-1, however, Bi increases with the rotational velocity. All Bi values 

are then compared with respect to GO@10K case (BGO@10K), and results are shown in column Ci. 

These results are interpreted as the exergy not destroyed with respect to GO@10K, i.e. the value 

of CGO@50K=1.7 is the exergy not destroyed if run at 50,000 rpm. If these results are added to the 

respective %Ed cases, then all cases result in the same value and are shown in column Di. 

The trend of overall variable values has been discussed. The next figure shows how these 

exergy variables change along the expansion process. The rate of each variable is used to 

describe the process. The rate of E (|dE/dt|) was calculated by using a second order finite 

difference of each value resulting from equation (3-2). Equations (3-5) and (3-7) are for Ėd and 

Ėfe respectively. Thus, in Figure 3-5, graphs for several rotational velocities are shown, and the 

blue arrow lines define the flow time when the channel outlet is fully open. 

According to Figure 3-5, three regions can be approximately defined: 

(a) The region immediately after opening (region-I) 

(b) During the period of maximum work rate (region-II) 
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(c) When Ėd starts to decrease until process completion (region-III) 

In region I, the instant opening case shows that |dE/dt|, Ėd & Ėfe spike in their values due 

to the nature of channel outlet opening immediately. In the five other cases, as the rotational 

velocity increases, the spike tends to mirror the immediate opening case, i.e. GO@50K case 

tends to be as the sudden opening. 

In region-II, the maximum work rate increases and shifts toward the left as the rotational 

velocity increases. The graph shows this effect is influenced by the time position when the 

channel outlet is fully open, allowing the fluid to follow a trajectory parallel to the channel walls.     

In region-III, all variable rates tend to converge and decrease to a close zero value. 

As presented here, flow exergy at the outlet holds the biggest percentage-ranging 

between 80 to 90%-of the available potential energy to produce work, thus showing great 

potential to increase the total power in the wave engine if additional stages for expansion are 

considered. 
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Figure 3-5: Plots for |dE/dt|, Ėd, Ẇcv, & Ėfe for several rotational velocities in absolute values. 
Blue arrows represent the flow time when the channel outlet is fully open.  
 

  

(a) IO@10K (b) GO@10K 

  

(c) GO@20K (d) GO@30K 

  

(e) GO@40K (f) GO@50K 
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3.4. Exergetic efficiency for control volume under unsteady state 

In this section, the channel geometry needs to be assessed to determine the effectiveness 

of the energy conversion of the overall expansion process. The exergy concept used to evaluate 

efficiency is called Exergetic Efficiency or Second Law Efficiency (ε). Equation (3-4) is the 

starting point for this discussion, where the idealization conditions still apply for the expansion 

process. 

𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

= −𝑊̇𝑊𝑐𝑐𝑐𝑐 − 𝐸̇𝐸𝑓𝑓𝑓𝑓 − 𝐸̇𝐸𝑑𝑑 

To be considered for the overall process, the equation is integrated throughout the process 

time: 

�
𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑡𝑡

0
= −� 𝑊̇𝑊𝑐𝑐𝑐𝑐

𝑡𝑡

0
𝑑𝑑𝑑𝑑 − � 𝐸̇𝐸𝑓𝑓𝑓𝑓

𝑡𝑡

0
𝑑𝑑𝑑𝑑 − � 𝐸̇𝐸𝑑𝑑

𝑡𝑡

0
𝑑𝑑𝑑𝑑 

The first integral term: ∫ 𝑑𝑑𝐸𝐸𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑡𝑡
0  is equivalent to ∆𝐸𝐸𝑐𝑐𝑣𝑣 = 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓 

∆𝐸𝐸𝑐𝑐𝑐𝑐 = −𝑊𝑊𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑓𝑓𝑓𝑓 − 𝐸𝐸𝑑𝑑 (3-12) 

In aerospace engines where exhaust gases are ejected to the atmosphere at high 

temperatures and velocities to generate thrust, the large flow exergy leaving the system is 

accounted for as a loss [12], [11]. In this case exergetic efficiency is: 

𝜀𝜀 =
𝑊𝑊𝑐𝑐𝑐𝑐

|∆𝐸𝐸𝑐𝑐𝑐𝑐|
× 100  [%] 

When the outlet port is opened the gases are released to generate work in the WDE, but 

work can still be generated in subsequent stages. Therefore, Efe should not be included in the 

efficiency calculation. Thus, Equation (3-12) yields: 

∆𝐸𝐸𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑓𝑓𝑒𝑒 = −𝑊𝑊𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑑𝑑 
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∆𝐸𝐸𝑐𝑐𝑐𝑐 has a negative value, meaning  |∆𝐸𝐸𝑐𝑐𝑐𝑐| > |∆𝐸𝐸𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑓𝑓𝑓𝑓| , and so the sum of the two 

LHS terms represents the exploited exergy in the channel during the expansion process. If RHS 

consists of work extraction and exergy destruction, the exploited exergy becomes reversible 

work or isentropic work, and is written as 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑊𝑊𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑑𝑑 or 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 −𝑊𝑊𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑑𝑑 . 

If 𝐸𝐸𝑑𝑑 = 𝑇𝑇0𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔, the equation results in the following expression: 

𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 −𝑊𝑊𝑐𝑐𝑐𝑐 = 𝑇𝑇0𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 (3-13) 

This Equation (3-13) is called the Gouy-Stodola theorem [14]. Thus, the Exergetic 

Efficiency for the expansion process yields: 

𝜀𝜀 =
𝑊𝑊𝑐𝑐𝑐𝑐

𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟
× 100 [%] (3-14) 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑊𝑊𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑑𝑑  

The Exergetic Efficiency is evaluated based on (3-14) and results are presented in Figure 

3-6. The ratio of Ed/Wcv (Loss/Work) in percentages is included as well. 

Based on Figure 3-6, exergy destruction takes place in three different conditions: instant 

opening, gradual opening at low rotational velocity, and gradual opening at high rotational 

velocity. The first two conditions show low exergetic efficiency values in contrast to the third 

condition, in which the efficiency increases to a quasi-constant value as the rotational velocity 

increases. Each of these three conditions produces different patterns of exergy destruction values 

based on the port outlet opening. 

Bejan [15] performed a two dimensional analysis on a small fluid element dx dy as an 

open system by using the second law of thermodynamics. This tiny element was subjected to 

mass fluxes, energy transfer, and entropy transfer interactions, all going through the control 

surface. As a result an expression was derived to estimate the entropy generation rate per unit 

volume [W/m3.K]: 
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𝑆̇𝑆𝑔𝑔𝑔𝑔𝑔𝑔′′′ = −
1
𝑇𝑇2

𝑞⃗𝑞.∇𝑇𝑇 +
𝜇𝜇
𝑇𝑇
𝛷𝛷 

And considering that  𝑞⃗𝑞 = −𝑘𝑘 ∇𝑇𝑇 , the equation above becomes:  

𝑆̇𝑆𝑔𝑔𝑔𝑔𝑔𝑔′′′ =
1
𝑇𝑇2

𝑘𝑘 [(
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)2 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)2 + (
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)2] +
𝜇𝜇
𝑇𝑇
𝛷𝛷 

(3-15) 

Based on (3-15), two actions produce local irreversibility: heat transfer and viscous 

effects.  The first action is a tendency for a spontaneous energy transfer by conduction in the 

direction of decreasing temperature when spatial temperature varies. The second effect is related 

to velocity gradient in the fluid. Both effects will be used to interpret the destruction of exergy in 

the channel during gas expansion. 

Figure 3-6: Exergetic Efficiency [%] and Loss/work generated for several rotational velocities 
 

 

 

  
(a) Equal P-in (b) Equal ΔE 
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Figure 3-7: Comparison of % of exergy destruction (equal exergy for all cases) with mass flow 
rate. Arrows represent the time when the outlets fully open. 
 

The rate of exergy destruction and mass flow rate plots are shown in Figure 3-7 for 

comparison; and an analogous trend between same case plots is found. Instant opening and high 

 
(a) 

 
(b) 
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rotational velocity cases destroy exergy at higher rate at the beginning of the process but their 

overall exergy destruction values are smaller than the slow outlet opening case (see legend 

Figure 3-7(a)). The high 𝑚̇𝑚 is linked with the full or faster outlet opening area. This condition 

generates high spatial temperature gradients along with viscous losses which cause a spike in the 

exergy destruction rate when the channel outlet opens instantly. A sharp increase in the exergy 

destruction rate is also produced in the quick outlet opening cases. The slow opening case -10000 

rpm- destroys exergy at very low rates in the beginning, but continues destroying for longer time 

which results in the highest overall value of exergy destruction. 

Based on results, the operation of the rotor at high velocities reduces losses or destroys 

less exergy.    
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CHAPTER 4. ENERGY ANALYSIS OF THE UNSTEADY EXPANSION 

PROCESS 

4.1. Zero-dimensional Macroscopic Analytical Model of the Unsteady Expansion Process 

Figure 4-1 depicts all four processes of the wave engine. The unsteady expansion 

process, the final process of the WDE cycle, is analyzed. 

Figure 4-1: Schematic of the wave disc engine with curved channels (two cycles per revolution). 
 

Energy analysis is performed using the rate form of the general energy balance equation 

for a transient-flow process considering the inertial control volume from Figure 6-1: the control 

volume is the area surrounded by the two dotted concentric circles. During the expansion process 

the control volume only exchanges mass through the outlet port. This process starts when the 

outlet port begins to open, either quickly or gradually. 

The rate of energy change in the system is equivalent to the rate of net energy transfer 

through the control volume [16]: 

 



41 
 

𝑑𝑑𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝐸̇𝐸𝑖𝑖𝑖𝑖 − 𝐸̇𝐸𝑜𝑜𝑜𝑜𝑜𝑜   (4-1) 

Where: 

Specific total energy of the system: 

e = u + ke + pe = u +
V2

2
+ gz   (4-2) 

The total energy of the system: 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = m𝑠𝑠𝑠𝑠𝑠𝑠. e (4-3) 

The specific total energy for a flowing fluid: 

Θ = h + ke + pe = h +
V2

2
+ gz    (4-4) 

Amount of energy transport: 

Ėmass,b = ṁΘ = ṁ(h +
V2

2
+ gz )   (4-5) 

Rate of energy transfer by heat, work and mass: 

𝐸̇𝐸𝑏𝑏 = 𝑄̇𝑄𝑏𝑏 + 𝑊̇𝑊𝑏𝑏 + Ėmass,b (4-6) 

Where: 𝑏𝑏 = 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 

Replacing (4-2), (4-5) and (4-6) in Equation (4-1): 

𝑑𝑑(m𝑠𝑠𝑠𝑠𝑠𝑠. [u𝑠𝑠𝑠𝑠𝑠𝑠 +
V𝑠𝑠𝑠𝑠𝑠𝑠2

2 + gz𝑠𝑠𝑠𝑠𝑠𝑠])
𝑑𝑑𝑑𝑑

= [𝑄̇𝑄𝑖𝑖𝑖𝑖 + 𝑊̇𝑊𝑖𝑖𝑖𝑖 + ṁ𝑖𝑖𝑖𝑖(h𝑖𝑖𝑖𝑖 +
V𝑖𝑖𝑖𝑖2

2
+ gz𝑖𝑖𝑖𝑖 )  ] − [𝑄̇𝑄𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑊̇𝑊𝑜𝑜𝑜𝑜𝑜𝑜

+ ṁ𝑜𝑜𝑜𝑜𝑜𝑜(h𝑜𝑜𝑜𝑜𝑜𝑜 +
V𝑖𝑖𝑖𝑖2

2
+ gz𝑜𝑜𝑜𝑜𝑜𝑜  )  ] 

(4-7) 

In Equation (4-7), macroscopic properties of the fluid within the channel or the 

incoming/outgoing flow streams are considered to be uniform but properties actually change 

with the position. Having representative values for the fluid within the channel or flow streams at 
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the outlet port is necessary to derive a zero-dimensional macroscopic balance equation. Thus, 

mass-weighted average or volume-weighted average will be used accordingly. 

For the representative property ∅� at the surface boundary [17]: 

∅� =
∫∅𝜌𝜌|𝑣⃗𝑣𝑖𝑖 .𝐴𝐴𝑖𝑖|

∫𝜌𝜌|𝑣⃗𝑣𝑖𝑖 .𝐴𝐴𝑖𝑖|
=
∑ ∅𝑖𝑖𝜌𝜌𝑖𝑖|𝑣⃗𝑣𝑖𝑖.𝐴𝐴𝑖𝑖|𝑛𝑛
𝑖𝑖=1

∑ 𝜌𝜌𝑖𝑖|𝑣⃗𝑣𝑖𝑖.𝐴𝐴𝑖𝑖|𝑛𝑛
𝑖𝑖=1

 
(4-8) 

For the representative property ∅� of the control volume [17]: 

∅� =
∫∅𝜌𝜌 𝑑𝑑𝑉𝑉
∫𝜌𝜌 𝑑𝑑𝑉𝑉

=
∑ ∅𝑖𝑖𝜌𝜌𝑖𝑖|𝑉𝑉𝑖𝑖|𝑛𝑛
𝑖𝑖=1
∑ 𝜌𝜌𝑖𝑖|𝑉𝑉𝑖𝑖|𝑛𝑛
𝑖𝑖=1

 
(4-9) 

Temperature, internal energy, enthalpy and velocity magnitude will be calculated based 

on Equations (4-8) and (4-9) for volume and surface, respectively. Volume-weighted average 

will be used to calculate the representative pressure and density values in the channel according 

to equation (4-10) [17]. 

∅� =
1
𝑉𝑉
�∅𝑑𝑑𝑉𝑉 =

1
𝑉𝑉
�∅𝑖𝑖|𝑉𝑉𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 
(4-10) 

Changing to representative variables in (4-7): 

𝑑𝑑(m𝑠𝑠𝑠𝑠𝑠𝑠. [u�𝑠𝑠𝑠𝑠𝑠𝑠 +
V�𝑠𝑠𝑠𝑠𝑠𝑠

2

2 + gz�𝑠𝑠𝑠𝑠𝑠𝑠])
𝑑𝑑𝑑𝑑

= [𝑄̇𝑄𝑖𝑖𝑖𝑖 + 𝑊̇𝑊𝑖𝑖𝑖𝑖 + ṁ𝑖𝑖𝑖𝑖(h�𝑖𝑖𝑖𝑖 +
V�𝑖𝑖𝑖𝑖

2

2
+ gz�𝑖𝑖𝑖𝑖 )  ] − [𝑄̇𝑄𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑊̇𝑊𝑜𝑜𝑜𝑜𝑜𝑜

+ ṁ𝑜𝑜𝑜𝑜𝑜𝑜(h�𝑜𝑜𝑜𝑜𝑜𝑜 +
V�𝑖𝑖𝑖𝑖

2

2
+ gz�𝑜𝑜𝑜𝑜𝑜𝑜 )  ] 

(4-11) 

Several conditions are applied to Equation (4-11) based on ideal WDE working 

conditions of a single channel and fixed control volume chosen. 

Condition-1: 

(a) The rotor is flat (2-D), then variables z�𝑠𝑠𝑠𝑠𝑠𝑠, z�𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 z�𝑜𝑜𝑜𝑜𝑜𝑜 = 0  
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(b) There is not work done on the system or work input, 𝑊̇𝑊𝑖𝑖𝑖𝑖 = 0  

(c) The control volume chosen does not exchange heat with the surroundings. Thus, 

𝑄̇𝑄𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑄̇𝑄𝑜𝑜𝑜𝑜𝑜𝑜 = 0. The same condition applies as well to channel walls. 

(d) There is not incoming flow to the control volume and to the channel. 

Based on condition-1, equation (4-11) becomes: 

𝑑𝑑(m𝑠𝑠𝑠𝑠𝑠𝑠. [u�𝑠𝑠𝑠𝑠𝑠𝑠 +
V�𝑠𝑠𝑠𝑠𝑠𝑠

2

2 ])
𝑑𝑑𝑑𝑑

= −[𝑊̇𝑊𝑜𝑜𝑜𝑜𝑜𝑜 + ṁ𝑜𝑜𝑜𝑜𝑜𝑜(h�𝑜𝑜𝑜𝑜𝑜𝑜 +
V�𝑜𝑜𝑜𝑜𝑜𝑜

2

2
 )  ] 

(4-12) 

Solving Equation (4-12) for the generated work: 

𝑊̇𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = −  
𝑑𝑑(m𝑠𝑠𝑠𝑠𝑠𝑠. [u�𝑠𝑠𝑠𝑠𝑠𝑠 +

V�𝑠𝑠𝑠𝑠𝑠𝑠
2

2 ])
𝑑𝑑𝑑𝑑

− ṁ𝑜𝑜𝑜𝑜𝑜𝑜(h�𝑜𝑜𝑜𝑜𝑜𝑜 +
V�𝑜𝑜𝑜𝑜𝑜𝑜

2

2
 ) 

Expressing the rate equation for a finite interval of time δt: 

δW𝑜𝑜𝑜𝑜𝑜𝑜

𝛿𝛿𝛿𝛿
= −  

𝛿𝛿(m𝑠𝑠𝑠𝑠𝑠𝑠. [u�𝑠𝑠𝑠𝑠𝑠𝑠 +
V�𝑠𝑠𝑠𝑠𝑠𝑠

2

2 ])
𝛿𝛿𝛿𝛿

−
𝛿𝛿m𝑜𝑜𝑜𝑜𝑜𝑜

𝛿𝛿𝛿𝛿
(h�𝑜𝑜𝑜𝑜𝑜𝑜 +

V�𝑜𝑜𝑜𝑜𝑜𝑜
2

2
 ) 

Removing δt from the denominator: 

δW𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝛿𝛿(m𝑠𝑠𝑠𝑠𝑠𝑠. [u�𝑠𝑠𝑠𝑠𝑠𝑠 +
V�𝑠𝑠𝑠𝑠𝑠𝑠

2

2
]) − 𝛿𝛿m𝑜𝑜𝑜𝑜𝑜𝑜(h�𝑜𝑜𝑜𝑜𝑜𝑜 +

V�𝑜𝑜𝑜𝑜𝑜𝑜
2

2
 ) 

(4-13) 

Considering that: 

𝛿𝛿𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗+1 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗   Or 

𝛿𝛿 �m𝑠𝑠𝑠𝑠𝑠𝑠. �u�𝑠𝑠𝑠𝑠𝑠𝑠 + V�𝑠𝑠𝑠𝑠𝑠𝑠
2

2
�� = 𝑚𝑚sys,j+1 �u�j+1 +

V�j+1
2

2
+ 𝑔𝑔z�j+1� −  𝑚𝑚sys,j �u�j +

V�j
2

2
+ 𝑔𝑔z�j�  

 

Convention of symbols: 

j  = beginning of the process (j=1) 

j+1= end of the process (j=2) 

Then: 
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𝛿𝛿 �m𝑠𝑠𝑠𝑠𝑠𝑠. �u�𝑠𝑠𝑠𝑠𝑠𝑠 +
V�𝑠𝑠𝑠𝑠𝑠𝑠

2

2
�� = 𝑚𝑚sys,2 �u�2 +

V�22

2
� −  𝑚𝑚sys,1 �u�1 +

V�12

2
� 

(4-14) 

Replacing result of (4-14) into Equation (4-13): 

δW𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚sys,1 �u�1 +
V�12

2
� −  𝑚𝑚sys,2 �u�2 +

V�22

2
� − 𝛿𝛿m𝑜𝑜𝑜𝑜𝑜𝑜(h�𝑜𝑜𝑜𝑜𝑜𝑜 +

V�𝑜𝑜𝑜𝑜𝑜𝑜
2

2
 ) 

(4-15) 

Now, the conservation of mass principle is applied to the fixed control volume: 

𝑚̇𝑚in − 𝑚̇𝑚𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
 

With the condition-1 that no incoming flow entering the control volume 𝑚̇𝑚in = 0, it 

yields: 

−𝑚̇𝑚𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑑𝑑𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
 

Expressing this instantaneous equation for a finite time δt: 

−
𝛿𝛿𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜

𝛿𝛿𝛿𝛿
=
𝛿𝛿𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

𝛿𝛿𝛿𝛿
 

(4-16) 

Taking into account that: 

𝛿𝛿𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗+1 − 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗 = 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,2 − 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,1  

Replacing in (4-16): 

−𝛿𝛿𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,2 − 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,1 (4-17) 

Replacing (4-17) into (4-15): 

δW𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚sys,1 �u�1 +
V�12

2
� −  𝑚𝑚sys,2 �u�2 +

V�22

2
� + (𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,2 − 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠,1)(h�𝑜𝑜𝑜𝑜𝑜𝑜 +

V�𝑜𝑜𝑜𝑜𝑜𝑜
2

2
 ) 

(4-18) 

Equation (4-18) is the energy balance for a finite time “δt” during the unsteady expansion 

process. To describe the progress of the process, the criteria of “Finite Stages” for intervals of Δt 

time, is applied by using the concept in Figure 4-2. 
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Figure 4-2: Unsteady expansion process for stage “i” 
 

Considering an arbitrary finite stage “i” and dropping the index “sys” to simplify the 

expression, equation (4-18) becomes: 

δW𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 = 𝑚𝑚1,i �u�1,i +
V�1,i
2

2
� −  𝑚𝑚2,i �u�2,i +

V�2,i
2

2
� + (𝑚𝑚2,𝑖𝑖 − 𝑚𝑚1,𝑖𝑖)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖
2

2
 ) 

(4-19) 

 

 

 

 

 

 

 

 

 

 S�isentropic 

T�isentropic 
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Describing every time-step of the unsteady expansion process from the beginning to the 

end: 

stage 

“i” 

Finite work done 

1 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,1 = 𝑚𝑚1,1 �u�1,1 +

V�1,1
2

2
� −𝑚𝑚2,1 �u�2,1 +

V�2,1
2

2
� + (𝑚𝑚2,1 − 𝑚𝑚1,1)(h�𝑜𝑜𝑜𝑜𝑜𝑜,1 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,1
2

2
) 

2 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,2 = 𝑚𝑚1,2 �u�1,2 +

V�1,2
2

2
� −𝑚𝑚2,2 �u�2,2 +

V�2,2
2

2
� + (𝑚𝑚2,2 − 𝑚𝑚1,2)(h�𝑜𝑜𝑜𝑜𝑜𝑜,2 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,2
2

2
) 

3 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,3 = 𝑚𝑚1,3 �u�1,3 +

V�1,3
2

2
� −𝑚𝑚2,3 �u�2,3 +

V�2,3
2

2
� + (𝑚𝑚2,3 − 𝑚𝑚1,3)(h�𝑜𝑜𝑜𝑜𝑜𝑜,3 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,3
2

2
) 

4 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,4 = 𝑚𝑚1,4 �u�1,4 +

V�1,4
2

2
� −𝑚𝑚2,4 �u�2,4 +

V�2,4
2

2
� + (𝑚𝑚2,4 − 𝑚𝑚1,4)(h�𝑜𝑜𝑜𝑜𝑜𝑜,4 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,4
2

2
) 

5 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,5 = 𝑚𝑚1,5 �u�1,5 +

V�1,5
2

2
� −𝑚𝑚2,5 �u�2,5 +

V�2,5
2

2
� + (𝑚𝑚2,5 − 𝑚𝑚1,5)(h�𝑜𝑜𝑜𝑜𝑜𝑜,5 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,5
2

2
) 

 . 

. 

. 

n-1 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 = 𝑚𝑚1,𝑛𝑛−1 �u�1,𝑛𝑛−1 +

V�1,𝑛𝑛−1
2

2
� −𝑚𝑚2,𝑛𝑛−1 �u�2,𝑛𝑛−1 +

V�2,𝑛𝑛−1
2

2
� + (𝑚𝑚2,𝑛𝑛−1

− 𝑚𝑚1,𝑛𝑛−1)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1
2

2
) 

n 
𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 = 𝑚𝑚1,n �u�1,n +

V�1,n
2

2
� −𝑚𝑚2,n �u�2,n +

V�2,n
2

2
� + (𝑚𝑚2,𝑛𝑛 − 𝑚𝑚1,𝑛𝑛)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛
2

2
) 

Table 4-1: Detailed description of the unsteady expansion process at each stage “i” 
 

Matching parameters between two consecutives stages: the final state of the system 

during stages “i” will have the same conditions for the initial state of the system in the following 

stage “i+1”. For instance, if stage 1 and 2 are matched, it yields: 

𝑚𝑚2,1 �u�2,1 +
V�2,1
2

2
� = 𝑚𝑚1,2 �u�1,2 +

V�1,2
2

2
�   
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Because:  𝑚𝑚2,1 = 𝑚𝑚1,2 ;    u�2,1 = u�1,2 ;   V�2,1
2 = V�1,2

2  , and the same condition is applied 

for process 2 and 3, 3 and 4 … n-1 and n processes. 

Then the summation of all the  𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 in Table 4-1 yields: 

�(𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= 𝑚𝑚1,1 �u�1,1 +
V�1,1
2

2
�  −𝑚𝑚2,n �u�2,n +

V�2,n
2

2
�

+ �𝑚𝑚2,1 − 𝑚𝑚1,1� �h�𝑜𝑜𝑜𝑜𝑜𝑜,1 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,1
2

2
� + �𝑚𝑚2,2 − 𝑚𝑚1,2� �h�𝑜𝑜𝑜𝑜𝑜𝑜,2 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,2
2

2
�

+ �𝑚𝑚2,3 − 𝑚𝑚1,3� �h�𝑜𝑜𝑜𝑜𝑜𝑜,3 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,3
2

2
� + �𝑚𝑚2,4 − 𝑚𝑚1,4� �h�𝑜𝑜𝑜𝑜𝑜𝑜,4 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,4
2

2
�

+ �𝑚𝑚2,5 − 𝑚𝑚1,5� �h�𝑜𝑜𝑜𝑜𝑜𝑜,5 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,5
2

2
�… … . … + (𝑚𝑚2,𝑛𝑛−1

− 𝑚𝑚1,𝑛𝑛−1)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1
2

2
) + (𝑚𝑚2,𝑛𝑛 − 𝑚𝑚1,𝑛𝑛)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛
2

2
) (4-20) 

 

The mass of the system is expressed in terms of volume-weighted average: 

𝑚𝑚1,i = ρ�1,iV 𝑚𝑚2,i = ρ�2,iV (4-21) 

The volume V of the channel is constant at all stages. Replacing (4-21) into (4-20): 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = �(𝛿𝛿𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= ρ�1,1V�u�1,1 +
V�1,1
2

2
�  − ρ�2,nV�u�2,n +

V�2,n
2

2
� + V�ρ�2,1 − ρ�1,1� �h�𝑜𝑜𝑜𝑜𝑜𝑜,1 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,1
2

2
�

+ V�ρ�2,2 − ρ�1,2� �h�𝑜𝑜𝑜𝑜𝑜𝑜,2 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,2
2

2
� + V�ρ�2,3 − ρ�1,3� �h�𝑜𝑜𝑜𝑜𝑜𝑜,3 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,3
2

2
�

+ V�ρ�2,4 − ρ�1,4� �h�𝑜𝑜𝑜𝑜𝑜𝑜,4 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,4
2

2
� + V�ρ�2,5 − ρ�1,5� �h�𝑜𝑜𝑜𝑜𝑜𝑜,5 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,5
2

2
�… … . … 

+ V(ρ�2,𝑛𝑛−1 − ρ�1,𝑛𝑛−1)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1
2

2
) + V(ρ�2,𝑛𝑛 − ρ�1,𝑛𝑛)(h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛
2

2
) 

The index notation of the above expression will be translated into the flow time notation 

as follows: 



48 
 

(a) Index “0” corresponds to the initial state of stage 1 and “1” to the end state of stage 1. 

(b) Index “1” correspond to the initial state of stage 2 and “2” to the end state of stage 2 

(c) Index “2” correspond to the initial state of stage 3 and “3” to the end state of stage 3, and so 

on. 

Condition-2: 

Parameters at the outlet boundary (h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖, V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 ) are regarded as constant values during 

each finite stage “i” but varies at each finite stage. 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = V �ρ�0 �u�0 +
V�02

2
�  − ρ�n �u�n +

V�n2

2
� + (ρ�1 − ρ�0) �h�𝑜𝑜𝑜𝑜𝑜𝑜,1 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,1
2

2
�

+ (ρ�2 − ρ�1)�h�𝑜𝑜𝑜𝑜𝑜𝑜,2 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,2
2

2
� + (ρ�3 − ρ�2)�h�𝑜𝑜𝑜𝑜𝑜𝑜,3 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,3
2

2
�

+ (ρ�4 − ρ�3)�h�𝑜𝑜𝑜𝑜𝑜𝑜,4 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,4
2

2
� + (ρ�5 − ρ�4) �h�𝑜𝑜𝑜𝑜𝑜𝑜,5 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,5
2

2
�… … . … 

+ (ρ�𝑛𝑛−1 − ρ�𝑛𝑛−2)�h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1
2

2
�

+ (ρ�𝑛𝑛 − ρ�𝑛𝑛−1)�h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛
2

2
�� 

(4-22) 

 

Series Taylor expansion is applied for the density parameter to simplify Equation (4-22): 

ρ�(t+∆t) = ρ�t + (∂ρ�
∂t

)𝑡𝑡∆𝑡𝑡 + (∂
2ρ�
∂t2

)𝑡𝑡
(∆𝑡𝑡)2

2
+ (∂

3ρ�
∂t3

)𝑡𝑡
(∆𝑡𝑡)3

6
+   … + (∂

nρ�
∂tn

)𝑡𝑡
(∆𝑡𝑡)𝑛𝑛

𝑛𝑛!
+ ⋯   

The volume-weighted average density will be considered for a second order-accurate, and 

higher order terms will be a truncation error: 

 ρ�(t+∆t) = ρ�t + (∂ρ�
∂t

)𝑡𝑡∆𝑡𝑡 + (∂
2ρ�
∂t2

)𝑡𝑡
(∆𝑡𝑡)2

2
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Translating the stage “i” in terms of time step: 

Table 4-2: Development of the ρ� according to Series Taylor expansion for each ti 
 

 

 

 

 

 

Time 

step 

  

0 At t0=0 ρ�(t0=0) = ρ�0 

1 At t1 = t0 +Δt= 0 +Δt =1Δt 
ρ�Δt = ρ�(0+∆t) = ρ�0 + (

∂ρ�
∂t

)0∆𝑡𝑡 + (
∂2ρ�
∂t2

)0
(∆𝑡𝑡)2

2
 

2 At t2 = t1+ Δt= Δt+Δt=2Δt 
ρ�2Δt = ρ�(Δt+∆t) = ρ�Δt + (

∂ρ�
∂t

)Δt∆𝑡𝑡 + (
∂2ρ�
∂t2

)Δt
(∆𝑡𝑡)2

2
 

3 At t3 = t2+ Δt= 2Δt+Δt= 3Δt ρ�3Δt = ρ�(2Δt+∆t)

= ρ�2Δt + (
∂ρ�
∂t

)2Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)2Δt
(∆𝑡𝑡)2

2
 

4 At t4 = t3+ Δt= 3Δt+Δt= 4Δt ρ�4Δt = ρ�(3Δt+∆t)

= ρ�3Δt + (
∂ρ�
∂t

)3Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)3Δt
(∆𝑡𝑡)2

2
 

… ….. …. 

… ….. …. 

n At tn = t(n-1)+ Δt= (n-1)Δt+ Δt= 

nΔt 
ρ�((n−1)Δt+∆t) = ρ�(n−1)Δt + (

∂ρ�
∂t

)(n−1)Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)(n−1)Δt
(∆𝑡𝑡)2

2
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Expressions from Table 4-2 are replaced into the ρ� variable of equation (4-22): 

Table 4-3: Detailed development of  ρ� for each stage “i” 
 

 

 

 

 

 

 

 

 

 

 

 

i  

1 ρ�1 − ρ�0 = ( ρ�0 + (∂ρ�
∂t

)0∆𝑡𝑡 + (∂
2ρ�
∂t2

)0
(∆𝑡𝑡)2

2
) − ρ�0 =  (∂ρ�

∂t
)0∆𝑡𝑡 + (∂

2ρ�
∂t2

)0
(∆𝑡𝑡)2

2
   

2 ρ�2 − ρ�1 = ( ρ�Δt + (∂ρ�
∂t

)Δt∆𝑡𝑡 + (∂
2ρ�
∂t2

)Δt
(∆𝑡𝑡)2

2
 ) − ρ�Δt =  (∂ρ�

∂t
)Δt∆𝑡𝑡 + (∂

2ρ�
∂t2

)Δt
(∆𝑡𝑡)2

2
  

3 ρ�3 − ρ�2 = ( ρ�2Δt + (∂ρ�
∂t

)2Δt∆𝑡𝑡 + (∂
2ρ�
∂t2

)2Δt
(∆𝑡𝑡)2

2
  ) − ρ�2Δt = (∂ρ�

∂t
)2Δt∆𝑡𝑡 + (∂

2ρ�
∂t2

)2Δt
(∆𝑡𝑡)2

2
   

4 ρ�4 − ρ�3 = ( ρ�3Δt + (∂ρ�
∂t

)3Δt∆𝑡𝑡 + (∂
2ρ�
∂t2

)3Δt
(∆𝑡𝑡)2

2
  ) − ρ�3Δt = (∂ρ�

∂t
)3Δt∆𝑡𝑡 + (∂

2ρ�
∂t2

)3Δt
(∆𝑡𝑡)2

2
   

 … 

n-1 
ρ�𝑛𝑛−1 − ρ�𝑛𝑛−2 = ( ρ�(n−2)Δt + (∂ρ�

∂t
)(n−2)Δt∆𝑡𝑡 + (∂

2ρ�
∂t2

)(n−2)Δt
(∆𝑡𝑡)2

2
  ) − ρ�(n−2)Δt =

(∂ρ�
∂t

)(n−2)Δt∆𝑡𝑡 + (∂
2ρ�
∂t2

)(n−2)Δt
(∆𝑡𝑡)2

2
   

n 
ρ�𝑛𝑛 − ρ�𝑛𝑛−1 = (  ρ�(n−1)Δt + (∂ρ�

∂t
)(n−1)Δt∆𝑡𝑡 + (∂

2ρ�
∂t2

)(n−1)Δt
(∆𝑡𝑡)2

2
 ) − ρ�(n−1)Δt =

 ∂ρ�
∂t

)(n−1)Δt∆𝑡𝑡 + (∂
2ρ�
∂t2

)(n−1)Δt
(∆𝑡𝑡)2

2
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The next step is to insert results from Table 4-3 into Equation (4-22). 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = V �ρ�0 �u�0 +
V�02

2
�  − ρ�n �u�n +

V�n2

2
� + ((

∂ρ�
∂t

)0∆𝑡𝑡 + (
∂2ρ�
∂t2

)0
(∆𝑡𝑡)2

2
)�h�𝑜𝑜𝑜𝑜𝑜𝑜,1 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,1
2

2
�

+ ( (
∂ρ�
∂t

)Δt∆𝑡𝑡 + (
∂2ρ�
∂t2

)Δt
(∆𝑡𝑡)2

2
 )�h�𝑜𝑜𝑜𝑜𝑜𝑜,2 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,2
2

2
� + ( (

∂ρ�
∂t

)2Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)2Δt
(∆𝑡𝑡)2

2
  )�h�𝑜𝑜𝑜𝑜𝑜𝑜,3 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,3
2

2
� + (  (

∂ρ�
∂t

)3Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)3Δt
(∆𝑡𝑡)2

2
 )�h�𝑜𝑜𝑜𝑜𝑜𝑜,4 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,4
2

2
� + ( (

∂ρ�
∂t

)4Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)4Δt
(∆𝑡𝑡)2

2
  )�h�𝑜𝑜𝑜𝑜𝑜𝑜,5 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,5
2

2
�… … . … + ( (

∂ρ�
∂t

)(n−2)Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)(n−2)Δt
(∆𝑡𝑡)2

2
  )�h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛−1
2

2
� + ( 

∂ρ�
∂t

)(n−1)Δt∆𝑡𝑡

+ (
∂2ρ�
∂t2

)(n−1)Δt
(∆𝑡𝑡)2

2
  )�h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛 +

V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛
2

2
�� 

Gathering terms as a summation: 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = Vρ�0 �u�0 +
V�02

2
�  − Vρ�n �u�n +

V�n2

2
�

+ V ∆𝑡𝑡 { �[(
∂ρ�
∂t

)(𝑖𝑖−1) + (
∂2ρ�
∂t2

)(𝑖𝑖−1)(
∆𝑡𝑡
2

) ][h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 +
V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖
2

2
]

𝑛𝑛

𝑖𝑖=1

 } 

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 = m0 �u�0 +
V�02

2
�  − mn �u�n +

V�n2

2
�

+ (
1
2

) V ∆𝑡𝑡 { �[(
∂ρ�
∂t

)(𝑖𝑖−1) + (
∂2ρ�
∂t2

)(𝑖𝑖−1)(
∆𝑡𝑡
2

) ][2 h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 + V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖
2  ]

𝑛𝑛

𝑖𝑖=1

 } 

(4-23) 

Equation (4-23) is the approximate general equation to calculate work extraction during 

the unsteady expansion process based on conditions -1 and -2. 
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4.2. Analysis of the approximate general equation for extracted work  

Equation (4-23) is an approximate mathematical expression derived from the energy 

balance equation with conditions -1 and -2 to calculate the work of the unsteady expansion 

process. 

The right hand side of Equation (4-23) has three terms: the first and second terms 

represent the total energy of the fluid within the control volume at the initial and final state of the 

process, respectively. The third term expresses the total fluid energy leaving the channel thru the 

outlet, depicted as a summation term dependent of time and therefore, this third term represents 

the unsteadiness of the expansion process. Equation (4-23) demonstrates the physics as follows: 

�
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� = �

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

� − �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎

� + �
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑟𝑟 
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

� 
(4-24) 

When Total energy is mentioned, it primarily implies the u� value because the magnitude 

of V
�02

2
 is small compared to u�. The work extracted according to Equation (4-24) is mainly 

dependent on flowing energy leaving the channel and the final state because the total energy at 

initial state is a fixed condition. The u� value at final state must be the lowest for maximum work 

extraction and occurs when the process trajectory follows a constant entropy line obtaining  

u�𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 value for the fluid within the control volume (Figure 4-2). 

The flowing energy is negative due to the decreasing rate of density change, diminishing 

the net value of the first two terms, and the lower this rate, the greater the generation of torque. 

Thus, maximizing work extraction will depend on how this third term is modulated by the 

geometry of the channel. 
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4.2.1. The flowing energy in the summation term 

The summation in Equation (4-23) contains constant parameters (V and Δt) and the time-

dependent variables (the rate of  ρ� change, h�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 and V�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖). The rotational speed (ωi) is 

considered constant in the analysis as in the actual operation of the engine. 

The first and second partial derivatives of the density function, �∂ρ�
∂t
� and �∂

2ρ�
∂t2
�, play an 

influential role in the value and symbol of the summation term. The first derivative captures the 

slope of the curve and the second derivative accounts for the curvature, but the focus will be on 

the first derivative because the second derivative is a higher order term. 

During the actual unsteady expansion process, the density decreases throughout the 

whole process (emptying process). Thus, the rate of density change in the channel has a negative 

value ranging from –fv < ∂ρ�
∂t

 ≤ 0. The physical effect refers to the speed of fluid mass being 

expelled from the channel. Higher rates produce bigger values of  ∂ρ�
∂t

  , thus higher flowing 

energy diminishes the work generated. For this reason, fast discharging process can have a 

negative effect on torque generation. 

 

4.3. Unsteady generated work for isentropic process  

The isentropic process produces maximum values of torque, and this section investigates 

the influence of the time dependent variables under isentropic conditions. 

The unsteady expansion is a complex process in the operation of an actual engine; 

inheriting the effects of compression waves, created during the combustion process, propagating 

back and forth inside the channel. The expansion process starts with a gradual opening of the 

outlet port, expelling the fluid from the channel with a gradual increase in the fluid’s relative 
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velocity. This opening creates an expansion wave that spreads toward the channel inlet. During 

this period, the magnitude of the absolute velocity of the gases at the outlet reaches a maximum 

value, and then decreases. Subsequently, the inlet port opens and fresh mixture starts to fill the 

channel again. An overlapping period happens between the end of the expansion and beginning 

of the inlet processes. The inlet process benefits from the effect of gases leaving the channel, 

which draw the incoming fluid. The outlet port closes when most of the gases have already left 

the channel, and is the end of the Unsteady Expansion Process. 

A number of constraints are applied to simplify the complexity of this process: there is no 

influence from the combustion process and the relative gas velocity within the channel is zero (at 

rest) until the outlet port opens instantly and the fluid accelerates through the channel toward the 

outlet. At the final step of the process, the mass-weighted average value of fluid velocity reduces 

to the channel velocity, and the volume-weighted average value of pressure within the channel is 

equalized with surroundings. 

At every finite stage, the flow expands to the same mass-weighted average value of the 

isentropic temperature (T�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) at the channel outlet. Thus, it yields: 

𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜,1 = 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜,2 = 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜,3 = 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜,4 = ⋯ = 𝑇𝑇�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (4-25) 

Then:  

ℎ�𝑜𝑜𝑜𝑜𝑜𝑜,1 = ℎ�𝑜𝑜𝑜𝑜𝑜𝑜,2 = ℎ�𝑜𝑜𝑜𝑜𝑜𝑜,3 = ℎ�𝑜𝑜𝑜𝑜𝑜𝑜,4 = ⋯ = ℎ�𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (4-26) 

To investigate the influence of density on the torque generation some idealizations are 

applied. The fluid in this idealization is air and behaves as an ideal gas. A density function is 

built to imitate how the volume-weighted average value of density changes within the channel 

during the process. This function depicts the channel’s instant opening and the density's 

decreasing rate. This rate value starts at zero, falls to a negative value, and continues decreasing. 
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It reaches the lowest negative value (called inflection point at the density curve), and begins 

increasing until reaching zero value again when the pressure inside the channel is equalized to 

the surrounding pressure and thus, the outlet relative velocity is zero.  

The summation term of Equation (4-23) appears as a function of ∆𝑡𝑡 as well. This 

parameter depends on the number of finite stages according to Equation (4-27): 

∆𝑡𝑡 =
𝑡𝑡2𝑠𝑠
𝑛𝑛

 (4-27) 

Based on this statement, several calculations were performed using different number of 

finite stages in Equation (4-23). Results in Figure 4-3 indicate the unsteady work value 

converges at around 1,000 finite stages. Thus, all calculations are considered to have more than 

5,000 finite stages. 

To determine any impact on the torque generation based on Equation (4-23), two options 

are considered in the density function variation:  

(a) Same duration of expansion process but the inflection point of the density function increases 

(Figure 4-4). 

(b) Duration of expansion time increases but the inflection point remains constant and occurs in 

the middle of each duration time (Figure 4-5). 

For both options of the density function is plotted the density, magnitude of the outlet 

velocity and the rate of density change (Figure 4-4and Figure 4-5). 
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Figure 4-3: Convergence of the Unsteady Isentropic Work as a function of Number of finite 
stages at PR=7 with 10,000 rpm. 
 

Shifting the position of the inflection point in the density function toward the right causes 

both a concentration of higher outlet velocities and rate of density change toward the right 

(Figure 4-4 (b) and (c)). 

The curves of the rate of density change show the earlier and later inflexion points 

produce the highest negative values (Figure 4-4 (c)). These results predict trends of channel 

outlet velocity and rate of density change if the volume-weighted average results of density from 

numerical simulation produce similar plots to Figure 4-4(a). 
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Figure 4-4: Density (a), magnitude of outlet velocity (b) and dρ/dt (c) with several inflection-
time during the unsteady expansion process (PR=7 and 10,000 rpm) 
 

The second option considers the influence of the total duration time of the unsteady 

expansion process on work generation (Figure 4-5 and Figure 4-6). The extension of the 

expansion process duration causes lower rates of density change and thus, lower channel outlet 

velocities. According to Equation (4-23), the unsteady work is the result of net positive 

contribution of both first terms, and by the negative contribution of the summation term. This 

last term is negative due to the decreasing rate of density change (first partial derivative with 

respect to time). With shorter expansion duration, the rate of density change increases, and the 

  
(a) (b) 

 

 

(c)  

Inflection point 
(tx) moves 
toward right 
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summation term also increases and thus, reduces the unsteady isentropic generated work. In 

addition to this change, the summation term contains the outlet velocity which increases as well, 

having a greater effect of this summation term in the unsteady isentropic generated work. The 

increase in the channel outlet velocity can be interpreted as fast outgoing of kinetic energy that 

was not exploited in the generation of work. 

Figure 4-5: Density (a), magnitude of outlet velocity (b), and dρ/dt (c), with several duration-
times of the unsteady expansion process (PR=7 and 10,000 rpm)  
 

The initial and final conditions (the first two terms in Equation (4-23)) become fixed in 

the isentropic process, then, the work generated will be higher as long as the summation term 

  
(a) (b) 
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Duration of 
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becomes smaller. Therefore, extending the duration of the unsteady expansion process appears as 

a controlling parameter to maximize the unsteady work extraction. This conclusion is consistent 

with that in Chapter 2, but channel side areas are not included in these findings because 

thermodynamic energy analysis does not provide evidence of the influence on the unsteady work 

due to the area of pressure and suction sides. 

In Figure 4-6 the unsteady isentropic generated work is plotted at different pressure ratios 

(PR). Each point indicates the maximum isentropic work expected (y-coordinate) according to 

the process duration, respectively (x- coordinate). The values of t1, t2 and t3 are the threshold 

flow times, and following that point the production of unsteady isentropic work starts to 

decrease. The graph depicts the increase of expansion duration produces the increase of work 

extraction in all plots. 

Figure 4-6: Unsteady Isentropic Work vs time at several PR= 3, 5 and 7, discharging to 
surrounding environment pressure of 101325 Pa. 
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Table 4-4 provides a summary of the actual unsteady generated work results from 

numerical simulations. The corresponding unsteady isentropic generated work values are 

determined in Figure 4-6 as uW1, uW2 and uW3 at PR= 3, 5 and 7, respectively, based on the 

duration of the actual extracted work. The graph indicates additional unsteady work can be 

extracted if the expansion process duration is extended. In addition, Table 4-4 provides 

expansion efficiencies and indicates work generation at lower pressure ratio is more efficient. 

The unsteady expansion efficiencies were calculated based on two criteria: same duration time 

and maximum unsteady isentropic work. 

Table 4-4: Results for PR=3, 5 and 7 (“same duration” refers to the isentropic unsteady work 
produced according to the duration of the actual work extracted. “maximum isentropic work” 
refers to the maximum value at different duration time than the actual work extracted ). 
 

Expansion efficiency based on the energy approach does not distinguish between losses that 

generate entropy and potential energy to produce work in subsequent stages. Exergy approach 

considers all aspects.  

PR Actual UnstW 

(numerical 

simulation) 

UnstW_isent Duration 

(actual process) 

ηexp 

(same duration) 

ηexp 

(max isent-work) 

 [J] [J] [ms] [%] [%] 

3 0.40 0.90 0.20897 44.6 29.2 

5 0.73 2.62 0.21057 27.9 17.4 

7 0.97 5.31 0.21717 18.3 12.2 
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CHAPTER 5. ROLE OF PRESSURE AND FORCE IN TORQUE 

GENERATION 

This chapter focuses on the role of pressure and force in the generation of torque. A 

constant cross-section curved channel is chosen for an unsteady expansion process, at instant and 

gradual openings, both with rotational velocity of 10,000 rpm. The torque coefficient through the 

flow time is plotted. Cm is calculated based on equation: 

𝐶𝐶𝑚𝑚 =
𝑇𝑇

1
2𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟

2 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟
 (5-1) 

Torque value (T) is calculated based on the cross product summation of pressure and 

viscous force vectors together with position vector, with respect to the center of the channel 

rotation. 

For the purpose of analysis, the focus will be on the effect of pressure forces in torque 

generation. Viscous forces are very small compared with pressure forces, and are negligible in 

this study. Therefore, results are not affected when torque due to pressure forces is compared 

with cm or torque history values provided by CFD simulation. 

 

5.1. Unsteady Expansion Process at Instant Opening 

5.1.1. Pressure distribution on channel walls 

A step by step description of the unsteady expansion in the channel during torque 

generation is performed. According to Figure 5-1, 9 points at different flow time locations are 

selected to analyze this case. 

In Figure 5-2, Figure 5-7, and Figure 5-8, the pressure distribution on the pressure and 

suction side of the channel are plotted for each point selected from Figure 5-1, the abscissa on 
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the graphs refers to radial coordinate locations. Additionally, the circumferential average of the 

velocity magnitude in radial coordinates was included in each graph. On the right hand side of 

graphs were plotted line-contours of pressure, and radial coordinates are indicated. 

Figure 5-1: Torque coefficient (cm) history of a constant-cross section curved channel for instant 
opening 
 

Figure 5-1 shows the increasing trend of the torque coefficient (points 1-3) reaching a 

maximum value at point 3. The slope of the curve plotted (approximately a line) by the three 

initial points has a high steep value due to the instant opening condition imposed during the 

simulation. A less steep trend will be observed for a gradual opening situation. The instant 

opening forces the fluid to leave the channel in a radial direction. During this initial time (Figure 

5-2), the head of the expansion wave at point 1 is aligned approximately with the circumferential 

arc at radial coordinate 0.09638 [m] and modulates to relatively reach a perpendicular position 

with respect to the pressure and suction sides (Figure 5-2). 

 

Flow time when 
expansion wave 
reaches the inlet 
wall 
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Figure 5-2: Pressure plot on the suction and pressure surface according to radial coordinates 
(left) and static pressure contour (right) for points 1 to 3. 
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During the unsteady expansion process, different pressures are exerted on the pressure 

and suction walls corresponding to the same radial coordinate; as a result, a differential pressure 

is exerted in, or against, the rotational direction, which is translated into generated torque. These 

different pressure values are due to pressure gradients generated by the expansion wave from 

head to tail when it propagates toward the channel inlet. The expansion wave produces line-

contours of constant pressure from its head to tail, and these line-contours are expected to remain 

approximately perpendicular to the channel walls [18]. In some instances, this condition does not 

prevail, as seen later on. In general, the orientation of line-contours yields different pressure 

values at the pressure and suction sides with same radial coordinate (Equation (5-2) and Figure 

5-3). This concept is used to explain results in this section. 

Figure 5-3: Pressure gradients and pressure on the suction and pressure walls 
 

In the beginning of the process, two effects increase the differential pressure area (line-

contour graphs in RHS of Figure 5-2 and Figure 5-4): the orientation change of the head of the 

expansion wave (first line-contour) going from point 1 to 3, and the pressure gradient along the 

expansion wave from head to tail. The change in orientation of the head of the expansion wave is 

𝑃𝑃𝑝𝑝𝑝𝑝1 > 𝑃𝑃𝑝𝑝𝑝𝑝1  𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟1 (5-2) 
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one of the factors that causes “s” to gradually increase, and in consequence the net area grows 

from point 1 to 3 (Figure 5-4). 

Figure 5-4: Increasing trend of the net pressure distribution for points 1 to 3.  
 

In Figure 5-5, Velocity vector plots of velocity magnitude show the fluid closer to the 

suction side has higher local velocity magnitudes than the fluid closer to the pressure side during 

the period from point 1 to 3. Thus, it produces lesser pressure values on the suction side than the 

pressure side at the same radial coordinates as the expansion wave propagates from point 1 to 3. 

After point 3, cm plot oscillates until point 7, and then decreases through the end of the 

expansion (Figure 5-1). Figure 5-7 shows pressure line-contours and pressure distribution on the 
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walls for points from 4 to 6. Point 4 refers to the lowest cm value, which then goes up to point 5, 

and falls down again to point 6. As seen in Figure 5-7, the orientation of line-contours at the tail 

of the expansion wave changes from being almost perpendicular (in respect to upper and lower 

walls), inclines to the right, and returns to perpendicular. In point 4, the line-contours at radial 

locations 0.9 to 1.0  keep the vertical orientation, and then become less steep when moved to 

point 5 (maximum “cm” value). This effect projects more area on upper and lower walls for 

differential pressure. At point 6, the line-contours return to approximately the vertical position 

and the differential pressure is again reduced (last picture on the right of Figure 5-7).  

Figure 5-5: Velocity magnitude vectors for points 1 and 3 
 

Next, at point 7, the line-contours of the channel outlet region inclines to the right again 

and covers more area of differential pressure, as seen in Figure 5-8. The head of the expansion 

wave impinges on the inlet wall of the channel between points 7 and 8 (0.07 [ms]) and the static 

pressure on both walls decreases abruptly until the end of the expansion, and an identical 

situation occurs with the differential pressure.  The head of the expansion wave now becomes a 

right running wave that propagates through the incoming incident left running wave. This causes 

a distortion in line-contours and reduces the differential pressure to zero when the reflected wave 

travels back to the outlet port of the channel. 

  
Point-1 Point-3 
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The oscillating behavior (Figure 5-6) of the cm plot from points 3 to 7 is caused by two 

effects: the orientation of the line-contours near the channel outlet and the net area increase of 

the differential pressure produced by the wave propagation. At point 4, cm decreases when the 

orientation of line-contours become perpendicular in the region near channel outlet and also 

reduces the differential pressure approximately at radius of 0.1 m and thus, the net area with 

respect to point 3 (Figure 5-6 (b)).  At point 5, cm value is raised by the orientation of the line- 

contours in the region near the channel outlet where the slopes become less steep toward the 

right, causing an increase in differential pressure net area (Figure 5-6(b)). At point 6, cm 

diminishes due to the change in orientation of line-contours (returning to perpendicular again) 

but not at the level of point 4, because the net area increased and this positively compensates. At 

point 7, cm value does not recover, as in point 5, even when the orientation of line-contours 

benefits positively and the net area is similar (Figure 5-6 (a) & (b)). This result indicates that 

additional influential factors need to be considered. 

Two extra factors are investigated in the next section: the component of the force due to 

pressure in the tangential direction and the impact on the torque distribution by the radial 

position. 

In this section some conclusions are made: during the propagation of the incident head of 

the expansion wave around 62% of the total torque is extracted, approximately 80% of the length 

of the channel works actively for the generation of torque according to positive values of the 

differential pressure shown, and the remaining 20% corresponds to the channel zone length near 

the inlet wall. 
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Figure 5-6: (a) cm torque oscillation and (b) Non-dimensional net area of differential pressure. 
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Figure 5-7: Pressure plot on the suction and pressure sides at each radial coordinates (left) and 
static pressure contour (right) for points 4 to 6. 
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Figure 5-8: Pressure plot on the suction and pressure surface according to radial coordinates 
(left) and static pressure contour (right) for points 7 to 9. 
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5.1.2. Force and Torque distribution on channel walls  

Force and torque distribution are presented in this section: the following convention is 

used. The expression for the Torque in a specific radial position is defined as: 

𝑇𝑇�⃗𝑟𝑟𝑟𝑟 = 𝑟𝑟 × 𝐹⃗𝐹𝑝𝑝 + 𝑟𝑟 × 𝐹⃗𝐹𝑣𝑣 (5-3) 

As was stated at the beginning of this chapter, the moment due to viscous effect is 

considered negligible, then: 

𝑇𝑇�⃗𝑟𝑟𝑟𝑟 = 𝑟𝑟 × 𝐹⃗𝐹𝑝𝑝 (5-4) 

The vector force component due to pressure: 

𝐹⃗𝐹𝑝𝑝 = 𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 + 𝐹⃗𝐹𝑟𝑟𝑟𝑟𝑟𝑟−𝑝𝑝 (5-5) 

The force associated with the generation of torque: 

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = (𝐹𝐹𝑝𝑝)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑒𝑒𝜃𝜃 

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = (𝑃𝑃.𝐴𝐴)(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑒𝑒𝜃𝜃 (5-6) 

Following the convention in Figure 5-9: 

Pressure side: 

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝−𝑃𝑃𝑃𝑃 = (𝑝𝑝𝑃𝑃𝑃𝑃.𝐴𝐴𝑃𝑃𝑃𝑃)(𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃) 𝑒𝑒𝜃𝜃 (5-7) 

Suction side: 

𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝−𝑆𝑆𝑆𝑆 = (𝑝𝑝𝑆𝑆𝑆𝑆.𝐴𝐴𝑆𝑆𝑆𝑆)(𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆) 𝑒𝑒𝜃𝜃 (5-8) 

Calculating the differential pressure for both at the same radial coordinate “r”: 

∆𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = [𝑝𝑝𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆] 𝑒𝑒𝜃𝜃 (5-9) 

If "Force − θ" is the force in the tangential direction: 

And Δ(Force − Ɵ) = 𝑝𝑝𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆, then: 

∆𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = [Δ(Force − θ)] 𝑒𝑒𝜃𝜃 (5-10) 
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So, the magnitude of Equation (5-10) when plotted in graphs: 

∆𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = Δ(Force − θ) (5-11) 

Torque plots are now calculated based on Equation (5-4); but considering only the torque 

component in the rotation direction: 

𝑇𝑇�⃗𝑟𝑟𝑟𝑟 = 𝑟𝑟 × 𝐹⃗𝐹𝑝𝑝 = 𝑟𝑟𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 𝑒𝑒𝑘𝑘 

Replacing results from Equation (5-11), which regards forces on pressure and suction 

walls, it yields: 

𝑇𝑇�⃗𝑟𝑟𝑟𝑟 = 𝑟𝑟Δ(Force − θ) 𝑒𝑒𝑘𝑘 

𝑇𝑇𝑟𝑟𝑟𝑟 = 𝑟𝑟.∆𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = Δ(r ∗ Force − θ) (5-12) 

Then, Equation (5-12) is used to build torque plots. 

Figure 5-9: Nomenclature for forces, angles and channel walls 
 

In previous section torque generation (or torque coefficient) based on pressure 

distribution on the channel walls was discussed. But tangential force directly contributes to 

gaining or losing torque. Thus, to calculate tangential forces, “β” angle must be known. At any 
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specific radial coordinate, it is formed by the unit vector perpendicular to the channel wall area 

(f1 or f3) and the unit vector perpendicular to the circumference (f2) (Figure 5-9). “β” angle 

favors a greater value of tangential component on the pressure or suction sides (Equations (5-7) 

or (5-8)) when approaching 90 degrees. β values closer to zero will result in low values of 

tangential force at the pressure or suction walls. Thus, values of β angle near 90° effects torque 

generation positively (Equation (5-9)) because of tangential force on the pressure side is 

responsible, but not for the tangential force component acting on the suction side, which 

counteracts the torque generation. In addition, values of β near 0° on the suction side work for 

the benefit of torque generation if the tangential component has this value. The influence of β 

angle in the orientation of the line-contours from head to tail of the expansion wave is a topic to 

discuss in Section 5.3. 

The geometry of the constant cross section channel is plotted in Figure 5-10 (a). At the 

trailing edge of the suction side, the constant cross section is unchanged until the red curve ends 

and becomes a green straight line-this was added to reduce the adverse effect of a bigger outlet 

area during gradual opening. In Figure 5-10 (b), the sine of β changes from leading to trailing 

edge in a decreasing trend for this particular channel geometry. The green straight line added at 

the trailing edge generates higher sine of β values on the suction side. At 81.7 mm, on the suction 

side, higher values of sine of β are changed to lower values until 92.8 mm with respect to 

pressure side. Past this location, another change is made. 

From Figure 5-11 to Figure 5-13, the net tangential force and torque distribution were 

plotted for points 1 to 9, according to Figure 5-1. To discuss figures in this section, Δ(Force − θ) 

or Δ(r ∗ Force − θ)  will be referred to simply as force or torque. Positive values of force or 
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torque are interpreted as torque production or gain, and negative values have the opposite 

meaning. 

A crest appears at point 1 and continues moving and spreading to the left as the head of 

expansion wave travels toward the inlet wall for the following points in time. At point 1, 

negative values for force and torque are due to higher β values on the suction wall until “a1” 

position, where β values of pressure and suction sides are equalized (see Figure 5-10). At “a2” in 

Figure 5-11(a), force and torque both reach maximum values and begin to decrease due to the 

sine of β increase in the suction side.  At “a3” location, both force and torque become zero, and 

sine of β of green straight (suction side) and blue curve (pressure side) have the same value. The 

decreasing trend of the force (or torque) is the result of increasing values of β for the green 

straight line (Figure 5-10 (b)). At the location of 96.38 mm (Figure 5-2 and Figure 5-11(a), point 

1), force and torque reach the lowest value and begin increasing because of the action of the 

expansion wave on both walls. 

Figure 5-10: Channel shape and sinβ variation along the radial coordinate of a constant cross 
section channel 
 

  
(a) (b) 
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Figure 5-11: Δ(force-θ) and Δ(r*force-θ) plots at points 1, 2, 3 & 4 according to radial 
coordinates. 
 

 For points 2 to 7, the pressure and suction sides have the same pressure values in the 

channel region between the inlet wall and the head of the expansion wave (before it impinges the 

inlet wall), and β values cause a bigger component from the applied force on the suction side in 

the tangential direction, resulting in negative values of force and torque (Figure 5-11 and Figure 

5-12). Based on this channel geometry, around 18% of the channel length does not produce 

  
(a) (b) 

  
(c) (d) 
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positive force (or torque) because of bigger β angles in the suction side with respect to the 

pressure side. This percentage refers to the zone adjacent to the channel inlet. 

Figure 5-12: Δ(force-θ) and Δ(r*force-θ) plots at points 5, 6, 7 & 8 according to radial 
coordinates. 
 

  
(a) (b) 

  
(c) (d) 
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Figure 5-13: Δ(force-θ) and Δ(r*force-θ) plot at point 9, according to radial coordinates. 
 

Figure 5-14: Δ(force-θ) at points 1, 2, 3, 4,  5, 6, 7, 8 & 9 along radial direction 
 

Figure 5-14 and Figure 5-15 display the force and torque, respectively, as the expansion 

process propagates from point 1 to 9. The shape of the force distribution appears similar to the 

 

 



78 
 

torque distribution along the radial coordinate, but with an order of magnitude around 10. The 

highest local values of torque (or force) are generated during the initial stage of the unsteady 

expansion process: points 1 to 3. As the head of expansion wave propagates toward the inlet 

wall, the torque (force) with smaller values is spread over the length of the channel. This fact can 

be called dissipation effect of the action of pressure because of βSS > βPS. 

If a significant fraction of the torque is generated at the pressure and suction side of the 

region near the channel outlet, βPS > βSS becomes a necessary design condition to maximize the 

work extraction. 

Figure 5-15: Δ(r*force-θ) at points 1, 2, 3, 4, 5, 6, 7, 8 & 9 along radial direction 
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5.2. Unsteady Expansion Process at gradual opening 

5.2.1. Pressure distribution on channel walls 

This section investigates the unsteady expansion process when the channel outlet opens 

gradually at 10,000 rpm. The torque coefficient history is shown in Figure 5-16, and 11 points 

are selected to analyze the process. 

Figure 5-16: Torque coefficient (cm) history of a constant-cross section curved channel for 
gradual opening 
 

At point 1, the fractional opening of the channel outlet creates an expansion wave made 

of concentric circle-contours of pressure. This configuration produces higher pressure on the 

suction side, which is why cm is negative (Figure 5-16 and Figure 5-17). Subsequently, at point 

2, the effect of a slightly greater opening of the outlet causes the shape and position of the head 

of the expansion wave to become a front line perpendicular to the pressure and suction sides. 

Positive torque is not produced in the region very close to the channel outlet until 

complete opening is achieved at point 9 (see left plots in Figure 5-17, Figure 5-18, and Figure 

5-19). The gradual opening produces adverse effects on the pressure distribution on both 

 

Outlet fully 
open 

Head of the 
expansion wave 
impinges the inlet 
wall 
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pressure and suction sides, a disadvantageous condition with respect to instant opening because a 

significant portion of the generated torque comes from this region.  

The head of the expansion wave impinges the inlet wall when the channel outlet is not yet 

fully opened; this causes the pressure to begin dropping, but not as rapidly as the instant opening 

case, slowing presure loss during the early stage. The pressure diferential between channel 

pressure and manifold pressure drives the acceleration of the fluid, thus the increase of the 

tangential velocity contributes to torque generation, and an explanation is given in Section 6.3.1. 

Therefore, cm values continue increasing till point 4 and then keep approximately the same value 

to point 9; this location in time marks the beginning of the cm decrease, the channel outlet has 

already been completely opened (point 9 in Figure 5-19), and these conditions appear to be 

correlated. 

In all points in time, there is no positive net pressure area in the interval from r=0.05 [m] 

(at inlet wall) to r=0.06 [m] contributing to the generation of torque. 

The results indicate instant opening of channel outlet with respect to the gradual opening 

creates more favorable conditions in the region near the channel outlet, maximizing torque 

generation. This positive condition indicates increasing the speed at which the outlet port opens 

are steps toward the optimal situation: instant opening. 
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Figure 5-17: Pressure plot on the suction and pressure surface according to radial coordinates 
(left) and pressure contour (right) for points 1 to 3. 
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Figure 5-18: Pressure plot of the suction and pressure surface according to radial coordinates 
(left) and pressure contour (right) for points 4 to 6. 
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Figure 5-19: Pressure plot of the suction and pressure surface according to radial coordinates 
(left) and pressure contour (right) for points 7 to 9. 
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Figure 5-20: Pressure plot of the suction and pressure surface according to radial coordinates 
(left) and pressure contour (right) for points 10 to 11. 
 

5.2.2. Force and Torque distribution on channel walls 

In this section the force and torque differential distribution is presented in terms of 

pressure and sine of β. The magnitude of the force differential (Equation (5-9)) is proportional to 

the equation in terms of pressure and sine of β. 

∆𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 ≈ [𝑝𝑝𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆] 

Then: 

∆(𝑝𝑝 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = [𝑝𝑝𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆] (5-13) 

The same is done for the torque differential Equation (5-12): 

 

 

  



85 
 

𝑇𝑇𝑟𝑟𝑟𝑟 = 𝑟𝑟.∆𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 ≈ Δ(r ∗ p ∗ sinβ) 

∆(𝑟𝑟 ∗ 𝑝𝑝 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑟𝑟. [𝑝𝑝𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆] (5-14) 

Then, Equations (5-13) and (5-14) are used to plot curves of force (Figure 5-21 and 

Figure 5-22) and torque (Figure 5-23 and Figure 5-24), respectively. 

Force plots present higher order of magnitude values with respect to the torque plots. 

Both force and torque graphs exhibit similar trends: 

(a) Negative force and torque values near the channel outlet 

(b) Positive force and torque values at the central region of the channel 

(c) Negative force and torque near the channel inlet 

These results show that gradual opening causes undesirable effects near the channel 

outlet, limiting torque extraction. 

Figure 5-21: Δ(p*sinβ) at points 1, 2, 3, 4, 5 & 6 based on radial coordinates 
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Figure 5-22: Δ(p*sinβ) at points 7, 8, 9, 10 & 11 based on radial coordinates. 
 

Figure 5-23: Δ(r*p*sinβ) at points 1, 2, 3, 4, 5 & 6 based on radial direction 
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Figure 5-24: Δ(r*p*sinβ) at points 7, 8, 9, 10 & 11 based on radial direction 
 

5.3. Impact on tangential force (torque generation) by changing θ parameter 

The pressure and tangential forces (torque) applied to channel walls for a specific θ angle 

has been investigated. The θ angle was mentioned in Figure 2-2 (b) for constant cross-section 

channels made of two concentric circular arcs. In this section, the degree of impact on the 

tangential force (torque) is determined by varying the θ angle. The areas of influence (APS or 

ASS) and the β angle (Figure 5-9), both along the pressure and suction walls, change by the 

alteration of θ angle. 

When the head of the expansion wave propagates through the channel, isobaric line-

contours appear from head to tail. The projection of each isobaric line-contour on pressure and 

suction walls creates different areas. These two areas are delimited by two concentric lines: r1 

and r2 (Figure 5-25), and the projected areas are called “area of influence (AoI)”.  The pressure 

on pressure side AoI is greater than the pressure on suction side AoI if the expansion wave is a 
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left running wave. Thus, the isobaric line-contour produces a differential pressure between 

pressure and suction walls. 

The differential force depends on six parameters: pPS, pSS, APS, ASS, sinβPS and sinβSS, 

according to Equation (5-9); the areas of influence and β angle will be the focus in this section.  

To study the impact of the isobaric line-contour in the differential force, equation (5-9) 

will be utilized; this differential force is not confined to a specific radial location, but to an area 

location. Thus, the length-weighted average of sine of β will be considered in that equation 

instead of sin (β) only. The reason for this is β angle changes at each radial coordinate on the 

area of influence. The modified equation yields: 

∆𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 = [𝑝𝑝𝑃𝑃𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃��������� − 𝑝𝑝𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆��������] 𝑒𝑒𝜃𝜃 (5-15) 

The length-weighted average of sin (β) is defined as: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������ =
∫ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎
 

(5-16) 

Expressed as summation: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������ =
∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑖𝑖.∆𝑙𝑙𝑖𝑖𝑛𝑛
𝑖𝑖

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎
 

(5-17) 

Where: 

Larc: refers to the total arc length on the pressure or suction side of the area of influence 

Δli: small length element 

βi: beta angle at the center of the small length element “i”  
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Figure 5-25: Area of influence projected by a single isobaric line-contour on pressure and suction 
walls 
 

Results in Figure 5-26 correspond to channel geometry drawn by two concentric circle 

arcs to have a constant cross-section channel. The four graphs depict the variation of θ angle 

from 30 to 60 degrees, respectively, and as the θ angle is increased, the channel length increases 

also. 

In Section 5.1.2, it is stated that beta angles near 90 degrees on the pressure wall or near 0 

degrees on the suction wall benefits the generation of torque; this was concluded for a tangential 

force when applied at each radial coordinate. Here, the net tangential force is based on area of 

influence, and the orientation of line-contours causes this area to grow or shrink. 

For the channel geometry described in Figure 5-26, β angle portrays a decreasing trend 

from leading to trailing edge. The opposite manner happens to the area of influence (APS or ASS) 

of both pressure and suction sides. These results are used to calculate the terms of “𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃���������” 

and “𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆��������” from Equation (5-15), and the results are plotted in Figure 5-26. The 

intersection of the upper line-contour with the pressure side defines the radial coordinate used to 

plot these two terms. Radial coordinate of 60, 70, 80, 90 and 100 mm were used for each θ angle. 

  

This complies with 
PPS > PSS 
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Figure 5-26 shows that both 𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃��������� and 𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆�������� resulted in similar values at each 

radial coordinate. Then, Equation (5-15) is re-written as: 

∆𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 ≈ 𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃���������[𝑝𝑝𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆] 𝑒𝑒𝜃𝜃 (5-18) 

Or 

∆𝐹⃗𝐹𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝 ≈ 𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆��������[𝑝𝑝𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆] 𝑒𝑒𝜃𝜃 (5-19) 

 

Figure 5-26: β & area of influence (APS & ASS) on pressure and suction walls created by line-
contour when θ angle is changed 
 

  
(a) θ=30 deg (a) θ=40 deg 

  
(a) θ=50 deg (a) θ=60 deg 
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The amount of net tangential force over an area of influence depends on 𝐴𝐴𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑃𝑃𝑃𝑃��������� (or 

𝐴𝐴𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑆𝑆𝑆𝑆��������) and pressure difference (𝑝𝑝𝑃𝑃𝑃𝑃 − 𝑝𝑝𝑆𝑆𝑆𝑆). The outcome of A𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠������ varies from lower values 

near channel inlet to greater toward outlet. Also, the trend is less steep as θ angle changes from 

30 to 60. Thus, the net tangential force becomes greater in regions closer to the channel outlet. In 

addition, due to greater radius, greater torque values can be accomplished in that region. 
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CHAPTER 6. MOMENT OF MOMENTUM ANALYSIS 

6.1. Moment of Momentum equation applied to a single channel of the WDE 

The Equation (6-1) is a general formulation of the angular momentum principle for an 

inertial and non-deforming control volume [19] at any instant in time. 

𝑟𝑟𝑥𝑥𝐹⃗𝐹𝑠𝑠 + � 𝑟𝑟𝑥𝑥𝑔⃗𝑔𝜌𝜌𝜌𝜌𝑉𝑉
𝐶𝐶𝐶𝐶

+ 𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  =
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
 + � 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝑉𝑉�⃗ .𝑑𝑑𝐴𝐴

𝐶𝐶𝐶𝐶
 

(6-1) 

This investigation is focused on 2-dimensional models because all geometries 

investigated reflect that characteristic, and the initial concept of the WDE was to have a rotor 

with flat shroud and hub in the channels. Thus, the generation of torque is the result of the 

dynamic action of the fluid with the side walls. Figure 6-1 shows the control volume selected for 

the application of equation (6-1). 

Figure 6-1: Control Volume selected for the Angular Momentum Equation Analysis 
 

The three terms on the LHS of Equation (6-1) are described as follows: 

𝑟𝑟𝑥𝑥𝐹⃗𝐹𝑠𝑠 : represents the angular momentum of surface forces over the control volume (they can be 

due to pressure or friction). This term might be ignored due to the amount it represents when 

compared with the torque in the shaft. 
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∭ 𝑟𝑟𝑥𝑥𝑔⃗𝑔𝜌𝜌𝜌𝜌𝑉𝑉𝐶𝐶𝐶𝐶  : refers to the torque generated by body forces. The direction of the torque 

generated is perpendicular to the rotation direction and therefore does not contribute to torque 

generation. Then, Equation (6-1) becomes: 

𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  =
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
 + � 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝑉𝑉�⃗ .𝑑𝑑𝐴𝐴

𝐶𝐶𝐶𝐶
 

During the unsteady expansion process, the fluid crosses the control surface through only 

one outlet, and the equation becomes: 

𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  =
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
 + � 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝑉𝑉�⃗ .𝑑𝑑𝐴𝐴

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

(6-2) 

In Equation (6-2), the first term on the right hand side represents the rate of change of 

fluid’s angular momentum within the control volume. The second term on the right hand side 

refers to the outflow rate of the angular momentum through the outlet area of the channel [19], 

[20]. The first and second terms hold the Joules units. 

In a typical turbomachinery analysis, the first term of the RHS in Equation (6-1) vanishes 

due to steady state condition and becomes: 

𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  = � 𝑟𝑟𝑥𝑥𝑉𝑉�⃗ 𝜌𝜌𝑉𝑉�⃗ .𝑑𝑑𝐴𝐴
𝐶𝐶𝐶𝐶

= � 𝑟𝑟𝑉𝑉𝜃𝜃 (𝜌𝜌𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑)
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑘𝑘�⃗ −� 𝑟𝑟𝑉𝑉𝜃𝜃 (𝜌𝜌𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑)
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘�⃗  

And considering uniform flow properties at the inlet and outlet: 

𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  = 𝑚̇𝑚(𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝜃𝜃−𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑉𝑉𝜃𝜃−𝑖𝑖𝑖𝑖)𝑘𝑘�⃗  

This shows the extracted torque is based on the change of the fluid’s angular momentum 

(𝑟𝑟 ∆𝑉𝑉𝜃𝜃), and this change is called turbomachinery principle. The fluid changes its angular 

momentum when going through a blade passage between inlet and outlet, and this change 

converts into torque. 
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For the unsteady expansion of the WDE, both RHS terms are kept and only one border 

crossing is considered (fluid outflow) in the second RHS term. Thus, the first RHS term refers to 

the turbomachinery principle in terms of the rate of “change of the angular momentum” within 

the channel to produce torque. The second RHS term indicates the rate of flow of the angular 

momentum through outlet area and suggests it is linked to mass flow rate (see Equation (6-18) 

for a 2-D case resulting from Equation (6-2)). Additional explanation of this last term is given in 

Section 6.2.2. 

 

6.2. Analytical Analysis with respect to the Inertial Reference Frame 

The present analysis is accomplished in cylindrical coordinates with the following 
conventions: 

𝑉𝑉�⃗ = 𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃 (6-3) 

𝑟𝑟 = 𝑟𝑟𝑒𝑒𝑟𝑟 (6-4) 

𝑉𝑉�⃗𝑟𝑟 = 𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟 (6-5) 

𝑉𝑉�⃗ 𝜃𝜃 = 𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃 (6-6) 

Orientation of the unit vectors is according to Figure 6-2. 

Figure 6-2: Orientation of radial and tangential unit vectors in cylindrical coordinates 
 

The RHS terms of Equation (6-2) will be analyzed separately and in 2-D (𝑉𝑉�⃗𝑧𝑧 = 0): 
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(I) = 𝜕𝜕
𝜕𝜕𝜕𝜕∭ (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌𝜌𝜌𝑉𝑉𝐶𝐶𝐶𝐶  (6-7) (II) = ∬ (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉�⃗ ∙ 𝑑𝑑𝐴𝐴 (6-8) 

 

6.2.1. The Rate of Change of the Angular Momentum in the Channel 

Replacing (6-3) in (6-7): 

𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝑟𝑟 × �𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃��𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
= �

𝜕𝜕��𝑟𝑟 × �𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃��𝜌𝜌�
𝜕𝜕𝜕𝜕

 𝑑𝑑∀
𝐶𝐶𝐶𝐶

= �
𝜕𝜕([𝑟𝑟 × 𝑉𝑉�⃗𝑟𝑟 + 𝑟𝑟 × 𝑉𝑉�⃗ 𝜃𝜃]𝜌𝜌)

𝜕𝜕𝜕𝜕
 𝑑𝑑𝑉𝑉 

𝐶𝐶𝐶𝐶
 

𝑟𝑟 × 𝑉𝑉�⃗𝑟𝑟 = 0 does not produce rotation. Then: 

𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
= �

𝜕𝜕[(𝑟𝑟 × 𝑉𝑉�⃗ 𝜃𝜃)𝜌𝜌]
𝜕𝜕𝜕𝜕

 𝑑𝑑𝑉𝑉
𝐶𝐶𝐶𝐶

 
(6-9) 

Working inside of the integral: 

𝜕𝜕�(𝑟𝑟 × 𝑉𝑉�⃗ 𝜃𝜃)𝜌𝜌�
𝜕𝜕𝜕𝜕

 =
𝜕𝜕�𝑟𝑟𝜌𝜌 × 𝑉𝑉�⃗ 𝜃𝜃�

𝜕𝜕𝜕𝜕
 = (𝑟𝑟𝜌𝜌) × �

𝜕𝜕�𝑉𝑉�⃗ 𝜃𝜃�
𝜕𝜕𝜕𝜕

� − 𝑉𝑉�⃗ 𝜃𝜃 ×
𝜕𝜕(𝑟𝑟𝜌𝜌)
𝜕𝜕𝜕𝜕

= 

= (𝑟𝑟𝜌𝜌) × �
𝜕𝜕𝑉𝑉�⃗ 𝜃𝜃
𝜕𝜕𝜕𝜕

� − 𝑉𝑉�⃗ 𝜃𝜃 × [
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕
𝜌𝜌 + 𝑟𝑟

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

] = 

= �𝑟𝑟 ×
𝜕𝜕𝑉𝑉�⃗ 𝜃𝜃
𝜕𝜕𝜕𝜕

�𝜌𝜌 − �𝑉𝑉�⃗ 𝜃𝜃 ×
𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕
�𝜌𝜌 − (𝑉𝑉�⃗ 𝜃𝜃 × 𝑟𝑟)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 
(6-10) 

In the first term of expression (6-10), the partial derivative of the tangential velocity 

vector: 

𝜕𝜕𝑉𝑉�⃗ 𝜃𝜃
𝜕𝜕𝜕𝜕

=
𝜕𝜕(𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃)
𝜕𝜕𝜕𝜕

= 𝑉𝑉𝜃𝜃
𝜕𝜕𝑒𝑒𝜃𝜃
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

𝑒𝑒𝜃𝜃 = 

It is known that: 

𝜕𝜕𝑒𝑒𝜃𝜃
𝜕𝜕𝜕𝜕

= −𝜃̇𝜃𝑒𝑒𝑟𝑟 
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Then: 

𝜕𝜕𝑉𝑉�⃗ 𝜃𝜃
𝜕𝜕𝜕𝜕

= −𝑉𝑉𝜃𝜃𝜃̇𝜃𝑒𝑒𝑟𝑟 +
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

𝑒𝑒𝜃𝜃 
(6-11) 

In the third term for expression (6-10), the partial derivative of the radial vector: 

𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕

=
𝜕𝜕(𝑟𝑟𝑒𝑒𝑟𝑟)
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟

𝜕𝜕𝑒𝑒𝑟𝑟
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜃̇𝜃𝑒𝑒𝜃𝜃 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜔𝜔𝑒𝑒𝜃𝜃 

Where 𝜃̇𝜃 = 𝜔𝜔 

𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜔𝜔𝑒𝑒𝜃𝜃 

(6-12) 

Replacing (6-11) and (6-12) in (6-10): 

= �𝑟𝑟 × [−𝑉𝑉𝜃𝜃𝜃̇𝜃𝑒𝑒𝑟𝑟 +
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

𝑒𝑒𝜃𝜃]� 𝜌𝜌 − �𝑉𝑉�⃗ 𝜃𝜃 × [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜔𝜔𝑒𝑒𝜃𝜃]� 𝜌𝜌 − (𝑉𝑉�⃗ 𝜃𝜃 × 𝑟𝑟)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 

Writing explicitly: 

= �(𝑟𝑟𝑒𝑒𝑟𝑟) × [−𝑉𝑉𝜃𝜃𝜃̇𝜃𝑒𝑒𝑟𝑟 +
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

𝑒𝑒𝜃𝜃]� 𝜌𝜌 − �(𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃) × [
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑟𝑟 + 𝑟𝑟𝜔𝜔𝑒𝑒𝜃𝜃]� 𝜌𝜌 − ((𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃) × (𝑟𝑟𝑒𝑒𝑟𝑟))

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 

= (0) + 𝑟𝑟𝑟𝑟
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

𝑒𝑒𝑘𝑘 + 𝜌𝜌𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑘𝑘 − (0) + 𝑟𝑟𝑉𝑉𝜃𝜃

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑘𝑘 = 

= [𝑟𝑟𝑟𝑟
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

]𝑒𝑒𝑘𝑘 
(6-13) 

Replacing (6-13) in (6-9): 

𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
= � �𝑟𝑟𝑟𝑟

𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶
 𝑒𝑒𝑘𝑘 

(6-14) 

Considering: 

𝑉𝑉𝑟𝑟 = 𝑟̇𝑟 and 𝑉𝑉𝜃𝜃 = 𝑟𝑟𝜃̇𝜃, into (6-14): 

𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
= � �𝑟𝑟𝑟𝑟

𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟 + 𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑉𝑉

𝐶𝐶𝐶𝐶
 𝑒𝑒𝑘𝑘 

(6-15) 

Analyzing every term in (6-15):  
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6.2.1.1. 1st term 

  𝑟𝑟     𝜌𝜌    
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

                         

[+][+][−/+] = [−/+]    
 

The contribution would be according to the sign of the rate of change of the absolute 

tangential velocity and the direction of this velocity (positive if moving in the rotation direction 

of the channel and negative otherwise). Then: 

If the fluid element moves in the rotation direction: 

+
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 

The result is: 

If accelerates: + 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

= (+)(+) = (+) 

If decelerates: + 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

= (+)(−) = (−) 

If the fluid element moves against the rotation direction: 

−
𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 

The result is: 

If accelerates: −𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

= (−)(+) = (−) 

If decelerates: −𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

= (−)(−) = (+) 

The torque generation gain is when the local tangential velocity rate decreases and this 

velocity is in the same direction of the channel rotation. The second option for gain is when the 

local tangential velocity rate increases and this tangential velocity goes against the direction of 

the channel rotation. 



98 
 

The first statement for torque generation is explained graphically in Figure 6-3, where a 

small element in the channel (inertial frame of reference) experiences a local change in tangential 

velocity. This change is to a lower value after the head of the expansion wave passes that 

location. The gradient of the local tangential velocity at that location decreases but the local 

tangential velocity is still in the direction of the channel rotation. This effect produces a gain in 

the torque generation as stated above.   

Figure 6-3: Changes in local tangential velocity after the head of the expansion wave passes (r1, 
θ1) position (t2 > t1). 
 

6.2.1.2. 2nd term 

𝜌𝜌  𝑉𝑉𝜃𝜃 𝑉𝑉𝑟𝑟
             [+][? ][+] = [? ] 

The contribution is according to the sign of the Absolute Tangential Velocity. 

If the fluid particle moves in the direction of the channel rotation:  

𝜌𝜌  𝑉𝑉𝜃𝜃 𝑉𝑉𝑟𝑟
             [+][+][+] = [+] 

If the fluid particle moves in the direction opposite the channel rotation:  
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𝜌𝜌  𝑉𝑉𝜃𝜃 𝑉𝑉𝑟𝑟
             [+][−][+] = [−] 

For the second term, the gain in torque generation happens when the direction of the local 

tangential velocity is against the direction of the channel rotation. 

 

6.2.1.3. 3rd term 

𝑟𝑟  𝑉𝑉𝜃𝜃   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                [+][? ][? ] = [? ][? ]
 

The contribution is according to the sign of the Absolute Tangential Velocity and the rate 

of change of the density. Two cases are considered: 

If the fluid particle moves in the direction of the channel rotation: 

If there is an increase in the local density value  

𝑟𝑟  𝑉𝑉𝜃𝜃   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                [+][+][+] = [+]    
 

If there is a decrease in the local density value 

𝑟𝑟  𝑉𝑉𝜃𝜃   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                [+][+][−] = [−]    
 

If the fluid particle moves in the direction opposite the channel rotation: 

If there is an increase in the local density value 

𝑟𝑟  𝑉𝑉𝜃𝜃   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                [+][−][+] = [−]    
 

If there is a decrease in the local density value 

𝑟𝑟  𝑉𝑉𝜃𝜃   
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                [+][−][−] = [+]    
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The gain in the torque generation is favored by two possibilities of the flow behavior. The 

first might be when the local tangential velocity is in the same direction of the channel rotation 

and the local density value decreases. The other possibility could be when the local tangential 

velocity goes against the direction of the channel rotation and the local density value increases. 

There are two other parameters not mentioned in the discussion above: r and ρ. Having 

the highest values for those two parameters is desirable. In this case, “r” parameter holds highest 

values for local radial positions in the channel close to the outlet port. The “ρ” parameter has the 

highest values in the region before the head of the expansion wave; however it does not 

contribute to torque generation gain. The referred region is not favorable to produce torque due 

to the behavior of the fluid, reflected in the parameters of 𝑉𝑉𝜃𝜃, 𝜕𝜕 𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 𝑜𝑜𝑜𝑜 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . 

 

6.2.2. The Net Rate of Flux of Angular Momentum at the Outlet cross section with 

Absolute Variables 

Replacing (6-3) into (6-8): 

 (𝐼𝐼𝐼𝐼) = ∬ (𝑟𝑟 × [𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃])𝜌𝜌𝐶𝐶𝐶𝐶 �𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃� ∙ 𝑑𝑑𝐴𝐴 

Considering in cylindrical coordinates that: 

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 

And relations in (6-4), (6-5) and (6-6) in cylindrical coordinates: 

� ((𝑟𝑟𝑒𝑒𝑟𝑟) × [𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟 + 𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃])𝜌𝜌
𝐶𝐶𝐶𝐶

[𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟 + 𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃] ∙ (𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟) = 

� (0 + 𝑟𝑟𝑟𝑟𝜃𝜃𝑒𝑒𝑘𝑘])𝜌𝜌
𝐶𝐶𝐶𝐶

[𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑 + 0] = � 𝑟𝑟𝑟𝑟𝜃𝜃𝜌𝜌
𝐶𝐶𝐶𝐶

𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑 𝑒𝑒𝑘𝑘 
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(𝐼𝐼𝐼𝐼) = � (𝑟𝑟 × 𝑉𝑉�⃗ )𝜌𝜌
𝐶𝐶𝐶𝐶

𝑉𝑉�⃗ ∙ 𝑑𝑑𝐴𝐴 = � 𝑟𝑟𝑟𝑟𝜃𝜃
𝐶𝐶𝐶𝐶

𝑉𝑉𝑟𝑟𝜌𝜌𝜌𝜌𝜌𝜌 𝑒𝑒𝑘𝑘 
(6-16) 

Analyzing the term in (6-16): 

     𝑟𝑟      𝑉𝑉𝜃𝜃     𝑉𝑉𝑟𝑟   𝜌𝜌                         
[+][+/−][+][+] = [−/+]      

At the outlet, the variable “r” becomes constant for every fluid element crossing the 

outlet boundary. The radial local velocity “𝑉𝑉𝑟𝑟” keeps a positive value at the outlet while “𝑉𝑉𝜃𝜃” 

switches to (–) or (+). 

For the second term in Equation (6-2), the gain in the torque generation happens when the 

direction of the local tangential velocity at the outlet is against the channel rotation direction in 

the integral. Likewise, torque benefits when the local radial velocity and the area swept by the 

integral retain higher values during the opening process. Mass flow rate is a variable inherently 

expressing the behavior of those two parameters (local radial velocity and area swept) as well as 

the fluid density. 

The outer radius (r) does not change in the analysis; otherwise geometrical condition of 

the rotor had to be modified. In general, torque increases as this value becomes greater.  

For the purpose of further analysis, this second RHS term is re-written as the second RHS in 

Equation (6-18): 

𝑅𝑅𝑅𝑅𝑅𝑅2𝑛𝑛𝑛𝑛 = � 𝑟𝑟𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟𝜌𝜌𝜌𝜌𝜌𝜌
𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= � 𝑟𝑟𝑉𝑉𝜃𝜃𝑑𝑑𝑚̇𝑚
𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

Overall values can be used as an approximation to analyze this second RHS in plots at 

every time step through expansion flow time. Then, area-weighted average value for 𝑉𝑉𝜃𝜃 and 

integral of mass flow rate (𝑚̇𝑚) can be utilized: 

𝑅𝑅𝑅𝑅𝑅𝑅2𝑛𝑛𝑛𝑛 = 𝑚̇𝑚𝑉𝑉𝜃𝜃𝑟𝑟 (6-17) 
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Thus, the 𝑅𝑅𝑅𝑅𝑅𝑅2𝑛𝑛𝑛𝑛 will be mainly as a function of two parameters 

 

6.3. Numerical analysis of the Integral Form of the Angular Momentum Equation 

The Computational Fluid Dynamic Analysis is accomplished based on Equation (6-2) 

with cylindrical coordinate relations of (6-3) to (6-6). Then, it becomes: 

𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  =
𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑟𝑟𝑒𝑒𝑟𝑟)𝑥𝑥(𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃)𝜌𝜌𝜌𝜌𝑉𝑉

𝐶𝐶𝐶𝐶
 + � (𝑟𝑟𝑒𝑒𝑟𝑟)𝑥𝑥(𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃)𝜌𝜌(𝑉𝑉�⃗𝑟𝑟 + 𝑉𝑉�⃗ 𝜃𝜃).𝑑𝑑(𝐴𝐴𝑒𝑒𝑟𝑟)

𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

Considering that: 𝑑𝑑(𝐴𝐴𝑒𝑒𝑟𝑟) = 𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 , because 𝑒𝑒𝑟𝑟 does not change in this direction  

The equation becomes: 

=
𝜕𝜕
𝜕𝜕𝜕𝜕
� ([𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟] + [𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃])

𝐶𝐶𝐶𝐶
𝜌𝜌𝜌𝜌𝑉𝑉 

+ � ([𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟] + [𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃])𝜌𝜌([𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟 .𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟] + [𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃.𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟])
𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 

Also, taking into account that: 

𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑟𝑟𝑉𝑉𝑟𝑟(𝑒𝑒𝑟𝑟𝑥𝑥𝑒𝑒𝑟𝑟) = 0  

𝑟𝑟𝑒𝑒𝑟𝑟𝑥𝑥𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃 = 𝑟𝑟𝑉𝑉𝜃𝜃(𝑒𝑒𝑟𝑟𝑥𝑥𝑒𝑒𝜃𝜃) = 𝑟𝑟𝑉𝑉𝜃𝜃𝑒𝑒𝑘𝑘  

𝑉𝑉𝑟𝑟𝑒𝑒𝑟𝑟.𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 = 𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑 cos(0) = 𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑 (1) = 𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑   

𝑉𝑉𝜃𝜃𝑒𝑒𝜃𝜃.𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟 = 𝑉𝑉𝜃𝜃𝑑𝑑𝑑𝑑 cos(90) = 𝑉𝑉𝜃𝜃𝑑𝑑𝑑𝑑(0) = 0  

The equation becomes: 

= 𝜕𝜕
𝜕𝜕𝜕𝜕∭ ([0] + [𝑟𝑟𝑉𝑉𝜃𝜃𝑒𝑒𝑘𝑘])𝐶𝐶𝐶𝐶 𝜌𝜌𝜌𝜌𝑉𝑉 + ∬ ([0] + [𝑟𝑟𝑉𝑉𝜃𝜃𝑒𝑒𝑘𝑘])𝜌𝜌([𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑  ] + [0])𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  

= 𝜕𝜕
𝜕𝜕𝜕𝜕∭ 𝑟𝑟𝑉𝑉𝜃𝜃𝐶𝐶𝐶𝐶 𝜌𝜌𝜌𝜌𝑉𝑉𝑒𝑒𝑘𝑘  + ∬ 𝑟𝑟𝑉𝑉𝜃𝜃𝜌𝜌𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑘𝑘 = ( 𝜕𝜕

𝜕𝜕𝜕𝜕∭ 𝑟𝑟𝑉𝑉𝜃𝜃𝐶𝐶𝐶𝐶 𝜌𝜌𝜌𝜌𝑉𝑉 + ∬ 𝑟𝑟𝑉𝑉𝜃𝜃𝜌𝜌𝑉𝑉𝑟𝑟𝑑𝑑𝑑𝑑𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 )𝑒𝑒𝑘𝑘   

And finally, Equation (6-18) will be used for calculation of torque at each time step as 

well with the two terms in the scalar form. 
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𝑇𝑇�⃗ 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = ( 
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑟𝑟𝑉𝑉𝜃𝜃

𝐶𝐶𝐶𝐶
𝜌𝜌𝜌𝜌𝑉𝑉 + � 𝑟𝑟𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟𝜌𝜌𝜌𝜌𝜌𝜌

𝑐𝑐ℎ−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 )𝑒𝑒𝑘𝑘 

(6-18) 

The sign convention in Equation (6-18) for the generation of torque will be negative and 

when any of the RHS terms have this sign they will be counted as a contribution for total torque 

production. A positive value would not be desirable, for it consumes the produced torque.  

 

6.3.1. Unsteady Expansion with Constant Cross Section Channel  

In Figure 6-16 is shown the torque history and the progress of the two RHS terms of 

Equation (6-18) along with the flow time. The rotational velocity is the changing variable while 

the channel geometry is kept same for all cases. In the same graph, dashed blue arrow indicates 

the time when the outlet port is fully open. This arrow moves to the left as the rotational velocity 

increases. This effect reflects the geometric and kinematic conditions of the channel (arc length 

and rotational velocity, respectively) and produces the maximum instantaneous torque as 

location shifts to the left. 

The second dashed green arrow indicates the flow time when the head of the expansion 

wave reaches the inlet port wall; this position was found to be where a sudden increase happens 

in ∆𝑝𝑝𝑖𝑖𝑖𝑖−𝑖𝑖 plots. These values in plots were quantified by calculating the reduction of the area-

weighted average value of static pressure at the wall during the current time with respect to a 

previous time step (Equation (6-19)). This is a graphical method in which the eye determines the 

position. This becomes an approximated value due to the area-weighted average value at the inlet 

wall and the graphical method. In Figure 6-4 is shown an example, the time when the expansion 

wave reaches the inlet wall. Plots for other cases can be found in Appendix A. 

∆𝑝𝑝𝑖𝑖𝑖𝑖−𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖_𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑛𝑛_𝑖𝑖−1 (6-19) 
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In Figure 6-5 was plotted all travel-times for the cases under study. Apparently, all cases 

portray the same travel-time for the head of the expansion wave to reach the inlet wall. However, 

there is a small deviation with respect to the GO10K case if considered as a reference case. This 

deviation increases as the rotational velocity increases, and the maximum deviation is 4.4% at 

GO@50K. This implies the head of the expansion wave takes more time to reach the inlet wall 

as the rotational velocity increases; this might be associated with centrifugal force effects on the 

fluid. Furthermore, in Figure 6-4, the area-weighted average value of static pressure at the inlet 

wall (Pin) decreases and ∆𝑝𝑝𝑖𝑖𝑖𝑖−𝑖𝑖 values oscillate periodically before the head of the expansion 

wave reaches its location. This effect appears to be linked to centrifugal force effects as well 

because this conduct is enlarged as the rotational velocity increases. 

Figure 6-4: Graphical method to find the time when expansion wave reaches the inlet wall 
(GO@30,000 rpm) 
 

All explanations have hitherto been concerned with time-locations of when channel outlet 

is fully open and the head of expansion wave impinges the channel inlet, and the following is the 

discussion of generated torque results. Figure 6-16 describes the progress of the torque 

generation (blue plot) at each time step. Also, there are two additional plots: the rate of change of 

 



105 
 

the angular momentum (red plot) and the outflow rate of the angular momentum through channel 

outlet (green plot). Both graphs were plotted based on the two RHS terms of Equation (6-18), 

respectively, and the torque generation (blue plot) results when both plots are summed. 

A comment for special recognition in Figure 6-16 is the sign of plots. According to 

previous Sections (6.2.1 and 6.2.2), a negative value means a gain in torque or torque generated 

during the expansion and a positive value is the opposite meaning, but for easy reading of 

graphs, the sign have been inverted. 

The rate of outflow of the angular momentum -the green plot- is mainly shaped by 𝑚̇𝑚 and 

𝑉𝑉𝜃𝜃 since “rout” coordinate is a constant value for all fluid particles at the channel outlet. All plots 

(green curves) start with a growing negative value, reaching a maximum and then decreasing 

until reaching a zero value, according to Figure 6-16. This zero value is correlated with zero 

tangential velocity (Figure 6-14 (c) and (d)). Thereafter, the rate of outflow of the angular 

momentum has positive values, but not fully for GO50Krpm case (Figure 6-16 (f)). 

Figure 6-5: Expansion duration and expansion wave time to reach channel inlet 
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The 𝑚̇𝑚 reaches a maximum value at the time the channel outlet is fully open and the full 

area of channel outlet favors this maximum, except for instant opening case (Figure 6-14 (a)). 

The channel rotational velocity increase causes earlier complete outlet opening, resulting in plots 

with its maximum 𝑚̇𝑚 moving to the left. 

The instant opening case has its maximum 𝑚̇𝑚 at the beginning as the outlet is fully open. 

The starting point of maximum outflow rate of the angular momentum cannot be correlated since 

it is mostly influenced by the tangential velocity direction which adds or subtracts to the net of 

this outflow rate term. However, the time when 𝑚𝑚 ̇ decreases is correlated with the decrease of 

the rate of outflow of the angular momentum, because the fluid is already following the channel 

shape, except for the GO50Krpm case. 

The second agent taking an active role in the outflow rate of the angular momentum is the 

tangential velocity. The mass-weighted average of 𝑉𝑉𝜃𝜃 provides a glimpse of how it influences the 

rate of outflow of angular momentum. This second torque term becomes negative if 𝑉𝑉𝜃𝜃 direction 

is same as rotational channel velocity (Figure 6-7(a) and (b)). In all gradual opening cases, at the 

beginning of the process, 𝑚̇𝑚 grows gradually as the channel outlet opens in the same manner. 

This fact with the quick increase of 𝑉𝑉𝜃𝜃 produces a rise in the negative second torque term. 

However, the following increase of 𝑚̇𝑚 does not continue producing a rise in the negative second 

torque term because 𝑉𝑉𝜃𝜃 begins to decline until zero value. 

In graphs that follow: Figure 6-7, Figure 6-8 and Figure 6-9, 𝑉𝑉𝜃𝜃 distributions at the 

channel outlet are plotted. The abscissa coordinates indicate the fractional opening of outlet area, 

measured in terms of angular units with respect to the pressure side. 

The tangential velocity of the fluid particle at the outlet location is influenced by tip 

speed of the channel, pressure gradient in tangential direction, shape of pressure side, and 
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opening speed of channel outlet. These factors act at each location of the outlet differently and 

because of that, three regions are considered: near pressure side (NPS), free stream (FS) and far 

from pressure side (FPS). 

The direction change of absolute tangential velocity from positive to negative is depicted 

by the velocity diagram in Figure 6-6, this also shows the relationship with relative velocity and 

tip speed. This comparison is done for the same channel geometry and therefore βout angle and 

tip speed (U1) are the same values for both (a) and (b) diagrams. 

Figure 6-6: Triangle velocities for (a) positive tangential velocity and (b) negative tangential 
velocity in absolute and relative system at the channel outlet. The βout angle and tip speed (U1) 
are same for (a) and (b) velocity sketches. 
 

 

(a) Positive absolute tangential velocity (𝑉𝑉𝜃𝜃) 

 

(b) Negative absolute tangential velocity (𝑉𝑉𝜃𝜃) 
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Figure 6-7 shows 𝑉𝑉𝜃𝜃 distributions at the channel outlet at each selected point of Figure 

5-16. This plot refers to the channel gradual opening case rotating at 10,000 rpm. At point-1, the 

fluid flow trajectory in the NPS region is constrained by the pressure side shape and thus, the 

fluid develops negative local tangential velocities which overcome the tip speed of the channel. 

The FS region appears to be not highly influenced by the pressure side shape and thus, the 

negative tangential velocity imposed by the wall shape is not enough to counteract the tip speed 

of the channel. On the other side of the opening, or FPS region, as the outlet opens more, the 

flow moves with a positive tangential velocity because it is not constrained to follow the channel 

shape. The pressure gradient in the tangential direction appears to contribute to this direction 

along with the tip speed of the channel. 

Figure 6-7: (a) Absolute tangential velocities at the channel outlet with gradual opening rotating 
at 10,000 rpm, (b) Detail “X” 
 

At point-2, both positive and negative tangential velocities continue increasing as the 

fluid flow accelerates. As the channel outlet opens more area, the effect of the pressure side 

shape spreads to zones near FS region and causes more portion of fluid to adjust its trajectory as 

parallel to the pressure side shape. Therefore, the positive absolute tangential flow velocity 

  
(a) (b) 
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decreases and finally results in the negative tangential velocity which contributes to torque 

generation. In subsequent points (3 to 8), the fluid continues accelerating due to pressure 

gradients and keeps changing direction by the influence of the channel shape. Thus, greater 

regions of fluid move with absolute tangential velocity as more outlet area is opened. 

At the channel rotational velocity of 50,000 rpm, the tip speed is higher than the previous 

case and to produce torque by negative tangential velocities the fluid must counteract this effect. 

The plot of 𝑉𝑉𝜃𝜃 distribution at the channel outlet is shown in Figure 6-8. The first four curves are 

of the period when the generated torque is negative (Figure 6-16 (f)). The effects of the pressure 

side shape and pressure gradient are not enough to produce higher velocities in the opposite 

direction of the rotation and overcome the tip speed. In addition, the fast opening effect of 

spreading parallel fluid trajectories to other regions do not influence sufficiently for negative 

tangential velocities. 

Figure 6-8: (a) Absolute tangential velocities at the channel outlet with gradual opening rotating 
at 50,000 rpm, (b) Detail “X” 
 

The plot in Figure 6-9 displays more regions of negative tangential velocities from the 

beginning of the expansion process at instant opening condition. During a short period of time, 

    
(a) (b) 
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fluid flow with tangential velocities in the rotation direction occurs, which is why small negative 

torque is produced (Figure 6-16(a)). The first six curves belong to that time interval. The fluid 

flow develops negative tangential velocities in regions near the pressure and suction side. 

The instant opening with respect to gradual opening presents better tangential velocity 

distribution at the channel outlet. The instant opening is an ideal condition to produce superior 

tangential velocity distributions, and the increase in rotational velocity can reproduce the quick 

opening at the outlet in the operation of a real engine. The benefit of fast opening by the 

rotational velocity increase is overshadowed by the tip speed effect which the fluid must 

overcome to achieve negative tangential velocities. 

Figure 6-9: (a) Absolute tangential velocities at the channel outlet with instant opening rotating 
at 10,000 rpm, (b) Detail “X” 
 

Rate of Change of angular momentum is the other component contributing to the total 

generated torque by the unsteady expansion of a gas. This rate of change is composed of three 

terms according to Equation (6-15). Each term will be analyzed to determine the predominant 

factor in the rate of change. The first term to examine is 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟. 

  
(a) (b) 
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The history of the term 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟 during the unsteady expansion process is plotted in Figure 

6-10 and shows a small contribution to the total value of the rate of change. With the increase of 

channel tip speed, term 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟  will decrease even more its contribution to torque generation. 

This decreasing contribution can be seen in Figure 6-10 (a) and (b) where the negative values 

become bigger and the positive values decrease as the rotational velocity speeds up from 20,000 

to 40,000 rpm. The comparison with respect to the sum of 𝑟𝑟𝑟𝑟 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

+ 𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 indicates a significant 

part of the rate of change comes from the sum of these two terms aforementioned, and so the 

focus should be on them. 

In Figure 6-11, 20 fixed points within the channel are selected to calculate the time rates 

of  𝑉𝑉𝜃𝜃 and 𝜌𝜌 to determine which flow field variable produces the highest time rate. Results in 

Figure 6-12 show the time rate of 𝑉𝑉𝜃𝜃 is 1000 times bigger than the time rate of 𝜌𝜌 and because of 

that 𝑟𝑟𝑟𝑟 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 is the main contributor to the rate of change. The plots in Appendix C show the 

contribution of each term: 𝑟𝑟𝑟𝑟 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

,  𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟,  𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  and indicates the small contribution of 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟 

with respect to the other two. Also, these graphs support the conclusion of the term having 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 

with respect to the term having 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , which contributes significantly to the rate of change. These 

results indicate the expansion wave create favorable conditions for the flow field variables 

expressed as a time rate of change. 

Additionally, torque generation through the rate of change term benefits from the local 

deceleration or acceleration in the tangential direction, (𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

). Selected points 8 to 20 show local 

tangential velocities in the rotation direction of the channel decelerating. This result contributes 

to the gain in torque. Afterward, the fluid, with local tangential velocity opposite the channel 

rotation, accelerates at radial location between 97.5 to 100 mm. 
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  Figure 6-10: Rate of Change of the Angular Momentum and components. Expansion wave 
impinges inlet wall “↓”. 
 

In addition, the 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 benefits from the speed at which the outlet port opens. The faster the outlet 

opens, the greater is the time rate of local tangential velocity. The quicker opening of the channel 

outlet speeds up the process of decelerating and further accelerates the fluid element. Therefore, 

 

(a) Gradual opening at 20,000 rpm 

 

(b) Gradual opening at 40,000 rpm 
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the rotational velocity increase raises the positive effect on torque generation and this can be 

corroborated in Figure 6-16 from (b) to (f), in which the crest of the rate of change moves to the 

left side and raises its tip value. 

The 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

 is a predominant term among the other terms of the rate of change, contributing 

significantly to torque generation. In unsteady expansion processes, the second mechanism 

working for the generation of torque is the time rate of the tangential velocity. 

Figure 6-11: 20 fixed points selected within the channel of the GO20Krpm case   
 

Centrifugal effect is another factor to be considered when the rotational velocity 

increases. In Figure 6-13 is compared the torque history produced by the gas expansion in both a 

stationary and rotating channel at 50,000 rpm. The channel outlet opens at the same speed in 

both cases. The rotating channel exhibits the history of higher torque values which demonstrates 

the effect of centrifugal forces acting on the fluid during the expansion process. Two other 

comparison cases are found in Appendix B for the channel rotating at 30,000 and 40,000 rpm. 
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Figure 6-12: Time rate of local tangential velocity and density for Gradual Opening at 20,000 
rpm 
 

 

 

(a) 

 

(b) 
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Figure 6-13: Rate of change of the angular momentum with rotating and stationary channel 
conditions at 50,000 rpm 
 

Figure 6-16 displays all cases tested: Instant opening at 10,000 rpm and Gradual Opening 

at 10000, 20000, 30000, 40000 and 50000 rpm. The torque value posted on each graph was 

calculated based on the same exergy change in all cases. 

The rate of change of angular momentum (RofCH) and the outflow rate of angular 

momentum (RofOF) exhibit opposite plot features in all cases. The RofCH works for the 

generation of torque from the start of the channel outlet opening to a specific time when RofOF 

starts to generate consistent torque and then the RofCH decreases. Both torque terms 

complement to continue torque generation until the end of the process. Concerning the 

comparison at 10,000 rpm for instant and gradual opening, the first case generates higher torque 

value of 52.7% with respect to gradual opening, which makes the instant opening against the 
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gradual opening more desirable. Thus, the increase in rotational velocity was performed to 

reproduce the instant opening, but other effects were triggered by the increase. 

Figure 6-14: (a) ṁ and mass-weighted average values of (b) radial velocity & (c) tangential 
velocity at the channel outlet for several rotational velocity conditions, (d) Detail of Tangential 
Velocity 
 

No correlation was found between the time when inlet is fully open or the expansion 

wave impinges the inlet wall with any maximum in RofCH or RofOF plots, which makes this 

unsteady expansion process a complex phenomenon. 

  
(a) (b) 

 
 

(c) (d) 
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The percentage of total values for RofCH and RofOF with respect to overall generated 

torque is presented in Figure 6-15. These percentages of RofCH and RofOF exhibit the same 

opposite characteristics as the plots in Figure 6-16. The rotational velocity increase favors 

RofCH within the channel but diminishes the RofOF at the channel outlet. Coincidentally, these 

two terms converge to a same overall percentage value at 30,000 rpm and then diverge. 

Results in Figure 6-15 indicate the RofCH and RofOF are influenced by the outlet 

opening style but inversely proportional. Comparing instant and gradual opening at 10,000 rpm, 

the RofOF takes advantage of the quick opening effect to produce higher torque percentage with 

respect to the gradual opening case. The RofCH benefits from the gradual opening to generate 

higher torque percentage with respect to the instant opening case. 

Figure 6-15: Area ratios of Rate of change/ Torque & Surface Outlet/Torque [%] for several 
rotational velocities (IO=Instant Opening & GO=Gradual Opening) 
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Figure 6-16: History of torque extracted, time rate of change and the net rate of flux of the 
angular momentum during the expansion process (Gradual Opening at (b) 10000 rpm, (c) 20000 
rpm, (d) 30000 rpm, (e) 40000 rpm & (f) 50000 rpm). “↓”, time when inlet is fully open. “↓”, 
time when Expansion Wave reaches the inlet port. 
 

 

  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Torque=0.948 J Torque=0.621 J 

Torque=1.495 J Torque=2.117 J 

Torque=2.355 J Torque=2.221 J 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

7.1. Conclusions 

Factors positively influencing the generation of torque in radial rotor channels during the 

unsteady expansion process of the wave disc engine were determined. 

In chapter 2, pressure side area and channel length were found to go hand-in-hand to 

improve generation of torque. The channel, in which the rise of pressure side area is a result of 

increasing height and channel length, showed the largest improvement in expansion efficiency 

when compared to channels in which height was reduced and length increased. The area increase 

produces more net force applied in the direction of the channel rotation and the increase in 

duration of the expansion process contributes to extend the application time of this force. 

In chapter 3, exergy approach proves to be an appropriate method that evaluates 

objectively the performance of the unsteady expansion process. In exergetic efficiency, work 

extracted is compared with the sum of this work and destructed exergy; this term refers to the 

exergy no longer available because it was destroyed; flow exergy still can be used in subsequent 

expansion stages, however. The expansion efficiency values range between 37 to 67%. These 

results become 3 to 5% higher when the efficiency is calculated based on the extracted work over 

the internal energy added. In addition, flow exergy appears as potential exergy to use in further 

stages, ranging between 81 to 89% of fluid’s exergy change within the channel. 

In chapter 4, a zero dimensional macroscopic approximate balance equation was derived 

based on the first law of thermodynamics to calculate the unsteady generated work from the 

unsteady expansion process. Results show prolonging the duration of unsteady expansion 

process enhances the isentropic extracted work toward the maximum value. Longer duration 

times produce lower time rates of density change in the channel and channel outlet velocities. 
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Thus, the dynamic action time of the fluid with channel walls is extended. This result is 

consistent with the finding in Chapter 2; area is not regarded in this conclusion because the 

thermodynamic approach does not provide evidence of it, however. In addition, the gas expands 

more efficiently at lower pressure ratios. The pressure differential between the channel pressure 

and the surroundings becomes lower causing reduced time rate of density change and channel 

outlet velocities. 

In chapter 5, the pressure and torque distribution on pressure and suction sides of the 

channel are analyzed. Two cases were considered: instant and gradual opening of the channel 

outlet. The instant opening causes pressure differentials which improve torque generation at the 

early stage of the unsteady expansion, but the gradual opening triggers adverse effects producing 

torque opposite the channel rotation direction. Furthermore, both cases indicate approximately 

80% of channel length works to produce torque, and a significant fraction in the instant opening 

case is produced in the region near the channel outlet. The remaining length does not contribute 

actively on torque generation. The instant opening is an ideal case, exhibiting benefits at the 

early stage of the process, and the channel rotational velocity increase can reproduce this effect.    

Furthermore, torque generation, composed of the action of two effects: the change of the 

fluid’s angular momentum within channel and the outflow rate of the angular momentum at the 

channel outlet, is investigated. These two components are referred as unsteady and steady 

effects, respectively, based on the mechanism to produce torque. Results show torque production 

benefits when the channel opens quickly. The increase of rotational velocity approximates the 

quick opening. Unsteady effects produce a significant part of the generated torque and the steady 

effect can be small at high speed. 
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7.2. Recommendations for future work 

Fluctuations appear in the torque history as a consequence of the fluctuation in plots of 

the rate of change of angular momentum. These effects are the result of orientation change on the 

line-contours of pressure in the region near the channel outlet. Future work is recommended to 

determine the causes, as it influences the torque generation. 

The channel outlet’s instant opening is an ideal condition to generate torque, and the 

rotational velocity increase aims to reproduce this condition. An adverse effect appears in the 

outflow rate of angular momentum, and the investigation into reversing this effect is a 

recommended future work, a potential option for enhancing torque generation. 

In the exergy section, available remaining exergy in terms of flow exergy is quantified 

resulting in high percentages. As a continuation, an investigation into improving torque 

generation by adding more rows of radial turbines can be done by applying the exergy approach 

to evaluate efficiency and exergy destruction. 

In each CFD numerical simulation, the fluid working conditions at the beginning of the 

unsteady expansion process had a zero relative velocity with respect to the channel. The reason 

for that was to focus the investigation on mechanisms which generate torque without 

interference. Future work is to investigate this torque mechanism by adding a real complex 

condition inherited from the previous process: combustion. 
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APPENDIX A: Incident expansion wave travel time  

Figures present the time when the head of the expansion wave impinges the inlet wall. 

 
Figure 7-1: Incident expansion wave travel time at channel rotational velocity of 10,000 rpm 
 

 
Figure 7-2: Incident expansion wave travel time at channel rotational velocity of 20,000 rpm 
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Figure 7-3: Incident expansion wave travel time at channel rotational velocity of 40,000 rpm 
 

 
Figure 7-4: Incident expansion wave travel time at channel rotational velocity of 50,000 rpm  



125 
 

APPENDIX B: Centrifugal force effects 

Figures depict the influence of centrifugal forces on the rate of change of angular 

momentum within the channel 

 
Figure 7-5: Centrifugal effects for channel rotating at 30,000 rpm 
 

 
Figure 7-6: Centrifugal effects for channel rotating at 40,000 rpm 
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APPENDIX C: Components of rate of change of angular momentum 

The following figures show plots of the three terms that constitute the rate of change of 

the angular momentum within the channel: 𝑟𝑟𝑟𝑟 𝜕𝜕𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕

, 𝜌𝜌𝑉𝑉𝜃𝜃𝑉𝑉𝑟𝑟 and 𝑟𝑟𝑉𝑉𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

 
Figure 7-7: The term rρ(∂Vθ/∂t) plotted for five time steps at every fixed point in the channel at 
GO20Krpm case 
 

 
Figure 7-8: The term ρVθVr plotted for five time steps at every fixed point in the channel at 
GO20Krpm case. 
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Figure 7-9: The term rVθ(∂ρ/∂t) plotted for five time steps at every fixed point in the channel at 
GO20Krpm case. 
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APPENDIX D: Numerical simulation set-up 

 

Figure 7-10: Numerical simulation set-up for 2-dimensional cad models 
 

Figure 7-11: Numerical simulation set-up for 3-dimensional cad model 
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