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ABSTRACT

HOLOMORPHIC SELF-MAPS OF THE UNIT BALL:

ITERATION AND COMPOSITION OPERATORS

By

Barbara Diane MacCluer

Let f be a holomorphic map of the unit disc D into itself,

which is neither the identity map nor an elliptic automorphism of D.

A theorem of A. Denjoy and J. Wolff states that the iterates of f

converge, uniformly on compacta, to a point z in '5. This point 2,

called the Denjoy-WOlff point for f, will be the fixed point of f

if f has an interior fixed point; otherwise 2 will be a point of

am. In this paper we consider analogues of the Denjoy-wolff theorem

for holomorphic self-maps of the unit ball BN in IN. For a fixed

point free map f we show that the iterates of f converge to a

point of the boundary of the ball. Part of our argument will yield a

useful description of the automorphisms of BN which fix no point of

BN. The subsequential limits of iterates of maps with interior fixed

points are also described.

Secondly we consider several questions related to composition

operators on Hardy spaces of the unit ball. If m: B + B is a
N N

holomorphic map and f is a holomorphic function on B denote the
N3

composition f o e by C¢(f). We give examples to show that, in con-

trast to the situation when N = l, there are holomorphic maps o
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for which Co is not a bounded operator on Hp(BN), where N > l

and p < m.

Finally, we study Ccp in the case that Co is a compact

operator on some Hardy space Hp(BN). In this situation we show that

m fixes a unique point 20 of BN and determine the spectrum of

Co to be all possible products of powers of the eigenvalues of the

derivative map ¢'(zo) U {0,1}.
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INTRODUCTION

Let BN denote the open unit ball in IN, in the Euclidean

metric. Thus BN = {(z],...,zN) 6 CN with leilz < l}. A holomorphic

is a map f: B + B which can be written as
N N N

f = (fl”"’fN) where each fi is a holomorphic function from BN

self-map f of B

into C.

Chapter I deals with the iteration of a holomorphic self-map

of BN. A classical result due to A. Denjoy [6] and J. Wolff [24]

states that if f is a holomorphic map of the unit disc 0 into

itself which is neither the identity nor an elliptic automorphism of

D, then the sequence of iterates of f converges, uniformly on com-

pacta, to a point z e D} This point 2, called the Denjoy-Wolff

point for f, will be the fixed point of f if f has an interior

fixed point; otherwise 2 will be a point of 3D. In Chapter I we

extend the Denjoy-Wolff theorem to the unit ball BN; in particular

we show that the entire sequence of iterates of a fixed point free

tolomorphic:self-map of BN converges, uniformly on compacta, to a

point in aBN. Part of our argument involves a characterization of

We also describethe automorphisms of B which fix no point of B
N N‘

the subsequential lhnitsof iterates of maps with interior fixed points.

The remaining chapters deal with composition operators on

Hardy spaces in the ball. Recall that the Hardy space HP(BN),

0 < p < w, is the space of holomorphic functions on BN satisfying



11:12 sup I 1mg)!” dam ..,
<r< S

where S = aBN and o is the rotation invariant probability measure

on 5. If (p isaholomorphic map of BN into BN and f a holomorphic

function in BN, the composition C¢(f) = f o o is again a holomorphic

function in BN. In the case N = l, Co is a bounded linear operator,

called a composition operator, on Hp(m), for 0 < P f m. Composition
 

operators in the disc have been an area of active study for the past

fifteen years.

In Chapter II we consider the question of the boundedness of

C(p on HP(BN) when N > l. We give, in contrast with the case N = l,

some examples of maps o for which Co is not bounded on HP(BN),

p < w, and we see that Co can even fail to take HP(B into theN)

Ne anlinna class N(BN). Some positive results related to the question

of the boundedness of CW are also discussed.

Chapter III deals with composition operators which are compact

on some HP(BN). Compact composition operators on the HP spaces of

the unit disc have been extensively studied. For example, in [20],

J.H. Shapiro and P.D. Taylor relate the compactness of the operator

Co to certain geometric properties of the inducing map o. J.

Caughran and H. Schwartz [4] show that if Ccp is compact on H2(D),

then m has a unique fixed point 20 in D, and that the spectrum

of Ccp is the set {m'(zo)n: n = l,2,...} U {0,1}.

The main object of Chapter III is to determine the spectrum of

a compact composition operator on HP(B for l 5 P < m. While theN)

fixed point set of a holomorphic map o: BN + BN 15 usually more



complicated in the case N > l than it is when N = l, we nevertheless

show that a map which induces a compact composition operator on

HP(BN) has a unique fixed point in BN’ Suppose that Co is compact

on HP(BN) with z the fixed point of m. Then we show that the
0

spectrum of Co consists of O and l along with all possible products

of powers of the eigenvalues of the derivative map ¢'(zo). While the

methods of Caughran and Schwartz [4] in the case N = l and P = 2

can be made to work for P = 2 in several dimensions, we will take a

different approach which is applicable for all P, l f P < m.



CHAPTER I

In this chapter we consider the iteration of holomorphic self-

maps of the unit ball in IN. The main result of Section l is an

analogue of the classical Denjoy-Wolff theorem in the unit disc [6, 24],

which states that the sequence of iterates of a holomorphic, fixed point

free map of m into m converges, uniformly on compacta, to a con-

stant of norm l. In Section 2 we consider the iteration of maps with

interior fixed points.

1. Maps with no interior fixed points. From now on we will denote

N

 

the unit ball in I by B instead of BN’ unless we wish to indicate

the dimension explicitly. Let H(B;B) be the family of all holomorphic

maps of B into itself. For f E H(B;B) we denote the iterates of

f by fn:

f = f, f = f o fn n = 1’2939--°
n+l

Since H(B;B) is a normal family, every sequence of iterates of f

contains a subsequence which converges, uniformly on compact subsets

of B. We will examine the possible subsequential limits of {fn}

according to the fixed point character of f. Note that a subsequential

limit of iterates of f E H(B;B) need not belong to H(B;B). However

the following lemma shows that this can only happen if the limit is a

constant map of norm 1.



Lemma 1.1. Let F: B + B' be holomorphic. Then either F(B) Q B

or F(z) a g in 38, for all z in B.

Proof: Suppose there is a z in B with F(zo) = g e 38. Set
0

G(z) = (l + <z,;>)/2, so G belongs to A(B), the algebra of functions

holomorphic in B and continuous on BI Note that G(;) = l and

|G(z)| < l for all z in B\{c}. Consider the holomorphic function

G o F. Since G o F(zO) = l and IG 0 F(z)| f l for all z in B,

the maximum modulus theorem implies G o F is identically l. So

F(z) s g, for all z in B, as desired. D

We will find it convenient to use some facts from the theory

of topological semigroups. Under the operation of composition and with

the topology of uniform convergence on compact subsets of B, H(B;B)

becomes a topological semigroup [Zl]. For f E H(B;B) denote by

F(f) the closure, in the space of all holomorphic maps from B to

CN with the topology of uniform convergence on compact subsets of B,

of the iterates of f. If F(f) 9 H(B;B), then F(f) is a compact

topological semigroup and as such contains a unique idempotent [23].

Recall g is an idempotent if g o g = 9. An idempotent in H(B;B)
 

is also called a retraction of B.

We next give the statement of a theorem due to W. Rudin, which

characterizes the fixed point set of any map in H(B;B) as an affine

subset of B. This theorem is the key to the proof of the main theorem

of this section.



Theorem 1.2 [l7; Sec. 8.2.3, p. l66]. If F: B +-B is holomorphic,
 

then the fixed point set of F is an affine subset of B; that is,

N
the intersection of B with c + L, where c 6 C and L is a com-

plex linear subspace of CN.

Denote by Aut B the group of biholomorphic maps (automorphisms)
 

of B onto itself. These maps take affine subsets of B onto affine

subsets [l7, Sec. 2.4.2, p. 33]. Moreover, since Aut B acts tran-

sitively on 8 [l7, Sec. 2.2.3, p. 31], if A is an affine subset

of B there is a w 6 Aut B so that w(A) = {(21’22""’ZN) E B

with Zi = O for i = r + l,...,N}. To see this, first map some point

of A to the origin, so that the image of A is the intersection

of B with a complex linear subspace of C”. Now apply a unitary

transformation. Thus w(A) 2 Br’ the unit ball in Cr. We will say

f E H(B;B) is an automorphism of A if u o f o u'] is an automorphism

when restricted to ¢(A).

Before stating the main result of this section, we need to

develop a several variable analogue of a theorem which in the disc is

due to J. Wolff [25]. To facilitate the statement of this theorem

we introduce some notation. Let

e1 = (l,O,...,O) = (l,O') 6 38.

For A > O,

E(61,A) = {z = (21.22,...,2N) so that l1 - z1|2 < A(l-Izl2)}.



Some computation shows that E(e1,A) is the set of points

(Zl’22""’ZN) = (21,2') in EN satisfying

Iq-(i-ofi+chw2<¥

where c = A/(l+x). Thus E(e],x) is an ellipsoid in B, centered

at e1/(l+A) and containing e1 in its boundary. For an arbitrary

c in BB, E(;,x) is the analogous ellipsoid in B, centered at

c/(T+A) and containing c in its boundary.

Theorem l.3. If f is in H(B;B) and fixed point free, then there
 

is a unique point c 6 38 such that each ellipsoid E(;,A) is mapped

into itself by f and every iterate of f.

Proof: Choose rn + I. Let an E B be a fixed point of the map

rnf: rnB'+ rnBl Passing to a subsequence if necessary, assume

an + g e B} Since f has no fixed points in B, g e 38. Without

loss of generality assume c = e]. Then an + e], f(an) = an/rn + e],

and

l-|f(an)| _ l - (Ianl/rn)

— <

l - lanl l - lanl

 

Again passing to a subsequence if necessary we have

l - |f(an)|

lim =afI.

n+w l - |an|

 

By Julia's lemma [17; Sec. 8.5.3, p. l75]



 

ll-f](z)I2 Il-z]|2
< 0.

14112112 ’ 1-1212

(here f = (f1,f2,...,fN)). Geometrically this means

f(E(e1,A)) 9 E(e],aA) 9 E(e],x) since a f l, as desired.

To see that c is unique suppose we have another point c'

in 38 with the property that each ellipsoid E(c',A) is mapped into

itself by f. Choose A] and A2 so that E(;',A]) and E(;,A2)

are tangenttn each other at the point z in 8. Then f(z) is in

ET;',A]) O ET;,A2) = {z}, contradicting the hypothesis that f is

fixed point free.

Notation: We call the point t of Theorem l.3 the Denjoy-Wolff point

of f. The constant map 9(2) 2 c for z in B will be denoted

C(f).

A consequence of Theorem 1.3 is the following:

Corollary 1.4- LEt f e H(B;B) be fixed point free. Then F(f)
 

contains at most one constant map, which can only be C(f).

Proof: Let g be the Denqu-Wolff point of f. Suppose there is a

sequence {"i} so that fn + w e BI If w # c we can find a small

1

neighborhood V of w in B disjoint from some ellipsoid E(;,A).

By Theorem 1.3, if z is any point in E(;,x), then the image point

fn(z) is in E(C:A) for all n 3 l. Thus fn (z) E V for any i,

i



so fn (z) i w. Therefore the only constant function which may appear

1

in F(f) is ;(f). D

We can new state the main theorem of this section.

Theorem l.5. Let f be in H(B;B) and suppose f has no fixed points
 

in B. Then fn + §(f).

We give the proof of Theorem l.5 in several steps, beginning

with the following proposition.

Proposition l.6. Let f be an arbitrary map in H(B;B). If there
 

is a nonconstant map among the subsequential limits of {fn}, then

F(f) contains a nonconstant idempotent.

Proof: We suppose there is a nonconstant map 9 and a sequence

5; = ..{n1} so that fni + 9. Note that g(B) B. Set mi n1+1 n1.

Choose a convergent subsequence of {fm }, say fm. + h. On the one

1 1k

hand fm. o fn. + h o 9. But also fm. o fn. = fn. + 9. So

1k 1k 1 1 1+1

h o g = g which implies that h is the identity map on the range of

g, which consists of more than one point. By Theorem l.2 the fixed

point set of h is an affine subset A of B. The dimension of A

is 3 l and the range of h contains A.

Now suppose that the range of h properly contains A. Then

the above argument, applied to h instead of 9, produces another

subsequential limit of {fn} which is the identity on an affine subset
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A' of B containing the range of h. Moreover the dimension of A'

is strictly greater than the dimension of A. Choose from among the

subsequential limits of {fn} a map H with fixed point set of maximal

dimension. For this map H we must have range H = fixed point set

of H, since otherwise there would be another subsequential limit with

a fixed point set of larger dimension. Thus H is an idempotent,

and since the dimension of the fixed point set of H is 3 l, H is

nonconstant. B

Our next goal is to establish Theorem l.5 for automorphisms

of B with no fixed points in B. If f is in Aut B then f is

continuous from B' to B' and thus has a fixed point in B} The

automorphisms of B with no fixed points in B fix either exactly

one or exactly two points of 38 [l7, Sec. 2.4.6, p. 33]. The case

of two fixed points in 38 is easy to handle:

Proposition l.7. Let f E Aut B fix precisely two points of BB.
 

Then fn converges to one of these fixed points.

Pgoof: Suppose that f fixes g] and ;2 in 38. Consider the

complex line L through ;] and g2. Since an automorphism takes

complex lines to complex lines, f maps L O B onto Lil B. Now

the Denjoy-Wolff theorem in one variable implies that the iterates of

f restricted to LII B converge to one of the fixed points, say g].

By Lemma 1.1, every convergent subsequence of {fn} must converge to

g]. This implies that fn + :1, since H(B;B) is a normal family.

Clearly ;1 must be the Denjoy-Wolff point of f. D



ll

The case of one fixed point in BB requires more work. We

will assume, without loss of generality, that the fixed point is

e1 = (l,O'). To study automorphisms of the disc it is convenient to

transfer to the upper half plane via the biholomorphic map

2 + i(l + z)/(l - z). A similar device is available in several variables.

N
Let n c: C be the region (The Siegel upper half-space) consisting of
 

those points (w],w') with Im w1 > lw'l2, where w' = (w2,...,wN),

|w'|2 = |w2|2 + ... + |wN|2. Define o, the Cayley transform, on

(IN\{z1 = 1} by ¢(z) = i(e1 + z)/(1 - 2]). Then o is a biholomorphic

map of 8 onto 9 [17; Sec. 2.3.1, p. 31]. Moreover if §'= n U39.

where an = {(w1,w') such that Im w1 = |w'|2}, and 5’ U {m} is the

one-point compactification of 5, then defining ¢(e]) = w extends

o to a homeomorphism of B" onto E’U {m}. The automorphisms of B

with fixed point set {e1} correspond to the automorphisms of n with

fixed point set {w}.

An example of a class of such automorphisms are the Heisenberg

translations, defined as follows. For each b = (b],b') in an set

hb(w],w') = (w1 + b1 + 2i<w',b'>, w' + b'). The Heisenberg translations

form a subgroup of Aut n, and for b # 0 each hb fixes w only

[17; Sec. 2.3.3, p. 32]. By a Heisenberg translation of B we shall

mean an automorphism of B of the form o'] o hb o o, where o is the

Cayley transform and hb is as above.

It is easy to see that the iterates of a Heisenberg translation

converge to e], since for any 0 f b 6 an. (hb)n + m. However, in

contrast to the situation in one variable, not every automorphism of

Q with fixed point set precisely {w} is a Heisenberg translation.
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For example, if A = (A2,...,AN) where Ixil = 1 and if b i O is

real then gb’x(w1,w') E (w1 + b,x2w2,...,waN) is an automorphism

of n fixing {w} only. Note that gb,x fixes setwise the image

under o of the complex line through 0 and e1, namely

{(w1,w') e n with w' = 0}. We will see that any automorphism of B

with fixed point set {e]} which is not a Heisenberg translation of

B must fix setwise some nonempty, proper affine subset of B. A map

f is said to fix a set S setwise if f(S) 9 S. In this situation

we will also say f fixes S as a set.

Theorem 1.8. Let G E Aut B fix e1 only. Write G = (Gl’GZ’°"’GN)'
 

If

(*) I1 - 61(21l2/(1-iG(-Z)|2)= Il- Z1lz/(l - IZIZ)

holds for every 2 in B, then either G is a Heisenberg translation

of B or G fixes as a set a proper, nonempty, affine subset of B.

Romogk, Professor David Ullrich has pointed out to me that

condition (*) of Theorem 1.8 mo§t_hold for an automorphism of B with

fixed point set precisely {e1}. We give a proof of this fact at the

end of this section. Note that (*) has a simple geometric meaning:

the boundary of each ellipsoid E(e],x) is mapped into itself by G.

Before giving a proof of Theorem 1.8 we will establish the

following corollary.

 

Corollary 1.9. If G e Aut BN fixes e1 only then Gn + e].
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Proof. If condition (*) of Theorem 1.8 fails to hold for some point

w in B then by Theorem 1.3 we must have

2

II1- G](W)|2/(I - lG(w) )= eh - w1I2/(1- lez)

for some 8 < 1. Suppose further that Gn does not converge to

e1 = ;(G). By Corollary 1.4 and Proposition 1.6 F(G) contains a

nonconstant idempotent. Moreover, by a theorem of H. Cartan [15; p.

78] the nonconstant subsequential limits of the iterates of an auto-

morphism must again be automorphisms. Since the only idempotent which

is an automorphism is the identity map I on B, F(G) contains I.

Thus there is a sequence {nil so that Gni + I. In particular

Gn (w) + w. But this cannot be, for w lies in the boundary of

1

E(e],A) where A = |1 - w1|2/(1 - lwlz) and Gn(w) is in

E(e1,BA) 9 int E(e],x) for every n 3 1. This contradicts our as-

sumption that Gn does not converge to e].

We suppose now that G satisfies (*) at every point of B

and apply Theorem 1.8. If G is a Heisenberg translation o'] o hb o p,

then Gn + e1 since (hb)n + m. We finish the remaining case by

induction. Note that the corollary is true for N = l and assume it

holds for k < N. We are left to consider the possibility that G

fixes setwise a nonempty, proper, affine subset A of B of dimension

k < N. Now G = GIA is an automorphism of A e Bk fixing e1 only.

By induction G” + e1 and by Lemma 1.1 Gn + e]. D

In the proof of Theorem 1.8 we will transfer back and forth

between the ball 8 and the Siegel upper half-space 9 via the Cayley
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transform o. For the proof of Theorem 1.8 we will use lower case

letters to denote automorphisms of n and the corresponding capital

letters for the associated automorphism of B obtained by composition

on the right and left by p and o'] respectively.

 

Proof of Theorem 1.8. Let G E Aut BN fix e1 only and satisfy (*).

If ¢(z) = w then Im w1 - |w'|2 = (l - |z|2)/|l - 2112. Thus the

boundary of the ellipsoid E(e1,x) is mapped by a to {(w],w') E n

such that Im w1 - lw'|2 = l/x}. Condition (*) for G e Aut 8N be-

comes, for the function g = o o G o c'],

on mgnm-Irwn2=mw1-w
.l2

where g = (91’92’°"’9N) = (9],9').

Set G(O) = a so g(i,O') = ¢(o) = (a],a'). Now

Im a1 ~ |a'|2 = 1 since 9 satisfies (**). Write a1 = c + i(l + |a’|2)

where c is real. We claim that there is a Heisenberg translation of

9 taking (a],a') to (i,O'). To see this consider the point

(c + i|a'|2,a') in an. The Heisenberg translation associated to this

point takes (i,0') to (a],a'). Its inverse is a Heisenberg translation

having the desired property; we denote it simply by hb. (A computation

shows that b = (-c + ila'lz, -a')).

Now hb o g is an automorphism of Q fixing m and (1,0').

The corresponding automorphism F of B fixes O and e], and is

just Hb o G. Note that F is unitary. Moreover, since F fixes

e], F fixes as a set the orthogonal complement of the complex line

through e1, namely the set {2] = 0}. Thus F 21’22""’ZN) = F(z],z')=

1

(

(2],Uz') where U is a unitary operator on CN' . An easy computation
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shows that

-1 . ”1'1 2 . -1 .
F°<I> (WI’W)=W’WUW <I> °F(W-|,W)

on CN\{w1 = -i}. Therefore the automorphism f of 9 defined by

f = o o F o o'] coincides with the original unitary map F on n;

f(w) = (w],Uw') (w = (w],w') e D) .

At this point we consider two cases. If every eigenvalue of

U is 1 then U, and hence F, is the identity. Thus G = Hg] is

a Heisenberg translation of B and we are done. So we suppose that

U has an eigenvalue e16 f 1. We will show that this implies that

G fixes setwise a proper affine subset of B. It is sufficient to

1
show that g = o o G o o' fixes setwise a proper affine subset of

9, since o preserves affine sets.

Choose 0 # A = (x2,x3,...,xN) so that A(U) = eIQA where

(U) denotes the matrix of the operator U relative to the standard

basis on CN']. Recall that g = o o G o 6’] = o 0 HB1 o F 0 ¢‘1 =

hB] o f, where h;] is the Heisenberg translation associated to the

point (c + ila'lz, a2,...,aN) in an. Let A be the column vector

t _ N .
(a2,...,aN) so that AA — 122 Aiai' Now con51der the set

N ie
I = {(w],w2,...,wN) 6 Q w1th 122 kiwi = AA/(l-e )} .

I is a nonempty, proper affine subset of Q. We claim that g fixes

I as a set. To see this choose (w1,w2,...,wN) in I. Now
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-l . - . . .
g(w],w2,...,wN) = hb o f(w],w ) = hb1(w],Uw ). Wr1t1ng

W' = (w2,w3,...,wN)t we see that the last N-l coordinates of

hB](w1,Uw') are ((U)W' + A)t. To check that g(w],w2,...,wN) is

in I we compute

A((U)W' + A) = e1eAW' + AA

= e1eAA/(l - e19) + AA

= AA/(l - e19) .

Therefore g(w],w') is in 3, as desired. U

A final observation before the proof of Theorem 1.5 is the

following.

Lemma 1.10. If f E H(B;B) is such that fn + I, the identity map

1

 

on B, for some sequence {ni}, then f e Aut B.

Proof: We may assume fn _] + 9. Then fn _] o f + g o f. Since

fn + I we have 9 o f = I. In particular 9 is in H(B;B) and

1‘

therefore we also have fn = f o fn _] + f o 9. So f o g = g o f = I

i i

as desired. D

Proof of Theorem 1.5. Proposition 1.7 and Corollary 1.9 together
 

establish Theorem 1.5 for automorphisms of B with no fixed points

in B. Now suppose f is an arbitrary fixed point free map in H(B;B).

If every subsequential limit of {fn} is constant then by Corollary

1.4 fn + g(f), uniformly on compact subsets of B, and we are done.
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Hence we suppose there is a nonconstant map among the subsequential

limits of {fn}. By Proposition 1.6 there is a sequence {"1} and

a nonconstant idempotent h so that fn + h. Let A be the fixed

1

point set of h, an affine set of dimension 3 1.

We claim that f maps A into A. To see this choose 20

Butin A. Now fn (20) + h(zo) = 20 and thus f(fni(zo)) + f(zo).
1.

f(f (20)) = fni(f(zo)) + h(f(zo)). So f(zo) = h(f(zo)); that is,

f(z is in the fixed point set A of h, as desired.01

Moreover, fn restricted to A converges to the identity
1.

on A. Lemma 1.10, with A replacing B, implies that f s f|A is

an automorphism of A, which clearly has no interior fixed points.

By Corollary 1.9, In converges to a constant in 3B. But this con-

tradicts the fact that Tn converges to the identity map on A.
«i

Thus the subsequential limits of {fn} must all be constant and we

are done by Corollary 1.4.

We finish this section with a proof of the fact that condition

(*) of Theorem 1.8 must hold for any G E Aut B with fixed point set

{e1}. As previously remarked this is equivalent to the following:

Theorem 1.11. Let g E Aut 9 fix w only. Then for every
 

w = (w],w') in n

(**1 Im 91m) — |g'(w)|2 = Im w] - 1w'|2.

Proof. Suppose g(i,O') = (a],a'). Set t = Im a1 - |a'|2. Since

(a],a') is in n, t is positive. For 5 > 0 define as E Aut n by

D
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65(w],w') = (52w],sw'). If s f 1 the fixed point set of as is

{0,m}. Consider the automorphism as o 9 where s = l//t. The image

-1/2
of (i,0') under this map is (t'1a1,t a') and Im(t'1a]) _ tTIIa'IZ =

1. Thus, as in the proof of Theorem 1.8, there is a Heisenberg translation

-1 1

he
o 6 o g fixes (i,0') and w. Moreover we mustso that hc s

have, for some unitary operator U,

-1 . _ 1
hC ° 65 ° 9(W],W ) ' (W],UW )

so that

g(w ,w') = 6 o h (w ,Uw')
1 1/1',— C 1

(t(w1 + c1 + 2i<Uw',c'>),/t(Uw' + c')).

If t = 1 we have g(w],w') = hc(w1,Uw') and an easy com-

putation shows that 9 satisfies (**). Suppose that t f 1. We

will show that this contradicts the hypothesis that g fixes w only

by producing a point in 30 fixed by g.

If t f 1 we may solve /E(Uw' + c') = w', since U - t’l/ZI

is nonsingular. Let v' denote the solution. If v.l = a + ilv'l2

where a is real, then (v],v') will be in an. We claim we may

choose a so that g(v],v') = (v],v'). By our choice of v' we have

MwWw=<ua+HWF+c1+fiwwmshw1.

We wish to have t(a + ilv'l‘ + c1 + 2i<Uv',c'>) = a + ilv'lz. Since

(v],v') is in an and g is an automorphism, g(v],v') lies in an.
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Thus for any real a,

. I 2 o | | _ I 2 _ ° l 2

Im t(a + 1|v | + c1 + 21<Uv ,c >) - |v | — Im(a + 1|v | ).

Thus (v],v') will be a fixed point of 9 if a is chosen in T1

to satisfy

Re t(o + i|v'|2 + c1 + 2i<Uv',c'>) = a = Re(a + i|v'|2)

or

to + Re t(c1 + 2i<Uv',c'>) = a .

Since t f l we may solve this equation for real a. Thus the as-

sumption that t # 1 implies that the fixed point set of 9 contains

more than one point, contradicting the hypothesis. D

2. Mops which fix an interior point. We consider now the case of
 

f e H(B;B) fixing at least one point of B. Several remarks can be

made about the sequence of iterates of f; we collect these comments

together in:

Theorem 1.12. Let f E H(B;B) have a fixed point in B. Then either
 

(1) There is a constant function 9(2) 5 20.6 B in F(f).

In this case fn + g, and the fixed point set of f is of course

precisely {20}.

or

(2) There is a sequence {mi} such that fm converges to

i
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a nonconstant idempotent h. The fixed point set of h is an affine

subset of B which may be strictly larger than the fixed point set

of f, even if f is not in Aut 8. Moreover, if f is not an

automorphism of B then every subsequential limit of {fn} is

degenerate in the sense that its range is contained in an affine subset

of B of lower dimension than B.

Proof: Suppose there is a sequence {"1} such that fn converges

1’

to a constant function 9. Then clearly the fixed point set of f

is precisely the range of 9. We claim fn + g, for otherwise there

is a sequence {mi} such that fmi + h, where h is not a constant

map. Without loss of generality fmi'ni + k e H(B;B). Then

f i i o fni + k 0 g and also fmi-ni o fni = fmi + h. But k 0 g

is constant and h is not, which is a contradiction. This proves (1).

If there is no constant map in F(f), then Proposition 1.6

shows that there is a nonconstant idempotent among the subsequential

limits of {fn}. Moreover, the proof of Proposition 1.6 shows that

given any nonconstant subsequential limit G there is a subsequential

limit H which is the identity map on the range of G. Thus if the

affine subset of B of smallest dimension containing the range of

G is all of B, then the identity map on B is a subsequential limit

of {fn}. This implies that f is an automorphism of B, by Lemma

1.10. D

For an example where the fixed point set of the limit function

is strictly larger than the fixed point set of f, let 9 be a

holomorphic function on the unit disc, with |g| < 1. Define f on
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82 by f(z].22) = (-z],g(z])zz). Thus f e H(Bngz) and the fixed

point set of f is {(0,0)}. Now f2k(z],22) = (21,gk(z])gk(-z1)22)

and ka + h, where h(z],22) = (21,0).

We remark that case (2) of Theorem 1.12 can only occur if f

acts as an automorphism on some affine set in B of dimension 3 1.

Remarks on Theorems 1.5 and 1.12. Some similar results have
 

been obtained by Yoshisha Kubota [l3],using different methods. He

does not consider the fixed point free maps as a separate case, and

his result does not show that in this situation the entire sequence

of iterates converges to a point in BB.

Corollary 1.9 has also been independently obtained by David

Ullrich. His argument, while similar in spirit to ours, uses the

Iwasawa decomposition for g e Aut n as g = w o 6A o hb where hb

is a Heisenberg translation, 6A(w],w') = (A2w],Aw') and w is an

automorphism of Q fixing (i,0') in 0. He shows that A = 1 if

g fixes w only and that ¢(w],w') = (w],Uw') for some unitary

N-1
operator U on C The remainder of the argument proceeds as

before.



CHAPTER II

In this chapter we introduce composition operators on the Hardy

space HP(BN)- For N > 1, we give some examples of maps which fail

to induce bounded composition operators on any HP(BN) for p < m,

and discuss some other results related to the question of boundedness.

1. Notation and Preliminaries.
 

For cliaholomorphicmap of BN into BN and f aholomorphic

function on B the composition f o W is denoted by C f). In
N’ w(

the case N = l, Littlewood's subordination principle [8] shows that

Ccp is a bounded linear operator, called a composition operator, on

the Hardy space HP(I)), for each p > 0. However for N > 1 this

 

need no longer be the case; in fact we will show that there are maps

4: BN + BN so that for each p < w there exist functions f E HP(BN)

for which f o W is not even in the Nevanlinna class N(BN).

2. Examples of composition operators which are not bounded on HP(BN).

It is convenient at this point to introduce certain spaces

of holomorphic functions in the unit disc I), and examine their con—

nection with the spaces HP(BN).

Definition 2.1. For a > -1, the weighted Bergman space Ap’a(I))
 

consists of all holomorphic functions f on I) for which

22
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211 1 .

“f“Ppa i i live“) Ipu - r2)“ rdrde < .. .
’ O 0

Functions in certain weighted Bergman spaces arise naturally

in the study of Hp functions in the ball in several variables. In

particular, we have the following result:

Lemma 2.2. [17; Sec. 1.4.4, p. 14]. If f is a holomorphic function

in BN which depends only on the variable 2], then, if fe denotes

l

the slice function on I) defined by fe (A) = f(Ael),
1

11:11Hp = c11re111Ap,N_2

where c is a constant depending only on N and p.

We wish to obtain an extension of Lemma 2.2 to arbitrary

functions in Hp(BN). To do this we need the following preliminary

result:

Lemma 2.3. Let F be in Hp(B and define f on BN by1
N

f(z],z') = F(z],O). Then f is in Hp(BN) with Hpr 5 HFHp.

Proof. The argument we give is basically that given in [19; p. 247].

For c in aBN and z in Z“, the closed polydisc in CN, define

_ P

w(z,;) - |F(Z]c],....ZNcN)| .

For each ; in aBN, wc(z) E w(z,c) is an N-subharmonic function

in AN, that is, wC is subharmonic in each variable separately.
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Define W(z) = J33 w(z,g)do(;). Since 0 is unitarily in-

N

variant, W(z],...,zN) = W(|21|,...,|zN|). This, combined with the

N-subharmonicity of W, shows that for all r < 1

W(r,O,...,O) f W(r,r,0,...,0) f ... f W(r,r,...,r) .

But W(r,O,...,O) = J |F(r;],0,...,)|pdo(;) = 1 [f(rc)|pdo(c)
BBN BBN

and W(r,r,...,r) = J [F(rc)lpdo(;), so that Hf” 5 ”F“ as

aBN Hp Hp

desired. D

Lemmas 2.2 and 2.3 together yield:

Corollary 2.4. If F is in Hp(BN), N 3 2, and Fe is the slice

1

function defined on I) by Fe (A) = F(Ael), then Fe is in Ap’N'2(I))

1 1

 

and “F“ > cUF H .

Hp ‘ e1 Ap’N'2

We can now give some examples of holomorphic maps o: BN + BN’

where N > 1, which do not induce bounded composition Operators on

any Hp(BN), for l f p < m. Our first result concerns maps e de—

fined as follows. Let a be any multi-index a = (01,02....,GN),

where a. is a non-negative integer and at least two of the ai's1

are nonzero. Define ¢(z) = (C(o)2a,0,...,0) where

a./2

(*) c<a1 = Ial'“"2 / aiho at ‘ (Ea. = 1a1) .

Note that ¢(B) L B.



25

Theorem 2.5. For 4 as defined above, C¢ is not bounded on

Hp(BN), 1 f p < m.

Proof. We will exhibit functions gn in the unit ball of Hp(BN)

for which “9n 0 oflp + w as n + w.

A computation based on [17; Sec. 1.4.4, p. 14] shows that if

f(2) = 2?, then

Hprp 5 C(N)r(np + 2)/r(np + N + 1)

H

where C(N) is a constant depending only on the dimension N. Thus

if

9n(Z) = [C(N)-]T(np + N + 1)/T(np + 2)]1/p 2?

then gn is in the unit ball of Hp(BN).

A second computation, entirely similar to that in [17; Sec.

1.4.9, p. 16] shows that

N

N! .n F(paj/Z + l)

i Icalpdom = J“
S N F(N + IoIp/Z)

 

where o is the rotation invariant probability measure on S = aBN.

For gn as defined above, we have Hgn o rug =

 

1 ]_ N 1) .§]T(poj/2 + 1)** - P + + =
( 1 C(N) rTgp + 2) C(a)np JF(N + 1a1P/21
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Note that F(np + N + 1)/F(np + 2) = (np + N) (np + N - l) ... (np + 2)

and for n large this is approximately (np)N'1. Using this, the

definition of C(a), and Stirling's formula in (**) we see that

no . sup .. n‘m'11/2.. p

are nonzero. The symbol ~ means that the two terms being compared

n where m is the number of indices aj which

have positive finite limit as n + m. Thus if m > 1 (at least two

of the indices aj are nonzero) then “9n o o“: + m as n + m. Thus

C¢ is not bounded on Hp(BN), since gn is in the unit ball of

P
H (BN). D

Remarks on theoproof of Theorem 2.5. In the case p = 2 we

21

 

may explicitly exhibit functions F in H BN) for which F o o is

not in H2(BN). Choose constants Ck satisfying

oo

(1) I Ick12(k+1)'”*‘<w
k=O

and

(2) i. Ickl2 UNI-2W2 =
k=O

where, as above, m is the number of nonzero aj's.

Condition (1) guarantees that the function f(2) = X Ckzk is in

k=0

Z’N‘Zub). Thus, by Lemma 2.2 f extendsthe weighted Bergman space A

to a function F in H2(BN) defined by F(z],z') = f(z1). The same

estimates as above show that

2
[ I(C(U)Ca)kl dO'(C) z k(m+1‘2N)/2.

S
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Thus condition (2) guarantees that F o ¢(z) = E Ck(c(a)za)k is

not in H2(BN). k-O

We remark that the map w: BN-tl) given by w(z],...,zN) =

NN/2 jg] zj appears in the work of P. Ahern [1], where it is shown

(N-3)/2
that if h is in the weighted Bergman space AP’ (1)) a

Ap’(N'3)/2, then h o w is in Hp(BN). From this fact it follows

that the map o: 8N + BN, defined by p = (w,0,...,0), (this is the

case a = (l,1,...,l) in (*)), does take Hp(BN) boundedly into

Hp/2'€(BN), for every 6 > 0. To see this note first that

Ap,N-2 C Ap/Z-e, (N'3)/2. (See [10] for containment relations between

weighted Bergman spaces). If f is in Hp(BN), we have f o o = f o w,

where f is the restriction of f to the complex line [e1] through

0 and e1 = (1,0'). Since f is in Hp(B ), i is in AP’N‘Z, and

N-3)/2.

N

thus also in Ap/2'€’( Ahern's result now shows that

f o o = f o w is in Hp/Z'E (B , as desired.N)

Recently A.B. Aleksandrov [2] and E. Low [12] have indepen-

dently shown the existence of non-constant inner functions on BN,

for N > 1. An inner function in B is a function f 6 Hm(B) whose

radial limits f* satisfy |f*(c)| = 1 for almost every c e S.

The existence of such functions gives a way of constructing maps

o: BN + BN (N > 1) for which C¢ is not bounded on Hp(BN), and

moreover, C¢(Hp(BN)) $ N(BN), where N(B is the Nevanlinna classN)

consisting of all holomorphic functions in BN satisfying

sup J log+ lf(rg)|do(§) < w .

O<r<1 S

Specifically, we have the following result.
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Theorem 2.6. Let u(z) be a nonconstant inner function on BN, N > 1,
 

and define o to be an inner map of BN into BN by ¢(z) = (u(z),

o,...,o). Then for any p < m, C¢(Hp(BN)) ¢ N(BN).

.Proof. By a theorem of Bagemihl, Erdos and Seidel [14, Theorem 4],

for any p < w, there is a function g E Ap(D) such that Igl assumes

arbitrarily large values along any curve in D which tends to 3D.

Extend g to a function defined on BN by setting G(21,z') = 9(21)‘

Note that G is in Hp(BN). For almost every t E S, 4(rc) is a

curve in [e]] n BN z D tending to a point of an as r i 1. For

each such ;, sup IG 0 ¢(r;)| = w. Since a function in the

O<r<1

Nevanlinna class has finite radial limits at almost every point of

S, G o o e N(BN).

Remarks on Theorem 2.6. a) If f is any nonconstant function in
 

H”(BN) with “tum = 1 which has |f*(;)| = 1 on a subset of s

of positive measure, then the above argument shows that for the map

o = (f,0,...,0) we have C¢(Hp(BN)) ¢ N(BN). It is an open question

[17; Sec. 11.4.1, p. 247] whether or not there exists such a function

f in A(BN) = H(BN) n C(BN).

b) Examples similar to those of Theorem 2.6 can be given with

the polydisc AN = {(z],...,zN) 6 EN: |zi| < 1} replacing the unit

ball. To see this, let u(z) be any non-constant inner function on

AN. Construct o: AN + AN by m(z) = (u(z),...,u(z)), so that for

almost every ; 6 TN = {(z],...,zN): |z

diag AN = {(z],...,zN) 6 AN: 21 = ... = 2N} tending to a point of the

1.| = 1}. m(r;) is a curve in
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boundary of diag AN. Let f be any function in Ap’N-2(D) which

assumes arbitrarily large values along every curve in 3D tending to

D, as in the proof of Theorem 2.6. C. Horowitz and D. Oberlin [11]

have shown that restriction to the diagonal takes Hp(AN) onto

Ap’N'2(D). Thus there is a function F in Hp(AN) with F = f on

diag AN. The composition F o o fails to have finite radial limits

at almost every point of TN, hence it is not in the Nevanlinna class

N(AN), the collection of all functions 9 holomorphicin AN satisfying

sup I log+|f(rw)| dmN(w) < w.

O<r<1 TN

In contrast with the situation in BN’ inner functions on AN can be

nice on aAN. In particular, there are non-constant inner functions

in A(AN), the class of holomorphic functions on AN which are continuous

on ZN. [see 16].

The sort of maps which appeared in Theorems 2.5 and 2.6, that

is, maps of BN into 8 whose range is contained in a one-dimensional
N

affine subset of B do take Hp spaces boundedly into certain Bergman
N9

spaces of functions in BN' Weighted Bergman spaces in the disc have

already been defined (see Definition 2.1); more generally we have

Definition 2.7. For 0 < p < w and a > -1 let Ap’a(B be the
 

N)

space of all functions 'f holomorphicin BN satisfying

11113,. CN JEN Ii<z>1p 114212): dv(2) < .,

N
where v is Lebesgue measure on C == RZN , normalized so that
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v(BN) = l, and cN is a constant depending on N, whose value will

not interest us. When a = 0 we write Ap(B) instead of Ap’a(B).

We have the following lemma.

Lemma 2.8. Let g be alxflomorphic function in BN. If the slice

functions 9;, defined by gC(A) = g(Ac) (A e D, c E S) form a bounded

family in Ap’“(p) as ; runs through 5, then 9 is in Ap'“(BN).

Proof. Changing to polar coordinates we have

1

( |g(z)|p (1-1212)“ dv(z) = 2N ( rZN'1(1—h2)“or ( |g(r;)|pdo(g)

B SO

1

< 2N (O h(1-r2)aor (S lg(rg)|pdo(;).

Using slice integration [17; Sec. 1.4.7, p. 15] we have

[ 19(rc)lp do(c) = ( do(c) j" lg<relet>1Pdo/2h.
S S -n

Thus

n 1 .

( 191211911-1212)“ dv(z) 5 C(N) J do(c) ( 1 lociholeilph(i-r2)aohao
Bn S -n O

= C(N) AS do(§) Jm lgc(z)|p(1-Izl2)adv(z)-

By hypothesis, “ggup a f K, for all g 6 S, so from the last line we

see that g is in Ap’a(BN). D
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We use this lemma in the proof of the following result.

 

Proposition 2.9. Suppose o is a holomorphic mapping of Bn into

B of the form o = (o,0,...,0). Then C takes Hp(BN) into
N o

Ap’N'2(BN), with

N/P

HC¢(f)Hp,N-2 3 c(N,p) (1_1¢%$§?11 ) “f“p .

Egoof. Let f be in Hp(BN), and let F denote the restriction of

f to [e1], the complex line through 0 and e]. Then F is in

Ap’N'2(D), with “Fup,N-2 f c(N,p) “fup, where c(N,p) is a constant

depending only on N and p.

Note that (f o o)C = F 0 oc. Moreover, since o; is a

holomorphic map of D into D, and F is in Ap’N'2(D), we see that

F o o; is in Ap’N-2(D), with

1 + |¢c(0)| N/p .

(1-1¢C(O)1 ’ “Flp.N-2
 

I
A

“F o (13;le ,N-2

1 + 1 (011 N/p
= (1-1o1311 ) “F“p.N-2 °

(This estimate, in the case p = 2 and N—2 = 0 appears in [3]. A

similar argument yields the result in the more general form we need.)

Thus we have shown that {(f o ¢)C: g E S} is a bounded family in

 

Ap’N-2(D). Lemma 2.8 now shows that f o o is in Ap’N-2(BN), with

1 1 (011 N/p1 o N T P n
hf Pup,N-2 f C(Nap) (I'TPIP11 1 thp '
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3. Sufficient conditions for boundedness of C3;
 

In spite of the examples of the last section, there are still

many interesting examples of bounded composition operators on Hp(BN).

In particular, if o is an automorphism of BN’ then Ccp is a bounded

operator on every Hp(BN) [17; Sec. 5.6, p. 85]. The next proposition

gives a necessary and sufficient condition for Co to be a Hilbert-

Schmidt operator on H2(BN). In particular 9? will be bounded, and

in fact compact. The case N = 1 of this result is in [20, Theorem 3.1].

 

Proposition 2.10. O? is a Hilbert-Schmidt operator on H2(BN) if

and only if m satisfies

[5 [1-1¢(c)l]'N do(c) < w .

Egoof, The functions ea = c(a)za form an orthonormal basis for

H2(BN), where a is a multi-index a = (a],...,aN) of non-negative

a Cl

integers, 2“ denotes 211"'ZN N and

N-17: (I1: . (101:2aj: (1:: a]. ...aNI) .

Thus Co is Hilbert-Schmidt on H2(BN) if and only if

2 a 2

00> 0‘ = Co doguea e12 g(SIHcpl

°‘|2 do.

I
I
M
B

[C(a)¢

O [S lgl=nT1
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a a

If e = ($1,...,oN), by ma we mean ¢]]---¢NNo Using the definition

of c(a) and the multi-nomial theorem we see that

a - ' n

lo} [c(a)<1> 12= $17131: (liplz) .
=11

 

Thus we have

CD

N-l + g 2

m > [5 ”£0 ((N-l):nz:
(lwl ) do

= ( (1-1e121'” do
S

Therefore Co is a Hilbert-Schmidt operator on H2(BN) if and only

if I (1-1411-N d0 < ”o D
S

The remaining results of this section deal with situations in

which the boundedness of C(P on Hp(BN) for one value of p allows

one to conclude that C? is bounded on Hp(BN) for some other values

of p.

Proposition 2.11. If C is bounded on Hp(BN), then Co is bounded
 

W

on an(B for n = 1,2,... .N)

Proof. If f is in an(BN), then fn is in Hp(BN). Moreover

“f a @1125 = “f” a (pup 5 ”awn“ “Mug, where new“ denotes the norm of

Co as a bounded linear operator on Hp(BN).

we have ”f o P“ < HC¢H1/n ”funp’ giving the desired result. D

. n p = f np

S1nce “f “p H “np’

np -



34

P P

Proposition 2.12. Suppose Ccp is bounded on H 1(8) and H 2(B),
 

where 1< p1 < p2 < w. Then Cg: is bounded on Hq(B), for all

p1 < q < p2.

Proof. Denote the Cauchy transform of a function f E L](o) by C[f].

For 1 < p < w, the map T: f + C[f]* is a bounded linear projection

of Lp(o) onto Hp(S) : Hp(B) [17; Sec. 6.3.1, p. 991. The hypothesis

on Ccp implies that A o Co o A'] o T is a bounded linear map of

ij(o) into Hpi(S) : Lpi(S) (i = 1,2), where A denotes the linear

isometry of Hp(B) and Hp(S) given by A(f) = f*, the radial limit

function. By the M. Riesz convexity theorem [22, p. 179], A o Co 0 A"1 o T

is a bounded linear operator on Lq(o), p1 < q < p2.

Suppose f is in Hq(B). Then f* E Hq(S), and since T is

onto, f* = 1(9) for some 9 E Lq(o). Thus f o m = Co 0 A.1 o T(g).

Since EC¢A1(9)]* is in Lq(o), and C¢AT(g) is holomorphic,f'o p

is in Hq(B). The closed graph theorem now shows that Co is bounded

on Hq(B), as desired.

Propositions 2.11 and 2.12 together yield:

 
Corollary 2.13. If C? is bounded on Hp(B) for some p > 1, then

Co is bounded on Hq(B) for all q 3 p.

In one variable a standard technique for extending results from

one Hardy space to another is to use a factorization theorem. While

this technique is generally not available in several variables (for

example, the set of functions in H](BN) which can be factored as a
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product of two functions in H2(BN) is a set of first category in

H](BN) [9]), the following substitute for factorization, due to Coifman,

Rochberg and Weiss, is sometimes useful.

Theorem 2.14. [5, Sec. 3] If f is in H](BN)’ then there exist
 

functions 9i and hi in H2(BN) such that

f = X g.h

i=1 1 l

and .2] 119,112 1111.112 5 c 11111
1:

for some constant c depending only on the dimension N.

With this result we can prove the following proposition.

Proposition 2.15. Suppose Co is bounded linear operator on H2(BN)‘
 

Then CCP is a bounded operator on H1(BN).

Proof. Let f be in H](BN). Write f = I gihi as in Theorem 2.14.

“"" i=1

(9-Then f o m = 1

1
1
'
M

8

° ¢)(hi 0 m) and we have “f o 9“] f
1

co

.2 119,- oeu, 11h, 0e11, : and)? 11111,. n

We remark that Propositions 2.11, 2.12 and 2.15 do not completely

answer the question of whether one can conclude that Ccp is bounded

for oll_ p < w whenever Co is bounded for ooo_value of p < m. In

particular, we do not know in general whether Hp-boundedness implies

Hp/Z-boundedness, except in the case p = 2 (Proposition 2.15).



CHAPTER III

In this chapter we consider composition operators which are

compact on some Hp(BN). We show that if m induces a compact

operator Cw, then o has a unique fixed point 20 in BN. More-

over we show that the spectrum of the compact operator Ccp can then

be described as the set consisting of all products of powers of the

eigenvalues of the derivative map o'(20) U {0,1}.

1. Existence of a fixed point for the inducing map. Our goal in this
 

section is to Show that a map o inducing a compact operator C?

on some space Hp(BN) has a unique fixed point in BN' The motivation

for the argument we give is a result due to J. Shapiro and P. Taylor

[20] which shows that atnlomorphic map of the disc D into itself with

an angular derivative at some point of 3D does not induce a compact

composition operator. We begin with the following lemma.

ApaN’Z

Lemma 3.1. Let N be an integer 3 2. Then for f in we

have

1 r

[0 J-r |f(y)|p(l — r)N‘2dydr 5 h Hf“: N-2 .

Proof. Recall the Fejer-Riesz inequality for a function g in Hp(D)

[8; p. 46]:

36
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1

1 1g<x>1pdx 5 1711911"
-1 Hp

Now suppose that f is in Ap’N-2(D). For r < l the

function fr(z) E f(rz) is in Hp(D). Thus the Fejer-Riesz in-

equality gives

] P P
(3] |fr(x)| dx 5 n Ufrqu .

)N-2
Multiplying this inequality by r(l - r and integrating with

respect to r yields the desired result:

1 r
11-2

(0 J_r |f(y)|p(l - r) dydr 5 n “ruip,N_2 . m

Now suppose that o is a holomorphic map of B into B

with no fixed points in 8. Then o has a (unique) Denjoy-Wolff

point t in 38. Recall that this is the point to which the iterates

of o converge [see Chapter I, Section 1]. Without loss of generality

assume that the Denjoy-Wolff point is the point e, = (l,O'). In

this case we have (by Theorem 1.3):

lim inf (1 - |o(z)|2 1/(1 - 1212) = a 5 1

2+6]

and

11 - ¢1(z)|2 11 - 21

2 <

1 - I¢(Z)| 1 - Izl

  

where P = (91.92,...WN).
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The next lemma shows that (l - ¢1(re]))/(l - r) is bounded

for -1 < r < 1. A similar result appears in [17; Sec. 8.5.6, p. 177].

Lemma 3.2. Let p: B + B be a holomorphic, fixed point free map

with Denjoy-Wolff point e]. Then there is an M < m so that

l -¢](re1)

1 - r

 

I f M for -1 < r < 1.

2
Proof. Let sup 11 - o](z)| (1 - 1212)/11

zeB

z]|2(1 - I¢(2)Iz) = A

By the preceeding paragraph we have A g a 5 1. Note that

  
 

 

 

 

 

2

(1) 11 - ¢](re])l 5 A11 - |r(re])lz)(1 - r12/11 - r2) .

Thus

2

1 ‘ 181(“911l . 1 + r < 11 ‘ 1’1“"‘911l . 1 - r2

- - 2 21 r 1 + ]¢](re]1l 1 _ 1W](re])| (1 _ r)

1 - |<p(re])|2

f A 2

1 - l¢](re1)l

f A .

Thus we have

1' Icp](re])|

11m sup 1 _ r 5

r+1

. 1‘1<P(|”91)|

(2) 11m sup 1 < A
- r‘ -

r+l

1 - lw](re])l
and lim inf 1 _ r _ A
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2

Now since lim inf 1 Ti?(z)% = a 3 A we have

  

   

z+e1 l - |z|

1 ' Icp](I"E-|)l 1 ' ICP'I(Z)1

lim inf 1 _ r 3 lim inf 1 “121 3

r+1 z+e1

So we must have

1 - |¢](re])l ll - ¢](re1)l ll - ¢](re])|
A = lim 1 _ r 5 lim inf 1 _ r 5 lim sup 1 _ r f

“*1 "+1 r+1

where the last inequality follows from (1) and (2). Therefore we have

equality throughout the last line of inequalities. In particular

 

|1 - ¢](rel)l
lim 1 _ r = A

r+l

and thus (1 -o](re1))/(l - r) is bounded on (-1,l). D

We can now show that a map which induces a compact composition

operator has a fixed point. This result is known for N = l [4], so

we assume that N 3 2 in Theorem 3.3. The argument given here is very

similar to that in [20, Theorem 2.1, p. 478].

Theorem 3.3. Suppose o: 8N + BN is holomorphic and assume that

Co is a compact operator on some Hp(BN), 1 f p < m. Then o has

 

a fixed point in BN‘

Proof. Suppose Q has no fixed point in BN. Then, without loss of

generality, o has Denjoy—Wolff point e1 in aBN. For %-< a < 1

define

fa(z1.z') = [(1 - o1/(1 - 2113*”‘11P .
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Let pfa be the restriction of fa to the complex line through

e]: pfa(A) = fa(Ae]). A computation based on [8, p. 65] shows that

{pfa} forms a bounded family in ApiN‘2(n). Thus, by Lemma 2.2,

{fa} forms a bounded family in Hp(BN). Moreover, fa + O, uniformly

(ricompact subsets of 8N, as a i 1. Since Ccp is compact, we con-

clude that fa o o tends to 0 in Hp(BN) (see Proposition 3.6).

Now

1_

i . e12) = [(1 -o)/<1 - m](Z))a+N-1]p .
a

where o = ($1,...,oN). Setting ga to be the restriction of

fa o o to the complex line through e1 we have, by Corollary 2.4

and Lemma 3.1,

1 r

1 0 HP 1 P p _ N-2

hfa Wan 2 CLQGHAP,N-2 2 C (0 J-r 19a(Y)| (1 r) dydr.

Since [1 - o](re]) |/(l - r) 5 M < m by Lemma 3.2, a computation

shows that the right-hand integral above is 3 C M]'°"N/(N - 1). Thus

“fa o oqu is bounded away from O as a + l, contradicting the

compactness of c@. Therefore o must have a fixed point in BN,

as desired.

Romork, The fixed point of o is necessarily unique. This

follows from the fact that a holomorphic self-map of the unit ball 8

which fixes more than one point of the ball must fix an entire affine

subset of B [17; Sec. 8.2.3, p. 166]. Thus o would be the identity

on at least a complex line in 8. Since the identity map on D does
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not induce a compact operator on any Bergman space Ap’N'2(D) (see

[3] for the case p = 2, N = 2), the operator CW, where o is the

identity on (at least) a complex line in 8, cannot be compact on

119(3).

2. The opectrum of C¢° We will use Theorem 3.3 to identify the spectrum

of a compact composition operator Co on Hp(B). Our main theorem

is the following:

Theorem 3.4. Let p: B + B be a holomorphic map such that C? is

a compact operator on Hp(B) for some p, l 5 p < m. Let 20 be

the fixed point of o in 8. Then C(Cw) consists of all possible

products of the eigenvalues of o'(zo), together with 0 and 1.

We prove two lemmas before giving the proof of Theorem 3.4.

Recall that for o: 8N + BN a holomorphic map and 20 in BN’ the

derivative o'(zo) is a linear operator represented by a matrix (a .)

1.1

where

a1J _ Dj¢1(20) 1 f 193 < Na W ($19 :WN)

J J J

The next lemma shows that for the purpose of proving Theorem 3.4 there

is no loss of generality in assuming the fixed point 20 to be 0

and ¢'(0) to be upper triangular.

Lemma 3.5. Suppose o: B + B is holomorphic with fixed point 20

in 8. Then there is a map p: B + B with p(O) = O and w'(0)



42

upper triangular such that Co is similar to Cw.

Proof, Let T e Aut B have T(Zo) = 0. Then p E T o o o 1'] fixes

0. There is a unitary matrix U so that Up'(0)U-] is an upper

triangular matrix T. Set p = U o p o U"1 so that p: B + B is

holomorphic and fixes 0. Then p'(0) = T and Cw is similar to

Ccp as desired. D

In the case N = 1, if the composition operator Co is compact

on Hp(D) for some p < m, then C9 is compact on Hp(D) for all

p < m [20]. We prove next a weaker result along these lines for

N > 1. The proof uses a several variable analogue of a criterion due

to H. Schwartz for a composition operator to be compact.

 

Proposition 3.6. [18; Theorem 2.5]. cm is compact on Hp(B) (l 5 p < m)

if and only if for every sequence {fn} bounded in Hp(B) with

fn + f uniformly on compact subsets of B, then fn o o + f o o in

Hp(B).

Proof. The result follows, exactly as in the one variable case, from

the fact that {fn o o} is a normal family if {fn} is a bounded

sequence in Hp(B). To see this, use the estimate [17; Sec. 7.2.5,

p. 128]

If, . e<z11 5 2”” 1112,11 11in“p <1 - 1211‘”) o

where N is the dimension of B.
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Lemma 3.7. If C? is compact on Hp(BN), then Co is compact on

an(B for all n 3 1.N)

Pgoof. Fix n 3 l and choose {fm} a bounded sequence in an(BN)'

We need to show that {fm o c} has a subsequence which converges in

an(BN). Since {fm} is bounded in an(BN), {fm} has a subsequence

which converges uniformly on compact subsets of 8N. Without loss of

generality assume fm + f, almost uniformly. Since {fm} is bounded

in H"p(BN), {f;} is bounded in Hp(B The Schwartz criterion for

N)'

compact composition operators shows that f; o o + fn 0 ¢ in Hp(BN).

In particular “f; . amp 4 ”f" . oup, which implies

111 Tim . din, +11i . dz,p .

o n 0

Moreover there 15 a subsequence fm o m which converges

k

almost everywhere on aB to fn o o. Hence

(2) f o p + f o p a.e.

mk

Thus (1) and (2) together Show that fm o o + f o o in

k

an(BN), as desired.

Proof of Theorem 3.4. We can now give the proof of the main theorem
 

of this section. Suppose that C(P is compact on Hp(BN). By Lemma

3.5 there is no loss of generality in assuming that o(0) = 0 and

that o'(0) is given by an upper triangular matrix:
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  L aNNJ

Thus if m = (8],...,oN) we have Dio.(0) = 0 if j > i, and

1

Di¢i(0) = aii‘

Step 1. Recall that the nonzero points in the spectrum of a

compact operator are always eigenvalues. We will first show that if

(*1 f o m = A1

for some holomorphic function f, when A r 0,1, is pot_a product of

powers of the eigenvalues aii of ¢'(O), then f s 0. Suppose f

satisfies (*), and write f in its homogeneous expansion:

f(z) =

5 "
M
S

0 Fs(z); FS(Z) = |o1=s Caz“

where if is the multi-index (j1""’jN)’ then

J J N

z“ = 21 1 ... 2N N and lo] = I ji. We will show by induction that

i=1

FS 0 for every 5 = 0,1,... . Note that evaluation of both sides

of (*) at 0 gives
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and, since A f l by hypothesis, we have f(0) = F0 = 0.

Suppose now that FS 2 O for s < n. Thus

co

s=n+l

Since c(z) = o'(0)z + 0(|z| 2) in a neighborhood of 0, equation

(*) yields

a

(**) |a1=n Ca(Az)a = A|a1=n C 20

where A is the matrix of o'(0) as above.

Using the hypotheses on A we will show inductively that

Ca = O for every multi-index a with [cl = h. To do this we begin

by describing an ordering on the multi-indices with total order n.

Suppose

a = (j19j290009jN)9 B = (k19k2900-9kN)

where ji’ k are nonnegative integers and )ji = in = n. We say
i

a < B if there is a positive integer i0 such that ji = ki for

i < i0 and j, > k, . In particular the first multi-index of total

0 0

order n in this ordering is (n,O,...,O). Comparison of the co-

efficients of z“, where a = (n,O,...,O), on both sides of (**) yields

n _

c(n,0,...,0)a11 " AC(n,O,...,O)

By hypotheses A f a?], so that C(n,0,...,0) = O.
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Now suppose Ca = O for all a < 8, where [a] = l8] = n.

We will show that C8 = 0 by comparing the coefficients of 28 on

both sides of (**). Let 8 = (j],j2,...,jN). Since Ca is assumed

to be 0 for a < 8 the left hand side of (**) is just

(:81th +zcn1Az)" (11 > o. Inl = n)

For no n with n > B and In) = n does (Az)n contain a term in

8
z . This follows from the definition of "<" on multi-indices and

the fact that A is upper triangular. Thus comparing the coefficients

8 on both sides of (**) we obtainof 2

J- J J
1 2 N _

CBa-l] 322 o o o aNN - AC8.

Th1s 1mpl1es C8 = 0, S1nce A f aH a22 ... aNN . Thus we see

that Ca = O for all a with lol = n, and hence Fn(z) s 0. The

induction on 5 now shows that Fs(z) _ 0 for all s and therefore

f 2 O, as desired.

Step 2. We complete the proof of Theorem 3.4 by showing that

0,1 and all products of powers of the eigenvalues of o'(0) are in

the spectrum of C¢° Since Co is compact, O E 0(C¢) and since

f a l is in Hp(B), l is in 0(C¢)'

Next we show that aii = Dioi(0) is in 0(Cm)’ for i = 1,...,N.

The argument is by induction on i. To see that an is in 0(CQ),

we may assume that an f 0. We claim that the function g(z) = 21 is

not in the range of (Cm -a]]). For suppose that
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f o o - a11f = 21

has a solution f e Hp(B). Differentiation gives

D f(O)D]o](0) + 02f(O)D1 1cp2(0) + ... + DNf(O)D]mN(O) - a11D]f(O) = 1

Since Dlo£(0) = 0 for z > 1 this becomes

D]f(O)D]m](O) - a1101f(0) = 1

which 15 impossible since 01¢](0) = a1]. Thus aH E °(C¢)'

Suppose that ajj e 0(C9) for j = l,...,i-l. We will show

that aii is in (CW) by showing that g(z) = 2i is not in the

range of (Co - aii)' Without loss of generality we may assume

aii f ajj for any j, 1 5 j < 1. Apply the differential monomials

Dl’DZ""’Di to the equation f o o Taiif = z, and evaluate both

sides of the resulting equation at O. This yields the following:

(1) D]f(O)[D]¢](O) -aii] = O

(2) D]f(0)DZo](O) + D2f(0)[DZo2(O) -ai,1 = o

(i) D]f(O)Dio](0) + ... + 01-1f(O)Dioi_](O) + Dif(0)[Dioi(O) -ai,1 = 1

By the assumption that aii f ajj for any j, l 5 j < i equation

(1) implies D]f(0) = 0. Substituting this in (2) shows 02f(0) = 0.

Continuing in this manner equation (1) becomes Dif(0)[Di¢i(0) “aiij = l
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which is a contradiction. Thus every aii’ l f i f N, is in the

spectrum of Cw. Moreover, since Co is compact, if aii # 0, then

aii 15 an eigenvalue of C?

To finish we show that all possible products of the aii's

are in C(C¢)' Suppose that A1,...,Am are a collection of aii s,

with repeats allowed, and assume that no A1 = 0. We wish to show that

TIA-] is in 0(C¢)' By Lemma 3.7, Co is compact on Hmp(B) and the

above argument shows that A1 6 0(Cw)’ relative to Hmp(B). So there

is an 0 2 f1 6 Hmp(B) satisfying

Thus HA1 6 o(C¢) as desired. This completes the proof of Theorem 3.4.

D

Remark. Suppose Cm is a power compact operator, i.e., C2

is compact on some Hp(B), for some positive integer M. Since

CM = C , where TM denotes the Mth

‘PM

P iterate of m, oM must f1x

exactly one point of 8. Suppose the fixed point of TM is 20.

We claim that o fixes 20. If not, then m fixes no point of 8,

since 20 is the only fixed point of ¢M' But then the entire sequence

{on} of iterates of o converges to a point ; in BB (Theorem 1.5).

This contradicts the fact that oMk(zo) = 20 for all positive integers

k. Thus a power compact composition operator is induced by a map with
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exactly one fixed point in B. As with compact operators, the non-

zero spectrum of a power compact operator consists of eigenvalues [7].

50 Theorem 3.4 holds, with exactly the same proof, for power compact

composition operators.
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