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ABSTRACT

QUASI-MAXIMUM LIKELIHOOD ESTIMATION METHODS WITH A CONTROL
FUNCTION APPROACH TO ENDOGENEITY

By
Doosoo Kim

One of the fundamental problems in econometrics is the potential endogeneity in non-experimental
data. This work focuses on econometric methods taking a control function approach to endogeneity.
The agenda consists of two parts. In the first part, I study a general class of conditional mean
regression methods with a control function, and their relative asymptotic efficiency relationship.
Unlike previous results in the literature, the likelihood for the response variables can be incorrect
up to the regression functions. My results provide more practical and general guidance on the
choice of an estimator. In the second part, I propose a generalized Chamberlain device as a control
function approach to time-invariant endogeneity in linear panel data quantile regression models
with a finite time dimension. The new correlated effect (CE) estimator has substantial advantages
compared to existing methods: (i) it is free of an incidental parameters problem, (ii) the correlated
effect is not restricted to a linear functional form, and (iii) an arbitrary within-group dependence of
regression errors is allowed. Due to the high-dimensionality of the control function, a nonconvex
penalized estimator is adopted for sparse model selection.

In the first chapter, I study the asymptotic relative efficiency relationship among estimators
based on a quasi-limited information likelihood (QLIL). First, I show that there exists a generalized
method of moments estimator (GMM-QLIML) based on all the available quasi-scores. Second, the
quasi-limited information maximum likelihood estimator (QLIML) is shown to be as efficient as
GMM-QLIML under a set of generalized information matrix equalities. Third, I show that in a fully
robust estimation of correctly specified conditional mean functions, QLIML is efficient relative to
a two-step control function approach when the generalized linear model variance assumptions hold

with a scaling restriction.



When a limited information structure is over-identified, the classical minimum distance (MD)
estimator is often proposed as an estimation method. The purpose of the second chapter is to
study its relative asymptotic efficiency relationship with respect to QLIML and two-step control
function (CF) approach. First, I show that the MD estimator is asymptotically efficient relative to
two other estimators. Second, I proved that the concentration of reduced form equation estimates
does not affect the asymptotic efficiency of the structural parameter estimates in the MD estimation.
Third, in a class of models, an if-and-only-if condition is derived for MD and other estimators to
be asymptotically equivalent under the null hypothesis of exogeneity.

In the third chapter, I propose a point-identifying restriction and estimation procedure for a
linear panel data quantile regression model with a fixed time dimension. The proposed model
restriction reasonably accounts for the t-quantile-specific time-invariant heterogeneity, and allows
arbitrary within-group dependence of regression errors. The generalized Chamberlain device is
taken analogously as a control function to capture t-quantile-specific time-invariant endogenous
variations. Since the sieve-approximated control function has high-dimensionality, the estimation
procedure adopts penalization techniques under the sparsity assumption. Transformation of the
sieve elements into a generalized Mundlak form is considered to make the sparsity assumption
more plausible in some cases. The empirical application to birth weight analysis demonstrates a

convincing case where the proposed estimator works as intended in real data.
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CHAPTER 1

RELATIVE EFFICIENCY OF QUASI-LIMITED INFORMATION MAXIMUM
LIKELIHOOD ESTIMATOR

1.1 Introduction

Limited information likelihood (LIL)-based estimators have been widely used in instrumental
variable estimation. The limited information maximum likelihood (LIML) estimator (Anderson
and Rubin, 1949) and two-stage least square (2SLS) estimator (Theil, 1953; Basmann, 1957; Sargan,
1958) for linear models are workhorses of many empirical studies. In simultaneous probit models,
analogously proposed LIML and two-stage conditional maximum likelihood estimator (Rivers and
Vuong, 1988) are useful extensions of LIML and 2SLS to a nonlinear model. While correct
specification of likelihoods has been assumed in the LIL literature, it is known that a certain class
of maximum likelihood estimators have nice robustness against misspecification: quasi-maximum
likelihood estimator (QMLE) is fully robust for correctly specified conditional mean if and only if
the likelihood is in linear exponential familiy (LEF) under mild regularity conditions (Gouriéroux,
Monfort and Trognon, 1984; White, 1994). Based on the result, Wooldridge (2014) reinterprets
LIL as a quasi-limited information likelihood (QLIL) and expands its applicability noting that
correctly specified regression functions are key assumptions for consistency in LEF.

Apart from robustness of QLIL-based estimators, their relative efficiency relationship is another
important issue. Relative efficiency analysis of LIML or equivalent estimator in previous works
assume away potentially misspecified likelihoods for both structural and reduced form equations.
When the likelihood is allowed to be misspecified, relative efficiency comparison based on the
correct specification of likelihood is no longer valid. Analysis accounting for potential misspec-
ification of likelihood is more useful to empirical researchers because economic theories usually
do not imply full characterization of distributions, and there is no solid reason to believe QMLE

achieves the same asymptotic efficiency as the maximum likelihood estimator.



The purpose of this chapter is to study asymptotic relative efficiency relationship among es-
timators based on QLIL. Considering a research question raised by Wooldridge (2014), I focus
on sufficient condtions for relative efficiency of QLIL maximizer with repect to two-step condi-
tional quasi-likelihood maximizer, which will be called QLIML estimator and control function
(CF) approach, respectively. The CF estimator is naturally defined once we take the conventional
decomposition of QLIL into structural and reduced form components. The model restriction im-
posed on QLIL is general enough to include nonlinear models and, in particular, misspecification
of likelihoods is allowed up to correctly specified regression functions when fully robust estimation
is considered.

The main contributions of this chapter are followings. First, I show there exists a generalized
method of moments estimator (GMM-QLIML) based on the all available quasi-scores. The asymp-
totic variance of GMM-QLIML estimator constitutes a lower bound for those of QLIML and CF
in matrix positive semidefinite sense. Second, the QLIML estimator is proved to be as efficient
as GMM-QLIML estimator under a set of generalized information matrix equalities. Third, the
asymptotic equivalence of LIML and 2SLS is established via linearity of regression functions and
L, loss function incorporated in normal density. This new proof clearly shows why the equivalence
holds without normality or conditional homoskedasticity which is often assumed in the assertion.
Sufficient conditions for general equivalence of QLIML and CF are also found. Fourth, in fully
robust estimation of correctly specified conditional mean functions, QLIML estimator is shown to
be efficient relative to CF estimator if generalized linear model variance assumptions hold with a
scaling restriction. In particular, correctly specified conditional moments up to second order are
sufficient.

The rest of this chapter is organized as follows. In Section 1.2, basic model restrictions are given
with GMM interpretation of QLIML and CF estimators. In Section 1.3, GMM-QLIML estimator
is defined and relative efficiency results for QLIML and CF estimator are presented. Section 1.4

contains concluding remarks.



1.2 Model Restrictions
Assume random sampling from a population. For arandom draw i, consider the system of equations

vi1 =f(yi2.zi1,ui1:01,02) (1.1)

Yi2 = 8(z;,v;2:07) (1.2)

where function f and g are known up to (p; + pz) X 1 vector of parameter 6 = (9{ 93)/, Vi1 is
a scalar response variable, y;» is a 1 x r vector of potentially endogenous variables, z; = (z;1, Z;2)
is 1 x k vector of included/excluded exogenous instruments with k = k| + ko, and (u;1,Vv;7) is a
(1 + r) x 1 vector of unobservables.

Under potentially incorrect distributional assumptions for #1 and v», taking log operator on the

decomposed quasi-joint likelihood ! (v;1]y;2,2;; 01, 62) [ (yi2|z;; 62) delivers QLIL

QLIL = q1 (¥i1,¥i2.2i,01,02) + g2 (Yi2. 2i, 62) (1.3)

which offers flexible model specifications. The decomposition is more of ‘composition’ in the
sense that g1 and g, do not need to be derived from a single joint quasi-likelihood. For example,
Poisson log-likelihood ¢; and normal log-likelihood g, can be used as long as quasi-likelihood-
driven regression functions are correct: Wooldridge (2014) showed that, in LEF, the key model

restrictions for consistent estimation of conditional mean E, [y;1|y;2, z;] are

Eo [yi1lyi2.zi] = Eq [£(yi2.Zi1, ui1: 001, 002) |¥i2, Zi] (1.4)

Eolyizlzi] = Eq [g(z;.vi2:0,2) |2;] (1.5)

where subscripts ‘0’ and ‘g’ denotes (expectation) operators based on the true and quasi-likelihood,
respectively. Aslong as (1.4) and (1.5) hold, even failure of (1.1) is allowed in consistent estimation
as shown by Example 1.2.1 below. In the linear model with quasi-normality (Anderson and Rubin,
1949), linear projection operators L, [-|-] with appropriate regressors can replace the expectation
operators E, [-|-] when the objects of interest are linear projections rather than conditional mean

functions. The decomposed nature of QLIL and correctly specified regression functions typically



involve with the existence of a control function. See Wooldridge (2014) for details. Following
example demonstrates derivation of QLIL in linear and Probit models, and discusses their robustness

properties.

Example 1.2.1 (models with quasi-normality of (u;1, v;2)) Consider the following simultaneous

equation systems

Linear Model:y;| = yj2a + z;181 + uj1, Yi2 = Zi62+Vip (1.6)

Probit Model:y;1 = 1 [yj20 + z;161 + u;1 > 0], yi2 = z;82+V;, (1.7)

Assume

(ui1,vi2) |z; ~¢ N (0, %)

where Vg (uj1]2;) = 11, covg (ui1.vi2lz) = S12 = 51, Vg (vVialzi) = 22, 83 = (8,.85,)’
is a k x r matrix and other parameters are defined comformably. In the notation ‘X ~, W’
the subscript ¢ indicates that the distributional assumption ‘X ~ W’ is allowed to be incorrect
and is used only for deriving the quasi-likelihood of X or its transformation. The decomposed

quasi-likelihoods are easily derived noting that
ei1] (yi2:2;) ~¢ N (0, 21— 21222_21221)

where e;; = u;; — V,-zEz_zl ¥51. In Probit model, it is assumed that Vy (e;1]y;2.2;) = 1 for
normalization. The quasi-likelihoods for linear and Probit model are given explicitly in Exam-
ple 1.3.5 and 1.3.15, respectively. Concerning robustness property, there are three things to be
mentioned: first, since ¢;1 and g;5 in both models belong to LEF, correctly specified conditional
mean can be consistently estimated by QLIL-based estimators regardless of the true distribution.
Second, in linear model, the conditional mean functions derived from the quasi-likelihood have an
interpretation of true linear projections. In particular, the quasi-likelihood-based conditional mean

of y;1 conditioned on (y;7,z;) can be regarded as the linear projection of y;1 on (y;2,Z;1,V;2)

Eqyitlyi2. zj] = yira + z;161 + Vi222_21 Y21 = Lo [yi1lyi2-2i1. vi2]



where 22_21 3»1 can be reparameterized to be 1 for convenience. Since this interpretation is defini-
tional through quasi-scores, even when conditional mean functions are incorrectly specified, (e, §1)
is consistently estimated as linear projection coefficients under regularity conditions. Third, the
v;i1 equation in (1.7) of Probit model is not a restrictive condition for consistency. When y;; is a
fractional response taking values in [0, 1], the equation may not hold for some observations. Such
failure of y;1 equation does not necessarily harm consistent estimation of the conditional mean

function if Probit response function is correct.

Eq [yi1lyiz. zj] = @ (YiZ‘x +z;161 + Vi222_21 Z21) = Eo [yi1lyi2. 2]

However, Probit response function does not have the robust interpretation of a linear projection as

in linear model when it is incorrectly specified. [

Given QLIL, the QLIML and CF estimators are defined as

N br.cr = arg max >l 9i2 (62)
Oorimr = argmax Y _ [¢i1 (61, 62) + ¢i2 (62)] and { 2 N R
o = 1.cr = arg max > i=14il (91, 92,CF)

1

respectively. Focusing on relative efficiency comparison of these two, it is assumed that both
QLIML and CF estimators are consistent and asymptotic normal (CAN) for the true parameter
values. Also, we assume that expected quasi-scores uniquely determines true parameters so that
GMM interpretation of QLIML and CF estimator is valid. This is a mild assumption since the
necessity of LEF for fully robust estimation is shown under enough differentiability of likelihood
and interiority of a population maximizer (White, 1994, Theorem 5.6). Consequently, QLIML and

CF estimators can be defined as GMM estimators based on quasi-score moment conditions

5
a5-qi1 (Oo1, 02)
—0 and E,| 17070 1 2

354911 (Bo1.002) + 55412 (062) 3554912 (002)

. ad74i1 (Bot. 662)
respectively. Appendix A.l contains relevant standard regularity conditions (Assumption 1-12).
These assumptions are maintained for simplicity. They can be relaxed, for example, to allow

non-smooth g;1 or ¢g;» via smoothness in the limit and stochastic differentiability (Pollard, 1985).



1.3 Relative Efficency Comparison

The key idea that enables intuitive analysis of relative efficiency relationship is to acknowledge the
existence of an estimator whose asymptotic variance constitutes a lower bound for those of QLIML
and CF. The estimator is discovered, and called as GMM-QLIML in this chapter. It is defined to be
efficient GMM estimator based on a maximal linearly independent set of all quasi-scores available
in QLIL. Its construction and potential relative efficiency over QLIML and CF can be easily shown
by elementary linear algebra.

Recall the definition of linear independence in the context of moment function space along with

its well-known relationship with variance matrix in the following remark.

Definition 1.3.1 A set of scalar moment functions {/; (W;, 9)}ZL:1 is linearly independent at 6*if
P (ZILZI oy (0%) hy (w;, 0%) = O) = 1 implies oy (#*) = 0 for all / where «; () is arbitrary

real-valued function of 6. [J

Remark 1.3.2 {h; (w;, 0)}{;1 is linearly independent at 6* if and only if the variance matrix of

{h; (w;, 9*)}le1 is invertible, assuming that second moments are finite.
Now, consider stacking all available quasi-scores in (2.1):

%Qil (61.62)
35411 (61.62) (1.8)
%%‘2 (62)

The vector of moment functions (1.8) constitutes, when taken summation or integral, all
available first order conditions from factor-by-factor QLIL maximization problem. We might hope
conducting efficient GMM on these moment functions yields an estimator efficient relative to
QLIML and CF. However, it turns out that (1.8) typically has a singluar variance matrix since the
set of moment functions in %Qil (01, B) is linearly dependent. The singularity is closely related to
the fundamental reason why we need simultaneous equation system: the quasi-likelihood function

q;1 alone cannot identify 6,; and 6, in general. To avoid such linear dependence, a maximal



linearly idependent set in (1.8) can be used instead. Since moment functions in %Qil (61, 6) and
%qz (6,) are assumed to be linearly independent by rank condition of CF (Assumption 12), a

maximal linearly idependent set can be found by extending the set of CF moment functions.

Definition 1.3.3 GMM-QLIML is an efficient GMM estimator based on a maximal linearly inde-

pendent set of moment functions at (6,1, 8,2) in |: 86115%1’62) aqlgeel’%) 8‘%592) ]:
1 2 2

g1 (61.62)
75541 (61.62) (19)

%QZ (62)
where 6, = (6}, 9&2)/, 651 € RP21, 05, € RP22 with py = po; + p2o and 655 can be empty. [

The following proposition shows that the GMM-QLIML estimator is asymptotically normal

without additional model restrictions other than those of CF and QLIML.

Proposition 1.3.4 Under regularity conditions and identification conditions for CF and QLIML

(Assumption 1-12), the GMM-QLIML estimator is asymptotically normal.

VN (Bomm—orims —60) > N (o, (A’B—IA)_I)

where _ .
99;1(0o.) 99;1(00.)
36706’ 90,
_ 99;1(Po.) _ 94;1(00.)
A=FE 96yy06" and B=V 57,
3¢;5(0,) 94i2(652)
36,06’ 96
O

Typically, the extra moment functions %ql (61, 6,) are orthogonality conditions between
exogeneous part of structural error and overidentifying (ko — r) instruments. Below example

shows determination of @ql (61, 6>) in linear model setting.



Example 1.3.5 (Linear Model) Consider linear model in Example 1.2.1. For notational conve-

nience, define the following

vi2(82) =yi2— 178>
ej (0) = yi1 —yi2a —z;161 — v;2(82) 2521 ¥
o112 (0) = 11 — 1255, Toy

hi (0) = e; (9)* —oy12 (0)

where parameters are defined comformably. e; (6) can be interpreted as remaining part of structural

error after endogeneous variation v;» is projected out. The quasi-log-likelihoods are

1 1 1 _
qi1 (01,02) = —2 In2m — S Inoyyp () — e ORAPION

k 1 1 -
4i2 (6) = = In27 — I |Toa| — iz (82) T35 Viz (82)'

and quasi-scores can be expressed as follows

o1 () e ()Y,
gt | oup @ le (0)7

901 —o112 (0) 2 i (0) 23, a1 + 0112 (0) L e (0) 31 vi2 (82)
| 30112 (0) 2 hi (6) ]
dq1 _ | —oup ()L e; (0) [22_21 1 ® Z’]
86 | L [23 e 35| D 6)
dgy | [1r®2] 55, v2(82)
00, i %Lrvec (Egzlviz (82) vi7 (87) 22_21 — 22_21>

where D (6) = [Z51 ® X21] 5301112 (0) 2 1 (0) — [E21 ® vi2 (82) ] 0112(0) i (6). 6) =
(«/,8]. %5, 211), 6 = (vec (82) ,vech (2p)) and Ly is a w x r2 elemination matrix

(Section 5.7.3, Turkington, 2014) . To determine 8510 1(6) , we should find a set of moment functions

dq1 8q2

091
in 0, L that cannot be expressed by a linear combination of moment functions in 30, and

at

true parameter values. If X,5; = 0, then ggl = 0 and 6,5 is empty. For now, assume X,71 75 0



and, at least one element of 20_212202 1, say ip th component, is nonzero. Then, by some tedious

algebra!, the extra moments can be shown to be at most

dq1 (0)
002>

— —o1p ()" ¢; (6) (22—21 221>i0 z_, (1.10)

13

where ‘—r’ denotes ‘leaving r instruments out’ in zZ,. Suppose there exists enough variation in
Z, so that (1.10) is indeed ql( ) . Since GMM-QLIML moment functions constitute a basis of
linear vector space spanned by (1.8), it can be shown that any choice of extra moments yields
asymptotically equivalent estimator. If the model is just-identified (ko = r), or if there exists no

endogeneity (2,21 = 0), then 6,5 is empty, and GMM-QLIML, CF and QLIML are asymptotically

equivalent to each other. [J

Example 1.3.5 illustrates the following general proposition.

Proposition 1.3.6 Under regularitiy conditions and identification conditions (Assumption 1-12),

(a) Each choice of 83912(3) yields asymptotically equivalent GMM-QLIML estimator. (b) If 8,5 is

empty, then GMM-QLIML, QLIML and CF are asymptotically equivalent. [

Example 1.3.5 shows that a preliminary step is required for GMM-QLIML to be used in
practice. In the example, it is necessary to test whether there exists a component of 2521 201
significantly different from zero. Then, the extra moment functions will be chosen correspondingly.
This preliminary procedure probably is not very appealing to practitioners. A practical approach
in general would be to employ a generalized inverse matrix for optimal weighting and resolve

singularity issue. Also, in this specific example, we can consider including moment condition

tis easy to see that az (the second part of ) is a linear combination of and
(the third and fourth part of ) In - 81 (the first part of ), all moments with z can be generated
by %, L (the second part of ) So, we are left with moments with z,. Among these, due to explicit

linear relationshipy, = Z; 8 2+Vi2(87), only (ko — r) moments at most can be included in géz(z) .

For all (ko — r) moments to be included, we need enough variation in instruments.



without (22_21 221>i term
o
dq1 (0)
00>,

= —o1p () e ()7, _, (1.11)

and the resulting optimal GMM estimator is more efficient relative to GMM-QLIML though it may
require additional model restrictions in general.

GMM-QLIML has an important role in relative efficiency study while GMM with (1.11) has
more practical usage. As a basis of linear space spanned by QLIML and CF moment functions,
the asymptotic variance of GMM-QLIML forms a sharper lower bound for those of QLIML and
CF. Since eliminating 22_21 391 from (1.10) is equivalent to adding extra information that is not
used either by QLIML or CF when X571 = 0, the asymptotic variance of optimal GMM estimator
using (1.11) can strictly smaller than that of GMM-QLIML in matrix positive definite sense. This
delicate distinction offers a convenient general framework of relative efficiency comparison.

Potential relative efficiency gain of GMM-QLIML with respect to QLIML and CF is clear
from its definition. It is worth noting that such potential improvement is not based on additional
model restrictions as shown in Proposition 1.3.4. When efficiency gain is present, it is implied that
QLIML and CF make use of only a part of information that GMM-QLIML uses. In such a case,
relative efficiency comparison of QLIML and CF is not obvious in general. When GMM-QLIML
is equivalent to either QLIML or CF, one can conclude that the one equivalent to GMM-QLIML is
superior than the other one. Conditions under which GMM-QLIML is equivalent to each estimator
can be derived by applying moment redundancy conditions (Breuch, Qian, Schmidt and Wyhowski,
1999; BQSW). In the following propostions, denote V,,r = Avar (\/N (éeslr - 90)) , VQS =

est”

Avar («/ﬁ (éS,estr — 903>) for partition 6 = (0s,6_g) , and dg;; = dq;; (6,) forl = 1, 2.

10



Proposition 1.3.7 Assume that Assumptions 1-12 hold and that 655 is nonempty. Then

(@) Vamm—orimL 2 VoLimL,VcF

(0) Vemm—orLimL = Vcr if and only if

0 0 —1 0
aq? aq? %%’1 83%1 agqléle/

E,| —1L | = cov il v, E 1
¢ [392239’] ?| 962 % ? 3‘11'32 | 94y
36, 36, 36,007

(¢) Vemm—-orLimL = Vorimy if and only if

-1
g | 2 | _ o (%4h 0lahtad), (0lahtah)) L | el t+ai)
7| 06500’ \ooy” 00 ¢ 30 | 0000’

here 6. i bvector of 6 htht%% d%% imal li ly ind dent
whnere 2 1S a subvector o1 U suc a 39*’ 391 an 892 —|— 892 are maxima 1neary1n epen ent.

(]

Remark 1.3.8 (b) and (c) can be derived for arbitrary subvector g of 6 = (fg,0_g). Corre-

sponding results are given in the appendix.

The equivalence conditions (b) and (c) characterize when the extra moments in GMM-QLIML
contain no useful information about parameters. Rigorously put, they describe cases where the
orthogonal complement of QLIML or CF moment functions in the linear span of (1.8) does not
contain additional information about parameters. One interesting implication of (c) is that a set of
generalized information matrix equalities (GIME; Wooldridge, 2010) for g1, g2 and g1 + g, with

some common scaling factor T > 0 is sufficient for QLIML to be efficient relative to CF:
aq{ [ 0qY
Vol = | =7tEo|—
0(39) ] aeae’]
999 [ g8
Vo ﬂ =1E, | — 1 7
00, 06,006,

9 (q° 0 [ 9(g° 0
V0< (q1+q2))=rE0 (‘11+‘12):|

20

Note that this result is stronger than one in previous studies under correctly specified likelihoods.

Even if QLIML is not a maximum likelihood estimator, it is efficient relative to CF whenever a

finite number of moment conditions in GIMEs are met.
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Following corollary contains relevant implications of Proposition 1.3.7 regarding GIMEs. In
particular, it claims an if and only if condition for CF and QLIML estimator of 6} to be asymptot-

ically equivalent under GIMEs where 61 = (611, 012) .

Corollary 1.3.9 Assume that Assumptions 1-12 hold and that 0y is nonempty. If generalized
information matrix equalities hold for each factor of likelihood and joint likelihood with the same

scaling factor, we have

(@) Vomm—orLimL = VorLimr = Ver (inparticular, Vor iy, # Vo)

- g7\
E, VR
86,96}

O11 _ v 0 :
(b) Vemm-orimr = Vorimr = Ver #andonly if

dq? dq? aq?

O — E il _ E il i1

P22 P11 [ ¢ [aezzaej ”[aezzaei} (a )
1

Vo 5
2l

aq?
x| Ry1Eo |:—’1,} + RpnE, [ o
[ 001200, 06,06,
These results are useful to study asymptotic equivalence of QLIML and CF since, if there exists

where Ry1 and Ryy are defined in the proof. [1

a case where QLIML and CF are asymptotically equivalent in general, then it must also be the case
under GIMEs. The result (a) of Corollary 1.3.9 shows that, when 6,5 is nonempty, QLIML and CF
are never asymptotically equivalent for all element of 6. But this does not rule out the case where
QLIML and CF are asymptotically equivalent for strict subvector of 8. The formula in Corollary
1.3.9 (b) (and another one given in Proposition 1.3.13 later) informs us about key conditions for

QLIML and CF to be asymptotically equivalent for subvector 611 of 6;: It seems that some part

aq? aq?,
of the expected cross partials E, [ﬁ] and E, |:8 7 qalel/ ] should vanish to have general
129711 29711

equivalence. Based on this observation, following proposition explicitly claims a condition under
which QLIML and CF are asymptotic equivalent for a subvector of #. The well-known result of

asymptotic equivalence of LIML and 2SLS is an implication.

Proposition 1.3.10 Assume that Assumptions 1-12 hold. Let ({1, {2) be a partition of 6. If there

12



exists p x p invertible matrices 77 (6) and T, (6) such that

0
T (6) g0, 91 (01, 62) _ | m@Lo)
35541 (01.62) + =412 (62) ma (¢1.62)
a T -
T (0) 30,91 (01, 62) _ | m@Lo)
gya20) || ma@d) |
o
where m ({1, &) identifies &, given &y, Eo [—aml(gg;gﬂ)] — 0 and E, mlggiel z02)i| is
L 2

invertible for g = 2, 3, then QLIML and CF estimator for ¢ are asymptotically equivalent. [J

Corollary 1.3.11 LIML and 2SLS are asymptotically equivalent for («, 1) . O

The asymptotic equivalence of LIML and 2SLS is mainly due to linearity of regression functions
and L, loss function endowed in normal density. The intuition behind the proof is that v, does not
need to be controlled as regressors to estimate («, 61): the orthogonality conditions aaq—al and g%
in Example 1.3.5 can be transformed into

i1 — '20(-2'151 8.2
(i Yi i161) X, (1.12)

(vi1 — Yioa —z181) 7
by an invertible linear map. Treating (oc’ , 8’1)/ as ;1 in Proposition 1.3.10, the equivalence follows.
Clearly, neither normality nor conditional homoskedasticity is needed for the result, which is not
very well recognized in the literature. Amemiya (1984) proves the equivalence under conditional
homoskedastic non-normal errors and non-random instruments but his argument is, in fact, valid
without assuming conditional homoskedasticity. In nonlinear models such as probit, the regression
function does not allow the control function part to vanish as linear model does in (1.12). Also, when
the loss function is other than L,, for example, L as in median regression with tick-exponential
family (Komunjer, 2009), then, even if the regression function is linear, again there exists no
invertible linear transformation of quasi-scores that eliminates the control function part in general.

Thus equivalence of QLIML and CF does not seem to hold for nonlinear regression models.
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Apart from linearity of regression function and L, loss function, another condition for general

asymptotic equivalence of QLIML and CF for 6y is

aq{ dq{ 9q5
E, |- - & T2 1.13
0[ aelaez] 60”0(301’392) (1.13)
dq1 9qp

together with cov, (W %) = 0. The equivalence is easily proved by taking 77 (6) = 7> () =

Ip, §1 = 01 and §, = 0, in Proposition 1.3.10. A set of sufficient conditions for (1.13) is
well-known to be (a) g5 is correctly specified log-likelihood for w;, and (b) w;| 1L w;>|z; where
q1 = q1 (wj1,W;2,2;,01,6>) and g2 = g> (W;2, Z;, ) for some random variable (w;1, w;2). This
is a fairly general condition applicable to numerous models. However, it should be noted that w;
cannot be a latent error term such as u;1 or u;1 — v;27 in Probit model of Example 1.2.1 since ¢
is required to be a quasi-log-likelihood of w;| given (W;7,z;) .

The next two propositions refine GIMEs to derive weaker conditions for relative efficiency of
QLIML. Proposition 1.3.12 helps reducing the number of conditions in GIMEs by treating nuisance
parameters as known. Multivariate normal log-likelihood becomes a member of LEF when this
result is applicable to its variance parameters. Proposition 1.3.13 relaxes common scaling factors
in GIMEs. When different scaling factors for ¢; and ¢, are allowed, t; < 73 is shown to be
sufficient for relative efficiency of QLIML for 6. Note that, with different scaling factors, having
the GIME hold in both models does not necessarily imply asymptotic equivalence of QLIML and
GMM-QLIML. Following Zhang (2005), the Schur complement of B in A is denoted as A/ B for

notational convenience.

Proposition 1.3.12 Assume that Assumptions 1-12 hold. Suppose there exists (/| 4 /») nuisance

parameters A = (A, A) such that

P [3611’1(901,902,?&01,102)_ — 0,
0 = +
009 (A).ay) | px(ith)
042 (Bo2, 202) |
Eo |: 3923)“2 = 0P2><12

Then, VS rrym and VCG F are not affected by treating A as known and redefining g; (6) =

qi1 (0,Ap) and Gjp (62) = qi2 (62, A02). Moreover, if GMM-QLIML moment function (1.9)
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contains exactly (/; + [») scores regarding A, then Vg MM—QLIML is also not affected by the

redefinition. [

Proposition 1.3.13 Assume that Assumptions 1-12 hold. Suppose GIMEs with scaling factors

9¢% 949
71 and 1y for quasi-log-likelihood g1 and g5, respectively. Also, assume cov, (%, 8%) = 0.

Then, Vg}; — VSIL IML is equal to

1 - ~1
39 09 dq7 dq7

E, | — E, |- % — )Wyl Ey | —— | E, | -

0[ 89189{} 0[ 90100, [RWi+ (0 —w) Wal £ 26,007 | "7 | " 96,00/

where

~1 - -1
9q3 0 (47 +493) dqy
M= Eo [_aezaej _[E" ~0g |/ Ee - 00,00,
—1
0 (4 +93) dqy 9q7 T dq{
Wz:_[EO {_ 39006’ Eo " 96,00/ Eo {_aeae/_/Eo 96,00/
-1
0 (47 +43) dqy
X[EO [_ 0690’ Eo 96,00,

0 0
In particular, 7o > 7 implies Vc}: - VQ1L]ML' =

When 11 # 13, GIME for (¢; + ¢2) is not met, and QLIML is not optimally weighting g% and
qu; as GMM-QLIML does. In this sense, Proposition 1.3.13 helps us to understand the situation
where complete GIMEs start to break down. Contrary to the unambiguous case of 71 < 73 in
the proposition, when 7; > 13, the expression 1o W + (11 — 1p) W5 is indefinite in general. This
observation explains why general efficiency ordering of QLIML and CF is not obvious without any
form of GIME:s.

The next proposition shows how the general theory applies in a class of fully robust models
specified with multivariate normal g5. It is one of the most frequently used specification that attains
fully robust estimation but not the only class of models that results can be applied to. It is shown
that correct specification of conditional means and GLM variance assumptions with a restriction
on scaling factors are sufficient for relative efficiency of QLIML for the structural parameters. In

particular, correctly specified conditional moments up to second order are sufficient.

15



Proposition 1.3.14 Assume that Assumptions 1-12 hold. Suppose that g; is a member of LEF
with conditional mean G (yp,z;, V2, 61), and that g, is a multivariate normal density for linear

reduced form equations. In other words,

i1 (01,02) = a (G (y2.21.v2,01)) + b (yi1) + yi1c (G (y2. 21, V2, 01))
k 1 1 _
qi2 (62) = —5In2x —2ln | X0 — 5%’22221%2
wherea, b, c and G are smooth enough functions, v, = y,—z8, and 6, = (vec (82) ,vech (222)’)/ .
Assume that £ (y1|y2. z) and E, (y2|z) are correctly specified. Then, V, (y1]y2.z) = 11 V4 (y1ly2.2)

and V, (y2, |z) = 12V (y2|2) with 0 < 171 < 13 is sufficient for QLIML to be efficient relative to

CF for 6. O

As a special case of Proposition 1.3.14, the next example considers a probit response function
with endogeneous explanatory variables. Specifically, Proposition 1.3.14 implies that relative
efficiency of QLIML holds under a much weaker condition than correct specification of likelihood

given in Rivers-Vuong (1988), and this result is new in the literature.

Example 1.3.15 (Rivers-Vuong, 1988) Consider probit model in Example 2.1. Note that yq is
not restricted to be binary response as long as the probit response function is correct. Assume
regularity and identification conditions (Assumption 1-12). For computational convienience,
impose following reparametrization

n= 2521 291

along with normalization of e = uj — vpn. Then, quasi-likelihood can be simplified as following

q1(01.62) = (1 —y1)log[l — @ (w(0))] + y1 log (W ()

k 1 1 -
4i2 (6) = = In27 — ~In|Toa] — iz (82) T35 Viz (82)'

where 0; = (o', 8], n’)/, 0, = (vec (82)", vech (222)/)/, X = |: Yo Z] V» :| and w (0) = x0;.
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Taking derivatives, quasi-scores can be expressed as

Y2
i = w®) ,
26~ T—om@yomwan’ V| 7
V)
g1 y1—®(w(0)) ez
- _ 0
06, [1—®(w(0))]P(w (0))¢ (v @) r(r+1) 1
e,
gy _ | [Ir®2] 35 v2 (80
06 %Lrvec (Ez_zlviz (82) viz (82) 2521 - 2_21)

Assume GMM-QLIML extra moment functions are

gy —w(®)
9 1-®W(0) P (w(O)

WO [nis_, |

where 1,; # 0. To derive conditions under which QLIML is efficient relative to CF, first note that

397 is nuisance parameter, that is, under correctly specifed regression functions,

E it =0
? [8918vech (222)'] B
g5
E,|— —EI|lI / w1 =Lz =0
? |: dvec (8,) dvech (222)/] [[ r® z] [Vz 022 ® 022]] r

Therefore, we can assume Xj, is known, that is, redefine 6, = §,. Then, expected Hessian and

score outer pI‘OdllCt matrices are

Eo __aglqai)(%{: e | [®(w (HE)(];)(]VEI(Q—OE iw (9o)>]X§Xi}

E, _%8192 ~Pew (8[55))(;;1(9_0);3 iw o Z]}

Eo _‘agzqa?eé_ ~P oW (9[0(]5))(%1(%)2] iw Gy "o ® Z/Z]}
oy ey = B [Ehe
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and

_ y1— P (w (b)) 2 -
~ o (cb(w Go)) [1 = ® (w (eo)n) ¢ (7 o))" x "}

. (aﬂ %): . ( y1— @ (W () )2[¢(w(90))]2xt o, ®Z]}

[ =@ (W (6))] © (W (o))

( y1— D (W (b))
[1— @ (W (6p))] @ (W(6))

aqO _
Vo (rantys ) = o [[1r 921 Ehvina sy 9]

2
¢ (w (90))) (=10 ® 2] [-115 ® Z]}

The orthogonality between scores holds if conditional means are correct since

dq{ 995 aq{ g5
Eo|l ——— | =Ey | Eo| — —=

=0

Then, it is implied by Proposition 1.3.14 that followings are sufficient for QLIML to be efficient

relative to CF for 6

Eo [y1ly2.2] = @ (W (6,))

Vo [y1ly2.z] = 11 @ (W (6,)) [1 — (W (65))]
Eo [y2|z] = 28,2
Vo ly2lz] = 125022

with

T1 =17

The restriction 71 < 71, is especially plausible for application of Probit model to fractional

response y| € [0, 1]. Note that, with correctly specified conditional mean function, the conditional
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variance of y; is bounded above by V; [y1]y2.7] :

Volyilya. 7l = E [ »}ly2.z] - [@ (w (6
< E [y1ly2.2] = [® (W (6p)]°
= O (W (6)) [1 — P (W (6))]
And 11 often appears to be very small in practice when 3 is normalized to 1.

Another example where the relative efficiency conditions are applicable is Poisson regression

model for positive response (such as count data) with endogenous explanatory variable.
Example 1.3.16 (exponential model) In the following simulataneous equation system
y1 = exp (yaor + 2181 + van) uy
y2 =128+ v2
assume y1|z,y, ~¢ Poisson (exp (yra + 2181 + van)) andys|z ~¢g Normal (282, X33) . Then,
quasi-log-likelihood is
q1(01.62) = —log (y1!) —exp (yoor + 2181 + van) + y1 (Yoo + 2181 + va1)
k 1 1 -1 /
q2(62) = —= In2m — S In[ 3] = 5Viz (82) Xp; vi2 (82)

Since Poisson likelihood also belongs to LEF, by Proposition 1.3.14, a set of sufficient conditions

for relative efficiency of QLIML for 0 is
Eo [y1ly2.2] = exp (y200 + 21801 + V210)
Vo [y1ly2.z] = t1exp (y2ao + 21601 + v210)
Eo [y2|z] = 28,2
Vo ly2lz] = 12322

with

117
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1.4 Concluding Remarks

I show that, when both QLIML and CF estimators are consistent and asymptotic normal, there exists
an efficient GMM estimator called GMM-QLIML whose asymptotic variance constitutes a lower
bound of those of QLIML and CF estimators. In particular, a set of generalized information matrix
equalities is shown to be sufficient for QLIML estimator to be as efficient as GMM-QLIML. In
fully robust estimation of correctly specified conditional means, the condition is further weakened
to GLM variance assumption with a scaling restriction. As Example 1.3.15 demonstrates, this
condition is especially appealing for Probit model applied to fractional response.

Still, there are remaining questions to be answered. Regarding Proposition 1.3.13, can we
derive a refined condition for relative efficiency of QLIML estimator in 71 > 1, case? As discussed
for Poisson regression model in Example 1.3.16, there are models that often exibits large 71, and
this refinement (if possible) will be useful. Also, we cannot rule out the possibility of even weaker
condition than GIMEs with scaling restriction given in Proposition 1.3.13. Direct comparison of
asymptotic variances does not seem to work well in that direction of research.

Moreover, relative efficiency relationship with other QLIL-based estimators can be studied. For
example, when reduced form model for y; is available, the minimum distance estimator suggested
by Amemiya (1978, 1979) can be used. Newey (1987) showed its asymptotic efficiency in limited
information structure with normal errors. It would be interesting to study its relative efficiency

relationship when it is based on QLIL.
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CHAPTER 2

EFFICIENT MINIMUM DISTANCE ESTIMATOR BASED ON QUASI-LIMITED
INFORMATION LIKELIHOOD

2.1 Introduction

When a model is over-identified in limited information simulataneous system, the classical min-
imum distance estimator is often proposed as an estimation method. Amemiya (1978,1979) first
introduced its application to Probit and Tobit model with endogenous explanatory variables and gave
an interpretation of ‘generalized least square’. Newey (1987) called this estimator as ‘Amemiya’s
GLS (AGLS)’ and showed its asymptotic efficiency under correct specification of likelihood in a
general class of limited information structures. Recent work by Wooldridge (2014) implies that,
in linear exponential family (LEF), correct specification of regression functions of reduced form
model guarantees robustness of AGLS. Still, its relative efficiency relationship has not been clarified
for the case of potentially misspecified likelihood.

The purpose of this chapter is to study asymptotic behavior of minimum distance estimator based
on quasi-limited information likelihood. The primary focus is on its relative efficiency relationship
with respect to quasi-limited information maximum likelihood (QLIML) estimator and two-step
control function (CF) approach. this chapter takes the quasi-limited information framework from
Wooldridge (2014) and relies on results from Chapter 1.

The main contributions of this chapter are followings. First, AGLS is interpreted as a concen-
trated estimator (cMD-QLIML) and ‘full” minimum distance estimator (MD-QLIML) is proposed.
Based on an analogous result of Crepon, Kramarz, Trognon (1997), cMD-QLIML is shown to be
asymptotically equivalent to MD-QLIML for structural parameters. Second, given quasi-limited
information likelihood, cMD-QLIML is proved to be asymptotically efficient relative to QLIML
and CF. In particular, cMD-QLIML can be strictly more efficient than QLIML in Newey’s frame-

work if enough degree of misspecification is present in likelihood. Third, if and only if condition
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for cMD-QLIML and other estimators to be asymptotically equivalent under the null hypothesis of
exogeneity is derived. Immediate implication shows that a set of generalized information matrix
equalities for reduced form model is sufficient. Fourth, an explicit formula of cMD-QLIML esti-
mator for linear model is derived. It is the same as GMM but with a different weighting matrix
derived from the reduced form parameter estimates.

The rest of this chapter is organized as follows. In Section 2.2, basic model restrictions are given.
In Section 2.3, MD-QLIML and cMD-QLIML are defined, and relative efficiency relationship is
presented. Section 2.4 contains application to linear model and quantile regression model with

endogeneous explanatory variables.

2.2 Model Restrictions

Assume random sampling from a population. Model restrictions start from a decomposed quasi-

limited information log-likelihood framework in Wooldridge (2014)

QOLL = q (yi1,Y¥i2:2i,01,0) + q2 (Yi2. 2i, 62) (2.1

where 6 = (0{, Gé)/ is (p1 + pp)-dimensional vector of parameter, y;| is the i th observation of
a scalar response variable, y;» is a 1 x r vector of potentially endogenous variables, z; = (z;1, Z;2)
is 1 x k vector of included/excluded exogenous instruments with k = k| + k,. For details, see
Wooldridge (2014).

QLIML and CF estimators are initially given as

N tr.cF = argemax > iz (62)
Oorimr =argmax Y [gi1 (0) + ¢i2(f2)] and { P A
0 i=1 O1.cFr = argemax > i=14il (91, 92,CF)

1

and redefined as GMM estimators based upon first order conditions
N I (A ) U (A )
gi1 (PoLImL gi1 (Ocr
Z ) A 90,7 Qa A =0 and Z 261 l y =0
i=1| 3g,9i1 (QQLIML) t 39,4i2 (92,QL1ML) i=1| 34,92 (92,CF)
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respectively. Finite sample estimates of above extremum estimator and GMM-interpreted estimator
may not coincide. Such numerical discrepancy does not harm our asymptotic analysis since they
are asymptotically equivalent under regularity conditions.

Both QLIML and CF estimators are assumed to be +/N —consistent for the true parameter
values and asymptotic normal. The essential model restriction for validity of the relative efficiency
results in this chapter is that the asymptotic variance of each estimator is in the standard sandwich
form. To explicitly account for some cases of non-smooth objective functions, the Jacobian matrix
of expected score is used rather than the expected Jacobian matrix of score. Note that redundancy
conditions in Breusch, Qian, Schmidt and Wyhowski (1999) are compatible with such modification.
Generalized information matrix equalities (GIMESs) are also defined accordingly. A set of standard
regularity conditions for GMM interpreted estimators (Assumptions 1-13) are given in Appendix
B.1. It is easy to show that, under these conditions, Proposition 1.3.4 in Chapter 1 holds with
Jacobian matrices of expected score in the sandwich form.

To consider a distance minimization problem, a reduced form model should be defined. The
existence of link function y : ® — ' C RS is essential in the following characterization of a

reduced form model.

Definition 2.2.1 A reduced form model is a pair (q ﬁ (v,602) .,y (9)) such that

a® (v (9),02) = i1 (61, 6,) as. for VO € © (2.2)
agR agR

911 (. 05) = € (0) 1L (3. 6y) as. 2.3)
36, dy

for some pp x g matrix C (6) whose elements are real-valued function of 6. (]

The link function y (0) represents the functional relationship between structural parameters and
reduced form parameters. It relates likelihoods of structural and reduced form model as in the first

condition (2.2). Note that the decomposed likelihood

aX (v.02) + g2 (62)
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for areduced form model still belongs to QLIML framework, and ¢ alone cannot identify y without

help of g>. Based on relative efficiency results in Chapter 1, this model is ‘reduced’ in the sense
R

g
that GMM-QLIML for this model has no additional moment functions from 8%21 . In other words,

all nonredundant effects of (z;,y;5) on yp are captured in y. This is chracterized by the second
condition (2.3). In turn, QLIML and CF estimator are asymptotically equivalent for reduced form
model parameters (y, 6») . A set of standard regularity conditions for a reduced form model and a

link function (Assumptions 14—17) are given in Appendix B.1.

2.3 Minimum Distance Estimators: MD/cMD-QLIML

Given reduced form estimates (7, éz), MD-QLIML is defined as minimum distance estimator of ¢

minimizing optimally weighted sum of distance y — y (0) and 92 — 6.

Definition 2.3.1 Let (7, éz) be reduced form parameter estimates and suppose

Y d
N | I A R TS,
) 02

Then MD-QLIML estimator 0 MD—QLIML is a solution to

/

—h®) | QF! —h(6) (2.4)

min
0

)
)

where ki (6) = (y (8)',65) and Qg 5> Qp. O
Hence, MD-QLIML is a two-step procedure:

1. estimate (p, éz) by solving just-identified reduced form model. (y, éz) mainly represents
estimated mean responsiveness of y;1 and y;» with respect to all available exogenous variation

of instuments.

2. compress information contained in (y, éz) into structural parameter estimates by solving the

distance minimization problem (2.4).
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Later, we will see this two-step estimation procedure can enhance finite sample performance
remarkably compared to asymptotically equivalent optimal GMM estimator when model is over-

identified. The next proposition states the asymptotic distribution of MD-QLIML.

Proposition 2.3.2 Assume Assumption 1-17. MD-QLIML is asymptotically normal
A d o\
VN (QMD—QLIML - 90) — N |0, (HOQR Ho)

where H, = %h (6,) O

One significant distinction of MD-QLIML from Amemiya’s GLS estimator is that the distance
minimization problem of MD-QLIML considers almost redundant looking distance éz — 6, while
that of AGLS imposes a constraint 6, = éz with corresponding adjustment of the weighting
matrix. In fact, AGLS can be interpreted as a ‘concentrated MD-QLIML’ where ‘concentration’
means 6, is regarded as a implicit function of 6; in the solution space of minimization problem.
This interpretation is based on the following general result which is analogous to Proposition 1 in

Crepon, Kramarz and Trognon (1997).

Proposition 2.3.3 (Concentrated Minimum Distance Estimator) Assume (1) & (0) = (h’1 , h/z)/ is

continuously differentiable in 6 = (6}, ) where 0] € RP1, 8, € RP2, h| € RE, hy € RP2 with

g>p1 (2 ahgg") has full column rank (3) y, — h () # 0if 8 # 6, where yo = (Yo1, Vo2)>

d
Vol € RE and y,0 € RP2 (4) VN (F —0) > N (0,20) (5) det(al(%(;)) £ 0 for VO € ©.

Then, ¢y (6)) is well-defined by y, —hy (01, ¢ (61)) = O for each (61, N) , and an estimator éc,l

derived from

rréin (P1 — 1 (B1.9n (01))) Wi (D1 — Iy (B1. 0N (61)))

is asymptotically equivalent to a minimum distance estimator of #; which solves

min (7 —h (6))’ W (9 —h(6))
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~1
where W) £ (SOQOS(’,)_l, S, = [ _ 91 (%) [ahz(QO):| ] and W % Q;l. Moreover,

1

g 7 7
X 1 8(92 302
the asymptotic distribution of 6,  is

\/N(éc,l - 901) <N (o, [Hc’ (SoQ205,) " Hcr)

—1
dhH (6 dhH(6
where He = iy (6) = 557 () [ azé;)} 325{0)' O

Proposition 2.3.3 provides a method to construct an asymptotically equivalent minimum dis-
tance estimator for 61 by concentrating 6, out. The key condition is that the dimension of con-
centrated parameter 05 is the same as that of concentrating equation y, — hy (61, 62) = 0. This
condition is presicely satisfied for #; and 6, in QLIML framework. Applying Proposition 2.3.3 to
QLIML framework, we have /5 (61, 6) = 6, and the implict function in the proposition is merely
onN (0)) = éz, a constant function of 6;. In turn, AGLS can be defined as concentrated MD-QLIML
(cMD-QLIML) and its asymptotic distribution and asymptotic equivalence to MD-QLIML follows

as a corollary.
Definition 2.3.4 cMD-QLIML (=AGLYS) is defined to be a solution GALC MD—QLIML 0

Héin [7 —y (91, éz)], W [? —y (91, 92)] (2.5)

where W; LA (SOQRSé)_l and S, = |: I _8)5(99/0) ] .
2

Corollary 2.3.5 Assume Assumption 1-17. Then,

Vl _ Vl
MD—QLIML = YeMD—-QLIML
and

d _ -
VN (01.cmp—orLimL —001) = N (0, [Hé (So2RS,) 1Hc:| )

dy (6 ay (6
where H, = —)8(910) and S, = |: Iq ——75(%0) ] O
To study relative efliciency relationship between GMM-QLIML and AGLS(cMD-QLIML), it

is useful to consider following GMM counterpart for MD-QLIML.
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Definition 2.3.6 (MD-QLIML equivalent GMM) mGMM-QLIML is defined to be an optimal

GMM estimator based on
Gyat (v (6).6) 06
3542 (62)

The moments in (2.6) are the same first order conditions used in the first stage of MD-QLIML
except that y is being treated as a function of 6. This estimator can be understood as combining
two-step procedure of MD-QLIML into one-step: accounting for mean responsiveness of y{ and
y»> with respect to all exogeneous variation of instruments, choose 6 optimally. Under regularity
and identification conditions for MD-QLIML (Assumption 1-17), this estimator is well-defined

and asymptotically equivalent to MD-QLIML.

Proposition 2.3.7 Assume Assumption 1-17. Then MD-QLIML and mGMM-QLIML are asymp-

totically equivalent.

mGMM-QLIML is efficient relative to GMM-QLIML in matrix positive semi-definite sense.
Proposition 2.3.8 formalizes the results along with a condition under which mGMM-QLIML and

GMM-QLIML are asymptotically equivalent.

Proposition 2.3.8 Assume Assumption 1-17. Then
VimeMM—oLIML 2 VoMM —QLIML

where the inequality becomes equality if p1 + py» = g. O

The following proposition summarizes the results in the framework of linear index model which

is most frequently used but not the only class of models that results can be applied to.
Proposition 2.3.9 Assume Assumption 1-18. Suppose
qi1 (01, 02) =1 (yi1,y2o + 2181 + V21, A)

k 1 1 _
gi2 (6h) = —§1n27T - 5111 |Z0o| — SVi2 (82) 53 vi2 (82)
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where 0 = (o', 8], n’,)V)/, 6, = (vec(82) . vec (222)/)/ and v; (82) = y;j» — z;8,. Then
following results hold:

(@ Vup—oLimL = Vomum—-orLimL = VorimL. VcF

() If kp = r, then Viyyp_orimr = Vemm—orimr = VorLimr = Vcr

(©) If no # 0, then Viyp_orimr = Vemm—-orLimr = VorLimL, Vcr

() Ifno =0, then Viyyp_orimr 2 Vomm—orLimrL = VorLimL = Vcr

(e) If no = 0 and kp > r, then VMp—oLimL = VoMM —-QLIML if and only if

0 g1
—F
a0’ [3)/*]

()=o)

0 0 -1
% GV,
_ il 1 1 1
= COV , ) 0 V ) ) —E
dy*’ 945 +8q12 dq7) +8‘1i2 20’ 991 +3qzz
90, 90, 30, 90, 30, T 9, lg—q,

g
aj]/’#} together with QLIML moment functions is asymp-

totically equivalent to mGMM-QLIML. A sufficient condition is GIME’s for g1, g2, g1 + g2 with

where y* is such that optimal GMM on

same scaling factor for reduced form model. [

(a) holds also for the cases where the index contains higher order terms of y,. However,
asymptotic equivalence of MD-QLIML and GMM-QLIML in (b) and (c) doesn’t hold in general
when higher order terms of y, are present. (b) is well-known property and, in fact, estimators
are numerically equivalent. (c) is a typical relative efficiency relationship when endogeneity is
present. If a set of GIME’s with common scaling factor holds, QLIML will also be asymptotically
equivalent to MD-QLIML. (d) and (e) shows relative efficiency of MD-QLIML when there exists no
endogeneity. With over-identification, there exists potential efficiency gain which vanishes under a

set of GIME’s for reduced form model.
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2.4 Example 1: Linear Regression Model with Endogeneous Explanatory
Variables

From equationy;, = z;8,+V;> and uniqueness of linear projection, itis clear that L (y;1|y;2,z;) =
L (yi1|vi2,zi) . Substituting y, into g, or equivalently, substituting into regression equation

v;1 yields
Vit = Yio@+2;181 + vinSy) To1 + €1
= z1; (8210 + 81) + 228200 + Vi (06+2521 221) + €1
=1Z1;Y1 +22;V2 + Vi2V3 + €)1

Along with y4 = o11)p (), y (0) is naturally defined as

/
©) = (@045 o) (0455 ) co12.0))
while dependence of ¢;1 on 6, is through the control function v;; (§,) . Consistency and asymptotic
normality of estimator of (y, 6;) is implied by invertibility of £ [z’ z] and other regularity conditions
assumed for QLIML and CF estimators. However, additional assumptions are needed in nonlinear
models in general. For example, when we allow higher order terms of y, in regression function as
in
yil = yhHo + 2181 + viaZ5) Do + e

it is required to impose additional orthogonality and rank condition for structural and reduced form
model. i.e. (a) regression function specification is done with conditional mean operator rather
than linear projection operator. (b) linear independence of higher order terms of instruments is
assumed. Following demonstrates a computationally useful reparameterization of classical LIML
under which explicit expressions for H,, H., S, and the closed form of cMD-QLIML estimator
are given.

Consider reparametrization
=yl
n 27 21

_ —1
o112 = 211 — X122, 221
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It can be easily shown that this reparameterization does not alter other parameter estimates of any

estimation method discussed in this chapter. Taking derivative of 4 (0) at 6,,, we have

Hy1 (0p2) Hi2(001)

Hoz
0 Ipy
where
2 xr Iy, 00 Vel
k
S, ., 0 0 0
Hyy (6h) = 2 and Hjp (0)) = Oprk O rer41)
I, 0 I, 0 472
lerk
0 0 0 Iix

Hence, we have H, = H1j (6,7) and S, = |: Ig —Hip(0y)) :| . Preliminary estimates for o can
be calculated by QLIML or CF when constructing weighting maxtrix for cMD-QLIML. Moreover,

since y (f) = Hq1 (6,) 61, taking first order condition of (2.5) yields
A\ A N AN A
O eMD—QLIML = [Hu (92) Wi H (92)} |:H11 (92) WIV]
Note that ¢; (0) = ¢; (y (8)) where

e; (0) = yi1 —yina—z;181 — Vizzz_zl ¥

ej (v (0)) = yi1 —21;v1 (0) — 2272 (0) — vi2y3 (0)

By replacing e; (0) with ¢; (y) in g;1 along with reparameterizing o712 (6), a reduced form model
likelihood g1 (y, 6) is derived:

1 1 1 _
qgi1 (v, 02) = —§1n27T - 5111 va = e )y

Taking derivatives with respect to y, we have

vy lei (v)2
dg;1 (v, 62) _

—-1,. /
dy Y4 €,(y)V2

Syt + e ()2 y?
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Then, mGMM-QLIML moment functions are derived by noting y (#) as a function of 6

o1 (0) e ()7
o112 (0) ' e (0) V)
~Lo11p (071 + e (0)? 0410 ()7

It is not difficult to see that mGMM-QLIML is asymtotically equivalent to GMM-QLIML whose

dgi1 (v (8).62) _
ay N

889 replaced with (1.11) as discussed in previous section.! To see existence of C (), assuming,

091
without loss of generality, that first ko — r instruments in z; are chosen in =5~ 9 , it is implied that

C(0) = [ Oky—r)xk; — (22_21 221)1.0 Tiy—r Oky—r)x(2r+1) ]

when (21521 221) _ is nonzero for chosen i, and ky > r.
lo

2.5 Example 2: Probit with Endogeneous Explanatory Variables
Consider probit model with endogeneity.

yir = 1lyizee +2;18;1 +u;j; > 0],

Yio = 2zi§2+Vi2

Assume regularity and identification conditions (Assumption 1-17). For computational convie-
nience, similar reparametrization in Example 1 is done along with normalization of e; = u1 —vpn.
Also, 375 is taken out from g5 since its exclusion does not affect other parameter estimates. Then,

quasi-likelihood can be simplified as following

q1 (01.62) = (1 —y1)log[l — @ (w(0))] + y1 log @ (W ()

1
gi2 (6h) = —5vi2 (82) viz (82)

"Moreover, by invertible transformation of mGMM-moment functions and by separability con-
dition of GMM, it can be shown that mGMM-QLIML is asymptotically equivalent to optimal
GMM on E [z'u].

31



where 0] = (/. 8], n/)/, 0, = vec (87), and w () = yra + 2181 + von. Taking derivatives,

quasi-scores can be expressed as

Y2
g1 y1—Pw() /

V)
g _ = ®w(®) /
g2

=||7 7 — 28
36, [[ r® ] (y2 2) ]
It is easy to see that, GMM-QLIML extra moment functions are

dg1 _ =2 Ww()
0y 1= (w(0) @ (W(0))

& v () | nig5,_, |

where 7;, # 0.

Components of H,, H; and S, can be calculated similarily as in Example 1.

821k1XV Ikl O

o ® Ik
Hyy (02) = | 8, 0 0 |and Hip(th) =
2XV O
rxrk
I, 0 I
To derive mGMM moment functions, note
w(0) =y + 2181 + van
=121y1 + 22Y2 + V2V3
=w(y(9))
Then, differentiating with respect to reduced form parameters, we have
dq1 (v (9) ,62) yi—®(w (b)) 7
= ¢ (w(0))
dy 1= (w(0)) ®(w(0)) v,

and it shows that this model is LL-class as claimed by Proposition 2.3.9.
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2.6 Monte Carlo Simulation on Probit Model with EEV

In this section, Monte Carlo simulations are conducted on probit model under several specifications.
The purpose is to investigate effects of GIME’s on finite sample performance of estimators when
model is over-identified. Based on the relative asymptotic efficiency results in previous sections,
it is expected that MD and equivalent estimators outperform CF and QLIML (in terms of standard
deviation) at large enough sample size when enough misspecification is present in an overidentified
model. Root mean squared error (RMSE) is used as main performance measure in this study to
take account of bias as well as mean deviation.

The assumptions on data generation is as follows: all data points are independently and iden-
tically generated. The instruments {zk}]l{():1 are mutually independent and z;, ~ SBin (104, %)
for each 1 < k < 10 where SBin (n, p) 4 %\/%’ The regression equation for scalar y, is
Yo = z1 + -+ 4+ z10 + v2. For specification of GIME’s of ¢ and ¢,, following restrictions were

imposed in each case

Probit GIME holds GIME doesn’t hold
yp= | 1 11 +31

Fryatnvater>0] | 4 [z votnupter>0] T ATz fy) nuyt(egte3) /v2>0]
vy~ | SBin (104, 1/3) 2120 - SBin (104, 1/3)

where e; and e3 each follow independent standard normal distribution. Due to nomalized variance
of vy, it can be shown that, by considering g, without ¥,, term, only homoskedasticity is needed
for GIME to hold for ¢,. Fractional response y; fails GIME for g due to correlation between e, and
(e5 + e3) /+/2. Since relevent random variables are all discrete and have bounded supports, RMSE
for all estimators are well-defined and can be used in comparison. Number of repetition is 10 and
mGMM was estimated by iterative (or continuously updating) method. The simulation program
was written in ado/MATA language in STATA 13, and it was executed using HPCC(High Perfor-
mance Computing Center) resources provided by the iCER(institute for Cyber-Enabled Research)
at Michigan State University.

Table 2.1 shows results. Simulation I is a case where a complete set of GIME’s hold so that MD,
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Table 2.1 Root Mean Squared Error and Standard Deviation (n = 0.6)

I II 111 v I II 111 v
V1 bin bin frac frac bin bin frac frac
vy hom heter hom heter hom heter hom heter
RMSE(®) SD(&)

CF  .075365 .077754 .104740 .104207 .074631 .076346 .083360 .082906
QLIML  .076288  .078776 .065795 .067283 .075181 .076850 .064932 .066215
mGMM 106961  .110279 .088611 .089067 .088201 .090190 .074308 .075319

cMD  .074520 .077083 .065725 .066771 .074508 .076982 .065704 .066712
MD  .074145 .076336 .065140 .066081 .073898 .076332 .065104 .066068
RMSE(S) SD(5)

CF  .106819  .116410 .125905 .132584 .106276 .115156 .108713 .117753
QLIML  .107902  .118604 .094155 .103526 .106946 .116472 .093296 .102338
mGMM 135496  .148364 .114708 .122376 .120365 .130357 .102978 .110010

cMD 107595 115777 .094605 .102796 .107592 .115562 .094569 .102651
MD  .107138  .114848 .094074 .102169 .107046 .114801 .094078 .102141
RMSE(7) SD(7)

CF .092770  .123793 .107716 .128835 .092549 .123702 .100161 .124508
QLIML  .095036  .128690 .086661 .113820 .094068 .127413 .085600 .112983
mGMM 108038  .142233 .096547 .124093 .101424 .135053 .091019 .118997

cMD  .093617  .124352 .086388 .112209 .093618 .124358 .086323 .112214
MD  .093134 .123649 .085921 .111645 .093101 .123641 .085903 .111646

cMD, mGMM and QLIML are all asymptotically equivalent. In simulation I, thus, all estiamators

are asymptotically equivalent including CF. Other simuations (II, III, IV) have at least one GIME

failing, and MD, cMD and mGMM are efficient relative to both QLIML and CF. Standard deviations

are also presented along with RMSEs.

There are some points to be mentioned: 1) These results show that there can be cases where

minimum distance and its equivalent estimators can outperform CF and QLIML in finite sample.

2) Minimum distance estimators and equivalent ones except mGMM seem to behave quite similar

to each other in Simulation I as predicted. 3) MD-QLIML performs remarkably well while

asymptotically equivalent mGMM had poor finite sample behavior. Compared to other estimators,

MD-QLIML has usually the best performance and, even when it is the second best, the RMSE

difference from the best is not large.
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CHAPTER 3

SHORT PANEL DATA QUANTILE REGRESSION MODEL WITH SPARSE
CORRELATED EFFECTS

3.1 Introduction

Application of quantile regression to panel data is attractive to empirical researchers. Com-
pared to conditional mean regression, quantile regression provides a more thorough description of
the population distribution by nature. With its application to panel data, the unobserved individ-
ual effects can be accounted for so that a potential source of endogenous variation is eliminated.
A natural quantile analogue of a linear panel data model, however, suffers from the well-known
incidental parameters problem as in generic nonlinear models (Neyman and Scott, 1954). Rosen
(2012) shows that with time dimension fixed, the conditional quantile restriction alone cannot
identify the regression coefficients in general. Additional point-identifying restrictions considered
in the literature so far assume at least one of the following: (i) infinite time dimension, (ii) pure
location-shifting unobserved effects, and (iii) a certain degree of within-group independence of the
regression errors (e.g. Koenker, 2004; Rosen, 2012; Lamarche, 2010; Canay, 2011; see Section 2).
Depending on the empirical contexts, these assumptions may not be credible for short panel data
analysis, and any breakdown of such identifying restrictions will result in an inconsistent estima-
tion. The purpose of this chapter is to study an alternative point-identifying model restriction and
feasible estimation procedure for linear panel data quantile regression with a fixed time dimension.

The main contributions of this chapter are as follows. First, I propose a new point-identifying
restriction for a linear panel data quantile regression model with a finite time dimension. The
new model restriction reasonably accounts for the T-quantile-specific time-invariant heterogeneity,
and allows arbitrary within-group dependence of regression errors. The generalized Chamberlain
device is taken analogously as a control function to capture t-quantile-specific time-invariant

endogenous variations. Endogeneity due to an observability pattern in unbalanced panel data can
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be accounted for as well. Second, asymptotic properties of a non-convex penalized estimator are
studied. To treat the high-dimensional nature of the generalized Chamberlain device, a nonconvex
penalized estimator is adopted. Compared to exact sparse models for cross-sectional data in Wang,
Wu and Li (2012; WWL) and Sherwood and Wang (2016; SW), the model in consideration
accounts for an approximation error in the sparse model, and within-group dependence of panel
data. A convergence rate and asymptotic distribution of the oracle estimator is studied under
both exact and approximate sparsity assumptions. A sparse version of the standard partially linear
semiparametric model asymptotics is derived under approximate sparsity. The proposed penalized
estimator is shown to have an oracle property in the sense that the estimator based on the true sparse
model belongs to local minima of penalized quasi-likelihood with probability tending to one. The
lower bound condition on the smallest magnitude of nonzero coefficients, so-called the beta-min
condition is relaxed compared to the one given in SW. Third, a transformation of sieve-approximated
correlated effects into a generalized Mundlak form is proposed to make the sparsity assumption
more plausible in some cases. Given a choice of sieve basis elements, the approximating terms are
transformed into time average and deviations. Whenever the sieve elements contain a first-order
polynomial term, both a classical Chamberlain and Mundlak form of correlated effects is nested
by the transformed approximating terms as a special case of true sparse models. The Monte Carlo
simulation shows that, depending on the true model, the estimator using a generalized Chamberlain
form can outperform the one using a Mundlak form, and vice versa. Fifth, an empirical application
to birth weight analysis demonstrates a convincing case where the proposed estimator works as
intended in real data.

The rest of this chapter is organized as follows: Section 3.2 gives a brief literature review of
linear panel data quantile regression. In Section 3.3, the new identifying restriction is explained and
formalized. Along with sieve-approximated correlated effects, nonconvex penalized estimation and
its asymptotic properties are presented in Section 3.4. Simulation results are discussed in Section
3.5. The empirical application to birth weight analysis is in Section 3.6. Section 3.7 contains

concluding remarks.
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3.2 Literature on Linear Panel Data Quantile Regression

The literature on linear panel data quantile regression model has been growing rapidly in
recent years. First, there are several studies where both the time dimension 7" and sample size N
are assumed to be large. Koenker (2004) proposed penalized estimation under the pure location
shift restriction and large (7', N) asymptotics. Lamarche (2010) showed that it is unbiased under
a zero median condition on fixed effects, and derived an optimal choice of a penalty parameter.
Harding and Lamarche (2016) considered a semiparametric correlated effects model in a similar
framework to Koenker (2004) and Lamarche (2010). Kato, Galvao Jr. and Montes-Rojas (2012)
formally studied asymptotic results when (7, N) tends to infinity. They relaxed the intertemporal
independence assumption in Koenker (2004), and found that for asymptotic normality, the rate
condition imposed on 7" is more restrictive than the one found in generic nonlinear models due to
non-smoothness of the loss function. This result indicates that its short panel data application is
even less appealing.

Second, point-identifying restrictions and estimation methods for the fixed 7" case are studied.
Rosen (2012) showed weak conditional independence of regression errors across time together
with some support and tail conditions imply point-identification. Canay (2011) also showed that an
alternative conditional independence restriction in the random coefficient framework is sufficient
for identification, and he proposed a simple estimation method when unobserved effects are pure
location shifters. When the independence assumption is strengthened to i.i.d., Graham, Hahn and
Powell (2009) showed that there is no incidental parameters problem since the first-differenced
regression errors have a zero conditional median. Abrevaya and Dahl (2008), without explicitly
setting up rigorous model restrictions, applied a quantile analogue of a correlated random effect
model to analyze the effects of birth inputs on birthweight.

Apart from linear panel data quantile regression models, there are several related works on
panel data models. Wooldridge and Zhu (2016, manuscript) proposed high-dimensional probit

model with sparse correlated effects under fixed 7. Arellano and Bonhomme (2016) considered

37



a class of nonlinear panel data models under fixed 7" where unobserved heterogeneity is nonpara-
metrically modelled. Graham, Hahn, Poirier, Powell (2015, manuscript) extends the correlated
random coefficients representation of linear quantile regression to panel data under fixed 7. Cher-
nozhukov, Ferndndez-Val, Hahn, Newey (2013) studied a general nonseparable model assuming

time-homogeneous errors and large (7, N).

3.3 Identification

3.3.1 Generalized Chamberlain Device

One of the essential advantages from using panel data is to resolve the potential endogeneity
problem that arises from unobserved time-constant heterogeneity. The unobserved effects are
typically specified as unknown coefficient parameters for individual dummy variables. In the linear
panel data conditional mean model, such specification is useful: both the differencing method and
direct control of dummies yield consistent estimators under mild conditions. Unfortunately, panel
data quantile regression with individual dummies suffers from an incidental parameters problem in
general.

I propose a generalized Chamberlain device as an alternative approach to achieve elimination of
time-invariant endogeneity in the spirit of a control function approach. The idea is to control time-
constant endogenous variation (regressor-correlated variation) only, not the whole heterogeneous
individual effect in the unobserved error. A well-known example of the conditional mean model

clearly demonstrates this idea: Suppose, forl <i < Nand1 <7t < T,
Vit = XitB +¢i + vjg (3.1

where x;; € RK, X; = (Xj1,,X;7), E[vit|X;i,ci] = 0, and x;; is assumed to be time-varying
and continuously distributed. Here, the unobserved time-invariant effect is denoted as ¢; following

Chamberlain (1984). By taking the conditional expectation of y;; on X;, we have

E[yitxi] = xi:8 + g (x;) (3.2)
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for some measurable function g : RTK

— RR. Note that the unknown arbitrary function g does
not depend on the time index ¢. Then, regression with sieve-approximated g (x;), for example,
yields a consistent estimator of . In this sense, the conditional moment restriction (3.2) can be
viewed as a control function approach counterpart for the linear panel data model. (see section
19.8.2 of Li and Racine (2007) for details.) Such control function g will be called a “generalized
Chamberlain device” or “correlated effect” in this chapter. To date, this approach has not been
considered seriously in the linear panel data literature since the methods based on direct control
or removal of the individual effect ¢; equivalently eliminate potential endogeneity without much
difficulty.

The generalized Chamberlain device is taken analogously in quantile regression setting. Sup-

pose, for 1 <i < N and 1 <t < T, the structural equation is

Vit = Xj1 B+ uj; (3.3)

where, for simplicity, X;; is assumed to be time-varying and continuously distributed. We consider

balanced panel data from now on unless explicitly mentioned. For each 7 € (0, 1), we can write

O ielxi) = x4 B (v) + & (x4, 7) (3.4)

for some measurable function g; : RTK x (0,1) — R. The function g; (x;, t) represents t-
quantile-specific endogenous variation contained in u;; that is allowed to vary across time given
x;. Unfortunately, such g; is not separately identifiable from x;;8 (r) in general. Now, assume
that any endogenous variation contained in u;; is time-constant in the sense that g; (x;, t) does not
depend on 7 but is allowed to have a constant level difference across time. Then, for some constants,
ks (t)s, we have

O (yitlxi) = xi1 (1) + g (X, 7) + k¢ (7) 3.5
where k7 (r) = 0 is imposed for normalization. Note that (3.5) takes a quantile analogue of
(3.2) with the introduction of time effects, and that it formalizes the “time-constant endogeneity”
assumption for u;;. It does not rely on either additivity of composite error, ¢; + vj;, or the widely

used conditional quantile restriction Q¢ (vj¢|x;) = 0.
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3.3.2 Model Restriction and Identification

In this subsection, the time-constant endogeneity assumption is used to derive the generalized
Chamberlain device for a formal structural equation. Together with the derived control function, a
set of model restrictions that attains point-identification is presented.

Foreachi = 1,---,N andt = 1,---, T, we observe (yj;,X;¢,Zi,Vs). The response variable
is y;; € R, and the covariates are time/individual-varying variables x;; € RX1, time-constant
variables z; € RK2, and individual-constant variables v; € RX3. The covariates are allowed to
contain both continuous and discrete variables which will be notated by tilde and dot accents,

. : . K¢ . K . L K4
respectively. Specifically, x;; € R"1 and z; € R"2 are continuous while x;; € R"1 and
Z; € RKEZ are discrete where we have Kj = K{ + Kf' and K, = K + Kg by construction.
For individual-varying variables, we assume random sampling conditional on individual-constant

variables.

Assumption 1 (Random Sample) {y;;, X;¢, z,-}tT=1 are i.i.d. across i conditional on {V[}thl .

Since we consider linear quantile regression models, it is natural to assume the structural
equation for y;; to be a linear function of the observed covariates. Throughout the paper, the

structural equation is defined as follows: Fori = 1,--- ,Nand¢t =1,---, T,
Yit =XitB +zin+ Vi€ +ujy (3.6)

where u;; is an unobserved error. The equation (3.6) describes the data generating process of
the response variable y;;, which is typically implied by economic theories and specific empirical
contexts. We may also think of it as an equation in the researcher’s mind. Following Hurwicz
(1950) and Koopmans and Reiersgl (1950), it constitutes a ‘structure’ when paired with a joint
distribution function of ({u;;, x; t};Tzl ,Z; ) conditional on {V[}thl

F Uity U T, X1, X T, Zi [ V], ,VT). (3.7)
{”it’xit}szl»ziHVt}thl( il iT»Xil iTsZi|V1 T)
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Depending on the model restrictions imposed on (3.6) and (3.7), the interpretation of parameter
(B,n, &) changes. For example, conditional quantile restrictions on u;; with different values of
7 € (0, 1) will change the value and interpretation of (f, 1, £) in general.

Under the model restriction of a generalized Chamberlain device, neither n nor § can be
identified. However, following this argument shows that it is important to include time constant
regressor z; when the control function g is constructed: Taking conditional 7-quantile of y;;, we

have

Qc(yielXi zi, (Vi3 _) = X1 B (2) + 2in (1) + V£ (0) + fr(Xi vz, (Vi) _y . T) (3.8)

for some measurable function f; : RT (K1 +K3)+Ky o (0, 1) — R. Note that the effect of {Vt}szl
on f; and that of ¢+ on f; are confounded. Thus, without loss of generality, we can write
fir(xi,zi, {V; }>th1 ,T) = hy (Xj,2;, t) for some h;. (The notation neglects randomness arising from
{V;}ZT=1 since {V[}szl is always fixed in this chapter.) The time-constant endogeneity assumption,
then, implies /; (x;,z;,7) = h (X;,2;, T) + m; (7) for some function /2 and some constant m;. The

conditional quantile of y;; can be written as

O (irlXi 2z, Vi3 _ ) = it (1) + g (xi,2;,7) + k¢ (7) (3.9)

where g (x;,2z;,t) = z;n(7) + h(x;,%;,t) and k; (tr) = v:£ (v) + m; (7). Assumption 2 below
summarizes the model restriction of the generalized Chamberlain device. From now on, we will drop
{ve} zT:1 in the conditioning and treat k; s as parameters to be estimated. The parameters’ dependence
on t will also be omitted. The time dummies are denoted as d; fort = 1,--- , T —1, and they will be
considered together withx;; asinw;; = [ x;; d; --- dp_; |. The kthelement of w;; is written

as w; - The corresponding coefficient parameters are defined as f = (,B’ U )/ e RK1+(T-D),

Assumption 2 (Correlated Effect) There exists a measurable function g : RK1T+K3 5 R such

that, for all (7, t)

Oc (Virlxizj) = wi1 B+ g (x;,2;) (3.10)
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Assumption 2 is a new model restriction that takes a control function approach for the linear
panel data quantile regression model. Note that the correlated effect g depends on time-constant
variables z; that enter the structural equation. Although the causal effects of z; on y;; are not
identified, it is important to include z; as arguments of g. Also, there may be some deterministic
relationship among (x;, z;) which should be dealt with. For example, we may have x;;; = x; ;7
for some (t, t, k) with probability one. Then, having both variables is redundant for g, and one
should be removed from the specification. Similarly, if there is a functional relationship between
the covariates such as x; thy = xl.zt Ky only the one containing finer information, x; thy» should
remain. Throughout the paper, such redundancy is assumed away for simplicity.

The following theorem shows that a certain degree of richness in the support of {w;;}, and
well-behaved error distribution is sufficient for point-identification of f under Assumption 1-2.
Define ¢;; = y;; — wi;B — g (Xj,z;), and let f;; (¢) be a density of ¢;; conditional on (x;,z;) .

The condition imposed on f;; below is part (i) and (ii) of Assumption 3 in Section 3.4.2.

Theorem 3.3.1 (Identification of B) Let W; = ((wjp —w;1) .-+, (Wi — Wl-(T_l))/)’. Assume

Assumption 1-2 and that f;; (¢) is continuous and uniformly bounded away from 0 and oo in a

neighborhood of 0. Suppose that the support of (w;1,--- , w;T) contains J points (W(] ) ... (j ))

1 <j<Jsuchthat JT x (K; + T — 1) matrix
[ wl(l)’ WZ(J)’ I (3.11)

has full column rank, the pmf of (xl(i), Y )) satisfies p(xl({ ), (j ) ;) > 0 Vj, and the pdf of

(J) (J)

TRSTRICTRS t/)( it X |X(J) (])) >0 V] where f(X

(f((]) (])) satisfies f(X i

it Z’il’t/)|().(il’5(l'l/)

has continuous extension at each (wl({ ), (] )) Then, B is identified.

The result above is not surprising since the current specification does not have incidental
parameters. It shows that specification with an unknown function common to every individual has
more identifying power than one with unknown parameters unique to each individual. For the rest

of the paper, we assume point-identification.
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3.3.3 Case of Unbalanced Panel Data with Time-constant Endogeneity

When some time periods are missing for some individuals in the observed panel data, potential
endogeneity related to observability should be treated as well. We assume the structural equation
for all observed units and time periods are homogeneous. Then, with the introduction of selection
indicators and auxiliary balanced data, the generalized Chamberlain device can be modified to
account for time-constant endogeneity related to observability. The approach can be regarded as a
nonparametric version of the correlated random effect models studied by Wooldridge (2009).

First, define selection indicator s;; to be a binary function that takes 1 if (y;;, X;;, Z; ) is observed
for ¢, 0 otherwise. In addition, consider an auxiliary balanced panel data (s;; yis, SitXit, SitZi» Sit)

fori =1,---,N,t =1,---,T. A corresponding structural equation is assumed to be
SitYit = SitXitB + Sit2in + $itvi§ + Sicuig (3.12)

which is derived by multiplying s;; to the original structural equation. The (3.12) is restrictive
only for observed time periods and it assumes the structural equations are homogeneous across

all observed units and time periods. The conditional t-quantile of s;;y;; conditional on S7 =

({SitXit},T=1 s SitZis {Silvt}thl ;i) is
Or (it VielST) = SitXieB + 5ie2in + 5irVeE + 518t ({sirXie by o 8ir2is {sieve}i_q.si) (3.13)

for some g; where s; = (s;1,---, ;7). Then, based on the previous argument, the time-constant

endogeneity assumption implies a conditional quantile restriction

O (siryitl {SitXiz};Tzl . SitZiS;) = SitXi B+ Sitg({sitxit}[T:l ,SitZi\S;) + Sicky (si)  (3.14)

where {s;;v; }th1 is omitted and (g (-), k;) depends on the selection indicator s;. Since (3.14) is

not restrictive when s;; = 0, we may write an equivalent model restriction for (i, ¢) with s;; = 1 as

Qv (irl Kity s, =11 - %i-8i) = XieB + 8(Xitd g5, =1y 2 81) + ke (8i) - (3.15)

Since the generalized Chamberlain device, g({x;;} {t5;,=1}  Zi s;) in (3.15) is a function of se-

lection operator s;, it now accounts for time-constant endogenous variation due to observability.
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Note that s; acts as a classification device for the observed pattern of each individual. If there is no
endogeneity related to observability, g and k; will not depend on s; when g is assumed to have an
additive form (3.16) in the next section.

Identification of B (not B) can be trivially achieved under conditions in Theorem 3.3.1 for
{Wif}{t:sl-tzl} |s; = §; such that P (s; = §;) > 0 and Zl-Tzl Si; > 2. In other words, if there exists
a positive fraction of observable units with a certain number of multiple periods, and if the support
of regressors are rich enough, the parameter of interest is identified. The estimation procedure
will be applied to the auxiliary balanced panel data. When g has an additive form, an essential
difference in estimation is that each fraction of individuals with different observability pattern s; is

allowed to have different additive components of g for each x;;; and z;.

3.4 Estimation

For estimation, the correlated effect g is approximated by sieve spaces. The approximated g
has high-dimensionality for three reasons: First, the number of approximating terms is infinite in
general. Second, the number of arguments in g is T K| + K7, which can grow fast in 7. Besides the
problem that the truncation choice on sieve approximation can be limited with a large number of
arguments, the existence of discrete variables can introduce more nontrivial problems. In particular,
if discrete variables (X;, Z;) have rich enough supports, the total number of approximating terms
can be comparable to, or larger than N even after we impose the additive functional form on g
and truncate the approximating terms for additive components of continuous variables (X;,Z;).
Such “too many regressors” problem arises from the fact that it is not obvious how to truncate
approximating terms related to discrete variables in general. Note that N is the maximal number
of linearly independent time-invariant regressors. Third, when the panel data is unbalanced, more
complex observability patterns result in a larger number of nonparametric nuisance components to
be approximated since we allow different functional forms of g for each group of individuals with

a different pattern.
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The reasons for high-dimensionality mentioned above indicate that the standard sieve truncation
via information criteria or cross-validation is not always usable and effective. For high-dimesional
models, a penalized estimation of a sparse model with the Least Absolute Shrinkage and Selection
Operator (LASSO; Tibshirani, 1996) and its variants is popular due to its prediction accuracy
and computational feasibility. For high-dimensional quantile regression models, Belloni and
Chernozhukov (2011; BC), Wang, Wu and Li (2012; WWL) and SW (2016) studied properties of
penalized estimators with certain penalty functions. Since the nonconvex penalty functions used in
WWL (2012) and SW (2016) have oracle property under mild conditions, asymptotic distribution
of resulting penalized estimators can be studied via that of oracle estimator. This is a big benefit
from using nonconvex penalty function compared to LASSO which has oracle property only under
a quite restrictive condition. Another practical benefit is that the relaxed estimation procedure
such as “post-Lasso estimation” is not necessary for nonconvex penalized estimators applied to a
large sample. In this chapter, two nonconvex penalty functions are considered: Smoothly Clipped
Absolute Deviation (SCAD; Fan and Li, 2001) and Minimax Concave Penalty (MCP; Zhang,
2010). For details of a general class of penalty functions, see Fan and Lv (2009) and Lv and Fan
(2009) for example. Besides overcoming a nontrivial high-dimensionalty problem, it is expected
that the penalized estimator improves over the standard truncated sieve estimators under sparsity
assumption (Belloni and Chernozhukov, 2011a). Note that the penalized estimator selects the
relevant sparse terms only while the relevant terms can be excluded from the first K elements
selected by standard truncated sieve estimators. To make the sparsity assumption more plausible
in some cases, a transformation of the approximated correlated effect into a generalized Mundlak

form is proposed.

3.4.1 Sieve-approximated Correlated Effect

In this chapter, the specific sieve space in which g belongs is not assumed. The theoretical
framework is quite flexible and can accomodate various specifications. As long as the true function

g can be sparsely approximated by a collection of terms that satisfies regularity conditions, such a
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collection of terms can be used. Here, we briefly cover one useful example of the sieve approxima-
tion of g with an additive form, smoothness of additive components of g for continuous covariates,
and finiteness of support for discrete covariates. While a smoothness assumption is quite standard,
the additive function space can be replaced by a tensor product sieve space in general. We may
also consider using multiple sieve spaces together so that basis elements can be mixed (Bunea,
Tsybakov, Wegkamp, 2007; Belloni, Chen, Chernozhukov, Hansen, 2012).

The additivity requires g to be represented by the sum of the univariate functions of each

argument,
T Kj

g(xi.zi) =go+ Y Y _ &Y (i) + Z g Gik) (3.16)

t=1k=1

where go € R is a constant. For identification purposes, E [gtxk (Xitk)] =F [gi (Zik):| =0Vt k
is typically assumed but we may instead drop a constant term (if there exists any) in the sieve elements
for each g;ck and gIZC. Given additivity, smoothness restriction is imposed on the additive components
of g with continuous covariates, (g;‘k (?NCit k) g]i (z; k)) . The Holder condition of a certain order
is the most popular choice. (see Chen, 2007). Finite supports are assumed for components with
discrete covariates, (gfk ()'ci th)s g]i (z; k)), which implies that relevant approximating errors will
be exactly zeros with large enough N.

For approximating gfk (x;;) and g]i (z; ), B-spline elements are frequently used. See Schumaker
(2007) for details. The following shows how the B-spline basis can be implemented in practice:
Given a knot sequence 0 = 19 < 11 < --- < t Iy <liy+1 = 1, degree p B-spline elements
are ¢ 1,x,--- ,x?, (x — tl)fr AR (x — tJN):)_§ where the range of continuously distributed x is
assumed to be [0, 1] and (-)‘3r = (max {0, -})? . Then, the approximated g3y (Xizk ), for example,

can be written as

IN
X p
Stk (Firk) = Z%kq okt Zm(pﬂ)(x”k ()" (3.17)
q=1 J=

where the constant term is removed for identification. In several contexts, nonparametric or

semiparametric conditional quantile estimators using B-splines are shown to achieve the optimal
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1
convergence rate with Jy < N 2r+1 under regularity conditions where r denotes the degree

of Holder condition. For example, He, Zhu and Fung (2002) showed the result for a univariate
semiparametric component in the panel data model with an unspecified dependence structure. If
the optimal growth rate is the same for the additive semiparametric model, Assumption 5 in the
next subsection is conservatively satisfied when we impose py < N ﬁ and r > 1.

For discrete x;;; and Z;;, we do not rely on a smoothness assumption in general. The cor-
responding gfk and gi function can be exactly expressed as a linear combination of indicator
functions that take value 1 on the support elements. Suppose that a discrete random variable x;

X
Stk,N

has realized support elements {as}

in the given sample. Then, without loss of generality, the
function gfk (X;71) can be written (or approximated) as

X
Stk N

i Gig) = ) v Kk = as] (3.18)

s=1

where indicator functions 1 [X;;;, = a] act as sieve basis elements of the function space in which
gfk (X% ) lies. To meet the identification condition £ (gfk (X, k)) = 0, we may equivalently drop
one of the indicator terms. Since X;; is assumed to have finite support, for some gfk < 00, we
have S txk, N LS E;Ck as N tends to infinity, and the approximation error becomes zero. However,
since there can be multiple discrete variables with § ;;( y (or S ]i , ) Whose total is quite large relative
to NV, model selection is inevitable in some cases. Note that the approximating terms for discrete
g components do not have a natural way to regularize the dimension as in the case of splines with
increasing knots under smoothness assumption. Unless some additional assumption is employed,
all of the terms in (3.18) should be included as regressors in principle.

As discussed at the beginning, sparsity on the approximated correlated effect is assumed for a
feasible inference. Sparsity in our context means that only a small number of approximating terms
have true nonzero coefficients. In other words, the correlated effect is regular enough so we need

only a small number of variables to describe it well. Recently, the sparsity assumption is gaining

more credibility as the ‘bet on the sparsity’ principle is understood better (Hastie, Tibshirani,

47



Wainwright, 2015). Since the validity of sparsity depends on the choice of basis, a specific basis
(or mixture of them) should be selected carefully.

Given a set of approximating terms, a transformation into a generalized Mundlak form is
proposed for time-varying regressor parts, g;‘k s. The idea is to take the time averages and deviations

given the common approximating terms of gfk fort =1,---,T.

Definition 3.4.1 (Generalized Mundlak Form) Suppose the approximated gfk (x;¢x) of correlated
effect is s;“k (xjrk) = Z§=1 Viks Pks (Xijsx) fort = 1,--- , T. Then, given t(, define a transformed
Pis (Xizk) as
e (i) = T i1 Phs (Xick) t =1 (3.19)
Pis (irk) = X =1 Prs (Girk) 1 # 1o

If one of the approximating terms contains a first-order polynomial, that is, prs (X;;x) = X;j 1k
for some s, then both classical Chamberlain and Mundlak device is nested in the transformed
Diks (Xik) as a special case of sparse models. Note that the basis elements in (3.18) also can
be easily transformed into a form that contains a first-order polynomial. The choice of 7; can be
avoided if Proks (xi fok) — % Zthl DPiks (Xix) is also included in the approximating terms which
will be defined as ‘dictionary variables’ in Subsection 3.4.2.

The rationale for the transformation (3.19) is the following. In empirical studies, it is often
found that the estimators based on classical Chamberlain and Mundlak devices do not differ much
while a Chamberlain device contains many more terms. If this is because the true coefficients of
X;¢ in the Chamberlain device are the same for all 7, then the true coefficient of time deviation
terms, X; 5 — % Zthl X;tk» in the generalized Mundlak form (3.19) are zeros. Similarly, if the true
coefficients of py, (x;;r) in the approximated correlated effect are the same for all 7, then the true
coefficients of time deviations, pj (X;1k) — % Zthl Piks (Xi1k) , are zeros, and the generalized
Mundlak form has far fewer number of approximating terms. This indicates that the selection over

the generalized Mundlak form can have a more sparse submodel on the correlated effects.
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3.4.2 Penalized Estimation via Non-convex Penalty Functions

Given the approximating terms for g, a nonconvex penalized estimator is proposed along
with its asymptotic properties. The convergence rate and asymptotic distribution of the penalized
estimator is studied indirectly by deriving those of an estimator based on the true sparse model.
In turn, inference is conducted as if the estimated submodel is the true sparse model. This is
mainly justified by two facts: (i) the proposed nonconvex penalized estimator is shown to have
oracle property, and (ii) any submodel can be interpreted as an approximation to the true model by
construction. In the following, the asymptotic properties of the true sparse estimator are discussed
first, and then the oracle property of the penalized estimator is presented. Two approaches are
considered: (i) exactly sparse model of g and (ii) approximately sparse model of g.

The approximating terms can be divided into two groups in general. A group to be penalized
and another group not to be penalized. Each group of variables is denoted as 7 (x;,%;) € RPN and
7 (x;,z;) € R?, respectively. Note that the number of unpenalized term j is fixed and not allowed
to depend on N, and that the total number of dictionary variable py can be very large relative
to the sample size N (i.e. py > N) since ultra-high dimensionality is allowed for the proposed

estimator. Then, g can be written as
g (Xj,2;) = (X;,2;) Yy + 7 (X;,2;) y + 7 (3.20)

where (y, y) has a conformable dimension and r; is an approximation error. The terms to be
penalized,  (x;,z;) , will be called ‘dictionary variables’ from now on. There is no hard guideline
about whether a given approximating variable should be penalized or not. However, a constant
term, go in our setting, is typically not recommended to be penalized and will not be treated as a

dictionary variable in this paper. Given the choice of dictionary variables, w;; is redefined as
Wir =[xy dy - droy w(x.2) | (3.21)
where w;; € RX4 and 7 (x;,z;) is assumed to contain a constant as the default. B is redefined

accordingly. Also, dictionary variables, & (X;, z;) , should be rescaled to have unit (pooled) sample

variance. Otherwise, selection will get affected by the scales of the variables.
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Under the sparsity assumption, only a small subset of dictionary variables have nonzero true
coeflicients. The cardinality of sparse coeflicients is allowed to increase as N tends to infinity and its
growth rate is ruled by a true sparse model given a sequence of dictionary variables. With increasing
cardinality, the sparse approximation tends to the true function by construction. The framework is
similar to the “approximate sparsity model” proposed in Belloni, Chernozhukov (2011a), Belloni,
Chen, Chernozhukov, Hansen (2012) and Belloni, Chernozhukov, Hansen (2014) in its spirit. A
difference is that the sparse model is assumed to be exact in the sense that the corresponding
approximation error is not explicitly considered. Application of a penalized estimation to high-
dimensional nonparametric modeling is also discussed by Fan and Li (2001). Note that, in contrast
to the theoretical framework of Sherwood and Wang (2016), the parameter of interest 8 is not
penalized in this chapter. In turn, there is no such pathological case where a parameter of interest
is not selected in a penalized estimate.

The estimator based on the true sparse model is often called “oracle estimator” in high-
dimensional statistics literature. The corresponding true sparse model will be refered to as “oracle

model” in this chapter. Let A be the index set of sparse coeflicients given & (x;,%;) ,

A=Ay ={1<j<pN:vy #0} (322)

and its cardinality be gy = |A|. By rearranging & (x;, z;) , we may assume the first ¢ ;y elements of

Y, are nonzero and the remaining p —¢y components are zeros i.e. y, = (y;) 40 )/, and

/
PN—4N
similarly, denote & (x;,2;) = (w4 (X;,2;), ® 4c (X;,Z;)). Then, we can define the oracle estimator

as follows.

Definition 3.4.2 (Oracle Estimator)

T N

A 1

(ﬂ,YA)ZargmmNE E pr Vit —WitB—ma(Xi,2;)y 4) (3.23)
Bra) " i=1i=1

where pr (u) = u(t — I <q))

Regularity conditions for the oracle estimator and penalized estimator are given for exactly

sparse model below. In the following, let Fj; (¢) = F (¢|X;,z;) be a conditional cdf of ¢;; given
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(x;i,z;),and ej; = y;; —wWi; B — 4 (X;,Z;) y 4 be the approximated regression error. The vector
of all regressors is written as Vvﬁ = (W;s, 4 (Xj,2;)) while its stacked versions are denoted as

WA = @A WY and Wy = (W - WYY

Assumption 3 (Regression Error) (i) &;; has the continuous conditional density function f;; (ii)
fi¢ is uniformly bounded away from 0 and oo in a neighborhood of 0 V¢. (iii) fl/t has a uniform

upper bound in a neighborhood of 0 V7.

Assumption 4 (Covariates) (i) 3M| > 0 such that |w;;| < M| V (i,t,k), (i) 3C; > 0,C, > 0

such that, with probability one, C; < )Lmin(%VNV;lWA) < /\max(ﬁW;lWA) < C;.
Assumption 5 (Sparse Model Size) gy = O(N C3) where C3 < %

Assumption 6 (Exact Sparsity) g (X;,z;) = w4 (X;,z;) y 4 for each N.

Assumption 3 is a fairly standard regularity condition on regression error ¢;;. Note that the
within-group dependence of &; = (&;1,--- , &) conditional on (x;, z;) is allowed to be arbitrary
under Assumption 1 and 3. Assumption 4 imposes boundedness on the regressors and eigenvalues
of the Gram matrix N _1V~V:4V~V 4 in the oracle model. Assumption 5 restricts the growth rate of the
oracle model size. It is required for a given dictionary variable sequence to be valid. Assumption
6 is an essential condition that characterizes exactly sparse g. It means that for each sample size,
the model with gp terms exactly describes the correlated effects. Under these conditions, the
convergence rate and asymptotic normality results for oracle estimator of § 4 = (ﬁ’ , y’A)/ is shown

below.
Theorem 3.4.3 (Convergence Rate of Oracle Estimator) Suppose Assumption 1-6. Then,
104 =00l = 0p( N~'qn) (3.:24)

Proof. The result follows from Lemma C.1.1 and C.1.4 in Appendix C.1.2. m
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Theorem 3.4.4 (Asymptotic Normality of Oracle Estimator) Suppose Assumption 1-6. Let Gy

be an / x g matrix with / fixed and G G;\, — G, a positive definite matrix. Then,
L d
VNGNE\2(04—0,4) — N(0.G) (3.25)

where V¢ (¢¢) = 1—1 (g5 < 0), Wy (&;) = (Yr (8i1) .-+, Y (&i7)) . By = diag ({{ fir (0)}:}i),
Ky = AW/ ByWy, Sy = 4 SN WA, (6/) Wr (6;) W, and =y = Ky'SyKy'.

Proof. The result follows from Lemma C.1.1 and C.1.4 in Appendix C.1.2. m

In Theorem 3.4.3 and 3.4.4, we are not assuming primitive conditions regarding the sieve basis
nature of 7 4 (Xj,z;) . It is only assumed that given a collection of dictionary variable x (x;,z;),
true sparse regressors 7 4 (X;,Z;) exist and satisfy the assumptions given, especially the exact
sparse model condition. With additional assumptions on 7 4 (X;,Z;), it is possible to derive a
sparse version of standard partially linear semiparametric model results accounting for nonzero
approximation error r;.

The additional assumptions on 7 4 (X;,z;) require some definitions and notations. First, let
G be a function space to which g belongs. For example, if g is assumed to be additive, and
if (x;,z;) contains continuous variables only, then an additive function space, H| + --- + H Ky
where H is the Holder space of certain degree, is a popular choice. Define G* to be the subspace
of G whose elements can be expressed by active elements of the dictionary variable sequence,

{m 4 (x;,2;)}3— - Then, we can consider a weighted projection of each regressor in w;; onto G*

N T
B =arginfY Y E [f” (0) (w; s —h(xi,z,-))z] (3.26)

heG* j—11=1
where w;, is the kth element of w;;. The corresponding population residual is written as A;;; =
w;k—hy . Stacked version of 7} and A are denoted as follows: h; = (hy (x;,%;) - ,h’;{4 (xi,2;)),
Ip=(l--.1) eRT H=(h}.--- . h}) @ 17eMy7xg,. Ajs = (Aizl,'“ ,AirK4) VA =

(A;

SPRE ,A;T)/, A= (A/1 ’A§V)/ so that W = H + A where W =(W/11,W/12,--- ,W/NT)’.

Then, it is easy to check fzk (x;.2;) = w4 (X;,2;) @ where W, = (w1 - wytg) - M4 =

52



(mq(x1,21) - w4 (xXy.2N)) 17, @ = (H;‘BNHA)_l H;lBNWk. Additional conditions

on 1 4 (Xj,Z;) are given below.
Assumption 7 (Covariates) IM, > 0 such that E[A}, ] < My ¥ (i.1.k)

Assumption 8 (Approximate Sparse Correlated Effects) (i) sup |r;| = O(N -1/ 2q]1v/2)
i
(i) N~ Uy (ki) — by (.20 = 0, (1) Vk

Assumption 7 restricts the population residual of w;,; projected out of h,t to have finite fourth
order moment. Assumption 8 is the essential condition that characterizes {mx (x;,z;)} as the
sieve basis elements that attain well-behaved sparse submodel. Part (i) assumes that the order
of approximation error is uniformly dominated by 1/+/N. Part (ii) is a high-level assumption
assuming that the sample analogue estimator of hz converges to a true function with respect to the
empirical Ly-norm. Since the convergence rate is not restricted and f;; (0) is uniformly bounded,
this is a fairly standard property of the sieve basis elements. For example, when g diverges, it can
be shown that the uniform approximation property of x 4 (x1,z1) (Newey, 1997)

sup W (xi.2i) — 4 (Xi.2i) 9o | = O(GR") (3.27)

iZi
for some o > 0 implies Assumption 8 (ii) under Assumption 1-5. With Assumptions 7 and 8
additionally assumed, the theorems below show a sparse version of the standard partially linear

semiparametric model asymptotics. Denote g (X;,z;) = w4 (Xj,Z;) ¥ 4
Theorem 3.4.5 (Convergence Rate of Oracle Estimator) Suppose Assumption 1-5, 7 and 8. Then,
A 1
1B = Boll = Op(N 2) (3.28)
N
NS 18 (xi.2i) — 8o (xi.2)]* = O, (N_lcm) (3.29)

i=1

Proof. See Appendix C.1.3. m
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Theorem 3.4.6 (Asymptotic Normality of Oracle Estimator) Suppose Assumption 1-5, 7 and 8.
Then,
*—l A d
VNE, 2(B-B,) = N(0,1) (3.30)

where 5% = Ki7ISH K5 with Ky = NTTA/ByA, 8% = NN | AL, (67) Ur (87) A

Proof. The result follows from Lemmas C.1.9 and C.1.11 in Appendix C.1.3. m

The convergence rate of /§ is the parametric rate as in the typical partially linear semiparametric
models. On the other hand, g (x;,z;) has a convergence rate of N _lq N Which depends on the
sparsity of a true submodel given the dictionary variable sequence. One obvious implication is
that the performance of an oracle estimator will depend on the choice of the dictionary variable
sequence. Each of Theorem 3.4.4 and 3.4.6 shows an asymptotic distribution result that can be
used to approximate the distribution of the oracle estimator in a finite sample. Note that the sample
analogue estimator of N !X and N ! Z*N coincide for approximating 17(/?). The computation
of variance estimators is presented in Subsubsection 3.4.2.2.

Since true nonzero coefficients are unknown, the sparse set is estimated by penalizing coef-
ficients of all dictionary variable in the sample optimization problem. In multiple contexts, the

penalized estimators using nonconvex penalty functions such as SCAD (Fan and Li, 2001)

Alyl 0<y<2A
2,92
2 () = U‘MM_((V 1‘;)& )/2 A <|y|<ar forsomea >2 (3.31)
-
% al < |y|

and MCP (Zhang, 2010)

),2
Ayl =57) 0=<|y|<al

2
% al <|y|

py (ly]) = for some a > 1 (3.32)

are shown to yield the oracle estimator among the local minima of a penalized objective function
with probability tending to one. Such feature is called “a (weak) oracle property” of the nonconvex
penalized estimator. To present the oracle property for the current model setting, the penalized

estimator is defined as follows.
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Definition 3.4.7 (Penalized Estimator)
. | N7 PN
(B 93) = g min g D22 e Gie—wiuB =iz )+ ) palyi) 333
24 i=1r=1 j=1

where p; (-) is either a SCAD or MCP penalty function.

The oracle property is shown with one additional condition on true sparse coefficients. As-
sumption 9 below is often called a ‘beta-min’ condition, which basically assumes that the minimum
maginitude of nonzero coeflicients in the oracle model is sufficiently large. In our context, the lower
bound for the coefficient magnitude can be understood as a truncation cut-off for approximating

surrogate function 7z (X;, z;) y given a sequence of dictionary variables.

Assumption 9 (Nonzero Coefficients) There exist positve constants C4 and C5 such that C3 <

Cy < 1and NU=C4)/2 min |y,;| > Cs.
I=j=<qn

Theorem 3.4.8 (Oracle Property of Penalized Estimator) Suppose Assumption 1-5 and 9 together
with Assumption 6 or with Assumption 7 and 8. If A = o (N_(l_c4)/2) , N_l/ijl\,/2 =0(A),
and log (py) = o(N A2), then

lim P((B3.75) €en (V) =1 (3.34)
N—o0
where ¢ (A) is the set of local minima of objective function in (3.33).

Proof. See Appendix. m
The rate condition on gy and A in Theorem 3.4.8 is weaker than the one given in Sherwood

and Wang (2016). In turn, a necessary requirement on Cy in the beta-min condition is also weaker.

3.4.2.1 Choice of Thresholding Parameter A

Lee, Noh and Park (2014; LNP) recently proposed a modified Bayesian Information Criterion
for linear quantile regression with cross-sectional data when the dimension of the dictionary

variables diverges and the dimension of the true model is a constant. Sherwood and Wang (2016)
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take LNP’s criterion for the case where the dimension of the true model may diverge. Its pooled
information version for panel data in the current setting can be considered as follows

N T

QBICL (A) = 2TNlog | > " pr(eir(B1. 7)) | + S1:Cnlog (TN)  (3.35)
i=lr=1

where ej; (B,y) = yir — Wit B — 7 (Xj,2;) ¥, S) is the degree of freedom of the fitted model and
Cy is chosen as log (py) in Sherwood and Wang (2016).

Note that the goodness of fit measure in (3.35) is derived from the quasi-likelihood of asymmetric
laplace distribution with scaling parameter o. (See LNP for details.) When o = 1 is imposed,
the resulting measure coincides with the conventional check loss function without logarithm and
TN -scaling. Then, an alternative form of high-dimensional BIC can be written as

N T

BICL (1) =2) " " pr(eis(B. 7)) + SxCn log (TN) . (3.36)
i=1r=1

To take into account the clustered information of panel data, it is useful to think of clustering as
a kind of misspecification problem in quasi-likelihood. In this perspective, generalized BIC (GBIC)
and GBIC), studied by Lv and Liu (2014; LL) can be considered. They explicitly incorporate model
misspecification using a second-order term in the asymptotic expansion of the Bayesian principle
under generalized linear model settings. The final result is claimed to be general enough to be
applied to other contexts. Adding the second-order term of GBIC studied by LL to (3.35), we have

N T
GQBICL (1) = 2TN log | >~ " pe(eir(B3, 7)) | + SpCy log (TN) —logdet (H y)
i=lt=1 -
where H) y = IQ)TIN S A.N 1S a covariance contrast matrix evaluated at (ﬁ 1»721)- Note that the
second-order term can be negative. The same modification can be done for BICL. For further
details about GBIC and GBIC, see LL (2014). Note that if the correction term log det (H A, N) is
asymptotically bounded, then the first two terms in the information criterion will be dominant as

N tends to infinity. Thus, if GBIC is indeed a valid criterion for selection consistency, then regular

BICs without the correction term must be valid as well in such cases.
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3.4.2.2 Computation of Variance Estimators

The sample analogue estimators for the sandwich form of KNIS N KEI and Kj‘v_IS*N K*N_l
are computed using the set of selected variables, A (A), given the penalized estimator (ﬁ 1 P71)-
This is mainly justfied by the fact that (i) the penalized estimator has an oracle property, and that
(ii) any submodel constitutes an approximation of the true model. Here, estimators are constructed
following the cluster-robust variance estimator proposed by Wooldridge (2010). Let Mt denote
the Moore-Penrose generalized inverse of M . First, the residual ¢;; is simply computed by plugging

in estimates (B 1» ) in the formula:
Git = Yie = WitBy = j) (%i.2) 7. (3.38)

The 7 4-projected-out regressor A it can be estimated as, for a sequence % tending to 0,

N T

TN T
. ) ’ R . !’ .
Ait = Wit =T 3 ; > e |<hy1™ 4,7 A > 2. W |<hy)® 4, %ie | 3-39)
i=1tr=1 i=1t=1

where the conditional density f;; (0) is approximated via uniform kernel. Then, the sample

; * : Sk jox ok Rkt
analogue estimator of X7, can be written as X7, = K" STTKL" with

|y Aie i (40)

Ve (éit/) v (€ir) A;t/Ait- (3.41)

The generalized inverse is used instead of the regular inverse since & 4 may contain a set of linearly
dependent variables given sample size N and threshold parameter A. Note that the Moore-Penrose
inverse coincides with the ordinary inverse whenever the operated matrix is invertible. The estimator
) N = IA(JAF,S NIA(;(, can be similarly computed by replacing Ai ¢ with w;; in (3.40) and (3.41). It
can be shown that the estimated variances of ﬂA based on 3 N and ﬁ]”;\, are numerically equivalent if

K N is invertible. For the choice of sequence /1, see Perente and Santos Silva (2010) for example.
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3.5 Monte Carlo Simulation

A set of Monte Carlo simulations is conducted to study the selection performance and estimator
performance on simple location shift and location-scale shift models. With a 3-period panel

structure, 5 specifications are considered:

DGP 1 : yis = X1 + Xi2 + Xi11 + Xi12 + Xj13 + Xi21 + X202 + Xi23 + Uy
DGP2: y;; = (8 + Xjs1 + Xj2 + Xi11 + Xj12 + Xi13 + Xi21 + X220 + X;23) (Ui + 1)

DGP3: yi = 14+ xi1 + X2 + Y (5fyy + X0+ Xf3 + xfo1 + Xl + x23) + s
kekK

keK

DGP 5 : yi; = {14 + xj;1 + xir2 + Z(xlk“ + 250y + x5 + 2x090)} (uir + 1)
keK

where T = 3, N = 300 or 1000, xi; ~ U (—1,1), xpy ~ U (—-1,1), u;y ~ U (0,1), K =
{1,2,7}.DGP 1, 3 and 2, 4, 5 are location shift and location-scale shift models, respectively. Note
that location-scale shift models have heteroskedastic regression error terms. DGP 1 and 2 impose a
Chamberlain specification while DGP 3, 4 and 5 introduce nonlinearity or different coefficients on
correlated effect terms across time periods. Note that the rescaled true parameters for higher-order
polynomial terms are smaller since all dictionary variables are rescaled to have unit sample variance
in estimation. For example, a normalized 1st and 7th order polynomial term x;11, xl.711 in DGP 3
have true parameter values of about .58 and .26, respectively. In turn, higher-order terms are harder
to be selected as relevant variables at given sample sizes. The number of simulated draws is 1000.

Table 3.1-3.2 and Table A.1-A.11 in Appendix C.2 contain the results. Along with QBICL and
BICL, their non-high dimensional versions, QBIC and BIC are also considered. AIC1 and AIC2
are AIC counterparts of QBIC and BIC that use different goodness of fit measures. “p " denotes
the number of dictionary variables, and “q,”” denotes the number of terms in the true models. “TV”
and “FV” are defined as the average number of true and false coefficients selected, respectively.

“true” means the true model hit rate.
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Table 3.1 Selection Performance, DGP 1 and 2

T =0.1 =05 =09
Method py ¢qo N IC TV FV True TV FV True TV FV True
gMund 136 2 300 QBIC 2.00 0.13 0.89  2.00 0.17 0.88  2.00 0.17 0.87
gMund 136 2 300 QBICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 300 BIC 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 300 BICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 300 AIC1 2.00 2.18 0.35 2.00 3.78 029 2.00 4.05 0.23
gMund 136 2 300 AIC2 2.00 0.00 1.00  2.00 0.01 0.99 2.00 0.00 1.00
gMund 136 2 1000 QBIC 2.00 0.08 094 2.00 0.10 093 2.00 0.11 0.92
gMund 136 2 1000 QBICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 1000 BIC 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
eMund 136 2 1000 BICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 1000 AICI1 2.00 2.57 0.39 2.00 7.22 023 2.00 6.34 0.24
gMund 136 2 1000 AIC2 2.00 0.00 1.00  2.00 0.01 0.99 2.00 0.00 1.00
gCham 102 6 300 QBIC 6.00 0.18 0.87  6.00 0.19 0.85 6.00 0.22 0.85
gCham 102 6 300 QBICL 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
gCham 102 6 300 BIC 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
g¢Cham 102 6 300 BICL 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
gCham 102 6 300 AIC1 6.00 5.71 024 6.00 3.77 0.27 6.00 4.36 0.27
gCham 102 6 300 AIC2 6.00 0.00 1.00  6.00 0.01 0.99 6.00 0.00 1.00
gCham 102 6 1000 QBIC 6.00 0.12 092 6.00 0.13 091 6.00 0.16 0.90
gCham 102 6 1000 QBICL 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
gCham 102 6 1000 BIC 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
gCham 102 6 1000 BICL 6.00 0.00 1.00  6.00 0.00 1.00  6.00 0.00 1.00
gCham 102 6 1000 AIC1 6.00 7.49 0.23  6.00 7.42 0.20  6.00 7.87 0.21
gCham 102 6 1000 AIC2 6.00 0.00 1.00  6.00 0.01 0.99 6.00 0.00 1.00
7=0.1 t=0.5 =09
Method py ¢qo N IC TV FV True TV FV True TV FV True
gMund 136 2 300 QBIC 2.00 0.85 0.55 2.00 1.16 0.40 2.00 1.16 0.44
gMund 136 2 300 QBICL 2.00 0.00 1.00  1.98 0.02 098 2.00 0.01 1.00
gMund 136 2 300 BIC 2.00 0.02 098 2.00 1.15 041 2.00 0.02 0.98
gMund 136 2 300 BICL 2.00 0.00 1.00  1.98 0.02 098 2.00 0.01 1.00
gMund 136 2 300 AIC1 2.00 6.63 0.03  2.00 6.75 0.00 2.00 791 0.00
eMund 136 2 300 AIC2 2.00 1.42 0.39 2.00 6.65 0.00 2.00 1.74 0.30
gMund 136 2 1000 QBIC 2.00 0.72 0.59  2.00 0.86 0.51  2.00 0.80 0.54
gMund 136 2 1000 QBICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 1000 BIC 2.00 0.01 0.99 2.00 0.85 0.51  2.00 0.01 0.99
gMund 136 2 1000 BICL 2.00 0.00 1.00  2.00 0.00 1.00  2.00 0.00 1.00
gMund 136 2 1000 AIC1 2.00 7.59 0.00 2.00 8.03 0.01  2.00 8.90 0.00
eMund 136 2 1000 AIC2 2.00 1.68 0.31  2.00 7.98 0.01  2.00 1.89 0.26
g¢Cham 102 6 300 QBIC 5.85 0.80 0.55 5.61 1.01 0.37  6.00 0.82 0.54
gCham 102 6 300 QBICL 5.74 0.27 0.77 5.46 0.49 0.57 5.94 0.14 0.87
gCham 102 6 300 BIC 5.75 0.28 0.77  5.61 0.98 0.38 5.98 0.15 0.87
gCham 102 6 300 BICL 0.86 0.11 0.06 5.46 0.49 0.57 5.86 0.14 0.87
gCham 102 6 300 AIC1 5.96 7.33 0.02 5.95 6.24 0.01  6.00 6.40 0.01
gCham 102 6 300 AIC2 5.88 1.24 044 595 6.07 0.01  6.00 1.31 0.40
gCham 102 6 1000 QBIC 6.00 0.46 0.71  6.00 0.48 0.68 6.00 0.51 0.70
gCham 102 6 1000 QBICL 5.99 0.01 098 5.96 0.04 096 6.00 0.01 0.99
gCham 102 6 1000 BIC 6.00 0.02 098 6.00 0.48 0.69 6.00 0.02 0.98
gCham 102 6 1000 BICL 5.99 0.01 098 5.96 0.04 096 6.00 0.01 0.99
gCham 102 6 1000 AIC1 6.00 8.95 0.01 6.00 7.59 0.01  6.00 8.35 0.01
gCham 102 6 1000 AIC2 6.00 1.31 044 6.00 7.55 0.01  6.00 1.36 0.42
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Table 3.2 Estimator performance, DGP 1 and 2, B1

T =0.1 t=0.5 t=0.9
Method N IC Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0000 0.0197 0.0197  0.0009 0.0345 0.0345 -0.0000 0.0215 0.0215
gMund 300 QBICL  -0.0001 0.0197 0.0197  0.0008 0.0345 0.0345 -0.0000 0.0215 0.0215
gMund 300 BIC -0.0001  0.0197 0.0197  0.0008 0.0345 0.0345 -0.0000 0.0215 0.0215
gMund 300 BICL -0.0001  0.0197 0.0197  0.0008 0.0345 0.0345 -0.0000 0.0215 0.0215
gMund 300 AIC1 -0.0001  0.0201  0.0200  0.0021 0.0346  0.0346 -0.0002 0.0215 0.0215
gMund 300 AIC2 -0.0001  0.0197 0.0197  0.0008 0.0345 0.0345 -0.0000 0.0215 0.0215
gMund 1000 QBIC -0.0002  0.0119 0.0119 0.0013 0.0191  0.0192 -0.0001 0.0114 0.0114
gMund 1000 QBICL -0.0001 0.0119 0.0119 0.0013 0.0191  0.0191 -0.0001 0.0114 0.0114
gMund 1000 BIC -0.0001  0.0119 0.0119 0.0013 0.0191 0.0191 -0.0001 0.0114 0.0114
gMund 1000 BICL -0.0001  0.0119 0.0119 0.0013 0.0191 0.0191 -0.0001 0.0114 0.0114
gMund 1000 AICI -0.0001 0.0118 0.0118 0.0015 0.0194 0.0195 -0.0001 0.0114 0.0114
gMund 1000 AIC2 -0.0001  0.0119 0.0119 0.0013 0.0191  0.0191 -0.0001 0.0114 0.0114
gCham 300 QBIC 0.0007 0.0211  0.0211  0.0042 0.0358  0.0360 -0.0005 0.0212 0.0212
gCham 300 QBICL  0.0005 0.0212  0.0212  0.0040 0.0358 0.0360 -0.0006 0.0208  0.0208
gCham 300 BIC 0.0005 0.0212  0.0212  0.0040 0.0358  0.0360 -0.0006  0.0208  0.0208
gCham 300 BICL 0.0005 0.0212  0.0212  0.0040 0.0358  0.0360 -0.0006  0.0208  0.0208
gCham 300 AIC1 0.0014 0.0208  0.0209  0.0058 0.0355 0.0359 -0.0002 0.0212 0.0212
gCham 300 AIC2 0.0005 0.0212  0.0212  0.0039 0.0359  0.0361 -0.0006  0.0208  0.0208
gCham 1000 QBIC 0.0004 0.0116  0.0116 -0.0004 0.0186 0.0186  0.0002 0.0117 0.0117
gCham 1000 QBICL  0.0003 0.0115 0.0115 -0.0005 0.0186 0.0186  0.0002 0.0117  0.0117
gCham 1000 BIC 0.0003 0.0115 0.0115 -0.0005 0.0186 0.0186  0.0002 0.0117  0.0117
gCham 1000 BICL 0.0003 0.0115 0.0115 -0.0005 0.0186 0.0186  0.0002 0.0117 0.0117
gCham 1000 AICI 0.0004 0.0115 0.0115 -0.0001 0.0186 0.0186  0.0005 0.0117 0.0117
gCham 1000 AIC2 0.0003 0.0115 0.0115 -0.0005 0.0186 0.0186  0.0002 0.0117 0.0117
T =0.1 t=0.5 t=0.9
Method N IC Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0073 0.1551 0.1552  0.0048 0.2746  0.2745  0.0028 0.1648  0.1648
gMund 300 QBICL  0.0066 0.1565 0.1565 0.0064 0.2778 0.2777 0.0013 0.1647 0.1646
gMund 300 BIC 0.0066 0.1562 0.1562  0.0049 0.2747 02746  0.0017 0.1651  0.1650
gMund 300 BICL 0.0066 0.1565 0.1565 0.0064 0.2778 0.2777 0.0013 0.1647 0.1646
gMund 300 AIC1 0.0160 0.1559 0.1567 -0.0009 0.2657 0.2656 -0.0033 0.1612 0.1612
gMund 300 AIC2 0.0073 0.1551 0.1552  -0.0007 0.2658  0.2657  0.0028 0.1650  0.1649
gMund 1000 QBIC 0.0066 0.0877 0.0879 -0.0051 0.1479  0.1479  0.0063 0.0854  0.0856
gMund 1000 QBICL 0.0056 0.0877 0.0878 -0.0053 0.1467 0.1467 0.0048 0.0858  0.0859
gMund 1000 BIC 0.0056 0.0878  0.0879 -0.0053 0.1478 0.1478  0.0048 0.0858  0.0859
gMund 1000 BICL 0.0056 0.0877 0.0878 -0.0053 0.1467 0.1467 0.0048 0.0858  0.0859
gMund 1000 AIC1 0.0103 0.0893  0.0898 -0.0026 0.1479  0.1478  0.0036 0.0865  0.0865
gMund 1000 AIC2 0.0071 0.0881 0.0883 -0.0028 0.1480 0.1479  0.0054 0.0851  0.0852
gCham 300 QBIC 0.0105 0.1679  0.1682  0.0367 0.2562  0.2587 -0.0015 0.1625 0.1624
gCham 300 QBICL 0.0148 0.1668 0.1674  0.0503 0.2738 0.2783  0.0027 0.1627 0.1627
gCham 300 BIC 0.0141 0.1669  0.1674  0.0367 0.2565 0.2589  0.0003 0.1626  0.1625
gCham 300 BICL 1.0494 0.4584  1.1450  0.0508 0.2745  0.2790 0.0077 0.1622  0.1623
gCham 300 AIC1 0.0135 0.1640 0.1645 0.0289 0.2590 0.2605 -0.0070  0.1570 0.1571
gCham 300 AIC2 0.0101 0.1660 0.1663  0.0284 0.2591  0.2605 -0.0022 0.1611 0.1610
gCham 1000 QBIC 0.0033 0.0882 0.0883 -0.0004 0.1477 0.1476 -0.0006  0.0880  0.0880
gCham 1000 QBICL  0.0040 0.0879  0.0879  0.0017 0.1490 0.1489 -0.0002  0.0891 0.0891
gCham 1000  BIC 0.0038 0.0878  0.0878 -0.0004 0.1482 0.1481 -0.0002  0.0891 0.0891
gCham 1000 BICL 0.0042 0.0879  0.0880  0.0017 0.1490 0.1489 -0.0002  0.0891 0.0891
gCham 1000 AIC1 0.0047 0.0870 0.0871 -0.0008 0.1487 0.1486 -0.0035 0.0880 0.0880
gCham 1000 AIC2 0.0039 0.0875 0.0875 -0.0006 0.1488 0.1487 -0.0007 0.0878  0.0878
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There are some useful findings to be mentioned. First, the root mean squared error (RMSE)
of B estimates decreases and TV increases as the sample size increases for all DGPs, quantiles
and information criteria considered. Second, FV decreases as the sample size increases in DGP
1, 2 and 3 with non-high dimensional BIC type criteria. With AIC or in other models, FV may
increase. In DGP 4 and 5, FV increases for BIC type criteria but not as much as AICs. Third,
TV seems to be the key element that determines the estimator performance. Neither FV nor the
true hit rate seems to matter much. This can be easily seen by comparing AICs with BICs. AIC
typically involves a much higher FV and lower true hit rate but often shows the smallest bias, SD
and RMSE. Fourth, the estimators using a generalized Mundlak form and generalized Chamberlain
form can outperform the others. When the coefficients on the correlated effect terms across time
periods are constant as in DGP 1, 2, 3, and 4, the Mundlak form yields a smaller number of nonzero
terms to be selected and the corresponding estimator often has better performance. But when the
coeflicients are different across time as in DGP 5, the generalized Chamberlain form can have a
more sparse selected submodel than the generalized Mundlak form and the corresponding estimator

often outperforms.

3.6 Application: The Effect of Smoking on Birth Outcomes

In this section, the proposed estimator is applied to an empirical example of birth weight
analysis. The data in use is the matched panel! #3 of Abrevaya (2006) where mean regression
analysis was done accounting for unobserved individual moms’ heterogeneity. First, the median
regression with a correlated effect shows convincing evidence that the correlated effect estimator
works well as intended. Second, the corresponding other quantile regression results show that for
lower quantiles, the impact of smoking on birth weight is smaller in terms of absolute magnitute

but can be larger relative to fitted quantile birth weights. Third, some computational issues are

IThe data do not have a panel structure in the strict sense since each mom is observed at a
different time point when she gave a birth. Still, the data set is a clustered in general and the
proposed method is valid as long as the set of assumptions hold.
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reported regarding optimization of the nonconvex objective function.

The matched panel data #3 of Abrevaya (2006) contains information on 129,569 two-birth
moms and 12,360 three-birth moms. Note that in these data, the quantile regression with individual
fixed effects will cost an additional 141,929 dummies. One of the main benefits of the correlated
effect estimator is to reduce the number of additional terms while individual heterogeneity is treated
well. The results below show that less than 400 additional terms are spent to obtain reasonable
estimates. The number of additional terms is less than 0.3% that of fixed effect estimator.

The structural equation is taken from Abrevaya (2006) as

BW;p, = smoke;p, + male;p, + age;p + agel.zb + adeqcode2;p + adegcode3;y (3.42)
+ novisity + pretri2;, + pretri3;, + _Inlbnl_1;p +---+ _Inlbnl_15;

+ _Iyear_l;p +---+ _Iyear_8;p 4+ const + ¢;p,

where i is an individual mother index, b is an observed birth index, “adeqcode#” is the Kessner
index of #, “novisit” is an indicator of no prenatal visit during pregnancy, “pretri#” is an indicator
of the first prenatal visit in #th trimester, and other terms are live birth order and year effects. The
observed birth index b corresponds to time index ¢ in our setting. All right-hand-side variables in
(3.42) constitute x; following the previous notation.

Besides x;j, there are several within-group-constant variables, z; that are used to construct
the correlated effects: binary dummies for high school graduate, some college experience, college
graduate, marital status, being black and state of residence. Since all variables except “age” are
treated as discrete, the sparsity assumption is essentially imposed on the “age” component of the
correlated effect. For the sieve approximation, polynomials of order up to 10th are used as default.

To account for potential endogeneity due to observability, the selection indicator will be used
to construct the correlated effects. Basically, there are two observed patterns: 2-birth mothers

and 3-birth mothers. Then, the vector of the selection indicator can be written as s; = (1, 1,0)
[3

or (1,1,1). For notational convenience, denote sl[.z] = (1,1,0) and S; I = (1,1,1). Then, the
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Table 3.3 Birthweight, mean and median regression, all moms (unit:grams)

Mean Median
OLS FE  Pooled CEl CE2 CE3
Smoke -243.27 -144.04 -238.49 -138.26 -138.55 -140.34
(3200  &75 (3779 (6.31) (6.39) (645
Male 126.70 13358 131.27 138.87 139.38 13945
(1.88) (2.08) (2.100 (251) (254 (252
Age 7.06 -15.98 2.59 -13.37 -8.32 -8.74
(1.77)  (396) (2.100 (5.38) (27.04) (457
Age2 -0.12 0.32 -0.04 0.35 0.26 2.75
(0.03) (0.05) (0.04) (0.07) (0.29) (0.07)
High-school graduate 60.52 64.19
(4.12) (4.98)
Some College 91.34 96.65
(4.52) (5.55)
College Graduate 100.89 102.84
(4.73) (5.79)
Married 64.43 55.23
(3.65) (4.32)
Black -252.04 -239.28
(4.36) (5.07)
Kessner index =2 -100.93  -8443  -81.71  -79.17 -74.12  -69.96
(4.19) (445 (456) (5.66) (6.14)  (5.55)
Kessner index = 3 -176.48 -14391 -149.85 -163.42 -15435 -150.94
(10.20) (10.28) (12.48) (15.67) (15.52) (15.50)
No prenatal visit -2649  -42.35 7.87 -32.02 -47.25 -52.70
(18.00) (16.57) (21.29) (24.99) (27.03) (26.88)
First prenatal visit in 2nd trimester 89.12 66.56 72.21 67.38 62.80 58.66
(4.96) (5.27) (5400 (6.73) (9.27)  (6.67)
First prenatal visit in 3rd trimester ~ 154.66  111.90 11948 10992 11145 11890
(12.03) (12.49) (14.34) (18.82) (22.84) (18.41)
Information Criterion - - - BIC BIC BICL
# of Dictionary Var. - - - 301 451 301
# of Selected Var. - - - 298 300 169
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conditional quantiles with the generalized Chamberlain device can be succinctly written as

2
O+ (SibJ’ib| {Xiz},2=1 VZj,S; = S,[ ]) = SipXipB + 8ipg2 (Xi1,X;2.2;) + sipkop (3.43)

3
O (Sibyib| Xithi_y . 2.8 = Sl[ ]> = SipXipP + 5ip8&3 ({Xz’t}?zl ,Zi) + sipksp  (3.44)

for some g7, g3, kyps and k3ps. Assuming additivity of gs, following transformation is considered

3 K K
8 (Xi1.Xi2.2) + kop = €20+ D D &pr Kink) + Y &5k Eik) + ko (3.45)
3 K K
83 ({Xiz}le ’Zi) +k3p =820+ Z Z Spi Xink) + Z 25 (Zik) + kop (3.46)
3 K K3
+h3o+ Y Y R (pk) + Y 5 i) + 1 (3.47)
b=1k=1 k=1

where g5, (Xjpk) = 0forb =3, h30 = 830 — £2.0- hyy, (Xink) = &3 (Xink) — &pi (Xink) s
hy Cik) = &5 (Zik) — &5 (Zik) and [y = k3, —kpp. In estimation, the interaction of the 3-birth
mom dummy and approximating terms for g3, and g5, (b = 1,2) are included. The constant
term g7 o, 73,0 and time effects k,j, [, are also included but not penalized. /5 is excluded to
avoid multicollinearity. If there is no systematic difference in g components between the two-birth
mothers and three-birth mothers, then the corresponding 4 compoents will be zeros and there will
be fewer terms selected in the final estimates.

In Table 3.3, the OLS estimator, FE estimator, pooled median regression estimator and CE
estimators are compared. BIC and BICL were used to choose the threshold parameters of the
CE1/CE2 and CE3 estimates, respectively where the candidate threshold parameters were chosen
to be 50 equi-spaced points between 0 and 0.01. The CE2 estimator uses polynomials of order upto
40th. The "rqPen" and "pracma" packages for R were used for computing penalized estimates and
Moore-Penrose inverse matrices, respectively. As noted by Abrevaya (2006), the FE coefficient
estimate on the “smoke” variable has approximately a 100g lower magnitude than the OLS estimate,
which is consistent with the basic omitted variables story. The CE coefficient estimates on the

“smoke” variable also has a lower magnitude than the pooled median regression estimate by a
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Table 3.4 Birthweight, quantile regression with CE, all moms, (unit:grams)

Quantile
0.1 0.25 0.5 0.75 0.9
Smoke -129.99 -136.67 -138.26 -148.34 -152.86
10.75)  (7.29)  (6.31) (7.63) (9.80)
Male 10244 122.63 138.87 15031 162.12
(3.79 (291) (251 (2.87) (3.41)
Age -1.25 -6.75  -13.37 -9.05 -4.47
(8.34)  (5.38)  (5.38) (5.27) (3.04)
Age? 1.94 0.26 0.35 0.25 1.12
(0.13)  (0.08)  (0.07) (0.08) (0.05)
Kessner index = 2 -121.12  -106.11  -79.17  -69.06  -75.41
(10.29)  (6.90)  (5.66) (6.45) (8.65)
Kessner index = 3 -255.81 -220.18 -163.42 -138.40 -120.40
(27.03) (17.05) (15.67) (17.80) (19.91)
No prenatal visit -169.44  -40.80  -32.02 -920 -88.82
(49.00) (27.40) (24.99) (30.33) (48.29)
First prenatal visit in 2nd trimester 92.05 88.90 67.38 53.81 69.25
12200  (7.97)  (6.73) (7.59) (10.72)
First prenatal visit in 3rd trimester 260.68 178.45 109.92 97.94 112.61
(36.80) (20.16) (18.82) (21.59) (25.68)
# of Dictionary Var. 301 301 301 301 301
# of Selected Var. 150 246 298 269 141

similar amount. Moreover, the FE and CE coefficient estimates on other variables show similar
patterns of changes from the OLS and pooled median regression, respectively. For example, the
coefficient estimates of OLS/FE on age and age? alternate in sign and similar patterns are found
in the pooled median regression and CE estimates on age and agez. Overall, the CE estimates
are quite close to the FE estimates, and they can be regarded as a median analogue of the FE
estimates. Note that this is sensible because, considering the nature of dependent variables, we
expect the conditional distribution of regression errors are fairly symmetric, and because the CE
estimator takes the control function analogue of the FE estimator. For the unconditional distribution,
the mean/median pairs of birth weights for » = 1,2 and 3 are 3426g/3430g, 3482g/3487g and

3517g/3520g, respectively. Figure A.1 in Appendix C.2 shows a frequency histrogram for pooled

birth weights across all births.
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Table 3.5 Coeflicient Estimates on ‘Smoke’ using Different ICs, (unit:grams)

Quantile
0.1 0.25 0.5 0.75 0.9
QBIC -132.51 -145.97 -145.27 -147.74 -152.41
[88] [75] [45] [40] [93]
QBICL -140.61  -158.1 -153.97 -152.33 -245.82
[37] [37] [30] [27] [30]
BIC -129.99 -136.66 -138.26 -148.34 -152.86
[150] [246] [298] [269] [141]
BICL -129.99 -140.18 -140.34 -146.47 -152.86
[150] [179] [169] [244] [141]

Table 3.4 contains the CE estimates for 10, 25, 50, 75 and 90 percentiles.? The same set of
dictionary variables is used with BIC for all cases. Evidently, the magnitude of the coefficient
estimates on “smoke” variable declines as the percentile decreases. Note that the pooled quantile
regression results in Appendix C.2 shows an exact opposite relationship, which indicates that the
impact of smoking is more severely overestimated in the pooled regressions for the lower quantiles.
Although the absolute magnitude of impact declines, its proportionate impact can be larger for
lower quantiles. For example, relative to the fitted values for a two-birth mom who had two female
babies at age 27, and 28 (with all other dummy variables equal to zero), the proportionate impacts
of smoking for 10, 25, 50, 75 and 90 percentiles are -5.13%, -4.60%, -4.03%, -3.98%, and -3.92%,
respectively.

There are some computational issues that need to be addressed. First, the main computational
challenge in the SCAD or MCP penalized estimator lies in the non-convex nature of the objective
function. The numerical algorithms studied so far use some version of an approximated objective
function. In this chapter, all estimates are computed using iterative quantile regression on an
augmented data set based on local linear approximation of the SCAD panelty function (Sherwood

and Wang, 2016). Second, when Sherwood and Wang (2016)’s iterative quantile regression method

2The estimates in Table A.13 were computed with classical CRE (after dropping linearly de-
pendent terms). CRE estimator is less robust than the proposed CE estimator by construction.
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is used on the given data set, the selection path can vanish for small enough threshold parameters at
7 close enough to 0 or 1. That is, the penalized estimator is essentially not computable for a small
enough A at high-end or low-end quantiles. The .1 and .9 quantile results could have more selected
terms if there was no such problems. Table 3.5 shows the coefficient estimates for the “smoke”
variable based on four different Bayesian-type information criteria. The bracketed numbers are
the number of selected variables out of 301 dictionary variables. BIC and BICL do not have any
difference at the 10 and 90 percentiles. Unreported results show that .15 and .85 quantiles do not
suffer from the problem. It seems that the numerical algorithm for the quantile regression matters.
For the given data set, Koenker and d’Orey’s (1987; KO) algorithm yields more stable results than

Armstrong, Frome and Kung’s (1979; AFK) algorithm.

3.7 Concluding Remarks

I propose a new model restriction and estimation procedure for a linear panel data quantile
regression model with fixed T. By introducing a nonparametric correlated effect, the new model
restriction reasonably accounts for the t-quantile-specific time-invariant heterogeneity and allows
arbitrary within-group dependence of regression errors. A non-convex penalized estimation pro-
cedure is employed under the sparsity assumption on the correlated effect. To make the sparsity
assumption more plausible in some cases, a transformation of the approximated correlated effect
into a generalized Mundlak form is proposed.

There are interesting questions to be answered in future research. First, it would be useful
to study Bayesian type information criteria that allow diverging py and gy and attain selection
consistency under a certain degree of misspecification. Second, the numerical algorithm for a
nonconvex objective function can be improved for more stable and efficient computation. Third,
extending the current framework to account for a censored response variable and time-varying
endogeneity is another interesting direction to pursue. The extended estimator is expected to have

similar advantages to the estimator studied in this chapter.
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APPENDIX A

AN APPENDIX FOR CHAPTER 1

A.1 Assumptions

Assumptions (1) (y;1,y;2,%;) are i.id. 2) ® C R? 3)q; : ®© x W — R and ¢; :
cpt
®y x W — R where (y;1,y;2.2) € W (4) 0, € int (®) and let N be a neighborhood of 6,

(5) with probability one, g1 (yi1,Yi2,Zi,01,62) and q> (y;2, Z;, 6») are continuously differentiable

(g1 +42)
at each 6 € O and twice continuosly differentiable in . (6) E | sup 00 < 00
0c® 99
36,
(7) each element of 991 (v l’yi%’;i’%l’%z) and 8q2(yiazé;i’902) has finite second moment. (8)
3(6]1+q/2) )
E | sup 33’329 < 00 (9) (QLIML f.o.c.) {6,} = %9 €®:E [%] = 0} (10)
BN gg007
dg1(9) -
(CFfoc) {0t =10ec0:-E| 1 | =0l (11)(QLIML rank condition) E | 241+92)(60)
942(6) 9006
36, ;
( ) g1 (6o) dq1(60)
3(q1+4> (00)] . . » 96,007 96,
and V | =——=—#—— | areinvertible. (12) (CFrank condition) E and V
e 12 PE i0y(0,9) 4y(02)
36,007 6, |

are invertible.

A.2 Proofs

A.2.1 Proof of Proposition 1.3.4

Under regularity conditions, it suffices to show the followings (Newey and McFadden, 1994):

3q1(9) 9q1(8)
a0, 26,00’
@E |sup| 209D || coo)E | sup || 209 || <o
o | 6 ger || 992200
3q2(67) dq2(67)
96, i 20,00" | |
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341(6) [ 89160) ]
00, 36106
_ . dq1(0) 991 (fo)
©){6p}=30€®:  FE Sy, (d) E 9,7 has full column rank.
992(62) 993 (62)
60, | 90,00
941 (%)
59
@ V| 2419 | s invertible.
067>
995 (6p2)
a0

2
(c) and (e) are direct implications of definition of GMM-QLIML. (d) can be shown from

Assumption 12 since adding extra rows does not affect column rank. (a) and (b) are im-

plied by triangular inequality together with Assumption 6 and Assumption 8. i.e.H 941 (6) H
991 (0) | 345(6) || || 942(62) H 991(6) 0q1(0) | 94(62) 94 (62)
3922 8922 922 80 39/ - 392239/ 892239/ 892239/

A.2.2 Proof of Proposition 1.3.6

(a) and (b) are directly implied by following lemma.

Lemma A.2.1 Let G be a linear span of moment functions {g;} in (1.8). Optimal GMM based
on each maximal linearly independent set at true parameter values in G yields asymptotically

equivalent estimator.

Proof. Suppose {g; (6,)} and {g; (6,)} are maximal linearly independent subsets in linear span
of moment functions {g; (6,)}. First, the number of moments in {g; (6,)} and {g; (0,)} is the
same since both {g; (6,)} and {g; (6,)} are basis for span ({g; (6,)}) and span ({g; (6,)}) is a

finite dimensional vector space. Second, there exists an invertible linear map A (6,) such that

g1 (o) g1 (0o)
A (6y) : = : by definition of basis. By proposition 3.4, efficient GMM

| &6 || &)
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based on {g; (6,)} and {g; (6,)} are well-defined and asymptotic normal. Then, it is easy to see

08 (0)7 ., (98 (0)\ ™" _[02(60)

E[ 9 }V( ae) E[ 89]
39z (6,)7 , 1 (08 (Bp)\ ! _ 3z (6,
:E[%} A(0,) (A(6,)) lv( ga(e )) (A (6,)) lA(GO)E[ &l )]

00
T80T ., (38 (B)\ " . [02 (60)
‘E[ 9 }V( 96 ) E[ 96 ]

A.2.3 Statement (d),(e) and Proof of Proposition 1.3.7

S _yS :
D Veum—orimr = Vorrmr iff

]
) ) 0q?, aqil/
9¢¢ 0q¢ 90 00100
Eo | 72+ | — covp | 5722, 1 W*E S
’ [39223%} o 9922 | 34} n 947, A T n 947
36, " 96, 00,005 06,00
0]
3q? 30 G aq—ill
_ 42 | _ ) 6] % 90106 ¢
= | P [392239/—3] N RPN I 4 4i Wo Eo 947} 947,
36, " 96, 06206" ¢ ' 96500 ¢
B B o T/ B o -1
3ql.1/ aql.l/
36196 . 96,96
x| Eo g9 aq?, Wo Eo aq? aq?
il 4 i2 il + i2
00200 ¢ ' 96200 ¢ 00200" ¢ ' 96500 ¢
[ 947} 1 i 947}
36,06’ 96,96,
X EO 0] ] W*EO
dap Y ? 943y 95
00,060" ¢ " 06200 ¢ 00,005 06,00
where |
aq? -
il
* _ 06,
Wo - VO aqO P o
iy P
30, T 90,
O VGSMM—QLIML = VCSF iff
— o
0 o | %h %\ i
g 34 90, 90, 36196
E | —cov L v, E S
0 [aezzae’s] 2| 90 361,-32 ? 3qf}2 7 P
0, 36 36,00
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dgy 2g% \ ! 947y
aEawmE: i
0[892280’5] 2| 90 3615;2 ? 3%‘}2 )
90, 90, 96,06/
S 4 e, 1
s | (M|
x| Eo é oS Vo 3393 Eo El) 0 S
) 4 4i2
96,06 \ 7, ) 96,06
= — =, =
047} (94} ! 047
86,06 86,90
x| Eo éo_S Vo 3893 Eo 1OS
9> 9> 0d;5
96,06 \ %, ) 96,007
Proof

@) Vemm—orLimrL = Vcr is trivial. To see Vogpypm—orimrL = VorimL, note first that, at
true parameter value,
%6]1 (01.62)
i %611 (01.62) + %6]2 (62) |

is linearly independent by Assumption 11. Thus, there exists an extension to a basis

3741 (61.62)

355,91 (01.62) + gg-42 (62) (A1)

%ql )

which is an invertible linear transformation of (1.9). Hence, the result follows by Lemma C.1.
(b) Apply BQSW redundancy condition to (1.9).
(c) Apply BQSW redundancy condition to (A.1).

(d),(e) Apply BQSW partial redundancy results to (1.9) and (A.1) , respectively.

A.2.4 Proof of Corollary 1.3.9

(a) Suppose GIMEs:
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9q? [ 9q9 g9 g9
%7\ _ _ 943\ _ __%
Vo ( 39 ) = Lo | =757 |- Vo \ 305, ) = 7Eo 062065 |’

o
day _ oy
30, _ 36,00
Vol ogg aag || TR0 agp o
7, T, |) T 90,000 ~ 90,00

g9 0
It is implied that cov, (82 , aqu) = 0. Then the condition (c) in Proposition 1.3.7 follows.

Tosee Vorimr # VcF, consider a submatrix of
9gi1 99;1 g1 94;1 0gi1\ ! g1 99;1
covo (5tky oty ) — covo (stiy- ot ) Vo (1) covo (G- 5).
cov, 9gi1 9qi1 ~cou dgi1 99gi1 v g\~ v dqi1 9qi1
365, 365 °\ 06, 36, ) °\ 96, 96, 8922
991 9qgi1 99;1 dgi1\ ! dqi1 dqi1
=V, - 2 2y, (22 v, v,
"(aezz) 00”0(3922 T ASAET o\ 0, ) "\ o0,
941 dgi1 0g; g1\~ 9gi1
=V, —V — v,
"(3922) (w”"(aezz a0, ) °\ o0, ) ooy
The last expression can be interpreted as difference of outer products of - 6111 and L ( 941

991
8922 d 1/

are assumed to be linearly independent at true parameter, it cannot be zero.

o, (94i1 94it
°\ 36, 96y,

8qll

qll
Since 5y and

(b) Suppose GIMEs. Without loss of generality, t = 1 is assumed.Then, the result (e) of

Proposition 1.3.7 implies

— Y
dq? dq? 1 aqil
93 049 | i 961060,
LHS) = E, | —L | _ i1 E 1991
(LHS) 0[892239{1 oo | 36, | 20, | |7| aad ° %
96, 06, 3923911
= Opyyxpyy
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For RHS,

(1st partof RHS)

—1 091

)

991 9941 ol N

_ 9g;1 o | 340 | 96 v 0 £ 3913(%2’%
06220 (61,.05) 962" | a2 %4;2 gy

/ /

2 2 2629(01 .6

_ 9g;1  94;] 9g;1 9941
B [ cov (3922’ 8912) OV \ 96y, 96,

dg;1\ !
- V( i ) 0
—| cov <3ql~1 aqil :| 391 P1XDP2

and

9g;1 9941 dg;1 941 9g;1\ !
_ Cov(ael ’ 8912) cov {34, 36, V39 Op1xpy
99,2 g2
Opyxpis |4 ( 30, Oppxpy  V ( 30, )
41 94i1 9g;1 949;1
o ( 901 > 3912) cov ( 901 * 06
99;2
Opaxpia 4 ( 96 )
991 9g;1 9441
_ 4 (3912 cov (3912’ 96,
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and

(3rd part of RHS)

991
892 ’ 3912

COU(

(o5

qi

—

(o5
— D
=
l\)

99;1 991 99,1
cov (392’391)L,(391) cov

Then (RHS) can be expressed as

(RHS)

X
Ry

o

ad
X |:R21 X COV ( 9i1

g1
R
3012’ a911) TR ccow (

Ry

dgi1 0q;1
96y, 96,

dg;1 !
90,

0pyxpy

_eop (2411 94i1
96, 06,

75

g1\ "
| %4
(391)

dgi1 0g;1
392 2011

)|

0p1xpy

v ()

'

dgi1 0q;i1

30,

30,

)




where

for == [cov (%q@lzl E;q@ill) g (%{]91‘11)_1 o (38‘191'11, E;q@lzl) i
(1 () = oo (G S o (G o con (G S0 )

= [ o (.00 ) v (G ) e (G )|

dqi1 991 agi1\ ! dqi1 991 94,2
M, = , % , %
0 CO”(aez 26, 26, Y\ %0, 96, ) T g,

A.2.5 Proof of Proposition 1.3.10

For
my (1, 82)
my (81, $2)
asymptotically equivalent linearized moment functions are
li1 (€1, 82)
liz (21, 82)
i G Lo2) + B | PGAERY | 0y — o) 4 | PG | (6 — )
mis Gor,bo2) + B | P20 | 5y — ) + | PG00 )

By subtracting

1
Im;1 (o1, $02) dm;2 (81 Co2)
E[ 9% } (E[ i D li> (§1,82)

from [;1 (§1,¢2) , we get

1
0 I ol>So 0 i ol>So
1 @) = I (1, &) — E | 21 CotSo2) | () 9miz Cor:So2) |} e )
oz, 9z,

where [, (¢1) is a function of {1 only. Then standard asymptotics from /], (¢1) yields
v — A7 lg. 47!
Vorimr = 41 Bi14;
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26, 361, 06,
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where

Ay | dmi @01,502)} e [3'"1'1 (zol,a)z)} (E [amiz(zol,;(ﬂ)})l . [amiz(zol,a}z)}

B’ 9, s 9t
( dm; dm; -

. (;Ol,coz>—E[ mﬂ(azo/l,;oz)} (E[ mlzg;o/l,cﬂ)D s (ot og)
\ é‘z é‘2

Since E [M

7 = 0, this simply reduces to
8{2

A E [am,-l (az;,zoz)}
1

By =V (mj1 (Co1, 802))

and the result is the same for the case of

mi (§1,82)
m3 (§1,82)

A.2.6 Proof of Corollary 1.3.11
First, consider following reparameterizations with 7 and o1,
n= 33 Iy
oy1)2 = 211 — E122521221

/
where 0] = (a’,&’l, n’,011|2) , 02 = (vec (82), vec (222))/ (Similar proof can be done with
original scores as well.) These modifications do not change parameter estimates (other than
311 and X»,p) of any methods studied in this chapter. It is due to the fact that the first two

reparameterization do not impose any restriction on parameter space. Now, the quasi-scores of g
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are modified to

g1 _ 01_11|26i 0)x’
| Jorthi )

dq1 i _01_11|28i 0 [n®7]
392 N ] wal

where x = |: Yo z; Vo (87) ] and (e; (0) , h; (0)) is defined correspondingly. Moment functions
for LIML and CF are

01_11|2 (1 — Y2 — 2161 — Vo) ¥,
01_11|2 (1 — y2o — 2181 — van) z;

01_11|2 (1 — y2o = 2181 = van) v,

g| MR ) —0 (A2
29112 [(J’l — Yoo — 2181 —van)”© — 011|2]
vec (z/ (y2 —282) 2521) — vec (z/ol_ll|2 (y1 = y20 — 2181 — va1) 77/)
i %Lrvec (Zz_leiz (82) viz (87) 22_21 — 22_21) |
and B _
01l (1 — Yo — 2181 = van) ¥,
01_11|2 (1 — Y20 — 2181 — Vo) 2
E 01l (V1 — Yo — 2181 = van) V) _o A3)

%‘71_12|2 [(y1 — Yoo — 2181 — van)? — 011|2]
vec (Z/ (y2 — z82) 22_21)
%Lrvec (Egzlvl'z (82)’V,‘2 (82) 2521 — 2_21) |

If n = 0, the result is trivial. Suppose that there exists at least one nonzero element of 7. Also,

assume over-identification. By substitution of y; and an invertible linear transformation, these can
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be equivalently expressed as

and

(1 — Y2 — 2181 — v21) 85,7,

(1 — Y2 — 2181 — Vo) 7

(Y1 — Y20t — 2181 — Von) Vj

(V1 — Yoo — 2181 — van)® — o11)2

vec (z/ (y2 — 28») 2521> — vec (Z/01_11|2 (y1 —y2o — 2181 — va1) 77/)

Lyvec (Egzlviz (82) vi2 (82) T3, — E521)

(y1 — ya& — 2181 — van) 85,2,
(y1 — Y20 — 2181 — Vo) 2

(y1 — Y2 — 2181 —Van) v,

(y1 — yaa — 2181 — van)? — o11)2
vec (z’ (yr — 287) 22_21>

Lyvec (Ez_zlviz (82) vi2 (82) 22_21 - 22_21) _

=0

(A4)

(A.S)

respectivley. We can show (A.4) and (A.5) can be transformed by an invertible linear transformation

into following expressions

(y1 — yao — 2181) 83,25

(y1 —y2o —2161) 7

(1 — Y20 — 2181 = Van) v,

(y1 — Yoo — 2181 — von)? — o11)2

vec (z’1 (yo —285) 22_21)

vec (z’2 (yo —285) 22_21) — vec (Z/261_11|2 (y1 —y2o — 2181 — van) 77/)

Lyvec (Ez_leiz (82)'vi2 (82) T35 — E2_21>
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and
(y1 — Y2 — 2181) 85,2,
(y1 — Yoo — 2181 2]
(Y1 — Y2 — 2181 — V21) V
£ , 2 =0 (A.7)
(V1 —y20e — 2181 —van)” — oy
vec (Z’ (y2 —287) E2_21)
| Lrvec (Ez_zlviz (82)"vi2 (82) E2_21 - 22_21) i

repectively. Then the result follows by Proposition 1.3.11 and by similar argument as in Lemma

C.1. Equivalence in CF case is clear since
E [vec (z/ (y2 — 285) 22_21)] =0

implies

Too see (A.4) implies (A.6), note the second k,r part of the fifth moments implies

E [vec (8§2z’2 (y2 —z87) 22_21) — vec (8§2z/201_11|2 (y1 — Y20t — 2181 — van) n/)] =0

and, by adding the first moments after multiplying 01_11|2 and elements of 1, we have

E [vec (5522’2 (y2 —z87) 22_21>] =0

which implies £ | 83,25 von | = 0. Similarly, by adding second moment after multiplying o 11|2
——

scalar
and elements of 7 to the first k;r part of the fifth moments, we have

E [vec (z/l (y2 — 287) 22_21)] =0
and it implies E [z]v,7] = 0. The converse can be shown as following:
E [vec (5§2z’2 (y2 — z87) 22_21> — vec (8§2zt201_11|2 (y1 —y2oe — 2161 — von) n’)]
=FE [vec (8§2zt2 (y2 —268») 22_21) — vec (8522301_1}2 (—van) 77/)]

=FE [vec <8§2zt2V22521) + vec (85,25vann') 01_11|2] =0
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multiplying X577 from right, we have

E | vec (85,2Lv vec | 85,25 'Soonoil =0
(63025van) + 2%V21 1222107,
strict positive scalar if n7£0
which implies

E [85,25von] =0
And, again, seeing E£ [vec (z/1 (yo — 287) 2521)] = 0 implies E [z/1 V2T]] = 0 delivers the result.

And invertibility of E [W} and £ [W] can be easily derived from identi-
2 2

fication conditions from LIML and CF. Hence, it is shown that there exist such 77 (6) and 7 (6)

in Proposition 1.3.10.

A.2.7 Proof of Proposition 1.3.12

Lemma H.1 below proves the results when g1 (w, 6, 1) and g5 (w, 8, A) are taken properly:

991 991 991

QLIML : g5 = & CFigy=| ™ | GMMOLIML:g, = | M1
82T gy gy |0 82T g | 827 gy,

/ / / /

3/\2 812 3/\2 3)&2

with g chosen to be the rest of moment functions in each GMM-interpreted estimator.

LemmaA22 Let § € R, A € R" and g = (g1 (w.0.1), g2 (w, 9,)&)’)/ be R*" —valued
moment functions with ¢ > p. Assume regularity conditions for well-definedness of relevant

GMM estimators below. Suppose

9g1(00.A0) 11
E 8(9/,/\/) _ qup qur
g2 (00,40) 0 G22
8(9’,/\’) rxp rXr

where both G22 and V (g (w, 0,5, Ao)) are invertible. Then, the asymptotic variance of optimal
GMM estimator of 6 based on (g1 0,1) ,g2(0,1) )/ is the same as that of optimal GMM estimator

of 6 based on g1 (0, A,) treating A, as a known value.
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Proof. Let

11
G— qup Ole’
22
OVXP err
—1 -1
1 12
V_l . 81 (w’ 90’ A0) N Vl],qxq Vlz,qu . quq qur
21 22
g2 (w, 65, ) V21,r><q V22,r><r Brxq Brs,
Then
— /
11 1 12 11
G’V_IG: G(IXP qur quq BqX” GqXP qur
22 21 22 22
OVXP err Brxq Bisy OVXP err
11/ p1 117 p12 11
| ¢'B! G'VB Gixp Ogxr
22/ p21 22/ p22 22
G**B*' G*'B Orxp G2,

[ Gll/BlGll Gll/B12G22
G22/B21 Gll G22/322G22

Now, it suffices to show that
(Gll/BlGll _gllpl2g22 [Gzz/Bzzczz]‘l G22/B21G11)_1 _ (Gll/Vl—llcu)‘l
This is true since
GVRBlGg! _ gl gl2g22 [Gzz/Bzszz]_l G2 g2lgl
_ gl |:Bl _pl2g22 (Gzz)_l <322>_1 <G22/>_1 G22/le] Gl
_ gl |:Bl _ g2 (Bzz)‘l le] Gl

117y,—-1 ~11
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A.2.8 Proof of Proposition 1.3.13
Define Schur complements as

A/ (Agy + Cy) = Ap — A2 (Agg + Cp) ™1 Ay

AJ/A11 = Axp + Cypp — A21A1_11A12

A1 Aq
where A = ,A11 ZE[—%],AIQZAIM ZE[—ﬂ],Azzz
Az1 Axp +Cxp 1 2

__9q; _ L)
E[ aezaeé} and (73 = E[ 96,007 |

Assume GIME:s i.e. V(aﬂ) = 11411, Ccov (g%,%) = 11412, V(aq—l) = 11470,

36, 36,
V (%) = 1p(C»7 and cov (%q—a}, %) = 0. Then, what needs to be shown is
01 01 —1 —1
Ver = Vorimr = An Az [Wh + (11 — 1) Wa] 42147
where

W) = C2—21 —[A/Aq] 7!

Wy = —[A/ A1) (Azz - A21A1_11A12) [4/A11] 7!

First, by argument used in the proof of Proposition 1.3.10 (i), the variance difference is

6 0
Ver — VQLIML

—1 —1
= A7l Br AT — [An — Ay (A + Cp) ™! A21] B [All — Ay (A + Cyp) 7! AZI]
where

0q1 _1({9q1 9q2
Bl =V |2 A (Ap+C S, 72
1 [891 12 (A2 + Cp2) (892 + 50,

= 1141 + A1 (A2y + C) L (114 + 1C2) (Ag + Cap) L Ay
— 211415 (A2y + Cp) 7L Ay
= 11 A1 + A1 (A2n + C) L (11 A + 11C — 11Ca + 12C2) (Aga + Cap) L Ay

— 211415 (A2y + Cp) 7L Ay
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=1 [Au — A1 (A2 4 Cyp)7 ! A21]

+ (12— 11) A12 (A3 + C22) L Cap (Adp 4 Cpo) 7! Ay

and
dq? 099
By =V | — A5G, =2
’ [891 2 392]
= 11411 + 1412C5;' Az
Since

—1
[All — A1 (Agy 4 Cyp)7 ! AZl]

—1
= A7 + A7 A1 ([402 + O] — Ay AT A1) Ay A7)
the difference can be rearranged as

-1 —1
AT BoAT] — [An — A1y (A + Cyp) 7! AZI] B [Au — Ay (App + Cp) 7! AZI}
= Al_ll (T1A11 + TzA12C2_21A21) Al_ll -1 [All — A1 (Ap + Cp) 7! Azl]

1 ~1
— (2 —11) [All — A1z (Apy + Cap) 7! Azl} A12DAr [All — A1z (Apy + Cop) 7! AZI]

—1
= A[{ A1 (fzcz_zl — 11 ([Azz + Cp] — A21A1_11A12) ) A1 AT}

1 -1
+ (11 — 1) [All — A1z (Apy + Cop) 7! AZI] A12DAy [An — A3 (Ayy + Cop) 7! AZI]

—1
= A7 A (C2—21 — ([Azz + Cp] — A21A1_11A12> ) A AT

1
+ (11 — 1) [All — A1z (Apy + Cop) 7! AZI] A12DAy [An — A2 (Apy + Cop) 7! AZI]

1
— (11 — 1) A A ([Azz + Cx] — A21A1_11A12) A1 A7)

where D = (A + sz)_l Cr (A + sz)_l . Now, it suffices to show

1 —1
[All — A1a (Agp 4 Cyp) 7! Azl] A12DAy [All — A1n (A2y 4 Cyp)7 ! AZI]
—1 —1 -1 1
— A1 A1 ([A22+C22]—A21A11A12) A A

= —A7 A1 [4/A1]7! (Azz - A21A1_11A12) [4/A1] ! Ay A7
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The first term:

[Au — A (A + Cp) ™! A21] l A12DAy [An — A (A + Cp) ! AZI]
= A7 [ A1 + A [4740]7" A | AT A DAy AT Ay + A [4741]7" 451 ] 47

= A7] [A11A1_11A12 + A [A/ A A21A1_11A12]

x D [A21A1_11A11 + A AT A [A/ A AZl} A7}

= A7l A1 [1 +[A/ A A21A1_11A12] D [1 + A2 AT A [A/All]_l] A AT

= A A [A/An] ™! [[A/All] + A21A1_11A12] D [[A/All] + A21A1_11A12] [4/A1] 7! Ay A
= A7} A12[A/A1] T [Agg + Co2] D [Anp + Coo] [A/ AT Ay A7

= Al A [A/An] ™! Co [A/An] ™! A 47

The second term:

1
AT A ([Azz + G - A21A1_11A12) Ax A7{

= A7 A [A/ A A/ AN [A/ A Agp AT

Hence the result.

To see positive semi-definiteness of W,

C5,' —[A/A11]7" = 0

=
[A/A11] — Ca2
= Ay — Ap A7} A12 = 0
=
under A11>0
A1l A
=
Ay Ax
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where the last equivalence is from Schur complement condition for positive semi-definiteness.

Since
1 dqy i)
Al =—V, M >0 [ o linearly independent at 6,
71 001 00,
and
Ay App 1 g
=% (%) z0
Ax1 Ax ol

the statement is shown. Negative semi-definiteness of W, is also proved similarly.

A.2.9 Proof of Proposition 1.3.14

Note that

aq{
E -1 =0
d61dvech (X13)

995
E ;=0
dvec (87) dvech (Xy7)
Thus we can treat X5, as a known value by Proposition 1.3.12. Then, redefined g, is also a member
of linear exponential family (Gouriéroux, Monfort and Trognon ,1984). Now, it suffices to show
GLM variance assumptions imply GIMEs with corresponding scaling factor in linear exponential
family. Let m (6) = G (y»2, 21, v2, 01) . Based on general form of score and Hessian (Wooldridge,

2010), it is easy to see
9q1 i 1 dm (0) 9m (0)
Eo — == EO
0000’ Vg (y1|y2,2z) 06 00’

[iaon ] _ [ - m @) im @) im ©)
“Loo o] T Ve (nlya? 00 00

[ Eo[ 1 = mOF]¥2.2] g (6) om (0)
L VaWily2n)? 90 90’

g1
= E | —
ol ”[ 3939/]

=E,
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And GIMEs for g, can be shown similarly.

P [«—1 /
E,|— =E,|Z
¢ [ dvec (87) dvec (82)’:| o|*2 @2 Z]
Vo i =FE, _[Ir ® z/] IR VZE_l [Ir ® z]]
dvec (87) i 22 72 22

= E,

[1: © 7] |3 Eo [vyvale] T3 @7

=nk, [[Ir ® z’] [22_21 ® z]]

L E [_ )
270 Tvec (8,) dvec (87)
Orthogonality of scores holds under correct specification of conditional means since
9q1 992 PR P
E,| —=—=2|=E,|E,| —|vy,z| —=
0[39895 Il R R T

[ Eo[y1 —m(0)] y2.2) dm (9) dg>
Vq (11¥2,2) a6 90,

Then, by Proposition 1.3.13, QLIML is efficient relative to CF for 0.
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APPENDIX B

AN APPENDIX FOR CHAPTER 2

B.1 Regularity conditions

Assumptions (consistency and asymptotic normality of QLIML and CF estimator)

(D) (yi1.yi2.2;) are i.i.d.
2)O C RP
cpt
3)q; : O xW — Rand gy : ) x W — R where (y;1,y;2.2;) € W
(4) 6, € int (®) and let N be a neighborhood of 6,

(5) gi1 (61, 6») and g;7 (6;) are continuously differentiable at each 8 € ® with probability one.

91 +42) 341 (60)

a0

6) E | su <oo (ME < o0

R e I DEN ] 20(0,)

90, 20,
[ 0(q1(0)+492(62))
8) E 06 is differentiable with respect to 6 at 6,
9q2(02)
i 96,

(9) (QLIML orthogonality) {6,} = {9 €EO:FE [%] = 0}
9q1(6)

(10) (CF orthogonality) {6,} = {0 € ® : E 991 =0
9495(6)

50,
(11) (QLIML rank) %E |:—8(q1(92)—gq2(9))]‘ and V —a(ql(e)a_ng(e))‘
0=06,
ible.
dq1(0) 3¢1(60)
a0 70 . .
(12) (CF rank) %E 8q2(19) and V 0 9102) are invertible.
36, lo—g, 0

(13) (stochastic differentiability) For j = 1,2 and any 6y — 0,

VN |&h @ -} - Eeh @] ,
sup -0
1660l <8y L+ VN 16— 6|
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where

N N | 94i106)
. Z d(qi1 (0) +¢gi2 (0 . Z
i= i=1| g5,

Assumptions (consistency and asymptotic normality of minimum distance estimators)
(14) y (01,60,2) = y, if and only if 6] = 6,

(15) W has full rank

(16) ¥ : ® — T is continuous at each 6 € © and continuously differentiable in N

(17) (asymptotic normality of reduced form parameters)

VI ((785) = 0000 ) > v (0. (45 ae) )

where
5 0q] g%@z) 9q] (750 902)
AR = —E v and BR =V v
R 9(.6) 94 (62) K 942 (992)
B 602~ r0.002) "
Assumption (18) each component of %TG;Z) cannot be expressed as linear combination of

9q1(0)
a0

B.2 Proof of Proposition 2.3.3

First, it is shown that a well-defined minimum distance estimator and its linearized version are

asymptotically equivalent.

Lemma B.2.1 (linearized minimum distance estimator) Assume (1) y, — h (0) # 0if 6 # 6, (2)

h is continuously differentiable in 6 where # € R”,y e R8 and g > p (3) % (6,) has full column
d

rank (4) /N (§ — vo) — N (0,K,). Then, efficient MD on a linearized link function yields an

estimator asymptotically equivalent to efficient MD with original link function.
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Proof. Consider a first-order expansion of 4 around 6,

oh (6,
h(6) %h(@d—l—%(@—%)

The minimization problem is

dh (6o)
30’

dh (6o)
30’

min (ﬁ () — 6 90))/ W (? i (6) — 60— 90))

where
~ D
W — W,
The first order condition is

dh (6o)
00

R oh (6,
i (7= h @ = g @ 6} =0

Then

5 _ [9h(60) 200 (60) 77" 0h (8) o, ( 0h (6,)
9_[ w0 " g } 96 W(V_h(%” 96’ 90)

I (0p) = O (0) ™" 91 (Bp) o .
R ] ag 7= h()

:90+|:

The asymptotic distribution is

A dh (8,) ~ Oh (8,)" 0h (6,) .
VI (5= 00) = | g BT RN VN - 60
= [HyWoHo] ™" HJWo/N (7 — h (80)) + 0 (1)

-1 A
= [H,WoH, | H,Wo/'N (7 — ¥o) +0p (1)
Then the optimal weighting matrix is such that
WO = Qo_l

Hence the proof m

Now, consider an auxiliary model.

(A.1)

Lemma B.2.2 There exists an auxiliary asymptotic model whose GLS estimator is asymptotically

equivalent to efficient linearized MD.
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Proof. Consider

Oh (), _ 9k (6)

‘}/)_h(e())—i_ 80/ 90_ 80/ 0+un
~——
y X
where
V (un) = Qo

Then GLS estimator of 6 in this auxiliary asymptotic model is asymptotically equivalent to efficient
linearized MD since GLS estimator solves (A.1). Here, mean and variance of u,, are just imposed
restrictions in auxiliary model, not derived from original model. (Gouriéroux, Monfort, Trognon,
1985) =m

Next, above two lemma will be applied to a minimum distance problem with partitioned link

function. Consider

Yol h] (91, 92)
{(Bo1,002)} = 101,60 : | 77 | =
Yo2 h2 (01, 92)

/ /
where y = (y{.y5) . h = (h].h}) . y1 € R8L, yp € RS2, 6; € RPL, 6, € RP2, and p; = g».
Then, by first order expansion, a linearized partioned model is

dhy(6o)  8hy(0o)

hy (61, 62) N h1 (o1, 602) 0] 00} 0 001
~ dhr(0p) Oho (6 -
hs (01, 62) ha (0p1, 002) 59(10) g;é o) ) 002

and the corresponding auxiliary asymptotic model is

dh1(60)  hy(60)

Y1 h1 (Go1,602) 8] 80} o1
. Ihr(0p)  dhr(60)
Y2 ha (001, 002) 55/0) 829(/0 002
1 2
0h1(0p) 0hq(6o)
| e 06} 01 L] v
T e e ||,
867 86} 2 H2n
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where

Define

where

Uln

E =0
Uop
Uln

V = Qo
Uop

8h1 (6o)

dh1 (60)

=y —h1(0,1,0 0
Y1 =71 —h10p1,602) + 9] ol T T
. dhy (6o) dhy (6o)
= —h>(0,,6 0
y2 =72 —h2(0p1,62) + 907 ol + 0
g = 100
86
7, = ohy (/90)
36}
oh» (0
X2 _ 2 (/ 0)
86/
ohr (6,
Zy = ;9(/ 0); invertible py X po
2

Ui

E "l=0
Udn
ui

V " == QO
Udn
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Define

dhy (6o) dh (6o)

y1 =91 —h1 (0o1,002) + 907 Oo1 + 0] 002
. dhy (6o) dhy (60p)
y2 = V2 —h2 (01, 002) + 89{0 0o1 + 89&0 002
dhy (65)
Xi=—
LT o
ohy (0,)
1= —=
S TA
dhy (05)
X, =
27 g
dh- (6
Zy = 2 (/ 0); invertible py x p»
00;

Then we have a system
1= X101 + Z16) + ujy
y2 = X201 + Z20) + up,

Since Z, invertible, we have

Z5 yy = 7271 X001 + 05 + Z5 M us,

—
0r = Z5 ' ya — 251 X201 — Z5 M ua,
Thus
y1= X101+ Z, (Zz_lyz — 7251 X,0, - Zz_luzn> + u1n
=

y1—2Z1Z5 vy = (Xl — leg_le) Oy +uty — Z1Z5 ugy,
Then an equivalent system is

yi—Z1Zyly, = (Xl — 2122_1)(2) 01 + w1y — Z1Z5 uay

y2 = X201 + Z207 + uyy,
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Moreover, define

uikn =uUy, — lez_luzn
YiEwn-21Z3'y
Xf=X,-2127'%,

uy, =usy — L (ugp|uf) = upy — Auj
vy =y2—Ay{

X} =X, — AX}

where the linear projection L (-|-) is defined in auxiliary population space. Then we have another
equivalent system
Y= X{0 g,
V5 = XJ01 4+ Z20, +uj,
Since u’l"n and u’z"n are orthogonal here, GLS on the first part only is equivalent to joint GLS for 6.
From now on, It will be proved that concentrated MD is asymptotically equivalent to running GLS
on the first part only.

Consistency The concentrating equation is

Y2 —hy(01,62) =0

and, by implicit function theorem, we know

0 = on (61)

is well-defined and continuously differentiable at each 6. The concentrated MD is derived from
minimizing distance

Y1 —h1 (61,90 (61))

and consistency of concentrated MD easily follows by the fact that ¢, (6) is well-defined and

smooth enough for each 6.

94



Optimal Weight Calculation First, from the concentration identity, we can take differen-

tiation on both handsides

dho (01, ¢n (01)) n dho (01, ¢n (61)) dpn (61)

—0
80/ 80} 80/

invertible

Hence

—1
dgn (01) _ | 9h2 (01,90 (01)) | B2 (61, 9n (61))
00/ 06} 00/

In the minimization problem,
min [71 = 1 (01, ¢n (OD)] W 71 = I 01, 90 (O1))]
1

taking first order condition, we have

o= [ G 50) g i (6) 502 s o 5)

=2 (B (01)) = o (v (81)) [3h2(é1’¢”(é1))}1 ok (5.0 (3)) |

80/ 0 80} 80/

x W x [)71 —hy (éwﬁn (él))]

Note

i o (0)

= h1 (01, ¢n (051))

s (6% on (er))}l oh2 (67 on (91*))}
9/

[ag,h (60 () = 571 47 on 07 >>[ o o

=H, (91*)
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where

6 lies on the segment connecting él and 6,1

Hence
0= H, (él)’ W (71— (010 (01))]
_H, (él)/ % [;?1 — h1 (Bo1.9n (001)) — Hy (67) (91 - 901)]
R
VN (01— 601)
_ {  (60) (91*)]‘1 Hy (6) W/N [91 = Ity (Bors 9n (Bo1)

—1 ~
= [Ho/WoHo] H(;WO‘/N[VI —h1 (Bo1, ¢n (6o1))] +0p (1)

—1 ~
= [HO/WOHo] HO,WO‘/N[VI —h1 (o1, 02) + 11 (Bo1.052) — 1 (Bo1, @0 (051))] + 0p (1)
=

HyWoHo] ™ HyWo [VN (1 = vor) + VN (11 (001, 002) = 1 Bt 90 Go1)) | + 0 (1)

Note
dh1 (o1 9;*)
h1 (Oo1,@n (0p1)) = hy1 (Bp1.6002) + — (on (6o1) — 652)
2
and
0= P2 —h2 (0o1, ¢n (0p1))
R ahz 8 1’ kkok
iy . By) - 22 e ) o Go) - )
2

where

65, and 65" lie on the segment connecting ¢, (6,1) and 6,2

which implies
ohy (901 , 62***)
89&

dhy (61, 0%)
86}

1
(n (Op1) — 0p2) = [ } (72 — h2 (051, 092))

-1
i| (72 = Vo2)
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Thus
\/N (él - 01)

= [H,W,H,]"" H)W,

~1
. ohy (0,1, 05*) | 0hy (0,1, O0F*F A
x | VN (1 = vo1) = VN (309/ ) (59/ 2 (P2—=vo2) | | +op(1)
2 2

- N dhy (6 dh, (6
THWoH ™ HIW, | VN 1= o) — 1(0)[ 2 (6,)

—1
VN (D2 —yo2) | +0p (1)
365 365 } ?

A

—1 _
By (00) [ 9h2(00) ~ (| 71— 7o
Tev =% [ 86, ] ] N Dy — Vop tort)
4

= [H,W,H,] ™" HgWO[

inverse of asymp. var. of this expression is optimal weight

where

d 0
= 3_9th (60) — (90) |:

06}
Therefore, the optimal weight is
—1 e
"= ([ Igy _ahalézo) [ahgg(Z)”)] :|Qo|: Ig, _ahalgz)o) [ahaze(zo)] } )

Linearized ¢cMD and auxiliary asymptotic model The linearized cMD on

~1
dha (6p) | 9h2 (6o)
06} 00/

. oy (e(,)}l 02 (60)

96) 86/

0 0

Y1 —h1 (Bo1, ¢n (Bp1)) — 8_9{}11 (60) — a_%hl (60) [

(01 — 651)

=91 —h1 Oo1,0n (0p1)) — Hop (61 — 0p1)

with weights calculated above is asymptotically equivalent to concentrated MD. The corresponding

auxiliary asymptotic model is
D1 =1 Oo1.0n (001)) + Hobp1 = Hob +u1y — Z1 Z5 sy
where uy, — Z1Z5 luzn is derived from optimal weight calculation. Moreover, since we know

(Xl — lez—lxz) — H,
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to see its equivalence to
yi—2Z1Zy vy = (Xl - lez_le) 01+ uty — 2125 uy,

it suffices to show that we can replace 1 — hy (0,1, ¢n (651)) + Hy0,1 with y; — Z;4 Z2_1y2. Note

that we have

yi— lez_lyz
dh1 (6o) dhy (6o)

= P1 —h1 (o1, 002) + 57 Oo1 + T 002
1 2
—1
8hl (90) 3h2 (90) A ahz (90) ahz (‘90)
90, [ 90, Y2 —ha (o1, 002) + 907 Oo1 + 90, 002
N dh1 (6
= 91— 1 G, B + 15
1
~1
dhy (6p) | dha (6o) . 0h; (6,)
— —hy(0,,0 ——0

along with

Y1 —h1 (Oo1, 0n (851)) + Ho0p)

= p1 = h1 (Oo1,002) + h1 (Oo1,002) — h1 (Oo1, @n (0o1))

-1
T {ihl ) — 1 (60) [ahz (9")} 92 (9")} b1

06/ 06} 06} 06/

=91 —h1(6p1,002) + 01

—1
0hy (60) -~ 0h1(Bo) | 0h2 (Bo) | 0h2 (Bo)
0] ' 99] 96} 86/

+ 11 (Oo1,002) — 11 (o1, @n (651))

-1
. 0hy (6p) 0hy (0o) | 0ha (65) 0h; (05)
=y —h1(0,,0 6,1 — 0
Oy (051, 05%) [0y (601,037
N oh1 (6
= Y1 —h1 (Op1,002) + M%l
90/
-1
0hy (0p) | dh2 (65) . dhy (6,) -1
_ _ a2 o) 2
9] [ 90] Y2 — h2 (051, 002) + 90! Oo1 | +op|n
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Hence the result.

B.3 Proof of Proposition 2.3.7

First, note that

—1 4 p—1
Viup—orimr = HoARBr ArHo

where

%y (6) %y (60)

0 Ip,
dq1(v.6p) |
Ap=—"__p| W
d(y'.65) 8%52)

BV 3541 (o, 002)

%%’2 (602)

Next, by product rule of differentiation, we have

0
0 | a1 (v (©).0)

1(r.62)=(v0.992)

06’ )
=a—q> (0
392QZ(2) =0,
31 (7.0
| g G| vo
J(y'.05) % 0" g,
: (v.62)=(v0.0,2)
:AR :HO

Hence

—1 17’ 4 p—1
Vinomm—orimr = HoARBr ArRHo
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B.4 Proof of Proposition 2.3.8

Note that quasi-likelihoods for reduced form model are

q1 (y (61,62),6)

q2 (62)

. -1 -1 .
We will show VmGMM—QLIML — VGMM—QLIML > 0. First, note that

—1 —1
Viamm—orimr = HyARBr ARHo

where
9 9 i
Y, =
0 Ip2 i
3 aql(g%%)
AR = ———E v
K= 90,6 94 (82)
%2 1(1.62)=(r0.992)
.
Br=V aydil (Yo, 002)

3554912 (002)

It will be shown that V;; Al/[ M—QLIML €30 be expressed in terms of H,, Ag,Bg and an additional

linear transformation. Suppose 655 is not empty. With probability one, for some pyy X g matrix
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G2 (9)

d .. Iy a ..
m%l (6) m@qzl (7,62)

J_,. —| I o, 0 .
@%1 () 365, ay 4il (v, 02) + 3922%1 (v, 62)
a2 || 35542 (62)

d
%%%’1 (v, 02)
d
= | [#5 + 0] fan (.62

%%2 (62)

xa 0
5 ! %6]:’1 (y, 62)
= [@ + G (9)] 0 :
36,92 (62)
0 Ipy

=W(6):(p+p22)*x(g+p2)

By product rule of differentiation,

a|l oy ok aydin (7v.62)

/

WA tr)x(e+r) | a2 (6)
(g+p2)x1

d
d .. 9 ..
E[ 5,791 (7.02) 8%6112(92) ] B L(ptpyy) | 7grvec W (0]

vanish in expectation at true paramters

d
d 3,4i1 (7. 02)
) " E 3ya‘111 v, 02
@%‘2(92)
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%6]:’1 (y, 62)

=
av %%‘2 (62)
- BLV/ (E [%Qil (7. 92)]) aaTyi 3%// (E [%Qil (7. 92)]) 8872 + @ (E [%qz‘l (7. 92)])
) 0 i (7 [790 @)])
B 3%/ (E [%%‘1 V2 92)]) @ (E [%%’1 (7, 92)]) (%”{ ;72 |
. 0 ﬁ (E [%%‘2(92)]) 0 Ip |
=Ag when (7.02)=(v0.0,7) =H, when 0=0,
Then we have
%%’1 0)
T9 E 39822%'1 (0) = WoARrH,
%Qiz (62) o,
where W, = W (6,) . Also, it is easy to see
%%’1 (661,002)
%%‘1 (051.002) | = WoBuW,
%%’2 (002)
Hence
VG_AlflM—QLIML = Hy AWy (WoBRW,) ™' WoARH,

To see relative efficiency of MD-QLIML,

—1 —1
Vnomm—orimr — Vemm—orLimL
— H) Ay Bg' ARH, — H, AW, (W, BRW,) ™' W, Ag H,

— -1
= HyAY (BR" = Wy (WoBrW,) ™ Wo) ArH,
1 1 IR T Nt A N
= H)ARxBR?> |1 — BiW, | WoBZ BRW,| W,B3 | Br? AgHo =0
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where

When p1 + pyy = g holds, W, is invertible and we have
L (s sbw\ st
/ /
I —ByW,\ WoBg BgW, WoBg =0

In the case where 6, is empty, the result can be shown with slight modification of above proof.

B.S Proof of Proposition 2.3.9

(a)

(Well-definedness of reduced form model) The reduced form likelihood is

qi1 (01.02) =1 (yi1.y20 + 2181 + van, A)
=1 (yi1,21 (8210 + 81) + 228200 +vo ( + 1), A)
=1 (yi1,zy1 (0) + vay2(0),v3(0))

=q1 (v (0),62)

Since g;1 depends on 6, only through §,, it suffices to show that each element of gg]—; can be

. L 0
expressed as a linear combination of 8617}. Note

1(—12) = —g (yl'l’yz()( Z181 2( 2) ’A’) /
8q b 2
# — s(yl-l’z)/l —|— V2 (82) V2,)/3) Z/

=5 (i1, Y20 + 2181 +v2 (§2) n, M) 7/
where s (y;1, Y, 01) = al(y’g—TTel) Hence the proof.

(b)
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Suppose ky = r. [To show Voypm—orimr = Vorimr = Ver] The quasi-scores are

s (Vi1 y20 + 2181 + van. A) yh
31 (61,6) _ | S it yao + 2181 +van. 1) 7 -
%1 s (i1, y2o + 2161 + van, A) sz
3 (yj1.¥20+2181 +Von.A)
- |
3q1 (01.6,) _ | S Wit y2e T 2O F Vo ) @ (A3)
90, _ o,

QLIML and CF rank conditions implies that k x r matrix § ,7» is required to be full column rank.

Since ko = r, § ,pp is an invertible matrix. Also, noting that

s (Vi1 Yoo + 2181 + von, A) Y5 = s (vi1. Yoo + 2181 + van, A) (21821 + 22822 + Vo)’

any moment function in W can be expressed as linear combination of %&1’92). Thus 655 is
empty and the result follows by Proposition2.3.6 (b). [Toshow Vyp_orimr = Vemm—orimL]
It suffices to show p; + pypp = g. Let A,y3 € R’. As shown above, p2> = 0. Then, p; =

r+ki+r+1/land g = ki + kr+r + 1. Since kp = r, the result follows.

(c)

Suppose o # 0. [Toshow Vyrp_orimr = Vomm—oLimr] Asin(b,2), p1 = r+ky+r+1
and g = k| + ko +r + 1. It suffices to show p| + pyp = g or equivalently, prp = ko —r. The case
with ko = r was shown in (b,2). Case kp < r is ruled out by order condition. i.e. § ,pp cannot

be full column rank with k» < r. Suppose k» > r. By rank condition of reduced form model, we

104



know linear independence of components in score

s (vit.zy1 +v2(82) 2. 73) 7
991 (v (6).62) _
dy

s (Yi1,zy1 + V2 (82) ¥2.¥3) vy

9q1
dy3

s Vi1, Yoo + 2181 + v (82) . A) 2/

= | sOi1.y2 + 2181 +v2 (82) 1, M)V,

991
A

Then, due to explicit linear relationshipy, = z18,1+228,2+ V>, amaximal linearly independent set

in {sy», $21,527,5V>, 1 always contains (k1 + ko + r + /) elements. Hence, a maximal linearly
y R y

independent set in {86156&190)’ 36159(50)} contains (k1 + ko + r + [) elements whenever there exists

. . aq1(6 . . .
at least one nonzero element in 7,. Since %}0) contains k; + 2r + [ moment functions, it is

implied that pyp = ko — r. [To show Vomm—orimL = VorimL, Vcr] The result follows from

Proposition 2.3.7

(d)
Suppose 1, = 0.1In (A.3), we have w = 0p,x1 and 6, isempty. Then, Vapypm—oLimr =

VorLimL = Vcr by Proposition 1.3.6 in Chapter 1.

(e)
Let M be the linear span generated by mGMM-QLIML moment functions

391 (y(00).02)
dy
995(62) (A
96,
When 1, = 0, 65, is empty and Voyypm—orLimrL = VorLimr = Ver as shown in (d). Hence,

GMM-QLIML moment functions are

941 (6o) (0o 391 (v(60).6,2)
0 _ | Tae, 3y
392(652) 0o I 342(052)
a0, P2 20,

(g+py)xp mGMM—QLIML moments
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where

dy(6o)
a9, 0
0 Ip

is assumed to be full column rank by Assumption 15. Hence, GMM-QLIML moment functions is
a linearly independent set in M. Also, since aqangj‘)) = 0 when n, = 0, clearly we have

991 (o) 941 (o)

o | _ 0]

992(052) 9¢1(00) + 992 (602)

36, 30, 30,

and it is implied that QLIML moment functions are also linearly independent in M. Since we are
assuming kp > r,wehave g = ky +ky+r +1>r +k; +r + [ = pj. Thus, the dimension of
M is larger than number of GMM-QLIML(or QLIML) moment functions, p. Relative efficiency
of mMGMM-QLIML is obvious. To find a condition for asymptotic equivalence, consider QLIML
moment functions

dg1(9)
a6,

0q1(0) | 3q2(02)
36, 30,

By replacement theorem (Thm 1.10, Friedberg et al, 2003), there exists ko — r elements in (A.4)
with which QLIML moment functions constitute a basis of M at true parameter values. Denote

such kp — r elements as

dq1 (v (0) . 6)
ay*

where y* is (kp — r) x 1. Then optimal GMM on

9q1(0)

30,
dg1(6) | 3q2(6n)
80, T 00, (A.5)
3q1(v(0).67)

dy*

is asympotically equivalent to mGMM-QLIML by similar reasoning in Lemma C.1. Equivalence

condition follows by applying BQSW redundancy condition to (A.5). To see sufficiency of GIME’s
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for reduced form model, note that

gy i) 091
V|——1| = E
(a(m%)/) Loy 0)) [aws)/

v (3&) .k [3&
00, 6, 00
2 ~162=602
aq? qu
E _ d dydy’
V 90 " 8q0 =71 (v 0 8(1? aqg
ﬁ + ﬁ (J/ ’ 2) 3828()// 9/) 3928<)// 9/) / /
L s ) gy =sop)
q] 045
7= | = 0 and GIME’s for structural model. Then result follows by some

implies cov 8(7/’,95)

algebra.
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APPENDIX C

AN APPENDIX FOR CHAPTER 3

C.1 Appendix: Proofs

Many proof ideas and steps used in Theorem 3.4.7—3.4.15 are similar to Wang, Wu, Li (2012) and
Sherwood and Wang (2016). In the following, C denotes a constant that does not depend on N. It

is allowed to take different values in different places.

C.1.1 Proof of Theorem 3.3.1

The model structure (or admissible structure) S in consideration can be defined as following.

F T
{eir Xit} =12
is a distribution function on REK17+K2+T gych

Denote &;; = yi; — WiiB — g (x;,2). Let S = {(8, &, )8 e RE1FT-1] 5

RE1T+K2 5 R is measurable, F T
{eieXit}i—1 %
that O+ (gj¢|xj,z;) = 0 for each ¢ and the support condition on (w; t)thl given in the premise is

satisfied.} Suppose (B*, g*, F*

) € S. Then, foreacht = 2,--- , T, we can write
{eirXig bl 2

Oz | vitlxi zi: B*, g* F* T =wi ¥+ g* (xi.2;) (A.1)
Leir Xir =12

oF [y i—1Xi.zi; B*. g% F*
=D {eir i} _

] =wi—B* +g" (xi,2) (A.2)
Note that the conditional quantiles of y;; and y; ;1) are unique. By taking difference across time
periods, we have
Q [y-xlx-,Z~;ﬂ*, g Ff
e Lot Xt =1 2

= (Wit —W; (t—l)) B* (A.4)

] —0O¢ [J’i(z—l)|xi,zi;ﬂ*,g*, F*

T
Leir Xit b —1 %

:| (A.3)

The full rank condition on (3.11) will be shown to imply point-identification of B*. First, note

that there exists a square invertible submatrix of (3.11). Let such matrix be W. By continuity of

the matrix determinant, there exists a neighborhood around x jJ zl(il({ ), il({ t)—l)) each of whose
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(/) ()

elements along with (x; Xi ( [_1)) ]J _, and time dummies constitute a perturbed version of W

it
which is still invertible. Since f(~ . )|(X” » 1))(~l({)’ z({t) 1)|Xl(i)’ z(ét) 1)) >0V and

Xit:Xi(t—1)
it is continuously extendable, the probability of observing such collection of support points is

positive. (equivalently, a change in 8* implies a nontrivial change in F ) Hence the

T
Wit Xit =12
proof.

C.1.2 Proof of Theorem 3.4.3 and 3.4.4

Define 64 = (B ¥.4) . Wit = =W, and Wy (€) = (¥r (€)', Wr (en)) . Also, 4] =
\/m denotes spectral norm for matrix A, ||v|| denotes Euclidean norm for vector v, and
write Ey (-) = E (:|x;,2;) and Py, (-) = P (-]x;,2;) .
Consider a following reparameterized objection function
AR }
N;;Pr (eir —wW;;8) = ;;Pr (ylt (90A + ﬁs))
Let § be the reparameterized oracle estimator

1 N T
= argmin- 33 pe eig — ird)
s Nioo
where § = VN (é 4—0, A) holds. Its Bahadur Representation can be written as

1 %

§ = VN (W, ByW4)~ W, ¥, (¢)

Lemma C.1.1 If Assumption 14 hold, then|§ | = 0, (/gw) . (i) If Assumption 1-5 hold, then

— ~ d
GyEy/% 5 N(©,6).

Proof. Since

| -
\/max (NW/ABNWA) = ‘ B WA

|

BZ

[A

=V Amax (BN \/kmax Wl WA)
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Amax (%W’A BNWA) is also bounded above. Similarly, we can show Amin (%W’A BNWA) is

bounded below by some positive constant. Then, note that

2
1 X7/ X -l 1 X7/ 1 X7/ X _% /
<CH W, ¥ (e)| = 0, (VanN)

(ii)
N

GNEy8 = GyE PRy NTIPWL W (6) = Gy sy PRYINTY2 S W, (e))
i=1

N T N T
= Gy Sy PRy N2 S S e i) = Y. Divie

i=lr=1 i=lt=1

where Dy = Gy Iy Ky N=1/254y. (e;,) . Note E [Dyi/] = 0 and E [Zle DN,-,] -
0. Then,
N T T '

[ i N (T T
12 — ~ ~ — 1/2
= E | Gysy PRy N [0 w e e | | v i W || Ky s 2oy
i =1 \u=1 =1
| —1 2 | al —1/2
= E |Gy Ky [ N WA, (6) W: () Wi | Ky =326,
i=l1

= GnE [/ PKy'syKy' 53?6y =6y Gy > G
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To check Lindeberg-Feller condition, fix ¢ > 0. By Assumption 3, 4, and 5,

N T 2 T N T 4

ZE ZDNit 1 ZDNzt el =3 EZDNit

i=1 t=1 t=1 i=1 =1

= NZEZZE ZZ‘I»”T(&I)WT ,,) 1/2GNGNZ 1/2KN1~A/

t=1¢=1

T T

FAK= 1/2 —1/2 1§47
Nzgzz 22 WKy GyGNZy Ky Wi
i=1 t=1¢=1

2

[A

4 4

N
—1/24—1 A7 C 4y
SZZE e S <5 2 Elov I =y Ky > !
i=1 t'=1 i=1 t'=1
4

c (1 & | &, 0%
=Na 5 2 E | 2o Wi =0p<7)=0p(1)

I A

where the last inequality follows from Apax (G§V G N) = Amax (G N G;V) —casN —o00. n

Lemma C.1.2 (i) Assume Assumption 1-6. Then, for any finite constant M,

sup Z Eu [Ql (3 s)] ! [S’KNS ~3 KNS] (1+0(1)| =0, (1)

-5 =

where Qi (5,8) = Zthl [Pr (eir — Wit8) — pr (eiz - VVVitg)]

Proof. Note that H\TV,,SH =0 (N_l/qu) by Lemma C.1.1 (i), and ||w;;8|| = O (N_l/qu)
by construction. Also, we have p; (¢;; — W;;8) = pr (¢j; — W;;8) by Assumption 6. Then,
applying Knight’s identity,

N

5 5[0 (5.8)] = 03 Fu [ s 508) o1 (60— 08)]

N T Wils 1 N T N
= ZZ[ ; (Fit () = Fig (0 ds = 5 DI {(‘YV”S)z - (vvvl-,s) ](1 +0, (D)

i=1t=1
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where the third inequality is followed from H W8 “ = 0p (1) and ||W;/8]| = o(1). Hence the

result. m

Lemma C.1.3 Assume Assumption 1-6. Then, for any given positive constant M,

sup %:A,- (85) =op(1)

”5—5”51\4 i=1

where 4; (5,5) = Qi (5,5) - E [Qi (3,5) |Xi’Zi] + 30 Wiy (5 _S) v (eir) -
Proof. By Assumption 4, max ||W;;|| < a1/ ‘ITN for some positive constant «j. (F};1 in Sherwood
it

and Wang (2016) has probability one here.) It suffices to show for Ve > 0,

N
P sup ZA,-(S,S) >e|l—=0
Hs—SHSM i=1

Let
Az{SeRqN : HS—SH fM}

We can partition A into disjoint sets Aq,---Ap,, such that the diameter of each set does not

N
4N
.. i . Cc./N
exceed m(”)‘ = and the cardinality of partition satisfies Dy < (2—8%\/) (For

B
10T oy /Ngp

example, by similar argument used in Lemma 5.2 of Vershynin, 2011). Pick arbitrary § ; € D, for

1 <d < Dpy.Then

P sup %Al— (8,5) > ¢

HS—SHfM i=1
N N

gdsz S ai (58) = s [0 [ (8.8) 4 (50.8)] = ¢

i=1 §eAy |i=1
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Since ul [u < 0] = %u — % |u|, we have

3)-0,(3,9)

[Pz (eir — Wit8) — pr (eiz - VVVz'zg)] -3 [Pr (eir —Wit8q) — pe (eit —VVVit§>]

=1

i (

=%

Il
M)~

N
Il
—_

Il
NE

[(r —1[eis — ‘7Vit5 < 0]) (ejs — Wita) —(t—1[ejs — VvVitsd < 0]) (ejs — WitSd)]

N
Il
—_

I
M)~

[tWi; (845 —8) — (eir — W 8) 1[ejs — Wi 8 < 0] + (e — Wi 85) 1[e;s — W85 < 0]]

-
Il
_

1\ . 1 . 1 .
[(r — 5) Wi (85 —6)+ > |(eir — W;8)| — 3 |(eir — Wit‘gd)|]

Il
M~

1

N
|

< 2Tmax Wil sup (18 = 841l

deAy
Thus

N
sup |3 [Ai (3,5) s (8d,5)]
SeA, |i=1
= [ 340 (5.8) — £ [0 (8.8)] + 3 900 (5 8) v e

dely |i=1 t=1
T

-0, (Sd’g) + Ey [Qi (Sd,g)] — Y Wit (3d - 5) v (eir)}

< SNTmax Wi || sup [[|8—384]]
bt §ehy

fSNTO(l‘/qWNmOzg

Therefore, now it suffices to show ij)ivl Py ()ZlNz 14i (84, 5)‘ > %) has a vanishing upper

bound that does not depend on (x;, z; ). Berstein’s inequality is used. To evaluate maximum, using
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p(u) = (r — %) u+ % |u|, we can write

maxA,-(sd,S)

= maxQ (84.8) — Eu[Qi(84.8)] + Zwl,(sd — &)y (eir)
=1
T T

= max 3 lpe (eir = Wisba) — peleir = Wird)] = Eul}_ [ pe (eir = Wieda) = peeis = Wieb) |
t=1 =1

+ XT:VVVit (5d - S) v (eir)
T

= max 373 [lew =8l = (e = 5] + (2= 5 ) B 80|

L,
=1

kY 5 [l = sl = (e 5] + (v = 5 ) wirll =80

=1

N
Il
—_

T
+ ZVVVit(Sd —8)y (eir)
=1

t
qN
< 3T §-46,<C
maXIlwzlllm;XIl dll \/N

To evaluate variance, applying Knight’s identity, we have

0i (84.8) + Zwlt(sd— 8) v (i)
pr (eir —Wir8g) — Zpr (ezt Wlts) i"v"it (Sd_g>W(€it)
t=1

r=1

IIM'ﬂ WMH

T Wiy
wibave e+ 30 [ (e <01 1feis <o) d
=170

IIMﬂ

T w8 T .
LG EDS [O U (e < D1 = Legs < O di + 3 Wiy (84 —8)w<en)
t=1 t=1

T w8
=3 [ e <01 e <) ar
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Thus,
A-(sd,S)

- Z / (1l(err < D] —1[ess < O]) de

1=1"Wir8
T W T

—Ey Z/V li ¢ (1[(ejr <) —1[ejr <0 dt | + Ey Z‘i’it (5d - S) v (ejr)

And it implies
N

iVar(A,-(sd,S)m,zi)s > Eu Z/ (1(eir < D] = 1eir < 0D ds

i=1 i=1 Wit 8

<2Ew max i (34 5 Z/ (Fit (1) = Fiy (0)) dt

W8

2
<c [ Zl X;fit ©) ((Wit8d)2 ~ (:eb) ) (1 +0) =€\ (14001
1=1r=

by similar argument as in Lemma C.1.2. Then, by Bernstein’s inequality and Assumption 5,

S (08 2) <R[} B (ceD)
P §,,8)|>=1< exp < exp C,.|—
\|& ’ 2) S CJW-+eCc W) 4= an
(C\/Nq ) exp( \/E) < Cexp (C (qN log N — \/:)) -0
dN aNn

]
Lemma C.1.4 (Asymptotic Equivalence with Bahadur Representation) Assume Assumption 1-6.
Then, we have HS - SH =o0p(1).

Proof. It suffices to show that for any positive constants M,
N

P inf ); (8.8) >0 1
il 20D 70)
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since, we have ZlNzl Qi (3 3) < 0. By Lemma C.1.3,

{Qi (8.8) - Eu[0: (8.8)] + > (5-8)v (em” = 0p (1)

sup
o3

M=

=1

Then by Lemma C.1.2,

N
sup Z (8 8) ! [S’KNS 5 KNS] (1+0, (1)) (A.5)
-] li=
N T _
30D Wi (5-8) v (@)
i=1t=1
=0p (1)
And since
-1
§ = (iw/ABNWA) — W, ¥, (e)
1 .
we have

N T / N T
S 5Bt - (1-8) 3

= (5-8) =W, @)

= (8 _5)/KN‘§ (A.6)

Combining (A.5) and (A.6), we have

sup
Ja-3 )<

Z 0i (8.8) -3 [S/KNS §'Kyd]+ (8 -5) Ky

=1

=0p (1)

which implies
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By assumption 4, for any “8 — 5“ > M,
1 -\’ -
5(3—5) Ky (8—8) > CM
for some positive C. m

C.1.3 Proof of Theorem 3.4.5 and 3.4.6

Consider partition of VNViAt into a single variable (that is not penalized) and the rest of vari-

ables, (tbf’t, w¢,). Define their stacked versions as W‘A = (W{[. - Wi, ,W%T)/ and Wj’ =
(J)Ifl, e Lb]l’T, e w?VT)' Let 8,5 = (84, 8p) denote another reparametrization of 6 4 such that

1 N

N T T
1 - .. .
N E E Pt (yit —WﬁaA) =N E E P (8it +ri — Wi 8a — wzbt‘gb)

i=lt=l1 i=lt=l1
h aad 1 -ry] b Wb/B Wb -1 Wb/B Wa d b Wb/B Wb/ _]/2 ~b
Where Wiy = N | Wir = Wir \"Ma PN Wy A PNWy (andWy = 1w BNy Wit
Then, we have §, = \/N(éil —0¢9,) and

_1/

. 12 /. 2 e
8 = [whBnwh'| T (85— 0by) + [WhBywi | Wi By WY (8% - 04,)

where (0?4, 93) is defined similarly. Also, note that <§a is a subvector of §.

Lemma C.1.5 Assume Assumption 1-5, 7 and 8. Then, for any finite constant M; and M>,

N
sup Z Ew |:Q~l (Sa,ga,cgb)] — % I:SZZKNSCZ _g; KNga:| (1+0(1)
”8"_‘§a”fMl»||5b||§M2m i=1

is 0p (1) where

T
0i (Sa,Sa,Sb) = Z[pr(Sit +ri — W84 — lbf’ﬁb) — pe(eir +ri — W84 — 113?;517)]
=1

= _ ..a/ ..a/ ..a/ /
Wu = (Wn"“ Wi, ’WNT)
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Proof. Note that vav,,gH = 0p (N_l/qu) is implied by Lemma C.1.1 (i), and |w;;8| =

0 (N_l/qu> by construction. Similarly, we have H i"vftga = 0p (N_l/qu> and H\"ifft&, ” =

Op (N -1/ 2q N) . Then, applying Knight’s identity,

5 01 ()

N
Y Ewloc(eir + ri — W 8a — Wp8p) — pr(eir + ri — W84 —00,8,)]

M=

1

~.

i=lt=1
Y ¥ SatipSyr;
DM I (Fit (8) = Fir (0)) ds
21121 ) a sy
1 T . b 2 w3 b 2
=3 Z Z fit (0) |:(Wit8a + W7, 8 — r,') — (wit8a + W78 — ri) ] (I+o0p (1))
i=lt=1
(N ) )
=522 fit(0) | 6¥80)% — (§4,80)7 + 2], 85 — )¢, 80 — §a) | (14 05 (1)

i=1

N
Il
_

N T
kA o055 s

i=1t=1

N =

Note that

N T .
DO fi O riw,(8a —8a)

i=1t=1

N T
1 ) - . _
Wi > Z i (0)r; [ 4 — (wh'Bywy) Wfl’/BNW‘A} 8a—382)
i=1t=1

—1 - . .
and that T[W (W/}f’BNWf) Wﬁ’BNng] = j_ﬁA?t + 0p (1) where A?, denotes the

population projection error. A?t is well-defined by Assumption 5. To show

sup — ZZﬁ, ) ;W (84 — 84) = 0p (1)

HSC‘_SQHSMI’“5b||§M2\/q_\/_z—lt—1

, note that by Markov inequality, we have

. o 2
o [Jl_ﬁ Sis et i O)ri A (8o — Sa)]

P Zan(om AL@Ba—8a)| =2 < %

l—lt—l
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2
N
E [\/Lﬁ Z > fir 0) W, (80 — Sa)}

| NT ) LN ) 2
—v \/—NZZﬁ;(O)riv‘v?I(aa—aa) +|E WZZﬁt(O)riW?t(Sa—Sa)

i=lt=1

Vv

N
Il
—_

1 N T .
4 WZZﬁt<0)riW?t(sa—sa>

NE

fir (0) ”i"’i’?[ (8q — ga)i|

IA
A

]~
<

it (0) iy (80— §o)

N
Il
—_

r ~ 12
[ fis )i, 80 — §0)

A

@)
]~

o

N
Il
—_

[ - N 2
[ fic (0¥, (8 = 82)| " (sup Iy

A
A

(1~
oy

N
Il
—_

¥

0,

The second part:

N T T
{ ZZ i1 (0) ry¥ [(sa—Sa)} = VN Y E [ fir 0 ry, (80— 8a) |
=11=1 t=1

a\~

Jit (0) riW?[ (8q — ga)

T
<VN> E
=1

fit (0) W, (84 — 8a)

T
< «/Nsup|r,-|ZE
t=1
Hence the result. m

Lemma C.1.6 Assume Assumption 1-5, 7 and 8. Then, for any positive constant L,

N
gy’ sup Y Di(8ap. /IN)| = 0p (1)

18aplI=L |i=1
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where

T

Qi (qn) =Y pe(eir + ri — qn W84 — qnDY;6p)
t=1

Di(6,qn) = Qi (gn) — Qi (0) — Ey [Q; (gn) — Qi (0)]

+4gn (W?taa + wbgb) Ve (&ir)

Proof. It suffices to show for all ¢ > 0,

N

Plgy' sup |> Di@up.Lyan)|>e]| =0
184pI=1 |i=1

First, consider a constant 1 such that
wa b —1/2 1/2
max H (Wit’wit)H <uoN qyn -

Partition B ={§ : ||§|| < 1} into M disjoint sets By,---, Bys,, with diameter less than my =

N

gn+1
m where My < C (%ﬁ) N .Letd,, = (dﬁl,d,[fl) € By, for1 <m < My . Then
1

N
P|qy' sup > Di@ap. L/aN)| > €

SabGB i=1
My N
<> Play' swp D DiGup.L/qn)| > ¢
m=1 8ap€Bm |i=1

SN, Didm, LW

My
m=1 +3 Su% ’ZiZI Di(‘sab’L\/QN)—Zizl Di(dm,L,/qN)
ab€Pm

€N
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Since ul [U < 0] = %u — % |u| , we can write

N N
sup | Y DiBgp. L/gn) — Y _ Di(dm. L/GN)

Sap€Bm |i=1 i=1
N T

=, s 130305

8,p€Bm |i=1,=1

AT

i=1lt=1

gir — Wi, 8a L JqN — ’le[(sbL\/QN +ri

— leir + ril]

Eit — ‘.’i’?tsaL«/QN — Ibibt(SbL./qN + 7

— |ejr + ”i|]

N T
+ Z Z LVan (W?t‘sa + ’bzbz‘sb) Ve (i)

i=lt=1

N T
1 . .
=0 (e — WL vaw — b vaw +

i=1r=1

+§:XT:—EU)[

i=lt=1

N T
- Z ZL\/WG&?M% + wzbtdl?fl) Ve (i)

i=lt=1

— leir + ”i|]

\S}

—

eir —Whd L Jqn — w2 db L Jqn + ri

— leir + ril]

[\

< 2NLmqu,1/2 max H (\'i'?l, wlbt) H

< 2a1NLm0q;[1/2\/qN/N =201 LN Nmgy = ¢/2

Now, it suffices to show

MN N
Y P> Didm. Lyan)|>eqn/2| =0
m=1

i=l1

Bernstein’s inequality will be used. To evaluate the maximum, note

max |Di(dm., L/qn)|

i — Wi 8aLJgN — 113?1513L«/6]N + 7

§mialx‘ — |eir + 1

+ max )L./qN (W?,SQL«/QN + w?KSbL«/CIN) (4 (Sit)‘

<2L./qn max H (wfl,wlbt)H < CqNN_l/2
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To evaluate an upper bound of the variance, first note that, by Knight’s identity,

0i (LVaN) = 0i (0) + L/an (W80 + i)6,) ¥ (eir)
— L Jqn (i"V?ISa + wgab) [ (siy + 1 <0)— I (g, < 0)]

Ly (W4, 8a-+isf, 6 )
—I—/ [I (gjy +1ri <s)—1 (g —ri <0)]ds
0

= 11+V12

Then, the second order conditional moments can be bounded as

N N
2
Z Ey I:Vlzl:l = Z Ew |:QNL2 (W?t(ga + lf)l-bt(gb> |l (ejr +1ri <0)—1 (g < 0)|]
i=l1 i=l1
N
< 2L2qN ZEw [(max H (wlt,w”>H) I(0<|ejt| < |r,|)]
1 il qN
< CqyN~ Z | |f,t(s>ds < Cayy/ -y
i I

=1

and

FL wé 8a+w 3
< CqyN~ 1/22/ B e 5y~ o s

i=1
W 8a+w 8)

< CgyN~ 1/22/ it

i=1

(fir @ +0 (V) (s + 0 (s?)) ds

N N
2
< CA N2\ 8,3 fir )80 + Y fir ) (5,8) | (140 (1)
i=1 i=1
< Cqy N2 (1 +o(D)

Since bounds do not depend on w,we have

N
> Vary (Di(dm.LJqn)) < Cq;zv\/qWN

i=1
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Then, Bernstein’s inequality implies

MN N
D P D Dildm. LVan/N)| > qne/2
m=1

i=1

( —quvez/4

My

<2 E ex

I P Ca2 JIN & Ceqny N—1/2
m=1 \ dnv\V N tCedn

M
N N N
§2Zexp —C.[— | =2Myexp | -C,[—
— qNn dN
m=1
| N
§Cexp(C(qN+1)logN—C q—)—)O
N

Lemma C.1.7 Assume Assumption 1-5, 7 and 8. Then, V7 > 0, there exists an L > 0 such that

P ||8m”f qNIZ(Qz VAN) = Qi (0) > 0] = 1—7
abll=L i=1

Proof. Consider

ay' Z(Ql ~0;(0) =gy ZD Bab. VAN) + 4y ZEw Qi (Van) — Qi (0)]

i=1 i=1 i=1

N
—ay? Y (W8a + 085 ) e (ein)

i=l1

= GN1+ G2 + G

By Lemma C.1.6, we have  sup |G| = 0p (1) . Also, note that E [G 3] = 0 and that
18apll=L

E [G]ZW] < Cqy'E [sg\'fV;WaSa + 812,%/%} =0 (61;,1 ||8ab||2)

123



Thus, Gy3 = O)p (q&l/z ||5ab||) . By applying Knight’s identity,

N T .. .- b
1 VAN \ Wi 8a+w? 8p )—r;
Gm:—ZZEw/ (¥ [ (51 < 5)— 1 (g1 < O)] ds
i=lt=1 i
N T o van (W 8a+isd ey )i

1
=—ZZ[_ fir (0)sds (1 +0 (1))

IN i 2=
(AL 1 2
— Y e )| saw (W0 85)” = i v (W80 + ) [ 0+ 0 1)

i=1t=1
N T

=Co, [ DD fir W, |84 (14 0(1))

i=1t=1

N T
+C8EY N £ (0) (1 +0(1))

i=1t=1
2 N T
—ay 20D S O (W 8a + 5], )
i=lt=1

= C8,W,ByWad, (1 +0(1)) +C8 (1 +0(1)

T N
4> o (v"v?,sa + a';,.bt&,)

t=1i=1
Note that there exists a constant M such that C8/, W/ By W;8, (1 + 0 (1)) + C(Sl% (I+o0(1)) >

M ||8ab||2. Let Ry = (r,r1.---,ry) € RTN_ Then we have |Ry|| = O (./qN) . By Cauchy-

Schwarz inequality,

N T
—1/2 .. —1/2 ) <
dn / Z Zfiz 0) r; Wi, 8a = qy / 8 W, By Ry
i=1t=1
~1/2 -
<aqy'? [8,W, | 1By Ry
—-1/2 1/2
= 0, (ay'*a)”) 18all = 0p (I8p1D)

Similarly,

N T
—-1/2 . —1/2. .=
an 23D fie O ik 5, = gy 26, Wy By Ry

i=1t=1

~1/2

<ax'? |08 | | BN Ra | = 00 (W)
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Therefore, for L sufficiently large, qx,l ZzNzl (Q; (, /q N) — Qi (0)) > 0 has asymptotically a lower

bound cL2. m

Lemma C.1.8 Assume Assumption 1-5, 7 and 8. Then, for any given positive constant M| and

M,
N

sup ZA(S ,g ,Sb) " (1)
Hsa—gaHSMl,HSb”szm i=1 P d p

where A; (8. 84.8,) = 0184 84,89~ | 0 Ba.8a. 8p)Ixi 2 |+ X1, 54, (80— §a) v (ein)
Proof. By Assumption 4, max ||W;;|| < CITN for some positive constant «1. By Assumption 8
it

(1), max ||r; || < ap 9N for some positive constant ay. It suffices to show for Ve > 0,
i N P

N
P sup ZAi(Sa,ga,Sb) >g|—>0

|8a=8a|| <My 18y ]| <M vy li=1

Let

A“:{SERqN:‘Sa—Sa

< Ml}
AP = {8y e R: |8l < Ma/qn}

We can partition A% (Al into disjoint sets A4, --- A“Da (Al ... Nl’)b ) such that the diameter
N N

of each set does not exceed m; = and the cardinality of partition satisfies D, <

N R
10Tay /Nqgy

N \4IN qN
(CZ#) and D f’v < (%) (For example, by similar argument used in Lemma 5.2

of Vershynin, 2011). Pick arbitrary 812 € Az forl <k < Dj’\, and 82 € A;’ forl <[ < D{f\,. Then

N
P sup ZAi(Sa,ga,Sb) > ¢
|8a=8a | <My 8y ]| <M g7y li=1
DY DY N i N i i
=Y P a(shEs) + s |3 [4i6aFansp) — 4 (85.8.6)) ]| > ¢
k=11=1 i=1 SaeAd 5l Al |i=1
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Since ul [u < 0] = %u — % |u|, we have

Ql (Sa’ga’gb) - Ql (8];’561’82)
T

[Pr (eit - V'i’?tsa - 1blﬁb) — Pt (eit - W?tga - wbgb)]

N
I
—_

[,of (elt —wi 8 — wb8b) (e,t —wi 8a — wbSb)]

1\ . 1 .. .
[(f - E) Wil (513 = Sa) T3 <}8it +ri = Wi 8a — pdp| —

gt +ri — W,[5a wbSb))]

Mﬂ

N
Il
—_

gt +ri — W?ZSIJ - Ibb8ll)‘)

I
M)~

N
Il
_

1
5(8” +r — WltSa wbSb‘
< 2T max ”W”” sup [ 8,—38" ]
bt skeAa sl cAb
a€hp8pEh
Thus
N ~ ~
sup Y [Ai(Sa,Sa, 5,) — A; (s’;, 5 5,1))]
SaeA?, 52@? i=1
T
= sup Z{Qi(sa,ga,ab)—lsw [0:(8a.8a.80) | + D W, (80 = 8a) e (eur)
dely |i=1 t=1

T

— 0:(8.84.8)) + Eu [ 0:(85.84.80)] = D, (85— 8a) v (eun)

t=1

N
> 10 (Bar8a. ) — 01(8%.84.8}) — Eu [ 01848085 — 0: (85, 80.5}) |

i=1

" ZWit (8 = 85) ve i)y
=1

= Ssup
SEAd

< 5N Tmax wa‘t H sup [ 84 8119 H]
it - -
skeAd sl eAl
<5NTay | Wmy = £
N 2
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p4, _pk <
Therefore, now it suffices to show Zkiv] lel\ll Py (‘ZZNZI Aj (8k 3, 82)’ > %) has a vanishing

a’

upper bound that does not depend on (x;, z; ). Berstein’s inequality is used. To evaluate maximum,

using p (u) = (r — %) u+ % |u|, we can write

maxA-(Sk,g,81>
AN

T
= max(Q; (8. 8.8}) — E [ 0 (8% 8a. 8} Ixi 2 | + 30 6, (86 =) v (o))
™ =1

T
= m]?)lgz I:,OT (ei, - W?I(YS — Il'}b(gé) — Pz (eit - W?l(sa - ll')b52>:|
l’ 9

~
—_—

T T
— EulY_ [ pr (eir — 4,85 — 08} ) — pe (ere — 9,80 — iopds) |1+ D w4, (80 = &a) v (o)
=1 =
T 1 . (1 k . l XN A . l 1 . q ~ k
:Enka)l( E[eit—wi,%—wbéb‘— eir—WnSa—begb)Jr T_E W, (sa_ga)]
=1
T |
— Ey Z 5[ it — W?ﬁg - wbSé‘ — leir — W84 — u)b(Sé‘ + (r — 5) we (3a _ 8];)]
=1

T
+ Z"’i’?t (8a - ga) Ve (&ir)

t=1

8, — 8k

<c.JiN
- N

< 37max [, | max
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To evaluate variance, applying Knight’s identity, we have

T
0: (8. 8a.8) + Y W, (88 —8a) v (o)

t=1
T
= Z [pf (e,-t —\'fV?ISI(j — ﬁ)bSé) (elt —wi Sa — wbSb)] Zw” ( 8a) Ve (&it)
t=1 =1
4 8K +ioy, 6 —r;
= - Dwn N8y — )V (ei) + Z I (eir < 1) — I(eir < 0)]d1
t=1
T Wa 5a+wb81 —r;
t b 1
3 B+ ) — Ve (o) — Z / ! [ i < 1)~ L(err < O)dr
t—l
- Zv"v?t (85 —8a) e (ein)
t=1

T wé 3k+wb5
= / o [1 (8ir <t)—I(gj; < 0)]dt
121 W Batig 8y —r;

Thus,

A (8’;,§a,3§))

T
t=1
T el 8K iyl —r; T
itaTWhopi ) B
= [v“va 5o vinsl [ (sir < 1) = I(sir < O)ldt — ) WY, (8’5 - Sa) Ve (gir)
1=1"Wi0aTWpop=Ti =1
T 8K iy sl T
t2aTVbop i ) B
el 3 1 e < )= Ty < Ot = 58, (85 =) v )
L PR
t=1""it bop—Ti -1
T ~
+ wat (85 - Sa) Vr (&ir)
t=1

T pwd 8K+l —r;
[I (eir <1t) — I(gjy < 0)]dt

= v"vgltéambsl —r;

— Ey T (e < 1)~ Teie <O | + B | 32 (85— 8) v (i)

T ksl T
/ lt& +wb8b
. ol
W 8atiydy—r; =1

=1
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And it implies
N ~
> Var (Ai (s’g,sa,a’,@) |x,-,z,-)
i=1

N T ol 8K iy 8 —r;
=Y E | (X[ e <0 - 1 < 0l
i=1 =1 Wi18“+wb8b_"i

a+wb8
< Z T max ‘Wlt Sk
l'_ lt 8a+U)b8 —V

< c\/WZan(O) (( Wl 8k +wb8b—r,)2— (¥¢,8 —|—11}b8119—r,')2) (140(1)

i=1t=1

[Fiz (1) — Fir (0)]dt

<C %Nmo(l))

by similar argument as in Lemma C.1.2. Then, by Bernstein’s inequality and Assumption 5,

p4, Dk, N
~ e

ZZPw Y4 (5’;,5,5,@) >
k=11=1 i=l1

Df, D 2 Df D
< Zexp i /4 < Zexp (—C i)

k=11=1 CyW+ecy/ | (=1i= N

N /

<C (C NqN)qN (C«/ﬁ N) N exp (—C a) < Cexp (C (qN log N — a)) -0

]

Lemma C.1.9 (Asymptotic Equivalence with Bahadur Representation) Assume Assumption 1-5,

7 and 8. Then, we have ga—ga =o0p(1).

Proof. Note that Z 110 (,/qNSa, ,/qNSb) — Q; (0,0)] < 0 where (,/qNSa, ,/qNSb) co-

incides with oracle estimator Sab- Then, Lemma C.1.7 implies § ab ‘ = 0, (4 N)- Now, it
suffices to show that for any positive constants M| and M>,
N
inf Z (sa,sa,sb) 0| =1

|8a—8a =My 16y | <Mr ya i1
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since, we have ZlN:l Qi (&lggb) <0. Let B= {Sab 8, — 8,

< My, |8l < Maan |
By Lemma C.1.8,

sup

SabEB i=1 =1

N T
> {ina,&a,sb) — E[0iGa-8a- 8.2 | + Y W, (80— 8a) v (sn)} ‘ =0y (1)

Then by Lemma C.1.5,

N
-~ ~ 1 . ~) e o~
sup |3 | Gitbadiund) — 5 [60Kndo =8, Rnda] A v o) A
$apeB|i=1
+ Z "’i’?[ (Sa - ga) /2% (Eit)]
=1
=0p (1)
And since
§a = (W,ByWa) ™ W, ¥ (¢)
= Ky W, ¥, (¢)
we have
N T . N N T
SO (80— 8a) v i) = (80— 8a) 20 20 WY (eir)
i=l1=1 i=1r=1
~ \/ ..
_ (sa - sa) W W, (e) (A.8)
~ ! .. ~
— (sa — sa) Ky8, (A.9)

Combining (A.7) and (A.9), we have

N ~ 1 =/ = =\ ~
Z [Qi(aa,aa,gb) ) [SZIKN‘ga -8, KNSa} + (Sa - Sa) KNSa]
i=1

sup
SabGB

which implies

N

Z [Qi(sa,ga,sb) - % (3a - ga)/KN <8a — ga)] =o0p(1)

i=1

sup
Sab eB
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By assumption 4, for any H (8a — Sa) ‘ > M,

1 ~ \/ . ~
for some positive C. m
Since the partition (zblbt , W) is arbitrary, Lemma C.1.9 implies Hg - 3” =o0p(1).
1) convergence rate of ,BA : Consider the Bahadur representation § in Lemma C.1.1. Let § 1 be

the subvector of the first K4 components in §. Then, by paritioned matrix formula, we can write

~ —1
§ = W(W’BNW—W’BNHA (1, By 4) " l'I’ABNW)

x [W/\Ilf (e) — W BNTI4 (IU, By Tl 4) " I W, (8)]
—1

1 1 1 -1
= (NW/BNW_ ﬁW/BNHA (NHABNHA) NH;BNW)

(@)

1 1 1 -1
X | —W'W, (¢) — —W' By 1T (—H/B n) —, ¥, (s
|:\/N r() N N4 N APNIL A \/N A r()

~ ~\—1
Since part (a) is upper-left submatrix of (%W/ B NW) , its maximum eigenvalue is bouned

above by an argument used in Lemma C.1.1. Then, by Lemma C.1.10,

2

-1
2

~

1
3

1 1 -1
<[l =WByW—- —WByII,|—01,ByII —,ByW
= (N N N N A(N APN A) N APN )

1
WL

1 1 -1
Wiy, (e) — =W By, _HC4BNHA —H%‘I’T (e)
N N VN

| -
<C —W/[I 7 — ByM 4 (I, ByT 4 H/]\Il ¢
7N N NI (I ByIT )" T, (W, (e)

—WH*/

=C ‘(\/LNA +op (1)) v, (¢)

=0,(N712). m

= Op (1)

Thus H/? -8B,

2) convergence rate of 2

131



By Lemma C.1.1 and C.1.9,
ﬁA - 130

1
174 = Voul < = H—
);A_}’OA VN

§

()

And, by Assumption 8, we have

N N
1 . 1 n
v > 18 (i zi) — g0 (xi.2)]* = N Y (wiaP 4 — 8o (xi.2))’
i=1 i=1

N N
1 N 1
v Y @A Pa—von) + N Y (TiaVos — 8o (xi,2:))

< %Z(nm Pa—von)+0 (qWN)

[A

Now, it suffices to show Y (mjq (¥ 4 — yOA))2 = Op (qn) . First note that

Y @iaGa—vo) =TsGa—vo0) T4 P a—¥o4)

L
N2 s—2o4)

[

1 _ 3 (e
= N2 (Ga—von) (NI )2 (NI L)

Then, since we have

1
—11-[/ 1-[ QN% A _
NI, Iy Ya—7o4)

=

(N_ll'I’Al'[A)%

L
HNz Ya4—Voa)

L
< Amax (N_IHAHA) HN2 Ya—2oa)

= 0p (Van)

The result follows. W

1 1
Lemma C.1.10 Assume Assumption 1-5, 7 and 8. Then (i) N 2W* = N 2A + o0, (1) (ii)
N=IW*ByW* = K% + o) (1) where W* = [INT — T, (1, ByT4)~" H/ABN]W and
_ 1

Proof. (i) Let P = M 4 (I, By 4) ' I/, By We can write

1 1 1 1
N IW*=N2[W—PW]=N 2A + N 2(H — PW)
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Note that

2

HN‘% (H—PW)| =N ""Amax (H— PW) (H — PW))

<N7ltr (H—- PW) (H — PW))
N T Ki+T-1

=N"'HY Y [hZ (xi.2) — Iy (Xi,Zi)]z =o0p (1)

i=lt=1 k=1
where the last equality follows from Assumption 8.

(ii) Note

1 / 1
N-IW* By W* = (N‘ZA +op (1)) By (N‘ZA +op (1)) = N"'A’ByA 40, (1)

— ~ d
Lemma C.1.11 Assume Assumption 1-5, 7 and 8. Then, 27\, 1/281 — N (0,1)

Proof. We can write

§1 = VN (W ByW*) ™ W¥W, (e)

1 1 !
= (K +0p () (V728 4+ 873 (= PW)) i ()
Note that a similar argument used in Lemma C.1.10 yields
-1 1 ! N 1 ,
(N 2A+ N 2(H—PW)) V. (e)=N 2AV . (e)+ N 2(H—-PW) ¥, (e)

1
=N 2A'W, (¢) +0p (1)

so that we have
~ 1.1
1= (KY) ' NT2A'Y, (6) + 0, (1)

ST2RAINTIAL Y (sig). Then,

1

Define D*

Nit = >

N T

Y3 DY, = =5 PR INT2AY, (o)
i=1r=1
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Similarly as in Lemma C.1.1, note £ [D;‘;,”] =0and E [Zt—l DN”] = 0. Also,

N T T !
YOE 2PN || 2o Phvi
i=1 =1 =1
N T T !

=Y B[ o KN AL v 0 | | 3 = RN I AL v i)

=1 t=1

N T T
1 2 — 1/2
ol NS ALy i) | [ D ve i A | | K25
i=1 \s=1 =1
*—1/2 1 1w*x—1/27
VR ST S B
To check Lindeberg-Feller condition, fix ¢ > 0.
N T 2 1 N T 4
E D% < — D%,
N — N
L E N X P (|r g o) | = 32 2 | 2 P

=1
2

1 w*— 1/2 *— 1/2 x—1
< 2NZZE ZAnKN Sy Ky~ ZA
i=1 =1 t=1

4
T
*—1/2%—1 /
= ZNZZ ZN K*N ZA”
i=1 =1
T 4
1
’ _ _
= 2N22 2. Al _OP(N)—OP(I)
i=1 t=1
]
Proof of Theorem 3.4.8

The penalized objective function in (3.33) can be expressed as a difference of two convex functions

k(B,y)and [ (B,y)

1 N T PN
~ 22 pe Gie=wiB—m iz y) + D pa(|vs]) =k (B v) =1 By )

i=1t=1 j=1
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where

1 N T PN

kKBsy) =52 ) pe i —WirB—m (i 2)y) +4 ) |v)]

i=1t=1 j=1
PN

LBy =Y L(7))

j=1
for some L (-). The function L (y j) for SCAD and MCP is defined as

(a+1)A2

2 2
yZ 42X |y + A
S sl el (- P 1 -

L) ==—=a1

witha > 2, and

2
Yi a\?
L(yj)=5100= |y <ai] + (A\Vj\——z )IUM > a]

with (a > 1), respectively. Subdifferential of f at 1, is defined to be a set
of (no) =4t f () = f (o) + (n—10)"t. Vnj

Then d/, the subdifferential of /, is merely a regular derivative

0 forl <j <Ky

0 By) = (1o gy ) 1y = BB it <) <K
where
0 0=yl <A
T =y ) syl <
Asgn (vj) vj| > aA
for SCAD, and
B,y Moo o<y <ax
Wi | asen () il za

for MCP. Before we derive the subdifferential of k, first consider the subgradient of the unpenalized

objective function

N T

1

5 2 D P is = Wit = (%i.7:) ¥).
i=1t=1
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Forl < j < Ky,
1N T

sj (Byy) = —fﬁzzﬁ)m‘l it =wWirB—m (x;.2;) y > 0]

i=lt=1

N T N T
1 N 1
_(T_l)ﬁzzwitjl[yw_Witﬂ—ﬂ(xi,li)}’ <O]_N22witjait

i=li=1 i=li=l
and for K4 +1<j < K4+ pn.,

N T
1 -

Sj (ﬂ,)’)=—fﬁzg Wigj 1 [yie — Wit B — 7 (%, 2;) y > 0]
i=lt=lI

1 N T 1 N T
_(T_l)ﬁzzwitjl[yit_Witﬂ_”(xivzi)y<0]_szu~)itjait

i=lt=1 i=1t=1

where a;; = 0if y;; —w;j; B —m (X;,2z;) y # 0,a;; € [t — 1, ] otherwise. The subgradient of k

conincides with s (B, y) with additional term /; introduced for K4 + 1 < j < K4 + pn.

ok (B, y) = {(/q,--- ,KK4+pN) kK =s8;(Byy)if1 < j <Ky, s; (B,y) +1; otherwise}

where [; = sgn (yj_K4) ifyj_xk, # 0and [; € [-1,1] otherwise. Let (ﬁ, }7) be the oracle

estimator. Define /C be a collection of vector k = (/q,--- KK+ p N) such that
0 ifj=1,---,Ky
Kj = )Lsgn()?j_l(4) iftj=Kqg+1,---,Kg+gn

sj(B.7) +M; i) =Kitqy+1- Ko+ py
Then, Lemma C.1.12 and Lemma C.1.13 [Lemma C.1.16] below deliver the result. First note
that, by Lemma C.1.13 [Lemma C.1.16], it is implied that Nlim P (IC C ok (ﬁ R )7)) = 1 since
—>00
[j =sgn (ﬁj_K4) forj = K4+41,---, K44qyn.Now, considerapoint (B, y) € B ((ﬁ, )7) , %) .

By Lemma C.1.12, it suffices to show that there exists k™ € K such that P (¢* € 9l (B, y)) — 1

ie.
: aByy) .
| P =2 =1, Kq| =1 A.10
Nl—r>noo <KJ 3,3]' / 4 ( )
al (B,
tim P (= 2LBY) g Kty = (A.11)
N—o00 J 3)/]'_[(4
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Since % —0for j = 1,---, K4, (A.10) holds by definition of K. To show (A.11): For both
J

SCAD and MCP penalty function, J(/i’l);l = Asgn (y i—K 4) for ‘y i—K 4‘ > aA (the case with
)yj_K4‘ = aA can be easily checked.). By Lemma C.1.13 [Lemma C.1.16], it is implied that

min }y-|> min |y|— max |)? —y}> a+ )k—&:ak
1<j=qy " Tasjzan U 1si=ay / 2

with probability approaching one. Thus, lim P (aal(ﬂ»l};) = Asgn (y] K 4>) = 1for j =
4

N—o0

Ky+1,--- , Kg+ py.For K4 +1=<j < K4+ qp, it suffices to show

lim P (Asgn ()/J K4) = Asgn (yj_K4)) =1

N—o0

i\ =

since K;‘ = Asgn ()7]-_1(4) for K4 +1 < j < K4 + gn. From the fact that H)?J — Yo -

0p (N—l/zq]lv/z) =o0(A)forl < j < gy where Yo; > 0. and that H)?j ~v; H < %, it is implied

thaty; g , and Vi—K, have the same sign for K4 + 1 < j < K4+ g with probability tending to

one. For Ky +gqy +1 < j < K4+ py,wehavep; g 4= 0 by the definition of oracle estimator.

Then,
A A A A,
Vimka| = [Pimky = Pimka + [Pi-ka] = ik = 9i-ki| < 5
For }V | <A, M = 0 for SCAD and M yJ for MCP, which implies al(ﬂ”’) <A,

Ki+gn+1 < j < K4+ pp, forboth penalty functions. Also, by Lemma C.1.13 [Lemma C.1.16],
itis implied that ‘sj (ﬁ, )7)‘ < %Withprobability tending toone for Ky +qny+1 < j < K4+ pn.

Therefore, there exists l;‘ € [—1, 1] such that

A A al 9 .
lim P sj(p,y)+/\l’!‘=ﬂ,1=K4+qN+1,~',K4+pzv = 1.
N—o00 J ayj—K4

Take K;'.‘ =5 (ﬁ , )7) + )Ll;‘ with such l;’-‘. Then the result follows. W

Lemma C.1.12 (Tao and An, 1997) Consider the function k () — [ (1) where both k and [ are
convex with subdifferential functions 0k () and d/ (n) . Let n* be a point that has neighborhood U

such that 9/ (n) N ok (n*) # ¢, Vn € U Ndom (k). Then n* is a local minimizer of k (n) — 1 ().
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Lemma C.1.13 Assume Assumption 1-6 and 9. Suppose A = o (N_(I_C4)/2> , N_l/ijl\,/2 =
o(A),andlog(py) =0 (N )Lz) . Let (,BA , }7) be the oracle estimator. Then, there exists a;"t with

a* =0if yj; —wj;f—m (Xj,2;) y # 0 and al € [1 — 7, 7] otherwise, such that, for s; (B, »)

t

with a;; = a,, with probability approaching one

it’

s (ﬁ,ﬁ)=0,j=1,---,K4+qN (A.12)

\y]}>(a+ ))k j = “ N (A.13)
51 (8:7)

Proof. Define D = {(z’, t): yir — wi,ﬁ —TA(X,2]) P4 = O} . To show (A.12), note that, with

<cA,Vec>0, j=Kq4+gny +1,---, K4+ pN (A.14)

probability tending to one, (y;;,W;j;) is in general position i.e. |D| = K4 + gn since yj;
has a continuous density (2.2.2., Koenker, 2005). Thus, there exists {a},} with (K4 +qy)
nonzero elements such that (A.12) holds. (Alternatively, optimality of (ﬁ Y A) implies Og a+pyN €
A X p(ir —wWirB—m 4 (xi,2) ¥ 4)) at (ﬁA )7) so that such {a?‘t} exist.) To show (A.13),

note that

SE AN Mt M

By Assumption 9, | min |y, | = CsN~ (1-C4)/2 Then, by Lemma C.1.1 and Lemma C.1.4,
<J=4N

it is implied that | Jnax 17 = vo0j| = Op (‘/QTN) =0, (N—(l—c4)/2) . The result follows
<J/=4nN

from A = o (N (1- C4)/2) . To show (A.14), define J3 = {j:Kq+qy +1<j < Kg+ py}.
Then, for j € J3, by definition of s (ﬁ, )9)

1 (4.9
1

N T
:%ZZJ)U( [yit—WitB—nA(Xi,zi)}?A50}—1)—— Z Wi (af, + (1 —1))

(i,t)eD

where a7, satisfies the given condition. Thus, % > (i.0)eD Witj (af, +(1—1)) = 0p (‘ITN) =
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0p (1) since |D|

lim P

N—o0

Define

max
j€J3

= K4 + gy with probability tending to one. It will be shown that

Ii; (0) =1 [yit —V~V£0 < 0]

Pit (8) = P (yir —Wj}0 < 0}W}})

Hi  (0) =1;;(0) —1;; (8,) —

Then, note

+ P

+P

max
JE€J3

ax

310 4- 00A||<C\/

ax

7
64— 00A||<C\/ EhS

£
( m
K]

m

aX
\] 16 4— 00A||<C\/7

1 L2 A
ZZ’DW (it (04) —1is (0o4)| >
N= 3

ZIH

2|~

1=

nen

—
~

-

M)~

—_—

—

Pis (0) + Pi; (80)

- A
Witj (Iir (004) —7)| > 05

2

- A
Wi (Hir (0 4))| > )

- A
Wij (Pir (0 4) — Pit (054))| > €7
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%ZZ’DU( [yit—witﬁ_”A(Xi’Zi)J;A50]—‘5) >cA] =0
i=1t=1

+op (1)

+op (1)



where the second inequality follows by Lemma C.1.14. Here, note that

N T
1
max Zzwzt](Plt(oA)_ Pi; (64)
"By - 00A||<c\/ VisiE
1 N T
= max Zzwitj(Fit (VNV;% (04— 90A)> — Fi; (0)

N -
o4 ooA||<c\/‘”v i=1¢=1

<C w04 00A)‘

104~ 00A||<c\/"N i=li=l

| [
<C sup \/kmax (NWAWQ) 104—0o4ll =<C CIWN =0(A)

q
10 4=0,41I=C /2

Thus, now it suffices to show

1 -
Pl max sup =3 Y i (Lir (0.4) = Tic (Boa) = Pir (.4) + Pir (B04)| > cA/4
&7 4eLy |V TS

tends to 0 as N goes to infinity where Ly = {014 04 —0o4ll =C qTN} . It is implied by
Lemma C.1.15. m

Lemma C.1.14 Assume Assumption 1-6. Suppose log (py) = o (N)Lz) and NA2 — oco. Then

1 Lz )
P | max |— Wi (L;4 (0 —17)| >c=]—0.
jels N;; l[](l[( 0A) ) )

Proof. The argument is similar to Wang, Wu, Li (2012). Note that, for some constant C , the
random variable % Zthl Wi¢jlir (0,4) is independent across i, bounded by the interval [0, 1].

Then, by Hoeffding’s inequality, it is implied

NI A
N D> Wi Uir (0o4) =) > 5 | =exp (—CNAZ)

i=1r=1
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so that
1 Lz )
P | max |— Wi (L;4 (0 —7)| >c—
jels N;; ltj(lt( 0A) ) 5
<2pnexp (—CN)Lz)

= 2exp (logpN — CN)tz) —

Lemma C.1.15 Assume Assumption 1-6 and 9. Suppose A = o (N_(I_C4)/2) , N_l/zq]lv/2 =
0(A),andlog(py) =0 (N )Lz) . Then, for any given positive constant C,

N T

lim P | max s Wi (L (0 4) — 1;4 (0 — P;i; (0 4) + Pi; (0 >NA|l=0
N o0 JEJEO;SB;; ll](ll( 4) it (004) it (0 4) it (054))

where B = %0A:||0A—00A|| <C ‘fTN}

Proof. 3 can be covered with a net of balls with radius C N N with cardinality A} = |B| <

CN24N . Denote the N} balls centered at ¢,, by b (¢,,) form = 1,--- , N.

N T
P DN Wi i 04) — 1is (Bo4) — Pig (0.4) + Pis (B54))| > NA
||0A 00A||<c\/"N ==l
N T

< Z P 1D WirjUir (tm) = Tit Bo4) = Pit (tm) + Piz (04))| > NA/2

i=lt=1

n % p sup )Z =1 Zt—l wlt] (1iz <0A) — Li¢ (tm) > NAJ2
m=1 H,;A_,m ch\/?vis —Pi; (0A) + Pi (tm))‘
= INj1 + Inj2.

To evaluate Iy, define v;; = Sty Wiej (i (tm) — iz (04) — Piy (tm) + Pi (8,54)). which

are bounded, independent mean zero random variables. First, note that I;; (¢,,) — I;; (0,4) is
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nonzero only if (/;; (t,;) = 1 and [;; (0,4) = 0) or ({;; (t,,) = 0 and I;; (0,4) = 1), which

implies |e;;| < ‘Vvﬁ (tm — 00A)) a.s. where e;; = y;; —WﬁOOA. Then,

T
V (vij) £C DV (Wirj Uit (tm) = Ii (004) = Piy (tm) + Piz (054)))

~
—_—

[A
@)
MH

E (8 Ui (tm) = Iir Bon))

N
Il
—_

A
@
Mﬂ

P ([[it (tm) — Iir (0,4)]* = 1)

N
Il
—_

[A
@
M)~

P (Jeiel < |87} (tm = 0,0)))

N
Il
—_

| /\

i E ([Fir (|85} = 000)) = Fir (= W71 tm = 000)))])

T
CE (Z W (e 00A)\)
=1

Therefore,

i=1

N N T
ZV(vij)<CE(ZZ1v~vﬁ<tmooA)) < CNE J Zz(wﬁ(tm—ooA))z
<CNE (\/ max (%WAWA)) [tm — 004l = CVNgN

Applying Bernstein’s inequality,

N212%/8
CJ/Ngy +CNA

To evaluate 1y j2, note that

Inj1 < Njexp (— ) <Niexp(—=CNA) <exp(Cqgnlog(N)—CN2A)

L 8.) =1 vie = %404 0] =1 [yig = Whtn < Wi 04— tm)]

142



and that an indicator function is increasing. Define I;; (0,¢e) = 1 (yi ;= Wﬁb’ < e) and P;; (0,e) =

P (J’it - WéO < elﬁvﬁ) . Then, we have

N T
sup D0 Wi Uiy (5/1) — iy (tm) — Piy (5/1) + Pit (tm))
~ —tmufc\/% i=lt=1

N T _
i 5 ‘IN . /CIN
i=lt=1 -
N T
— 7. I ~ A C 4N I P: ~ A C 4N P
_ZZ}wll]| it \tm, |Wi; F —Lis (tm) — Pig | tm. Wi N5 + Pit (tm)
i=lt=1

_I_
M=
Mﬂ
B
S
—
~
o
3
T
=h

! )c\/%) — Py (tm,— “Wﬁ

~
—_—
~

—_—

)]

Note that
Al qN qN
~ A ~ A
ZZ!wlU‘[ ( "Wit ﬁ)_Pﬁ(’m’_“Wiz C ﬁ)]
i=1tr=1
N T

ZZZW&U‘[ it (W” (tm — 6]_1\;)
i=1t= N

%)]

N T
R B e
1=1t=

A

A ~
Wi (Em —004) — ‘Wit

Hence, for all N sufficiently large, Iy;2 < Zjn\{l:l P (ZINZI Ui > NTA) where

C ) =ttty = it (1 [] € [ 225) + i |

Since «,; are independent bounded random variables with mean zero, similarly as in the evaluation

~ A

T
Ui = Z Wi} | [ln (tm, ‘ Wi,
=1

of Iy j1, We can show that

V(@mi) <C i E (\/qzv/N5 HWﬁ

=1

) <CqyN~/?
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Applying Bernstein’s inequality,

N2)2/32
P ami > — | < Njexp | —
Z l; = = p( CqNN—3/2+CNA)

< Njexp(—=CN)
<Cexp(CgnlogN —CNQA)
Therefore, we have
> (Inj1 + Inj2) < Cexp (log py + Cqy log (N) —CNX) = o (1)
JE€J3
1
since N 2q log N = o (1) is implied by conditions given. Hence the result. m
Lemma C.1.16 Assume Assumption 1-5, and 7-9. Suppose A = o (N_(I_C4)/2> ,N_l/ijl\,/2 =
0(A) and log (py) = o (N )Lz) . Let (ﬂA , )7) be the oracle estimator. Then, there exists a, with

it

= 0if y;; —w;;B —m (x;.2;) ¥y # 0 and a}, € [1 — 7, 7] otherwise, such that, for s5; (8, y)

t

witha;; = a , with probability approaching one

g (ﬁ,f)=o,j:1,---,K4+qN (A15)

\y,}>(a+ ))L j=1,- g5 (A.16)
s (8.9)

Proof. Define D = {(i, t): yir — witﬁ —TA(X,2]) Py = O} . To show (A.15), note that, with

< cA, VC>O,j=K4+qN+1,---,K4+pN (A.17)

probability tending to one, (yj;,W;;) is in general position i.e. |D| = K4 + gy since y;;
has a continuous density (2.2.2., Koenker, 2005). Thus, there exists {a;‘l} with (K4 + gn)
nonzero elements such that (A.12) holds. (Alternatively, optimality of (ﬁ Y A) implies Ok, + p N €
A X p it —wirB—ma(xi.2)) Y 4)) at (ﬁ, )'3) so that such {a* } exist.) To show (A.16),
note that

(i 1pilz ) min o] = max 175 o]

144



By Assumption 9, min |y0]| > CsN™ (1-C4)/2, Then, by Lemma C.1.1 and Lemma C.1.9,

1<] <q
it is implied that max =0 INY) = (N —(1-Cy)/ 2) . The result follows
p 1=)<qy %) = voj p(\/ N) P

from A = 0( —(1- C4)/2) . To show (A.17), define J3 = {j: K4 +qny +1 =< j < K4+ pn}.
Then, for j € J3, by definition of s (/?, ;3),

v (.7)

N T
1 3 . A . )
LSS [ wih - raa0ia =0 )k Y a0 -0)
i=1t=1

(i,t)eD

where a, satisfies the given condition. Thus, % > (i.nep Wirj (af, + (1 =1)) = Op (qTN> =

0p (A) since |D| = K4 + gy with probability tending to one. It will be shown that

N
. 1 _ 5 A
ngnooP ,Héa}_i, ﬁ;_l;_l Witj (1 [yn —WilB—my (X 2) Y4 = 0] - f) >cA] =0

Define
. f— o ~A
Ii; (6) —1[)’lt_wit0 50]
15, = 1[yir — Wit By — g0 (xi,2;) < 0]
Pir (0) = P (yin = Wi} < 0¥,
P =P (J’it —WitBy— &0 (Xi,2;) < OMﬁ)
Then, note
N T
P maxi Zu?[(l[y — W;j ﬂ—n (X;,2;) y <O]—t) > cA
jeJz | N / ' " AT
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< P | max

1 L A
b (1 (é )_1,0) Z
jel3 NZZwlU(” A it >02

I !
+ P | max NZZIDU (18, —7) >3

JEJ3 i=1t=1
A
<P max su Zzwm 11 (0 4) — 1 )>C— +op (1)
75310 4- 00A||<c\/—M N

(

<P|lm

aX
U0 g0, alzc 7 | i1

N T

( 1 . A

max E E wl-,j(Pit(()A)—Pl-ot) >CZ +op (1)
J€ P 1 f—

U100, 77 |V =115

where the second inequality follows by Lemma C.1.17. Here, note that

+ P

N T

1
max ~ 2 D Witj (Pir (8.4) = Pfy)
7B, 00A||<c\/"N ==

N T
1 -
= max I — D> Wi (Fir (Wi (B = B,) —ri) — Fit (0)
J€ F 1 f—
||9A 00A||<C\/ i=li=1
<C —Zquzt(ﬂ Bo)l + Iril)
10.4- 00A||<c\/QN i=ti=l
1 - -
<c s [\/ o (o WaW, ) 10,1~ 8,41+ sup ]
1

q
16 4=804ll=C /2

Thus, now it suffices to show

N T
1 -
P maX E E witj(lit (OA)—Iiot—Pl’t (oA)+Pi0t) >cA/4

"0 ooA||<c\/‘“v i=l=1

tends to 0 as N goes to infinity, which is implied by Lemma C.1.18. m
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Lemma C.1.17 Assume Assumption 1-5, and 7-9. Suppose log (py) = o (N)kz) and NA2 —

oo. Then
1 L& A
P | max ﬁzzw”j(liot_f) > — 0.

Proof. The argument is similar to Wang, Wu, Li (2012). Note that, for some constant C , the
random variable C Zt—l Wit I is independent across i, bounded by the interval [0, 1] . Then, by

Hoeffding’s inequality, it is implied

Z Z wllj > c% <exp (—CN)LZ)

1—11—1

so that
L ) A
P ]rréa}; N;Z;w,,] (15 — 1) > ¢
<2pnexp (—CN/\z)
= 2exp (logpN —CNkz) -0
]

Lemma C.1.18 Assume Assumption 1-5, and 7-9. Suppose A = o (N_(I_C4)/2) ,N_l/ijl\,/2 =

o(A),andlog(py) =0 (N )LZ) . Then, for any given positive constant C,

lim P max E E Wigj (Iir (0 4) = I, — Piy (0 4) + P{))| > NA| =0
N—o0 JjE€ IN i 1=
||9A 00A||<C\/ i=li=l1

Proof. Let B = {OA 04 —004l < C,/qTN} . B can be covered with a net of balls with radius

C w1th cardinality N7 = |B| < CN 24N . Denote the N balls centered at ¢, = (¢,,1, ¢ m2)
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by b (t;) form=1,--- | Nj.

P Z Z Wigj (Tig (0 4) = If, — Pis (04) + P{})| > NA
||0A 00A||<c\/QN i=li=l1
N T
< Z P> Wi Uis (tm) — If, = Piy (tm) + P5)| > NA/2
i=1t=1
\ ISy Ui (84)
v Wisi (Lt (0.4) = Lis (tm)
i Z P Sup i=1 [ 1 ~ll] 1t it m - NA/2
m=1 HoA_thSC lcjlvﬂs ll( A + ll( m))
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Note that
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Since «,,; are independent bounded random variables with mean zero, similarly as in the evaluation
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1 1
since N 2¢ ]%, log N = o (1) is implied by conditions given. Hence the result. m
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C.2 Appendix: Supplementary Tables

Figure A.1 Pooled Birth Weights
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Table A.1 Estimator performance, DGP 1, 2

7=0.1 =05 =09
Method N 1C Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC -0.0005 0.0217 0.0216 0.0010 0.0356 0.0356 -0.0003 0.0215 0.0215
gMund 300 QBICL -0.0006 0.0216 0.0216 0.0011 0.0357 0.0357 -0.0003 0.0215 0.0215
gMund 300 BIC -0.0006 0.0216 0.0216 0.0011 0.0357 0.0357 -0.0003 0.0215 0.0215
gMund 300 BICL -0.0006 0.0216 0.0216 0.0011 0.0357 0.0357 -0.0003 0.0215 0.0215
gMund 300 AIC1  -0.0000 0.0217 0.0217 0.0019 0.0355 0.0356 -0.0000 0.0213 0.0212
gMund 300 AIC2  -0.0006 0.0216 0.0216 0.0011 0.0358 0.0358 -0.0003 0.0215 0.0215
gMund 1000 QBIC 0.0001 0.0111 0.0111 0.0012 0.0185 0.0186 -0.0000 0.0111 0.0111
gMund 1000 QBICL 0.0001 0.0112 0.0112 0.0011 0.0186 0.0186 -0.0001 0.0111 0.0111
gMund 1000 BIC 0.0001 0.0112 0.0112 0.0011 0.0186 0.0186 -0.0001 0.0111 0.0111
gMund 1000 BICL  0.0001 0.0112 0.0112 0.0011 0.0186 0.0186 -0.0001 0.0111 0.0111
gMund 1000 AIC1 0.0001 0.0112 0.0112 0.0011 0.0183 0.0183 -0.0001 0.0110 0.0110
gMund 1000 AIC2 0.0001 0.0112 0.0112 0.0012 0.0186 0.0186 -0.0001 0.0111 0.0111
gCham 300 QBIC  0.0009 0.0201 0.0201 -0.0005 0.0347 0.0347 0.0010 0.0195 0.0195
gCham 300 QBICL 0.0008 0.0200 0.0200 -0.0008 0.0346 0.0346 0.0009 0.0196 0.0196
gCham 300 BIC 0.0008 0.0200 0.0200 -0.0008 0.0346 0.0346 0.0009 0.0196 0.0196
gCham 300 BICL  0.0008 0.0200 0.0200 -0.0008 0.0346 0.0346 0.0009 0.0196 0.0196
gCham 300 AIC1 0.0010  0.0205 0.0205 -0.0002 0.0346 0.0346 0.0008 0.0191 0.0191
gCham 300 AIC2  0.0008 0.0200 0.0200 -0.0007 0.0346 0.0346 0.0009 0.0196 0.0196
gCham 1000 QBIC 0.0002 0.0110 0.0110 0.0008 0.0196 0.0196 0.0004 0.0115 0.0115
gCham 1000 QBICL 0.0002 0.0110 0.0110 0.0007 0.0196 0.0196 0.0005 0.0116 0.0116
gCham 1000 BIC 0.0002 0.0110 0.0110 0.0007 0.0196 0.0196 0.0005 0.0116 0.0116
gCham 1000 BICL 0.0002 0.0110 0.0110 0.0007 0.0196 0.0196 0.0005 0.0116 0.0116
gCham 1000 AIC1 0.0001  0.0109 0.0109 0.0010 0.0196 0.0196 0.0007 0.0117 0.0117
gCham 1000 AIC2 0.0002 0.0110 0.0110 0.0007 0.0196 0.0196 0.0005 0.0116 0.0116
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Table A.2 Estimator performance, DGP 2, 52

T =0.1 =05 =09
Method N IC Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0105 0.1643 0.1645 -0.0078 0.2587 0.2587 -0.0078 0.1596 0.1597
gMund 300 QBICL 0.0085 0.1642 0.1643 -0.0021 0.2635 0.2634 -0.0063 0.1621 0.1622
gMund 300 BIC 0.0082 0.1638 0.1639 -0.0075 0.2587 0.2587 -0.0065 0.1622 0.1622
gMund 300 BICL 0.0085 0.1642 0.1643 -0.0021 0.2635 0.2634 -0.0063 0.1621 0.1622
gMund 300 AIC1 0.0186 0.1665 0.1674 -0.0041 0.2580 0.2579 -0.0119 0.1598 0.1601
gMund 300 AIC2 0.0119 0.1648 0.1652 -0.0039 0.2579 0.2578 -0.0080 0.1610 0.1612
gMund 1000 QBIC 0.0057 0.0887 0.0889 0.0093 0.1473 0.1476 -0.0054 0.0876 0.0878
gMund 1000 QBICL 0.0045 0.0882 0.0883 0.0101 0.1479 0.1481 -0.0049 0.0857 0.0858
gMund 1000 BIC 0.0045 0.0883 0.0884 0.0091 0.1474 0.1476 -0.0048 0.0856 0.0857
gMund 1000 BICL 0.0045 0.0882 0.0883 0.0101 0.1479 0.1481 -0.0049 0.0857 0.0858
gMund 1000 AICI  0.0081 0.0878 0.0882 0.0080 0.1478 0.1480 -0.0067 0.0878 0.0880
gMund 1000 AIC2 0.0068 0.0895 0.0897 0.0078 0.1477 0.1479 -0.0045 0.0876 0.0876
gCham 300 QBIC 0.0238 0.1623 0.1640 0.0129 0.2653 0.2655 -0.0121 0.1608 0.1612
gCham 300 QBICL 0.0269 0.1639 0.1660 0.0243 0.2830 0.2839 -0.0089 0.1644 0.1646
gCham 300 BIC 0.0266 0.1640 0.1660 0.0135 0.2650 0.2652 -0.0109 0.1622 0.1625
gCham 300 BICL 1.0523 0.4443 1.1421 0.0239 0.2825 0.2834 -0.0036 0.1691 0.1691
gCham 300 AIC1  0.0240 0.1593 0.1610 0.0055 0.2659 0.2658 -0.0201 0.1646 0.1657
gCham 300 AIC2 0.0237 0.1613 0.1629 0.0059 0.2659 0.2658 -0.0143 0.1623 0.1628
gCham 1000 QBIC 0.0004 0.0891 0.0890 -0.0078 0.1433 0.1434 0.0047 0.0865 0.0866
gCham 1000 QBICL 0.0011 0.0886 0.0885 -0.0061 0.1445 0.1446 0.0049 0.0859 0.0860
gCham 1000 BIC 0.0006 0.0886 0.0886 -0.0078 0.1433 0.1434 0.0050 0.0859 0.0860
gCham 1000 BICL 0.0014 0.0886 0.0886 -0.0061 0.1445 0.1446 0.0050 0.0862 0.0863
gCham 1000 AICI 0.0004 0.0878 0.0878 -0.0097 0.1432 0.1435 0.0035 0.0867 0.0867
gCham 1000 AIC2 0.0015 0.0881 0.0880 -0.0098 0.1434 0.1437 0.0040 0.0863 0.0863
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Table A.3 Selection Performance, DGP 3

T =0.1 =05 =09
Method py g0 N IC vV FV True TV Fv True TV Fv True
gMund 136 6 300 QBIC 5.14 2.61 0.07 4.98 2.19 0.10 5.72 0.80 0.59
gMund 136 6 300 QBICL 4.86 1.52 0.07 4.74 1.58 0.11  5.73 0.36 0.71
gMund 136 6 300 BIC 4.64 1.36 0.07 4.71 1.49 0.11 5.70 0.31 0.71
gMund 136 6 300 BICL 442 1.12 0.07 4.64 1.36 0.11  5.37 0.44 0.67
gMund 136 6 300 AICI 5.15 4.33 0.06 5.30 4.83 0.07 543 3.62 0.16
gMund 136 6 300 AIC2 476 1.42 0.07 4.81 1.82 0.11  5.72 0.33 0.71
gMund 136 6 1000 QBIC 5.52 1.81 0.19 5.89 0.93 042 592 0.28 0.83
gMund 136 6 1000 QBICL 5.53 1.54 020 5.1 0.65 046 5.96 0.12 0.92
gMund 136 6 1000  BIC 5.15 1.05 020 541 0.63 046 5.92 0.09 0.92
gMund 136 6 1000 BICL  4.85 1.15 0.20 5.35 0.65 046 5091 0.09 0.92
gMund 136 6 1000 AIC1 5.62 3.06 0.13  5.89 4.38 023 579 3.35 0.23
gMund 136 6 1000 AIC2 552 1.53 0.20 5.83 0.74 045 5.96 0.12 0.92
gCham 102 18 300 QBIC 14.89 5.64 0.00 13.46 8.86 0.00 14.71 6.45 0.00
gCham 102 18 300 QBICL 14.31 4.51 0.00 12.65 5.84 0.00 14.22 5.04 0.00
gCham 102 18 300 BIC 13.49 454 0.00 12.52 5.61 0.00 1332  4.87 0.00
gCham 102 18 300 BICL 2.11 0.40 0.00 8.89 3.89 0.00 2.76 5.65 0.00
gCham 102 18 300 AICI 15.02 9.44 0.00 14.11 1192 0.00 1488 1049 0.00
gCham 102 18 300 AIC2 14.11 4.44 0.00 12.96 6.95 0.00 14.08 4.96 0.00
gCham 102 18 1000 QBIC 16.61 3.98 0.05 15.59 5.12 0.00 16.89 3.31 0.10
gCham 102 18 1000 QBICL 16.39 245 0.05 1434  4.67 0.00 16.62 2.24 0.10
gCham 102 18 1000  BIC 15.66 243 0.05 14.11 4.71 0.00 1591 2.20 0.10
gCham 102 18 1000 BICL 15.29 2.50 0.05 1343 4.70 0.00 15.40 2.44 0.10
gCham 102 18 1000 AICI 16.50 7.18 0.02 16.63 7.98 0.00 16.65 7.30 0.02
gCham 102 18 1000 AIC2 16.35 2.36 005 1492 4.67 0.00 16.57 2.15 0.10
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Table A.4 Estimator performance, DGP 3, 81

7=0.1 =05 =09
Method N 1C Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0015 0.0210 0.0210 0.0016 0.0364 0.0365 -0.0001 0.0200 0.0200
gMund 300 QBICL 0.0005 0.0212 0.0212 0.0012 0.0366 0.0366 -0.0001 0.0203 0.0203
gMund 300 BIC 0.0004 0.0214 0.0214 0.0009 0.0363 0.0363 -0.0002 0.0204 0.0204
gMund 300 BICL  0.0074 0.0404 0.0411 0.0002 0.0359 0.0359 0.0100 0.0419 0.0431
gMund 300 AIC1 0.0016  0.0207 0.0208 0.0021 0.0364 0.0365 0.0001 0.0202 0.0202
gMund 300 AIC2 0.0005 0.0214 0.0214 0.0013 0.0362 0.0362 -0.0001 0.0204 0.0203
gMund 1000 QBIC 0.0007 0.0116 0.0116 0.0016 0.0191 0.0191 -0.0000 0.0115 0.0115
gMund 1000 QBICL 0.0007 0.0116 0.0116 0.0015 0.0192 0.0193 0.0000 0.0116 0.0116
gMund 1000 BIC 0.0008 0.0120 0.0120 0.0013 0.0192 0.0193 -0.0001 0.0115 0.0115
gMund 1000 BICL 0.0008 0.0123 0.0123 0.0013 0.0192 0.0193 -0.0001 0.0115 0.0115
gMund 1000 AIC1 0.0009 0.0117 0.0117 0.0015 0.0188 0.0189 -0.0001 0.0115 0.0115
gMund 1000 AIC2 0.0007 0.0116 0.0116 0.0016  0.0191 0.0192 0.0000 0.0116 0.0116
gCham 300 QBIC 0.0012 0.0211 0.0212 0.0033 0.0332 0.0333 -0.0004 0.0226 0.0226
gCham 300 QBICL 0.0010 0.0215 0.0216 0.0004 0.0335 0.0335 -0.0007 0.0229 0.0229
gCham 300 BIC 0.0011  0.0235 0.0235 -0.0003 0.0331 0.0331 -0.0002 0.0247 0.0247
gCham 300 BICL  0.8448 0.5553 1.0109 0.0629 0.0530 0.0823 0.1379 0.0987 0.1695
gCham 300 AIC1 0.0006  0.0209 0.0209 0.0037 0.0332 0.0334 -0.0005 0.0219 0.0219
gCham 300 AIC2  0.0010 0.0220 0.0220 0.0017 0.0336 0.0337 -0.0008 0.0234 0.0234
gCham 1000 QBIC 0.0001 0.0116 0.0116 0.0004 0.0190 0.0190 0.0001 0.0110 0.0110
gCham 1000 QBICL 0.0001 0.0118 0.0118 0.0001 0.0189 0.0189 0.0002 0.0110 0.0110
gCham 1000 BIC 0.0002 0.0119 0.0119 0.0002 0.0189 0.0189 0.0002 0.0114 0.0114
gCham 1000 BICL 0.0010 0.0141 0.0142 -0.0004 0.0186 0.0186 0.0039 0.0249 0.0252
gCham 1000 AIC1 -0.0000 0.0116 0.0116 0.0004 0.0191 0.0191 0.0002 0.0110 0.0110
gCham 1000 AIC2 0.0001 0.0117 0.0117 0.0003 0.0189 0.0189 0.0002 0.0111 0.0111
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Table A.5 Estimator performance, DGP 3, 2

7=0.1 =05 =09
Method N 1C Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0015 0.0215 0.0215 0.0015 0.0355 0.0355 0.0010 0.0212 0.0212
gMund 300 QBICL 0.0011 0.0219 0.0219 0.0008 0.0356 0.0356 0.0010 0.0211 0.0211
gMund 300 BIC 0.0004 0.0222 0.0222 0.0006 0.0355 0.0355 0.0011 0.0214 0.0214
gMund 300 BICL  0.0060 0.0404 0.0409 0.0004 0.0352 0.0352 0.0121 0.0443 0.0459
gMund 300 AIC1 0.0012 0.0211 0.0211 0.0015 0.0359 0.0359 0.0011 0.0209 0.0209
gMund 300 AIC2 0.0008 0.0222 0.0222 0.0011 0.0355 0.0355 0.0010 0.0212 0.0212
gMund 1000 QBIC 0.0005 0.0117 0.0117 0.0001 0.0195 0.0195 0.0011 0.0114 0.0115
gMund 1000 QBICL 0.0005 0.0117 0.0117 -0.0002 0.0195 0.0195 0.0011 0.0115 0.0115
gMund 1000 BIC 0.0004 0.0117 0.0117 -0.0001 0.0195 0.0195 0.0010 0.0114 0.0114
gMund 1000 BICL 0.0004 0.0118 0.0118 -0.0001 0.0195 0.0195 0.0010 0.0114 0.0114
gMund 1000 AIC1 0.0005 0.0117 0.0117 0.0002 0.0196 0.0196 0.0011 0.0115 0.0116
gMund 1000 AIC2 0.0005 0.0117 0.0117 0.0001 0.0196 0.0196 0.0011 0.0115 0.0115
gCham 300 QBIC -0.0002 0.0216 0.0216 0.0037 0.0345 0.0347 -0.0001 0.0220 0.0220
gCham 300 QBICL 0.0005 0.0223 0.0223 0.0011 0.0329 0.0329 0.0003 0.0227 0.0227
gCham 300 BIC 0.0009 0.0236 0.0237 0.0006 0.0329 0.0329 0.0004 0.0240 0.0240
gCham 300 BICL  0.8354 0.5497 0.9999 0.0606 0.0533 0.0806 0.1367 0.0998 0.1692
gCham 300 AIC1  -0.0005 0.0213 0.0213 0.0044 0.0348 0.0350 -0.0005 0.0217 0.0217
gCham 300 AIC2  0.0008 0.0227 0.0227 0.0022 0.0333 0.0334 0.0004 0.0227 0.0227
gCham 1000 QBIC -0.0006 0.0118 0.0119 0.0008 0.0191 0.0191 0.0002 0.0113 0.0113
gCham 1000 QBICL -0.0004 0.0119 0.0119 0.0007 0.0190 0.0190 0.0000 0.0113 0.0113
gCham 1000 BIC -0.0005 0.0120 0.0120 0.0008 0.0189 0.0189 0.0002 0.0115 0.0115
gCham 1000 BICL 0.0004 0.0148 0.0148 0.0005 0.0191 0.0191 0.0040 0.0264 0.0267
gCham 1000 AIC1 -0.0007 0.0120 0.0120 0.0008 0.0191 0.0191 -0.0000 0.0115 0.0115
gCham 1000 AIC2 -0.0006 0.0119 0.0119 0.0007 0.0192 0.0192 0.0000 0.0113 0.0113
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Table A.6 Selection Performance, DGP 4

T =0.1 =05 =09
Method py g0 N IC vV FV True TV Fv True TV Fv True
gMund 136 6 300 QBIC 341 2.23 0.00 2.67 2.40 0.00 3.71 3.36 0.00
gMund 136 6 300 QBICL 1.65 1.01 0.00 1.17 1.05 0.00 231 2.06 0.00
gMund 136 6 300 BIC 3.08 1.63 0.00 3.21 4.42 0.00 3.60 2.78 0.00
gMund 136 6 300 BICL  1.38 0.94 0.00 1.66 1.30 0.00 1.58 1.93 0.00
eMund 136 6 300 AICI 4.20 7.48 0.00 3.62 7.22 0.00 3.99 10.00  0.00
gMund 136 6 300 AIC2 4.04 5.49 0.00 4.05 11.82  0.00 3.90 7.45 0.00
gMund 136 6 1000 QBIC 4.11 2.40 0.00 3.65 2.52 0.00 4.38 3.13 0.00
gMund 136 6 1000 QBICL 3.17 1.34 0.00 1.97 1.43 0.00 3.90 2.04 0.00
gMund 136 6 1000  BIC 4.00 2.06 0.00 4.02 4.30 0.00 4.30 2.60 0.00
gMund 136 6 1000 BICL  2.54 1.11 0.00 3.23 1.95 0.00 3.66 2.02 0.00
gMund 136 6 1000 AIC1 470 8.67 0.00 4.52 8.66 0.00 4.66 10.86  0.00
gMund 136 6 1000 AIC2  4.57 6.39 0.00 4.94 16.30  0.00 4.56 7.98 0.00
gCham 102 18 300 QBIC 6.56 4.06 0.00 4.83 3.82 0.00 7.83 7.27 0.00
gCham 102 18 300 QBICL 1.39 1.13 0.00 0.93 0.88 0.00 3.18 4.04 0.00
gCham 102 18 300 BIC 5.75 3.46 0.00 6.11 5.06 0.00 6.84 6.49 0.00
gCham 102 18 300 BICL 046 0.43 0.00 3.37 277 0.00 2.86 3.79 0.00
gCham 102 18 300 AICI1 9.18 8.27 0.00 7.31 6.96 0.00 9.79 1146 0.00
g¢Cham 102 18 300 AIC2 853 6.57 0.00 8.69 1022 0.00 9.44 10.01  0.00
gCham 102 18 1000 QBIC 9.79 5.52 0.00 7.84 5.37 0.00 11.51 7.60 0.00
gCham 102 18 1000 QBICL 4.52 2.81 0.00 3.39 3.15 0.00 7.19 6.56 0.00
gCham 102 18 1000  BIC 8.85 4.85 0.00 9.34 6.88 0.00 11.15 7.29 0.00
gCham 102 18 1000 BICL  3.99 2.66 0.00 4.61 3.66 0.00 5.12 6.07 0.00
gCham 102 18 1000 AICI 11.88 10.11 0.00 10.41 9.05 0.00 1238 12.00 0.00
g¢Cham 102 18 1000 AIC2 11.55 8.30 0.00 1145 1297 0.00 12.17 10.11 0.00
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Table A.7 Estimator performance, DGP 4, 81

T =0.1 t=0.5 t=0.9
Method N 1C Bias SD RMSE  Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0259 0.3429 0.3437 0.0434 0.5665 0.5678 -0.0069 0.3193 0.3192
gMund 300 QBICL 0.0796 0.3854 0.3933 0.1254 0.6198 0.6321 0.0966 0.3656 0.3780
gMund 300 BIC 0.0322 0.3489 0.3503 0.0324 0.5584 0.5591 0.0008 0.3270 0.3268
gMund 300 BICL 0.1409 0.4682 0.4887 0.0866 0.5692 0.5755 0.1341 0.3740 0.3971
gMund 300 AIC1 0.0177 0.3421 0.3424 0.0293 0.5506 0.5511 0.0005 0.3233 0.3232
gMund 300 AIC2 0.0177 0.3431 0.3434 0.0170 0.5498 0.5498 -0.0009 0.3214 0.3213
gMund 1000 QBIC 0.0060 0.1788 0.1788 0.0186 0.3064 0.3068 -0.0023 0.1883 0.1882
gMund 1000 QBICL 0.0443 0.1950 0.1999 0.0763 0.3240 0.3327 0.0088 0.1979 0.1980
gMund 1000 BIC 0.0086 0.1805 0.1806 0.0100 0.3030 0.3030 -0.0027 0.1877 0.1876
gMund 1000 BICL 0.0625 0.1943 0.2040 0.0313 0.3152 03166 0.0336 0.2165 0.2190
gMund 1000 AIC1 0.0053 0.1760 0.1760 0.0063 0.3036 0.3035 -0.0030 0.1929 0.1928
gMund 1000 AIC2 0.0069 0.1783 0.1784 0.0086 0.3025 0.3025 -0.0031 0.1940 0.1940
gCham 300 QBIC  0.1006 0.3474 0.3615 0.1191 0.5735 0.5855 0.0432 0.3505 0.3530
gCham 300 QBICLP 009157 0.6470 1.1210 1.3293 0.8436 1.5742 0.1974 0.4299 0.4728
gCham 300 BIC 0.1263 0.3550 0.3766 0.0694 0.5610 0.5650 0.0725 0.3544 0.3615
gCham 300 BICLP 1.2698 0.5288 1.3754 0.3097 0.7033 0.7681 0.2272 0.4578 0.5109
gCham 300 AIC1 0.0437 0.3407 03434 0.0429 0.5478 0.5492 0.0062 0.3382 0.3381
gCham 300 AIC2 0.0517 0.3419 0.3456 0.0225 0.5443 0.5445 0.0107 0.3414 0.3414
gCham 1000 QBIC 0.0305 0.1835 0.1859 0.0531 0.3109 0.3153 0.0011 0.1881 0.1880
gCham 1000 QBICLP 0.0775 0.1901 0.2052 0.1170 0.3379 0.3575 0.1160 0.2168 0.2458
gCham 1000 BIC 0.0426 0.1863 0.1910 0.0348 0.3064 0.3082 0.0036 0.1900 0.1899
gCham 1000 BICLP 0.0831 0.1974 0.2140 0.0951 0.3092 0.3234 0.1638 0.2254 0.2785
gCham 1000 AIC1 0.0098 0.1815 0.1817 0.0276 0.3046 0.3057 -0.0052 0.1890 0.1890
gCham 1000 AIC2 0.0128 0.1810 0.1814 0.0230 0.3024 0.3032 -0.0028 0.1902 0.1902
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Table A.8 Estimator performance, DGP 4, 2

T =0.1 t=0.5 t=0.9
Method N 1C Bias SD RMSE  Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0423 0.3284 0.3309 0.0432 0.5459 0.5474 0.0055 0.3433 0.3432
gMund 300 QBICL 0.0882 0.3400 0.3511 0.1255 0.5864 0.5993 0.1222 0.3856 0.4043
gMund 300 BIC 0.0542 0.3286 0.3329 0.0313 0.5319 0.5325 0.0072 0.3433 0.3432
gMund 300 BICL 0.1200 0.3883 0.4062 0.0873 0.5363 0.5431 0.1595 0.3912 0.4223
gMund 300 AIC1 0.0342 0.3250 0.3267 0.0288 0.5270 0.5275 -0.0005 0.3371 0.3369
gMund 300 AIC2 0.0332 0.3238 0.3253 0.0177 0.5267 0.5267 -0.0004 0.3392 0.3390
gMund 1000 QBIC 0.0148 0.1835 0.1840 0.0238 0.3133 0.3141 0.0051 0.1823 0.1823
gMund 1000 QBICL 0.0477 0.1956 0.2012 0.0883 0.3228 0.3345 0.0160 0.1915 0.1921
gMund 1000 BIC 0.0164 0.1861 0.1867 0.0175 0.3102 0.3105 0.0047 0.1799 0.1798
gMund 1000 BICL 0.0637 0.1998 0.2096 0.0387 0.3205 0.3227 0.0433 0.2108 0.2151
gMund 1000 AIC1 0.0159 0.1819 0.1825 0.0181 0.3070 0.3074 0.0051 0.1783 0.1783
gMund 1000 AIC2 0.0170 0.1829 0.1836 0.0162 0.3046 0.3049 0.0042 0.1800 0.1799
gCham 300 QBIC  0.0723 0.3467 0.3540 0.0962 0.5598 0.5677 0.0496 0.3642 0.3674
gCham 300 QBICLP 0.8832 0.6648 1.1052 1.2828 0.8614 1.5449 0.1973  0.4430 0.4847
gCham 300 BIC 0.0982 0.3581 0.3712 0.0447 0.5466 0.5481 0.0728 0.3712 0.3781
gCham 300 BICLP 1.2474 0.5287 1.3547 0.2693 0.6714 0.7230 0.2520 0.4945 0.5548
gCham 300 AIC1 0.0127 0.3366 0.3367 0.0280 0.5434 0.5439 0.0062 0.3535 0.3534
gCham 300 AIC2 0.0284 0.3383 0.3393 0.0091 0.5350 0.5348 0.0071 0.3532 0.3531
gCham 1000 QBIC 0.0249 0.1887 0.1902 0.0317 0.3141 0.3156 -0.0009 0.1844 0.1843
gCham 1000 QBICLP 0.0757 0.1926 0.2068 0.0948 0.3322 0.3453 0.1151 0.2145 0.2433
gCham 1000 BIC 0.0387 0.1891 0.1930 0.0171 0.3109 0.3113 0.0053 0.1856 0.1855
gCham 1000 BICLP 0.0784 0.1966 0.2116 0.0794 0.3121 0.3219 0.1628 0.2199 0.2735
gCham 1000 AIC1 0.0060 0.1902 0.1902 0.0111 0.3101 0.3102 -0.0059 0.1852 0.1852
gCham 1000 AIC2 0.0056 0.1915 0.1915 0.0068 0.3080 0.3079 -0.0054 0.1850 0.1850
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Table A.9 Selection Performance, DGP 5

T =0.1 =05 =09
Method py g0 N IC vV FV True TV Fv True TV Fv True

gMund 136 18 300 QBIC 7.54 3.67 0.00 6.01 3.88 0.00 8.77 6.34 0.00
gMund 136 18 300 QBICL 3.20 1.44 0.00 235 1.75 0.00 4.20 4.30 0.00
gMund 136 18 300 BIC 6.87 3.08 0.00 7.26 5.30 0.00  8.00 5.70 0.00
gMund 136 18 300 BICL 2.56 1.22 0.00 3.65 2.39 0.00 2.92 3.82 0.00
gMund 136 18 300 AICI 9.21 7.09 0.00 8.13 6.76 0.00 1057 10.81  0.00
gMund 136 18 300 AIC2 8.72 5.70 0.00 9.23 9.66 0.00 10.11 9.03 0.00
gMund 136 18 1000 QBIC  9.65 4.82 0.00 8.44 4.93 0.00 1212 7.14 0.00
gMund 136 18 1000 QBICL 743 2.17 0.00 4.56 2.52 0.00 7.87 5.17 0.00
gMund 136 18 1000  BIC 9.23 4.20 0.00 945 6.24 0.00 11.72 6.67 0.00
gMund 136 18 1000 BICL 5093 1.49 0.00 7.17 3.81 0.00 6.99 5.08 0.00
gMund 136 18 1000 AIC1 11.72 8.97 0.00 10.65 8.74 0.00 13.08 11.36 0.00
gMund 136 18 1000 AIC2 11.22 7.50 0.00 11.85 1294 0.00 12.87 9.64 0.00

gCham 102 12 300 QBIC 5.96 3.42 0.00 4.85 3.34 0.00 6.65 5.16 0.00
gCham 102 12 300 QBICL 3.09 1.08 0.00 2.08 1.20 0.00 3.81 347 0.00
gCham 102 12 300 BIC 5.54 272 0.00 5.67 4.96 0.00 6.29 4.63 0.00
gCham 102 12 300 BICL 228 0.83 0.00 3.59 2.12 0.00 3.18 3.34 0.00
gCham 102 12 300 AICI1 7.23 8.79 0.00 6.39 7.43 0.00 7.47 9.64 0.00
gCham 102 12 300 AIC2 6.92 6.75 0.00 7.27 11.71  0.00 7.27 7.80 0.00
gCham 102 12 1000 QBIC 7.51 4.17 0.00 6.53 4.10 0.00 8.41 5.03 0.00
gCham 102 12 1000 QBICL 5.51 1.96 0.00 4.61 2.51 0.00 6.97 3.99 0.00
gCham 102 12 1000  BIC 7.23 3.71 0.00 7.36 5.65 0.00 8.24 4.64 0.00
gCham 102 12 1000 BICL 5.24 1.55 0.00 5.40 3.02 0.00 6.12 3.84 0.00
gCham 102 12 1000 AICI 8.54 10.60 0.00 8.20 8.74 0.00 8.95 10.53  0.00
gCham 102 12 1000 AIC2 831 8.01 0.00 9.03 15.04 0.00 8.81 8.05 0.00

160



Table A.10 Estimator performance, DGP 5, 81

T =0.1 =05 =09
Method N IC Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0459 0.3642 0.3669 -0.0024 0.5246 0.5244 0.0090 0.3442 0.3442
gMund 300 QBICL 0.1934 0.4944 0.5306 0.1810 0.6825 0.7057 0.1306 0.4318 0.4510
gMund 300 BIC 0.0575 0.3677 0.3720 -0.0092 0.5188 0.5186 0.0202 0.3543 0.3547
gMund 300 BICL 0.3393 0.6274 0.7130 0.0659 0.5413 0.5451 0.1669 0.4681 0.4968
gMund 300 AIC1  0.0346 0.3594 0.3609 -0.0166 0.5249 0.5249 0.0017 0.3366 0.3365
gMund 300 AIC2 0.0371 0.3593 0.3610 -0.0193 0.5259 0.5260 0.0042 0.3374 0.3372
gMund 1000 QBIC 0.0152 0.1861 0.1866 0.0038 0.3030 0.3028 -0.0013 0.1798 0.1797
gMund 1000 QBICL 0.0339 0.1926 0.1955 0.0632 0.3224 0.3284 0.0338 0.2153 0.2179
gMund 1000 BIC 0.0155 0.1856 0.1862 0.0041 0.3028 0.3027 -0.0019 0.1792 0.1791
gMund 1000 BICL 0.0513 0.2024 0.2087 0.0134 0.3038 0.3040 0.0634 0.2334 0.2418
gMund 1000 AICI  0.0153 0.1836 0.1841 0.0045 0.3034 0.3033 -0.0054 0.1789 0.1789
gMund 1000 AIC2 0.0151 0.1832 0.1838 0.0044 0.3056 0.3055 -0.0040 0.1786 0.1786
gCham 300 QBIC 0.0202 0.3090 0.3095 0.0732 0.5035 0.5086 0.0128 0.3246 0.3247
gCham 300 QBICL 0.2321 04315 0.4898 04136 0.6022 0.7303 0.0861 0.3633 0.3732
gCham 300 BIC 0.0277 0.3097 0.3108 0.0538 0.4978 0.5005 0.0221 0.3240 0.3245
gCham 300 BICL 0.3751 0.4462 0.5828 0.1377 0.5489 0.5657 0.1168 0.3952 0.4119
gCham 300 AIC1  0.0009 0.3242 0.3240 0.0529 0.5055 0.5080 -0.0024 0.3244 0.3242
gCham 300 AIC2 0.0091 0.3209 0.3208 0.0462 0.5086 0.5104 0.0023 0.3201 0.3199
gCham 1000 QBIC 0.0141 0.1704 0.1709 0.0226 0.2826 0.2834 -0.0037 0.1704 0.1703
gCham 1000 QBICL 0.0255 0.1691 0.1710 0.0413 0.2899 0.2927 0.0202 0.1730 0.1741
gCham 1000 BIC 0.0161 0.1713 0.1719 0.0177 0.2830 0.2834 -0.0031 0.1706 0.1705
gCham 1000 BICL 0.0256 0.1704 0.1722 0.0317 0.2777 0.2794 0.0359 0.1766 0.1801
gCham 1000 AIC1 0.0137 0.1785 0.1790 0.0210 0.2877 0.2883 -0.0052 0.1772 0.1772
gCham 1000 AIC2 0.0100 0.1755 0.1757 0.0232 0.2894 0.2902 -0.0051 0.1763 0.1763
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Table A.11 Estimator performance, DGP 5, 2

T =0.1 =05 =09
Method N IC Bias SD RMSE Bias SD RMSE Bias SD RMSE
gMund 300 QBIC 0.0468 0.3428 0.3458 0.0297 0.5341 0.5347 -0.0059 0.3508 0.3506
gMund 300 QBICL 0.1815 0.4963 0.5282 0.1784 0.6529 0.6765 0.1127 0.4217 0.4363
gMund 300 BIC 0.0535 0.3491 0.3530 0.0139 0.5313 0.5312 0.0040 0.3557 0.3555
gMund 300 BICL 0.3173 0.6270 0.7024 0.0868 0.5283 0.5351 0.1521 0.4538 0.4784
gMund 300 AIC1  0.0305 0.3319 0.3331 0.0090 0.5312 0.5310 -0.0101 0.3416 0.3416
gMund 300 AIC2 0.0372 0.3360 0.3379 0.0029 0.5309 0.5306 -0.0105 0.3444 0.3444
gMund 1000 QBIC 0.0150 0.1813 0.1818 0.0081 0.2922 0.2922 -0.0015 0.1866 0.1866
gMund 1000 QBICL 0.0308 0.1889 0.1913 0.0646 0.3073 0.3138 0.0344 0.2085 0.2112
gMund 1000 BIC 0.0140 0.1840 0.1844 0.0065 0.2914 0.2913 -0.0019 0.1854 0.1853
gMund 1000 BICL 0.0473 0.2013 0.2066 0.0132 0.3000 0.3001 0.0679 0.2284 0.2382
gMund 1000 AICI 0.0144 0.1819 0.1824 0.0069 0.2923 0.2923 -0.0041 0.1848 0.1848
gMund 1000 AIC2 0.0164 0.1817 0.1823 0.0072 0.2953 0.2952 -0.0046 0.1870 0.1869
gCham 300 QBIC 0.0467 0.3172 0.3204 0.0185 0.5172 0.5173 0.0130 0.3223 0.3224
gCham 300 QBICL 0.2552 0.4229 0.4937 03702 0.6165 0.7188 0.0782 0.3827 0.3904
gCham 300 BIC 0.0488 0.3241 0.3276 0.0067 0.5211 0.5209 0.0153 0.3261 0.3263
gCham 300 BICL 0.3876 0.4361 0.5833 0.0823 0.5595 0.5652 0.1005 0.4033 0.4154
gCham 300 AIC1  0.0268 0.3250 0.3259 -0.0023 0.5236 0.5233 0.0022 0.3292 0.3291
gCham 300 AIC2 0.0289 0.3246 0.3257 -0.0070 0.5261 0.5259 0.0048 0.3278 0.3277
gCham 1000 QBIC 0.0133 0.1727 0.1732 0.0266 0.2898 0.2908 0.0003 0.1708 0.1708
gCham 1000 QBICL 0.0269 0.1707 0.1727 0.0450 0.2962 0.2995 0.0240 0.1743  0.1759
gCham 1000 BIC 0.0134 0.1722 0.1726  0.0230 0.2964 0.2972 -0.0007 0.1683 0.1682
gCham 1000 BICL 0.0294 0.1744 0.1768 0.0342 0.2886 0.2905 0.0420 0.1802 0.1849
gCham 1000 AIC1 0.0102 0.1821 0.1823 0.0232 0.3005 0.3012 0.0010 0.1768 0.1767
gCham 1000 AIC2 0.0084 0.1818 0.1819 0.0226 0.3061 0.3068 0.0006 0.1748 0.1747
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Table A.12 Birthweight, pooled quantile regression, all moms, (unit: grams)

Quantile
0.1 0.25 0.5 0.75 0.9
Smoke -258.82  -250.75 -238.49 -234.27 -227.57
(6.57) (438 (379 (421) (5.09
Male 93.59 11426 131.27 145.08 15747
(3.52) (238 (2.100  (2.35) (3.05)
Age 18.11 7.28 2.59 -0.10 -2.81
(3.73) (241) (2100 (238 (2.89)
Age2 -0.34 -0.13 -0.04 0.02 0.09
(0.06) (0.04) (0.04 (0.04) (0.05)
Kessner index =2 -157.10 -108.39  -81.71  -66.64  -63.02
(8.50)  (5.39) (456) (484 (6.22)
Kessner index = 3 -297.62  -212.68 -149.85 -120.34  -91.31
(24.05) (15.39) (1248) 11.17) (17.79)
No prenatal visit -118.36 0.77 7.87 30.44 25.41
40.77)  (24.07) (21.29) (17.82) (29.10)
First prenatal visit in 2nd trimester 139.51 93.27 72.21 60.64 57.45
(10.11)  (6.32)  (5.40) (5.89) (7.52)
First prenatal visit in 3rd trimester 28243 19433 11948 89.75 56.94
(27.28) (17.32) (14.34) (14.15) (20.60)
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Table A.13 Birthweight, quantile regression with Classical CRE, all moms, (unit: grams)

Quantile
0.1 0.25 0.5 0.75 0.9
Smoke -144.27 -145.56 -147.59 -147.18 -147.37
(10.43) (7.51) (6.62) (7.56) (9.87)
Male 98.49 122.15 139.71 153.22 16248
4.59) (3.30) (2.91) (3.32) (4.34)
Age -15.43  -2022 -22.62 -17.66 -13.34
(8.69) (6.26) (5.51) (6.30) (8.22)
Age2 0.30 0.35 0.41 0.32 0.34
(0.12) (0.08) (0.07) (0.08) 0.11)
Kessner index = 2 -139.90  -88.61 -60.36  -57.38  -50.37
(10.29) (7.06) (6.22) (7.11) (9.28)
Kessner index = 3 -257.35 -173.21 -12693  -93.61 -65.79
(22.65) (16.31) (14.36) (1642) (21.42)
No prenatal visit -133.51  -31.59 345 14.55 57.79

(36.44) (26.23) (23.10) (26.41) (34.46)
First prenatal visit in 2nd trimester 109.02 66.49 43.00 40.34 39.56
(11.60)  (8.35) (7.36) (8.41) (10.97)
First prenatal visit in 3rd trimester 209.63  137.03 84.09 60.87 55.49
(27.53) (19.82) (17.46) (19.96) (26.04)
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