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ABSTRACT
A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF THE
DYNAMIC RESPONSE OF FLEXIBLE MECHANISM SYSTEMS FABRICATED
FROM FIBROUS COMPOSITE MATERIALS
By

Cheng-Kuo Sung

The articulating members of linkage machinery must be designed with
high stiffness-to-weight ratios in order that these machine systems
operate successfully in a high-speed mode. One approach to satisfying
this criterion is to exploit the high specific stiffnesses of polymeric
fibrous composite laminates. This work is divided into two parts.
First, the mechanism systems are operating under isothermal conditions.
Candidate materials are subjected to mechanical testing and their
constitutive behavior classified. A variational theorem is then derived
to obtain the governing equation and the associated boundary coaditions.
A finite element formulation is also developed based on the variational
equation of motion. The predictive capability of this analytical
approach is evaluated by simulating the vibrationil response of both
oxperimental four-bar linkages and also slider-crank mechanisms prior to

comparing the computer results with experimental data.

Secondly, the same mechanism systems are operating under adverse

environmental conditions. The constitutive behavior of some of these



composite materials is, however, dependent upon the ambient
environmental conditions, and hence models must be developed in order to
predict the response of mechanism systems fabricated in this class of
materials. A variational oprinciple is presented that may be employed
for systematically establishing the equations goverming the dynamic
response of planar flexible linkage mechanisms simul taneously subjected
to both mechanical and bygrothermal 1loadings. As an illustrative
example, the equations of energy balance and mass balance are validated
by comparing the theoretical simulation with the experimental results

performed by Browning and Whitney.



ACKNOWLEDGEMENTS

1 wish to express my deepest gratitude to wmy advisor Dr. Brianm
S. Thompson for his guidance and assistance throughout this study and in
preparation of this manuscript. His academic excellence and research

philosophy have provided a constant source of emcouragement.

I also wish to thank the members of my committee Drs. Rohan

Abeyaratne, John J,. NcGrath and David Yen.

This research was financially supported through the effort of
Dr. Brian S. Thompson by the National Science Foundation under grants
CME-792124 and MEA-8216777, and by Division of Engineering Research at

Michigan State University. This assistance is warmly acknowledged.

Finally, I would like to thank my parents for their tremendus

support, my wife and two sons for their loving support and willingness

to share their time with my work.

ii



TABLE OF CONTENTS

LIST oF ncm“l..l..'.....'..'...0...0...0......O............Q..

Chapter 1.

Chapter 2.

mnonualmll...II....C.....l..........'......Q......
1.1 Current Trends in Industrial MNachimery......cccc..
1.2 Scope of This Investigation...cccoevcccsccccsccens

1.2.1 Relationship between the Theories
Developed herein and Other Theories.........

1.2.2 Roeview of this Thesis.ccccooccccecccocnccone

1.3 Literature Survey for Isothermal Elastodynamic

An.l"i‘!.I‘......0.'.....0...........0...0....0..

A THEORETICAL AND EXPERIMENTAL INVESTIGATION

INTO THE DYNANIC RESPONSE OF FLEXIBLE

MECRANISMS MADE FROM ELASTIC MATERIALS

AND OPERATING UNDER ISOTHERMAL CONDITIONS....ccccococese

2.1 A Variational Formulation for the Geometrically
Nonlinear Finite Element Amalysis of Flexible
Linkages Made from Elastic Materials
and Operating under Isothermal Conditions.........

2.2 Exp.ri..nt‘l st‘dy......‘...‘.....'0..............
2.2.1 Experimental Apparatus: Four-bar Linkages..

2.2.2 Experimental Apparatus: Slider-crank
..ch.‘i“......'.........'.....QO...Q.'D....

2'2.3 In'tr“.nt.t‘on.‘......l..‘0..‘.............
203 CO.pnt.t si-ul‘tion‘cooco..'..o..too..ll..oo.....o

2.‘ ‘.“lt' .‘d Di.on.“on..0000...00.0.0.....0.0....0

i1i

Page

vi

11

27

217
45

46

50
52
60

64



Chapter 3. AN EXPERIMENTAL STUDY TO COMPARE THE RESPONSE
CHARACTERISTICS OF MECHANISMS FABRICATED WI1TH
COMPOSITE MATERIALS AND SIMILAR MECHANISMS
CONSTRUCTED WITH TWO COMMERCIAL METALS.....cccccceceee 76

3.1 Theoretical Motivation for this Experimental

studyl'.....'....l....................'........... 76
3.2 Objectives and Material Characterization.......... 71
3.3 Results and Discussion...cceoeeccececcceccaccccsaese 93

Cbapter 4. A THEORETICAL AND EXPERIMENTAL INVESTIGATION ON THE

DYNAMIC RESPONSE OF FLEXIBLE MECHANISMS MADE FROM
COMPOSITE MATERIALS OPERATING UNDER
IsomuyM CWDITIONSQ....CI.QI....l‘....'...'........ 101
‘.1 Introd‘ct‘cn........‘..Cl.l...'...'.'l.....0...0.. 101
4.2 Material Characterization study...cccoeeeeeneecess 102
4'3 v.ri.tion.l PtinCipl.......‘...‘.....0............ 1w

4.4 Finite Element Formulation...cceccecevscecccsccsee 116

4.5 Comparison between Theoretical and
Experi.ent.l Re.nlt".........0.......‘.Q......... 122

Chapter 5. A THEORETICAL ANALYS1S OF HYGROTHERMOVISCOELASTICITY.. 131
5.1 Thermoviscoelasticity: A Background Review........ 131

5.2 Problem Definition..ccceeecsccceccccocccscssscncess 133

5.3 Conservation Laws...ocveecsceroccesssocssscnsssces 136

5.3.1 Conservation of Nass...ccoeeeeccccccessccnes 136

§.3.2 Conservation of Momentum and Energy...ccc.... 13

5.4 Entropy Balance and Entropy Production...cceveeeee 142

5.5 The Phenomenological Equations and the
on'.‘er P:inciplel'....'.l'.........l......'.....‘ 147

Chapter 6. A THEORETICAL INVESTIGATION ON THE LINEAR
COUPLED RYGROTHERMOLLASTODYNAMIC ANALYSIS
OF mmmls” sYsmMs‘..I...'..l.......l.........'....l 158

6.1 B.ck.ronndo00..0.'.'...0.0..0.ncooooooonoooc.oo.o. 158

602 VItiltionll Ptincipleooo-o.onooooooon.oo-no-oooooo 164

iv



6.3 Finite Element Formulation......coceveceecncocanns
6.4 Parameters Defimition.....ccccecieeccncccococccnnns
6.5 Illustrative Example....cccooeeevecercccssconccnsos
6.6 Results and Discussion....c.ceeeecoccccccocccccccs
Chapter 7. DISCUSSION, CONCLUSION....cccoceevesccoccccccsoncccnas

BIBLIOGRAPHY.....0I.......C.O......00...0.l‘................'.'..

178

185

192

198

208

217



Figure
2.1
2.2

2.3

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

LIST OF FIGURES

Definition of Axis Systems and Position Vectors..........
Experimental Four-Bar Linkage Nechanism....cccrevcccccces
Experimental Slider-Crank Mechanism...cccocccsccccccccccs
Slider Assembly for Experimental Slider-Crank Mechanisa..
Schematic of Bxpo;i-ontal Apparatus and Instrumentation..

The Digital Data-Acquisition System in the Nachinery
nl.‘todyu.ic L‘bot.t“y..........O.............I........

Four-Bar Linkage: Rocker Nidspan Transverse Deflection
at 254 pa before Di.it.l p‘lt.t‘n'.......ooooooo.oto-oo'

Four-Bar Linkage: Frequency Spectrum of Rocker Midspan
Transverse Deflection at 254 TpRm.cccecccccccccccosccsnocsne

Four-Bar Linkage: Rocker Midspan Transverse Deflection
of 254 rpa af ter D"it‘l Filt.tin'ooooooooo.ooooooooooooo

Finite Element Model of Experimental Four-Bar Linkage....

Four-Bar Linkage: Coupler Midspan Transverse Deflection
at 342 rpm, Integration Time-Step 0.00048733 Seconds.....

Four-Bar Linkage: Coupler Midspan Transverse Deflection
at 193 rpm, Integration Time-Step 0.00086356 Seconds.....

Four-Bar Linkage: Rocker Midspan Traasverse Deflection
at 254 rpm, Integration Time-Step 0.00065617 Seconds.....

Four-Bar Linkage: Rocker Midspan Transverse Deflection
at 205 rpm, Integration Time-Step 0.00081301 Seconds.....

Four-Bar Linkage: Rocker Midspan Transverse Deflection
at 290 rpm, Integration Time-Step 0.00057471 Seconds.....

S8lider-Crank Mechanism: Connecting-Rod Midspan

Transverse Deflection at 235 rpm, Integration
Ti-._st.p o.ooo’wzz s.co“‘.............0.0.0......‘...O

vi

Page
30
47
51
51

33

54

57

58

62

65

66

67

68

1



2.17

3.1

3.2

3.3

3.4
3.5
3.6
3.7

3.8

39

3.10

3.11

3.12
3.13
3.14
3.15
3.16
4.1

4.2

4.3

4.4

Slider-Crank Mechanism: Connmecting-Rod Midspan
Transverse Deflection at 274 rpm, Integration
Time-Step 0.00060827 Seconds...cceocccecvccssscccsccccsccs

Alignment Fixture and Mechanical Arrangement for
Testing Graphite/Epoxy Specimens.....cceccoeceecccceccccss

The Mechanical Testing of Graphite/Epoxy Laminates
in‘mT"tin‘ u‘chin‘....l'.I.............‘....O.‘l..'

Dynamic Test Results for Unidirectional
“-‘/3501‘6 Lmin.tel.‘....'Q.......0.‘......'.......l...

Dynamic Test Results for [t45), AS-4/3501-6 Laminmate.....
Creep Response for Unidirectional AS-4/3501-6 Laminate...
Creep Response for [145), AS-4/3501-6 Laminate...........
Link Stiffness Characteristics....ccccoceeccecccocconcane

Steel Specimen Transient Response. Horizontal Scale
zonsldiV. v‘ttic.l sc.le otlv/d‘v..........0.0.....'.'."

Aluminuom Specimen Transient Response. Horizontal Scale
so.s,div. v.’tic.l sc.le o.lv/div.’...’...00.....0.....‘.

[t45]‘ Specimen Transient Response. Horizontal Scale
20mS/div, Vertival Scale 0.1V/div.eeeeeeceocccccccsccnnns

[0] Specimen Transient Response. Horizontal Scale
zo-sldiV| v.rtic.l sc.l‘ sonv/div....'.........‘.........

Coupler Midspan Bending Deflections: 280 rpm..cccececccce
Coupler Midspan Bending Deflections: 198 rpm...ccccovesse
Rocker Midspan Bending Deflections....ccecececcccccscccns
Connecting-Rod Midspan Bending Deflections...cccoceecvcee

Link c.l‘br.tion-Pi‘tnr.O.....‘.................l....‘...

72

81

81

83

84
86

87
89

91

91

92

92
94
95
96
91

98

Method of Obtaining the Stress Relaxation Function....... 104

Stress Relaxation Function Obtained from

.‘t’ti.l Te.tin‘...o.;..oocoo000000'00000c'o.oooc'oo'o.-. 106

st‘nd.rd Liﬂc.f SOIid uodel.oo...o..loo.ltoo..l..o...l..o 107

Stress Relaxation Function Obtained from Curve-Fitting... 108

The Deformation of a Beam Element...cccoecveccsccscscsaes 116

vii



4.6 Slider-Crank Mechanism: [t45], Connecting-rod lidspgn
Trans. Deflection at 154 rpm, time-step 1.80375x107°5,,.. 124

4.7 Slider-Crank Mechanism: [t45]‘ Connecting-rod Midspgn
Trans. Deflection at 212 rpm, time-step 1.31027x107°s,.. 125

4.8 Four-Bar Linkage: Unidirectional Coupler Link Nidspan
Trans. Deflection at 212 rpm, time-step 1.31027x107 55, ,. 126

49 Four-Bar Linkage: Unidirectional Coupler Link Midspan
Trans. Deflection at 278 rpm, time-step 0.9992x1077¢,,,, 127

4.10 Four-Bar Linkage: Unidirectional Rocker Link Midspan
Trans. Deflection at 187 rpm, time-step 1.48544x10 5¢,.. 128

4,11 Four-Bar Linkage: [£45)_ Rocker Link Nidspug Transverse
Deflection at 223 rpm, time-step 1.24564x107°s,..000000.. 129

5.1 Definition of Axes System and Position Vectors........... 135
6.1 Definition of Axes System and Position Vectors.....cc.c.. 165

6.2 Plot of Experimental Data versus Fick's
L.'l for N..t Epoxy R"in.......IQ‘........O.I......QQ... 195

6.3 Master Plot of Experimental Data versus Fick's
Law, for Unidirectional Graphite/Epoxy Composite......... 196

6.4 Master Plot of Experimental Data versus Fick's
Law, for Bidirectional Graphite/Epoxy Laminmate.....ccoe.. 197

6.5 Comparison of Data, the Upper Bound and the
Lower Bound for G (Bygroelastic Modulus) Based on the
Modified Fick's Law, for Bidirectional Graphite/Epoxy
CoOmPOSite. .ccoeeerscescasacsccesssscncsssssccsssssssccnssese 205

6.6 Comparison of Data, Fick’'s Law and Modified
Fick's Law, for Bidirectional Graphite/Epoxy Composite... 206

viii



CHAPTER 1

INTRODUCTION

1.1 Current Trends in Industrial Machinery

The intense competition in the international marketplace for robots
and machine systems which significantly enhance manufacturing
productivity by operating at high speeds has resulted in the evolution
of & new fromtier in the machine design. Under these more stringent
operating conditions, the traditional design methodologies are umable to
adeguately predict s machine’s performance because elastodynamic
phenomena are stimulated due to the inherent flexibility of the moving
parts. The traditional design methodologies are based on dymamic
snalyses wherein all mechanism members are treated as rigid-bodies. A

force and stress analysis of the members is undertaken subsequently.

When operating in & high-speed mode, vibrations and dynamic
stresses in the members of a wmechanism c¢an drastically modify the
performance characteristios, and the fatigue-life of parts becomes a
significant design consideration. Furthermore, the radial clearances in
sleeve bearings in mechanical and electro-mechanical systems, which are
essontial for the operation of these joints may result in excessive

stresses and impactive loads, and these loads can generate more severe

1
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problems such as wear, loss of performance, reduced stability and more

critical levels of noise and vibration.

Link flexibility has become aﬁ active field of research since the
late 1960's and this work is documented in two comprehensive survey
papers [ 5295 ). Upon reviewing these papers it is evident that for
high-speed operation, mechanism 1links should be designed with high
stiffness—-to-weight ratios im order to reduce link deflections and power
consumption. In all of the publications cited in'references [ 52 ] and
[95 ], the members were fabricated in the traditional steel and
sluminum alloys, and the desired lightweight form-designs developed by

using optimization software packages.

An alternative design methodology bhas recently been proposed by
Thompson et al [ 158,160,173,178 ]J. This methodology advocates that
composite materials should be employed to reduce the elastodynamic
phenomena, such as 1link deflections and dynamic stresses. As is well
known, these materials have superior strength and stiffness-to-weight
ratios than the oommercial metals, Consequently, they offer the
designer reduced inertial loading at specific speeds, or else higher
speeds of operation because of smaller deflections and superior dymamic

response characteristics.



1.2 Scope of This Investigation

In this section, a comparison between the theories developed in
this thesis and other theories is undertaken in sub-section 1,2.1, such
as the methodologies of developing the equations of motion which govern
the dynamic behaviors of the mechanism systems, and the hygrothermal
analysis of the linkage mechanisms fabricated from composite materials.
An overview of this thesis is presented in sub-section 1.2.2 which

outlines the comtent of each chapter.

1.2.1 Relationship between the Theories Developed Herein and Other

Theories

The Lagrange’s equation was employed by a few researchers in the
field of machine dynamics in order to develop the equations of motion
which govern the dynamic behaviors of the mechanisms. B.S. Thompson and
A.D. Barr [ 172 ) proposed a mixed variational approach which
incorporates auxiliary conditions such as the strain-displacement
equation, constitutive equations and geometrical boundary conditions
into the Hamilton's principle. So the functional depends upon
displacements, stressos and strains. Moreover, the stationmary
conditions are the governing equations in primitive form: the
kinematical, dynamical and constitutive relationship. More insights may
be gained from this mixed variational principle via a finite element
formulation which discretizes a continuous medium into several finite
olements. As the basis of an elementary approximation, each field can

be independently selected to achieve the discrete model, namely, the
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approximating function of stresses may be different from that of the
strains. The discrete counterparts of the displacement, stresses and
strains are governmed by algedbraic equations: kinematical, dynamical amnd
constitutive. This approach offers an effective moan to achieve simple,
efficient models that possess the desirable attributes of those derived

by approximating the displacement in the potential.

The high-order theories modeling the elastic motion of links are
developed in this investigation. These theories employ geometrically
nonl inear analyses which retain the terms in the strain-displacement
equations that couple the axial and flexural deformations
[ 107,108,147,180,185 ]. These additional terms are readily handled by
the awmerical integration solution philosophy, but they present
additional complications if the model superposition approach is

employed.

A composite material is comnstructed by ocombining two or more
materials on a macroscopic scale to form a useful material since the
best qualities of the constituents are often significantly exposed in
accordance to the intontién of a designer. For example, if attention is
focused on the first-ply failure of a composite material, then the first
ply has to be designed strong enough by either selecting an appropriate
fiber material or rearranging the stacking sequence im order to keep the

first ply from being damaged.

Some, but not sll, of the polymeric materials are very semsitive to

both the envirommental temperature and relative humidity fluotuationms,
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the materials absordb moisture cause swelling and micro-crack formation
under extreme oconditions. These micro-cracks, in turn increase the
diffusivity of the composite and this characteristic can be increased
further by the dimensional changes associated with elevated
temporatures. Comsequently, the mechanical properties degrade and cause

the structural components to fail.

The classical Fick’s law is employed to model the diffusive process
when the oomposite material is immersed in humid air or a liquid. The
most important assumption invoked in the development of Fick's law is
that the solid (in this case, the composite) is assumed to be rigid
[ 145 ). 8Several other assumptions have also been made on the nature of

the kinematical guantities such as :

( 1 ) The motion takes place under isothermal conditions.

( 2 ) The velocity components are sufficiently small,

therefore, the kinetic energy of the diffusing masses

can be meglected.

( 3 ) Body forces are absent.

Hence, it is not surprising that the Fickian model of diffusion proves
to be inadequate for predicting the response of materials exposed to
normal environmental conditions because of the complex interactionm of a

composite material and the diffusing moisture.

There are two theories developed in this thesis in order to closely
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describe the complex physical phenomena. One is based upon the first
and second laws of thermodynamics, mnon-equilibrium thermodynamics and
classical coatinuum mechanics. With the application of classical
thermodynamics, the response of the materials which are exposed to the
environmental conditions may be completely described by the following
equations: the balance equations of mass, momentum and energy.,
constitutive equations and the equations of entropy inequality. The
other is to derive the governing equations by developing a varistionmal
principle. Euler equations for the variational principle are the field
equations of motion, heat conduction and mass diffusion, and the
strain-displacement equations in terms of primary field variables. This
principle also yields prescribed boundary conditions on heat flux, mass

flux and s-tfaco traction vectors.

In most theoretical research publications on modeling the
bygrothermal response of composites, the heat conduction and mass
diffusion equations are gemerally decoupled im order to estadblish a
mathematically tractable problem, but this approach is not always
appropriate. For example, if a material is simul taneously subjected to
both hygrothermal and mechanical loadings, and the rate of change of the
material structure is of the same order of magnitude as the rate of
change of temperature and moisture concentration, then the general
equations governing the cross-effects, i.e. the coupling terms between
the stress and temperature, or between the temperature and moisture
concentration, are necessary for analyzing this physical problem. For
example, a polymeric material which demostrates a stromg viscoelastioc

characteristic is subjected to a prescribed strain, the relaxation of
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the stress inside the material will persist for a long time. In this
case the rate of change of the stress relaxation of the material
structure is of the same order of magnitude as the rate of change of
temperature and moisture concentration, therefore, the cross-effects are

significant and should be taken into account.

1,2.2 Qoviov of This Thesis

The analysis of bigh-speed 1linkage mechanisms fabricated from
composite materials is a very difficult task because of the complex
constitutive behaviors. A fundamental investigation into the dynamic
response of four-bar linkages and a slider-crank mechanisms made from a
well-known elastic material is nundertaken both theoretically and
experimentally and is documented in chapter 2 in order to ensure that
one has the adbility to analyse the more complex mechanism systems. The
links of both mechanisms are made from elastic metals. A variational
theorem is developed based on extended Hamilton’s Principle to establish
the equations governing the geometrically nonlinear deformation of an
elastic continuous medium subjected to the dynamical loading conditions.
The goometrical nonlinearity is defined uander the assumption that the
deformation is small and so the strain is also small. However, the
rotational terms in the strain-displacement equation bave the same order
of magnitude as the linear terms inm the expression. A displacement
finite element formulation for a single degree of freedom beam eclement
is presented and all of the analyses performed in this thesis assume
that joints are without clearance, thereby greatly simplifying the

complexity of modeling the impactive bearing forces. The computer
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simulation results are compared with experimental results and some

design guidelines are drawn from this study.

In chapter 3, an experimental study to demonstrate the superior
dynamic response characteristics of mechanisms constructed with
composite material is described. This work was performed following a
sequence of theoretical research presented in references
[ 158,173,176,178,179 ). MNechanical material tests were performed to
determine the constitutive behavior of unidirectionmal and (t45],
angle-ply composite 1laminates. The dimensions of each 1link are
determined by synthesizing 1links with a constant flexural rigidity in
order to compare the dynamic response of each 1link when it 1is
incorporated on the mechanism. The damping coefficient of each liank is
measured by the method of logarithmic decrement. The experimental
results oclearly demonstrate the superiorities of constructing flexible
mechanisms from these two composite materials because of lower stress

levels and small deflections.

In chapter 4, the work of chapter 3 is extended in order to study
flexible mechanism systems fabricated from composite laminates. The
material characteristics from the experimental program were carefully
examined and the wunidirectional laminate was modelled as oelastic
material, because of the time-independent behavior, and the [145),
composite laminate is modelled as viscoelastic material since the
matoerial behavior is time-dependent. A wmized variatiomal principle
which incorporated auxilary oconditions such as the oconstitutive

equation, strain-displacement equation and geomeotrical boundary
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conditions into Hamilton's Principle is presented using the Stieltjes
convolution integral notation. This variational principle also provides
s basis for the finite element formulation which is employed in order to
obtain the numerical results. The discrepancy between the experimental
results and computer simulations is 10% which may suggest the need for

an improved modelling of the constitutive equation.

Composite materials are often sensitive to the environmental
conditions such as the changes of temperature and moisture, and the
degradation of the material properties are presented im & variety of
references including [ 215,216,217 ]. A fundamental phenomenoclogical
study of the dynamic response of composite materials to a wide range of
both mechanical and hygrothermal loadings is proposed and is presented
in chapter S. This study is based upon the first and second 1laws of
thermodynamics, non-equilibrium thermodynamics and the classical
continuum mechanics. The application of classical thermodynamics,
permits the moving continuous media modeling a complex physical
phenomenon, such as changing temperature and moist eavironment, to be
completely described by the following basic equations: the balance of
mass, the balance of momentum, the balance of energy and the entropy

inequality.

In chapter 6, a variational principle is developed to obtain the
linear coupled hygrothermoelastic response of flexible mechanism
systems. The primary field variables are taken to be the displacement
of a material point and two vector field variables called the entropy

displacement and the flov potential displacement which is analogous to
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entropy displacement. Euler equations for the variational principle are
the field equations of motion, heat conduction and mass diffusion, and
the strain-displacement equations in terms of primary field variables.
This principle also yields prescribed dboundary conditions on heat flux
vector, mass flux vector and surface tractiom vector, temperature,
material displacement and moisture concentration. A finite element
formulation is also performed in order to obtain a numerical mean to
render a tractable solution to these complicate equations. An
observation may be drawn from the final equations that the cross-effects
may occur in the equations of motion, energy balance and mass balance,
since a sudden change of temperature, moisture or finite strainm may

significantly result in the changes of stresses, heat and mass fluxes.

An example in which moisture diffuses into neat epoxy resin and
qfaphitolopoxy composites was investigated by J. M. Whitney and
C. E. Browning [ 217 ), is examined analytically and the non-Fickian
diffusion in bidirectional composite laminates is also studied. The
experimental data presented in Figure 3 of reference [ 217 ] showed a
significant descrepancy .fro- classical Fick’s law i.0. the test data
approach equilibrium at a slower rate than that predicted by Fick’s law.
Whitney and Browning postulated that the large in-plane temsile residual
stresses which tosn}tod from environmental change increase the initial
through-the-thickness diffusivity; then as swelling relieves the
residual stresses, the diffusivity decreases. The diffusion coefficient
approaches the diffusivity of a unidirectional composite as the residual
stresses are completely relieved. Direct proof of a stress-dependent

diffusion process, however, requires a measurement of the diffusion



11
coefficient under various constant-stress conditions. As an altermative
solution philosophy, a modified Fick’s 1law is proposed herein by
incorporating a stress-dependent term in the diffusion equation; the
results are oompared with experimental data and after a parametrical
study is completed, the computer results and the model are discussed.

Finally, the extension of current work is proposed at chapter 7.

1.3 Literature Survey for Isothermal Elastodynamic Analyses

The mathematical model of a flexible linkage mechanism must
generally capture the mass, stiffness and damping characteristics of the
links, the external loading, the equation of closure for kinmematic
chain, the principal characteristics of the joints of the mechanism, the
behavior of the drive shaft and the kinematics of the machine
foundation. Finite elements from the structural mechanics literature
have generally been employed to model the material properties of the
links, and most analyses, with the exception of [ 29 ] and [ 148 ],
. assume that the absolute motion of each link may be decomposed into a
rigid-body displacement upon which is superimposed a deformation
displacement measured relative to a moving coordinate system (fixed in
the 1link in an undeformed reference state. Local element matrices ([N],
[C) and [K] are generally established to model the mass, damping and
stiffness ocharacteristics of each link before pre- and post-mul tiplying
by transformation matrices relating the 1local and global (imertially
fixed) referemce frames. The trigonometrical functions contained in
these transformation matrices are calculated from kinematic analyses of

the rigid-linked system in a large number of different configurations.
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This manipulation enables the global characteristics of the mechanism to
be established by formulating the global matrices prior to incorporating

the relevant boundary conditions.

Typically the global equations of motion [ 174 ) for a high-speed

linkage are written

(M1 (0] + [cglh) + [KGI[U) = - [MGI(R] + [X] + [T] (1.1)

where {(U) is the column vector of deformatiom displacements, (') is the
sbsolute time derivative, [Mg], [Cz] and [Kg) are the global mass,
damping and stiffness matrices respectively, (X) are body forces amd (T}
are surface tractions. The nodal absolute acceleration terms, derived
from a rigid-body kinematic analysis of the mechanism, are contained in
the vector [R], and when multiplied by the mass matrix yields the nodal
inertial loading. The equations are then solved for the global degrees
of freedom from which link deflections, vibrational response and dymamic

stresses may be obtainmed.

In order that the finite element method be applied to a 1linkage
mechanism, the articulating system is genmerally modeled as a series of
instantaneous structures. Thus the continuous motion of the system is
replaced by [ sequence of structures at discrete crank angle
configurations upon which is imposed the relevant inertial loading. In
order that these structures may be solved by the finite element method,

the rigid-body degrees of freedom of the linkage must be removed from
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the model in order to avoid singular matrices., The method of removing
the rigid-body degrees of f;oodo- is to assume that the crank may be
modelled as a cantilevel beam at each time instant, therefore, the

deformation at the build-in end is zero.

Winfrey [ 196 ] accomplished this by directly applying the
principle of conservation of momentum to the éo-ploto mechanism, Imam,
Sandor and Kramer [ ® ] considered the crank as a cantilever beam to
avoid this complication, and this approach was also employed by Midhs et
al [ 103 ), and Gandhi and Thompson [ 58 ). Nath and Ghosh [ 107,108 )
removed the rigid-body degrees of freedom from the global matrices using

a matrix decomposition approach.

Baving previously reviewed the basic assumptions and nomenclature
of finite element methods, attention is now focused on formulating these
equations of motion. VWinfrey [ 96,197 ) employed the displacement
finite olement method (the stiffness technique of structural analysis)
to study the olastic motion of planar mechanisms in some pioneering
publications. This popular finite element approach solves for the nodal
displacements and requires displacement ocompatibility on inter-element
boundaries. Erdman et al [ 53 ] employed the equilibrium finite element
method (flexibility method of strnétuxnl analysis) to study flexible
mechanisas. With this approach, adjacent elements have equilibrating
stress distributions on inter-element boundaries and thg global degrees
of freedom are the stress components. This approach is nmot as popular
as the displacement formulation in most fields of finite element work

since the additional compatibility equations have to be added in the
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equilibrium formulation, and mechanism design is no exception.

Midba et al [ 102-106 ) were responsible for developing limear and
geometrically nonlinear finite element formulations for 1linkage
mechanisms based on Lagrange’s equation. The results of this latter

work, with Turcic, were validated experimentally [ 184,185 ].

Bagci et al [ 13,14,154 ) have written a suite of publications on
the dynsmic response of flexible mechanisms using the linear theory of
elasticity. These formulations are based on the stiffmess techmique of

structural analysis.

Thompson et al [ 57,58,157-161,171-181 ] developed variational
principles as the foundations for studying the linear and geometrically
nonlinear elastodynamic responses of linkages. Unlike other
methodologies, this class of formulation explicitly presents the
boundary conditions and also the governing equations of motion in a
single mathematical expression. The analyst then has the freedom to
established displacement, equilibrium, mixed or bybrid finite element
models from these general variational statements. Variational methods
have also been employed to investigate linkages fabricated from
light-weight viscoelastic oomposite materials [ 178,179,181 ] and also
the acoustic radiation from linkage machimery [ 175 ). This latter work
involved modeling the operation of mechanisms submerged in a perfect
fluid as a fluid-structural interaction problem based om interacting

continua.
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Having established the governing equations of motion, boundary
conditions and the initial conditions for a particular design task, the
engineer must then select the appropriate finite elements for modeling
the physical ophenomena to be investigated, and a number of questions
need to be answered carefully. For example, in a study of the
vibrational behavior of a linkage, the designer must decide whether the
in-plane and also out-of-plane responses are relevant. VWill informatiom
on the axial and flexural deformations suffice, or is the torsional
deformation field also important? S8Should a linear or a geometrically
nonlinear model be developed? And so on. Generally, these decisions

will be guided by engineering intuition oi experimental evidence.

A large number of papers [ 8-10,13-15,20,44-46,53,57,58,79-82,88,
102-108,153,161,177,181 ] have been devoted to studies of the planar
elastodynamic response of flexible linkages by modeling the links wusing
finite elements with only one spatial variable. The axial response is
gonerally modeled by a linear interpolation function and the flexural
response by a cubic interpolating polynomial using elements originally
derived for structural applications. Bahgat and Willmert [ 15 ), in one
of the pioneering works in this field, considered both the axial and
flexural responses of a wide variety of flexible linkages using a finite
slement formulation @employing higher—order hermite polynomial
approximations for the deformation fields. The same quintic element was
also employed by Cleghorn et al [ 44-46 ]J. In [ 46 ], a comparison was
undertaken between finite elements utilizing quimtic polynomial
approximations and those based on cubic polynomials, These results not

only suggested that axial deformations may be neglected in the analysis
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of some floexible mechanisms, bdut also that fewer of the higher-order
elements are required to generate a specified solution accuracy when
compared with the results from a model incorporating a larger number of
lower-order cubic elements. The finite-line-element anomenclature
employed by Bagci et al [ 13,14,154 ] is an alternative terminology for

the standard rod and beam elements of structural mechanics.

The two ocommon formulations for mass matrices, namely the
consistent mass matrix [ 45,53,57,58,102,108,157,158,173,178,17 ] and
the lumped mass matrix [ 13,14,154 ] have both appeared in the mechanism
design literature. Tong, Pian and Bucciarelli [ 182 ] demonstrated that
while the lumped mass approach will not suffer any loss in the rate of
convergence vwhen utilizing simple rod elements, & consistent mass
formulation is to be preferred when using higher-order elemonts such as

beam elements.

Having discussed the mass and stiffness matrices employed to model
mochanisms, attention is now focussed on damping matrices., Damping in
materials is a complex phenomenon [ 23 ] which probably requires the
development of thermo-mechanical models in order that it be fully

understood.

The assumptions employed to develop damping matrices are partially
governed by the solution technique to be adopted for solving the finite
element oquations. Generally in the mode superposition approach, the
damping is assumed to be nuncoupled and is given in each mode as a

percentage of the ocritical damping. However, when adopting the
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step-by-step approach of opumerical integration the complete damping
properties of the mechanism must be established and this may be a

difficult task.

In the appendix of reference [ 104 ], Midha, Erdman and Frobribd
discussed the different damping matrices in the context of modal
superposition solutions. Winfrey [ 96 )] assumed a damping matrix
proportional to a linear combination of the mass and stiffness matrices

(Rayleigh damping). In contrast to this, Alexander and Lawrence [ 8 ]

assumed the damping coefficient, C,;, for each orthogonal coordinate to
be defined by C;; = 251(‘11/'11)1/2' where §; is the damping ratio, K;j
is the stiffnmess matrix and M;;, 4is the mass matrix, Furthermore,

(li‘lli‘)llz are the natural frequencies of the mechanism system.

The energy-dissipation characteristics of a mechanism are dependent
upon both the constitutive equations of the link material and also the
characteristics of the joints of the mechanism. In recent combined
experimental and finite-element-based investigations
{ 19,166,176,177,180,185 ], logarithmic decrement transient response
studies bhave been uadﬁttakon for a number of mechanisa configurations
and the experimental data employed to establish semi-empirical damping
matrices for the damping in the mechanism. Bagci and Stamps [ 154 )
have undertaken preliminary work on coulomb damping in joints, which
they then combine with the model for material damping employed in [ 8 ],
thereby employing individual mathematical models for both mechanism

joins and also the link materials.
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Two computational methods are generally employed to solve the
equations of motion for both 1linear and geometrically monlinear
vibrational analyses. These are the modal superposition approach
[ 81,105,185,196 ] and the wuse of direct integration methods

[ 8,29,58,107 ], such as Runge-Kutta algorithms or the Newmark method.

The former approach is based on the assumption that the
displacement vector may be expressed as a linear combinmation of the
vibrational mode shapes. This solution strategy is most efficient if
the eossential dynamic response of the mechanism is contained in the
first few modal combinations. Hence it is most useful for studying the
steady—state response of systems operating at constant crank
frequencies. Bo';vor. additional complexities arise vwhen developing
goometrically nonlinear elastodynmamic responses [ 185 ]. The approach
is not to be recommended for linkages fabricated with journal bearings
because the inherent clearance needed for the operation of these joints
creates impact loading which is often characterized by high frequency
components necessitating a solution based on many modes in order to

predict the response of the mechanism.

Numerical integration algorithms employ step-by-step procedures.
Instead of attempting to solve the equations of motion at any time t,
they only solve the equations at discrete time intervals At apart.
Although, of course, this time interval may be made extremely small to
closely approximate a continuous function. Furthermore, these
algorithms assume a definite variation of the displacement, velocity and

accelerations within each time interval, and this has a major effect on
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the stability, acouracy and cost of the solution. These approaches can
be readily applied to determine both linear and geometrically mnonlinear
elastodynamic responses, and furthermore, they may be applied to
accurately model systems subjected to complex 1loading, or loads

containing significant high frequency components.

Imam, Sandor and Kramer [ ® ] applied the rate of change of
eigenvalue-vector method to mechanisms, in order to undertake deflection
and stress analyses. This approach eliminated the need for an
eigenvalue solution at all the mechanism configurations subjected to

analysis.

Midha, Erdman and Frohrib [ 105 ] develped a technique for directly
determining the steady-state solution of differential equations with
time-periodic coefficients, which govern the elastodynamic motion of
high-speed 1linkages. The same authors were also responsible for
developing an alternative solution strategy to the same class of problem
[ 103 ), and in addition, a numerical algorithm for performing transient

analyses of linkages [ 106 ].

While the above procedures are dedicated to determine the
elastodynamic response of linkages, some authors have advocated that a
quasi-static analysis of a linkage mechanism is quite adequate for most
design purposes in an industrial environment [ 84 ). Since most of the
complications associated with an elastodynamic analysis are avoided by
adopting this philosophy, the results are less costly, but they are also

less accurate, This approach requires the solution of a set of
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nonhomogeneous algebraic equations to be obtained, and this is readily

accomplished using one of the Gaussian elimination family of algorithms.

All of the mathematical models for flexible linkages involve a
large number of degrees of freedom and hence a large number of equations
of motion must be solved. This is computationally inefficient and hence
expensive, However, this may be overcome by using static condensation
techniques and an approach was developed by Khan and Willmert [ 84 ).
This philosophy involves condensing all internal degrees of freedom of
each link to create a super element with only the principal degrees of
freedom retained, and has been used extensively in commercial codes for
structural dynamics problems. The authors reduced the number of system
equations by 50 percent, so that the computational effort, which is
proportional to the cube of the number of equations, was considerably
reduced. As they rightly indicated in [ 84 ), this approach is
especially useful when the designer is searching for an optimal solution

which generally involves many iterative analyses.

The vast majority of the papers on flexible mechanisms present
vibrational analyses of slider-cramk or four-bar linkages comprising one
or more oclastic members and sited on a stationary rigid foundation.
Deformations are gemerally restricted to axial and flexural modes in the
plane of the mechanism and column vectors [X]) and {T) in equation (1.1)
are often neglected. This approach yields, for example, a transverse
flexural vibration ocomprising a periodic response upon which is
superimposed a high frequency waveform anear the fundamental natural

frequency in flexure of the link being studied. Steady state responses
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[ 15,45,103,108 ] and also transient responses [ 106 )] have been
obtained. Since these classes of solution can be computationally time
consuming, some authors [ 84,125 ] have advocated that a quasi-static
analysis is adequate for the analysis of most industrial machinery.
This approach neglects the terms [M;) (D) and [CGl[bl in equations (1.1),
thereby considering the mechanism to be a statically loaded structure.
This assumption greatly simplifies the computational aspects of the
finite element analysis and the response comprises only the periodic

waveform component of the vibrational response cited earlier.

Inertial terms coupling the rigid-body kinematics and the
elastodynamic response have been featured in some analyses
[ 45,104,107,180,185 ). However, while these analyses present a more
accurate mathematical model of the mechanism, these terms have, so far,
been found to have a negligible effect on the elastodynamic response of
the experimental mechani sms investigated in the 1laboratory

[ 19,184,185 ].

The higher-order theories modeling the elastic motion of links
employ geometrically mnonlinear analyses which retain the terms in the
strain-displacement equations that couple the axial and flexural
deformations [ 107,108,147,180,185 ]. These additional terms are
readily handled by the numerical integration solution philosophy, but
they present additional ocomplications if the modal superposition

approach is employed.

The early work on finite element analyses employed oaly one element
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to model each flexible 1ink [ 8 ] and [ ¥6 ). This naturally produced
inaccurate results, since one of the fundamentals of finite element
techniques is the assurance of solution convergence as the number of
elements in a model is increased. This was originally highlighted by
Alexander and Lawrence [ 79 ] in pioneering work on combined
experimental and computational investigations of flexible four-bar
linkages. Midha, Badlani and Erdman [ 102 ] reinforced these
conclusions by demonstrating the effects of multi-element idealizations
on the response of a structure. They showed that a 15 perceant error
existed in the socond mode frequency and a 400 percent error in the
third mode when a single element was employed. Similar errors were
demonstrated by Gamache and Thompson [ S7 ] as part of a ecomparative
study on modeling the flexural response of four-bar linkages using

Timoshenko and Euler-Bernoulli beam elements.

Most of the work to date on planar flexible mechanisms bas
concentrated on the planar response, thereby neglecting the co-planar
motion of industrially realistic systems in which torsionmal effects, due
to the offset of the joint members, may be significant. Preliminary

work on this subject has been undertaken by Stamps and Bagci [ 154 ].

Although the natural frequencies of a mechanism are continually
changing during the operating cycle, as the stiffness and mass
characteristics relative to a fixed reference frame change,
nevertheless, critical speed ranges must be identified and avoided in
practice. This class of problem has been investigated by Bagoci et al

[ 13,14 ) using finite line elemonts and lumped mass matrices to study
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slider-crank mechanisms, four-bar linkages and also six-bar mechanisms.
Solutions were gonerated by an eigenvalue algorithm and compared with

experimental data.

The synthesis of rigid-linked mechanisms may be accomplished by
either precision-point procedures or else optimization techniques which
impose constraints on the minimization of an objective-function [ 170 ].
In order that these latter modern techniques be agpliod to synthesize
flexible mechanisms, where deflections and dynamic stress levels are
also introduced as constraints, the synthesis package must iteratively
interact with software for analyzing flexible mechanisms. This is
'bocanso the analysis and synthesis procedures cannot be conveniently
decoupled, as occurs in the design of rigid-linked mechanisms. While a
considerable number of papers have been published on the analysis of
flexible mechanisms, only a very small aumber have been written on the
synthesis of these systems [ 44,80,81,84,125,202,203 ] and they are all

based on finite element methods.

Before discussing the different solution strategies, it is
appropriate to again review equation (1.1), which provides the key to
understanding the proposed methodologies. Generally, when a mechanism
is operating in a high-speed mode the body force and surface tractions
may be neglected in comparison with the inmertial loading, hence [X] and
{T) disappear. Premultiplying all the terms by the inverse of the mass

matrix (HG]'1 yields

(11001 + )7 1icg) B + IMg1~liRg1 (U] = - (1)(H) (1.2)
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Thus it is evident that for a given mechanism operating at a given
speed, the elastodynamic response is governed by the energy dissipation
per unit mass and also the stiffness-to-mass ratio of the mechanism
links. In other words, a bigh stiffness—to—weight ratio will result in
small deflections and stresses. This observation has spawned two design
philosophies. The first [ 44,80,81,84,202,203 ] involves designing
links in the commercial metals while optimizing the cross-sectional
geometry of the members. The second [ 125 ] advocates that modern
fiberous composite laminates should be employed because of their

inherent superior damping, and higher stiffness-to-weight ratios.

Erdman, Sandor et al [ 52,53,79-81 ] developed a general method of
kineto-elastodynamic analysis and synthesis in aluminum alloys using
optimization techniques, which imcorporated stress and deflection
constraints, to develop special <cross-sectional shapes and tapered

members.

Willmert ot al [ 84 ] developed the optimality <criterion
optimization technique for mechanism design. This is based on the
Kuhn-Tucker conditions of optimality for the minimum-weight design of
mechanisms subjected to stress limits with the variables being the

cross-sectional geometry of the links.

Cleghorn, Fenton and Tabarrok [ 44 ] employ the same algorithm as
in [ 84 ] with the modification that each interation incorporates the
effect of the inertial loading of one link upon the stress levels as all

the other links. This modification substantially reduced the numdber of
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interations needed to achieve the optimum solution when employing the

finite element formulation presented inm [ 45 ).

Zhang and Grandin [ 202,203 ] developed a novel approach which
combines the previous optimality criterion techmique with a kinematic
refinement technique to achieve an optimal solution. This marriage
involves a finite clement analysis, a modern optimization algorithm and
also a rigid-linked mechanism synthesis procedure for adjusting 1link
lengths, location of fixed pivots, etc., in a unified approach. The
authors achieve considerable success with this method, recording a
design weighing omnly 27 percent of that obtained in [ 44 ) when

addressing the same synthesis problem.

In contrast to the prevous approaches which are all concerned with
homogeneous isotropic materials, Thompson et al [ 158,160,173,178 ] have
proposed that material selection should enter the design process. No
longer should the search for appropriate materials be restricted to the
metals but it should also include composite materials which offer much
more desirable properties [ 173,176-179,181 ). Finite element models
have been developed by extending the standard rod and beam elemeants to
model the effect of ply angles upon link stiffnesses and to also
represent viscoslastic materials., The models have been verified in
combined experimental and computational studies [58-60,63,66,68] and the
superior rospont? demonstrated in experimental comparative studies

[ 160 ].

A third approach for synthesizing flexible 1linkages [ 125 )
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proposes that a microprocessor-controlled actuator should be inmtroduced
into the original mechanism in order to modify the inertial loading and
hence stress levels in the system., The analysis phase of the synthesis

slgorithm is undertaken using standard finite element theory.

A systematic study is undertaken in the subsequent chapters for
obtaining the dynamic response of bhigh-speed 1linkage mechanisms
fabricated from composite materials operating under both isothermal and
extreme envirommental conditions. A theoretical and experimental
investigation of the dynamic response of flexible lizkage mechanisms
constructed from & well-known elastic material operating nunder
isothermal conditions is presented in chapter 2 in order to ensure that

one has the capability to analyse the more complex mechanisam systeas.



CHBAPTER 2
A THEORETICAL AND EXPERIMENTAL INVESTIGATION
INTO THE DYNAMIC RESPONSE OF FLEXIBLE MECHANISMS
MADE FRON ELASTIC MATERIALS AND OPERATING

UNDER ISOTHERMAL CONDITIONS

The analysis of bigh-speed 1linkages mechanism fabricated from
composite materials is a very difficult problem because of the complex
constitutive behaviors. The ability to predict the dynamic response of
systems constructed from a well-known elastic materials is an essential
step in order to ensure that one has the capability to anmalyse the more

compl ex mechanism systems. This is what is undertaken herein.

2.1 A Variational Formulation for The Geometrically Nonlinear

Fipite Element Analysis of Flexible Linkages Made from Elastic

Materials Operating under Isothermal Condition

The Lagrange’'s equation was employed by a few researchers in the
field of machine dynamics in order to develop the equations of motion
which govern the dynamic behaviors of the mechanisms. B.S. Thompson and
A.D.S. Barr [ 172 ] proposed a mixed variational approach which
incorporates auxiliary conditions such as the strain-displacement

equation, constitutive equations and geometrical boundary conditions

27




28
into the Hamilton’'s principle. So the functional depends upon
displacement, stresses and strains. MNoreover, the statiomary conditions
are the governing equations in primitive form: the kinematical,
dynamical and constitutive relationship. More insights may be drawn
from this mixed variational principle via a finite element formulation
which discretizes a continuous medium into several finite elements. As
the basis of an elementary approximation, each field can be
independently selected to achieve the discrete model. Namely, the
approximating function of stresses may be different from that of the
strains. The discrete counterparts of the displacement, stresses and
strains are governed by algebraic equations: kinematical, dynamical and
constitutive., This approach offers an effective mean to achieve simple,
efficient models that possess the desirable attributes of those derived

by approximating the displacement in the potential.

The variational theorem forming the kermel of this theoretical
study was originally developed in the doctoral thesis of B.S. Thompson
[ 220 ]J. It incorporates the geometrically nonlinear form of the field
equations so that it may provide a basis for analyzing linkages
susceptible to dynamic init:bilitios. and also mechanism systems that
must be analyzed  wusing higher-order theories. The deformation
displacements are assumed to be small, and the strains are also assumed
to be small, however, the rotational terms in the strain-displacement
equations are assumed to be of the same order of magnitude as the linear

terms in these expressions [ 116 ].

The variational equation of motion governing the motion of a
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continuum of volume V and surface area S representing a portion of a
link incorporating a revolute joint and also & sliding joint may be

written using a general tenmsor notation [ 220 ] as

8 =0 = IE% [ Iv 511j[dij -a'/aYij] av

[ ]
+ Iv 501[ Xi + oij.j + ni.ijjk + ni.kajk,j - PP§ ] av

+

broy [ v x4 av + fs 51981 - fyody av]

+

89, [ IV‘ijkxi( foxtrpx*uy ) dV

+

Isz ©ijx8i(rox*rRitux) dS;

+

j§ 'ijkPﬁi‘fok*'nk*“k’ av ]

+ IV 6“ij [ 4j -1/2( “i,j*“j,i*“k.i“k.j ) ]dV
- fv 9591[91' [?oi*ia*°xjt‘j‘fok*fax *“x’] ] av
* Isl5“1‘31‘li“lxﬂi.k’ds1

+ Isz(bgi+ 5lk“i.k*lk5“i.k)(;i'“i) ds,

+ Is3( 5':*5'k‘;.k*3k6°z.k )/cos®

(uxsin.+uzcos¢)dS3 ] dt (2.1.1)
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In Figure (2.1), the link has a Lagrangian axis frame oxyz fixed in
the member in a reference state with zero stresses and strains, and the
system parameters are defined relative to these <coordinates. An

arbitrary point P in the 1link is defined by the position vector

Tj = rgoij + TRj + u;, where r,; are the components of the position vector

of the origin of the body axes oxyz relative to the origin of an
inertial reference frame OXYZ, rp. represents the position vector of

point P in the undeformed reference state relative to the body axes, and

U; is the displacement vector.

o

Figure 2.1 Definition of Axis Systems and Position Vectors
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The absolute velocity associated with the time rate of change in £,
is written as p;, p is the mass density, X; is the body force per unit
volume, W is the strain energy density, LETY) is the nonlinear Lagrangian
strain tensor and % is the associated stress tensor. Components of
the angular velocity vector for the moving Lagrangian frame are
represented by .j and e;;x is the alternating tensor. The time rate of
change with respect to oxyz is denoted by () while the absolute rate of
change is denoted by (.). The comma reprosents the covariant

derivative.

The definition of this class of mixed boundary value problems is
completed by prescribing surface tractions ii on region 8;, while
surface displacements ii are prescribed on region 8;. The surface
region 33 bas a special constraint imposed upon it which models the
kinematic action of a sliding joint, [ 172 ) and this comstraint appears
under the final integral in equation ( 2.1.1 ), where @ is the angle
between the adjacent links at the joint. The constraint requires the
direction of the resul tant deformation vector at the joint to always be
coincident with the axis of the guide. Hence, for example, the
deformation components of the axial and flexural displacement fields

must combine in the proscribod‘nannor to ensure this.

The objective that follows is to develop from first principles a
displacement finite olement formulation for the analysis of the
nonlinear vibrational behavior of linkages fabricated with straight
slender flexible beam-shaped members. This is accomplished by first

assuming that the flexural deformation field being modeled by the
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element is governed by the classical Bernoulli-Euler hypothesis.

The amount of detail sought by different anmalyses has resulted in a
large number of theories being developed for predicting the nonlinear
vibrational response of beam systems and many are cited in [ 136 ]. One
of the principal reasons for this large variety of theories is due to
the different assumptions employed to describe the elastic geometrical
monlinearity expression, which typically couples the axial and flexural
modes of deformation. Other simplifying assumptions are also generally
introduced into the equations of motion to make them mathematically
tractable, or else reduce the computing effort, by neglecting

higher-order terms. The presentation that follows is no exception.

The objective, herein, is to develop a displacement formulation for
a single ome-dimensional finite element with two exterior nodes, each
having three nodal degrees of freedom. Two nodal variasbles W and ©
describe the flexural displacement and slope respectively, while U

describes the longitudinal displacement.

Defining the nodal displacement vector for the element by

(0T = (g, g, w, v, 6, 6,) (2.1.2)

then the general displacements u(x,t) and w(x,t) at any point in the

element may be related to [U] by
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[u wiT = [N][U] (2.1.3)

where [N] contains the shape functions.

The axial displacement is defined by

w(x,t) = IN1(0) + (31720007181 T IR, ) (D) ax (2.1.4)

where [N;) is the shape function for the linear terms, [Nj,;] the shape
function associated with the nonlinear terms, and (') denotes spatial
differentiation with respect to x. This notation has been adopted to
clarify the 1linear and nonlinear terms in the subsequent mathematical
development. The transpose is denoted by T. A more familiar
formulation of equation ( 2.1.4 ) may be found in many works on

nonlinear vibrations, such as [ 34 ], and this is

Uy = uy - zdw/dx + IfllZ(aw/ax)’dx (2.1.5)

where u, is the axial displacement, w(x,t) the transverse displacement,

and x is the longitudinal spatial variable. The axial strain
corresponding to ( 2.1.4 ) may be written as the sum of the linear and

nonlinear terms. Thus,

('Yxxl = [1::]1 + [7881111 (2.1.6)
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or

lrge) = IN11(0) + 1720007 (R, 1TIR, ) (U) (2.1.7)

which may be amplified to explicitly define [Nl] and [ﬁnl],

lrgg) = [ Byy. Kpps —slys. -2y, -shys, -afyg )
(0,0, W, V,, 6,6, ]1T

+1/2[ 4, U,, W,, W,, 6,, 0, ]

[ 0.0, K3, Rpjg. s Rpgs )T

[0, 0, Rys. Rpggs Nppse Ry )

(y,u,,v,v,,6,6,]T (2.1.8)

Assuming that the constitutive equations have a very small
dependence upon the rate of 1loading of the material, then the

variational equation of motion ( 2.1.1 ) may be written as
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83 = 0 = (43 [[yloy,,)TUo, )-(CYlyg,) - (€] (g DaV

- [y ptoPITCIPI-INg 1 PR)-INI (B))av

- J.Vb“i(xi*°ij.j"“i.kj‘jk*“i,k‘jk.j'pl.’i)dv

+ [y180,g1TC Lygy)-18;110) - 17200171k IT (R, 100) dav

+ [ BUITINTC [3)-18)-15)TIRI (U] s,

= f5a¢ 1617 [85)TIR1 (UD+ (g1 TR (6U) ) ( (U] -INDIO] )as,
+ 50 (88, T+ 1851TIRI 10,1+ [5)TIRD (5T,) )

( [U,)sin0-(U,cos )/cosd dS, Jat (2.19)

where [C] is the constitutive matrix, [C,] is a damping matrix providing
stresses proportional to the strain rate, [NR] contains the shape
functions approximating the rigid-body kinematics (to be described

later) while ([Pg) is the column vector containing the nodal ri;id body
kinematic degrees of freedom. The nodal absolute velocity components

are defined by [P) and the surface tractions by [g). In addition, the

terms [Ux] and [U,] are defined by

waT=19 v, 0 0 0 0] (2.1.10)

and

(0,1T=10 0o v, w, o 6,] (2.1.11)



36
Finally, because the rigid-body equations of motion are of no

consequence here, they may be removed from the formulation by taking

variations [5f°il and [50;]) to be zero.

In order to complete the transformation of the variational theorem
from an expression written in a Cartesian tensor notation to a matrix
relationship appropriate for a finite element analysis, attention is
focused wupon the equations of equilibrium obtained from the second term

in equation (2.19). The second term may be written

IQIsUJT[NJTa[o,,J/axav (2.1.12)

An integration-by-parts over x yields

“A[wlT[N]T[onldA]x - [ytsu1TRIT Lo, Dav (2.1.13)

The first term in equation (2.1.13) is a boundary term, to be
evaluated on the cross-sectional area A, which will be manipulated
later. For a homogeneous, isotropic material, the second term becomes,

using the first and fourth integral expressions in equation (2.19),

- fytem TR, 1TeR IE D)V - fytsm T2k 3T

(TR, 1TIR,, 1TIUIE 20V
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- fyrratso i TR 1 0 (0 TING D TR Dav

- fytem Tt 1 Tie 1X) th1av

- [yr28m T TR 1 TR, 1 (c, 118D [B)av (2.1.14)

The first term in equation (2.1.14) yields the standard linear stiffness

matrix [K;] defined by

k] = Iv(ﬁllThtﬂlldv (2.1.15)

The socond term in (2.1.14) defines ([K,]) which is ome of several
stiffness matrices incorporating elastic geometrical mnonlinearity terms

and is explicitly defined by

k,) = I‘.' [Fxlllﬁnllrlnnlldx (2.1.16)

where L is the length of the finite element and [Fxll is the linear

component of the axial force defined by

[F;);, = EAIN;)(U,] (2.1.17)

since the antisymmetric terms in :z disappear upon integration.

The third term in equation (2.1.14) is neglected, being of fourth
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order, while the fourth term is linearized to give a damping matrix

(D,) = j'vmll'flcumlldv‘ (2.1.18)

The fifth term is also neglected because of higher-order derivatives.

Returning to the third integral expression inm equation (2.19), the
third and fourth terms may be combined as the derivative of a product,

and upon subjecting this expression to Gauss’theorem they yield

Juiay, %), 39V

- [IA ijlljﬂi'kblli“]x - Ivdkjni.kslli'jdv (2.1.19)

where ‘j is the unit-vector normal to the surface. The first term onm
the right-hand-side of (2.1.19) is a boundary term to be considered

later, while the second term may be written

-fotsn ] g 14272001 ek, (01 Loy ,)
- [ thy1+1/72000 1y 1TER 1 Jrudav (2.1.20)
Upon substituting for [‘xx] from the first and fourth integrals in

equation (2.19), only the following three lower-order terms are

rotained from the twelve terms obtained from the expansion of (2.1.20)



k)

-801T(x, ) (o1-16u1 TR, 1 (0U)-180) T (D, ) (D) (2.1.21)

Stiffness matrix [K,], depends upon the 1linear axial force and is

defined by

(5,1 = [Lir,), 18T ax (2.1.22)

Matrix [K,], however, contains terms modeling the geometrically

nonlinear elastic behavior and is defined by

(5,3 = 2f% 17208, 0, (0ITIR ) 1R ) TOR ) e (2.1.23)

Matrix [D,] is a damping matrix, associated with the monlinear behavior

and is defined by

(D,] = f} (F ), [8,17T0C 118 Jax (2.1.24)

This completes the operations on the elastic terms governing the
deformation throughout the volume V and attention is now focused on the
boundary terms modeling surface tractioms. The unit vectors on the ends
of a one-dimensional element with plane faces, described relative to a
Cartesian reference frame, are orthogonal. Consequently, upon
incorporating the direction cosines into the fifth integral expression

in equation (2.19) and adding it to the first term in equation (2.1.13)
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and also the boundary term in equation (2.1.19), terms cancel to yield

[s BTN T (310, (2.1.25)

The manipulations of the elastic terms are now complete and
attention is focused on the dynamic behavior of a link which is governed
by the second integral expression in equation (2.19). This expression
must be differentiated with respect to time and substituted inmto the
final term in the second integral in equation (2.19). Instead of
sdopting this direct approach, an alternative method will be employed
[ 172 ], in an effort to better demonstrate the parallels betwveen
classical methodology and a numerically-orientated formulation.
Fundamental kinematical theory states that the absolute acceleration of
one point, say B, on the link is the acceleration of point P relative to
point B. Confining attention to the axial (ox) and flexural (oz)
deformations u and w, respectively, the following statement may be

readily developed [ 172 }:

p [ ]

pPx Bx *

i+ B+ 28w - B (rtu)

ppz = }Bz + w - B(r+u) - 288 - Qv (2.1.26)

where r is the length of the position vector defining the position of
point P, relative to B in the undeformed configuration, and ® and U are

the angular velocity and acceleration of the link. It is assumed that



41

’Bx and }Bz may be approximated by classical rigid-body kinematic terms
alone, but a more refined approach may be developed [ 172 ) where

additional degrees of freedom are used to model the system.

The absolute rigid-body acceleration of point B may be written

pRBx ’Bx""
(Bgg) = = =[Ng] [Bg) (2.1.27)

’le ﬁBz"'

where [Ng] contains the shape functions modeling the linear distribution
of the absolute rigid-body acceleration within the finite element and is
the vector of nodal degrees of freedom. If, by using equations (2.1.10)

and (2.1.11), equation (2.1.3) is rewritten as



[n] = ["x] =N O -[“x
wd= (v, ) =10 N )] (2.1.28)
then equation (2.1.26) may be reformulated as

s <
0 N, ) 4N, BN,

(B) = iNg1tBg) + IN)(D) + 2B (0 (u)

-N 0. -8 N (2.1.29)
x z

Substituting (2.1.29) into the final term in the third integral in

equation (2.19) yields the expression

-tsu1 T tBg) - (suITNI (0] - (80 TMgyp 1 ()

-(801T (Mgl (U] (2.1.30)

where [lgl is the mass matrix associated with the rigid-body motion and

is defined by

(ug) = fyprniTINglav (2.1.31)

the second matrix, [M], is defined by
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[M] = jQp[N]T[Nldv (2.1.32)

the third matrix, ["0081' is associated with the Coriolis acceleration,

and is defined by

(Meog) = fy2dp av (2.1.33)

and the final matrix, [Myc], describes the inertial coupling between the

gross rigid-body motion of the mechanism and the elastic deformation

kinematic terms., It is defimed by

(Mpe) = j&, v (2.1.34)

The variational equation of motion may now be written in the final

form

83 = 0 = (8] j,,tsyan( lo,,)-Elyg,) -16, 1[¥,.) )av
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- fyptsPITC (P)-INg) (PR I1-IN1IB] Hav

+ [801T( ( (K, )+ (R, J+IK,1+[K, )+ [Nyc] )IU)

+( [0, 141D, 1+ Mgog) D IB1+ N1 0] - [y N1 TixIav

- jg,iuthilas,—[ukltﬁll ) (2.1.35)
+ [yl80gg)TC Lrgg)-18,100) - 17200071, )T Ry 1001 Hav

- fsa € 18517+ 1851 TIR] [0+ 51 TIRI [8U) ) ( (D) -INI[U] )as,
+ [50¢ 168, )T+ 1881 TIRI [0, )+ 151 TIR) [8U,) )

( [U,)tand-(U,] )as, Jat

Equation (2.1.35) contains the field equations and displacement
boundary conditions for one finite element and these governing equations
may be obtained by taking arbitrary independent variations of the
variables 4in this variational equation of motion. The resulting matrix
formulation must be pre- and post-multiplied by standard transformation
matrices in order that this general statement be used to develop a
finite element model of a specific linkage. The matrices formulating
the equations of motion, which are contained in the third term of
equation (2.1.35), are presented explicitly in the Appendix of reference

[ 180 ].

Having established the theory and the finite element formulation
which provide a numerical scheme to theoretically predict the dynamic

response of the high-speed flexidble linkage mechanisms, an experimental
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study is necessary in order to prove the applicability of the theory.
The experimental set-up and the procedures will be described in the

following section.

2.2 Experimental Study

In the field of research dedicated to flexible mechanism systems
there have been a number of combined theoretical and experimental
studies, which include references [ 51,60,82,137,154,162,171,184,185 ].
Upon reviewing these publications and others, it is evident that most
investigators have focused upon four-bar linkages and only a small
number of papers have been dedicated to studying the flexural response
of slider crank mechanisms incorporating bearings without clearance.
Furthermore, there have been no combined experimental and finite element
publications on flexible slider crank mechanisms, even though this is a

very common linkage in industry.

Herein, the results of a comprehensive experimental study on the
dynamic response of slider-crank linkages configured with the plame of
the mechanism perpendicular to the gravitational field, and also
four-bar linkages with the plane of the mechanism colinear with the
gravitational field are preseamted. These kinematic chains were
constructed with several link-length ratios and differeat 1link
cross-sectional dimensions, and the systems operated over a vwide-range
of speed to generate a large variety of response histories for
evaluating the predictive capabilities of the mathematical model

developed above.



46

2.2.1 Experimental apparatus: Four-bar linkages

A photograph of the experimental four-bar linkage apparatus used in
this study is presented in Figure (2.2) in page 47, from which it is
clear that it incorporated two flexible members, the coupler and the
rocker linkages. This apparatus was designed to accommodate a wide
range of link lengths for the coupler, rocker and ground links, but the
crank was always held constant at 63.5mm (2.5 inches). This member was
assumed to be rigid since it was manufactured from steel bar stock of

cross-sectional dimensions 25.4mm x 25.4mm (1 in. x 1 in.).

The depth of all of the flexible members used in this investigation
was less than 25.4mm (1 in.) perpendicular to the plane of mechanism,
ang the thickness of the links in the plane of the mechanism was always
loss than 2.54mm (0.1 1in.). These dimensions are clearly not
ropresentive of an industrial mechanism, but they were chosen in order
to accentuate the flexural deformations in the plane of articulation,
thereby creating the large signal-to-noise ratios desired by all

experimentalists in all fields of scientific research.
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Figure 2.2 Experimental Four-Bar Linkage Mechanism

Naturally, the same signal-to-noise ratios could have been achieved
using realistically proportioned links operating at much bigher speeds,
but this presents additional data-aquisition complexities when measuring
the response of the links, and in addition, the response data may well
be contaminated by accentuated elastodynamic effects at these higher
speeds, due to linkage out-of-balance and other more subtle phenomena

caused by manufacturing errors.

It is hypothesized that if mathematical models are capable of
predicting the elastodynamic response of linkages fabricated with
slender links operating at several hundred revolutions per minute, then
they can also predict the response of industrial, realistically
proportioned mechanisms with the same stiffness-to-loading ratios

operating at higher speeds, because the two response histories are
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fundamentally governed by the same equations of motion.

The coupler and rocker links of the experimental four-bar 1linkage
apparatus were both manufactured from strip steel material and the ends
of each specimen were clamped to the respective bearing housings by two
socket screws. The clamping loads were distributed over the ends by
flat plates which are clearly visible on the coupler 1link im Figure
(2.2) on page 47. These small clamping plates were found to be
essontial components of the mechanism since they ensured a smooth 1load

transfer between the three principal components of each link.

Identical aluminum bearing housings were manufactured for the
rocker link where it was retained on the ground-link/rocker joint, and
also for the coupler where it was retained on the orank pin joinmt. The
dimension of the housings in the 1longitudinal direction of their
respective links was 38.1 mm (1.5 in,) from the end of the housing
adjacent to the threaded holes for the socket screws and the centerline
of the bearings. The masses of these components including bearings,

socket screws and clamping plates was 0.05 kg (0.11 1lbm).

The coupler and rocker links were supported on matched pairs of 6.4
mm (0.25 in.)  bore R3 DB R12 instrument ball bearings supplied by FAG
Bearings Limited. Each bearing housing in the mechanism was preloaded
using a Dresser Industries torque limiting screw driver calibrated to
0,113 Nm (£l in-1bg) which permitted bearing clearance to be eliminated
since the impactive loading associated with bearing clearances would

have resulted in larger link deflections. Conmversely, if the bearings
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were subjected to large axial preloads, then the deflections would be

attenuated.

The two flexible links articulated in the same plane inm order to
eliminate the complications of nonlinear torsional coupling terms which
characterize co-planar flexible linkages. This was accomplished using a
cleavage bearing design that is clearly visible in the top center of
Figure (2.2). The housings were fabricated in an sluminum alloy and
longitudinal dimension of the housing comprising part of the coupler was
38.1 am (1.5 in.) from the bearing centerline to the end of the housing
adjacent to the threaded holes used to clamp the link specimen. The
mass of this assembly, including bearings, socket screws and clamping
plate was 0.052 kg (0.114 1bm). The cleavaged component of the
coupler-rocker joint was bolted to the rocker link. The axial dimension
of this part from the bearing centerline was 44.5 mm (1.75 in) and the

mass was 0.063 kg (0.138 1lbm) including the spindle, washers and nuts.

The mechanism was bolted to a large cast-iron test stand which was
bolted to the floor and also to the wall of the laboratory to provide a
substantial rigid foundation. A 0.75 h.p. Dayton variable speed d.c.
electric motor (model 2Z846) which was bolted to the test stand, powered
the linkage through a 159 mm (0.625 in) diameter shaft supported by
Fafnir pillow block bearings. A 100 mm (4 in) diameter flywheel was
keyed to the shaft thereby providing a 1large inertia to ensure a
constant crank frequency, when operating in unison with the motor's

speed controller.
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2.2.2 Experimental apparatus: Slider-crank mechanism

The experimental slider-crank linkage used in this study was also
bolted to a test stand and a photograph of the apparatus is presented in
Figure (2.3) on page 51. The length of the steel comnecting rod was 292
mm (11.5 in) and the 1length of the crank, vwhich was part of the
flywheel, was 50 mm (2 in). The slider was a Micro Slides, 1Inc. type
2050-RW-118-5 1linear orossed-roller slide assembly and this precision
table was without bearing clearance. A photograph of this arrangement
is presented in Figure (2.4) on page 51. A non-rotating spindle was
fitted to the translating portion of the slide assembly and this
supported the gudgeon pin bearings which were a matched pair of 6.35 mm
(0.25 ia) R4 DB 12 instrument bearings supplied by FAG Bearings Limited.
A similar set of bearings were also used at the crank pin, and both

bearing assemblies were preloaded using the technique described earlier.

Identical aluminum bearing housings were manufactured for the cramk
pin and gudgeon pin joints. These subassemblies each had a mass of
0.045 kg (0.098 1bm) including the mass of the socket screws and the
clamping plate. The axial dimension of the housing from the bearing
centerline to the extremity adjacent to the steel specimen was 31.75 mm

(1.25 in).
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Figure 2.3 Experimental Slider-Crank Mechanism

Figure 2.4 Slider Assembly for Experimental Slider-Crank Nechbanism
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The mechanism was again powered by 0.75 h.p. Dayton variable speed
d.c. motor through a 19.05 mm (0.75 in) diameter shaft supported on a
pair of Timken tapered roller bearings type TS4A-6. The action of the
motor’'s speed controller was again augmented by a flywheel of 146.05 mm
(5.75 in) diameter. Both of the experimental systems were covered by a
safety enclosure fabricated from transparent Lexan sheeting of thickness

4,76 mm (0.1875 in).

2.2.3 Instrumentation

A schematic diagram of the instrumentation used in  both
experimental investigations is presented in Figure (2.5) on page 53.
The rated speed of the electric motor was 2500 rpm and this was directly
measured in revolutions per minute by a Hewlett Packard 5314A universal
counter which was activated by amn electro-magnetic pickup, model 58423,
manufactured by Blectro Corporation sensing a sixty tooth spur gear
mounted on the drive shaft of each rig. This large gear is clearly
visible in both Figures (2.2) and (2.3). The aforementioned arrangement
provided visual feedback to the operator whem the speed controller of

the motor was being adjusted to establish a desired speed.

The flexural deflections at the midspan of each link specimen were
monitored by MNicromeasurements Groups Inc. type EA-06-125AD-120 strain
gages bonded to each link at the midspan location. Bending half-bridge
configurations were adopted, using ome gage on each side of the
specimen, and they were used in conjunction with a Micromeasurements

Group Inc., strain gage conditioner/amplifier system, type 2100.
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Figure 2.5 Schematic of Experimental Apparatus and Instrumentation,.
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In order to relate the strain gage signal to the configuration of
the particular mechanism being studied, a third transducer arrangement
was established. An Airpax type 14-0001 zero velocity digital pickup
was employed to sense the bolt head at the end of the crank when the
mechanism was in the conventional zero-degree crank angle position.
This 1long hexagonal transducer is clearly visible in both Figures (2.2)

and (2.3).

This mechanism configuration signal and the output from the gages
were fed to a Digital Equipment Corporation PDP 11/03 microcomputer with

a LS1 11/23 processor which is presented in Figure (2.6).

Figure 2.6 The Digital Data-Acquisition Systez in the Kachinery
Elastodynamic Laboratory
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This digital-data-acquisition system featured 256 kB of memory for
post-processing data and also two 5 mB hard disks for storage. A dual
port floppy disk system was also available. The experimental response
curves were displayed on a Digital Equipment Corporation VT100 terminmal

with retrographics enhancement.

The BNC cables from each experimental apparatus were connected to
an input-output module, bolted to the cabinet of the computer, which was
built by the Electronic and Computer Services Department at MNSU. This
instrument featured 16 analog-digital channels, 4 digital-analog
channels and two Schmidt triggers. Using sof tware developed
spoecifically for digital data acquisition purposes, the flexural
response signal was recorded from the zero crank angle position through
360 degrees by firing one of the Schmidt triggers. In order to activate
the trigger, a 4 pF capacitor was used to modify the square-wave output

from the Airpax pickup.

Experimental results were obtained by implementing the following
procedure. The signal from the strain gage instrumentation was passed
through a first-order analog low-pass filter with a cut-off frequency of
160 Hz in order to remove the electrically or mechanically induced noise
prior to being digitized by the analog to digital comverter amd recorded
by the PDP 11/03 microcomputer. This low-pass filter also prevented
aliasing problems when employing a rectangular data window, and a
sampling rate of (2578)™* geconds, which was conmsidered to be at least
twice the highest frequency component of the pure elastodynamic response

signal [ 3597,128,135 ]
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The data was then post-processed by first multiplying the digitized
response by a strain-deflection <calibration factor for each 1link
specimen., These factors were obtained by supporting each specimen at
the ends on knife edges in a calibration fixture, prior to subjecting
the midspan to a series of known momotonically increasing transverse
deflections which were imposed and also measured by a micrometer
attachment on the fixture. The bending strain corresponding to each

midspan deflection was then recorded.

The second post-processing operation involved using a fast fourier
transform (FFT) algorithm to convert the time-domain signal to the
frequency domain and this was motivated by the need to reinforce the
operation of the analog filter by removing induced noise from the
strain-gage signal. Using an FFT algorithm, the frequency spectrum of
the signal was constructed to determine the frequency range and
amplitude of the noise relative to the desired signal. This mnoise was
then removed by simulating a digital 1low-pass filter prior to
transforming the modified data back into the time-domain for

presentation of the response on a graphics terminmal.

Figures (2.7), (2.8), and (29) demonstrate the aforementioned
post-processing operations. The experimental results are for the
midspan transverse deflection of a four bar linkage with a rigid crank
length of 63.5mam (2.5 in), a ground link length of 406.4mm (16 in) and
the coupler and rocker links were both 304.8mm (12 4in) long with a
thickenss in the plane of the mechanism of 1.575mm (0.062 in) and a

width perpendicular to the mechanism of 19 .05mm (0.75 in). The crank
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frequency was 254 rpm.

Figure (2.7) presents the experimental data following analog
filtering, digitization and post-processing for converting the strain
gage signal to midspan deflections. The noise content of the signal is
clearly evident. Figure (2.8) presents the frequency spectrum and
bandwidth of the same signal presented in Figure (2.7). The npatural
frequency of the rocker link in a simply-supported beam configuration
was experimentally measured to be 41.1 Hz and this response is evident
in Figure (29). This frequency-response data slso indicates mains
noise at 60 Hz and higher harmonics. The frequency content above 160 Hz
is attributed to roll-off in the circuitry of the amalog filter. Using
an FFT software package the data was then subjected to digital low-pass
filtering with a cut-off frequency of 55 Hz to yield the response

presented in Figure (29).

2.3 Computer simulations

Multi-element general purpose finite element programs were written
for both of the experimental mechanisms described previously and each
code had the versatility of permitting the analyst tb arbitrarily
specify the number of elements to be employed for modeling each link. A
parametric study revealed that a six element model of each link provided
adequate convergence capabilities when comparing the computer generated

results '1th'the experimental results.

The steel specimens were assumed to bave a Young'’s modulus, E, of

207 MPa (30 =x 10° 1bg/in®) and a demsity of 8310 kg/m’ (0.3 1bg/in’).
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The bearing housings, bhowever, were assumed to posses the elastic
characteristics of aluminum (Young's modulus of 73.14 NPa (10.6 x 10°
lbfltn’) but the density of the assembly was obtained using the mass and
dimensional data. The cleavaged sub-assembly of the coupler-rocker
joint, which is part of the c;upler. was assumed to have a constant
second moment of area of 18272.56 mm* (0.0439 in®) while the mating
assembly, which is part of the rocker link, had a second moment of area

of 1194.58 mm* (0.00287 in®).

The magnitude of the reciprocating table mass of the slide-crank
mechanism, which was required as a input parameter for the simulations,
was obtained by configuring the table so that it reciprocated in the
vertical direction, prior to resting the reciprocating portion on a
laboratory weighing balance while holding the normally fixed portion of
the table. The laboratory balance was then activated and the instrument
employed to weigh the total mass of the cest-iron table top, the steel
spindle and the nuts of the gudgeon-pin assembly. The resulting value

vas 0.35 kg (0.77 1bm).

The complex phenomenon of system damping was treated in an
approximate mannmer, using the philosophy adopted in references
[ 154,185 ]. Namely, transient response studies and logarithmic
decrement calculations were undertaken for each mechanism in a large
number of different system configurationms. An Qvoru;o value of the
éanpin; ratio was then determined and then distributed uniformly
throughout all of the finite elements modeling the p.rticnlar. mechanism

under investigation. A mean value of 0.029 was employed to model the
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slider crank mechanism and 0.031 for the four bar linkage.

The global equations of motion for the two experimental mechanisms
were developed using the local element equations of motion obtained from
the variational equation of motion (2.1.35), by taking variations of
IBUJT. The model of the four-bar 1linkage incorporated gravitation
loading using [X) and surface tractions [g)] were taken to be zero.
Figure (2.10) presents the model of the four-bar linkage system and
indicates the global degrees of freedom. In this formulation, region S,

in the variational equation of motion, was assumed to be zero.

Figure 2.10 Finite Element Model of Experimental Four-Bar Linkage
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This was not the case for the slider-crank model, where region §,
was employed to incorporate the rectilinear kinematic constraint at the
gudgeon pin. By utilizing this condition, the transverse deformation
was replaced by a function of the axial deformation at the end of the
conpecting rod thereby reducing the nodal degrees of freedom from three
to two. The inertial 1loading imposed upon the flexible link at the
gudgeon pin by the reciprocating table was incorporated into the finite
olement model as a surface traction [ix] in the axial direction. This

was defined by the approximation,

(3,1 = atb,, + B ,tan(-0)) (2.3.1)

where m is the total mass of the reciprocating portion of the sliding
table and the bearing assembly, and ’tx and ﬁtz are the sbsolute
rigid-body accelerations in the axial and transverse directions
respectively at the gudgeon pin. The angle @ denotes the angle between
the centerline of the reciprocating table and the undeformed
configuration of the connecting rod. Upon formulating the global
equations of motion, these equations were then solved by the Newmark
method of direct integration using a step-size governed by the highest
frequency anticipated in the response, which in this case was dictated
by the axial mode. Several of the matrices modeling nonlinear terms
contain an axial force component. For an analysis at time step t  the
axial loading at the previous time step, t _;, was employed in the

simulation algorithm in order to effectively model this dynamical term.
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2.4 Results and Discussion

Figures (2.11)-(2.14) on pages 65-68 present the results of
combined experimental and amalytical investigations on a flexible
four-bar linkage with a ground link length of 406.4mm (16 in), a crank
length of 63.5mm (2.5 in) and both the coupler and rocker links were
304.8mm (12 in) long. The depth of both flexible links in the plane of
the mechanism was 1.4mm (0.055 in) and the width perpendicular to the
plane of the mechanism was 19 .05mm (0.75 in). The operating speed of
the mechanism and also the time-step employed in the simulations are

indicated in the legend for each figure.

It is evident from an evaluation of the experimental data and the
results of the simulation that the mathematically nomlinear formulation
has a very favorable predictive cpability for both frequency comtemt and
also amplitude response of the strain-gage signals over the experimental
speed range from 193 rpm to 342 rpm. Vhile there are indeed portions of
the response where the analytical and experimental results diverge, when
this discrepancy is viewed in the context of a peak deflection of only
1.5am in a very flexible 1linkage then the results are certainly

impressive.

Figure (2.15) on page 69 presents the results of a combined

analytical and experimental study of a four-bar linkage with different
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cross-sectional dimensions and link lengths to the system previously
investigated, thereby providing a totally different set of test
condi tions for evaluating the nonlinear formultion developed in [ 180 ].
The crank length of the coupler was 228.6mm (9 in) and the length of the
rocker was 304.8mm (12 in). Furthermore, the depth of the coupler and
rocker links in the plane of the mechanism were 1.17mm (0.046 in) and
1.57mm (0.062 in) respectively, while the width of these 1links in the
plane perpendicular to the plane of the mechanism were 25.4mm (1 in) and
19 .05=m (0.75 in) respectively. Figure (2.15) again demonstrates a
favorable comparison between the experimental and theoretical responses
since the maximum amplitude deviation between the two waveforms is 0.2mm

and the frequency correlation is quite good.

Figures (2.16) and (2.17) on pages 71 and 72 present the results of
combined experimental and analytical studies of the slider crank
apparatus photographed in Figure (2.4). Both systems operated with a
constant crank length of 50mm (2 in) and a conmecting rod of lemgth
292mm (11.5 in). The depth of the steel commecting rod in the plane of
the mechanism was 1.4mm (0.055 in) and the width perpendicular to the
plane of the mechanism was 19 .05mm (0.75 in). Correlation is again very
favorable between the two responses considering the maximum deflections

are both less than one millimeter.

All of the response data presented in Figures (2.11)-(2.17) were
obtained by modeling the mechanisms using the complete formulation
developed in reference [ 180 ] as part of a mathematical modeling

exercise. However, in industry, the designer is often content with
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results from a simplified formulation if this 1is more cost-effective.
This observation catalyzed an investigation in which several simplifying
assumptions were made in the formulation and the system was again
simulated prior to examining the correlation between the experimental
and computer simulation results. This approach also provides a wuseful
test for determining the significance of the terms in the formulation

developed in [ 180 ].

Firstly, the matrices modeling the inertial coupling terms in

equations (2.4.1) and (2.4.3),

(Njc); = pALBIN) (2.4.1)
where

[ -1/3 -1/6 ()} (i} 0 o |

-1/6 -1/3 (] () 0 0

R] = o o 13/35 9/70 11L/210 -13L/420

0 (] 9/70  13/35 13L/420 -11L/210

() 0  11L/210 13L/420 L3/105 -L*/140

§ (] 0 -13L/420 -11L/210 -L*/140 L%*/10S
L

(2.4.2)

(Mycly = pALY* (W) (2.4.3)
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and also the matrix modeling the coriolis’ effect, equation (2.4.4)

(Mor] = 2pAL[H) (2.4.4)

were removed from the equations of motion. The simulation results for
the four-bar linkage were found to be only altered by anm imsignificnt,
almost imperceptible, amount thereby demonstrating that for these
extremely flexible mechanisms operating in this specific range of
speeds, that these terms canm be neglected. Of course at higher speeds,

and for stiffer systems, this statement may no longer be valid.

Secondly, the stiffness matrices [K,], [K,] and [K,] in equation
(2.1.35) were removed from the simulation to generate a formulation
based on a linear theory of elsticity. The consequences of this action
on the results of the simulations were much more significant causing a
deviation of about eight percent in the amplitude response and four
percent in the frequency content of the coupler response, when compared
with the results based on the nonlinear formulation. This is to be
anticipated from the comprehensive literature on the nomlinear response

of beams and beam systems (see for example reference [ 34,132,198 ]).

These deviations appear to be of smaller magnitude than those in
reference [ 185 ), which is to be anticipated because the latter
publication concerns a mechanism with three, rather than two, flexible
links. Thus a cumulative effect concerning the magnitudes of the

midspan deflections can be anticipated as the number of flexible 1links
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increases.

In conclusion, a theoretical and experimental study bhas been
nnd;ttakon in order to investigate the dynamic response of the
high-speed flexible linkages fabricated from elastic materials, and good
correlations between the ocomputer simulations and the experimental
resul ts have been achieved. Attention now focuses on the fabrication of
mechanisms with composite materials. The subsequent chapter describes
an experimental study in which a comparative study is undertaken between
linkage mechanisms fabricated with two commercial metals and two fibrous

composite laminates.



CHAPTER 3
AN EXPERIMENTAL STUDY TO DEMONSTRATE THE SUPERIOR
RESPONSE CHARACTERISTICS OF MECHANI1S)S

CONSTRUCTED WITii COMPOSITE MATERIALS

References [ 158,173,176,177,178 ] suggest that composite materials
should be employed to replace the commercial metals in mechanism design
because of the high stiffnesses-to-mass ratio, the high strength-to-mass
ratio and the high damping characteristics. However there 1is no
experimental validation for the theoretical prediction. In this chapter
an experimental study is performed to validate the theoretical

predictions made in references [ 158,173,178.179 ].

3.1 Theoretical Motivation for This Experimental Study

In chapter 1, the equation of motion governing the general behavior
of a high-speed flexible mechanism is described by equation (1.2) which

is rewritten here for convenience

(1309 + )7 trega by + g1 ixglvy = -(11R) LD

The significance of equation (3.1) is that an examination of terms

suggests that the elastodynamic response is governed by the energy

76
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dissipation per unit mass and the stiffness to mass ratio of the
mechanism links. Two design philosophies have been proposed by the
mechanism design community for designing high-speed mechanisms. The
first, [ 44 ], advocates that links with high stiffness-to-weight ratios
can be synthesized in the commercial metals by employing optimization
techniques to develop special cross-sectional geometries and tapers.
The second philosopby, [ 158,173,1® ], requires links be fabricated in
modern fibrous composite laminates which possess stiffness-to-weight

ratios superior to both carbon steels and aluminum alloys [ 83,183 ],

References [ 176,177 ) reported on the investigations of linkages
fabricated in composite 1laminates, and the comparative theoretical
studies [ 158,160,178,179 ] demonstrated the superior dynamic response
of linkages constructed with composite materials rather than the
commercial metals. These theoretical papers predict that the stress
levels and dynamic deflections of linkages are inversely proportiomal to
the stiffness—-to-weight ratios of the 1links, and also that these
eclastodynamic effects are considerably attenunated when a linkage is
fabricated with a graphite/epoxy laminmate. However, experimental
comparative studies to validate the above predictions have not appeared

in the literature.

3.2 Objectives and Material Characterization

The objectives of this chapter are not omnly to experimentally
validate the hypothesis that the stiffness-to-weight ratio governs the

dynamic response at a prescribed operating speed, but also to
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demonstrate that the response of a linkage fabricated in a
graphite/epoxy laminate is superior to a similar linkage fabricated in a

carbon steel or an aluminuam alloy.

These objectives were accomplished by monitoring the experimental
dynamic responses of mechanisms with identical link lengths operating at
specified speeds and constructed with link specimens possessing the same
flexural rigidity but fabricated in four different materials. Hence the
only variables for each set of tests were the 1link materials, which
affected the imertial 1loading on the 1links, and also the damping
properties of each system. In order to expose these link specimens to
service conditions typically experienced in practice, a comprehensive
experimental program was undertaken using both slider-crank and four-bar
mechanisms which permitted a wide variety of loading conditions and

speed ranges to be imposed upon them.

A link of a flexible mechanism principally deforms in the bending,
or flexural mode and the associated deformation fields are governed by
the flexural rigidity, which is the product of the Young’s modulus (E)
of the material and the second moment of area (I) of the link
cross—-section., Thus, in the context of evaluating how the dynamic
response oOof a flexible mechanism is affected by the type of link
material, an appropriate rationale is to fabricate several links of the
same length and flexural rigidity (EI) from several different materials
and use them, in turn, to construct a flexible linkage. Upon operating
the mechanism at a specific speed and comparing the associated responses

of the different link materials, design criteria can then be deduced.
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This is the philosophy of the study presented herein.

The materials selected for the tests were a low carbon steel, an
aluminum alloy, s unidirectional 16-ply graphite-epoxy laminate
3501-6/AS-4 manufactured by Hercules Inc, and a 16-ply graphite epoxy
laminate of the same material with a symmetrical ply layup of [t45)
degrees relative to the longitudinal axis of the link., These Jlaminates
were selected to demonstrate somoething of the different responses
attainable using this class of material. Clearly this limited
investigation cannot do justice to the large variety of different fibers
and matrices employed commercially, or even to the different types of

graphite fibers or epoxy resins currently available.

The modulus of elasticity of the steel and aluminum 1links were
obtained from supplier’s data sheets, and because the gquality control of
the commoercial metals is so good, specimens were not subjected to
mechanical testing. This 1is not the case with composite materials,
where there is a greater variability of the mechanical properties and
furthermore, the constitutive behavior of the laminates needs to be
carefully determined. While the commercial metals are semsibly elastic
materials at room temperatures, composites may exhibit elastic,
viscoelastic, visco-plastic or plastic behavior under these comnditions

depending upon the material being examined.

The first task in the testing of these composite materials was to
determine the shape and dimensions of the specimens. The literature on

this subject was reviewed [ 73,126,193 ] but there appeared to be no
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consensus of opinion as to whether a dogbone or parallel sided specimen
should be employed. Since there were no major criticisms of wusing a
parallel-sided specimen, and this class of specimen is more easily
manufactured, a total of four specimens, were cut from the two 16-ply
thick plates of graphite-epoxy laminate using a thin griading wheel.
The dimension of the unidirectional specimens were 2.06mm x 12.5mm x
165.1mm (0.081 in x 0.5 in x 6.5 in.), while the [t45]. specimens were
2.34mm x 12.5xm x 165.1mm (0.092 in x 0.5 in x 6.5 in.). These
dimensions are dictated by the maximum size of specimen that the testing
machine could acommodate and also an edge-effect oriterion associated
with the application of St. Venant’'s principle to heterogemeous,

anisotropic materials [ 77 ).

These latter characteristics of composite laminates complicates the
moechanical testing of these materials because bending moments and shear
forces imposed upon a misaligned specimen being gripped in a tensile
testing machine could generate erroneous results [ 126 ]J. To avoid
these pitfalls an alignment fixture was fabricated using a design
developed by the composites group at Virginia Polytechnic Institute and
State University [ 73 ). Figure (3.1) on page 81 presents a photograph
of the fixture and also the pin-jointod grips which screw into the ram
and anvil of a electro-hydraulic NTS mechanical testing machine. Figue
(3.2) on page 81 presents a photograph of a specimen being tested. The
motion of the ram was pre-programmed and during the ensuing motion the
output from the two-inch clip-gage fixed to the specimen was recorded

automatically on the x-y plotter shown on the right of the photograph.



Figure 3.1 Alignment Fixture and Mechanical Arrangement for
Testing Grapbite/Epoxy Specimens

Figure 3.2 The Mechanical Testing of Grapbite/Epoxy Laminates
in a MTS Testing Machine
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The objective for the mechanical testing was to classify the
bebavior of the unidirectional and [145]), graphite-epoxy laminates.
Initially the specimens were subjected to dynamic testing. This
involved prescribing a maximum 1load, or stress, and requiring the
specimen to attain this load over a range of time intervals, Figure
(3.3) on page 83 presents the results of these tests performed on the
unidirectional AS-4/3501-6 laminate and maximm stress level of 0.258 MPa
( 37.5x10° 1bg/in® ) was reached in 1, 10, 100 and 1000 seconds during
the four tests. The responses during the loading and unloading phases
of the tests are superimposed. All specimens were stored in a
controlled hygrothermal enviromment for two weeks prior to testing to

ensure some degree of thermodynamic equilibrium.

The results presented in Figure (3.3) suggest that the
unidirectional laminate is an elastic material because all of the
gradients of the response histories are identical. However this is not
true for the [t45], AS-4/3501-6 specimens whose test results are
presented in Figure (3.4) on page 84. The bebhavior of the material is
certainly dependent upon the rate of application of the load (and hence
strain rate) and this is clearly demonstrated by the two plots on the
oxtreme right of the figure which are for specimens subjected to a
prescribed 1oad during time intervals of 1 second and 100 seconds.
These results indicate that the [(£45), liminate 4s a viscoelastic
material, and moreover, it is nonlinear as evidenced by the shape of the

response curves.

In order to verify the deductions made from these test data a
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second set of tests were initiated to study the creep response of the
materials. The results are presented in Figures (3.5) and (3.6) on
pages 86 and 87, Time is the abscissa for both plots and the pen on the
x-y plotter was programmed for the different speeds indicated. In
addition, the pen was programmed to quickly returm to the left hand edge
of the paper in the stand-off mode upon reaching the limit of travel at
the right hand edge. This procedure permitted each creep response to be
presented in one compact figure rather than several feet of paper from a

strip recorder.

The response presented in Figure (3.5) verifies that the

unidirectional laminate is an elastic material, while the creep data in

Figure (3.6) indicates that the [£45], composite is viscoelastic.

Having completed the dynamic and creep testing of the laminates,
the response data presented in Figures (3.3)-(3.6) provides the basis
for a number of different investigations. In the context of this paper
the effective modulus of the unidirectional laminate can be readily
calculated from Figure (3.3). The [1451, laminate has a more complex
response b;causo the stress-strain history is not linear, and moreover,
the gradient depends upon the strain rate. Clearly a wide range of
different Young’'s moduli could be deduced from the experimental data
depending upon the assumptions deemed to be relavant by the
investigator. Because a 1link of any mechanism experiences rapidly
fluctuating stress levels, the response curve on the extreme left of
Figure (3.3) was selected to provide the basis for the Young’s modulus

calculation because this records the highest strain rate of any
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specimen. Higher strain rates could not be achieved with the

experimental testing equipment available.

The approach adopted was to draw a tangent to the response curve at
the 1lower end of the curve in the region recording the initial response
immediately following load application., The effective Young's modulus
for this viscoelastic material was calculated to be 21.7 MPa ( 3.143x10¢
1bg/in® ) while a mean value of 19.6 MNPa ( 2.834x10°lbg/in® ) was
calculated for the 1line joining the points defining the maximum and

minimum stress levels.

Having established the effective Young’s moduli for the four 1link
materials, the <cross sectional dimensions were calculated so that the
flexural rigidity of each link was identical and the link specimens were
then manufactured. The data are presented in Figure (3.7) on page 89 .
The members were designed to principally deform in flexure in the plane
of the mechanism due to the imertial 1loading associated with the
articulation of the mechanism. The steel and aluminum specimens were
cut from sheet material and the depths indicated in Figure (3.7) are

standard American stock sizes.

The objective for the final phase of the material characterization
studies was to determine the material damping of each member. This
involved clamping each specimen at one end to develop a cantilever
configuration prior to deflecting and releasing the other end and
recording the ensuing transient vibration (using instrumentation to be

described later). Simple logarithmic decrement calculations yielded the
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damping ratio ({) for each specimen. The results are presented in
Figures (3.8), (39), (3.10) and (3.11) on pages 91 and 92 for the
steel, aluminum, >[t45]. and [0] specimens respectively. The
corresponding values of material damping are 0.002, 0.0048, 0.006 and
0.0018. Uponm reviewing the data in Figure (3.7), it is apparent that
the unidirectional graphite-epoxy specimen is much stronger than the
specimen but it has a much lower damping ratio. Since most machinery
applications require links to possess a high stiffness and be
manufactured in materials with high damping, a hybrid design wutilizing
both fiber configurations can be readily proposed to achieve this

objective.

This serves to illustrate one of the many benefits obtained through
designing components in composite laminates that is unobtainable when
employing conventional materials. By changing the stacking sequence,
fiber volume-fraction, fiber orientation, matrix characteristics and
type of fiber, these design parameters emable the designer to synthesize
link materials with the desired properties. These typically include
impact resistance, fatigue resistance, stiffness, strength, mass and
material damping; and these properties in turn govern the linkage
response characteristics such as natural frequencies, dynamic
deflections and acoustical radiation [ 142 ], This philosopby is
presented in more detail in the introductions to references [ 76 ] and
[ 77 1. This versatility is not available to the design engineer when
designing in the commercial metals because the omly design variables are

material selection and the cross sectional geometry.



Figure 3.8 Steel Specimen Transient Response. Borizontal Scale
20mS/div, Vertical Scale 0.1V/div

Figure 39 Aluminum Specimen Transient Response. Horizontal Scale
50mS/div, Vertical Scale 0.1V/div
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Figure 3.10  [£45)  Specimen Transient Response. Horizontal Scale
20mS/div, Vertival Scale 0.1V/div

Figure 3.11 [0] Specimen Transient Response. Borizontal Scale
20mS/div, Vertical Scale 50mV/div
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3.3 Results and Discussion

Eight link specimens were prepared to form four matched pairs in
the four test materials. At the end of each specimen two clearance
holes were drilled. These accomodated the socket screws which clamped
each specimen to the bearing housings and enabled two experimental
mechanisms to be constructed: a four bar linkage with the plane of the
mechanism coincident with the gravitational field and a slider crank

mechanism operating in a plane perpendicular to the gravitational field.

The experimental setups employed in this study, include a four-bar
linkage, & slider—-crank mechanism and the related instruments, are the

same as those mentioned in chapter 2 and will not be described here.

Figures (3.12), (3.13), (3.14) and (3.15) on pages 94-97 present
the dynamic bending strain responses of the mechanism systems studied,
and each features a comparative study among different materials and all
of them are under the premise of constant EI value and same operationmal
condition ( i.e. speed, alignment and environment etc. ). The relative
magnitudes of the deflections may be obtained from the oscilloscope
photographs by using the calibration data in the legend of each figure.
The ocalibration coefficient for the [£45), composite material is a mean
value since the calibration curve is nonlinear, however, this mnonlinear
characteristic was employed to accurately present the results in Figures
(3.14) and (3.15) which were recorded by the digital data acquisition

system,
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The calibration data mentioned previously was obtained by
supporting each link in the calibration-fixture presented in Figure
(3.16). The midspan of each link specimen was subjected to a series of
monotonically increasing tr-n:ver;e deflections which were accurately
measured by the micrometer attachment on the central support structure.
The corresponding voltages from the strain gages bonded to each link

specimen were also recorded to complete the calibration procedure.

Figure 3.16 Link Calibration-Fixture
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The fixture accommodated links of different lengths by subjecting
the central support structure and also the supports for the bearing
housings to a translational motion in a dove-tailed slot which was
machined parallel to the longitudinal axis of the base member. These
translating components were then locked im the desired 1locations by

grub-screvws,

Figure (3.13) contains a set of results similar to those presented
in Figure (3.12), The principal difference between these results is that
one set of mechanisms was operating at 280 rpm while the other operated
at 198 rpm. These results indicate that the phenomenon evident in
Figure (3.12) is not restricted to that particular speed range, but is
in fact governed by the universal relationship hypothesized in the

beginning of this chapter.

Figure (3.15) presents the results for the midspan deflections of
the rocker 1links of the four-bar 1linkages. Upon comparing Figures
(3.12) and (3.14), it is clear that while the responses of Figure (3.14)
closely follow the relative values ofthe stiffness—to-weight ratios
presented in Figure (3.7), this characteristic is not quite so evident
in Figure (3.12). The much higher response frequencies of the composite
links is again clearly demonstrated in these figures, and furthermore,
these response data indicate that the polymeric members do not develop
maximum deflections in the same mechanism configuration as the steel or
aluminum 1linked systems. This characteristic is probably due to the

different damping phenomena of the composites.
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Figure (3.15) presents the midspan transverse deflections of
connecting rods of slider-crank mechanisms constructed with the carbon
steel and the composite laminates. The superior responses of the
composite materials is again clearly evident, and furthermore, the
maximum deflections, and  hence stresses, are again inversely
proportional to the stiffmess-to-weight ratio of the links for this
completely different mechanism system. This experimental study
demonstrates that the advanced composite materials =not only offer
stroength and stiffness characteristics superior to metallic designs,
high material damping and excellent fatigue life, but furthermore, the
designer may be able to synthesize the required material properties from

a large number of design variables.



CHAPTER 4
A THEORETICAL AND EXPERIMENTAL INVESTIGATION
ON TIE DYNAMIC RESPONSE OF FLEXIBLE MECRANISMS
MADE FROM COMPOSITE MATERIALS OPERATING UNDER

1SOTHERMAL CONDITIONS

4.1 Introduction

The experimental comparison study performed im the last chapter
clearly demonstrates that conmposite materials not only offer strenmgth
and stiffness characteristics superior to metallic designs, and also
high material damping [ 23,83 ], but furthermore, since the engineer has
a8 large number of design variables available for the synthesis process,
composite materials may be innovatively fabriceted in order to satisfy

specific design specification for each particular application.

These chapter presents a theoretical, computational and
experimental study of two flexible linkage mechanisms fabricated from
two different composite laminates with a variety of combinations of link
lengths and geometries. In this study, the mechanical material test
results of these two composite laminates were obtained from the last
chapter and the constitutive behaviors of the wmaterial were then modeled
mathematically by employing least-square curve fitting software and a

variational theorem was derived for the dynamic anmalysis of flexible

101
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linkages fabricated from viscoelastic composite laminates.
Subsequently, a finite element formulation was developed and then
implemented to predict the response of both experimental slider-crank
mechanisms and four-bar linkages. The experimental program permitted a
wide variety of loadings and speed ranges to be imposed om the 1link
specimens under service conditions so that the predictive capability of

the mathematical models could be thoroughly evaluated.

4.2 Material Characterization study

The materials selected for this study were a unidirectiomal 16-ply
graphite/epoxy laminate AS4/3501-6 manufactured by Hercules Inc., and a
16-ply laminate with the same constitutents which was fabricated with a
symmetrical ply layup of t45 degrees relative to the longitudinal axis
of the beam-like specimen. The mechanical testing of these materials
was described in chapter 3 and the experimental results were presented
in Figures (3.3) and (3.4) on pages 83 and 84, The results shown in
Figure (3.3) suggest that the unidirectional laminate is an elastic
material because all of the stress-time gradients are identical. The
effective modulus of the unidirectional 1laminate can be readily
calculated from Figure (3.3) because all the responses are linear and of
the same gradient. The [t45), laminate, bowever, has a more complex
response because the stress-strain history is not linear, and moreover,
the gradiemt depends upon the strain-rate. In order to verify the
deductions made from these test data, another test was undertaken to
study the creep response of the materials. The results are presented in

Figure (3.6) on page 87 and it does show that the [£45), composite is



103

truly a viscoelastic material.

There are two types of constitutive relationship expressions for
modeling the material characteristics from experimental material testing
of viscoelastic materials. These are the creep function and the stress
relaxation function. The creep function is obtained by retaining the
nhiaxinl stress constant, then measuring the relation between the strain
and time. However, the stress relaxation function is obtained by
keeping the uniaxial strain constant and then measuring the relation
between the stress and time. This latter method was adopted in order to
develop a mathematical model which incorporates the data from the
material characterization studies. The objective was to determine the
stress relazation function relating stress and time. Firstly, the
maximum strain was measured on the curve on the extreme left of Figure
3.4. This corresponded to a stress of 0.258 MPa (37.5x10° Ibg/in®) at

0.5 second after the load was initially applied.

Then using this magnitude of strain, a horizontal line was measured
from the point of load initiation on each of the response curves in
Figure (3.4) and a vertical line was drawn wuntil it intersected each
response curve on the upper portion of the curve. This permitted the
stross to be obtained and assuming that the rate of application of 1load
was constant (the MIS testing machine was programmed to be constant).
This operation permitted a stress-time curve to be plotted and this 1is

presented in Figure (4.1) on page 104,
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Method of Obtaining the Stress Relaxation Function.
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The data presented in Figure (4.2) on page 106 is obtained
according to the method described above and the constitutive relation
was modelled as a standard 1linear solid viscoelastic model for
simplicity. This model may be represented by a8 spring-dashpot

combination shown in Figure (4.3) on page 107 consisting of two springs

E, and E;, and a single dashpot na.

The constitutive equation may be expressed by

& + [(E+Ey)/nalo = Eay + (EE;/na)y (4.2.1)

Let p be the relaxation time p = n,/(E,+E;) and multiply both sides of
equation (4.2.1) by exp(t/p) and integrate this equation from initial
state at time zero to the present time t, by assuming that there is zero

stress and strain at the initial state, equation (4.2.1) becomes

o(t) = [EE,/(E,+E;)]y(t) + aq(t) (4.2.2)
a(t) = [t expl-(t-v)/ul¥(r)dz (4.2.3)

where a = E -E, E;/(E,+E;) and the stress relaxation function G(t) is

G(t) = E, E,/(E,+E,) + a exp(-t/p) (4.2.4)
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Figure 4.3 Standard Linear Solid Model

By employing a least-square curve-fitting software package to
determine the parameters E [, and n,, the graph of the curve-fitted
stress relaxation function is presented in Figure (4.4) on page 108,
Then the constitutive equation for this class of material may be

represented by

Q
|

iy = ¥ 6y 0 (tmDay (o) ar gt (4.2.5)

or

cij = Gijkl.dykl (4.2.6)

where O;j is the Lagrangian stress tensor,

Ykl is the associated strain
tensor, T 1is the time variable and t is the current time and the

Stieltjes convolution, €*°d@ of two functions ©(t) and @(t) is defined by

0*d0 = j‘_, 6(t-1)dd (1) (4.2.7)
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where @(t) > 0 for t > = and 6(t) is continuous for 0 ¢ (w, Assuming
further that ©(t)=0 for t<0, then equation (4.2.7) may be shown to
satisfy the commutivity, associativity and distributivity properties of

Stieltjes computations [ 62,63,64 ].

4.3 Variational Principle

The same mothodology is adopted as the variational development in
the previous chapters. In this chapter, the variational principle
incorporated a variety of auxilary conditions such as the constitutive
equation, the strain-displacement equation and the geometrical boundary
conditions. Hamilton’'s Principle is presented using the Stieltjes

convolution integral notation.

The dynamical problem of a viscoelastic body of volume V and
surface area 8 describing a general spatial motion relative to an
inertial frame OXYZ is considered. In Figure (2.1) page 30, oxyz are
Lagrangian coordinates fixed in the body in a reference state containing
zero deformations, strains and stresses. Furthermore, it is also
assumed that these parameters have been zero throughout the previous
time history. Employing a Cartesian tensor mnotation, at time t, a

general point P in the continuum has the position vector

!‘i = "oi + rRi + ui (4.3.1)

where r . is the position vector of the origin of the body axes relative

to the origin of the inertial frllne. rai :.pt.'.nt' the po'ition vector
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of point P in the undeformed reference state relative to the origin of

the body axes and u;, jg the deformation displacement vector. Equation
(4.3.1) may be differentiated with respect to time to yield the velocity

rate-of-change of displacement expression

Pj = Toy + U5 + O‘jkaj(toi + rgx t+ uy) (4.3.2)

where P, is the absolute velocity associated with r;. In addition, ®ijk

is the altermating tensor, oj is the angular velocity defining the

rotation of the Lagrangian frame oxyz, (T) represents the time
rate-of-change with respect to the moving frame oxyz and (*) represents

the absolute rate-of-change.
In order to provide the basis for analyzing flexible 1linkage

mechanisms fabricated with viscoelastic materials, the stationary

conditions are sought for the functional

* Isa?i‘dradsx (4.3.3)

subject to the constraints imposed by equations (4.2.6) and (4.3.2), and

also the following field equation

Yij = 1/2(uy, 5 + uj,4) (4.3.4)
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which is the linear strain-displacement relationship. In these
equations, a comma denotes spatial differentiation, 6ij is the Kronecker
delta, p is the mass density of the material, g, is the surface traction

vector and the overbar (7) denotes a prescribed quantity.

The total surface area of the continuum is denoted by S which is
the summation of regions S, and S,. Tractions are prescribed onm S,,

while on S,, the prescribed deformation displacement boundary comdition

Uy o= ouy (4.3.5)

is imposed.

Equations (4.2.6), (4.3.2), (4.3.4) and (4.3.5) may be incorporated
within functional F, using Lagrange multipliers to create a free
variational problem defining a new functional F. The first variation is
then generated using the standard rules of the variatiomal calculus, and
this procedure involves utilizing the divergence theorem and also the
symmetric properties of the tensors where appropriate. Upon setting the
first variation equal to zero, the Lagrange multipliers may be expressed
in terms of the system parameters leading to the following variationmal

equation of motion:
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8F = 0 = Iv[ (04;-Gjjx1%dvx))®ddy;

-(o;5, j*Xi-pP ) %dbu;

“(vy5-1/20uy, j+u;, ;1)%d80;;
-(Pi_p[;°i+;1+eijk.j(r°k+rlk+uk)]‘dbPi )]dv

+ [sa [(g;-5;)%abu;las, + Is,l(Ii-ui)odsgi las,

+ [fv x;0v + [si5108, - [yoByav]ease,, (4.3.6)
[ fv °i kX (rortrpitug)aVv + jﬁa ®ijx8j (Tox*rpy*uy)ds,

—Iv 'ij kﬁiﬂ (r°k+rnk+uk)dV]‘660j

Independent arbitrary variations of the deformation displacement,
strain, stress, absolute velocity, and the kinematic parameters defining
the rigid-body motion enable equation (4.3.6) to yield, as Euler
equations, the field equations and boundary conditions for this class of
dynamic viscoelastic problem. This variational statement represents a
generalization to the ‘theory of viscoelasticity of the elastodynamic
variational theorem presented in chapter 2. In fact if the bdody being
subjected to the analysis were elastic, then the time integrations in
equation (4.3.6) could be evaluated and the resulting theorem would

distill to the formulation developed in chapter 2.

The characteristic equations obtained from equation (4.3.6)
precisely define the dynamic viscoelastic problem associated with the

analysis of mechanisms fabricated with linear viscoelastic materials.
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However an exact solution for <these equations is beyond current
mathematical means, and in any case would probably contain too much
information to be useful to an industrial design engineer for solving
practical problems. Simplifying assumptions are therefore needed, and
these center upon which model to be adopted to represent the material

constitutive relationship, equation (4.2.5).

A variety of approaches have been developed for this task.
Numerical viscoelastic analyses have been undertaken by Laplace
transform techmiques [ 76 ], by numerical integration of the
constitutive equations [ 37 ], by step-by-step procedures used in
conjunction with mechanical models for the constitutive equations
[ 204 ), by using complex-modulus forms of the relaxation fuanctions
[ 201 ], and also by finite-difference formulations [ 98,212 ]. Thus, a
wide variety of techniques have been proposed, but there is no consensus
of opinion as to which is the best approach. In order to simplify this
viscoelastic problem, a one-dimensional linear-solid model is assumed

herein and a finite-difference approach is adopted [ 98,212 ].

The constitutive equation (4.2.5) is to be wused in a numerical
analysis scheme by changing the integration form into a summation of
discretized time increments for obtaining the dynamic response of the
mechanism systems. For example, the strain-rate %(g) in equation
(4.2.5) may be represented by a linear interpolation functionm over each

increment:

$(r) = ¥(t-b) + (h-t+e/B)[¥(t)-¥(t-h)] (4.3.7)
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in which t-b S t<{ t and b represents the integration increments.

Separating equation (4.2.3) into two parts, it can be shown that

q(t) = exp(-b/uwlq(t=b) + [t exp[-(t-t)/uly(v)az

(4.3.8)

Then substituting equation (4.3.7) into equation (4.3.8) and explicitly

carrying out the integration leads to

q(t) = Bq(t=h) + A, y(t-h) + A,¥(t) (4.39)
in which

A, = u[-p+u/bh (1-8)] (4.3.10)

A, = ul1-p/n (1-B)] (4.3.11)

g = exp(-h/p) (4.3.12)

Equation (4.39) is a recurrence formula for the value of the
present stress in terms of its value at the previous time step and the
value of the strain rate at both the previous and the present time
steps; it is used in conjunction with equation (4.2.2) to characterize a
linear viscoelastic material. It is seen that this approach permits

characterization of the hereditary nature of the material by retaining
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strain history information at only the immediately proceeding time step.

The appearance of both the relaxation moduli of the material, .,
and the integration step size, b, in the parameters of the recurrence
formula for q indicates an interaction between the mechanism system, the
material, and the solution procedure. In general the step size is
governed by the highest frequency among the natural frequencies of the
system and the dominant forcing frequency. If the step size, h, is
determined from the system considerations, an examination of the
numerical behavior of the coefficients in equation (4.39) as a function
of the material parameter, pu, it is expected to provide some insight of
the system bebhavior. For small values of the dimensionaless parameter

b/p, utilizing (4.3.10), (4.3.11) and (4.3.12)

A, = A, = h/2 (4.3.13)

Ay = p (4.3.14)

In the former case the behavior is primarily that of an elastic element,

in the latter that of a viscous element.
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4.4 Finite Element Formulation

The variational equation of motion (4.3.6) may be employed as the
basis for a variety of finite' element models depending upon the
geometrical shape of the body being amalyzed, the type of deformation
theory assumed to be appropriate, the information sought from the
analysis, and the accuracy of the model for the comstitutive equations.
Herein, 8 displacement finite element model is developed for amalyzing
the flexural response of the beam-shaped 1links of planar 1linkage
mechanisms deforming in the plane of the mechanism, This is
accomplished by first assuming that the flexural deformation field is
governed by the classical Euler-Bernoulli bypothesis. The constitutive
equation is obtained by material testing, and the deformation of the
link is assumed to be so small that it is not necessary to model
geometrically nonlinear deformations., The objective, herein, is to
develop a linear displacement formulation for a single one-dimensional
finite element with two exterior nodes, each having three nodal degrees
of freedowu. Two nodal variable W and © describe the flexural
displacement and slope respectively, while U describes the longitudinal

displacement as shown in Figure 4.5.

Figure 4.5 The Deformation of a Bean Element
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Defining the nodal displacement vector for the element by

T (u, u, w, v, 6 6,] (4.4.1)

the general displacements u(x,t) and w(x,t) at any point in the element

may be related to [U] by

(u wiT = [N][U] (4.4.2)

where [N] contains the shape functionms.

The axial displacement is defined by

wvhere u (x,t) is the axial displacement, w(x,t) the transverse
displacement and x is the longitudinal spatial variable. The axial

strain corresponding to equation (4.4.3) may be written as

lvgg) = INJ[U) (4.4.4)

where (') demotes spatial differentiation with respect to x.
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The finite element representation of the constitutive equation

(4.2.2) of the viscoelastic material is

[o,2(t)] = [EyE,/ (Ey+E;) ) [ygy(t)] +af exp(-b/p) [q(t-h)]

* M l7gg(t-h)] + Alyge(0)]] (4.4.5)

The variational equation of motion (4.3.6) may be written as

6F = 0 = (U675 (60T [Logg(t))=(EaB; /(E2+E3)) [ygg(t)]
[} [ ]

- of exp(~h/p) [q(t=h) 1 +dy [¥gy (t-D) 142, [ Y45 ()] ] ] av

+ [yotsP1T (P1-(Ng1 (RRI-INI (D] Jav

- [y1snTNIT] aloy, ()1 /0x+Ix1-p1B] Jav

+ [yIo0gg )T lyggl-IRILU) Jav (4.4.6)

+ [g o0 TINT((5]-La))as,

- Is,lﬁz]T(u‘Jl-[N)wl)ds,

where [NR] contains the shape functions approximating the rigid-body
kinematics while [Pp] is the column vector containing the mnodal
rigid-body velocities. The nodal absolute velocity components are
defined by [P) and the surface tractions by [g]. Finally, because the

rigid-body equations of motion are of no consequence here, they may be
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removed from the formulation by taking variations [6r°i] and [50;] to be

z0r0.

In order to express the finite element formulation in terms of '
deformation of the links, attention is now focused upon the equation of

equilibrium., The first term may be written as

JQ (sulTiNITalo, (t))/0x av (4.4.7)

An integration-by-parts over x yields

| [atsu1 TN TLo  (01ah ], - [y1s0ITIOIT (o, (e)1av (4.4.8)

The first term in equation (4.4.8) is a boundary term, to be
evaluated on the cross-sectional area A, at the extremes of the
one~dimensional element, and this is identical to the manipulation in
chapter 2, Therefore, it will not be discussed in this chapter. The
second term becomes, using the first and fourth volume integral

expressions in equation (4.4.6),

-_[v[sulT[mT[ (B, Ey/ (B, +E;)) IRD[UCE)] + of exp(-b/p)[q(t-b)]

+ , IR 0e-m1 + A, t011bce)) ] Jav (4.49)
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The first term in equation (4.49) yields the standard linear

stiffness matrix [K) defined by

() = [L(RIT(E, B,/ (, +E,)) [R1aV (4.4.10)

The second and third terms in equation (4.49),which feature the

heredi tary nature of the material, are defined as

[Fy) = [ytN1Ta exp(-b/wiate-nrav + [y (N1Ta, alR)(B(e-n))av

(4 .4 .11)

From equation (4.4.11) [F;] js known as a force term which is
contributed from the stresses and viscous strains of the previous time
step. The fourth term of equation (4.4.11) is recognized as a damping

matrix [C]

(c1 = fy (172 alN1av (4.4.12)

Substituting equations (4.4.10), (4.4.11) and (4.4.12) into equation

(4.49) leads to

(80T (x1qud + () + [C1(B) ] (4.4.13)
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According to the derivation in chapter 2, the variational equation

of motion may now be written in the final form

8F = 0 =[\ (6y,24)T] logg(t)1-(BLEy/ (B +E;))[yg,)

al exp(-b/p) [q(t-h)] + A [y  (t-h)] + Azly5, (£)] )aV

[yptsPITC (P1-INg) IPGI-INI (B Hav

+

(01T ¢ x1ui+rc) (B1+ NI 101+ [Fy] )-fyin1TIxIav

[sa ITCIB1S, - g1 (gD ]

+ [y160501TC Tyy 1-1K1 (U] v (4.4.14)

fsat80)TC (BI-IN1 (U] s,

Vhen independent arbitrary variations of the system variables in
equation (4.4.14) are permitted, this equation yields the field
equations and displacement boundary conditions for one finite element.
This formulation provides the basis for developing a finite element
model of a general planar flexible mechanism in order to investigate the

dynamic linear viscoelastic response.

The experimental apparatus of four-bar linkage, slider-crank
mechanism and related intrumentations are the same as those used in
chapters 2 and 3. The only difference is the dimension of the linkage

specimens employed in this study. These data will be introduced later.
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4.5 Comparison between Theoretical and Experimental Result

A solution for these equations will be sought wusing the Newmark
method of direct integration which uses the following statements to

update the kinematic terms as the response is discretized,

bt+At = bt + [(1-)0, + pO, )AL (4.5.1)

Upeat = Ug + tltAt + [(1/2-a)Up, + all¢yp,)at?

(4.5.2)

where B 20.5 and a 2 0.25(0.5+p)> for stability of solution [ 21 ]. The
algorithm models the system by considering the continuous motion of the
mechanism to be discretized. Thus, the inertial 1loading from the
rigid-body analysis is used to continually update the force funtiom for
a series of time intervals, and the response is determined for each time

increment to give a set of discrete values for the link deformation.

With all direct integration methods, solution instability must be
considered carefully, and it was avoid here by choosing p=0.5. Under
these conditions the system is unconditional stable. Finally, s
numerical value must be assigned to the step—size At which is determined
by choosing At < T/10, where T is the smallest period in the response
[ 21 ). Thus the step-size is governed by the higher modes of vibration
presented in the response and for stiff systems this may mnecessitate a

small step size.
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Figures (4.6)-(4.11) on pages 124-129 present computer-generated
experimental response curves superimposed upon the results of computer
simulations for the dynamic response of the midspans of the links of the
flexible four-bar linkages and slider crank mechanisms tested. The
predictive capabilities of the mathematical models were tested by
running the mechanisms at different operating speeds, which inherently
imposes different 1loading om the 1links; mechanisms with different
link-length combinations and a variety 1link materials, and 1link

cross—-sections were also employed in this investigation.

Figures (4.6) and (4.7) present the midspan transverse deflections
of a 304.8 mm long connecting-rod of the slider-crank mechanism
fabricated with a [145), laminate. The thickness of the link in the
plane of the mechanism was 2.34mm, the width perpendicular to the plane
of the mechanism was 19 ,05am and the length of the composite specimen
was 228 .6mm, It is evident from the figures that there is reasonmably
good correlation between both the amplitude and phase components of the

response at both operating speeds for these viscoelastic links,

Figures (4.8), (49) and (4.10) present the midspan transverse
deflections of the coupler and rocker links of a four-bar linkage in
which both links were fabricated with a unidirectional laminate, and
operated at three different crank frequencies. The coupler and rocker
links had the same overall length of 304 .8mm long. The thickness of the
laminate in the plane of the mechanism was 193mm and the width
perpendicular to the plane of the mechanism was 19 .05mm., Again there is

good correlation between the theoretical and experimental responses for
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this different kinematic chain in which two links, rather than one, was

flexible.

Figure (4.11) presents the transverse midspan response of the
rocker link of a four bar mechanism operating at 223 rpm. This link was
fabricated with a (145)  graphite-epoxy specimen of dimensions 19 .05mm x
2.337mm x 152.4mm to form a link of length 228.6mm between bearing
centre-lines. The coupler 1link, however, was fabricated with a
unidirectional graphite-epoxy laminate of dimensions ‘9 09mm x 1.93mm x
304.8mm to form a link of length 304 .8mm between bearing axes. Again,
the mathematical model readily captures the frequency content of the
experimental response but there is a small amplitude error (about

10%)between the two waveforms.

Hence it is apparent that the mathematical model developed herein
for analyzing the dynamic response of linkage fabricated with commercial
graphite epoxy laminates is capable of predicting the response of a
variety of mechanism systems with the one or more flexible links
fabricated with different combinations of link wmaterials, link
geometries and link loniths for a number of different operating speeds.
The discrepancy between the experimentsl results and computer
simulations is 10 percent which may suggest the need for an improved
modeling of the constitutive equation because the material is subjected

to changing environmental conditions.

y S



CHAPTER §

A THEORETICAL ANALYSIS FOR HYGROTHERMOVISCOELASTICITY

5.1 Thermoviscoelasticity: A Background Review

The field of non-equilibrium thermodynamics provides a general
framevork for the macroscopic description of irreversible processes. It
is a branch of macroscopic physics, and it has been connected with
macroscopic so0lid mechanics in the investigation described herein. The
thermodynamics of irreversible processes should be set up from the start
as & ocontinsum theory, treating the state parameters of the theory as
field variables, (i.e., as contismous fuactions of space coordinates and
time). Noreover, the basic equations of the theory are formulated in
such @ way that they esontain quantities referring to a single point in
space at one time (i.e. in the form of local equations). However in
equilibrium thermodynamics such a local formulation {s generally mnot
needed, since the state variables are usually independent of the space

coordinates.

In non-equilibrium thermodynamics, the so-called balance eguation
for eatropy plays a central role. This equation expresses the fact that
the entropy of a volume element changes with time for two reasons. First

it changes because entropy flows in or out of the volume olement, and
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seocond because there is an entropy source due to irreversible pheonomena
inside the <volume element [ 66 ). The domain ef wvalidity of
non-equilibrium thermodymamics is essentially the one for which 1local
equilibrium is attained and the phenomenoclogical equations are linmearly
defined. Therefore, the entropy source vanishes for reversible
thermodynamics and this is the local formulation of the second law of
thermodynamics. The main aim is to relate the entropy source explicitly
to the various irreversible processes that occur in a system. To this
ond, the macroscopic conservation laws of mass, momentum and energy in
local ( i.e.difforential ) form are necessary for further
development. These conservation laws contain a number of quantities such
as the diffusion flows, the heat flow and the stress temsor, which are

related to the transport of mass, emergy and momentum, respectively.

The goneral form of the magnitudes of the entropy source may then
be determined by the thermodynamic Gibbs relation which comnects the
rate-of-change of entropy in each mass element to the rate—of-change of
energy, the rate-of-change of moisture content, and the dissipation
work. The eatropy source has a very simple appearance being a sum of
terms. Bach term being a product of a flux ocharacteriziag an
irreversible process, and a thermodymamic force, which is related to the
spatial mnon-uniformity of ome or more of the system properties ( the
gradient of temperature for instance ). The entropy source stremgth can
then serve as & basis for the systematic description of the irreversible
processes occurring in a system. For example, each flux funotion may be
derived from the gemeral form of the entropy source stresgth by the

Onsager and Casimir lav of reciprocity [ 49,66 ). And then the
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governing oquations of the irreversible processes are obtained by
substituting the flux functions into the balance equation of mass,
squation of motion and emergy equation. The detailed derivation is

presented in the remaining part of this chapter.

As yot the set of ocomservation 1laws together with the emtropy
balance equation and the equations of state are to a certain extent
incomplete, since this set of equations contains the irreversible fluxes
as unknown parameters and can therefore mot be solved with givea inmitial
and boundary conditions for the state of the system. Hence, at this
stage it is necessary to supplement the equations by an additionmal set

of phesomenclogical equations which relate the irreversible fluxes and

the thermodynamic forces appquin; in the entropy source strength term.

In the first approximation the fluxes are 1linear functions of the
thermodynamic forces such as Fourier’'s law of heat conduction and Fick's
law of diffusion. These two laws also coatain additional possible
cross-effects betwveen various phenomena, since each flux may be a linear
function of all thermodynamic forces which are meeded to characterize
the entropy source strength. Together with the phenomenclogical
equations the original set of conservation laws may be said to be
complete in the sense that the set of partial differential equations may

be solved with proper initial and boundary conditions.
5.2- Problem Definition
The problea proposed herein is to explore the dynamic response of a

high—speed flexible mechanism made from graphite/epoxy ocomposite

laminates and operating in a varyimg environment where both temperature
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and relative bhumidity fluctuates. The 1inks are modelled as several
anisotropic continuous media which are perfectly himged without bearing
clearance. This mechanism is also regarded thermodynamically as an open
system, (i.e., system may oxcbango‘hoat as well as matter with its
surroundings), subjected to both mechanical and hygrothermal 1loads.
Furthermore, all the boundary conditions are assumed to be uncoupled.
Namely there is no imteraction between each 10ad over the boundary, in
order to simplify the formulation. Simce the composite laminates bhave
been characterized as viscoelastic materials, a heat source term (by way
of the dissipation in the viscous nature of the material) is also
considered. This problem formulation is described in the following

Coasider a three-dimensional anisotropic body of volume V bounded
by a surface 8 which describes a genmeral spatial motiom while being
subjected to mechanical and hygrothermal loads. The total surface ares
8 is divided into regionms S, S, Sy, Sg, S, and 8, on which surface
tractions, displacements, heat flux, temperature, mass flux, and
moisture concentration, respectively, are prescribed. Figure 5.1
defines the inertial frame OXYZ and also the body axes oxyz, which is a
lagrangian frame fixed on the body in a reference state of temperature
T,, moisture comceamtration C,, zero stresses and strains. Baploying a
subscript notation and the summation convention, at time t, a general

point, P, in the continuum has the positiom vector
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where foi are the components relative to oxyz of the position vector of
the origin of the body axes relative to the origion of the inmitial

frame. Similarly, rp. represents the position vector of point P in the

referonce state relative to the origin of the body axes and s (=) is

the deformation displacement vector.

Figure 5.1 Definition of Axes System and Position Vectors
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In this formulation the transieat response as well as the response
of two equilibrium states are studied. The first equilibrium state is
defined by the same conditions of temperature and moisture comcentration
as the initial conditions for the system, and the second equilibrium
state is defined by the temperature and moisture oconditions in a
steady-state situation at any position in the volume V after a sudden
change of the enviromment. These two states are assumed to be
oquilibrium conditions for both thermal and ambient moisture

concentrations.

$.3- Conservation laws

Thermodynamics is based oa two fundamental laws: the first law of
thermodynamics or law of comservatioa of emergy, and the secoad law of
thermodynamics or entropy law. A systematic macroscopic scheme for the
description of son-equilibrium processes ( i.0. the scheme of
thermodynamics of irreversible processes ) must also be bduilt upon these
tvo laws. In order to develop a theory applicable to systems of which
the properties are comtinuous functioms of space coordinates and time,
the local formulations of the laws of conservation of mass, momentum and

energy should be given sequentially.

5.3.1- Conservation of mass

Consider an open system which exchanges mass with its surroundings

through the boundary by diffusion driven by a comcentration gradiemt. Inm
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the study of the hygrothermal bebavior of composite materials the

specific moisture concentration C ( Kg/Kg ) defimed by

C=M/p (5.3.1.1)

is frequently used. Physically, M, ( Kg/m’ ) representing the moisture

concentration is defined by

N, = limpyy0 mass of moisture in AV/AV (5.3.1.2)

s0 N, is a measure of the amount of moisture at a point. However, C
represents the amount of moisture as a fraction of the dry mass of the

composite material, i.e.

C = lim,yy0 mass of moisture in AV/mass

of dry material of volume AV (5.3.1.3)

The rate of change of mass within a given volume V due to diffusion is

pdC/dt = -q{M) (5.3.1.4)

where d/dt is the Lagrangian time derivative,
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11") ( l./-'sec ) is & component of the mass flux,

p (Kg/m®) is the density of dry composite material.

The equilibrium specific moisture comcentration C_ ( Kg/Kg ) is the
environmental moisture concentration. In humid air it may be related to

the relative humidity @ in percent by a power law [ 218 ]

C. = a(p/100)" (5.3.1.5)

where a and b are material constants [ 183 ], This expression is
inferred from the response data presented in Figure 8.6 of Reference
[ 183 ] for graphite/epoxy composite AS/3501, manufactured by Hercules

Inc.

For the purpose of simplification, several assumptions are made as

follows :

( 1) Vapor is the only phase involved in the mass transfer process,

in other words the liquid phase is mot takem into comsideration.

(2 ) The kinetic emergy caused by the transport phenomena of
diffusive matter is neglected because the transport velocity is very
slow, and the mass of transported matter is very small compared with the

mass of the medium,

( 3 ) The system is in chemical equilibrium, hence there is no mass

transfer caused by a chemical reaction.



1%

5.3.2- Conservation of momentum and energy

According to the principle of comservation of energy, the total
energy content within an arbitrary volume V can only change if there are
energy flows in or out of the volume through its boundary 8 and energy
is generated or destroyed inside the volume because of energy change or

energy supply accompanied by the mass supply.

The conservation of emergy [ 42,43 ] may be expressed by
Q) + q) « g+ K-8 (5.3.2.1)

where (°) ropresents taking the Lagragian derivative with respect to
time, the heat transfer Q(H) ( N-m/gec ), the energy transfer QM)
( N-m/sec ) due to mass transfer, imternal emergy U ( N-m ), macroscopic
kinetic emergy K ( N-m ) and the mechanical power R ( N-m/sec ) are

defined as

(B) o -
@ Isq(n)iﬂi‘s * j;pn‘ﬂ’av (5.3.2.2)

a™ . - jsuq"’,.,as (5.3.2.3)

U= j;podv (5.3.2.4)
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K- 1/zj;p,1,1¢v (5.3.2.5)

R - vaxipidv . Isc‘injp‘ as (5.3.2.6)

where p; ( m/sec ) is the velocity associated with the time rate of

change of ry is defined by
Py = i'oi + l'li + 'ijk'j(’ol + gy t ni) (5.3.2.7)

where (') represents the time rate of change with respect to the moving
frame oxyz, ( °) defines the absolute rate of change, ejjx is the
alternating temsor, and compoments of angular velocity vector for the
moving axzes are represented by .j' h(n) ( N-m/Kgsec ) is the heat
source, q(ﬂ)‘ ( N-m/m*sec ) is the heat flux in or out of the system and
the influx is considered to be positive, n; is the component of the unit
outward vector normal to the boundary surface, the denmsity p ( N-mn/m? )
is assumed to be uniform throughout the process, i.e. independent of
temperature, moisture and position at any instant t, the mass flux q(.)i
( Kg/m*sec ) carries the chemical potential p ( N-m/Kg ) im or out of
the system through the boundary and the influx is assumed to be
positive, o ( N-m/Kg ) is the specific internal emergy, X; ( N/Kg ) is a
component of the body force and o35 ( N/m®> ) is a mechanical stress

tensor, and the work done on the system is comsidered to be positive.

Substituting equation ( 5.3.2.2 ), ( §.3.2.3 ), ( 5.3.2.4 ),
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( §5.3.2.5 ) and ( $.3.2.6 ) into equation ( 5.3.2.1 ), the first law of
thermodynamics will result in the balance of momentum and energy such

that

(Blgy -
van av - { B o s - Ism(u)i,‘ds

= va:dv + I/Zdldtj;ppipidv - j;pxip‘dv

where each of the surface integrals is tnmfot:-od by the divergence

theorem to a volume integral such as

(0)
IS" 184S = Iv a(B), av (5.3.29)
Is,.q""nias - j'v,.q“"i,idv (5.3.2.10)
and
Iscup‘njds - J‘VU‘J.jPidv + Iv G“p‘.JdV (5.3.2.11)

Collecting terms and letting v;; be the strain temsor, the time

rate-of-change of this expression may be written

%ij L 1,2( :i’j + :j.‘ )' (50302012)

Equation ( 5.3.2.8 ) thea becomes
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v( ’;i - Pxi - cij.j )p‘dv + I&( p: - ph(n)

+ (B o)

i,1 + uq i,i + oijpi'j ) dVv = 0 (5.3.2.13)

The 1local form of momentum and energy balance equation are

expressed by

PPy - Xy - o5y,5 = O (5.3.2.14)

and

P - pn(® + qB), s g™ - eyypy,y = O (5.3.2.15)

5.4- Entropy Balance and Eantropy Production

According to the second law of thermodynamics [ 4,66 ], the
entropy S ( N-m/°x ) may be introduced for amy macroscopic system and is

expressed by

ds = d‘s + ‘13 (5.4.1)

where the eatropy increase of the system d8 is oomposed of two and only
tvo terms d.S and d;8. The term d,S is derived from heat transfer into
or out of the system across the boundary, and the term dis is the
entropy produced inside the system [ 4,66 ). The second law of
thermodynamics states that d;3S must be zero for reversible

( i.0. equilibrium ) processes and positive for izreversible processes:
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4;s20 (5.4.2)

The entropy transfer term d.S, on the other band, may be positive, szero

or negative, depending upon the interaction of the system with its

surroundings. For open systems, d S also contains a term comnected with
the transfer of matter. The equations ( S.4.1 ) and ( 5.4.2 ) can be

combined in the form as

IVP:‘V - 'Isq.i‘ids + Ivs av (5.4.3)

where § ( N-m/Kgsec’® ) is the rate of change of specific entropy

demsity, q% ( N-m/m’sec’k ) is the component of entropy flux and S
( N-m/m’g0c®K ) is the entropy source strength or entropy production

density.

It is appropriate to describe the density of each extensive
property ( such as mass and energy ) of the system with continuous
functions of spatial coordinates. Using Gauss’ theorem, equation

( 5.4.3 ) may result in the form

Iv‘ P+ g% 4 - 8 )aV =0 (5.4.4)

Since equation ( 5.4.1 ) and ( 5.4.2 ) must hold for an arbitrary volume

V, the 1local expression for the second lav of thermodynamics may be

written
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P+ g8 ;=5 (5.4.5)

and

S$20 (5.4.6)

In much of continuum mechanics, it is often assumed ( based wpon
statistical mechanics of irreversible processes ) that the stress temsor

may be decomposed into two parts [ 4699 ],

vhere G(C)ij is a conservative stress teamsor, and c(n)ij is a
dissipation stress temsor. With this assumption the eaergy equation

( 5.3.2.15 ) may be written as

(M)

ps - pn(M & o) v g™y

(

- O(C)ijpi.j -0 D)lj’i.j =0 (5.4.8)

where the term °(D)1jpi.j is the rate of energy dissipated by the

stress. On the other hand, if the continuum undergoes a reversible

process, there will be no energy dissipated by this stress.

In order to obtain more explicit expressions for the entropy flux

Q“ and the entropy production 8, it is necessary to relate the



145
conservation laws and the rate of change of entropy. The Gibbs relation

of a reversible process for the specific quantities is written as

pn = Pz - °(C)ijPi.j - ph(n) (5.49)

whero p, s, 6o, 6(0)11 and Pi,j vere defined previously, and T ( °K ) is

the absolute temperature. Equation ( 5.4.8 ) and ( 5.49 ) may be

combined to yield

pTh = - q(B) \ - yqM)y v o)y 1p, (5.4.10)

Dividing equation ( 5.4.10 ) by the absolute temperature T, it

yields an expression for the rate of change of entropy

Now if A, and B are both arbitrary functions of position, then

(Ais),l = BA‘.i + A‘B‘i (5.4.12)

Utilizing this relation, equation ( 5.4.11 ) may be transformed into
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P‘ + [ (q(m‘ + pq(.)‘ )I/T ].i = q(mi(ll'l'),‘

+ M im + 6Py T (5.4.13)

This equation is just identical with equation ( 5.4.5 ) provided
that the entropy flux demsity and entropy production density are defined

as follows:

Q% = 1/T( B+ g™, ) (5.4.14)
and

Expanding equation ( 5.4.15 ) yields

== Ca®yrior v My it

- q(u)‘ulT’ )T 3 + o(n)ijpi.j,T (5.4.16)

Equation ( 5.4.14 ) demonstrates that for open systems the entropy
flux q% consists of two parts: ome is the "reduced” heat flux q(n)i.
the other is connected with the diffusive flux of matter q(")i, Bquation
( 5.4.15) demonstrates that the entropy production [ 4,66 ] is
composed of heat conduction, diffusion, heat source and the rate of

change of energy dissipation due to dissipative stress. In this
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equation, there appears ome term for each process ( emergy transfer,
diffusion, heat source and dissipative work ) and each term vanishes
when the corresponding process ceases. In other words, in the
computation of the entropy production due to the simul taneous presence
of several processes it is only necessary to add the productions which

would accompany the processes as if they took place seperately.

$.5- The Phenomenological Equations and Onsager Principle

It is known empirically that for s large class of irreversible
phenomena and under a wide range of experimental conditions, the
irreversible flows are linear functions of the thermodynmamic forces, as
expressed by the phenomenoclogical laws which are introduced ad hos in
the purely phenomenological theories of irreversible processes. An

example is Fourier’s law for heat conduction,

q(ﬂ)‘ = -l‘iT.j (5.5.1)

which expresses the fact that the components of the heat flow are linmear
functions of the ocomponents of the temperature gradient where l‘j

( N-m/m30c®K ) is heat conductivity. A second example is Fick's law

[ 48 ) for mass diffusion,

(.)‘ - —D“C'j (5.5.2)
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which establishes a linear relation between the diffusive flow of matter
and the concentration gradiemt where, Dij ( Kg/m-sec ) is the material
diffusivity. Also included in this kind of description are the terms for
such cross—-effects as thermal diffusion in which the diffusive flow of
mass depends linearly upon both the concentration and temperature
gradients. Under the reostriction of the linear assumption, the

phenomenological equations may be expressed by

where q; and X, are any of the Cartesian compoments of the independent
fluxes and the thermodynamic forces respectively. These terms appear in

the expression for entropy production, which is of the form [ # ]

vhere the quantities L, are called the phenomenological coefficients
[ ). Substituting equation ( 5.5.3 ) into ( 5.5.4 ) for the entropy
production, a quadratic expression results in the thermodynamic forces.

This relationship has the form

which must be positive definite, or at least positive semi-definite. A



149
sufficient comdition for this is that all principal co-factors of the
sysmetric matrix with elements L.y + L., are non-negative. This implies
that all diagonal elements are positive whereas fho of f-diagonal

olements must satisfy, for iastance, conditions of the form

LyjLyy 2 1/4(Lgy + Lyy)°.

The advantages of the systematic formulation of irreversible
thermodynamics is that all local thermodynamic state variables of the
system may be determined by the conservation laws, entropy balance
equations and the phenomenoclogical equatioms. On the other hand the

phenomenological equations can also be derived through this formulation.

In equation ( 5.4.16 ) all components of the vectorial and
tensorial fluxes must be considered as homogeneous linear functions of
all components of the vectorial and temsorial forces. A direct
consequence of this is that Curie’s principle of symmetry does mot hold
here [ 49,66 ). BHowever, the reciprocity law of Onsager and Casimir is
valid. In this theory, the generalized forces are divided into two
different types "forces of a-type” and "forces of p-type”. The “forces
of a-type” are even-valued with reference to time reversal while "forces
of B-type” are uneven. The formula used to find the phenomenological

cosfficients [ 9,66 ] is

cij L ‘i.jaji (‘.j L 1.2...00‘) (s.so’)

where s =1 if Xy is a force of a-type
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8 = -1 if X; is a force of pP-type

If X; and Xj are of the same type, then equation ( 5.5.5 ) is

reduced to the form

% = %51 (5.5.6)

which are referred to as Onsager coefficients. However if X; and xj

belong to different types of forces, then equation ( 5.5.6 ) becomes

which are referred to as Casimir coefficients. Equation ( 5.5.6 ) is
denoted as the Onsager reciprocity relations, while equations ( 5.5.5 )
and ( 5.5.7 ) are called the Onsager - Casimir reciprocity relations

[ 9,66 ). By introducing a new flux i(n)i' defined as

rLCURIIR I ) (5.5.8)

the entropy production S in equation ( 5.4.16 ) can then be written as

s=-CT® 1)1+ (M,

+ o) gy T (5.59)
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The dissipation function @ ( N-m/m’gec ) is defined by
=TS (5.5.10)
The equation ( 5.59 ) may then be written as
g = .3(3)11.1/7 + q(.)iﬂ.i + c(D)ij Pi.j (5.5.11)

From the previous studies [ 184,185 ], the dissipative energy
contributed by the inertial coupling terms between the rigid-body motion
and stresses is very small in comparison with the strain energy. Hence,

these terms related to the rigid-body motion may be neglected to make

Pi,j3 = ;1)’ The equation ( 5.5.11 ) may then be restated as

0= -q® 1 T+ My, o'®)y 74y (5.5.12)

with the thermodynamic forces
x(ll)1 --T; (5.5.13)
W,y (5.5.14)

X = ";u (5.5.15)
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From equation ( 5.5.12 ), the first and second terms on the
right-band side are a scalar product of two polar vectors and the last
term is a scalar product of two temsors of order 2. The phenomenological
equations ( 5.5.1 ) may be derived by the Onsager - Casimir reciprocity
relation [ 49,66 ) and equation ( 5.5.12 ). This equation is assumed to
be applied to an anisotropic comtinuous medium under the premise that
the temperature difference © (°R) is small compared to the absolute
temperature T, and the reference temperature T, is defined as the
temperature at the unstrained state These terms are governed by the

relationship

T=T, + 0 (5.5.16)

which permits the phenomenological equations then to be expressed by

°(n)1j = Lll;ij = 1140 /T - Ly,u (5.5.17)
;(B)‘ = th;ij + Lys0 ;/T+ Ly g (5.5.18)
My - L’l;ij + L1330 /T + Ly (5.5.19)

The stress tensor G(n)ij may be replaced by %ij by superimposing

c(C)ij onto the equation ( 5.5.17 ), for instant, a general form of the

constitutive oquation for viscoelastic materials under the enviroamment
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of isothermal and constant moisture concentration is represented by

°
% = Cijxivr1 * Sijx1Tx1 (5.5.20)

where C and G are the fourth-order temsors of elastic moduli amd
ijkl ijkl

damping coefficients, respectively. The gradieant of chemical potential

may be expressed in terms of the concentration gradient [ 4 ,66 ] when p

is assumed to be constant. Thus

B, i = nuC 4 (5.5.21)

The phenomenological coefficients may be represented as follows:

. H
%3 = Ciyxirxl * Gk - p¢ )uk".k
- M iy ey (5.5.22)

q(l)1 - ﬂ(')ijk;jk + *ijo.j + 844C, (5.5.24)

At this stage, the physical interpretation of the phenomenological
coefficients should be made in equation ( 5.5.22 ), ( 5.5.23 ) and

( 5.5.24 ) such as
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ﬁ(n)ijk ( N-m/2*-°K ) is the third-order temsor of
anisotropic thermoelastic moduli,

B(.)ijk ( Kg/m® )is the third-order temsor

of hygroscopic moduli,

‘ij ( N-m/m-sec-°K ) is the second-order

tensor of heat conductivity

lij ( Kg/m-sec-°K ) is the second-order

tensor of hygrothermal coefficient

$ij ( Kg/m—sec ) is the second-order

tensor of material diffusivity

Substituting equation ( 5.5.22 ), ( 5.5.23 ) amd ( 5.5.24 ) into
the equation of mass balance ( 5.3.1.1 ), equation of motion
( 5.3.2.14 ) and equation of enmergy balance ( 5.3.2.15 ) yield three
partial differential equations governing the dynmamic hygrothermal

response of anisotropic media. Thus

ps - pn(H) + T’mijk'.!jk.i + K330 45 + TagyuC 4y
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- [ )
CCiyxavin * Syyntn,
- a(n)ijkp.k - B(")ijkuc,k );1j =0 (5.5.26)

- a(ﬂ)

® [ ]
PPy = PX3 = C45x17x1,5 ~ Gijk17iy, j 1Jx9,xj

+ 5(u)ijk"c.kj =0 (5.5.27)

The strain tensor may also be represented in terms of the deformal
displacements using equation ( 5.3.2.12 ), Since the strain temsor i
is symmetric, it implies that the third-order tensor B“k has the

following property

Substituting equations ( 5.5.27 ) and ( 5.5.28 ) into equation

(5.5.24 ), ( 5.5.25 ) and ( 5.5.26 ) yields

pdC/dt - p(u)‘jk‘.'j.ki - L“O.u - guc.u = 0 (5.5.29)

pe - pn(l) 4 13(")1jxaj.k1 + K330,45 + Tag5uC 45

- B(ﬂ)

[ ]
CCiyxvx,1 * Gijx1vy,1 15x8,x

- M) huC 8y, = 0 (5.5.30)
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[] ° B
PPy = X3 = Cy5x1%k,15 ~ Gijka®k,15 * B¢ ’13k°.jx

+ ﬁ(.)ijk"c.jk =0 (5.5.31)

These equations are subjected to the following boundary conditioms

u; = uy on S, (5.5.32)
6 =T, on Sg (5.5.33)
c=cC, on 8, (5.5.34)
8; = 84 on S, (5.5.35)
q(B) - gB) on Sy (5.5.36)
oM . g on S, (5.5.37)
and also the initial conditions
u(x,y,2,0) =0 (5.5.38)
o(x,y,z,0) = 0, (5.5.9)
C(x,y,2,0) = C, (5.5.40)

In this chapter, the governing equations for the mass balance,

momentum balance and energy balance are derived by applying the first
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and second laws of thermodynamics, classical continuum mechanics and the
Onsager’s Principle. These governing equations are also subjected to
the various boundary coaditions amd imitial conditioas. Therefore,
these formulate three coupled initial-boundary value problems. A
variational principle is employed as an alternative methodology to
derive the governing equations and the associated boundary comditionms,

and it will be presented in the mext chapter.



CHAPTER 6

A THEORETICAL INVESTIGATION ON THE LINEAR
COUPLED HYGROTHERMOELASTODYNAMIC ANALYSIS

OF MECIIANISM SYSTEMS

6.1 Background

Modern composite materials possess certain characteristics that are
superior to the traditional metallic designs, and the increasing use of
these materials in structural applications requires that the response of
such materials to both environmental exposure and mechanical loads be
fully understood. This in turn requires analytical and experimental
methods which predict changes in the properties of the material during
exposure to an environment in which both the temperature and the
moisture level vary. This chapter presents a variational principle from
which the governing equations of motion, energy balance and mass balance
are derived and a finite element formulation is also performed in order
to obtain a numerical method to render a tractable solution to these
complicate problem. In order to address this class of problems, and
develop a design methodology for engineering incorporated with these
problems, considering a composite material is exposed to anm emnviromment
in which the temperature T, and the moisture content m, vary with time t

in a prescribed manner, It is required to find the following

158
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parameters:

1. the temperature distribution T(x,t) inside the material as a

function of position and time,

2. the moisture concentration c(x,t) within the material as a

function of position and time,

3. the total amount (mass) of moisture inside the material MN(t)

as a function of time,

4. changes in the performance of material, such as elastic

modulus as a function of time,

5. the response of the material under combined mechanical and

bygrothermal loadings.

Under certain circumstances solutions to the hygrothermal problem (notes
1-3 above) can be obtained analytically, answers to problems involving
changes in performance (note 4) must be obtained by testing, and the
response of tho material (note 5) may be obtained by both experimeatal
and analytical means after the above points were performed. An overview
of the methods of solution pertaining to these problems are given below.
Details are provided in the various articles which follow and in the

references quoted.

Experimental studies performed under elevated temperatures and

various relative humidities in references [ 93,143,150,215 ], indicate
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that for many materials (especially the graphite/epoxy composites)
Fickian diffusion is a reasonable approximation and the calculations
based on Fick’'s law were found to adequately decribe both the moisture
aborption and desoption processes. Solutions to problems govermed by
notes 1 and 2 can be obtained analytically when the following conditions

are met:

1, Heat is transferred through the material by conduction alone and

can be described by Fourier’'s law [ 130 ],

2. The moisture diffusion phenomena can be described by a

concentration-dependent form of Fick’'s law [ 130,143 ],

3. The temperature inside the material approaches equilibrium much

faster than the moisture diffusion process, comsequently, the

Fourier heat conduction and Fick mass diffusion equations

can be decoupled [143].

4. The thermal conductivity and the mass diffusivity depend only on

temperature and are independent of moisture conceantration or

stress levels inside the material [ 217,218 ].

Non-Fickian diffusion has also been observed in some composite

materials [ 216,217,218,219 ). For these materials moisture absorption

and desorption can not described well by a concentration-dependent form

of Fick's law. Calculations performed on the basis of Fick's law fail
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if:

1. cracks develop in the material or delamination occurs, which

essoentially alters the structure of the material,

2, moisture propagates along the fiber-matrix interface,

3. there are voids in the matrix, and

4, the matrix itself exhibits non-Fickian behavior (even

without cracks).

The first three of the above conditions imvolve some form of
micro-structural discontinuity within the material. Frequently, such
discontinuities can be  minimized by appropriate manufacturing
procedures. Whether the diffusion process through the matrix is Fickian
or non-Fickian depends on the relative rates at which the polymer
structure and the moisture distributions change [ 48,100 ]J. When the
polymer structure changes much faster than the moisture concentration,
the diffusion process can be described adequately by Fick's law. If the
relaxation process, which is the change of the residual stresses of a
polymer structure caused by swelling phenomena inside the material,
develops at a rate comparable to the diffusion processes, then the

diffusion is defined as non-Fickian [ 143,215 ].

Fick’'s law is generally applicable to rubbery polymers but often
fails to describe the diffusion process in a glassy polymer [215]). The

transition from a glassy to a rubbery state occurs at the glass
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transition temperature. The glass transition temperature itself depends
on the moisture concentration. The absorbed moisture will generally
decrease the glass transition temperature, thereby affecting the

diffusion behavior of the material [ 100 ].

Vhether moisture transported through a composite is by Fickian or
by =non-Fickian diffusion process depends on the material and on the
environmental conditions. Thus, the general diffusion law for a
specific situation must be determined by experimental testing. If the
diffusion process is Fickian, then the moisture distribution at each
instant in the material can be calculated readily. Suitable analyses to

adequately describe non-Fickian diffusion have not yet been developed.

Moisture and temperature may affect the performance of composite
materials. To date, changes in the following performance parameters
have been explored: (a) tensile strenmgth, (b) elastic moduli,
(c) fatigue behavior, (d) creep, (e) stress rupture, and (f) response to

dynamic impact [ 144,151,153,211,215 ].

At elevated temperatures a degradation of the mechanical behavior
occurs since the moisture diffusivity, D, is strongly dependent upon the
temperature, An empirical formula D = D, exp(-E,/RT) governs this
situation, where D, and E, are pre-exponential factor and the activate
energy required for one unit of mass to move inside solid, respectively
[ & 92,146 ). R is wuniversal gas constant and T is the absolute
temperature. Therefore, the coupling effect between temperature and

moisture is found to be more significant when this material undergoes a
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sudden change in surface temperature. The stresses due to coupling
effect can deviate from the uncoupled results anywhere from 20 to 80%
depending on the surface temperature gradient. A consequence of these
heat transfer and diffusion phenomena is that the damping properties and
also the natural frequencies of the structure are affected. This
further complicate the task of designing composite systems which must
successfully operate in practice when simul taneously exposed to a wide

spectrum of both hygrothermal and dynamic loading conditions,

In most theoretical research publications on modeling the
hygrothermal response of composites, the heat and moisture diffusion
equations are generally decoupled in order to establish a mathematically
tractable problem, but this approach 1is not always appropriate. As
indicated in references [ 146 ) and [ 143 ] under service conditions in
engineering practice, a structure is simul taneously subjected to both
hygrothermal and mechanical emvironments, hence a formulation coupling

hygrothermal and mechanical loading is generally required.

A classical approach, based upon the first and second laws of
thermodynamics, non-oqnillbrinn thermodynamics and classical continuum
mechanics, is developed and documented in chapter S, The governing
equations bas been generated in order to describe the physical behavior
of a continuous medium undergoing mechanical, thermal and bhygroscopic
loading. In addition, G. Herrmann [ 71 ] formulated a variational
theorem for an anisotropic three-dimensional medium and for a more
general class of boundary conditions by employing Boit’s thermoelastic

potential and dissipation function. In establishing this theorem the
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kinematic variables were taken to be the solid displacement and entropy
displacement., The dynamic variables were the stress, which has to be
resolved into an isothermal part and a thermal part, the temperature
increment above a reference temperature, and a force, which is related .
to the entropy displacement. In contrast to this, M. Ben-Amoz [ 22 ]
constituted a mixed variational principle by employing Hu-Washizu's

principle, from which all field equations are deduced from the extended

functional.

Herein, a variational principle for the linear coupled
hygrothermoelastodynamic analysis of mechanism systems is presented
which provides the basis for developing the equations goverming the
hygrothermoelastic response of planar flexible mechanisa systems
subjected to both mechanical and hygrothermal 1loading. These systems
are modeled as chains of continua with anisotropic elastic constitutive
equations. By permitting arbitrary independent variations of the system
parameters for each link, approximating equations of motion, equations
of heat and mass transfer and boundary conditions may be systematically
constructed. Subsequently, a finite element formulation based upon this
variational principle is developed in order to provide a numerical
scheme in order to solve the equations. The problem is intractable when

approached from a purely anmalytical basis.

6.2 Variational Principle

Consider a three-dimensional anisotropic body of volume V bounded

by a surface S which describes a general spatial motion while being

subjected to mechanical and hygrothermal loadings. The total surface
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area S is divided into regions S, §,, Sy, Sg,. Sp and Sy on which
surface tractions, displacements, entropy displacements, temperature,
bygroscopic displacements [ 213 ] and moisture concentration,

respectively, are prescribed.

2

Figure 6.1 Definition of Axes System and Position Vectors
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Figure 6.1 defines the inertial frame OXYZ and also the body azxes
oxyz, which is the Lagrangian frame fixed in the body in a reference
state of temperature T, ( °K ), entropy density s, ( N-m/m’-°K ),
moisture concentration M, ( Kg/Kg ), flow-potential density =,
( N-m/m® ), and zero stresses and strains. Employing a subscript
notation and the summation of convention, at time t, a general point, P,

in the continuum has the position vector

Iy =roy t Igj v 4y (6.2.1)

where r,. ( m ) are the components relative to oxyz of the position

vector of the origin of the body axes relative to the origin of the

inertial frame. Similarly, rp, represents the position vector of point

P in the roference state relative to the origin of the body axes and u,

is the deformation displacement vector.

The velocity associated with the time rate of change of r;, is
written as P, ( m/sec ). Then with p ( Kg/m’ ) as the mass density and

6ij as the Kronecker delta, the kinetic emergy demsity, T ( N-m/m’ ), of

the system is

T= IIZPPi51ij (6.2.2)

In order to establish the equations goveraning the motion of a 1link

of a flexible mechanism system, the principle of virtual work must be
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goneralized using the first and second laws of thermodynamics, to yield

the problem of determining the stationary conditions of the functiomal

6 = 8] [y [1-wDrostnmexyry Jav

(H)

~ —(H -
+ Isn (1/p8,) Q edsn + jsc girjdSy

+ [sp (1/pMy) g™ m asplae (6.2.3)

subject to a number of auxiliary conditions or constraints. In equation

(6.2.3) the term © represents the temperature increment above the

reference temperature ©,, 5 represents the entropy-density increment
above a reference entropy-density s,, n is the flow-potential density
increment above a reference density n,, M is the moisture concentration
increment above a reference concentration M, X; ( N/m® ) are the body
forces per unit volume, LY ( N-m/m*-sec ) and Q(I) ( N/m*-sec ) are
the prescribed heat and mass transfer, and ii are the prescribed surface
tractions, @ ( N-m/N ) is the specific chemical potential. The term, VW,

is hygrothermoelastic potential density, W ( N-m/m® ) defined by

W= 12 Cigpivivig + Oe/2¢ (s-Bijyiy +uM)?

+ No/2b (ﬂ-cij1ij+p9)’ (6.2.4)

Cijkl ( N/m® ) being the symmetric tensor of elastic moduli in the
isothermal state, ¢ ( N-m/m’-°K ) is the specific heat per unit volume

(c=pc, where ¢ is the comventional specific heat with units of N-m/kg-°k
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in the referemce state; B, ( N-m/m’-°K ) and agj ( N-m/m’ ) is the
symmetric tensors governed by the thermal-expansion and
diffusive-expansion properities of the medium, respectively;
( N-m/m’°K ) is the hygrothermal coefficient; b ( N-w/m’ ) is the
hygroscopic capacity. The function D ( N-m/m® ) is dissipation function
due to the irreversibility of heat conduction and mass diffusion im the

medium and is defined as

D = ( 1/2390‘ij )qi(ﬂ)qj(n)

+ ( 1/23!,0“ )gqi(')qj(l) (6.2.5)

where P is the mathematical operator P = d/dt, ‘ij ( N-m/m~sec-'Kk ) and

Dij ( N/msec ) are the thermal conductivity and mass diffusivity

potential tensors, respectively, and qi(n) ( N-m/m*-sec ) qi(“)

( N/m*-gec ) are defined below.

The constraints imposed upon the parameters in equation (6.2.3) may

be formulated as the strain displacement equations

Yij = 1/2 (uy y+uy 4 ) (6.2.6)

where comma (,) denotes spatial differentiation; the velocity

rate-of-change of position statement
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Pi = ;oi + ;i + eijkaj(rok+tnk+nk) (6.2.7)

where (T) represents the time rate of change with respect to the moving
frame oxyz, (') defines the absolute rate of change, °ijk is the
alternating tensor, and components of the angular velocity vector for

the moving axes are represented by ’j‘

Qin) = -Kija'j (6.2.8)
and

qz“) = -Diju’j-Giju-yn'j (6.2.9)

where Gijkl ( N/m—sec ) is the hygroelastic modulus, These are the
phenomenological equations describing the heat and mass transfers, which
are also known as Fourier’s and modified Fick's equations, respectively

[ 42,43 ]. The mechanical boundary condition on region Su are,

U o=y ' (6.2.10),

the thermal boundary condition om region Se are
=60 (6.2.11)

and the hygroscopic boundary condition om region Su are
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A free variational problem with auxiliary oconditions may be .
constructed by the Lagrange multiplier method which incorporates the
constraints within the original functional after each condition is first
multiplied by an undetermined multiplier, A, with numerical superscript
and appropriate temsor indicial subscripts. The functiomal G, for the

free variational problem becomes the functional J, where

[~

= j’g}{ Iv [ T-weD+ost niex; 15 Jav + Is,;ifidsa

(B)

+

[sn rzee) @'Peasy + [op /M) o™ masy

+

Iv 1{}’[111-1/2 (ni.j+nj'i)]dv
Iv M [afP+ry 50, Jav

Iv *is)[qi')*bij“.j*Gijk17k1.j]dV

+

+

+

Iv xi4)[Pi‘(;oi*zi+°ijk‘j (rok*rgk+nk))]dv

+

+

fou 27 -Trasy Jac (6.2.13)

The variational equation corresponding to the above equation may be
obtained by taking variations of the system variables and setting the
resul ting expression equal to =zero. Hence using the definitions

(6.2.2), (6.2.4) and (6.2.5), this is written
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83 = 0 = [t} [ [y oPisPy-Cyjaamaadusy

- 9./c(s-Bij1ij*nl)(bs-Bijbyij+pSH)

- "./b(u-cuvi_‘we) (5n-a; ;87 j+ub0)

+ (1/F0,K;; 1qfMaqf® + (1/7M,D;5 ) 0q{MsqfM)
+ 560 + 663 + ndM + Mbén + xihi ]dv + Is«:ii brydS,

+ fsu arse) TMseasy + [gp (1/5M,) ca™euas,

+ .[V 511})[7“'1/2(“1,_{*05,‘)]dV

+ fy MP[ori5-1/2000;, j+ou;, ) Jav

* Iv51§2’(q{“’*x1je,j)dv

* Iv 2{2) (8qfP)+x, 80, j)av

' IV 83 {3 (af*)epy M, 46, 551751, )0V

+ IV ;.{3) (6qi“)+nij.6"aj+cijk167kl,j)dv

+ Jy oA P-Foy+iirey il trox +rpiror)) Jov

* IV "i”[ 6P1°(5;oi*5;1""1jk56j (’ok"‘lk""k))]dv

¥ ISu*15)5“143n + 13,6115)(§i-u1)¢sn

+ fso 1(6)80asq + Ise 81(6) (8-B)asg

+ foq A Pouasy + [, 827 -Toasy Jae (6.2.14)
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Utilizing Gauss’ theorem, the sixteenth product inm equation

(6.2.14) may be written as

-fy AP 1r2(6u;, 4805, av

= ~fs 2P njou; as + [y af} jsuyav (6.2.15)

where n; is the unit vector outward normal to S.

Similiarly, the eighteenth and the twentieth products im (6.2.14)

may be written as

IV 2{2)x; 80, ;av

= [s xijafPn;0eas - [y af2)x, seav (6.2.16)
and

Jo P pigon, proigmsran, g Jav

= [s[ Dygaf>n;6m6y5512 3 087y, Jas

- Iv[ *i?}nij°“+li?3°11x157k1 ]dV (6.2.17)

The terms under the eleventh integral must be subjected to
integration-by-parts over time. This integration procedure is subject
to the constraint that variations are not permitted at the extremes of

the time interval. Finally, by permitting the variations to coincide
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with the actual displacements that occur during the time interval dt,

then

5fi = 5‘oi*5“l*‘1jk5°j(’ok*‘kk+“k) (6.2.18)

Upon incorporating these re—arrangements into equation (6.2.14), the
characteristic equations for this class of mized dynmamical problem in
bygrothermoelasticity may be obtained by permitting independent
arbitrary variations of the system parameters, and this operation also
enables the undetermined multipliers to be expressed as functions of the

system variables., These operations yield the following equations.

The comnstitutive equations

1
*ij) = Cijx17x1 ~ Byj® - aj;N - Gijkllﬁ?l

= 9% (6.2.19)

af® = x50, ; (6.2.20)
and

qil) = -Diju.j—Gijklykl.j . (6.2.21)

The equations of state are

9.8 = cO + O.Buy“ - OouM (6.2.22)
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and

The multiplier 1i4) = pﬁi. and the equations of motion are written as

oy i+ X; = pB,. (6.2.24)

Jod

The balance of linear and angular momentum also emerge from the analysis

and are written

and

Iv Oijkxi(l'ok*’rgk"‘nk)dv + ISG eijk;‘ (roxtrpytux)dSy

= IV ’1jkp§i(’ok*‘nk*“k)dv' (6.2.26)
The mul tiplier 1§2) is defined by

A{2) = - 150,k 1qfP (6.2.27)
which enables the energy equation to be developed from
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Hence, upon substituting for 112) and applying the mathematical operator

P, this yields
6,3 = 6,k - qofH). (6.2.29)
Similarly, the multiplier A{3) i5 defined by

{3 = - 1/3MeDy; r0g§W (6.2.30)

and hence

Mon = Mou8 - 0q M), (6.2.31)

Equations (6.2.6)-(6.2.11) also emerge as characteristic equations,
as anticipated. In addition, the following Lagrange multipliers 1(5),

a(6) and 1(7) are obtained from the process of taking arbitrary

variations.
A(5) = afBy; (6.2.32)
2(6) o -A‘iZ)nj‘ij - (1/59.)&11“):1 (6.2.33)
and
NG -1§3)njnij = (1/pMg)0q{" )0, (6.2.34)

The previous three equations enable the following surface traction
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boundary conditions to be obtained

8; = cijnj . (6.2.35)

as anticipated. Finally, the heat and mass flux boundary conditions are

expressed as

al® o gy, (6.2.36)

and

g™ . gy, (6.2.37)

Using the above definitions of the Lagrange multipliers, the first
variation of functional J, from which the equations governing the
hygrothermoelastodynamical analysis of mechanism systems may be

obtained, is written

83 = 0= [} [ [y svyyloy

~Cisra7ka*Biz0 + a3 jh-1/ (FeDyy) 635k S0} Jav
+ [y ss[e-eorc sy vy +um) Jav

+ [y on[-esb (n-ayj7; 5440 Jav

¥ Iv suy[o5, j+xi-pby Jav

+ [y s s-um (1/500) qf8}]av
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+ [y oM n-ye+ c1/5M,) 0q "] Jav

* v soylrig1r2tag, oy 0 Jov

- Iv (ﬁqin)/59.1‘3)[q£ﬂ)+xkje,j]dv

- Jv Gaf* 30, 2af o{en M ;46454115 3]0V
B IV p8P[ pi-Foi-5; -03 ;50 (ropt rpytuy) JaV

* 6'oi”V xldV+ISo ;idsc'IvPﬁidV]

+60;[ i o4 jxXy troxt rpyruy)av

* Is« e1 k81 (rox* rpy*ug)dv

- Iv o5 5xpPi (roptrpytuy)av ]

- Is« bu;(84-81)45q + ISn bg;(uj-uj)ds,

¥ Ise (sqf%n,/76,) (6-8)dSq

+

[sa (s0r50,) @™ -afn,)asy

+

Is“ (bqil)niliﬂ.)ﬂ(ﬂ-i)dsu

(N)

+

ISD (6“/;".)0(6 'Qiu)ﬂi)dsD ]dt (6.2.38)

Independent arbitrary variations of the deformation displacement,
strain, stress, absolute velocity, and the kinematic parameters defining
the rigid-body motion, and the entropy density, flow-potential density,
temperature and moisture concentration field, enable equation (6.2.38)

to yield, as Euler equations, the field equations and boundary
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conditions for this <class of hygrothermoelastodynamic problem. This
variational principle also provides a basis for finite element

formulation which will be developed in next sectionm.
6.3 Finite Element Formulation

The objective, herein, is to develop a ‘displacement” finite
element formulation for a single one-dimensional finite element with two
exterior nodes, each having five nodal degrees of freedom. Since this
analysis is to 1investigate the vibrational behavior of 1linkages
fabricated with straight slender flexible beam-shaped composi te
laminates, the flexural deformation field be modeled by the element is
governed by the classical Bernoulli-Buler bhypothesis. Two nodal
variables W and @ describe the flexural displacement and slope,
respectively, U describes the longitudinal displacement, T denotes the

temperature field and M is the moisture concentration.

Defining the nodal "displacement” vector for the element by

(01T = (U),¥,,0,.Ty.0.U3.%,.0,, T, 0 ] (6.3.1)
and the general solid-body displacement is denoted as
u(x,t) = [N$][U) (6.3.2)

and the temperature field and moisture concentration are expressed by.
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6(x,t) = [NB)[T) (6.3.3)
and

m(x,t) = [N®][N] (6.3.4)

where [N®], [NP) and [N™®] are shape functions which describe the spatial
distribution of displacements, temperature and moisture concentration,
respectively, throughout the element., These functions are independent

of time. However, (U], [T) and [M) are time dependent.

Incorporating equations (6.3.2)-(6.3.4) into equation (6.2.38),

then the discreotized variational equation may be written as

8 = 0

= (8 [ Jv tbraadMlogy

-[C1(B*) (U)+[B] INP] [T)+[a) IN®] [M)

-1/ (3M,) (0171 161031q M 1/0x Jav

+ [y 6T INPIITI-8y /6 (1s1-18] Ly, g J+nIN11H] ) Jav
+ [v tsulT[[Nillul-u./b (tnl-[ally,,1+utuh1[r])]av
+ Iv ts01TIN* 1T 3L, ) /0x+ [X1-p[B) ]av

+ [y sTITINDT] [2)-u(N®1 M) +(1/58,) alq®)1/0x]av

+ [y (M TINEYT] (m3-4 INPDETI+ (1/5M,) @aLq M1 /0x Jav
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+ [y 180,21 tr,1-1B2110) Jav

- [y (tsa®Tx11/50,)[ 1o W) 1+ 1K1 (BRI IT] Jav

- fy (18a™1T0171/5M,)0] 1gW) 1+ (D1 [BR] (M)
+[G][B’][7]]dv

- fy »1sP)T] (P1-INg) BR1-IN®1181 Jav

- fso UITINITCLg1-(ED0aS, + [g, [65)TIN®D (LUI-[UD)asS,
+ [se (18a®1T/50,) NP1 (ITI-[T))dSg

+ [sn (emTINIT/B0,) (0P 1-1(®) Dasy

* Isu (1sq M1 T/58,) (N®12([M]-[H])dS),

+ fsp asmTNITEN) (@™ 1-1aM ey Jar  (6.3.5)

where [C] ( N/m® ) is the elastic modulus matrix; [B) ( N-w/m’°Kk ) and
lal] ( N-m/m® ) are thermal-expansion and hygroscopic-expansion
coefficient matrices; [Ng] contain the shape functions approximating the
rigid-body kinematics (see chapter 2) while [Pg] is the column vector
containing the nodal rigid-body kinematic degrees of freedom. The nodal
absolute velocity components are defined by [P]); the surface tractionms,
heat and mass fluxes are defined by (3], (@]  ana (@M,
respectively; [B] 4is the spatial derivative of shape function [N].
Because the rigid-body equations of motion are of no consequence here,

they may be removed from the formulation by taking variations lbroi] and

(60,) to be zero.
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Substituting the constitutive equations of the first integral
the tenth integral into the equations of equilibrium yields
expression

-euiT [ [f, v*1TpIN%) 01+ 1821 T(C] [B%) (U]

-(B8)T(g) INP) (T)-[B*1T[a) IN®) (M)

+1I(su,[n]’lln‘]T[G]na[q(“’]/ax]dv

+ v e 1TeNg) Bgav - Iv (N1 Tx]av

- ISc[N']T[i]dso ] (6.3.6)
The following definitions are introduced,

(g1 = fyine1ToINgJav (6.3.7)

(uss) = [LIN*1TpIN®1av (6.3.8)

[K88) = jv[a'lT[clln'ldv (6.39)

(ksh) = [ (B%1T(pI (NP ]V (6.3.10)

(ks=) = -[,(8%1T(a) IN®1aV (6.3.11)

Substituting equations (6.3.7)-(6.3.11) into (6.3.6) yields

and

the
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-tsu)T [(u"llnl+[x“l[Ul+[x'hllrl+[x'°l[u]
+ g1 ihg)-[y N1 TIx)av- [ (N1 TR)as,

+[y1/ G 0171161 1B#1 T3 [ M) ) /dxav ] (6.3.12)

The second integral expression in equation (6.3.5) may be employed
to eliminate s from the energy equation in the fifth integral of

(6.3.5). The energy equation may then be written as

fv 1611 00 INFITEBI(BS1 (B1+ o INPITIND 1)
-240, (NPITIN®) (R)+ (B2 T(K) (2] (T) Jav

~[sa (sTITINPITIR] (BR) [T)dsy (6.3.13)

Upon introducing the following definitions

[che) = [, N*1To, [p) (B4 1aV (6.3.14)
(chb) = Iv[Nthc[Nh]dV (6.3.15)
(chm) = -[, (NP1 240, (N®1aV (6.3.16)
(x2) = [, iBh1 TR (8D 10V (6.3.17)

(@8 = -[(x)(Bb]I(T) (6.3.18)
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ion (6.3.13) may then be written as

lsrlT[[ch'llﬁl + (chbyd) + (cbmp(fl) + (xPB)(T)

+ [sgiN01TIa® jasy]

(6.3.19)

Similarly, the equation of mass balance may be written as

lbllT[[c“l[ﬁl + [cmb)(t] + [cmm](A) + [Km=®™]([M]

s y] + o vmiTara™asp )

(cms) = [, N®1TH, (a) (B*10V
[c®b) = -IV[N"]TZ..N. (NPlav
[com) = Iv[N'lTb[N'ldV

(x==) = {(8™1Ta(D] (B=)aV
(x2¢) = [,re=1Tarc) (B%1av

(a™) = -(pJ(e®1[n)

(6.3.20)

(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

(6.3.25)

(6.3.26)
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The final form of the discretized finite element formulation for

the variational equation of motion (6.2.38) may now be written as

8J =0

= [8 [fy trex)T] Logg)-1CI(B*1LU)

+[B1INPI [T+ [a] IN®] [)-1/ (5M,) (D] "116)0aLq M) ) /ax ]av
+ [ytos) [ IN*IITI-0,/c (1s1-[p1(B®1(UI+KIN®IIND)] av
+ [ytsmT[ IN*1M1-My /b (Ln]1-Lad (BRI IUI+RINPIITD) Jav
+ [8U1T] [(M®*)[0]+(K*3) [U)+(R*B)[T)+[K*®] (M)

g By 1-fyinrTixaav-fo o NITUgI- s Das
+[y17(3M,) (0172161 [B#1TRa1q W) ) /0xaV ]

+ 16T 1chs11B1+1ct2) 41+ (chm A+ (kD) (1]
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- [y otsr)T[ tP)-tng) (Pg)-tN1 (B Jav

+

[sa [8gITINSI(IDI-[DD)eS,

+

[so (18a*®1T/50,) NP1 ([TI-[T])asg

+

[su (8™ 1 T/BM,) (N1 (IM1-[RD)as), (6.3.27)

Equation (6.3.27) contains the field equations and prescribed
displacement, temperature and moisture concentration boundary conditions
for one finite element. These governing equations may be obtained by
taking arbitrary independent variations of the variables in this
variational equation of motion. The resulting matrix formulation must
be pre- and post-multiplied by standard transformation matrices in order
that this goneral statement be used to develop a finite element model of
a specific linkage. After an appropriate modeling of a physical problem
by employing these governing equations and boundary condi tions,
solutions for these equations will be sought by using a proper numerical

scheme.
6.4 Parameter Definition

For ocalculating temperature, moisture distribution and the
deflection of the composite laminate, a full knowledge of the following

parameters is required:
1., geometry: dimensions of the specimens,

2. boundary conditions: ambient temperature and the level
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of the relative humidity,

3. initial conditions: temperature distribution and moisture
concentration inside the material,

4. material properties: density p, elastic moduli cijkl'
thermal-expansion coefficients Bij' diffusion-expansion
coefficients TR heat capacity c, thermal conductivity
Kij- bhygrothermal coefficient pu, hygroscopic capacity b,
moisture diffusivity D, maximum moisture content I-, and
a relationship between the maximum moisture content and

the ambient conditions,

The density, thermal-expansion coefficient, diffusion-expansion and
specific heat are generally known, However, the determination of the

other coefficients are more difficult and will now be discussed.

6.4.1 Elastic Moduli cijkl

Data are available showing the effects of moisture and temperature
on the buckling, tonsir;, and compressive moduli of various composite
laminate [ 153,218 ]. The available data on these moduli were compiled
by Shen and Springer [ 218 ] in a manner similar to the tension test
data. On the basis of available information, the following major

observations can be made.
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6.4.1.1 Temperature Effects

For O-degree and n/4 laminates, the temperature (in the range of
200 to 450K) has a negligible effect on the elastic moduli regardless of
the moisture content of the material. For 90-degree laminates, an
increase in temperature causes a decrease in the elastic moduli in the
direction perpendicular to fiber. For example an increase in
temperature from 300 to 450 K, the elastic modulus of AS-5/3501 [ 221]
may decrease by as much as 50 to 90 percent. The decrease in the

modulus depends upon both the temperature and moisture content.

6.4.1.2 Moisture Effects

For O-degree and n/4 laminates, there appears to be very little
change in the elastic moduli over the entire spectrum of moisture
content from dry to fully saturated. This conclusion appears to be
valid regardless of temperature in the range 200 to 450 K. For
90-degree laminates, the elastic moduli decrease considerably with
increase in the moisture content. The decrease in the value of the
modulus of Modmor 1I/Narmco 5206 [222) may be as high as S50 to 90

percent in the temperature range of 200 to 400°k,
6.4.2 Thermal Conductivity ‘ij
The thermal conductivity of a material is a measure of the speed at

which heat is conducted through a material. This material property may

also depend on the moisture concentration and on the stress level as
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well as on temperature [ 93,152 ). However, the variations of lij with
both moisture concentration and with stress are not known in detail for
most composite material [ 146,217 ]. Mathematical models are based upon
the assumption that xij is a function of temperature only [ 152 ]. The
thermal conduotivity, xij' can also be approximated from the known fiber
and matrix conductivities [ 152 ]. For many composite materials, the
thermal conductivity xij is 10° to 10° times larger than mass

diffusivity Dij [ 93,143 ). Thus, the temperature equilibrates much

faster than the moisture concentration.

6.4.3 Mass Diffusivity Dij

The mass diffusivity characterizes the speed at which moisture is
transported through the material. The value of D depends on the
material, on the fluid surrounding the material, om the moisture
concentration inside the material, on the stress 1level imside the
material, and on the temperature. In calculating the moisture content
inside the material D is assumed to depend only on temperature. In many
practical problems this is an adequate approximation. The diffusivity
of a composite material may be determined directly from tests
[ 93,143 ), or may be approximated from the known fiber and matrix

properties [ 143 ),

6.4 .4 Hygroscopic Capacity b

The hygroscopic capacity, b, is a measure of absorbed energy

carried by the moisture moving through the material and is analogous to
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the heat capacity. It can be expressed mathematically by [ 118 )

The bhygroscopic capacity, b, can be represented explicitly by (b=0b)
[ 42,43 ] where Q (N-m/N) is the specific chemical potential, and b is
gonerally a material property which may be interpreted as mass of
moisture being absorbed per unit volume of the material. The material
property b is generally known by experimental testing and the definition
of specific chemical potential will be described in the following

subsection,
6.4.5 Specific Chemical Potential Q0
Several assumptions are made in order to find the specific chemical
potential in this study:
1. The transferred moisture is considered as saturated vapor and
this is further assumed to be an ideal gas.
2. Since the moisture diffusion velocity is assumed to be slow and
no elevation in the diffusion process, i.e. no potential
energy resulted from gravitational force, the kimetic and

potential energies associated with this phenomena are

considered to be negligible.
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The derivation of the specific chemical potential 0 is described
briefly as following: The specific chemical potential of a pure
substance is equal to its specific Gibbs function g at the same state
[ 223 ], therefore, the specific Gibbs function 8T,p of a substance at

temperature T and pressure P is, by definition,

8T,p = h-r.p - TST.p (6.4.5.1)

The enthalpy of an ideal gas at temperature T and pressure P can be

written as

by p = bt (6.4.5.2)

where h% roepresents both the enthalpy of formation and the enthalpy
difference between 298°K and the specific temperature T. The standard
state of an ideal gas is defined at 1 atmosphere and 25°C, and that is

symbolized by the superscript °,

The absolute entropy, s, at temperature T and pressure P are

assumed to be related by

$ST,p = st - R 1nP (6.4.5.3)

The specific chemical potential of an ideal gas may be obtained by
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combining equations (6.4.5.1), (6.4.5.2) and (6.4.5.3), and is expressed

by

8 =gy p=gr+ RT 1nP (6.4.5.4)

where the unit of the quantity P is in atmospheres, R is the universal

gas constant and g° is defined by

8° = b} - TsT (6.4.5.5)

6.4.6 Maximum Moisture Content Hn

The maximum moisture content N, (%) is the moisture level within
the material. This can be attained asymptotically under certain
conditions, after a prolonged period of exposure to a moist ambient
environment at constant temperature and at constant relative humidity.
For materials exposed to humid air the maximum moisture content appears
to be insensitive to temperature and depends on the relative humidity @
in the following manner: N, = .¢f [ 93,143 ). The terms a and f are
constants which depend on material and are dotor-inod‘oxpotincntnlly.

Experimental evidence suggests that the value of f is near unity [ 93 ].

The above relationship greatly facilitates the calculations,
however, it is only an approximation, in fact, M, generally varies with
temperature. Twenty percent variations in q. with temperature are

common for most graphite/epoxy composite laminate in the temperature
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range of 300-400°K [ 93 ]. An advanced theory should be (has not yet
been) developed in order to accurately predict the maximum moisture
content after the chemical and mechanical properties of composite

materials being clearly understood experimentally [ 145 ].

In many situations changes in the value of In have been observed
after tho maximum, asymptotic value of N_ has been reached [ 93 ). Both
increases and decreases in M have been observed [ 93,143 ). The
increase in M is hypothesized as being due to cracks developing in the
material and also, possibly, to non-Fickian diffusion. A decrease in %
may be caused by loss of material due to leaching or cracking [ 215 ]}.
The above relationship I. = .Qf is invalid when the composite structure
is near failure as manifested by the formation of microcracking or

delamination.

6.5 Illustrative Example

Having established a theory describing a high-speed flexible
linkage mechanism constructed from polymeric fibrous composite laminates
operating in an environment characterized by variations in both
temperature and humidity, a sample problem will be presented in order to

illustrate the applicability of this theory.

All of the experimental publications reviewd in section 6.1 of this
chapter were focused upon the static analysis of hygrothermal effects on
graphite/epoxy composite materials and/or neat epoxy resin, only one

paper was devoted to a dynamic analysis [ 211 ). The analysis of a



193
composite material wunder static 1loading groatly simplifies the
investigation since under the static 1loads the strain rate is zero.
Consequently, the coupling effects between the moisture distribution and
strain rate in equation (6.2.27) and also between the temperature
distribution and the strain rate in the same equation are zero.
Furthermore, the eoxternal 1loading imposed upon the composite material
are assumed to be limited in order to prevent the formation of
micro-cracks which are resulted from the excessive stress levels. And
the micro-cracks in the composite material may result in non-Fickian

diffusion due to the changes of saturation level.

In 1978, Whitney and Browning [ 217 ] experimentally studied the
diffusion of AS/3501-5 graphite/epoxy and 3501-5 (Hercules Inc.) neat
resin coating., Unidirectional and bidirectional, [0/90]', specimens

were also included in this investigation.

Seven neat epoxy resin specimens used in these experiments were
thin plates of dimension 508mm square with a thickness of 3.,18mm, All
of the composite materials data reported were obtained by testing
sixteen 4-ply specimens which machined from large autoclave-cured panels
fabricated from the Hercules AS/3501-5 graphite/epoxy prepreg system,
These composite specimens wereo 508mm square and 0.64mm thick. In order
to provide an initially dry condition, all absorption specimens were
preconditioned in a vacuum oven at 93°C and under full vacuum until a
near equilibrium weight was obtained. Dry specimens were placed in an
environmental chamber under constant temperature and humidity

conditions., Specimens were removed from the chambers at various time
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intervals for weight measurement (see¢ the scatter symbols on Figures
6.2, 6.3 and 6.4 from page 195 to 197). Absorption experiments on neat
resin specimens were run at 75 percent relative humidity with a
temperature of 82°C, and at 95 percent relative humidity with a
temperature of 71°C., Unidirectional composite data were also obtained
at 95 percent relative humidity with two different temperature
conditions of 49°C and 71°C, while the test conditions for bidirectional
composite laminates were at a relative humidity of 95 percent with a
temperature of 49°C, and at 95 percent relative humidity and with a

temperature of 71°C,

In accordance to the experimental work performed by Whitney and
Browning [ 217 ] as mentioned above, the problem definitions for the
analytical analyses are to determine the moisture content of three kinds
of materials, i.e. neat epoxy resin coatings, unidirectional composites
and bidirectional composite laminates. The geometry of the specimens

and the boundary conditions of each case are described as following:

1. An initially dry neat resin plate with dimension of
508mm x 508mm x 3.18mm is placed in an environmental chamber under two
constant temperature and humidity conditions: the first is at 75
percent relative humidity with a temperature of 82°C, the otherAig at9s

percent relative humidity with a temperature of 71°C.

II. An initially dry unidirectional composites with dimension of
508mm x 508mm x 0.64mm is placed in an envirommental chamber which has a

constant relative humidity of 95 percent and two different temperature
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conditions of 49 °C and 71°C.

III. An initially dry bidirectional ocomposite laminates [O/90]‘
with the dimension of S08mm x 508mm x 0.64mm is placed in an
environmental chamber with two test conditions; one is at a relative
bumidity of 95 percent with temperature of 49 °C, the other is at the

same relative humidity with a temperature of 71°C,
6.6 Results and Discussion

Since several assumptions have been made in the “illustrative
example” section (section 6.5) in order to simplify these examples to be
mathematically tractable for this priliminary study, the coupling terms
between the temperature distribution and the strain rate, and between
the moisture concentration and the strain rate in equation (6.3.27) are
assumed to be zero. Therefore, by removing the terms associated with
the strain rate, the three governing equations (i.e. equations of mass

balance, momentum balance and energy balance) may be written as follows:

(1) the equation of mass balance

(ceb) (4] + [(c=m)(A) + [x™®)([N)

= ~[x™*]0y) - [gpmveiTara@™ as, (6.6.1)
( 2 ) the equation of momentum balance

(RSB](T) + (KS®)(M) + [R*51(U) = [, IN®ITEx)av
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+ [soIN1TiRIas,

- [y1/ G4e) D172 161 (B#1Taa [q (M) 1 /3 xaV (6.6.2)
( 3 ) the equation of energy balance

(chb)(d) + cheihy + (xbRI(T) = -[NMITIE®)) asy (6.6.3)

The above three equations are further simplified by assuming that
there is no natural boundary comditions in each equation and the body
force may be neglected from equation (6.6.2), therefore, specimens are
only subjected to prescribed essential boundary conditions. In
addition, the last term on the right-hand side of equation (6.6.2) may
also be neglected because that the deformation resulted from the
mass-flux gradient is insignificant [ 42,43 ). By assuming the
deformation induced by the temperature and moisture is decoupled,

therefore, the equation of momentum balance (6.6.2) may be written as

[K33) (U] = -[KSB][T] - [K3®]([N]. (6.6.4)

The equations of mass balance (6.6.1) and the energy balance (6.6.3)
coupled by the cross-effect between temperature and moisture may be

expressed by

(cmb) (%] + [c=)(R) + [K™®)(M] = -[K®S][y) (6.6.5)
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and

(chh) (%) + (ch=)(A) + (xBB)[T] =0 (6.6.6)

A solution for these equations will be sonjht using the
Crank-Nicolson method [ 134 }J of direct integration which wuse the
following statements to update the temperature and moisture distribution

in the specimens

[T]t+At = [T]t + [9['}1““ + (I-G)Ii‘lt]At (6.6.7)

and

[M]t+At = [M]t + {eli]t"'At + (I'O)Ii]t]At (6.6-8)

where the Crank-Nicolson value 0=0.,5 for stability of solution. Knowing
the initial conditions, equations (6.6.7) and (6.6.8) may be rearranged,
and subjected into equations (6.6.5) and (6.6.6) prior to solving for

temperature and moisture distribution in time t+At,

After several manipulations, the final form of equations

(6.6.5) and (6.6.6) may be expressed by

[C-h][T]t"'At + [A][u]t+At = [c.h] [T]t
+ [BIN], - [Plat (6.6.9)

where
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[A) = [C®®]+at0[K™D) (6.6.10)

[B] = [C®®]-At(1-8) [KD®) (6.6.11)

[P) = OIK™*])[y)  pc* (1-0) [K®®)[¥], (6.6.12)
and

(K)[T)ype + [CPRIIN] ypy = (BDIT), + [CR®IIM],  (6.6.13)
where

[X) = [chb)+Ato[KbD) (6.6.14)

[B) = [cBh)-A¢(1-0) [KbD) (6.6.15)

With all direct integration methods, solution instability must be
considered carefully, this problem occurs in earlier time-steps are
transmitted with amplification into subsequent steps and it was avoided
here Dby choosing 6=0.5. Under these conditions the system is
unconditional stable. Finally, a numerical value must be assigned to
the step-size At. Since the thermal conductivity is much larger than
the mass diffusion coefficient, the determination of the integration
step-size At must base on the thermal conductivity in order to obtain a
stable solution. A stability analysis [ 134 ] demostrates that the
numerical scheme (6.69) and (6.6.13) are stable without oscillations if

the minimum eigenvalue A of the equation



202

det([B]-A[X]) = 0 (6.6.16)

is greater than O and less than 1,

Figure 6.2 shows a comparison between the experimental results and
the analytical predictions of the Hercules 3501-5 neat resin exposed to
environments defined by a relative humidity of 95 percent with a
temperature of 71°C and a relative humidity of 75 percent with a
temperature of 82°C. Since the neat resin may be assumed to be an
isotropic material, the components of mass diffusivity temsor Dij in any
direction are considered to be identical. Good correlations between the
experimental data in reference [ 217 ] and the computational results by
classical Fick’s law analyses are obtained. The hygrothermal effects,
i.e. temperature changes caused by the rate of change of moisture
concentration and moisture concentration changes resulted from the rate
of change of temperature distribution, is not significant because the
initial temperature distribution of the specimens is at 93°C which is

close to the test temperature of the envirommental chamber.

The unidirectional graphite/epoxy composites, AS/3501-5, were also
exposed to two test conditions: one at relative humidity of 95 percent
and temperature of 49 °C, the other at relative humidity of 95 percent
and temperature of 71°C, However the test eonviromments for
bidirectional graphite/epoxy composites, (0/90),, were 95 percent
relative humidity with a temperature of 49°C and 95 percent relative
humidity with a temperature of 71°C, The comparisons between

experimental results and analytical results obtained from classical



203
Fick'’s law analyses for unidirectional and bidirectional composite

laminates are presented in Figure 6.3 and Figure 6.4, respectively.

Upon comparing the results presented in Figure 6.3 with Figure 6.4,
it is evident that there is superior theoretical/experimental
correlation for the unidirectional specimens to the bidirectional
specimens, It is evident, therefore, that the mathematical model is
more appropriate for analyzing umidirectional material. Figure 6.4
indicates a rather significant descrepency between the theoretical
predictions by a model incorporating the classical Fick’s law and the
experimental results of the bidirectional composite laminates. The test
data approach equilibrium at a slower rate than that predicted by Fick's

law,

Whitney and Browning postulated [ 217 ] that large in-plane tensile
residual stresses weore created which were a consegquence of the
envirommental change increasing the initial through-the-thickness
diffusion coefficient; the swelling relieves the residual stresses and
in addition, the diffusivity decreases. The diffusion coefficient then
approaches the diffusivity of a unidirectional composite as the residual
stresses are completely relieved. If swelling continues, the residual
stress becomes compressive in nature and a further decrease in the
diffusivity may be anticipated, asymptotically approaching a lower
limit, These statements are all hypotheses and a direct proof of a
stress-dependent diffusion process requires a measurement of the
diffusion coefficient nunder various constant-stress conditions.

Al ternative approach includes modifying Fick’'s mass diffusion 1law by
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incorporating a stress-dependent term in the diffusion equation. This
is presented in equation (6.19), and is rewritten here for convenience

The units of Gijkl- in equation (6.6.17) are same as the diffusion

coefficient Dij' therefore, it may be interpreted as the coupling

effects between mass flux and elastic deformation gradient.

The value of G must be determinmed experimentally, however,
analytical analyses can provide a lower-bound and an upper-bound on its
numerical values. Thus upon examining Figure 6.5 on page 205, the lower
bound of coefficient G is 9 .013E-10 because if the value is lower than
this, the curve of moisture content obtained from modified Fick’'s law
will have no difference from the curve of the classical Fick's law,
while the upper-bound being set as 1.27E-8 since if the value exceeds
this, the moisture content of this material will be negative whioch is

not acceptable from a physical standpoint

Figure 6.6 on page 206 shows a better agreement between the
experimental data and the analytical result (solid line) predicted using
a model with the modified Fick's law than the analytical result obtained
using classical Fick's law, However, these analytical results need to

pursue the accurate G value experimentally.
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Both equation (5.5.19) and equation (6.6.17) describe the
relationship between mass flux and the driving forces. The mass flux in
equation (5.5.19) is driven by strain rate rather than driven by the
strain gradient as in equation (6.6.17). Equation (5.5.19) is derived
from the point of vi;' of irreversible thermodynamics, therefore, the
strain rate plays a role as a thermodynamic force and features in an
irreversible process. However, equation (6.6.17) indicates that the
mass flux is driven by the strain gradieat. This bhypothesis is
motivated specifically by the experimental evidence of bidirectional

composite materials [ 217 ].

In order to relate equation (6.6.17) to Whitney and Browning’'s
postulation on their experimental investigation, the coefficient G may
be divided into two variables such as G=AE where E is the oelastic
modulus and A may be considered to be the moisture diffusion velocity
within the continuum and is material-dependent. Therefore, the second
term on the right-hand side of (6.6.17) may be interpreted as that the
mass flux is generated by the strain gradient along the
through-the-thickness direction. This assumption is referred to the gas
or liquid diffusion wunder pressure difference [ 145 ]. Again the

phenomenological coefficients have to be determined experimentally.



CHAPTER 7

DISCUSSION, OONCLUSIONS

Theoretical and experimental studies have been undertakenm in order
to investigate the dynamic response of the high-speed flexible linkages
constructed from both cormmercial metals and graphite-epoxy composite
laminates. Variational principles form the kernel of the theoretical
studies and are employed to derive the equations of motion which govern
the dynamic behavior of the mechanism systems. In addition, the
variational oprinciples provide the bases for finite element
formulations. This computational approach has been recognized as a very
effective numerical tool for solving these compl ex mathematical

problems,

In chapter 2, correlations between computer simulations and
experimental results are reasonably good im the sense of phase and
amplitude content. These have offered some degree of confidence in the
mathematical models, variational approaches, finite element
formulations, the solution techniques and also the assumptions made
herein, A comparative study on the selection of Timoshenko and
Euler-Bernoulli beam elements for modeling flexible linkages, and also
the number of eclements needed to effectively model the systems, was
performed by Gamache and Thompson [ 57 ). In addition, a study of the

element interpolation function and the number of elements required was

208
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investigated by several researchers [ 46,57,102 ] in order to obtain an

accurate and efficient solution technique.

By observing the degree of agreement between experimental and .
theoretical results in Figures (4.6)-(4.10), it is apparent that the
mathematical models developed in this research, for analyzing the
dynamic response of linkages fabricated from commercial metals, is also
capable of predicting the response of linkages made from composite
materials. In general, good phase agreement between the theoretical and
experimental results for four-bar linkage mechanisms was obtained. This
was anticipated since the consistent mass matrix formulation utilized in
this research does yield a stiffness idealized system [ 182 ] comparing
to the actual system, Furthermore, the damping coefficient of the
four~-bar linkage mechanism was experimentally determined according to
the procedures documented in reference [ 154 ] and this mechanism was
also carefully adjusted in order to avoid bearing clearances and
out-of-plane motion. However, the phase descrepencies occured in
Figures 4.5 and 4.6 for slider-crank mechanism may be attributed to the

viscous behavior and the dynamic friction of the slider assembly.

There are amplitude discrepencies in Figures 49 and 4.10 between
the experimental and computational results. It is postulated that these
discrepencies may be attributed to the imperfect modeling of the
constitutive equation of the material. This is somewhat mnonlinear and
in addition the behavior of this polymeric material is dependent upon
the environmental conditions. Other possibilities responsible for the

ampl itude discrepencies include the fluctuation of crank speed, which is
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assumed to be constant in the computer simulation.

The industrial applications of the previously derived theories may
be mainly dependent upon the fields of application. For example, safety
and reliability are the most important factors im the aerospace
industry, therefore, mechanical components of the aircraft may be
designed with larger safety factors in order to prevent amy possible
failure. However, in most iadustrial applications, the cost of a
product plays a crucial role in order to make it more competitive in the
marketplace. Therefore, qualitative figures for justifying the degres
of accuracy are not available and this parameter from the design
specification essentially depends upon the strategies for marketing the
product. The design engineers should no doubt comply with the guidances

of the strategies.

Sanders and Tesar [ 137 ] suggested that for stiff-designed
industrial mechanism systems the deformations are largely due to the
quasi-static application of cyclically varing inertial forces acting on
the 1links. Therefore, the correlation of the quasi-static response is
certainly important because it has a dominant influence in order to
maintain a specific 1level of precision for its functional operation.
The amplitude of vibrational respomse with higher frequency superimposed
upon the quasi-static response are normally small compared with the
amplitude of the gquasi-static response. Therefore, from the above
statement a 10 percent amplitude discrepency in the sense of relative
agreement of dynamic response between computer simulation and

experimental results should be acceptable in general industrial
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applications.

Theoretical investigations have been developed in chapters 5 and 6
in order to predict the temperature and the moisture concentration
distribution inside the link materials, and the dynamic response of the
linkage mechanism subjected to both mechanical and bhygrothermal

loadings.

In chapter S5, irreversible thermodynamics provides a general
framework for deriving the governing equations, There are two
advantages for this approach. First, this approach has found a great
variety of applications in modeling the '“real world” phenomena
[ ©,66 ]. For example, in addition to the physical phenomena described
in chapter S5, this approach may also be able to model chemical reactions
occured within the system, and the aspect when an electromagnetic field
acts upon & material system. Secondly, the solutions of the
differential equations, such as equations (5.5.29), (5.5.30) and
(5.5.31), may be easily sought by using the method of weighted residuals
[ 55,56 ). However, the physical insight, possessed omnly in the
variational integrals, is mnot able to obtained explicitly by this
method. The disadvantage of this approach is that the domain of
validity of this theory is essentially the ome for which 1local
oquilibrium is attained and the phenomenological equations are 1linearly
defined. Therefore, the total entropy production, which leads to the
generation of phenomenological equations, may be formed by summing the

entropy production of each irreversible process.
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There are two advantages documented herein for the mizxed
variational approach. The first is that it may be applicable to the
condition of geometrical nonlinearity and this situvation occurs
frequently in machinery elastodynamics. Secondly, more insight may be
doduced from utilizing this approach via a finite element formulation.
The mixed variational approach has incorporated auxiliary conditions
such as the strain-displacement equation, phenomenological equations and
essential boundary conditions into the Hamilton’'s principle. So the
functional depends upon temperature, moisture concentration,
displacement, specific entropy demsity, flow potential density , strain
and stress. As the basis of an elementary approximation, each field can
be independently selected to achieve the discrete model, mamely, the
approximation function for the stresses may be different from that of

the strains.

The disadvantage of this mixed variational principle is the rather
complex mathematics, and it may create some degree of difficulty for the
industrial utilization., In addition, from mathematical point of view
this variatiomal principle is somewhat imperfect because of the mon
self-adjointness existing in the heat conduction and mass diffusion
equations [ 56,62 ]. Therefore, future work may be based on the
notation of Stieltjes convolution integral adopted im the variational
principle so as to ensure the existence of the self-adjointness

property.

The selection of the appropriate approach to be adopted is the key

for practising design engineers. The evaluatory criteria are governed
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by the type of the problem involved and the degree of accuracy required
for the particular design purpose. A careful evaluation of the above
considerations toward the problem should guide wus im search of an

appropriate approach,

The scientific method requires the interplay of theory and
experiment in all research endeavors and this fundamental mnotion is
particularly important in the study of composite materials because the
behavior of the constituents is so complex. As an extension of the
current work, a systematically experimental program for validating the
theory with experimental evidence has been established. It provides a
sound basis for testing hypotheses and can also be instrumental in

guiding and directing further experimental work.

In the first phase of the experimental program, test coupons should
be exposed to a variety of bygroscopic 1loadings while under the
conditions of constant temperature and zero mechanical loading and vice
verse in order to determine the basic properties of the composites, such
as the coefficients of thermal expansion, the diffusivities, thermal
conductivities, the coefficients of moisture expansion, and the
coefficients of bygrothermal «cross-effects. The techmiques to be
adopted for performing these tests are well documented in the

literature. See, for example, referemce [ 224 ).

The second phase of the experimental program should initially
involve subjecting composite plate and beam specimens to static

mechanical loads in an air enviromment with static values of temperature



214
and bumidity. A variety of response curves should be generated under
conditions of variable humidity at constant temperature and vice versa,
while maintaining a constant static mechanical loading. These specimens
should be housed in an envirommental chamber and several fixtures should
be employed to impose the mechanical loading using either dead-weights
or scroew and ' locknut arrangements incorporating 1load-cells at the
fixture—-specimen interface. The flexural and uniaxial structural
deformations should be monitored by strain gages mounted on the test
specimens, and a variety of response characteristics should be gemerated

using a combination of discrete temperature and humidity combimations.

The experimental results should then be compared with the
predictions of finite element based computer simulations which
incorporate the mathematical models from the theoretical development.
If the correlation between the theoretical and experimental results is
unsatisfactory, then the models would be modified, but if it is
favorable, the test specimens could then be exposed to dynamic
hygrothermal loading in conjunction with the same values of the discrete
static mechanical loading employed previously. Again the mathematical
models would be evaluated. The dynamic hygrothermal excitation could be
imposed on the specimens by the environmental chamber using a
microprocessor-based programmer/controller. These devices are marketed
by the iannf.ctnrot of these chambers, and they compute and generate
precision time related set point signals for the profile of the desired

hygrothermal enviromment.

The third phase of the program would have the same algorithm as the
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second phase with the exception of dynamical mechanical loading being
imposed on the composite specimens, This would be accomplished by
locating the specimens in dynamic test-fixtures that incorporate s
vibration exciter which can subject the specimen to a broad range of

dynamic loading characteristics. This vibration exciter would be
positioned inside the environmental chamber provided that the conditions
developed by the environment chamber are within the exciter
specification, When this is not possible, the exciter would then be
bolted to the outside of the chamber and a push-rod arrangement employed
to excite the specimens through the access port. The excitation of the
specimens would be monitored by accelerometers. The response would
again be monitored by strain gages. These dynamic tests would include
the excitation of double-cantilever arrangements to study the dependence

of material damping on temperature and moisture.

These results will provide an important data set for the finmal
phase of this research which concerns the study of linkage mechanisms
fabricated with composite laminstes. By incorporating strain-gaged
beam-shaped specimens into both four-bar linkages and also slider-crank
mechanisms, these specimens will be exposed to a wide variety of 1loads
at different speeds to effectively test the predictive capabilities of

the mathematical models developed in the theoretical imvestigation,

Finally, the contributions achieved in this work to the state of
the art may be summarized as follows:
1. An experimental study performed in chapter 3 <clearly proves the

effectiveness of the new design methodology proposed by Thompson et al
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[ 158,160,173,178 ]. This advocates that composite materials should be
employed to reduce the elastodynamic phenomena, such as link deflections
and dynamic stresses.

2. Theoretical investigations bhave been developed by utilizinmg the
concept of irreversible thermodynamics, and & mixed variational
principle. These provide the capacity for analyzing the physical
phenomena that govern the response of the linkage mechanisms which are
subjected to both mechanical and hygrothermal loadings.

3. An experimental program presented as the future work provides a
systematic process for exploring the material properties, the static
response of the material and, furthermore, the dynamic response of the
linkage mechanisms under varing temperature and humidity enviromnmental
conditions. This experimental work essentially supports the theoretical
development as being a useful check for comparing the mathematical model

with the experimental evidence.

This future work is an essential ingredient for developing a viable
design methodology based on the design and fabrication of machine
systems with composite materials. Such an approach could precipitate
the evolution of the next generation of machinery products, thereby
making a substantial contribution to the evolution of the

factory-of—-the-future,
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