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ABSTRACT
LAKE MODEL UNCERTAINTY ANALYSIS
- A LAKE ONTARIO CASE STUDY USING MONTE CARLO SIMULATION -
By
V. David Lee

A growing concern over the reliability of modeling and model pre-
dictions has highlighted the need for a measure of the value of the
information contained in the model result. Uncertainty analysis meets
this need by allowing quantification of model prediction uncertainty.
Monte Carlo simulation accomplishes this by incorporating all known
sources of error as stochastic inputs which reflect the natural vari-
ability and estimation uncertainty for each parameter.

A discussion of general modeling concepts, an introduction to
Monte Carlo simulation, and an overview of distribution selection
considerations serve as an introduction to the Lake Ontario case
study. A detailed development of the model expression and the simula-
tion structure is presented, and model sensitivities as well as
several planning scenarios are experimentally tested. Following a
discussion, conclusions and recommendations are made and analyzed in
terms of the meaningfulness of the results and the utility of the

model as a planning tool.
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INTRODUCTION

Concern for the environment follows a pendulum-like path; some-
times foremost in our thoughts, often superseded by seemingly more
immediate concerns. Since the time of the industrial revolution,
degradation of the environment has been a prominent side effect of the
rapid increases in technology and leisure time. The associated demands
placed on natural resource systems, combined with the rapid expansion
of technological expertise, has resulted in an acute awareness of our
ability to alter the environment. Not until most recently, however,
has this awareness begun to alter the way in which the world and its
resources are perceived. The past 20 years have highlighted the
dangers of pollution, and the hazards of exploiting the earth's re-
sources. Demands for effective action to protect the environment have
been voiced in increasing numbers. This change in collective con-
sciousness has been remarkably swift and far-reaching, and represents
perhaps the most important of the recent social, political, and econo-
mic changes which bears directly and critically on the future of our
planet.

Our planet is both fragile and finite. Decisions made today will
dictate the differences between a polluted, unproductive world, and a
world that can sustain future generations. However, making those de-
cisions is never the clear cut, straight forward procedure it could

be ideally. This multifaceted process must give a high priority to



assessing potential impacts of different resource use strategies. The
extent to which negative impacts are minimized in favor of positive
impacts, however, relies heavily on the judgment of the decision-
maker. Traditionally, this responsibility has been met with very
little quantitative information. While qualitative information is
essential to any resource utilization decision, decisions solely based
on this type of information are risky at best. The trend toward in-
creasing accountability and justification requirements imposed on
decision-makers has led toward a growing reliance on explicit quanti-
tative analysis of the essential cause and effect relationships. This
type of analysis requires considerable amounts of specific information;
information that is often not readily available. Major decisions re-
garding resource management are made daily as part of numerous planning
programs, and modeling has become a popular means for meeting the in-
creasing expectations which planners encounter in their continual
efforts to justify expenditures and fully achieve all expected results.
The major concern that has prompted the following work is the
potential use and, most importantly, misuse of models in the resource
planning context. As one of the most powerful planning tools available,
modeling needs to be critically evaluated to effect their greatest
positive impact. In particular, the emphasis of this investigation
is focused on the topic of uncertainty analysis as an aid to decision-
making. From a cost-effectiveness standpoint, incorporating uncer-
tainty analysis into the modeling process presents one of the few
excellent opportunities to gain a great deal of meaningful information

for very little additional cost.



In order to establish a common ground for all readers, as well as
a point of departure for the example application, some basic information
on models and modeling is included. This is followed by a discussion
of the Monte Carlo procedure with special attention given to distribu-
tion selection, the heart of Monte Carlo simulation. The remainder of
this analysis consists of the application of this stochastic process to
the Lake Ontario system, and a discussion of simulation development and

model outputs.
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CHAPTER 1
MODELS

Models are simplifications of reality. For this reason, any
particular system can be modeled in a multitude of ways because there
are many ways to simplify the same reality. Different model types can

be classified by their structural characteristics.

Model Types
Physical models are intended to closely resemble the subject in

appearance. Characteristically, scaling techniques are used to yield
products such as a globe or photograph. Analog models are character-
ized by the use of graphical or schematic representation. Often
transformed equivalents are employed for the development of typical
products such as block diagrams and flowcharts. Finally, there are
symbolic models which are characterized by the use of symbols,
mathematical and logical, to represent the system components and
interactions. Of these general types, only the symbolic has been
extensively applied in the resource management contest. Of course,
physical and analog models can be useful in specific instances.

The physical model is useful in studying the physical character-
istics of certain systems. This modeling process, however, is often
expensive, highly system specific, and thus quite limited in usefulness.

Analog models are often very useful for general planning. There is



however, no facility for describing other than qualitative relation-
ships. For these reasons, the mathematical model now bears the lion's
share of the modeling performed for resource planning and management,

and has revolutionized information systems.

Mathematical Models

This model type is actually a set of model types, as diverse in
make up as the set of all models as a whole. Basically, these models
can be classified as either empirical or theoretical. Empirical
models are developed from statistical analysis of the available data,
while the theoretical models attempt to describe the system components
and their interactions through the use of equations derived to match
the mechanistic operation of the system. In addition, mathematical
models may be specialized to perform optimization or simulation duties.
Optimization involves attempting to discover the best conditions, as
defined by an objective function and constraints for a given situation.
Simulation seeks only to create circumstances which emulate the system
processes. Three additional classifications must be taken into account
to characterize the entire spectrum of mathematical models. First, the
time dependency question must be addressed. Static models do not
allow for conditions in which the values of the variables change with
time. These models tend to be simpler, however, and require less compu-
tational effort than their dynamic counterparts, which are capable of
accounting for the effects of transient phenomena. Second, cross-
sectional and longitudinal dimensionality can vary according to need.
Real world resource systems are three dimensional in nature. However,

two dimensions, or often one, may be appropriate when the processes



desired can be adequately described. Temporal dimensionality is
dictated primarily by a model's time dependency; dynamic models being
capable of continuous longitudinal forecasting. Third, and last, to
be considered is the degree to which real world variability is built
into the model. Deterministic models are based on physical laws and
empirical formulas, and are frequently regarded as expected-mean-value
models. Stochastic (or probabilistic) models take into account the
randomness or variability inherent in system phenomena as well as

the errors associated with quantitatively characterizing the system.
Although more realistic in their representation of physical processes,

excessive data requirements often limit their opportunity for use.

Considerations Central to Model Use

Mathematical models can be used in a variety of ways. Whether or
not they should be employed in any given situation is a separate and
important question. A direct answer which applies to all situations
across the board does not exist. The decision to model must be made
on a case by case basis according to the specific requirements of
each case. The availability of an existing model which is suitable
or the need for developing a new model to meet specifications must be
considered. Time constraints, data availability, and data collection
requirements additionally all exert a strong influence on decisions to
model, and may differ substantially from case to case.

A basic understanding of the advantages and disadvantages of model
building provides a basis on which to make this decision. Chappelle

(1972) elaborates the major strengths of model building. He notes that:



1) the most successful predicting systems to date employ model
building, 2) since the model represents the designer's view of the
real world, all of the inherent simplifying assumptions are explicitly
recognized, 3) models force recognition of shortcomings at an early
stage, 4) once represented symbolically, the system can be related
more easily in the literature, and can be more easily manipulated,

5) mathematical models are often the least expensive means to accom-
plish prediction, and 6) modern theoretical statistics can be used as
a powerful tool in the analysis and manipulation of the model. Many
dangers also exist however. Inappropriate simplification, unnecessary
complexity, and model building for model building's sake all reduce
the probability that the model can be used to provide meaningful
results.

Foremost in the minds of model users is the ability of modeling
to give quantitative answers to complex planning problems through the
elucidation of fundamental cause-effect relationships. Depending
on the solution technique used, these quantitative answers can be
derived quickly and inexpensively. Computer assisted computation is

one example.

Model Costs

As mentioned above, however, computation is only a portion of the
time and cost necessary to complete a successful modeling exercise.
Model selection and development (or modification), verification, degree
of complexity and uncertainty are all important cost considerations.

In addition, the availability of all necessary data, in the appropriate



format to meet all these requirements must be taken into account.

A wide variety of models are currently available, and as new
models are developed, the probability of existence of a relevant model,
which needs little modification, increases. Despite the fact that
there are many models in existence and more being developed, this
does not necessarily represent a duplication of efforts (Reckhow et.
al., 1980b). Models are needed for a wide range of problem types,
addressing issues at different levels of complexity and precision.
Additionally, in very few instances, at this point in time, can a
model be expected to efficiently and effectively meet the need for
specific information without some modification, and therefore some
cost. A major consideration in the use of any model is the type,
amount and accuracy of the data needed to carry out experiments with
specified reliability. Data are needed for calibration and verifica-
tion of the model, as well as for experimental applications. Calibra-
tion and verification are distinctly different procedures. Calibration
is performed using one or more data sets for model inputs and outputs
to adjust and tune the model. Verification involves testing the
calibrated model using independent data. Preferably, conditions for
verification should differ from those used for calibration. Favorable
comparisons between model predictions and corresponding field data
serve as verification. Collection of field data, or assembly of
historical data, is a costly and time consuming procedure. Once
verification is accomplished, however, repeated experiments may be
carried out quickly and with a small additional cost. Therefore,

numerous alternative scenarios can be §va1uated quickly and at Tow



cost. The cost of experimental data, however, remains a major expense

in terms of time as well as money.

Complexity, Accuracy, and Uncertainty

The cost of information is most acutely felt in the consideration
of model complexity. The more complex and detailed a model is, the
more data it requires to describe the system and the state of the
system. The model developer must carefully evaluate the need for
complexity in relation to the cost of the data necessary for meaning-
ful applications. In addition to this data cost, computational costs
are directly related to model complexity, and thus increase model
operation costs. The introduction of additional complexity does not
necessarily increase the accuracy of the simulation. In fact
accuracy as well as precision may be adversely affected. Although an
increase in accuracy often implies an increase in complexity, the
reverse is not true, and a common fallacy is to mistake complexity for
accuracy. The accuracy and precision (variability) of modeling results
depend directly on these same attributes of the model, parameters,
variables, and input data. One of the common pitfalls in using mathe-
matical models is to attribute much greater weight to the model than
is warranted by the accuracy and precision of the results. Such
over-reliance on the simulation results may be counter productive
and lead to misinterpretation of the data. Consideration of accuracy
and precision, -then, is a very real and vitally important issue.

Model users are often placed in situations of great personal and

professional risk by models and model results. It is no surprise,
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therefore that concern over reliability has begun to be voiced. A
measure of the value of the information contained in the model result
is needed, and uncertainty analysis meets this need.

Quantification of uncertainty is relatively new to lake modeling
research. From early work by Cornell (1972) and Berthouex (1975),
many other studies have followed, which address uncertainty analysis
in lake phosphorus modeling (Reckhow, 1978b; Lehman, 1978; Lettenmaier
and Richey, 1979; Chapra and Reckhow, 1979; Reckhow, 1979b; Reckhow and
Chapra, 1979; and Simpson and Reckhow, 1979). More recently, compara-
tive applications of different uncertainty analysis techniques, such
as first-order, Extended Kalman Filter, and Monte Carlo simulation
have been presented (Scavia, 1980; Scavia et al., 1980).

Traditionally, the term uncertainty has been used to describe
variability in situations where too little information is available
to quantify that variability. Risk, on the other hand, is used to
characterize variability in situations where enough information
exists to quantify variability, often in the form of probabilities.

In the present context, some liberty is taken with these definitions.
Uncertainty will be estimated quantitatively to enable some qualitative
comparative risk reduction.

A model's inherent simplification of reality results from the in-
ability to census all information completely through time and space.
As a result, all model predictions reflect a certain degree of im-
precision or uncertainty. Through the use of procedures such as Monte
Carlo simulation, quantification of model prediction uncertainty is

possible. This in turn provides yet one more piece of information
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which can be used to weigh the value of model outputs. A final
consideration is the tradeoff between reliability and time. A
decision based on modeling which yields results with relatively broad
error bounds but that is ready in time to be used in appropriate
planning activities may be preferable to a decision based on a

more accurate yet complex model which is not available for planning

applications until a later time.

Summary Comments

Mathematical models are powerful tools. By following a few
simple guidelines, models can complement the qualitative information
used in decision making and thereby provide valuable input to directing
the planning process. The following guidelines represent a partial
listing of general statements meant to serve as reminders but not as
strict rules:

1. Critically define the problem and determine both

what questions are to be answered and what infor-
mation is needed.

2. Use the simplest method that can provide the

answers to the questions.

3. Fit the model to the problem, not the problem to

the model.

4. Weigh carefully increased time and cost involved

in increasing accuracy, and use the simplest
model that will yield the desired results.

5. Do not confuse complexity with accuracy.
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6. Explicitly note the underlying assumptions of

the model and avoid attributing more significance
to the results than is actually there.

A model may be thought of as really nothing more than an hypothesis
or set of hypotheses which are logically combined into an integrated
whole (Chappelle, 1972). The goodness of a model prediction depends
on how well these guidelines are used in formulating the appropriate
hypothesis and connecting elements. Most important of all, it must
be recognized that mathematical models, when used properly, can
expand the range of alternatives for consideration, and assist in
providing information in an organized form. Models are not the
panacea for resource information systems, however. When used within
their limitations, models are at best tools to assist in the difficult
task of evaluating alternatives. They are not a substitute for
experience and good judgment, rather they are a means for permitting

these qualities to be used more effectively.



CHAPTER II
MONTE CARLO SIMULATION

Monte Carlo simulation has broad application potential as a re-
search tool. Any system which can be characterized by parameters
that exhibit some degree of variability is a candidate for Monte Carlo
analysis. By allowing explicit treatment of parameter variability
and error, this technique is an ideal tool for combining estimates

of error from all sources in an examination of model prediction error.

The Monte Carlo Procedure

Monte Carlo simulation presumes construction of a mathematical
model, which describes the stochastic behavior of the variables in
the process under study. By characterizing each of these variables
as a probability density function (an explicit representation of the
variability and error) and not as a single value, all known components
of the uncertainty associated with the model prediction are internalized.
Repeatedly selecting a random value from the distribution representing
each term, and using each of these randomly selected values in the
model to calculate a predicted value of the dependent variable,
results in a distribution of dependent variable predictions which
reflects the combined uncertainties. This resulting dependent vari-
able distribution allows evaluation of the potential impacts on the

dependent variable as the result of perturbations to the system, just

13
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as a single value would. However, the frequency distribution also
quantifies the value of the prediction by indicating the degree of
prediction precision (reliability of the information), represented by
the distributional shape and spread. In addition, this information
can be used to evaluate alternative models by comparing the pre-

cision of the resulting distributions.

Distribution Selection

Before beginning this procedure, selection from among a myriad of
possible probability density functions for each parameter is necessary.
McGrath and Irving (1973) provide an excellent review of this subject.
It is vitally important to know how the particular process, which a
variable represents, relates to the entire model in order to select
an appropriate probability distribution for any given random
variable. Each of the following points must be carefully considered:

1. the underlying theory of each process or event

2. data representing the variability of the process

3. sensitivity of the process to probable values of

the variable

4. programming considerations

When the variable under consideration is just one of many which
affects the overall problem or system, the simulation is often not very
sensitive to the choice of the distribution. For example, in summing
a series of random variables, none of which dominate the sum, the
total will tend to have a normal distribution, irrespective of the

nature of the individual distributions. On the other hand, when only
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a few variables dominate the process, or the process is greatly in-
fluenced by rare occurances, the selection of probability distribu-
tions becomes critical to effective simulation.

A balance must be struck between theoretical justification and
empirical evidence in the selection of the appropriate form of prob-
ability distribution. Typically, some form of parametric distribution
can be justified. Available data can then be used to estimate its
parameters. If no empirical data are available, theory and intuition
must suffice for selection. Carrying out sensitivity analyses
using several different distributions is another means of selecting
the appropriate distribution in the absence of empirical data. If
abundant empirical data are available, the histogram or more elaborate
parametric models can be used. The final choice of a particular
distribution must also depend on the relative ease of implementation.
Computer storage requirements, length of computation, and programming
difficulty are also key considerations.

Generating a random variable from a simple parametric distribution
is a relatively simple procedure. Histograms, too, are fairly easily
incorporated into Monte Carlo simulations. For more complex distribu-
tions, however, simple procedures for generating random numbers are
not available, and other more lengthy computational algorithms must be
used. In these cases, a compromise must be made between the time and
cost of complex computation and simulation rigor. Consideration of
the simulation's sensitivity to individual probability distribution

assumptions should be foremost in this compromise.
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Bases for Distribution Selection

Underlying the distribution selection process are two concepts:
the extent to which the qualitative nature of the process is known,
and the amount of quantitative data that are available. It is possible
in some cases, for instance, to characterize a certain process as
normal based solely on a firm understanding of particular characteris-
tics and behavior. Of course, little or nothing may be known of the
process. In these cases, data must be relied on for supporting the
selection of one distribution over another. The amount of data, how-
ever, may range from extensive (readily characterizing the variable),
to none. Each case is unique in its particular combination of quali-
tative and quantitative information, and therefore should be judged

individually.

Qualitative Basis

Efforts to establish a qualitative basis for distribution selec-
tion are generally based on the following:

1. similarity to a known process

2. underlying theory

3. certain other qualitative aspects
A process may be similar enough to one whose behavior is well known
to justify use of the known characterization for the process under
study. McGrath and Irving (1973) add that even though the specific
situations may not be particularly similar, an assumption of similar
process may be reasonable. That is to say, that even though the

particular events seem to bear no resemblance, they may share a



17

behavioral similarity which permits the assumption that the two events
may be characterized by representatives from the same family of
distributions.

Many types of processes which are modeled stochastically have
been characterized by examining the underlying theory of the process.
The failure of electrical components have been widely assumed to
follow exponential or Weibull distributions (Weibull, 1951). The
deviation of shots from a bulls-eye is supported as having a Maxwell
distribution in three dimensions and a Rayleigh distribution to two
dimensions (Kendall and Stuart, 1958). The exponential distribution
reflects reliability and queueing phenomena, as well as characterizing
random arrival times (Goodman, 1979).

There are cases, however, for which little is known of the theory
of the process, and the process bears no discernable relation to any
process whose behavior can be described. There are certain other
qualitative aspects which may serve as clues for the identification
of an applicable distribution in these cases. This is particularly
true if something is known of the behavior of the process or if some
data is available. Although probably not sufficient for positive
identification, consideration of whether the variable is discrete or
continuous, symmetric, bounded, or can be otherwise characterized,

can be useful in making a reasonable selection of a distribution.

Quantitative Basis
The amount of data available is perhaps the most important con-

sideration in the selection of probability distributions. Very
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often, not having or not being able to collect the data necessary to
describe a particular variable is the primary constraint. The col-
lection process may be too lengthy or costly, or in some cases im-
possible. When sufficient data are available, however, an empirical
approach can be used. In essence, this involves using the data to
derive a characteristic distribution which represents the variable's
behavior. When insufficient data are available, and acquisition is
difficult or impossible, justification of the additional resources
expended in further data gathering may also be difficult. This is
especially true if a reasonable distribution can be selected using
the limited data. However, if a workable distribution cannot be
identified, additional data may be essential for selecting a valid
distribution. This is of particularly great concern if the results

of the simulation are highly sensitive to that variable.

Quantitative Techniques

The basis for selecting a specific stochastic model, then, de-
pends on the amount of qualitative and quantitative information avail-
able. Of course, this information may vary from nothing to over-
abundance. In this latter case, almost certain characterization of
the process is possible based on sound theory and empirical observation.
Development of the underlying theory traditionally involves chains of
inductive and deductive reasoning. Although generation of these
logical pathways often involves substantial quantitative information,
the secondary use of this information is primarily qualitative.

Developing empirical evidence, on the other hand, may require
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a number of quantitative methods. Among these, sensitivity analysis,
graphical analysis, parameter estimation, and goodness-of-fit testing

are most common.

Sensitivity Analysis

Sensitivity analysis is performed to determine the extent to
which one particular variable or assumption impacts the outcome of
the analysis. This technique can be useful in determining if the
behavior of the random component must be accurately described,
especially when very 1little characterizing information is available.
By varying the values or assumptions of the variables in question,
significant differences may be revealed using standard statistical
tests. This should never involve lengthy or tedious labor. Most of
the variables' behavior must be characterized in the first place,
if the simulation is to be relied on. If many of the variables are

not accurately described, the simulation lacks validity.

Graphical Analysis

Frequency histograms are one means for identifying appropriate
distribution models under the proper circumstances. Foremost, the
modeler may benefit from the relative simplicity of histograms. They
plot the frequency with which each value or class of values occurs
in the sample data. In addition to being used directly in the simula-
tion as the stochastic model of a particular process, these frequency
plots provide a visual model of the distribution shape and thus can

be useful in selecting an appropriate distribution. For many
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applications, the use of a histogram is acceptable if abundant data
are incorporated. Care must be exercised, however, in removing ob-
vious errors while retaining all elements of the data set which
reflect the existence of low probability events. This graphical tech-
nique is most applicable in cases of limited theoretical information
and at least some quantitative support. Constructed using all the
data collected for a given variable, the histogram presents only the
empirical information available. No assumptions of probable behavior
are made. Also, by using all the data, errors in the observation set
are perpetuated, and may contribute to the inaccuracy of the simula-
tion results. Of special significance is the case of very limited
data. Under this circumstance, accuracy is especially heavily in-
fluenced by sampling irregularities and from a lack of Tow prob-
ability events being represented. When this is the case, other
qualitative considerations (ranging from underlying theory to
intuition) may be used to develop better stochastic representations

of the variable.

Parameter Estimation

The concept of parameter estimation for the development of a
parametric distribution is another common approach to variable char-
acterization. A parametric distribution is defined as either a
functional or analytical representation of a probability distribution

which depends on one or more parameters (Hastings and Peacock, 1975).
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Several conveniences and advantages support the use of a parametric
distribution function rather than an histogram, despite the additional
effort required for parameter estimation (McGrath and Irving, 1973).
Among other advantages, use of a parametric distribution:
1. allows reasonable models to be developed in cases
of no data or very limited data,
2. allows incorporation of additional information
inherent in the shape of the distribution (e.g.,
continuity, bounds, and symmetry) if there is
theoretical justification,
3. allows meaningful extrapolation into the tail(s)
of the distribution, and into other regions where
no data are available,
4. provides a reproducible means of representing the
data since manual fits to the same data will vary,
and
5. provides important summary information about the
variable in the form of estimated parameters of
the fitted distribution.
In addition, if the random variable may be characterized by a "simple"

parametric distribution, random number generation is facilitated.

Simple Parametric Distributions
Simple parametric distributions are conceived as being those
which are commonly encountered, relatively easy to recognize, and

have some theoretical'basis for their functional form and application.
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Also, somewhat arbitrarily, only those which are characterized by

one or two parameters are considered simple, In general, these
distributions may often be derived from theoretical assumptions or
empirically-based graphical evidence, and are justified for selection
by either knowledge of the underlying theory or by preliminary graphi-
cal information.

Perhaps the most used and useful of the simple probability func-
tions is the normal distribution. Based on the central limit theorem,
this functfon of course assumes that, if none of the independent
elements of a sum dominates, the variable representing the sum will

tend toward normality.

Complex Parametric Distributions

In contrast to the simple parametric distributions, the complex
distribution families lack well-defined physical interpretations and
are difficult to express in simple functional form. Rather, they
are abstractions which provide greater flexibility than the simple
distributions, and better allow projection of events which would
appear in the distribution tails. The Weibull, Johnson, and Pearson
distribution families commonly represent the complex distributions.
Functionally complex, all these distributions require three to five
parameters for specific characterization. They are especially
applicable when a simple distribution cannot be justified, and when
the results depend on rare events, for which insufficient data are
available to accurately define the tail regions. These families are

Flexible enough to include a number of shapes. This flexibility
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allows a reasonable fit to any set of observations. Most simple
parametric distributions are in fact special cases of these complex

parametric distributions families.

Goodness-of-Fit Testing

Following the preliminary distribution selection process,
goodness-of-fit testing should be conducted to substantiate the
choice. It is especially important to validate these choices if it
is determined that the Monte Carlo result will be sensitive to the
distribution selection. Sokal and Roh1f (1969) present an excellent,
detailed review of goodness-of-fit testing. The Chi-Square test and
the Kolmogorov-Smirnov test are most popular due to their wide range
of application. These tests evaluate whether or not a group of data
supports the assumption that the hypothesized random variable has come
from the assumed probability distribution. The underlying assumptions
here are particularly important. Since the statistical inferences
based on these tests rely on asymptotic properties, substantial data
are required to obtain valid interpretations. The more data there are,
the better the chances are of rejecting an inadequate distribution.
Perhaps more importantly, the converse is also true; the less data
there are, the better the chances are of failing to reject an inade-
Quate distribution. In general, the Kolmogorov-Smirnov test is more
Sensitive than the Chi-Square test, and does not require arbitrary
grouping. In addition to these widely applicable tests, several distri-
bution specific tests are available such as the W-test for a normal

distribution and the WE-test for an exponential distribution.



CHAPTER III
THE SIMULATION MODEL APPLICATION

The Model Expression

The model expression used in this simulation is an empirical,
black box, lake phosphorus model. Such models are especially appli-
cable in situations which allow a high degree of aggregation, both
temporal and spatial (Reckhow, 1979a). The black box label results
from the basic assumption of all these models that the system (the
lake in this instance) may be treated as a black box. Simulation of
internal lake mechanics is not attempted. Only processes which occur
at the system boundaries are modeled; material input and output, and
interface interaction.

Being less complex mathematically than mechanistic simulations,
empirical black box models are appealing to planners because they are
often more compatible with the level of mathematical training and the
availability of financial resources. Additionally, the relatively
straightforward application of uncertainty analysis techniques to these
models has encouraged analysis of prediction precision by model users
who would otherwise work with deterministic methods only (Reckhow et
al., 1980b).

Reckhow (1979a) reviews those basic model forms which empirically
address lake phosphorus concentration. The first is a steady state

form derived from the definition of Rp, the fraction of influent

24
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phosphorus retained in the lake. This term is defined as follows:

M- QP
Rp = N (3-])

where, on an annual basis,

M = annual mass rate of phosphorus influx to the lake
(10%kg/yr)
Q = annual volume rate of water outflow from lake
(10%m3/yr)
P0 = average outflow phosphorus concentration (mg/1).
With M = LA and Q/A = z/t, equation 3-1 becomes:
v, - Lol p
- %1" Po
Lt
z

where: L = annual areal phosphorus loading (g/mz-yr)

z = lake mean depth (m.)
t = hydraulic detention time (yr)
A = lake surface (bottom) area (km2)
%1 = average influent phosphorus concentration
(mg/1)
P = annual in-lake phosphorus concentration (mg/1)
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If it is assumed that in-lake and lake outflow concentrations are equal,

Lt
PO =P = —Z- (] - Rp) (3“2)

The remaining model forms are based on the following phosphorus

mass balance (Vollenweider, 1969):

dp _ _
=M oPV - P (3-3)

where: V = lake volume (106m3)

o = sedimentation coefficient (yr']).

In essence, this states that the change in phosphorus mass in the lake
(vdP) per unit time (dt) is equal to the mass input of phosphorus (M)
minus the mass output of phosphorus via the outflow (QP) minus the

net mass of phosphorus deposited to the sediments. This sediment
"sink" term (oPV) assumes the rate of phosphorus deposition to the
sediments to be proportional to the total mass of phosphorus in the
lake (PV). Also, as in the first instance, the lake and outflow con-
centrations are assumed to be equal.

When g% = 0, the steady state solution is

_ L
) (3-4)

The time-dependent solution is as follows:

= L =(1/x + At -(1/c + At
"t"‘az—rzﬁ["e(“ ) ]*Pme( ©re (3-5)

where: At = time step (yrs.)
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Alternatively, the phosphorus mass balance may be expressed as:

vg% = M- v PA - QP (3-6)

where: v = apparent settling velocity (m/yr)

This differs from equation 3-3 in the sediment sink term by employing
an areal sink, which expresses the rate of deposition to the sediments
as a function of the bottom (surface) area. The resulting steady-

state expression is as follows:

P=— (3-7)

where: z/1 = qg = areal water loading (m/yr)
Therefore,

P= —F— (3-8)

with the time dependent solution

Py= " k % [] - e (Mt + vS/z)At] + Pi-]e-(l/r +v./a) at (3-9)
The major difference between these last two model forms is the manner
in which the settling velocity is expressed. The first (3-4), is
based on an assumption of depth-dependent settling velocity (oz),
while the other model (3-7, 3-8) assumes a constant settling velocity
(Vs)° It is the time-dependent solution of this last model form (3-9)

which is used as the experimental base for this application of Monte
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Carlo simulation to lake model uncertainty analysis.

System Representation

As mentioned above, empirical black box lake models do not
attempt to represent internal lake mechanics. Rather, they focus on
material movement into and out from the system, and activity at the
system interfaces. It is not surprising therefore, to find that this
model addresses in-lake phosphorus concentration primarily through
modeling the interrelationship among phosphorus flux via the lake

interfaces (L), settling velocity (vs) and water loading (qs).

Distributions and Random Number Generation
Fifteen parameters are characterized using random variables. Six

are represented as log normal variates:

——d
.

runoff concentration-urban
2. runoff concentration-forest
3. runoff concentration-agriculture
4. atmospheric flux-urban
5. atmospheric flux-forest
6. atmospheric flux-agriculture.
The remaining nine are represented as normal variates:
7. point flux-primary treatment
8. point flux-secondary treatment
9. point flux-phosphorus removal
10. water load-atmospheric

11. water load-Ontario basin tributaries
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12. water load-Niagra River/Welland Canal

13. concentration-Niagra River/Welland Canal

14. settling velocity

15. hydraulic detention time.
A11 random number generation is accomplished through the use of Inter-
national Mathematical and Statistical Library (IMSL) subroutines; sub-
routine GGNML for normal random variates, and GGNLG for log-normal
random variates (IMSL, 1979).

Goodness-of-fit testing, as described earlier, is not performed to
verify the selection of these parametric probability density functions.
Severely limiting data restrictions, push the selection criteria
balance toward the qualitative. Consequently, the generated data does
not always fit the empirical histogram exactly. In this instance of
limited empirical information, knowledge of the underlying theory, as
well as intuition have been employed to supplement the existing
empirical observations. That is to say, the parameter distributions
generated by the simulation are meant to approximate, as reasonably as
possible, the actual behavior of the parameter and not to exactly

match the date.

Phosphorus Loading

This simulation (see Appendix E) places greatest emphasis on
characterizing the loading term (L). This loading term is represented
as the sum of the following individual terms:

la) agricultural runoff concentration  tributary flow rate

1b) urban runoff concentration * tributary flow rate
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1c) forest runoff concentration * tributary flow rate
la + 1b + 1c = diffuse source flux (DIFFLX)

2a) atmospheric flux to agricultural land use

2b) atmospheric flux to urban land use

2c) atmospheric flux to forested land use
2a + 2b + 2c = atmospheric flux (ATMFLX)

3a) point source flux attributable to primary wastewater treat-
ment

3b) point source flux attributable to secondary wastewater treat-
ment

3c) point source flux attributable to phosphorus removal waste-
water treatment
3a + 3b + 3c = point source flux (PNTFLX)

4) concentration from Lake Erie x flow from Lake Erie
= flux from Lake Erie (EREFLX)

Therefore,
L = (DIFFLX + ATMFLX + PNTFLX + EREFLX)/LSA

where LSA = lake surface area.

Diffuse Source Flux
Diffuse source flux is obtained be selecting random values from
the runoff concentration distribution for urban, forested and agricul-
tural land uses. Each of these random concentration values are then
multiplied by a randomly selected value from the distribution of Lake
Ontario tributary flows. The runoff concentrations are represented

by a log normal variate for each of the three land use types. The
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distributions of these random variates (Figures A.1, A.2, A.3) are
characterized by means and standard deviations derived from relevant
data aggregated from the literature (Beaulac, 1980). For further
details regarding the selection of these data, see Reckhow et al.
(1981f).

Tributary flows, defined as all those tributaries in the Lake
Ontario watershed other than the Niagara-Welland complex, are charac-
terized by a normal random variate defining a distribution (Figure
A.8) with mean and standard deviation calculated from flow data of
several tributaries (Chapra, 1979). The cross-correlations among
tributary flows (Reckhow et al., 1981g) are sufficiently high to
allow considerations of all tributary flow (other than Niagara-
Welland Canal flow) by a single distribution. It is not unreasonable
to believe that these tributary flows are correlated with the corres-
ponding atmospheric water loading values (i.e., the more rain that
falls, the higher the tributary flows are expected). Future considera-
tion should be given to incorporating this relationship into the
model. One procedure in particular (Fiering, 1967) seems appropriate
for use in this application. Preliminary analysis with limited data,
however, does not indicate a strong correlation (r = .60).

The size of each land use fraction over the 40 year experimental
period (1980-2020) is expected to change relative to the others, and
therefore alters the total flux contribution from each land use
fraction during any given year. The simulation mechanics account
for this change by increasing or decreasing the relative size of

each land use fraction according to projected land use information
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(see Table 3-1). The projected difference for each land use fraction
(annual loss or gain) for the first 20 year period (1980-2000) is
divided by 20 to yield an average annual change, which, when pro-
gressively summed over the 20-year interval, accounts for the total
change in the land use fractions. The same is done for the second
20-year period (2000-2020) using the projected loss or gain for each

land use during this period.

Atmospheric Flux

Atmospheric flux is obtained by summing random values from
three 1og normal atmospheric flux distributions. These distributions
are defined by the mean and standard deviation of data characterizing
this flux source for each of the three land use categories (Figures
A.4, A.5, A.6). The data used (Reckhow et al., 1980a) reflect total
bulk loads. This includes both solution phase and dry fallout com-
ponents. It should be noted at this point that the dry fallout com-
ponent may be a substantial and significant portion of total atmos-
pheric flux (Reckhow et al., 1980a). A1l values in Figure A.4, A.5,
and A.6 are measurements from terrestrial stations, however, and as
such, probably incorporate much higher levels of dry fallout than is
representative of mid-lake stations. Some appropriate reduction in
these measurements, therefore, may be in order. Until further infor-
mation is available, however, this lack of detailed information plus
the broad inherent variability make any reduction at this point
speculation.

The relative weighting of atmospheric flux for each land use
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Table 3.1: Land Use Projections for the Great Lakes Basin (103ha.)
(19C, 1977a)

URBAN AGRICULTURE FOREST
1980 3416.4 16446.9 34459.4
% Total 6.29% 30.28% 63.43%
A% +10.8% -11.5% +1.3%
2000 3933.6 15818.4 34325.1
% Total 7.274% 29.252% 63.474%
A% +15.14% -3.82% -.004%
2020 4212.8 15497.8 33821.5
% Total 7.87% 28.95% 63.18%
A% +7.1% -2.03% -1.47%

Net A%
1980-2020 +23.31% -5.77% -1.85%
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category is determined using an average land use fraction, obtained
by determining the average relative size of each land use fraction
over the entire 40-year experimental period. This average fraction
size is used in each year's calculation of relative land use contribu-
tions, unlike the weighting for atmospheric water loading values for

each land use which changes on an annual basis.

Point Source Flux

Point source flux is a major contributor to the total phosphorus
load to Lake Ontario. In order to facilitate examination of several
different policy scenarios involving changes in waste water treatment
strategies, and therefore point source loads, this flux source is
subdivided into primary treatment, secondary treatment, and phosphorus
removal. Each of these subcategories is represented by a normal
distribution defined by a mean determined from survey data (De Pinto
et al., 1980). The variability of these point flux contributions is
estimated by standard deviations about the mean concentrations for
each treatment type (Reckhow, 1978a). Two points which are deserving
of future consideration are: 1) the effect of population shifts on
point source loads, and 2) the effect of the Finger Lakes and other
watershed phosphorus traps (e.g., wetlands) on flux rates from point
tributary sources. Population shifts will determine to a great extent
the relative fractions serviced by primary, secondary, and phosphorus
removal treatments. Additionally, point tributary loads upstream from
the Finger Lakes will be affected to a certain degree by these lakes.

Phosphorus flux, especially in particulate form, will be attenuated to
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some extent by these water bodies, but exactly to what extent is not

known.

Lake Erie Flux

Flux from Lake Erie is the final component of the phosphorus
loading term (L). It is calculated by multiplying a selected random
value from a normal concentration distribution by a lag-one auto-
correlated flow value. The concentration distribution (Figure A.10)
is defined by a mean and standard deviation from annual concentration
data (Chapra, 1979). The flow data is represented by an autocorrela-
tion flow model (Reckhow et al., 1981h). To incorporate this feature,
a lag-one Markov model is employed to longitudinally correlate the
flows. With flow initialized at the historical mean of 1.85 x 10]]
m3/yr (Chapra, 1979), this model combines 80% of the previous year's
flow, 20% of the historical mean, plus a random component based on
the standard deviation and correlation coefficient of the historical
data (Figure A.9) to calculate the lag-one flow value.

Some controversy exists over which concentration data most
accurately reflect the flux values when multiplied by the lag-one
flows. Since flows are measured in the Niagara-Welland Complex,
Niagara-Welland concentrations can easily be justified. Chapra
(1980), however, notes that severe shoreline erosion contributes an
inordinate amount of particle-bound phosphorus to the inflow, and
suggests use of eastern Erie concentration data as more representative
of loadings that determine Lake Ontario concentrations. The particle-

bound phosphorus is included in the total-P concentration measurements
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taken in the Niagara-Welland area, and yet is thought not to contribute
greatly to the in-lake concentration due to rapid settling near the
inflow. Estimates of mid-lake availability vary, and indicate a need
for examining this question further (see Reckhow et al., 1981i for a
discussion of phosphorus fractions and availability). In an effort to
resolve this controversy, runs using both Niagara-Welland values

(x = .022, s = .002) and eastern Erie values (x = .017, s = .004)

are analyzed.

Settling Velocity

The second major term in the model expression is Vgs the apparent
settling velocity. This term is obtained by selecting random values
from a normal distribution (Figure A.11), defined by a mean and
standard deviation calculated from Lake Ontario data (Chapra, 1979).
This term is additionally important in that it serves as the
repository for model standard error. This error term is incorporated
in the standard deviation of the settling velocity term, and is
approximately equal to 2.7 g/m3. It is calculated by propagating model
error for P through the steady state model, fit from Lake Ontario
data (see Equation 3-8). When re-expressed as error in Ves this
estimate for model error in the Monte Carlo simulation tests the degree
to which a constant Ve is appropriate for modeling Lake Ontario. 1In

essence then, it may be thought of as measuring the lack of model fit

for a constant settling velocity model.
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Areal Water Loading

The last major term in the model expression is the areal water
loading term (qs), and qq = Q/A, where Q is the sum of the following
terms:

1. Ontario tributary flows

2. Flow from Lake Erie

3. Atmospheric water loading

Annual water load from all Ontario basin tributaries other than
the Niagara River and the Welland Canal is calculated as described
above (see Phosphorus Loading: Diffuse Source Flux). In summary,
all tributary flows are characterized by a single normal distribution
since cross-correlations are high (Reckhow et al., 1981g).

In addition, total water load is considered to be similar per
unit area of land surface, regardless of the land use (Reckhow et al.,
1981e). The water load from Lake Erie is calculated as described
above (see Phosphorus Loading: Lake Erie Flux) from Lake Ontario
data (Chapra, 1979). Summarizing, the water load is represented as
a lag-one auto-correlated parameter value. The Markov model combines
80% of the previous year's flow, 20% of the historical mean, plus a
random component based on the standard deviation coefficient to derive
the new flow (Reckhow et al., 1981h).

Atmospheric water loading from precipitation is calculated from
historical rainfall data (World Weather Records), obtained from the
meteorologic records for the Ontario basin. Random values are generated
from a normal distribution (Figure A.7) defined by the mean and standard

deviation which characterize these data.
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Additional Model Terms

To fill out the model expression, lake mean depth (z), hydraulic
detention time (1), lag-one phosphorus concentration (Pi-])’ and
time step (At) are needed.

Hydraulic detention time is represented by a normal random vari-
able selected from a distribution (Figure A.12) defined by a mean
and standard deviation calculated from lake volume and outflow data
provided by Chapra (1979). Twenty years of outflow data were each
divided by the respective year's lake volume to arrive at a distribu-
tion of hydraulic detention times.

For the entire exercise, At remains one year. This of course
implies annual data only, and points to a shortcoming of the model.

By modeling annual loading and flow processes only, many planning
objectives (especially those which hold seasonal occurrences as key
events) cannot be addressed. However, taking into account the primary
purpose of this study, to examine the application of uncertainty
analysis on a lake model using Monte Carlo simulation, and the severe
data restrictions which would be encountered in an attempt to simulate
seasonal processes as well as the fact that much useful planning infor-
mation can be obtained from a study of average annual conditions, this
approach seems valid.

The lag-one phosphorus concentration is selected from a distribu-
tion of phosphorus concentration prediction values from the previous
year (Pi-])‘ This concentration value is randomly generated from a
normal distribution defined by the mean and standard deviation of

Pi-] predictions and then used to calculate the present year's
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prediction (Pi)° It is initialized (Po) at .020 mg/1. Lake mean
depfh is set deterministically at 89 meters (Snodgrass, 1974), and

used for all runs.

Simulation Flow and Structure

A11 the values are substituted into the model expression
(Equation 3-9) for calculation of a Lake Ontario phosphorus concentra-
tion prediction. The first prediction represents the concentration
estimate for the year 1981. Following a number of 1981 runs to
achieve a prediction distribution for that year's phosphorus concentra-
tion, the Tand use fractions are incremented as described above and
multiple iterations are again performed to achieve a prediction
distribution for the year 1982. This is repeated 40 times to include
a prediction distribution for the year 2020. The flow of the computer
simulation is somewhat different from that described above in order

to streamline certain calculations (see Appendix E).



CHAPTER IV
RESULTS

Model Results

The initial test of the model is a 40-year, 100 iteration - per-
year run. The phosphorus concentration prediction mean for the 40-year
experimental period is 18.2 micrograms per litre (ug/1), with a
coefficient of variation for those concentration predictions of 2.75
percent. This measure of variability actually represents the year-to-
year variation in the annual phosphorus concentration predictions.

The 14.3 percent mean annual coefficient of variation and the 2.6 ug/1
mean annual standard deviation serve to estimate within-year varia-
bility, which reflects combined input errors and variabilities.

Figure B.3 demonstrates the slight decreasing trend with the slope

of the regression line equal to -0.0194. The annual predictions for
the apparent settling velocity (x = 16.0367 m/yr), areal water load

(x = 12.0348 m/yr), and the phosphorus loading (X = .5108 g/m’-yr)

terms are summarized in Table C.1.

Flux

Figure B.1 graphically presents the breakdown of phosphorus flux
sources. Diffuse source flux comprises 32.5 percent of the total
phosphorus flux to the lake, with a 40-year mean of 3.161 x 109 g/yr.

The coefficient of variation for the concentration mean over this same

40



41

period is 8.8 percent, making it the most variable of all the deline-
ated flux sources, and the major influence on overall variation for
total flux. Point source flux is 17.5 percent of the total flux,
with a 40-year mean of 1.703 x 109 g/yr. The variability of this
source is 70 percent lower than that for the diffuse sources with a
coefficient of variation of 2.5 percent. Phosphorus flux from the
atmosphere is the smallest component of total flux at only 8.0
percent with a mean of 7.762 x 108 g/yr. Variability over the
experimental period is slightly higher at 3.7 percent than that for
point sources. The major source of phosphorus flux to Lake Ontario
is from Lake Erie. 42 percent of all the phosphorus input to Lake
Ontario comes by way of the Niagara River and Welland Canal (calcu-
lated using Niagara-Welland concentrations). The model estimates a
40-year mean to be 4.064 x 109 g/yr with very little variability
(coefficient of variation = 1.1 percent). See Table C.2 for a more
complete statistical summary of the model's characterization of

phosphorus flux to the lake.

Water Load
Water loading is broken down into atmospheric, Ontario basin
tributary, and Lake Erie source components (Figure B.2). Atmospheric

water loading is the smallest component. The 1.659 x 1010 m3/yr com-

1

prises only 7.0 percent of the total water load of 2.287 x 10 m3/yr.

The coefficient of variation is 2.0 percent. The variability of the

load from Ontario basin tributaries is approximately the same at 2.1

percent, with a 40-year mean of 2.721 x 1010 m3/yr, or about 12
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percent of the total. The remaining 81 percent of the water load to

0]] m3/yr, this

Lake Ontario comes from Lake Erie. At 1.849 x 1
water loading source is the most significant influence on the overall

water load to the system. Additionally, one would expect this load

to be consistently a significant influence as indicated by the small
0.3 percent coefficient of variation. Table C.3 presents a tabular

summary of the water loading terms.

Model Sensitivities

Tables C.4 and C.4a summarize the results of the three different
sensitivity experiments. The first involves the model's sensitivity

to the number of annual iterations performed.

Number of Runs
Figures B.3, 4, and 5 are the graphical representations of the
results for 100-, 500-, and 1000-iteration runs respectively. The

shaded portion reflects variability of plus or minus one standard

deviation. (See Appendix D for a discussion of the 1000-iteration
run.) There appears to be 1ittle sensitivity to this factor other than
artifacts of the increasing number of iterations per year. On an
aggregate basis, all experiments reflect predictions of comparable
magnitude. In addition, no conclusive differences are evidenced by
either measure of mean annual prediction variability (coefficient of

variation, CV and standard deviation, §).
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Distribution Selection

Comparing results for the distribution selection experiments
(Table C.4, Figure B.13) reveals a higher prediction for the run
using all normal distributions to characterize the model parameters.
The average annual variability, however, is much lower than that for

the 100 iteration base run (CV = .084 as opposed to .144).

Random Seed

Sensitivity to a change in the random seed appears to a limited
extent in two of the three cases tested. Table C.4a presents a com-
parison of these cases. In the case of 500 iterations per year, the
general appearance of the time series plot is noticeably altered by
changing the random seed from 123457.D0 (double precision) to
987543.D0 (Figures B.4 and B.4a respectively). The summary statistics
of each of these runs, however, do not differ appreciably. The in-
creased random seed results in a mean annual concentration prediction
that is approximately 2 percent higher (19.1 ug/1 vs. 18.7 ug/1), and
a mean annual variability that is just slightly lower (14.3 percent
vs. 14.4 percent). In both instances, the concentration appears to
change very little over the 40-year experimental period.

In the case of all normal distributions characterizing the para-
meters, the increase in the magnitude of the random seed from 123457.
DO (Figure B.13) to 987225.D0 (Figure B.13a) again results in a dis-
tinct change in the overall appearance of the time series plot. The
larger random seed results in an average annual concentration predic-

tion just less than 9 percent greater than that for the small random
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seed (21.1 ug/1 vs. 19.4 ug/1). The average annual variability is
comparable for the two runs with the larger random seed resulting in

a somewhat smaller value. In addition, the tendency of the concentra-
tion prediction to increase or decrease over time is altered by the
change in random seed; in this instance changing from a negative

slope when the smaller random seed is used, to a positive slope, when
the larger random seed is used.

Unlike the first two cases, changing the random seed for the 1000
iteration-per-year run appears to have little effect on either the
general appearance of the time series plot or the magnitude of the
predicted concentrations (Figures B.5, B.5d). Table C.4a does, however,
point out an increase in the average annual variability of approxi-
mately 3.5 percent when the larger random seed is used. (See Appendix
D for a discussion of the periodicity present in the 1000 iteration-

per-year runs.)

Planning Scenarios

Testing the effects of planning scenarios is one of the primary
advantages of modeling. Tables C.5 and C.5a summarize the results of

eight experimental scenarios.

Point Source Flux

The first two involve changing the nature of the point source flux
term by: a) reducing point source flux variability, and b) upgrading
all wastewater treatment facilities to phosphorus removal status. The

first case attempts to experimentally test whether or not regulations
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designed to tighten up operational efficiency, rather than to set
upper bounds on discharge, will have any effect on in-lake phosphorus
concentration. Figure B.6 indicates no great deviations from the 100
jiteration-per-year base run (Figure B.3). In fact, the two runs are
identical in many respects. Most importantly, they share a common
average annual concentration prediction (18.2 ug/1) as well as a
common average annual coefficient of variation (14.3 percent). It
should be re-emphasized at this point that this analysis of point
source flux variability may be questionable since the characterization
of input variabilities is in such doubt. The second case is designed
to test the effect of upgrading all wastewater treatment facilities
by hypothesizing phosphorus removal treatment for those plants which
do not currently employ this treatment (approximately 47% of the total
point source contribution). It should be noted at this point that
three treatment plants are not included in this treatment change
over. Influent/effluent data are not available for these plants,
which in fact contribute less than 4% of the total point source load.
Figure B.7 displays a remarkable resemblance to both the 100 iteration-
per-year base run (Figure B.3) as well as the run using one half of the
point source variability (Figure B.6). The major differences are a
slightly lower mean annual concentration prediction (17.4 ug/1 vs.
18.2 ug/1) and a mean annual coefficient of variation about 4 percent
higher than the 14.3 percent variability of the base run.

The effects of these hypothesized changes on the total point
source flux is graphically represented in Figure B.8. Total point

source flux is defined here to be phosphorus flux from all wastewater



46

treatment plants with an average daily flow in excess of 1 million
gallons per day (mgd). There are 91 such facilities in the Lake
Ontario basin which account for well above 90 percent of the actual
total point source phosphorus load (DePinto, 1980). Industrial
sources are not included, as their contribution is relatively minor
(Chapra and Sonzogni, 1979). The reduced variability has very little
effect on the total point source flux. A reduction of less than two
percent in the average annual flux from 1.70 x 109 g/yr to 1.67 x 10a
g/yr results. The upgrading to all phosphorus removal treatment,
however, has a marked effect; reducing the mean annual point flux

value by 27 percent.

Erie Concentration

The third experimental scenario measures the effect of alternate
concentration values used to characterize the flux from Lake Erie.
The concentration values used for all simulation runs are those taken
from Niagara River-Welland Canal data. Chapra (1979) contends that
excessive shoreline erosion in the area of the Niagara-Welland complex
may contribute a large portion of particle-bound phosphorus to the
lake. How much of this particulate fraction is actually available
at mid-lake sites is questionable, however. Chapra therefore
suggests that a more accurate estimate of this flux source may be
derived using eastern Lake Erie concentration values. The time
series plot of this run (Figure B.9) is again very similar in
general appearance to the 100 iteration-per-year base run. Since

flux from Lake Erie is the largest single source, it is not surprising
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to note that changes in this term result in distinct changes in the
final concentration prediction distribution (see Table C.5). The

mean summarizing the eastern Lake Erie concentration data is 23 percent
lower than that used for the Niagara-Welland data (17 ug/1 vs. 22 ug/1),
and results in an average annual concentration prediction 1.7 ug/1

less than the 18.2 ug/1 mean value for the Niagara-Welland run. In
addition, the eastern Lake Erie data is 15 percent more variable than
the Niagara-Welland data. As a consequence, the mean annual coef-
ficient of variation for the entire experimental period rises by 2

percent.

Land Use Fractions

The five remaining experimental planning scenarios test the
effects of a) altering the balance of land use fractions, and b)
altering the rate of that change (Table C.5a). Doubling, or even
tripling the rate of current projected land use pattern shifts has
virtually no effect whatsoever on the concentration predictions over
the 40-year test period. Graphical representations of these runs
are not included in Appendix B. They are identical to the 100
iteration-per-year base run in almost every respect. One slight
difference is evident, however. As the rate of change increases, the
average annual coefficient of variation decreases slightly from 14.3
percent to 14.1 percent (doubling), and again to 13.8 percent
(tripling).

The last three experiments hypothesize land use shifts to all

urban, or all agriculture, or all forest by the end of the 40-year
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period (Table C.5a). Beginning with the current land use fractions,
one land use type is incrementally enlarged until the entire lake
basin is covered with this land use at the end of the test period.
The other two land use types are incrementally decreased until they
occupy none of the lake basin at the end of the test period. The
results of these experiments (Figure B.10) dramatically point out

the distinct dichotomy between disturbed and undisturbed ecosystems
as far as their contribution to lake phosphorus concentration is con-
cerned. The two disturbed systems, urban and agriculture, contribute
to increasing in-lake concentrations as their respective fractions
increase. Agricultural expansion impacts the concentration more
quickly than urban expansion. That is to say, the rate of concentra-
tion increase is higher than that for the urban experiment. The
projected increase is 1.5 ug/1 every 5 years for agriculture, as
opposed to 0.4 nug/1 every 5 years for urban. Within-year variability
for the agriculture projections is more than 1-1/2 times greater than
the 13.6 percent average annual coefficient of variation for the urban
projections. Increasing the undisturbed system fraction, forest,
results in a decrease of the concentration predictioné of 0.7 ug/1
every 5 years. The average annual variability of these predictions

is a very low 10.4 percent.

Variability
Table C.6 summarizes eight representative single year concentra-
tion distributions; four from the 100 iteration-per-year base run, and

four from the run using all normal distributions to characterize the
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model parameters. It is these single year distributions which
distinguish stochastic methods such as Monte Carlo simulation from
strictly deterministic techniques. While deterministic time series
models are able to generate estimates of variability over years, only
stochastic processes allow specification of variability for any one
year. These distributions (Figure B.11 and B.12) provide a great
deal of information concerning the nature of the model prediction.

In addition to the customary measure of location, this information
allows some feeling for spread as well as third and fourth moments.
In the case of the 100 iteration-per-year base run, annual variability
is quite large. Actually, for the entire 40-year run, the average
annual coefficient of variation ranges from 9.6 percent to 28.4
percent. Skewness may be easily estimated by calculating the mode

to mean ratio, R, as follows:
R=(1+cv®) 1D

The base run distributions consistently demonstrate R-values very
close to 1.0. Some positive skewness can be seen in the sample
distributions. The run using all normal distributions manifests much
lower annual variability. For the entire 40-year run, the average
annual coefficient of variation ranges from 6.8 percent to 11.0 per-
cent. In this second case, the R-values approach 1.0 even more
closely. The histograms bear this out, being remarkably normal in
appearance.

One of the major questions to be answered is whether or not this

within-year variation displays any tendency to increase or decrease
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over time. Table C.7 summarizes the simulation results of this experi-
ment. Testing four model sensitivity runs results in very small dif-
ferences in annual variability. Over the 40-year test period, none of
these runs demonstrate much of a tendency to increase or decrease pre-
diction variability over time. Regression statistics for prediction
standard deviation and time reveal slight decreasing tendencies on

the order of 1070 mg/1 every year; -13 x 100 being the single largest
rate of change. Even the most radical planning scenario, the shift

to all agricultural land use, produces only a mild 13 x 10'5 mg/1

annual increase in the average annual standard deviation.



CHAPTER V
ANALYSIS AND DISCUSSION

A primary concern of this investigation, as with all modeling
exercises, is how well this tool characterizes the system it is in-
tended to characterize. The degree to which the accuracy of such a
tool may be measured is limited, especially in the predictive work it
is most often employed. However, three criteria which may be used
for such an evaluation are:

1) Does the simulation generate valid parameter values?

2) Using these parameter values, does the model predict

reasonable values for the dependent variable?

3) Does the model react to perturbations with consistency?

The first of these may be easily evaluated. The fifteen para-
meters that are randomly generated from distributions characterized
by literature data (see Chapter III) are of course accurately repre-
sented by the simulation. The ten remaining major model parameters,
which are calculated parameters, also agree closely with the findings
of other Lake Ontario studies (IJC, 1978; Sonzogni et al., 1978;
Chapra and Sonzogni, 1979; Chapra, 1980; Simons and Lam, 1980; and
Fraser, 1980).

The second point is somewhat more difficult to address. The de-
pendent variable, in-lake phosphorus concentration, is certainly

characterized within reason by the model expression. The model
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prediction agrees with all the major Lake Ontario studies listed

above. However, prediction behavior over the entire 40-year test

period must be assessed. In the few years immediately preceding 1980,
there seems to be a "significant decreasing trend in total phosphorus
concentrations" (IJC, 1977b). The 100 iteration-per-year base run of
this simulation agrees very closely with the magnitude of these concen-
trations, and continues the decreasing trend in the 40-year prediction
period. Major responsibility for this decrease is suggested to result
from changes in the sedimentation rate of total phosphorus (Fraser,
1980). This of course demands a much clearer picture of the nature

of the system's sensitivity to the rate of phosphorus sedimentation
than that which the current data provide. If this is the case, how-
ever, more sophisticated modeling treatment of the settling velocity
term (Vs) is necessary (if meaningful projections are to be made).

The final point is the most difficult to assess in the present
context. Experimental perturbations, detailed in Chapter IV, affect
the model predictions in different ways, and to different degrees.
That is to say, the simulation does not react to these perturbations
with any recognizable consistency. The results, however, may indeed
be consistent with the behavior of the natural system. This dilemma
is due in part to the relatively recent origins of studies of this
type that stress prediction uncertainty. There is no cohesive body
of experimental information on which to base a set of expectations

concerning responses to certain given perturbations.
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Model Sensitivities

The first set of sensitivity experiments indicates no substantial
effects caused by changing the number of annual iterations performed.
Some change in the overall appearance of the time series plots is
evident, however, due primarily to the increased probability of
generating extreme values when greater numbers of iterations are per-
formed. Aggregate statistics, however, belie this difference.

Revising the simulation to employ only normal distributions to
characterize model parameters results in a slightly elevated prediction
range and a significantly reduced average annual coefficient of varia-
tion (.084 vs. .144). This lower variability and higher prediction
average may be explained by the fundamental differences between the
manner in which normal and log-normal distributions are treated.
Random log-normal parameter values can only be positive by definition.
Generation of random normal parameter values, however, involves
generating a random standard normal variate which will be negative 50
percent of the time. Since negative concentrations and fluxes are not
easily interpreted, all but the positive random numbers are screened
out before this standard normal random variate is adjusted using the
sample mean and standard deviation. As a result, random values
generated from the same population, characterized by each of these two
probability functions will result in two different sets of summary
statistics due to the inherent differences in the density functions and
the simulation's treatment of them. Whether or not this revision to
all normal distributions results in a more realistic representation of

system behavior is not clear, however. Adequate data for comparison are
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not available. This revision, however, does seem to increase the
simulation's sensitivity to changes of the random seed.

Although there are certain minor changes in the 500 and 1000
iteration-per-year runs due to changes in the random seed, none
appear as significant as those changes in the run using all normal
distributions. There is an 8.8 percent increase in the average
annual concentration and a complete reversal of the decreasing trend
accompany the experimental change of the random seed. This suggests
that perhaps the use of normal distributions is less characteristic
of the six parameters, previously described by log-normal distribu-
tions. The interrelationships among all the parameters, however,
are so involved that such a suggestion cannot possibly be validated
without considerable future investigation. Since distribution
selection is at the heart of Monte Carlo simulation, model sensitivity
to various distributions is critical. Future Monte Carlo investiga-
tions of Lake Ontario should focus on better characterization of each

parameter by a well defined parametric distribution.

Planning Scenarios

Experimental testing of regulations that would require greater
consistency in the operation of wastewater treatment plants seems to
alter the magnitude of the predictions very little. In fact, a sub-
stantial reduction in treatment plant effluent concentration results
in only a relatively small, although distinct, 1 ug/1 reduction in
average annual in-lake phosphorus concentration. In this hypothesized

planning scenario, plants accounting for about half of the total point
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source load are experimentally upgraded from 47 percent phosphorus
concentration reduction (average secondary treatment) to 79 percent
concentration reduction (average phosphorus removal treatment). It is
difficult, once again, to know with any certainty if these experimen-
tal predictions are truly indicative of the system's reactions to
these point source flux perturbations. Point source flux is a minor
contributor at 17.5 percent of total flux, and as such would not be
expected to impact the overall prediction to a major degree. The
sparse information currently available on the projected impacts of
point source controls on future in-lake phosphorus concentrations for
Lake Ontario (see Chapra, 1980), however, suggests more substantial
impacts than are evidenced by this study. It is painfully obvious
that much more effort needs to be spent in gathering data to better
characterize the relationships between treatment plant operation,
effluent concentration, and in-lake concentration. In addition, it
is quite surprising that the multi-year data that have been gathered
are neither centralized nor aggregated in any useful form. As an
example, no estimates of treatment plant operational variability

are available. In order to simulate the natural variability in the
point source flux term on an annual basis, these estimates of how
great the variations in concentration reduction are from year to year
are vital. It seems a rather simple matter to calculate a standard
deviation for the concentration reduction performance over a period
of years. Extended studies of this kind which include measures of
variability, however, are non-existent (Elridge, 1980; Eastman, 1980;

Palancic, 1980; King, 1980; Berthouex, 1980, Heidtke, 1980; and
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Hore, 1980).

As introduced in Chapter IV, the use of eastern Lake Erie
concentration values to characterize phosphorus flux to Lake Ontario
via the Niagara/Welland Complex inlet results in a substantial 2 ug/1
decrease in the average magnitude of the annual concentration predic-
tions. This inflow is the single greatest source of phosphorus,
representing 42 percent of the total flux to the lake. It is not
surprising, then, to find the model prediction directly affected by
a reduction in the concentration value used to generate estimates of
flux from Lake Erie. Since the use of either concentration value
constitutes a major assumption (and a difference of 1.0 to 1.7
billion g/yr), fundamental understanding of why these two terms are
different through critical assessment of shoreline erosion at the
inlet and bio-availability at mid-lake locations is essential to
meaningful planning applications.

The final planning scenarios involve altering the distribution
of land use types and the rate at which that distribution changes.
The current projections for land use over the next 40 years, however,
manifest only minute annual changes of 1/100 to 5/100 on one percent.
Therefore, even though diffuse source flux represents 32.5 percent of
total flux, doubling, or even tripling, the rate of change has no
impact on the predicted concentrations over the test period. Only
the drastic and unrealistic shifts to single land use types stimulate
noticeable changes. These last changes, however, serve to highlight
the distinct dichotomy between the behavior of disturbed versus

undisturbed systems, and the difficulty in distinguishing any further
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specificity in land use classification. This is to say that,
although more detailed distinctions between row crop and non-row
crop, pasture, fallow, and feedlot, or between deciduous and coni-
ferous forest, or between industrial and residential land uses may be
desirable from the planning perspective, no data are currently
available to support any distinction beyond disturbed versus undis-

turbed.

Variability

Prediction variability within years and over time is the heart
of this study. Results of variability experiments are presented in
Chapter IV. Table C.7 clearly points out the difference between
modeling with uncertainty analysis and modeling without uncertainty
analysis. Traditionally, the prediction is characterized by a single
value; usually the mean. Through the use of Monte Carlo simulation
techniques, a fully descriptive prediction distribution is obtained.
This distribution not only allows some estimation of location, but
also allows estimation of prediction precision. Qualitatively, this
may be accomplished through visual examination of the prediction
histogram. Quantitatively, statistics such as standard deviation (s),
coefficient of variation (CV), and the mode to mean ratio (R) may be
used to estimate higher order moments.

The tendency for variability to increase or decrease over time is
unclear from the information generated by this study. Linear regres-
sion statistics calculated for the annual prediction standard devia-

tions indicate slightly decreasing slopes; the largest of the



58

sensitivity runs being 13/1000 of one microgram per year. Even the
planning scenario which hypothesizes the shift to all agricultural
land use, the most radical change, results in an annual change in

standard deviation of only 13/100 of one microgram per year.

Summar

In summary, there are three concrete findings that can be made
directly from the results. They are:

1) Upgrading all wastewater treatment plants to phosphorus

removal status substantially reduces the magnitude of
the overall concentration predictions. 3

2) The flux from Lake Erie is the single greatest flux

source. The decision to use either the Niagara-
Welland or the eastern Lake Erie concentration data,
therefore, is critical to the final predictions.

3) The only distinction which can be meaningfully made

with regard to land use type as it affects phosphorus
flux is that between disturbed (urban and agriculture)
and undisturbed (forest) systems.

From these findings, several recommendations may be made to aid
in the development of priorities for future investigations. First,
if uncertainty analysis is to play a major role in improving the
predictive capabilities of models, then measures of variability must
become a routine element in data collection and presentation. Short-
comings in this area are particularly evident in the context of

wastewater treatment plant performance. Second, the controversy over
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which Lake Erie concentrations best reflect the actual impact of
flux from this source on Lake Ontario must be resolved. Until this
question is satisfactorily addressed, Lake Ontario water quality
predictions will be subject to this additional uncertainty; a sub-
stantial difference of 1.0 - 1.7 X 109 grams per year. Third,
existing data relating land use type and phosphorus runoff concentra-
tion must be augmented if meaningful land use planning is to be
accomplished. If no such effort is undertaken, all modeling distinc-

tion of land use types beyond disturbed and undisturbed will continue

to be artificial.



FINAL COMMENTS

In many ways, this research has uncovered many more questions
than it has answered; highlighted more difficulties than it has
overcome. It is an interim work, meant to be used as a stepping
stone, and to continue the construction of a firm foundation from
which this relatively new field may continue to grow.

The ultimate objective of these exercises is to provide the
environmental planner with a valuable tool which will enhance the
quality of the planning decisions by presenting one more piece of
information to be factored into the decision-making process. Those
who concern themselves with the model development area exclusively
often lose sight of this objective, and begin to view model develop-
ment as an end in itself rather than as a means to an end. It is
essential to keep in mind the eventual real world application. Models
are subject to data constraints, computation inadequacies, and training
insufficiencies. Often, logical and efficient models are taken too
soon from their pristine birthplaces and forced to fend for themselves
in the somewhat imperfect real world. After the dust settles these
well-intended tools are rejected as impractical or impossible to
apply. Those that survive have been developed within the limitations
of existing data restrictions. Of course, there is an important
and valid function for those models that are developed beyond existing

constraints. This simulation, for example, is not yet ready to be
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used for sophisticated planning projections. It has, however, per-
formed the necessary function of pointing out priority research areas,
and thereby helped focus the scope of future investigations. Continued
refinement is essential for this model to realize its ultimate
objective.

Above all else, this work is intended to showcase uncertainty
analysis, in the form of Monte Carlo simulation, through the use of a
practical example. It is abundantly clear that the Lake Ontario data
base is not yet comprehensive enough to support a model of even this
modest detail with uncertainty analysis. It is equally clear, how-
ever, that Monte Carlo techniques in specific, and uncertainty analysis
in general, possess enormous potential as modeling aids to decision-

making.
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APPENDIX A

GRAPHICAL DATA INPUTS

Each of the twelve figures contained in this appendix displays
the data used to formulate the parametric distributions which charac-
terize the model parameters. The block histograms represent the
actual data used in the distribution selection process. The continuous
curves superimposed on these histograms are the graphical results of
randomly generating values from parametric distributions defined by

the mean and standard deviation of each of these data sets.
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APPENDIX B

GRAPHICAL OUTPUTS

Graphical interpretations of the simulation results comprise
this appendix. Figures B.3, 4, 5a, 6, 7, 9, 13, and 13a have shaded
areas which represent the estimated uncertainty (#1 standard
deviation) about the predictions. Figures B.11 and 12 display this
same uncertainty through the use of histograms of representative

single-year prediction distributions.
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APPENDIX C

TABULAR QUTPUTS

Tabular presentations of summary statistics for simulation
results are included in this appendix. Many of these statistics are
not very meaningful as far as interpreting annual prediction varia-
bility. Statistics such as the 40-year mean of annual means, and
variability about that mean are included for the sole purpose of
relative comparison. It is helpful to use these values to compare,
on a relative basis, different sensitivity or scenario experiments.
Tables C.6 and 7, however, directly address the focus of the study

by presenting specific annual variability information.
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Table C.1: Statistical Summary of 100 Iteration Base Run - Model

Terms
Phosphorus Concentration x = .0182 cv = .1430
Prediction (mg/1) _
sy = .0005 S = .0026
CV; = .0275 y-intercept = .0186
Ri = .9989 slope = -.0194
r = -,.4586
Settling Velocity X = 16.0367 y-intercept = 16.1854
Prediction (m/yr)
Sl .4503 slope = -.0073
CV; = .0281 r = -1884
R; = .9988
Areal Water Load x = 12.0348 y-intercept = 12.0414
Prediction (m/yr)
sy T .0460 slope = -.0003
CV; = .0038 r = -.0783
R; = 1.0000
Phosphorus Loading x = .5108 y-intercept = .5247
Prediction (g/m2-yr)
s .0142 slope = -.0007
CV; = .0279 r = -.5594
.9988

P
x1
1]



Table C.2: Statistical Summary of 100 Iteration Base Run - Flux

101

Terms (g/yr)

Diffuse Source
Flux (32.5%)

Point Source
Flux (17.5%)

Atmospheric
Flux (8.0%)

Flux From Lake
Erie (42.0%)

Total Flux
(100%)

3.161 x 10°
9

x
]

S= .276 x 10

X
y-intercept = 3.44
x =1.703 x 10°
9

x
]

S= .043 x 10

X
y-intercept = 1.69
X =7.762 x 10°
8

s; .287 x 10

y-intercept = 7.77

% = 4.064 x 10

9

.044 x 10

S%
y-intercept = 4.07

X =9.702 x 10°

9

x
n

s- = .268 x 10

X
y-intercept = 9.97

Cvs
R-

slope

()

<
]
]

(g}
<<
]
|

.0882
.9885
= -0.01

.0252

= .9990

= .0006

= .0370
= .9980

= -.0003

-.57

17

-.012

-.022

-.564
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Table C.3: Statistical Summary of 100 Iteration Base Run -

Load Terms (m3/yr)

1.659 x 10'0

Atmospheric Water X =
Loading (7%) 10
Sy © .033 x 10
CVi = .0199
Ri = ,9994
Water Load From Lake X =1.849 x 10]]
Erie (81%) 1
s- = .005 x 10
X
CVR = .0027
Ri = 1.0000
Water Load From Lake X = 2.721 x 1010
Ontario Basin 10
Tributaries (12%) S .056 x 10
CV; = .0206
Ri = ,9994
Total Water Load x =2.287 x 10]]
(100%) 1
s= = .009 x 10
X
CV; = ,0039
1.0000

e
xt
]

y-intercept
slope

r

y-intercept
slope

r

y-intercept
slope

r

y-intercept
slope

r

Water

n
-—

.64
.0002

= -.085

[}
—

.83

.0011

-.048

1]
N

.73

.0005
= -.1140

1]
nN

.29

.00003
= -.040
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Table C.4: Statistical Summary of Sensitivity Experiments - Phos-

phorus Concentration Prediction (g/m3)

Number of Iterations

100 x = .0182 CV = .144

sy~ .0005 s = .0027

cvi = .0275 y-intercept = .0186

Ry = .9989 slope = -.00002
r = -.4586

500 x = .01872 CV = .144

sz = .00090 s = .0027

CV; = .0479 y-intercept = .01878

Ri = ,9966 slope = -,000003
r = -.0414

1000 x = .01899 CV = .143

sz = .00095 s = .0027

CVi = .0499 y-intercept = .0186

R; = .9963 slope = .00002

r .2282



Table C.4: Continued

Distribution Selection

A11 Normal Distribu-
tions

104

.0194
.0021
.062

.9940

V= .084

s = .0016
y-intercept
slope

r

.0207
-.00006
-.6367



Table C.4a:

Random Seed

105

Statistical Summary of Sensitivity Experiments -

Phosphorus Concentration Predictions (g/m3)

A11 Normal Distributions:

RS = 123457.00

y-int =

slope = -.00006

.0207

r

o= .

-.6367

0837

1000 Iterations Per Year:

RS = 123457.D0
y-int = .0186 r =.
slope = .00002 CV =

RS = 135432.D0
y-int = .0186 r =
slope = .00001 CV =

RS = 987225.D0
y-int = .0187 r =
slope = .00001 cV = .

2282

.143

.18712
.1441

.1589

1482

RS = 987225.D0

y-int = .0204 r = .4575

.00004 CV = .0802

slope

500 Iterations Per Year:

RS = 123457.D0

y-int = .01878 r = -.0414
slope = -.0032 CV = .144

RS = 987543.D0
y-int = .01917 r = -.045054

slope =-.0000015CV = .14277
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Table C.5: Statistical Summary of Scenario Experiments - Phosphorus

Concentration Predictions (g/m3)

Cut Point Source x = .0182 Cv = .0143
Flux Variability _
by Half sy = .0005 s = .0026
CV; = .027 y-intercept = .0186
Ri = .999 slope = -.0002
r = -.4339
Upgrade A1l Point x = .01736 CV = .1494
Source Treatment _
to Phosphorus Removal S .00051 s = .0026
CV; = .0291 y-intercept = .01779
Ri = .,9987 slope = -.00002
r = -.4808
Use Eastern Erie x = .0165 CV = .1636
Concentration Value _
for Calculation of S .0005 s = .0027
Flux From Lake Erie
CV; = ,0298 y-intercept = .0169
Ri = ,9987 slope = -.00002
r = -.4383
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Table C.5a: Statistical Summary of Scenario Experiments - Phosphorus

Concentration Predictions (g/m

Land Use Shifts

Double Rate of
Fraction Shifts

Triple Rate of
Fraction Shifts

Constant Rate Shift
To A11 Urban

Constant Rate Shift
To A11 Agriculture

.01823
= .00049
.0272
.9989

.01822
.00050
.0273
.9989

.02199
.00128
.0582
.9949

.02257
.00257
.1139
.9809

3

c

. 1406
.0026

wni
[}

y-intercept

slope

r

CV = .1380
s = .0025

y-intercept

slope

r

CV = .1363
s = .00301

y-intercept

slope

r

CV = .2244
s = .00519

y-intercept
slope

r

.01865
-.00002
-.4895

.01868
-.00002
-.5197

.02025
.00008
.77249

.01833
.00021
.9399



Table C.5a: Continued

Constant Rate Shift
To A1l Forest

X

108

.01577
.00163
.1034
.9842

CV = .1039
s = .00162
y-intercept
slope

r

.01858
-.00014
-.98295



Table C.6:

109

Statistical Summary of Single Year Prediction Distribu-

tions - Phosphorus Concentration (mg/1)

100 Iterations

1990
2000
2010
2020

100 Iterations

1990
2000
2010
2020

Per Year
x = .01884
x = .01839
x = .01858
x = .01867

Per Year
x = .02051
x = .01831
x = .01849
x = .01923

A11 Normal Distributions

.00376
.00276
.00329
.00204

.00183
.00170
.00162
.00170

CVR
CV;
CV)-(

Cvg

Cvg
Cvg
CVg
Cv

.1998
.1500
771
.1093

.0894
.0927
.0877
.0883

.9430
.9672
.9547
.9823

.9881
.9873
. 9886
.9884



Table C.7:

Phosphorus Concentration (mg/1)

100 Iterations
Per Year

500 Iterations
Per Year

1000 Iterations
Per Year

100 Iterations
Per Year, All
Normal Distribu-
tions

100 Iterations

Per Year, Shift
To A11 Agricul-
ture

5%

S range
CV;
CV range

3%

S range
CV;
CV range

X

S range
CV;
CV range

"

S range
CV;
CV range

5x

S range
CV;

CV range

110

.0026

.0017-.0054

.143
.096-.284

.0026
.0021-.0034
.144
.110-.180

.0027

.0022-.0032

.143
.118-.167

.0016
.0013-.0023

.084

.068-.110

.0052
.0019-.0103
.224
.100-.389

y-intercept§
slope

r

y-intercept§
slope

r

y—intercept§
slope

r

y-interceptg
slope

r

y-intercept§
slope

r

Statistical Summary of Prediction Variability Over Time -

.0026
-.000002
-.0295

.0028
-.000013
-.2692

.0028
-.000004
-.1784

.0017
-.000005
-.2593

.0025
.00013
.7505
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APPENDIX D

1000 ITERATION-PER-YEAR PERIODICITY

The persistence of the remarkable periodicity which appears in
the 1000 iteration-per-year runs is quite perplexing. On a random
basis, the appearance of peaks is not surprising. However, the
occurance of three distinct peaks 12-1/2 to 13 years apart, regardless
of the changes to the simulation, is more than just a little sur-
prising.

After thoroughly checking the computer code for possible errors
and examining the random number generators for possible cycling, the
conclusion remained that this is not representing a random process.
Changing the random seed does not affect this persistent irregularity
(see Figures B.5a and B.5d). A similar peak appears in the 500
iteration-per-year run, but does not persist when the random seed is
changed (Figures B.4 and B.4a). The next solution involved altering
the second Markov constant (MKC2) in the lag-one flow model used to
generate random lag-one correlated flow values, representing the
flow from Lake Erie. Since flux from Lake Erie is the single greatest
influence on phosphorus concentration in Lake Ontario, changing the
nature of flow value generation should change the nature of the
predictions. By increasing MKC2 by 5 percent, the random portion of

the flow value is increased. This change indirectly affects the

1
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overall variability of the entire system, and might be expected to
result in peaks of greater amplitude or greater frequency. Neither
expectation is realized, however. The peaks persist with the same
familiar amplitude and frequency (Figure B.5b). The last attempt at
solving this mystery resorts to questioning the nature of the model
expression itself. The model is explicitly lag-one in character.
Implicitly, however, the model lags back, to a diminishing degree,
many years. That is to say, if the simulation incorporates 75 percent
of the previous year's predicted concentration into the current pre-
diction, next year's prediction will not only contain 75 percent of
this year's prediction, but implicitly will contain 75 percent of 75
percent of last year's prediction. In this manner, even the tenth
year's prediction will have incorporated in it about 8 percent of the
first year's prediction. The term that dictates how great a propor-
tion of the previous year's prediction will be incorporated into the

v
-(1/x + S/Z). Since

current year's prediction is the log term, e
detention time, t, is not highly variable (CV = .14) and lake mean
depth, z, is represented as a constant, the settling velocity term,
Vs> Was reduced in magnitude by one-half. If the periodicity is
inherent in the model expression, the period of this cyclic phenomenon
should change. Once again, however, no change from the established
pattern occurred (Figure B.5c).

This anomaly serves to point out how very sensitive complex

simulations can be to the most unexpected elements. Unfortunately, the

mystery is only manifested by the 1000 iteration run. Storage
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requirements demand 240,000 binary bits of central memory for each
of these runs, making it a very expensive mystery to solve. Future
efforts should focus on the possible cyclic nature of the synergistic
effect of two or more randomly generated variates. In specific,
there is one point which begins each peak. Each of these initiating
points leaves a wide gap between it and the previous point, seemingly
disregarding the lag effect that should eliminate, or at least make
highly improbable, the occurrence of such points.

There is, of course, a finite probability that any given random
number generator will generate a cluster of high values. This prob-
ability, however, is certainly not great enough to cause a one-year
increase of such magnitude. Several random number generators would
have to generate clusters of high values coincidentally, thereby
driving the overall annual prediction artificially high. In addition,
a Tow log term value would contribute to this gap by decreasing the
percent of the previous year's prediction that is incorporated into the
current year's prediction, and in this way indirectly giving greater
weight to these new artificially high values. This hypothesis can only
be viewed as a desperate attempt to explain a perplexing problem.

Even this, however, explains only how these peaks might occur. The

question of why they occur with such regularity remains unanswered.
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SIMULATION DETAILS

A 1ist of parameters and two flow charts accompany the computer
listing of the FORTRAN code for the simulation. Cost reduction
measures should be incorporated for longer runs (more years or more
iterations per year) or for extended application. The major cost-
saving device which might be considered is the elimination of the 28
dimensioned variables. At only 100 iterations per year, this
necessitates the storage of 2800 values each year. The actual values
are of little use other than for use in de-bugging the program.

To simplify, and eliminate the need for this storage, a simple
summation statement would require only one storage location for each
parameter while retaining the ability to describe each year with
summary statistics. In addition, some savings may be realized by
employing on-line optimization routines and selecting less costly

queues and rate groups for the lengthier runs.
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START

1. Generate Random Parameters
(one set of 15)

2. Calculate Prediction for One Year

Blocks #1 & 2 are
Described in Figure
E.2.

3. Repeat Blocks #1 & 2 J Times for
J Estimates of Year I Phosphorus
Concentration

4., Calculate Summary Statistics
Which Describe the Year I
Prediction Distribution

5. Increment Land Use Fractions

6. Repeat Blocks #1-5 40 Times
For a Complete Run (1981-2020)

END

Figure E.1. Flow Diagram of Simulation.
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PARAMETER LIST

SOURCE PROGRAM-MCS

Parameter Name

XSEED
z
T
PLAST

LUFCFU
LUFCFA

LUFCFF

DSEED
N

LSA

K

I

R

XM, M
S
URBCON
AGRCON
FORCON
AFXURB
AFXFOR

Units
Dimensionless
Meters
Dimensionless

Grams/m3

Dimensionless

Dimensionless
Dimensionless

Dimensionless
Dimensionless
Square Meters
Dimensionless
Dimensionless
Dimensionless
Appropriate
Appropriate
Grams/m3
Grams/m3
Grams/m3
g/mP-yr
g/mP-yr

Notes
Changes Random Seed
Lake Mean Depth
Counts Iterations

Previous Year's Concentration
Prediction

Annual % Change of Urban Land Area

Annual % Change of Agricultural
Land Area

Annual % Change of Forested Land
Area

Random Seed

Counts IMSL Iterations

Lake Surface Area

Year Counter

Iteration Counter

Random Number Output Vector
Mean of Parameter

Standard Deviation of Parameter
Runoff Concentration-Urban
Runoff Concentration-Agricultural
Runoff Concentration-Forest
Atmospheric Flux-Urban

Atmospheric Flux-Forest
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SOURCE PROGRAM-MCS - Continued

Parameter Name Units Notes
AFXAGR g/mz-yr Atmospheric Flux-Agricultural
ATMFLX Grams/yr Atmospheric Flux-Total
ONTFLO m3/yr Water Load-Ontario Tributaries
PFXPRI g/yr Point Source Flux-Primary Treatment
PFXSCD g/yr Point Source Flux-Secondary Treat-
ment
PFXPRE g/yr Point Source Flux-Phosphorus
Removal
PNTFLX g/yr Point Source Flux-Total
EREFLO m3/yr Water Load-Lake Erie
LSTFLO m3/yr Previous Year's Flow
MKC1 mS/yr Markov Constant
MKC2 m3/yr Markov Constant
ERECON g/m3 Influent Concentration-Lake Erie
N m/yr Settling Velocity
TAU Years Hydraulic Detention Time
ATMLOD m3/yr Water Load-Atmospheric
DIFFLX g/yr Diffuse Source Flux
EREFLX g/yr Flux From Lake Erie
TOTFLX q/yr Total Phosphorus Flux
SIGLOD m3/yr Total Water Load
QS m/yr Areal Water Load
L g/mz-yr Areal Phosphorus Flux

P Grams/m3 Areal Phosphorus Flux
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SOURCE PROGRAMS-MCS - Continued

Parameter Name

LOGTRM
TRMONE
TRMTWO
PDYN

PLAST

STDEV

Units

Dimensionless

9/m3

g/m3

Q/m3

9/m3

g/m3

Notes
Lag Magnitude Term
Present Year Contribution
Previous Year Contribution

Time Dependent Concentration
Prediction

Previous Year Concentration
Prediction

Standard Deviation of 40 Annual
Prediction Averages
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Subroutine - SORTIT

N Dimensionless Array Length

I Dimensionless Array Counter

J Dimensionless Array Counter
Subroutine - GROUPIT

J Dimensionless Do-Loop Counter

JCLS Dimensionless Class Size Array
Subroutine - PPSELCT

I Dimensionless Do-Loop Counter

X g/m3 Prediction Total
Subroutine - SUMSTAT

1 Dimensionless Do-Loop Counter

T Appropriate Prediction Total

XMEAN Appropriate Mean

Y Appropriate Squared Deviations

X Appropriate Sum of Squared Deviations

VAR Appropriate Variance

cv Appropriate Coefficient of Variation

R Appropriate Mode to Mean Ratio
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THE USE OF MEANS
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