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ABSTRACT

LAKE MODEL UNCERTAINTY ANALYSIS

- A LAKE ONTARIO CASE STUDY USING MONTE CARLO SIMULATION -

By

V. David Lee

A growing concern over the reliability of modeling and model pre-

dictions has highlighted the need for a measure of the value of the

information contained in the model result. Uncertainty analysis meets

this need by allowing quantification of model prediction uncertainty.

Monte Carlo simulation accomplishes this by incorporating all known

sources of error as stochastic inputs which reflect the natural vari-

ability and estimation uncertainty for each parameter.

A discussion of general modeling concepts, an introduction to

Monte Carlo simulation, and an overview of distribution selection

considerations serve as an introduction to the Lake Ontario case

study. A detailed development of the model expression and the simula-

tion structure is presented, and model sensitivities as well as

several planning scenarios are experimentally tested. Following a

discussion, conclusions and recommendations are made and analyzed in

terms of the meaningfulness of the results and the utility of the

model as a planning tool.
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INTRODUCTION

Concern for the environment follows a pendulum-like path; some-

times foremost in our thoughts, often superseded by seemingly more

immediate concerns. Since the time of the industrial revolution,

degradation of the environment has been a prominent side effect of the

rapid increases in technology and leisure time. The associated demands

placed on natural resource systems, combined with the rapid expansion

of technological expertise, has resulted in an acute awareness of our

ability to alter the environment. Not until most recently, however,

has this awareness begun to alter the way in which the world and its

resources are perceived. The past 20 years have highlighted the

dangers of pollution, and the hazards of exploiting the earth's re-

sources. Demands for effective action to protect the environment have

been voiced in increasing numbers. This change in collective con-

sciousness has been remarkably swift and far-reaching, and represents

perhaps the most important of the recent social, political, and econo-

mic changes which bears directly and critically on the future of our

planet.

Our planet is both fragile and finite. Decisions made today will

dictate the differences between a polluted, unproductive world, and a

world that can sustain future generations. However, making those de-

cisions is never the clear cut, straight forward procedure it could

be ideally. This multifaceted process must give a high priority to



assessing potential impacts of different resource use strategies. The

extent to which negative impacts are minimized in favor of positive

impacts, however, relies heavily on the judgment of the decision-

maker. Traditionally, this responsibility has been met with very

little quantitative information. While qualitative information is

essential to any resource utilization decision, decisions solely based

on this type of information are risky at best. The trend toward in-

creasing accountability and justification requirements imposed on

decision-makers has led toward a growing reliance on explicit quanti-

tative analysis of the essential cause and effect relationships. This

type of analysis requires considerable amounts of specific information;

information that is often not readily available. Major decisions re-

garding resource management are made daily as part of numerous planning

programs, and modeling has become a popular means for meeting the in-

creasing expectations which planners encounter in their continual

efforts to justify expenditures and fully achieve all expected results.

The major concern that has prompted the following work is the

potential use and, most importantly, misuse of models in the resource

planning context. As one of the most powerful planning tools available,

modeling needs to be critically evaluated to effect their greatest

positive impact. In particular, the emphasis of this investigation

is focused on the topic of uncertainty analysis as an aid to decision-

making. From a cost-effectiveness standpoint, incorporating uncer-

tainty analysis into the modeling process presents one of the few

excellent opportunities to gain a great deal of meaningful information

for very little additional cost.



In order to establish a common ground for all readers, as well as

a point of departure for the example application, some basic information

on models and modeling is included. This is followed by a discussion

of the Monte Carlo procedure with special attention given to distribu-

tion selection, the heart of Monte Carlo simulation. The remainder of

this analysis consists of the application of this stochastic process to

the Lake Ontario system, and a discussion of simulation development and

model outputs.





CHAPTER I

MODELS

Models are simplifications of reality. For this reason, any

particular system can be modeled in a multitude of ways because there

are many ways to simplify the same reality. Different model types can

be classified by their structural characteristics.

Model Types

Physical models are intended to closely resemble the subject in

appearance. Characteristically, scaling techniques are used to yield

products such as a globe or photograph. Analog models are character-

ized by the use of graphical or schematic representation. Often

transformed equivalents are employed for the development of typical

products such as block diagrams and flowcharts. Finally, there are

symbolic models which are characterized by the use of symbols,

mathematical and logical, to represent the system components and

interactions. Of these general types, only the symbolic has been

extensively applied in the resource management contest. Of course,

physical and analog models can be useful in specific instances.

The physical model is useful in studying the physical character-

istics of certain systems. This modeling process, however, is often

expensive, highly system specific, and thus quite limited in usefulness.

Analog models are often very useful for general planning. There is



however, no facility for describing other than qualitative relation-

ships. For these reasons, the mathematical model now bears the lion's

share of the modeling performed for resource planning and management,

and has revolutionized information systems.

Mathematical Models
 

This model type is actually a set of model types, as diverse in

make up as the set of all models as a whole. Basically, these models

can be classified as either empirical or theoretical. Empirical

models are developed from statistical analysis of the available data,

while the theoretical models attempt to describe the system components

and their interactions through the use of equations derived to match

the mechanistic operation of the system. In addition, mathematical

models may be specialized to perform optimization or simulation duties.

Optimization involves attempting to discover the best conditions, as

defined by an objective function and constraints for a given situation.

Simulation seeks only to create circumstances which emulate the system

processes. Three additional classifications must be taken into account

to characterize the entire spectrum of mathematical models. First, the

time dependency question must be addressed. Static models do not

allow for conditions in which the values of the variables change with

time. These models tend to be simpler, however, and require less compu-

tational effort than their dynamic counterparts, which are capable of

accounting for the effects of transient phenomena. Second, cross-

sectional and longitudinal dimensionality can vary according to need.

Real world resource systems are three dimensional in nature. However,

two dimensions, or often one, may be appropriate when the processes



desired can be adequately described. Temporal dimensionality is

dictated primarily by a model's time dependency; dynamic models being

capable of continuous longitudinal forecasting. Third, and last, to

be considered is the degree to which real world variability is built

into the model. Deterministic models are based on physical laws and

empirical formulas, and are frequently regarded as expected-mean-value

models. Stochastic (or probabilistic) models take into account the

randomness or variability inherent in system phenomena as well as

the errors associated with quantitatively characterizing the system.

Although more realistic in their representation of physical processes,

excessive data requirements often limit their opportunity for use.

Considerations Central to Model Use
 

Mathematical models can be used in a variety of ways. Whether or

not they should be employed in any given situation is a separate and

important question. A direct answer which applies to all situations

across the board does not exist. The decision to model must be made

on a case by case basis according to the specific requirements of

each case. The availability of an existing model which is suitable

or the need for developing a new model to meet specifications must be

considered. Time constraints, data availability, and data collection

requirements additionally all exert a strong influence on decisions to

model, and may differ substantially from case to case.

A basic understanding of the advantages and disadvantages of model

building provides a basis on which to make this decision. Chappelle

(1972) elaborates the major strengths of mOdel building. He notes that:



l) the most successful predicting systems to date employ model

building, 2) since the model represents the designer's view of the

real world, all of the inherent simplifying assumptions are explicitly

recognized, 3) models force recognition of shortcomings at an early

stage, 4) once represented symbolically, the system can be related

Inore easily in the literature, and can be more easily manipulated,

£5) mathematical models are often the least expensive means to accom-

plish prediction, and 6) modern theoretical statistics can be used as

ii powerful tool in the analysis and manipulation of the model. Many

(dangers also exist however. Inappropriate simplification, unnecessary

«:omplexity, and model building for model building's sake all reduce

'the probability that the model can be used to provide meaningful

results.

Foremost in the minds of model users is the ability of modeling

to give quantitative answers to complex planning problems through the

elucidation of fundamental cause-effect relationships. Depending

on the solution technique used, these quantitative answers can be

derived quickly and inexpensively. Computer assisted computation is

one example.

,Model Costs
 

As mentioned above, however, computation is only a portion of the

time and cost necessary to complete a successful modeling exercise.

lWodel selection and development (or modification), verification, degree

(3f complexity and uncertainty are all important cost considerations.

In addition, the availability of all necessary data, in the appropriate



format to meet all these requirements must be taken into account.

A wide variety of models are currently available, and as new

models are developed, the probability of existence of a relevant model,

which needs little modification, increases. Despite the fact that

there are many models in existence and more being developed, this

does not necessarily represent a duplication of efforts (Reckhow et.

al., l980b). Models are needed for a wide range of problem types,

addressing issues at different levels of complexity and precision.

Additionally, in very few instances, at this point in time, can a

model be expected to efficiently and effectively meet the need for

specific information without some modification, and therefore some

cost. A major consideration in the use of any model is the type,

amount and accuracy of the data needed to carry out experiments with

specified reliability. Data are needed for calibration and verifica-

tion of the model, as well as for experimental applications. Calibra-

tion and verification are distinctly different procedures. Calibration

is performed using one or more data sets for model inputs and outputs

to adjust and tune the model. Verification involves testing the

calibrated model using independent data. Preferably, conditions for

verification should differ from those used for calibration. Favorable

comparisons between model predictions and corresponding field data

serve as verification. Collection of field data, or assembly of

historical data, is a costly and time consuming procedure. Once

verification is accomplished, however, repeated experiments may be

carried out quickly and with a small additional cost. Therefore,

numerous alternative scenarios can be avaluated quickly and at low



cost. The cost of experimental data, however, remains a major expense

in terms of time as well as money.

Complexity, Accuracy, and Uncertainty

The cost of information is most acutely felt in the consideration

of model complexity. The more complex and detailed a model is, the

more data it requires to describe the system and the state of the

system. The model developer must carefully evaluate the need for

complexity in relation to the cost of the data necessary for meaning-

ful applications. In addition to this data cost, computational costs

are directly related to model complexity, and thus increase model

operation costs. The introduction of additional complexity does not

necessarily increase the accuracy of the simulation. In fact

accuracy as well as precision may be adversely affected. Although an

increase in accuracy often implies an increase in complexity, the

reverse is not true, and a common fallacy is to mistake complexity for

accuracy. The accuracy and precision (variability) of modeling results

depend directly on these same attributes of the model, parameters,

variables, and input data. One of the common pitfalls in using mathe-

matical models is to attribute much greater weight to the model than

is warranted by the accuracy and precision of the results. Such

over-reliance on the simulation results may be counter productive

and lead to misinterpretation of the data. Consideration of accuracy

and precision, then, is a very real and vitally important issue.

Model users are often placed in situations of great personal and

professional risk by models and model results. It is no surprise,
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therefore that concern over reliability has begun to be voiced. A

measure of the value of the information contained in the model result

is needed, and uncertainty analysis meets this need.

Quantification of uncertainty is relatively new to lake modeling

research. From early work by Cornell (1972) and Berthouex (1975),

many other studies have followed, which address uncertainty analysis

in lake phosphorus modeling (Reckhow, 1978b; Lehman, 1978; Lettenmaier

and Richey, 1979; Chapra and Reckhow, 1979; Reckhow, 1979b; Reckhow and

Chapra, 1979; and Simpson and Reckhow, 1979). More recently, compara-

tive applications of different uncertainty analysis techniques, such

as first-order, Extended Kalman Filter, and Monte Carlo simulation

have been presented (Scavia, 1980; Scavia et al., 1980).

Traditionally, the term uncertainty has been used to describe

variability in situations where too little information is available

to quantify that variability. Risk, on the other hand, is used to

characterize variability in situations where enough information

exists to quantify variability, often in the form of probabilities.

In the present context, some liberty is taken with these definitions.

Uncertainty will be estimated quantitatively to enable some qualitative

comparative risk reduction.

A model's inherent simplification of reality results from the in-

ability to census all information completely through time and space.

As a result, all model predictions reflect a certain degree of im-

precision or uncertainty. Through the use of procedures such as Monte

Carlo simulation, quantification of model prediction uncertainty is

possible. This in turn provides yet one more piece of information
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which can be used to weigh the value of model outputs. A final

consideration is the tradeoff between reliability and time. A

decision based on modeling which yields results with relatively broad

error bounds but that is ready in time to be used in appropriate

planning activities may be preferable to a decision based on a

more accurate yet complex model which is not available for planning

applications until a later time.

Summarngomments
 

Mathematical models are powerful tools. By following a few

simple guidelines, models can complement the qualitative information

used in decision making and thereby provide valuable input to directing

the planning process. The following guidelines represent a partial

listing of general statements meant to serve as reminders but not as

strict rules:

1. Critically define the problem and determine both

what questions are to be answered and what infor-

mation is needed.

2. Use the simplest method that can provide the

answers to the questions.

3. Fit the model to the problem, not the problem to

the model.

4. Weigh carefully increased time and cost involved

in increasing accuracy, and use the simplest

model that will yield the desired results.

5. Do not confuse complexity with accuracy.
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6. Explicitly note the underlying assumptions of

the model and avoid attributing more significance

to the results than is actually there.

A model may be thought of as really nothing more than an hypothesis

or set of hypotheses which are logically combined into an integrated

whole (Chappelle, 1972). The goodness of a model prediction depends

on how well these guidelines are used in formulating the appropriate

hypothesis and connecting elements. Most important of all, it must

be recognized that mathematical models, when used properly, can

expand the range of alternatives for consideration, and assist in

providing information in an organized form. Models are not the

panacea for resource information systems, however. When used within

their limitations, models are at best tools to assist in the difficult

task of evaluating alternatives. They are not a substitute for

experience and good judgment, rather they are a means for permitting

these qualities to be used more effectively.



CHAPTER II

MONTE CARLO SIMULATION

Monte Carlo simulation has broad application potential as a re-

search tool. Any system which can be characterized by parameters

that exhibit some degree of variability is a candidate for Monte Carlo

analysis. By allowing explicit treatment of parameter variability

and error, this technique is an ideal tool for combining estimates

of error from all sources in an examination of model prediction error.

The Monte Carlo Procedure
 

Monte Carlo simulation presumes construction of a mathematical

model, which describes the stochastic behavior of the variables in

the process under study. By characterizing each of these variables

as a probability density function (an explicit representation of the

variability and error) and not as a single value, all known components

of the uncertainty associated with the model prediction are internalized.

Repeatedly selecting a random value from the distribution representing

each term, and using each of these randomly selected values in the

model to calculate a predicted value of the dependent variable,

results in a distribution of dependent variable predictions which

reflects the combined uncertainties. This resulting dependent vari-

able distribution allows evaluation of the potential impacts on the

dependent variable as the result of perturbations to the system, just

13
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as a single value would. However, the frequency distribution also

quantifies the value of the prediction by indicating the degree of

prediction precision (reliability of the information), represented by

the distributional shape and spread. In addition, this information

can be used to evaluate alternative models by comparing the pre-

cision of the resulting distributions.

Distribution Selection

Before beginning this procedure, selection from among a myriad of

possible probability density functions for each parameter is necessary.

McGrathand Irving (19T3)provide an excellent review of this subject.

It is vitally important to know how the particular process, which a

variable represents, relates to the entire model in order to select

an appropriate probability distribution for any given random

variable. Each of the following points must be carefully considered:

1. the underlying theory of each process or event

2. data representing the variability of the process

3. sensitivity of the process to probable values of

the variable

4. programming considerations

When the variable under consideration is just one of many which

affects the overall problem or system, the simulation is often not very

sensitive to the choice of the distribution. For example, in summing

a series of random variables, none of which dominate the sum, the

total will tend to have a normal distribution, irrespective of the

nature of the individual distributions. On the other hand, when only
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a few variables dominate the process, or the process is greatly in-

fluenced by rare occurances, the selection of probability distribu-

tions becomes critical to effective simulation.

A balance must be struck between theoretical justification and

empirical evidence in the selection of the appropriate form of prob-

ability distribution. Typically, some form of parametric distribution

can be justified. Available data can then be used to estimate its

parameters. If no empirical data are available, theory and intuition

must suffice for selection. Carrying out sensitivity analyses

using several different distributions is another means of selecting

the appropriate distribution in the absence of empirical data. If

abundant empirical data are available, the histogram or more elaborate

parametric models can be used. The final choice of a particular

distribution must also depend on the relative ease of implementation.

Computer storage requirements, length of computation, and programming

difficulty are also key considerations.

Generating a random variable from a simple parametric distribution

is a relatively simple procedure. Histograms, too, are fairly easily

incorporated into Monte Carlo simulations. For more complex distribu-

tions, however, simple procedures for generating random numbers are

not available, and other more lengthy computational algorithms must be

used. In these cases, a compromise must be made between the time and

cost of complex computation and simulation rigor. Consideration of

the simulation's sensitivity to individual probability distribution

assumptions should be foremost in this compromise.
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Bases for Distribution Selection
 

Underlying the distribution selection process are two concepts:

the extent to which the qualitative nature of the process is known,

and the amount of quantitative data that are available. It is possible

in some cases, for instance, to characterize a certain process as

normal based solely on a firm understanding of particular characteris-

tics and behavior. Of course, little or nothing may be known of the

process. In these cases, data must be relied on for supporting the

selection of one distribution over another. The amount of data, how-

ever, may range from extensive (readily characterizing the variable),

to none. Each case is unique in its particular combination of quali-

tative and quantitative information, and therefore should be judged

individually.

Qualitative Basis

Efforts to establish a qualitative basis for distribution selec-

tion are generally based on the following:

1. similarity to a known process

2. underlying theory

3. certain other qualitative aspects

A process may be similar enough to one whose behavior is well known

to justify use of the known characterization for the process under

study. McGrath and Irving (1973) add that even though the specific

situations may not be particularly similar, an assumption of similar

process may be reasonable. That is to say, that even though the

particular events seem to bear no resemblance, they may share a
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behavioral similarity which permits the assumption that the two events

may be characterized by representatives from the same family of

distributions.

Many types of processes which are modeled stochastically have

been characterized by examining the underlying theory of the process.

The failure of electrical components have been widely assumed to

follow exponential or Weibull distributions (Weibull, 1951). The

deviation of shots from a bulls-eye is supported as having a Maxwell

distribution in three dimensions and a Rayleigh distribution to two

dimensions (Kendall and Stuart, 1958). The exponential distribution

reflects reliability and queueing phenomena, as well as characterizing

random arrival times (Goodman, 1979).

There are cases, however, for which little is known of the theory

of the process, and the process bears no discernable relation to any

process whose behavior can be described. There are certain other

qualitative aspects which may serve as clues for the identification

of an applicable distribution in these cases. This is particularly

true if something is known of the behavior of the process or if some

data is available. Although probably not sufficient for positive

identification, consideration of whether the variable is discrete or

continuous, symmetric, bounded, or can be otherwise characterized,

can be useful in making a reasonable selection of a distribution.

Quantitative Basis

The amount of data available is perhaps the most important con-

sideration in the selection of probability distributions. Very
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often, not having or not being able to collect the data necessary to

describe a particular variable is the primary constraint. The col-

lection process may be too lengthy or costly, or in some cases im-

possible. When sufficient data are available, however, an empirical

approach can be used. In essence, this involves using the data to

derive a characteristic distribution which represents the variable's

behavior. When insufficient data are available, and acquisition is

difficult or impossible, justification of the additional resources

expended in further data gathering may also be difficult. This is

especially true if a reasonable distribution can be selected using

the limited data. However, if a workable distribution cannot be

identified, additional data may be essential for selecting a valid

distribution. This is of particularly great concern if the results

of the simulation are highly sensitive to that variable.

Quantitative Techniques
 

The basis for selecting a specific stochastic model, then, de-

pends on the amount of qualitative and quantitative information avail-

able. Of course, this information may vary from nothing to over-

abundance. In this latter case, almost certain characterization of

the process is possible based on sound theory and empirical observation.

Development of the underlying theory traditionally involves chains of

inductive and deductive reasoning. Although generation of these

logical pathways often involves substantial quantitative information,

the secondary use of this information is primarily qualitative.

Developing empirical evidence, on the other hand, may require
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a number of quantitative methods. Among these, sensitivity analysis,

graphical analysis, parameter estimation, and goodness-of—fit testing

are most common.

Sensitivity Analysis

Sensitivity analysis is performed to determine the extent to

which one particular variable or assumption impacts the outcome of

the analysis. This technique can be useful in determining if the

behavior of the random component must be accurately described,

especially when very little characterizing information is available.

By varying the values or assumptions of the variables in question,

significant differences may be revealed using standard statistical

tests. This should never involve lengthy or tedious labor. Most of

the variables' behavior must be characterized in the first place,

if the simulation is to be relied on. If many of the variables are

not accurately described, the simulation lacks validity.

Graphical Analysis

Frequency histograms are one means for identifying appropriate

distribution models under the proper circumstances. Foremost, the

modeler may benefit from the relative simplicity of histograms. They

plot the frequency with which each value or class of values occurs

in the sample data. In addition to being used directly in the simula-

tion as the stochastic model of a particular process, these frequency

plots provide a visual model of the distribution shape and thus can

be useful in selecting an appropriate distribution. For many
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applications, the use of a histogram is acceptable if abundant data

are incorporated. Care must be exercised, however, in removing ob-

vious errors while retaining all elements of the data set which

reflect the existence of low probability events. This graphical tech-

nique is most applicable in cases of limited theoretical information

and at least some quantitative support. Constructed using all the

data collected for a given variable, the histogram presents only the

empirical information available. No assumptions of probable behavior

are made. Also, by using all the data, errors in the observation set

are perpetuated, and may contribute to the inaccuracy of the simula—

tion results. Of special significance is the case of very limited

data. Under this circumstance, accuracy is especially heavily in-

fluenced by sampling irregularities and from a lack of low prob-

ability events being represented. When this is the case, other

qualitative considerations (ranging from underlying theory to

intuition) may be used to develop better stochastic representations

of the variable.

Parameter Estimation

The concept of parameter estimation for the development of a

parametric distribution is another common approach to variable char-

acterization. A parametric distribution is defined as either a

functional or analytical representation of a probability distribution

which depends on one or more parameters (Hastings and Peacock, 1975).
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Several conveniences and advantages support the use of a parametric

distribution function rather than an histogram, despite the additional

effort required for parameter estimation (McGrath and Irving, 1973).

Among other advantages, use of a parametric distribution:

1. allows reasonable models to be developed in cases

of no data or very limited data,

2. allows incorporation of additional information

inherent in the shape of the distribution (e.g.,

continuity, bounds, and symmetry) if there is

theoretical justification,

3. allows meaningful extrapolation into the tail(s)

of the distribution, and into other regions where

no data are available,

4. provides a reproducible means of representing the

data since manual fits to the same data will vary,

and

5. provides important summary information about the

variable in the form of estimated parameters of

the fitted distribution.

In addition, if the random variable may be characterized by a "simple"

parametric distribution, random number generation is facilitated.

Simple Parametric Distributions

Simple parametric distributions are conceived as being those

Which are commonly encountered, relatively easy to recognize, and

(Have some theoretical basis for their functional form and application.
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Also, somewhat arbitrarily, only those which are characterized by

one or two parameters are considered simple, In general, these

distributions may often be derived from theoretical assumptions or

empirically-based graphical evidence, and are justified for selection

by either knowledge of the underlying theory or by preliminary graphi-

cal information.

Perhaps the most used and useful of the simple probability func-

tions is the normal distribution. Based on the central limit theorem,

this function of course assumes that, if none of the independent

elements of a sum dominates, the variable representing the sum will

tend toward normality.

Complex Parametric Distributions

In contrast to the simple parametric distributions, the complex

distribution families lack well-defined physical interpretations and

are difficult to express in simple functional form. Rather, they

are abstractions which provide greater flexibility than the simple

distributions, and better allow projection of events which would

appear in the distribution tails. The Weibull, Johnson, and Pearson

distribution families commonly represent the complex distributions.

Functionally complex, all these distributions require three to five

parameters for specific characterization. They are especially

applicable when a simple distribution cannot be justified, and when

the results depend on rare events, for which insufficient data are

available to accurately define the tail regions. These families are

'flexible enough to include a number of shapes. This flexibility
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allows a reasonable fit to any set of observations. Most simple

parametric distributions are in fact special cases of these complex

parametric distributions families.

Goodness-of—Fit Testing

Following the preliminary distribution selection process,

goodness-of-fit testing should be conducted to substantiate the

choice. It is especially important to validate these choices if it

is determined that the Monte Carlo result will be sensitive to the

distribution selection. Sokal and Rohlf (1969) present an excellent,

detailed review of goodness-of—fit testing. The Chi-Square test and

the Kolmogorov-Smirnov test are most popular due to their wide range

of application. These tests evaluate whether or not a group of data

Supports the assumption that the hypothesized random variable has come

from the assumed probability distribution. The underlying assumptions

here are particularly important. Since the statistical inferences

based on these tests rely on asymptotic properties, substantial data

are required to obtain valid interpretations. The more data there are,

the better the chances are of rejecting an inadequate distribution.

Pel"haps more importantly, the converse is also true; the less data

there are, the better the chances are of failing to reject an inade—

quate distribution. In general, the Kolmogorov-Smirnov test is more

sensitive than the Chi-Square test, and does not require arbitrary

gm”Ding. In addition to these widely applicable tests, several distri-

bUtTon specific tests are available such as the W—test for a normal

distribution and the WE-test for an exponential distribution.



CHAPTER III

THE SIMULATION MODEL APPLICATION

The Model Expression
 

The model expression used in this simulation is an empirical,

black box, lake phosphorus model. Such models are especially appli-

cable in situations which allow a high degree of aggregation, both

temporal and spatial (Reckhow, 1979a). The black box label results

from the basic assumption of all these models that the system (the

lake in this instance) may be treated as a black box. Simulation of

internal lake mechanics is not attempted. Only processes which occur

at the system boundaries are modeled; material input and output, and

interface interaction.

Being less complex mathematically than mechanistic simulations,

empirical black box models are appealing to planners because they are

often more compatible with the level of mathematical training and the

availability of financial resources. Additionally, the relatively

straightforward application of uncertainty analysis techniques to these

models has encouraged analysis of prediction precision by model users

who would otherwise work with deterministic methods only (Reckhow et

al., l980b).

Reckhow (1979a) reviews those basic model forms which empirically

address lake phosphorus concentration. The first is a steady state

form derived from the definition of Rp, the fraction of influent

24
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phosphorus retained in the lake. This term is defined as follows:

M - QPo

Rp =T (3-1)

where, on an annual basis,

M = annual mass rate of phosphorus influx to the lake

(103kg/yr)

Q = annual volume rate of water outflow from lake

(106m3/yr)

p = average outflow phosphorus concentration (mg/I)-

 

With M = LA and Q/A = 2/1, equation 3-1 becomes:

R = L - (2/1) P

p L

LT

=‘ET 7 Po

L1.

2

where: L = annual areal phosphorus loading (g/mz-yr)

z = lake mean depth (m.)

T = hydraulic detention time (yr)

A = lake surface (bottom) area (kmz)

%1-= average influent phosphorus concentration

(mg/l)

P = annual in-lake phosphorus concentration (mg/l)
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If it is assumed that in-lake and lake outflow concentrations are equal,

LT
P0 = P = E—-(l - Rp) (3-2)

The remaining model forms are based on the following phosphorus

mass balance (Vollenweider, 1969):

dP _ _ _
VaE-- M - oPV OP (3 3)

where: V = lake volume (106m3)

o = sedimentation coefficient (yr-1).

In essence, this states that the change in phosphorus mass in the lake

(VdP) per unit time (dt) is equal to the mass input of phosphorus (M)

minus the mass output of phosphorus via the outflow (QP) minus the

net mass of phosphorus deposited to the sediments. This sediment

"sink" term (oPV) assumes the rate of phosphorus deposition to the

sediments to be proportional to the total mass of phosphorus in the

lake (PV). Also, as in the first instance, the lake and outflow con-

centrations are assumed to be equal.

When g%-= O, the steady state solution is

 

_ L

P ‘ 2(1/1 + 0) (3‘4)

The time-dependent solution is as follows:

_ L -(l/ + 0) At -(l/t + 0) At
Pt - 62—;rz7g-[l - e T ]-+ Pt_]e (3-5)

where: At = time step (yrs.)
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Alternatively, the phosphorus mass balance may be expressed as:

dP _
Va? - M - vs PA - QP (3-6)

where: vS = apparent settling velocity (m/yr)

This differs from equation 3-3 in the sediment sink term by employing

an areal sink, which expresses the rate of deposition to the sediments

as a function of the bottom (surface) area. The resulting steady-

state expression is as follows:

p = (3-7)

where: 2/1 = qS = areal water loading (m/yr)

Therefore,

P = ———————— (3-8)

with the time dependent solution

1 v + 1-1

P; _____L__q_ [1 _ e”(i/T + vS/2)At] + P. e-(i/T + vS/a) At (3_9)

S S

The major difference between these last two model forms is the manner

in which the settling velocity is expressed. The first (3-4), is

based on an assumption of depth-dependent settling velocity (oz),

while the other model (3-7, 3-8) assumes a constant settling velocity

(Vs)' It is the time-dependent solution of this last model form (3-9)

which is used as the experimental base for this application of Monte
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Carlo simulation to lake model uncertainty analysis.

System Representation
 

As mentioned above, empirical black box lake models do not

attempt to represent internal lake mechanics. Rather, they focus on

material movement into and out from the system, and activity at the

system interfaces. It is not surprising therefore, to find that this

model addresses in-lake phosphorus concentration primarily through

modeling the interrelationship among phosphorus flux via the lake

interfaces (L), settling velocity (V5) and water loading (qs).

Distributions and Random Number Generation

Fifteen parameters are characterized using random variables. Six

are represented as log normal variates:

l. runoff concentration-urban

2. runoff concentration—forest

3. runoff concentration-agriculture

4. atmospheric flux-urban

5. atmospheric flux-forest

6. atmospheric flux-agriculture.

The remaining nine are represented as normal variates:

7. point flux-primary treatment

8. point flux-secondary treatment

9. point flux-phosphorus removal

10. water load—atmospheric

11. water load-Ontario basin tributaries
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12. water load-Niagra River/Welland Canal

13. concentration-Niagra River/Welland Canal

14. settling velocity

15. hydraulic detention time.

All random number generation is accomplished through the use of Inter-

national Mathematical and Statistical Library (IMSL) subroutines; sub-

routine GGNML for normal random variates, and GGNLG for log-normal

random variates (IMSL, 1979).

Goodness-of-fit testing, as described earlier, is not performed to

verify the selection of these parametric probability density functions.

Severely limiting data restrictions, push the selection criteria

balance toward the qualitative. Consequently, the generated data does

not always fit the empirical histogram exactly. In this instance of

limited empirical information, knowledge of the underlying theory, as

well as intuition have been employed to supplement the existing

empirical observations. That is to say, the parameter distributions

generated by the simulation are meant to approximate, as reasonably as

possible, the actual behavior of the parameter and not to exactly

match the date.

Phosphorus Loading

This simulation (see Appendix E) places greatest emphasis on

characterizing the loading term (L). This loading term is represented

as the sum of the following individual terms:

la) agricultural runoff concentration * tributary flow rate

1b) urban runoff concentration * tributary flow rate
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1c) forest runoff concentration * tributary flow rate

la + lb + 1c = diffuse source flux (DIFFLX)

2a) atmospheric flux to agricultural land use

2b) atmospheric flux to urban land use

2c) atmospheric flux to forested land use

2a + 2b + 2c = atmospheric flux (ATMFLX)

3a) point source flux attributable to primary wastewater treat-

ment

3b) point source flux attributable to secondary wastewater treat-

ment

3c) point source flux attributable to phosphorus removal waste-

water treatment

3a + 3b + 3c = point source flux (PNTFLX)

4) concentration from Lake Erie * flow from Lake Erie

= flux from Lake Erie (EREFLX)

Therefore,

L = (DIFFLX + ATMFLX + PNTFLX + EREFLX)/LSA

where LSA = lake surface area.

Diffuse Source Flux

Diffuse source flux is obtained be selecting random values from

the runoff concentration distribution for urban, forested and agricul-

tural land uses. Each of these random concentration values are then

multiplied by a randomly selected value from the distribution of Lake

Ontario tributary flows. The runoff concentrations are represented

by a log normal variate for each of the three land use types. The
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distributions of these random variates (Figures A.l, A.2, A.3) are

characterized by means and standard deviations derived from relevant

data aggregated from the literature (Beaulac, 1980). For further

details regarding the selection of these data, see Reckhow et a1.

(1981f).

Tributary flows, defined as all those tributaries in the Lake

Ontario watershed other than the Niagara-Welland complex, are charac-

terized by a normal random variate defining a distribution (Figure

A.8) with mean and standard deviation calculated from flow data of

several tributaries (Chapra, 1979). The cross-correlations among

tributary flows (Reckhow et al., 19819) are sufficiently high to

allow considerations of all tributary flow (other than Niagara-

Welland Canal flow) by a single distribution. It is not unreasonable

to believe that these tributary flows are correlated with the corres-

ponding atmospheric water loading values (i.e., the more rain that'

falls, the higher the tributary flows are expected). Future considera-

tion should be given to incorporating this relationship into the

model. One procedure in particular (Fiering, 1967) seems appropriate

for use in this application. Preliminary analysis with limited data,

however, does not indicate a strong correlation (r = .60).

The size of each land use fraction over the 40 year experimental

period (1980-2020) is expected to change relative to the others, and

therefore alters the total flux contribution from each land use

fraction during any given year. The simulation mechanics account

for this change by increasing or decreasing the relative size of

each land use fraction according to projected land use information
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(see Table 3-1). The projected difference for each land use fraction

(annual loss or gain) for the first 20 year period (1980-2000) is

divided by 20 to yield an average annual change, which, when pro-

gressively summed over the 20-year interval, accounts for the total

change in the land use fractions. The same is done for the second

20-year period (2000-2020) using the projected loss or gain for each

land use during this period.

Atmospheric Flux

Atmospheric flux is obtained by summing random values from

three log normal atmospheric flux distributions. These distributions

are defined by the mean and standard deviation of data characterizing

this flux source for each of the three land use categories (Figures

A.4, A.5, A.6). The data used (Reckhow et al., 1980a) reflect total

bulk loads. This includes both solution phase and dry fallout com-

ponents. It should be noted at this point that the dry fallout com-

ponent may be a substantial and significant portion of total atmos-

pheric flux (Reckhow et al., 1980a). All values in Figure A.4, A.5,

and A.6 are measurements from terrestrial stations, however, and as

such, probably incorporate much higher levels of dry fallout than is

representative of mid-lake stations. Some appropriate reduction in

these measurements, therefore, may be in order. Until further infor-

mation is available, however, this lack of detailed information plus

the broad inherent variability make any reduction at this point

speculation.

The relative weighting of atmospheric flux for each land use
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Table 3.1: Land Use Projections for the Great Lakes Basin (103ha.)

(IJC, 1977a)

 

URBAN AGRICULTURE FOREST

1980 3416.4 16446.9 34459.4

% Total 6.29% 30.28% 63.43%

A% +10.8% -1l.5% +1.3%

2000 3933.6 15818.4 34325.1

% Total 7.274% 29.252% 63.474%

A% +15.l4% -3.82% -.OO4%

2020 4212.8 15497.8 33821.5

% Total 7.87% 28.95% 63.18%

A% +7.l% -2.03% -l.47%

Net A%

1980-2020 +23.31% -5.77% -l.85%
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category is determined using an average land use fraction, obtained

by determining the average relative size of each land use fraction

over the entire 40-year experimental period. This average fraction

size is used in each year's calculation of relative land use contribu-

tions, unlike the weighting for atmospheric water loading values for

each land use which changes on an annual basis.

Point Source Flux

Point source flux is a major contributor to the total phosphorus

load to Lake Ontario. In order to facilitate examination of several

different policy scenarios involving changes in waste water treatment

strategies, and therefore point source loads, this flux source is

subdivided into primary treatment, secondary treatment, and phosphorus

removal. Each of these subcategories is represented by a normal

distribution defined by a mean determined from survey data (De Pinto

et al., 1980). The variability of these point flux contributions is

estimated by standard deviations about the mean concentrations for

each treatment type (Reckhow, 1978a). Two points which are deserving

of future consideration are: l) the effect of population shifts on

point source loads, and 2) the effect of the Finger Lakes and other

watershed phosphorus traps (e.g., wetlands) on flux rates from point

tributary sources. Population shifts will determine to a great extent

the relative fractions serviced by primary, secondary, and phosphorus

removal treatments. Additionally, point tributary loads upstream from

the Finger Lakes will be affected to a certain degree by these lakes.

Phosphorus flux, especially in particulate form, will be attenuated to
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some extent by these water bodies, but exactly to what extent is not

known.

Lake Erie Flux

Flux from Lake Erie is the final component of the phosphorus

loading term (L). It is calculated by multiplying a selected random

value from a normal concentration distribution by a lag-one auto-

correlated flow value. The concentration distribution (Figure A.10)

is defined by a mean and standard deviation from annual concentration

data (Chapra, 1979). The flow data is represented by an autocorrela—

tion flow model (Reckhow et al., 1981h). To incorporate this feature,

a lag—one Markov model is employed to longitudinally correlate the

flows. With flow initialized at the historical mean of 1.85 x 10"

m3/yr (Chapra, 1979), this model combines 80% of the previous year's

flow, 20% of the historical mean, plus a random component based on

the standard deviation and correlation coefficient of the historical

data (Figure A.9) to calculate the lag-one flow value.

Some controversy exists over which concentration data most

accurately reflect the flux values when multiplied by the lag-one

flows. Since flows are measured in the Niagara-Welland Complex,

Niagara-Welland concentrations can easily be justified. Chapra

(1980), however, notes that severe shoreline erosion contributes an

inordinate amount of particle—bound phosphorus to the inflow, and

suggests use of eastern Erie concentration data as more representative

of loadings that determine Lake Ontario concentrations. The particle-

bound phosphorus is included in the total-P concentration measurements
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taken in the Niagara-Welland area, and yet is thought not to contribute

greatly to the in-lake concentration due to rapid settling near the

inflow. Estimates of mid-lake availability vary, and indicate a need

for examining this question further (see Reckhow et al., 1981i for a

discussion of phosphorus fractions and availability). In an effort to

resolve this controversy, runs using both Niagara-Welland values

(R = .022, s = .002) and eastern Erie values (i = .017, s = .004)

are analyzed.

Settling Velocity

The second major term in the model expression is vs, the apparent

settling velocity. This term is obtained by selecting random values

from a normal distribution (Figure A.ll), defined by a mean and

standard deviation calculated from Lake Ontario data (Chapra, 1979).

This term is additionally important in that it serves as the

repository for model standard error. This error term is incorporated

in the standard deviation of the settling velocity term, and is

approximately equal to 2.7 g/m3. It is calculated by propagating model

error for P through the steady state model, fit from Lake Ontario

data (see Equation 3-8). When re-expressed as error in vs, this

estimate for model error in the Monte Carlo simulation tests the degree

to which a constant vS is appropriate for modeling Lake Ontario. In

essence then, it may be thought of as measuring the lack of model fit

for a constant settling velocity model.
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Areal Water Loading

The last major term in the model expression is the areal water

loading term (qs), and qS = Q/A, where Q is the sum of the following

terms:

1. Ontario tributary flows

2. Flow from Lake Erie

3. Atmospheric water loading

Annual water load from all Ontario basin tributaries other than

the Niagara River and the Welland Canal is calculated as described

above (see Phosphorus Loading: Diffuse Source Flux). In summary,

all tributary flows are characterized by a single normal distribution

since cross-correlations are high (Reckhow et al., 19819).

In addition, total water load is considered to be similar per

unit area of land surface, regardless of the land use (Reckhow et al.,

l981e). The water load from Lake Erie is calculated as described

above (see Phosphorus Loading: Lake Erie Flux) from Lake Ontario

data (Chapra, 1979). Summarizing, the water load is represented as

a lag-one auto-correlated parameter value. The Markov mddel combines

80% of the previous year's flow, 20% of the historical mean, plus a

random component based on the standard deviation coefficient to derive

the new flow (Reckhow et al., 1981h).

Atmospheric water loading from precipitation is calculated from

historical rainfall data (World Weather Records), obtained from the

meteorologic records for the Ontario basin. Random values are generated

from a normal distribution (Figure A.7) defined by the mean and standard

deviation which characterize these data.
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Additional Model Terms

To fill out the model expression, lake mean depth (2), hydraulic

detention time (t), lag-one phosphorus concentration (Pi-l)’ and

time step (At) are needed.

Hydraulic detention time is represented by a normal random vari-

able selected from a distribution (Figure A.12) defined by a mean

and standard deviation calculated from lake volume and outflow data

provided by Chapra (1979). Twenty years of outflow data were each

divided by the respective year's lake volume to arrive at a distribu-

tion of hydraulic detention times.

For the entire exercise, At remains one year. This of course

implies annual data only, and points to a shortcoming of the model.

By modeling annual loading and flow processes only, many planning

objectives (especially those which hold seasonal occurrences as key

events) cannot be addressed. However, taking into account the primary

purpose of this study, to examine the application of uncertainty

analysis on a lake model using Monte Carlo simulation, and the severe

data restrictions which would be encountered in an attempt to simulate

seasonal processes as well as the fact that much useful planning infor-

mation can be obtained from a study of average annual conditions, this

approach seems valid.

The lag-one phosphorus concentration is selected from a distribu-

tion of phosphorus concentration prediction values from the previous

year (Pi-1)' This concentration value is randomly generated from a

normal distribution defined by the mean and standard deviation of

P1._1 predictions and then used to calculate the present year's
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prediction (Pi)' It is initialized (PO) at .020 mg/l. Lake mean

depth is set deterministically at 89 meters (Snodgrass, 1974), and

used for all runs.

Simulation Flow and Structure
 

All the values are substituted into the model expression

(Equation 3-9) for calculation of a Lake Ontario phosphorus concentra-

tion prediction. The first prediction represents the concentration

estimate for the year 1981. Following a number of 1981 runs to

achieve a prediction distribution for that year's phosphorus concentra-

tion, the land use fractions are incremented as described above and

multiple iterations are again performed to achieve a prediction

distribution for the year 1982. This is repeated 40 times to include

a prediction distribution for the year 2020. The flow of the computer

simulation is somewhat different from that described above in order

to streamline certain calculations (see Appendix E).



CHAPTER IV

RESULTS

Model Results
 

The initial test of the model is a 40-year, lOO iteration - per-

year run. The phosphorus concentration prediction mean for the 40-year

experimental period is 18.2 micrograms per litre (pg/1), with a

coefficient of variation for those concentration predictions of 2.75

percent. This measure of variability actually represents the year-to-

year variation in the annual phosphorus concentration predictions.

The 14.3 percent mean annual coefficient of variation and the 2.6 ug/l

mean annual standard deviation serve to estimate within-year varia-

bility, which reflects combined input errors and variabilities.

Figure B.3 demonstrates the slight decreasing trend with the slope

of the regression line equal to -0.0194. The annual predictions for

the apparent settling velocity (R = 16.0367 m/yr), areal water load

(R = 12.0348 m/yr), and the phosphorus loading (R = .5108 g/mz-yr)

terms are summarized in Table C.l.

Flux

Figure 3.1 graphically presents the breakdown of phosphorus flux

sources. Diffuse source flux comprises 32.5 percent of the total

phosphorus flux to the lake, with a 40-year mean of 3.161 x 109 g/yr.

The coefficient of variation for the concentration mean over this same

40
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period is 8.8 percent, making it the most variable of all the deline-

ated flux sources, and the major influence on overall variation for

total flux. Point source flux is 17.5 percent of the total flux,

with a 40-year mean of 1.703 x 109 g/yr. The variability of this

source is 70 percent lower than that for the diffuse sources with a

coefficient of variation of 2.5 percent. Phosphorus flux from the

atmosphere is the smallest component of total flux at only 8.0

percent with a mean of 7.762 x 108 g/yr. Variability over the

experimental period is slightly higher at 3.7 percent than that for

point sources. The major source of phosphorus flux to Lake Ontario

is from Lake Erie. 42 percent of all the phosphorus input to Lake

Ontario comes by way of the Niagara River and Welland Canal (calcu-

1ated using Niagara-Welland concentrations). The model estimates a

40-year mean to be 4.064 x 109 g/yr with very little variability

(coefficient of variation = 1.1 percent). See Table C.2 for a more

complete statistical summary of the model's characterization of

phosphorus flux to the lake.

Water Load

Water loading is broken down into atmospheric, Ontario basin

tributary, and Lake Erie source components (Figure 8.2). Atmospheric

water loading is the smallest component. The 1.659 x 1010 m3/yr com-

prises only 7.0 percent of the total water load of 2.287 x 10H m3/yr.

The coefficient of variation is 2.0 percent. The variability of the

load from Ontario basin tributaries is approximately the same at 2.1

10 m3
percent, with a 40-year mean of 2.721 x 10 /yr, or about 12



 

perce

Lake

water

water

to be

0.3 p

51.1003

sensi‘

t0 thi

Nunbex

result

Shad9c

devlat

run.)

artlfa

AQQFEg

“ain't

Either

variat-



 

 

42

percent of the total. The remaining 81 percent of the water load to

n m3/yr, thisLake Ontario comes from Lake Erie. At 1.849 x 10

water loading source is the most significant influence on the overall

water load to the system. Additionally, one would expect this load

to be consistently a significant influence as indicated by the small

0.3 percent coefficient of variation. Table C.3 presents a tabular

summary of the water loading terms.

Model Sensitivities
 

Tables C.4 and C.4a summarize the results of the three different

sensitivity experiments. The first involves the model's sensitivity

to the number of annual iterations performed.

Number of Runs

Figures B.3, 4, and 5 are the graphical representations of the

results for lOO-, 500-, and 1000-iteration runs respectively. The

shaded portion reflects variability of plus or minus one standard

deviation. (See Appendix D for a discussion of the 1000-iteration

run.) There appears to be little sensitivity to this factor other than

artifacts of the increasing number of iterations per year. On an

aggregate basis, all experiments reflect predictions of comparable

magnitude. In addition, no conclusive differences are evidenced by

either measure of mean annual prediction variability (coefficient of

variation, CV and standard deviation, s).
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Distribution Selection

Comparing results for the distribution selection experiments

(Table C.4, Figure 3.13) reveals a higher prediction for the run

using all normal distributions to characterize the model parameters.

The average annual variability, however, is much lower than that for

the 100 iteration base run ( V = .084 as opposed to .144).

Random Seed

Sensitivity to a change in the random seed appears to a limited

extent in two of the three cases tested. Table C.4a presents a com-

parison of these cases. In the case of 500 iterations per year, the

general appearance of the time series plot is noticeably altered by

changing the random seed from 123457.00 (double precision) to

987543.00 (Figures B.4 and B.4a respectively). The summary statistics

of each of these runs, however, do not differ appreciably. The in-

creased random seed results in a mean annual concentration prediction

that is approximately 2 percent higher (19.1 ug/l vs. 18.7 ug/l), and

a mean annual variability that is just slightly lower (14.3 percent

vs. 14.4 percent). In both instances, the concentration appears to

change very little over the 40-year experimental period.

In the case of all normal distributions characterizing the para-

meters, the increase in the magnitude of the random seed from 123457.

00 (Figure B.l3) to 987225.00 (Figure B.l3a) again results in a dis-

tinct change in the overall appearance of the time series plot. The

larger random seed results in an average annual concentration predic-

tion just less than 9 percent greater than that for the small random
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seed (21.1 ug/l vs. 19.4 ug/l). The average annual variability is

comparable for the two runs with the larger random seed resulting in

a somewhat smaller value. In addition, the tendency of the concentra-

tion prediction to increase or decrease over time is altered by the

change in random seed; in this instance changing from a negative

slope when the smaller random seed is used, to a positive slope, when

the larger random seed is used.

Unlike the first two cases, changing the random seed for the 1000

iteration-per-year run appears to have little effect on either the

general appearance of the time series plot or the magnitude of the

predicted concentrations (Figures B.5, B.5d). Table C.4a does, however,

point out an increase in the average annual variability of approxi-

mately 3.5 percent when the larger random seed is used. (See Appendix

D for a discussion of the periodicity present in the 1000 iteration—

per-year runs.)

PlanninQAScenarios
 

Testing the effects of planning scenarios is one of the primary

advantages of modeling. Tables C.5 and C.5a summarize the results of

eight experimental scenarios.

Point Source Flux

The first two involve changing the nature of the point source flux

term by: a) reducing point source flux variability, and b) upgrading

all wastewater treatment facilities to phosphorus removal status. The

first case attempts to experimentally test whether or not regulations
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designed to tighten up operational efficiency, rather than to set

upper bounds on discharge, will have any effect on in-lake phosphorus

concentration. Figure B.6 indicates no great deviations from the 100

iteration-per-year base run (Figure B.3). In fact, the two runs are

identical in many respects. Most importantly, they share a common

average annual concentration prediction (18.2 ug/l) as well as a

common average annual coefficient of variation (14.3 percent). It

should be re-emphasized at this point that this analysis of point

source flux variability may be questionable since the characterization

of input variabilities is in such doubt. The second case is designed

to test the effect of upgrading all wastewater treatment facilities

by hypothesizing phosphorus removal treatment for those plants which

do not currently employ this treatment (approximately 47% of the total

point source contribution). It should be noted at this point that

three treatment plants are not included in this treatment change

over. Influent/effluent data are not available for these plants,

which in fact contribute less than 4% of the total point source load.

Figure 8.7 displays a remarkable resemblance to both the 100 iteration-

per-year base run (Figure B.3) as well as the run using one half of the

point source variability (Figure B.6). The major differences are a

slightly lower mean annual concentration prediction (17.4 pg/l vs.

18.2 ug/l) and a mean annual coefficient of variation about 4 percent

higher than the 14.3 percent variability of the base run.

The effects of these hypothesized changes on the total point

source flux is graphically represented in Figure 8.8. Total point

source flux is defined here to be phosphorus flux from all wastewater
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treatment plants with an average daily flow in excess of 1 million

gallons per day (mgd). There are 91 such facilities in the Lake

Ontario basin which account for well above 90 percent of the actual

total point source phosphorus load (DePinto, 1980). Industrial

sources are not included, as their contribution is relatively minor

(Chapra and Sonzogni, 1979). The reduced variability has very little

effect on the total point source flux. A reduction of less than two

9 g/yr to 1.67 x lOapercent in the average annual flux from 1.70 x 10

g/yr results. The upgrading to all phosphorus removal treatment,

however, has a marked effect; reducing the mean annual point flux

value by 27 percent.

Erie Concentration

The third experimental scenario measures the effect of alternate

concentration values used to characterize the flux from Lake Erie.

The concentration values used for all simulation runs are those taken

from Niagara River-Welland Canal data. Chapra (1979) contends that

excessive shoreline erosion in the area of the Niagara-Welland complex

may contribute a large portion of particle-bound phosphorus to the

lake. How much of this particulate fraction is actually available

at mid-lake sites is questionable, however. Chapra therefore

suggests that a more accurate estimate of this flux source may be

derived using eastern Lake Erie concentration values. The time

series plot of this run (Figure 3.9) is again very similar in

general appearance to the 100 iteration-per-year base run. Since

flux from Lake Erie is the largest single source, it is not surprising
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to note that changes in this term result in distinct changes in the

final concentration prediction distribution (see Table C.5). The

mean summarizing the eastern Lake Erie concentration data is 23 percent

lower than that used for the Niagara-Welland data (17 ug/l vs. 22 ug/l),

and results in an average annual concentration prediction 1.7 ug/l

less than the 18.2 ug/l mean value for the Niagara-Welland run. In

addition, the eastern Lake Erie data is 15 percent more variable than

the Niagara-Welland data. As a consequence, the mean annual coef-

ficient of variation for the entire experimental period rises by 2

percent.

Land Use Fractions

The five remaining experimental planning scenarios test the

effects of a) altering the balance of land use fractions, and b)

altering the rate of that change (Table C.5a). Doubling, or even

tripling the rate of current projected land use pattern shifts has

virtually no effect whatsoever on the concentration predictions over

the 40-year test period. Graphical representations of these runs

are not included in Appendix B. They are identical to the 100

iteration-per-year base run in almost every respect. One slight

difference is evident, however. As the rate of change increases, the

average annual coefficient of variation decreases slightly from 14.3

percent to 14.1 percent (doubling), and again to 13.8 percent

(tripling).

The last three experiments hypothesize land use shifts to all

urban, or all agriculture, or all forest by the end of the 40-year
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period (Table C.5a). Beginning with the current land use fractions,

one land use type is incrementally enlarged until the entire lake

basin is covered with this land use at the end of the test period.

The other two land use types are incrementally decreased until they

occupy none of the lake basin at the end of the test period. The

results of these experiments (Figure 8.10) dramatically point out

the distinct dichotomy between disturbed and undisturbed ecosystems

as far as their contribution to lake phosphorus concentration is con-

cerned. The two disturbed systems, urban and agriculture, contribute

to increasing in-lake concentrations as their respective fractions

increase. Agricultural expansion impacts the concentration more

quickly than urban expansion. That is to say, the rate of concentra-

tion increase is higher than that for the urban experiment. The

projected increase is 1.5 ug/l every 5 years for agriculture, as

opposed to 0.4 ug/l every 5 years for urban. Within-year variability

for the agriculture projections is more than 1-1/2 times greater than

the 13.6 percent average annual coefficient of variation for the urban

projections. Increasing the undisturbed system fraction, forest,

results in a decrease of the concentration predictions of 0.7 ug/l

every 5 years. The average annual variability of these predictions

is a very low 10.4 percent.

Variability
 

Table C.6 summarizes eight representative single year concentra-

tion distributions; four from the 100 iteration-per-year base run, and

four from the run using all normal distributions to characterize the
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model parameters. It is these single year distributions which

distinguish stochastic methods such as Monte Carlo simulation from

strictly deterministic techniques. While deterministic time series

models are able to generate estimates of variability over years, only

stochastic processes allow specification of variability for any one

year. These distributions (Figure B.ll and B.12) provide a great

deal of information concerning the nature of the model prediction.

In addition to the customary measure of location, this information

allows some feeling for spread as well as third and fourth moments.

In the case of the 100 iteration-per-year base run, annual variability

is quite large. Actually, for the entire 40-year run, the average

annual coefficient of variation ranges from 9.6 percent to 28.4

percent. Skewness may be easily estimated by calculating the mode

to mean ratio, R, as follows:

R = (1 + cv2)"°5

The base run distributions consistently demonstrate R-values very

close to 1.0. Some positive skewness can be seen in the sample

distributions. The run using all normal distributions manifests much

lower annual variability. For the entire 40-year run, the average

annual coefficient of variation ranges from 6.8 percent to 11.0 per-

cent. In this second case, the R-values approach l.O even more

closely. The histograms bear this out, being remarkably normal in

appearance.

One of the major questions to be answered is whether or not this

within-year variation displays any tendency to increase or decrease
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over time. Table C.7 summarizes the simulation results of this experi-

ment. Testing four model sensitivity runs results in very small dif-

ferences in annual variability. Over the 40-year test period, none of

these runs demonstrate much of a tendency to increase or decrease pre-

diction variability over time. Regression statistics for prediction

standard deviation and time reveal slight decreasing tendencies on

the order of 10'6 mg/l every year; -13 x 10'6 being the single largest

rate of change. Even the most radical planning scenario, the shift

to all agricultural land use, produces only a mild 13 x 10'5 mg/l

annual increase in the average annual standard deviation.



CHAPTER V

ANALYSIS AND DISCUSSION

A primary concern of this investigation, as with all modeling

exercises, is how well this tool characterizes the system it is in-

tended to characterize. The degree to which the accuracy of such a

tool may be measured is limited, especially in the predictive work it

is most often employed. However, three criteria which may be used

for such an evaluation are:

1) Does the simulation generate valid parameter values?

2) Using these parameter values, does the model predict

reasonable values for the dependent variable?

3) Does the model react to perturbations with consistency?

The first of these may be easily evaluated. The fifteen para-

meters that are randomly generated from distributions characterized

by literature data (see Chapter III) are of course accurately repre-

sented by the simulation. The ten remaining major model parameters,

which are calculated parameters, also agree closely with the findings

of other Lake Ontario studies (IJC, 1978; Sonzogni et al., 1978;

Chapra and Sonzogni, 1979; Chapra, 1980; Simons and Lam, 1980; and

Fraser, 1980).

The second point is somewhat more difficult to address. The de-

pendent variable, in-lake phosphorus concentration, is certainly

characterized within reason by the model expression. The model

51
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prediction agrees with all the major Lake Ontario studies listed

above. However, prediction behavior over the entire 40-year test

period must be assessed. In the few years immediately preceding 1980,

there seems to be a "significant decreasing trend in total phosphorus

concentrations" (IJC, 1977b). The 100 iteration-per-year base run of

this simulation agrees very closely with the magnitude of these concen-

trations, and continues the decreasing trend in the 40-year prediction

period. Major responsibility for this decrease is suggested to result

from changes in the sedimentation rate of total phosphorus (Fraser,

1980). This of course demands a much clearer picture of the nature

of the system's sensitivity to the rate of phosphorus sedimentation

than that which the current data provide. If this is the case, how-

ever, more sophisticated modeling treatment of the settling velocity

term (vs) is necessary (if meaningful projections are to be made).

The final point is the most difficult to assess in the present

context. Experimental perturbations, detailed in Chapter IV, affect

the model predictions in different ways, and to different degrees.

That is to say, the simulation does not react to these perturbations

with any recognizable consistency. The results, however, may indeed

be consistent with the behavior of the natural system. This dilemma

is due in part to the relatively recent origins of studies of this

type that stress prediction uncertainty. There is no cohesive body

of experimental information on which to base a set of expectations

concerning responses to certain given perturbations.
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Model Sensitivities
 

The first set of sensitivity experiments indicates no substantial

effects caused by changing the number of annual iterations performed.

Some change in the overall appearance of the time series plots is

evident, however, due primarily to the increased probability of

generating extreme values when greater numbers of iterations are per-

formed. Aggregate statistics, however, belie this difference.

Revising the simulation to employ only normal distributions to

characterize model parameters results in a slightly elevated prediction

range and a significantly reduced average annual coefficient of varia-

tion (.084 vs. .144). This lower variability and higher prediction

average may be explained by the fundamental differences between the

manner in which normal and log-normal distributions are treated.

Random log-normal parameter values can only be positive by definition.

Generation of random normal parameter values, however, involves

generating a random standard normal variate which will be negative 50

percent of the time. Since negative concentrations and fluxes are not

easily interpreted, all but the positive random numbers are screened

out before this standard normal random variate is adjusted using the

sample mean and standard deviation. As a result, random values

generated from the same population, characterized by each of these two

probability functions will result in two different sets of summary

statistics due to the inherent differences in the density functions and

the simulation's treatment of them. Whether or not this revision to

all normal distributions results in a more realistic representation of

system behavior is not clear, however. Adequate data for comparison are
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not available. This revision, however, does seem to increase the

simulation's sensitivity to changes of the random seed.

Although there are certain minor changes in the 500 and 1000

iteration-per-year runs due to changes in the random seed, none

appear as significant as those changes in the run using all normal

distributions. There is an 8.8 percent increase in the average

annual concentration and a complete reversal of the decreasing trend

accompany the experimental change of the random seed. This suggests

that perhaps the use of normal distributions is less characteristic

of the six parameters, previously described by log-normal distribu-

tions. The interrelationships among all the parameters, however,

are so involved that such a suggestion cannot possibly be validated

without considerable future investigation. Since distribution

selection is at the heart of Monte Carlo simulation, model sensitivity

to various distributions is critical. Future Monte Carlo investiga-

tions of Lake Ontario should focus on better characterization of each

parameter by a well defined parametric distribution.

Planning Scenarios
 

Experimental testing of regulations that would require greater

consistency in the operation of wastewater treatment plants seems to

alter the magnitude of the predictions very little. In fact, a sub-

stantial reduction in treatment plant effluent concentration results

in only a relatively small, although distinct, 1 ug/l reduction in

average annual in-lake phosphorus concentration. In this hypothesized

planning scenario, plants accounting for about half of the total point
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source load are experimentally upgraded from 47 percent phosphorus

concentration reduction (average secondary treatment) to 79 percent

concentration reduction (average phosphorus removal treatment). It is

difficult, once again, to know with any certainty if these experimen-

tal predictions are truly indicative of the system's reactions to

these point source flux perturbations. Point source flux is a minor

contributor at 17.5 percent of total flux, and as such would not be

expected to impact the overall prediction to a major degree. The

sparse information currently available on the projected impacts of

point source controls on future in-lake phosphorus concentrations for

Lake Ontario (see Chapra, 1980), however, suggests more substantial

impacts than are evidenced by this study. It is painfully obvious

that much more effort needs to be spent in gathering data to better

characterize the relationships between treatment plant operation,

effluent concentration, and in-lake concentration. In addition, it

is quite surprising that the multi-year data that have been gathered

are neither centralized nor aggregated in any useful form. As an

example, no estimates of treatment plant operational variability

are available. In order to simulate the natural variability in the

point source flux term on an annual basis, these estimates of how

great the variations in concentration reduction are from year to year

are vital. It seems a rather simple matter to calculate a standard

deviation for the concentration reduction performance over a period

of years. Extended studies of this kind which include measures of

variability, however, are non-existent (Elridge, 1980; Eastman, 1980;

Palancic, 1980; King, 1980; Berthouex, 1980, Heidtke, 1980; and
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Hore, 1980).

As introduced in Chapter IV, the use of eastern Lake Erie

concentration values to characterize phosphorus flux to Lake Ontario

via the Niagara/Welland Complex inlet results in a substantial 2 ug/l

decrease in the average magnitude of the annual concentration predic-

tions. This inflow is the single greatest source of phosphorus,

representing 42 percent of the total flux to the lake. It is not

surprising, then, to find the model prediction directly affected by

a reduction in the concentration value used to generate estimates of

flux from Lake Erie. Since the use of either concentration value

constitutes a major assumption (and a difference of 1.0 to 1.7

billion g/yr), fundamental understanding of why these two terms are

different through critical assessment of shoreline erosion at the

inlet and bio-availability at mid-lake locations is essential to

meaningful planning applications.

The final planning scenarios involve altering the distribution

of land use types and the rate at which that distribution changes.

The current projections for land use over the next 40 years, however,

manifest only minute annual changes of l/lOO to 5/100 on one percent.

Therefore, even though diffuse source flux represents 32.5 percent of

total flux, doubling, or even tripling, the rate of change has no

impact on the predicted concentrations over the test period. Only

the drastic and unrealistic shifts to single land use types stimulate

noticeable changes. These last changes, however, serve to highlight

the distinct dichotomy between the behavior of disturbed versus

undisturbed systems, and the difficulty in distinguishing any further
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specificity in land use classification. This is to say that,

although more detailed distinctions between row crop and non-row

crop, pasture, fallow, and feedlot, or between deciduous and coni-

ferous forest, or between industrial and residential land uses may be

desirable from the planning perspective, no data are currently

available to support any distinction beyond disturbed versus undis-

turbed.

Variability
 

Prediction variability within years and over time is the heart

of this study. Results of variability experiments are presented in

Chapter IV. Table C.7 clearly points out the difference between

modeling with uncertainty analysis and modeling without uncertainty

analysis. Traditionally, the prediction is characterized by a single

value; usually the mean. Through the use of Monte Carlo simulation

techniques, a fully descriptive prediction distribution is obtained.

This distribution not only allows some estimation of location, but

also allows estimation of prediction precision. Qualitatively, this

may be accomplished through visual examination of the prediction

histogram. Quantitatively, statistics such as standard deviation (5),

coefficient of variation (CV), and the mode to mean ratio (R) may be

used to estimate higher order moments.

The tendency for variability to increase or decrease over time is

unclear from the information generated by this study. Linear regres-

sion statistics calculated for the annual prediction standard devia-

tions indicate slightly decreasing slopes; the largest of the
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sensitivity runs being 13/1000 of one microgram per year. Even the

planning scenario which hypothesizes the shift to all agricultural

land use, the most radical change, results in an annual change in

standard deviation of only 13/100 of one microgram per year.

Summar

In summary, there are three concrete findings that can be made

directly from the results. They are:

1) Upgrading all wastewater treatment plants to phosphorus

removal status substantially reduces the magnitude of

the overall concentration predictions. ,

2) The flux from Lake Erie is the single greatest flux

source. The decision to use either the Niagara-

Welland or the eastern Lake Erie concentration data,

therefore, is critical to the final predictions.

3) The only distinction which can be meaningfully made

with regard to land use type as it affects phosphorus

flux is that between disturbed (urban and agriculture)

and undisturbed (forest) systems.

From these findings, several recommendations may be made to aid

in the development of priorities for future investigations. First,

if uncertainty analysis is to play a major role in improving the

predictive capabilities of models, then measures of variability must

become a routine element in data collection and presentation. Short-

comings in this area are particularly evident in the context of

wastewater treatment plant performance. Second, the controversy over
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which Lake Erie concentrations best reflect the actual impact of

flux from this source on Lake Ontario must be resolved. Until this

question is satisfactorily addressed, Lake Ontario water quality

predictions will be subject to this additional uncertainty; a sub-

stantial difference of 1.0 - 1.7 x 109 grams per year. Third,

existing data relating land use type and phosphorus runoff concentra-

tion must be augmented if meaningful land use planning is to be

accomplished. If no such effort is undertaken, all modeling distinc-

tion of land use types beyond disturbed and undisturbed will continue

to be artificial.



FINAL COMMENTS

In many ways, this research has uncovered many more questions

than it has answered; highlighted more difficulties than it has

overcome. It is an interim work, meant to be used as a stepping

stone, and to continue the construction of a firm foundation from

which this relatively new field may continue to grow.

The ultimate objective of these exercises is to provide the

environmental planner with a valuable tool which will enhance the

quality of the planning decisions by presenting one more piece of

information to be factored into the decision-making process. Those

who concern themselves with the model development area exclusively

often lose sight of this objective, and begin to view model develop-

ment as an end in itself rather than as a means to an end. It is

essential to keep in mind the eventual real world application. Models

are subject to data constraints, computation inadequacies, and training

insufficiencies. Often, logical and efficient models are taken too

soon from their pristine birthplaces and forced to fend for themselves

in the somewhat imperfect real world. After the dust settles these

well-intended tools are rejected as impractical or impossible to

apply. Those that survive have been developed within the limitations

of existing data restrictions. Of course, there is an important

and valid function for those models that are developed beyond existing

constraints. This simulation, for example, is not yet ready to be

60
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used for sophisticated planning projections. It has, however, per-

formed the necessary function of pointing out priority research areas,

and thereby helped focus the scope of future investigations. Continued

refinement is essential for this model to realize its ultimate

objective.

Above all else, this work is intended to showcase uncertainty

analysis, in the form of Monte Carlo simulation, through the use of a

practical example. It is abundantly clear that the Lake Ontario data

base is not yet comprehensive enough to support a model of even this

modest detail with uncertainty analysis. It is equally clear, how-

ever, that Monte Carlo techniques in specific, and uncertainty analysis

in general, possess enormous potential as modeling aids to decision-

making.
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APPENDIX A

GRAPHICAL DATA INPUTS

Each of the twelve figures contained in this appendix displays

the data used to formulate the parametric distributions which charac-

terize the model parameters. The block histograms represent the

actual data used in the distribution selection process. The continuous

curves superimposed on these histograms are the graphical results of

randomly generating values from parametric distributions defined by

the mean and standard deviation of each of these data sets.
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APPENDIX B

GRAPHICAL OUTPUTS

Graphical interpretations of the simulation results comprise

this appendix. Figures B.3, 4, 5a, 6, 7, 9, 13, and 13a have shaded

areas which represent the estimated uncertainty (#1 standard

deviation) about the predictions. Figures 8.11 and 12 display this

same uncertainty through the use of histograms of representative

single-year prediction distributions.
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APPENDIX C



APPENDIX C

TABULAR OUTPUTS

Tabular presentations of summary statistics for simulation

results are included in this appendix. Many of these statistiCs are

not very meaningful as far as interpreting annual prediction varia-

bility. Statistics such as the 40-year mean of annual means, and

variability about that mean are included for the sole purpose of

relative comparison. It is helpful to use these values to compare,

on a relative basis, different sensitivity or scenario experiments.

Tables C.6 and 7, however, directly address the focus of the study

by presenting specific annual variability information.
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100

Table C.l: Statistical Summary of 100 Iteration Base Run - Model

Terms

Phosphorus Concentration R = .0182 C_' = .1430

Prediction (mg/l)
-

s; = .0005 s = .0026

CV; = .0275 y-intercept = .0186

R; = .9989 slope = -.Ol94

r = -.4586

Settling Velocity R = 16.0367 y-intercept = 16.1854

Prediction (m/yr)

s; = .4503 slope = -.OO73

CV; = .0281 r = -1884

R; = .9988

Areal Water Load R = 12.0348 y-intercept = 12.0414

Prediction (m/yr)

s; = .0460 slope = -.0003

CV; = .0038 r = -.O783

R; = 1.0000

Phosphorus Loading R = .5108 y-intercept = .5247

Prediction (g/mz-yr)

s; = .0142 slope = -.0007

CV; = .0279 r = -.5594

R; = .9988



Table C.2:

101

Terms (g/yr)

Diffuse Source

Flux (32.5%)

Point Source

Flux (17.5%)

Atmospheric

Flux (8.0%)

Flux From Lake

Erie (42.0%)

Total Flux

(100%)

3.161 x lo9

9

X

1
1

s- .276 x 10
X

y-intercept = 3.44

' 1.703 x 109

9

X

I
I

.043 x 10
5R

y-intercept = 1.69

- 9
x 7.762 x 10

8
SR .287 x 10

y-intercept = 7.77

x 4.064 x lo9

9
s; .044 x 10

y-intercept = 4.07

‘ 9.702 x 109

9

X

1
1

s- .268 x 10
x

y-intercept = 9.97

CV;

R-

slope

CV;

Rx

slope = -.013

.0882

.9885

= -0.0l

.0252

.9990

= .0006

' .0370

.9980

= -.0003

‘ .0108

.9998

= -.0001

.0278

.9989

Statistical Summary of 100 Iteration Base Run - Flux

-.57

.17

-.012

-.022

-.564
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Table C.3: Statistical Summary of 100 Iteration Base Run -

Load Terms (m3/yr)

Atmospheric Water

Loading (7%)

Water Load From Lake

Erie (81%)

Water Load From Lake

Ontario Basin

Tributaries (12%)

Total Water Load

(100%)

1.659 x 10'0

.033 x 10'0

.0199

.9994

1.849 x lo11

.005 x 10"

.0027

1.0000

2.721 x lo10

.056 x 1010

.0206

.9994

2.287 x lo11

.009 x 10H

.0039

1.0000

y-intercept

slope

r

y-intercept

slope

Y‘

y-intercept

slope

Y‘

y-intercept

slope

r

Water

.64

.0002

.085

1.83

.0011

.048

.73

.0005

.1140

.29

.00003

.040
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Table C.4: Statistical Summary of Sensitivity Experiments - Phos-

phorus Concentration Prediction (g/m3)

Number of Iterations
 

100 x = .0182 CV = .144

s; = .0005 5 = .0027

CV; = .0275 y-intercept = .0186

RR = .9989 slope = -.00002

r = -.4586

500 R = .01872 _V'= .144

s; = .00090 5 = .0027

CV; = .0479 y-intercept = .01878

R; = .9966 slope = -.000003

r = -.O4l4

1000 x = .01899 "17 = .143

s; = .00095 5 = .0027

CV; = .0499 y-intercept = .0186

R; = .9963 slope = .00002

r = .2282
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Table C.4: Continued

Distribution Selection
 

All Normal Distribu-

tions

R = .0194 —V'= .084

s; = .0021 E = .0016

CV; = .062 y-intercept = .0207

R; = .9940 slope = -.00006

r = -.6367
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Table C.4a: Statistical Summary of Sensitivity Experiments -

Phosphorus Concentration Predictions (g/m3)

Random Seed
 

All Normal Distributions:

  

  

  

RS = 123457.00 R5 = 987225.00

y-int = .0207 r = -.6367 y-int = .0204 r = .4575

slope = -.00006 CV'= .0837 slope = .00004 CV’= .0802

1000 Iterations Per Year: 500 Iterations Per Year:

RS = 123457.00 RS = 123457.00

y-int = .0186 r = .2282 y-int = .01878 r = -.O414

slope = .00002 W = .143 slope = -.0032 CT = .144

RS = 135432.00 RS = 987543.00

y-int = .0186 r = .18712 y-int = .01917 r = -.O45054

slope = .00001 CV = .1441 slope =-.OOOOOlSCV = .14277

RS = 987225.00
 

.1589y-int .0187 r

Slope .OOOOl CV. .1482
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Table C.5: Statistical Summary of Scenario Experiments - Phosphorus

Concentration Predictions (g/m3)

Cut Point Source x = .0182 CV = .0143

Flux Variability _

by Half s; = .0005 s = .0026

CV; = .027 y-intercept = .0186

R; = .999 slope = -.0002

r = -.4339

Upgrade All Point R = .01736 CV'= .1494

Source Treatment _

to Phosphorus Removal s; = .00051 s = .0026

CV; = .02911 y-intercept = .01779

R; = .9987 slope = -.00002

r = -.4808

Use Eastern Erie R = .0165 _V'= .1636

Concentration Value _

for Calculation of s; = .0005 s = .0027

Flux From Lake Erie

CV; = .0298 y-intercept = .0169

R; = .9987 slope = -.00002

r = -.4383



Table C.5a:

Concentration Predictions (g/m

Land Use Shifts
 

Double Rate of

Fraction Shifts

Triple Rate of

Fraction Shifts

Constant Rate Shift

To All Urban

Constant Rate Shift

To All Agriculture

107

.01823

.00049

.0272

.9989

.01822

.00050

.0273

.9989

.02199

.00128

.0582

.9949

.02257

.00257

.1139

.9809

C
'
)

<

II

U
H

I
I

y-intercept

slope

Y‘

V

U
H

I
I

y-intercept

slope

l"

C

U
H

I
I

y-intercept

slope

r

V

5

y-intercept

slope

Y‘

.1406

.0026

.1380

.0025

.1363

.00301

.2244

.00519

Statistical Summary of Scenario Experiments - Phosphorus

3)

.01865

-.00002

-.4895

.01868

-.00002

-.5197

.02025

.00008

.77249

.01833

.00021

.9399



Table C.5a: Continued

Constant Rate Shift

To All Forest

108

.01577

.00163

.1034

.9842

CV' .1039

5 .00162

y-intercept

slope

I"

.01858

-.00014

-.98295



Table C.6:

109

Statistical Summary of Single Year Prediction Distribu-

tions - Phosphorus Concentration (mg/1)

100 Iterations

1990

2000

2010

2020

X
I

X
I

X
I

X
I

lOO Iterations

1990

2000

2010

2020

R

X
I

X
I

X
I

Per Year

= .01884

= .01839

= .01858

= .01867

Per Year

.02051

.01831

.01849

.01923

All Normal Distributions

.00376

.00276

.00329

.00204

.00183

.00170

.00162

.00170

CV;

CV;

CV;

CV;

CV;

CV2

CV;

CV;

.1998

.1500

.1771

.1093

.0894

.0927

.0877

.0883

.9430

.9672

.9547

.9823

.9881

.9873

.9886

.9884



Table C.7:

Phosphorus Concentration (mg/1)

100 Iterations

Per Year

500 Iterations

Per Year

1000 Iterations

Per Year

100 Iterations

Per Year, All

Normal Distribu-

tions

lOO Iterations

Per Year, Shift

To All Agricul-

ture

SR

5 range

CV;

CV range

SR

s range

CV;

CV range

g...

X

s range

CV;

CV range

5R

s range

CV;

CV range

SR

5 range

CV;

CV range

110

.0026

.OOl7-.0054

.l43

.096-.284

.0026

.0021-.0034

.l44

.110-.180

.0027

.0022-.OO32

.143

.118-.167

.0016

.OOl3-.0023

.084

.068-.110

.0052

.OOl9-.OlO3

.224

.lOO-.389

y-intercept§

slope

r

y-intercept§

slope

Y‘

y-interceptg

slope

Y‘

y-intercept§

slope

I‘

y-interceptg

slope

r

Statistical Summary of Prediction Variability Over Time -

.0026

-.000002

-.0295

.0028

-.000013

-.2692

.0028

-.000004

-.l784

.0017

-.000005

-.2593

.0025

.00013

.7505
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1000 ITERATION-PER-YEAR PERIODICITY

The persistence of the remarkable periodicity which appears in

the 1000 iteration-per-year runs is quite perplexing. On a random

basis, the appearance of peaks is not surprising. However, the

occurance of three distinct peaks 12-1/2 to 13 years apart, regardless

of the changes to the simulation, is more than just a little sur-

prising.

After thoroughly checking the computer code for possible errors

and examining the random number generators for possible cycling, the

conclusion remained that this is not representing a random process.

Changing the random seed does not affect this persistent irregularity

(see Figures B.5a and B.5d). A similar peak appears in the 500

iteration-per-year run, but does not persist when the random seed is

changed (Figures B.4 and B.4a). The next solution involved altering

the second Markov constant (MKC2) in the lag-one flow model used to

generate random lag-one correlated flow values, representing the

flow from Lake Erie. Since flux from Lake Erie is the single greatest

influence on phosphorus concentration in Lake Ontario, changing the

nature of flow value generation should change the nature of the

predictions. By increasing MKC2 by 5 percent, the random portion of

the flow value is increased. This change indirectly affects the
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overall variability of the entire system, and might be expected to

result in peaks of greater amplitude or greater frequency. Neither

expectation is realized, however. The peaks persist with the same

familiar amplitude and frequency (Figure B.5b). The last attempt at

solving this mystery resorts to questioning the nature of the model

expression itself. The model is explicitly lag-one in character.

Implicitly, however, the model lags back, to a diminishing degree,

many years. That is to say, if the simulation incorporates 75 percent

of the previous year's predicted concentration into the current pre-

diction, next year's prediction will not only contain 75 percent of

this year's prediction, but implicitly will contain 75 percent of 75

percent of last year's prediction. In this manner, even the tenth

year's prediction will have incorporated in it about 8 percent of the

first year's prediction. The term that dictates how great a propor-

tion of the previous year's prediction will be incorporated into the

’(I/T +vS/z). Sincecurrent year's prediction is the log term, e

detention time, T, is not highly variable (CV = .14) and lake mean

depth, 2, is represented as a constant, the settling velocity term,

Vs’ was reduced in magnitude by one-half. If the periodicity is

inherent in the model expression, the period of this cyclic phenomenon

should change. Once again, however, no change from the established

pattern occurred (Figure B.5c).

This anomaly serves to point out how very sensitive complex

simulations can be to the most unexpected elements. Unfortunately, the

mystery is only manifested by the 1000 iteration run. Storage
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requirements demand 240,000 binary bits of central memory for each

of these runs, making it a very expensive mystery to solve. Future

efforts should focus on the possible cyclic nature of the synergistic

effect of two or more randomly generated variates. In specific,

there is one point which begins each peak. Each of these initiating

points leaves a wide gap between it and the previous point, seemingly

disregarding the lag effect that should eliminate, or at least make

highly improbable, the occurrence of such points.

There is, of course, a finite probability that any given random

number generator will generate a cluster of high values. This prob-

ability, however, is certainly not great enough to cause a one-year

increase of such magnitude. Several random number generators would

have to generate clusters of high values coincidentally, thereby

driving the overall annual prediction artificially high. In addition,

a low log term value would contribute to this gap by decreasing the

percent of the previous year's prediction that is incorporated into the

current year's prediction, and in this way indirectly giving greater

weight to these new artificially high values. This hypothesis can only

be viewed as a desperate attempt to explain a perplexing problem.

Even this, however, explains only how these peaks might occur. The

question of why they occur with such regularity remains unanswered.
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SIMULATION DETAILS

A list of parameters and two flow charts accompany the computer

listing of the FORTRAN code for the simulation. Cost reduction

measures should be incorporated for longer runs (more years or more

iterations per year) or for extended application. The major cost-

saving device which might be considered is the elimination of the 28

dimensioned variables. At only 100 iterations per year, this

necessitates the storage of 2800 values each year. The actual values

are of little use other than for use in de-bugging the program.

To simplify, and eliminate the need for this storage, a simple

summation statement would require only one storage location for each

parameter while retaining the ability to describe each year with

summary statistics. In addition, some savings may be realized by

employing on-line optimization routines and selecting less costly

queues and rate groups for the lengthier runs.
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START

   

 
 

1. Generate Random Parameters

(one set of 15)

  
 

 
 

2. Calculate Prediction for One Year

  
 

E.2.
 

Blocks #1 & 2 are

Described in Figure

 

3. Repeat Blocks #1 & 2 J Times for

J Estimates of Year I Phosphorus

Concentration

  
 

 
 

4. Calculate Summary Statistics

Which Describe the Year I

Prediction Distribution

  
 

 
 

5. Increment Land Use Fractions

  
 

 
 

6. Repeat Blocks #1-5 40 Times ,

For a Complete Run (1981-2020)

  
 

  

  
END

 

Figure E.1. Flow Diagram of Simulation.
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PARAMETER LIST

SOURCE PROGRAM-MES
 

Parameter Name
 

XSEED

Z

T

PLAST

LUFCFU

LUFCFA

LUFCFF

DSEED

N

LSA

XM, M

S

URBCON

AGRCON

FORCON

AFXURB

AFXFOR

m

Dimensionless

Meters

Dimensionless

Grams/m3

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Square Meters

Dimensionless

Dimensionless

Dimensionless

Appropriate

Appropriate

Grams/m3

Grams/m3

Grams/m3

g/mz-yr

g/mz-yr

24232.5.

Changes Random Seed

Lake Mean Depth

Counts Iterations

Previous Year's Concentration

Prediction

Annual % Change of Urban Land Area

Annual % Change of Agricultural

Land Area

Annual % Change of Forested Land

Area

Random Seed

Counts IMSL Iterations

Lake Surface Area

Year Counter

Iteration Counter

Random Number Output Vector

Mean of Parameter

Standard Deviation of Parameter

Runoff Concentration-Urban

Runoff Concentration-Agricultural

Runoff Concentration-Forest

Atmospheric Flux-Urban

Atmospheric Flux-Forest
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SOURCE PROGRAM-MCS - Continued
 

Parameter Name
 

AFXAGR

ATMFLX

ONTFLO

PFXPRI

PFXSCD

PFXPRE

PNTFLX

EREFLO

LSTFLO

MKCl

MKC2

ERECON

VS

TAU

ATMLOD

DIFFLX

EREFLX

TOTFLX

SIGLOD

05

L

yflits

g/mz-yr

Grams/yr

m3/yr

g/yr

g/yr

g/yr

g/yr

m3/yr

m3/yr

m3/yr

m3/yr

9/m3

m/yr

Years

m3/yr

g/yr

glyr

g/yr

m3/yr

m/yr

g/mz-yr

Grams/m3

Notes

Atmospheric Flux-Agricultural

Atmospheric Flux-Total

Water Load-Ontario Tributaries

Point Source Flux-Primary Treatment

Point Source Flux-Secondary Treat-

ment

Point Source Flux-Phosphorus

Removal

Point Source Flux—Total

Water Load-Lake Erie

Previous Year's Flow

Markov Constant

Markov Constant

Influent Concentration-Lake Erie

Settling Velocity

Hydraulic Detention Time

Water Load-Atmospheric

Diffuse Source Flux

Flux From Lake Erie

Total Phosphorus Flux

Total Water Load

Areal Water Load

Areal Phosphorus Flux

Areal Phosphorus Flux
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SOURCE PROGRAMS-MCS - Continued
 

Parameter Name
 

LOGTRM

TRMONE

TRMTWO

PDYN

PLAST

STDEV

Dimensionless

9/m

Q/m

glm

g/m

g/m

3

3

3

3

3

Units m

Lag Magnitude Term

Present Year Contribution

Previous Year Contribution

Time Dependent Concentration

Prediction

Previous Year Concentration

Prediction

Standard Deviation of 40 Annual

Prediction Averages



SORTITSubroutine
 

N

I

J

GROUPITSubroutine
 

J

JCLS

Subroutine PPSELCT
 

Subroutine SUMSTAT
 

I

T

XMEAN

Y

X

VAR

CV

120

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Dimensionless

Q/m3

Dimensionless

Appropriate

Appropriate

Appropriate

Appropriate

Appropriate

Appropriate

Appropriate

Array Length

Array Counter

Array Counter

Do-Loop Counter

Class Size Array

Do-Loop Counter

Prediction Total

Do-Loop Counter

Prediction Total

Mean

Squared Deviations

Sum of Squared Deviations

Variance

Coefficient of Variation

Mode to Mean Ratio
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