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ABSTRACT

STABILITY AND NONLINEAR RESPONSE
OF DECK-TYPE ARCH BRIDGES

By
Khaled Yagoob Medallah

The nonlinar response in three dimensions of deck-type
bridges was considered by an "amplification factor method”
which has a form similar to that used in the design of
beam-columns. For use in the amplification factor method
the eigenvalues (and corresponding eigenvectors) or
buckling loads of the structures were studied. Two
three-dimensional numerical model bridges were constructed
from actual designed bridges. The finite element
formulation was used in the analysis using stright beam and
truss elements; only geometric nonlinearity was considered.

Factors affecting the elastic stability in three
dimensional space studied included the patterns and the
amount of rib bracing, the deck-ribs connections, and the
stiffnesses of the towers, deck, and the transverse
bracing.

Predictions of nonlinear responses using the
amplification factor method were compared with nonlinear
equilibrium solutions for lateral, 1longitudinal, and
vertical 1loadings. The comparisons in general indicated

good agreement.
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CHAPTER I
INTRODUCTION

1.1 Object and Scope.

Arch bridges are known for their aesthetical lines and
the large distances they can span. They are usually built
of concrete or steel to overpass rivers, to connect roads
over valleys in mountain areas, to bridge highways, and
sometimes even to support special structures. According to
the deck 1location arch bridges are classified as "deck
bridge,” "half-through bridge” or "through bridge." Figure
1-1 illustrates the different types of arch bridges.

An arch bridge subjected to a vertical uniforaly
distributed 1load would develop mainly thrust actions, a
situation similar to that of a column under axial
compression. Dead loads are essentially uniformly
distributed vertical loads. Live loads, on the other hand,
may cover only a portion of the span to produce maximum
bending. Wind 1locad (and earthquake loads) are applied
laterally or longitudinally. Due to the initial
compression in the arch in response to the dead loads, the
structure behavior under additional 1live 1load (or wind
load) will be nonlinear. This is a situation similar to
the case of a beam subjected to an axial load and lateral
load.

Starting about the late forties, with increasing needs
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for more economical and slender arches the deflection
effect, or the geometric nonlinearity effect on their
response became an important issue. Many attempts have
been made to address the proble-; While design engineers
used relatively simple approaches, researchers studied it
in theoretically more rigorous frameworks. (See section on
"Literature Review."”) Today, a fully nonlinear solution is
possible with the help of finite element codes and advanced
computing facilities. Such a solution is very expensive
and not vyvet readily available to many designers. A less
involved and simpler approach is desirable to facilitate,
at least, preliminary designs.

A procedure that had been used to estimate nonlinear

response, Rn' from the linear response, RL' is as
follows:
R = 1 (1.1)
n = R 1 - D :
P
c

where P 1is the compression load on a structure and Pc
is the critical buckling 1load of the same structure.

Equation (1.1) may be written as:

Rp = Ry, AF
in which AF (stands for "amplification factor") =

1/(1-P/Pc). This procedure will be referred to in this
thesis as the "amplification factor method."”

The major objective of this work is to examine the



validity of the amplification factor method for estimating
nonlinear responses of arch bridges.  Since AF involves
Pc' obviously the buckling load is of great importance

in this work. In the literature the effects of some
factors such as the torsional rigidity of the ribs and the
flexural rigidity of the bracing members on the buckling
load have been reported. It seems that there are other
factors such as the deck rigidity and the bracing which may
be important factors also. The effect of such factors on
the buckling 1loads of arch bridges will also be considered
here.

The study was based on a nonlinear elastic bean‘finite
element as reported in Reference 23. The computer program
used for this study was obtained by modifications and
expansion of two available programs CURVEL and FRAL3D
(21,22). The modifications comprised of the treatment of
larger systemas including the loading vectors, the addition
of a nonlinear elastic truss element, solution for multiple
eigenpairs (eigenvalues and eigenvectors), and the graphic
output of the buckling modes. The computer program was
extensively checked by comparing results with known correct
ones.

Two  bridge models were used for this research. . One,
designated as MCSCB, was a modified version of the Cold
Spring Canyon Bridge in California (20), and the second,
designated as FHAB, was taken from a Federal Hiﬁhnay

Administration Report on arch bridges (11). The use of



such model structures of practical design should increase
the significance of the data and the value of the results.

The most important finding of this study is perhaps
that, so far as elastic stability is concerned, the arch
bridge should be considered as a system. In the past, much
attention had been focussed on the stability of arch ribs.
The results of the study showed that other components such
as the deck, 1longitudinal bracing, transverse bracing, as
well as rib bracing, had very significant effects on the
stability of the bridge. For example, an addition of
nominal transverse bracing members at the crown could
change tﬁe buckling mode and correspondingly significantly
increase the buckling load.

The amplification factor method was considered for
lateral, longitudinal and vertical loadings. The values of
the maximum responses compared well with those obtained
from solutions of the nonlinear equilibrium equations if
the 1loads are, say, no greater than one half of the
buckling 1load. In regard to buckling load, the value used
in Eq. 1.1 must be that which corresponds to a buckling
mode compatible to the deflection shape caused by the

applied load.

1.2 Literature Review.

The problem of out-of-plane buckling of a curved beanm
was studied by Ojalvo and Newman (1). The authors
presented linearized perturbation equations ' about a

reference state, which satisfy the nonlinear beanm
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egquilibrium equations. Equations for the determination of
the buckling load could be solved by a "shooting" procedure
(a boundary value problem solved as an initial value
problem). Ojalvo, Demuts and Tokarz (2) presented two
equations for determining the out-of-plane buckling of a
planar curved member initially in a plane under pull and
thrust, with the 1load also initially in plane. Wen and
.Lange (3,21) presented a curved beam finite element model
including geometric nonlinear effects. The element is
initially curved in a plane but may deform out of or in the
initial plane. Members of various shapes can be studied
due to the flexibility of the geometry of the finite
element model. Presented data for in-plane and
out-of-plane buckling showed that for symmetric and
symmetrically 1loaded arches using the linear or qguadratic
eigenvalue formulations made only insignificant differences
in the buckling 1loads. Two matrices were considered for
the first nonlinear stiffness, one with rotation terms
included and one without. Results showed that the two
agree for problems with 1little bending, but for problems
involving significant bending the latter should be used.
Tokarz (4) presented experimental results on the
lateral .buckling of parabolic arches. Tokarz and Sundhu
(5) presented a pair of equations governing the torsional
buckling of arches under uniform vertical loading based on
linear buckling theory. Both papers used a free standing

rib, two ribs brgced at the crown, and used uniform bracing



only in the experimental work (4). Factors affecting the
torsional buckling such as the rise to span ratio, the
torsional rigidity to the out-of-plane bending rigidity of
the arch, and "tilted load effects" (see section 2.5) were
considered. Some of the tabulated results will be compared
with solutions obtained by the finite element model used
herein.

Donald and Godden (6) presented a solution for the
problem of a curved beam with transverse loading only and
transverse with axial 1loading using a numerical forward
integration method (a "shooting" procedure). Results
correlated well with experimental work. An amplification
factor method related to the thrust in the arch gave
predictions with accuracy to one percent. Only symmetric
lateral buckling was studied.

The problem of tied arches (for through bridges) was
studied by Godden (7) and Godden and Thompson (8).
Theoretical and experimental work were presented for
various factors affecting the lateral stability of unbraced
tied arch bridges, such as flexural rigidities, torsional
rigidities, rise to span ratio and the stiffness of the
hangers connected to the tie. The hanger effect was found
to be very significant. A good correlation  between
theoretical and experimental results was noted.

Shukla and Ojalvo (9) presented a numerical solution,
based on a forward marching 1ptegration, for the theory

developed in (1). It was found that the buckling load for



through arches is three to four times that for deck type
arches. Optimum rise to span ratio with torsional to
flexural rigidities are presented. Only single rib arches
were used in the study.

In the book Guide to Stability Design Criteria of
Metal Structures, third edition (10), were summarized
available data in the form of formulas and tables for arch
design fdr in-plane and out-of-plane elastic stability
under different loading conditions. In Nettleton's work
(11) related to the design of steel and concrete bridgés,
suggestions for the practitioners were presented regarding
local and overall stability design. Moment magnification
was related to the thrpst at supports. Wind load design
procedures were suggested for both the single and double
lateral systenms. Based on data in Reference (10), tﬁe
effective slenderness ratios for the braced arches similar
to the concept of column design were proposed for different
rise to span ratios with the effective length given by
Bleich (12). He also suggested that a continuous roadway
would contribute to the stiffness of the arch in proportion
to the ratio of the floor member depth to the depth of the
rib.

Ostlund (13) was the first to study two ribs braced
with cross beanms. Two arch forms (one "deep," one
"shallow") with varying properties were studied. Pactors
considered included the flexural rigidity of transberse

bars, rise of arch, spacing of the two ribs, number of



transverse bars, torsional stiffness of ribs, the "tilted
load" effects, and connection of ribs to the crown. A good
correlation between the theoretical and experimental
results were found by the author. The arches used had the
out-of-plane mode as the lowest buckling mode. 1In practice
it would appear that the in-plane buckling load would be
the lowest.

Wastlund (14) presented several works done by several
researchers under his supervision. A method analogous to
that of the beam-column was suggested for arches with
vertical buckling. A simple formula for additional moment
is presented (amplification factor based on the arch
thrust). A method for calculating the vertical symmetrical
and antisymmetrical buckling load was also discussed.
Tests results' which correlated well with theoretical data
were presented. For out-of-plane buckling of braced
arches, Wastlund suggested an approximate method which
stated that arches should be straightened out so that the
ribs and the bracing would lie in one plane. The buckling
load then would be computed as for a column with battens.
This nethcd ignores the rise to span ratio, the torsional
stiffness of the rib and the vertical stiffness of the
bracing.

Almeida (15) presented numerical solutions of the
curved beam theory (2) for two parabolic ribs braced with
tranverse beans. The cases of the deck situated above,

below, and no decks were considered. PFactors affecting the



buckling load were studied. Almeida's data checked with
the work of Tokarz fairly well and with Ostlund
satisfactorily.

Sakimoto and Namita (16) used the transform matrix
method to obtain the eigenvalues of the differential
equation governing the buckling load of framed structures.
Only circular arches under uniformly distributed radial
forces were considered. The authors found that in certain
cases the location of the transverse bars was more
important than the number of them and that to increase the
strength of the arch it was better to constrain the
out-of-plane flexure rigidity of the arch than the
torsional deformation, and that a slight loosening of the
fixed end about the out-of-plane may reduce the
out-of-plane buckling of the arch considerably.

Sakimoto and Komatsu (17,18) studied the ultimate
load-carrying capacity of arch systems under vertical
loading. The papers considered the overall slenderness
ratio of the structure as a major parameter. The second
paper presented for through bridges gave three effective
length values to be used under certain conditions for
buckling 1load estimation. A small initial deflection was
-assumed to - induce buckling.- A design formula for the
preliminary design of through bridges was suggested.

Yabuki and Vinnakota (19) did a literature review that
covered a very broad area of arch stability 1nc1ﬁd1ng

" planar and -spatial, 1linear, nonlinear (geometrical and
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material nonlinearity) and some parameters affecting the
stability problenm. A look at the German and Japanese
specifications with suggestions based on the presented data

was also included.

1.3 Nomenclature.

A = Cross-sectional area;

A* = Cross-sectional area of a deck beanm;

A, B = End nodes of an element;

Ao = Cross-sectional area of the modelled
column (MCSCB) ;

Ac' Ac‘ = Cross-sectional area of chord in original
and modelled bridges;

ACB = Cross-sectional area of composite bean;

AD = Cross—-sectional area of D-truss bracing:

Ad' Ag* = Cross-sectional area of diagonal member
in original and modelled bridges;

A' = Cross-sectional area of spandrel bracing:

Aslab = Cross-sectional area of deck slab;

AT = Cross-sectional area of transverse
bracing between ribs (beam bracing):

At = Cross-sectional area of truss member;

Av' Av‘ = Cross-sectional area of vertical member
in original and modelled bridges;

a = Chord length in truss (CSCB):;

1+ 839 - = Parameters used . for definition of shape

functions;

E = Modulus of elasticity;

f = Rise;

G = Shear modulus;

h = Height of crown column;
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k], [K]

L
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Original height of crown column as
modelled for (MCSCB);

Moment of inertia of column as used for
(MSCSB) ;

Moment of inertia due to beam action in
beam-truss tower;

Moment of inertia for beam-truss tower;

Moment of inertia due to truss action in
truss and beam-truss towers;

Moment of inertia of cross-section
(Figure 3-5);

Moment of inertia of deck about global
Y-Y axis;

Torsional constant;
Torsional constant of cross-section;

Element and structural linear stiffness
matrices;

Arch bridge span;

Length of element;

Length of diagonal member in truss
(original and modelled bridges);

Length of vertical member in truss
(original and modelled bridges);

Total number of panels;

Element and structural first order
nonlinear stiffness matrices;

Element and structural first order

~geometric stiffness matrices;

Element and structural second order
nonlinear stiffness matrices;

Applied concentrated load;
External load vector;

Reference external load vector;
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(P} = Critical value of applied load;

P = Critical (buckling) loadq;

Q = Lateral concentrated load;

{Q) = Structural generalized displacement
vector;

Q) = Unit vector;

Q) = Pirst eigenvector;

(Go) = {Qy) - a4 {Qq)

(Qret) = Reference structural generalized
displacement vector;

9, = Axial compression at crown in rib;

(@ = (44, Qg --- Qgs g+ Qgr -+ Ugp)Ts

R = Response;

R, = Linear response;

Rn = Nonlinear response;

S = Spacing between ribs or deck width;

SD = Force in diagonal member in truss;

Sv = Porce in vertical member in truss;

(Sg) = Structural secant stiffness matrix;

IST] = Structural tangent stiffness matrix;

u, v, w = Displacements along local x, y, 2 ixeo,
respectively;

U, vy, Wy and = Displacement for nodes 1 and 2 of beam

YUy, Vy, W, element along x, y, z axes, respectively;
" % - Axial Sieplacements of wnds of truss
Ue = Strain energy of the element;

Ut = Torsional strain energy of the element;

1] = Total strain energy of the element;
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Uy, U, = Quadratic, cubic and guartic parts of
strain energy:

= Total volume of bracing members between
ribs;

= Nonuniform distributed load;

= Additional applied load (distributed on
portion of the span to produce maximum

response) ;

= Critical uniform load;

Fixed load (uniformly distributed);

= Uniformly distributed yield load.

= wc/wY
Y, 2 = Global coordinates of the bridge (see
Figure 2-2);
= Local coordinates of element (see Figure
3-5);
= Wp/Wei

= Constant, see equation 2.4.9;
= Longitudinal strain;

Y, 6 = Rotation about x, y, z axes,
respectively;

wl, 61 and = Rotation about x, y, z axes for
wz, 62 nodes 1 and 2, respectively;

= Total potential energy:
= Buckling load parameter;

= Incremental operator;

A_* = Shear displacement in original and
modelled bridge;

AB‘ = Bending displacement in original and
modelled bridge:

= Shear stress;

o* = Angle of inclination of diagonal truss
member in original and modelled bridge;
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= Coordinates of a point with respect to
principal axes;

= Yield stress.



CHAPTER 1II

THEORETICAL BACKGROUND

2.1 Introduction.

In this chapter the basis of the amplification factor
method is explained in detail. For the sake of
completeness, an outline of the derivation of the
equilibrium and eigenvalue equation (21,22) is presented
nexf. followed by a description of the procedure used for
the solution of the eigenvalues and eigenvectors. The
chapter concludes with a description of the so-called

"tilted load effects."

2.2 . The "Amplification Factor Method".
It was mentioned in the preceding chapter that the

"Amplification PFactor”, AF, was introduced by Timoshenko
(27) when considering a simple beam problem subjected to a
combined lateral and axial 1load (see Figure 2-1). Using
the principle of superposition a trigonometric series for
the beam deflection was obtained.- The first term in the

'series for the mid-span deflection, R, is

3
1]" EI 1-0-

where Q is the lateral load, EI is the flexural rigidity, ¢
is the beam 1length, and o = P/Pc, in which P is the

applied axial 1load on the beam, and Pc is its lowest

15
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buckling or critical value.

The value of the 1linear deflection, RL' is
approximately equal to the first factor in equation 2.2.1,

i.e.,

Qe® - i4g g3 =Te—.3“£::r (2.2.2)

Thus eguation 2.2.1 may be rewritten as:

: 1
R = Ry (y=5) (2.2.3)
The term (1/1- o ), as mentioned earlier, 1is the

amplification factor, AF.

The preceding concept had been employed to estimate
the nonlinear response of other types of structures. For
example, for a single arch, the factor o was expressed as
the ratio of the actual thrust and the critical value of
the thrust for the arch (see, for example, (6)).

For a three dimensional arch bridge it is more
convenient to use the AF as a function of the applied
loads. If the vertical fixed 1load (usually a uniformly
distributed "dead 1load") is denoted by We and the

additional 1load, "live or wind load" by w then the

al

nonlinear response, Rn' due to w_ may be estimated

a

by
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- 1
Rn = Rp, == (2.2.4)

where RL is the linear response due to wa and o =
WF/wc. The gquantity W is the lowest
"compatible buckling 1load." The preceding term is used

here to define the buckling or critical value of the
vertical 1load the associated buckling mode of which is
conformable or compatible with the deflection shape of the
bridge due to the added 1load under consideration, i.e.,

Wa- A space structure has an infinite number of

w each corresponding to a different buckling mode,

c’
and so care is required to use the correct We for the
AF method.

The global coordinate system is presented in Figure
2-2. The combinations of loading conditions are presented
in Figure 2-3, and two typical buckled shapes are presented
in Figure 2-4. For response in the X or Y direction,
generally W_ that causes the buckled shapé illustrated
in Figﬁre 2-4a 1is to be used, for response in the Z
direction, generally we that causes the buckled shape
illustrated in Figure 2-4b 1is to be wused. It is very
essential to note that depending on the structure-load
system, the compatible buckling mode shape may be different
from those given 1in Figure 2-4. This will be pointed out

in Chapter V.
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2.3 Eguilibrium and Eigenvalue Equations.

The nonlinear equilibrium solutions and the buckling
loads and modes used herein are based on the nonlinear
finite element model described in references 22 and 23.
For the sake of completeness, the method is outlined in the
following.

The following assumptions were made for the derivation
of the model:

(1) The material of the elements is linearly elastic.

(2) Plane sections remain plane.

(3) The cross-section of the element is constant and

has two axes of symmetry.

(4) The effect of torsional deformation on normal

strain is negligible.

(5) The axial strain due to the transverse

displacement is averaged over the element length.

Consider a beam element in space with x, y and z
- coordinates and u, v and w displacements, ¢, y and 6 are
rotations about x, vy and z axes respectively. An assumed
linear shape function for each of u and ¢ and a cubic shape

function for each of v and w are:

u = a1 + ax
V= a6+ a,x + a x2 + a x3
3 4 5 6
= 2 3
L] a7 + agXx + agx + alox

$ = a,, + a;,x (2.3.1)

Referring to Figure 2-5 the boundary conditions are:
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at x =0
u=u.. ve=v. w=uw, 6 =g (2.3.2a)
1’ 1’ 1’ dx 1 °Te
dw
ax - "V and ¢ = ¢,
and at x = 2
= _ - av .
u Uy, V.= Vy, W= W,, gy 62 (2,3.2b)

gl

= -wz and ¢ = ¢2

Substituting equation (2.3.1) into equation (2.3.2), a
system of linear equations‘would be obtained. When solved,
the values of u, v, w and ¢ as functions of the generalized
coordinates are found.

Using beam theory where plane sections remain plane,
the longitudinal strain of beam elements is:

e(x,n,g) = €,(x) +n‘i‘21 +c£g- (2.3.3)
dx dx
in which n and ¢ are the coordinates of the point from the
cross-section centroid at which the strain is evaluated
(see Figure 2-6), and ¢ (x) is the axial strain at the
centroid which, when using the average strain assumption,

is

=9u . 1 1 4av
ea(x) = §2+ & c{2 (5 ax (2.3.4)
3
dx

From equation (2.3.3) and (2.3.4) the strain at each
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Doint of the section can be determined readily.

The strain energy due to normal strain is,

v, = J LE 1£x,1,0)?] dvol (2.3.5a)
vol 2
and due to torsion
1 L ) 2
U =i [63 (9% 44 (2.3.5b)
t 2 o dx

upon substitution of equations (2.3.3) and (2.3.4) 1in
equation (2.3.5a), and g% =-93%$$ in equation (2.3.5b)

then the strain energy, U, can be found:
U=U_+10 (2.3.6)

The stiffness matrices can be derived from the strain
energy equation (2.3.6). Equation (2.3.6) can be divided

into three parts, i.e.;
U=1U, +U;+U, (2.3.7)

in which, U, contains only quadratic terms, and U,

and U, contain cubic and quartic terms respectively.

The stiffness matrices can be derived as follows:

2
9 U2

2%y

((ng)y 41 = [gaz—gagl (2.3.8)

[n

[
[ &)
I

A2
3 U,

(21 = [nz)y, 31 = I5g;aq;!

21
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in  which q; and q4 represent the generalized
coordinates such as ul, Vi Wyo eeey etc., [k]

is the 1linear stiffness matrix, [nl] and [n,] are

the first and second order nonlinear stiffness matrices,
containing, respectively, linear and quadratic terms of the
displacements. If terms containing rotational
displacements in [n1] are eliminated, the resulting
matrix is denoted by [nl*]. Details of the entries of

the various stiffness matrices can be found 1in the
above-cited references.

The 1linear and nonlinear stiffness matrices for a
truss member were developed in the same manner as for the
beam. The matrices are 1listed in Appendix A. (A linear
shape factor was assumed.)

If the stiffness matrices of the elements are
transformed into global coordinates, assembled, and denoted
by [K], [N;] and [N,] for the linear, first and
second order system stiffness matrices, and denoting the
generalized displacement vector and external load vector by
{Q) and (P}, the total strain energy U and the potential
energy ¢ can be written as follows (see Mallet and

P
Marcal (25)):

U = (Q)[F [K] + £ [N,] + {5 [N,1] (Q) (2.3.9)

and
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¢p = U - {Q)(P) (2.3.10)

The first variation of the potential energy gives the
equilibrium equation:

[Sg] (Q = (P} (2.3.11)

where

[Sy] = [K] + 3 (N1 + 3 IN,) (2.3.12)

The second variation of the potential equation gives

the incremental equilibrium equation

[Sp] {4Q)} = {(AP) (2.3.13)

where (AQ) and (AP} are the incremental displacement

and loads respectively. [ST] is the tangent stiffness

matrix which is given by:

[Spl = IX] + [N.] + [N,] (2.3.14)

from egquation (2.3.14), the incremental equilibrium

equation is

([K] + [N,] + [N,]) {8Q} = (AP} (2.3.15)

The nonlinear equilibrium responses obtained for this
study were solutions of the preceding equation. The
buckling 1loads and modes were obtained by setting {AP)={O)

in the preceding equation, i.e.,

([K] + [NI] + [Ny]1) {aQ} = {0} (2.3.16)
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The solution of equation (2.3.16) is considered in the next

section.

L)

.4 Eigenvalue Solution.

2.4.1 Introduction.

The eigenvalue solution is a mathematical formulation
used for the determination of critical loads. If a load on
a structure is increased proportionally, the structure
reaches a 1load called the buckling 1load at which the
response could become indefinite.

The solution of egquation 2.3.16 is difficult due to
the fact that the matrices [N1] and [N,] are
functions of the displacement variables {q). Assuming that
the displacements are linear functions of the applied loads

up to the point of buckling, then:

(Q = xk]"1 (P (2.4.1)

ref} ref}

where (P . .} is an arbitrary reference load vector and
{Qref) is the corresponding 1linear response. Since
[N1] and [N2] are linear and quadratic functions of

the displacements, writing

{P} = A {Pref) (2.4.2)
one obtains
[N;({Q)})] = [N;({Qpeg)) ] (2.4.3)
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[N, ((Q))) = [Ny ({Qpeg})2? (2.4.4)

in which A is a scaler parameter.

Equation 2.3.16 can then be rewritten as

2
([K] + XC[NII + A c [NZ]){Qref) (AQ} =0 (2.4.5)

Equation (2.4.5) is a quadratic eigenvalue equation.
For sufficiently small displacement, the [Nz] matrix

can be neglected, i.e.,

(K] + Ac[N3]) (g _ ) (8Q) = O (2.4.6)
re

Equation (2.4.6) 1is a linear eigenvalue equation. A
solution of the eigenvalue problem defined by equations
(2.4.9) or (2.4.6) vyields the value of Ac' and
consequently the critical load, (Pc}, may be found

using equation (2.4.2), i.e.,

(P} = A\, (Ppo¢) (2.4.7)

2.4.2 Solution Procedure for Eigenpairs.

To solve for the first eigenpair (eigenvalue and
eigenvector), the well-known method of "inverse vector
iteration” was used using a unit starting vector, i.e.,
(Qc,)'r = (1 1 1 .... 1)]. The next eigenpair was
obtained by "deflating” the iteration vector or sweeping

out from the latter the eigenvector just computed, i.e.,

Q) = (Q) - 2;,(Q,) (2.4.8)

in which (Q,} is the first eigenvector just found.
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If one writes:

Qo=a1 Q1+0.2 Q2+C13 Q3+ .o (2.4.9)

the value of ¢, may be found using the orthogonality of

the Qi vectors with respect to [-NI], i.e.;

Q) [-N;] (g} =1 n=m
=0 n Am

It follows:
T
0y = (Ql) ( NII(QO) (2.4.10)

Iteration starting with {60) would produce a second

eigenpair. Similarly, a third eigenpair can be obtained
after sweeping the two eigenvectors from the unit vector
and use it for starting the iterative procedure. The

details may be found in such works as reference 24.

2.5 Tilted Load Effects.

In earlier research works on the effect of the bridge
deck on the lateral buckling load, the deck was assumed to
be rigid in that direction. Therefore, the deck vertical
loads transferred to the arch ribs would be tilted on
account of the lateral displacement. The phenomenon,
illustrated in Figure 2-7, is similar to the "P-A" effect
considered in building structures. It will also be
referred to herein as "rigid or classical deck effect."
For a finite element formulation, the tilted load effeét

had been considered in reference 21 for a single arch rib.
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The same approach is used herein for the arch bridge

system.



CHAPTER III

BRIDGES, MODELLING, COMPUTER PROGRAMS AND VALIDATION

3.1 Introduction.

It was mentioned earlier that two bridges were used
for this study: the FHAB and the MCSCB. The FHAB was
taken from a research report by Nettleton (11) and used forA
this research essentially as it was given therein. The
MCSCB was obtained by modifying or simplifying the model
for the Cold Spring Canyon Bridge. Two reasons make the
simplification necessary. One is the computer solution
cost. The other 1is the central computer memory. This
analysis used 340,000 words, the full memory of the MSU CYB
750 has 377,000 words. Thus, the present study with the
simplifying modelling already used about ninety percent of
the central memory. The theoretical basis for the
modelling is presented in section 3.3.

Two computer programs were used for this study.
Program NEAMAH and EIGGRAPH. Program NEAMAH is for the
solutions of linear and nonlinear equilibrium prob}ggsmggg
eigenvalue problems; program EIGGRAPH is for the plotting
of the buckled shapes. Many examples have been solved and
some compared with available data in the literature in
order to check and validate the program and the numerical
procedures. The sensitivity of the eigenvalue solutions to

the tolerance used in the numerical procedure was also

27
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studied.

3.2 The FHAB.

The FHAB bridge consists of two braced parabolic ribs
(without a deck). The structure has thirteen panels with
28 nodes and 38 straight beam elements. The two ribs are
supported by four hinges where no translations are allowed
and only rotation about the transverse axis is permitted.
The details of the structure are presented in Figures 3-1
and 3-2. The Figures include the cross-sectional area A in
sq. ft., the moment of inertia about the horizontal (major
principal) axis, Ixx' the minor principal axis,
Izz' and the torsional constant, KT, all in ft¢
(see Figure 3-5 for local coordinates).

The transverse beam bracing between the two ribs is so
oriented that the slope of its major principal axis is the

average of the slopes of the two adjacent ribs (see

reference 28, pp.. 288-291).

3.3 The MCSCB Bridge and Modelling.

3.3.1 Introduction.

The Cold Spring Canyon Bridge (reference 20, pp.
13-22) 1is a deck-bridge located about 13.5 miles north of
city 1limit of Santa Barbara, California. The bridge has
eleven panels with a 700 ft. span , and 119 ft. rise. The
ribs are spaced at 26 ft. apart. The original bridge is
not symmetric with respect to the crown. The model MCSCB

is symmetric with the following overall dimensions and
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material properties:

span = 700 ft; rise = 121.25 ft

spacing between the two ribs = 26 ft

deck elevation = 133.50 ft; deck width = 28 ft

modulus of elasticity E = 0.4175 x 107 kst

Poisson's ratio = 0.3

A complete three dimensional model of the bridge must
include the two ribs, the rib bracing, the deck, and its
bracing, the columhs, the towers, and sometimes, the
spandrel and transverse bracings. A large number of
elements are involved. 1In this case it has been practical
to use only four panels for the bridge system. For the
MCSCB four panel model, the number of elements is 54, the
total number of nodeé is 22, the total number of degrees of
freedom 1is 90, and the bandwidth is 33. Eight panels can
be and were used when the deck was eliminated or only the
in-plane behavior of the bridge with the deck was

considered.

3.3.2 Rib Cross-Sectional Properties.
For four and eight panels the ribs are illustrated in

Figure 3-4 and tabulated in Tables 3-1 and 3-2.
In the following the theoretical basis for the
modelling of the different components of the MCSCB is

presented.
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3.3.3 Modelling of the Deck.

The deck was modelled by two beams braced with x-truss
bracing (see Figure 3-3). The actual deck is mainly built
of a slab carried by four stringers (see Figure 3-7). The
moment of inertia for each beam in the model about x-x is
calculated from simple statics for two composite stringers
in the actual deqk. For the torsional rigidity of the two
beams, a three cell box is modelled to represent the four
stringers, the deck slab, and the bottom lacing (see Figure
3-6). The torsional rigidity for each beam is taken to be
1/2 of that of the three cell model.

The moment of inertia about the 2z-z axis for the
modelled beam representing the deck and the cross-sectional
area is calculated to provide a2 moment of inertia equal to
that of the actual deck about the global Y axis. The
latter moment of inertia of the actual deck, I

Y-y’
which is illustrated in Figure 3-7b, may be obtained as

2 2
Iyy = 2.Agp ((S/5)° + (5/6)%) (3.3.1)

where ACB is the cross-sectional area of the composite
beam and S is the spacing between the two exterior
stringers. Since I, ., is to be provided by the two

beams in the model, then I,_y is equal to;

2 &

IY—Y = 2(Iz_z + =— A ) (3.3.2)

[ 1)

where I, . is the moment of inertia about the z-z local

axis parallel to the global Y axis. Taking the latter



31

to be twice the local moment of inertia about the local z-z
axis of a composite beam, then A', the cross-sectional
area of a model deck beam, can be calculated readily.

The deck slab can be modelled by an x-truss bracing to
provide the same shear stiffness as that of the slab (see
Figure 3-8). Denote the shear displacement of the slab in

Figure 3-8a by As, then

A_. = shearing strain -+ 2 (3.3.3)

where 1 is the shear stress and G is the shear modulus, or,

for a unit load,

A = 1x1L (3.3.4)
slab ©

The x-truss bracing shear displacement is

= 2
A = 2 Sp® g (3.3.5)
s A* E
a

where S, is the force in the diagonal member, Lq is
the 1length of the diagonal member, A'd is the diagonal
member cross-sectional area, and E is the modulus of

elasticity. Substitute for each value in equation 3.3.5.
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(22452)1/2 2 (22452)1/2 (3.3.6)

Atg = [1/2 —eg— i E x 2
d

The bracing and slab deck are to have the same shear

displacement for the same (unit) shear load. Hence,

hg = A% (3.3.7)

Substituting for As and A*s in 3.3.7 and

simplifying, one obtains:

*

A
d =6 [ &42%, 1

Aslab 2E S

3.3.4 Modelling of Rib Bracing.

The K-truss bracing for a panel between the two ribs

of the real bridge 1is shown in Figure 3-9a. The x-truss
bracing that is to replace the K-truss bracing is
illustrated in Figure 3-9b. Under a unit shear load, the
two trusses are to have equal displacements (sum of bending
displacement bog or A*B and shear displacements

As or A*s), i.e.

*
Ag + Ay = A g+ b g (3.3.9)

If Sc is the force in the chord members, Qc is

the member's 1length, E is the modulus of elasticity, and

Ac is the chord cross-sectional area.
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n=1,2,3,...N (3.3.10)

where N stands for the total number of panels - i.e.

A, = Y n 2 a cor?e

1 (5) __E—K:_ 2 (3.3.11)

2 acortée N 2
=280 5 %
E A_ =

where 6 is the angle of the inclination for the diagonal as
illustrated in Figure 3-9a; the chord length is a. For the

single panel x-truss:

A* - Na cor?e*

= . (3.3.12)
2 Ac E

in which A*_ is the chord area and 6* is illustrated in
Figure 3-9b.
The shear displacement of the K-truss can be

represented by the following:

2 2

s Ad E AVE

) N (3.3.13)

where the subscript 4 stands for the diagaonal member and v
for the vertical, if S is the spacing between the two ribs.

Substitute for each value in egquation 3.3.13, i.e.:

_ (1/2 csce)"’2 2 (1/2)2 s/2
+
s Ay E d A, E

] N (3.3.14)

and similarly for the x-truss bracing, i.e.



8 = (1/2 csce*)_Td_ 2 (3.3.15)

where;

1/2' L. = (a2 + (3/2)2)1/2

L I 2_2 2

L *
csce = _9_ cscer = °d
s/2 Na

Setting A;=Ac and substituting in equation

3.3.9, the value of A*,; can be readily found.
A test problem involving modelling of the K-truss by

X-truss was solved. The K-truss had four panels which was
modelled by a one panel X-truss. The displacement of the
free end of both cantilever trusses checked well which

gives support to the validity of such modelling.

3.3.5 Modelling of Towers and Columns.

The tower 1is, in actual practice, a pier in the form
of a plane frame (see Figure 3-10). It is used to support
the deck vertically, by transferring the 1loads to the
foundation directly, and laterally, by providing a
stiffness in the 1lateral direction. For the vertical
stiffness of the tower, the tower 1is assumed to be
perfectly rigid, which can be modelled by having a support
in the Y-direction (see Figure 3-10). The lateral
stiffness can be estimated by evaluating the actual
stiffness of the frame which amounts to 1022 kips/ft. This

is represented by a truss element with length 20 ft. and
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cross-sectional area of 0.00489 £12 (see Figure 3-3 for
the modelled tower). For the deck supports, only
translation in the 2z-direction and rotations about the z
and y axis are allowed. One of the two supports is a
roller, as illustrated in Figure 3-3, which allows
x-displacement, too.

The column cross-sectional areas for the model were
increased 1in proportion to the increased spacing between
the columns in the model over the spacing in the original

bridge.

3.4 Computer Programs.

Two programs have been prepared for this study:
Program NEAMAH and Program EIGGRAPH. NEAMAH may be used to
evaluate the nonlinear equilibrium response and the
n-eigenvalues and corresponding eigenvectors of a general
space framed structure.

The program was an extension of one originally
developed at Michigan State University by Jose Lange (21)
for the 1lowest eigenvalue of a curved beam deformable in
three dimensional space. It was extended for three
dimensional nonlinear equilibrium problems using beanm
finite elements solution by Jalil Rahimadeh (22).

The author's contribution lies mainly in the increased
capability and efficiency in handling 1load inputs, the
solution for more than one eigenvalue, and the
incorporation of the space truss element in the program.

Subroutine BAND was rewritten for program NEAMAH, and for
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the "Eggzggggﬂ~gpdated solution," the rotation of the major
principal axis was modified. The program coding is listed
in Appendix B.

Program EIGGRAPH was developed with the aid of the
consultants at the MSU Computer Laboratory ¢to plot the
eigenvectors. Plots obtained using this program can be
seen in chapter 1V.

All plots are plotted with scale 1:20 unless otherwise

mentioned in the figure.
3.5 Validation.

3.5.1 Introduction.

The purpose of this section is to present data for the
validation of the computer program (NEAMAH) and ‘the
procedures which it embodies. Comparisons with published
results in the literature are made where possible. A check
of the truss 1linear stiffness with SAPIV is made. The
buckling 1loads of a plane truss-tower, a plane truss and
beam tower are compared with the buckling of a cantilever
column. The effects of tolerance on the eigenproblem

solutions were also studied.

3.5.2 Vertical Stability.

For a validation of the program to solve problems
involving vertical stability, the FHAB bridge was used.
Egg;librium solution was obtained by use of the
fupdated—nagrange" procedure. Plotted in Figure 3-11 as

functions of the 1loading are the gquarter point deflection
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and the determinant of the stiffness matrix. The
gquilibriun solution may be used to identify the bounds of
the buckling load for the structure. Instability may be
assumed to occur when the determinant vanishes. It is not
possible using the available equilibrium solution procedure
to actually pinpoint the exact buckling load due to the use
of fiq;ﬁgAAlqad;increments, Instability occurs between two
successive load increments in which the first is stable and
thew“sgqqnd is not. Using smaller load increments would
decrease the bounds, yet the solution cost would increase
very significantly. The bounds are plotted in Figure 3-11
as a dotted line.

Oon the other hand, an eigenvalue solution was obtained
for this problem and plotted as a horizontal straight line
in the figure. It 1is seen that the eigenvalue solution
lies within the bounds of the equilibrium solution. Since

the two solutions were essentially independent, the results

lend credibility to both.

3.5.3 Lateral Stability

Qﬁtempts were made to compare the lateral buckling
load wusing the eigenvalue solution with existing data
available in the 1literature. The comparisons included
results given by: (i) Equation 16.25 in Reference 10 for
out-of-plane buckling of single arches, (ii) Lars Ostlund
(13) for the buckling of two ribs braced with beam element,

and (iii) Tokarz (4) and Almeida (15) for two braced ribs.
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3.5.3.1 Eguation 16.25 in Reference 10

In the book: "Guide to Structural Stability of Metal
Structures" (GSSMS (10)) edited by B. Johnston, Equation
16.25 was presented for estimating the crifical load for
the out-of-plane buckling of a single parabolic arch rib
loaded uniformly. The effect of the in-plane flexural
rigidity is not considered.

Three arches were used for comparison. (1) A?Fhfﬁ,fﬁ
?resented in Figure 3-12, (ii) the FHAB, and (iii) the
MCSCB (all as single arches). The results are given in
Table 3-3. The equilibrium solution of arch-A is also
presented in Figure 3-13. The results are seen to compare

well.

3.5.3.2 Ostlund's Data

Two examples were considered, both for structures with
two ribs braced with cross beams only (Vierendeel type).
Figure 3-14 gives the arch dimensions, the 1loading
condition, and material properties. The properties of the
cross-sections of the various elements are presented in
Table 3-4. The comparison of results is listed in Table
3-5 for examples one and two. The tabulated values are for
c = qol’..z/EI° where q, is the critical axial compression
at the crown. The three values of c that appear in Table
3-5 are due to different approximations employed by Ostlund
as noted in Table 3-5.

Note that three types of "bridges" were considered.

The "No-Deck" type represents -the two braced ribs with
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loads applied at the panel points of the ‘ribs. The
"Through Bridge" type denotes the case in which the loads
are applied to the arch ribs through rigid hangers that are
jéinted to a laterally rigid deck (from which the vertical
load 1is supposed to be applied). The "Deck Bridge" type
denotes the case in which the loads are applied to the arch
~ribs through rigid columns that are joined to a laterally
rigid deck. Analyses of the latter two types are known as
"tilted load" effects as discussed previously. ‘

It is seen that Ostlund's results are generally not
sensitive to the approximations used. Where the
approximation resulted 1in appreciable differences, it is
interesting to note that the results obtained using NEAMAH
lies in the range given by Ostlund's approximat{ons.

It may be noted that a substantial difference exists
in wvalues of the first buckling 1load for the "Through
Bridge" between Ostlund's data and the NEAMAH results. The
difference may be explained by the fact that the much lower
value given by NEAMAH corresponded to a mixed buckling mode
in a truly three dimensional solution. Ostlund's solution
corresponded to a prescribed purely lateral buckling mode;

i.e., it probably missed this lower mode.

3.5.3.3 The Data of Tokarz and Almeida.

Many tests were run by Tokarz (4) for a single rib,
two ribs braced at the crown with one beam and two ribs
braced at a number of panel points. The results of two

tests were compared herein. They correspond to test number
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27 and number 33 in reference 4. Each test was conducted
on two aluminum ribs, 2024-T3 with modulus of elasticity E
= 10.7 x 10° psi and Poisson's ratio = 0.3. The ribs
were 0.192 in. thick and 1.5 in. deep. The ribs were fixed
at the two end supports and real deck was constructed.
Test number 27 was braced with 15 equally spaced round bars
of 3/32 in. diameter and test number 33 was braced with 15
equally spaced round bars of 5/32 in. diameter. The two
structures were also analyzed by Almeida (15). Comparison
of the results is listed in Table 3-6. It is seen that the

agreement is generally quite good.

3.5.4 Truss Elements.

To check the program for the addition of the truss
elements SAPIV was used. Two problems were solved. The
first was a system built of fourteen truss elements and
eight nodes subjected to one concentrated load. Program
NEAMAH and SAPIV gave the same results for both linear
displacement and axial forces. Secondly, a system
consisted of four columns (beam elements) supporting a
horizontal truss grid of five elements subjected to one
concentrated load at one of the corner nodes. Again the
agreement was total.

For the study of the truss elements in a buckling
problem, the buckling 1load of a tower built of truss
elements (see Figure 3-15) was calculated by the eigenvalue
program and compared with the Euler buckling load of a

cantilever column. Then the columns in the tower were
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replaced by beam elements and the buckling loads computed
again.
For the +truss tower (see Figure 3-15), its buckling

load may be estimated as that of a column with a moment of

inertia I, = 2A,(S/2)2 where S is the width of

the truss. For beam-truss tower, similarly the buckling
load may be estimated as that of a column with a moment of
inertia IBT = I, + Ig where Ig is twice the

moment of inertia of the beam element.

Table 3-7 presents the buckling 1loads obtained by
NEAMAH of the truss tower and the truss-beam tower as
described in Figufe 3-15 and the equivalent Euler column
.buckling loads. The buckled shape of the truss-beam tower
is 1illustrated in Figure 3-16. The buckled shape of the

truss tower is similar.

3.5.5 Tolerance Effect.

3.5.5.1 Equilibrium Solutions.

Three different tolerances were used for the purpose

of checking the tolerance effect on equilibrium solutions.
The values of the tolerances are 1x10‘2, 1x10'5,

and 1x10'7. A single rib of the MCSCB was used,
subjected ‘to a constant uniform load of 5.858 kips/ft over
Fhe full span and an incremental load of 0.571 kips/ft on
one half of the bridge span. The obtained data showed that

the nonlinear response was not affected by the tolerance

vé;ues used.
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3.5.5.2 Eigenvalue Solutions.

For this study, the buckling 1load of a pin-ended
column was considered. The column is 120 ft. long
with I = 35.99 ft*, I__ = 3.947 £t?, and kT = 10.97 £t%.
It was represented by 12 beam elements.

The results indicated that the eigenvalues as such
were not affected by the value of the tolerance used in the
solution. ggqever, the sequence in which they were

sq;;gﬁiiyg}y gengrated by the procedure was. Thus the
smaller the value of the tolerance, the better or more
peliable the sequence of the eigenvalues is. Table 3-8
lists the first five eigenpairs corresponding to two values
of tolerances used.

Note that for the case of the higher tolerance, the
third mode was obtained ahead of the second mode, the
fourth mode was not even 1in the picture. For the lower
tolerance, the first three modes were produced in the
proper order. The fifth was generated before the fourth.
For this simple example structure, the proper values for
the modes are known a priori. This is not generally the
case for a complex structure for which the eigenvalues are
being sought. ?Egrefore, one must use the method with some
_Eggglggiﬂ_although fo; all cases considered herein the first
mode was generated first. It should also be mentioned that
irrespective of the order of generation, the mode shape
gpggingg always corresponds to the correct buckling load.

of course, the buckling mode itself contains much

information.



CHAPTER IV

BUCKLING LOADS AND MODES

4.1 Introduction.

Elastic buckling loads, as a type of 1imit load, are of
interest by themselves. In addition, as was explained in
Chapter II, they are needed for the amplification factor
method which may be used to estimate the nonlinear response.

As discussed earlier in Chapter I, extensive data are
available on factors affecting the buckling loads. However,
previous researchers had studied either lateral buckling or
in-plane buckling, i.e., where each case is treated sepa-
rately. Furthermore, all previous works on three dimension-
al elastic stability involved cross beam bracing and asso-
ciated parameters only.

The new aspects of the stability problem of arch
bridges that are considered in this research include: (1)
the general stability of arch bridge in three dimensional
space without having to limit the problem a priori to either
in-plane or lateral buckling; (2) the effect of the finite
stiffness of the deck on in-plane and out-of-plane stabili-
tys (3) the different types of bracing in the bridge system
and their effects on the overall stability.

The data obtained here will be given in terms of w =
wc/wy, where w, is the uniformly distributed buckling logd,

43
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and w, is the uniformly distributed yield load evaluated as

Y
follows:

8f
I

4 L2
where £ is the rise, Oy is the yield stress, A is the
average cross-sectional area of the arch rib, and L is the
span. The tolerance used in the eigenvalue solution is 1 x

106,

4.2 Bracing Between Ribs = Bracing Patterns.

Different types of bracing patterns have been used in
practice. In this study, several different common patterns
of bracing are compared based on equal volumes for all
patterns.

The different patterns used for this study are defined
in Figure 4-1, which includes (a) X-truss, (b) K-truss, (c)
Diagonal, and (d) Transverse bracings. The arch ribs used
for this study were modelled from the Cold Spring Canyon
Bridge as described in Chapter III. The total volume, V, of
the bracing members for the X-truss bracing case was derived
using the same modelling approach presented in that chapter
using eight panels. This resulted in cross-sectional area
of diagonal members, Ap = 0.341 ft.2 and transverse members,
Ap = 0.341 ft.2 for the eight-panel model, the volume of the

X-truss case is:

V =16 AD\/ﬁsz + 2 + 7 Ap 8 = 778.46 fe.3  (4.2.1)
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in which s (= 70 ft.) and % (= 87.5 ft.) are the spacing
between the two ribs and the panel length, respectively.

For the K-truss bracing case, the volume is:

V = 16 Ap ,/(5/2)2 +22 + 7Aps = 778.46 ft.3

(4.2.2)

Using the same value for Aqp as for the above X~-truss
case, Ap evaluated from equation 4.2 is equal to 0.4055 f£t.2
Following a similar procedure, the volume of the diag-

onal bracing case is given by:

V= 16 AD,/sz + 22 (4.2.3)

for equal volume, Ap = 0.4342 ft.2 For transverse bracing,

the volume is V = 7AnS and the cross-sectional area of each
transverse beam is Ap = 1,5887 ft.2 The beam flexural and
torsional stiffnesses were calculated assuming that the
cross-sectional depth is twice as much as its width and its
thickness equal to 1/12 its width.

Five buckling loads were obtained for each bracing
pattern. The results are presented in Table 4-1. The
buckling loads are given in terms of wc/wy in which, as
previously, w, is the uniform buckling load and Wy is the
uniform yield load. Some of the buckled shapes are illus-
trated in Figures 4-2 through 4-13., The buckled shapes are
also summarized in Table 4-1. The following abbreviations

were used for that purpose.
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In-plane: The arch buckled "mainly" in the x-y plane.

(*mainly"” implies that the maximum displace-
ment in that plane is at least one order of
magnitude larger than those in the other

orthogonal planes.)

Out-of-plane: The arch mainly buckled in the z-direction.

Lat.-tors: The arch buckled in a lateral-torsional mode.

3-D mixed: The buckled shape is three-dimensional and of

a nondescript form.

Sym.: Symmetric.

Anti-sym.: Anti-symmetric.

An examination of the data presented indicates the

following.

1.

4.

The lowest in-plane buckling loads and corresponding
modes are essentially the same for all cases. This shows
that the lowest in-plane buckling load is independent of
lateral bracing.

The lowest in-plane buckling mode is the first mode
(among all modes--in-plane and otherwise) in all cases
except for the beam-bracing case where it is the fifth.
For the beam bracing case, the first four modes are all
of the lateral buckling type with buckling loads less
than the lowest in-plane buckling load. Thus the beam
bracing is the weakest pattern.

The second in-plane buckling loads are also largely inde-
pendent of lateral bracings. For the X-bracing, the
second in-plane buckling load corresponds to the second

mode, for the K- and D-bracing it corresponds to the
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third mode. The lowest lateral-torsional mode is the
third for the X-bracing (wc/wy = 1,447) and second for
the K- and D-bracings (wc/wy = 1,271, and 1.218 respec-
tively). These data would lead to the observation that
whenever lateral displacements are involved in the

Pyg&l}ng mode the beneficial effects of the bracing seem
;qﬂincrease in the order of D-truss, K-truss to X-truss.
In summary:

1. The pattern of lateral bracing is essentially negligible
if the buckling mode is in-plane.

2, If the buckling mode involves appreciable lateral dis-
placements, then the effects of the bracing would in-
crease in the order of B-bracing, D-truss, K-truss, and
X-truss patterns. The differences between beam and truss

bracings are substantially larger than those among the

different truss-bracings themselves.

4.3 Bracing Between Ribs - Amount of Bracing.

The preceding section - 4.2 considered the effect of
bracing pattern on the buckling behavior of two braced ribs.
In that study the amount of bracing (as referenced by the
total volume) of bracing material was fixed. In this sec-
tion, the effect of the amount of bracing is considered.
Two bracing patterns are considered: (a) X-truss bracing
for the MCSCB ribs, and (b) Beam-bracing for the FHAB ribs.

For each case the amount of bracingwill be varied.
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4.3.)1 MCSCB Ribs (with X-truss bracing).

Por the case of truss-bracing, a study of the available
data on several existing bridges (see reference 20, chapter
13), showed that the ratio of the bracing cross-sectional
area, Ap,,, to the rib cross-sectional area, Ap, is approxi-
mately 1/6. Using A, as a reference cross-sectional area,
the following ratios were employed: Ab/Abo = 0,001, 0.01,
0.1, 0.25, 0.5, 1.0, and 2.0. Since, as indicated by the
preceding section, lateral bracing has little effect on in-
plane buckling, and to save computing time, the in-plane
moment of inertia of the ribs were increased by 20 times in
order to force the out-of-plane buckling to be the lowest
mode of buckling.

The results of the MCSCB X-truss bracing are plotted in
Figure 4-14 and the buckled shapes are presented in Figures
4-15 through 4-20. Observation of the presented data leads
to the following conclusions:

1. Pigure 4-14 shows that practical variation of the brac-
ings stiffness does not affect significantly the out-of-
plane buckling load. |

2. As the (A, /A, ) ratio is reduced the buckling load of the
bridge approach the case of a single rib. Such reduction
is very significant when the ratio is less than 0.1 and
the buckled shape changes from anti-symmetric out-of-
plane to symmetric out-of-plane.

3. In the range of Ap/A,, = 0.1 to 1.0 the buckling load

increases linearly with bracing. In the parameter range



49

of 1.0 to 2.0 the buckling load increases at a higher
rate.

Comparing the buckling load of an X-truss braced bridge
in Table 4-1, the out-of-plane anti-symmetric mode were
(wc/wy = 1.45) and that of Figure 4-14 were (wc/wy =
1.864), one notices that the latter is higher even for
less amount of bracing. This is merely due to the in-
crease in the in-plane stiffness of the bridge. Such an
effect is not considered in the formula given by refer-
ence (10), as discussed in Chapter III.

Within practical range of bracing, for a bridge braced
with X-truss bracing the lowest out-of-plane buckling
mode is anti-symmetric, whereas, for beam-braced bridge
the lowest out-of-plane buckling mode is symmetric. (see
Ostlund, Tokarz, and the FHAB). This may be due to: (1)
For the symmetric mode the outer rib would be subjected
to tension and the inner ohe to compression, while the
anti-symmetric mode could take place inextensibly, and
(2) for the case of diagonal bracing, it would appear
that the diagonals would be strained to a greater degree
in the symmetric mode than the anti-symmetric mode (See

Fiqure 4-21),.

4.3.2 PHAB Ribs (with Beam Bracing).

In this section, the amount of bracing and spacing

effect on the bridge buckling is studied. The bridge is not

forced to buckle out-of-plane, As presented earlier in

Chapter III the lowest buckling load is in-plane. The data

for various amounts of bracing is compared with the single
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rib where no bracing is used. Results are presented in

Table 4-2, Observation of the data leads to the following:

1. The data presented in Table 4-1 and 4-2 shows that the
lowest puckling load for a properly designed bridge is
in-plane.

2. The table showed that small variation in the amount of
bracing did not affect the in-plane buckling until the
bracing was reduced to 1.25%: Then the bridgé buckled
out-of-plane.

3. Increasing the spacing by three times did not affect the
in-plane buckling.

4, With 1.25% reduction in the bracing the out-of-plane

buckling load was still higher than that of a single rib.

4.4 In-plane Effect of Deck.

As was mentioned in Chapter II, a deck situated above
the arch rib reduces the out-of-plane buckling load. No
data are available on the tilted load effect on in-plane
stability, and no actual study has been reported on the
finite deck stiffness effect. The latter factors will be
studied in this section.

To conduct the study, the MCSCB, 8-panels, single rib,
with and without a deck was used. Five cases of two braced
ribs were examined:

l. A reference case of no deck.
2, A truss deck, load applied on the deck--Only tilted load
effect is expected, since the truss deck has no in-plane

(with reference to arch ribs) stiffness.
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3. Beam deck, load applied on the deck--Both tilted load and
deck stiffness effects are expected.

4., Beam deck, load applied on the rib--Only the deck stiff-
ness effect is expected.

5. Truss éeck, load applied on rib--No deck effect is ex-
pected.

Results are presented in Table 4-2 in terms of w. An

examination of the data leads to the following observations:

A.__Tilted Load Effect

l., From cases one and two, the tilted load effect is esti-

mated as
Ty = 0.6714 - 0.5184 = 0.1530
2. From cases three and four,
Ty = 0.7297 - 0.5612 = 0.1685

Thus, the tilted load effects is for T,, 0.1530/0.6174 =
24.8% and, for Ty, 0.1685/0.7297 = 23.1%

B.__Deck Stiffness Effect

l. From cases two and three the effect of deck stiffness is

estimated as
S, = 0.5612 - 0.5184 = 0.,0428

2, From cases four and one, deck stiffness effect may be

estimated as

S, = 0.7297 - 0.6714 = 0.0583
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Thus, the deck stiffness effect is, for S;,
0.0428/0.5184 = 8.3% and, for S,, 0.0583/0.6714 = 8.7%. It
may be interesting to note that the ratio of the deck to the
rib flexural rigidity is 0.10. It had been mentioned (19)
that the buckling load should be increased in direct propor-
tion to the sum of the bending rigidities of the ribs and
the deck. The preceding data indicated that the increase is
somewhat less than that. A

4.5 Effects of Type of Deck-Rib Connections on In-Plane
Buckling

In the preceding section, the deck effect on the in-
plane buckling load of the arch bridge was studied. All
columns were assumed pinned. Therefore, no shear transfer
is assumed between the deck and the arch ribs in the 1longi-
tudinal direction. 1In practice, arch bridges are designed
so that such shear transfer would take place. This, of
course, depends on the connection between the ribs and the
deck. Such connection is studied in this section.

Shear connections usually used in practice are:

l. Rigid "moment®™ connection at one or more intersection
panel point (see Fig. 4-22a).

2. In-plane spandrel bracing at one or more panels (see Fig.
4-22b), and

3. The ribs and the deck are rigidly connected at the crown,
i.e., for this case the deck is at the same elevation as
the crown is.

The MCSCB, 8-panels, with deck as presented in Chapter

III was used.
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The results obtained for rigidly connected columns and
spandrel bracing are shown in Table 4-4 and also plotted in

Figure 4-23, Some of the buckled shapes are presented in

Figures 4-24 through 4-28. 1In Table 4-4 case one denotes

the reference case, which is the case of no shear transfer.

Cases two and three represent perfectly rigid connection of

the crown column and all columns respectively. For this

study the moment stiffness of each rigid column was varied.
Studying the present results indicate the following:

l. The buckling load almost doubled with only the crown
column rigidly connected.

2. An increase of the bending stiffness by one order of
magnitude would force the lowest buckling mode to the
symmetric mode.

3. As expected, by rigidly joining all ends of all columns,
the lowest buckling load increased by 40% over the case
of only the crown column is rigidly connected.

4. Cases four and five refer to spandrel bracing of one and
two middle panels. The case Ap/A, = .325 corresponds to
the use of a1l 5/8 in. rope. It is obvious that the use
of spandrel bracing increases the buckling load (P,) but
there is no substantial difference between the differentl
cross-sectional area or when the spandrel bracing is
extended to the case of two braced middle panels.

The effect of column heights is shown in Table 4-5.

The column heights are defined by the crown column with all

other columns varying to conform to a horizontal deck. All

columns are pinned unless otherwise noted.
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It is seen that as the columns shorten P, decreases.
This is due to the P-A effect. The shorter the column, the
greater the de-stabilizing effect or the P-A effect. When
the ribs and deck are joined together with no column at the
crown the P, increases because the bridge is forced into a
symmetric mode, likewise for the case the h/h, = 0,08 but
the crown column is rigidly connected where essentially the
same P, is achieved with the same symmetric buckling mode.
4.6 Effects of Towers, Deck, and Transverse Bracing on

Lateral Buckling.

The two towers in a deck bridge support the deck which
is situated above the ribs and meet with the two ribs at the
foundation. The two towers are part of the structural
system and their rigidity should be significant to the -
overall stability of the bridge. For vertical buckling, the
towers are very rigid and no significant effect is expected.
For lateral buckling the two towers work as laterally loaded
frames. This makes lateral stiffness of the bridge affected
by the lateral stiffness of the tower. The deck in-plane
effect was discussed in section 4-4. The out-of-plane ef-
fect of the deck has been extensively studied in the litera-
ture, yet all works looked at the deck as very rigid and
correspondingly only tilted load effects were considered.
The tilted load (P-A) effect is very significant but the
deck stiffness would seem to be a very important part of the
deck effect. The latter effect can only be studied by
assuming that the deck is not rigid, and that it actually

undergoes elastic deformations in three dimension.
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Transverse bracing (see Figure 3-3) is often used for
steel bridges. Transverse bracing adds to the global stiff-
ness of the bridge.

The bridge used for this study is the MCSCB, 4 panels
(see chapter III - Table 3.1). The deck and the tower was
modelled and included in the same table. The transverse
bracing was studied once by bracing the MCSCB at the crown
intersection panel only and by uniformly bracing the bridge
(i.e., bracing every intersection panel except at sup-
ports.).

To study the deck lateral stiffness the flexural rigid-

ity of the deck, (as modelled in Chapter III), was

Iyy
reduced by 10, and increased by 10. Similarly the lateral
stiffness of the tower was reduced by 10, and increased by
10.

The results are available in Table 4-6 and buckling is
presented as w. The buckled shapes are presented in Figure
4-31 through.Figure 4-40 and the deck lateral stiffness and
the tower lateral stiffness as compared to the classical
rigid deck effect are illustrated in Figure 4-41. A study
of the data leads to the following conclusions:

1. The first row in Table 4-6 shows the basic reference
case, or the case with no transverse bracing, and hence
no shear transfer.

The lowest buckling load (P.) is w = 0.169 and both
the deck and the rib buckled of the same magnitude, the
second P, is w = 0.613 which is in-plane anti-symmetric

including deck effect (P-A and deck stiffness). The
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third P, is W = 0.899 out-of-plane anti-symmetric with no
in-plane buckling and the tower is involved in some
lateral deformation with the deck. The fourth P, is w =
1.155 and is just like the third except with additional
in-plane buckling which makes it generally three-
dimensional. The fifth mode has a similar configuration.
The rows 2a and 2b correspond to transverse bracing at
the crown intersection panel only and at all intersection
panels, respectively. The previous half wave symmetric
mode out-of-plane (w = 0.169) was eliminated by the
bracing and the lowest P, (w = 0.613) corresponds to an
in-plane mode. The lowest out-of-plane is anti-symmetric
with w = 0.9,
The effect of the deck lateral stiffness is shown by rows
3a, 3b, and 3c, which correspond to lateral stiffness of
1/10, 10, and perfectly rigid (using the classical solu-
tion known as the tilted load effect). All cases are
without transverse bracing.

In conjunction with case one, the deck lateral
stiffness increase the lateral P, but even with infinite-
ly rigid deck the lateral P, is smaller than that of in-
plane buckling.

The effect of tower lateral stiffness is shown in row 4a,
and 4b. As expected, the tower lateral stiffness in-
creases P,. However, the relation is not linear. The
results are presented in Figure 4-41 which shows that
increasing the tower lateral stiffness by 10 times, P, is

increased by only 12%.-
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In summary:
Transverse bracings are very effective and it seems
important to have at least one intersection-panel braced.
Deck and tower stiffness do matter. But the influence
is not linear. Existing designs seem to be effective and
large increase of their lateral stiffness would not greatly

increase the lateral stability of the existing designs.



CHAPTER V
NONLINEAR RESPONSES

2.1 __Introduction.

The amplification factor method as a means of estimat-
ing the nonlinear response to loads in the lateral, longitu-
dinal, or vertical direction is studied in this chapter.
Results are compared with nonlinear equilibrium solutions as

obtained by use of program NEAMAH,
2.2 Lateral Regponse.

2.2.1 Nonlinear Equilibrium Solution.

Using the FHAB bridge (Chapter III), a solution was
obtained for a constant uniformly distributed vertical load,
wgs, and variable uniformly distributed lateral load, wu,
(see Figure 2-3c). Results are presented in Figure 5-1 and
5-2.

Figure 5-1 shows that at the crown, for the fixed wg
and increasing lateral load w,, the vertical displacement
increased nonlinearly, but the lateral displacement was
linear. Figure 5-2 shows that the latter type of linearity
held not only at the crown but also at other points along
the bridge. It should be noted that the above-mentioned

linearity is with respect to w,. For a given w,, the

58
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response with respect to varying wg would obviously be

nonlinear.

2.2.2 Nonlinear Lateral Response by the AF Method.

The accuracy of the amplification factor method may be
considered using the same combinations of lateral and verti-
cal loading conditions as in the preceding section. Three
different cases were employed, each for a different value of
fixed wg/w, and variable w,. The amplified responses were
compared with "actual" nonlinear response (obtained from
equilibrium soluéions).

The AF was computed from the following:

1

AP = — (5.1)

l -o
where o = wg/w,, wg is the fixed vertical uniform load, and
we is the “"compatible buckling load," (see Chapter II). For
the FHAB used for this analysis the lateral buckling load
was wc/wy = 2.264. This is not the lowest P, for the bridge

model. It is the second.

Knowing the values of wg and w,, the lateral nonlinear
response R, due to the additional load w,, was computed

from:

Rn = RL X AF (5-2)

in which R; is the linear response.
A reference lateral load due to a wind pressure at 100
mph wind velocity was used for this presentation. Results

are presented in Table 5-1. The presented data shows the
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values of wf/wc, the Amplification Factor, the linear re-
sponse, the nonlinear response, and the ratio of the esti-
mated to the "actual®” nonlinear response. The data show
that the amplification factor method yielded good estimates

of the nonlinear responses in the lateral direction.
2.3 Longitudinal Responsge.

2.3.1 Nonlinear Equilibrium Solution.

In a similar manner to that presented in the preceding
section, the nonlinear equilibrium solutions for longitudi-
nal displacements were obtained. The FHAB bridge was used
with several cases of fixed load, wg, each accompanied by
variable longitudinal additional load, w, (see Figure 2-3b).

Results are presented in Figure 5-3 for the crown
point. It is seen that for a given wg, and increasing w,,
the vertical displacement increased nonlinearly, but the
longitudinal displacement was linear. This situation is
similar to that of the lateral loading as discussed in the

preceding section.

2.3.2 Nonlinear Longitudinal Response by the AF Method.
Using the FHAB bridge model and the procedure outlined
in section 5.2.2 for estimating the nonlinear response, the
amplification factor method for nonlinear longitudinal re-
sponse was considered. In this case the compatible buckling
"mode is the lowest in-plane anti-symmetric mode with a
corresponding buckling load equal to wg/w, = 1.052, -This is
the.lowest critical buckling load for the FHAB bridge model.
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The results are presented in Table 5-2 where the same
reference wind pressure load was used as previously.
The data shows that the amplification factor method
again provided good estimates of the maximum longitudinal

responses for the arch bridge model.
2.4 Vertical Response.

2.4.1 General.

In the preceding sections, wg, was applied in the
vertical direction but the responses considered were ortho-
gonal to the vertical direction, i.e., the linear and non-
linear responses were in the same direction of w,. Since
the response considered in this section is vertical, the
effect of wg is to be included in the computation of the

linear response, i.e.,
Ry, = Rp(wy) + Ry (wg) (5.3)

Depending on the loading pattern, the compatible buckl-
ing load would be different. 1In Chapter IV it was found
that tﬁe deck-rib connection condition significantly af-
fected the buckling mode and load. Using the MCSCB bridge,
eight panels, with deck, three cases were considered for
studying the amplification factor method as applied to vert-

ical loading. They are discussed in the following.

2.4.2 All Columns Pinned.
In this case the lowest buckling mode was anti-symmet-

ric, wc/wy = 0,561, o values used were 0.15, 0.25, and 0.5
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and the loading condition was presented in Figure 5-4a. The
results are presented in Table 5-3 for the quarter point
under the additonal load w,. It is seen that the AF method
provided good estimates with an "error" generally less than
108, The AF method tended to underestimate the maximum
response as the value of w, increased.
mem

For this type of connection, two subcases were consi-

dered depending on the loading pattern.

2.4.3.1 Uniform Loading.

The loading condition for this case is shown in Figure
5-4b. The corresponding buckling load was wc/wy = 1.065.
The values of o used were also 0.15, 0.25, and 0.5.

The results are presented in Table 5-4 for the quarter
point under the additional load w,. It is seen that the
accuracy of the estimates provided by the AF method was
somewhat lower than the previous case. But, they may still
be considered good if the loads w,/w. are not greater than,

say., 0.10.

2.4.3.2 Nonuniform Loading.

The loading condition as shown in Figure 5-4c, with the
ratio of the left half-span loading to the right half-span
loading equal to 1.2, and the applied load parameter w is
incremented. Note that w is the only applied load (compar-

able to w, + wg), and o = w/wc. This means that the
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"amplification factor," AF, is variable for each load incre-
ment. The range of o used is 0.15 to 0.55.

The results are shown in Table 5-5 and Figure 5-5 also
for the quarter point under the larger loading. The pre-
sented data show that at least for £his pattern of nonuni-
form loading the amplification factor method produces good
conservative approximations to the nonlinear responses. The
range of validity in this case is larger than the previous

cases.

2.4.4 Ribs and Deck Rigidly Connected.

The loading pattern for this case is presented in
Figure 5-4b. The compatible buckling mode is symmetric
(also corresponds to the lowest buckling load, wc/wy =
1.468). The values of o used were 0,147, 0.254, and 0.423,

The results are presented in Table 5-6, for the crown,
which shows that the amplification factor method gives good
estimations for the nonlinear responses. For o = 0.147,
the error was about 8% to 10%; for o« = 0.254, it was between

2% to 9%, and for o = 0,423 it was between 4% and 168%.



CHAPTER VI
SUMMARY AND CONCLUSION

6.1 Summary.

6.l.1 General.

The objective of this research was to examine the
problem of elastic stability of arch bridges and to consider
a simple approximate method for estimating the maximum non-
linear response. The method, which uses the linear response
and an amplification factor (function of the buckling loads)
is called the "amplification factor method.”

Computer modelling was employed to compute the buckling
loads and modes and to obtain the nonlinear equilibrium
solutions needed for checking the above mentioned amplifica-
tion factor method. The bridge models used were three
dimensional and quite complete, each including two ribs,
bracings between ribs, deck system, longitudinal and lateral
bracings between the deck and the ribs, and end towers.

A computer program, NEAMAH, was developed for use in
this study through modification and expansion of certain
available ones. The program was validated by extensive
corroborations with known data.

The obtained results were in two groups, summarized as

follows.

64
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6.1.2 Buckling Loads and Modes.

(i) Effect of rib bracing--It was found that truss
bracing, as compared to beam bracing (Vierendeel), could
increase the lateral buckling load by as much as three times
for the same amount of bracing material.

(ii) Longitudinal shear transfer--Providing a rigidly
connected column to transfer shear between the deck and the
ribs, rigidly connecting the deck and the ribs, or use of
spandrel bracing increased the in-plane buckling load two to
three fold. Such shear transfer should be provided for the
stability of the bridge in the vertical plane.

(iii) Effects of the deck--A deck situated above the
ribs has a positive and a negative effect on in-plane buckl-
ing. It provides an additional stiffness in the vertical
plane. This added stiffness increased the buckling load.
But the increase was a little less than what the ratio of
the deck to the ribs flexural rigidities would indicate, as
was suggested by some investigators. The "negative" effect
of the deck is analogous to the "tilted load” effect for
lateral stability (similar to the so-called "P-A effect").
For the MCSCB model considered, such effect was about 23 to
25% of the overall rib buckling load. The stiffening effect
was 8-9%. Thus, the softening effect due to the deck was
much greater than the stiffening effect.

(iv) Lateral stiffness of the tower and deck--Corre-
sponding to a reduction and an increase of the deck lateral
stiffness by ten-fold, the buckling load was reduced by 80%

and increased by 55%, respectively. Similarly for the
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tower, the lateral stiffness was reduced and increased by
ten-fold and the buckling load was reduced by 50% and in-
creased by 12% respectively.

(v) Effect of transverse bracing--Transverse bracing
between the ribs and the deck increased the lateral buckling
strength markedly. For even with one transversely braced
panel, the buckling load would be increased by moré than

three-fold over the case with no transverse bracing.

6.1.3 Accuracy of the Amplification Factor Method.

The lateral nonlinear response was presented for wf/wc
= 0,0627-0.2547 and wa/wl00 = 0,5-83., For the wide range of
data presented for the FHAB (beam bracing only) the "error"
was no more than 2%,

The longitudinal nonlinear response, obtained for we/vg

= 0,0489-0,4888 and wa/w = 3,3-52,3, had errors that were

100
no more than 2% in each case. The error can be 20% for

wa/w100 higher than 52.3.

The vertical response was studied for three cases of
deck-ribs connections.

(1) All Columns Pinned--For wg/wg = 0.15-0.5 and w,/wg
= 0,0325-0.1625, the error in estimating the vertical non-
linear response was not more than 10%.

(ii) Crown Column Rigidly Connected (All Other Columns
Pinned)--Two subcases were considered.

(a) For a uniform wg/w, = 0.15-0.5 and w,/w, = 0.0325 -
0.1625, the data were not as good as previously. The

error approached, in some cases, 20%. However, for
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wa/w, less than 0.10, it was less than 10%. For the
case where wg/w, = 0.5 and w,/w, = 0.1625, the error
jumped to 38%.

(b) In this case, the buckling load was based on the same
nonuniform load pattern--As sampled for a range of w/wc
= 0,1509-0.5460 all the amplified responses were conser-
vative and the maximum error was about 11%.

(iii) Deck and Ribs Rigidly Connected--The data were
obtained for wg/w, = 0.147-0.423 and w,/w, = 0.0325-0.1625,
the error was not more than 10% except that for the case
weg/wo = 0.423 and w,/w, = 0.0325, the error increased to
16%.

In the application of the amplification factor method,
it is essential that the amplification factor be computed
using the "compatible buckling load" (the buckling load that
corresponds to a buckling mode conformable to the response

under consideration).

6.2 Concluding Remarks.

Because of cost, only two bridge models were used in
this study, but the qualitative aspects of the results
should be applicable to deck arch bridges in general. The
buckling loads and modes indicated that the problem should
be considered as one of a three-dimensional system so as not
to miss any mixed mode buckling load that cannot be pre-
dicted by a formulation that rules out mixed mode a priori.

Current design practice seems to provide some form of

shear transfer between the deck and ribs, for‘example, using
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bracing members or rigid connections. The practice seems
adequate so far as elastic buckling is concerned. The
stiffness of the end towers also seems adequate.

The use of the amplification factor method for the
estimation of the nonlinear response appears to be quite
promising for practically all types of loading. Of course,
more data are needed to extend and/or establish the range of
validity.

This study has focused on geometric nonlinearity of the
response of deck type arch bridges. The critical buckling
loads have been presented in terms of the yield load. It
was obvious that .in some cases yield would occur before
elastic buckling could take place. Therefore, it should be
- natural that material nonlinearity be considered for future

research.
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Table 3-1 Cross-sectional Properties of MCSCB Four Panels,
with Deck (for element number identification
refer to Figure 3-4 a, b, and c.)

Element

number A Iey I,, KT
1 2.6559 35.99 3.9390 21,0100
2 2.9058 41,58 4.1260 24,7500
3 0.7860 3.72 2.1800 1.3600
4 0.9000 - - -
5 1.0891 1.27 0.4165 0.9661
6 1.0891 - -- -
7 14.7800 - - -
8 14,7800 - | - --
9 0.00489 - - -

Table 3-2 Cross-sectional Properties of MCSCB - Eight
Panels (for element number identification, refer
to Figure 3-4 4).

Element

number A | I,, KT
1 2.4000 30.28 3.7400 24.88
2 2.9058 41.58 4.1260 25.00
3 3.0300 44,52 4.2200 25.30
4 2.6559 35.99 3.9390 24.95
5 0.7860 3.72 2.1800 1.36
6 0.3264 - - -
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Table 3-3 Values of Critical Loads for Lateral Buckling
(Kips/ft.)
Ratio
By By of
equilibrium eigen eigen
solution value GSSMS value to
Structure bounds solution (Eq. 16.25) GSSMS
ARCH-A 8.00 & 9.116 7.8670 8.2600 0.92
MCSCB - 1.8381 1.9929 0.92
Table 3-4 Cross-sectional Properties for Ostlund's Arches
(see Figure 3-14).
Elements A Iyex I,, KT
1, 2, 7, 8 111.803 1,164.6172 931.6946 1,716.9380
3, 4, 5, 6 180.278 4,882,5528 1,502.3167 3,925.8346
9, 10, 11 60.500 152,5104 610.0417 418,.8794
1, 2, 7, 8 50.990 441.9100 106.2300 294.,3000
3, 4, 5, 6 58.309 660.8240 121.4770 355.0300
9, 10, 11 12,000 4.0000 36.0000 13.9861

Transverse beam bracing minor principal axes orientation
coincides with the average angle of the two adjacent rib
angles of inclination.
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Table 3-6 Comparison with Data of Tokaﬁz and Almeida.
Tabulated are the values of w.L°/EI where w. is
the critical distributed load per rib

Test First mode Second mode
No. Source (symmetric) (anti-symmetric)
Tokarz 53.4 -
27 Almeida 46.7 97.70
Neamah 46.92 99.45
Tokarz 79.7 -
33 Almeida 63.7 114.3
Neamah 77.33 129.99

Table 3-7 Results for Cantilever Column and Tower (All
values are in Kips)

First Mode Second Mode
Truss Neamah 0.448 x 10° 3.440 x 10°
Tower 6 6
Euler 0.457 x 10 4,113 x 10
Truss—-Beam Neamah 0.905 x 106 7.510 x 106
Tower

Euler 0.914 x 106 8.226 x 106
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Table 3-8 Tolerance Effect on Eigenvalue Solutions

Sequence of Eigensolutions as Obtained

Tolerance 1 2 3 4 5

6 12 3 2 5 7
1 x 10” 484.46 4,364.61 1,938.21 12,202.34 24,435.82

1 2 3 5 4
1 x 10718 484.46 1,938.21 4,364.61 12,202.33 7,776.04

a - These numbers are the actual number of the mode.
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Table 4-2 Effect of Bracing Cross-Sectional Properties on

Buckling Load, FHAB Bridge.

Cross-sectional Properties

wc/wy Buckled
A I,, Iyy KT Spacing Shape
0.8316 7.997 1.428 1.976 28 1.053 In-plane
anti-sym
0.6316 3.441 1.428 1.976 28 1.053 In-plane
anti-sym
0.4000 2.000 0.750 1.000 28 1.053 In-plane
anti-sym
0.8316 7.997 1.428 1.976 84 1.053 In-plane
anti-sym
0.0100 0.010 0.010 0.010 28 0.184 Out-of-
plane
sym.
Single arch rib (no rib-bracing) 0.153 Out-of-
plane

sym.
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Table 4-3 Tilted Load and Deck Stiffness Effect
All values are nresented in terms of w

Load and _
Case Deck Conditions w
1l 0.5714
No Deck
144 K|
. & - |/
2 0.5184
Truss
Deck .
KRR {4
3 5 ° 0.5612
Beam
Deck
8 ] Lo}
4 0.7297
V!
Beam
Deck
r~J L ®
5 0.6714
4588
Truss
Deck
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Table 4-4 Effects of Column Connections on In-Plane Buckling Load.

Column
-Column Stiffness
connection A/A,, 1/1, Mode 1 Mode 2
Case type and AD/AO w Shape w Shape Figure
1 All columns
pinned 1.0 0.561  ANT 1.480 SYM 4.2y
2 a Columns at 1.0 1.065 ANT 1.480 SYM 4.25
b crown section 10.0 1.480 SYM 1.634 ANT 426
¢ are rigidly 100.0 1.480 SYM 1.855 ANT
d connected 1,000.0 1.480 SYM 1.895 ANT
others are
pinned
3 a All columns 1.0 1.423  ANT 1.549 SYM 4.27
b are rigidly 10.0 1.887 SIM 2.435 ANT
¢ connected 100.0 2.422 SYM 2.889 ANT
d 1,000.0 2.741 SYM 3.087 ANT
4 a Spandrel | 0.325 1.325 ND  1.623 ND 4-28
b bracing for one 1.000 1.426 ND 2.025 ND
middle panel
5 a Spandrel 0.325 1.560 SYM 1.805 ANT
b bracing for two 1.000 1.656 SYM 2.214  ANT
middle panels
A,:  Cross-sectional area of column (as used for the MCSCB).
A: Cross-sectioal area of column (as used for the present study).
Ap: Cross-sectional area of spandrel bracing.
I,: Moment of inertia for column (as used for the MCSCB).
I: Moment of inertia for column (as used for the present study).
ANT: Anti-symmetric mode.
SYM: Symmetric.
ND: Nondescript.
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Table 4-6 Tower, Deck, and Transverse
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Bracing Effect on the Bridge Stability.

Values of ¥ = wo/u

v
Descoription First Second Third Fourth Fifth
Case of case study mode mode mode mode mode
1 Basic Model 0,169 2.613 1158 1,347
"No Transverse out-of-plane in-plane out-of-plane 3=D 3-D
Bracing® sym. anti-syms. anti-sya. anti-sym. anti-sym.
Pig. &=31 Fig. 84-32 Fig. 8-33 Fig. 3-38
2a  Transverse 2.613 2.899 1148
Bracing at in=-plane out=of-plane 3=D
Crown Inter- anti-sym. anti-sym. anti-sym.
section Panel Fig. M35 Pig. 3-36
2b Transverse 2.613 0,903
Bracing at in-plane oute-of=plane out-of-plane out-of-plane out=of-plane
Every Inter- anti-sym. anti-gyn. anti-sym. sym. sym.
section Panel Fig. 837 Fig. 4=-38
3a Deck Lateral 02.030
Stiffness out=of-plane
Reduced by - sym.
10. Pig. 439
3b Deck Lateral 0.262
Stiffness out-of=plane
Increased by sym.
10.
3¢ Classical 0,356
Rigid Deck out-of-plane
Sym.
4a  Tower Lateral 0,080
Stiffness axial deforma-
Reduced by 10. tion in the
’ modelled tower
Pig. &=40
4b  Tower Lateral 2.189
Stiffness in- out-of=-plane
creased by 10. sym.

Fig. &1



80

Table 5-1 "Lateral" Nonlinear Responses by Equilibrium and
Amplification Factor Method.

wf/wc AF Wa/wloo RL ft. R-n ft. RL * AF
Ry
0.0627 1.0669 0.517 0.1399 0.1488 1.003
2,580 0.6995 0.7444 1.003
20.672 5.5960 6.0085 0.994

113.680 30.7856 32.2625 1.018
0.1274 1.1459 20.668 5.5960 6.4492 0.994
41.344 11.1920 12.8798 0.996

124.000 33.5760 38.2913 1.005
0.2547 1.3417 20.668 5.5960 7.5632 0.993
41.344 11.1920 15.1227 0.993

82.668 22.3840 30.3560 0.989
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Table 5-2 "Longitudinal" Nonlinear Responses by Equilibrium
and Amplification Factor Method

wf/wc AF wa/wloo RL ft. Rn ft. RL * AF
R,
0.0489 1.0514 6.604 0.2100 0.2204 1.051
13.208 0.4188 0.4402 1.000
0.0978 1.1084 3.302 0.1067 0.1174 1.008
6.604 0.2100 0.2327 1.000
13.208 0.4188 0.4639 1.001
0.1955 1.2430 3.302 0.1067 0.1330 0.997
6.604 0.2100 0.2616 0.998
0.2933 1.4150 " 6.604 0.2100 0.2981 0.997
13.208 0.4188 0.5905 1.004
0.4888 1.9562 3.302 0.1067 0.2104 0.992
13.208 0.4188 0.8135 1.007
52.316 1.6588 3.1955 1.016
105.663 3.3504 5.8073 1.129

132.078 4.1879 6.7760 1.209
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Table 5-3 "Vertical"” Nonlinear Responses by Equilibrium and
by Amplification Factor Method* ("All Columns
Pinned")

we/wWe AF W/ Ry, ft. R, ft. Ry, °* AF

Ry

0.15 1.1765 0.0325 0.3977 0.4620 1.013
0.0650 0.7111 0.8575 0.976

0.0975 1.0246 1.2717 0.948

0.1300 1,3381 1.7058 0.923

0.1625 1.6515 2.1609 0.899

0.25 1.3333 0.0325 0.4538 0.5707 1.060
0.0650 0.7673 1.0233 1.000

0.0975 1,0808 1.4996 0.961

0.1300 1.3942 2.0014 0.929

0.1625 1.7077 2,5302 0.900

0.50 2.00 0.0325 0.5942 0.9442 1.259
0.0650 0.9077 1.6532 1.098

0.0975 1.2211 2.4123 1,012

0.1300 1.5346 3.2248 0.952

0.1625 1.8480 4.0945 0.903

* For quarter point deflection under w
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Table 5-4 "Vertical™ Nonlinear Responses by Equilibrium and
by Amplification Factor Method * (Crown Column
Rigidly Connected; All Other Columns Pinned, wg

Uniform)
we/vig AF LAVA Ry, ft. R, ft. Ry, ° AF
Ry
0.15 1.1765 0.0325 0.5086 0.5845 1,024
0.0650 0.8574 1.0421 0.968
0.0975 1.2062 1.,5385 0.922
. 0.1300 1.5550 2,0800 0.880
0.1625 1.9037 2,6753 0.837
0.25 1.3333 0.0325 0.6152 0.7511 1,092
0.0650 0.9640 1.2804 1.004
0.0975 1.3128 1.8653 0.938
0.1300 1.6616 2.5178 0.880
0.1625 2.0104 3.2548 0.824
0.5 2,00 0.0325 0.8816 1.2947 1,362
0.6500 1.2304 2,1992 1.119
0.0975 1,5791 3.3300 0.948
0.1300 1.9279 4.8523 0.794
0.1625 2,2767 7.3116 0.623

* For quarter point deflection under w,.



Table 5-5
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"Vertical®™ Nonlinear Responses by Equilibrium and
by Amplification Factor Method* (Crown Column
Rigidly Connected; All Other Columns Pinned, Non-
uniform Loading)

W/ AF Ry, R, Ry ° AF
Ry
0.1509 1.1778 0.4291 0.4799 1.053
0.1778 1.2162 0.5056 0.5789 1.062
0.2047 1.2574 0.5821 0.6831 1.071
0.2316 1.3014 0.6586 0.7932 1,081
0.2598 1.3510 0.7388 0.9206 1.084
0.2867 1.4019 0.8153 1.0454 1.093
0.3136 1.4569 0.8918 1.1790 1.102
0.3405 1.5163 0.9683 1.3227 1.110
0.4384 1.7806 1.2467 1.9970 1.112
0.4653 1.8702 1.3232 2,2205 1.114
0.4922 1.9693 1.3997 2.4730 1.115
0.5191 2,0794 1.4762 2,7627 1.111
0.5460 2,2026 1.5527 3.1019 1.103

* For quarter point deflection under w,.



85

Table 5-6 "Vertical" Nonlinear Responses by Equilibrium and

by Amplification Factor Method*

Rigidly Connected)

(Ribs and Deck

we/wWe AF wa/ Ve Ry, ft. R, ft. Ry ° AP
Ry
0.147 1.1723 0.0325 0.4958 0.6316 0.920
0.0650 0.7705 0.9694 0.932
0.0975 1.0453 1.3239 0.926
0.1300 1,3199 1.6966 0.912
0.1625 1,.5947 2.0889 0.895
0.254 1.340 0.0325 0.6485 0.8884 0.979
0.0650 0.9241 1.2738 0.973
0.0975 1.1998 1.6818 0.956
0.1300 1.4754 2.1147 0.935
0.1625 1.7511 2.5750 0.912
0.423 1.733 0.0325 0.8971 1.3352 1.164
0.0650 1.1725 1.,8332 1.109
0.0975 1.4484 2,3718 1,058
0.1300 1.7240 2.9565 1.011
0.1625 1.9997 3.5943 0.964

* Por crown deflection.
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(a) Deck Bridge

Q7

(b) Half Through Bridge

(c) Through Bridge

Figure 1-1. Types of Arch Bridges.



87

Figure 2-1. Beam Subjected to Combined Axial and
Lateral Load.
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(a) X-Y Coordinates.
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(b) X-2 Coordinates.

Figure 2-2. Coordinate System for Arch Bridge.
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P S N T N N R S

(a) Combination of Dead Lcad w. and Additional Vertical
Load LA £

W T 1 1T 17 1 1 1 3

Ya

(b) Combination of Dead Load We and Additional Longitudinal
Wind Load LA

(C) Combination of Dead Load W and Lateral Wind Load LAD

Figure 2-3. Loading Conditions.
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(a) Anti-symmetric In-vlane Buckling Mode.

(b) Symmetric Out-of-plane Buckling Mode.

Figure 2-4. Typical Buckling Modes.
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Figure 2-5. End Displacement of Three Dimensional Beam
Element.

T

W'W

Figure 2-6. Cross-section of Beam Element.
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rib
H
deck ———/ (I AN
(a) Deck Situated Below Ribs.
deck
rib

(b) Deck Situated Above Ribs.

Figure 2-7. Tilted Load Effect.
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A = 1.6736 ft.2 A = 0.8316 ft.:
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Figure 3-2. Cross-sectional and Material Properties of
. FHAB.
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Transverse
Bracing

Deck X-truss
bracing

Tower

Continuous
-Beam

Rib
— X-bracing

Rib cross-beam
bracing

Rib

Figure 3-3. Model for MCSCB Bridge.
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(2)

(1)

(a) Front View of Four Panel Model.

(8) (7)
== =

(b) Plan for Deck and Towers,

i:f (6)EEE

(5)

(c) Plan for Ribs X-truss Bracing,

(6)
(8

>

(d) Front View of Eight Panels Model.

Figure 3-4. 4- and 8-Panel Models for MCSCB Bridge.
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Figure 3-5. Local X and Z Coordinates for Truss and
Beam Members.

Deck Slab

t
t
7| gt e / C B
Lacing —/
D=9 ft. B = 2.92 ft. C = 23.0 ft. tl = 15/16 in.
t2 = t3 = 3 in. t4 = t5 = 0.073 in.

Figure 3-6. Three Cell Box Model for Torsional Stiffness
of Deck Beams.
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(a) Composite Beam Deck Slab and Stringer of Actual Bridge.

S=28"

(b) Spacing Between Composite Beams.

Figure 3-7. Components of Actual Bridge Deck.
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(a) Shear pDeformation of Slab.

*

(b) Shear peformation in X-truss Bracing

Figure 3-8. Modeling of Deck Slab.
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(a) K-truss Bracing in Actual Bridge.

(b) X-truss Bracing in Bridge Model.

Figure 3-9. Modelling of K-truss Bracing Between Ribs.
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1.0

e e

Figure 3-10. Sketch of Actual Tower.
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2.5/ 112.5 . 112.5

#111’/,ﬁF t T

Z

4%—112'5

All Dimensions are in ft.

For Equilibrium Solution, P and Q are Load Increments:

P = 112.5 Xips, and Q = 0.0C1 P.

For Eigenvalue Solutions

P = 1.0 Kips, and Q = 0.0.

Cross-sectional Properties;

A= 2.7 ft.2, I = 32.5 £t.4, I, = 4.45 £ft.%, and

KT = 5.785 ft.?

Material Properties;

E = 0.4176 x 10’ Ksf, u= 0.3, and 0, = 40 Kst.

Figure 3-12. Dimensions and Properties of Arch-A.
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u
200.0
150.0
150.
——— Jh— b
4 (2) (4) (6) (8)
(9) (10) (11) 1.40.0
{ ¥
(1) (3) (5) (7)
.
400.0 -

(a) Example One.

4 }
1 '
80.0
1 3
1 L

L_ 400.0 ——71

(b) Example Two.

7

E = 0.4176 x 10’ Ksf. uo=0.3

Figure 3-14. Arch Bridges Considered by Ostlund.
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X-truss Bracing

=

K-truss Bracing

PR

Diagoral Bracing

b

Transverse Bracing

PN~

Figure 4-1. Patterns of Rib Bracing.
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Buckled Shape

—=======—-== Unbuckled Shape

Figure 4-21. The Lowest Anti-Symmetric Out-of-Plane Mode
for X-truss Braced Bridge.
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Rigid Connection

> »»

(a) Rigidly Connected Column at Crown Only.

(b) Spandrel Bracing of One Middle Panel.

(c) Deck and Ribs Rigidly Connected.

Figure 4-22. Different Tyves of Column Connections
Between Deck and Arch Ribs.
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wa[TFT [
w. i Y T 1§ 1 1 1 )

(a) Loading Condition Corresponding to Antl-Symmetrlc
In-Plane Buckling Mode.
wa" I | | | |

We C 1 1T 1T 1 1 Y7 7 17 13

(b) Loading Condition Corresponding to 'Symmetric In-Plane
Buckling Mode.

L-2wy | N . s o s

X

(c) Loading Condition Corresponding to Anti-Symmetric
In-Plane Buckling Mode, Non-Symmetric loading.

Figure 5-4. Loading Conditions Corresponding to
Symmetric and Anti-Symmetric In-Plane
Buckling Modes.
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APPENDIX A

LINEAR AND FIRST ORDER NONLINEAR
STIFFNESS MATRICES OF A TRUSS ELEMENT

For the linear and first order nonlinear stiffness
matrices of a truss element, the twelve degrees of freedom
defined previously for the beam element (see Figures 2-5)

are used here also. Note that only non-zero elements are

given below.

Linear Stiffness Matrix

kK(1,1) = k(7,7) = =R,
)
k(7,1) = k(1,7) = -Ezé'

First Order Nonlinear Stiffness Matrix

n, (2,2) = n. (3,3) = n, (8,8) = n. (9,9) =V
n, (2,8) = n, (8,2) = N. (3,9) = n, (9,3, = -V
in which
EA ot ]
V== (8 - uy)
L
and u;, uE are axial displacements of the ends in local
coordinates.
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APPENDIX B
PROGRAM NEAMAH

B.l Description of Subroutines.

Program NEAMAH, has been described in Chapter III, and
a listing of the program is given at the end of the section.
The input data is explained with enough comment statements
as they enter into the program. Other comment statements
are used as needed. In the following, a brief description
of the subroutines is given.

The main program (EIGEQDK) directs the flow of execu-
tion by calling the appropriate subroutines for each step of
the solution procedure. Subroutine NODDATA reads the data
of the structure geometry which includes mainly the coordi-
nates and degrees of freedom of the nodes. Subroutine
ELEMENT calls the appropriate subroutine (BEAM or TRUSS) to
read the elements properties data. Subroutine BAND computes
the semibandwidth, MBAND, of the structural stiffness ma-
trix.

Subroutine BEAM and TRUSS evaluate the linear stiffness
of the beam and truss elements, respectively. Subroutine
TRANSFORM and INVTRNS are used for geometric transformation
from local coordinates to global coordinates and vice versa.
Subroutine SBEAM1, SBEAM2, and KEPSIOl, respectively, eval-
uate the non-zero entries of [n;], [ny], and [K j]. The
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assembly of [k], [nj], [ny], and [K.,] into the appropriate
global stiffness is accomplished with subroutine ASEMBLE.
Subroutine LINSOLN solves the system linear equation by
Gauss elimination. Subroutine STCONDN condenses the struc-
tural linear stiffness matrix and load vector into the
degrees of freedom which have been established in subroutine
NODDATA. Subroutine RECOVER recovers the internal degrees
of freedom of the structure after using subroutine LINSOLN.
Subroutine IDENT identifies the displacements obtained from
LINSOLN with the nodal displacements similar to those found
in the recovery process.

Subrutine DECK was developed for the inclusion of the
rigid deck effect or the "tilted load effect." Subroutine
LINDECK and NONDECK included approximate deck effect "tilted
load effect," assuming that the deck is flexible. The
approximate effect of a tower was included in subroutine
TOWER.

The linear eigenvalue and the multi-eigenvalue solu-
tions are obtained using program EIGENVL. The nonlinear
eigenvalue solution is obtained using NLEIGNP. For the
solution of the quadratic problem, subroutine NLEIGNP uses
the modified regula falsi method of iteration by calling
subroutine MRGFLS and the function subprogram DET. Function
subprogram DET1 evaluates the determinant of the structural
tangent stiffness matrix. Subroutines ENDFORC evaluates the

element end forces.
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B.2 Variabl Used i he C I p .
The variable names used in the program are listed below

in alphabetical order:

Program NEAMAH.
A(M) = The cross-sectional area of element M;

A701D(M), A7TOT(M) = Parameters related to element M for

evaluation of the initial strain stiffness matrix;

BOL(M,J), BTO(M,J), BE(J) = Intermediate parameters for the

evaluation of initial strain stiffness matrix;

D(I) = Displacement vector, found from the solution of the

system S*D=R. I varies from 1 to NEQ;

DTOT(I), DACTUAL(I) = The same as D(I) but for total dis-
placement measured with reference to the beginning of

each load increment or initial geometry, respectively:

DETER, DETERMNT = Determinant of the structural secant or

tangent stiffness matrices;

DETCHK = Constant always zero, so the program will stop if
the detrminant increases as an indication of instabil-

ity:

DN(I,1l) = End forces in global coordinates for each element.

I varies from 1 to 6;

E(N).= Modulus of elasticity of element group N;
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ES(I,M) = End forces in local coordinates for element M. I

varies from 1 to 3;
G(N) = Shear modulus of element group N;

IA(N,I) = "Boundary condition code" of node N for its Ith

degree of freedom. Initially it is defined as follows:

IA(N,I)

1 if constrained;
= 0 if free
After processing,

IA(N,I)

0 if initially = 1;

equation number for the D.O.F. if

initially = 0;

IB(N,I) = "Additional boundary condition code."

IB(N,I) = 0 if free

N if slave to node N;

-1 if to be condensed.

After processing, IB(N,I) is unchanged except,
IB(N,I) = -(condensation number of the D.O.F. if

initially IB(N,I) = -1);

ICALl, ICAL2, ICAL3 = Variables controlling print-out (more
details are indicated by "comment statement”™ in the

listing of programs);

ICAL4, ICAL5, ICAL6 = Similar to above, use for approximate

in-plane and out-of-plane deck and tower effect only.
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ICHECK = Parameter used for Newton-Raphson approach in La-
grangian coordinates to control the type of computa-

tion needed in each load increment;

IDET = Parameter used for evaluation of the determinant of
the secant or tangent stiffness matrices either before

or after Gauss elimination process;

IGOPTIN = Paramether used to specify type of the geometry
for plane frames (i.e., circular, parabolic arch or

arbitrary geometry);

IPAR = Variable identifying appropriate "Tape" for storage
of different structural stiffness matrices (i.e., [K],

[K o1, [Ny], [NpD);

ISTRESS = If EQ. 1, compute nodal forces and stresses in the

structure. If EQ. 0, skip;

IXX(M) = Moment of inertia about the x-axis of the cross

section of element M;

I1ZZ(M) = Moment of inertia about the z-axis of the cross

section of element M;
KT (M) = Torsion constant of element M;

L(N,K) = Variable identifying the Kth element in the element

group N;

LE(M) = Length of element H;
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LODPONl1 = The degree of freedom at which the load to be
increased (automatically generated by the program with
proper use of LOADDIR. If the load to be incremented
is not at the first node, then LODPONl is to be

inputted manualy by changing ITETO value to 0);

LNODEl = The node at which the load to be incremented, see

previous note;

LDOF1l = The local degree of freedom of the incremented load

at the previously indicated node;

MBAND = Semibandwidth of structural stiffness matrix;

NCOND = Total number of degrees of freedom to be condensed

out;
NCOUNT = The order of load increment in incremental
approaches;

NE = Total number of elements in the structure;

NEQ = Total number of equations;

NODEI(M) = Variable identifying the number of node I of

element M;

NODEJ(M) = Variable identifying the number of node J of

element M;

NSIZE = Total number of degrees of freedom, condensed and

free, of the system. (NSIZE = NEQ + NCOND);
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NUMEG = Total number of element groups;

NUMEL(I) = Total number of elements in element group I (in

NEAMAH) ;

NUMITER = Number of iterations at each stage of computation;

NUMNP = Total number of nodal points;

PINT(N,I) = Initial load applied at node N, in the Ith

direction.

PINC(N,I) Load increment at node N, in the Ith direction.

PTOT(N,I) Total load at node N, in the Ith direction.

PACTUAL(I) = Applied load related to the Ith D.O.F. in the

structural load vector at each stage;

PSAVE(I) = Initial reference load in the Ith direction,

initially equal to zero;
PSTART(I) = Initial load in the Ith direction;

PTEMP(I) = Resistance in the Ith direction, with reference

to current updated state;
R(I) = Load vector of the system;

ROT(I,J), ROTRAN(I,J) = Rotation and inverse rotation matrix

for each element (I =1, 6, J = 1, 6), respectively;

S(I,J) = Tangent stiffness matrix of the system;
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SCALE = Scale factor in the evaluation of the determinant of

the structural stiffness matrix;

SE(I,J), SEI(I,J), SE2(I,J) = Element stiffness matrices

(i.e., [k]l, [n;], [ny], respectively);

ULOC(M,I) = Identifies 1local displacement in the 1Ith
direciton of element M (I varies from 1l to 12 for three

dimensional case and from 1 to 6 for two dimensional);'

W(I,J), WCHK(I,J) = Incremental recovered displacements
(used In iterative process) related to node I in the

Jth direction;
WTOT(I,J) = The same as W(I,J) but for total displacements;
X(N), Y(N), Z2(N) = Global X, Y, Z-coordinates of node N;

ZPGM (M) = Rotation of local major principal axis.

SUBROUTINE TRANSEM

Rcol(I) = Identifies the entries of rotation matrix for

three dimensional beam element., I varies from 1 to 9;

SUBROUTINE INVIRNS

V(NP,I) = Identifies the element local displacements for
nodal point NP and Ith direction (I varies from 1 to

6):;
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SUBROUTINE STCNDN

RC(I) = Condensed structural load vector (I = 1, NEQ);

SC(I,J) = Condensed structure linear tangent stiffness
matrix;

SUBROUTINE EIGENVL (EIGEN, IDATA)

EIGEN = Eigenvalue;

EIGNVTR = Eigenvector corresponding to EIGEN;

EPSI = Tolerance;

MAX = Maximum number of iterations allowed;

RHO = Rayleigh quotient;

XB = Vector that stores the approximation to the eigenvector

after each iteration;

SUBROUTINE ENDFORC

DN(I) = Stress resultants on the nodes of each element;

SUBROUTINE NLEIGNP

A,B = Variables defining the interval in which the eigen-

value is enclosed;

ERROR = Upper bound on the computation of the eigenvalue

after convergence;
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FL = Value of the determinant of the matrix S = K + L*N] +

L*L*Ny at the converged value of the eigenvalue;

FTOL = Convergence criterion for sufficiently small value of

the determinant of eigenvalue;

L = Converged value of the eigenvalue;

L= (A + B)/2;

NTOL = Maximum number of iterations allowed;
XTOL = Tolerance;
SUBROUTINE MRGFLS

IFLAG = Variable defining the status of the iteration. If
EQ. 1, convergence was successful. If EQ. 2, no
convergence after NTOL iterations. If EQ. 3, both
endpoints, A,B, are on the same side of the root, hence

method of iteration cannot be used;

FA = Value of the determinant of matrix S at interval

endpoint A;

FB Value of the determinant of matrix S at interval

endpoint B;

W = Weighted values of the root between interval endpoints A

and B;

FW = Value of the determinant of matrix S at the weighted

value W;
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EUNCTION DET

DET = Value of the determinant of the matrix S =K + L*Nl +

L*L*Ny at a particular value of L;

K(I,J) = Part of element S(I,J) corresponding to linear

stiffness K(I,J);

L = Load parameter;

Nj(1,J) = Part of element S(I,J) corresponding to matrix

Nl(IrJ)7

N»(1,J) = Part of element S(I,J) corresponding to matrix
Nz(IrJ)o
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ggRAM CAN ALSO BE USED FOR SOLUTIONS OF OTHER
STRUCTU S MADE UP OF THESE ELEMENTS IN THREE DIMENSIONAL

I B R EEREEERERNERNER)

LAA R AR 222222 A2 222 i 22222222 2222222 222222222222 2222232232222 2 23

RAM NEAMAH (INPUT QUTPUT=65, TAPEGO=INPUT TAPEGL

‘TAPE} TAPE?2 TAPE4  TAPES TAPEG TAPE7,TA Eg TAPES, VTAPELO,
c +TAPEL]; TAPEiZ TAPé13,TAP514,TAp£1 .TAPELS, TAPE2]
Stt'**t.**t**t'tttﬁ***t,ttQtttitittt.tt'tt't**'tttt"**'ﬁ't'*t'ttt**ﬁt'
*
* PROGRAM NEAMAH
*
. THIS PROGRAM WAS PREPARED FOR_THE SOLUTION OF LINEAR AND
* NONLINEAR EQUILIBRIUM AND CLASSICAL BUCKLING PROBLEMS OF
* ARCH BRIDGE SYSTEMS USING THE FINITE ELEMENT METHOD WITH
* NONLINEAR ELASTIC STRAIGHT BEAM AND TRUSS ELEMENTS IN THREE
" DIMENSIONAL SPACE.
*
®
*
*
*
*
c

REAL IXX,IYY,I22,KT,II,JJ,LE,N1STTOT
COMMON /1 /NE , NUMNP ,NUMEG,LE(54) ,NUMEL(3) ,IPAR,ICALl,ICAL2,ICAL3,

BIEEE,

Egunon;§/§%z§§ Z? 187306 V2R 301 24750) 2030
*c? 1N { {gz( ? 3p§n? z§(54) ,NODEJ(54) ,A(54),IXX(54),KT(54),
R T

COMMON/‘O{D%lsﬁ ,ci§1 é%?léé? {528?,64(168,10),RC(168),
ES&ﬁéﬁk?ffbﬁ?ég W(30,6),V

58§58§4i253§?89 ﬁ,l:?iuziz ,RCSL(S).HSUOPTN,NIGOPTN
counon?ig/A7Torzs4) A70LD(54),BOL(54,5),BTO(54,5),BE(5)
COMMON/SHEAR/ ISHEAR

g§§E§§§8§ ggggg(% g 8 (1 g) P§TART(168) ,DTOT(168)
DIMENSION psaﬁs?l ? EAETUAbg 2 )| Niswv?w( 63 ? pxngész 6)
DIMENSION SOLD(16 86 gg §§N % 5 ?om( )
DIMENSION REFSTRT(30,6/, REFPTMP SRN

INTEGER PROTYPE,EIGVALU, PRIOPTN,DETOPTN

INTEGER DOF,TLDOF

AR R R AR R R R R R AR R R AR RN R AN AR AR R AR R AR AR R AR NN R AR AR A RN AN AR RRARRAARR AR AR

. _PQIQ_ESLES .
* 8,7 K BEAM ELEMENT *
* TAPBS 0 11 § K ELEMENT *
* E9. #on x*§1 STROCTORAL *
* APE 3E

* TAP ,g FOR N *
* TABES 3 gz FOR *
: TABES $,1516 FORKEPSI0 *
LA 22222 R 2222222 a2 a2 X s s il 2222222222222 2222222232222 22
RER AR AR R AR AR RN AR R R AR RA NN RIARNRRRRRRARRARRRRARRRNARRRRARANRARRRARAARNRAARRRA SRS
* RECORD NO. ONE *
* TITLEl,2,3: PRGRAM TITLE *
* NE :NUMBER OF ELEMENTS *
* NUMNP: NUMBER OF NODAL POINTS *
* IDATA: 0 TO CHECK THE DATA INPUT .1 PROGRAM EXECUTION *
* ICAL1:0 FOR_LOAD VECTOR A CTURAL L INEAR STIFFRESS *
* MATRIR- 20 BB BRINTED(ICALIS] SKIP *
* ICALzngEggznisgL?CzMENT VECTOR TO BE PRINTED :
* ICAL3:Q FOR LINEAR STIFENESS MATRIX IN LOCAL OR GLOBAL *
* COORDINATE TO BE PRINTED,ALSO FOR DETAILS OF EIGENVALUE }
* $OLUTIONIICAL3=] SKIP *
* ICAL4:]1 INTERMEDIAT RESULTS IN SUBROUTINE DECK PRINTED *
* ICAL5:1 INTERMEDIAT RESULTS IN SUBROUTINE LINDECK PRINTED *
* ICAL6:1 INTERMEDIAT RESULTS IN SUBROUTINE NONDECK PRINTED :
(22222222222 222222222 eIl yy ey ey
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READ(60,1) PROTYPE,EIGVALU,ISTRESS,IPART,LOADDIR, IDECK, ISHEAR
1,2010 B E2, TITLE3,NE,NUMNP,NUMEG, IDATA,ICAL],
A R AR R R T T

wn:ra(sl 2)PRIOPTN N20PTIN,N1OPTIN, ITERCHK,
+MSUOPTN, R GOP%N gxx SUSTK, DETOPTN TOLER

6972 58 '3 ;ox o ngrrzn H 10xz 2°§§§u - 12/,10%,
¢10§ nzropfu iy iéé 16§Ix§5£zn- 10{0 g;grt-* 19/,

C
§931 FORMARIICK, Eﬁepéz STEB1S1e018s) RERSI RTINS, /)

WRITE( L PROTYPE, ;IGVZL? ISTRESS 1PART, LOADDIR, IDECK
765 RMAT x R 1 2X VALY
876 i X, * zg =t xg:lig § =t %% 3 ﬂéAéﬁIR-' 12/,
X,*1 scx Saer 1 HEAR =*'
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*
*
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AND IGSPTIN-O FPOR OTHER GEQEETR ES :

4

*
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L2222 2 222222222222 2222222222223 222222222 2222222222 222232 222232222222 22223]

€

1TER, TLDOF
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4801 w%xr 1 40 ITER =*%,12,10X,*NUMBER OF LOADS =*,I2)

407 QONTEN 1)-#?NC(N 1)=PTOT(N,I)=0.0

406 %oyg
4 F, PINT quc N,DOF) . PTOT (N, DOF
?gix ?21 2§5§§r80# pINﬁZﬁ pxu (%, oo%) 9704(ﬁ DO;)
4 roaui 155:
33% 583nA {65x *MAXITER =*,15)
4 FO ; lganxnc conoryxons : *//,6X,*NODE*, 7X,*DOF*,16X,
+*PINT 8 prﬁg {6
410 FORMATI*0¥,3X,1 &x,xs 11%,F10.4,10%,F10.4,10X,F10.4)
;*.Q*Qt*i'fﬁti*i"*ti****i*t'ﬁtt"t'.tﬂ'****tttt't'.*ﬁ**'*'*'t*t'*Q**itﬂ
®

READ NODAL POINT DATA *

AR RN AR RN R RN R AR AR TR PR AR R PRI RN R RN IR RN AR R AR RIA AR AR AR AR A AR RN NS
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ALL NODDATA N
?r?%noggp .N éxg?pgé %o 3021
SCALE=1.E+10

IE LOAngzs .EQ.-1)SCALE=10000.0
DETCHK=0,

5001 PSAVE ? )-DAéTUgL(I)-DTOT(I)-O 0

tttttt'tm ns.??ﬁmng QQ t&'g?gg'a‘}’MQ*EQBBE§£9§9£§§QESQ&§§tt*a:

L DIR)1655,1665,1675
1655 IH Rg ) 5

1665

1675

1683 CON N?g 1686 ) IHORZ, IVERT

1686 %* : f&x anéaz-- t§ SX,*IVERT=*,13,5X,*ILAT=*,13//)
IF LOAD WANTED FOR SPESIFIC LOAD LET ITETO=1
CHOOSE THE APPROPRIATE VALUES OF LODPON1,LNODEl,AND LDOF1

* %

*
*
®x
*

H

)
|

9152

»cxuﬂ

HHH':gg
q

*re

'f.%

Lon?%ETOiEQ 0) GO TO 9152
LNODE1
%g ?E O)Gg T™ 700
=?s'f{ :";ﬁ; oo ootis o 300
U
LAT. E§(8)AND ?893)60 TO 1093

—
>t
O
]

o
8 —~ZO
N<

SRy
o310
5

=25~

909

.5892)60 TO 300

OO0
Za 330
H..o

Lol 2] 35 Nalal,
33
onds

—Z

;.:':.;‘. . 8
s"‘

499

BZONS

GO §o
1093 PRINT *,9 PROGRAM CAN NOT CALcunagg THE VALUE OF LOD u%-
PRINT ; 5 HELP WANTED, PROGRAM STOPPED AT APP. LINE 266"
S
NTINUE
CONTI
2900 gnxrs( *03909)§ E gﬁthoge%’L?SF%HIcn LOAD HAS BEEN INCREASEDs*,
*1?, x *A4 60 54',13.21,*wiwﬂ D.O.F=*,13
g§ g-i.guunp
3010 W(1,J)=0.0""'
1 Htgx-g

% UPDATE ORIENTATION OF PRINCIPAL AXES AND NODE COORDINATES
001 §r gxgﬂz E 1&ocgorg 392
52 M ? N&

I-NODE
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=NODEJ
PR Tca ke
YI=3(1
2Iaz(1
=&
13230
EL=SQRT((R3-x1) #22+ (Ya-Y1) **2+ (23-21)*#2)
SnHE
‘gngA-o.ﬁ (FH(1,0)99(3,4) ) 2CE* (W(1,5) +W(3,5) ) *CT+ (W(T, 6)+W(J,6))*
3020 ZPGM(M)=ZPGM(M) +DALFA
Dx 02 =1 NUMNP
x[{l =X{1 ~H§1,1)
Y(I)=Y(I)+W(I, 2
3025 ZI:ZI‘WZBé
FABROTEC) | o0 10 302
4995 58“’;";“9" -I'-l/'/ LO%, *NODE®, 10X, *X(1)*, 10X, *¥(1)*,10%,*2(1)*,/)
WRITE 61‘49996 1,2(1) gt”.z(x)
4987 EQRMAT(Z .7,10x,15,3r15,
4996 GRYRNEY 4008
4998 58“’4“9‘% ';'s/ﬁiﬂx,'mmsk',1Dx,'ALPHA‘,/)
WRITE(61,5 Qsi 2pgM(1
5 g FORMAT (¥ §,/. éx,: ,né.s)
3 CONTINUE
3021 CONTINUE
: READ AND STORE ELEMENT DATA :
* ALL ELEMENT PROPERTIES WILL BE READ AT THIS STAGE AS FOLLOWS: 1
* EAM_ELEMENT 2.TRUSS_ELEMENT *
. 1P7ONLY TRUSS ELEMENTS ARE USED LET NUMEL(N)=0 FOR BEAM ELEM. *
» 'I‘PQRINUMITERIX
5927 Na=N+1
1E(PROTIPE nzﬁ) T0 2
3337 BERBTEC 0 g8 &
4444 Igg 'K’YFE NE O ’1‘0 927
450 éﬁﬁ’i-x L IN 1chEeR. PRO'K’!PE)
IE(NEQNOMEG) GO TO 5928
& T6 552 !
5928 CONTI
B IF(IDATA.EQ.1) GO TO 900
< NI
e TR 88
§ was ST S R RTH L O ST R TYRE STIEENER S TR s s amanannan
DO 3916 N=1,
IF .
cu(.{"'u‘gf‘m"} EQ.0) GO TO 3916
3916 CONTL
3917 FO é 1132 }{{“ﬂx *SEMIBANDWIDTH =*,13)
1E(JUSTK B &8I0 2119
1E (bR YPE VR
2 L mn ? GO TO 5745
NAME=| (§n
BTN "
lxxr:(rg I‘J?P‘%NiBg.l) A70LD(M)=0.0
-
IF (MSUOPTN.EQ.2) BOL(M,I1)=0.0
5341 CONTINUE
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,OADS INTO LOAD VECTOR
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R

SEMBLE INITIAL LOADS AND NODM.;%

BT ARATE o Do R, BRORE T,

A
poee

.PSAVE(LODPON1) .EQ.0.) GO TO 5010

2 o
O - o m ” ” m
; =
H 2 . E 2 g g2
8 B 5 3 8 =2
o > P Ve [0 0% o
ee o e B < € oo e g 2
3 B oEE. oS B 1 g
8 g7 8ER Bgouipes, K w8 R
- ano - NZ O o wo oy i~ 50
- - o &M~z ~ %0 Pt ey \lzm o N ON; =] 0
EnE M T IR - B oz oy = coE 2oz N 98 Zn
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B g B0 20 LS Bz ooV 8
gl BEeEl Rs 2 53 B8R %
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sRK+N1STTOT(I,J)
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NN
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2
m
H
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l‘l

(21171
hdbve
88zz.
Stggg
MNﬁOc:
N~
HQ'-'*-O LI

5 26
;g 5326
NSiz
(

stu§%:g$§?i&uﬁ@x?gné%st)

f@jjg R ie) 851 R

I s(1,1),STEMP(I,1)

Q*ta'ﬁtgezyztggTogtiIH§t§ YL T R L2t SO
WRI 46 1301)

o
W
(XX
N

>

o]

Hléé

lgk 4
-~

O>M8Hn
Y~
([
onN

Mﬁg
éo—»—c
[
'S
mmHm

» B NNH
QB85
(e SR
S
—_—O

3
=

m#mj
g?bht‘

»-0.
ulu

300 JEAREE iégw.

R gsmm%m
1310 9 17§iug 3?7 (12,3),J3%3START,JEND)

%éégggggggﬁ AND)GO TO 1350

TO 1300
NTI

FORMAT(¥1%, *PRINT ogr F_THE BEAM STIFFNESS MATRIZ*//)
ijg; ¢§§§§$§ *, ;3 ézﬂsféngx tig fa 3§?§go.i§§§x,szo.13,zx,nzo.ls,ax,
RPN .2 4 W 4*y R S ¢ <0 T ¢ LR #2440 21T 2 412 © S

wnxrz&si,laoc)
1309 %:TJEﬂSTART JEND=MBAND

L

WRI grsur(lz J) ,J=JSTART,JEND)

1311

-0
90!
>u5
Ly e
H?ég

SSDM?AND)GO TO 1351

o

QRMAT(¥1%,25%, \PRINT OUT OF THE TRUSS STIFFNESS MATRIX*//)
%35% §§§§$§ . L 3 SSTAggx é5§ § 3%5"30 15 §x E20.13,3X,E20.13, 3%,
3 CONTINUE .
0 TR e SenmatgTss s

B S8 s
5310 ggggééﬂzgg gii?nnrgugf 21 MBAND) , 1-1,NS12E)

IE (PRIQPTN £9.0) GO TO 3912
o
%3913 CONTINUE e
*

renanns BN QYT QL IHE TOTREL BT R ENERE AR s anes”
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WRITE(61,1361)
JSTART=1
1360 JEND=JSTART
IF(JEND.GT, MgAND)JEND-MBAND
%1;%?1,%3 ) JSTART , JEND
RR178061,1365) (8(12,) ,3=ISTART, JEND)
1364 CONTINUE
IF (JEND,EQ MBAND)GO TO 1365
JSTART= +1
GO TO 1360
65 CONTINUE
EORMAT FI¥; fgx :p "I*ﬂ'r Y g 'rcmtg sz FFNESS MATRIX*//)
LEQRMAT( HEH R T ?3 34°830.13%5,£20.13, 3%, 820,13, 3%,
3 CoNTIND
FORMAT[ %1%, STIFF.*,
-3%1@ FORMAT(+ 18 x5 12521013y 44
H CONTI
1F( PE,NE.3) GO TO 3337
E 1-1',’5:
1 =1, MB
,11) RK
S(1,3)48P(1,J)=RK
89 g
NTT
REW,

)
Zo
O

58.0) GO TO 1809
INDN

’r'gé
? W%T:?g; §§8g}((S(I,J).J-l,KBAND),X-l,NEQ)

%

e
[IsleletS)
Tz

0
3

1809

i

P’!’N

M>OT0" Y HO;

DO

imf.\z&é If}(‘zx ,E19.13),/)
N

T(1)=DTOT
iR ey

%005 fs ;%!28 ; =DA( A?.(!)

gr Lc?gg.gﬁ.o CALL RECOVER
S ST R
IF gﬁRCHKQNE
?gmm%x&nﬂ) ;o .0.) GO TO 5763
N =] L (NN
DO K=1,

Q> X
=
~§=
2'\2 Z,
=

=A70LD (M)+ULOC (M, 7)-ULOC (M, 1)

U

TEHECK §H

IF K.NE.0) GO TO 2120

Do 21 =1,NEQ
2121 PAC gks X%-PSAVZ(I)*PSTRR‘NI)
2120 CONT §N¥
3339 2 31)1510"0

IM=1+

e

é‘ég ?T o NI Q) GO_TO 2001
R AR
1804 IM IH‘

GT NEQ) GO TO 2001

s

gl

D 1=1,NEQ
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3 70 eos0

fﬁg)) J
A2
, PART

&y ST sRRRT
,6)*LE(M)=-2.*ULOC(M,8)+ULOC(M,12)

LE(M)+(ALFA1**2+BETA1**2)/2.
1*ALFA3+BETAl1*BETA3

+*ALFA

OC(M,5)*LE(M)=~-2.*ULOC(M,9)-

sty /0.

1 383

FPTMP (N
FPTMP

*

TA3

2.

+2.*ULOC(M,5) *LE(M)+3.*ULOC(M,S)
é

,7)=ULOC(M,1)
-2.*ULOC(M,6)*LE(M)+3.*ULOC(M,8)~

M
3
SIB+

k
GO TO 2117

gi12H
$)47EE G

+ULOC (M

%

(

M

-+
GO TO 4992
)

M

Iy

10

*g?

£

DACTUAL(I)*,/)

3

ALY
NL
X
i
)
1

§
6
2
i
T
A
2
iy
J
T
e

e

X
(
5
M,
(
L
B
T,
B
T

1951,2051,2151
iEQ ACTUAL(1)
187

%8}
E
Y
M
L
3
8
il

5
i

-

NE.
E?.
NN

o
| B
~

e, e a0 Dot 0 an ZZ08 b KRZZOe T- owEan - xzE
Z M e e sioo m ) X
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9
pgraaT
3:8
PRENBT

NUMNP
TiNP
TRT
LTAl
WRITE
ARI
T3
MAXITER
3
i
NAME
75068
T0
1
12510
i
N
STA*¥2281
i
i
=1, NAME
5
M
M)/
FA M
5+8E
FA3+
2+4BE
, 1

!
1
1
1
1
1
RE
RE
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1
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11111

5007

2119

9735
7

i

8337

0onO0Om OO
o
-

299

>
oD
o
oV

601

(gla’plelale]

+

+

)

180

%N

61

99) PACTUAL (LODPON1),D , NUMITER

: L%b§'é3"¥6°§§§ETN'E°'E¥I INT, NURLTES 900
-DETCHK

GT.0) TO 900

RMN
111I)PACTUAL(LODPON1),PTOT(LNODBI,LDOFI),LODPONI,LNODEI

OX, *PACTUAL=* F10.4,10X, * = F10.4,(/
iﬁg £§b§§gi)??22?235(ﬁgéé?fﬁo%ggfgnoti§i) GO TO 900
TURL (1)

i

)

.?6?37 GO TO 5281
NN

NAME

14

()UHUUa

500—0@0—»—0 §
99"’y
[SIE e P &y
07 L M Z 9%

o0
- Yo * +OZ0X

OR )y

&5
- mOmA
e

2.

—~d¢
0w »

"]l-‘%
—~~ON I ~R-JO)-)

~ZO>
Uy
g\,*.k<,~
80O
=

GO TO 2118

zZ .

G
(0. 7}
-

s

méai

nOVZ
-0

=

OO

3.3

o Mo " ~Z20 oy
—tg -

~*
Bz

5

B8
2

£
DO

1F
N

1F (MSU Q,1) A7OLD(M)=A7TOT(M)
DO 534 3

§5§Txgua $>2) BOL(M,1)=BTO(M,I)
SONHNGE

3 323 Yol fomne

1553? N,I%: Q.0) GO TO 451
2 J%-R(J)*PINC(N,I)

CONTINUE

NTINYE ‘
§§ Ig%x E I'}'Nggranr 1)=R(1

xr$ rzxisglg P TART&I;-R}I}*PSAVE(I)
CONTINUE

xrépn 0) GO TO 6977
WRITE §557§g$

FORMA 77, 10%,*R(1)*,/)
ggx%s %"3?'"5? )

#0 18z g2t 18
gg NU

0l

z
3
-

~ee TR R AR T N2 A O, Ve TR O AT RS T R v

égég:gggéﬁgﬁO) GO TO 801

't.§9&¥§t§¥§I§¥99§t&£§5e5i§99é2£9¥§*§:9:§t'tiit*'*ttt*t*tf**ittttt
IF(ngfYEEigE.l) GO TO 601

fgg?aoni.sc.l)SCALz-loooo.o

B3 565 ¥o yuaee
4 = 8
I'Si? N,I).£Q.0) GO TO 4888
BUDER(J)+PINC(N, 1)
ONTINUE
ONTINUE
IDETs]
?A L LINSOLN
F({PROTYPE.EQ.2 GO 177
IF RiLODPON .EQ.PINT LN8DE ,LDOFiii CALL IDENT
IE B 299§9§ &E &§l§3 &Eﬁ?§*£%§9§t *§é¥&*£§¥z§§§t*ttttt**tttttﬁtt
IN CASE WHIgH WE WANT THE END FORCES DUE TO
THE LINEAR O%UTION SUBROUTINE ENDFORC MAY BE CALLED
A§ THIS STAGE EHE FIRST ITERATION OF THE FIRST
ra'& ég¢l§§§§§§§2 S I I
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-§Q- pxn;énn9951 ,LDOF1) .AND.ISTRESS.EQ.1) CALL ENDFORC
ALE
P

ETER= )

gglgg(ggg INT(LODPON1) ,D(LODPON1) ,DETER, NUMI TER
977 NUMI TER=0 -
g a.-5§§9¥§§-1"z§ * Et949&!*t§t9 t§znggzgn§tt*ttttt**ta**ttﬁtgtttttt
C

1525 I= EQ

1555 p{1)=D(}
155 FRRIEBL ) om0 s
7 R
1778 %Eiﬁgénsgﬁe%B;""éaz%°n§80v§39
E IDENTIFY DISPLACEMENTS FOUND FROM SOLUTION OF S*DeR AND FROM
E tt*!ﬁ%ttt§9v§§¥tg§9c§§§tt.tttt.ttttttttttttit*ttitttﬁtﬁttt'tttt'tt

CALL
& ...29.... NODAL DEGREES OF FREEDOM IN LOCAL COORDINATES . reessnss
¢ CALL INVTRNS
C
C

o BiH.i A
iF "U::Elf911§:8%g 2378376

2378 conrx

PAR=3
N=1
210 éAﬁL saéAﬂéigs,g ogng 210
1 T9,5371
SRR AR R,
RE 2 1=},Ns12E
5372 8§(Ig7§ '"? T
WR TB&%, 5 5 s? z"?,a-f MBAND),1=1,NSIZE)
5371 CONTINUE

202 %gégc NDéNSNO) GO TO 802
PTIN 1
g E IZ& GO TO 499

190

ggné278)8) GO TO 310

E
ONg .0) GO TO 899

l')

it

Sgéﬁm

=ONN<I
RRX P4
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RSB SR IBSL RO 00, 1RREK,B0-5)
iF %3ES§6EQ CALL ' TOWER|IDECK,ICAL6,EIGEN,IDATA)
222 §§NT §U%- NE :
%£§2 i;}is&gm
TEIN 8 IN.§N% ADS 2,11) _RN2
IF(NZOPTIN.EQ. R?x, -ﬁx+.g*nﬂi
IF N%OPTIN.E . § J)=RK+.5*RN1+RN2/3
IF(N20PTIN.EQ. p;i, ;-Rx+nu
1 IS,;%%SSEI"'E . P(1,3)=RRK+RNI1+RN2
189 8ONTINUE
B
TR B
GO _TO
9999 55 Ne
B9 1§ yai-gomN
5531§(n,1) .EQ. 0) GO TO 17
; gé%;ﬁég)* .S5*PINC(N,I)
6 conrgnu?.l o
i:;g gg% £ ég!iégg p:uvénonpoglgspﬁxg(nn9nz1 ,LDOF1)
+g§xf H ;g;' §3°§9ig HPINC=,F10. g?n
701 88585°1§8°p°“1)
702  IF(ABS((UOLD- ;Lonpoul))/n(nonpoul)).Lm.Tonsn) GO TO 708
U LD-D;9§DPO
;ggs gggggi?)inif§zq
1ass TR TIE SRR BRI IHT S
DETER= Tg
1os ggéggégg.n§3§ NTB&ODS*%I%QD(?ODPONI) D!ZEB,NUMITER
N=
I_S%g%ufii g0. 0) GO TO 171
, é &;g&mmun 1)
i?i? ég?h%ggggNT(LODPONI)) GT.ABS (PTOT(LNODE1,LDOF1))) GO TO 900
g“ SQNI£NE§i'ﬁﬁt'*tttﬂ'.Qt*ttilttitt*tt"iiti*t'fi*t.ii"t.*itt"*"t
§  TRofitVE,EICBIILYEROUUTION,USING, RETERINANE SEARCH METHOD
§ BE_ coN sxggngo IN SUBROUTINE NLEIGNP FOR NONLINEAR
C Q**' *t§ }*1 AR 2*t*'lt*t?g&gﬁ*'tsgu§lg§n§gi**'tt'*'i**t*t't'***ﬁ
%EIE§§EIE¢10
TR R e 0000-C
900 xr%xsrnes E )EA L ENDFORC
FORMAT(715)
8, Bl
+§§g;§§7zpl ??é KOAR3aF 12,90 11n1 TERATIONS =, 15)
?33 FORMAT fox,*pinw LNODE1l,LDOF1)=*,F15.8,10X, *PINC (LNODE1,LDOF1)=* F
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+15.8
: ! ‘PTOT(LNODEl LDOFl)=*,F15.8,10X,*PINIT2=* ,F15.8,10X,*PINC2=* ,F
+

4 X, *MAXITER=*, 1
i gt
e SO B DA

HICA é
s oBSATH L S RO TN
SBEE

1933 §g,%*&§16¥2‘?

SUBROUTINE NODDATA(IGOPTIN)

l'*i.ﬁ"ﬁtttt't*t'ﬁ’.*'*'tt"*"'t’**’ﬁ..*QQIQ*QQQ.tittii*itt*.itﬁ

READ AND PRINT NODAL POI
§ COND NSA%ION NUMBERS AND

g CALCULATE EQUATI AN?
T TQEEQ!§§¥*QQ'Q*'Q! tﬁtt*t*é¥§t* §tt' QE; B e nnnnrannnnnnnn

?OMMON 1/NE,NUMNP,NUMEG,LE(54) ,NUMEL(3) ,IPAR,ICALl,ICAL2,ICAL3,

on/§;¥§{35,"??1%?3"?6*?‘"30‘, ?5"),2(30)

OOONOOHO OONONOHNONNO

E (2222222222222 22222222 X2 2 X222 X222 221 X2X22 222223221323 223 2232222222224
¢ READ NODAL POINT
EXPRESSIONS N N BE CHANGED
g *ttéggggglgt 89R5§ g§§IN Né %Egtt' t‘tttt*tt't.t't******ti*'*tt
¢
A
xrizc IN.E 8 TO %gg
IF (IGOPTIN E l TO
READ(60 33 ALF2 n rug
WRITE(61 £ ALFZ 1v
ALF g -g&{z ROZgE
2(1)= !
gizié“%‘?ii%%é‘ BETERRG) (1o AL ne)
202 maw;%f g
2(1)= !
3§ﬁﬁﬁmﬁﬁfﬁmwn
§§4 NT
BRleloony, B A Ede 8 (BB 18 xon o 2w
0 TO )0
100 T?NZ i N, (IA(N, ,6 N, X Y(N N
?;ig?za%&gugéz géf i 63; 1- 3 i i } i 23 i } f ; zi 3
12 X232 X X2X3X22223X2 222222 X222 22322 22223 2222222222 2222222222222 222
PROCESS ARRAYS -IA- AND -I1B- T8_FIND sggarxgn NUMBERS AND
CONDENSATION NUMBERS. STORE NE OND*S IN ARRAYS IA AND
SI ¥§&t‘*ttit**ttttﬁtt*t**'tt**ttitt't'*'*tt*tt*i.tt*tﬁ

seaiB,BESEE
o1
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o
=}

NCOND=
DO 125 N=1,NUMNP
0 120 1-17¢
IF(LAIN,7)INE.1) GO TO 105
IA(N, I -g
s $RR03E
i Yali)) 110,115,120
110 NCOND=NCOND+1
1B(N,I)==NCOND
6o 1 29
115 NEQ=RE
1ATN,1T=NEQ

2
Zg ONTI N
NSIZE=NEQ+NCOND

1
1
% «»o SR TR GENERATED NODRL DOINT.DATD

WRI

WRI
WRI
+NUMN|
WRITE
RETURN

ggﬁ ;(N,(IA(N,I),I-I,G),(IB(N,I),1-1,6},}1-),
61,2060) NSIZE,NEQ,NCOND

'Ei§:i8:i8§ R

AL

>
u- ]

o

45
et
o

T DTN L))
DOUNDARY CONDITION g?x':sgx?zx,

N
é’{"iu
‘rﬁ “?“z’mk 35000 5

Moo
>
Wb
o

>

S5

HOMZ- LD
s-g:u:

l'" \'azr’\
o%t:l
u;z wum3v~

35

AT

Owir POULLIr = O
Gz
§nzo
Mt

o EREEE

Iz 230330303
o~ S 0
8%

NMNEO_ HWRo0:
pary
e
3

ZIN < O ZZ L

?

: 8
BB NoworE

pare]

Eo 7
HEODO-I R

RO Ll
B ol

"o e

IR RIS

T 2

J1HY, 4X, 1HZ, 4K, 2H 3& 3%, 3x, 2nm

WO BZT e

t

e

2458

I

+4HNEQ=,13, 3X, 6HNCOND=,13)

SUBROUTINE ELEMENT (N, ICHECK,PROTYPE)

PR RT IR LR IR L SN

‘(IZOMN 1/NE, NUMNP,NUMEG, LE(54) ,NUMEL(3), IPAR,ICAL], ICAL2,ICAL3,
IN%%EER PROTYPE

IF(N.EQ. ALL BEAM(N ICHECK, PROTYPE
gzull&%; &t TRUSS (K, ICHECK , PROTYP! 2

END

o

SUBROUTINE BAND

TQ COMPUTE SEMIBANDWIDTH OF STRUC;ERE STIFFNESS MATRIX
DONE BY FINDING THE MAXIMUM DIFFERENCE BETWEEN THE
EQUATION NUMBERS ASSOTIATED WITH THE NODES OF A

NONONNA ANn A

ARTICULAR ELEMENT

wxw
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c
LGQUMON/1/NE, NUMNP, NUMEG, LE (54) ,NUMEL (3) , IPAR, ICAL1, ICALZ, 1CAL3
R R
[l N, g{z? zz 3 gc AE;A; 1XX(54) ,KT(54),
+L13,54) 172

IMENSION I

£ 300 Ne1 N
?&ML glﬁ?o.ﬁ) GO TO 100

* ggx;-ségﬁlvhummc.mum NAME

M=L(N Kf

N1=NODE. n;

NJ-NOgEg M

MIN =

MAX =

883 RS

- WRITE(61,102)K,NT,NJ,IN,L(N,K) M

D?!???-ﬂ{ﬂ":)
II{1+IN)=IAINT,I)

800 CONTINUE
3o i801a1,n

* wm-rz?sf, [} §x,n(x)

300  CONTINUE

DO_700 I=1,NI
IR(II 1*'“'8"“'“11 -GE-MAX) MAX=IT(1}
R T R
700 Eentrnaet ' i
MMBAND=MAX-MIN+1

IF (MMBAND.GE .MBAND ) MBAND=MMBAND
WRITE (61,105 MAX, MIN , MMBAND , MBAND

*
?88 CONTINUE "

CONTINUE
)"‘1'1" ,10X,*N=*,15,5%, *NUMEG=*,15, 5X, *NUMEL (N)=*,15, 5X, *NAME*
Ti' g éUX 'K-' 15 §§ ,*NI=*, 15,66X,6*NJ=*,15,5X, *IN=*,15,5%,

]
e

: :
*102

* L

(%)

(N K
RMAT
FORMA
FORMAT
+,15)

Felgiatibe B

AR kAR 16 gk }'HIN-" 122 2% spiBANDS ‘512‘5 MiNBakbat

4%, *MMBAND=

[oieied

e

END

SUBROUTINE BEAM(N,ICHECK, PROTYPE)

EAM ELEMENT SUBROUTINE
...9!";1.5....9.,.§§§¥.55'¥’1§ PR L O

E, NUMNP,NUMEG,LE(54) ,NUMEL(3) ,IPAR,ICALl,ICAL2,ICAL3,

AR 00

3 Naz ié5‘),N°DN(5¢).A(54),Iﬂ(5‘),KT(54)
DRt

NO0NNO 00O O *sres

+

+

)
8 ,Gg?iéﬁ 541168500 168,100, rc268),
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AL IXX 1YY 12Z,KT,

b GER BROTYPE LE

IF (IPAR.EQ. GO TO 200

1F (PROTYPE.NE, 3) TO
xy?é;ﬂscx. Q.i? % TO iggi
DO 5355 M=l NE

XI=X]NODEI (¥

¥1=Y(NODEI (M

21=Z (NODEI (M

XJ=X(NODEJ (M

2323 (NobEI (N

L)oot Ux3-x1) %024 (13-71) 242+ (23-21)##2)
CONTINI

GO TO 120

1 BE2DIATERIAL, NTORMTION

WRI

LG CIT I
ena READ, BLEVENT, AND, SRS SECTION, INEORMATION

WRITE(61,2021)

R )(4 0 %0 0 ’K‘f}zg EI(M),NODEJ (M) ,A(M),ZPGM(M),
K &1 25080 REMher ey, wopES (), A (M) , ZRGM(M),

M), 122(MY,KT(M

M
NJ) =X (N l"Z
J) =Y (NI L
J)=Z(NI))**
SQRT (AA+

guéi%m(N)? GO TO 105

««oSALCULATE, AND_STORE LINEAR STITENESS MATRIX OF BEAM ELEMENTS

IFLAG=0
e e
Bpffepiines

eue RN Q0 STIEEVER S MATRIE, Q0 DEMY, BLEUENTS, IV, LOCRL, COORRINATES

=

AW /reon

112, 01X (M) *E(N) /LE(M) *+3
=12,*12Z(M)*E(N) /LE(M)**3
%5 (N)*KT(M) /LE (M)

=4 *IXX(M)*E(N)/LE(M
FLERIARL.,
ooéy ;i Y*E(N)/LE(M)**2
e e
RN A

LAX(M) ,AZ(M)

N e o o
[ O

DLICONINH-O
e—h

5

%8 =

TR OONDIQ

17 O O I AT o

2
e o

X xe o
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I DR N /IR SR U0 SRR ) SR M)
&g
1.1)=SE =E(N)*A(M) /LE(M)

. =GGX*(12.*IXX(M)*E(N)/LE(M)**3)

OO~ ~ ~ ~
.

%-?(N)'KT(M)/LE(M)
: +GX /i% 4. *Ixx *E N;/ Ei ;;
§§§£1§5 i {5 f i/nz i /

IZZ(M)*E(N)/LE(M)**2)
R0 !t¥e2§£§t§¥t§¥E¥§I§¥tttQtttti*tttt*at't'i"
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»
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»

i3
2

§°R¥.§§112‘l21.!§9§.&99 DRI TL AR L1t S
M

T ]

a THE STIFFNESS MATRIX IN GLOBAL
33) WRITE(8,10),((SE(1,3),3=1,12),1=1,12)
$3550128(199)78.%22) 101 22)

x &§.§I£ N Ee R L B EE N NI S TRUC TR M v nnnns

{F?NESS

E{uayaﬁu.
oI -
mugy
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*

>Z M
Y
>
b

o
|4 z
5 2 SJedtitn

ONNOO- A ~“En0 o

s8 83 azwxnn
3 REN ND
REWIND
{§(1,3),J=1,MBAND),I=1,NSIZE)

IF (ICAL3.EQ.1)GO TO 991
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:QQ"'..';.*'QQ?.? ’IH§.91A99 é&*§z£§§§§§§*t*?nﬂf.i**Q'*:

CH
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CONTI
FORMAT(* *,10X,*1s*,13,*S(I,1)=*,6E21.14)

PP £ 2 ...99?.9 TR S TRUC TR BTEEENERS AT v v et
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B
L%5§?§ﬁ§§)-éLSC(M,JJ)+U(LL)'Rcon(3'(Jx-1)+xL)
ONT1
§§§;§%
NTINUE
?é A DRINT, QU O N QAL D A N T N LG AL COQRDINATES v e

E?.O) GO TO 299
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YI=Y(NODEI (M
Z1=Z(NODEI (M
XJ=X({NODEJ (M
B2 el
=
Lg(M =SORT 7 ~XI1)**2+(YJ-YI)**2+(2J-21)**2)
ggNTIN
TO 120
tt*ggégtgégggiégﬁi gtttzzggﬁﬁiﬁtt"tt.‘**ﬁ'ﬁtt’*ﬁi'ﬁit"'t.*!i't*

WRIT l )N
REAST o8 18280 E e 2oy o

L2 2 £ X2 ] Q§%§¥§§!té§§*;§9§§' EEII9***.'9****19"'***'Qt’tttt.fi**tit

WRITE(61,2021)
“"‘%é?%il%z%) B 1 ey ROBES s 2oy TR

msg

NENOMEL (R)7'GO TO 105
NUE

oo SRR TR MR, SR R NEAR S TICENER S MO TRI L, 00, TR LELENENTS.,

won ..§"§.9..§II S WA TRIE, O, TRV FREVENTE. I ERCAL. COORRIN

2
ONTIN
§§ £;§Y§SE( 71-B(N)*A(M)/LB(M)

Q*Ez& t; QP§§BG§§¥ 90'*' £§t23t§tttRTRIQQt'Q*Qt'i*ﬁ'*.'*ttt*tt

DO 210 I=
B9 218 I=1-44
e
IF R 601
wnf%§T155§b§°t?§a(z JTOJ-l 12),1=1,12)
CONTINUE
TnAggionu SE(12,12 ; rngn OCAL TO GLOBAL COORDINATE

AR E l * tt§tIH§ii§r t§§§ §**Qt2§£§t£§t§&9§é&tit'*!tit'*'*t.ttt
vt TRANET (Y 603
WRITE 1?, Zss?o ?,a-l,lz),x-l,lz)

CONTINUE

ASSEMBLE STIFPNESS OF EACH TRUSS ELEMENT INTO

Q’t§2§g IggéatEIN ARQ§I;§§§§§§"Qit't*tﬂtttt'iﬁ*ttttt***t't**t'ﬁt*
EALL AS sns(u)

ONTINUE

zrtxsr SS.EQ.1) REWIND }?

IE(ISTR § E REWIND
WRITE(4,10) ls 1,3),J=1,MBAND),1=1,NSIZE)

IF(ICAL3.NE.0) GO TO 991
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*t**i'*ﬁi *9 tzHEtgiAge &*§2£§§§§§§*- 'l tt*,*!*i*
wnx%z?el %3"?? s(1,1)

832 ggRMA¥?§ *,10X,*I=*,13,10X,*S(1,1)=*,E21.14)

sananabnii a2 00 S0 THE STRVCTVRML STIETNER S 0 TR s n v s

WRITE(61,701)
: QEQRT %
700 -JSTART
F (JEND AND ) JEND=MBAND

WRI Eésl ;g §$START JEND
3

DO 71
210 ggIT?NS% 7 sf?z J) ,J=JSTART,JEND)
IF( zng.ggﬁgfann)co TO 750
7 §§NTI 78
;§§ ;ogag; s, § uss STRU§§URA3 svx S MATRIX*//)
7 +E 8"?3 * %) 3% éz Angx tis 3x ,E20.13,3%,E20.13, 3X,
991 CONTINUE
c TO PRINT ENTRIES O ELEMENT
g QQ*§I£§§¥§§§QMQ *f§ ;tt&ggaktttfﬁtt"*tiQtt*‘tt't'i*t*'ttﬁ*.t*t.tt
xrézc?%i.n 0 TO 251
WRITE 255
NAM%-NUME N
URIF2 06l 208
5§?¥ 8 i § SE(1,J),J=1,12),1=1,12)
g§§$g g . ((se(1,J),J=1,6),I=1,6)
g§§;§ :g ((SE(1,J),J=7,12),1=1,6)
WRITE % :§ ((SE(1,3),J=1,6),1=7,12)
WRITE(61, ((SE(1,J),3=7,12),1=7,12)
222 ggurrnu:
250 RENImb To
c TO_PRINT ENTRIES OF EACH ELEMENT
g i!*§$£g§§§§§'¥ézsl§ﬁllt§& tt&ttQt'it"tt"tt'ttt*tttttf*t'*ttttiti
xr(zc?ni.u ; GO TO 230
WRITE (61,205
NAME-NUMﬁ& N
oRrfefet 2083 n
3%?@2 i SE(1,J),J=1,12),1=1,12)
gg}gg . ((SE(1,J3),3=1,6),1=1,6)
3§§gg . ((SE(1,J),J3=7,12),1=1,6)
g§§;g 22 ((SE(1,J),J3%1,6),1=7,12)
WRITE(61,2 ((se(1,J),3=7,12),1=7,12)
242 conrrnug
REWIND 11
230 NTINUE
TURN
FORMAT(E2 13
TR i .
F 1*'23HG'R O U 2 6HNUMBER, 6X, 7
+, ??AEHSHEAR/4x HOF 1fx HO{ 13: 7Hnb UééS}i 6, THMODULUS
IS g LELASTIC
%8%? ’;8§ge§ é{éH ELEMENT, 3%, 8HNODEI (M) , 3X, BHNODEJ (M) , 12X, 4HA (M) , SX,
22 FORMAT 15,6R%,15,6X,F1 X
%833 anuar if*é?ﬁsiigrﬁesé MAT R?: 63 fgégﬁsénzusnw///9ﬂ BLOCK I1)




DISPLACEMENTS AND

194
EAGH ELEMENT
1
7 NUEERelBhr strreness
N1 USIN
M iYeR

'T NUMBER

(54) ,NODEJ(54) ,A(54),1XX(54),KT(54),
5,7)'ULOC(H,1))'E(?)'A(H)/(LE(H)'LE(H))
)

9536 ke 8R%8 s 1 EEASpm, n1coPTH

)
Ol
0!
N
Ol
C
%

i
g

,NCOND, MBAND, IEIGEN
N¢

.1??

9

L i

i
|

!

FEETE

&

A

3

Rt

SUBROUTINE SBEAMEL (N, PROTYPE)

CONTINUE

105
9

).
o
: 38
b e
i 83
<
P B ¢
B g
E B2
- = ok
. ==
g5
Ny " .
od "o uE
- Ll et
. S iy
5 iy
B
I =
5 8 &
L e
s BS
S B R
o N Ex
g I i
SCag
-
s
e e
OO~ A B
O—Eu—~mEn |
E-VROV—WV §

GO TO 199

SE(9,9)=6.*(ULOC(M,7)-ULOC(M,1))

= e

= =

@ =

a 0

< e

= ~X

o ox s
oo —AmE
BB ==

o Ok kEE% N
SO s+ s P
EEEUnmmmn ==
Sk = it
@ . ] no—
TN [

QQ==bbT 1 | E=nRQON
QEOYT 1 ~~— | I | NO— 1

NN N~

Qs o 00
SRR D
it Qoo i
BRI
UK NN

it

IF (N1GOPTN.EQ.1)

99

S ONOOOO e —
== 2 QQQOMMK LI
SOEFIIVLLEVN-VN

O HOOERIEEE 6]
FULOLOBLONNUNK BNNNL
4



= 0n
o

00NN NONNnna

b

195

SE(L6 )*A(M)/30.
82 g:; )*A(M)/30.
gg ;i;z 1)*a(M)/30.
& %’g f%u(m/sc
: 1

S% %l.é -%E( ,9)=SE(9,11)=(ULOC(M,7)-ULOC(M,1))*
'Ea% H Es’ﬁg 1555 €4B)aTsE L3, )
gEl2:? At PRk M358k )eaon /30,
CONTINUI
e R R I EO R AL O TR B P T e e annnnnnnnnnnnnnennens

}8 1=1,12

=] 1

§§(z,§>-§s LY
Ir(1S EQ,Q GQ TO 60
ggéﬁwﬁ%) 9(5&(1,a),a-f,}z).x-x.lz)

L TO LO L_COORDINATE

SFER_SE(12*12) FR( OH LOCA! GLOBA!
e Teoreds (8] SOTHeRREt i TR T G EORE

TO

$E

L _TRAN!

LR £0,70,80202) 1en 1)
INTI

AS. LI

ST

L

RETURN
gﬁm'ﬂ E21.15)

SUBROUTINE KEPSIO1(N)

TQ _HAVE IH§ INITIAL STRA;H ST!PFNB§§.¥¢?RIX

TxeEn

L SQUMON /1 /NE, NUMNP, NUMEG, LE(54) NUMEL(3) , 1PAR, ICALL , ICAL2 ICAL 3,
COMMON/2/NS1 28 5;1: ,NCOND, MBAND, IEIGEN

oM %N{g{z § (54) NODEJ(54) ,A(54) , 1XX(54) ,KT(54),
" oé e e
gg;ﬁgogén/ '5- 55“)L A‘lgLD L? BOL ;A §S’ a-ro(sfgrraz(s)
e i

Yetacao

Rt gy

b M%'bspw.sg.m A7=A7TOT(M)

Bo 18 1-11

D0 108 J=11

SE(1,3)=0.0

ONT{NUE

SONTINUE
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SE(6,12)=E(1)*A(M)*LE(M)* (F7-G2/3,)/300.
SE g,if =E(1)*A(M)*LE(M *rgl*g é/g é.
SE ,iz =E(1)*A(M}*LE(M)*F52¢
SE(5!I1)=E(])*A{M)*LE (M *(?7-s /3.)/300,
SE(12,12)=E(1)*A(M)*LE(M)* ng g 0 '82/225')
S fl,%% =E(1)*A(M)*CE(M)*F52% 5690
E(11/17)=E(1)*A(M)*LE(M)*(G62/3007+F2/225.)
CONTINUE
wxeT1EE, 1Y, LOVER HALE OF MATRIX BY STMETRI. ... reunssennsnssnsee
DO %li 1=1,12
DO 111 J=1.1
SE(T)ZRE LI, oo 1o 60
wnxrz?s 18) ?lss(z,a),J-f,iz),x-l,lz)
CONTINUE
70 TRANSFER SE(lZ'lg FROM_LOCAL TO ?LOBAL COORDINATE
SE(12%12) ‘Is THE (N2) STIFENESS MATRIX IN GLOBA
ARRRRARRR RN N L2 X X2 233223 X223 XX XX XXX X2XX22XX2FXXX2 2222222222224
%é%%s%’é%“é“%) 0. TO 602
wnsz?s 10} ?lsz(x,J),J-f,lz),z-l,lz)
CONTINUE
ASSEMBLE STIFFNESS OF EACH ELEMENT INTO STRUCTURAL
t*t§?l§§§§§ (2222 XXX X222 2222322222222 X2 2222322222212 Z2222 22221
CALL ASEMBLE(M)
CONTINUE
IF(ISTRES .58. REWIND g
IF(IST S ? . szx§n
WRITE (12,10 §(1,J),J=1,MBAND),I=1,NSIZE)
REWIND 12
RETURN
FORMAT(E21.15)
END

SUBROUTINE ASEMBLE (M)

(22222222222 22222222 222222222222 2222422222232 22 2222222222223 22222212}

70 PROCESS AND ASSEMBLE ELEMENT STIFFNESS MATRICES AND NODAL
e T R TR, IV T B R R N NG B TR TR AR M R h s e v ww e

COMMON/1/NE ,NUMNP ,NUMEG,LE(54) ,NUMEL(3) ,IPAR,ICAL]l,ICAL2,ICAL3,
+ISTRESS
3

SR I ATRORIN o
{;Z 2 %i§§9§§§(54),NonaJ(54),A<54),1xx<54),xw(54).
75%?22,96?,55 i28336),xnsT,IFLAG
UCTRUE STIFFNESS ARRAY AND LOAD VECTOR

RRAX EQgA& TO ZERQ
I T T T T e T e L T

IF(IPAR.NE.1) GO TO 90
3?15-6- /NSIZE

V1 OO0~ VW

D g- ,MBAND
s{1 f =0.0
CONTINUE
PROCESSING OF INITIAL LOADS AND NODAL LOADS
(22 2K X X X X R R R X R R Y R R R Y R E R X XS R XX 2222222222232 22223
) ITE(61,2000)

*
IF(ICAL1,EQ.0) WR 2
DO é§ N-%, UMNP
Do I=1,6
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)
6§ WRITE(61,2010) II,N,I,R(II)

;.LT.O) GO TO 30
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(2222 222222222222 22222232222 X222 32 2222222222222 2232232232222 202X
SJ=JJ-11+1
IF(JS gT.MBA D)GO TO 150
WRITE| } 9;2 J, E s S(11 Jg) g(rs E)
FORMA 1=t t gx,*s IE=* 1§ ,5%,*JE=*,15,5%/
*1?x *g § ? 21 {4 10x,+ST1E, .JE:S-'r 521 14
5(1f,3 11, Jj +SETIE, JE
CONT{NUE
EONTINUE
ONTINUE
CONTINUE
RETURN
FORMA{(*I* HINITIA NODAL LOADS PROCESSED INTO LOAD,
+ % groa R(1) {)
FORMAT(*0* ,2HR(,13,4H)=P(,12,1H,,I2,2H)=,F16.6)
END

SUBROUTINE STCONDN

B e T T T T T T O T T P T P T Y
TQ_CONDENSE STRUCTURE STIFFNESS ACCORDING TO D. O.F."S IN
2eoARRATS 12 AND 1B, ALSQ.TQ,CONDENSE LOAD VECTOR OF $TRUCTURE....

C MMONél/NE ,NUMNP,NUMEG,LE(54) ,NUMEL(3) ,IPAR,ICALl,ICAL2,ICAL3,
COMHON g/NSIZFjNE? ZND MBAND, IEIGEN
P
i

COMMON; ED%?Seg G é?gég?léﬁ?s 11885 .4 (268,10, rc268),
£1

L1.E 82§3 §§§$§{5i %828} (1,R(1),1=1,NSIZE)
wR£2§tf S9N9§N§§9R§IEQEIUR§Q £¥§éﬁt§ziggg§§§'tttﬁtﬁt*'tﬁttt'ttt

ARERR

IF(ICAL1.NE,Q) TO 90

155 PAR.EQ. 2? wgire?s?,zoao)

§ =

x%- AND-K

1?(33 LE.7 TO 60

wn:rsi i,z 1 ?% 52

WRITE(61,202 §(1,J3),J=K1,K2),I=1,NSIZE)

Bo

n%-ngann x}

ég(¥0'55’7 GO TO 60

WRITE(81,2015) Kl Ang

IF(K3.EQ.0) WRITE g ,2027 g 1,d),3=K /MBAND) , 1= ,Ngxzs
IF(K3.EQ.1) WRITE(6I,20271 1,3),3=K1,MBAND).I=] NSIZE
IF(K3.EQ.2) WRITE(61,2022 g 1,3).J=K1,MBAND),I=]1,NSIZE
IF(R3.EQ.3) WRITE(61,2023 1.3 ,J-Ki,MBAND "I=]1/NSIZE
iF xg.s 13) WRITE(61.202 S(I,J3),J=K1,MBAND),I=1,NSIZE
IF(K3.EQ.5) WRITE(61,202 g 1,J3).,3=K1,MBAND),I=1,NSIZE
IF xg.a .8) WRITE %,g 2 1,3),J=K1,MBAND},I=1 NSIZE
IF(K3.E8.7) WRITE(61,202 §(1,3),J=K1,MBAND),I=1,NSIZE
CONTIND

zr(nconn.ao.o& GO TO 115

DO 112 R=1,NCOND

Hoptps

DO 110 L=1,LL

J= -xx+ngaﬁn

iIF(J,LE.Q) GO E? 110

IF(SIKK,J ag. GO TO 110

oun-g&xk,ai/ {KK,MBAND)

DO 100 MM=1'L

JJ=MM-L+MBAND

IF(3J.LE.0) GO TO 100
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INEAR 'rxn-'siess OF STRUCTURE (S))
IFFNESS OF STRUCTURE
R R%I§//§ oc (s))
CTOR R(1)//)

,%HTHROUEH,I4
NEA
&
VE
6)

S,14
)

NDENSED

rrrrrrrrrrrrrrrr
AR AR EL SRR R R
N | OOO0OCOOOO I

O EEEEREEEEEERE R R

BEBEEEEEEEEEE R

SEisisififitisas

0000000000000 000
o G fayfaa b frs oo brafnafay fra b 2o frafos

OINOANMPUNOS-OOOOO0
OHONNANINONINONONIMUNO~
OOO0OO0OOOOOOOO0O00O0

END

SUBROUTINE LINSOLN
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TS,§8§V§A§§SSUB OF LINEAR EQUATIONS S*DeR BY CALLING THE
VTR 339 INEAR_STIFFNESS

sA IMINAT%ON EQgATI N SOLVER laN?ED PORHAT
...se.s.zz&.eae.ees&“§Azr9~§°9

g*!; AR® ﬁ*'t&'§£t'ttﬁ't'*'t'

. gggg §1/NE ,NUMNP ,NUMEG,LE(54) ,NUMEL(3),IPAR,ICALl,ICAL2,ICAL3,

HBAND IEIGEN

, 3;1’8"‘%55 nt I e
g#EON

IF(;GA S, BQ 1) GOD?O

i ol ol

ARE R |
.'Qsﬂgsx gAz '95”!3%219".9 '§9§92¥9§'Q!.§99é!l9§§"'..""’Q"".

{F TReRETE0h) ATREIR 3098) rocr) 1e2.m0)

SOLVE SYSTEM OF -NEQ- LINEAR EQUATIONS

~es S A R T Ol QL MATRIL, (CADS S FLIMINATION) s e annnnnnnnns

B IR, o

(N,L)/S(N,1)
750 KsL ,MBAND

g'gf }2§(1,3)-C*S(N,K)
Shidt
NT1

.I';Q.'.' 'EEPQS!‘9§'95Q99N§I"'§.£§ég§§'E&£¥£§ez;9§l...*'.."t"'

DO N=
B SR, o0 mo a0
ér)-gzé) S(N,L)*D(N)
8 NT-D N)/S(N,1)
."§9§VE' 9 g§§!9§!§.!!QEQS§'§9§§!£!QEIQQ.'ttt"tt".t".t'tt*ttt

DO 860 M=2,NE
Ns= 1-M Q

! 3’1&&3%‘..f13f...‘31 BNt vacoes

Z

§ON§E?¥ Li EQ. 0 )GO TO 850
D(N)=D(N)=S(N,L)*D(K)
ONTINUE

SOVINGE.
F(IGAUS.EQ.1) GO TO 140
CHECR DATA GENERATION
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o

o000
N-O
00

+

g8 59Aa%

204

122222222222 222222222 122222 22222222222 2222223222222 222322222222222)]

I1CAL2=0

(PRIO
fiAE §§ 13 8§8? ‘?ODT?)I:Sl.Nzc)

P gﬂkgg: :.gﬁn HDIS Leﬁzgzugg igzu LINEAR SOLUTION//)
5 RMAT(* *,31HLOAD'VE 5 OR LINEAR SOLUTION//)

SUBROUTINE RECOVER

(2222122122222 22 2222222222222 222 222222222221 2212 3222222222234 2222373)]

“S OF THE STRUCTURE AFTER
t-n§8&"t§'$H§t '§§§M'9FA§QEQIIQ§9'tttattttttattt't't'att'ttta'-ta

COMMON /1 /NE , NUMNP ,NUMEG, LE(54 ) ,NUMEL(3),IPAR, ICAL1l,ICAL2,ICAL3,

"“°§f§6"33§§ B8 1Y f?g?:35?§26§?é§f§sa),G¢<168.10),R¢(1sa),

tnxo
xoprn

Hin Néo 8438

g Néo

5"??"&’ ot

C(J)-DUM)/SC(J MBAND)

i,§508; GO TO 120

1,2010) (1,D(1),l1eN,NSI2E)

{223 BRBINTERAL. °¢35 1)

-

320

hc»*oaogz;lﬂzm

8

5 209987
hzigﬁl €4

- e 0 -0 § Z2D
~—0 1| O | OO

~ .zﬁrma o

Ha

e

!

8

g

SUBROUTINE IDENT

tttt'it'tttttttt'ttt.'tlﬁtt*t'f."tﬂt'tt*ttt't't*t’*it.tﬁtﬁt*tit*t
DENTFY THE DISPLAC FOUND IN THE

vee EQUATIONS 5 102R AND. THE.ONES FOUND IN THE RECSVERY PRocess

ggggggél/nz ,NUMNP, uuuzc LE(54) ,NUMEL(3),IPAR,ICALl,ICAL2,ICAL3,
0 N/é/N zz g

§$3 g? 4% %2 g ;§7? i% Aﬂggnéa °3,Aié°3 IXX(54),KT(54),
CoMMO N/iS/ G2(168),G3(168),64(168,10),RC(168),



205

é ;1 Eéig/gn?§g§ w(30,6),v(30,6)

.'i*9§NI£F£§ Igutgtﬂgz§g§é9§¥§¥?§.tt.'Qti.'.".t"ﬁ"ti‘..."""

i Aggrugzs imt¥2Y81%2000)
?9(Nu§§§éun$ 0.3) GO TO 240

PO RS N
xr?x Aéj EQ.0) WRITE(61,2010) M
NI =NOD x‘n
S8 R1E
f“ .EQ.1) NPeN1
K,E ;i NP=sNJ
(IA(NP, ;? 160,155,150
130 MEANE
g%(%SA 38 &) WRITE(61,2020) M,NP,I,W(NP,I)
158 ;87? i goé .0) WRITE(61,2020)  M,NP,I,W(NP,I)
160 NP ;) .LT.0) GO TO 170
NM= g b
170 FPTRNg g omo
§§(1 iézQ 5) WRITE(61,2020) M,NP,I,W(NP,I)
}33 Afi, 1 Négo,zoo,no
it .
Zg(;s ;8 6) WRITE(61,2020) M,NP,1,W(NP,I1)
200 giff i ;638 0) WRITE(61,2020)  M,NP,I,W(NP,I)
210 =1A
H ?égingLSF&) WRITE(61,2020) M,NP,I,W(NP,I)
N ]
ONT
onri
CAL2=
RETORN

T T il
END

8 SUBROUTINE DECK(EIGEN,IDATA,ICAL4)

S.t.'Q.'tt'ﬁ*'ittt*.."""i'Q'ﬂtt'.*...."'.'tt"".i"'t..ﬁﬁ"t.'.t.'t

: UBROUTINE DECK IN FFE ARCH .
?é i . gn E C§H§’P § Tgs MATRIZ , .
.".‘..§ "i :5'5}"'* 'EE; ".!'.' "'.".‘.’.".."'**
;'ﬁ"'*...."'.'f'.'..".'t**"*.'.*."."."*.t.'..'.'*"’."*'.".".'
:ELEVATION OF THE DECK. Y(N):THE Y c RDINA ARCH_RIB*

i TGt ¥ OLOMNS TN e T oE R RENATE DD THErARH, B

OR THROD s
IDECK:3 FOR HALE SHRODGH  BRDGE

ERRERARARNR .59 QQES szEtE i?ggtti"t'tﬁ;i:tﬁi.tt't'.'t.'..ﬁﬁ*iit"*Q

§%b‘/l/ﬂﬁ . NUMNP,NUMEG,LE(54) ,NUMEL(3),IPAR,ICALl,ICAL2,ICAL3,

N/3/ARTEE: BT oA 1B 2 a0

O %% %% %%
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E

A
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%gff Hs igf% ) 1=1,NEQ)

(N T0 10

§§°§£"s§'as%3°m

if-%i% "i?!}ig IR LI Y e 0.,

00004
Ml M|
ovy'U'y~—0v

-~ PP IOONO
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:,gém

O e
zozg

S

3

Az,\g

—~Z.
Ov Z

—~ o~

9999 SRgA#?

. §z£$§£§s ié ) /H(N)
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.2) NDaNJ

"D, 3Y.LE.0) GO TO 150
ND,J)

T
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.1) IE=KI

3 SEeRY 3

+2) JE=KJ+3

E_-JJ-SUBSCRI F_FULL MATRIX TO -JJ- SUBSCRIPT

NpgB E3RAT,, [OoB, oVER TERNS QuTSIOE Or BANE L T e
0)WRITE(61,1005)1,J,NI,NJ,NP,ND, IAT(NP,1),I1AT(ND,
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NP, ;- 15, % ATSNQ gi=3 15;
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:§590)wnxr:(61,s)J.S(J,1)
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; 'LE.0)GO TO 909

i1 o,

.JJz.LE.O)GO TO 809

115 &6 TO 809

.MBAND) GO T? go
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e z; H 3 ' /)
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3.5)
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0 ,%x *NUMBER OF ELEMENTS =* 15
%, *TOWER MODULUS OF ELASTICITY=#,E .g//
X,*DECK MODULUS OF ELASTICITY =*'E15.8/7
X)2TOWER CROSS SECTIONAL AREA =2 F ‘477
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SUBROUTINE EIGENVL(EIGEN,IDATA)

t**'tt**ﬁ'it"tt*Q.'Q'QQ*'*"'Q.QQ*"*'***'*'*l***t'ttttt*'ttit***

SOLVE E1GENVALUE PROBLEM S'X-'(LAMBDA)*SI X
WILL OB AIN ONLY THE LOWEST EIGENVALUE AND CORRESPONDING
I%L TOR. USES INVERSE VECTOR.ITERATION WITH THE

3

H
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R 24N
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8? ) GO TO 201
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B(1)+sS(I,J)*XB(11)
T.NEQ) GO TO 200

QO-10dq

N
ég gé&t§s§§§tggt§}££‘il:§§izlﬁ*ﬁ**ttt**ttttiﬁ**tﬁtttttt'ﬁt*ta

o~
-y
—~ey
4o
i
~0
e
o
Co—
<
—Q)
*O
o]
w3l
-~O
-
)
~N)
o

.0) GO TO 230
?6"BAND) GO TO 230

W' HY QO I T~

L Rl

E?GNVTR(I,LB)*YB(I)
A PHA'E%SNVTR(I,LB)
GO TO 501

v
T ORRURL T O %

*« AORON +

—~—

OOHN8>8>FI:"QH »0 OQHHQHNHQNg
(3)0")!! t

-3
HOW—W» > Wt »

*Q
»n
3

téts%§é§'¥§££li§§9§i§§iiltttﬁtiittti".**tttiitt'tt.itQtt*
0

1 ) ((s(1,J),J=1,MBAND),I=1,NEQ)

=5
z~

HORIZONTAL SWEEP OF S1(I,J)*XB(I),DIAGONAL NOT INCLUDED
0 I=1,NE

ol NEQ
gr ng) GO TO 80O

-f MBAN

1
Ll seanae

"~

GT.NEQ) GO TO 800
UE

E
DIAGONAL SWEEP OF S1(I,J)*XB(1I)
830 1=]1,NEQ

piriistats teicistale SN - -
+30-J 4~ OO+ 4 D
H;»wmqan§~<)

ZZ N~

i

HHE BRSNS
JJ=JJ+1

IF}II'E?'O) GO TO 830

IF Ja.g MBAND) GO TO 830
GO TO 810
CONTINUE

CONTINUE
tttE?!ggrgi5&¥%§;§§*9§92£§§$*t***tit*t*t**itt**'ttt*tt*ttt*tiﬁ!**t
RQ=RHO

Sg'gfﬁoi-l NEQ

-81*xs I;:Y {)
§B-ZI§B 1)*¥8(1)
DO 2?0 ?-1,Nao
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250 Y(I)=YB(I)/(ABS(Q2)**.5)
§ PR 13 MLONL AT NS IR 323520 23D 13- S
C

CHECK=ABS ( (RHO=RQ) /RHO)
éngHECK.LE.EPSIq GO TO 310

ggan??lfg gxn(x) (3 *x 5
i.gg. gngofggoﬁﬁsg) R,ﬁxczu
E:% g (§ﬁ?¥?:r§%§§:§{?§?axcnvrn(1,13),1-1,N:Q)

;gi§£§§¥¥é¥g§ﬂm'995&;§m§9£§§'§1§§m9?§§*' (2222222222222 ]

BT%xB(1)/(ABS(Q2)**.5)

IB
I

[o]1) 4

ST
EN
IGNVTR(1,1B),1=1,NEQ)

R 1 IR AR DL I I R AL R0 1 R 24 DI L0 T PR reres

IF(BB.GE.WICHEIG)GO TO 720
LB=

(elalals]

640 LB-Ls*%
50610 1=1,NE
610 nn-ggn~§iénv8n(x,Ln)*z(x)
S 0 R St T
GO TO 620 .
720 ONTINUE
§é¥%ngaapﬂ(nn)
§§ 58§§ﬂ¥§§§12133 15,15)
% 88 +§?§"%T/§i‘e§5185§§5- . =,13//5X,BHEPSI =,F20.15//5X,B8HRHO =,
2818 FORﬁAé‘*}‘,QSHLINEAR'E?&ENVALUE PROBLEM Iuvsn§= ITE T£0N1‘<)
2030 FORMAT(*1* HINVERSE VECTOR 1 TERATION wi §H rggn 224 g , 9%,
: §§x37§é¥ézayg,} §,3Hnﬂo,14x,5ch CK,15%,1HY,15%, SHEIGEN,
3 PSRMAT$*-*.2Hk-IIé ég,ga IGEN-,glg 9)
% % EORMAg :°:'I§’§§§'§ b4 e§§'§1§9x' ix,glg g)z 9)
FORMAT *1*;§4ﬁDAri #Sn'cfgﬁsén s&f § AN% ta%?)//lx,zax-,xa//)
i §8§ﬂ£¥ :':'a" gn ; S,14,10H THROOGH,I
20 FORMAT(*(*, f 8
1 FORMAT(* ;.gs 2.
iis RRATR
g FORMAT( * *,gz .
25 FORMAT(* :,95&%.
2126 EORMAT(*0x7Ele.
%13 5855%? :5:' 0§VE sog Y(I), SENT TO GAUSSOL AS XB(1)//)
FORMAT *O% x,isusic NVALUE, 9X %}?EIGENVECTOR,58,6HILAST-,I3)
§ FORMAT(*1*, 'f‘ EN MODE NO*,t
g FORMAT *-*,ggi. 4§
g FORMAT(* +,20X,E15.8)
END
C
¢
¢
¢
¢
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SUBROUTINE ENDFORC
L e L T I e T e

TQ SOMPUTE ELEMENT END FORCE

AR RRR RRRXRRE L2 2 £ X 23 X itt§i't*'t't!iﬁ**ﬁ*itt*.t*"."t.i*t

§:'§§°1§? 0760230} 7ET50), 230

zfn?$§§(54).nonsJ(54),A(54),Ixx(54),xr(54),
2 R{1

ZPGM
6

. 8)
wi{30,6),V
4,1%?,8?125?3¢8&(9),Msuopru,ulcoprn

3

o
25
(g

T
REFH TR R 230 DERIR 2 1R300 D IR SN
2
N

NUMEG
KSEQ'O) GO TO 200
,NAME

sﬂ
—

=0~ OOXRWOVN

»-) Zyr A0~ Og

i
)

HZZ T Z
0 O

0 TO 150
G (TSE}I,J),J-l.lZ),I-l,lZ)
) ((SE(1,J3),3=1,12),1=1,12)

P ON ~~iR

M
1
0

TR

mom

Z>» r—~aat
HOORZZ —+
o~ OMmMMmx
th ke G

[}
(o]

»p
P
»Z

SSEIVETMTLLON

LE 22 222222222222 22222222 222222 222222222222

2
SE ( * M
= Im{tﬂZxY&gg 13'”

J=1,12
8NTI$*SE(I,J)'ULOC(M,J)

e o R RER YN, LD, 2L T, N RS O B P e e v nrnanmn
WRITE(61,2010) M,(DN(1),I=1,6),(DN(1),1=7,12)

CONTINUE
CONTINUE
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SUBROUTINE NLEIGNP(SCALE)

LA 2222222222222 2222 2 22222 2222222222222 222222222222 222 2322222222222

THIS ROUTINE WILL COMPUTE THE EIGENVALUE OF THE
UADRATIC EIGENVALUE OBLEM (K+L*N1+L*L*N2)*X=0

tt'gztg§§§ﬁzg§t¥ E£§£§Qﬁ:2§¥&ét§é&§£.ggzeggtt'*'t***t'*#tt**tttttt

EXTERNAL DET
REAL

v
A

o
(%

L,DINCR
XTOL,FTOL,NTOL ,DINCR

le)
=
—~
0O
ey
~
O

§0é; ZTOL,FTOL ,NTO

—~3
—ZoN—~
oM I
o ~ ~

=343 + Mg I
e

o gcnxvmnntum

—~3 0 Wt X

S e 8 0O > e 59
N~ —3* X)'Z

QZ N Y~~TIPPZ 0O

G300~ |
M= w000

IS0 4+ °7)

—
Uy
333Xy Z

&

,EZS.IS,IOZ,IZH PLUS/MINUS ,E25.15//

O, PRORER g o £10.7///

HDETERMINANT//)

FO

s N o

[ e’

SUBROUTINE MRGFLS(F,A,B,XTOL,FTOL,NTOL,IFLAG,SCALE)

LAS 222 A2 22 24 22 22 2 2 2 22 2 22 222 2 2222222 2 22 2222222222222 2222222222 23

ITERATES TO A SUFFICIENTLY ?MALL VALUE OF THE DETERMINANT
gg gg A SUFFICIENTLY SMALL INTERVAL WHERE THE ROOTS MAY

ND
Q***t*tigttﬁﬁt't't'titt'ﬁ*t'ﬁﬁ'*.ﬁ*tﬁ*'*i*'i*itti'ittt".**""tt*

IFLAG=0
FA=F(A,SCALE
SIGNFA=FA/ABS (FA)
FBaF(B,SCALE

*.*s¥§$§*§93*§£9§t9§§§9§tﬁﬁtttti.tt*if*tfit*ttﬁ*"'**ﬁ"tt*ttf‘tt'

%;éilGNFA’FE.LB.O.) GO TO 100
WRITE(61,2010) A,B
RETURN

WA
FW=aFA
DO 400 N=1,NTOL
CHECK FOR SUFF;S;E

ARRRRRA R AR AR AR ARS

N

*
IF(ABS(B-A)/2..LE.XTOL) RETURN

N

A

&***ittﬁ****ﬁi**t*****ttﬁ**

CHECK_FOR_SUFFIC ?ETERMINANT VALUE

MOVING COORDINATES
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iFéABS(PW).GT.FTOL) GO TO 200

NM1eN-1
WRITE(61,2020) NM1,A,W,B,FA,FW,FB
v FANEE TRNEY]

L2 2 22 2 22X 3 Ett Ei*ﬁ'*ﬁi"ﬁitﬁ*t'tttttt**'*ttﬁﬁtﬁ.‘tﬁ**ti'

IF&SI GNFA*FW.LT.0.) GO TO 300

As

FA=FW

1F (FW*PREVFW.GT.0.) FBsFB/2.

GO TO 400

BaW

FB=FW

-1F(FW*PREVFW.GT.0.) FA=FA/2.

CONTIN

IFLAGs

WRITE(61,2030) NTOL

RETURN

gg§gazf{///43a F(X) 1S OF SAME SIGN AT THE TWO ENDPOINTS ,
FORMAT(*-%* 13, 9H L-VALUES,3E25.15//4X,9H F-VALUES, 3E25.15//)
FORMAT(// //13ﬁ NO T CONVERGENCE "IN’ {% iga ITERATION ? /
END

FUNCTION DET1(SCALE)

(A2 222222 222222222222 2222222222 2222222222222 2222222232222 222222]

THI1S FUNCTIgN COMPU;ES THE VALUE OF THE DETERMINANT OF

.i*iiE't"iiQ'

EQMEN/3/ KT1EE: V8T, KB Rt V1 BB T e

*ti't”tt"'ﬁtﬁ*"*t*ﬁi*iiiﬁi*"*ti*'ﬂ'tt'ﬁ*t*'t*'*

xrilner.a .1 2%8
IF(IDET.EQ.2 o TO 4
Do 4§o i=I.N g .
D? 4 9 J-} MBAND
S I#J =SP f§
t**tggsé ttggg §Q9§'¥¢I§£§£§§g§§Q§¥§¥£§é$£9¥l**titt*tt*'it'itt
DO 3;8 LN % NE
DO LL=
IF(§ LN,% EQ. o ) GO TO 380
I=LN+LL-
S-g(LN,LL)/S(LN,l)
3033§° KK=LL,MBAND
six,a)-§(1 J)-C*S(LN,KK)
S(LN,LL
CONT{NUE
CONTINUE
CONTINUE
COMPUTE DETERMINANT OF MATRIX S _
SCALE DOWNTDET1" BY A "SCALE" VALUE AFTER EACH STEP
[ 2 2 3 R R R X R R R R R R R E A R R R R R R R R R F S R R R R RS XXX S XXX XX 23
DT=1,
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gg-gggs}?}1§5gcanz

400 CONTINUE
DET1=DT
RETURN

END

FUNCTION DET(L,SCALE)

LA 222222222222 22222 d 222222 222222222322 2222222222222 2222222222222 2]

COON/R/THTE B, MR B B
'Ngo TO 220

0NN ONOONONO O

N
wN O
oo oo
QOO 0
BOomE

[ SN

4
ND

X2 9

-

gn §%7%a%?§¥? GO TO 380
+L i

)/S(LN,1)

~N

oY —00—|

0 KK=LL,6MBAND

350 J)#$(1,3)-C*S(LN,KK)
¢LLl=C

1

0

388

400

830028
3

0000
omrmO-3

10 RMAT(E21.15)

8

C
C///
/ SUBROUTINE GRAPH(LB)

INTEGER VIEW,WICHEIG
LOGICAL FIRsSt

‘§g¥§ggél/NE,NUMNP,NUMEG,LE(54),NUMEL(B),IPAR,ICALI,ICALZ,ICALB,
COMMON/2/NS1 ZE ,NEQ,NCOND ,MBAND, IEIGEN
COMMON/3 IA;?E ? t ? §),%(3 i.!?? ). 2(30
cgunon/§ {n séz,él?lggi,&é?lsg ,G ?séf,s:&nvra(lss,lo),nc(lse),
+S§C(168,36),1GAU
DATA FIRST /.TRUE./
REWIND 21
IF (.Nog.rz§§ ) _GOTO 100
READ (60, VIEW
READ (60;10) WICHEIG
FALSE.

FIRST=.
100 CONTINUE
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WRITE (2 ,i VIEW
WRITE (21, NUMNP
WRITE (21,1 N58
WRITE (21,1 WICHEIG

FORMAT (15)

WRITE (?1 29) ((1A(1,3),3=1,6),1=1,NUMNP)
FORMAT (613

ggﬁﬁfw(f§g3?flﬁ§(l)'Y(I”Z(I)'I'I'NU"NP)

WRITE (21,40) ((EIGNVTR(I,J),I=1,NEQ),Jsl,WICHEIG)
E21.14

FORMAT

RETURN
END



