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ABSTRACT

THERMAL DIFFUSIVITY ESTIMATION
FROM THERMAL PROCESS DATA

By
John Winslow Larkin

Error analysis of the analytical solution to the
Fourier heat conduction equation used in estimating thermal
diffusivity from thermal process data is presented. The
influence of the following factors on the nonlinear
regression estimation of thermal diffusivity were
investigated: 1) misplacement of the temperature
measurement probe, 2) variations in container dimensions, 3)
measurement error in time and temperature, 4) assumption of
an infinite surface heat transfer coefficient when finite
values are present, 5) violated boundary conditions related
to factors such as come-up time and head space, and 6) heat
conduction along the temperature measurement probe.

A Monte-Carlo analysis of a mathematical model, along
with actual thermal process data collected for water
thickened with sodium-calcium alginate, revealed that
thermal diffusivity calculated from heat penetration data is
largely dependent on errors associated with temperature

measurement and to a lesser extent dependent on errors in



thermocouple probe location. Errors in temperature
measurement consisted of both random errors and those
arising from heat condiuction along the temperature
measurement probe. Can dimensions and time measurement
errors had a minor influence on the estimation of thermal
diffusivity. Heat conduction along the temperature
measurement probe resulted in large and autocorrelated
errors that could be compensated for with the use of a
quasi-steady state solution for heat conduction along a
cylinder (probe).

Best thermal diffusivity prediction accuracy is
obtained using the following guidelines: 1) use a totally
filled can, 2) use as large a can as possible, 3) use a can
with a length over diameter ratio close to 0.8, 4) maintain
the difference between the initial and heating medium
temperature above 40 deg C, 5) use only the data collected
between the temperature ratio range of 0.15 to 0.85, 6)
establish the magnitude of the correction factor needed to
compensate for heat conduction along the temperature
measurement probe, 7) establish the magnitude of the Biot
Number for the surface of the can or maintain it above 200,
8) accurately measure the time, can dimensions, and position
of the temperature measurement probe, and 9) examine the
residuals of the estimate for unsatisfied boundary
conditions. Estimating thermal diffusivity from the slope
(fh) of the heat penetration data may result in poor

estimates and is not a recommended practice.



To God the Father and Jesus Christ, without whom all
wisdom of the world is as striving after wind.

"For the word of the cross is to those who are
perishing foolishness, but to us who are being
saved it is the power of God. For it is written,

'T will destroy the wisdom of the wise,
And the cleverness of the clever I will
set aside.'

Where is the wise man? Where is the Scribe? Where
is the debater of this age? Has not God made
foolish the wisdom of the world?"

(I Corinthians 1:18-20;
New American Standard)
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RESAERCH OVERVIEW

Over the last few years a large number of heat
conduction problems (Matthews and Hall, 1968; Teixeira et
al., 1969; Teixeira et al., 1975a; Teixeira et al., 1975b;
Lenz, 1977; Hayakawa, 1979; Saguy and Karel, 1979; Ohlsson,
1980; Naveh et al., 1983; Young et al., 1983; Naveh et al.,
1984) have been investigated where an accurate value of
thermal diffusivity (o) was an asset. Whenever the research
(Teixeira et al., 1975; Ohlsson, 1980; Naveh et al., 1984)
included an error analysis of the problem, it was observed
that the precision of the thermal prediction was strongly
dependent on having an accurate value of a. As long as
solutions to heat conduction problems are dependent on
accurate thermal parameters, estimation procedures for these
variables need to be refined and improved.

Thermal diffusivity estimation procedures can be
broadly grouped into four categories (Nesvadba, 1982; Singh,
1982): 1) heat pulse and line heat source methods, 2)
direct use of temperature profiles to determine the physical
properties, 3) temperature matching (or - least squares),
and 4) regular regime (or phase) - use of linear portion of
heating curve. With regard to thermal processing of cans or
pouches, the estimation procedure for o that has been used

1



the most is that of the regular regime method. The reason
is due to the fact that the estimation of a can be done with
just a féw calculations by plotting heat penetration data on
graph paper (Olson and Jackson, 1942); hence, there is no
need for involved computer programming and analysis.

Simplicity and accuracy are both desirable attributes
that should be taken into consideration when deciding on a
method of estimating a. Even though the regular regime
method is simple to use, its accuracy is very questionable.
Teixeira et al. (1975a) measured o using two can sizes and
came up with results that were different by over 15%Z. Hicks
(1961) has observed f, values that fluctuate as much as 13%,
which results in fluctuations of a of almost the same
amount. Thus, even though the regular regime method is
simple and easy to use, the accuracy of the estimate can no
longer be considered acceptable, taking into account newer
methods of o estimation.

Since the advent of computers a number of the other
estimation methods have become easier to use. It has been
over twenty years since Beck's (1963) original paper
concerning the suggestion of obtaining o through nonlinear
regression of the temperature measurements, and very few
researchers (Matthews and Hall, 1968; Ross et al., 1969;
Hayakawa, 1971; Hayakawa, 1972; Hayakawa and Bakal, 1973;
Lenz, 1977; Albin et al., 1979; Narayana and Murthy, 1981;
Nesvadba, 1982; Young et al., 1983) have exercised this

method for foods. Even fewer of these researchers (Lenz,
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1977; Young et al., 1983) used nonlinear regression with
thermal process data; however, neither of these papers
considered the propagation of error in the estimated o value
from data containing error. Considering the above, the
objectives of this research were to:
1) Investigate the sources of error in the collection
of thermal process data,
2) Investigate the influence of data error on the
estimation of o using nonlinear regression,
3) Outline procedures to be used in estimating a from
thermal process data,
4) Compare the accuracy and precision of obtaining «
using nonlinear regression and using the regular

regime method.



Chapter I

Model and Computer Simulated Analysis



Introduction

Thermal processing of food is required to inactivate
harmful bacteria. During the processing of foods not only
is the bacteria inactivated but the physical characteristics
of the food product, such as the textural and nutritional
properties, are altered. In recent years, interest in the
thermal processing of foods has focused on the optimization
of the physical properties by altering the processing time
and temperature so bacteria is inactivated but the physical
and nutritional properties are retained as well as possible
(Matthews and Hall, 1968; Teixeira et al., 1969; Teixeira et
al., 1975a; Teixeira et al., 1975b; Saguy and Karel, 1979;
Ohlsson, 1980). The heat transfer calculations involved in
these research projects were carried out using one of three
methods: 1) an analytical solution to the heat conduction
problem, 2) finite differences, and 3) finite elements.

When the boundary conditions cause the problem to be
nonlinear, then the latter two methods are the easiest to
use, but when this is not the case — as in thermal
processing — the analytical solution to the heat conduction
problem is a reliable method.

No matter what calculation procedure is used, if a food
processor is to perform optimization calculations the
thermal properties of the food product need to be known.

Since the food processor already has equipment to (and must)
4
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measure the thermal process (Fo) of a set of processing
conditions, it seems reasonable to use the same equipment
and thermal process data to obtain estimates of food thermal
properties.

Factors that can affect accurate and precise
estimations of thermal properties are: 1) thermocouple
probe location, 2) error in measuring container size, 3)
error in time or temperature measurement, 4) assumed
infinite surface heat transfer coefficients when they are
finite, 5) heat conduction down the thermocouple probe, and
6) unmet boundary conditions (come-up time, head space,
etc.). The first four factors are best investigated using
Monte Carlo simulation in conjunction with sensitivity
analysis of the model, which is considered in this chapter.
The latter two factors involve experimentation and will be

addressed in Chapter 1II.



Literature Review

Methods of Diffusivity Estimation

With regard to foods, thermal diffusivity (a) has been
a neglected thermal parameter, and few values for it have
been published. In contrast, thermal conductivity has had a
large number of values published (Woodams and Nowrey, 1968;
Polley et al., 1980). This is probably due to the simple
empirical relationship that o has with fh in thermal process
calculations. Also, since o is defined in terms of thermal
conductivity, specific heat and density it can be calculated
indirectly.

Methods of estimating o can be grouped into four
general categories (Nesvadba, 1982; Singh, 1982): 1) heat
pulse or heat source, 2) direct use of temperature profiles
to determine the physical properties, 3) temperature
matching, and 4) regular regime. Heat pulse and heat source
methods usually entail a known heat source, either applied
to the sample through the outside of the sample container or
by the use of a probe inserted into the sample. Methods
that have used the temperature profiles of heat penetration
data use the data — a slope or individual point — in
conjunction with an analytical solution to the problem.
Methods that fall into the category of temperature matching
may also involve the use of a known heat source; however,

the principle attribute of the procedure is that of

6
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minimizing the difference between the measured and predicted
temperature of the process. Of all the categories, the last
one has been the method of choice for a large number of
research projects. The method of regular regime involves
the estimation of a from the heat conduction data over long
time periods, where the heat conduction curve follows a

regular pattern (i.e., a straight line).

Diffusivity Using the Line Heat Source Method

The line heat source method (Sweat and Haugh, 1974;
Baghe-Kahandam et al., 1981) has been used extensively in
measuring thermal conductivity of foods. The method is
simple and the thermal concutivity of most foods can be
measured using a small probe. Nix et al. (1967, 1969)
published a procedure that has extended the use of the
thermal conductivity probe so both thermal conductivity and
thermal diffusivity can be estimated simultaneously. This
extended method has been used to analyze a number of food
products (rapeseed, Moysey et al., 1977; squash and white
potatoes, Rao et al., 1975; peanut pods, hulls, and kernels,
Suter et al., 1975; cooked beef, Baghe-Kahandam and Okos,
1981; tomato juice, Choi and Okos, 1983). There are many
benefits in using the line heat source method over other
techniques: 1) the sample size can be small, 2) the
duration of the test is short (usually less than 8 mins), 3)
it can be used to measure the thermal properties over a

small temperature range, 1-5 deg C, allowing for the
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measurement of the thermal properties as a function of
temperature, and 4) the boundary conditions are usually
easily satisfied. A 5% error in k and o is typical for the
line heat source method. The only real disadvantage for a
food processor is that thermal process data cannot be used
to determine thermal property values. Instead, different

experiments would need to be carried out.

Diffusivity Using Temperature Profiles

Flambert (1974) and Nevadba (1982) have presented two
very novel ways of obtaining estimates of o. Flambert
showed that the heat flux of a transient heat conduction
problem would reach a maximum at a specific Fourier number
(Fo), depending on the shape of the container (Fo = 0.12 for
an infinite cylinder). Thus, by finding the time at which
the heat flux was maximum, o can be calculated from the
theoretical Fo value. Nevadba's estimation procedure is
particularly useful for freezing food, because it takes into
consideration the temperature dependence of the thermal
properties. Nevadba used the peak (for freezing; valley for
heating) of the temperature gradient curve as a function of
time to estimate a. This caused a term in the differential
equation to go to zero, making the differential equation
easier to solve.

The biggest limitation to the above methods is that
determination of the maximum (or minimum) is difficult and

is usually done using curve fitting, which adds an
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additional amount of error to the data collection error
already present. Nevadba's method involves a grid of
thermocouples, which is not easily incorporated into a
typical thermal process procedure. Flambert's method was
originally investigated using thermal process data and
results in using a single point to estimate a. This, in
conjunction with the error of curve fitting in Flambert's
method, does not make the technique compatable with the

precision of the temperature matching methods.

Diffusivity Using Temperature Matching

A numbé; of different temperature matching calculation
procedures (nonlinear regression, direct grid search, and
Newton-Raphson) have been used to reduce the difference
between the measured temperature and that calculated by the
proposed model. Nonlinear regression is by far the fastest
and most versatile method. Grid searching becomes very
involved as the number of independent variables increases,
and the Newton-Raphson method is limited to only one
variable. Nonlinear regression has been used in only a few
research projects involving foods (Matthews and Hall, 1968;
Ross et al., 1969; Albin et al., 1979; Narayana and Murthy,
1981). Several research projects involving foods have used
one of the other procedures (Hayakawa, 1971; Hayakawa, 1972;
Hayakawa and Bakal, 1973; Lenz, 1977; Young et al., 1983).
Of these projects, only Lenz (1977) and Young et al. (1983)

used thermal process data to back out a value for o.
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Nonlinear regression is a method for data analysis, not
data collection; thus, any data collection procedure can be
used. For example, the line heat source method uses
nonlinear regression when estimating both k and o at the
same time. Thus, there are no inherent limitations to the
use of nonlinear regression analysis. Limitations are

solely dependent on the data collection procedure.

Diffusivity Using Regular Regime

In 1923 when Ball published the '"formula" method,
calculations of a thermal process where made considerably
easier. This method has become a standard by which all
other methods are compared. Expanding on the "formula"
method, Olson and Jackson (1942) correlated the analytical
solution to the heat conduction problem with the parameters
of the "formula method" and showed that f, is directly
related to o after long time periods (Fourier Modulus; Fo
less than 0.20, i.e., during the regular regime). This
correlation has come to be known as the Olson and Jackson
equation. For the most part, authors (Hicks, 1961; Teixeira
et al., 1969; Annamma and Rao, 1974; Teixeira et al., 1975a;
Teixeira et al., 1975b; Ohlsson, 1980; Rizvi et al., 1980;
Peterson and Adams, 1983) have adopted Olson and Jackson's
equation for estimating o. Even though Olson and Jackson's
equation is easy to use, it is limited by assumptions: 1)
infinite and constant surface heat transfer coefficient, 2)

constant thermal properties, and 3) use of just the first
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term of an infinite series. A number of the authors listed
above have found that when estimating o from fh’ errors in
of 5% to 137 are not atypical.

Gaffney et al. (1980) made an extensive review of the
use of the regular regime for estimating o, which also took
into account the possibility of estimating finite surface
heat transfer coefficients. The methods by which a finite
surface heat transfer coefficient may be taken into account
has been used in a number of different research projects
(Bhowmik and Hayakawa, 1979; Domen, 1980; Uno and Hayakawa,
1980a; Arce et al., 1981; Marich and Bachlich, 1982;
Poulsen, 1982). The paper by Uno and Hayakawa (1980a) even
goes on to present a method by which the finite surface heat
transfer coefficients for the top, bottom, and side of a
finite cylinder can be estimated along with a; however, the
usefulness of such a method is still to be shown for thermal
process data. Before the above-mentioned research was done,
correlations of j (the intercept of the heat conduction
curve) with the surface heat transfer coefficient (h) were
used for the estimation of h (Pflug et al., 1965). Since
Pflug's et al. paper, reliability of the estimates obtained
from j have come into question due to the large variation in
j values that are obtained from thermal process data.

A rather specialized regular regime method was
developed by Dickerson (1965). In this method, a constant
change in temperature is applied to an infinite cylinder,

and o is estimated from a simplified solution to the
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transient heat conduction equation. Dickerson's procedure
has not received a lot of attention, but was used by Rizvi
et al., 1980. Probably the main reason for its lack of use
is that the technique requires special handling, i.e., a
special cylinder and an environment that changes temperature

at a constant rate with time.

Errors Involved in Diffusivity Estimation

When limiting the research to determine a from thermal
process data, only three methods reviewed above are
available for use: 1) Flambert's method (1974), 2)
temperature matching using the analytical solution to the
heat conduction problem, and 3) regular regime. Noting that
the available precision of the regular regime ranged from 57
to 13% (Hicks, 1961; Teixeira et al., 1975a; Bhowmik and
Hayakawa, 1979; Uno and Hayakawa, 1980a; Uno and Hayakawa,
1980b), it seemed that one of the other methods had to have
better precision. When Flambert's method was reviewed it
was pointed out that it involved curve fitting to obtain a
maximum and so was considered unsuitable. Considering the
flexibility of the temperature matching method — any
theoretical model can be used (as long as there is a method
of solution) — nonlinear regression is the best method of
choice. Before nonlinear regression can be fully advocated,
an indepth error analysis of the model to be used on the
thermal process data must be carried out.

Nesvadba (1982), in a review of estimating o from
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foodstuffs, enumerated a number of different factors that
can contribute to an error in the estimation of a. Nesvadba
broke the potential errors into two categories: 1)
systematic errors and 2) random errors. The systematic
errors consisted of: 1) those related to the actual
container or probe, not the theoretical geometry, 2) heat
loss by conduction or radiation laterally, 3) conduction
along the thermocouple leads, 4) distortion of the
temperature profile due to the thermocouple, 5) finite
surface heat transfer coefficient when assumed to be
infinite, 6) anisotropy of the food, 7) moisture migration,
8) change in composition or structure due to heat or mass
transfer, 9) temperature dependent thermal properties, 10)
evaporative cooling, 11) instrument sampling errors, 12)
positioning of thermocouple, 13) instrument calibration, 14)
graphical techniques, 15) neglection of terms in the
infinite series solution to heat conduction problem, 16)
numerical solutions, and 17) curve fitting. The random
errors were enumerated as: 1) initial bdundary condition not
met, 2) time-dependent boundary conditions, 3) contact
resistance, 4) air inclusions, 5) moisture gradients, 6)
nonhomogenous sample, 7) genetic and variety differences, 8)
imprecise measurement of temperature, 9) electric noise, and

10) calculations by the experimenter.

Errors Important to Thermal Process Data

When using thermal process data not all of the
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potential errors that are specified above apply. Many of
the errors that do apply are considered with assumptions
only. Others are satisfied with proper experimental design.
Since the resultant o value is to be used in various
optimization programs, the assumptions stated in these
programs will applied here. These assumptions are: 1)
physical and thermal properties of the food products are not
temperature dependent, 2) products are homogeneous,
isotropic materials, 3) the foods are heated only by pure
conduction, 4) the products have a uniform initial
temperature, 5) environmental changes are instantaneous
(i.e., no lag time in retort come-up), 6) surface heat
transfer coefficients will consist of a lumped parameter;
involving external surface convection, conduction in the
container material, and internal contact resistance and, 7)
there is no phase change in the product during heating.

From previous experiments, factors that have been shown
to be important when estimating o from thermal process data
are: 1) position of the thermocouple probe (Hayakawa, 1971;
Hayakawa and Bakal, 1973; Bhowmik and Hayakawa, 1979;
Narayana.and Murthy, 1981), 2) dimensions of the container
(Uno and Hayakawa, 1980; Narayana and Murthy, 1981), 3)
unknown or finite boundary conditions (Bhowmik and Hayakawa,
1979; Gaffney et al., 1980; Uno and Hayakawa, 1980a; Arce et
al., 1981), 4) measurement of temperature (Bhowmik and
Hayakawa, 1979; Gaffney et al., 1980; Uno and Hayakawa,

1980a), 5) moisture migration during the analysis (Arce et
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al., 1981), and 6) heat conduction down the thermocouple
probe (Ecklund, 1955; Cowell et al., 1959; Beverloo and
Welding, 1969; Teixeira et al., 1975a; Gaffney et al.,
1980).

Error in Thermocouple Position

Errors in the position of the thermocouple increase in
importance as the ability to position it with respect to the
thickness of the sample decreases. Narayana and Murthy
(1981) found (with a sample thickness of 10mm) that an error
in the position of the thermocouple of * 0.2mm resulted in
an error in the estimation of o of 1.17. Likewise, Hayakawa
and Bakal (1973) found that an error in the position of the
thermocouple of +imm resulted in an error in a of up to 30%
for a sample 32.0 to 35.0mm thick. Hayakawa (1971) and
Bhowmik and Hayakawa (1979) also mentioned that error in the
position of the thermocouple affected the precision of the a
estimation; however, they did not indicate the magnitude of

the error.

Error in Can Dimensions

Errors in the calculation of dimensions of the
container have not been cited by many researchers as an
important factor in the estimation of o. Narayana and
Murthy (1981) found it to be more important than the errors
in position of the thermocouple. With errors of * 0.2mm in
the thickness of the slab, Narayana and Murthy found a 3.0

to 3.3% variation in a. Uno and Hayakawa (1980) mention
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dimensions of the container as a factor, but do not indicate
any relative magnitudes. They do recommend using a

container size as large as conveniently possible.

Error in Unmet Boundary Conditions

To explain the lack of precision in the estimation of
thermal properties, one of the first factors that is
investigated as the possible cause is that of unmet boundary
conditions. Bhowmik and Hayakawa (1979) and Uno and
Hayakawa (1980a) point out that just such an error can occur
when the surface heat transfer coefficients (h) are
neglected. They found that h may not be infinite (as
commonly assumed) due to head-space in the can and retort
packing effects. To correct for this, Bhowmik and Hayakawa
(1979) developed a method using a long cylinder to estimate
both o and h values. This was done by solving (using the
regular regime) the analytical solution of heat penetration
in an infinite cylinder with a finite surface h value.
Then, from a heat penetration test they calculated o and h.
In a similar fashion, Uno and Hayakawa (1980a) developed a
procedure where o and h, where i = t,b,s (h is finite and
different on each side of a can; ht = gurface heat transfer
coefficient for the top, hb = gurface heat transfer
coefficient on the bottom, and hS = gurface heat transfer
coefficient for the side) can be estimated from the actual
heat penetration data of a canned product. In an error

analysis of this latter method, errors of 1mm in location
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and dimensional quantities, 1 deg C in temperature, and 5%
in fh values were used to predict a maxihum relative error
value of 24.67 for a in a 300x409 can. An error of this
magnitude renders this method of estimation undesirable even
though the factors used to calculate the error were not
unreasonable.

The need to take into consideration surface heat
transfer coefficients for a thermal process is solely
dependent on head-space and retort packing. Ramaswamy et
al. (1983) measured h for a variety of steam qualities and
found h values the order of 11,000 W/mZC for 987 steam. For
the lower limit of a Biot Number equal to 200 (Gaffney et
al., 1980; error in o of 1%), an h value of 11,000 W/mZC
corresponds to a characteristic length of 1.25 cm (assuming
k = 0.682 W/mC for water). Cans with a characteristic
dimension smaller than 5.0 cm are almost never used; thus,
if there is any surface resistance, it will come from head
space or retort packing problems. Just such a condition was
shown to exist with "crateless retorts" where the cans end
is flat on the retort bottom (Naveh et al., 1984).

Bhowmik and Hayakawa (1979) and Uno and Hayakawa
(1980a) lumped temperature and time measurement errors in
with the ability to obtain precise values for fh‘ Thus, the
errors in the measurement of temperature or time have not
been investigated with regard to a direct effect on the
estimation of a. Gaffney et al. (1980) has indicated that

data collection should terminate when the temperature
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difference between the heating media and the product falls
below 1°C. The primary reason for this is that measurement
precision decreases as the temperature difference decreases.
Bhowmik and Hayakawa (1979) observed this effect because
after long time periods, the plots of the temperature
differences between the product and the heating media
fluctuated significantly.

Arce et al. (1981) researched defatted soy flour and
found that moisture migration is an important factor when
estimating thermal properties. For dry materials, moisture
migration during an analysis must be taken into
consideration, but since thermal processing is done on foods
that have water activity levels above 0.80, moisture
migration is not a problem.

Second to unmet boundary conditions, the error
associated with heat conduction down thermocouple leads is
the most investigated cause for errors in the estimation of
thermal properties. This problem is best analyzed from
actual experimental analysis and thus will be discussed more

fully in Chapter II.



Theoretical Development

The following were assumed for all models used in
this analysis: 1) physical and thermal properties of the
food products are not temperature dependent, 2) products
are homogeneous, isotropic materials, 3) the food is heated
by conduction, 4) the product has a uniform initial tempera-
ture, 5) environmental changes are instantaneous (i.e.,
no lag time in retort come-up), 6) surface resistance will
consist of apparent h values associated with external surface
convection, conduction in container material and internal
surface convection and, 7) there is no phase change in
the product during heating. In conjunction with these
assumptions only the heating phase will be investigated.
Fourier's equation of heat conduction with no internal
heat source for an infinite slab is

320 1 96
-ra 13 (1)

The analytical solution (0zigik 1980) to equation (1)
for a thickness of 2L, a surface heat transfer coefficient
of h for the top and bottom of the slab, and origin at

the center is

T-T i sin(A)
o= Ti - Tm =2 a=1 [An + sin(1n7cos(kn)]

2 (2)
-A
exp [—i‘;‘:] cos(ln%)
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with

A_ = roots of lntankn = Bj

Bi = Biot number for the slab - hL/k

o = thermal diffusivity

x = distance from center

T = temperature of heating medium

T. = uniform initial temperature of the slab, i.e.,
temperature at t = 0.0

t = time

T = temperature in the slab at time t and point x

satisfying the following initial and boundary conditions:

© =1.0 when t = 0.0

%g = 0 when x = 0.0

gg - i% © when x = L

When h is assumed infinite, 8 = 0 at x = L, then equation (2)

reduces to

o - # nz:l E_t]:l!r.\-l- cos ((2!1 -2%.)" x)axp [_(SZn - 12159_%{' (3)

Fourier's equation for heat conduction for an infinite

cylinder with no internal heat source is

130,23’ _1236
T3t t3ET " 5 3t (4)

The analytical solution (6zi§ik 1980) to equation (4) for a
cylinder of radius R, having a surface heat transfer coeffi-

cient of h and the origin along the cylindrical axis is
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ot r
0 =2 1 Jl(Bn)JO(BnK) exp -B;‘at] (5)
=1 84 Jo(8,7 + J1(8,) R*

with
B_ = roots of BnJl(Bn) = (Bi)JO(Bn)

Bessel Function of the first kind, of order zero

()
o
]

(&9
(]

1 Bessel Function of the first kind, of order one

r = distance from the center

Bi = hR/k
satisfying the following initial and boundary conditions:
= 1.0 when t = 0.0

-%43 atr = R

= 0 at r = 0.0

vl o
1 g1 S

When h is assumed infinite, @ = 0 at r = R, then equation (5)

© I (3 r _Bzat
- O( n R n
-2 2 e[ 2 (®

n=1

reduces to

where g are the roots of Jo(sn) =0

The analytical solution (Uno and Hayakawa 1979; azigik
1980) to equation (1) for a slab thickness of 2L, surface heat

transfer coefficient for the top and bottom of ht and hb

respectively, and origin at the bottom of the slab is

oo

6 -2 Z o -Y;at (y;+Bi;)(yncos(ynx)+Bib sin(ynx))
P T?:1TEI;77BI;7(?;77§T{T¢TH:KQETFBT§T

n=1

n

Bi (7
[sin(yn) + —:]?- 1 - cOS(yn))]
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with
(Bib + l?it)Yn
Yn - (Blelt)

Y, = roots of tan(yn) =

Bit = Biot number for top of slab, = htZL/k

Biy = Biot number for bottom of slab, = thL/k

x = distance from bottom of slab
satisfying the following initial and boundary conditions:

8 =1.0when t = 0.0

h
%2 - 1? 0 at x =0

-h
FL 1} @ at x = 2L

The product of equation (5) or (6) and (2), (3), or (7)
represents the heat transfer model used during this study.
Equation combinations were selected depending on whether or
not there was symmetric or nonsymmetric heating for the top
and bottom of the can and/or if the surface heat transfer
coefficient was assumed infinite, because less computer
time was required for calculation of equgtion (6) than (5)
and less time was required for the calculation of equation (3)
than (2) or (7). Each of the above equations were written as
FORTRAN-77 subroutines which could be used by any of the

programs developed during the study.



Analytical Procedure

Five can sizes (307x409, 307x306, 307x512, 202x308, and
603x700) were selected for this investigation (Table 1).
The first three can sizes were chosen for their constant
radius, moderate size, and varying L/R ratios. Can sizes
202x308 and 603x700 were chosen to represent small and large

cans often used in industry.
Table 1

Can sizes used in computer simulated error analysis

Can Number Radius (R) Half Height (L) L/R
(m) m

307x409 .04366 .05794 1.327

307x306 .04366 - .04286 .982

307x512 .04366 .07303 1.673

202x308 .02699 .04445 1.647

603x700 .07858 .0889 1.131

The. variables used for the Monte Carlo error analysis
of the model consisted of: time(t), temperature (T), length
dimension of the can size (2L), radius dimension of the can
size (R), radial location of the thermocouple probe (r),
axial location of the thermocouple (x), and surface heat
transfer coefficients (hi’ where i = t, b, s). The problems

related to surface heat transfer coefficients are not

23
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related to measurement error but come from assumptions drawn
by the experimenter, i.e., most calculations assume h is
infinite and uniform along the can, which is often
incorrect. This is an error which one can account for
knowingly in the model; therefore, errors associated with
the assumption of h were analyzed after the other factors
were investigated.

With the advent of microelectronics numerous data
acquisition units have been produced that allow for very
accurate and precise temperature and time measurements. In
addition to increased precision, data-acquisition units'
also eliminate human error associated with reading data off
a chart-type recorders. Therefore, it was assumed that
errors associated with time and temperature measurements
were not a result of human variations but due solely to
mechanical variations. Time variations (95% confidence
interval) used in this study followed an autoregressive
order with an error in time of * .005%7 (t) * 1 sec which is
the case for the data acquisition system used in the
experiments (Hewlett Packard Model 3045DL). For the
temperature factor, copper-constantan thermocouples were
assumed which, in the range of interest (20 - 1300C),
produced a measurement error of the order of * 0.5 to 1.0°c.
Errors for probe location were made the same for each can
and set to a 957 confidence interval for error related to ¢
4.0 mm for the radial placement and + 4.0 mm for the axial

placement. Due to the high precision needed to ensure
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proper lid closure and seam formation, this work assumed two
thousandths of an inch variations in can length and
diameter, which results in a 957 confidence region of error
equal to + 0.5 mm for can length and diameter. Surface Biot
Number variations ranged from 10 to infinity. A summary of
errors (for a 95% confidence region) used in the measurement
of the model conditions is listed in Table 2. Populations
of normally distributed points were generated using the
Box-Muller transformations on a set of pseudorandom numbers
(Beck and Arnold, 1977). These points were then transformed
using the mean and standard deviations of the specific
parameter(s) under investigation to obtain normally
distributed points from which the heat transfer model could
be tested.

To analyze the error factors a set of calculated or
"actual" data points were produced with o = .00062 mz/h, h =
o , the thermocouple probe located at the center, and no
errors in time, temperature or can dimensions. From each
"actual" time data point used, a set of 150 points were
generated with an assumed error factor. For each point
generated a o value was calculated using a direct search
method (Beck and Arnold, 1977) minimizing (T, - T,)?
where Ta is equal to the actual temperature and Tc is equal
to the calculated temperature. The initial product
temperature and the medium temperature were set equal to

65.0 and 121.1°C respectively.



26
Table 2

Error factors used to generate computer simulated data
containing error for the analysis of the analytical
solution to Fourier's heat conduction equation.

Factor Attribute
Standard Deviation

Time .000025 t £ 1 sec
Temperature .3333 deg C
Can half length .000125 m
Can radius .000125 m
Probe location gaxially) .002 m
Probe location (radially) .002 m
Range

Surface Biot Number 10 to =

(Bit, Biy, and Bis)

The mean and standard deviation was recorded for each
set of 150 o values, with the standard deviation measured
about the "actual" value of a (.00062 mz/h). Each parameter
(except Bi) listed in Table 2 was varied individually to
test its effect on the heat transfer model. Then, all the
parameters (except Bi) in Table 2 were varied at the same
time.

From the combined effect of all the error factors
(except Bi) of Table 2, a distribution of the mean and
standard deviation of o was obtained with respect to
temperature. From this error distribution a population of

20 temperature values were created for each known mean and
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standard deviation (50 values) of o, for nine different Bi
values ranging from 10 to =, This gave 1000 points for each
Bi number for a total of 9000 points. Thermal diffusivity
values were calculated assuming an infinite h value such
that 12@0 (Ta,i - Tc,i)z’ using nonlinear least squares

(Mére et al., 1981), was minimized. Recall that T, refers
to points produced assuming o is equal to .00062 mz/h and Bi
is a value in the specified range (Table 2).

The same populations of data points discussed above
were used to simulate a heat penetration test from which fh
values were calculated. Calculation of fh values were
carried out with a FORTRAN-77 subroutine which maximized the
coefficient of determination (rz) of the data by regressing
the data for a specific number of points and then by
regressing the data again with one less point (removing the
smallest time value). The elimination of points was
repeated until the data with one less point had a
coefficient of determination lower than the one with one
more point.

In addition to Monte Carlo simulation of the heat
conduction model, the sensitivity coefficients (the
derivatives of the model with respect to the coefficient in
question) were analyzed (Beck and Arnold, 1977).

Sensitivity coefficients, when used for analysis and when

needed by the nonlinear regression program, were calculated

using the forward difference method.



Results and Discussion

Error Analysis

Two statistics that are usually used to describe the
distribution of populations are the mean () and the
standard deviation (o). For ease of comparisons, the
results of error analysis are described by the residuals of
the mean (¢ = (y - x); where x = estimate of n) and the
coefficient of variance (Cv = S/x * 100; where S = estimate
of 0). Plots of €/u and C, versus © for each of the error
factors aré depicted in Figures 1 through 14. Note that O
varies from one to zero with complete heating. From Figures
1,3,5,7, and 9 it can be seen that variations in
thermocouple probe location, can dimension, and time result

in low ¢ values for long time periods.

Error in Probe Location

Errors in thermocouple probe location result in ¢
values that are all positive (Figures 1 and 3) because the
thermocouple probe was located at the slowest heating point
of the can. Hence, an error in thermocouple probe location
will always result in an underestimation of the actual
values of a. The underestimation of o for an error in probe
location is the largest for the can with the largest
relative heat penetration rate and the smallest dimensions.

This means that two factors influence the error associated

28



29

*3aqoad @1dnooowasay3 jo juswaserd
TeTpea uyl 10119 10jJ UOTINQIIAISIP 10113 Jenpysay °[ 3indr1y

o:cm JYN1HY3dH3L
00°1 €8°0 08" 0 30 L1-0 00°0,

L i P 'l

3t
00L X €09 X t:\\w
80€ X 202 + [:
218 X LOE w 3
90€ X LOE @
607 X LOE




30

*3qoad aydnooowasayl jo juawadoeyd
{eIpea ul 10ai1d I0J UOTINQTIIISTP dJUBTIBA °Z 3an314g

0118y 33N1HY3dHIL

L9°0

08°0

€E°0

L1°0 00°q,

00L
80€
218
90€
60

€09
202
LOE
LOE
LOE

BO4 +X




31

*aqoad ardnooowasyz jo jusawaseid
TEIXEB UT 1011d® I0J UOTIINQIAISIP A01ad [enpisay °g 2an31y

0116y 3J¥N1HY3dUHIL

00° 1 €8°0 L9°0 0S°0 €E°0 L1°0 00°0
L 1 A A 1 J
00L X €09 X i
80€ X 202 +
218 X LOE W
80€ X LOE @
60 X LOE @ r




32

*aqoad afdnooowasayy jo
ucoewoaﬁn TBIXE UT I0113 103 UOTINQTIISTP dJuUeBTIBA 4 3In3T4

0l1by um:hczwmzuh
001 €8°0 L9'0 0S°0 L1°0 00°q,

o
00L X €09 X @
80€ X 205 +
218 X LOE w
90€ X LOE @
60¥ X LOE @ o

06°



33

with probe location. The first is the heat penetration rate
for one dimension as compared with that of the other
dimension (L/R). The second is the relative misplacement
(r/R) of the thermocouple probe. For example, in the case
of the 202x308 can the majority of the heat penetration is
from the radial direction (i.e., a large L/R; Table 1). In
addition, the 202x308 has a small radius, where the same
displacement in thermocouple probe (in all the cans studied)
results in a larger relative displacement from the center.
Thus, as seen in Figure 1, the 202x308 can has the largest ¢
values for .any can associated with error in the radial
placement of the thermocouple probe.

The magnitude of € (Figures 1 and 3) is a result of the
fact that shortly after the cans start to heat a gradient in
temperature near the center is established for both the
radial and axial directions. For the 202x308 can the radial
gradient in temperature in the center is greater than that
found for the other cans due to a large L/R and small
radius. As the can is heated, the temperature gradient
around the center and the ¢ values associated with the
thermocohple probe location decrease. The axial effect for
the 202x308 can (Figure 3) is very different, because with
high 8 values the error in axial probe placement is
negligible. This indicates that initially, there is
virtually no temperature gradient near the can center in the
axial direction. As the heating of the can continues, a

larger gradient is established and with it larger e values.
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The ¢ values increase for the axial direction until the
temperature gradient near the center starts to decrease with
time, after which the ¢ values decrease with continued
heating. Figure 3 also shows that as the L/R ratio
decreases (Table 1), the axial heat penetration rate grows
in prominence, resulting in larger € values for low time
(see, for example, the 307x306 can). The 603x700 (L/R =
1.13) can seems to be near a transition point (Figure 3)
where the prominence of the axial heat penetration rate is
evident. The underestimation of o that occurs from errors
in thermocouple probe location have associated with it a
changing magnitude of precision (Cv) (Figures 2 and 4).
Precision in the radial direction for the 202x308 can
reached a CV of 4.07 for low time where the Cv for the
603x700 can never exceeded 0.5%. The axial Cv values
generally remain low for all can sizes, the 603x700 being
the lowest with the Cv value having a maximum of
approximately 0.1%Z. This indicates that the error in
estimated @ values due to an error in thermocouple probe
location will be minimized by minimizing the relative error
of the thermocouple probe location. For the error factor in
Table 2 and the can size of Table 1 this would correspond to
a relative misplacement error less than 4.07% and not
necessarily less than 2.5%. In addition, the L/R value of
the can should be such that the heat penetration rates for
both axial and radial directions are nearly equal. This can

be accomplished using an L/R value in the range of 0.70 to
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Error in Can Dimensions

The effect of variation in actual can size on
estimating o values were found to be smaller than the effect
from variations in thermocouple probe location. This is
because the magnitude of can size errors are much smaller
than probe position errors (Figures 5,6,7, and 8). Can size
variations gave ¢ values approximately ten times less and CV
values approximately four times less than those found with
variations in probe location. Figures 5 and 7 do not
indicate any specific kind of trend with 8 other than
showing that — after long time periods — the error effect
of the can dimensions decrease. Error in a can dimension is
a factor of the relative change in the can dimension as
compared to the overall can size (L/R). For example, the
can that showed the largest ¢t and C, values for error in the
radial can dimension is the 202x308 (large L/R) can and the
can that showed the largest € and Cv values for the axial
can dimension is the 307x306 (small L/R). Due to the small
magnitude of € and almost constant C, values for the ©
range, the actual effect of cﬁn size variations on

calculation of o are miniscule and may be ignored.

Error in Measurement of Time

Time variations result in error effects (Figures 9 and
10) very similar to the error effects of can size, both in

magnitude and trend. However, there are decreasing C
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values for decreasing 6 values where there was no trend in
Cy for the can size factor. The € values are the largest
for the cans with the fastest heating rate. The indication
is that a can that heats slowly will yield a more accurate o
value, even though the error in time increases with longer
time periods. The high accuracy of the clock used during
this study resulted in small values of € and Cv’ which in
turn do not cause appreciable changes in the calculation of

®, Thus, any error in time measurement may be ignored.

Error in Measurement of Temperature

Temperature variations resulted in the largest errors
for any one error factor investigated (Figures 11 and 12).
This means that temperature is the most significant
parameter in controlling the accuracy of the o estimation.
The significance is not only due to the magnitude of C, and
€ but also due to the trends the € and Cv values display in
relation to ©. The shapes are significant because the
curves are identical for the different can sizes (as might
be expected from observations of transient heat conduction
charts) and because they show a violation of a well-accepted
assumption for high and low © ranges, i.e., that the errors
in temperature measurement do not bias the calculation of «a.
Figure 11 indicates that the assumption of unbiased a values
can only be accepted in the © range of approximately 0.90 to
0.05. Outside the range, @ values are biased upward for low

© and downward for high 6 values. Another important point
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is that an o value calculated strictly with low or high
values of 8 will not only be inaccurate but will also be
less precise due to the increasing values of Cv outside the

8 range of 0.85 to 0.15 (Figure 12).

Error of Combined Effect

The influence of temperature on the calculation of «
predominates when all the factors listed in Table 2 (except
Bi) are varied at once (Figures 13 and 14). When Figures 13
and 11 are compared a drifting upward of € values is noticed
for increased 8 when all the error factors are varied. This
was not present when only temperature was varied. The
upward trend in € values for Figure 13 is just like that
observed for the € values associated with error in
thermocouple probe location (Figure 1 and 3). In this study
the more important error in thermocouple probe location is
the radial displacement error because all the cans
considered have L/R values above 0.8. Therefore, for the
sizes and ranges of error factors considered, the
predominant error factors in the calculation of o are
temperature measurement and radial placement of the
thermocouple probe. When only the measurement in
temperature was an error factor, a © range of 0.85 to 0.15
was specified from which an accurate and precise value of ©
could be calculated; however, with the addition of the
thermocouple probe location error, a tighter upper bound on

© might be in order for cans having L/R values different
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from 0.8.

An L/R ratio of 0.8 is the ratio at which the heat
penetration rate for the axial dimension is very similar to
that for the radial direction. Therefore, with equal heat
penetration rates for the two dimensions, the slope of the
temperature gradient around the thermocouple probe is
minimized along with any error associated with the position
of the thermocouple probe placement. Similarly, Cowell and
Evans (1961) observed that when j and fh are estimated from
heat penetration data, the error in the estimates as
compared to the asymptote of the heating curve is minimal
for L/R ratios of 0.8.

When the temperature difference (AT) between the
initial product temperature and the medium temperature was
varied from 121.1 C to 11.1 C (previously help constant at
56.1 C) the shape of the residual error (e) and coefficient
of variance (Cv) curves remained the same, as found in
Figures 13 and 14 discussed above. There was, however, a
noticeable difference in the level of the constant Cv region
(8 range of 0.15 to 0.85). A coefficient of determination
of .9987 was obtained when the mean value of C, for the ©
range of 0.15 to 0.85, was fitted against the inverse of AT

as

62.21
C, = .2677 +

v AT ®

Equation (8) shows that the precision (Cv) associated with
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estimating @ decreases drastically as AT decreases below
40.0°C; thus, to obtain an accurate estimate of o the AT

should remain above 40.0°C.

Error Due to Finite Surface Heat Transfer Coefficients

From the distribution of a in Figures 13 and 14
additional populations of time-temperature points were
generated with varying Bi values (ht/k =h/k = hb/k) and
compared with time-temperature data calculated assuming 1/Bi
= 0.0 (Figure 15). Due to the complexity of trying to
analyze the effect of different and varying Bi values for
the top, bottom, and side of a can using Monte Carlo
simulation, the Biot Number values were assumed to be the
same for all the surfaces of the can (taking into
consideration the difference in dimension for the radius and
length). This assumption was made because the error
associated with Bi values is one of assumption (the
researcher assumes it is a specific value) or related to a
previous measurement of Bi. When Biot Numbers are unknown
in calculating a, the prodﬁct of equations (5) and (7) can
be used as the model, because this model allows for
estimation of all four of the independent variables (o,
hb/k, ht/k, hs/k) using a nonlinear least squares procedure.

From Figure 15 it can be seen that the calculation of «
is biased downward when the actual Bi values are not equal
to infinity. A 4.0% to 4.5% bias occurs when Bi is actually

equal to 50. Even though current literature gives different
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values for critical Bi numbers to describe the transition
zone for an insignificant surface effect (usually, Bi >40;
Heldman and Singh, 1981), a 4.0 to 4.5% error in the
calculation of o can be made by neglecting such effects.
Similar results were obtained by Gaffney et al. (1980) for
the regular regime method. The accuracy in the
determination of o values starts to deviate as soon as the
Bi values migrate from infinity. The standard deviation of
o does not significantly increase (for errors in assumptions
in Bi) until Bi is less than 25. Figure 15 indicates that
the radius, more so then the length of the can, determines
the overall accuracy of the estimated o value.

Since Bi values can affect the precision with which o
can be estimated, they should be known or possibly estimated
Ssimultaneously with o, When Bi is greater than 200, it has
little effect on the estimation of a (Figure 15) and because
of this, it is very difficult to estimate. Note, a 2-37% |
variation in o would cause an estimate of Bi to vary from
infinity to 100 (Figure 15; Ramaswamy et al., 1983). 1In
addition, sensitivity analysis shows that o and the surface
heat transfer coefficients are strongly correlated. Uno and
Hayakawa (1980a) advocated simultaneous estimation of o,
Bis, Bib, and Bit from heat penetration data. Their results
showed that errors on the order of 26 to 200% were possible
. for the Bi values when considering error in parameters

similar to those in Table 1.
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Sensitivity Coefficient Analysis

Sensitivity coefficients (equation 9; Beck and Arnold,
1977) are calculated by taking the first derivative of the
model 6(a,Bi) with respect to each of the independent

variables (a,Bi).

de

a—

da

de
a_
do max

Sensitivity coefficients (SR) indicate the change in the

(9)

sensitivity coefficient ratio =

response, in this case the temperature ratio, as a function
of the variable. There are two important qualities of the
model that can be learned from the sensitivity coefficients.
The first is the correlation that the independent variables
may have with each other, which is important when attempting
to estimate them simultaneously. The second quality learned
has to do with the magnitude of the sensitivity coefficient
with respect to the response. Larger sensitivity
coefficients areas are areas where small changes in the
response cause large changes in the independent variable,
making it easier to obtain precise estimates of the
independent variables. In conjunction with this last
quality are the relative magnitudes that different
sensitivity coefficients have with each other. The
parameter with the larger sensitivity coefficients will be

the parameter that is estimated more precisely from the
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nonlinear regression analysis.

Figures 16 through 19 are plots of the sensitivity
coefficient ratio (SR) for each of the independent
variables, where the denominator of the ratio is the maximum
sensitivity coefficient value. SR values ranges from 0.0 to
1.0. Plots were made for three different can sizes,
307x300, 307x409, and 401x410 (L/R = .873, 1.327, 1.138
respectively) and for dimensional surface heat transfer
coefficients (h/k) of 200, 1100, and 120000 m 1, for the
top, bottom, and side surface heat transfer coefficient (a
total of 54 plots). The h/k values listed above correspond
to Bi values of 8-11, 45-60, and 5000-6200 for the different
can sizes. The first and last Bi values are at the two
extremes of importance (very significant and negligible)
with regard to the model, and the middle Bi value
corresponds to the transition zone of importance. The can
sizes represent two cans with the same radius and different
length and two cans with similar length and different
radius. The L/R ratio range is similar to those described
in Table 1.

It was observed that having h/k values equal to 120000
m"1 resulted in the SR value of h/k being strongly
correlated with the SR of o (Figure 16). In addition, the
magnitude of the SR value of a was 3500 to 1 of the SR value
of h/k (when equal to 120000 n~1) indicating that any
attempt to simultaneously estimate o and the corresponding

h/k value would result in potentially erroneous values.
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This was not unexpected considering the above discussion for
Bi values greater than 200. The plots also show that hS is
always correlated with a. This means that it is not
advisable to simultaneously estimate o along with three
separate surface heat transfer coefficients. This is
further verified by the fact that even when h/k is equal to

200 m~!

, the SR for h/k is 60 times smaller than that for <.
If o were known and the three different surface heat
transfer coefficients were being simultaneously estimated,
it would depend on the relative magnitudes of the h values
as to whether or not the values could be estimated
accurately.

The largest separation of the SR values occured when
the bottom, top, and side h/k values were respectively 200,
1100, and 120000 m"1 (Figure 16). Only when the three
coefficients are very different from each other can they be
separately estimated with accuracy. When the three surface
heat transfer coefficients were lumped together so the
surface heat transfer coefficient was assumed equal for all
sides of the can, the SR plots showed more variation with
regard to the dimensions of the can than did the analysis of
the three separate h/k values (Figures 17,18,19).
Conversely, the lumped analysis of h/k showed little if any
shape variation in SR with respect to the size of h/k.
However, the magnitude of the SR values was the same for

both cases. This indicates that it is not advisable to

estimate © and a lumped h/k value simultaneously.
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One last thing that can be observed from the
sensitivity coefficient plots is that the SR values are the
largest in the center of the 6 range. This is in agreement
with Figures 13 and 14 because the 6 range of 0.15 to 0.85
promotes precise estimates of a. With larger SR values more

precise estimates can be made.

Error Effects on Regular Regime Method

From the same population of time-temperature points,
with varying Bi values, a potential error of 4.07 in a can
be obtained in the calculation of o from fh' This occurs
using the Olson and Jackson (1942) equation (10), where Bi
was equal to 50 but assumed infinite. The equation may be

written as

h a 1 4267 (10)

The o value calculated from the analytical model always
resulted in an underestimation of o, whereas the Olson
Jackson equation first overestimated the actual o value and
then underestimated o as Bi values decreased. In Figure 13
it can be seen that the o values start to be biased upward
as the 6 values decrease. This causes the o value,
calculated from the Olson and Jackson equation, to be

overestimated because the slope of the heating curve is
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increased due to the increasing upward bias of o and because
the calculation of o from the analytical model places more
importance on the intermediate values of ©.

The overestimation of o (az) from fh for the different
can sizes (Bi =~, is data set 1) does not follow the same
trend as that found for the underestimation of o (al) from
the analytical model (Table 3). The value of o calculated
from the analytical model for the 603x700 can was very
accurate and a similar accuracy was expected for the a value
calculated from the fh values. In turn, the 307x409 can
gave the most accurate value of a calculated from fh’ with
the value of o« from fh for the 603x700 can having a lower
accuracy.

To determine if the above trend was due to the errors
associated with the data of first term approximation, a
population of 100 points with a constant C_ (1.0%) for a,
was generated and called data set 2. The fh and o were
calculated for each can size (Table 3) from this population
of points. The same trend in can size was noticed in both
the o values calculated from fh for the data set 1 and data
set 2 (Table 3). From the similarity in trends of the two
calculated o values it appears that the effect of the error
terms in Table 2 on o is one of a linear (upward bias) shift
in o and that the variation in error associated with
specific can dimensions is mainly due to the first term

approximation (i.e., regular regime) method.
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Table 3

Summary of o and fh values obtained from different data
sets containing different error distributions (1 - error

distribution of figures 13 and 14, 2 - constant C,
(1.0%) of o).

Can Size o of o from fh o from fh
Data Set 1 Data Set''1 Data Set 1
Q Q.

1 2 ]
(mz/hr X 10'3) (m2/hr X 10'3) (mz/hr x 10'3)

307x409 .618 .621 «599
307x306 .618 .627 .613
307x512 .619 .624 .603
202x308 .616 .624 .605
603x700 .620 .625 .606

Actual o = ,620 x 10-3 m2/hr

Figure 20 presents the first term approximation error
((approximation - actual)*100/(actual)) in the calculation
of 8 values for all five can sizes. As the L/R ratio
increases, the error in the first term approximation
increases. A L/R ratio of about 0.94 represents a can size
where the error of first term approximation associated with
the radial direction is the same as that found in the axial
direction. This explains why the 307x306 can displays an a
value closest to the actual (Data set 2, Table 3). This
also explains why the error (except 307x409 can) in «
calculated from fh increases as the L/R increases. However,

it is not known, without further investigation, why the
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307x409 can size deviates from the expected L/R ratio trend.
With the addition of the error factors listed in Table
2 the calculated a values from fh become close to the actual
a value. This is an apparent accuracy because it was
assumed that heating follows Fourier's heat conduction
equation; hence, th2 prediction of o calculated from fh
should follow the o values found using data set 2 instead of
the apparently accurate o values calculated from data set 1.
There is about a 3.57% change in the calculated o when the
error factors in Table 2 are included in the calculations of
a from fh. If the errors in Table 1 change, it becomes very
difficult to make any judgment regarding how they will
influence the estimation of a calculated from fh’ because
the estimated o values will fluctuate around the o values

found from data set 2.



Summary and Conclusions of
Theoretical Develomment

A well-conditioned model is one that performs as
expected for a specific range of errors in the input
parameters. With the original assumptions given at the
beginning of this chapter it was expected that the
analytical solution to Fourier's heat conduction equation
would yield a well-conditioned model to be used to
accurately estimate the thermal parameters (o, and hi; where
i = t,s,b) of a thermal process. The condition of the
analytical model was, when a was calculated from data
(hi = ») containing errors (Table 2), largely dependent on
the errors associated with temperature measurement and to a
lesser extent dependent on the errors in thermocouple probe
location. Errors in can dimensions and time measurement had
minor influence on the prediction of o because of the
magnitude of the error of the respective parameters.

If there were only errors of can dimensions and time in
a process, they would indicate that a slowly heated can
(large can) with a L/R ratio of about 0.8 should be used to
increase the accuracy of the estimation of a (Figures 5,7,
and 9). This same trend was noted for errors in
thermocouple probe location (Figures 1 and 3). Therefore,
any actions taken to minimize the effect of error in

thermocouple probe location would also minimize the effect

64
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of error occurring due to can dimensions and time
measurement. For errors in thermocouple probe location, the
size of the can was more important in lowering the error
associated with the estimation of o than the L/R ratio.

Can size was not a factor in influencing the condition
of the model when only errors in temperature existed. For
temperature errors, the accuracy in predicting o (hi = )
was increased if the temperature data used was limited to a
8 range of 0.85 to 0.15 (Figure 1). This criterion for 6
predominates when all the error factors mentioned above are
present and is supported with the sensitivity coefficient
analysis of the model (Figures 13 and 16). The thermocouple
probe location error is also noticeable when all the errors
(Table 2) are present, causing a tighter upper bound on the
8 as the can size decreases. In addition, when the Biot
Number is assumed infinite but is actually lower than 200,
the model underestimates © by a value over 1.0% (Figure 15).

Strong correlations exist with the sensitivity
coefficient ratios (SR) of « and hi/k (where i = t,s,b);
thus, any attempt to simultaneously estimate o along with
the surface heat transfer coefficients may result in
erroneous values. Only when the surface heat transfer
coefficients (hi; i =t,s,b) are very different from each
other are their values uncorrelated (Figure 16). Even when
just an overall surface heat transfer coefficient (h/k) is
to be estimated simultaneously with a, the precision of the

estimated h/k would be low, due to the magnitude of
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difference between the SR values of a and h/k (60 to 1).
When estimating h/k from thermal process data, a product
with a known @ should be used in addition to having a Bi
less than 40.

When the regular regime (first term approximation)
method was used in estimating «, large fluctuating o values
(hi = ©) resulted for different can sizes. The fluctuations
occurred because of the reliance of equation (10) on the
low, biased, and highly variable 6 values.

When a nonlinear least squares method is used to
estimate thermal parameters from Fourier's heat conduction
equation, in conjunction with the error factors investigated
in this chapter, the following procedures should be used to
insure an accurate and precise estimation of «a.

1) Use a can that allows for the relative
misplacement of the thermocouple probe to be less
than 4.0%. For errors consistent with those in
Table 2 a 401x411 (No. 2 1/2) or larger can would
be adequate.

2) Use a can with a L/R ratio close to 0.8 to
minimize the influence of can dimension and time
measurement errors, and to some extent
thermocouple probe placement errors.

3) Determine the magnitude of the surface heat
transfer coefficients in the thermal process
using a product with known thermal properties

that allows (Bi less than 40) for its estimation.
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If Bi is greater than 200 it can be assumed
infinite.

Limit the range of data used in calculating
thermal diffusivity to temperature ratio (8)
values between 0.15 and 0.85 (For errors
consistent with those in Table 2).

The temperature difference between the initial
product temperature and the heating medium
temperature should not be lower than 40.0° C (For

errors consistent with those in Table 2).



Chapter II

Experimental Analysis



Introduction

When experimentally obtaining thermal process data
there are a number of factors that become incorporated into
the results and, thus, affect the '"true'" values. Chapter I
reviewed a number of these factors (position of thermocouple
probe, can dimensions, measurement of time and temperature,
and assumptions concerning the surface heat transfer
coefficient) and, using computer simulation, elucidated
their effects. However, there are a number of other factors
that are best investigated from actual thermal process data.

One of these factors is heat conduction down the
thermocouple probe, because this phenomenon is very
difficult to mathematically evaluate. The main reason is
that analytical solutions for heat conduction through a
thermocouple probe only exist for special configurations,
and with the small size of the probe, finite difference and
finite element solutions require an extensive grid structure
and computation time. The thermocouple probe can cause a
significant error in time-temperature data because it
usually has a higher thermal conductivity than the thermal
conductivity of food. This results in the probe tip being
partially heated by the probe itself. The thermocouple acts

very much like a pin fin on a heat exchanger.
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Other important factors that require experimental
investigation are, come-up time, filling (i.e., head space
and air inclusions), pretreatment (i.e., blanching and
exhausting), and food product homogeneity. Usually these
effects can be eliminated through the experimental design;
however, these and many other factors, like those discussed
in Chapter I, will show themselves in the overall precision
of the data. An additional factor that will should be
considered in the overall precision of the data collected is
that of biological variation in the food items.

This chapter deals with methods of compensating for
heat conduction down the thermocouple probe, combined with
quantifying the precision associated with the experimental
procedure of estimating thermal diffusivity from thermal
process data using a model food system. The precision of
the procedural method will then be used to evaluate any
biological variations that may be present in a food item.'
It will also be used to verify the thermal diffusivity

estimation procedure.



Literature Review

Thermocouple Probe Error

Any measurement of temperature — using a probe — can
be biased due to heat conduction along the probe and to
displacement of material to accomodate the probe (Ecklund,
1955; Jaeger, 1955; Cowell et al., 1959; Burnett, 1961;
Beck, 1962; Beverloo and Weldring, 1969; Jen and Li, 1974;
Chen and Danh, 1976; Chen and Li, 1977; Yoshide et al.,
1982). Differences in the thermal properties of the probe
and the material being measured accentuate this bias. When
using thermocouples to measure the temperature of food
systems just such a difference in thermal properties exist:
approximately a 130 to 1 difference in a and 110 to 1
difference in k. Bias can be eliminated when measuring the
temperature of a steady-state system by bringing the leads
of the thermocouple through a significantly long zone of
constant temperature. This minimizes any temperature
gradients that may occur between the probe and the material.

Equilibrating the temperature of the probe by bringing
it through a constant temperature zone, can be used in
transient heat conduction problems by having the probe go
through a significantly long axis of symmetry (Dickerson,
1966; Gaffney et al., 1980). Dickerson (1966) points out
that, for a thermocouple mounted (axially) in the geometric

center of a cylinder 5.46>cm in diameter and 22.86 cm in
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length, the thermocouple passes through approximately 8.9
cms of length where the temperature gradient is only normal
to the probe. This length is sufficiently long to
eliminate, near the tip, any temperature gradients found
along the probe. Likewise, Gaffney et al. (1980), using a
1.63 cm diameter and 7.62 length tube showed that by
mounting a thermocouple through the axis of the cylinder,
the errors associated with heat conduction along the
thermocouple would be eliminated. The L/R ratio of these
cylinders are both greater than 4.0. The L/R ratio for a
conventiondgl can will rarely exceed 1.7 and, thus, will have
few, if any, constant temperature gradient zones.

The mounting of thermocouples for thermal processing
tests are typically done radially and result in bias data.
It is interesting to note that, even though the measurement
of temperature using radially mounted thermocouples is in
error, there have only been three detailed studies as to the
magnitude of this error (Ecklund, 1955; Cowell et al., 1959;
Beverloo and Weldring, 1969). The main reason for
neglecting heat conduction down the thermocouple wire is the
use of tﬁe regular regime method of estimating o. Ecklund
(1955) demonstrated that the slope (fh) of the heating curve
did not change when "nonprojecting" (Ecklund, 1949)
thermocouples were used as compared to surface mounted
thermocouples. Ecklund (1955) did show, however, that the
lag phase (i.e., the intercept (j) of the heating curve)

decreased significantly with the use of the "nonprojecting"
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thermocouple. To compensate for the decrease lag phase,
Ecklund proposed the use of "corrected" j values, which were
calculated from an empirical table of correction factors.
Gaffney et al. (1980) substantiated Ecklund's (1955) results
with the use of axially and radially mounted thermocouple
probes in a long cylinder where fh was the same for both
probes. Therefore, when using the regular regime method for
estimating o from thermal process data, errors associated
with heat conduction down the thermocouple probe can usually
be ignored. Since the temperature matching method uses the
whole heating curve when estimating o, any error that occurs
in the measurement of temperature will affect the results.

The effect the thermocouple probe has on the slope (fh)
of the heating curve and thus a, is to some extent dependent
on the size of the thermocouple wire. Cowell et al. (1959)
indicate that when the wire becomes large — compared to the
size of the can — changes in the fh values can occur. For
the typical can size, the Ecklund probe will not affect the
fh value.

The magnitude of the error in temperature measurement
increases rapidly from time zero and reaches a maximum
shortly afterwards; it then decreases asymptotically to zero
at long time (Jaeger, 1955; Cowell et al., 1959; Beverloo
and Weldring, 1969). Beverloo and Weldring (1969) showed
that error in measurement is directly proportional to the
rate of temperature change with time, and that both follow a

parabola. Jaeger (1955) presents an analytical solution for
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the temperature of a solid wire normally transversing an
infinite slab, with the wire having high thermal conductance
and the slab having low conductance. The solution can be
used to estimate the error associated with axially mounted
thermocouples. Cowell et al. (1959) used Jaeger's (1955)
solution to investigate data collected from a 5 by 5 cm
cylinder. The results followed the same trend that Jaeger's
(1955) analytical solution predicted, but were consistently
lower than the predicted values. The discrepancy was
thought to result from the surface heat transfer coefficient
between the wire and the heating media being less than
infinity - as assumed. Beverloo and Weldring (1969) have
found that, when considering thermocouple assemblies (e.g.,
Ecklund thermocouples), the error in the measurement of
temperature is characteristic of the size and material used
for their construction. Hence, it is difficult to predict
errors in temperature measurements from analytical solutions
which assume that the shape of the thermocouple is a long
wire made of a single component.

Beverloo and Weldring's 1969 paper is of special
interest, not only because it characterized the error
associated with heat conduction along the thermocouple, but
also because they measured the error effect of 16 different
thermocouples that were mounted radially in a cylinder. The
thermocouples studied varied greatly in shape and
construction. On the average, the error in temperature

measurement was dependent on the wire thickness and the
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diameter of the probe. These errors ranged from 0.3 to
23.0%7 of the temperature difference between the initial
temperature and that of the heating media for a 10cm by 50cm
test cylinder. In thermal process data this error would
correspond to errors of 0.2 to 13.0 deg C. Two of the
thermocouples measured were the same as those used in this
research, i.e., a "nonprojecting" Ecklund thermocouple and a
mineral insulated thermocouple. Both were found to have

relative errors in temperature measurement of about 3.0%.

Model Food Systems

In considering thermal process data, a product with
known thermal properties must be used to quantify the
following: 1) the effect of heat conduction along the
thermocouple probe, 2) the error associated with neglecting
finite surface heat transfer coefficients, and 3) the effect
of inherent process variations on the estimation of a. The
thermal properties of water are well documented and, thus,
any product that has a very low solids content can be used
as a model food system. To use water, convection inhibitors
need to be added. A number of inhibitors have been used in
published literature (Cowell et al., 1959 — 5% agar in
glycol-water mixture; Beverloo and Weldring, 1964 — 17 agar
in water; Uno and Hayakawa, 1980b — 87 bentonite in water;
Baghe-Khandam and Okos, 1981 — 3.57 glass wool in water;
Poulsen, 1982 — 17.5% binder, 22.57% sucrose in water;

Peterson and Adams, 1983 — 107 bentonite in water).



75

Suspensions of 8 to 10% bentonite (a montmorillonite clay,
Niekamp et al., 1984) have been the predominant model system
used in the area of thermal processing. Another inhibitor
commonly used is 1 to 5% agar, however, because of the low
melting point (80-95 deg C) of an agar gel, it is not suited
for thermal processing studies. Other gums, including
sodium alginates (Glicksman, 1976) are stable at higher
temperatures.

Baghe-Khandam and Okos (1981) used a novel way of
preventing convection currents during heating (25 - 130 deg
C), by adding glass wool (o = 2.26 x 10-° mz/s) to the water
(3.5% glass wool). The glass wool a is only a factor of 10
higher than that of water. Using the same set-up as
Baghe-Khandam and Okos (1981), Choi and Okos (1983) measured
a for water and their results agreed very well with that of
published data. Gaffney et al., on the other hand, did not
use water at all, but an acrylic plastic (o = 1.30 x 10"7
mz/s), having thermal properties very close to those of food

products.

Published Values of Thermal Diffusivity

Published lists of thermal diffusivity values for foods
are féw (Gaffney et al., 1980; Poulsen, 1982; Singh, 1982),
and most well known food engineering textbooks do not
include these lists. When a values are published, the
temperatures at which o was measured, the moisture content

of the food item, and the uncertainty of the results are
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generally not reported (Martens, 1980). The temperature
range for which o is measured can be very important.

Martens (1980) showed that lethalities calculated for
pouches, using o values obtained at the high and low
temperature range of the process give a difference in the
final bacterial concentration as high as one billion to 1.
Martens (1980) also showed that the moisture content of a
food product dictates the product a value much more than any
of its other constituents (i.e., fat, protein, and
carbohydrate).

An important point that Martens (1980) puts forth,
which will not be discussed here but deserves investigation
for cans, is that when using a constant o wvalue when
calculating lethalities of a process in a pouch, large
errors in the final survivors population can occur. Factors
of a thousand to 1 or more in difference were observed for
lethalities calculated from constant a values obtained from
the low and high temperature range of the process as
compared to a temperature dependent thermal diffusivity
equation. Such variations in process lethality could
potentially result in over-, or worse, under-processed

foods.



Theoretical Development

Taking into consideration the results of Chapter 1,
equations (3) and (6) are used as the model for estimating .
If the surface heat transfer coefficients are known to be
different from infinity, then the appropriate equations
are used. When heat conduction along the thermocouple is
assumed to be in a quasi-steady state condition (boundary
conditions change slowly enough so that the heat conduction
along the thermocouple can be modeled as a steady state
problem), the temperature of a radially mounted probe can

be described with the equation

%ﬁl - %E [T(r,t) - Tc(r,t)] = 0 (11)

with
r = distance from the outside surface; r = R at tip
of probe
h = surface heat transfer coefficient between the probe
and the food item
P = perimeter of probe; P = 27R
A = cross sectional surface area of probe
k = thermal conductivity of probe
Tc(r,t) = temperature of surrounding food item at
position r and time t
T(r,t) = temperature of probe at position r and time t.
The analytical solution (Appendix A) to equation (11) with

r = R (center of can) is

77
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0™ (t) = o(t) [1 + -(—R-)-,-Z;-m ; [ tanh(nR) - 1]
(12)
+ m—zﬁ-[ﬁl‘-ﬁ - tanh(m'R)]]
with
m “ = probe factor/hP/kA
R = radius of can
o(t) = temperature of food item at center and time t
calculated from the analytical solution to Fourier's
heat conduction equation (equations 3 and 6)
9*(t) = adjusted actual temperature at time t and at
center of can

When the probe factor is large (m R > 100), equation (12)

reduces to

%
6% (t) = o(t) [1 + Zr(#Fx - 1)J (13)
With the use of equation (12) or (13) and (3) and (6)
the probe factor can be estimated from a thermal process for

a product with known a. Once the probe factor is known,

can be estimated from thermal process data of food items.



Experimental Procedure

A 27 water-KELSET, a sodium-calcium alginate, solution
was sufficient to prevent any convection heating during a
thermal process (KELSET is distributed by Kelco, a division
of Merck and Company Incorporated). The KELSET solutions
were prepared by measuring a volume of deionized water to
which a 3% (by volume) 2 normal solution of HCl was added.
The hydrochloric acid prevented the KELSET from thickening
during mixing. The low pH water was stirred with a rotary
mixer at a high speed during which the KELSET was added very
slowly, to prevent lumping. After the KELSET had been
added, an equal amount of 2 normal NaOH was added to
neutralize the solution. Upon neutralization, the solution
thickened to a pourable jell. With the use of the acid and
the base, incorporation of air was minimized.

KELSET was chosen for use because of its very high
viscosity at low solids content and because it retains much
of its viscosity during a thermal process. It was found
that multiple processing (greater than 3) caused the KELSET
to break down and lose its highly wviscous character, as
shown by an increase in convection heating and a resulting
increase in apparent o (Table 4). Because of this, the
KELSET mixture was never heated more than once (a maximum of

1 run per sample) for any of the data collection runms.
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Table 4

Diffusivity value for repeated thermal processes
of the same KELSET sample

Run Diffusivity (mz/hr)
1 .000592

2 .000594

3 .000595

4 .000622

Temperature measurements for a thermal process are
predominantly taken using the '"nonprojecting'" Ecklund
thermocouple (Ecklund, 1949). The "nonprojecting" feature
of this probe causes the probe to be recessed into the can,
preventing damage during can sealing. Heat conduction
errors due to the presence of the Ecklund thermocouple were
demonstrated by Ecklund (1955) and alluded to by Teixeira et
al. (1975). Ecklund (1955) used surface mounted probes in
an attempt to eliminate the temperature measurement error
due to the probe.

To investigate the effect that the.bias temperature
values have on the estimation of o, temperature measurements
were done with both an Ecklund thermocouple and a mineral
insulated probe. The mineral insulated probe used was a
type T thermocouple, manufactured by LOVE Controls
Corporation (part no. 1818-57). The sheath of the probe was
made of type 304 stainless steel and allowed for an exposed

junction. The mineral insulated thermocouple was mounted on
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the can with the use of a nylon fitting (o= 1.136 x 10.7
mz/s), made specially for this research project. After
mounting and before can filling, the probe was accurately
positioned in the center of the can. The cans were all
filled as full as possible to eliminate any head space
effects.

Three can sizes (Table 5) were used for this portion of
the research: 303x406, 307x409 (No. 2), and 401x411 (No. 2
1/2). The 303x406 was used because the Ecklund
thermocouples available were for this size can. The 307x409
and 401x411 cans were used because of their size, as
suggested in Chapter I, and to investigate whether or not
the difference in L/R ratios influenced the results

significantly.

Table 5

Can sizes used for data collection

Can Radius (R) Half Height (L) L/R
Number (m) (m)

303x406 .0383 .05250 1.370
307x409 .0417 .05575 1.340
401x411 .0516 .05650 1.141

All experiments were done in one of two still retorts.
When possible a mini-retort was used (radius of .13m, length

of .22m), to minimize the come-up time (less than 10
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seconds). Due to the small size, only the 303x406 can
fitted into the mini-retort. For runs using the 307x409 and
401x411 cans a pilot-plant size retort was used (radius of
.45m, length of .67m). The come-up time on the pilot-plant
retort was always less than 90.0 seconds and not considered
significant.

Data was collected for each run using a Hewlett Packard
Model 3045DL data acquisition system. Data for each (if
more than one) of the cans, in addition to the retort
temperature, was collected at 45 sec intervals for the
duration of the test. A test run was considered complete
when the temperature ratio difference between the retort and
the food item fell below 0.10. The data was stored on a
magnetic tape and was later uploaded to a main-frame
computer for analysis. The programs discussed in Chapter I
were used for the analysis. Only the data that fell within
the 6 range of 0.15 to 0.85 was used for the estimation of
o

Surface heat transfer coefficients (h) for each of the
retorts were measured using a finite cylinder made of
copper. The dimensionalized Biot Numbers (h(V/A)/k)
associated with the copper cylinder (0.17) allowed for the
estimation of h using the same programs as used for the
estimation of o. Before being placed into the retort, the
copper cylinder was kept in a water bath for over two hours
to establish a uniform initial temperature. Immediately,

upon transfer from the water, the retort was sealed and
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started, during which time data was collected every 5
seconds.

To establish an estimate of precision in estimating o
from thermal process data, 25 runs for each can were done
using the KELSET model system. These same runs, 75 total,
were used to estimate the probe factor associated with the
thermocouples used. KELSET was also used to make two runs
haveing an 8 min come-up time and a known can head space. A
number of food products were also tested. Each of the food
items were purchased from a local supermarket or donated by
a manufacturer. Peas and lima beans were pureed before
analysis by blending the entire contents of the can at a
high speed until smooth. The mashed potatoes were
reconstituted from potato flakes to the desired moisture
content. The apricot sample was a strained baby food puree.
The moisture of each sample was measured using a vacuum oven

set at 100 deg C and dried to a constant weight.



Results and Discussion

Surface Heat Transfer Coefficients of the Thermal Process
Atteﬁpts were made to measure the surface resistance
(h) of a can heated in a steam environment. Thermal
resistance due to heat penetration through the can and dﬁe
to the contact resistance of the product and can could not
be estimated. Using a solid copper cylinder with known
dimensions and thermal properties, time-temperature heating
curves were measured. The duration of each test was 60 to
100 seconds. Since the time required to place the copper
cylinder in the retort, seal it, and to establish pressure
(15psig) took 15 to 20 seconds, simulation of a step-change
in surface temperature was not possible. The result, then,
was that any estimate of the surface resistance would be
low. An average surface resistance of about 3700 W/m2C was
measured for a number of runs. This corresponds to a
dimensionalized Biot number (h(V/A)/k) of 85.0 for the
307x409 can. Considering the fact that this value is low
and that Ramaswamy et al. (1983) reported h values of 11,000
W/mzc for condensing steam, the surface resistance was
considered infinite (Bi greater than 200) for all the

experimental runs reported in this study.
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Errors in Estimating Diffusivity

Twenty five runs for each of the three cans listed in
Table 5 were done using 27 KELSET solutions. All 25 of the
tests using the 303x406 can and Ecklund thermocouple were
run in a mini-retort. The rest of the tests, including
those for the food products, were done using the pilot plant
retort. The larger retort allowed for multiple tests, but
had a longer come-up time. When KELSET was used, it was
made fresh for each run, except those mentioned in Table 4.
Many of the food products were canned, processed, allowed to
sit overnight (to equilibrate to room temperature) then
reprocessed.

Applying the results from Chapter I, only the data
between the temperature ratio (@) range of 0.15 to 0.85 was
used when estimating o from the thermal process data. The
trends of a typical residual (actual temperature - the
calculated temperature) plot obtained from any of the tests
is presented in Figure 21. The amount of scatter varied
with each test, but in all the cases definite trends in the
residuals were noticeable. Three general types (A,B,C) of
trends were obtained from the tests. All three types
demonstrated a large underestimation of temperature at low
time, which decreased to an overestimation after longer time
periods. Differences in the plots were present only at the
end of the heating. Type A plots had a large

underestimation in temperature at the end of the heating
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period. For type B plots only a slight underestimation
occurred after the overestimation, and for type C plots the
overestimation remained relatively constant until the end of
heating.

To draw statistical conclusions from a regression
analysis, a number of assumptions are made concerning the
data. The more important assumptions are: 1) the residual
error has a zero mean, 2) the errors are additive, and 3)
the errors are independent and identically distributed. For
the estimation of o from thermal process data, assumptions 1
and 2 can be readibly assumed from the model. However, from
Figure 21 the residuals show a very strong correlation and,
thus, are not independent. A number of factors could cause
this dependence. The first is that the model may not
adequately describe the data and the second is that the data
is in fact correlated. ‘

Schisler (1979) showed that transient heat conduction
data collected rapidly, over a short period of time, showed
autocorrelation in the errors. Since the sampling rate was
low, 1 data point every 45 seconds, any autocorrelation due
to sampling can be neglected. From inspection of the
collected data, it became apparent that the lag time period
was much shorter than expected, indicating that the model
does not properly describe the data. This lack of lag time
resulted in an underestimation of temperatures of 1.0 to 3.0
deg C at low time periods. The underestimation could be the

result of: 1) convection heating, 2) temperature dependent
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thermal properties, and 3) heat conduction along the
thermocouple wire. 1In considering the results for the
copper cylinder, a finite surface heat transfer coefficient
is ruled out because it would cause the lag time to increase
and not decrease.

To determine if convection heating was present during
the thermal process, a very thick and non-flowable food
product (pumpkin puree) was processed. Residual trends
identical to Figure 21 were obtained for ten different runs.
These results, in addition to showing that the trend in
residuals is not due to convection heating, demonstrated
that the 27 KELSET solutions are very adequate in preventing
convection heating of water.

If the temperature dependent thermal properties were
the cause of the large underestimations in temperature at
low time, the thermal property values would have to start
high and decrease with heating. Gaffney et al. (1981) and
Choi and Okos (1983) present data and models for the thermal
diffusivity of water at different temperatures. Both
diffusivity models indicate that the o of water increases
with temperature and does not decrease. Thus, thermal
properties of water will start low and increase — just the
opposite of what is needed to account for the short lag
time.

Beverloo and Weldring (1969) measured the error
associated with heat conduction along a radially mounted

thermocouple and showed that the errors rapidly increased
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from time zero to a maximum shortly afterward and then
asymptotically returned to zero. The shape of the error in
the temperature measurement curve that Beverloo and Weldring
(1969) measured for 16 different thermocouples is exactly
like the type C curve in Figure 21, the only difference
being that, by regressing the data to obtain @, the error in
temperature measurement has been brought below zero after
long time periods. If the curves in Figure 21 were due to
errors in temperature measurements because of heat |
conduction along the thermocouple probe, the estimated

values of o would be higher than they actually are.

Correcting for Errors in Temperature Measurement

Table 6 lists the average (of 25 runs, Appendix B)a
values for each of the can sizes in Table 5. Taking into
consideration only the temperatures of a thermal process
between the 8 range of 0.15 to 0.85, the average & value for
water is .5915 x 1073 mz/hr. From Table 6; it can be seen
that o was consistently estimated higher than that for
water, when it was estimated using only the analytical
solution to Fourier's heat conduction equation (al, in Table
6). By incorporating a correction factor (m”) for the heat
conduction along the thermocouple probe (equations 3,6, and
12), a noticeable reduction in the estimated o values can be
seen (az, Table 6). Considering a 95% confidence interval
(t.95(25) = 2,06) for ay, water o falls well within the

confidence region for each can size (303x406, .586 <a 9 <
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.611; 307x409, .586 < o, < .-607; 401x411, .584 < o, < .600).
In comparison, the 957 confidence region for g included the
o value for water (303x406, .592 < ay < .613; 307x409, .597
1 < -624; 401x411, .589 < o4 < .607) with only the
401x411 can.

< o

Table 6

Average estimated diffusivity values for 27
KELSET solutions. (al, estimated using equations
3 and 6; %oy estimated using equations 3, 6, and 12;
4, estimated using equation 10)

Can size « MSE a m” MSE a
1, 24 1 3
x10 (c) x10° (m™ ) (c) x10
(m?/hr) (m?/hr) (m?/hr)
303x406

X .6023 .0632 .5987 5001 .0295 .6016

S, -00502 .0274 .00595 1153 .0313 .0188

307x409
X .6107  .3267 .5973 1884 .00294 .6009
S .00677 .246  .00471 488 .00328 .0178
401x411

b .5989  .0987 .5918 3864 .0108 .6106
S .00448 .096 .00398 1680 .0277 .0233

From Table 6, it can be seen that a reduction in the
estimated value of o was accompanied by a reduction in the
mean square error (MSE) of the estimate. MSE is the sum of
the squared difference between the actual and calculated

temperatures divided by the number of data points minus the
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number of estimated parameters. Therefore, MSE gives an
indication of how well the model fits the data: the smaller
the MSE, the better the fit.

Figure 22 depicts the three general types of residual
trends that were obtained when estimating both ag and m”.
Here again, as for Figure 21, scatter was dependent on the
test run, only the size of the scatter either increased or
remained the same. The type D curve of Figure 22 resulted
from an unchanged residual plot of Figure 21 (type A) and an
unchanged MSE value. For the cases when the MSE was
unchanged, the probe factor (m”) was large and could be
considered negligable. The type D curve of Figure 22
appeared a number of times for the 303x406 can (which used
the Ecklund thermocouple) and a few times for the larger
401x411 can. All of the type C curves (Figure 21) were
reduced to type F curves (Figure 22) with the incorporation
of m. The intermediate B curves of Figure 21 resulted in
mostly type E to F curves when m”~ and o were estimated. The
significance of m“in smoothing out the residual plot was
directly related to the size of the upward curved portion of
Figure 21 at the end of the heating period.

There is a large error between the predicted and actual
temperature at the beginninz of the heating period (Figure
22). These error values are a result of a quasi-steady
state assumption used in deriving equation (12) (Appendix
A). It is assumed that the thermocouple temperature changes

within itself at such a rate, as compared to the food
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product, that it can be assumed to always be in a
quasi-steady state with its surroundings. Since this
assumption is not true at low times, equation (12) will tend
to cause the model to predict temperatures larger than the
actual values. This overestimation of temperature at the
beginning of heating does not influence the estimate of o
because the assumption remains valid for the thermal process
data that falls between the 6 range of 0.15 to 0.85. At 6 =
0.85 and t = .25hr the Fo value for the thermocouple (a =
.0792 mz/hr, value for stainless steel) is greater than 5.0
for all of the cans considered in Table 5. This means that
the thermocouple has essentially reached equilibrium with
its surroundings.

The temperature difference compensated for using
equation (12) is presented in Figure 23. The temperature
difference ratio (A8) was calculated as the difference
between the corrected temperature ratio (equation 3,6, and
12) and the temperature ratio calculated using just the
analytical equations (equation 3 and 6). The slope of the
lines are dependent on both the m” value and the dimensions
of the can. However, for the three can sizes in Table 5,
differences between the plots were small. The curves in
Figure 23 are straight lines, meaning that equation (12)
will tend to compensate on a linear basis; thus, the best
compensation is found for the type C in Figure 21.

The Beverloo and Weldring (1969) curve for the error in

temperature measurement of a radially mounted probe, as
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indicated before, was not a straight line, but a parabola.
Thus, a correction model for heat conduction down a
thermocouple should be a parabola and not a straight line as
in Figure 23. Before a different correction model is
proposed or even equation (12) is considered, the question

of its importance needs to be asked. Table 7 (Appendix B)

Table 7

Average difference between diffusivity values of
2% KELSET solutions (al, estimated using equations
3 and 6; agy estimated using equations 3, 6, and 12;
agy estimated using equation 10)

Can size %g=0tq %“difference ag=ag %Zdifference
x103 (az-al)/az x103 (az-a3)/a2

(mz/hr) (mz/hr)

303x406

X -.0037 -.612 -.0029 -.463

S, .0026 .436 .0142 2.34
307x409

X -.0134 -2.25 -.00367 -.603

Sx .00431 .715 .0143 2.40
401x411

X -.0062 -1.05 -.0188 -3.17

Sx .00363 .614 .0209 3.52

presents the percentage difference in o when estimated with
and without equation (12). The correction (2.25%) is
largest for the 307x409 can. Since 57 variation in

estimated thermal properties of food items is not
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unreasonable, the importance of correcting for heat
conduction along the thermocouple probe seems small. When
different can sizes are used, the correction will become
more important as the L/R ratio increases. Therefore,
whenever a is being estimated from a thermal process using a
radially mounted probe, the magnitude of the error
associated with the radially mounted probe should be
assessed. The magnitude of m” is especially important for
small cans and for ones that have a large L/R ratio.

Figure 24 presents the sensitivity ratios plotted
aganist the © for the model consisting of equations (3),
(6), and (12). Sensitivity plots were made for the same can
sizes used for the sensitivity analysis in Chapter I and for
m~ values ranging from 1000 to 5000 n~1 (a total of 9
plots). Each plot was essentially the same as the other.

As can be seen from Figure 24, the coefficients are not
correlated. Correlation exists if for at all times the two
curves differ by a constant. The magnitude of the
sensitivity coefficients values are different by an order of
1 to 17 for m equal to 1000 (m-l) and an order of 1 to 85
for m” eﬁual to 5000 (m-l). Therefore, when estimating both
o and m” simultaneously, the estimate of m~ will probably
have a larger standard deviation than that of «a.

Considering the small importance (only a 27 difference in o)
of m“, the importance of its estimation is low. Therefore,
even though residual plots like those in Figure 21 may exist

for the estimation of o, any corrections made in the model
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used in estimating a (i.e., incorporation of a probe factor)
will in many cases not change the estimate. However, before
neglecting a correction factor for heat conduction along the
thermocouple, a researcher should determine the magnitude of
the error in temperature measurement due to the probe and,

if significant, compensate for it in the model.

Errors from Devient Thermal Processes

A few thermal process runs were made with a long
come-up time (8 mins, a typical come-up time of a production
scale retort) and for cans containing a 1.27 cm head space
(measured from the lip of the can before sealing). Upon
analysis the 307x409 can demonstrated no significant change
in a(a= .5927 x10.3 mz/hr) for a 1.27 cm head space when
estimated using the analytical solution (Appendix D). The
reason for this is that the large L/R ratio caused most of
the heat to penetrate radially. Diffusivity, when estimated
from fh’ showed a significant decrease in the estimate as
compared to the other estimates of o. The magnitude of
decrease in a increased for the 401x411 can when compared to
the 307x409 can. This is because the L/R ratio for the
401x411 can is smaller. Still, even with the larger
decrease in a for the 401x411 can, the difference in the o
from those in Table 6 is only 1.67%. However, when looking
at the o estimated from f, the difference is 3.9%.

The 8 minute come-up time caused a significant

reduction in the estimated o (.5621 x10~3 mz/hr). The
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residuals of the regression were much different from those
of the other estimations, indicating that the model was not
fitting the data well. Diffusivity estimated from fh’ on
the other hand, did not indicate any problems with the data
or the model. The conclusion is that commercial retorts,
which typically demonstrate come-up times of this nature,
should not be used when collecting thermal process data used

in estimating a.

Estimating Diffusivity from Olson and Jackson Equation

Tables 6 and 7 present the results of estimating o (a3)
from f, using equation (10), the Olson and Jackson (1942)
equation. These tables indicate, that when using fh, the
estimate is high, as expected from the results in Table 3.
More importantly, the estimates have a standard deviation 3
to 5 times that found for o estimated from the analytical
solution to Fourier's heat conduction equation. With Cy
values of 3.0 to 3.8% as compared to the C, of a (0.7 to
1.1%) estimated using the analytical solution to heat
conduction, the estimates of o from the Olson and Jackson
equation (equation 10) are inadequate. The inadequacy of
equation (10) is even more pronounced when the product being
analyzed deviates from a solely conduction heating product.

Table 8 presents the o values estimated from four
different thermal process runs of mayonnaise, which
exhibited no obvious change in consistency. The estimates

for o using the analytical solution are different from the
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estimates of o using the Olson and Jackson (1942) equation

by 20% (Table 8). Figure 25 shows that the predicted

Table 8

Estimated values of @ for mayonnaise
(al, estimated using equations 3 and 6; Qg
estimated using equations 3, 6, and 12, m“=1900 m'l;

a3 estimated using equation 10)

Run ayq MSE ay MSE ag %difference
3 3 3
(m?/hr) (m?/hr) (n?/hr)

X .4101  15.67 .4008 11.03 .3187 20.49
S .00602 1.04 .00568 .830 .00613 1.62

temperatures using the analytical model (equations 3 and 6)
do not follow the actual temperatures very well. This can
also be seen from Table 8 by the large MSE values. Because
of this deviation, it is safe to assume that the mayonnaise
did not heat by pure conduction. Figure 26 shows that, even
though mayonnaise heats with convection, the slope of the
heating curve (fh) does not indicate this heat transfer
mode. When looking at Figure 25 it can be seen that the
estimated o from Figure 26 (fh) is in gross error because it
badly underestimates the temperature of the mayonnaise when

it is used in the analytical solution to the Fourier heat



101

Uy wolj pue UOIINTOs T[edT3A[euE
9yl woaj pajBwIlsd SaNTeA AJFATSNIITIP Buisn asyeuuodeuw

10J sanyea 3aianjeaadwaj pajBINO[EBD pue [BNIDY °GZ 2anB14
(4 ) 3JUIIL
08" 1 82* 1 00" 1 sL*0 08°0 9z*0 004,
o
o5
m
=
93 30 A31ATSnyzTP o0
1en3oe mbuu
w4
cC
=0
m
ra
=u jo A37ATSNIITP P
aN O
S0

0o°021



102

*3asTRUUOABW 10] nu JO uoy3BTNOTED 303
swI3 JOo uoriounj ® se orjea aanjeaadwaj jo 0¥8o7 °+9z @2an81y

(4) 3JUIL
0l 821 00° 1 8L*0 090 92°0 000,
®
or
o
@
—
1O
K=
s —
a&m
=
)
wmouuu
D
5
—y
o
|

0¥°0



103

conduction equation. Since a is used in conjunction with
the analytical solution to heat conduction, it would be wise
not to use a values calculated from fh’ unless the user
knows for sure that convection heating is not present and is
not that concerned with calculated values having a large

standard deviation.

Diffusivity of Actual Food Products

Diffusivity was estimated for a number of food products
using equations (3), (6), and (12), and their average values
are presented in Table 9 (Appendix C). The probe factor was
assumed to be equal to 1900 (m'l) which was the average
value estimated from the 27 KELSET solutions in the 307x409
can, the same can used for all the food product testing. In
addition to the o values obtained during this study, some «
values obtained from previously published literature are
reported in Table 9. Comparison between a calculated in
this study and previously published values is difficult due
to moisture content differences and the differences in
temperature ranges used in estimating a. However, when one
realizes that a decrease in moisture content will decrease
the estimated o and that an increase in the temperature of
the heating media will increase the estimated o, some
generalizations can be made.

Poulsen (1982), using the regular regime method,
obtained o values for apple sauce that are lower than the «a

value estimated from this study. Since the apple sauce used
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Table 9

Estimated diffusivity values for tested food itfms
(average values; can size 307 x 409, m = 1900m~1)
and from previously published papers.

Temp. a
Moisture Range (x10%)
Product % C m? /hr. Reference
Apple Sauce 82.0 20-121 .5612 this study
75.7 21-50 .5418 Poulsen (1982)
80.0 65 .5040 Riedel (1969)
-- 26-126 .6000 Lenz and Lund
(1977)
Baked Beans 70.0 20-121 .5490 this study
-- 26-126 .6039 Lenz and Lund
(1977)
Lima Bean Puree 80.1 20-121 .5707 this study
-- 26-126 .6465 Lenz and Lund
(1977)
Mashed Potatoes
reconstituted) 73.5 20-121 .5755 this study
reconstituted) 81.5 20-121 .5793 this study
reconstituted) 88.2 20-121 .5781 this study
cooked) 78.0 65 .5613 Riedel (1969)
Mayonnaise 16.9 20-121 .4008 this study .
16.9 20-121 .3187 this study-fy
18.0 22-50 .3834 Poulsen (1982)
Pea Puree 84.4 20-121 .5783 this study
-- 26-129 .6542 Lenz and Lund
(1977)
-- 25-121 .6116 Teixeira et al
(1975a)
Potato Salad 74.7 20-121 .5477 this study
-- 1.7-80 .5187 Dickerson and
Read (1968)
Pumpkin -- 20-121 .5733 this study
Tomato Juice 73.0 30-121 .504 Choi and Okos
(average) (1983)

Tomato Paste 73.1 20-121 .5455 this study
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by this study had a higher moisture content and was
evaluated at a higher temperature, the difference in values
does not seem too great. Conversely, Lenz and Lund (1977)
reported o values for apple sauce that are higher than those
found in this current work. The high estimation of o found
for all of their reported values. In fact, all of the o
values reported by Lenz and Lund (1977) are higher than that
of water, where the reverse trend should be the case (Choi
and Okos, 1983). Thus, the validity of the Lenz and Lund
(1977) data is questionable.

In an .attempt to study the effect of moisture on the o
of mashed potatoes, 3 different samples of mashed potatoes
were made by reconstituting potato flakes with water. The
variation in moisture ranged from 73.5 to 88.2%. Values of
o estimated from the three samples do not demonstrate any
trend related specifically to moisture content.
Diffusivities of tomato juice concentrates were estimated by
Choi and Okos (1983) for a large number of moisture
contents. The data showed a decrease in the diffusivity of
the tomato juice with increasing solids. The rate of change
was slow for solid contents ranging from 4.8 to 207 and then
was much more rapid as the solids content increased to 80%.
Due to a difference in moisture of only 157 for the mashed
potato samples and the overall high moisture content, it is
not surprising that the change in moisture contents had
little influence on estimated a values.

It seems apparent from Table 9 that, due to the large
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variability in reported o values for the same product, o
should be measured for each product studied. Since thermal
process data is easy to collect, the procedure outlined in

this study would be a reliable, fast, and easy method to use

in estimating o,



Summary and Conclusions of
Experimental Analysis

Temperature measurement errors due to the presence of a
thermocouple will cause the residuals of the estimated o
values to be correlated (Figure 21). By compensating for
the heat conduction down the thermocouple, a reduction in
the residuals will occur along with a reduction in
autocorrelation (Figure 22). The difference in o estimated
with and without compensating for temperature measurement
errors depends on the size and shape of the can (Table 6).
Larger cans with small L/R ratios will yield more accurate
temperature measurements due to the reduced influence of
heat flowing radially into a can and down the thermocouple.
Estimations of o with Ecklund thermocouples having metal
fittings do not appreciably differ from o estimated using
data collected with a small diameter probe having nylon
fittings. No matter what type of thermocouple is used in
estimation of o, a researcher should first establish that it
does not significantly affect the estimate before its
presence is neglected.

When estimating o from thermal process data collected
in a steam environment, the boundary conditions are usually
easjly established. A small retort with adequate steam
lines, to reduce come-up time, should be used. Head space

ef fects can be easily eliminated by filling the can as full
107
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as possible. It is best to set up individual experiments
when estimating o from thermal process déta and not from
routine thermal process analyses.

Thermal diffusivity estimated from the logroithmic
portion of the heating curve (fh) will result in estimates
with the following characteristics: 1) larger standard
deviations than those found using more analytical methods
(Table 6), 2) estimated values that could be the result of
unknowingly having unsatisfied boundary conditions, such as
long come-up times, and 3) potentially inaccurate estimates
resulting from the presence of convection heating (Table 8).
For cases where a long come-up time, a head space, or
convection heating is present the logorithmic portion of the
heating curve will remain linear, indicating no problems in
the estimate. Thus, misleading the researcher into using
values for a that are potentially inaccurate.

Thermal diffusivity of actual food products will
fluctuate with moisture content and temperature. Due to
this fluctuation, one should use caution if using published
o values (Table 9). In turn, o should be measured for each
product investigated.

Considering the experimental data collected in this
chapter, the following estimation guidelines should be
included in any thermal process procedure used in estimating
a s

1) Use a 401x411 or larger can to reduce errors

associated with heat conduction down the
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3)

4)

5)
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thermocouple probe (when consistent with the
thermocouples used in this analysis).

Maintain the head space in the can to a minimum,
especially for cans with a small L/R ratio.

Keep the come-up time of the retort to a minimum.
Come~-up times less than 2 minutes are adequate when
considering canned food products of the size used in
this study.

Investigate the residuals of the estimated o for
trends - indicating nonconformity to the boundary
conditions imposed on the model. This is
particularly helpful in determining if convection
heating is present.

Estimating o« from the slope of the heating curve
(fh) may result in poor estimates and is not a

recommended practice.



RECOMMENDATIONS



Recommended Estimation Procedure

Estimation of thermal diffusivity is more accurately
accomplished using the analytical solution to the Fourier
heat conduction equation and to a lesser extent by the
regular regime method. Any incongruities in the data are
best observed by using the analytical solution and may be
masked with the regular regime method.

Summarizing from the conclusions of Chapters I and II
the following guidelines are recommended when attempting to
estimate thermal diffusivity from thermal process data using
the Fourier heat conduction equation as a model and
employing the nonlinear least squares method of parameter
estimation.

1) Use a can size that will minimize the importance of
heat conduction along the thermocouple probe and
probe misplacement. A can size of 401x411 or larger
was considered adeduate for this study.

2) Use a can with a L/R ratio close to 0.8 or less.
This will decrease the importance of errors in can
dimensions and time measurement, but more
importantly will decrease the quantity of heat
conducted along a radially mounted thermocouple
probe.

3) Use a material with known thermal properties (Bi

greater than 40) to determine the magnitude of the
110



4)

5)

6)

7)

8)

9)
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surface heat transfer coefficient. If Bi is greater
than 200 the surface heat transfer coefficient can
be considered infinite.

Limit the range of data used in calculating thermal
diffusivity to the temperature ratio range of 0.15
to 0.85.

Establish the thermal process procedures such that
the temperature difference between the initial
product temperature and the heating medium
temperature is not lower than 40.0 deg C.

Maintain the head space in the can at a minimum,
especially for cans with small L/R ratios.

Maintain the come-up time of the retort to a
minimum. Come-up times less than 2 minutes are
adequate when considering canned food products of
the size used in this study.

Investigate the‘residuals of the estimated thermal
diffusivity for trends that may indicate
nonconformity to the boundary conditions imposed on
the model. This is particularly helpful when
convection heating may be present.

Thermal diffusivity should not be estimated from the
slope of the heating curve (fh) due to potentially

poor estimates.

In conjunction with the above, the following standard

experimental procedures are recommended when obtaining data

to be used in estimating thermal diffusivity:
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2)

3)

4)
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Measure, as accurately as possible, the position of
the thermocouple probe after its‘placement and the
inside dimensions of the can.

Use a data acquisition unit to collect data. This
will minimize errors in time measurement.

Calibrate the thermocouple probes to minimize errors
in temperature measurement.

Establish good operational procedures for estimating
a for food products by testing the operation with a
product having known thermal properties such as

water with a convection heating inhibitor.



1)

2)

3)

4)

5)

Recommended Areas of Future Study

Investigate the importance of accurate estimates of
thermal diffusivity on the predicted loss of quality
during thermal processing.

Investigate temperature dependency of food thermal
properties.

Investigate how changing thermal parameter values
relate to the loss of quality, rate of heating, and
optimization calculations of a thermal process.
Investigate other mathematical models that correct for
heat conduction along the thermocouple probe.
Determine if the temperature range used in the
collection of data causes significant changes in the

thermal diffusivity estimates.
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APPENDIX A

Solution for model used in accounting for heat
conduction along a radially mounted thermocouple in a
can. Thermocouple modelled as a pin fin at a

quasi-steady state.
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Solution (not available in literature) to the equation

' T(r,t) _ hP [T(r,t) - Tc(r,t)] 0 (A.1)

which represents a pin fin in a media subject to the follow-
ing assumptions:
1) the fin has a much higher thermal conductance
than the surrounding media
a) the pin has a uniform cross-sectional temperature
b) the fin distributes its heat at such a rate
‘that even with the changing surface temperature
it is effectively always at a steady state with
its environment
2) the surface temperature of the fin can be modeled
using an analytical solution to Fourier's heat
conduction equation
3) the temperature distribution [T(r,t)] along the
fin follows a parabola (Beverloo and Weldring,
1969)
T(r,t) = T(0,t>0) + T(R,t)(r?/R?) (A.2)
The boundary conditions are

%% = 0 atr =R

T = T(0,t>0) atr =0
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Let

m~ =/ hP/kA
AT = T = T(O,t)O)

T, = T(R,t)

R
Substituting A.2 in A.1, A.1 becomes

%%’I - (m’)’[AT - TR(r'/R*)] (A.3)

Splitting equation A.3 into a homogeneous part and a non-

homogeneous part yields

AT = AT, + AT,
d‘aﬂh
and —=—r— - (m)* AT, =0 (A.4)
Solving for A.4 gives
AT, = cle'“"r + cze“"r (A.5)

The non-homogeneous part is solved as

Ty ; s
I - (o) [&Ti - Tp(x*/R ):l =0
Trying
AT, = A + Br + Cr*
then
d’ASTi
K
so

2C - (m”)* (A + Br + Cr?) + (m")* Tp(xr*/R?) = 0
for this to be true
2C - (m”*)*A =0 . C = %(m")?A
Br = 0 B =20
=(m*)*Cr* + (m*)*Tp(x*/R*) = 0 ; C = Tp/R?

.o
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Therefore,
2
AT, = T+ TgE (A.6)
(m R)*? R?

Combining A.5 and A.6 and satisfying the boundary

conditions results in

-m r m’r 2 ry\?
AT = C1e + C2e + TR [W + ('R') } (A.?)
. . 2T,r

dAaT - -m r . m r R

I T MG rm e
at r = R; with dOT _

dr
-m'Cle-m R, m’Czem R4 -KB =0

and at r = 0; and AT = 0

2T .
(m R)*

Solving for ¢y and C, yields

C1 + C2 +

" -wr, R
C. = (m R)* mR)_ 2Ty
1
cosh (m"R) (m K)
(R -wr, Tr
c, = (m R)* m R
cosh (m" R)

Substituting in 01 and C2 in A.7 and setting r = R makes

-m R
AT = Tp + 2TR& I:tanh(m’ R) - 1-| + 2TR 1 - tanh(m‘R)]
(m R)° J m m R
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Dimensionalizing results in
-m“R

oF = o(t) [} + %%7F7r [tanh(m’R) - 1]

(A.8)
+ Egﬁ [ELK - tanh(m’R)}J

* . .

with 8 equal to the actual temperature ratio at the tip of
the fin. ©(t) is the temperature ratio calculated from

the analytical solution of Fourier's heat conduction equation.

If m"R > 100, then A.8 reduces to

6F = o(t) [1 + mﬂ2§<31—R - 1>} (A.9)

The sensitivity coefficients of A.8 and A.9 are:

% L
-g%- = o(t) [%%,;-)-5 <ﬁ%" + R)(l - tanh(m’R))

+ ﬁ(ilr tanh(m“R) - '(E:_’g)"'ﬁ - Rsech‘(m’R))}

for m"R > 100

(A.10)

de™ 2 2
a%r = Q(t) [m (1 -~ TR >] (A.lll)



APPENDIX B

Results of estimating diffusivity for 27 KELSET-water
solutions and for three different can sizes.

aq = diffusivity estimated using
equations 3 and 6

az,m’- diffusivity and probe factor
estimated using equations 3,
6, and 12

%3 - diffusivity estimated from fh
(equation 10)

MSE - is the mean square error of
the estimates

* - denotes values that were not used in the
calculation of the mean and standard deviation of
the estimate.

°® - denotes f, values that were not calculated by
successive itgration, but by regressing the data
having a temperature ratio < 0.55.
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APPENDIX C

Results of estimating diffusivity for different food
products in a 307x409 can.

ay - diffusivity estimated using
equations 3 and 6

ay = diffusivity estimated using
equations_}, 6, and 12 with
m-=1900 m - - the average value

of m* from the 307x409 results
in Appendix A

aa = diffusivity estimated from
3
£ (equation 10)

MSE - the mean square error of the
estimate

Products with the same number were processed,

allowed to equilibrate to room temperature, and
reprocessed.
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APPENDIX D

Results of estimating diffusivity from processes
that have a long come-up time, for cans with a head
space, and results for reprocessing of the same
KELSET sample.

aq - diffusivity estimated using
equations 3 and 6

az,m‘- diffusivity and probe factor
- estimated using equations 3,
6, and 12

a3 - diffusivity estimated from
£, (equation 10)

MSE - mean square error of estimate
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