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ABSTRACT

THERMAL DIFFUSIVITY ESTIMATION

FROM THERMAL PROCESS DATA

By

John Winslow Larkin

Error analysis of the analytical solution to the

Fourier heat conduction equation used in estimating thermal

diffusivity from thermal process data is presented. The

influence of the following factors on the nonlinear

regression estimation of thermal diffusivity were

investigated: 1) misplacement of the temperature

measurement probe, 2) variations in container dimensions, 3)

measurement error in time and temperature, 4) assumption of

an infinite surface heat transfer coefficient when finite

values are present, 5) violated boundary conditions related

to factors such as come-up time and head space, and 6) heat

conduction along the temperature measurement probe.

A Monte-Carlo analysis of a mathematical model, along

with actual thermal process data collected for water

thickened with sodium-calcium alginate, revealed that

thermal diffusivity calculated from heat penetration data is

largely dependent on errors associated with temperature

tneasurement and to a lesser extent dependent on errors in



thermocouple probe location. Errors in temperature

measurement consisted of both random errors and those

arising from heat conduction along the temperature

measurement probe. Can dimensions and time measurement

errors had a minor influence on the estimation of thermal

diffusivity. Heat conduction along the temperature

measurement probe resulted in large and autocorrelated

errors that could be compensated for with the use of a

quasi-steady state solution for heat conduction along a

cylinder (probe).

Best thermal diffusivity prediction accuracy is

obtained using the following guidelines: 1) use a totally

filled can, 2) use as large a can as possible, 3) use a can

with a length over diameter ratio close to 0.8, 4) maintain

the difference between the initial and heating medium

temperature above 40 deg C, 5) use only the data collected

between the temperature ratio range of 0.15 to 0.85, 6)

establish the magnitude of the correction factor needed to

compensate for heat conduction along the temperature

measurement probe, 7) establish the magnitude of the Biot

Number for the surface of the can or maintain it above 200,

8) accurately measure the time, can dimensions, and position

of the temperature measurement probe, and 9) examine the

residuals of the estimate for unsatisfied boundary

conditions. Estimating thermal diffusivity from the slope

(fh) of the heat penetration data may resultin poor

estimates and is not a recommended practice.



To God the Father and Jesus Christ, without whom all

wisdom of the world is as striving after wind.

"For the word of the cross is to those who are

perishing foolishness, but to us who are being

saved it is the power of God. For it is written,

'I will destroy the wisdom of the wise,

And the cleverness of the clever I will

set aside.‘

Where is the wise man? Where is the Scribe? Where

is the debater of this age? Has not God made

foolish the wisdom of the world?"

(I Corinthians 1:18-20;

New American Standard)
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RESAERCH OVERVIEW

Over the last few years a large number of heat

conduction problems (Matthews and Hall, 1968; Teixeira et

al., 1969; Teixeira et al., 1975a; Teixeira et al., 1975b;

Lenz, 1977; Hayakawa, 1979; Saguy and Karel, 1979; Ohlsson,

1980; Naveh et al., 1983; Young et al., 1983; Naveh et al.,

1984) have been investigated where an accurate value of

thermal diffusivity (a) was an asset. Whenever the research

(Teixeira et al., 1975; Ohlsson, 1980; Naveh et al., 1984)

included an error analysis of the problem, it was observed

that the precision of the thermal prediction was strongly

dependent on having an accurate value of a. As long as

solutions to heat conduction problems are dependent on

accurate thermal parameters, estimation procedures for these

variables need to be refined and improved.

Thermal diffusivity estimation procedures can be

broadly grouped into four categories (Nesvadba, 1982; Singh,

1982): 1) heat pulse and line heat source methods, 2)

direct use of temperature profiles to determine the physical

properties, 3) temperature matching (or - least squares),

and 4) regular regime (or phase) - use of linear portion of

heating curve. With regard to thermal processing of cans or

pouches, the estimation procedure for a that has been used

1



the most is that of the regular regime method. The reason

is due to the fact that the estimation of a can be done with

just a few calculations by plotting heat penetration data on

graph paper (Olson and Jackson, 1942); hence, there is no

need for involved computer programming and analysis.

Simplicity and accuracy are both desirable attributes

that should be taken into consideration when deciding on a

method of estimating a. Even though the regular regime

method is simple to use, its accuracy is very questionable.

Teixeira et al. (1975a) measured a using two can sizes and

came up with results that were different by over 15%. Hicks

(1961) has observed fh values that fluctuate as much as 13%,

which results in fluctuations of a of almost the same

amount. Thus, even though the regular regime method is

simple and easy to use, the accuracy of the estimate can no

longer be considered acceptable, taking into account newer

methods of a estimation.

Since the advent of computers a number of the other

estimation methods have become easier to use. It has been

over twenty years since Beck's (1963) original paper

concerning the suggestion of obtaining a through nonlinear

regression of the temperature measurements, and very few

researchers (Matthews and Hall, 1968; Ross et al., 1969;

Hayakawa, 1971; Hayakawa, 1972; Hayakawa and Bakal, 1973;

Lenz, 1977; Albin et al., 1979; Narayana and Murthy, 1981;

Nesvadba, 1982; Young et al., 1983) have exercised this

method for foods. Even fewer of these researchers (Lenz,
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1977; Young et al., 1983) used nonlinear regression with

thermal process data; however, neither of these papers

considered the propagation of error in the estimated a value

from data containing error. Considering the above, the

objectives of this research were to:

1) Investigate the sources of error in the collection

of thermal process data,

2) Investigate the influence of data error on the

estimation of a using nonlinear regression,

3) Outline procedures to be used in estimating a from

thermal process data,

4) Compare the accuracy and precision of obtaining a

using nonlinear regression and using the regular

regime method.



Chapter I

Model and Computer Simulated Analysis



Introduction

Thermal processing of food is required to inactivate

harmful bacteria. During the processing of foods not only

is the bacteria inactivated but the physical characteristics

of the food product, such as the textural and nutritional

properties, are altered. In recent years, interest in the

thermal processing of foods has focused on the optimization

of the physical properties by altering the processing time

and temperature so bacteria is inactivated but the physical

and nutritional properties are retained as well as possible

(Matthews and Hall, 1968; Teixeira et al., 1969; Teixeira et

al., 1975a; Teixeira et al., 1975b; Saguy and Karel, 1979;

Ohlsson, 1980). The heat transfer calculations involved in

these research projects were carried out using one of three

methods: 1) an analytical solution to the heat conduction

problem, 2) finite differences, and 3) finite elements.

When the boundary conditions cause the problem to be

nonlinear, then the latter two methods are the easiest to

use, but when this is not the case -— as in thermal

processing -— the analytical solution to the heat conduction

problem is a reliable method.

No matter what calculation procedure is used, if a food

processor is to perform optimization calculations the

thermal properties of the food product need to be known.

Since the food processor already has equipment to (and must)

4
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measure the thermal process (F0) of a set of processing

conditions, it seems reasonable to use the same equipment

and thermal process data to obtain estimates of food thermal

properties.

Factors that can affect accurate and precise

estimations of thermal properties are: 1) thermocouple

probe location, 2) error in measuring container size, 3)

error in time or temperature measurement, 4) assumed

infinite surface heat transfer coefficients when they are

finite, 5) heat conduction down the thermocouple probe, and

6) unmet boundary conditions (come-up time, head space,

etc.). The first four factors are best investigated using

Monte Carlo simulation in conjunction with sensitivity

analysis of the model, which is considered in this chapter.

The latter two factors involve experimentation and will be

addressed in Chapter II.



Literature Review

Methods of Diffusivity Estimation

With regard to foods, thermal diffusivity (a) has been

a neglected thermal parameter, and few values for it have

been published. In contrast, thermal conductivity has had a

large number of values published (Woodams and Nowrey, 1968;

Polley et al., 1980). This is probably due to the simple

empirical relationship that a has with fh in thermal process

calculations. Also, since a is defined in terms of thermal

conductivity, specific heat and density it can be calculated

indirectly.

Methods of estimating a can be grouped into four

general categories (Nesvadba, 1982; Singh, 1982): 1) heat

pulse or heat source, 2) direct use of temperature profiles

to determine the physical properties, 3) temperature

matching, and 4) regular regime. Heat pulse and heat source

methods usually entail a known heat source, either applied

to the sample through the outside of the sample container or

by the use of a probe inserted into the sample. Methods

that have used the temperature profiles of heat penetration

data use the data - a slope or individual point -— in

conjunction with an analytical solution to the problem.

Methods that fall into the category of temperature matching

may also involve the use of a known heat source; however,

the principle attribute of the procedure is that of

6
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minimizing the difference between the measured and predicted

temperature of the process. Of all the categories, the last

one has been the method of choice for a large number of

research projects. The method of regular regime involves

the estimation of a from the heat conduction data over long

time periods, where the heat conduction curve follows a

regular pattern (i.e., a straight line).

Diffusivity Using the Line Heat Source Method

The line heat source method (Sweat and Haugh, 1974;

Baghe-Kahandam et al., 1981) has been used extensively in

measuring thermal conductivity of foods. The method is

simple and the thermal concutivity of most foods can be

measured using a small probe. Nix et al. (1967, 1969)

published a procedure that has extended the use of the

thermal conductivity probe so both thermal conductivity and

thermal diffusivity can be estimated simultaneously. This

extended method has been used to analyze a number of food.

products (rapeseed, Moysey et al., 1977; squash and white

potatoes, Rao et al., 1975; peanut pods, hulls, and kernels,

Suter et al., 1975; cooked beef, Baghe-Kahandam and Okos,

1981; tomato juice, Choi and Okos, 1983). There are many

benefits in using the line heat source method over other

techniques: 1) the sample size can be small, 2) the

duration of the test is short (usually less than 8 mins), 3)

it can be used to measure the thermal properties over a

small temperature range, 1-5 deg C, allowing for the
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measurement of the thermal properties as a function of

temperature, and 4) the boundary conditions are usually

easily satisfied. A 5% error in k and a is typical for the

line heat source method. The only real disadvantage for a

food processor is that thermal process data cannot be used

to determine thermal property values. Instead, different

experiments would need to be carried out.

Diffusivity Using Temperature Profiles
 

Flambert (1974) and Nevadba (1982) have presented two

very novel ways of obtaining estimates of a. Flambert

showed that the heat flux of a transient heat conduction

problem would reach a maximum at a specific Fourier number

(Fo), depending on the shape of the container (Fo - 0.12 for

an infinite cylinder). Thus, by finding the time at which

the heat flux was maximum, a can be calculated from the

theoretical Fo value. Nevadba's estimation procedure is

particularly useful for freezing food, because it takes into

consideration the temperature dependence of the thermal

properties. Nevadba used the peak (for freezing; valley for

heating) of the temperature gradient curve as a function-of

time to estimate a. This caused a term in the differential

equation to go to zero, making the differential equation

easier to solve.

The biggest limitation to the above methods is that

determination of the maximum (or minimum) is difficult and

is usually done using curve fitting, which adds an
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additional amount of error to the data collection error

already present. Nevadba's method involves a grid of

thermocouples, which is not easily incorporated into a

typical thermal process procedure. Flambert's method was

originally investigated using thermal process data and

results in using a single point to estimate a. This, in

conjunction with the error of curve fitting in Flambert's

method, does not make the technique compatable with the

precision of the temperature matching methods.

Diffusivity Using Temperature Matching
 

A number of different temperature matching calculation

procedures (nonlinear regression, direct grid search, and

Newton-Raphson) have been used to reduce the difference

between the measured temperature and that calculated by the

proposed model. Nonlinear regression is by far the fastest

and most versatile method. Grid searching becomes very

involved as the number of independent variables increases,

and the Newton-Raphson method is limited to only one

variable. Nonlinear regression has been used in only a few

research projects involving foods (Matthews and Hall, 1968;

Ross et al., 1969; Albin et al., 1979; Narayana and Murthy,

1981). Several research projects involving foods have used

one of the other procedures (Hayakawa, 1971; Hayakawa, 1972;

Hayakawa and Bakal, 1973; Lenz, 1977; Young et al., 1983).

Of these projects, only Lenz (1977) and Young et a1. (1983)

used thermal process data to back out a value for a,
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Nonlinear regression is a method for data analysis, not

data collection; thus, any data collection procedure can be

used. For example, the line heat source method uses

nonlinear regression when estimating both k and a at the

same time. Thus, there are no inherent limitations to the

use of nonlinear regression analysis. Limitations are

solely dependent on the data collection procedure.

Diffusivity Using Regular Regime
 

In 1923 when Ball published the "formula" method,

calculations of a thermal process where made considerably

easier. This method has become a standard by which all

other methods are compared. Expanding on the "formula"

method, Olson and Jackson (1942) correlated the analytical

solution to the heat conduction problem with the parameters

of the "formula method" and showed that fh is directly

related to a after long time periods (Fourier Modulus; Fo

less than 0.20, i.e., during the regular regime). This

correlation has come to be known as the Olson and Jackson

equation. For the most part, authors (Hicks, 1961; Teixeira

et al., 1969; Annamma and Rao, 1974; Teixeira et al., 1975a;

Teixeira et al., 1975b; Ohlsson, 1980; Rizvi et al., 1980;

Peterson and Adams, 1983) have adopted Olson and Jackson's

equation for estimating a. Even though Olson and Jackson's

equation is easy to use, it is limited by assumptions: 1)

infinite and constant surface heat transfer coefficient, 2)

constant thermal properties, and 3) use of just the first
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term of an infinite series. A number of the authors listed

above have found that when estimating a from fh, errors in

of 5% to 13% are not atypical.

Gaffney et al. (1980) made an extensive review of the

use of the regular regime for estimating a, which also took

into account the possibility of estimating finite surface

heat transfer coefficients. The methods by which a finite

surface heat transfer coefficient may be taken into account

has been used in a number of different research projects

(Bhowmik and Hayakawa, 1979; Domen, 1980; Uno and Hayakawa,

1980a; Arce et al., 1981; Marich and Bachlich, 1982;

Poulsen, 1982). The paper by Uno and Hayakawa (1980a) even

goes on to present a method by which the finite surface heat

transfer coefficients for the top, bottom, and side of a

finite cylinder can be estimated along with a; however, the

usefulness of such a method is still to be shown for thermal

process data. Before the above-mentioned research was done,

correlations of j (the intercept of the heat conduction

curve) with the surface heat transfer coefficient (h) were

used for the estimation of h (Pflug et al., 1965). Since

Pflug's et al. paper, reliability of the estimates obtained

from j have come into question due to the large variation in

j values that are obtained from thermal process data.

A rather specialized regular regime method was

developed by Dickerson (1965). In this method, a constant

change in temperature is applied to an infinite cylinder,

and a is estimated from a simplified solution to the
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transient heat conduction equation. Dickerson's procedure

has not received a lot of attention, but was used by Rizvi

et al., 1980. Probably the main reason for its lack of use

is that the technique requires special handling, i.e., a

special cylinder and an environment that changes temperature

at a constant rate with time.

Errors Involved in Diffusivity Estimation

When limiting the research to determine a from thermal

process data, only three methods reviewed above are

available for use: 1) Flambert's method (1974), 2)

temperature matching using the analytical solution to the

heat conduction problem, and 3) regular regime. Noting that

the available precision of the regular regime ranged from 5%

to 13% (Hicks, 1961; Teixeira et al., 1975a; Bhowmik and

Hayakawa, 1979; Uno and Hayakawa, 1980a; Uno and Hayakawa,

1980b), it seemed that one of the other methods had to have

better precision. When Flambert's method was reviewed it

was pointed out that it involved curve fitting to obtain a

maximum and so was considered unsuitable. Considering the

flexibility of the temperature matching method - any

theoretical model can be used (as long as there is a method

of solution) —- nonlinear regression is the best method of

choice. Before nonlinear regression can be fully advocated,

an indepth error analysis of the model to be used on the

thermal process data must be carried out.

Nesvadba (1982), in a review of estimating a from
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foodstuffs, enumerated a number of different factors that

can contribute to an error in the estimation of o. Nesvadba

broke the potential errors into two categories: 1)

systematic errors and 2) random errors. The systematic

errors consisted of: 1) those related to the actual

container or probe, not the theoretical geometry, 2) heat

loss by conduction or radiation laterally, 3) conduction

along the thermocouple leads, 4) distortion of the

temperature profile due to the thermocouple, 5) finite

surface heat transfer coefficient when assumed to be

infinite, 6) anisotropy of the food, 7) moisture migration,

8) change in composition or structure due to heat or mass

transfer, 9) temperature dependent thermal properties, 10)

evaporative cooling, 11) instrument sampling errors, 12)

positioning of thermocouple, 13) instrument calibration, 14)

graphical techniques, 15) neglection of terms in the

infinite series solution to heat conduction problem, 16)

numerical solutions, and 17) curve fitting. The random

errors were enumerated as: 1) initial boundary condition not

met, 2) time-dependent boundary conditions, 3) contact

resistance, 4) air inclusions, 5) moisture gradients, 6)

nonhomogenous sample, 7) genetic and variety differences, 8)

imprecise measurement of temperature, 9) electric noise, and

10) calculations by the experimenter.

Errors Important to Thermal Process Data

When using thermal process data not all of the
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potential errors that are specified above apply. Many of

the errors that do apply are considered with assumptions

only. Others are satisfied with proper experimental design.

Since the resultant a value is to be used in various

optimization programs, the assumptions stated in these

programs will applied here. These assumptions are: 1)

physical and thermal properties of the food products are not

temperature dependent, 2) products are homogeneous,

isotropic materials, 3) the foods are heated only by pure

conduction, 4) the products have a uniform initial

temperature, 5) environmental changes are instantaneous

(i.e., no lag time in retort come-up), 6) surface heat

transfer coefficients will consist of a lumped parameter;

involving external surface convection, conduction in the

container material, and internal contact resistance and, 7)

there is no phase change in the product during heating.

From previous experiments, factors that have been shown

to be important when estimating a from thermal process data

are: 1) position of the thermocouple probe (Hayakawa, 1971;

Hayakawa and Bakal, 1973; Bhowmik and Hayakawa, 1979;

Narayana and Murthy, 1981), 2) dimensions of the container

(Uno and Hayakawa, 1980; Narayana and Murthy, 1981), 3)

unknown or finite boundary conditions (Bhowmik and Hayakawa,

1979; Gaffney et al., 1980; Uno and Hayakawa, 1980a; Arce et

al., 1981), 4) measurement of temperature (Bhowmik and

Hayakawa, 1979; Gaffney et al., 1980; Uno and Hayakawa,

1980a), 5) moisture migration during the analysis (Arce et
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al., 1981), and 6) heat conduction down the thermocouple

probe (Ecklund, 1955; Cowell et al., 1959; Beverloo and

Welding, 1969; Teixeira et al., 1975a; Gaffney et al.,

1980).

Error in Thermocouple Position
 

Errors in the position of the thermocouple increase in

importance as the ability to position it with respect to the

thickness of the sample decreases. Narayana and Murthy

(1981) found (with a sample thickness of 10mm) that an error

in the position of the thermocouple of i 0.2mm resulted in

an error in the estimation of a of 1.1%. Likewise, Hayakawa

and Bakal (1973) found that an error in the position of the

thermocouple of 11mm resulted in an error in a of up to 30%

for a sample 32.0 to 35.0mm thick. Hayakawa (1971) and

Bhowmik and Hayakawa (1979) also mentioned that error in the

position of the thermocouple affected the precision of the a

estimation; however, they did not indicate the magnitude of

the error.

Error in Can Dimensions
 

Errors in the calculation of dimensions of the

container have not been cited by many researchers as an

important factor in the estimation of o. Narayana and

Murthy (1981) found it to be more important than the errors

in position of the thermocouple. With errors of i 0.2mm in

the thickness of the slab, Narayana and Murthy found a 3.0

to 3.3% variation in a. Uno and Hayakawa (1980) mention
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dimensions of the container as a factor, but do not indicate

any relative magnitudes. They do recommend using a

container size as large as conveniently possible.

Error in Unmet Boundary Conditions

To explain the lack of precision in the estimation of

thermal properties, one of the first factors that is

investigated as the possible cause is that of unmet boundary

conditions. Bhowmik and Hayakawa (1979) and Uno and

Hayakawa (1980a) point out that just such an error can occur

when the surface heat transfer coefficients (h) are

neglected. They found that h may not be infinite (as

commonly assumed) due to head-space in the can and retort

packing effects. To correct for this, Bhowmik and Hayakawa

(1979) developed a method using a long cylinder to estimate

both a and h values. This was done by solving (using the

regular regime) the analytical solution of heat penetration

in an infinite cylinder with a finite surface h value.

Then, from a heat penetration test they calculated a and h.

In a similar fashion, Uno and Hayakawa (1980a) developed a

procedure where a and hi where i - t,b,s (h is finite and

different on each side of a can; ht - surface heat transfer

coefficient for the top, hb - surface heat transfer

coefficient on the bottom, and hS - surface heat transfer

coefficient for the side) can be estimated from the actual

heat penetration data of a canned product. In an error

analysis of this latter method, errors of 1mm in location
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and dimensional quantities, 1 deg C in temperature, and 5%

in fh values were used to predict a maximum relative error

value of 24.6% for a in a 300x409 can. An error of this

magnitude renders this method of estimation undesirable even

though the factors used to calculate the error were not

unreasonable.

The need to take into consideration surface heat

transfer coefficients for a thermal process is solely

dependent on head-space and retort packing. Ramaswamy et

al. (1983) measured h for a variety of steam qualities and

found h values the order of 11,000 W/mZC for 98% steam. For

the lower limit of a Biot Number equal to 200 (Gaffney et

al., 1980; error in a of 1%), an h value of 11,000 W/mZC

corresponds to a characteristic length of 1.25 cm (assuming

k - 0.682 W/mC for water). Cans with a characteristic

dimension smaller than 5.0 cm are almost never used; thus,

if there is any surface resistance, it will come from head

space or retort packing problems. Just such a condition was

shown to exist with "crateless retorts" where the cans end

is flat on the retort bottom (Naveh et al., 1984).

Bhowmik and Hayakawa (1979) and Uno and Hayakawa

(1980a) lumped temperature and time measurement errors in

with the ability to obtain precise values for fh. Thus, the

errors in the measurement of temperature or time have not

been investigated with regard to a direct effect on the

estimation of a. Gaffney et al. (1980) has indicated that

data collection should terminate when the temperature
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difference between the heating media and the product falls

below 10C. The primary reason for this is that measurement

precision decreases as the temperature difference decreases.

Bhowmik and Hayakawa (1979) observed this effect because

after long time periods, the plots of the temperature

differences between the product and the heating media

fluctuated significantly.

Arce et al. (1981) researched defatted soy flour and

found that moisture migration is an important factor when

estimating thermal properties. For dry materials, moisture

migration during an analysis must be taken into

consideration, but since thermal processing is done on foods

that have water activity levels above 0.80, moisture

migration is not a problem.

Second to unmet boundary conditions, the error

associated with heat conduction down thermocouple leads is

the most investigated cause for errors in the estimation of

thermal properties. This problem is best analyzed from

actual experimental analysis and thus will be discussed more

fully in Chapter II.



Theoretical Development

The following were assumed for all models used in

this analysis: 1) physical and thermal properties of the

food products are not temperature dependent, 2) products

are homogeneous, isotropic materials, 3) the food is heated

by conduction, 4) the product has a uniform initial tempera-

ture, 5) environmental changes are instantaneous (i.e.,

no lag time in retort come-up), 6) surface resistance will

consist of apparent h values associated with external surface

convection, conduction in container material and internal

surface convection and, 7) there is no phase change in

the product during heating. In conjunction with these

assumptions only the heating phase will be investigated.

Fourier's equation of heat conduction with no internal

heat source for an infinite slab is

8‘9 1 39

W'afi <1)

The analytical solution (Ozisik 1980) to equation (1)

for a thickness of 2L, a surface heat transfer coefficient

of h for the top and bottom of the slab, and origin at

the center is

 

T - Tm Z sin(ln)

9 - Ti - Tm - 2 “.1 [In + sin(ln7cos(ln7]

z (2)
-1

exp [—Efi] cos(ln%)
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with

A a roots of Intanln a B1

Bi = Biot number for the slab - hL/k

a - thermal diffusivity

x = distance from center

T a temperature of heating medium

T. a uniform initial temperature of the slab, i.e.,

temperature at t = 0.0

t = time

T = temperature in the slab at time t and point x

satisfying the following initial and boundary conditions:

9 = 1.0 when t = 0.0

<%% - 0 when x = 0.0

39 . -"-" =
gi- T 9 when X 1..

When h is assumed infinite, G - 0 at x - L, then equation (2)

reduces to

9 .3; 21 E1213”. cos ((211 -2Llfl x>exp [_((2n % lfi)g%z] (3)

n.

Fourier's equation for heat conduction for an infinite

  

cylinder with no internal heat source is

1 9 3‘9 _ 1 as

F 3_r " "Tar a: fi’ (4)

The analytical solution (Ozisik 1980) to equation (4) for a

cylinder of radius R, having a surface heat transfer coeffi-

cient of h and the origin along the cylindrical axis is
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m r
9 2 _1_ J1(Bn)J0(BnR) exp -e;at] (5)

n, 8n Jana“) + Jim“) T
 

with
I
I
) II

roots of BnJ1(Bn) = (Bi)JO(Bn)

Bessel Function of the first kind, of order zeroL
.

0

II

L
. I1 Bessel Function of the first kind, of order one

r - distance from the center

Bi - hR/k

satisfying the following initial and boundary conditions:

9 - 1.0 when t = 0.0

—r- E9 atr R

(
D

8
8r - 0 at r = 0.0

When h is assumed infinite, 9 a 0 at r = R, then equation (5)

reduces to

m J 3 r 'Bzat
0( nII n

9-2: exp[T] (6)

n=1 Bn 1 8n)

where 8n are the roots of J0(Bn) = 0

The analytical solution (Uno and Hayakawa 1979; Ozisik

1980) to equation (1) for a slab thickness of 2L, surface heat

transfer coefficient for the top and bottom of ht and hb

respectively, and origin at the bottom of the slab is

9 2 i [-yaatry; + Bi;)(yncos(ynx) + Bib sin(y nx))

- ex f f I ' 7 I ' I 1

P 4L (Yn+Bib+Blbj(Yn+Bit) +Blt(yn+131b)
 

n-1

. Bib (7)

[s1n(yn) + -?;-(1 - C°S(Yn))]
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with

(Bi + Bi )Y
b t n

y = roots of tan(y ) - z _ . .
n n Yn (B1bB1t)

Bit = Biot number for top of slab, a htZL/k

Bib Biot number for bottom of slab, a thL/k

x - distance from bottom of slab

satisfying the following initial and boundary conditions:

9 = 1.0 when t = 0.0

h

%g -‘j? 9 at x = 0

%g---1:kleatx-2L

The product of equation (5) or (6) and (2), (3), or (7)

represents the heat transfer model used during this study.

Equation combinations were selected depending on whether or

not there was symmetric or nonsymmetric heating for the top

and bottom of the can and/or if the surface heat transfer

coefficient was assumed infinite, because less computer

time was required for calculation of equation (6) than (5)

and less time was required for the calculation of equation (3)

than (2) or (7). Each of the above equations were written as

FORTRAN-77 subroutines which could be used by any of the

programs developed during the study.



Analytical Procedure

Five can sizes (307x409, 307x306, 307x512, 202x308, and

603x700) were selected for this investigation (Table 1).

The first three can sizes were chosen for their constant

radius, moderate size, and varying L/R ratios. Can sizes

202x308 and 603x700 were chosen to represent small and large

cans often used in industry.

Table 1

Can sizes used in computer simulated error analysis

Can Number Radius (R) Half Hei ht (L) L/R

(m) m

307x409 .04366 .05794 1.327

307x306 .04366 ' .04286 .982

307x512 .04366 .07303 1.673

202x308 .02699 .04445 1.647

603x700 .07858 .0889 1.131

The variables used for the Monte Carlo error analysis

of the model consisted of: time(t), temperature (T), length

dimension of the can size (2L), radius dimension of the can

size (R), radial location of the thermocouple probe (r),

axial location of the thermocouple (x), and surface heat

transfer coefficients (hi’ where i i t, b, s). The problems

related to surface heat transfer coefficients are not

23



24

related to measurement error but come from assumptions drawn

by the experimenter, i.e., most calculations assume h is

infinite and uniform along the can, which is often

incorrect. This is an error which one can account for

knowingly in the model; therefore, errors associated with

the assumption of h were analyzed after the other factors

were investigated.

With the advent of microelectronics numerous data

acquisition units have been produced that allow for very

accurate and precise temperature and time measurements. In

addition to increased precision, data-acquisition units'

also eliminate human error associated with reading data off

a chart-type recorders. Therefore, it was assumed that

errors associated with time and temperature measurements

were not a result of human variations but due solely to

mechanical variations. Time variations (95% confidence

interval) used in this study followed an autoregressive

order with an error in time of i .005% (t) i 1 sec which is

the case for the data acquisition system used in the

experiments (Hewlett Packard Model 3045DL). For the

temperature factor, copper-constantan thermocouples were

assumed which, in the range of interest (20 - 1300C),

produced a measurement error of the order of i 0.5 to 1.00C.

Errors for probe location were made the same for each can

and set to a 95% confidence interval for error related to i

4.0 mm for the radial placement and i 4.0 mm for the axial

placement. Due to the high precision needed to ensure
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proper lid closure and seam formation, this work assumed two

thousandths of an inch variations in can length and

diameter, which results in a 95% confidence region of error

equal to t 0.5 mm for can length and diameter. Surface Biot

Number variations ranged from 10 to infinity. A summary of

errors (for a 95% confidence region) used in the measurement

of the model conditions is listed in Table 2. Populations

of normally distributed points were generated using the

Box-Muller transformations on a set of pseudorandom numbers

(Beck and Arnold, 1977). These points were then transformed

using the mean and standard deviations of the specific

parameter(s) under investigation to obtain normally

distributed points from which the heat transfer model could

be tested.

To analyze the error factors a set of calculated or

"actual" data points were produced with a - .00062 mz/h, h -

w , the thermocouple probe located at the center, and no

errors in time, temperature or can dimensions. From each

"actual" time data point used, a set of 150 points were

generated with an assumed error factor. For each point

generated a a value was calculated using a direct search

method (Beck and Arnold, 1977) minimizing (Ta - Tc)2

where Ta is equal to the actual temperature and Tc is equal

to the calculated temperature. The initial product

temperature and the medium temperature were set equal to

65.0 and 121.1OC respectively.
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Table 2

Error factors used to generate computer simulated data

containing error for the analysis of the analytical

solution to Fourier's heat conduction equation.

Factor Attribute

Standard Deviation

Time .000025 t t 1 sec

Temperature .3333 deg C

Can half length .000125 m

Can radius .000125 m

Probe location (axially) .002 m

Probe location radially) .002 m

Range

Surface Biot Number 10 to m

(Bit, Bib, and Bis)

The mean and standard deviation was recorded for each

set of 150 a values, with the standard deviation measured.

about the "actual" value of a (.00062 mZ/h). Each parameter

(except Bi) listed in Table 2 was varied individually to

test its effect on the heat transfer model. Then, all the

parameters (except Bi) in Table 2 were varied at the same

time.

From the combined effect of all the error factors

(except Bi) of Table 2, a distribution of the mean and

standard deviation of a was obtained with respect to

temperature. From this error distribution a population of

20 temperature values were created for each known mean and
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standard deviation (50 values) of o, for nine different Bi

values ranging from 10 to m. This gave 1000 points for each

Bi number for a total of 9000 points. Thermal diffusivity

values were calculated assuming an infinite h value such

1000

that i=21 (T . - T .)2, using nonlinear least squares
a,1 c,1

(M6re et al., 1981), was minimized. Recall that Ta refers

to points produced assuming a is equal to .00062 mZ/h and Bi

is a value in the specified range (Table 2).

The same populations of data points discussed above

were used to simulate a heat penetration test from which fh

values were calculated. Calculation of fh values were

carried out with a FORTRAN-77 subroutine which maximized the

coefficient of determination (r2) of the data by regressing

the data for a specific number of points and then by

regressing the data again with one less point (removing the

smallest time value). The elimination of points was

repeated until the data with one less point had a

coefficient of determination lower than the one with one

more point.

In addition to Monte Carlo simulation of the heat

conduction model, the sensitivity coefficients (the

derivatives of the model with respect to the coefficient in

question) were analyzed (Beck and Arnold, 1977).

Sensitivity coefficients, when used for analysis and when

needed by the nonlinear regression program, were calculated

using the forward difference method.



Results and Discussion

Error Analysis
 

Two statistics that are usually used to describe the

distribution of populations are the mean (u) and the

standard deviation (0). For ease of comparisons, the

results of error analysis are described by the residuals of

the mean (a - (u - i); where i = estimate of p) and the

coefficient of variance (Cv - S/x * 100; where S - estimate

of 0). Plots of E/u and Cv versus 9 for each of the error

factors are depicted in Figures 1 through 14. Note that O

varies from one to zero with complete heating. From Figures

1,3,5,7, and 9 it can be seen that variations in

thermocouple probe location, can dimension, and time result

in low 8 values for long time periods.

Error in Probe Location
 

Errors in thermocouple probe location result in 5

values that are all positive (Figures 1 and 3) because the

thermocouple probe was located at the slowest heating point

of the can. Hence, an error in thermocouple probe location

will always result in an underestimation of the actual

values of a. The underestimation of a for an error in probe

location is the largest for the can with the largest

relative heat penetration rate and the smallest dimensions.

This means that two factors influence the error associated

28
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with probe location. The first is the heat penetration rate

for one dimension as compared with that of the other

dimension (L/R). The second is the relative misplacement

(r/R) of the thermocouple probe. For example, in the case

of the 202x308 can the majority of the heat penetration is

from the radial direction (i.e., a large L/R; Table 1). In

addition, the 202x308 has a small radius, where the same

displacement in thermocouple probe (in all the cans studied)

results in a larger relative displacement from the center.

Thus, as seen in Figure 1, the 202x308 can has the largest 8

values for.any can associated with error in the radial

placement of the thermocouple probe.

The magnitude of 8 (Figures 1 and 3) is a result of the

fact that shortly after the cans start to heat a gradient in

temperature near the center is established for both the

radial and axial directions. For the 202x308 can the radial

gradient in temperature in the center is greater than that

found for the other cans due to a large L/R and small

radius. As the can is heated, the temperature gradient

around the center and the 8 values associated with the

thermocouple probe location decrease. The axial effect for

the 202x308 can (Figure 3) is very different, because with

high 9 values the error in axial probe placement is

negligible. This indicates that initially, there is

virtually no temperature gradient near the can center in the

axial direction. As the heating of the can continues, a

larger gradient is established and with it larger 8 values.
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The 5 values increase for the axial direction until the

temperature gradient near the center starts to decrease with

time, after which the a values decrease with continued

heating. Figure 3 also shows that as the L/R ratio

decreases (Table 1), the axial heat penetration rate grows

in prominence, resulting in larger 8 values for low time

(see, for example, the 307x306 can). The 603x700 (L/R =

1.13) can seems to be near a transition point (Figure 3)

where the prominence of the axial heat penetration rate is

evident. The underestimation of a that occurs from errors

in thermocouple probe location have associated with it a

changing magnitude of precision (CV) (Figures 2 and 4).

Precision in the radial direction for the 202x308 can

reached a CV of 4.0% for low time where the Cv for the

603x700 can never exceeded 0.5%. The axial Cv values

generally remain low for all can sizes, the 603x700 being

the lowest with the Cv value having a maximum of

approximately 0.1%. This indicates that the error in

estimated a values due to an error in thermocouple probe

location will be minimized by minimizing the relative error

of the thermocouple probe location. For the error factor in

Table 2 and the can size of Table 1 this would correspond to

a relative misplacement error less than 4.0% and not

necessarily less than 2.5%. In addition, the L/R value of

the can should be such that the heat penetration rates for

both axial and radial directions are nearly equal. This can

be accomplished using an L/R value in the range of 0.70 to
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0.8 .

Error in Can Dimensions

The effect of variation in actual can size on

estimating a values were found to be smaller than the effect

from variations in thermocouple probe location. This is

because the magnitude of can size errors are much smaller

than probe position errors (Figures 5,6,7, and 8). Can size

variations gave 8 values approximately ten times less and CV

values approximately four times less than those found with

variations in probe location. Figures 5 and 7 do not

indicate any specific kind of trend with 9 other than

showing that - after long time periods - the error effect

of the can dimensions decrease. Error in a can dimension is

a factor of the relative change in the can dimension as

compared to the overall can size (L/R). For example, the

can that showed the largest e and Cv values for error in the

radial can dimension is the 202x308 (large L/R) can and the

can that showed the largest e and Cv values for the axial

can dimension is the 307x306 (small L/R). Due to the small

magnitude of e and almost constant Cv values for the 9

range, the actual effect of can size variations on

calculation of a are miniscule and may be ignored.

Error in Measurement of Time

Time variations result in error effects (Figures 9 and

10) very similar to the error effects of can size, both in

magnitude and trend. However, there are decreasing Cv
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values for decreasing 9 values where there was no trend in

Cv for the can size factor. The a values are the largest

for the cans with the fastest heating rate. The indication

is that a can that heats slowly will yield a more accurate (1

value, even though the error in time increases with longer

time periods. The high accuracy of the clock used during

this study resulted in small values of E and Cv’ which in

turn do not cause appreciable changes in the calculation of

n, Thus, any error in time measurement may be ignored.

Error in Measurement of Temperature
 

Temperature variations resulted in the largest errors

for any one error factor investigated (Figures 11 and 12).

This means that temperature is the most significant

parameter in controlling the accuracy of the a estimation.

The significance is not only due to the magnitude of Cv and

8 but also due to the trends the 8 and Cv values display in

relation to 9. The shapes are significant because the

curves are identical for the different can sizes (as might

be expected from observations of transient heat conduction

charts) and because they show a violation of a well-accepted

assumption for high and low 9 ranges, i.e., that the errors

in temperature measurement do not bias the calculation of a.

Figure 11 indicates that the assumption of unbiased a values

can only be accepted in the 9 range of approximately 0.90 to

0.05. Outside the range, a values are biased upward for low

9 and downward for high 9 values. Another important point
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is that an a value calculated strictly with low or high

values of 0 will not only be inaccurate but will also be

less precise due to the increasing values of Cv outside the

0 range of 0.85 to 0.15 (Figure 12).

Error of Combined Effect

The influence of temperature on the calculation of a

predominates when all the factors listed in Table 2 (except

Bi) are varied at once (Figures 13 and 14). When Figures 13

and 11 are compared a drifting upward of 8 values is noticed

for increased 9 when all the error factors are varied. This

was not present when only temperature was varied. The

upward trend in 8 values for Figure 13 is just like that

observed for the 8 values associated with error in

thermocouple probe location (Figure 1 and 3). In this study

the more important error in thermocouple probe location is

the radial displacement error because all the cans

considered have L/R values above 0.8. Therefore, for the

sizes and ranges of error factors considered, the

predominant error factors in the calculation of a are

temperature measurement and radial placement of the

thermocouple probe. When only the measurement in

temperature was an error factor, a 9 range of 0.85 to 0.15

was specified from which an accurate and precise value of a

could be calculated; however, with the addition of the

thermocouple probe location error, a tighter upper bound on

6 might be in order for cans having L/R values different
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from 0.8.

An L/R ratio of 0.8 is the ratio at which the heat

penetration rate for the axial dimension is very similar to

that for the radial direction. Therefore, with equal heat

penetration rates for the two dimensions, the lepe of the

temperature gradient around the thermocouple probe is

minimized along with any error associated with the position

of the thermocouple probe placement. Similarly, Cowell and

Evans (1961) observed that when j and fh are estimated from

heat penetration data, the error in the estimates as

compared to the asymptote of the heating curve is minimal

for L/R ratios of 0.8.

When the temperature difference CAT) between the

initial product temperature and the medium temperature was

varied from 121.1 C to 11.1 C (previously help constant at

56.1 C) the shape of the residual error (e) and coefficient

of variance (CV) curves remained the same, as found in

Figures 13 and 14 discussed above. There was, however, a

noticeable difference in the level of the constant Cv region

(6 range of 0.15 to 0.85). A coefficient of determination

of .9987 was obtained when the mean value of Cv for the 9

range of 0.15 to 0.85, was fitted against the inverse ofsz

as

62.21

Cv . .2677 +

(ST

 

(8)

Equation (8) shows that the precision (CV) associated with
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estimating 0 decreases drastically aszST decreases below

40.00C; thus, to obtain an accurate estimate of a theIQT

should remain above 40.00C.

Error Due to Finite Surface Heat Transfer Coefficients

From the distribution of a in Figures 13 and 14

additional populations of time-temperature points were

generated with varying Bi values (ht/k - hS/k - hb/k) and

compared with time-temperature data calculated assuming 1/Bi

= 0.0 (Figure 15). Due to the complexity of trying to

analyze the effect of different and varying Bi values for

the top, bottom, and side of a can using Monte Carlo

simulation, the Biot Number values were assumed to be the

same for all the surfaces of the can (taking into

consideration the difference in dimension for the radius and

length). This assumption was made because the error

associated with Bi values is one of assumption (the

researcher assumes it is a specific value) or related to a

previous measurement of Bi. When Biot Numbers are unknown

in calculating a, the product of equations (5) and (7) can

be used as the model, because this model allows for

estimation of all four of the independent variables (a,

hb/k, ht/k, hs/k) using a nonlinear least squares procedure.

From Figure 15 it can be seen that the calculation of a

is biased downward when the actual Bi values are not equal

to infinity. A 4.0% to 4.5% bias occurs when Bi is actually

equal to 50. Even though current literature gives different
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values for critical Bi numbers to describe the transition

zone for an insignificant surface effect (usually, Bi >40;

Heldman and Singh, 1981), a 4.0 to 4.5% error in the

calculation of a can be made by neglecting such effects.

Similar results were obtained by Gaffney et al. (1980) for

the regular regime method. The accuracy in the

determination of a values starts to deviate as soon as the

Bi values migrate from infinity. The standard deviation of

a does not significantly increase (for errors in assumptions

in Bi) until Bi is less than 25. Figure 15 indicates that

the radius, more so then the length of the can, determines

the overall accuracy of the estimated a value.

Since Bi values can affect the precision with which a

can be estimated, they should be known or possibly estimated

simultaneously with a. When Bi is greater than 200, it has

little effect on the estimation of a (Figure 15) and because

of this, it is very difficult to estimate. Note, a 2-3% '

variation in a would cause an estimate of Bi to vary from

infinity to 100 (Figure 15; Ramaswamy et al., 1983). In

addition, sensitivity analysis shows that a and the surface

heat transfer coefficients are strongly correlated. Uno and

Hayakawa (1980a) advocated simultaneous estimation of 0,

B18, Bib, and Bit from heat penetration data. Their results

showed that errors on the order of 26 to 200% were possible

. for the Bi values when considering error in parameters

similar to those in Table 1.
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Sensitivitinoefficient Analysis
 

Sensitivity coefficients (equation 9; Beck and Arnold,

1977) are calculated by taking the first derivative of the

model 6(a,Bi) with respect to each of the independent

variables (o,Bi).

d9

0—

do

sensitivity coefficient ratio = (9)

d6

a—

da max

Sensitivity coefficients (SR) indicate the change in the

 

response, in this case the temperature ratio, as a function

of the variable. There are two important qualities of the

model that can be learned from the sensitivity coefficients.

The first is the correlation that the independent variables

may have with each other, which is important when attempting

to estimate them simultaneously. The second quality learned

has to do with the magnitude of the sensitivity coefficient

with respect to the response. Larger sensitivity

coefficients areas are areas where small changes in the

response cause large changes in the independent variable,

making it easier to obtain precise estimates of the

independent variables. In conjunction with this last

quality are the relative magnitudes that different

sensitivity coefficients have with each other. The

parameter with the larger sensitivity coefficients will be

the parameter that is estimated more precisely from the
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nonlinear regression analysis.

Figures 16 through 19 are plots of the sensitivity

coefficient ratio (SR) for each of the independent

variables, where the denominator of the ratio is the maximum

sensitivity coefficient value. SR values ranges from 0.0 to

1.0. Plots were made for three different can sizes,

307x300, 307x409, and 401x410 (L/R - .873, 1.327, 1.138

respectively) and for dimensional surface heat transfer

coefficients (h/k) of 200, 1100, and 120000 m'l, for the

top, bottom, and side surface heat transfer coefficient (a

total of 54 plots). The h/k values listed above correspond

to Bi values of 8-11, 45-60, and 5000-6200 for the different

can sizes. The first and last Bi values are at the two

extremes of importance (very significant and negligible)

with regard to the model, and the middle Bi value

corresponds to the transition zone of importance. The can

sizes represent two cans with the same radius and different

length and two cans with similar length and different

radius. The L/R ratio range is similar to those described

in Table 1.

It was observed that having h/k values equal to 120000

In.1 resulted in the SR value of h/k being strongly

correlated with the SR of a (Figure 16). In addition, the

magnitude of the SR value of a was 3500 to 1 of the SR value

of h/k (when equal to 120000 m'l) indicating that any

attempt to simultaneously estimate a and the corresponding

h/k value would result in potentially erroneous values.
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This was not unexpected considering the above discussion for

Bi values greater than 200. The plots also show that hS is

always correlated with a. This means that it is not

advisable to simultaneously estimate 0 along with three

separate surface heat transfer coefficients. This is

further verified by the fact that even when h/k is equal to

200 m'1 , the SR for h/k is 60 times smaller than that for a.

If a were known and the three different surface heat

transfer coefficients were being simultaneously estimated,

it would depend on the relative magnitudes of the h values

as to whether or not the values could be estimated

accurately.

The largest separation of the SR values occured when

the bottom, tap, and side h/k values were respectively 200,

1100, and 120000 111'1 (Figure 16). Only when the three

coefficients are very different from each other can they be

separately estimated with accuracy. When the three surface

heat transfer coefficients were lumped together so the

surface heat transfer coefficient was assumed equal for all

sides of the can, the SR plots showed more variation with

regard to the dimensions of the can than did the analysis of

the three separate h/k values (Figures 17,18,19).

Conversely, the lumped analysis of h/k showed little if any

shape variation in SR with reSpect to the size of h/k.

However, the magnitude of the SR values was the same for

both cases. This indicates that it is not advisable to

estimate a and a lumped h/k value simultaneously.
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One last thing that can be observed from the

sensitivity coefficient plots is that the SR values are the

largest in the center of the 6 range. This is in agreement

with Figures 13 and 14 because the 6 range of 0.15 to 0.85

promotes precise estimates of a. With larger SR values more

precise estimates can be made.

Error Effects on Regular Regime Method

From the same population of time-temperature points,

with varying Bi values, a potential error of 4.0% in o.can

be obtained in the calculation of a from fh‘ This occurs

using the Olson and Jackson (1942) equation (10), whereBi

was equal to 50 but assumed infinite. The equation may be

written as

 

 

1 .398

f =--—*

h a 1 .4267 (10)

-—- +

2 2

R L

The a value calculated from the analytical model always

resulted in an underestimation of 0, whereas the Olson

Jackson equation first overestimated the actual cxvalue and

then underestimated a as Bi values decreased. In Figure 13

it can be seen that the cxvalues start to be biased upward

as the 6 values decrease. This causes the cxvalue,

calculated from the Olson and Jackson equation, to be

overestimated because the slope of the heating curve is
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increased due to the increasing upward bias of o and because

the calculation of a from the analytical model places more

importance on the intermediate values of 0.

The overestimation of a (02) from fh for the different

can sizes (Bi =<w, is data set 1) does not follow the same

trend as that found for the underestimation of o (01) from

the analytical model (Table 3). The value of a calculated

from the analytical model for the 603x700 can was very

accurate and a similar accuracy was expected for the 0 value

calculated from the fh values. In turn, the 307x409 can

gave the most accurate value of a calculated from fh, with

the value of a from fh for the 603x700 can having a lower

accuracy.

To determine if the above trend was due to the errors

associated with the data of first term approximation, a

population of 100 points with a constant Cv (1.0%) for a,

was generated and called data set 2. The fh and a were 1

calculated for each can size (Table 3) from this population

of points. The same trend in can size was noticed in both

thecx values calculated from fh for the data set 1 and data

set 2 (Table 3). From the similarity in trends of the two

calculatedcx values it appears that the effect of the error

terms in Table 2 on a is one of a linear (upward bias) shift

in a and that the variation in error associated with

specific can dimensions is mainly due to the first term

approximation (i.e., regular regime) method.
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Table 3

Summary of a and fh values obtained from different data

sets containing different error distributions (1 - error

distribution of figures 13 and 14, 2 - constant Cv

(1.0%) of a).

Can Size 0 of o from fh a from fh

Data Set 1 Data Set 1 Data Set 1

O. (1

1 2 0‘3

(mz/hr x 10'3) (mZ/hr x 1073) (mz/hr x 10-3)

307x409 .618 .621 .599

307x306 .618 .627 .613

307x512 .619 .624 .603

202x308 .616 .624 .605

603x700 .620 .625 .606

Actual a = .620 x 10'3 mz/hr

Figure 20 presents the first term approximation error

((approximation - actual)*100/(actual)) in the calculation

of 6 values for all five can sizes. As the L/R ratio

increases, the error in the first term approximation

increases. A L/R ratio of about 0.94 represents a can size

where the error of first term approximation associated with

the radial direction is the same as that found in the axial

direction. This explains why the 307x306 can displays an a

value closest to the actual (Data set 2, Table 3). This

also explains why the error (except 307x409 can) in a

calculated from fh increases as the L/R increases. However,

it is not known, without further investigation, why the



62

 
 

  
T

T

0
.
3
3

0
1
0
0

0
.
0
7

0
.
0
3

1
1
0
0

T
E
M
P
E
R
H
T
U
R
E

R
B
I
[
0

F
i
g
u
r
e

2
0
.

P
e
r
c
e
n
t

d
i
f
f
e
r
e
n
c
e

o
f

t
h
e

t
e
m
p
e
r
a
t
u
r
e

r
a
t
i
o

f
o
r

t
h
e

f
i
r
s
t

t
e
r
m

a
p
p
r
o
x
i
m
a
t
i
o
n

a
n
d

i
n
f
i
n
i
t
e

s
e
r
i
e
s

s
o
l
u
t
i
o
n
.



63

307x409 can size deviates from the expected L/R ratio trend.

With the addition of the error factors listed in Table

2 the calculated a values from fh become close to the actual

a value. This is an apparent accuracy because it was

assumed that heating follows Fourier's heat conduction

equation; hence, the prediction of a calculated from fh

should follow the a values found using data set 2 instead of

the apparently accurate a values calculated from data set 1.

There is about a 3.5% change in the calculated a when the

error factors in Table 2 are included in the calculations of

a from fh' If the errors in Table 1 change, it becomes very

difficult to make any judgment regarding how they will

influence the estimation of a calculated from fh, because

the estimated a values will fluctuate around the a values

found from data set 2.



Summary and Conclusions of

Theoretical Develomment

A well-conditioned model is one that performs as

expected for a specific range of errors in the input

parameters. With the original assumptions given at the

beginning of this chapter it was expected that the

analytical solution to Fourier's heat conduction equation

would yield a well-conditioned model to be used to

accurately estimate the thermal parameters (a, and hi; where

i a t,s,b) of a thermal process. The condition of the

analytical model was, when a was calculated from data

(hi =1») containing errors (Table 2), largely dependent on

the errors associated with temperature measurement and to a

lesser extent dependent on the errors in thermocouple probe

location. Errors in can dimensions and time measurement had

minor influence on the prediction of 0 because of the

magnitude of the error of the respective parameters.

If there were only errors of can dimensions and time in

a process, they would indicate that a slowly heated can

(large can) with a L/R ratio of about 0.8 should be used to

increase the accuracy of the estimation of a (Figures 5,7,

and 9). This same trend was noted for errors in

thermocouple probe location (Figures 1 and 3). Therefore,

any actions taken to minimize the effect of error in

thermocouple probe location would also minimize the effect
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of error occurring due to can dimensions and time

measurement. For errors in thermocouple probe location, the

size of the can was more important in lowering the error

associated with the estimation of a than the L/R ratio.

Can size was not a factor in influencing the condition

of the model when only errors in temperature existed. For

temperature errors, the accuracy in predicting a (hi - 00)

was increased if the temperature data used was limited to a

9 range of 0.85 to 0.15 (Figure 1). This criterion fOr 9

predominates when all the error factors mentioned above are

present and is supported with the sensitivity coefficient

analysis of the model (Figures 13 and 16). The thermocouple

probe location error is also noticeable when all the errors

(Table 2) are present, causing a tighter upper bound on the

6 as the can size decreases. In addition, when the Biot

Number is assumed infinite but is actually lower than 200,

the model underestimates a by a value over 1.0% (Figure 15).

Strong correlations exist with the sensitivity

coefficient ratios (SR) of a and hi/k (where i = t,s,b);

thus, any attempt to simultaneously estimate 0 along with

the surface heat transfer coefficients may result in

erroneous values. Only when the surface heat transfer

coefficients (hi; i = t,s,b) are very different from each

other are their values uncorrelated (Figure 16). Even when

just an overall surface heat transfer coefficient (h/k) is

to be estimated simultaneously with a, the precision of the

estimated h/k would be low, due to the magnitude of
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difference between the SR values of a and h/k (60 to 1).

When estimating h/k from thermal process data, a product

with a known a should be used in addition to having a Bi

less than 40.

When the regular regime (first term approximation)

method was used in estimating a, large fluctuating a values

(hi - 00) resulted for different can sizes. The fluctuations

occurred because of the reliance of equation (10) on the

low, biased, and highly variable 6 values.

When a nonlinear least squares method is used to

estimate thermal parameters from Fourier's heat conduction

equation, in conjunction with the error factors investigated

in this chapter, the following procedures should be used to

insure an accurate and precise estimation of a.

1) Use a can that allows for the relative

misplacement of the thermocouple probe to be less

than 4.0%. For errors consistent with those in

Table 2 a 401x411 (No. 2 1/2) or larger can would

be adequate.

2) Use a can with a L/R ratio close to 0.8 to

minimize the influence of can dimension and time

measurement errors, and to some extent

thermocouple probe placement errors.

3) Determine the magnitude of the surface heat

transfer coefficients in the thermal process

using a product with known thermal properties

that allows (Bi less than 40) for its estimation.
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If Bi is greater than 200 it can be assumed

infinite.

Limit the range of data used in calculating

thermal diffusivity to temperature ratio (6)

values between 0.15 and 0.85 (For errors

consistent with those in Table 2).

The temperature difference between the initial

product temperature and the heating medium

temperature should not be lower than 40.0(3C (For

errors consistent with those in Table 2).



Chapter II

Experimental Analysis



Introduction

When experimentally obtaining thermal process data

there are a number of factors that become incorporated into

the results and, thus, affect the "true" values. Chapter I

reviewed a number of these factors (position of thermocouple

probe, can dimensions, measurement of time and temperature,

and assumptions concerning the surface heat transfer

coefficient) and, using computer simulation, elucidated

their effects. However, there are a number of other factors

that are best investigated from actual thermal process data.

One of these factors is heat conduction down the

thermocouple probe, because this phenomenon is very

difficult to mathematically evaluate. The main reason is

that analytical solutions for heat conduction through a

thermocouple probe only exist for special configurations,

and with the small size of the probe, finite difference and

finite element solutions require an extensive grid structure

and computation time. The thermocouple probe can cause a

significant error in time-temperature data because it

usually has a higher thermal conductivity than the thermal

conductivity of food. This results in the probe tip being

partially heated by the probe itself. The thermocouple acts

very much like a pin fin on a heat exchanger.
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Other important factors that require experimental

investigation are, come-up time, filling (i.e., head space

and air inclusions), pretreatment (i.e., blanching and

exhausting), and food product homogeneity. Usually these

effects can be eliminated through the experimental design;

however, these and many other factors, like those discussed

in Chapter I, will show themselves in the overall precision

of the data. An additional factor that will should be

considered in the overall precision of the data collected is

that of biological variation in the food items.

This chapter deals with methods of compensating for

heat conduction down the thermocouple probe, combined with

quantifying the precision associated with the experimental

procedure of estimating thermal diffusivity from thermal

process data using a model food system. The precision of

the procedural method will then be used to evaluate any

biological variations that may be present in a food item.'

It will also be used to verify the thermal diffusivity

estimation procedure.



Literature Review

Thermocouple Probe Error
 

Any measurement of temperature -— using a probe -— can

be biased due to heat conduction along the probe and to

displacement of material to accomodate the probe (Ecklund,

1955; Jaeger, 1955; Cowell et al., 1959; Burnett, 1961;

Beck, 1962; Beverloo and Weldring, 1969; Jen and Li, 1974;

Chen and Danh, 1976; Chen and Li, 1977; Yoshide et al.,

1982). Differences in the thermal properties of the probe

and the material being measured accentuate this bias. When

using thermocouples to measure the temperature of food

systems just such a difference in thermal properties exist:

approximately a 130 to 1 difference in a and 110 to 1

difference in k. Bias can be eliminated when measuring the

temperature of a steady-state system by bringing the leads

of the thermocouple through a significantly long zone of

constant temperature. This minimizes any temperature

gradients that may occur between the probe and the material.

Equilibrating the temperature of the probe by bringing

it through a constant temperature zone, can be used in

transient heat conduction problems by having the probe go

through a significantly long axis of symmetry (Dickerson,

1966; Gaffney et al., 1980). Dickerson (1966) points out

that, for a thermocouple mounted (axially) in the geometric

center of a cylinder 5.46 cm in diameter and 22.86 cm in
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length, the thermocouple passes through approximately 8.9

cms of length where the temperature gradient is only normal

to the probe. This length is sufficiently long to

eliminate, near the tip, any temperature gradients found

along the probe. Likewise, Gaffney et al. (1980), using a

1.63 cm diameter and 7.62 length tube showed that by

mounting a thermocouple through the axis of the cylinder,

the errors associated with heat conduction along the

thermocouple would be eliminated. The L/R ratio of these

cylinders are both greater than 4.0. The L/R ratio for a

conventional can will rarely exceed 1.7 and, thus, will have

few, if any, constant temperature gradient zones.

The mounting of thermocouples for thermal processing

tests are typically done radially and result in bias data.

It is interesting to note that, even though the measurement

of temperature using radially mounted thermocouples is in

error, there have only been three detailed studies as to the

magnitude of this error (Ecklund, 1955; Cowell et al., 1959;

Beverloo and Weldring, 1969). The main reason for

neglecting heat conduction down the thermocouple wire is the

use of the regular regime method of estimating a. Ecklund

(1955) demonstrated that the slope (fh) of the heating curve

did not change when "nonprojecting" (Ecklund, 1949)

thermocouples were used as compared to surface mounted

thermocouples. Ecklund (1955) did show, however, that the

lag phase (i.e., the intercept (j) of the heating curve)

decreased significantly with the use of the "nonprojecting"
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thermocouple. To compensate for the decrease lag phase,

Ecklund proposed the use of "corrected" j values, which were

calculated from an empirical table of correction factors.

Gaffney et al. (1980) substantiated Ecklund's (1955) results

with the use of axially and radially mounted thermocouple

probes in a long cylinder where fh was the same for both

probes. Therefore, when using the regular regime method for

estimating a from thermal process data, errors associated

with heat conduction down the thermocouple probe can usually

be ignored. Since the temperature matching method uses the

whole heating curve when estimating a, any error that occurs

in the measurement of temperature will affect the results.

The effect the thermocouple probe has on the slope (fh)

of the heating curve and thus a, is to some extent dependent

on the size of the thermocouple wire. Cowell et al. (1959)

indicate that when the wire becomes large - compared to the

size of the can -— changes in the fh values can occur. For

the typical can size, the Ecklund probe will not affect the

fh value.

The magnitude of the error in temperature measurement

increases rapidly from time zero and reaches a maximum

shortly afterwards; it then decreases asymptotically to zero

at long time (Jaeger, 1955; Cowell et al., 1959; Beverloo

and Weldring, 1969). Beverloo and Weldring (1969) showed

that error in measurement is directly proportional to the

rate of temperature change with time, and that both follow a

parabola. Jaeger (1955) presents an analytical solution for
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the temperature of a solid wire normally transversing an

infinite slab, with the wire having high thermal conductance

and the slab having low conductance. The solution can be

used to estimate the error associated with axially mounted

thermocouples. Cowell et al. (1959) used Jaeger's (1955)

solution to investigate data collected from a 5 by 5 cm

cylinder. The results followed the same trend that Jaeger's

(1955) analytical solution predicted, but were consistently

lower than the predicted values. The discrepancy was

thought to result from the surface heat transfer coefficient

between the wire and the heating media being less than

infinity - as assumed. Beverloo and Weldring (1969) have

found that, when considering thermocouple assemblies (e.g.,

Ecklund thermocouples), the error in the measurement of

temperature is characteristic of the size and material used

for their construction. Hence, it is difficult to predict

errors in temperature measurements from analytical solutions

which assume that the shape of the thermocouple is a long

wire made of a single component.

Beverloo and Weldring's 1969 paper is of special

interest, not only because it characterized the error

associated with heat conduction along the thermocouple, but

also because they measured the error effect of 16 different

thermocouples that were mounted radially in a cylinder. The

thermocouples studied varied greatly in shape and

construction. On the average, the error in temperature

measurement was dependent on the wire thickness and the
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diameter of the probe. These errors ranged from 0.3 to

23.0% of the temperature difference between the initial

temperature and that of the heating media for a 10cm by 50cm

test cylinder. In thermal process data this error would

correspond to errors of 0.2 to 13.0 deg C. Two of the

thermocouples measured were the same as those used in this

research, i.e., a "nonprojecting" Ecklund thermocouple and a

mineral insulated thermocouple. Both were found to have

relative errors in temperature measurement of about 3.0%.

Model Food Systems
 

In considering thermal process data, a product with

known thermal properties must be used to quantify the

following: 1) the effect of heat conduction along the

thermocouple probe, 2) the error associated with neglecting

finite surface heat transfer coefficients, and 3) the effect

of inherent process variations on the estimation of a. The

thermal properties of water are well documented and, thus,

any product that has a very low solids content can be used

as a model food system. To use water, convection inhibitors

need to be added. A number of inhibitors have been used in

published literature (Cowell et al., 1959 - 5% agar in

glycol-water mixture; Beverloo and Weldring, 1964 - 1% agar

in water; Uno and Hayakawa, 1980b - 8% bentonite in water;

Baghe-Khandam and Okos, 1981 -— 3.5% glass wool in water;

Poulsen, 1982 - 17.5% binder, 22.5% sucrose in water;

Peterson and Adams, 1983 - 10% bentonite in water).
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Suspensions of 8 to 10% bentonite (a montmorillonite clay,

Niekamp et al., 1984) have been the predominant model system

used in the area of thermal processing. Another inhibitor

commonly used is 1 to 5% agar, however, because of the low

melting point (80-95 deg C) of an agar gel, it is not suited

for thermal processing studies. Other gums, including

sodium alginates (Glicksman, 1976) are stable at higher

temperatures.

Baghe-Khandam and Okos (1981) used a novel way of

preventing convection currents during heating (25 - 130 deg

C), by adding glass wool (a a 2.26 x 10"6 mZ/s) to the water

(3.5% glass wool). The glass wool a is only a factor of 10

higher than that of water. Using the same set-up as

Baghe-Khandam and Okos (1981), Choi and Okos (1983) measured

a for water and their results agreed very well with that of

published data. Gaffney et al., on the other hand, did not

use water at all, but an acrylic plastic (0 - 1.30 x 10'7

m2/s), having thermal properties very close to those of food

products.

Published Values of Thermal Diffusivipy
 

Published lists of thermal diffusivity values for foods

are few (Gaffney et al., 1980; Poulsen, 1982; Singh, 1982),

and most well known food engineering textbooks do not

include these lists. When a values are published, the

temperatures at which a was measured, the moisture content

of the food item, and the uncertainty of the results are
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generally not reported (Martens, 1980). The temperature

range for which a is measured can be very important.

Martens (1980) showed that lethalities calculated for

pouches, using a values obtained at the high and low

temperature range of the process give a difference in the

final bacterial concentration as high as one billion to 1.

Martens (1980) also showed that the moisture content of a

food product dictates the product a value much more than any

of its other constituents (i.e., fat, protein, and

carbohydrate).

An important point that Martens (1980) puts forth,

which will not be discussed here but deserves investigation

for cans, is that when using a constant a value when

calculating lethalities of a process in a pouch, large

errors in the final survivors population can occur. Factors

of a thousand to 1 or more in difference were observed for

lethalities calculated from constant a values obtained from

the low and high temperature range of the process as

compared to a temperature dependent thermal diffusivity

equation. Such variations in process lethality could

potentially result in over-, or worse, under-processed

foods.



Theoretical Development

Taking into consideration the results of Chapter 1,

equations (3) and (6) are used as the model for estimating .

If the surface heat transfer coefficients are known to be

different from infinity, then the appropriate equations

are used. When heat conduction along the thermocouple is

assumed to be in a quasi-steady state condition (boundary

conditions change slowly enough so that the heat conduction

along the thermocouple can be modeled as a steady state

problem), the temperature of a radially mounted probe can

be described with the equation

w- I15; [T(r,t) - Tc(r,t)] 3 0 (11)

with

r - distance from the outside surface; r - R at tip

of probe

h - surface heat transfer coefficient between the probe

and the food item'

P - perimeter of probe; P - 20R

A - cross sectional surface area of probe

k - thermal conductivity of probe

Tc(r,t) - temperature of surrounding food item at

position r and time t

T(r,t) - temperature of probe at position r and time t.

The analytical solution (Appendix A) to equation (11) with

r - R (center of can) is
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* 2e-m’R ,
9 (t) = 9(t) [1 +W [tanh(m R) ' 1]

(12)

+ FZ'R[F1R - tanh(m’R)]]

with

m ’= probe factor/EP7EA

R = radius of can

9(t) - temperature of food item at center and time t

calculated from the analytical solution to Fourier's

heat conduction equation (equations 3 and 6)

9*(t) - adjusted actual temperature at time t and at

center of can

When the probe factor is large (m’R > 100), equation (12)

reduces to

k

0 (t) - 9(1) [1 + HERB}? — 1)] (13)

With the use of equation (12) or (13) and (3) and (6)

the probe factor can be estimated from a thermal process for

a product with known 0. Once the probe factor is known,

can be estimated from thermal process data of food items.



Experimental Procedure

A 2% water-KELSET, a sodium-calcium alginate, solution

was sufficient to prevent any convection heating during a

thermal process (KELSET is distributed by Kelco, a division

of Merck and Company Incorporated). The KELSET solutions

were prepared by measuring a volume of deionized water to

which a 3% (by volume) 2 normal solution of HCl was added.

The hydrochloric acid prevented the KELSET from thickening

during mixing. The low pH water was stirred with a rotary

mixer at a high speed during which the KELSET was added very

slowly, to prevent lumping. After the KELSET had been

added, an equal amount of 2 normal NaOH was added to

neutralize the solution. Upon neutralization, the solution

thickened to a pourable jell. With the use of the acid and

the base, incorporation of air was minimized.

KELSET was chosen for use because of its very high

viscosity at low solids content and because it retains much

of its viscosity during a thermal process. It was found

that multiple processing (greater than 3) caused the KELSET

to break down and lose its highly viscous character, as

shown by an increase in convection heating and a resulting

increase in apparent a (Table 4). Because of this, the

KELSET mixture was never heated more than once (a maximum of

1 run per sample) for any of the data collection runs.
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Table 4

Diffusivity value for repeated thermal processes

of the same KELSET sample

Run Diffusivity (mz/hr)

1 .000592

2 .000594

3 .000595

4 .000622

Temperature measurements for a thermal process are

predominantly taken using the "nonprojecting" Ecklund

thermocouple (Ecklund, 1949). The "nonprojecting" feature

of this probe causes the probe to be recessed into the can,

preventing damage during can sealing. Heat conduction

errors due to the presence of the Ecklund thermocouple were

demonstrated by Ecklund (1955) and alluded to by Teixeira et

al. (1975). Ecklund (1955) used surface mounted probes in

an attempt to eliminate the temperature measurement error

due to the probe. 1

To investigate the effect that the bias temperature

values have on the estimation of a, temperature measurements

were done with both an Ecklund thermocouple and a mineral

insulated probe. The mineral insulated probe used was a

type T thermocouple, manufactured by LOVE Controls

Corporation (part no. 1818-57). The sheath of the probe was

made of type 304 stainless steel and allowed for an exposed

junction. The mineral insulated thermocouple was mounted on
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the can with the use of a nylon fitting (c1a 1.136 x 10'7

mZ/s), made specially for this research project. After

mounting and before can filling, the probe was accurately

positioned in the center of the can. The cans were all

filled as full as possible to eliminate any head space

effects.

Three can sizes (Table 5) were used for this portion of

the research: 303x406, 307x409 (No. 2), and 401x411 (No. 2

1/2). The 303x406 was used because the Ecklund

thermocouples available were for this size can. The 307x409

and 401x411 cans were used because of their size, as

suggested in Chapter I, and to investigate whether or not

the difference in L/R ratios influenced the results

significantly.

Table 5

Can sizes used for data collection

Can Radius (R) Half Height (L) L/R

Number (m) m

303x406 .0383 .05250 1.370

307x409 .0417 .05575 1.340

401x411 .0516 .05650 1.141

All experiments were done in one of two still retorts.

When possible a mini-retort was used (radius of .13m, length

of .22m), to minimize the come-up time (less than 10
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seconds). Due to the small size, only the 303x406 can

fitted into the mini-retort. For runs using the 307x409 and

401x411 cans a pilot-plant size retort was used (radius of

.45m, length of .67m). The come-up time on the pilot-plant

retort was always less than 90.0 seconds and not considered

significant.

Data was collected for each run using a Hewlett Packard

Model 3045DL data acquisition system. Data for each (if

more than one) of the cans, in addition to the retort

temperature, was collected at 45 sec intervals for the

duration of the test. A test run was considered complete

when the temperature ratio difference between the retort and

the food item fell below 0.10. The data was stored on a

magnetic tape and was later uploaded to a main-frame

computer for analysis. The programs discussed in Chapter I

were used for the analysis. Only the data that fell within

the 6 range of 0.15 to 0.85 was used for the estimation of

(1.

Surface heat transfer coefficients (h) for each of the

retorts were measured using a finite cylinder made of

copper. The dimensionalized Biot Numbers (h(V/A)/k)

associated with the copper cylinder (0.17) allowed for the

estimation of h using the same programs as used for the

estimation of a. Before being placed into the retort, the

copper cylinder was kept in a water bath for over two hours

to establish a uniform initial temperature. Immediately,

upon transfer from the water, the retort was sealed and
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started, during which time data was collected every 5

seconds.

To establish an estimate of precision in estimating a

from thermal process data, 25 runs for each can were done

using the KELSET model system. These same runs, 75 total,

were used to estimate the probe factor associated with the

thermocouples used. KELSET was also used to make two runs

haveing an 8 min come-up time and a known can head space. A

number of food products were also tested. Each of the food

items were purchased from a local supermarket or donated by

a manufacturer. Peas and lima beans were pureed before

analysis by blending the entire contents of the can at a

high speed until smooth. The mashed potatoes were

reconstituted from potato flakes to the desired moisture

content. The apricot sample was a strained baby food puree.

The moisture of each sample was measured using a vacuum oven

set at 100 deg C and dried to a constant weight.



Results and Discussion

Surface Heat Transfer Coefficients of the Thermal Process

Attempts were made to measure the surface resistance

(h) of a can heated in a steam environment. Thermal

resistance due to heat penetration through the can and due

to the contact resistance of the product and can could not

be estimated. Using a solid copper cylinder with known

dimensions and thermal properties, time-temperature heating

curves were measured. The duration of each test was 60 to

100 seconds. Since the time required to place the copper

cylinder in the retort, seal it, and to establish pressure

(15psig) took 15 to 20 seconds, simulation of a step-change

in surface temperature was not possible. The result, then,

was that any estimate of the surface resistance would be

low. An average surface resistance of about 3700 W/m2C was

measured for a number of runs. This corresponds to a

dimensionalized Biot number (h(V/A)/k) of 85.0 for the

307x409 can. Considering the fact that this value is low

and that Ramaswamy et al. (1983) reported h values of 11,000

W/mZC for condensing steam, the surface resistance was

considered infinite (Bi greater than 200) for all the

experimental runs reported in this study.
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Errors in Estimating Diffusivity

Twenty five runs for each of the three cans listed in

Table 5 were done using 2% KELSET solutions. All 25 of the

tests using the 303x406 can and Ecklund thermocouple were

run in a mini-retort. The rest of the tests, including

those for the food products, were done using the pilot plant

retort. The larger retort allowed for multiple tests, but

had a longer come-up time. When KELSET was used, it was

made fresh for each run, except those mentioned in Table 4.

Many of the food products were canned, processed, allowed to

sit overnight (to equilibrate to room temperature) then

reprocessed.

Applying the results from Chapter I, only the data

between the temperature ratio (6) range of 0.15 to 0.85 was

used when estimatingcx from the thermal process data. The

trends of a typical residual (actual temperature - the

calculated temperature) plot obtained from any of the tests

is presented in Figure 21.1 The amount of scatter varied

with each test, but in all the cases definite trends in the

residuals were noticeable. Three general types (A,B,C) of

trends were obtained from the tests. All three types

demonstrated a large underestimation of temperature at low

time, which decreased to an overestimation after longer time

periods. Differences in the plots were present only at the

end of the heating. Type A plots had a large

underestimation in temperature at the end of the heating
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period. For type B plots only a slight underestimation

occurred after the overestimation, and for type C plots the

overestimation remained relatively constant until the end of

heating.

To draw statistical conclusions from a regression

analysis, a number of assumptions are made concerning the

data. The more important assumptions are: 1) the residual

error has a zero mean, 2) the errors are additive, and 3)

the errors are independent and identically distributed. For

the estimation of a from thermal process data, assumptions 1

and 2 can be readibly assumed from the model. However, from

Figure 21 the residuals show a very strong correlation and,

thus, are not independent. A number of factors could cause

this dependence. The first is that the model may not

adequately describe the data and the second is that the data

is in fact correlated. .

Schisler (1979) showed that transient heat conduction

data collected rapidly, over a short period of time, showed

autocorrelation in the errors. Since the sampling rate was

low, 1 data point every 45 seconds, any autocorrelation due

to sampling can be neglected. From inspection of the

collected data, it became apparent that the lag time period

was much shorter than expected, indicating that the model

does not properly describe the data. This lack of lag time

resulted in an underestimation of temperatures of 1.0 to 3.0

deg C at low time periods. The underestimation could be the

result of: 1) convection heating, 2) temperature dependent
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thermal properties, and 3) heat conduction along the

thermocouple wire. In considering the results for the

copper cylinder, a finite surface heat transfer coefficient

is ruled out because it would cause the lag time to increase

and not decrease.

To determine if convection heating was present during

the thermal process, a very thick and non-flowable food

product (pumpkin puree) was processed. Residual trends

identical to Figure 21 were obtained for ten different runs.

These results, in addition to showing that the trend in

residuals is not due to convection heating, demonstrated

that the 2% KELSET solutions are very adequate in preventing

convection heating of water.

If the temperature dependent thermal properties were

the cause of the large underestimations in temperature at

low time, the thermal property values would have to start

high and decrease with heating. Gaffney et al. (1981) and

Choi and Okos (1983) present data and models for the thermal

diffusivity of water at different temperatures. Both

diffusivity models indicate that the a of water increases

with temperature and does not decrease. Thus, thermal

properties of water will start low and increase - just the

opposite of what is needed to account for the short lag

time.

Beverloo and Weldring (1969) measured the error

associated with heat conduction along a radially mounted

thermocouple and showed that the errors rapidly increased
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from time zero to a maximum shortly afterward and then

asymptotically returned to zero. The shape of the error in

the temperature measurement curve that Beverloo and Weldring

(1969) measured for 16 different thermocouples is exactly

like the type C curve in Figure 21, the only difference

being that, by regressing the data to obtain a, the error in

temperature measurement has been brought below zero after

long time periods. If the curves in Figure 21 were due to

errors in temperature measurements because of heat 1

conduction along the thermocouple probe, the estimated

values of a would be higher than they actually are.

Correcting for Errors in Temperature Measurement

Table 6 lists the average (of 25 runs, Appendix B)o

values for each of the can sizes in Table 5. Taking into

consideration only the temperatures of a thermal process

between the 6 range of 0.15 to 0.85, the average a value for

water is .5915 x 10"3 mZ/hr. From Table 6, it can be seen

that a was consistently estimated higher than that for

water, when it was estimated using only the analytical

solution to Fourier's heat conduction equation (01, in Table

6). By incorporating a correction factor (m’) for the heat

conduction along the thermocouple probe (equations 3,6, and

12), a noticeable reduction in the estimated a values can be

seen (02, Table 6). Considering a 95% confidence interval

(t 95(25) - 2.06) for a2, water 0 falls well within the

confidence region for each can size (303x406, .586 <0 2 <
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.611; 307x409, .586 < 02 < .607; 401x411, .584 < 02 < .600).

In comparison, the 95% confidence region for 01 included the

a value for water (303x406, .592 < 01 < .613; 307x409, .597

< a < .624; 401x411, .589 < a < .607) with only the
1

401x411 can.

1

Table 6

Average estimated diffusivity values for 2%

KELSET solutions. (01, estimated using equations

3 and 6; 02, estimated using equations 3, 6, and 12;

03, estimated using equation 10)

Can size a MSE a2 m MSE 03

303x406

x .6023 .0632 .5987 5001 .0295 .6016

Sx .00502 .0274 .00595 1153 .0313 .0188

307x409

x .6107 .3267 .5973 1884 .00294 .6009

Sx .00677 .246 .00471 488 .00328 .0178

401x411

x .5989 .0987 .5918 3864 '.0108 .6106

S .00448 .096 .00398 1680 .0277 .0233

From Table 6, it can be seen that a reduction in the

estimated value of a was accompanied by a reduction in the

mean square error (MSE) of the estimate. MSE is the sum of

the squared difference between the actual and calculated

temperatures divided by the number of data points minus the
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number of estimated parameters. Therefore, MSE gives an

indication of how well the model fits the data: the smaller

the MSE, the better the fit.

Figure 22 depicts the three general types of residual

trends that were obtained when estimating both 02 and m’.

Here again, as for Figure 21, scatter was dependent on the

test run, only the size of the scatter either increased or

remained the same. The type D curve of Figure 22 resulted

from an unchanged residual plot of Figure 21 (type A) and an

unchanged MSE value. For the cases when the MSE was

unchanged, the probe factor (m’) was large and could be

considered negligable. The type D curve of Figure 22

appeared a number of times for the 303x406 can (which used

the Ecklund thermocouple) and a few times for the larger

401x411 can. All of the type C curves (Figure 21) were

reduced to type F curves (Figure 22) with the incorporation

of m’. The intermediate B curves of Figure 21 resulted in

mostly type E to F curves when m’ and a were estimated. The

significance of m’in smoothing out the residual plot was

directly related to the size of the upward curved portion of

Figure 21 at the end of the heating period.

There is a large error between the predicted and actual

temperature at the beginning of the heating period (Figure

22). These error values are a result of a quasi-steady

state assumption used in deriving equation (12) (Appendix

A). It is assumed that the thermocouple temperature changes

within itself at such a rate, as compared to the food



0
0
3
1

T
y
p
e

D

 

 

O

O

O

 

 

 

o
Thw

T O

4'

O

N

M
-
<

1
2
0

T
y
p
e

F

«‘2

(0°) IPDPTSGH

-
.
6

d

 

 
T
e
m
p
e
r
a
t
u
r
e

(
°
C
)

F
i
g
u
r
e

2
2
.

R
e
s
i
d
u
a
l

e
r
r
o
r

t
r
e
n
d

o
f

t
h
e

e
s
t
i
m
a
t
i
o
n

o
f

d
i
f
f
u
s
i
v
i
t
y

c
o
r
r
e
c
t
e
d

f
o
r

h
e
a
t

c
o
n
d
u
c
t
i
o
n

a
l
o
n
g

t
h
e

t
h
e
r
m
o
c
o
u
p
l
e
,

f
r
o
m

t
h
e
r
m
a
l

p
r
o
c
e
s
s

d
a
t
a
.

92



93

product, that it can be assumed to always be in a

quasi-steady state with its surroundings. Since this

assumption is not true at low times, equation (12) will tend

to cause the model to predict temperatures larger than the

actual values. This overestimation of temperature at the

beginning of heating does not influence the estimate of 0

because the assumption remains valid for the thermal process

data that falls between the 6 range of 0.15 to 0.85. At 0 =

0.85 and t - .25hr the F0 value for the thermocouple (a =

.0792 m2/hr, value for stainless steel) is greater than 5.0

for all of the cans considered in Table 5. This means that

the thermocouple has essentially reached equilibrium with

its surroundings.

The temperature difference compensated for using

equation (12) is presented in Figure 23. The temperature

difference ratio 039) was calculated as the difference

between the corrected temperature ratio (equation 3,6, and

12) and the temperature ratio calculated using just the

analytical equations (equation 3 and 6). The slope of the

lines are dependent on both the m’ value and the dimensions

of the can. However, for the three can sizes in Table 5,

differences between the plots were small. The curves in

Figure 23 are straight lines, meaning that equation (12)

will tend to compensate on a linear basis; thus, the best

compensation is found for the type C in Figure 21.

The Beverloo and Weldring (1969) curve for the error in

temperature measurement of a radially mounted probe, as
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indicated before, was not a straight line, but a parabola.

Thus, a correction model for heat conduction down a

thermocouple should be a parabola and not a straight line as

in Figure 23. Before a different correction model is

proposed or even equation (12) is considered, the question

of its importance needs to be asked. Table 7 (Appendix B)

Table 7

Average difference between diffusivity values of

2% KELSET solutions (01, estimated using equations

3 and 6; 02, estimated using equations 3, 6, and 12;

03, estimated using equation 10)

Can size 02-01 %difference 02-03 %difference

x103 (dz-al)/az x103 (dz-a3)/az

(m /hr) (m /hr)

303x406

x -.0037 -.612 -.0029 -.463

Sx .0026 .436 .0142 2.34

307x409

x -.0134 -2.25 -.00367 -.603

Sx .00431 .715 .0143 2.40

401x411

x -.0062 -1.05 -.0188 -3.17

Sx .00363 .614 .0209 3.52

presents the percentage difference in a when estimated with

and without equation (12). The correction (2.25%) is

largest for the 307x409 can. Since 5% variation in

estimated thermal properties of food items is not
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unreasonable, the importance of correcting for heat

conduction along the thermocouple probe seems small. When

different can sizes are used, the correction will become

more important as the L/R ratio increases. Therefore,

whenever a is being estimated from a thermal process using a

radially mounted probe, the magnitude of the error

associated with the radially mounted probe should be

assessed. The magnitude of m’ is especially important for

small cans and for ones that have a large L/R ratio.

Figure 24 presents the sensitivity ratios plotted

aganist the 9 for the model consisting of equations (3),

(6), and (12). Sensitivity plots were made for the same can

sizes used for the sensitivity analysis in Chapter I and for

m’ values ranging from 1000 to 5000 m-1 (a total of 9

plots). Each plot was essentially the same as the other.

As can be seen from Figure 24, the coefficients are not

correlated. Correlation exists if for at all times the two

curves differ by a constant. The magnitude of the

sensitivity coefficients values are different by an order of

1 to 17 for m equal to 1000 (m-l) and an order of 1 to 85

for m’ equal to 5000 (m'l). Therefore, when estimating both

a and m’ simultaneously, the estimate of m’ will probably

have a larger standard deviation than that of 0.

Considering the small importance (only a 2% difference in o)

of m’, the importance of its estimation is low. Therefore,

even though residual plots like those in Figure 21 may exist

for the estimation of 0, any corrections made in the model
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used in estimatingcx (i.e., incorporation of a probe factor)

will in many cases not change the estimate. However, before

neglecting a correction factor for heat conduction along the

thermocouple, a researcher should determine the magnitude of

the error in temperature measurement due to the probe and,

if significant, compensate for it in the model.

Errors from Devient Thermal Processes
 

A few thermal process runs were made with a long

come-up time (8 mins, a typical come-up time of a production

scale retort) and for cans containing a 1.27 cm head space

(measured from the lip of the can before sealing). Upon

analysis the 307x409 can demonstrated no significant change

in <1(<1= .5927 x10'3 m2/hr) for a 1.27 cm head space when

estimated using the analytical solution (Appendix D). The

reason for this is that the large L/R ratio caused most of

the heat to penetrate radially. Diffusivity, when estimated

from fh’ showed a significant decrease in the estimate as

compared to the other estimates of a. The magnitude of

decrease in<1 increased for the 401x411 can when compared to

the 307x409 can. This is because the L/R ratio for the

401x411 can is smaller. Still, even with the larger

decrease in o for the 401x411 can, the difference in the a

from those in Table 6 is only 1.6%. However, when looking

at the a estimated from fh the difference is 3.9%.

The 8 minute come-up time caused a significant

reduction in the estimated a (.5621 x10'3 mz/hr). The
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residuals of the regression were much different from those

of the other estimations, indicating that the model was not

fitting the data well. Diffusivity estimated from fh, on

the other hand, did not indicate any problems with the data

or the model. The conclusion is that commercial retorts,

which typically demonstrate come-up times of this nature,

should not be used when collecting thermal process data used

in estimating 0.

Estimating Diffusivity from Olson and Jackson Equation

Tables 6 and 7 present the results of estimating a (03)

from fh using equation (10), the Olson and Jackson (1942)

equation. These tables indicate, that when using fh, the

estimate is high, as expected from the results in Table 3.

More importantly, the estimates have a standard deviation 3

to 5 times that found for a estimated from the analytical

solution to Fourier's heat conduction equation. With Cv

values of 3.0 to 3.8% as compared to the Cv of a (0.7 to

1.1%) estimated using the analytical solution to heat

conduction, the estimates of a from the Olson and Jackson

equation (equation 10) are inadequate. The inadequacy of

equation (10) is even more pronounced when the product being

analyzed deviates from a solely conduction heating product.

Table 8 presents the a values estimated from four

different thermal process runs of mayonnaise, which

exhibited no obvious change in consistency. The estimates

for a using the analytical solution are different from the
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estimates of 0 using the Olson and Jackson (1942) equation

by 20% (Table 8). Figure 25 shows that the predicted

Table 8

Estimated values of a for mayonnaise

(01, estimated using equations 3 and 6; 02,

estimated using equations 3, 6, and 12, m‘=1900 m-l;

a3, estimated using equation 10)

Run 01 MSE 02 MSE 03 %difference

3 3 3

x10 (c) x10 (0) x10 (02-03)/02

(mz/hr) (mz/hr) (mZ/hr)

x .4101 15.67 .4008 11.03 .3187 20.49

S .00602 1.04 .00568 .830 .00613 1.62

temperatures using the analytical model (equations 3 and 6)

do not follow the actual temperatures very well. This can

also be seen from Table 8 by the large MSE values. Because

of this deviation, it is safe to assume that the mayonnaise

did not heat by pure conduction. Figure 26 shows that, even

though mayonnaise heats with convection, the slope of the

heating curve (fh) does not indicate this heat transfer

mode. When looking at Figure 25 it can be seen that the

estimated a from Figure 26 (fh) is in gross error because it

badly underestimates the temperature of the mayonnaise when

it is used in the analytical solution to the Fourier heat
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conduction equation. Since a is used in conjunction with

the analytical solution to heat conduction, it would be wise

not to use a values calculated from fh, unless the user

knows for sure that convection heating is not present and is

not that concerned with calculated values having a large

standard deviation.

Diffusivity of Actual Food Products
 

Diffusivity was estimated for a number of food products

using equations (3), (6), and (12), and their average values

are presented in Table 9 (Appendix C). The probe factor was

assumed to be equal to 1900 (m-l) which was the average

value estimated from the 2% KELSET solutions in the 307x409

can, the same can used for all the food product testing. In

addition to the a values obtained during this study, some a

values obtained from previously published literature are

reported in Table 9. Comparison between a calculated in

this study and previously published values is difficult due

to moisture content differences and the differences in

temperature ranges used in estimating 0. However, when one

realizes that a decrease in moisture content will decrease

the estimated a and that an increase in the temperature of

the heating media will increase the estimated a, some

generalizations can be made.

Poulsen (1982), using the regular regime method,

obtained a values for apple sauce that are lower than the a

value estimated from this study. Since the apple sauce used
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Table 9

Estimated diffusivity values for tested food items

(average values; can size 307 x 409, m’- 1900m' )

and from previously published papers.

 

 

Temp. 0

Moisture Rgnge (x10’)

Product % C mz/hr. Reference

Apple Sauce 82.0 20-121 .5612 this study

75.7 21-50 .5418 Poulsen (1982)

80.0 65 .5040 Riedel (1969)

-- 26-126 .6000 Lenz and Lund

(1977)

Baked Beans 70.0 20-121 .5490 this study

-- 26-126 .6039 Lenz and Lund

(1977)

Lima Bean Puree 80.1 20-121 .5707 this study

-- 26-126 .6465 Lenz and Lund

(1977)

Mashed Potatoes

reconstituted) 73.5 20-121 .5755 this study

reconstituted) 81.5 20-121 .5793 this study

reconstituted) 88.2 20-121 .5781 this study

cooked) 78.0 65 .5613 Riedel (1969)

Mayonnaise 16.9 20-121 .4008 this study.

16.9 20-121 .3187 this study-fh

18.0 22-50 .3834 Poulsen (1982)

Pea Puree 84.4 20-121 .5783 this study

-- 26-129 .6542 Lenz and Lund

(1977)

-- 25-121 .6116 Teixeira et al

(1975a)

Potato Salad 74.7 20-121 .5477 this study

-- 1.7-80 .5187 Dickerson and

Read (1968)

Pumpkin -- 20-121 .5733 this study

Tomato Juice 73.0 30-121 .504 Choi and Okos

(average) (1983)

Tomato Paste 73.1 20-121 .5455 this study
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by this study had a higher moisture content and was

evaluated at a higher temperature, the difference in values

does not seem too great. Conversely, Lenz and Lund (1977)

reported a values for apple sauce that are higher than those

found in this current work. The high estimation of 0 found

for all of their reported values. In fact, all of the a

values reported by Lenz and Lund (1977) are higher than that

of water, where the reverse trend should be the case (Choi

and Okos, 1983). Thus, the validity of the Lenz and Lund

(1977) data is questionable.

In an attempt to study the effect of moisture on the a

of mashed potatoes, 3 different samples of mashed potatoes

were made by reconstituting potato flakes with water. The

variation in moisture ranged from 73.5 to 88.2%. Values of

a estimated from the three samples do not demonstrate any

trend related specifically to moisture content.

Diffusivities of tomato juice concentrates were estimated by

Choi and Okos (1983) for a large number of moisture

contents. The data showed a decrease in the diffusivity of

the tomato juice with increasing solids. The rate of change

was slow for solid contents ranging from 4.8 to 20% and then

was much more rapid as the solids content increased to 80%.

Due to a difference in moisture of only 15% for the mashed

potato samples and the overall high moisture content, it is

not surprising that the change in moisture contents had

little influence on estimated a values.

It seems apparent from Table 9 that, due to the large
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variability in reported a values for the same product, a

should be measured for each product studied. Since thermal

process data is easy to collect, the procedure outlined in

this study would be a reliable, fast, and easy method to use

in estimating a.



Summary and Conclusions of

Experimental Analysis

Temperature measurement errors due to the presence of a

thermocouple will cause the residuals of the estimated a

values to be correlated (Figure 21). By compensating for

the heat conduction down the thermocouple, a reduction in

the residuals will occur along with a reduction in

autocorrelation (Figure 22). The difference in a estimated

with and without compensating for temperature measurement

errors depends on the size and shape of the can (Table 6).

Larger cans with small L/R ratios will yield more accurate

temperature measurements due to the reduced influence of

heat flowing radially into a can and down the thermocouple.

Estimations of a with Ecklund thermocouples having metal

fittings do not appreciably differ from a estimated using

data collected with a small diameter probe having nylon

fittings. No matter what type of thermocouple is used in

estimation of a, a researcher should first establish that it

does not significantly affect the estimate before its

presence is neglected.

When estimating a from thermal process data collected

in a steam environment, the bOundary conditions are usually

easily established. A small retort with adequate steam

lilies, to reduce come-up time, should be used. Head space

effects can be easily eliminated by filling the can as full

107
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as possible. It is best to set up individual experiments

when estimating a from thermal process data and not from

routine thermal process analyses.

Thermal diffusivity estimated from the logroithmic

portion of the heating curve (fh) will result in estimates

with the following characteristics: 1) larger standard

deviations than those found using more analytical methods

(Table 6), 2) estimated values that could be the result of

unknowingly having unsatisfied boundary conditions, such as

long come-up times, and 3) potentially inaccurate estimates

resulting from the presence of convection heating (Table 8).

For cases where a long come-up time, a head space, or

convection heating is present the logarithmic portion of the

heating curve will remain linear, indicating no problems in

the estimate. Thus, misleading the researcher into using

values for a that are potentially inaccurate.

Thermal diffusivity of actual food products will

fluctuate with moisture content and temperature. Due to

this fluctuation, one should use caution if using published

a values (Table 9). In turn, a should be measured for each

product investigated.

Considering the experimental data collected in this

chapter, the following estimation guidelines should be

included in any thermal process procedure used in estimating

a:

1) Use a 401x411 or larger can to reduce errors

associated with heat conduction down the



2)

3)

4)

5)
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thermocouple probe (when consistent with the

thermocouples used in this analysis).

Maintain the head space in the can to a minimum,

especially for cans with a small L/R ratio.

Keep the come-up time of the retort to a minimum.

Come-up times less than 2 minutes are adequate when

considering canned food products of the size used in

this study.

Investigate the residuals of the estimated a for

trends - indicating nonconformity to the boundary

conditions imposed on the model. This is

particularly helpful in determining if convection

heating is present.

Estimating a from the slope of the heating curve

(fh) may result in poor estimates and is not a

recommended practice.



RECOMMENDATIONS



Recommended Estimation Procedure

Estimation of thermal diffusivity is more accurately

accomplished using the analytical solution to the Fourier

heat conduction equation and to a lesser extent by the

regular regime method. Any incongruities in the data are

best observed by using the analytical solution and may be

masked with the regular regime method.

Summarizing from the conclusions of Chapters I and II

the following guidelines are recommended when attempting to

estimate thermal diffusivity from thermal process data using

the Fourier heat conduction equation as a model and

employing the nonlinear least squares method of parameter

estimation.

1)

2)

3)

Use a can size that will minimize the importance of

heat conduction along the thermocouple probe and

probe misplacement. A can size of 401x411 or larger

was considered adequate for this study.

Use a can with a L/R ratio close to 0.8 or less.

This will decrease the importance of errors in can

dimensions and time measurement, but more

importantly will decrease the quantity of heat

conducted along a radially mounted thermocouple

probe.

Use a material with known thermal properties (Bi

greater than 40) to determine the magnitude of the

110



4)

5)

6)

7)

8)

9)
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surface heat transfer coefficient. If Bi is greater

than 200 the surface heat transfer coefficient can

be considered infinite.

Limit the range of data used in calculating thermal

diffusivity to the temperature ratio range of 0.15

to 0.85.

Establish the thermal process procedures such that

the temperature difference between the initial

product temperature and the heating medium

temperature is not lower than 40.0 deg C.

Maintain the head space in the can at a minimum,

especially for cans with small L/R ratios.

Maintain the come-up time of the retort to a

minimum. Come-up times less than 2 minutes are

adequate when considering canned food products of

the size used in this study.

Investigate the residuals of the estimated thermal

diffusivity for trends that may indicate

nonconformity to the boundary conditions imposed on

the model. This is particularly helpful when

convection heating may be present.

Thermal diffusivity should not be estimated from the

slope of the heating curve (fh) due to potentially

poor estimates.

In conjunction with the above, the following standard

experimental procedures are recommended when obtaining data

to be used in estimating thermal diffusivity:



1)

2)

3)

4)
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Measure, as accurately as possible, the position of

the thermocouple probe after its placement and the

inside dimensions of the can.

Use a data acquisition unit to collect data. This

will minimize errors in time measurement.

Calibrate the thermocouple probes to minimize errors

in temperature measurement.

Establish good operational procedures for estimating

a for food products by testing the operation with a

product having known thermal properties such as

water with a convection heating inhibitor.



1)

2)

3')

4)

5)

Recommended Areas of Future Study

Investigate the importance of accurate estimates of

thermal diffusivity on the predicted loss of quality

during thermal processing.

Investigate temperature dependency of food thermal

preperties.

Investigate how changing thermal parameter values

relate to the loss of quality, rate of heating, and

optimization calculations of a thermal process.

Investigate other mathematical models that correct for

heat conduction along the thermocouple probe.

Determine if the temperature range used in the

collection of data causes significant changes in the

thermal diffusivity estimates.
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APPENDICES



APPEND IX A

Solution for model used in accounting for heat

conduction along a radially mounted thermocouple in a

can. Thermocouple modelled as a pin fin at a

quasi-steady state.

121
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Solution (not available in literature) to the equation

 

d’T
(lg-t) - g [T(r,t) - Tc(r,t)] =- o (1.1)

which represents a pin fin in a media subject to the follow-

ing assumptions:

1) the fin has a much higher thermal conductance

than the surrounding media

a) the pin has a uniform cross-sectional temperature

b) the fin distributes its heat at such a rate

that even with the changing surface temperature

it is effectively always at a steady state with

its environment

2) the surface temperature of the fin can be modeled

using an analytical solution to Fourier's heat

conduction equation

3) the temperature distribution [T(r,t)] along the

fin follows a parabola (Beverloo and Weldring,

1969)

T(r,t) - T(0,t>0) + T(R,t)(r’/R’) (A.2)

The boundary conditions are

dT

33"0

T = T(0,t>0) at r = 0

at r = R
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Let

m’ -./hP/kA

AT - T - T(O,t>0)

T - T(R,t)
R

Substituting A.2 in A.1, A.1 becomes

1

(11%,? - (m’)’[AT - TR(r‘/R’)] (A.3)

Splitting equation A.3 into a homogeneous part and a non-

homogeneous part yields

(5T "QTh +ATi

1

and d ATh - (In)z AT = O (A 4)
-a?7-— h °

Solving for A.4 gives

zSTh - Ole-m r + C2em r (A.5)

The non-homogeneous part is solved as

d'Mi . z .
T- - (111’) [ATi " TR(r /R )] = 0

Trying

ATi=A+Br+Cr’

then

d‘AT.

1?; " 2‘3

so

2C - (m’)' (A + Br + Cr‘) + (m’)’ TR(r‘/R’) = 0

for this to be true

2C - (m’)'A = O ; C - %(m’)’A

Br-O . 3-0

-(m’>'Cr= + (m’)'TR(r’/R‘) , o

‘
0 B 2

C TR/R
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Therefore,

AT. = R + R (A.6)

1 (m R)1 R:

Combining A.5 and A.6 and satisfying the boundary

conditions results in

-m’r m’r 2 r 3
AT = C18 ‘1’ C26 '1' TR [W + (F)] (A.7)

, , 2T r
dArT :3 _m/ Cle-m r + m) Czem r + RR

at r = R; with dAT _ 0

3r

, ; 2T

-m’C1emm R + m’Czem R + -§B - O

andatr-O;andAT-O

ZTR = 0

Solving for C1 and C2 yields

C1 + C2 +

TR e-m’R + TR

C a {m R)” m R _ 2TR

1

cosh (m’R) [m H}

 

_ TR e-m’R+ TR

C _ (a R)’ m R

2

cosh (m’R)

 

Substituting in C1 and C2 in A.7 and setting r = R makes

-m'R

AT = TR + 2TRe [tanh(m’ R) - 1] + 2TR 1 - tanh(m’R)]

(m R)’ -’TT‘E’R
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Dimensionalizing results in

-m’R

9* . 9(t) [I + %%7F77[tanh(m’R) - 1]

(A.8)

+ ng'[m;R'- tanh(m’R)]:]

with 9" equal to the actual temperature ratio at the tip of

the fin. 9(t) is the temperature ratio calculated from

the analytical solution of Fourier's heat conduction equation.

If m’R > 100, then A.8 reduces to

9* = 9(t) [1 + %(fi 4)] ' (A.9)

The sensitivity coefficients of A.8 and A.9 are:

* - ’R

Ell-l??- =- 9(t) [%fiyg-Tr (HZ.- + R)<1 - tanh(m’R)>

+ 52156,- tanh(m’R) - «(”727-11- - Rsech‘(m’R))]

for m’R > 100

(A.10)

d "“ 2 2



APPENDIX B

Results of estimating diffusivity for 2% KELSET-water

solutions and for three different can sizes.

a1 - diffusivity estimated using

equations 3 and 6

a2,m’- diffusivity and probe factor

estimated using equations 3,

6, and 12

a3 - diffusivity estimated from fh

(equation 10)

MSE - is the mean square error of

the estimates

* - denotes values that were not used in the

calculation of the mean and standard deviation of

the estimate.

° - denotes E values that were not calculated by

successive itgration, but by regressing the data

having a temperature ratio < 0.55.
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APPENDIX C

Results of estimating diffusivity for different food

products in a 307x409 can.

0‘1

0‘2

0‘3

MSE

diffusivity estimated using

equations 3 and 6

diffusivity estimated using

equations_f, 6, and 12 with

m’-1900 m - the average value

of m’ from the 307x409 results

in Appendix A

diffusivity estimated from

fh (equation 10)

the mean square error of the

estimate

Products with the same number were processed,

allowed to equilibrate to room temperature, and

reprocessed.
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APPENDIX D

Results of estimating diffusivity from processes

that have a long come-up time, for cans with a head

space, and results for reprocessing of the same

KELSET sample.

a1 - diffusivity estimated using

equations 3 and 6

(12,m’- diffusivity and probe factor

estimated using equations 3,

6, and 12

(13 - diffusivity estimated from

fh (equation 10)

MSE - mean square error of estimate
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