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ABSTRACT

A MODIFIED LUENBERGER OBSERVER FOR THE INVERTED PENDULUM

By

Steve C. Southward

The inverted pendulum, aside from being a fascinating classical
control problem, has primary applications in the aerospace industry.
This inherently unstable system has geometric as well as discontinuous
coulomb nonlinesrities. Presented here is an attempt to apply linear
control and observation theories, with modifications that include
nonlinear coulomb forces, to the real system. The linear plant is shown
to admit reductions which allow full state observation through cart
position only. Computer simulation and actual system demonstration
verify that stability is highly sensitive to the accuracy of the

nonlinear damping characterization.
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(5x5) linearized system plant matrix

(4x4) reduced order plant matrix
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DC servo motor armature curreat

equivalent DC servo motor armature inertia

(1x5) matrix of LSF control gains
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(1x4) reduced order matrix of LSF control gains
torque constant for DC servo motor

electrical constant for DC servo motor

DC servo motor armature inductance

equivalent cart mass

equivalent pendulum mass

transformation const. from armature to cart motion
net nonconservative force associated with 9
goneralized coordinate for each degree of freedom
equivalent DC servo motor armature resistance
(4x4) coeff. matrix for OBS gain solution

(4x1) coeff., matrix for OBS gain solution
scalar kimetic energy fumctionm

(1x1) input matrix

scalar potential energy fumctionm

actual voltage applied to the DC servo motor
cart veloocity

(5x1) state vector: [x,v,0,w,i]T

(4x1) reduced order state vector: [x,v,0,w]T
(4x1) observed state vector

(2z1) velocity state vector: [v,w)T

cart position

(2x1) output state vector: (x,0)T

(2x1) observed output state vector
pendulum position

pendulum angular velocity

coefficient of characteristic polynomial
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INTRODUCTION

The inverted pendulum is one of the more fascinating classical
control pr&blo-s. The pendulum pivot is fixed to a cart, allowing the
pendulum to freely rotate with ro;poct to the cart. Vhen the pendulum
pivot is above its center of gravity, the system is at a stable
oquilibrium position. Inverting the pendulum, such that the center of
gravity is above the axis of rotation, places the system in an unstable
state. However, a control force can be applied to the cart to keep the
pendulum in this inverted position.

Stabilization of the inverted pendulum involves determining the
proper coatrol force. In its simplest form, this classic problem has
proven to be an excellent example problem for imtroductory stability and
control study [10,14]. In its most complex form, this basic problem has
many interesting and important practical applications. Probably the
most notable application is in the aerospace industry. A similar
control system is employed for attitude control of a space booster on
take off [14]). Immediately prior to take off, the space booster is
balanced in an upright position by the launch platform. It is free to
fall over, just as an inverted pendulum will, unless some coatrol force
is applied at the Ddase. Other practical applications that involve
balancing mechanical systems in an unstable vertical positiom include
missile guidance systems [3] and mobile robotics (7).

A laboratory inverted pendulum system was studied to test possible
control schemes. The 15 inch pendulum, hinged to the cart, allowed only
a planar motion., The 4 inch long cart was comstrained, via two rails,
to a linear motion of about three feet. The cart and pendulum positions

provide two degrees of freedom. A flexible toothed drive belt is
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connected to each end of the cart, through pulleys at each end of the
rails, forming &a ocontinuous loop. One pulley shaft is drivem by a 12
volt DC servo motor through a gear and chain commection. Control forces

can be applied to the cart by applying a voltage to the DC motor.

bs,f
F—e M 2 x
s

NN N N NN \\\\

'——xv

Figure 1: The inverted pendulum system

The complete system, made up of the cart, pendulum, and motor, is
modelled here by a fifth order model. The cart/pendulum subsystem,
shown in Figure 1, has four coupled first order nomlinear equations of
motion with a force input. Primary nonlinearities in these equations
are the transcendental functions of the pendulum angle terms. The real

system also exhibits coulomb damping primarily associated with the cart
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motion, and this discontinuous nomlinearity is included in the model.
The DC servo motor is modelled by a second order linear system. Due to
the assumed rigid coupling between the motor and the cart, the motor
armature velocity is dependent on the cart velocity. There are only
five independeant states of motion, thus the system is fifth order.

A linear model is required to dovolop. control and observation
algorithms, Usi-; small angle approximations, and meglecting coulombd
effects, the system model cam be linearized about the unstable vertical
position. It is this 1linear model vwhich is studied in classical
inverted pendulum control problems. Using the experimental system

parameoters in the linear model, the open loop poles are:
[-2801.7, -1c4z| —3071 ocoa 5'4}

This linear system has an unstable pole from the pendulum, and a rigid
body pole from the cart. The large stable pole is from the DC servo
motor, indicating that the motor dynamics are much faster than the
cart/pendulum system dynamics.

The nonlinear system can be controlled with Linear State Feedback,
designed to stabilize the linearized system. Theoretical simulationms,
as well as actual experimental demonstration, verify this result, A
linear state feedback law ©produces a coamtrol voltage, in this case,
which is a sum of proportional contributions from each of the five
systom states. Linear control theory provides an algorithm for
determining the control gains to place the closed loop poles in desired

locations.
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Implementation of such a control law requires state estimation, or
observation. The real experimental system readily provides two of the
five required states. Direct measurements are made for the ocart
position (x) and the pendulum position (60). A simple reduction allows
the DC motor state to be eliminated from the control law. Linear
Luenberger observer theory can then be used to design an observer which
will provide the remaining stato; for the LSF control law., This linear
observer must be modified for implementation on the real system, where

the coulomd forces will act as disturbance inputs.



PLANT MODEL

The nomlinear equations of motion for the cart and pendulum were
obtained through application of Lagranges equation, which is based on
the interaction between kinetic and potential emergy in the system, and
the nonconservative forces present [12]. These equations contain

geometric and discontinuous nomlinearities (Appendix A):

(#+m)F + md6cos(@) - mdu®sin(@) + byv + f_sga(v) = F (1)

»d¥cos(0) + md’6 - mgdsin(0) + byw + fgsgn(w) = 0 (2)

The nonlinear cart/pendulum subsystem model has a force input (F), which
is supplied by the DC servo motor through the gear train and drive belt
asgsembly. These two coupled second order equations can be rewrittem as
four first order equations, one for each of the cart/pendulum states.
The DC servo motor canm be modelled by a second order 1linear model
with a rigid coupling between the cart and the motor armature. Because
this coupling produces a dependent state variable, the second order

model reduces to a first order model plus a constraint equation given

by:

F = (kegm)i - DI - by (3)

L (di/dt) = V - iR - (kgn) v (4)

The only nonlinearity in the motor model is the saturation of the input
vol tage. The power supply used to drive the laboratory system has a

maximum output givem by:
vl < 15.8 volts (5)

Equations (1) through (5) represent the complete nonlinear plant model.
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This plant describes the system dynamics, and will provide a basis for
the control and observation designs.

A linear model must be obtained from this nonlinear plant, The
geometric nonlinearities can be removed by small angle approximations.
Normally, coulomb damping terms would drop out of a linearized model.
They will be retained here, producing a hybrid linear model with a
nonlinear part. The complete hybrid model canm be represented in bond

graph notation as:

DC Servo Motor Cart & Pendulum
|
R b3 b2 b,
R R : R £X R ;’é'a
o 1 [ el [/
SEAlD——‘G,}’—Ai——‘iT_‘F-i—NJ.P—\OIL-TFI‘li-iHC /

Li Ke ke ]; | sz L d -(mgd)
I I I I
L J | M m

Figure 2: Bond graph for the hybrid linearized plant model

This hybrid linear plant has the matrix representation:

Zs= As Xs + Bs U + Cs sgn(X') (6)

I = D, x, (7

wvhere the linear matrices are defined in Appendix B, along with the

complete linearization procedure,



LINEAR STATE FEEDBACK CONTROL
Some control law is needed to stabilize the nonlinear systea. A

Linear State Feedback (LSF) law of the form:

Q‘V";‘x‘ (8)

has been designed for the linearized system, and its effectiveness for
implementation on the real nonlinear system investigated. The LSF
control law must at least push the single unstable open loop pole, and
the rigid body pole of the linear system, into the left half plane.

In order to implement the relatively simple LSF control law, the
four position and veloocitiy states of the cart/pendulum, .and the
armature current in the DC motor must either be measured or calculated.
Five feedback gains must be determined, ome for each of the system
states. Only a zero valued control gain would eliminate the mneed to
observe a particular state.

A root locus study was po:;fot-od to investigate the possibility of
eliminating ome of the states by zeroing a gain, thus allowing partial
state feedback. The LOCUS program (Appendix E) was developed whereby
the LSF gains could be interactively tuned to visually see the effect on
the linear system poles.

A set of partial state feedback gains were found which placed all
poles in the 1left half planme. Figure 3 shows the root locus as the
gains wore taken from zero values ome by one to their nominal values
placing the poles at ({-412§,-5t2j}. On the first branch of the root
locus, the pendulum position gain (K3) was varied from O to 195.34, The
pendulum velocity gain (K4) was then varied from 0 to 36.77. For the

third branch, the cart position gain (K1) was varied from 0 to 19.1.
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The final branch was obtained by varying the cart velocity gain (K2)
from 0 to 19 .14,

aoot Locus pLot | ROOT LOCUS PLOT |

> ] e
E \ L
0.000 <K(1. 3 < 195.341 t 0.000 <K($. 4 < 38.774 [
First Branch Second Branch
e | M
ROOT LOCUS PLOT ROOT LOCUS PLOT r
.I IA
] : e
'l l- ‘
0.000 <K(1.1) < 19.098 0.000 <KL 2 < 19.141 .
Third Branch Fourth Branch

Figure 3: Inverted pendulum root locus

A conventional controllability test [10], through construction of
the controllability matrix, does not provide any information about the
possibility of partial state feedback. The root 1locus study has
demonstrated the pouibili{y of stability with a zero curreamt gain.

An algorithm was developed to determine the partial state feedback
gains, along with the ocondition allowing a zero curreat gainm, for a

desired set of closed loop poles. The problem was to choose the matrix
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K; such that the poles of [A-BEK]s; were in the left half plame, where A
and B are the fifth order linear system matrices. Vriting out the
characteristic polynomial of [sI-(A-BK)], in olosed form provided
oxpressions for the coefficients in terms of the system parsmeters, and
the unknown coantrol gains. The next step was to explicitly solve for
the five coefficients of the characteristic polynomial in terms of the
desired closed loop poles.

Equating the two solutions for the coefficients produces five
oquations in the five unknown gains of K,, Since these equations are

linear in the control gains, they can be rearranged into the form:
BET = F 0)

where the H and F matrices (Appendix C) contain the coefficient
expressions of the system parameters, and the closed loop poles. A
unique solution exists, given a real set of system parameters, since the
plant has a single input and is completely controllable.

A constraint must be placed on the matrix system (9) in order to
force (K5) to have a zero value. Since the system parameters camnot be
changed, the choice of closed loop poles must be restricted.

A valid solution to (9) is one which satisfies all five linear
equations. One of these equations contains the single control gain
(K5). The LHS of (10) is a function of the desired closed 1loop poles,

and the RHS is a function of the system parameters:

8¢ = P1(K5) + (A1+A7+A10) (10)

Setting (KS5) to zero provides the constraint relation between the actual

system parameters and the closed loop poles. Only four of the five



10

closed loop poles can be chosen independently. The fifth pole will be

restricted by (10).

NON4., 74

X
[
N
8
0
E
G
2, { 2 3 4 5 6
TIME (SEC)

Figure 4: Nonlinear system with LSF control law

The effectiveness of the LSF control law applied to the nomlinear
system is demonstrated through a DIFFEQ computer simulation (Figure 4).
Since the dynamics are being simulated through a mathematical model, all

the system states are readily available for a control law.



LUENBERGER OBSERVER DESIGN

The linear fifth order matrix system model can be reduced to an
approximate fourth order model (Appendix K). It has already beem shown
that the system model 1is controllable with partial state feedback.
Based on this, and the fact that the motor dynmamics are much faster than
the cart/pendulum system dynamics, as seen in the open 1loop poles, a

simplification is possible [49]. The reduced fourth order model is

given by:
x 0 1 0 0 x 0 0 o
d|v 0 -Al1 -A2 A3||vw Al13 -C1 C2||sgn(v)
—loe|=1}]0 0 0 1 el +]o V +] 0 0 ||sgn(w)
dt | w 0 Al2 A6 -Al| | e -Al4 C3 -C4

where the matrix elements are defined in Appendices B and K.

This reduction of order has several advantages. Since the current
state 1is not needed for stabilization of the system, am observer will
not have to estimate this state. The observer only needs to be fourth
order, thus reducing the number of computations necessary for
implementation. The observer design will be based on this reduced order
model.

For full state observation, and neglecting the coulomb damping

terms, a linear Luenberger Observer can be designed having the form:

f-a+BUu+eqa-b (11)
A .Y
f-0p13 (12)

where A and B are the system matrices given above, X is the reduced
state vector, and Y is the system output vector. The matrix of unknown

observer gains G is given by:

11
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Gl G5

G = |G G6 (13)
G3 G7
64 GB.

The solution procedure for placement of the observer poles follows
along the same lines as for the LSF control gains except that the
observer is a multiple input system. The Luenberger observer has both
the actual cart and pendulum positions as inputs. The Luenberger
observer design procedure involves solving for the observer gains in G
such that the poles of [A-GD] are the desired observer poles, which
should be to the left of the desired closed loop system poles [10].

Multiple input systems require solving an underdetermined system of
equations. Pole placement, in this particular problem, will only
provide four equations, with eight unknown observer gains to solve for.
An extra design constraint must be imposed on the system im order to
obtain a unique solution. Typical imposed design constraints are norm
minimization of the gain matrix G [11]), and eigenvector placement [13].

The extra design constraint chosen here is the elimination of the
pendulum position sensor. Observability tests (Appendix G) indicate
that the system is observable with only the cart position as anm input.
It is not observable with only the pendulum position input., This is
intuitively correct since the dynamics of the pendulum are not a
function of the global location of the cart, whereas the cart dynamics
are dependent on the pendulum position, Knowing the cart dynamics, the
pendulum states may be estimated.

Following the same design procedure for pole placement, utilizing

the design .constraint:
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GS = G6 = G7T = @B = 0 (14)

the solution for the remaining observer gains for a given system and
desired set of observer poles, reduces to solving a linear system of

equations givea by:

8col;(g) = T (18)

where the elements of S and T are functions of the desired observer
poles and the reduced order system parameters (Appendix D).

At this point, linear Luenberger observer theory has been used to
design an observer whose states will converge to the linear plant
states. The coulomb damping which exists in the actual system -is not
included in this observer., Some observation theories, such as Kalman
filtering [10), allow coulomb forces as nonlinear disturbances, bdut do
not readily allow the elimination of one positiom semsor.

A modified Luenberger observer can be designed which includes
coulomd forces as disturbance inputs. Using the design constraint (14),
the observer (11) has a single input, which is the cart position x. The
modified observer will require two additional inputs from the actual

system, and is given by:

+ BU +6(X-1) + C sga(x') (16)

be>

A
I = A

The presence of coulomb damping terms in the modified observer will have
no effect on the convergence of the observed states to the linear system
states, since the coulomb damping terms are also present in the linear
model. The two aotual states in X', (sgn(v),sgn(w)), age also not

readily available. Using the signs of the observed velocities,
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(s.n(c).un(c)). this modified observer can be stabilized under certain
strict conditions.
This modified Luenberger observer was tested on the 1linear and
nonlinear system models in a DIFFEQ simulation (Appendix H). The hybrid
linear plant, as well as the nonlinear plant were stabilized with this

observer and linear state feedback.

NOBS4 .74

Zr

aomo o©

-2 | 1 1 | 1 J

e 1 2 3 4 3 6
TIME (SEC)

Figure S: Nonlinear plant with modified Luenberger observer

System stability is achieved under strict conditions, determined
through the DIFFEQ simulations. First, all parameters of the observer
must be very accurate in describing the system under observation.
Convergence of the observer states, with coulomb damping present, is

very sensitive to inaccuracies in the observer  model. The second
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condition for convergence is that all initial conditions for the

observer must be very close to the actual initial system states.

NOBS4.74

Ser

zZr
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.
&
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y -1
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T
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e.0 8.2 d.4 4.6 2.8 1.0
TIME (SEC)

Figure 6: Nonlinear system with convergence conditions not met

The nonlinear plant is unstable with the modified Luenberger
observer and the LSF control law, if any of these convergence conditions
are not met, Figure 6 shows the nonlinear system response for a nonzero

initial tracking error.



EXPERIMENTAL RESULTS

An existing laboratory inverted pendulum setup was used to test the
theoretical control algorithms. The primary test stand included the
cart and pendulum subsystem connected through a drive belt/gear train to
the DC servo motor (Figure 7). A DEC LSI-11/23+ digital computer
performed all real time data acquisition and control processing. Other
hardware included two power supplies and a power amplifier to interface

between the computer and the DC servo.

Figure 7: The experimental inverted pendulum setup

Control software was designed to run .mdo: all standard DEC
single-user RT-11 operating systems [5]. The program is menu driven to
facilitate the tasks required for testing and demonstration. Complete

source listings and documentation can be found in Appendix J.

16
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There are four major tasks available to the user. The user must
first define the origin of the coordinate system referemced by the
computer. This task is important since the control algorithms are
designed to drive the system to the coordinate system origin, where all
states are zoro. Another optionm allows the status of these user-defined
zero positions to be checked.

There are many gains and parameters associated with the various
control algorithms implemented in the program. Initially, these gains
all have default values. The gains option allows the user to check or
change these values. VWith this feature, it is easy to see the effect of
changing any gains. The default LSF control gains place the closed-loop
poles at (-3,-4,-5,-6}, and the default observer gains place the
observer poles at (-8,-8,9,91}.

The final option allows the user to run amy of the three control
algorithms available. All three algorithms have a discrete nmature, in
the sense that they are implemented on a digital computer. In the
goneral algorithm, voltages from the two position sensors are read and
digitized. Using these digitized states, the remaining states are
computed. Once all the states are kmown, a control voltage is computed
through the LSF lawv. The control voltage is then applied to the motor.
This process repeats at a user specified rate, or sampling frequency.

Of the observation schemes available, the ecasiest to implement uses
finite difference derivative approximations to calculate the velocity
states. Knowing the present and previous positions, velocities cam be
computed with respect to the sampling period. Increasing the sampling
rate inoreases the accuracy of the simple derivative approximationms. A

maximum sampling rate of 190 Hz. is possible due to the small number of
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floating point operations performed in this algorithm. One advantage of
this method is that comtrol gains can be designed in the continuous
domain, rather than in a discrete domain. The finite difference
approximation with the LSF control law stabilizes the actual nmonlimear

system, as shown in Figure 8.

Experimental Inverted Pendulum

FILE: TEST.DAT

10.0 -t
8.0 —:w

a0 1

s

]

4.0 —

0 (deg.)

2.0 -

0.0 —

X (in.)

TIME (seconds)

Figure 8: Actual system output under LSF control

The remaining two observation schemes use the modified Luenberger
observer to ocalculate the unknown states. The first scheme uses the
continuous observer system, vwhich is a set of four first order
differential equations. These eoquations are integrated by am Euler

approximation in real time, and the algorithm is able to run at a



maximum 175 BHz. The second

continuous design. It also rums
control algorithms stabilize the

From nonlinear system model
initial conditions which are
order to track the real system.
actual implementation.
has been shown to stabilize the

Luenberger observer scheme,

this first algorithm is turned on.

19
observer is a discretization of the

at a maximum 1785 Hz. Neither of these

system,
simulations, the observer must have
very olose to actual initial states in

This problem is easily solved in the

The first observation scheme (finite difference)

real system. Upon choosing either

Once

this algorithm has stabilized the system, the user may switch over to

the Luenberger observer algorithm at the touch of a key.

use the final states

calculated

Both observers

from the finite difference

approximations for the initial conditionms.



CONCLUSIONS

Through computer simulation results, the nomlinear system model can
be stabilized with linear control and the modified Luenberger observer,
under certain strict conditions. All parameters must be well known, and
the initial tracking error of the observer must be near zero. Stability
of the simulated model is demonstrated under these conditions. Computer
simulations also indicate that system stability is more semnsitive to
inaccuracies in the viscous and coulomb damping terms.

The results of a parameter study on cart damping (Appendix 1I)
indicate an inadequacy of the assumed damping mechanisms present. Dats
plotted from the hysteresis loop experiments would have been 1linear if
the assumed linear combination of viscous and coulomb damping forces
were correct. Based on the scatter of data points, the actual damping
present in the cart motion is more complex than originally assumed.

The nonlinear model, used in the computer simulations, and as a
basis for the control and observer designs, is mnot an exact
representation of -the actual laboratory system. Since system stability,
under linear observation and control, is sensitive to actual parameter
values, stability of the real system will not be attainable utilizing
the modified observer design and LSF,

The real system response under linear observation is similar to the
response of a simulated system whose observer has erromeous parameters.

Though the actual system response cannot be directly oompared to the

20
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nonl inear model response, the similar outputs indicate that the problem
lies in the nonlinear model representation of the actual system. A more
accurate representation of the damping mechanisms in the cart motiom are
needed for the nonlinear model. Then, based on this model, a new
observation scheme can be developed.

This investigation, theoretical and experimental, has raised a very
important and interesting observation. Linear multiple input systems,
where pole placement is desired, define an underdetermined system of
equa tions. This is true for 1linear state feedback control and for
linear Luenberger observer designs. There are an infinity of valid
control gain solutions to place the poles at desired locations. If
these linear control or observation theories are to be applied to a
nonlinear system, some solutions may be better than others. Given
several sets of gains which all place the same set of closed loop poles,
some may provide stability for the nonlinear system, and some may not.

The finite differemce approximation, to compute the velocity
states, has proven to be the most effective means of stabilizing the
inverted pendulum with linear state feedback coatrol. This combined
observation and control scheme appears to be insensitive to the
nonl inear coulomb damping disturbances. " Though the effects of the
coulomb forces can be seoen in the actual system response, the peandulum

remains in a stable limit cyocle.
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APPENDIX A

The complete inverted pendulum system consists of two primary
coupled subsystems which are easily identified. The cart and peandulum
make up the first subsystem. It is nonlinear and completely mechanical
in nature. The second subsystem 1is a DC servo motor, and will be
modelled here as a linear system. The servo motor provides a coupling
between electrical and mechanical enmergy. Due to the intrimsic
differences betweea these two subsystems, the equations of motion for
each ocan be derived separately, and then coupled together in the proper
fashion to produce a complete set of system equations.

Lagranges method is invoked to determine the system equations for
the cart/pendulum system. This method is well suited for the geometric
and discontinuous nonlinearities present in the systes [12]. Lagranges

equation including non-conservative forces is given by:

d | 9T T o0
== — * — = 9 (j=1,2) (A1)
dt 3qj > aqj 3QJ

Placing the datum line at the axis of the pendulum, and noting that
the potential emergy of the cart is invariant, the poteatial emergy

function describing the cart/pendulum subsystem is:

U = (mgd) cos(0) (A2)

24
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The kinetic energy of this subsystem is due to the velocity

magnitudes of the pendulum and cart masses.

T = -Nv® + -mavy (A3)

i R T (damping torque)

/ F~(reaction force)

Figure Al: Pendulum free-body diagram.

Using the coordinate definitions in the pendulum (free—-body diagram of

Figure Al, the magnitude of the pendulum velocity can be expressed as:

vVi= (v xg)? o+ (3p? (M)
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Using simple trigonometric relations between the desired state variable

(8), and the position varisbles (x,,y,), the velocity can be written:

v = y? 4+ 2dvecos® + (de? (AS)

3
a
Substituting (AS) into the original expression (A3), and rearranging
terms yields the final expression for the kinetic enmergy of the system:
1 1
T = -(M+m v + -a(dw?® + mdv e cos(d) (A6)
2 2
The non-conservative forces acting on this subsystem are the
external applied driving force on the cart, and the damping forces.
Lagranges mothod calls for formulation of the nst non-comservative
forces associated with each of the degrees of freedom. For this

particular model, these net forces are given by:

Q = F - byv - f; sga(v) (A7)

Qg = -b, v - fg sgn(w) 4 (A8)

Evaluation of the derivatives of the potential and kinetic energy
functions, and substitution of the results into Lagranges equation gives

the two nonlinear system equations:

(Mm)I + md6cos(0) - mdu*sin(0) + byv + fysgn(v) = F (»)

mdXcos(0) + md’9 - mgdsin(0) + bje + fgsgn(w) = 0 (A10)

These two nonlinear equations —represeat the dynamics of the
cart/pendulum subsystem. The force input to this system is provided by

the DC servo motor.
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Since a linear model for the DC servo motor will be used, a bond
graph is the most efficient method to derive the defining equations for

this subsystem.

R:R R: by

h \

SE N1 6y —N1 —NTF -’}41

|| keke T,

I:L I:J
Figure A2: DC servo motor bond graph model

Note that since a force output (F) is desired from the motor, causality
indicates that the model will only be first order. This is due to the
assumed rigid coupling between the cart and the motor armature, The
bond graph should therefore provide a (force relation, and a single
differential equation of motion for the motor. The force relation is

given by:
F = (kg m)i - @3 x - (*b,) v (A11)
and the equation of motion for the motor is giveam by:

L (di/dt) = V - iR - (kgn)v (A12)
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The force relation (All), can be substituted directly into (M), the
first nonlinear system equation., Combining this result with (A10) and
(A12) provides three nonlinear system equations describing the complete

pendulum system dynamics.

(Mm+n3])3 + (md)6cos(0) - (md)e®sin(@) =

(ken)i = (by+n’b,)v - £ sgn(v) (A13)
(md)2008(8) + (md®)6 - (mgd)sin(8) = - byw - fgsgn(w) (A14)
L(di/dt) = V - iR - (kgn) v (A15)

Another important nonlinear characteristic of the real system is
the saturation of the applied motor voltage. The DC servo power supply

has a finite limit, which can be expressed by:

vl < 15.8 volts (A16)

There are only three assumptions or approximations made 1in this
model. The first is the use of a linear model to describe the DC servo
motor. The second assumption is the rigid coupling between the motor
armature and the cart. The third approximation is the characterization
of the nonconservative damping forces. These areas alone goverm the

acocuracy of the model to describe the pendulum system dynamics.



APPENDIX B

A linear set of equations are required to develop either a Linear
State Feedback control 1law, or a Luenberger Observer. The nonlinear
systom equations must be linearized about some desired operating point
in the state space. This is most efficiently accomplished through small
angle approximations. Linearization of this type will remove all
goometric nonlinearities. Only the discontinuous coulomb nonlinearities
will remain. These coulomd nonlinearities will be ocarried through in
the linear model, creating a hybrid linear plant with a nonlinear part.

Upon application of the small angle approximations to the system

equations (A13), (Al4), and (A15), the following set of equations

result:
(Hm+a’])x + (md)8 + (b,+n®b,)v + fosgn(v) = (ken)i (B1)
(md)X + (md*)8 - (mgd)® + byw - fgsgn(w) = 0 . (B2)
L (di/dt) = V - iR - (kgn)v (B3)

Solving equations (Bl) and (B2) simultaneously for x and 8.

combined with the definitions:

(B4)

M
[
<4

(BS)

produces a set of - linear equations which are suitable for matrix

notation. The state space representation, including nonlinear coulomb

2
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damping terms is givenm by:

Xs = AgXs + B U + G5 sgn(X’) (B6)
I = D, 1, (B7)

Since some of the individual terms of the above matrices are 1lengthy
expressions, a simpler notation has been adopted. The defining matrix

equations are givea by:

(x 0 1 0 0 O x 0 0 O
dilvw 0 -Al -A2 A3 M ||V 0 -C1 C2| [sgn(v)
—|0|=]0 O0 O 1 0 e|j+]0 vV + 0 O sgn(w)
dt | e 0 AS A6 -A7 -MB ||ew 0 C3 -C4
L i o -» 0 0 -A i P1. 0 0
x]=[1 0 0 0 0]z
o 0 0 1.0 O v
- ©
[ ]
i
The olements of the system matrix A are defined to bde:
Al = (a*, + b,)/ (M + n’7) (B8)
A2 = (mg)/(M + n*J) (®»)
A3 = (b,/a)/(M + 2T) (B10)
M = (k.a)/(N+ 2*J) (B11)
AS = (A1/4) (B12)
A6 = (g/d)(N + m + n%T)/(N + %)) (B13)
AT = (b, /(md®))(M + m+ 7))/ (M + 2%]) (B14)
A8. = (k.n/a)/(M+ 0*)) (B1S)

A10 = (R/L) (B17)
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The input matrix B has only one non-zero olement, and is defined to be:

P1 = (1.0/L) (B18)

The coulamb damping matrix C has four non-zero elements, which are

defined to be:

C1 = (£,)/(u+ 2%)) (B19)
C2 = (fg/d)/(M + 2'T) (B20)
c3 = c1/4d (B21)
C4 = (fg/(ma*))(M+ m+ 2T)/(M + 2’F) (B22)

This particular notation was chosen because of the significant
number of zero olements in the matrices. All of the newly defined
parameters (matrix clements) are functions of the original set of system
parameters. All elements have a positive value, characteristic of a
parameter. The signs of individual tor‘-s in the system oquations remain

in the matrix definitions.



APPENDIX C

The problem of controlling the linear system with state feedback
translates to ome of choosing the five control gains K, such that the
poles of [A-BK], are in the left half plane, where A and B are the fifth
order linear system matrices derived in Appendix B.

Equation (Cl) is the characteristic polynomial whose roots are the

five desired closed loop poles:
8% + st + 3,8t tlst t s+ e =0 (c1)

The coefficients {, are functions of the desired closed loop poles, and
represent constant values for a known set of poles.

The actual system characteristic polynomial is obtained by taking
the determinant of [sI-(A-BK)],. The coefficients of this fifth order
polynomial are functions of the elements of the A,, B,, and [, matrices.
Equating these coefficients to those of the desired closed 1loop

polynomial produces five equations in the five unknown control gains of

Ks;. These relations are given by:

32
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le = P1K1(A2A8-MA6) (C2)

8, = P1(K1(AMA7-A3A8) + K2(A2A8-MAG) + K3(AMMAS-A1LA8) +
KS(A2AS-A1A6) + ALO(A2A5-A1A6) + B (A2AB-MA6) (C3)

32 = P1(K1(AM4) + K2(MAT-A3A8) + K4(AMAS-A1M8) +
K5(A1A7-A3A5-A6)) + A10(A1A7-A3AS-A6) +

0 (MAT-A3M8) - K3(A8) + (A2AS5-A1A6) (ca)
i, = P1(K2(A4) - K4(A8) + KS(A1+A7)) + A1(AT+A10) +

ATAL10 - A3A5 - A6 + MM (cs)
. = P1(K5) + (A1+A7+A10) (C6)

The LSF control gains K, can be obtained by rearranging equations

(C2) through (C6), and solving the equivalent linear matrix equation:

8kT - F (D

where the H matrix is given by:

0 0 0 0 1
0 (M) 0 (-8) (A1+A7)
H=P1 (M) (MA7-A38) (-8) (MAS-A1A8) (A1A7-A3AS-A6)
(MAT-A3A8) (A2A8-MAG) (MAS-A1A8) 0 (A2A5-A1A6)
(A248-MA6) 0 0 0 0

and the F matrix is givea by:

8, = (A1+A7+A10)
$s - (A1(A7+A10)+ATA10-A3AS-AG+tMB )
B = §s — (A10(A1A7-A3A5-A6)+M (MAT-A3A8)+ (A2A5-A1A6))
& - (A10(A2AS-A1A6)+M (A2A8-MA6))
§o -0

Given numerical values for the desired set of closed loop poles, and the
system parsmeters, (C7) can be solved for the stabilizing control gains
E; in the linear state feedback law,.

To eliminate the need for measurement of the armature currenmt

state, the fifth control gain K5 must be be identically zero. For this
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to be possible, all five of the linear equations in (C7) must still be
satisfied. Equation (C6) is the omly one containing the single conmtrol

gain K5. Setting this current gain to zero, the remaining equation is:

¢ = (A1 + A7 + A10) ()

By choosing the desired uf of closed loop poles such that (GB) is
satisfied, {, will take on a value that will force the curreamt gain to
be zero.

The algorithm above is implemented in the program CALC (Appendix

F). In that program, only two sets of desired closed loop poles are

considered:
Ny = ("ﬂ‘ 1 <Gz ,~Q3 ,~Cy u-ag} (0)
Ny = ['Q*jﬂ; l-ﬂst,’ﬂg a'ﬂ,) (C10)

For each of these sets, the respective values of , are:

{t‘},, = q, + a3 + a5 + a4 + ag (C11)

{gqlg - 2(0‘ + G’) + a; (C12)

The user must specify four desired closed loop poles from ome of
the above sets. The fifth pole is then computed such that (C8) will be
satisfied. By choosing the computed fifth pole, the current gain 1is

forced to be identically zero.



APPENDIX D

A linear Luenberger Observer can be designed for the linear part of
the reduced fourth order model derived in Appendix K. The complete

fourth order model is given by:

0 0o o0

x 0 x
d|v 0 -All1-A2 A3|}|vw A13 -C1 C2||sgn(v)
—|0|=1]0 0 0 1 | +1]|0 vV +£10 O sgn (w)
dt | e 0 Al2 A6 -All | e -Al4 C3 -C4

Neglecting the coulomb damping terms, a linear Luenberger observer for

full state observation will have the form:

+ BU +6(Y -1 (1)

>

]
e »
> be>

(D2)

be?
L}

where A and B are the system matrices given above, and the matrix of

unknown observer gains G is given by:

(D3)

2EBR
8388

The observed states can be made to converge to the actual linear
system states by choosing the poles of [A-GD] to be to the left of the
closed loop system poles. The observer gain solution procedure 1is

similar to the LSF control gain solutiomn found in Appendix C.

35
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First the characteristic polynomial of [A-GD] is obtained. The
coefficients of this equation can be writtenm in terms of the system
parameters, i.e. the elemonts of A, D, and the observer gains G. For a
desired set of observer poles, the characteristic polynomial will have

the form:
8 + 2,a’ + Ea? s+ 8, =0 (D4)

Equating the coefficients of the two characteristic polynomials:

$, = (A11+A7) + (G1+G7) (DS)
§2 = (A11+A7) (G1+G7)+(G1G7+A11A7) -(A12A3+G4G6 )+ (GB+G2-A6) (D6)
& = (G1+A11) (ATGT+GB-A6)+G1A11(AT+GT)-A12A3 (G1+G7)+G4 (A3-GS)+

A12(A2+G6)-G3 (A2+G6+G5 (A11+A7) )+G2 (A7+G7) (D7)
% = (GlA11+G2) (A267+G8~-A6)+(A12G1-G4) (A2+G6-A36G7)~

G3 (A3(GB-A6-G5A12)+AT7(A2+G6+A11GS) )-G5 (G4A11+G2A12) (D8)

These four equations must be solved for the eight observer gains. Since
the system of equations is nunderdetermined, four of the gains are
arbitrary [10]. From observability calculations (Appendix G), it was
determined that the 1linear system 1is observable with only the cart
position as input. Since they are arbitrary, the four gains associated

with the pendulum position may be set to zero:

G5 = G6 = G7T = B. = 0 (D)

Applying (D9 ) to equations (DS) through (D8), produces a linear set

of equations in the unknown gains of G, having the form:

Socol;(g) = T (D10)
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where the S matrix is given by:

1 0 0 0
S = (A11+A7) 1 0 0 (D11)
(A11A7-A3A12-A6) (A7) (-A2) (A3)

(A2A12-A11A6) (-A6) (A3A6-A2A7) (-A2)

and the T matrix is given by:

$: - (A11+A7)

I = |38, - (A11A7-A3A12-A6) (D12)
%2 - (A2A12-A11A6)
{.

It is interesting to note that, givem a real set of systeam
parameters, there is a unique solution for the observer gains of (D10).
If the cart position measurement had been eliminated instead of the
pendulum position, a new system of four equations would have been
produced which has no unique solution. This result is as predicted by
the observability tests.

The algorithm for determining the observer gains G reduces to
solving the linear system of equations (D10). This is implemented in
the program CALC (Appendix F). All that is required on input are the

system parameter values, and the desired observer pole locations. The

only desired set of observer poles considered here is:

n = {-a ,-a;,-a;,-a,} (D13)
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For this particular set of poles, the coefficients of the

characteristic polynomial are:

8 = a + a3 +a, + a, (D14)
83 = aia; + (s + a3)(as + a,) + aza, (D15)
&L = aay(a;, + a,) + aza,(a, + a,) (D16)
3¢ = aa,a,a, (D17)

Substituting numeric values for these coefficients and the system
parameters into the matrices of (D10), a solutiom for the observer gains

can be obtained with a linear algebrs subroutine.



APPENDIX E

A root locus program was developed as an interactive tool to study
pole placement for 1linear state space form systems with linear state
feedback implemented as the control scheme. The root locus study
performed in this r;sos:ch was based on a very simple algorithm given
the pre-existence of several canned software packages. The user must
input the A (system), B (imnput), and K (control gain) matrices defining
the linear system. Varying a single olement of one of the three
matrices gemerates a root locus as the eigenvalues of the new system
matrix [A-BK] change.

The FORTRAN 77 source code below was developed on the FRRIME 750
computer system for use on the TEKIRONIX graphics terminals, at the MSU
Case Center for Computer Aided Design. The Case Center Mathematical
Library Subroutine package provides subroutines for the matrix
manipulations [2]. The eigenvalues are computed with the EIGRF
subroutine from the IMSL REigensystem Analysis package [2]. After
calculation of the eigenvalues, the root 1locus is plotted om the
terminal screen via TCS graphic routines from the Tektronix PLOT1O

package.
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PROGRAN LOCUS
This is the main program to compute and plot the
root locus for a matrix system with linear state
feedback.
———==Declare all variables

REAL A9 9).,B9 9),K(9 9),609 9),¥k09)

INTEGER N, M

COMPLEX EGV(9)

Format Statements

100 FORMAT(/,/.15X, 'ROOT-LOCUS EVALUATOR FOR MATRICES',
+ /,/,10X,'DX[N,1] = A[N,N] * X[N,1] + B[N,N] * U[N,1]’,
+ /,/,18X,'U[M,1] = K[N,N] * X[N,1]°)

110 FORMNAT(/,/.5X,'ENTER THE DIMENSION N: ’',$)

120 FORMAT(/,SX,'ENTER THE DIMENSION N: ',$)

130 FORNAT(/,5X, 'DIMENSION MUST BE LESS THAN 10.°')

Input the dimensions
WRITE(1,100)
10 WRITE(1,110)
READ(1,¢,ERR=10) N
IF (N .GE, 10) THIN
WRITE(1,130)
GOTO 10
ENDIF

20 WRITE(1,120)
READ(1, ¢, ERR=20) M
IF (M .GE. 10) THEN

WRITE(1,130)
GOTO 10 ‘
ENDIF

Go on to the main program
CALL INPUT(N,M,A,B,K,G, VK, EGV)
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SUBROUTINE INPUT(N,M,A,B,K,G, VK, BGV)
This subroutine accepts the input matrices

A, B, and K, and also the matrix element to vary
betwoen the specified limits.

Declare all variables

e N Nz K Nz Kz Kz

REAL A(N,N),B(N,NM),K(M,N),LL,UL,DL,G(N,N) ,¥K(N),
+ IMIN, XNAX, YMIN, YNAX

INTEGER N, M, I,J,IP,JP
COMPLEX EGV(N)
CHARACTER MAT®*1,COMAND®

a a6 6o 6

COMMON /BLOCK/ XMIN,XMAX, YMIN, YNAX

~-—===Format Statements

an0on

700 FORMAT(/,/,5X,'ENTER THE A[N,N] MATRIX. . .')

710 FORMAT(/,5X,'ENTER THE B[N,M] MATRIX. . .')

720 FORMAT(/,5X,'ENTER THE K[M,N] MATRIX. . .')

730 FORMAT(10X,°'A(’,I1,’,’',11,’) = *,§)

740 FORMAT(10X,’B(’',11,',’,1I1,') = ',§)

750 FORMAT(10X,°'K(’',I1,’,’,I1,’) = *,§)

760 FORMAT(/,/,.5X,'ONLY ONE FLEMENT OF THE THREE MATRICES',
+ /,10X,’A, B, AND K, MAY BE VARIED.')

770 FORMAT(/,/,5X,’'CHOOSE ONE OF THE MATRICES (A,B,K): ',$)

780 FORMAT(/,5X,’YOU MAY CHOOSE THE ELEMENT ',A1,'(I1,J)’)

800 FORMAT(/,10X,’'ENTER THE ROW POSITION 1: ',$)

810 FORMAT(/,10X, 'ENTER THE COLUMN POSITION J: ',$)

820 FORMAT(/,/,5X,'BNTER THE MINIMOM VALUE OF ’',A1,’'(',I1,$)

830 FORMAT(/,5X,’'ENTER THE MAXIMOM VALUE OF ',A1,'(’,I1,$)

840 FORMAT(',',I1,') : ',$)

860 FORMAT(/,/,5X,'ENTER THE INCREMENT: ',$)

870 FORMAT(/,10X,'(Y) OR (N) ',$)

C
XNIN = -10.0
IMAX = 10.0
Yum = -100
YMAX = (XMAX-XMIN)*780.0/1024.0 + YMIN
C
C -—--Input the A matrix
c

WRITE(1,700)
WRITE(1,¢)’ '
DO 30 I = 1,N
DO 20 J = 1,N
10 WRITE(1,730) I,J
READ(1,*,ERR=10) A(I,J)
20 CONTINUE
WRITE(1,®)' '
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30 CONTINUE
~——==Input the B matrix

WRITE(1,710)
WRITE(1,*)’ '
DO 60 I = 1,N
DO 50 J = 1,M
40 WRITE(1,740) I,J
READ(1,*,ERR=40) B(I,J)
50 CONTINUE
WRITE(1,®)’ '
60 CONTINUE

Input the K matrix

62 WRITE(1,720)
WRITE(1,*)’ '
DO 80 I=1.,M
DO 70 J = 1,N
65 WRITE(1,750) I,J
READ(1,*,ERR=65) K(I,J)
70 CONTINUR
WRITE(1,®)' '
80 CONTINUE

—————Choose the parameter to vary

85 WRITE(1,760)
90 WRITE(1,770)
READ(1,’(A1) ' ,ERR*90) MAT
IF ((MAT.NE.’'K’').AND, (MAT.NE.'B’) .AND. (MAT.NE.'A’)) GOTO 90

WRITE(1,780) MAT

110 WRITE(1,800)
READ(1,¢,ERR=110) IP
IF (IP .LT. 1) GOTO 110

IF (MAT .BQ. 'K’') THEN
IF (IP .GT. M) GOTO 110
ELSE
IF (IP .GT. N) GOTO 110
ENDIF

120 WRITE(1,810)
READ(1,*,ERR=120) JP
IF (JP .LT. 1) GOTO 120

IF (MAT .BQ. 'B’) THEN
IF (JP .GT. N) GOTO 120
ELSE
IF (JP .GT. N) GOTO 120
ENDIF



C -—-—Get the limits on the variable parameter

c

ann

130 WRITE(1,820) MAT,IP

WRITE(1,840) JP
READ(1,*,ERR=130) LL

140 WRITE(1,830) MAT,IP

150

——=Calculate and plot the root locus

160

170

WRITE(1,840) JP
READ(1,*,ERR=140) UL

IF (UL .LT. LL) GOTO 140

WRITE(1,860)

READ(1,*,ERR=150) DL

DL = ABS(DL)

CALL CRUNCH(N,M, A,B,K,G, VK, EGV, MAT, IP,JP,LL, UL,DL)

WRITE(1,*)’
WRITE(1,*)’
WRITE(1,870)

READ(1,’' (M)’ ,ERR=160) COMAND

DO YOU WANT TO VARY A NEW PARAMETER.

IF (COMAND(1:1) .NE.

GOTO 85
ENDIF

WRITE(1,*)’
WRITE(1,¢)’
WRITE(1,870)

READ(1,'(®)’',ERR=170) COMAND

’

‘N') THEN

43

DO YOU WANT TO INPUT A NEW K MATRIX. . .’

IF (COMAND(1:1) .NE.

GOTO 62
ELSE
WRITE(1,%)’

WRITE(1,¢)’ OK,. .

WRITE(1,*)’
ENDIF

RETURN

'N') THEN
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SUBROUTINE (RUNCH(N, M, A,B,K, G, VK, BGV, MAT, IP,JP,LL, UL,DL)

This is the main number cruaching routine to
calculate and plot the root locus.

Declare all variables

REAL A(N,N),B(N,N),K(M,N),LL,UL,DL,V0,VA,
+ XMIN, XMAX, YMIN, YMAX, G(N, N) ,WK(N)

INTEGER N, M, IP,JP
COMPLEX EGV(N),Z(9 9)
CHARACTER MAT®1,NAME® , COMAND*9

COMMON /BLOCK/ XMIN,XMAX, YNIN, YNAX

Format Statements

500 FORMAT(/,/,SX,'WOULD YOU LIKE TO NAME THE G_FILE...')
510 FORMAT(/,5X, 'ENTER THE NEW FILENAME: ',$)
520 FORMAT(/,/.SX,’'WOULD YOU LIKE TO RESET THE WINDOW...')
530 FORMAT(/,10X,’(Y) OR (N) ',$)
540 FORMAT(3X,F8.29 (2X,:,'(’',F8.2,',',F8.2,°)"))
550 FORMAT(/,5X,A1,’'(',11,',’,11,')’,10X,

+ 'EIGENVALUES OF THE SYSTEN (RE,INM). . .',/)

Calculate and plot the root locus

10 WRITE(1,500)
WRITE(1,530)
READ(1,' (M)’ ,ERR=10) COMAND

IF (COMAND(1:1) .Ba. 'Y’) THEN
20 WRITE(1,510)
READ(1,’ (M)’ ,ERR=20) NAME
ELSE |
NAME = 'G_LOCUS'
ENDIF

IF (MAT .BQ. 'K’') THEN
VO = K(IP,JP)

ELSE IF (MAT .BQ. 'A’) THEN
VO = A(IP,JP)

ELSE
VO = B(IP,JP)

ENDIF

OPEN (5,FILE='LOCUS.DAT’)

WRITE(S,®)’' '

WRITE(S,*)’ ROOT LOCUS DATA FOR MATRIX SYSTEN'
WRITE(S5,550) MAT,IP,JP :



C

C

25
30

35

45

1IJOB = 0
COMAND = ‘xxxxxxxxx’

Do the graphics kind of stuff

CALL INITT(480)

CALL OPENTK(NAME, IER)

CALL DWINDO (XMIN, XMAX, YNIN, YMAX)
CALL AX18(1.0,1.0,8)

DO 40 VA = LL,UL,DL

IF (MAT .BQ. '‘K’') THEN
K(IP,JP) = VA

ELSE IF (MAT .BQ. 'A’) THEN
A(IP,JP) = VA

ELSE
B(IP,JP) = VA

ENDIF

CALL MMLT(G,B,K,N,N,N)

DO 30 I=1,N
DO 25 J =1,N
G(I,J) = A(1,J) + G(I1,J)
CONTINUE
CONTINUE

CALL EIGRF(G,N,N,1JOB,BGV,Z,N,¥K, IER)
WRITE(5,540) VA, (BGV(I),I=1,N)

DO 35 1 =1,N
X = REAL(EGV(I))
Y = AIMAG(EGV(I))
IF ((X.GT.XMIN) .AND, (X,.LT.XMAX) .AND,
(Y.GT.YMIN) . AND. (Y.LT.YMAX)) THEN
CALL MOVEA(X,Y)
CALL MOVREL(-3,-4)
CALL CHARTK(COMAND(I:I),0.6)
ENDIF
CONTINUE

40 CONTINUE

FEEEEEEEE

MOVABS(390,730)

CHARTK ('ROOT LOCUS PLOT',1.2)
MOVEA (0.0, YMAX)

MOVREL (18 ,-18)
CHARTK('IN’,1.0)
MOVEA(XMAX,0.0)

MOVREL (-23,-23)
CHARTK('RE’,1.0)
MOVABS(25,20)

" WRITE(COMAND, '(P® .3)') LL
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CALL CHARTK(COMAND,1.0)
CALL CHARTK(' <’,1.0)

CALL MOVREL(20,0)

CALL CHARTK(MAT,1.0)

CALL CHARTK('(',1.0)
WRITE(COMAND, ’'(I1) ') IP
CALL CHARTK(COMAND(1:1),1.0)
CALL CHARTK(’,’',1.0)
WRITE(COMAND, ‘' (I1)') JP
CALL CHARTK(COMAND(1:1),1.0)
CALL CHARTK(') <’,1.0)
WRITE(COMAND, ' (P .3)') UL
CALL CHARTK(COMAND,1.0)
CALL MOVABS(0,700)

CALL CLOSTK(IER)
CALL ANMODE

CALL HOME
CLOSE(S)

IF (MAT .BQ. 'K') THEN
K(IP,JP) = VO

ELSE IF (NAT .BQ. 'A’) THEN
A(IP,JP) = VO

ELSE
B(IP,JP) = VO

ENDIF

Reset the window

50 WRITE(1,520)
WRITE(1,530)
READ(1,’'(® )’ ,ERR=50) COMAND

IF (COMAND(1:1) .Ba. 'Y’) THEN
60 WRITE(1,®)’' '

WRITE(1,*)’ IMIN = ‘',XMIN

WRITE(1,®)’ IMAX = ‘,XMAX

WRITE(1,*)’ YNIN = ',YMIN

WRITE(1,*)’ YMAX = ', YMAX

WRITE(1,®)' '

WRITE(1,®)’ ENTER XMIN, XMAX, AND YMIN. . .’
WRITE(1,%)’ '

READ(1,¢, ERR=60) XMIN, XNAX, YNIN
YMAX = (XMAX-XMIN)*780.0/1024.0 + YNIN
GOTO 10

ENDIF

RETURN



APPENDIX F

The Linear State Feedback control gains and the Luenberger Observer
gains are all functionmally dependent om the linear system model
parameters. The solution algorithms for both sets are similar in form.
For this reason, the stn!lo program CALC was written as an interactive
program to facilitate the computation of either set of gains. Af ter
supplying the basic system parameters, the user may compute the coatrol
gains for either the comtroller, or the observer, placing the poles of
each at user specified locations.

Both the Linear State Feedback controller and Luenberger Observer
are formulations of linear theory. The solution for the gains with the
indicated pole placement configuration reduces to that of solving a
linear systeam of oquti.ou. as derived in Appendices C and D. The LINEQ
subroutine, supplied by the Mathematical Subroutine Library of the Case
Conter [2], is used to perform these calculations.

Below is an annotated sample interactive output showing the comtrol
gains computed for the givem input parameters, and desired closed loop
pole locations for both the LSF coatroller, and the Luenberger observer.
The gain solutions here are the default gains in the implemented comtrol
routine. For clarity, underlined comments have been added to the

output. Following this output is the source code for CALC.

47
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ENTER MP: 0.0236 Pondulum mass (slugs)
ENTER MC: 0.0385 Cart mass (slugs)
ENTER D: 1.296 Pendulum length (ft)
ENTER Bl: 1.13E-4  Pondulum viscous damping coeff, (ft-1b-s)
ENTER B2: 0.025 Cart viscous damping coeff, (lb—s/ft)
ENTER B3: 2.16E-4  Motor viscous damping coeff, (ft-]1b-s)
ENTER J: 5.2E-5 Armature ipertis (ft-1b-s®)
ENTER L 6.407E-3  Armature inductance (hepry)
ENTER R: 1797 Armature olectrical resistance (@)
ENTER KE: 0.0813 Motor gyrator constant (V-s/rad)

N 32.0 Gear redyction (rad/ft)

FX: 0.008 Cart coulomb dsmping force (1b)

ENTER FT: 0.002 Pendulum coulomb damping force (1b)

Al = 2.68326 A = 8.27600

A3 = 9 935740E-04 M = 209115

AS = 2.16462 A6 = 32.6315

Al = 3917570E-03 A8 = 16.8695

D = 406.056 A10= 2804 .74
All= 5.71071 Al12= 4.60690
Al3= 1.1630 Al4= 0938760

Pl = 156.0M

Cl= 0.760780 C2 = 1.758538E-02
C3 = 0.613730 C4 = 69 33752E-02

(L) INEAR STATE FEEDBACK DESIGN
- OR -
(O)BSERVER DESIGN

DESIGN: L

WHAT SET OF SYSTEM ROOTS DO YOU WANT. . .
1.) {-BR1+-J*RI1,-RR2+-J*RI12,-RR3}
2.) {-RR1,-RR2,-RR3,-RR4 ,-RRS}

2



INTER RR1: 3
ENTER RR2: 4
ENTER RR3: §

(-}

FOR K5=0 . . . BRS = 2789 .43

INTER RRS: 2789 .43

THE CHARACTERISTIC BQUATION IS:

Sses 1.0

Ses4 2807 .43
See3 50328.7
See2 332284.
See] 954345,
Ses0 : 1.00419 SE+06

THE K MATRIX OF GAINS IS:
-11.85394 -16.17418 -175.72162 -33.089 49
IER = 0
(L)INEAR STATE FEEDBACK DESIGN
(O)BSéV: TESIGN
DESIGN: o

ENTER THE OBSERVER POLES . . .

ENTER RR1: 8
ENTER RR2: 8
ENTER RR3: 9
ENTER RR4: 9

THE G MATRIX OF GAINS IS:

28,285 303973 -425.307 -2331.515

IER = 0

-0.0017S5



ancnanOncan

(o]

50
PROGRAM CALC
This program calculates the LSF comntrol gains for the

the Sth order pendulum and motor model, given the system
parameters as input.

Declare all variables
REAL MNP, NC,D,G,B1,B2,B3,J,L,R,KE,N,FX, FT
REAL Al,A2,A3,M ,A5,A6,A7,A8,8 ,A10,A11,A12,A13,A14,P1
REAL RR1,RI1,RR2,RI2,RR3,RR4,RRS
REAL X0,X1,X2,X3,X4,Q1,@,08,04
REAL H(S,5),K(5),F(5),WORK(6,6)
REAL S(4,4),GA(4),T(4),VERK(S,S)
CHARACTER COMAND*9
—————INPUT THE SYSTEMN PARAMETERS

10 FORMAT(/,A12,$)
WRITE(1,%)' '
WRITE(1,10)' ENTER MP: '
READ(1,*) MP
WRITE(1,10)' ENTER NC: '
READ(1,*) MC
WRITE(1,10)' ENTER D: '
READ(1,*) D
G = 32.174
WRITE(1,10)' ENTER Bl: '
READ(1,*) B1
WRITE(1,10)’ ENTER B2: '
READ(1,¢) B2
WRITE(1,10)' BENTER B3: '
READ(1,¢) B3
WRITE(1,10)' ENTER J: '
READ(1,%) J
WRITE(1,10)’ ENTER L: '
READ(1,*) L
WRITE(1,10)’ ENTER R: '
READ(1,*) R
WRITE(1,10)’ BENTER
READ(1,*) KE
WRITE(1,10)’ ENTER
READ(1,¢) N
WRITE(1,10)’ ENTER
READ(1,*) FX
WRITE(1,10)' ENTER
READ(1,*) FT

38 °E
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C

C
C
C
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-—==CALCULATE THE MATRIX PARAMETERS

Al = (NsN*B3+B2)/(MC+N*NeJ)

A2 = (MP*G)/(MC+N*N*J)

A3 = B1/(D®*(MC+N*N*J))

M = KE*N/(1.356% (MC+NeNeT))

AS = (N®N*B3+B2)/(D*(MC+N*N*J))

A6 = (G/D)® (MC+MNP+N*N*J)/(NC+NeN*J)

A7 = (B1/(D*D*MP))® (MC+MP+N*N*J )/ (MC+N*N*J)
A8 = KE®N/(1.356*D* (MC+N*N®J))

M = KEN/L

A10 = R/L

P1 =1.0/L

All = Al + M*® /A10
Al2 = AS + A8%M /A10
A13 = M*P1/A10
Al4 = MB*P1/A10

C1 = FX/(MC+NeN*J)

C2 = (FT/D)/(MC+N*N*J))

C3 = C1/D

C4 = (FT/(MPeD*D)® (MC+MP+NeN®J) / (MC+NeNeT)
WRITE(1,¢)’ °*

WRITE(1,*)’' A1 = ',A1,’ A = ',A2
"M(lo.), A3 = ',A3,’ M="'M
WRITE(1,%)’' AS = ',AS,’ A6 = ',A6
WRITE(1,%)’ A7 = ',A7,’ B ="',

WRITE(1,*)' ®» = ',®,’ A10= ',A10
WRITE(1,*)’ All1= ’',All1,’' Al12= ',LAl12
WRITE(1,*)’' Al3= ',A13,' Al4= ',Al4
WRITE(1,*)’ P1 = ',P1

WRITE(1,*)' '

WRITE(1,¢)' C1 = ',C1,’ C = ',C2
WRITE(1,®)’' C3 = ’',C3,' 4 ="',04
WRITE(1,*)’' '

-—=-—CHOOSE BEIWVEEN OBSERVER OR LSF DESIGN

50 'l'ITB(l.‘)' '

WRITE(1,¢)’ (L)INEAR STATE FEEDBACK DESIGN'’

WRITE(1,*)’ - OoR -'
WRITE(1,*)’ (O)BSERVER DESIGN'’
WRITE(1,*)’ '

WRITE(1,10) ' DESIGN: '

READ(1,’ (M )’') COMAND

IF (COMAND(1:1).BQ.’'L’) THEN
GOTO 100

ELSE IF (COMAND(1:1).BQ.’0’) THEN
GOTO 590

ELSE IF (COMAND(1:1).BQ.’'Q’) THEN
CALL EXIT

ELSE
GOTO 50.
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ENDIF
C
C -——GET THE TYPE OF CHARACTERISTIC ROOTS
C

100 WRITE(1,*)’ '
WRITE(1,*)’' '
WRITE(1,¢)’ WHAT SET OF SYSTEN ROOTS DO YOU WANT. . .’
WRITE(1,%)’ '

WRITE(1,*)’' 1.) (-RR1+-J*RI1,-RR2+-J*RI12,-RR3}’
WRITE(1,®)’ '

WRITE(1,*)’ 2.) {-RR1,-RR2,-RR3,-RR4,-RR5}’
WRITE(1,®)' '

READ(1,*,ERR=100) ISET

IF ((ISET.NE.1) .AND.(ISET.NE.2)) GOTO 100

C
GOTO (200,300) ISET
C
C ———=SET 1: TVO COMPLEX PAIRS AND ONE REAL ROOT
C

200 WRITE(1,*)’ '
WRITE(1,10)' ENTER RR1: '
READ(1,*) RR1
WRITE(1,10)’ ENTER RI1l: '
READ(1,*) RI1
WRITE(1,10)' ENTER RR2: '
READ(1,*) RR2
WRITE(1,10)' ENTER RI2: '
READ(1,*) RI2
WRITE(1,®)' '
RR3 = (A1+A7+A10) - (2.0*(RR1+RR2))
WRITE(1,*)’ FOR Kk5=0 ., . . RR3 = ',RR3
WRITE(1,10)' ENTER RR3: '

READ(1,*) RR3
C
C -——=CALCULATE THE OOEFFICIENTS OF CE
c
Ql = RR1*RR1 + RI1*RI1
Q@ = RR2°*RR2 + RI2*RI2
X0 = RR3 * Q1 * Q2
C
Q3 = 2¢(RR1°Q2 + RR2*Q1)
X1 =RR3 * Q3 + Q1 * Q
C
Q4 = 4°RR1°*RR2 + Q1 + @
X2 = RR3I*Q4 + Q3
C
X3 = 2%RR3* (RR1+RR2) + O4
X4 = RR3 + 2*(RR1 + RR2)
c .
GOTO 400
C
C ——-=SET 2: ALL REAL ROOTS
C

300 WRITE(1,*)’' '
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WRITE(1,10)' ENTER RR1: '

READ(1,*) RR1

WRITE(1,10)' ENTER RR2: '

READ(1,*) RR2

WRITE(1,10)’ ENTER RR3: '

READ(1,*) RR3

WRITE(1,10)' ENTER RR4: '

READ(1,*) RR4

WRITE(1,*)’ '

RRS = (A1+A7+A10) - (RR1+RR2+RR3+RR4)
WRITE(1,*)’' FOR K5=0 . . . RRS = ',RRS
WRITE(1,10)° ENTER RRS: '

READ(1,*) RRS

C
C ——=CALCULATE THE COEFFICIENTS OF CE
C
X0 = RR1*RR2*RR3*RR4*RRS
X1 = RRS*(RR3*RR4* (RR1+RR2)+RR1*RR2* (RR3+RR4))
X1 = X1 + RR1°*RR2°*RR3*RR4
X2 = RRS*(RR1+RR2)* (RR3+RR4)+RR3*RR4* (RR1+RR2+RRS)
X2 = X2 + RR1°RR2* (RR3+RR4+RR5)
X3 = RRS* (RR1+RR2+RR3+RR4)+RR3I*RR4+RR1*RR2
X3 = X3 + (RR1+RR2)* (RR3+RR4)
X4 = RR1+RR2+RR3+RR4+RRS
C
C -—=-WRITE OUT THE CHARACTERISTIC EQUATION
C

400 WRITE(1,®)’' '
WRITE(1,*)' '
WRITE(1,*)’ THE CHARACTERISTIC EQUATION IS:'’
WRITE(1,*)' '
WRITE(1,®)’ Sss§ 1.0’
WRITE(1,*)’ Sse4 : ', X4
WRITE(1,*)’ Sss3 : ',X3
WRITE(1,*)’ Sse2 : ', X2
WRITE(1,*)’ See1 : ',)X1
WRITE(1,*)’ S¢*0 : ',X0

DO 550 I=1,5
DO 500 KK = 1,5
H(I,KK) = 0.0
500 CONTINUE

550 CONTINUE

C

C -———-CONPUTE THE H[5,5] MATRIX

C
H(1,5) = P1
H(2,2) = P1*M
H(2,4) = ~P1*A8.
H(2,5) = P1*(A1+A7)
B(3,1) = H(2,2) :
H(3,2) = P1*(AMA*A7-A3%A8)
B(3,3) = H(2,4)

H(3,4) = P1%(M*A5-Al*A8)
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H(3.,5)
H(4,1)
H(4,2)
H(4,3) = H(3,4)
H(4,5) P1% (A2¢AS5-A1°%A6)
B(S,1) = B(4,2)

P1%® (A1%A7-A3%A5-A6)
H(3,2)
P1* (A2¢A8-M*A6)

———-CONPUTE THE F[5] MATRIX

a00

F(1)

X4 (A1+A7+A10)
F(2) X3 (A1*(A7+A10)+A7*A10-A3%AS-A6+M*HP )
F(3) X2 - (A10®(A1%AT-A3CA5-A6)+M * (M*AT-A3%A8)
+ +(A29A5-A1%A6))
F(4) = X1 - (A10%(A2°%A5-A1%A6)+M *(A2°A8-M*A6))
F(5) = X0

-———COMPUTE THE GAIN MATRIX K[5]

an6

CALL LINEQ(K,F,H,WORK,S,6,IER)

WRITE(1,¢)’ '

WRITE(1,*)' THE K MATRIX OF GAINS IS:’
20 FORMAT(/,2X,5(F10.5,2X))

WRITE(1,%)’' '
WRITE(1,*)’' 1ER = ',IER

60TO 50

=——==CALCULATE THE OBSERVER GAINS

anan

590 WRITE(1,*)’' '
WRITE(1,*)’' ENTER THE OBSERVER POLES . . .’
WRITE(1,®)’ '
WRITE(1,10) ' ENTER RR1: '
READ(1,*) RR1
WRITE(1,10) ' BENTER RR2: '
READ(1,¢) RR2
WRITE(1,10) ' ENTER RR3: '
READ(1,*) RR3
WRITE(1,10) ' ENTER RR4: '
READ(1,*) RR4

c

C -—-CAL(U,TE THE COEFFICIENTS OF CE

c
X0 = RR1*RR2*RR3*RR4
X1 = RR1*RR2% (RR3+RR4) + RR3*RR4* (RR1+RR2)
X2 = RR1*RR2 + RR3*RR4 + (RR1+RR2)%(RR3+RB4)
X3 = RR1 + RR2 + RR3 + RR4

c .

C -—-—CALCULATE THE S[4.,4] MATRIX

c

DO 650 I = 1,4
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DO 600 KK = 1,4
S(I,KK) = 0.0
600 CONTINUE

650 CONTINUE

C
8$(1,1)
8(2,1)
8(2,2)
8(3,1)
8(3,2)
8(3,3)
8(3.,4)
S(4,1)
8(4,2)
8(4,3)
S(4.4)

1.0

A1l + A7

1.0
A11%A7-A3%A12-A6
A7

-A2

A3
A2%A12-A11%A6
-A6
A3%A6-A2°A7
-A2

-———-CALCULATE THE T[4] MATRIX

a0a

X3
12
I1
X0

T(1)
T(2)
T(3)
T(4)

8(2,1)
$(3.1)
$(4.1)

C -———-COMPUTE THE GAIN MATRIX G[4)
CALL LINBQ(GA, T, S,VERK,4,5,IER)

WRITE(1,*)’' '

WRITE(1,*)’ THE G MATRIX OF GAINS IS:'
30 FORMAT(/,2X,4(F11.3,2X))

WRITE(1,30) (GA(I),I=1.,4)

WRITE(1,¢)’' '

WRITE(1,*)’ IER = ', IER

GOTO 50



APPENDIX G

The observability of the 1linear fourth order system model
approximation derived in Appendix K, can be determined by examining the
rank of the observability matrix O. The transpose of the system matrix

A is given by:

o 0o o o
AT = |1 -a11 0 A2 _(61)

0 -A2 0 AS

0 A3 1 -A6

The transpose of the output matrix D is given by:

D
pT = 0 0 (62)
0
0

The nonzero elements of the output matrix have been left as
variables for analytical genersglization, By comstructing the
observability matrix from these two matrices [14], the observability can
be determined as a function of the two variables D1, and D2,

From . -the definition of the observability matrix, O can be written

D10 0 0 O 0 0 0

O =]|0 0 D10 -A11D1 A12D2 (A112+A3A12)D1 -(A12(A11+A6))D2
0 D2 0 0 -A2D1 ASD2 (A2A11+A5A3)D1  -(A2A12+A5A6)D2
0 O O D2 A3D1 -A6D2 -(A3(A11+A6)+A2)D1 (A3A12+A6%+A5)D2

56
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The rank of this matrix indicates the observability of the system.
It is easy to see that the ramk is dependent on the variables D1, and
D2, There are three cases of interest to investigate in this system.
The (first case will assume both the cart and pendulum positions will be

measured, or equivalently:

D1 = D2 = 1 . (G3)
For this case, the rank of the observability matrix is:

rank[Q]) = 4 (G4)

When both positiom states are measured, the observability matrix has
full rank, therefore the system is completely observable.
In the second case, only the cart position will be measured and the

pendulum position will be neglected:

Dl = 1 (GS)

D2 = 0 (G6)
Substituting these values into the observability matrix, the rank is:
rank(Q] = 4 (G7)

The observability matrix has full rank and thus is completely observable
when only the cart position is available. This indicates that an
observer may be designed to estimate the full state vector given only

the cart position as an iaput.
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The final case allows the pendulum position as an input, and the

cart position is neglected, or equivalently:

D1 = 0 (G8)

D2 = 1 (@)

For this case, the rank of the observability matrix is:

rank[0] = 3 (G10)

Since the observability matrix is of rank 3, there is one unobservable
state, This system is not completely observable when oanly the pendulum

position is available for input.



APPENDIX H

All computer simulations of the system response were performed on
the PRIME 750 computer system in the MSU Case Center for CAD, utilizing
the DIFFEQ software package [2]. This package integrates a given set of
coupled first order difforontinl equations and provides a graphical
output compatible with Tektronix terminals. The first order equations
are coded into a function subroutine supplied by the user.

There were six models studied in the simulations for stability
analysis, and therefore six function subroutines. These subroutines
hold both fifth order and the equivalent fourth order models for the
nonlinear as well as linearized systems, under linear state feedback
control. Two of the subroutines contain the equivalent fourth order
models, linear and nonlinear, of the system as well as the modified
observer equations. The subroutine names and their relevant functions

are:

LIN4.74 . . . linear 4th order approximation w/direct LSF
LINS.74 . . . linear 5th order model w/direct LSF

NON4.74 . . . nonlinear 4th order approximation w/direct LSF
NON5.74 . . . nonlinear Sth order model w/direct LSF
LOBS4.74 . . . linear 4th order approx. w/modified observer

NOBS4.74 . . . nonlinear 4th order approx. w/modified observer
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s N NeNeNe Ny

cccceccce SUBROUTINE DESCRIPTION ccccece
C
C SUBROUTINE LIN4 .74
C ‘
C THIS SUBROUTINE CONTAINS THE FOURTH ORDER LINEARIZED
C INVERTED PENDULUM MODEL, W/LSF IMPLEMENTED.
C
c€ccceececcccccecccececececcccececeececececcececcceccccccececececccccececccccecceccccccce
C C
cvccececccce VARIABLE IDENTIFICATION Cccccececce
C C
C X THE INDEPENDENT VARIABLE. C
C b 4 VECTOR CONTAINING SOLUTIONS. C
C DERY VECTOR OONTAINING USER DEFINED DERIVATIVES. C
C C
CCCCCCCeeeceecececececcececcecececcccceccccecececccccceccccecccccceccceccccccecccecccecc
C C
csccecccce ENTRY AND STORAGE BLOCK BLOCK 0000
C C

SUBROUTINE FCT(X,Y,DERY)
C

REAL*4 DERY (20),k1,Kk2,Kk3,K4,KS,0,

+ Y (20)0
+ PA (20)

C
C——COMMON FOR FCT PARAMETERS
C

COMMON/FCTCOM/PA
(o
C—DEFINE PARAMETERS OF A, B, AND K NMATRICES
C

DATA A1,A2,A3/2.683,8.276,9 936E-4/

DATA M ,AS5,A6/2091,2,16,32,.63/

DATA A7, .8 /39 2E-3,16.87,406.0/

DATA A10,B1/2804.7,156.08/

DATA Al11,A12,A13,A14/5.711,4.607,1.164,0939/

DATA C1,C2,C3,C4/0.544,1.33E-2,0.439 ,5.26B-2/
C

K1 = PA(1)

K2 = PA(2)

K3 = PA(3)

K4 = PA(4)
C
CCCCCcCceeeeccececceccccecccceccceccecceccceccceccececccceccecccccecceccccecceccceccccccccccce
C C
CPccccccece PROCESS BLOCK ‘ BLOCK 0200
C C
C——CALCULATE CONTROL INPUT
C

U= (K1°Y(1) + K2%Y(2) + K3°Y(3) + K4%Y(4))

IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0

Y(5) = U
C

C——SET DERIVATIVES
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C
DERY(1) = Y(2)
DERY(2) = - A11°Y(2) - A2°Y(3) + A3°Y(4) + A13%0
DERY(3) = Y(4)
DERY(4) = A12°Y(2) + A6°Y(3) - A7%Y(4) - Al14°U
IF (Y(2) .GT. 1.E-5) THEN
DERY(2) = DERY(2) - C1°Y(2)/ABS(Y(2))
DERY(4) = DERY(4) + C3°Y(2)/ABS(Y(2))
ENDIF
IF (Y(4) .GT. 1.E-5) THEN
DERY(2) = DERY(2) + C2°Y(4)/ABS(Y(4))
DERY(4) = DERY(4) - C4*Y(4)/ABS(Y(4))
ENDIF
C
Y(6) = Y(1)*12.0
Y(7) = Y(3)*180.0/3.141926
C

CCcceeceecceccccceecccccecceccccecccecceccceccececccceccccececcecccceccccccccccce
C

RETURN

END
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ccccecc SUBROUTINE DES(RIPTION ccccc
C c
C SUBROUTINE LIN5.74 C
C C
C THIS SUBROUTINE CONTAINS THE FOURTH ORDER LINEARIZED C
C INVERTED PENDULUM MODEL COUPLED TO THE SECOND ORDER C
C LINEARIZED MOTOR MODEL., THE COUPLING PRODUCES A C
C FIFTH ORDER SYSTEM MODEL OVERALL. C
C C
c€cceecececceccceccceeccecceccececcecececccecceccececceeccccccececccececceccceecccecccce
C C
cvccccecece VARIABLE IDENTIFICATION cccceccce
C c
C X THE INDEPENDENT VARIABLE, C
C Y VECTOR CONTAINING SQLUTIONS. C
C DERY VECTOR OCONTAINING USER DEFINED DERIVATIVES, C
C C
€ccecceccceccceccceccecccececcecececececccececccecccecceeccceccccececccccecccccccceccc
C C
c¢sccceccc ENTRY AND STORAGE BLOCK BLOCK 0000
C c

SUBROUTINE FCT(X, Y, DERY)
C

REAL®*4 DERY (20),K1,K2,k3,K4,K5,0,

+ Y (20),
+ PA (20)

C
C-——COMMON FOR FCT PARAMETERS
C

COMMON/FCTCOM/PA
c
C—-DEFINE PARAMETERS OF A, B, AND K NATRICES
C

DATA A1,A2,A3/2.683,8.2769 9 36E-4/

DATA M ,A5,A6/2091,2.16,32.63/

DATA A7,M8.,%9/392E-3,16.87,406.0/

DATA A10,B1/2804.7,156.08/

DATA A11,A12,A13,A14/5,711,4.607,1.164,0939/

DATA c1.cz.c3 .a/o.s“ .1 .338-2 .o .439 ;s .26E-2/
C

K1 = PA(1)

K2 = PA(2)

K3 = PA(3)

K4 = PA(4)

K5 = PA(5)
C
CCCccceccceccccccccececcecceccccccececeecececcececcceccececccccccccecccceccccccccccccce
C c
CPCccccccc PROCESS BLOCK BLOCK 0200
C C
C—=CALCULATE OONTROL INPUT
C

U = (K1°Y(1) + K2%Y(2) + K3*Y(3) + K4°Y(4) + K5°Y(5))
IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0
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Y(6) = U
C
C——-SET DERIVATIVES
C
DERY(1) = Y(2)
DERY(2) = - A1®Y(2) - A29Y(3) + A3%Y(4) + M*Y(S)
DERY(3) = Y(4)
DERY(4) = AS*Y(2) + AG*Y(3) - AT%Y(4) - M*Y(S)
DERY(S) = - B *Y(2) - A10°Y(5) + B1*U
IF (Y(2) .GT. 1.B-5) THIN
DERY(2) = DERY(2) - C1°Y(2)/ABS(Y(2))
DERY(4) = DERY(4) + C3*Y(2)/ABS(Y(2))
ENDIF
IF (Y(4) .GT. 1.E-S) THEN
DERY(2) = DERY(2) + C2¢Y(4)/ABS(Y(4))
DERY(4) = DERY(4) - C4*Y(4)/ABS(X(4))
ENDIF
C
Y(7) = Y(1)*12.0
Y(8) = Y(3)*180.0/3.141926
C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

RETURN

END
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cccccce SUBROUTINE DESCRIPTION ccccce
C C
C SUBROUTINE NON4 .74 C
C c
C THIS SUBROUTINE HOLDS THE NONLINEAR SYSTEM EQUATIONS C
c WITH THE FULL STATE-FEEDBACK CONTROLLER INPLEMENTED. C
C C
Ccccceceececcececcccecccecccceccecccecceccccececcccecccccecccecccccceccccccccceccce
C C
cvcccececce VARIABLE IDENTIFICATION cceccccc
C c
C X THE INDEPENDENT VARIABLE, C
C Y VECTOR CONTAINING SQLUTIONS. C
C DERY VECTOR CONTAINING USER DEFINED DERIVATIVES, C
C C
ccceecceececcececceccecccceecceccccceccceccccececcccececcccececccecccececccccceccccccc
C C
csccccccce ENTRY AND STORAGE BLOCK BLOCK 0000
C C

SUBROUTINE PFCT(X, Y, DERY)
c

REAL *4 DERY (20).,K1,K2,k3,K4,.K,N,J,

+ Y (20) ,MC, NP, B1,B2 ,B3,L,R,
+ PA (20)

C
C——COMMON FOR FCT PARAMETERS
C

COMMON/ FCTCOM/PA
C
C DEFINE PARAMETERS OF EQNS. AND K MATRIX
C

DATA MP,NC/0.0236,0.0385/

DATA D,G/1.2396,32.174/

DATA B1,B2,B3/1,13E-4,0.025,2.16E-4/

DATA K,N/0.0813,32.0/

DATA J,L,R/5.2E-5,6.407E-3,1797/

DATA C1,C2,C3,C4/0.544,1.33E-2,0.439 ,5.26E-2/
C

K1 = PA(1)

K2 = PA(2)

K3 = PA(3)

K4 = PA(4)
C .
ccceecceccecececccecceccccccecececcececcececcceccccecceccceccccececceccececcccccc
C C
cpccceccce PROCESS BLOCK BLOCK 0200
C C
C———CALCULATE CONTROL INPUT C
C

U = (K1%Y(1) + K2°Y(2) + K3%Y(3) + K4°Y(4))

IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0

Y(5) = U
C

C-——SET DERIVATIVES
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DERY(1) = Y(2)
TOP = (K ®* N/(1.356 *R)) * (U-K*N * Y(2))
TOP = TOP + MP * D * Y(4) * Y(4) ¢ SIN(Y(3))
TOP = TOP - MP ¢ G ¢ SIN(Y(3)) ¢ COS(Y(3))
TOP = TOP + (B1/D) * Y(4) * COS(Y(3))
TOP = TOP - (N ¢ N * B3 + B2) ¢ Y(2)
IF (Y(4) .GE, 1.E-5) THEN
TOP = TOP + C2¢ (MC+N*N*J)*COS(Y(3))*Y(4)/ABS(Y(4))
ENDIF
IF (Y(2) .GE. 1.B-5) THEN
TOP = TOP - C1%(MC+N*N*J)*Y(2)/ABS(Y(2))
ENDIF
DERY(2) = TOP/(MC + MP*(SIN(Y(3))®**2) + N®N*J)
DERY(3) = Y(4)
TOP = G*SIN(Y(3)) - DERY(2)*COS(Y(3)) - Y(4)*B1/(MP*D)
IF (Y(4) .GE. 1.E-5) THNN
TOP = TOP - CA®D® ((MC+NoN*J)/(MC+NP+N*N*J))*Y (4)/ABS(Y(4))
ENDIF
DERY(4) = TOP/D

Y(6) = Y(1)*12.0
Y(7) = Y(3)*180.0/3.141926

cceceecececccececcececececceeccceeccecceccccecececcececceccecccceccceecccecccecccecce

C

RETURN
END



66

cccecece SUBROUTINE DESCRIPTION ccecce
c C
c SUBROUTINE NONS .74 C
c C
c THIS SUBROUTINE HOLDS THE NONLINEAR SYSTEM EQUATIONS c
C WITH THE FULL STATE-FEEDBACK CONTROLLER IMPLEMENTED. C
c DAMPING IS INCLUDED IN THIS STATE MODEL. THE MOTOR c
c IS COUPLED TO THIS SYSTEM MODEL ALSO. c
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c c
cvcececcece VARIABLE IDENTIFICATION cceeccce
c c
c X THE INDEPENDENT VARIABLE, c
c Y VECTOR CONTAINING SCOLUTIONS. C
c DERY VECTOR CONTAINING USER DEFINED DERIVATIVES. C
c c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeecee
c . c
cscececcee ENTRY AND STORAGE BLOCK BLOCK 0000
c c
SUBROUTINE FCT(X,Y,DERY)
C
REAL*4 DERY (20),Kk1,K2,Kk3,K4,.K,N,J,
+ Y (20) ,MC, NP, B1,B2,B3,L,R,
+ PA (20)
c
C—-COMMON FOR FCT PARAMETERS
c
OOMMON/FCTCOM/PA
C
c DEFINE PARAMETERS OF EQNS. AND K NATRIX
C
DATA MNP, NC/0.0236,0.0385/
DATA D,6/1.2396,32.174/
DATA B1,B2,B3/1.138-4,0.025,2.16E-4/
DATA K,N/0,0813,32.0/
DATA J,L,R/5.2E-5,6.407E-3,17917/
DATA C1,C2,C3,C4/0.544,1.33E-2,0.439 ,5.26B-2/
C
K1 = PA(1)
K2 = PA(2)
K3 = PA(3)
K4 = PA(4)
K5 = PA(S)
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
c C
CPccccccece PROCESS BLOCK BLOCK 0200
C C
C—CALCULATE OONTROL INPUT C
c

U= (K1*Y(1) + K2*Y(2) + K3°Y(3) + K4*Y(4) + K5°*Y(5))
IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0
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Y(6) = U

C-—SET DERIVATIVES

C

C

DERY(1) = Y(2)
TOP = K®N®Y(5)/1.356 + MNPeD*Y (4)°Y(4)¢SIN(Y(3))
TOP = TOP - MP ¢ G * SIN(Y(3)) * COS(Y(3))
TOP = TOP + (B1/D) * Y(4) * C0S(Y(3))
TOP = TOP - (N * N * B3 + B2) ¢ Y(2)
IF (Y(4) .GE. 1.BE-5) THEN
TOP = TOP + C2¢ (MC+N®N*J)*COS(Y(3))*Y(4)/ABS(Y(4))
ENDIF
IF (Y(2) .GB. 1.E-5) THEN
TOP = TOP - C1¢(MC+N*N®J)*Y(2)/ABS(Y(2))
ENDIF
DERY(2) = TOP/(MC + MP*(SIN(Y(3))®*2) + NeNeJ)
DERY(3) = Y(4)
TOP = G*SIN(Y(3)) - DERY(2)*COS(Y(3)) - Y(4)*B1/(MP*D)
IF (Y(4) .GE, 1.E-5) THEN
TOP = TOP ~ CA*D* ((MC+N*N*J) /(MC+MP+NoN*J))*Y(4)/ABS(Y(4))
ENDIF
DERY(4) = TOP/D
DERY(5) = (U - R®Y(5) - K*N°*Y(2))/L

Y(7) = Y(1)*12.0
Y(8) = Y(3)¢180.0/3.141926

cceececcececceccccecccecceccceccccceccceccececccececcecccececcececccecceccecceccecceccce

c

RETURN
END
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Cccccece SUBROUTINE DESCRIPTION CCcCcC
C C
C SUBROUTINE LOBS4 .74 C
C C
C THIS SUBROUTINE CONTAINS THE FOURTH ORDER LINEARIZED C
C INVERTED PENDULUMN MODEL, AND THE OBSERVER MODEL. C
C C
CCCCeccececececceccecceccecceccccecececcccecccccccccecccccceccccecccccecccccccecccccce
C C
cvceeccccce VARIABLE IDENTIFICATION cccececcce
C C
C X THE INDEPENDENT VARIABLE. C
C Y VECTOR OONTAINING SOLUTIONS. C
C DERY VECTOR OONTAINING USER DEFINED DERIVATIVES. C
Cc C
CCcccececcecececcccececeececcececccececcceccecccececececccccecccececcccccececcececcececcccc
C C
cscccecccc ENTRY AND STORAGE BLOCK BLOCK 0000
C C

SUBROUTINE FCT(X, Y,DERY)
C

REAL*4 DERY (20),K1,K2,k3,K4,KkS5,0,

+ Y (20),
+ PA (20)

C
C———COMMON FOR FCT PARAMETERS
C

OOMMON/FCTCOM/PA
C
C——DEFINE PARAMETERS OF A, B, AND K MATRICES
C

DATA A1,A2,A3/2.683,8.2769 9 36E-4/

DATA M ,A5,A6/2091,2.16,32.63/

DATA A7, ., /392E-3,16.87,406.0/

DATA A10,B1/2804.7,156.08/

DATA A11,A12,A13,A14/5.711,4.607,1.164,0939/

DATA C1,C2,C3,C4/0.544,1,33E-2,0.439 ,5.26E-2/
C

K1 = PA(1)

K2 = PA(2)

K3 = PA(3)

K4 = PA(4)
C

Gl = PA(S)

G2 = PA(6)

G3 = PA(7)

G4 = PA(8)
C
Cccceececcecccceccececcceccccecccecccceccecccecccececcccecccccecccceccceccccecccccce
C C
CPCCCCCCcCcC PROCESS BLOCK BLOCK 0200
C C

C-—CALCULATE OONTROL INPUT
C



U = (K1*Y(S) + K2°Y(6) + K3%Y(7) + K4*Y(8))
IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0

YQ) =0
C
C———SET DERIVATIVES
c
DERY(1) = Y(2)
DERY(2) = - A11¢Y(2) - A2°Y(3) + A3*Y(4) + A13°*U
DERY(3) = Y(4)
DERY(4) = A12¢Y(2) + A6°Y(3) - A7*Y(4) - A14°0U
c
IF (Y(2) .GT. 1.BE-S5) THEN
DERY(2) = DERY(2) - C1%Y(2)/ABS(Y(2))
DERY(4) = DERY(4) + C3%Y(2)/ABS(Y(2))
ENDIF
IF (Y(4) .6T. 1.E-5) THEN
DERY(2) = DERY(2) + C2%Y(4)/ABS(Y(4))
DERY(4) = DERY(4) - C4*Y(4)/ABS(Y(4))
ENDIF
C
Y(10) = Y(1)*12.0
Y(11) = Y(3)*180.0/3.141526
C
C——OBSERVER SYSTEN
C
ERR = Y(1) - Y(5)
c
DERY(S) = Y(6) + G1 * ERR
DERY(6) = — A11¢Y(6) - A2°Y(7) + A3+%Y(8) + A13*U + G2 * ERR
DERY(7) = Y(8) + G3 * ERR
DERY(8) = A12*Y(6) + A6*Y(7) - AT*Y(8) - Al14°U + G4 * ERR
C
IF (Y(6) .GT. 1.E-5) THEN
DERY(6) = DERY(6) - C1*Y(6)/ABS(Y(6))
DERY(8) = DERY(8) + C3%Y(6)/ABS(X(6))
ENDIF
IF (Y(8) .GT. 1.BE-5) THEN
DERY(6) = DERY(6) + C2¢Y(8)/ABS(Y(8))
DERY(8) = DERY(8) - C4*Y(8)/ABS(Y(8))
ENDIF
C
Y(12) = Y(5)*12.0
Y(13) = Y(7)*180.0/3.141526
C

cccceecceccecccecceccccecececccececceecccccecceccececcecccccecccecccecccecceccccccc
C

RETURN

END



70

ccccccc SUBROUTINE DES(RIPTION ccccce
c C
C SUBROUTINE NOBS4 .74 C
C C
C THIS SUBROUTINE HOLDS THE NONLINEAR SYSTEN EQUATIONS C
C AND THE LINEAR OBSERVER MODEL, c
C c
cccececcecccecccecccecececcecceccecccecccccceccccececceeccecccecceccccecececcececcece
C C
cvecccccce VARIABLE IDENTIFICATION ccccecccce
C C
C X THE INDEPENDENT VARIABLE, C
C Y VECTOR CONTAINING SOLUTIONS. c
C DERY VECTOR CONTAINING USER DEFINED DERIVATIVES, C
c C
ccccecceecccecececcececcccececcecececcecccceecccecccceccccecceccecceccececccceccccececcce
C C
csccccccce ENTRY AND STORAGE BLOCK BLOCK 0000
C - C

SUBROUTINE FCT(X,Y,DERY)
C

REAL*4 DERY (20),K1,K2,K3,K4,K,N,7J,

+ Y (20) ,MC, NP, B1 ,B2 ,B3,L,R,P1,
+ PA (20) ,A2,A3,A6,A7,A11,A12,A13,A14

C
C-—COMMON FOR FCT PARAMETERS
C

COMMON/FCTOOM/PA

C
C DEFINE PARAMETERS OF EQNS. AND K NATRIX
C

DATA NP, MNC/0.0236,0.0385/

DATA D,6/1.2396,32.174/

DATA B1,B2,B3/1,13E-4,0.025,2.16E-4/
DATA K,N/0.0813,32.0/

DATA J,L,R/5.2E-5,6.407E-3,1797/

c
DATA A1,A2,A3/2.683,8.2769 9 36E-4/
DATA M ,AS,A6/2091,2.16,32.63/
DATA A7,M.,8/392E-3,16.87,406.0/
DATA A10,P1/2804.7,156.08/
DATA A11,A12,A13,A14/5.711,4.607,1.164,0939/
DATA C1,C2,C3,C4/0.544,1.33B-2,0.439 ,5.26E-2/
C
K1 = PA(1)
K2 = PA(2)
K3 = PA(3)
K4 = PA(4)
C
Gl = PA(S)
G2 = PA(6)
G3 = PA(7)
G4 = PA(8)
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ccceceecceccceccccceccecccecccecccccecccccecccecccccecceccccccccccececceccccc

C C
cPcccccccce PROCESS BLOCK BLOCK 0200
C C
C——CALCULATE CONTROL INPUT C
C
IF (PA(20) .BQ. 0.0) THEN
U = (K1°Y(1) + K2°Y(2) + K3%Y(3) + K4°*Y(4))
ELSE
U = (K1*Y(5) + K2%Y(6) + K3%Y(7) + K4°Y(8))
ENDIF
C
IF (PA() .BQa, 1.0) THEN
IF (ABS(U).GT.15.0) U = INT(ABS(U)/U)*15.0
ENDIF
C
YO®) = U
C
C——SET DERIVATIVES
C
DERY(1) = Y(2)
TOP = (K ®* N/(1.356 *R)) * (U-K *N * Y(2))
TOP = TOP + MP ¢ D * Y(4) ¢ Y(4) * SIN(Y(3))
TOP = TOP - MP ®* G * SIN(Y(3)) * COS(X(3))
TOP = TOP + (B1/D) * Y(4) * C0S(Y(3))
TOP = TOP - (N * N * B3 + B2) * Y(2)
IF (Y(4) .GE, 1.E-5) THEN
TOP = TOP + C2¢ (MC+N®N*J)*CO8(Y(3))*Y(4)/ABS(Y(4))
ENDIF
IF (Y(2) .GE. 1.E-5) THEN
TOP = TOP - C1% (MC+NeN*J)*Y(2)/ABS(Y(2))
ENDIF
DERY(2) = TOP/(MC + MP*(SIN(Y(3))**2) + NeNe*J)
DERY(3) = Y(4)
TOP = G*SIN(Y(3)) - DERY(2)*COS(Y(3)) - Y(4)*B1/(MP*D)
IF (Y(4) .GB. 1.E-5) THEN
TOP = TOP - CA*D*® ((MC+NeNe*J)/(NC+MP+N*N*J))*Y(4)/ABS(Y(4))
ENDIF
DERY(4) = TOP/D
c
Y(10) = Y(1)*12.0
Y(11) = Y(3)*180.0/3.141926
C
C--——OBSERVER SYSTEM
C
ERR = Y(1) - Y(5)
C
DERY(5) = Y(6) + Gl * ERR
DERY(6) = - AL1®Y(6) - A2°Y(7) + A3*Y(8) + A13¢U + G2 * ERR
DERY(7) = Y(8) + G3 * ERR
DERY(8) = A12°Y(6) + AG*Y(7) - A7*Y(8) - Al4*U + G4 * ERR
C

IF (PA(11) .BQ. 1.0) THEN
IF (Y(6) .GT. 1.E-5) THEN
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DERY(6) = DERY(6) - C1%Y(6)/ABS(Y(6))
DERY(8) = DERY(8) + C3*Y(6)/ABS(Y(6))
ENDIF
IF (Y(8) .GT. 1.BE-5) THEN
DERY(6) = DERY(6) + C2*Y(8)/ABS(Y(8))
DERY(8) = DERY(8) - C4*Y(8)/ABS(Y(8))

ENDIF
ENDIF
C
Y(12) = Y(5)*12.0
Y(13) = Y(7)*180.0/3.141926
C

C€ccceceeeccecceccceccceecccecececccccccccececcececcccccecccccccccccceccccecceccc
C

RETURN

END



APPENDIX 1

As with any real control system, an accurate parameter study must
be completed in order to determine the various coantrol gains which will
be implemented. In this particular system, several sub-systems could be
identified and the parameters determined separately for each.

DC_Segvo MNotor

The drive motor used in the control system was a 12 volt D.C,
Specialty servo motor. There are six parameters required to define the
linear motor model given in Appendix A. Of these, the most difficult
parameter to determine experimentally is the armature inertia, therefore

the manufacturer specification has been used.
Jo. = 0.005 oz-in-s® = 2.6B-5 ft-1b-s*

On the electrical side of the model, the armature inductance is in
series with the armature resistance. The inductance of a series RL
circuit can be measured directly with an impedance bridge. The HP

4260-A Universal Bridge was used to determine this parameter value as:
L = 6.41E-3 Henry

The gyrator constant couples the mechanical and electrical sides of
the motor. This parameter can easily be determined experimentally using

one of the constitutive relations for a gyrator:

73
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Vb = kg uy (11)

By applying a known and constant armature speed (u-), a back emf (Vp) is
generated. For a series of fixed input speeds, a set of voltages cam be
read. Vhen this data is plotted, the slope of the line is the gyrator

constant (kE).
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Figure I1: Determination of Gyrator Constant

For this DC servo, the linear constitutive relation defimned in (I1)
correctly models the physics of the motor as the plotted data of Figure
I1 indicates. The slope of the 1lime, 1i.e. the electrical gyrator

constant, is thus:
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kp = 0.0813 V-s/rad

In standard bond graph use, only ome constant is required for a gyrator.
Due to the particular choice of units here, another gyrator constant
must be defined such that power will be conserved through the gyrator.
A torque constant which accounts for this choice of units, is related to

the electrical constant by:

k. = kg / 1.35 (ft-1b/amp) (12)

The two damping parameters, electrical resistance and mechanical
viscous damping, are not easily measured. Looking at the two equations
of motion for the linear motor, a simple procedure to oxpotiiontally
determine these parameters can be obtained [6]. The two equations are
very similar in form: omne representing the electrical side, and the
other representing the mechanical side.

di

dt

duy
t'-J.-———b-m.-fkti (14)

dt
Applying a voltage to the motor under no-load conditions, the
armature rotational speed and current will reach a steady state. Thus
both derivatives in (I3) and (I4), and the torque input will be zero,
leaving two simple linear equations. The system states 4, and i can be

measured for a range of input voltages. For each of the test points,

values for R and b, can then be computed from equations (I3) and (I4).
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The linear motor model breaks down in representing the actual motor
with the given test data. Instead of constant damping values, the

parameters are actually functions of w,, as shown in Figure I2.
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Figure I2: Nonlinear damping parameters of DC motor

To use the linear model, constant values for the damping parameters are
required. A simple arithmetic mean was chosen, which effectively

provides a linearization about some nominal @,. The computed values are

given by:

R = 1797 8

b, = 10.81E-5 ft-1b-s

Dgive Train

The motor armature shaft is connected through a gear train to the
belt drive attached to the cart, It is assumed that there are no
dynamics between the armature motion and the cart motion, The cart
motion is rigidly connected to the armature motion., Therefore a simple

linear transformer between armature position and ocart position is
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needed. This parameter is measured to be:
n = 32.0 rad/ft

The gear train also has an inertia and mechanical damping
associated with it. Due to the rigid coupling assumption, this imertia
and damping can be lumped into the motor parameters. The equivalent

inertia of the motor armature, and the equivalent damping are:

J = 5.,2E-5 ft-1b-s?

b, = 2,16E-4 ft-1b-s

. This set of equivalent parameters will be used for the motor
parsmeters thus eliminating the direct inclusion of the gear train.
Pendulum

The pendulum has three parameters associated with it, they are the
equivalent mass, equivalent 1length, and eqivalent viscous damping.
Since the model used here assumes a massless rod, with no 1loss of
generality, the equivalent mass is just the total mass of the pendulum.
The equivalent length is the distance from the rotational axis to the

pendulum center of gravity. These values are determined to be:

m = 0,76 1bm, = 0.0236 slugs

d = 14,87 in, = 1,24 feet

b, = 1,13B-4 ft-1b-s

Cart

The cart also has three parameters associated with it. The first,
and oasiest to dotermine, is the cart mass. Once again, due to the

rigid connectioa between the cart and armature via the gear train, the
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connecting drive belt will be lumped into the cart mass. The equivalent

cart mass is thus measured to be:
M = 1.32 1tm = 0.041 slugs

The most difficult cart parameters to determine were the equivalent
damping coefficients. A limear combination of viscous and coulombd
damping effects have been assumed in the model formulation. These
parameter values are determined experimentally utilizing a comservation
of emergy primciple ([12].

Taking the first nonlinear system equation (A13), from Appendix A,

and fixing the pendulum such that:
0 =06 =6 =0 (15)

the second nonlinear system equation (Al4), can be eliminated, and (A13)

can then be writtem as:
m'X + b'x + f ggn(x) = F(t) (16)
where the primed parameters are defined to be:

m''= M + =m + 12y (17)

b’ = 0%, + b, + kgken®/R (18)

Equation (I6) represents a simple cart mass being forced against viscous
and ooulomb frictioam, and includes the reductionm of order approximation
derived in Appendix K. By driving this system with a sinusoidal force,
a nearly sinusoidal cart output motiom is expected. This experimeant can
actually be performed on the real system. Multiplying the four force

terms of (I6) by dx, and integrating the whole equation over ome cycle,



an energy eoquation is obtained:

J‘c(l"x')dx + Ic(b'i)dx + fosln(i)dx = IcFolin(uft)dx (d)

The result (B ), is a representation of the flow of energy through one
cycle of the forcing input.

Due to the presence of the noalimear coulomb damping term, the
system output x(t) will not be purely sinusoidal for a sinusoidal
foroing input. Since the coulomb damping magnitude is assumed small,

the output will approximately be sinusoidal, and can be represented by:
x(t) = X sin(uet - @) (110)

Evaluating the terms in the energy equation (P ) by direct substitution

of (I10), the energy terms become:

Ic (m'x)dx = 0 (111)

(The net momentum in ome cycle is zero.)

Ic (b'x)dx = nb'weX’ (112)

Ic f.sgn(x)dx = 4f£.X (113)

The final term in the energy oquatiom is the total emergy input to the
system. The value of this integral can be obtained by plotting the
input force F(t) versus the actual output x(t). A hysteresis loop is
obtained, and the area inside the loop is, by definition, the total work

input ia one cycle.

L Fosin(wgt)dx = W (114)
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Experimentally fixing the pendulum such that (I5) is satisfied, and
plotting the sinusoidal input force versus the resulting cart position,
nine hysteresis loops were obtained. Several sample hysteresis loops
are shown in Figure 1I3. These loops were digitized on the PRIMOS
Digitizing facility in the Case Center [2]. The areas inside the
digitized loops were then computed with the program AREA, developed to
compute areas inside digitized closed coordinate boundaries. The

program AREA is included at the end of this appendix.
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Figure I3: Experimental Hysteresis Loops
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Rewriting the enmergy equation, using the results of the
substitutions (I11) through (I14), a linear relation cam be obtained
where the slope is the viscous damping coefficient, and the y—intercept

is the coulomb frictionm force:

v xwg Xj
— === o+ 1 (115)
‘xi 4X;
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Figure I4: Damping terms from the energy equation

Figure 14 shows a plot of the data in the form of (I15), from nine
hystoresis 1loop experiments at various frequencies and amplitudes. If
the assumption of a linear combination of viscous and coulomdb damping

terms is valid, then the data should lie along a straight line. Since
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this is not the case with the real data, the damping present in the cart
is more complex than this model will predict. The slope and iantercept

from a least squares regression are:

b' = 0.4119 1lb-s/ft

f, = 0.0698 1b

Substituting the viscous damping result into the defining relationm,

equation (I8), the equivalent viscous cart damping coefficient is:

b, = 0.025 1b-s/ft

Sensor Calibration

The experimental system has two position sensors to measure the
pondulum and cart positions. These sensors have a voltage output which
is functionally related to the respective positions. To use the voltage
information, the functional dependance must be determined. The voltage
signals from the sensors are read by an A/D converter which digitizes
the voltages. For simplicity, this calibration was made between the
physical coordinates and the discrete digital representation.

The cart sensor is s ten turn linear rotational potentiometer
connected to the drive train shaft. This allows a measurable cart

motion of about three feet,
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Discrete A/D cart position

1000 v | v 1 v T v | \J T v T v 1 T

-8 -6 -4 -2 0 2 4 6
Cart position: X (inches)

[o B

Figure I5: Calibration of linear cart potentiometer sensor

The slope of the line in Figure IS is the calibration constant between
the physical cart coordinate (x) and the digital computer state

representation.

C, = -1225.2 ft™'

A Hall Effect transducer is used for the pendulum position sensor.
This device does not have a linear transfer function, as seen in Figure
I6. Ia order to use the transducer, the function must be linearized
around the operating point (6=0), Since a stable pendulum will always

be near the origin, this linearized approximation will be valid.
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Co = -1241.3 rad™"

3000-
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Pendulum position: THETA (deq)

Figure 16: Calibration of Hall Effect transducer

Power Amplifiex

The computer applied control voltages to the motor through a D/A
output channel. The +10.0 to -10.0 volt D/A output signal is amplified
through a power amplifier which has a comstant linear gain of 1.58. It
is this power amplifier which supplies the required ocurrent to drive the
DC servo motor. The D/A converter has a linear gain of 204.75 V*
between actual and discrete voltages. For simplicity, these two gains
were lumped together to provide a linear «relationship between the

digital control voltage, and the actual voltage applied to the motor.
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This linear constant is:

Cy = (4095./20.)/1.58

+9vV

]

; 2N6282
0.8uF 53

- —14 0.8uF
1(‘1. —

0.47uF  on6285 . [“206285

2N6282

—— I
3.9+ al -9v |
o BTN
\ . A
3.9kn
3.9kn 560N3% J:E 5600
1 !

Figure I7: Power amplifier schematic diagram
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PROGRAN AREA
THIS PROGRAM READS IN A DATA FILE OF (X,Y) COORDINATE
PAIRS WHICH DEFINE A TWO DIMENSIONAL SURFACE. AFTER
ALL THE POINTS ARE READ IN, THE AREA CONTAINED BY THE
CORDINATE BOUNDARY WILL BE COMPUTED.
————DECQLARE ALL VARIABLES

REAL X(100),Y(100)

INTEGER EROR,I,N,J

CHARACTER FILNAMN®32
===—=GET THE FILENAME CONTAINING THE DATA

10 WRITE(1,'(/,5X,A,$)’) ’'DATA FILENAME: '
READ(1,’(A)’,ERR=10) FILNAM

OPEN (S5, FILE=FILNAN, ERR=10, STATUS="QLD’)
-—=<READ IN ALL THE DATA

I=1
EROR = 0

20 READ(S,*, END=40,FRR=30) X(I),Y(I),J

I=1+1
GOTO 20

30 EROR = EROR + 1
GOTO 20

40 CLOSE(S)

IF (EROR .GT. 0) THEN
WRITE(1,#)’ '

WRITE(1,*) 'THERE WERE',EROR,’ READ ERRORS IN ',FILNAM

ENDIF

N=1I-1

SUMN = 0
——=—=CALCULATE THE AREA

DO S0 I=1,N
IF (I .EQ. 1) THEN
-SUM = SUM + (X(N)-X(2))*Y(1)
ELSE IF (I .BQ. N) THEN
SUM = SUM + (X(N-1)-X(1))*Y(N)
ELSE
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SUM = SUM + (X(I-1)-X(I+1))*Y(I)
ENDIF
50 CONTINUE
SUM = ABS(SUN/2.0)
~———WRITE THE RESULTS TO THE TERMINAL

WRITE(1,'(/,5X,A,F14.6) ') 'AREA = ',SUM
WRITE(1,¢)' '



APPENDIX J

The following control program was written in FORTIRAN IV for use on
a single user DEC minicomputer under the RT-11 operating system. Though
this program is implemented on the DEC LSI-11/23+, it will run on most
DEC computers under RT-11, Standard DEC vector addresses for the
various system devices have been used [S5], uid due to the modular
structure of the code, minor changes can easily be made for nonstandard

vector addresses.

PROGRAN PEND

This is the main program which accesses all the control
subroutines for the inverted pendulum.

(STEVE C. SOUTHWARD, B.S.M.E]
———==0Overall program Logistics
PEND [Main program: PEND,.FOR]

IPOSN [Subroutine: IPOSN,FOR]
SANPLE [Subroutine: SAMPLE, NAC]

CGAINS [Subroutine: CGAINS.FOR]
CONTRL [Subroutine: CONTRL.FOR]
DISRT [Subroutine: DISCRT,FOR]
RUNLSF [Interrupt Service: RUNLSF.FOR]
PAUSE [Subroutine: CLOCK.FOR]

SETICK (Interrupt Service: CLOCK.FOR]

Format Note: name [type: storage filenamel

N e N e N s N N e Ee N e e Ne N Nr e N e Ne N No Ne Nr Es N Nx e e Ky ]

REAL G(24),F(24)

0

LOGICAL®*1 IDATA
88.
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DIMENSION IDLIST(21)
EXTERNAL SETICK
COMMON /ADDR1/ IKSR, IKDR,IP(H,ICCH, ITCK
COMMON /ADDR2/ 1PSR, IPDR, IBPR, IADVEC, IADERR
COMMON /ADDR3/ ICSR, IADR, IDAR, IADBUF
COMMON /MISC2/ F,G,IRCZ,IRPZ
COMMON /TIME/ 1I,IEND
———=Initialize the variables
DATA IRCZ,IRPZ/0,0/

——=These control gains place the poles at {-3,-4,-5,-6

F(1) = 11.854 1K1 /

F(2) = 16.174 1IK2 LSF controller
F(3) = 175.722 IK3 gains

F(4) = 33,0895 1K4 /

——-—These gains place the observer poles at {-8,-8,-9,9)

F(5) = 28,285 161 /

F(6) = 303973 1G2 Observer
F(7) = -425.307 1G3 gains

F(8) = -2331.515 1G4 /

FO) = 1.0/(1.0 + 3.0) lposition

F(10)= 1.0 - FO9) 1£il ter

F(11)= 5.7107 1A11

F(12)= 8.276 1A2

F(13)=9 9357E-4 1A3 /

F(14)= 1,163 1A13 System
F(15)= 4.6069 1A12 parameters
F(16)= 32.631 1A6 /

F(17)= 3 91757E-3 1A7

F(18)= 093876 1A14

F(19)= 1.0/(1.0 + 10.0) lderivative
F(20)= 1.0 - F(19) 1filter

F(21)= 0.76078 1c1 /

F(22)= 1,75854E-2 1C2 Coulomb damping
F(23)= 0.61373 1C3 coefficients
F(24)= 693375E-2 1c4 /

Set up address registers

IPSW = ”102 Iprocessor status word
IKSR = "177560 lkeyboard status register
IKDR = IKSR + 2 lkeyboard data register
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IPSR = IKSR + 4 Iprinter status register
IPDR = IKSR + 6 Iprinter data register

ICSR = "170420 Ilreal time clock status reg.
IBIR = ICSR + 2 lclock buffer preset reg.
ICKV = "440 lclock vector address

IDAR = "170440 ID/A base output addr.: ch.0
IADR = “170400 I1A/D control status register

IADBUF = IADR + 2

1A/D buffer register

IADVEC = "400 l1A/D done interrupt vector
IADERR = JADVEC + 4 IA/D error interrupt vector
IBELL = "7 lbell tone

IZERO = "4000

lzero valus for D/A converter

Protect System from crash
IDLIST(1) = IKSR lkeyboard status
IDLIST(2) = IPEEK(IKSR)
IDLIST(3) = IPSR !lprinter status
IDLIST(4) = IPEEK(IPSR)
IDLIST(S) = IDAR lzero D/A channel 0
IDLIST(6) = IZERO
IDLIST(7) = IDAR + 2 l1zero D/A channel 1
IDLIST(8) = IZERO
IDLIST(9) = IDAR + 4 lzero D/A channel 2
IDLIST(10) = IZERO
IDLIST(11) = IDAR + 6 i{zero D/A channel 3
IDLIST(12) = IZERO
IDLIST(13) = IADR 1A/D status
IDLIST(14) = 0
IDLIST(1S5) = IADVEC IA/D done interrupt vector
IDLIST(16) = IPEEK(IADVEC)
IDLIST(17) = ICSR lclock status
IDLIST(18) = IPEEK(ICSR)
IDLIST(19) = IPSW iprocessor status
IDLIST(20) = IPEEK(IPSW)
IDLIST(21) = 0 lend of list marker

CALL DEVICE(IDLIST)

Format Statements

500 FORMAT(/,/.,/,22X, ' INVERTED PENDULUM CONTROL ROUTINES',
+ /,221,' ')

510 FORMAT(/,/,22X, 'Enter the PENDULUM A/D channel: ',$)

$20 FORMAT(/,22X, 'Enter the CART A/D channel: ',$)

530 FORMAT(/,/,22X,'Enter the D/A output chanmel: ’,$)

540 FORMAT(12)

550 FORMAT(/,/,28X,'- MAIN MENU-——---',

/./.,18X,'(I)nitialize the zero reference positions’,

/.,/,18X,'(G)ain settings for LSF control B Observer’',

/.,/.,18X%,'(S)tatus of Zero positions’,

/.,/.,18%,'’ (R)un the active controller’,

/,/,18%,' (Quit the program’,

/././,22X,'Choose one of the sbove. . . ',$)

+ 4+ +
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560 FORMAT(/,/,22X, 'STATUS of Zero Referemces. . .',
+ /,22%,° "
570 FORMAT(/,22X,’'CART zero reference: ', 16)
580 FORMAT(/,22X, 'PEND zero reference: ', I6)
590 FORMAT(/,/,22X,'Bxiting Control Routime. . .’',5(/))
600 FORMAT(/./,18X,'Zero reference positions NOT initialized’)

Calibrate the PAUSE subroutine

IEND = 10000 lset initial value
IR =1 . lhighest priority interrupt

10 1 = INTSET(ICKV, IR,1,SETICK) lattach to RTC vector
IF (1 .BEQ. 0) GOTO 20

WRITE(7,¢) ' INTSET error -- RTC vector, CODE = ',1I
GOTO 10

20 IRATE = "111 lset up clock to gemerate

ICOUNT = -16667 lan interrupt after 1 tick

CALL IFOKE(IBFR, ICOUNT)

CALL IPOKE(ICSR, IRATE) Istart the clock

DO 30 I = 1,10000 ldo nothing loop while -
30 CONTINUE Ilwaiting for ome tick

ITCK = IEND + 1
WRITE(7,*)’'ITICK = ',ITCK

-Set zexo (0) volts on the D/A output

DO 40 1 = 0,6,2 1
CALL IPOKE(IDAR+I, IZERO) l1zero out all 4 channels
40 CONTINUE !

~Goet the cart and pendulum A/D channels

WRITE(7,500) linitial header

50 WRITE(7,510) lget PEND channel first
READ (5,540 ,ERR=50) IPCH
IF ((IPCH.GT.15).0R.(IPCH.LT.0)) GOTO 50

60 WRITE(7,520) lget CART channel second
READ (5,540 ,ERR=60) ICCH
IF ((ICCH.GT.15).0R,(ICCH.LT.0)) GOTO 60
IF (ICCH.BQ.IPCH) GOTO 60

70 WRITE(7,530) lget D/A output channel
READ (5,540, ERR=70) IDACH
IF ((IDACH.LT.0) .OR.(IDACH.GT.3)) GOTO 70
IDAR = IDAR + IDACH * 2

Print out the options menu
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80 WRITE(7,550)
CALL PAUSE(50,ITCK)

Disable the keyboard

I = IPEEK(IKSR) .AND. "177477

CALL IPOKE(IKSR,I)
—~==Wait for keyboard iaput
90 CALL IPOKE(IPDR, IBELL)

100 I = IPEEK(IKSR) .AND. "200
IF (I .Ba. 0) GOTO 100

IDATA = IPEEK(IKDR)

Check for a valid character

Iprint the menu options
lwait for printing to finish

lclear keyboard interrupt

Iring the bell

Itest bit 7 of IKSR

!1a key has been pressed

IF ((IDATA.NE.'I’') . AND. (IDATA.NE,'G’) .AND, (IDATA.NE, 'S’') .AND.
+ (IDATA.NE, 'R’) .AND, (IDATA.NE.'Q’)) GOTO 90

CALL IPOXKE(IPDR, IDATA)
-——-=Enable the keyboard

I = IPEEK(IKSR) .OR. “100
CALL IPOKE(IKSR,I)
WRITE(7,*)’ '

————Go to the proper place

GOTO 110
GOTO 120
GOTO 130
GOTO 140
GOTO 150

IF (IDATA
IF (IDATA
IF (IDATA .Ha.
IF (IDATA .Ba.
IF (IDATA .REQ.

OII)
'6')
lsl)
ll')
‘Q’)

Iprint the proper key

lset bit 6 of IKSR

——===INITIALIZE the zero reference positions

110 CALL IPOSN

GOTO 80

Ireturn to menu

-——==GAIN settings for LSF control law

120 CALL OGAINS
GOTO 80
~=——==8STATUS of Zero positions

130 WRITE(7,560)

Ireturn to menu

linitial header
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WRITE(7,570) IRCZ
WRITE(7,580) IRPZ

GOT0 80 Ireturn to menu
———=RUN the active comtrol routine
140 IF ((IRCZ.NE.O).AND.(IRPZ.NE.0)) GOTO 145

WRITE(7,600) izero references
GOTO 80 lnot initialized

145 CALL CONTRL
GOTO 80 {return to menu
-——=QUIT the program
150 WRITE(7,590) lexit message
CALL PAUSE(60,ITCK)
CALL EXIT

END
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SUBROUTINE IPOSN

This subroutine allows the user to define the initial
roference positions of the cart and pendulum,

REAL G(24),F(24)
LOGICAL®*1 IDATA

COMMON /ADDR1/ IKSR, IKDR, IPCH, ICCH, ITCK
COMMON /MISC2/ F,G,IRCZ, IRPZ

———-Format Statements

100 FORMAT('+’,26X,14,12X,14)

110 FORMAT(/,/./,20X, ' INITIALIZE the Reference Positions’,
/,20%,’ ',

/.,/.,/,15%,'Nove the cart and pendulum to their respective’,
/./,15X,'ceference positions to define the ZEROES.'’,
/.,/.,/,15%,’Press ''P'' to define PENDULUM reference . . .',
/./,15X, 'Press ''C'’ to define the CART referemce . . .’',
/./.,15X,'Press ''0’' to RESTART ., . .',

a0

ann

a00n

+ + 4+ 4+ 4+ 4+ 4+

———==Nain Routine

WRITE(7,110)
CALL PAUSE(100, ITCK)

~=—==Turn off the keyboard

1 = IPEEK(IKSR) .AND. "177477
CALL IPOKE(IKSR,I)

5 ICDUN = 0
IPDUN = 0

—-——Start Sampling

10 IF (ICDUN .EQ. 1) GOTO 20
CALL SANPLE(ICCH, ICVAL, IFLAG)
IF (IFLAG.NE.0) GOTO 40
IRCZ = ICVAL

20 IF (IPDUN .EQ. 1) GOTO 30
CALL SANPLE(IPCH, IPVAL, IFLAG)
IF (IFLAG.NE.0) GOTO 40
IRPZ = IPVAL

30 WRITE(7,100) IRCZ, IRPZ

CALL PAUSE(7,ITCK)

/./././,27X, 'CART’ ,10X, ' PENDULUN' ,/,/)

Iprint the instructions
lwait for RT

lclear keyboard interrupt

lreset the flags

lget CART A/D sample

lget PEND., A/D sample

lwait for 7 ticks
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———=Check for keyboard input

I = IPEEK(IKSR) .AND. "200 Itest bit 7 of IKSR
IF (I .M. 0) GOTO 10

IDATA = IPEEK(IKDR) la key bhas been pressed
IF (IDATA .BQ, ‘C’') ICDUN = 1

IF (IDATA .BQ. 'P') IPDUN = 1

IF (IDATA .BQ, ‘0’) GOTO §

IF ((ICDUN.BQ.1).AND. (IPDUN.BQ.1)) GOTO 40
GOTO 10

——===Turn on the keyboard

40 I = IPEEK(IKSR) .OR. "100
CALL IPOKE(IKSR,I)
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This is a MAGRO-11, FORTRAN compatible subroutine called with

CALL SAMPLE(ICHAN, IVAL, IFLG)

/
/

IFLG = -

This subroutine gets a sample from the specified A/D channmel
ICHAN, and the sampled data is passed back in IVAL. The flag
IFLG is roturned to the main program with the status:

0 = NO ERRORS DETECTED
1 = CHANNEL NUMBER OUT OF RANGE (0-15)
2 = A/D SANPLING ERROR

.GLOBL SAMNPLE

LC=.

«=1000+LC
CSR=170400
DBR=CSR+2

;This makes SAMPLE a global symbol
sFind current assembly location
;Start assembling at location 1000
;Define A/D status register address
;Define A/D buffer register address

J(RS) is the first data (= # of arguments passed)
J2(RS) is the first argument passed

MOV J2(RS), ICHAN
MV J2(RS) , TENP
BIC #177760, ICHAN
R FLG

CNP TENP, ICHAN
BNE ERR1

SVAB ICHAN

MOV ICHAN, J#CSR
BIS #1,)#csR

BIT #200,J#CSR
BEQ WAIT

MOV J#pBR, J4(RS)
BIT #100000, J#CSR
BNE ERR2

MOV FLG,J6(RS)
RTS PC

ERROR HANDLING ROUTINES
BIS #1,FL6

BR START

BIS #2,R.6

BR DONE

LOCAL VARIABLES

.WORD O

.WORD ©

.WORD O

«EBND

;Put first argument in ICHAN
;Put first argument in TENP also
;Clear bits 4 to 15

;Clear the FLG

sCheck for ICHAN ) 15

;Branch to ERR1 if ICHAN > 15§
;Swap high byte for low byte
;Set A/D Control Status Register
;Start the A/D conversion

;Test bit 7 for A/D done
;Wait if not set

;Put sampled data into argument table
;Test bit 15 for A/D sampling error
;Branch to ERR2 if bit 15 is set
;Put flag back into argument table
;Return from sub. to calling program

;Set bit 0 of FLG
;6o back to start
;Set bit 1 of FLG
;Go back to DONE



e NN e N N e N e N e N e N e e N e K N e N e N K K K N Nz Kz K Kz Er Kr K Ko K X2

a

anon

97
SUBROUTINE CGAINS
This subroutine allows the user to input the conmtrol

gains for the linear state feedback law, the luenberger
observer, or the first order filter parameters.

-Definition of parameters F()

F(1) = LSF proportional cart gain
F(2) = LSF derivative cart gain

F(3) = LSF proportional pendulum gain
F(4) = LSF derivative pendulum gain
F(5) = observer gain #1

F(6) = observer gain #2

F(7) = observer gain #3

F(8) = observer gain #4

FO®) = filter parameter (alfa)
F(10)= filter parameter (1-alfa)
F(11)=

L[] ,

. observer system parameters
L] /
F(18)=
F(19 )= deriv. filter parameter (alfa)
F(20)= deriv. filter parameter (1-alfa)
F(21)= C1 /
F(22)= C2 Coulomb damping
F(23)= C3 coefficients
F(24)= C4 /

REAL G(24),F(24),SN
COMMON /MISC2/ F,G,IRCZ,IRPZ
~———=Format Statements

100 FORMAT(/,/,/.,20X,'INPUT the System and Control Gains’,
+ /,20%,' ")
110 FORNAT(/,/,20X,'1.) Input LSF Controller gains.’,
/,20X,’2.) Input Luenberger Observer gains.’,
/,20X,'3.,) Input Observer System Parameters.’,
/,20X,'4,) Input Filter Parameters.’,
/,20X,'5,) Check Status of all gaims.’,
/,20X,'6.) EXIT to main routine. .')
120 FORMAT(/,/,25X,'Your Selection: ',$)
130 FORMAT(I1)
140 FORMAT(/,27X,'K(’',I1,') [’',A10,'] = ',$)
150 FORMAT(/,27X,'G(’',I1,’) [Observer] = ',$)
160 FORMAT(/,30X,A3,' = ',$)
170 FORMAT(/,18X,'Enter #SAMP./',M,’'. FILTER TINE OONST.:
180 FORMAT(/,25X,'LSF Controller Gains:’,/,
+ 4(/,30x,'k(’',I11,') = ',F10.4))
190 PORMAT(/,25X, 'Observer Gains:',/,
+ 4(/,30X%,'G(',I1,') = ',F10.4))

+ 4+ + + +

', $)
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200 FORNAT(/,25X,'Observer System Parameters:’,/,

+ 12(/,30X,A3,’' = ',F10.4))

210 PORMAT(/,25X,M,’', Filter Parameters:’',/,

+ /.,30X,'#Samp./TC = ',F5.1,/,
+ /,33X,' alfa = ',F10.4,
+ /,33X,'1-alfa = ',F10.4)

-—==Nain routine

WRITE(7,100)
10 YRITE(7,110)
20 WRITE(7,120)

{display menu options

IF ((IOP,LT.1).0R.(IOP.GT.6)) GOTO 20

——-=Goto the proper place
G0T0(30,40,50,70,80,90) IOP

Input new LSF controller gains

30 WRITE(7,140) 1,'Volt/Ft '
READ(5,*, ERR=30) F(1)

32 WRITE(7,140) 2,’'Volt-8/Ft '
READ(S,*, ERR=32) F(2)

34 WRITE(7,140) 3,'Volt/Rad '
READ(S,*, ERR=34) F(3)

36 WRITE(7,140) 4,'Volt-8/Rad’
READ(5,*, ERR=36) F(4)

GOTO 10

Iproportional cart gain

lderivative cart gain

iproportional peand. gain

ldezivative peand. gain

Ireturn to cgains menu

—————Input new Luenberger Observer gains

40 WRITE(7,150) 1
READ(S,*, ERR=40) F(5)

42 WRITE(7,150) 2
READ(S5,*, ERR=42) F(6)

44 WRITE(7,150) 3
READ(5,*, ERR=44) F(7)

46 WRITE(7,150) 4
READ(5,*, ERR=46) F(8)

GOTO 10

lget observer gain #1

lget observer gain #2
lget observer gain #3
lget observer gain #4

[return to cgains menu

——-~~Input new observer system parameters

50 GOTO 65
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50

52

54

56

58

60

62

64

65

66

WRITE(7,160) ‘A11’
IBAD(S.‘. m'SO) F(Il)

WRITE(7,160) 'A2 '
READ(S,*, ERR=52) F(12)

WRITE(7,160) ‘A3 '
READ(5,*, ERR=54) F(13)

WRITE(7,160) ’'A13’
READ(S,*, ERR=56) F(14)

WRITE(7,160) 'A12’
READ(5,*, ERR=38) F(15)

WRITE(7,160) ‘A6 '
READ(5,*, ERR=60) F(16)

WRITE(7,160) °'A7 '
READ(S5,*,ERR=62) F(17)

WRITE(7,160) 'A14’
READ(5,*, ERR=64) F(18)

WRITE(7,160) ‘C1 '
READ(5,*, ERR=65) F(21)

WRITE(7,160) 'C2 '

67

68

WRITE(7,160) ‘'C3 '
READ(5,*,ERR=67) F(23)

WRITE(7,160) ‘C4 '
READ(S,*, ERR=68) F(24)

GOTO 10
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———=Input the filter parameters

70

72

WRITE(7,170) 'POSN’
READ(S,*, ERR=70) FO9)

FO) = 1.0/ (1.0 + FO))

F(10) = 1,0 - F09)

WRITE(7,170) ‘DERI’
READ(S5,*, ERR=72) F(19)

F(19) = 1.0 / (1.0 + F(19))

F(20) = 1.0 - F(9)

GOTO 10

lget All

lget A2

lget A3

lget A13

lget Al2

Iget A6

lget A7

lget Al4

fget C1

Iget C2

fget C3

lget CA

Ireturn to cgains menu

lget position filter first

lget derivative fil ter next

lreturn to cgains menu
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~—=Check the status of all gains
80 WRITE(7,180) ((I,F(1)),I=1,4)
WRITE(7,200) ’'A11’',F(11),'A2 ',F(12),'A3 ',F(13),'A13’,
+ F(14),'A12',F(15),'A6 ',F(16),’A7 ',F(17),'A14’' ,F(18),
+ ‘ci ',F(21),'C2 ',F(22),°'C3 ',F(23),'C4 ',F(24)

SN = (1.0 / FO)) - 1.0
WRITE(7,210) 'POSN’,SN,F09),F(10)

SN = (1,0 / F(M)) - 1.0
WRITE(7,210) 'DERI',SN,F(¥),F(20)

GOTO 10 Ireturn to cgains menu
———=EXIT to the main program
90 RETURN

END
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SUBROUTINE CONTRL

This is the control subroutine which sets up the
clocked interrupt service coamtrol routine, and
starts the control actioa.

REAL G(24),F(24),A(4,4),B(4),C(4,4),D(4)
REAL 1IN, VN,IN,WN, X0, TO, VO, WO, ERR, VLT

LOGICAL*1 IDATA,TI1(8),TI2(8)
EXTERNAL RUNLSF Ito use as subroutine arg.

COMMON /ADDR1/ IKSR, IKDR, IPCH, ICAH, ITCK
COMMON /ADDR2/ IPSR, IPDR, IBPR, IADVEC, IADERR
COMMON /ADDR3/ ICSR, IADR, IDAR, IADBUF
COMMON /MISC1/ ICH1,ICH2,PER, IFAST

COMMON /MISC2/ F,G,IRCZ,IRPZ

COMMON /MISC3/ C,D, X0, VO, TO, ¥O,NN

COMMON /STATE/ X, T,XN,VN,IN,WN, VOLT, ERR

Format Statements

100 FORMAT(/,/.,/.22X,'RUN the Clocked Control Routine’,

+ /,221%,°' )
110 FORMAT(/,/,18X, 'Enter the SAMPLING FREQUENCY (Hz.): ',$)
120 FORMAT(/,/,18X, 'ERROR. . .[Sampling frequency is too high.]’')
130 FORMAT(/,/,18X,'ERROR. . .[Sampling frequency is too low.]’)
140 FORMAT(/,/,18X,'ERROR. . .[Sampling rate TOO HIGH for system.]’)
150 FORMAT(/,/,18X,'Actual sampling freq. = ’',El1.4,’ Hz.')
160 FORMAT(/,18X,'Actual sample period = ',E11.4,' Sec.',/./)
170 FORMAT(/,/.,18X,'Press ANY KEY to STOP active control. . .’')
180 FORMAT(/,/.18X,’'Are you ready to begin comtrol [Y,N]. . . ',$)
190 FORMAT(/,/,20X,°'l.) Derivative State Approximation’,

+ /,20X,'2.) Continuous Luenberger Observer’,

+ /,20X,'3.) Discrete Luenberger Observer’)
200 FORMAT(/,/.25X,'Your Selection: *,$)
210 FORMAT(I11)
220 FORMAT(’+'’,20X, 'Turn OFF the Line Time Clock. . .') -
230 FORMAT(/,/.,18X,'ERROR. . .[Pendulum out of controllable range]’)
240 PORMAT(/,/,18X,'Is system near the origin [Y,N]. . . ',$)

IBELL -= "7

IR =7 lhighest priority iaterrupt
IFAST = 0 lreset too-high flag

FMAX = 200.0 lset max. sampling frequeacy
VOLT = 0 linitial voltage

ERR = 0 linitial erxror

NN = 1

X = -1225.2 lsensor calibratiom on x

CT = -1241.3 Isensor calibration on theta

CV = (4095./20.)/1.58 Ivoltage output calibration
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C ——=-Convert real gains to controller gains

C
G(1) =F(1) = CV / CX K1 /
G(2) =F(2) sCV/ CX 1IK2 LSF coatroller
G(3) =F(3) scv/ CT IK3 gains
G(4) =F(4) s CV/ CT 1XK4 /

C
G(5) = F(5) 161 /
6(6) = F(6) 1G2 Observer
G(7) =F(7) *Cr/ CXx 1G3 gains
G(8) =F(8) sCr/ Cx 1G4 /

C
G(®) =F0O) Iposition
G(10) = F(10) 1fil tes

C
G(11) = - F(11) 1A11
G(12) = - F(12) s CX / CT 1A2
6(13) = F(13) * CX/ CT 1A3 /
G(14) = F(14) s CX / CV 1A13 Observer system
G(15) = F(15) s Cr/ CX 1A12 parsmeters
G(16) = F(16) 1A6 /
G(17) = - F(17) 1A7
G(18) = - F(18) ¢ CT / CV 1A14

C
G(19) = F(B) lderivative
G(20) = F(20) 1£il ter

C : .
G(21) = F(21) * CX 1
6(22) = - F(22) * CX lcoulomdb damping
G(23) = - F(23) s CT lcoefficients
G(24) = F(24) s CT !

C

c Set up discrete observer matrix

C
A(1,1) = - F(5)
A(1,2) = 1.0
A(1,3) = 0.0
A(1,4) = 0.0
A(2,1) = F(14) * F(1) - F(6)
A(2,2) = F(14) * F(2) - F(11)
A(2,3) = (F(14) * F(3) - F(12)) s CX / CT
A(2,4) = (F(14) * F(4) + F(13)) s CxX / CT
A(3,1) = -F(7) s CT/ CX
A(3,2) = 0.0
A(3.3) = 0,0
A(3,4) = 1,0
A(4,1) = - (F(18) * F(1) + F(8)) * CT / CX
A(4,2) = - (F(18) * F(2) - F(18)) s CT / CX
A(4,3) = - F(18) * F(3) + F(16)
A(4,4) = - F(18) * F(4) - F(17)

C
B(1) = F(5)
B(2) = F(6)

B(3) = F(7) # CT / CX-
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B(4) = F(8) * CT / CX

~—-—=Set up clocked ISR

10

15

20

25

WRITE(7,100) lintial header
WRITE(7,190)
WRITE(7,200) Ichoose state estimation

READ(5,210,ERR=5) IOP
IF ((IOP.NE.1) .AND. (IOP.NE.2) .AND. (IOP.NE.3)) GOTO §

G0T0(10,15,20) IOP

I = INTSET(IADVEC, IFR,1,RUNLSF) lattach to A/D dome vector
IF (I .BQ. 0) GOTO 25

WRITE(7,*) ' INTSET error -=- A/D Vector, CODE = ',1I
GOTO 10

I = INTSET(IADVEC, IPR,2,RUNLSF) l!attach to A/D dome vector
IF (I .BQ, 0) GOTO 25

WRITE(7,*)’' INTSET error -- A/D Vector, CODE = ',I
GOTO 15

1 = INTSET(IADVEC, IPR,3,RUNLSF) lattach to A/D dome vector
IF (I .Ba. 0) GOTO 25

WRITE(7,*)’' INTSET error -- A/D Vector, CODE = ',1I
GOTO 20

1 = INTSET(IADERR, IPR,4 ,RUNLSF) lattach to A/D error vector
IF (I .BQ. 0) GOTO 30

WRITE(7,*)' INTSET error — A/D Error Vector, CODE = ’',I
GOTO 25

—===Input the sampling frequency

30

35
40

WRITE(7,110) Iget the sampling frequency
READ(5,¢, ERR=30) FREQ

IF ((FREQ,LE.FMAX).AND. (FREQ.GT.0.)) GOTO 35

WRITE(7,120) Isampling frequency too high
GOTO 30

-Calculate the best base clock rate

IR =1 Istart at highest clock rate
TICK = (10.0*+(7-1IR))/FREQ

IF (TICK .LT. 32767.) GOTO 45 linteger out of range
IR=IR+1 Inext lower base frequency
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IF (IR .LE. 7) GOTO 40

WRITE(7,130) |sampling frequeacy too low
GOTO 30

Calculate the ticks for IBRR

45 ITICK = IFIX(-1.0*(TICK+0.5)) Inearest integer

Calculate the actual sampling frequency and period
FREQ = (10.0**(7-1R))/FLOAT(-ITICK)
PER = 1,0/FREQ

WRITE(7,150) FRBQ
WRITE(7,160) PER

——=Calculate the discrete observer matrix system
IF (IOP .NE, 3) GOTO 50
CALL DISRT(4,1,A,B,C,D,PER,10)
WRITE(7,*)’ '
DO 48 I = 1,4
'IITB('I.‘) (C(I.J).J"l.‘).n(l)

48 CONTINUE
WRITE(7,®)’ '

Set up the clock status and A/D status registers

50 IRATE = (IR * 8) + 3
ICH1 = "40140 + ICCH * (29+8) Iset up initial sample
ICH2 = "40001 + IPCH * (2%e8) Iset up second sample

Make sure the line time clock is turmned off

$5 CALL TIME(TI1) lget the first time
CALL PAUSE(60, ITCK) lwait for 1 second
CALL TIME(TI2) lget the second time

IF ((TI1(8).BQ.TI2(8)).AND.(TI1(7).BQ.TI2(7))) GOTO 60

CALL IPOKE(IPDR, IBELL)
WRITE(7,220) Imessage to user
GOTO 55

-Ready to begin active comtrol

60 WRITE(7,170) luser instructions
WRITE(7,180) Istop message
CALL PAUSE(40,ITCK) lwait for printer
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Disable keyboard and wait for input [Y,N]

1 = IPEEK(IKSR) .AND. "177677 Ireset bit 6 of IKSR
CALL IPOKE(IKSR,I)

65 1 = IPEEK(IKSR) .AND. "200 ltest bit 7 of IKSR
IF (I .BQ, 0) GOTO 65

IDATA = IPEEK(IKDR) !la key has been pressed

IF ((IDATA.BQ.’'Y’).OR.(IDATA.BQ.’N’)) CALL IPOKE (IPDR, IDATA)
IF (IDATA .Ba. ‘Y’) GOTO 70

IF (IDATA .BQa. °'N’) GOTO 85

CALL IPOKE(IPDR, IBELL)
60TO 65

Disable the printer

70 I = IPEEK(IPSR) .AND. "177677 Ireset bit 6 of IPSR
CALL IPOKE(IPSR,I)

WRITE(7,¢)*' '
WRITE(7,¢)’ '

Set up initial conditions for the system

72 CALL SANPLE(IPCH, IPVAL, IFLAG) lget pend. position
CALL SAMPLE(ICCH, ICVAL, IFLAG) lget cart position

X = (IRCZ - ICVAL) linitial

T = (IRPZ - IPVAL) lpositions
IN=2X

IN=T

VN =0 linitial
WWN=20 lvelocities

Check for pendulum too far from stable origin

IF ((ABS(X/CX).LE.0.5).AND, Isix inches from origin

+ (ABS(T/CT).LE.0.175)) GOTO 74 Iten degrees from origin
IDATA = IPEEK(IKDR) Ireset the keyboard status
I = IPEEK(IPSR) .OR. "100 lset bit 6 of IPSR

CALL IPOKE(IPSR,I)

WRITE(7,®)’' '
WRITE(7,240)
G0TO 65

Start clock and ISR
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74 CALL IPOKE(IBMR, ITICK)

CALL IPOKE(ICSR, IRATE) Istart clock ticking
CALL IPOKE(IADR, ICH1) Istart A/D conversion
C
IF (IOP .BQ. 1) GOTO 80
C
C -Wait for system to stabilize/keyboard input
C
75 IF (IFAST .NE, 0) GOTO 85
I = IPEEK(IKSR) .AND. "200 Itest bit 7 of IKSR
IF (I .BQ. 0) GOTO 75
C
IDATA = IPEEK(IKDR) la key has been pressed
NN = IOP Isystem is now stabilized
C
IF (IDATA .NE. 'G’') GOTO 85 lcheck for a go on observer
C
C Wait for keyboard input or too—-fast error
C
80 IF (IFAST .NE. 0) GOTO 85
C
D1000 FORMAT('+’,4(2X,E10.3))
D WRITE(7,1000) XN,VN,IN,VWN
D CALL PAUSE(10,ITCK)
C
I = IPEEK(IKSR) .AND. "200 ltest bit 7 of IKSR
IF (I .BQ. 0) GOTO 80
C
C ———-Enable the keyboard and printer
C
85 1 = IPEEK(IKSR) .OR. "100 lset bit 6 of IKSR
CALL IPOKE(IKSR,I)
C
I = IPREK(IPSR) .OR. "100 lset bit 6 of IPSR
CALL IPOKE(IPSR,I)
C
C Check for too-fast error
C
IF (IFAST .BQ. 0) GOTO 9 S
IF (IFAST .BQ. 2) GOTO 90
C
WRITE(7,¢)’ '
WRITE(7,140) Ipriant an error message
GOT0 9§
C
90 WRITE(7,*)' '
WRITE(7,230) Iprint an error message
C
C -—-Turn off clock and A/D converter
Cc

95 CALL IPOKE(IADR,O)
CALL IPOKE(ICSR,0)
WRITE(7,*)’ '
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=——==Zero output voltage

IZERO = “4000
CALL IPOKE(IDAR, IZERO)

RETURN

107
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SUBROUTINE DISCRT(N, N, A, B, AD, BD, T, MAXIT)

This subroutine computes the discretized matrices
AD, and BD from the continuous system matrices.

DX(t) = A *X(t)+ B=*U(t)

X(k+1) = AD * X(k) + BD ® U(k)

Declare all variables

DIMENSION A(N,N),AD(N,N),B(N,N),BD(N, N),
+ A1(10,10),A2(10,10),C(10,10)

REAL, A,B,AD,BD,Al1,A2,C,XF, T
INTEGER N, M, MAXIT,I1,J.K,L
-——=—Initialize the matrices
KF = 1.0
DO 20 I = 1,N
DO 10 J = 1,N
IF (I .NE, J) GOTO §

A1(1,7) = 1.0
AD(I,J) = 1.0

C(1,J) =T
GOTO 10
S A1(I1,J) = 0.0

AD(I,J) = 0.0
C(I,J) = 0.0

ENDIF
10 CONTINUE
20 CONTINUE

==———Compute the matrix expomential

DO 80 K = 1,MAXIT
DO S0 I =1,N
DO 40 J = 1,N
AZ(I.J) = 0,0
DO 30 L =1,N
A2(1,J) = A2(1,J) + A1(I,L) * A(L,J)
30 CONTINUE
40 CONTINUE
50 CONTINUE

KF = KF * K

DO 70 I = 1,N
DO 60 J = 1,N
AD(I,J) = AD(I,J) + A2(I,J)*(T**K)/KF
C(I,J) = C(I,J) + A2(I,J)*(T**(K+1))/(KF*(K+1))
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A1(1,J) = A2(1,7J)
60 CONTINUE
70 CONTINUE
80 CONTINUE
C
DO 110 I = 1,N
DO 100 J = 1,M
BD(I,J) = 0.0
D090 L =1,N
BD(1,J) = BD(I,J) + C(I,L) * B(L,J)
90 CONTINUE
100 CONTINUE
110 CONTINUE
C
RETURN
C
END
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SUBROUTINE RUNLSF(ID)

110

This is an interrupt service routime to get clocked samples
of the cart and pendulum positions. The system states are
calculated in the observer equations, or by derivative ap-
proximations. The linear s
calculated and applied to the motor.

tate feedback comtrol voltage is

————=Dofinition of parsmeters G()

G(1) =
G(2)
G(3)
G(4)
G(5)
G(6)
6(7)
G(8)
G(9)
G(10)=
G(11)=

.

G(18)=
G(19)=
G(20)=
G(21)=
G(22)=
G(23)=
G(24)=

proportional car
derivative cart

t gain
gain

proportional pendulum gain
derivative pendulum gain

observer gain #1
observer gain #2
observer gain #3
observer gain #4
filter parameter
filter parameter

/

(alfa)
(1-alfa)

observer system parameters

/

deriv, filter parameter (alfa)
deriv, filter parameter (1-alfa)

/
coulomb dampin
coefficients

/

REAL G(24),F(24),VOLT, PER,ERR,X, T
REAL DX,DV,DT,DW,XN, VN, IN, WN, TMAX, VNMAX
REAL X0,VO0,TO,V0,C(4,4),D(4)

INTEGER 1A(2),IB(2),IVS,INS,IV,IV

BQUIVALENCE (VN,IA),(IA(1),1IV),(WN,IB),(IB(1),IW)

COMMON /ADDR3/ ICSR, IADR, IDAR, IADBUF
COMMON /MNISC1/ ICH1,1CH2,PER, IFAST
COMMON /MISC2/ F,G,IRCZ, IRPZ

COMMON /MISC3/ C,D,X0,VO, TO, WO,NN
COMMON /STATE/ X, T,XIN,VN,IN,WN, VOLT, ERR

DATA TMAX, VNAX/541.6,2047.5/

——==8elect entry: ID =1

ID = 2
ID=3
ID = 4

GOTO (10,5,5,50) ID

WRITE(7,

¢) 'RUNLSF entry

. A/D Sample Done [Deri. approx.])
. A/D Sample Done [Cont. Obs.])

. A/D Sample Done [Disc. Obs.]

. A/D Sample Error

L . . L]
e o o o

error, ID = *',ID
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CALL EXIT
5 GOTO (10,20,30) NN

<<<<< DERIVATIVE STATE APPROXIMATIONS >>>)>>

Get a new X position for the cart
10 X = G(9)*(IRCZ - IPEEK(IADBUF)) + G(10)*XN

CALL IPOKE(IADR,ICH2) istart next sample

Calculate a new velocity

VN = G(19)*(X - XN)/PER + G(20)*VN

Get a new theta valus for pendulum
T = G(9)*(IRPZ - IPEEK(IADBUF)) + G(10)*IN
IF (ABS(T) .GT. TMAX) GOTO 50 Ipend. out of 25 deg. range
CALL IPOKE(IADR,ICH1) Ilreset A/D status register
——===Calculate a new angular velocity
WN = G(19)*(T - IN)/PER + G(20)*WN

—=-8Shift new variables into the old vn;:iables

38k 2%
gsgp =™

Use these approximated states for LSF coatrol law
GOTO 40
{{{<{< CONTINUOUS LUENBERGER OBSERVER )>)>)>))

Get a new X position for the cart

20 X = (IRCZ - IPEEK(IADBUF))
20 X = G(9)*(IRCZ - IPEEK(IADBUF)) + G(10)*X

CALL IPOKE(IADR, ICH2) Istart next sample

ERR = X - XN

Get the sign of the two velocities
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IVS =1 + 2 & ( (IV .AND. "100000) .BQ. "100000)
INS = 1+ 2 ¢ ( (IW .AND. "100000) .BQ. "100000)

———=Calculate the observer derivatives

DX = VN + G(S5)*ERR

DV = G(11)*VN + G(12)%IN + G(13)®WN + G(14)°VOLT + G(6)*ERR
+ + G(21)*1IVS + G(22)eIWS

DT = WN + G(7)*ERR

DW = G(15)*VN + G(16)*IN + G(17)*WN + G(18)SVOLT + G(8)°ERR
+ + G(23)*1IVS + G(24)*IVWS

—=-——Approximate states from derivatives (Euler)

IN = IN + DX * PER
VN = VN + DV * PER
IN = IN + DT * PER
WN=VWN+ DV * PER

Get a new Theta value for pendulum
T = (IRPZ - IPEEK(IADBUF))
IF (ABS(T) .GT. TMAX) GOTO 50 lpend. out of 25 deg. range
CALL IPOKE(IADR, ICH1) Ireset A/D status register
-——==Use these approximated states for LSF control law
GOTO 40

<{<<< DISCRETE LUENBERGER OGBSERVER )>)>>))

~Get a nev X position for the cart
30 X = G(9)*(IRCZ - IPEEK(IADBUF)) + G(10)e*X
CALL IPOKE(IADR, ICH2) |start next sample

——=—==-Calculate the observed states

IN = C(1,1)%X0 + C(1,2)*V0 + C(1,3)*TO + C(1,4)*W0 + D(1)*X
VN = C(2,1)*X0 + C(2,2)*V0 + C(2,3)*TO + C(2,4)*WO + D(2)*X
IN = C(3,1)*X0 + C(3,2)*V0 + C(3,3)*TO + C(3,4)*W0 + D(3)eX
WN = C(4,1)%X0 + C(4,2)*V0 + C(4,3)*TO + C(4,4)*W0 + D(4)*X

—==Shift new variables into the old variables

X0 = XN
VO = VN
TO = IN
WO = WN






(o]

ann e NN N NeNeNel

113
———==Get a new Theta value for pendulum
T = (IRPZ - IPEEK(IADBUF))
IF (ABS(T) .GT. TMAX) GOTO 50 Ipend. out of 25 deg. range

CALL IPOKE(IADR,ICH1) lreset A/D status register

Use these approximated states for LSF control law
{<{<{<{< LINEAR STATE FEEDBACK )>)>)>)>>
—~—=~Calculate the LSF control law

40 VOLT = G(1)*XN + G(2)*VN + G(3)*IN + G(4)*WN

Check for voltage out of range

IF (VOLT .LT. -VMAX) VOLT = -VMAX
IF (VLT .GT, VMAX) VOLT = VNAX

IVOLT = IFIX(VOLT + 2048.0)
CALL IPOKE(IDAR, IVOLT) lapply the voltage
RETURN

————=A/D Sample error

50 CALL IPOKE(IADR,O) Iturn off A/D
CALL IPOKE(ICSR,0) {turn of f RTC
IFAST = 1 lset the too—fast flag

IF (ABS(T) .GT. TMAX) IFAST = 2 |pendulum out of range
RETURN

END
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SUBROUTINE PAUSE(NTICKS, ITCK)
This subroutine is approximately calibrated to pause
in ITCK intervals, as specified on input. There arze
60 ticks in one second.

DO 20 I = 1,NTICKS

DO 10 J = 1,ITCK lone tick per outer
10 CONTINUR !do loop step om (I)
20 CONTINUE
RETURN
END

SUBROUTINE SETICK(ID)

This is an interrupt service routine that is called
when the real time programmable clock has gemerated
an interrupt after ome tick (1/60 sec.).

COMMON /TIME/ I, IEND

IF (ID .Ea. 1) GOTO 10 Icheck for entry error

WRITE(7,*)'SETICK entry error, ID = ‘’,ID
CALL EXIT

10 IEND = I

I = 10000 Ireset do loop counter

RETURN



APPENDIX K

A fifth order linear matrix representation of the inverted pendulum
system equations was developed in Appendix B. This linear system model

can equivalently be written as:

x 0 1 0 0 x 0 0 0
dlv 0 -Al -A2 A3 v M -C1 C2||sga(v)
—10]=10 O0 O 1 6|+ | O i + 0o O sgn (w) (K1)
dt | e 0 A5 A6 -A7] | o -A8 . C3 -C4
(di/dt) = [-®] v + [-A10] i + [P1] V (K2)

The £fifth order system has been partitioned into a fourth order
system (K1) coupled to a (first order system (K2), The fourth order
model represents the cart/pendulum subsystem, and the first order
equation represents the DC servo motor dynmamics. It is well known that
the motor dynamics are much faster than the rest of the system. An
eigenvalue study based on the parameters in Appendix I, has shown the
motor eigenvalue to be three orders of magnitude greater than the

pendulum system eigoenvalues.

Because of the fast eigenvalune of the motor, the armature curreant
will approach a steady state value much faster than any other state
[49]. The derivative of the curremt state may therefore be assumed

zoro, leaving a constraint relation:

(P11 V = [M] v + [A10] i (K3)
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The fifth order system has now been reduced to a fourth order model
plus a constraint. Substitution of this constraint equation into the
fourth order model (K1), yields a new fourth order model. This new

model is given by:

X 0 1 0 0 z 0 0 0
dlv 0 -All -A2 A3 || v A13 -C1 C2| |sgn(v)
—1|10]|=1]0 0 0 1 6|+ 0 VvV + 0 0 sgn(w)
dt | 0 Al2 A6 -A7 ™) -Al4 C3 -C4

where the new matrix elements are defined to be:

All = Al + M M / A10 (K4)
Al2 = AS + A ®» / A10 (KS)
Al13 = M P1/ A10 (K6)
Ald = A8 P1 / A10 (K7)

This new system model is an approximation based om fast motor
dynamics. The fifth order model can be replaced by this fourth order
model which indirectly includes information about the motor. The new
model has a voltage input just as the real system does, yet the motor
state, (armature current), is not directly included in the model.
Because of this, the approximate model facilitates ecasier design of a

Luenberger observer.



APPENDIX L

VWhen implementing a real digital controller, the measured
quantities are not the actual physical .states of the system. The
measured states are discrete, or gquantized integers, which are
proportional to the actual states at the time of sampling. This limear

transformation can be expressed bLy:
I = LI (L)
where:

X = the real measured state (physical coordinates)

IX = the discrete measured state (integer numbers)

The complete matrix transformation (L1), is given by:

x o o0 o Ix
v|=[0 ¢*o o Iv (L2) ~
;] 0 0 Ccgo 10
" 0 0 0 Cg||1e

where the two constants are the sensitivities of the measurement
sensors, and are defined in Appendix I. ‘

The Linear State Feedback control law cam now be transformed to
operate on the discrete coordinates. This will allow a computer
algorithm to directly use the discrete coordinates. Using equation

(L1), this transformation is given by:
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V=KX = K*I (L3)
where:
k* = [K L] (L4)

For implementation, the actual voltage applied to the DC sgervo

motor must also be discretized by:
VoLT = V Gy (LS)

vhere Cy is also defined in Appendix I.

The Luenberger observer has been designed to estimate the actual
system states. Since the LSF law has been transformed, in iL3). to
utilize the available discrete coordinates, the observer must also be
transformed to provide the LSF comtrol law with estimated discrete

states. The original observer equations are given by:

A A A
= AX+BV+GD(X-X)+ Csgn(X) (L6)

ey -

Using the transformation (Ll1), on both the actual and the observed

states, (L6) can be written as:

.

A s A . . A . A
IX = A" IX+ B VOT+ col, (¢ )(IX - IX) + C sgn(IX') (L7)

The matrices in (L7) have absorbed the transformation of coordinates,

and are given by:
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A* = (L™ AL (18)
B* = c3* L™ B] (19)
¢ = L gpLl (L10)
¢t = - I ¢l (L11)

The leading negative sign in (L11) comes from the transformation:

sgn(X) = sgan(L IX) (L12)

For this particular laboratory setup, the sensitivity parameoters
associated with the transformation matrix L, are all negative. Therefore

equation (L12) can be written:

sgn(l IX) = - sgn(IX) (L13)

The transformed observer system (L7), is now sui table for
implementation on the computer. The observer has the discretized
vol tage input VOLT, and calculates the discretized output states. These
states are then used directly by the transformed LSF control law to

calculate the new discretized voltage.



