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ABSTRACT

RADAR TARGET DISCRIMINATION USING K-PULSES

FROM A "FAST" PRONY'S METHOD

By

Lance Lynwood Webb

An aspect-angle independent and range independent processing

technique is disclosed which is based upon the SEM (Singularity

Expansion Method) model solution of the EFIE (E-field integral equa-

tion) for transient electromagnetic scattering. The derived kill-

pulse convolution forms conveniently decompose the radar target

return into aspect-angle independent parameters and aspect-angle

dependent parameters. A near real-time "fast" Prony's method

algorithm is performed on empirical data to exploit the inherent

noise sensitivity of the ordinary Prony's method to obtain a second

K-Pulse form.

Original contributions of this dissertation in addition to the

primary objective of developing a range and aspect-angle independent

radar target discrimination technique potentially compatible with

”quiet" radar, are four original analytical tools developed solely

for this purpose:





Lance Lynwood Webb

1. “Fast Prony's method algorithm" for real-time

invariant parameter calculation of 4-dimensional

radar data.

2. "Prony K-Pulse" for calculating SEM coupling

coefficients from retarded scattered E-field

sampled data.

3. ”Polar mode A-scope" display file processing

replacing part of the conventional radar target-

independent matched filter.

4. "Mode ratio discrimination detectors" for auto-

matic radar target trigger and identification

channels.

The radar target discrimination technique is evaluated on experimental

radar data obtained from NSWC.
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CHAPTER I

INTRODUCTION

A radar target discrimination technique will be developed

which is machine implementable. Figure l-l illustrates a typical

radar set with a radar target cross-section plot. In the top sketch

the transmitted waveform is propagated from the antenna to the radar

target in the presence of ground clutter. In the middle sketch the

scattered electric field from the target and clutter is propagated

to the radar receiving antenna. The received signal at the antenna

terminals is very highly dependent upon the location and orientation

of the target relative to the radar site. This is illustrated by

the radar target cross-section plot. A positive target identification

based solely on the target radar skin return is not an easy problem.

The radar target discrimination solution disclosed here will be radar

target aspect-angle independent and target range independent.

Figure l-2 illustrated an analogy with human brain processing of a

rotating speaker. The crucial characteristic of the target required

is to radiate a reasonable portion of its energy in one or more

natural mode waveforms. All conducting vehicles with sharp edges are

believed to adequately satisfy this requirement.

In Chapter 2 we will develop the transient electromagnetic

foundation of the technique. We start with the electric field integral
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Figure 1-1. Typical Radar Environment and Target RCS.
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equation (EFIE) which is extremely difficult to solve for any self-

propelled radar target. We introduce the Singularity Expansion

Method (SEM) as a model solution to the EFIE. We show that this

model solution has, even for a simple scatterer, all the extreme

aspect-angle dependencies observed in the empirical radar data. We

then present the equipment set-up for obtaining radar data and then

the ground clutter map processing. Note that we cannot have Doppler

shift in this stationary set-up. For clarity Doppler exploitation

is not placed in the formulation.

In Chapter 3 we introduce the processing techniques for

extracting a single natural mode waveform from a large but finite

collection of natural mode waveforms. We then introduce one of the

primary contributions of this dissertation, rectangular and polar

representations of natural mode waveforms. The polar representation

is important enough that we shall call it a radar "polar mode A-scope"

display. The data from this display will be used in the automatic

radar target discrimination algorithm. The data of these displays

replace part of the conventional radar target-independent matched

filter and detector techniques traditionally used for detection and

tracking. In this chapter we use empirical radar data which always

presents difficulties to the discrimination process much in excess

of that presented by synthetic data artificially corrupted by "white

noise." The observed defects are primarily due to equipment distor-

tions, uncancelled clutter, thermal noise, and quantitization errors.

In Chapter 4 we introduce our primary technique to be used

when the radar target possesses a complexity which is obviously
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beyond the capabilities of analytical calculation. Our technique,

Prony's method, can be used to experimentally obtain the parameters

of the SEM model of the radar target's EFIE. We will also intro-

duce E. Kennaugh's K-Pulse concept. His transmit formulation is not

contemplated to ever be used. However it is shown that a receive

formulation of the K-Pulse can be generated as an extension of the

first part of Prony's method. This K-Pulse, properly specified as

our "Prony's K-Pulse,“ is a crucial building block in our radar target

discrimination technique. In this chapter we will introduce the

original Prony's method, and then perform the now standard matrix

notation derivation. This lends to standard matrix computer routines

which for large numbers of sampled data values are increasingly "ill

conditioned." To minimize the size of the matrix to be used, we

introduce a skip sampling technique and illustrate its performance

on empirical radar target data. We then introduce the extended

Prony's method or least-squares formulation which is probably more

popular than the regular Prony's method. At this point we introduce

the important concept of "complex root degrees of freedom." This

concept appears to be quite useful for our 4-dimensional electro-

magnetic problem. A dramatic example is presented which illustrates

the superiority of the regular Prony's method over the extended

Prony's method in certain cases which will be used in our radar target

discrimination technique. Further, the regular Prony’s method does

not constitute an irreversible process as do all least—squares

processing techniques. This is an important consideration for the

design of modern "quiet" radars.
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In Chapter 5 we present the "fast“ Prony's method, which is

an original contribution of this dissertation. The "fast" algorithm

is desired for two reasons. The first is to fully exploit the "com—

plex root degrees of freedom“ concept to the maximum with minimal

hardware resources. The second is to increase the computational

speed by approximately an order of magnitude in order to permit

near real-time calculation of a dual "polar mode A-scope" display

and its subsequent processing for automatic target discrimination

processing.

The structure of the unsymmetric Toeplitz matrix is explored

for the first time and there is an additional by-product of the "fast

Prony's method algorithm": it produces two solutions instead of one

solution. Both are usable, but a comparison of the two appears to

be a useful analytical tool.

In Chapter 6 we present the automatic radar target discrim-

ination algorithm. Several of the crucial original concepts are the

use of the "2nd K-Pulsed convolution" and the dual "polar mode A-

scope" displays, where for the first time we exploit the well known

sensitivity of Prony's method to noise by performing a Prony's method

a second time. Further, the format of the “polar mode A-scope" dis-

plays make possible the original "mode discrimination ratio detectors"

suitable for automatic processing in a monopulse-like fashion.

In Chapter 7 we shall make some forecasts on the technique's

implementation and uses and the impact of Doppler shift.
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Appendix A is a complete section for review of Laplace

transforms, z-transforms, modified z-transforms, and consultation

for notation used throughout this dissertation.

Appendix B is the Convolution Theorem for the Sampler. It is

the analytical tool necessary for the handling of the linear, time:

varying operation of the sampler.

Appendix C is an introduction to time domain couplets and the

K-Pulse Singularity Theorem. These are simple but powerful tools

not easily derivable in the continuous time domain.

Appendix D is the collection of computer programs found

useful.



2.1 Electric

Ecuation for 3.

In th"

bmtdary val“

be the founda:

with we will

here already c

Let u<

l

1” FlSure 2-1

EWits. 14,;

tangent, in:

tarset sum,i

dE'fiSitY, :(T
\ I

filtrate a SC;

““04. that

 
Conductor HES

94mm (2.,

FIRr

M; 1r

 



CHAPTER II

TRANSIENT ELECTROMAGNETICS FOR RADAR TARGETS

2.1 Electric Field_Integral

Equation for Radar Targets

In this section we shall develop the transient electric field

boundary value problem for a perfectly conducting object. This will

be the foundation for the electromagnetic response of our radar target

which we will assume is highly conducting at radar frequencies. We

have already described the physical formulation in Figure 1-1.

Let us examine a simple 3-dimensional radar target shape as

in Figure 2-1 in order to define our electromagnetic quantities and

concepts. The perfectly conducting radar target is illuminated by a

transient, incident plane wave, Einc(F,t), which excites, on the

target surface, the induced current density NLF,t), and charge

density, o(F,t). These induced current and charge densities, in turn,

generate a scattered wave, ES(F,t). It is the summation of the inci-

dent and scattered wave which must satisfy the familiar boundary con-

dition, that the tangential electric field at the surface of a perfect

conductor must be zero for all time. This relation is expressed by

equation (2-1).

E-(E‘"°(‘F,t) + 15505;» = o for all “F e A (2-1)



  3‘53)
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Figure 2-1. A Perfectly Conducting Target Illuminated

by a Transient Incident E-field.
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10

In equation (2-1), A denotes the set of all external points of the

radar target and t is any unit tangent vector to the targer surface at

+

I”.

We wish to express the scattered field, E5(F,t), in terms of

the retarded scalar and vector potential (ref 2-1) given by equation

(2-2).

E5 (r, t) = -V¢(r ,t) - —-JA(r ,t) (2-2)

These retarded potentials are given by equations (2-3) and (2-4).

 

 

a(?,t) =13”?”Marv , R = IF'SFI (2-3)

A

Amt) =[Hfiggt‘R/CMA', R = ("P—Fl (2-4)

A

lie will ultimately use conservation of charge given by equation (2-5)

when it is convenient to eliminate o(F,t).

vim») = - goat) (2-5)

Next we shall take the Laplace transforms of equations (2-1) through

(2-5) to obtain equations (2-6) through (2-10)

2 (El"c(?,s) + ES(?,s)) = o for F e A (2-6)

Es(?,s) = - V¢(r,s) - si(?,sr (2-7)
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In equation (2-1), A denotes the set of all external points of the

radar target and t is any unit tangent vector to the targer surface at

n)

r.

We wish to express the scattered field, E5(F,t), in terms of

the retarded scalar and vector potential (ref 2-1) given by equation

(2-2).

Es(r, t) = -V¢(r ,t) - MA (2-2)

These retarded potentials are given by equations (2-3) and (2-4).

 

6,4 11R
a(?,t) ajfor't R/ClaA' , _ Iii-Fr (2-3)

A

 

Amt) =[H‘fi1ggt R/c)dA', R - [F'IFI (2-4)

A

We will ultimately use conservation of charge given by equation (2-5)

when it is convenient to eliminate o(F,t).

- 5%0(F, t) (2-5)4 7
<
+

‘
Q
l

1
+
V

I
I

Next we shall take the Laplace transforms of equations (2-1) through

(2-5) to obtain equations (2-6) through (2-10)

E (E‘"c(?,s) + ES(?,s)) = o for F e A (2-6)

ES(?,s) = - va( r, s) - sA((r ,5) (2-7)
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+ - (11 - R/ .(12(Y‘,S) _ fig—02."; EXP( S c)dA (2-8)

A

Kat’s) =fm§£ESSIEKD(-SR/CldA1 (2_g)

- A

V-R(F,s) = - so(?,s) (2-10)

Substituting equation (2-10) into (2-8) and equation (2-9) into

(2-6), we obtain equation (2-11).

 

+ ->

“. inc 4 vtk(r;s)epr-sR/Ql .t (E (N5) + Vf 58041112 —dA

A

A

 

Equation (2-11) rewritten as in equation (2-12) is often called the

EFIE (Electric Field Integral Equation).

 

-> A A + —> - , A THC '*

I(vfkfia)(t-maztmugsnezgé
SR/ClaA = -eost-E (r,s)

A

for all ‘r’eA (2-12)

where y = s/c

2.2 Singularity Expansion

Method (SEM) Notation

The EFIE, equation (2-12) is not particularly easy to solve

for the physical radar targets. The method of attack used in this
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dissertation is called the Singularity Expansion Method (SEM), origi-

nated for electromagnetics by C. E. Baum (ref.2-2). The physical

motivation for SEM is the observation that radar returns signals have

the appearance of being a sum of damped cosinusoids. A single damped

cosinusoid will be represented as in equation (2-13).

S(t) = 1A(exp(slt) + exp(sft)) with Re(sl)<0 (2-13)

As is well known, the Laplace transforms of a complex exponential is

given by equation (2-14)

L(exD(51t) = (5'51)-19 RE(S) > 51
(2_14)

The right-hand side of equation (2-14) displays a simple pole singular-

ity in the s-plane from which the SEM obtains part of its nomenclature.

There are two issues to be kept in mind about using equation

(2-12) in the physical radar problem that SEM must address. One, it

is a problem which must be simultaneously solved in 3 space and one-

time variables. Two, the simplest physical radar excitations which

could be observed are not impulses in space and time, but plane wave

excitations. Hence the aspect-angle dependencies need to be present,

yet separable, if the solution actually models the radar target.

Without loss of generality, we will assume only simple poles

(rather than multiplicities of finite degree as developed in ref.2-2).

For simple poles the SEM solution to the EFIE is given by equation

(2-15).
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R (F,s) = Z na(fl,s) 3:(?) f;(s) (s-sm)’1 + fiK(fl’F 5) (2-15)

p 0L

where a is the index for all of the target natural

frequencies

5 is a natural frequency of the radar target

(s-scm).1 is the s-plane pole at $0

$K(?) is the current density natural mode of

a the radar target

f (s) is the pulse shape of the incident radar

p plane wave

n (4,5) an entire function is the coupling coef-

9 ficient from the incident plane wave to

the natural mode of current density

p denotes one of the possible incident

polarizations

“ is the aspect-angle dependent vector

Wr(a ? S) is the entire function which may be

required for convergence

It should be observed that equation (2-15) appears similar to

a partial fraction expansion of a (meromorphic) function with a

finite number of pole singularities. The less usual term, the entire

function of the far right, WK, is due to the infinite summation index,

a. The Mittag-Leffler theorem (ref. 2-9) warns us that this may (or

may not) be required. An entire function is analytic everywhere in

the finite s-plane, but may have poles at infinity. For our radar

target natural modes with Re(s) < 0, we could expect the existence

of a representation of the entire function with its poles at infinity

on the left-hand side of the s-plane. In general, the entire function
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will not be observable in what we shall callthe'qate-time" (to be

defined).

For any finite summation on a, we shall formally drop the

entire function. For the infinite summation we shall suppress writing

this entire function, WK, recalling its presence only when we are

interested in "early-time" results. With this in mind, we shall now

rewrite equation (2-15) and use equation (2-16) from now on.

K (KS) = Z na(il.5) 33(7) fp45) (s-sml'1 (2—16)

In equation (2-16) it should be noted that all aspect angle

dependencies for an individual natural mode occur only in the coupling

coefficient which is a factor in the complex amplitude of the radar

target's unique natural mode of current density and natural frequency.

It is not quite so simple to write equation (2-16) in the time

domain since in each term of the series there are 3 distinct factors

containing 5 dependencies. These factors become convolutions in the

time domain. For clarity, we will assume that the incident plane

wave is purely impulsive, making f(s) = I and we are left with only

one convolution which when performed is called an SEM I'class 2"

coupling coefficient for the current density. There is a simplifica-

tion called an SEM "class 1" coupling coefficient which accurately

yields the "late time" value of the natural mode current density as

expresed by equation (2-17).

?(?.t) = u-1(t-t') z na(“,sa) $21?) exp(sat) (2’17)

or
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The new constant t' is a new parameter which need not be

unique, it simply states when (in time) we may use a simplified coup-

ling coefficient. We will be interested in a still later time t" which

is the time lag for which we may use the simplified "class 1" coupling

coefficient for the calculation of the retarded scattered E-field

as well as the current density. In the general case we will invoke

causality to derive a parameter we will use later. Let us consider a

thin cylinder radar target as in Figure 2-2. Let our observation point

be somewhere on the negative z-axis (e.g., z = 0-). In order to be

assured that the simplified coupling coefficient may be used, we must,

in general, have a delay long enough for the incident plane wave to

have propagated clear of our target as viewed in retarded time at our

observation point. This assured value of time, t", is given by

equation (2-18) for an impulsive plane wave on a very thin cylinder.

t" = max {L/c + L/c cose} = max {2-way transit time} (2-18)

89¢ 9.4

For some shapes (e.g., a perfect sphere), this is known to be too

conservative (ref. 2-2). But his a priori knowledge of its complete

shape is not a permissible part of a radar discrimination problem.

From causality we would not know for sure if there existed a defect on

the far side of the sphere. Propagation at the speed of light will

require, in general, a two-way transit time of the object by the

incident impulsive plane wave in order to use the simplified coupling

coefficient for the damped cosinusoid responses in the retarded

scattered E-field.
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Keeping in mind that both the “class 1“ and "class 2" coupling

coefficients will give identical time domain results in the “late-time"

or t > t", we need several more observations. First it is only in

the "late—time" region that the aspect-angle dependent factors in the

SEM time-domain expansion are constant. Our aspect-angle independent

radar discrimination technique will exploit this effect. Our computa-

tional technique, however, will be convolutional and will resemble a

"class 2" type calculation. We will now look at the difference between

a "class 2" and "class 1" representation. In the time domain the

difference is obviously a time limited function for each individual

mode. This is because of causality prior to the incident plane wave

and identity of the two representations in the "late-time." Therefore,

the aspect—angle dependence of the individual modes, potentially lasts

on the basis of causality for a duration of t", the two-way transit

time of the radar target by an incident plane wave.

 

2;3 Agpect-Angle Dependency of

Radar Target Scattered E-Field
 

We have used the EFIE to conceptually calculate the radar

target current density. After solving for the current density, we

may calculate the scattered E-field, ES(F,t), anywhere in space by

substitution into equation (2-7). In fact, only the far-field E-field

for one or two polarizations are all that are desired. We will cal-

culate the E9 far-field pattern for a wire-like target aligned with

the z-axis. The numerical value of the scattered field is calculated

from equation (2-7) to give equation (2-19).
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Sign,” - SON-rs) -‘6-v¢~(?,s)

5% alas) (2-19)I
t

fi
l
e
—
-

+ s Sine AZ(F,s) -

From equation (2-19) we note the additional inverse distance

associated with the scalar potential will, in general, eliminate its

observance in the far-field pattern. Before we define the normalized

far-field pattern, note that the presence of exp(-sR/c) in equation

(2-9) requires our introduction of the retarded scattered field as

in equation (2-20).

A

Eiet(?,s) = exp(leI/c) ES(F,S) (2-20)

We will not define the far field Ee total scattered radiation field

as given by equation (2-21).

A

Ee(e.o.5) = ETA—H Eietlffi )75 (2-21)

Now using only the first term in equation (2-19), we obtain equation

(2-22).

Ee(6,¢,s) = limit IFIS Sine AZ(F,s ) exp(s [Fl/c)

lrl+00

=- 5- s,51nefi—§r-f-K(F:s lexp(-SAR/c)dA' 42-22)

A

where AR = limit {IF'-?|-IFI}

lrl+00
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Now the SEM solution for K(F,s) was given by equation (2-15). Noting

that each mode has its own pole singularity, we can obtain the

scattered far field of a single mode by the Cauchy residue about that

pole as in Equation (2-23).

Eg(6,¢) = Residue Ee(e,o,s) 3'23)

(1

= sassne Tia]{90(i.sal$:(r')f(sa)exp(-saAR/C)dA' (2'24)

A

For a far field pattern, we normalize equation (2-24), typically by

its maximum value. Note carefully that the pulse shape, f(s), and

the coupling coefficient are not functions of the integration variable

r' (on the surface, A). Assuming only that the pulse shape and

coupling coefficient are nonzero, they will not be part of the

normalized pattern Egn(e’¢) given by equation (2-25).

 

Edie») _,

e“ (a 4) = 9 = Sine g. thr1exp(-s AR/c)dA'

On ’ a -—r—— a a

max Ee(9.¢) sine A
e m

for f(sa)#0, na(n,sa)#0 (2'25)

As an example, (ref 2-3,pp. 1609), the patterns of four modes of a

thin wire scatterer are illustrated in Figure 2-3.

It should be observed that the individual patterns are dis-

tinctly different as a function of aspect-angle after the nonharmonic

time dependence has been surpressed. For actual reception of a radar



 

 

 

 

 

 

 

No

 

 

1
8
0



target return i

de;er.dence must

based on its e

2.4 Eui er".

Electroragneti

The tr,

fro“. an electr

ties due to tt

plane wave or

rent is optic"

radar pulse sr

it is not in g

or target. He

Encamed the CI

iii-u: for trg

data lll this cl

lifillmm at Ill

The {J

Figure 2.5, h"

.3 n5 fall “I

fix  tEfidlng appwl

alumni sel;

All; I

““439. 4

FOP '1

”OCES S 1 r.

:lar .

We Have 0r.

 



21

target return the nonharmonic time dependence and the aspect angle

dependence must be decoded simultaneously to identify a radar target

based on its electromagnetic invariant parameters.

2.4 Equipment Set-Up for Transient

Electromaggetic Reception
 

The theory of SEM has shown (Ref. 2-3) that the radar return

from an electromagnetic scatterer can be decomposed into singulari-

ties due to the scatterer and those originating with the radar pulsed

plane wave or transmitted signal. A radar receiver in a benign environ-

ment is optimized to enhance the signal-to-noise ratio of the returned

radar pulse shape. It may also have provisions to reject clutter, but

it is not in general optimized for the return of a specific scatterer

or target. Hence we require a different reception technique to

enhanced the discrimination process. Figure 2’4 shows the equipment

set-up for transient electromagnetic reception used for the initial

data in this dissertation. The data were collected by Dr. Bruce

Hollmann at the Naval Weapons Center at Dahlgren (ref. 2-5).

The transmitted pulse originates from an impulse generator,

Figure 2-5, with approximately .2 ns rise time, .7 ns duration, and

.3 ns fall time. The transmit antenna is an imaged conical antenna

extending approximately 10 feet over an aluminum ground plane. These

equipment selections are made to avoid adding singularities to the

pulse shape, f(s), of the incident plane wave on the radar target.

For processing simplicity it is desirable to approximate an impulsive

plane wave on the radar target.
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PULSE
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TIME IN NRNOSECONDS

Figure 2-5. Transmitter Pulse Observed in Transmission Line
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The receiving antenna is a TEM horn also imaged on the ground

plane. This choice is made as a trade-off among usable bandwidth, high

gain, and minimum blockage and distortion of the incident plane wave

on the radar target.

The radar receiver in this equipment set-up is a microwave

sampling oscillosc0pe. The sampling heads of the oscilloscope have a

response into the 12.5 GHz range. A microcomputer actually samples

the analog output waveforms of the sampling oscilloscope.

The microprocessor stores sampled data values of radar return

at 256 precise discrete time values. At each of these 256 discrete

times, 100 radar return sampled data values are averaged. All values

are quantized to 8 bits. The quantized 100 sample averaging is the

only signal-to-noise enhancement performed by the equipment. For

uniform quantitization, the rms value of the quantitization noise

introduced is (ref. 2-6) given by equation (2-26).

2 2-2 bits

=-—— = (-6 bits - 10.8).
1 1n dB (2'25)5

!
”

2 =E{nq}

So the quantitization rms noise is at least -58.8 dB for an 8 bit A/D

conversion.

The spatial orientation of the transmit antenna, radar target,

and receive antenna is important. For the bistatic radar data used

in this dissertation, they are configured approximately as an equi-

lateral triangle. Figure 2—5 shows the output of the impulse gen-

erator directly into the sampling oscilloscope. Figure 2-6 is the

time response waveform for the TEM horn directly viewing the transmit
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Figure 2-6. Radar receiving TEM horn antenna.
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antenna. It may be seen that even with the care provided, the wave-

form in the receiving antenna transmission line is distorted from the

waveform in the pulse generator transmission line.

2.5 Processing by Digital

Clutter Map

 

 

Any radar equipment set-up can be expected to have large

amounts of radar clutter (Ref. 2-7, pp. 9) in addition to thermal

noise. In the short-time period, the clutter is deterministic and

repeatable. An early method of clutter rejection is to store the back-

ground returns for a radar without a target present and then subse-

quently perform a comparison with radar target might be present. The

storage of the background radar return without a target is often

called a "ground clutter map" (ref. 2-8, p. 403).

Figure 2-7 contains three traces each of which is 256 sam-

pled data points. One of the top two traces is labeled target plus

clutter and noise. The other trade is labeled clutter. The target

is physically absent during the measurement of this file of clutter

plus noise. This clutter trace constitutes our ground clutter map in

the direction of the target to be measured. The 8 bit quantitization

is not obvious from these two traces. The processing performed is to

directly substract the clutter map from the target plus clutter and

thermal noise file. The bottom trace is the processed difference.

Note that any drift in DC level or gain drift of the analog amplifiers

can cause distortion. Figure 2-8 is the same processed file, but with

an expanded scale. Now the quantitization and drift is visible in the

file. It can also be calculated that the maximum number of bits used
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by the processed radar target return is a peak of 6 bits, but near the

end is only 3 bits. Hence the quantitization noise varies from

-46.8 dB to -28.8 dB.

The quantitization is further exaggerated by differencing of

samples adjacent in time. The rationale for the time differencing is

to completely eliminate DC bias in the data and to reduce the degree

or order of other distortions which may be present.
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CHAPTER III

PROCESSING TECHNIQUES FOR EXTRACTING

NATURAL MODE WAVEFORMS

3.1 Reception of a Radar

Target E—Field

 

In the previous chapter we developed expressions for the

far-field retarded scattered E—field. The radar receiving antenna

will receive a portion of this scattered E-field and deliver it at the

antenna terminals to a transmission line. The response observed at

the antenna terminals depends upon the polarization match of the

scattered field and the radar receiving antenna as well as the receiv-

ing antenna's response for a particular direction. We can account for

polarization effects if we always calculate or measure an orthogonal

pair of polarizations for the scattered E-field and the antenna. In

this chapter we shall perform these calculations only for a e-polarized

component. The orthogonal component procedes identically.

We shall denote the e-polarized far-field radar target scat-

tered retarded E-field by equation (3-1).

tare(t) = L'1(TAR6(B,¢,S)) (3-1)

The TARe (e,¢,s) is the frequency domain expression we obtained in

equation (2-21) for this particular radar target scatterer.

30
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In a similar notation, we shall represent the 9-polarized

plane wave impulse response of our particular radar receiving antenna,

a TEMehorn, by teme(t), in equation (3—2)

teme(t) = L'1(TEM6(6',¢',S)) (3-2)

This time TEM6(9',¢',s) is the frequency domain expression for the

antenna terminal response to a unit e-polarized impulsive plane wave

from direction (e',¢'). We shall hereafter assume that the radar

antenna boresight is oriented toward the radar target. That the

impulsive response of a planar aperture antenna can be obtained from

the frequency domain antenna response is well developed in reference

(3-1).

It should be observed that the transmitted plane wave pulse

which is incident on the radar target should also be received at least

through the antenna sidelobes by the radar receiving antenna. However,

by performing the ground clutter map processing of Section 2—5, we

will simultaneously eliminate the sidelobe leakage of the originating

transmitted plane wave pulse, Einc(?,s), from the target plus clutter

and noise response of the radar receiving antenna. We will denote the

clutter-suppressed radar target antenna terminal response by v(t) as

given by equation (3-3).

+00

v(t) ajr teme(1)tare(t-T) d1

= L'lfTEMe(e',¢',s) TAR6(6,¢,S)} (3-3)
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As we can observe from equation (3-3), the antenna transmission

line will contain natural mode waveforms from the radar target, the

reception antenna, and less obviously from the plane wave incident

upon the radar target. In our notation the possible natural modes of

the incident plane wave pulse were not separated from TAR6(9,¢,s).

3.2 Sampling_the Radar

Antenna Response

 

 

So far we have characterized both the scattered E-field of the

radar target scatterer and the receiving antenna response as linear,

time-invariant processes with Laplace transforms. This allows us the

option of computing the composite response either by a time domain

convolution or a transform domain product.

There is one process we shall use that is not "linear, time-

invariant." It is our sampling process or A/D conversion. The opera-

tion of sampling is characterized as a multiplication or modulation

(ref. 3-5, pp. 30). As a mathematical computation there is nothing

new. Only the roles of the time domain and the frequency domain have

been switched. This time domain product becomes a convolution in the

frequency domain. For uniform sampling, we might characterize the

system as linear, frequency-invariant or linear periodically time-

varying.

Although taken alone the sampler may be mathematically simple,

we must use it in combination with linear time-invariant processing

and electromagnetic scatterers. This makes both the time domain and

frequency domain representations more complex conceptually but
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generally more convenient computationally. For the purpose of gain-

ing conceptual fluency, Appendix B is recommended reading after

reviewing the notation of Appendix A.

There are two equations we will use extensively. Equation

(3-4) is simply the definition of the sampler of period T which will

multiply the antenna terminal response.

400

6T(t) = _z S(t-nT) (3-4)
n_-w

Equation (3-5) is the output of this sampler placed at the antenna

terminals for our radar target scatterer.

antT(t) = 6T(t)(teme(t) * tare(t)) (3-5)

3.3 Processing a Scattered

E-field Reception

Our next objective is by means of simple processing of the

scattered field observed at the terminals of the reception antenna to

obtain a single, j-th mode waveform. This could be either a purely

real natural mode waveform representation of one of the complex natural

mode phasor waveforms of an equivalent representation. Our processing

at the antenna terminals will be a weighted summation of N sampled-

data values of the retarded far-field reception antenna response.

The form of this process for a conventional radar is illustrated in

Figure 3-1. In our experimental set-up of Figure 2-4, the sampling

occurs in the sampling head of the sampling oscilloscope. Any con-

tinuous representations of the retarded far-field antenna response
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are stretched and/or filtered versions of these sampled data values.

We may represent this process by equation (3-6).

. N-l .

vJ(t) = p(t) * z ai 6(t-kT) * antT(t) (3—6)

In equation (3-6), the function p(t) represents the final smoothing

of the output waveform after or during the processing. The impulse

function S(t-kT) is, of course, synchronized with the sampler on the

antenna terminals. For convenience, we will always choose the smooth-

ing function, p(t), of finite duration in time.

When the retarded scattered E-field from the radar target is

present at the antenna terminals, we may represent the j-th mode

processed antenna response, v3(t), as in equation (3-7).

0 NT+ o

VJ(t) =f eJ(T) antT(t-t) d1.” (3'7)

The excitation function, eJ(t), is easily identified from equation

(3—6) and is given by equation (3-8).

- N-l .

ejct) = ego) * P(t) = p(t) * z a
k=0

6(t-kT) (3-8)

In a similar manner we will define the pulse shape independent sam-

pled mode response vg(t) by equation (3-9) and its transform by

equation (3-10).
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N 1

vg(t) = 2 a3 S(t-kT) * ant(t) (3-9)

k=0

A- N‘l - A

V%(s) = 2 ai exp(-sTk) ANTT(s) (3-10)

k=0

Before we make any simplifications in the sampled antenna

terminal response, we need to make a generalization which is necessary

in circumstances when more than one file or data set are used together.

Typical cases which require synchronization of data are deconvolution

and comparison of more than one data file. For the real radar problem

we do not know the synchronization of the sampler relative to the

analog retarded antenna terminal response. To specify this synchroni-

zation, we shall use the modified z-transform notation of Appendix A.

The use of m as an argument in parenthesis shall denote the use of

this parameter. Equations (3-9) and (3-10) become equations (3-11)

and (3-12).

. N-l .

v3(t,m) = z afl C(t-kT) * antT(t,m) (3-11)

k=0

. N-1 . _k

VJ(z,m) = Z aJ z ANT(z,m) (3'12)

k=0 k

3.4 Excitation of a Single

Natural Mode Waveform

The objective of this section is to determine the conditions

under which the output convolution of equation (3—13) can be a single

natural mode waveform using N coefficients {ailt;3.
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N-l

X
J
(t. l =vd m (k=0 636(TékT))'antT(t-t,m) a. (3-13)

At this point we will simplify the sampled scattered antenna terminal

response by assuming that the receiving antenna is nondistorting and

using m = 1 as given by equation (3-14) and (3-15).

antT(t,m=1) = 6T(t)tare(t) ' (3'14)

. N-1 .

vg(t,m=1) = (ksoaiact-k1))*(aT(t)tare(t)) (3-15)

Now tare(t) is more succintly known by equation (2-22) for a wire-

like target.

A U -> —> —+

TARe(e,¢,s) = s Sine EN] K(r',s) exp(-sAR/c)dA' (2-22)

A

Using SEM the model form of the solution is given by equation (3-16).

TAR646.¢.S)= Z (s-sal'l E(e,¢,s) (3-16)

(I

The Laplace transform of the sampled antenna terminal response is

actually the z-transform of the antenna terminal response after the

change of variable from s to 2. Due to the simple pole form of the

SEM model solution, the evaluation is performed term-wise as in

Appendix A to yield equation (3-17).
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TARe(0,¢,z) = i (1.20/2)’1 E(e,¢,z) (3-17)

We will now rewrite the simplified equation (3-13) in the frequency

domain to illustrate what excitation of the single j-th mode implies

in the frequency domain as given by equation (3-18).

A. N-1 x

vgls) = 2 as exp(-sTk) 2 (l-exp((s -s)T))’1 c(e,o.s) (3-18)
k=0 k a a

Note that we have suppressed the entire function which may be asso-

ciated with the infinite index set, a. From equations (2-27) and

(2-18) we know that in the time domain, tare(t), can be calculated from

the simplified current density coupling coefficient in the "last-

time" of the retarded far-field scattered E-field. We note that

tare(t) is composed of terms of the form given by equation (3-19).

-1 -1“ _ u _
L {(s-sa) Ce(e,¢,s)} — u_1(t-t )Ca(e,e)exp(sat) (3 19)

We shall use this new representation in tare(t) in the "late-time".

Also, we have used this opportunity to change from the SEM vector

containing the aspect angle dependency of the incident plane wave on

the radar target with the more conventional spherical angles (9,¢).

We then obtain equation (3-20) for the "late-time" representation of

equation (3-18) now in the time domain.
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N-I

vgit) =kEO ai 6(t-kT)* g 0:1(t-t")exp(sat) Ca(e,¢)'6T(t)

for t-nT > t“, n an integer (3-20)

We will not be able to achieve our desired objective with

equation (3-20) as it stands. The change we shall make is to trun-

cate the infinite summation on the index set a. This is a reasonable

approximation in the late-time for all targets which yield “class 1"

coupling coefficients in the retarded scattered far-field which are

absolutely convergent. In this case we obtain equation (3-21) which

is the fundamental equation for signal processing of the radar target

return. We will denote this finite sunmation by denoting the index

set by m instead of a.

. N-1 . N
J _ 1 - .

vd(t) - a ak s(t-kT)* a u_1(t-t )exp(smt) Cmie.o)5T(t)

k-O m-I

t - nT > t" (3-21)

Recall that our star notation denotes the convolution operator in the

time domain. For t in the "late-time“ the step function u-1(t-t")

disappears and this allows a simple evaluation of the integral opera-

tor. In order to formalize in a matrix form we shall calculate the

convolution of the processing with the coefficients of the sampler

output to obtain equation (3922).
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(t-kT)*exp(smt) .[6(1-kT)exp(sm(t-1))dt

exp(smt)Mmk (3-22)

The scalar constants Mmk are given by equation (3-23).

Mmk = exp(-smTk), m = 1, . . ., N; k = 0, . . ., N-l (3-23)

We note, in passing, that these scalar constants are functions only

of a single natural frequency and the sampling time kT. Next we wish

to define a natural mode waveform Cm(e,¢,t) by equation (3-24).

Cm(e,¢,t) = Cm(e,¢)exp(smt) m = 1, . . .,N (3-24)

We will now rewrite equation (3-21) in terms of the quantities defined

by equations (3-22) through (3-24) to give equation (3-25).

. N-1 . N

vg(t) = u_1(t-t") Z a: Z Cm(9.¢.tl Mmk6T(t)’ t=nT > F (3-25)

k=0 m=1

Let us now suppose that we desire the processed (pulse-independent)

radar target return to be samples of a single "late-time" natural mode

waveform of the form given by equation (3-26).

3 - _ u .
vd(t) - Cj(e,¢,t)5T(t) t_nT > t + NT, n an integer (3-25)

We note that in equation (3-27) we have exactly N unspecified con—

stants to be used. If use exactly N sampled data values of the

received waveform, we can potentially solve for the unknowns {afl}:=o.
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In order to facilitate a matrix formulation, we need to compress our

notation a little further as given by equations

0, 1, . . ., N-l (3-27)v: = vJ(nT), n

C = C ( , ,nT), n O, 1, . . ., N-l; m = 1, . . ., N (3-28)
IlITI III

We may now write N sampled data values of v3 as a column vector [3%]

nd express equation (3-25) as the matrix equation (3-29).

('3' .' ' J' -
LVn: [Chm] Mmk [3k] (3 29)

Upon observing the structure of equation (3-29), we observe that we

will obtain equation (3-30) if equation (3-31) is satisfied.

j - = - . ‘ _-_ _

vn - an, n 0,1,. . .,N 1, J 1,...,N/2 (3 30)

no“

0 M‘

' k j . .

I = m [ak] (one 1n j-th row) (3-31)

1

L°1l  

So in order to excite the desired natural mode wave form, we need

concern ourselves with the matrix of frequency/sampling constants Mmk

which are independent of aspect angle.
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Hopefully, the reader will recognize the form of equation

(3-31) and note that the {a3}:;3 may be obtained as the j-th column

of the inverse matrix of Mmk' Writing out all N natural mode wave

form excitation vectors in matrix form, the relationship is more

evident in equation (3-32).

.- 1 N . r q

[Mmk] a0 ... 60 l: 10 ... 0

E I 0 1 ... 0 (3-32)

1 N :
LaN-l aN-L L0 0 co. 1.:    

Hence if we can obtain all of the natural mode waveform excita—

tion vectors, we have, in fact, the inverse matrix of Mmk which is

evident from equation (3-32). We may now conclude that if the matrix

of frequency/sampling constants is invertible, then we can obtain

excitation coefficients for each of the finite number, N, of natural

mode waveforms. In fact, we are able to separate them in the "late-

time". It should be observed that whether or not the frequency/

sampling constants matrix is invertible is determined by the collection

of natural frequencies and sampling time and is independent of the

aspect-angle of the target or the amplitude of the received waveform.

We will later observe that we may be able to obtain the excitation

coefficients for natural mode waveforms even when the matrix of fre-

quency/sampling constants is not invertible. The procedure is

similar to the K-Pulse Singularity Theorem of Appendix C and is

performed automatically in the "fast" Prony's method of Chapter 5.
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For the case when 1:"ka is invertible, the j-th mode

excitation coefficient vector is given by equation (3-33). We shall

call the vector on the far right of equation (3-33) with the 1 in the

j-th row as the selection vector. .It simply selects on the columns

of the inverse matrix of frequency/sampling constants.

,

-1 0-

j k 0 . (3'33)

[ak] = m 3 (one in j-th row)

1

L6.  

Now suppose we desire to extract a real natural mode waveform.

We may, for example, select the lst cosine natural mode excitation by

remembering the order in which we placed conjugate natural frequen-

cies in the matrix of frequency/sampling constants. In our case they

are index staggered by N/2, so we obtain equation (3-34).

M ‘

m = [M1 3 my >2[ai*””]= R. M (3-3»

L3J  

A similar relation holds for the lst sine natural mode excitation.

Similarly, we may obtain the lst sine natural mode excitation by

equation (3-35).
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Superscripts s and c shall denote these real excitation coefficients

for the ej(t) of equation (3-8).

3.5 "Polar Mode A-Scope" Displays

One of the fundamental radar displays is called a radar

A-scope. This is a retarded transmitter triggered display of the

processed received target response as a function of time, generally

at baseband (carrier removed). The significance of the display is

that for a target much stronger than clutter, the envelope of the

transmitter pulse is often viewable although it is altered by the

radar system response and the radar target. The time delay of the

triggered radar return behind a replica of the transmitter pulse

envelope gives the radar range estimate. lf_it were not for the

extreme aspect-angle dependence of the radar return, one would be

tempted to use the amplitude of the radar return as an estimate of

target size. Figure 3-1 is a radar A-scope display of the response

of our experimental radar system, Figure 2-4, to a hemispherical

radar target imaged on a conducting ground plane. For completeness,

the TEM horn antenna associated with this particular radar target

data is given by Figure 3-2.
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19“ SPHERE -

 
 
  

1.0 2:0 3:0 4:0 5:0 610 7.0

TIME IN nanosecowos

Figure 3-1. Clutter—reduced 18" Spherical (imaged)

Radar Target Return.
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8
-
0

TEM HORN FILE: NINETEEN70
4
.
0

 

2
.
0

 l
-
O

  | I I I

3-0

I ‘ r’ T

0.0 1.0 2.0 4.0 5.0 8.0 7.0 0-0

TIME IN NRNOSECONDS

Figure 3-2. TEM Horn Receiving Antenna used

for Spherical Radar Targets.
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We are now ready to develop the special radar A-scope dis-

plays which are destined to play a crucial role in the final dis-

crimination technique of this dissertation. In order to describe the

display, we shall in this section only use a synthetic data file for

our target response at the antenna terminals. The data is created

by equation (3-36) which we shall call a "prony series".

S(t) = mgl cm exp(smt), t = nT > 0, n an integer (3-36)

For the natural frequencies in equation (3-36), we shall choose the

first 10 complex conjugate pairs of a 6" wire with a length-to-radius

ratio (L/a) of 400. Hence N is 20 and our excitation technique of

section 3.4 yields an excitation coefficient vector [Efl:l of 20 ele-

ments. Convolving by equation (3-37) the 2nd cosine mode excitation

(j=2) with the synthetic "prony series" we obtain Figure 3-3. There

is another real natural mode waveform which looks quite similar to

this. Convolving by equation (3-38), the 2nd sine mode excitation

with the synthetic "prony series" we obtain Figure 3-4.

NT

' . . (3-37)

I each) S(t-T) dT
Aj(t)

T+ is .

1[N e (T) S(t-T) dT
(3-38)

Bj(t)
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Figure 3-3. 2nd Cosine Mode Convolution.
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Figure 3-4. 2nd Sine Mode Convolution.
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It is important to note that each of these convolutions appear

as the expected damped cosinusoids starting at t = 2.04 normalized

time. It takes that length of normalized time to accumulate 20

samples of the I'Prony series" in order to satisfy the conditions of

independent data samples under which equation (3-32) was derived.

Also visible as pulses on the left-hand side of Figures 3-3 and 3-4

are the j-th mode excitation coefficient vectors for the 2nd mode.

The two convolved waveforms Aj(t) and Bj(t) are what we shall call

a rectangular j-th mode radar A-sc0pe plot.

We shall now perform a seemingly simple transformation of

these two rectangular mode radar A-scope plots into a polar form as

given by equations (3-39), (3-40), and (3-41).

C(t) = Alt) - jB(t) (3-39)

env(t) = Re(clog(c(t)) (3-40)

rot(t) = Im(clog(C(t)). conts. phase (3-41)

where clog() is the complex logarithm with phase made continuous.

Figure 3-7 shows the envelope, env(t) as a function of normalized time

with a straight line of slope equal to the damping coefficient of the

2nd natural frequency of the synthetic "Prony series". Note that the

envelope does not meet with the straight line until the 20 nonzero

samples have been accumulated.

The last equation of the transformation yields what we shall

call "rotations" which is an analytically continued phase of the com-

plex logarithm. Only the continuation operation is not easily
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Figure 3-5. 2nd Mode Envelope Radar A-Sc0pe.
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Figure 3-6. 2nd Mode Rotation Radar A-Scope.



Obtai

Iran

0‘)!- y.

w c;

*‘VIJ5i

557:15



50

implementable in either analog or digital hardware. However, we do

not need the exotic phase unwrapping algorithms necessary for

cepstral analysis (ref. 3-6). This is because we only have a single

mode remaining rather than a large sum of complex exponentials whose

phase is to be continuous. To continue the phase we make only a

trivial logical comparison of the previous sample throughout this

dissertation. It should be noted that only the starting point is not

unique for "rotations."

The radar A-scope plots of rotations yields some interesting

information not observable in the previous three plots. There appears

to be gg_early time transient in this plot. Starting with sample one,

the "rotations" plot align with the straight line whose slope equals

the minus imaginary part of the second natural frequency of the syn-

thetic “Prony series."

The display of equations (3-40) and (3-41) shall hereafter

be called the "polar mode A-sc0pe" display. We shall expand upon this

concept in Chapter 6.

3.6 Measurement Performance of

Single Mode Waveform Extraction

Technigue

We shall now attempt to extract a single natural mode waveform

from the radar target scatterer of Figure 3-1. Our objective is to

obtain the j-th mode real natural mode waveforms Aj(t) and Bj(t) which

from our synthetic data of Figures 3-3 and 3-4 we now can resemble

damped cosinusoids for normalized time for which only nonzero data

samples are used in equations (3-37) and (3-38). These results are
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for a "Prony series" which we cannot expect unless the following

three conditions are met on the incident plane wave plus shape, the

receiving antenna response, and the "late-time" target far-field

response:

(1) f(t)

(2) tem (t)

6(t) from equation (2—15)

s(t) from equation (3-14)

(3) tret > t" (2-way transit time) from equation (2-18)

All three of these conditions are troublesome. The "late-time" condi-

tion would be easy if the first two were satisfied. Figure 2-5 shows

the originating pulse shape and Figure 3-2 shows the receiving TEN

horn antenna response.

We will perform a slightly defective correction to meet these

conditions. A digital deconvolution of the receiving antenna response,

Figure 3-2, will be performed on the clutter-reduced radar target

response, Figure 3-1. Deconvolution is difficult on measurement data

because one cannot obtain the sampling synchronization (which is auto-

matic with synthetic files with subsequent additive noise) which is

required by equation (3-13). The deconvolution technique we will use

is the discrete time Least-squares Wiener filtering of reference 3-7.

The results of our deconvolution are shown in Figure 3-7 for a pre-

whitening parameter of 5%. A good error analysis of deconvolution is

given in reference 3-8 of the "Deconvolution" collection of the Geo-

physics reprint series.

This technique for extracting the natural mode waveforms

depends upon a priori knowledge of the natural frequencies. Used in
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the synthesis of these excitation waveforms are 19 natural frequency

pairs from reference 3—9. Figure 3-8 shows the results for the

deconvolved 19" spherical radar target of Figure 3-7. 0n the left-

hand side in sub-figures (a) and (b) we have the desired waveforms

A1(t) and Bl(t) and also just below on the same plots, the corre-

sponding excitation vector, [e:é:land [EKIS , for each of the desired

waveforms. 0n the right hand side we have the plots we have defined

as the "polar mode radar A-scope." In these two plots we can clearly

see that in the time period (of nonzero samples in the convolution),

the output data displayed is clearly parallel to the correct damping

line olt in the envelope display and the correct rotation line wlt

in the rotation display. This is positive confirmation of a pure

natural mode waveform in this time period. The results for the 2nd

natural mode waveforms are in Figure 3-9. Again the "polar mode

radar A-scope" plots give a confirmation of the desired natural mode

waveform in the output convolutions. Figures 3-10 and 3-11 give

positive confirmations for the 3rd and 4th mode natural mode wave-

forms. As this was one of our earliest targets, more desirable longer

data sequence was not taken.

3.7 Sgaling of the Invariant

Radar Target Parameters

In the previous two sections we have presented displays of

the invariant parameters of a radar target for the cases when the

invariant parameters were known a priori and we excited these known

parameters. We must also be interested in what happens when a
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natural mode waveform is present, but it is not the one of the

target modes that we are looking for. Our derivation so far gives

us no clues in this case. The only thing we know for certain is that

when we are exciting the j-th mode waveform, the (j+1)-th waveform

will not be passed. The "late-time" suppression of the (N-l) modes

not excited depends on many items. For our implementation this is

known to be approximately 210 dB. Only on the sensitive envelope plot

of the “polar mode A-scope" is the extent of this suppression

viewable. Again, it must be emphasized that if the undesired mode

waveform is not exactly one of the natural frequencies used in the

matrix of frequency/sampling constants, equation (3-34) we have not

yet developed a method of calculating its suppression.

In this section we will examine the effect of small departures

of the natural frequencies from the values used in the frequency/

sampling constants matrix. For our baseline we will use an 18" wire

(inclusive of the image) for a radar target scatterer. The particular

wire is actually making good electrical contact to our conducting

ground plane at normal incidence. The natural frequencies of the wire

are less damped than that for the sphere. This means that the natural

mode waveforms of the wire target are relatively strong in the "late-

time" making deconvolution of the receiving TEM horn antenna of

dubious value. Figure 3-12 shows our clutter-reduced radar target

antenna terminal response. The length-to-radius of this wire target

(L/a) is 400. We may readily calculate by method of moments 10

pairs of natural frequencies which we shall use in the frequency/

sampling constants matrix of equation (3-34). As a note to be
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justified in the latter chapters, we choose the sampler period to be

such that the total length of the excitation vector is greater than

t", the maximal 2-way transit time of the target, of equation (2-18).

Figure 3-13 shows the radar A-scope plots for the lst natural

mode waveform excitation of the correctly-sized (and no Doppler)

target. The rectangular plots on the left-hand side illustrate the

expected damped cosinusoids starting at the retarded time for which

nonzero data for the full length of the excitation vector occurred.

The polar plots on the right-hand side give a very sensitive indicator

of the purity of the lst natural mode waveforms. The double triangle

pointers on the dashed damping mode linear, separated by exactly one

excitation vector time length. From the envelope plot in the upper

right hand corner, we can identify nearly pure natural mode waveform

occurring starting at approximately 0.5 normalized time units past the

end of the excitation vector. There are about 0.5 normalized time

units of zeros at the beginning of this file. Next to be observed

is the rotations plot on the lower right-hand corner. In this case,

we can detect a constant slope which is close to the exact rotation

line which is dashed. The measured rotation line is slightly more

negative. From a comparison with data to follow, we could estimate

the wire to be about 2% shorter than the length we are using for our

frequency/sampling constants matrix. A 2% error in reading the ruler

is not unreasonable. This constitutes our baseline A-scope plots

for the lst mode excitation of a correctly-sized cylindrical radar

target.
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Next we shall scale the clutter-reduced radar target antenna

terminal response by 10% physical undersize, but retain the excitation

vectors for the correctly sized radar target we have just viewed.

The undersized (and oversized) radar target antenna terminal response

files we will be using are created from the original correctly sized

sampled data files. The first step is rescaling the time coordinate

of the samples. Next cubic splines (references 3-4 and 3-10) are

used to obtain sample data points in synchronism with the excitation

vector samples.

Figure 3-14 displays the lst mode excitation for the original

sized target processed on the 10% undersized clutter-reduced radar

target antenna terminal response. The rectangular radar A-scope dis-

plays are different by heuristic examination by eye, but not by a

quantifiable amount. The polar mode radar A-scope gives a more quan-

tifiable identification of a dominant natural mode waveform. It

should be noted that the rotation plot of Figure 3-14 has a constant

"late-time" slope. However, this constant slope differs from the

expected slope for the correctly-sized radar target by a slight, but

definitely greater, negative slope. The envelope plot has more

ripples than that for the baseline, Figure 3-13, for the lst mode.

Let us now examine Figure 3-15 which is for a 10% oversizing

of the original baseline response of Figure 3-13. The rectangular

plots of the radar A-scope are again similar but difficult to inter-

pret. They are difficult to interpret because one cannot use either

the amplitude of the mode waveform or the time delay of the mode
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waveform for target discrimination. One cannot use the amplitude

because both range dependence and aspect-angle dependence of the

target destroy its use as an aspect angle independent radar target

discrimination techinque. One cannot use time delay for discrimina-

tion for two reasons: one is its obvious range dependence and the

second is that even if a radar range estimate is available from other

processing algorithms, its resolution will not, in general, be pre-

cise enough to calibrate individual modes. The rotations plot is

not quite as clear as before. The slope does not appear to be as

constant as the two preceding cases, but there is a slight trend to

be less negative than either of the two preceding rotation plots.

The envelope plot for the 10% oversized radar target is more lumpy than

the plot for the correctly-sized radar target antenna terminal

response.

We shall temporarily skip the second mode processing. The

reason for this is that for the normal incidence on the thin cylinder,

no even natural mode waveforms would be excited. This follows from

symmetry arguments.

Figure 3—16 is the 3rd mode waveform excitation processing on

the correctly-sized 18.6" (L/a = 400) radar target antenna terminal

response. The rectangular radar A-scope plots clearly indicate the

presence of a waveform of at least approximately correct frequency.

The rotation plot clearly indicates a constant slope, but more nega-

tive than the exact rotation line. This would positively correlate

with our lst mode estimate of a 2% undersizing of the original data
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file either by a ruler measurement or by method of moments natural

frequency calculation. Another good confirmation with the lst mode

is in the envelope plot. The 3rd mode envelope plot has a "late-

time" relatively constant slope that also starts approximately 0.5

normalized time units behind the end of the excitation vector. This

is the same as for the lst mode envelope.

For the 10% undersized radar target antenna terminal response

processed for the correctly-sized 3rd mode waveform, we obtain Figure

3-17. The rectangular 3rd mode plots are not indicating the same

waveform purity as before. The polar mode radar A-scope plots show

observable departures from the expected constant "late-time" behavior.

For the 10% oversized radar target antenna terminal response processed

for the correctly-sized3rd mode waveform on Figure 3-18, the rec-

tangular plots differ by a difficult to quantify amount. In the

polar mode radar A-scope plots the difference from the 3rd mode base-

line is most obvious.

Figure 3-19 constitutes our baseline for fith mode waveform

processing with the correctly-sized radar target. Only the rotation

plot can give a waveform confirmation for this extremely weak mode

waveform. Figure 3-20 gives the 10% undersized plots. In this case,

the fifth mode waveform cannot realistically be observed and a dis-

tinction can be made from Figure 3-19. A similar situation holds

for the 10% oversized plots of Figure 3-21.

Figure 3-22 constitutes our baseline for the 7th mode waveform

processing with the correctly-sized radar target. Only the rotation

plot can give a waveform confirmation for this extremely weak mode
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waveform. Figure 3-23 gives the 10% undersized plots. In this case,

the seventh mode rotation plot completely breaks down. A negative

confirmation is easy. Figure 3-24 gives the 10% oversized plots for

the seventh mode excitation. In this case the rotation plot (note

different scale) breaks down in another manner for this mode. A

negative confirmation of this mode is easy.

3.8 Observation of the Absence of

a Natural Mode Waveform
 

From the preceding two sections we developed techniques to

recognize or detect specific natural mode waveform. For the standard

radar problem always contending with thermal noise, propagation scin-

tillation, target glint, false targets, receive nonlinearities, etc.,

our initial technique is at most half a useful procedure for a radar.

If these were not critical issues, we could use synthetic radar target

files exclusively and ignore the difficulties of empirical radar target

data which we will deal with exclusively. Complementary to the detec-

tion of specific natural mode waveforms is the detection of "false

alarms". In fact, the signal-to-noise ratio of a radar system is

sometimes characterized in terms of its probability of detection

versus its "false alarm" (reference 3-10).

In this section we shall observe the absence of a radar target

natural mode waveform in three cases. The data we shall use are our

baseline correctly-sized radar target antenna terminal response of the

previous section. Note that it is not deconvolved fOr either the

antenna response (H* for the incident plane wave pluse shape. We will

be observing target mode excitations for which no radar target natural
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mode waveforms are present. We may do this because there are physi-

cal configurations for which the coupling coefficients of certain

current density natural mode must be zero. For the thin cylinder

illuminated by a normally incident plane wave, there can be no even

natural modes excited. This is due to the perfect symmetry of this

particular radar target with respect to the incident E-field.

In Figure 3-25 we observe the second mode waveform processing

of our baseline correctly-sized radar target antenna terminal response.

From the rectangular plots we observe a strong transient located during

the first nonzero samples of the excitation vector, but followed by

no corresponding natural mode waveform response in the expected "late-

time" portion observed in the odd mode waveforms. The envelope plot

shows a pulse-like envelope of time length equal to the excitation

vector time length. (Remember that our envelope plot are on a com-

pressed logarithmic scale.) We will observe this pulse-like shape in

the envelope plot again in the next chapter and we will call its

aspect-angle independent excitation vector a K-Pulse for a specific

radar target.

In Figure 3-26 we observe the fourth mode waveform processing

of our baseline correctly-sized radar target antenna terminal response.

There should be no waveform originating from the radar target at this

frequency. The rotation plot does, however, indicate a waveform with

a rotation slope slightly lower to that of the correct fourth natural

mode waveform. The envelope plot appears as a pair of staggered pulse

shapes and is not explainable as a target mode waveform. The rectangu-

lar plots indicate perhaps the existence of two distinct ringing
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waveforms, one in the early-time and one of small amplitude starting

at 3; normalized time units. It is believed this is a mode originating

within the radar system set-up, rather than from thermal noise. This

is suggested by the coherence displayed by the rotation plot.

In Figure 3-27 we observe the tenth mode waveform processing

of our baseline correctly-sized radar target antenna terminal

response. There does not appear to be any coherent signal energy at

this natural frequency since the rotation plot fails to match the

expected slope. These plots are what we should expect to be generated

from thermal noise within the radar system.

3.9 Extension of the Model to

unknown Natural Frequencies

 

 

So far everything we have done is based upon a priori exact

knowledge of the invariant radar target parameters--the natural fre-

quencies. There are no flyable airborne radar targets for which the

natural frequencies are known in an analytically closed form. We have

also seen that the radar system itself may contribute some natural

frequencies to the radar return. Further we should not expect to

observe all of the system natural frequencies on a specific radar

target return. However, if we can obtain these radar target invariant

parameters by another route, we will use them in exactly the same

manner we would use equation (2-22).

In the next chapter we shall initiate a reliable procedure for

obtaining these natural frequencies from measurement data. So we must

add another goal in our quest for an aspect-angle independent radar

target discrimination technique.
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CHAPTER 4

PRONY'S METHOD AND THE K-PULSE

4.1 The Original Prony's Method

Almost 200 years ago (1795) a measurement-based technique

using a finite series of complex exponentials was developed by

R. Prony (ref. 4-1). Although the original technique was developed

for evaluating the temperature dependence of vapor pressures over

liquids, we shall find it of use to use in the radar target discrim-

ination problem. We have already used in equation (3-36) what we have

called a "Prony series". With a few exceptions, Prony's method will

perfectly match a Prony series to equally spaced continguous sampled

data points of a continuous function. For example, for 2N sampled

data points, Prony's method will solve for the unknown constants of

an N term Prony series.

In addition there is a least-squares formulation of the com-

plex exponential matching technique called the "extended Prony's

method" (ref. 4-2). Similar to the "extended Prony's method" are

many recent techniques such as linear prediction, maximum likelihood,

.and maximum entropy method which also have a least-squares formula-

tion (ref. 4-3, 4-4). These latter techniques are often expressed

in terms of an analysis spectrum or of a synthesis filter. However

in 1795, Gauss had not yet disclosed the famous least-squares technique.

Hence Prony's method is the only one of the above techniques not

82
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influenced by the least-squares technique. Least-squares techniques

are not reversible to the original data. A "reversible operation"

like Prony's method is a desirable building block feature for a

modern "quiet“ radar design.

We shall start the derivation of Prony's method with a defini-

tion of a Prony series of N complex exponentials in continuous time

by equation (4-1).

<4-1)W O

N

v(t) = E Ck exp(skt) , t

k 1

The invertible sampled data version of equation (4-1) is given by

equation (4-2).

V(t,m) (4'2)

N

kilck exp(Sk(nT+mT-T))

where t nT + mT-T

n an integer

O < m': 1

lde have used the notation of the modified z-transform described in

Appendix A. We will not revert to a more common sampled data notation

(If the ordinary z-transform notation, equation (4-3), by picking a

specific synchronization, m = 1.

v(t,m=1) = (4'3)

fl
t
fl
:
z

N

C exn(s Tn) = z c {e T "k 1 k k k=1 k xp(sk )} ,

t=nT, n=0,1,....
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In order to prepare for matrix notation, we will compress the nota-

tion of equation (4-3) into equation (4-4).

v =

" k

I
I

I
I
M
2

(
'
1

z: , n=0,1,...,2N-1 (4-4)

"
(
‘
1
2

Ck{exp(skT)}n

k 11

Let us consider an arbitrary sequence of 2N equally spaced sample data

values {vn}§261. We should observe that in equation (4-4), there are

exactly 2N unknowns on the right hand side to match the 2N sampled

data values on the left hand side. Prony's method is a procedure to

determine the unknown constants of the series of complex exponentials.

Prony's method consists of a procedure we shall divide into

three parts. The first part always appears to be the least motivated

on physical grounds. Remember that we are going to determine the 2N

constants of the n term "Prony series" of equation (4-4) by 2N sampled

data values of the empirical data. The simultaneous determination of

the 2N constants of the N term "Prony series" is not a linear problem

such as the 2N term Fourier series based upon the same 2N sampled

data values.

Conceptually, suppose the natural frequencies have been deter-

mined. Then the complex amplitudes for each term of the "Prony series"

could be determined from any N sampled data values of equation (4-4).

We will, for example, take the first N sample values and put them

into matrix notation of equation (4-5). Hence the crucial step is

to obtain the natural frequencies. This will occur in two steps. If

we possessed a differential equation, we would take the Laplace trans-

form and obtain a polynomial in frequency. The roots of the
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r1 1 1 - FE: on ‘-

exp(slT) exp(szl) exp(sNT) C2 v1
. 3 : = : (4-5)

exp(slT(N-1))exp(szT(N-1))...exp(sNT(N-1))J 6N v" 1
_

— a c. “J

homogeneous polynomial would be our natural frequencies. Equation (4-6)

gives the Laplace transform of the "Prony series" and equation (4-7) is

the modified z-transform for m = 1.

A N

V(s) = 2 ck (s-sk)'1, Re(s) > m:x(Re(sk)) (4-6)
1

'C

1

V(z,m=1) =

k k (1-zk/z)-1,|2| > m:X(le‘) (4-7)

I
I
M
Z

Instrinsic to Prony's method is the exclusive use of sampled

data values. So we do not observe continuous waveforms characterized

by differential equations, but we do have a characterization of dif-

ference equations. From 2N sampled data values we could form a poly-

nomial of degree 2N-1. But this is too large, since we wish to match

it to the N term "Prony series". We shall be looking for some func-

tion a(nT) such that when convolved with v(nT) will yield an output

with no natural mode waveform, o(t) in equation (4-8), remaining.

Alternatively, 0(2) in equation (4-9), is an entire function.

o(t) = a(t)*v(t) . t=nT, n is an integer (4'8)

0(2) = A(2)V(2)
(4-9)
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But equation (4-8) can be expressed as equation (4-10), and equation

(4-11) must hold.

0 T = n-l dz _(n ) '4g A(z)V(z)z §;3-, n> 0 (4 10)

unknown, n=0,1,...,N-1

o(nT) = 0 , n=N,N+1,...2N-1 (4-11)

0 , n 2 2N if V(z) has only N poles

The significant feature which A(z) possesses is that it possesses

zeros exactly where V(z) possesses poles. For A(z) to possess N

zeros, it must be of degree N, with in general N + 1 terms. This means

that a(nT) will be of finite length, (N + 1)T. Figure 4-1 shows the

page in Prony's “Essai . . ." where N equations in N + 1 unknowns were

originally set up. We show this for a number of reasons: (1) it is

different from modern matrix presentations, (2) he could solve it by

hand, (3) our “fast" Prony's method in the next chapter will resemble

it more than the modern matrix presentations.

In Prony's notation [zi]::;1 represent the sampled data

values. Equation (4-12) is a matrix representation of the Prony system

of N equations in N + 1 unknowns [Ai]?=0

      

-ir - '2

F20 21 ... zN_1 ZN A0 I TO

?1 ?2 °°' EN ¥N+1 A1 9
I I 2 : = : (4-12)

ZN-z zN-l °°' Z2N-3 Z2N-2 AN-I o
z z ... z z AN-l N - __ 2N2 21~11_H_N_J _oJ
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. gas}. 1,

° 30 a s s A I“ ' ’ : . " ’3
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Figure 4-1. Undetermined coefficients of Prony's "Essai. . . ."
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Hopefully there are enough matrix entries that the data matrix can be

identified as a Wankel matrix. In a Wankel matrix all entries along

a diagonal from lower left to upper right possess an identical value.

This is the case here even though equation (4-12) is not a square

matrix.

By solving equation (4-12) we will obtain a polynomial, in

terms of A(z), which we can root. From these N roots, we can obtain

the N natural frequencies of the "Prony series". Then we can solve

equation (4-5) for the complex amplitudes. Then we will possess the

values of all 2N constants of the "Prony series" of equation (4-1).

We shall close this introductory section and discontinue the

Prony notation. In the next section, we shall define the "Prony

K-Pulse". After defining the "Prony K-Pulse", we shall solve the

three parts of Prony's method using the now more common matrix notation

and techniques.

4.2 The "Prony K-Pulse"

The original "kill-pulse" or K-Pulse concept (ref. 1-2) is a

time-limited excitation waveform, k(t), (like our a(t) in equation

(4-8))which when convolved with the radar target scatterer yields no

natural mode waveform in the scattered E-field. Alternatively, we can

specify that k(s) be an entire function.

It appears that the original K-Pulse concept is solely a

transmitting formulation. Hence the K-Pulse, k(s), could be the

plane wave "pulse shape", f(s) in equation (2-15), of our basic SEM

model solution of the EFIE.
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We shall decline to advocate the transmit formulation of the

K-Pulse if we are confined to use either analog radar transmitters or

analog transmitting antenna. We will find extensive use for the K-

Pulse in our receiving formulation of our radar problem solution. We

shall use it as fluently as one might use a multi-dimensional impulse

function for a specific radar target.

There are two useful facts we will close this section on.

First, the entire function, WK(I,F,s), must be in the time domain of

duration less than the maximal one-way transit time of the radar

target itself. This is based upon the hypothesis that there exists

a retarded time for which the "class 1" current density coupling

coefficients are valid. Its contribution in the far-field scattered

E-field may last as long as a maximal 2-way transit time of the inci-

dent plane wave over the radar target. Second the K-Pulse can be as

short as a maximal 2-way transit time of the plane wave over the radar

target. This is not to say that shorter K-Pulses are not possible

for some aspect-angles and some targets, but we are stating the general,

aspect-angle independent case.

The "Prony K-Pulse" is defined as one of the kill vectors,

a(nT), of equation (4-8) or equation (4-9) whose time length is not

less than t" of equation (2-18).

4.3 Prony's Method and the

K-Pulse Derivation

We have already defined a "Prony series" by equation (4-1).

We shall now recast part 1 of Prony's method by recasting equation

(4-12) in terms of our standard sampled data values [ViJiEBI by (4-13)-



 h—v2N—1 v2N-2 °'°  vN-1
—
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(4-13)

{he modern method of solving this equation is to note that the vector

[a%], can be divided by as without alteration of the solution and

then moving the left hand column to the right hand side to obtain

equation (4-14) which possesses the same a
O

' normalized solution. Note

that in euqation (4-13) we performed a trivial reflection of the

sampled data matrix which we will exploit in the next chapter.

r-

VN-l VN-z

vN vN-1

 V2N-2 v2N-3 "°

L_.  
VN‘l—J

    V

L.2N-1_

(4-14)

This equation may be solved for the unknown vector [as] by either

standard matrix arithmetic or by the fast "Covariance method" (ref.

4-5).

N
«111:0 {1,a1,a2,... ,aN}

Our "Prony K-Pulse" is now given by equation (4-15).

(4-15)
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Part 2 of Prony's method is to find the N roots {21.}?=1 of

the Prony polynomial P(z). We shall define the Prony polynomial from

the solution set {ai}§=0 (a0 = 1) by means of equation (4-15).

Ni

.z = H (z-z ) , a = 1 (4-16)

0 1 k=1 k 0"
N
Z

C
D

P(z) = .

1

As one would expect from equation (4-4), we may obtain the natural

frequencies by taking the complex logarithm of the calculated roots.

These roots are obtainable by standard computer library routines.

For polynomials of very large degree, this is a difficult problem of

active interest. Equation (4-17) gives us the nonunique natural fre-

quencies. We shall normally take the branch with the smallest numeri-

cal value.

-1
= T clog(zk), k = 1,2,. . .,N (4-17)

5k

Part 3 of Prony's method is to solve for the complex amplitudes

of the "Prony series" now that the natural frequencies are known.

This is readily solved by use of equation (4-18).

    

__ fl _. .1 _ .7

. V1 1 1 C1 0

. .' . _ . (4'13)

.N-I .N-l N-1
21 22 ZN CN VN_1

L. _ .. .. L... .1  
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Equation (4-18) is solved for the unknown amplitudes, Cm, either by

standard matrix arithmetic or by methods more suitable to Vandermonde

matrices (ref. 4-6, 4-7, 4-8).

At this point all of the 2H constants of the Prony series of

equation (4-1) are now known. Our technique of radar target identifi-

cation will use these parameters and further processing of equation

(4-15), the Prony K-Pulse.

Figure 4-2 summarizes the major steps we will perform to

obtain our plots of the radar A-scope displays. Note that the first

step is the generation of a "Prony K-Pulse". This by itself will be

found to be inadequate for radar target discrimination. We form

individual mode excitations by deleting one root from the Prony poly-

nomial. Alternatively this may be done in the time domain by couplet

convolution and deconvolution as in Appendix C. Using couplets as in

equation (4-19), then the j-mode excitation vector would be numerically

evaluated by deleting the j-th couplet from this convolution, leaving

only N-l convolutions as in equation (4-20).

[kn 2:0 = (1.-Zl)*(1.-Zz)*...*(1,-zj)*...*(1,-2N
) (4-19)

[6,3, 2;}, = (la-Zl)*(1.-22)*...*(1,-zN) (4-20)

Figure 4-3 is a diplay of the original clutter-reduced radar

target antenna terminal response file on the upper left with the

computed K-Pulse on the upper right. The output K-Pulse convolution

With the sampled data file is given on the lower left corner. Note
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(3%; Part I--The K-Pulse

f2? From 2N sampled data values

ééé Obtain solution set [ii $31
/.

2: Yielding Prony polynomial, P(z)

gég Yielding the ”Prony K-Pulse"

a5“ /”’ ”’aé?/¢%?¥%%égZi

Part 2--Roots for Excitation

y/ From solution set

// Obtain zeros of polynomial

/;: Obtain excitation vectors by

/ deleting a specific root

from the ”Prony K-Pulse"

Part 3--Radar A-Scope

??5 Convolve all sampled data values

/, by Specific excitation vectors

Display rectangular and polar

mode radar A-scope plots

//

 
//

/7' ’ / éVz/

//// ////////2///M  

Figure 4-2. Major Steps in the Generation of Radar A-Sc0pe Displays.
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that the "late-time" response (remember that the "Prony K-Pulse"

is defined so that "Class 1“ assumptions should be satisfied for the

retarded scattered E-field of this target) is approximately zero.

However, using the compressed logarithmic scale for the envelope

radar A-scope plot on the lower right corner, we see that the

envelope is suppressed about 250 decibels for a two-way transit time

and then is suppressed by only about 15 decibels. If we possessed

all the radar target natural frequencies within our K-Pulse, noise

permitting we would continue the 250 dB suppression with increasing

retarded time. We will increase our radar target discrimination tools

by next examining single mode excitation vectors and their convolutions

with our radar target file.

There is an important concept that does not arise much in

the literature that we need to understand. In the absence of data

noise and numerical "ill conditioning," if the N-th order matrix

equation (4-14) of 2N sampled data points is nonsingular, but the

(N+1)-th order matrix equation (4-14) of 2(N+1) nonzero sampled data

points is singular, we say that we have "identified a Prony series“

which has only a finite number of terms, namely N. We should expect

all subsequent time values, t > 2NT, of data from a continuous physical

process to be perfectly predicted by this "Prony series."

Finally, we shall provide the motivation for the skip sampling

of the next section. If we use standard matrix arithmetic as was

done on all empirical data in this chapter, the standard matrix equa-

tion solvers may generate errors in the solution set. Certain, even

Shall, errors can be catastrophic to Prony's method. A particular
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error observed which destroys our target discrimination technique

is the splitting of a root. If the root corresponds to a target

natural frequency of large amplitude, we are defeated. The solution

used in this chapter is to reduce the order of the matrix and hence

the degree of the Prony polynomial. Since the "Prony K-Pulse" has

a minimum time length, to use the sampled data values, we must

methodically skip some data. We call this skip sampling.

4.4 Skip Sampling in Prony's Method

A frame of sampled data used in the standard Prony's method

consists of 2N sampled data points. For the special case of 2N+1

sampled data points, Prony differenced the original data to obtain a

new seqeunce of 2N sampled data values. In either case, there are now

N simultaneous equations such as Figure 4-1. Now in our matrix

formulation, either equation (4-14) or (4-18) might become "singular."

If equation (4-14) becomes singular, this is a highly desirable event

for Prony's method. In the next chapter we shall use this criterion

for terminating the length of the Prony K-Pulse. In the absence of

thermal noise or quantization errors, this implies that an N-l term

(or less "Prony series" will do as well as the N term "Prony series."

ldhen the transposed Vandermonde matrix, equation (4-18) goes singular,

1this is a totally different situation. This often observed event is

ialmost solely due to ”ill-conditioning" of the matrix system. "Ill-

<:onditioning" of matrices typically increase with matrix size, all

(else remaining equal. For this reason alone, it is often in our best

‘interest to keep the size of our matrices as small as possible. Hence
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in order to satisfy our "Prony K-Pulse" definition, and minimize the

effects of "ill-conditioning," we may choose to thin or skip some

of our sampled data when we construct equations (4-14) and (4-18).

There are many reasons why the target "Prony series" may

underspecify the empirical sampled data. Three good reasons are:

1. Thermal noise

2. "Class 1" coupling coefficient observation may not be

valid for all of the sampled data. Note that our definition of the

"Prony K-Pulse" assures us that at least N sampled data points are

in the "class 1" observation for an impulsive plane wave incident upon

the radar target

3. Incident plane wave pulse shape possesses a duration

comparable to the equivalent length of important, but highly damped,

natural mode waveforms

In the next chapter we shall find out that the "fast" Prony's

method can at least obtain the correct natural frequencies for an

N-term "Prony series" if at least N sample data points satisfy the

“class 1" coupling coefficient E-field observation criterion t > t" of

equation (2-18).

Figure 4-4 shows the radar A-sc0pe displays for the lst mode

excitation; this time obtained by removing a first mode zero from the

"Prony K-Pulse." The top left plot illustrates the cosine excitation

vector for a target natural mode and the resulting output convolution

of this excitation vector with the clutter-reduced radar target antenna

terminal response. The lower left plot shows the same for the lst sine

Inode excitation vector. The polar mode radar A-scope displays are shown
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on the right hand side. The upper right plot is the envelope display

in decibels. The rotation plot of the first mode is displayed in the

lower right of this same figure. We have employed a skip sampling in

obtaining this figure. We have selected from the response file the

lst, 5th, 9th, 13th, etc., sample. We will be using every fourth

sample and can select the synchronization. In Figure 4-4 the excitation

vectors were selected by starting the data at the 5th sample. The

same synchronization was used in the output convolutions.

Now to determine if these radar A-scopes are part of a useful

radar target discrimination tool, we need to determine if acceptable

results can be obtained for different thermal noise and different

amplitudes and phases of the natural move waveforms of the radar

target. An ideal check of this technique is to use a different syn-

chronization of the same skip sampling. Since our clutter-reduced

radar target antenna terminal response file has not been smoothed

subsequent to the receiver thermal noise, the noise samples are

uncorrelated. Further, if the output convolUtion is properly time-

tagged, the results are directly comparable with the cycle 15 syn-

chronization.

Figure 4.5 shows the results of changing the synchronization.

This skip sampled file (cycle 14) contains none of the clutter-

reduced radar target antenna response sampled data points which were

used in the computation of the excitation vector we are using in the

radar A-scope displays. For the first mode the performance is similar,

taut definitely not perfect in the time period from 4.96 to 9.36 ns.

In the polar mode A-scope plots, it can be seen that the rotations
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are virtually identical, but there is a very small ripple in the

envelope A-scope plot. The only visible defect in the rectangular

A-scope plots on the left hand side of the figure are due to the skip

sample granularity.

The next test is of great interest. ‘All of the data in the

radar target antenna response file is convolved with the first mode

excitation vector. This is done by actually exploiting the form of

the modified z-transform (Appendix A) notation, v(t,m). Convolutions

are performed for the four fixed values of m. Then, the outputs are

pr0perly demultiplexed. Of the total number of points used, 256,

only 44 or 17% were used in the computation of the excitation vector.

Only 9% of the displays output convolution points are expected to be

a perfect synthesis of the natural mode waveform. Another 48% of

the points potentially satisfy "class 1" conditions for the waveform.

The plot result of Figure 4-6 shows impressive performance. The rec-

tangular A-scope plots show thermal noise and quantitization noise

similar to the original data file. The polar mode A—scope identifies

a rotation rate which is virtually constant from 4 to 9.4 ns. Although

the envelope A-scope plot shows about a decibel of ripple in the

same time interval, the mean value appears to have a constant slope.

Similar calculations were performed for the 3rd Prony mode of

the 18.6" wire (L/a - 400). The 3rd mode waveform is the second largest

amplitude for this wire because of the normal incidence of the trans-

mitted plane wave to the thin cylinder target. Figure 4-7 are the

A-sc0pe displays for the 3rd mode excitation vector. The starting

point for the convolution is the same as for Figure 4.4. The
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excitation vector for the 3rd mode cosine excitation vector is visible

in the upper left plot of this figure. starting a 0 ns and extending

to 4.2 ns. The output convolution of this excitation vector with the

same skip sampled clutter-reduced radar target antenna terminal

response file is shown overlaid. The rectangular A-scope plot for

the 3rd mode sine excitation is shown in the lower lift of the figure.

The polar mode A-scope plots on the right half of the figure illus—

trate that the sharp breaks in the rectangular plots between 5 and

9.4 ns were due solely to skip sample point granularity.

Figure 4-8 shows the results of a different synchronization.

There exist envelope A-scope variations of several decibels but the

rotation rate is virtually constant in the appropriate time interval.

None of the data points of this file are in common with the previous

Figure 4-7. Hence the thermal and quantitization noise are uncorre-

lated in the large signal region (starting at 0.5 ns.).

The final illustration in this section of this technique is

the convolution of all of the data in the clutter-reduced radar target

antenna terminal response file with the 3rd mode excitation vectors.

Figure 4-9 shows the result. Note that if Figures 4-7 and 4-8 are

overlaid when scales permit, their data are included in Figure 4-9.

In the polar mode A-scopes on the right side of Figure 4-9, a ripple

with a 0.2 ns period is visible. The origins of this 0.2 ns ripple

are well understood for the rotations plot of this particular file.

The origin of the m = 0 synchronization is off exactly one unit (the

branch cut) from the other synchronizations of the composite response

file. There are easy fixes for the composite rotation plot. One is
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to compute the composite polar display from the composite rectangular

A-sc0pe displays. Only one rotation origin would exist and the

resulting rotation plot is extremely linear as can be observed from

the limits of the rotation ripple. We do not have as simple a solu-

tion for the ripples in the envelope display. The method we shall

ultimately adopt is to use very large composite files.

It has been shown in reference 4-9 that these output plots

consisting of an elementary natural mode waveform of the radar target

all by itself yield readily identifiable aspect-angle invariant para-

meters of the radar target even in the presence of noise and typical

radar hardware distortions.

4.5 Zeros in the Data Hatrix and
—:—

"Class 2 Prony Series"

 

 

The topic we shall discuss in this section is related to four

other topics we shall discuss in other sections besides this section:

1. The "double K-Pulse" technique which is the corner-

stone of our radar target discrimination technique

may yield similar data types

2. The "fast" Prony's method algorithm of the next

chapter is similar to the iterative solution procedure

of this section

3. This is an introduction to a "class 2 Prony series"

4. The concept of "root degress of freedom" will draw

from this section

We shall now consider what we shall call a "class 2 Prony

Series" of N complex exponentials, which is an N term "Prony series"



108

plus an entire function, H(s), whose time domain, w(t), possesses a

limited time duration. This function is nonzero only for a time

duration_ defined by equation (4-21).

_ w(t). 0 s t=nT-< (N-1)T ' -

"N(t) ' { 0 , otherwise, n an integer (4 21)

We shall then define the "class 2 Prony series" of N terms by equa-

tion (4-22).

NI

(t) + 2 CR exp(skt) . t=nT 2 0 (4-22)v(t) = w

N k=1
n an integer

Now for the balance of this section, we shall, for clarity and

simplicity, choose a specific entire function, N(s), satisfying equa-

tion (4-23) in the time domain.

N.

k=1 n an integer

This means that the first N-l samples of v(t) will be identically

zero. Substituting this particular v(t) into equation (4-14) gives

the form of equation (4-24).

     

vN vN-1 - 0 a2 vN+1

: ° = - : (4-24)

V V V a V

_2N-2 211-3 N-L L N __ 211-14 
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Note that the prior Prony matrix equation (4-13) is not triangular

as may be seen in equation (4-25) after substitution.

      

r- I

1* '1vN VN-l . O 1 0

vN+1 vN 0 a1 0

. . . = . (4-25)

v211-2 v211-3 '°° vN-l aN-1 O

VZN-l V2N-2 ... vN aN 0

L- c-Jb- but

From equation (4-25), it can easily be seen that the "Prony K-Pulse“

can easily be obtained iteratively starting with the top row or equa-

tion of equation (4-25). For example a1 is given by equation (4-26).

a1 = -VN/VN_1
(4-26)

Equation (4-26) is then substituted into equation (4-25) and then the

second row of (4-25) is used to solve for the unknown a2. For illus-

tration take N' = 1 in equation (4-22), then equation (4-26) will

have solved for the single necessary root 21 = exp(slT). The balance

of the ai will be zero for this special case.

Part 2 of Prony's method is similar. Roots are solved as

before. We must be prepared to obtain less than N roots if aN = 0,

etc. We shall assume here that we have obtained N zeros for Part 3.

Part 3 of Prony's method is significantly different. We have

2N possible discrete time equations to solve for N complex amplitudes

as before. For a "Prony series" it makes no difference which of these
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N equations we use. So, the first N equations are always used to

minimize the computational effort. Equation (4-18) displays the use

of the first N equations, but we could have used the last N equations.

However, for our particular "class 2 Prony series," it does make a

difference which equations we use. Note the right hand side of

equation (4-18) is all zeros if we choose the first N equations, but

the right hand side is all nonzeros if we choose the last N equations.

Hence there are potentially N sets of amplitude coefficients

which we can use to fit sampled data points. One might be tempted to

use a least-squares fit to obtain a "best" single fit. We choose not

to do this for three reasons:

1. We are primarily interested in the t > t" region anyway

2. We do not wish to perform an irreversible operation

3. We do not mind the early-time varying complex ampli-

tudes which resemble the SEM "class 2" coupling coeffi—

cients.

Because of (1), we shall use the last N equations for the "class 1"

condition and use the time retarded equation (4-27) to minimize

    

calculations.

2 1 C1 V”2
1 2 ZN C2 VN+1

= ' (4-27)
h-l N-l N-1

Z Z. 2 c

1 2 N v

-- J 1.. N. -2N'1.  
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4.6 The Extended Pronyls Method
 

The extended Prony's method (ref. 4-3) is a least-squares

formulation of Prony's method. It is actually a quite different method

although the equation formulations look almost identical. Equation

(4-28) defines the "Prony K-Pulse" for the extended Prony's method.

 

    

”vN_1 ... v0 {a1 vN ‘

12M 2 vN—l ' = ' '
' ; . 1 (4-28)

. . ‘

VL+2N-2 °°° vL+N-1_ 1.3".) VL+2N~14 

The matrix equation (4-28) contains L simultaneous equations more than

the regular Prony's method equation (4-14). Because of these addi-

tional equations, we may not be able to obtain an exact solution set

or "Prony K-Pulse." A standard least-squares minimization of (4-28) is

used which is the reason that the extended Prony's method is an

irreversible operation.

Part 2 of the extended Prony's method is identical to the

regular Prony's method.

Part 3, the complex amplitudes, of the extended Prony's

method can no longer be exactly satisfied for all of the possible

values on the right hand side of equation (4-27) or (4-18). Hence,

again a least-squares formulation is used again. There is an error

associated with both Part 1 and Part 3. There is no known analytical

method to simultaneously minimize both of these errors as formulated
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here. There are many iterative type techniques to perform this opera-

tion if desired.

4.7 Complex Root Degrees of Freedom

In this section we shall introduce the important concept of

complex root degrees of freedom which turns out to be an important

predictive parameter “H1 forecasting radar target discrimination power.

He shall use a synthetic "class 2 Prony series" for illustrating the

effect of this parameter. Note that we are going to use early time

values of this synthetic waveform which are zero as in the section on

Prony's method on triangular data matrix. This particular data file

are calculated for a 1 milliradian incidence. So the odd natural fre-

quencies yield natural mode waveforms with large complex amplitudes.

There are also 9 even natural mode waveforms with extremely small

complex amplitudes. (The reason for 9 and not 10 is that we picked

the sample spacing to alias the highest frequency.) The number of

independent sample data points constitutes the information content

used by Prony's methods. We shall hold this parameter constant through-

out this section.

We will analyze the "complex root degrees of freedom" by

varying the synchronization or starting time as we use the regular

Prony's method and the extended Prony's method. The number of sample

data points used is 50. For the regular Prony's method, this means

that the equation (4-14) matrix is 25 by 25. For the extended Prony's

method we will use the 50 sampled data points in 31 rows and 19

columns, yielding a "Prony K-Pulse“ of length 19+1 or 19 roots.



113

Table 4-1 is summary log of the results for various starting times.

Table 4-2 is summary of the results in terms of the complex root

degrees of freedom. Here it is visible that increasing the root

degrees of freedom enhances our ability to obtain accurate invariant

parameters of the radar target, namely its natural frequencies. For

the same information content, the extended Prony's method is

inferior.
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CHAPTER 5

THE "FAST" PRONY'S METHOD

5.1 Performance Enhancements for

Radar Target Discrimination
 

Each of the three major parts of Prony's method shown in the

block diagram of Figure 5-1 will be altered significantly computation-

ally in order to permit the real time use of discrimination waveforms

of up to several thousand sample data points. The suppression of

noise, clutter, and radar system distortions are correspondingly

enhanced.

In Part 1 of Prony's method the N x N data matrix is never

formed. Only 2N data storage locations are used. The algorithm will

be described by means of the original N x N data matrix, but this is

3 multi-

N2

only for illustrative purposes, since we do not perform the N

plications and divisions of a direct matrix solution, but only

multiplications and divisions.

In Part 2 of Prony's method, we remove the firm requirement to

solve for all of the roots. Together with the use of skip data samp-

ling, close estimates of the major target roots can be obtained along

with rough estimates of the spacing of nearby roots. A derivative-

free accelerated root solver such as the Hooke-Jeeves method can be

used to obtain fast solutions even for noise-like data.

In Part 3 of Prony's method we eliminate the second matrix, the

transposed Vandermonde matrix, used to solve for the complex

117
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Part 1--The K-Pulse

From 2N sampled data values

. . N

Obtain solution set [adisl

Yielding Prony polynomial

Yielding the "Prony K-Pulse"

 

 

 

Part 2--Roots for Excitation

From solution set  

  

 

Obtain zeros of polynomial

Yielding natural frequencies

Obtain excitation vectors  

  

 

  

  

 

 
 

Part 3--Complex Amplitudes

From zeros 8 sampled data values

Obtain complex amplitudes

Yielding coupling coefficient

Yielding exact synthesis for

N sampled data values

   

  

  
   

 

Figure 5-1. Major Parts of Prony's Method Summarized.
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amplitudes of the natural mode waveforms. Fortuitously, the fast

amplitude solution derived is a ratio of discrimination waveforms

which are required for the radar target identification technique

derived in the next chapter.

It should be observed in the derivation of the “fast" Prony

algorithm, that twg solutions sets are necessary in its derivation.

Only one is disclosed in the traditional Prony's method. These two

different solution sets clarify the operation of the radar target

discrimination technique exhibited in the next chapter.

5.2 Part 1--The K—Pulse
 

In Chapter 4 we noted the Hankel structure of the original

Prony formulation of the undetermined coefficients in Figure 4-1

and equation (4-12). In anticipation of this chapter, we performed a

trivial reflection of the Hankel form into the more familiar Toeplitz

form we observed in equation (4-13). The Toeplitz matrix often

results from the discretization of a continuous convolution (ref. 5-9,

pp. 50). The most general Toeplitz matrix has identical elements along

the diagonals from upper left to lower right. Note that this matrix

possesses an odd number of possibly distinct values. It will be more

esthetic for us to use 2N+1 sample data values and to obtain two

solutions of the undetermined coefficients which when we apply our

physical constraint (equation 2-18) becomes our "Prony K-Pulse."

The matrix or data form we must use is never a symmetrical

Toeplitz matrix. For the symmetric Toeplitz matrix, the very popular

Levison (ref. 5-1) recursion algorithm as refined by Robinson
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(ref. 5-2) exists in published form. He will utilize the illuminating

matrix description of Robinson in deriving the unsymmetricalToeplitz

recursion. The algorithm which we shall derive with its pair of

usable solutions leads to the radar target discrimination technqiue

of the next chapter.

Let us start with Prony's N equations of Figure 4-1 in our

notation in equation (5-1).

vN+1 + alvN + ... + an1 = O

vN+2 + 31VN+1 + ... + an2 = O

. o (5_1)

+ a v = O

v2N + a1V2N-1 + °°' N N

In Chapter 4 we performed a standard matrix solution by moving the

data values in the first column to the right side. Here our solution

will procede by introducing another equation, equation (5-2).

+ a + . . . + an = a (5-2)
VN 1 N-l o

In equation (5-2) we have now used the 2N+1-th sample data value.

Also, a new dependent variable, a, which we shall call the error

variable, has been introduced. It may turn out that there is a

solution {a1}?=1 to equation (5-1) which permits equation (5-2) to

be satisfied with a = 0. With noisy data this will be highly unusual,

but if it happens, we shall claim that we have identified a "Prony

series." Note that if we use both equations (5-1) and (5-2) we are

using 2N+1 sampled data points, but the last point is superfluous if
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we actually have a "Prony series." From now on we shall use equa-

tion (5-3) which is a composite of the N+1 equations of equations

(5-1) and (5-2).

vN+1 + alvN + ... + an1 = O

VN+2 + alvN+1 + ... + an2 =,O (5-3)

+ a = OIVZN-l 4' ... + anN

He shall for the convenience of our "fast" algorithm write the N+1

simultaneous linear equations of equation (5-3) as the matrix equa-

tion (5-4).

    

__ ..q 1.1.. r. __

vN VN-l V0 . ; a

I 0

vN+1 vN v1 al I = .

° . -, ‘ 0 (5-4)

V ... V a

___‘_’2N 2N-1 IL __Nj I_ _ 

Although from equation (5-4) it is partially obscured, we will remem-

N

i

sampled data values. This fact is clearer by the Chapter 4 notation

ber that the [a1] =1 are determined by only the last 2N of our 2N+1

for the now standard matrix notation of Prony's method given by

equation (5-5). Equation (5—5) is obtained by deleting the top row

of equation (5-4) and moving the left most column of the data matrix

to the right hand side.
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. __, ._ .. _ 1

VN VN-1 . o 0 V1 31 VN+1

v v v a V

N+1 N 2 2 N+2

- - - - = - : (5-5)

VZN V2N’1 ... VN aN VZN

L— ... L. .1 L #    

Now let us start from the Prony's method of Figure 4-1 once

again. This time we shall use the first 2N of the 2N+1 sampled data

values. These N simultaneous equations can be written as equation

(5-6) instead of equation (5-1).

+ =0vaN + bN_1vN-1 + ... VO

+b ‘1'... +V1 =0

9 N-IVNNVN+1

.
(5-5)

+ ..
bNVZN-1 + bN-IVZN-z + co. VN-1

As we did in equation (5-2) let us introduce another equation with

a new dependent error variable, 8. given by equation (5-7)

b vN = B (5-7)
bNVZN * N-1V2N-1 * ° ' °

Again we denote the combined n+1 linear equations by another equation,

equation (5-8). For the convenience of the "fast" algorithm, we

shall write the N+1 simultaneous linear equations of equation (5-8) as

matrix equation (5-9). For completeness and future reference, we will

perform the analogous operation by which we obtained equation (5-5).

This time we delete the last row of equation (5-9) and move the right

most column to the right hand side to obtain equation (5-10).
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vaN + bN-lvN-l + ... + v0 = O

vaN+1 + bN-IVN + ... + v1 = O

. . 1 (5-8)

bNVZN-l + bN-1V2N-2 + °'° * vN-1 ' °

bN"2N + bN-1V2N—1 + °°° 1 vN = B

-- — -i - o-I

vN vN-1 V01 bN

o
vN+1 vN vO bN-I

' E ‘ (5-9)

v v v 1 B

_2N 2N-1 ILL _ __ _

r’ “I” "I ' 1
IVN vN_1 .. v1! bN V0

1 VN+1 vN ' v2 bN-l = _ v1

1 b v (5-10)

V2N-1 VZN‘Z .. 0 VJ!- L_l -‘ L N_-]:_     

Now we wish to reflect on the similiarities and differences of

equations (5-5) and (5—10). Note that equation (5-5) did not use one,

v0, of the 2N+1 sampled data points and equation (5-10) did not use a

different, VZN, one of the 2N+1 sampled data points. However, the

sampled data matrix on the left hand side in each of equations (5-5)

and (5-10) is identical. Only the right hand side causes the solu-

tions [ai]?=1 and [bi]§=1 to be different.
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In the popular symmetric Toeplitz recursion, the data matrix

is symmetric as well as Toeplitz. Hence there are only N+1 distinct

values in the 2N+1 sampled data sequence. It can be observed that

for this special case from equations (5-5) and (5-10) that the two

solutions [ai]?=1 and [biJI-l are, in fact, identical.

With these initial observations out of the way, we shall

derive the K-Pulse part of the "fast Prony's method algorithm" by

induction or recursively. The induction will start from the middle

of the 2N+1 sampled data sequence which is VN' He shall use increas-

ing larger and larger numbers of the sampled data points such as in

equation (5-11) for m 5_N. He shall by induction be assuming that

solutions exist for some m as in equation (5-11).

 

TI? 71
vN vN-l vN-m ( )‘ I am

m l

VN+1 vN vN-m+1 a1 5 0

. = g 3 (5-11)

(m) 3 '
v v ... v a I 0

- N mL__N+m N+m1 .... L _I L .—      

Simultaneously we use the same data matrix to devel0p a recursion

for our second solution in equation (5-12) which is assumed to exist.

     

——
#- ... ———-11

.1 (m) E—

vN vN_1 ... vN-m bm O

b(m) o
vN+1 vN °°° vN-m+1 m-l

= : (5-12)

B

"N+m VN+m-1"N ...LI __ L_m_ 
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Note that we must superscript our solution recursions since they may

vary substantially from the previous recursion, in general.

The next step in the recursion is to increase the size of the

data matrix by one row and one column. This given rise to two new

equations (5-13) and (5-14) where cm and dm are new dependent vari-

ables resulting.

   

" “'1 r“ - "~

. vN VN-l vN-m vN-m-l. I 1 i I “m t

E v v v I 1 a(m)é I O 1

g vN+1 N N-m+1 N-m I * 1 i I ‘

I I . . I E 1 = I I (5_13)

I v v v a(m)1 i 0
§ vN+m N+m-1 N N+1 m : l

I .

I V V V v 0 g I C

L. N+m+1 N+m N+1 N _. L_ _J L Ill-d

F"' , E" ‘1 ’- “I

I vN vN-1 vN-m vN-m-1 0( ) dm i

m

vN+1 vN vN-m+1 vN-m bm 0

° 3 = - 5-14

v v v b(m) O ( )

vN+m N+m-1°" N N+1 1

L_VN+m+1 vN+m "N+1 VN .3 L_1 - Lem;      

The matrix equation (5-13) uses a new sampled data point,

VN+m+1' This results in the new dependent variable, cm, on the right

hand side. Similarly, equation (5-14) uses a different new sampled

data point, VN-m-l' This, in turn, results in the new dependent vari-

able, dm, on the right hand side of equation (5-14). For measured
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data containing “white noise," am, Bm, cm, dm will typically be non-

zero for all m.

Next we shall form a linear combination of equations (5-13)

and (5-14) for the purpose of eliminating cm. He shall multiply equa-

tion (5-14) by Km+1 and add. In order to keep the notation compact,

we form equation (5-15) with the same yet to be determined constant,

Km+1°

"1 (1 1 [-0

a(ml) E agm)§ I bém)

. =1 . 1 +Km+1 . (5‘15)

- I

(m+1) D g e

_?m+1 10 .J 1.1 J   

using the updated "Prony K-Pulse" of equation (5-15), we may more

compactly write the desired linear combination of equations (5-13)

and (5-14) as equation (5-16).

    

1- fi 1'

vN vN—l "' vN-m vN-m-l 1 ’am Km+1dnr1

v v v v a§m+1) 0
"° N-m+1 N-m -

1 N+1 .N . . . ‘ . (5-16)
j . . . ; .(m+1)

I 0
ivN+m VN+m-1 ... vN VN-l f a? 1)

2 , “1+

= +

11’N+m+1 vN+m ° vN+1 vN __é Lam+1 . I—cm Km+18m4
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By examination of equation (5-16) we can see that if we Km+1 by

equation (5-17) and the new am+1 by equation (5-18), we will have

advanced the induction or recursion (n1 equation (5-11) by one step.

K
m+1 — 'cm/Bm

(5-17)

(5-18)
OLmil = 0‘m + Km+1dm

Note that equation (5-17) is well defined if and only if 8m is not

zero. If “m or Bm is zero, we shall set flag 1 and terminate the

K-Pulse part of this algorithm and reset the output length of the

K-Pulse at m+1 instead of N+1. Again for noisy measurement data this

is unlikely to occur.

Similarly, we shall form a different linear combination of

equations (5-13) and (5-14) this time for the purpose of eliminating

dm in equation (5-14). We shall multiply equation (5-13) by Lm+1.

and add. Again in order to keep the equation compact, we form

equation (5-19) with the same yet to be determined constant Lm+1.

‘71:” 73 1 ‘3 1
bém+1) 0;“) agm) (5-19)

3 = E +Lm+1 3

b("(+1) bgm) aém)

Ll. _‘ 1 __ 19 D      
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Using the updated "Prony K-Pulse" of equation (5-19), we may more

compactly write the desired linear combination of equations (5-13)

and (5-14) as equation (5-20).

 

"m '7b(m+1)H 5' ‘7

[CN vN-l '°° vN-m vN—m-l bm+1 dm+Lm+1ami

3 b(m+1);

3VN+1 vN '°° vN-m+1 vN-m bm ; 0 1

I o
‘ 0 (5-20)

I:
= ;

I (m+1) ,

3VN+m vN+m-1 °°° vN VN-l 1 0 I

vN+m+1 vN=m "' vN+1 vN ._ ..I _J 8m+CLm+1mj    

By examination of equation (5-20) we can see that if we may choose

L by equation (5-21) and the new B by equation (5-22), we will
m+1 m+1

have advanced the induction or recursion on equation (5-21) by one

step on the index m.

Lm+l - -dm/am (5-21)

em+1 = em + Lm+1cm (5-22)

He now possess the (m+1)-th inductive solutions predicated only upon

the existence of the m-th solution of equations (5-11) and (5-12) and

also amf0#8m. However, we shall set flag C if cm=0 and flag 0 if dm=O.

We shall also terminate the K-Pulse part of the algorithm at m for

flag C just as we did for flag A. Table 5-1 summarized our conclusions

on the significance of these two flag terminations. He may use flag 0

in the next chapter.
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Table 5-1. K-Pulse Termination Flags.

 

 

 

 

 

 

 

Termination Flag A Flag C Flag D

Case (Singular)

am=Bm 0 #0 f0

(cm.dm) Not Applicable (O,dm) (cm,0)

For nonzero unsymmetric Yes No No

data, Are samples of a

"Prony series identified?

For nonzero symmetric data Yes No No

are samples of a "double-

sided" complex exponential

series identified?

Is a "class 2 Prony series" Not Applicable Yes Yes

a possibility?

Is a "2nd K-Pulse Convolution" Not Applicable Yes Yes

a possibility?      
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The induction still requires a starting point for which there

exists a solution pair. For m=0, this is easy since equations (5-11)

and (5-12) become scalar equations. It is easily seen that if vN

is nonzero, the solution pair exist. Figure 5-2 is a flow chart

diagram for the K-Pulse part of the "fast Prony's method algorithm."

For illustrative purposes we shall perform the first two recursions

for m=O and m=1 in detail in Section 5-6.

5.3 Part 2--Roots for Excitation
 

In the derivation of the regular Prony's method, a Prony poly-

nomial was formed as in equation (5-23).

P(z) = 2N + alzN'1 + . . . + aN (5-23)

N
where the solution set [a1]1 =1 is the final coefficient set obtained

in the first part of Prony's method. Since equation (5-23) is of

degree N, it possesses N (possibly nondistinct) roots and can be

factored as equation (5-24).

N

P(z) = H (z—z.) (5-24)

As previously pointed out the same solution set can be used to obtain

what we have previously defined as the Prony K-Pulse, given by

equation (5-25).

[Kn]fi=0 = [an]§=0 (5-25)

where a 1

O
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{ai }i=0 

Figure 5-2.

(N) N

 

Flow Chart for K-Pulse part of

$m+m+1

  

"Fast Prony's Method Algorithm".
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For the third part of the "Fast" Prony's method, we shall use

z-transforms of the Prony K-Pulse sequence which is easily calculated

to be equation (5-26).

K z-n
K(z) = . n'1

(5-26)

I
I
M
Z

0

Note that the z-transform of the Prony K-Pulse contains negative

powers of 2 instead of positive powers of z as in the Prony poly-

nomial. Equation (5-27) gives the relationship between the two.

2

K(z) = z-NP(z) = H (1-zi/z) (5-27)

i=1

The regular Prony's method requires the determination of all

of the roots of the Prony polynomial. This is because the Vandermonde

matrix of equation (4-18) requires all N roots. There are many pub-

lished methods of finding all of these roots. Standard computer

library routines such as IMSL appear to perform quite satisfactorily

up to N=100 for the Prony algorithms. Numerical conditioning may

become a significant problem for very large N. lRooting algorithms

for largest degrees give this warning. For target discrimination we

shall require accurate knowledge only of the target natural frequen-

cies which have large amplitudes. This is because they are the

invariant parameters of our radar problem.

In Part 3 we alter the method of determining the complex ampli-

tudes so that we relieve the requirement to solve for all of the roots
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in Part 2 of this algorithm. This is an order of magnitude reduction

in computational requirements. Figure 5-3 illustrates the iterative

process by which we avoid solving for all roots in the Prony poTy-

nomial of very large degree. He first perform the skip sampled data

"fast Prony's method algorith" solving for all roots. 'we determine

which of these natural frequencies has large target return energy.

These are the “Targeted Roots" that we shall track and find in the

higher degree Prony polynomial for the dense sampled data. By using

the properly scaled "target root" and initial step size, we can

solve a high degree polynomial by an accelerated method such as the

Hooke-Jeeves (pattern search) algorithm. Appendix D contains computer

code validatable by reference 5-8.

Since only the natural frequencies are invariant, we must use

equation (5-28) in the rooting process, where the subscript m denotes

the skip sampled data parameter and n denotes the denser sampled

parameter.

1 _ = -1 -clog(zmi) - s, Tn clog(zni) (5 28)
Tm

Current data sequences tested are less than 256 signal sampled data

Pcrints. The limit of this method is well in excess of this number.

with the root Zni determined, the i-th mode excitation vector,

51(2) is obtained by synthetic division on the K-Pulse, K(z). Since

21- has already been determined to be a root, the division is exact.
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PART l--The K-Pulse

 

  
Skip Sampled Dense Sampled

 

 

 

 J.
PART 2A-Roots for Excitation

lst loop, find all roots

 

0
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4
 

 

PART 28--Targeted Roots

& Targeted Excitations

  

 

 
 

PART 3--Complex Amplitudes

 

  

Skip Sampled Dense Sampled

  

0
®

‘

®

®

Figure 5-3. "Fast Prony's Method Algorithm" Block Diagram.
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5.4 Part 3--Amplitudes and

Cfiupling7Coefficients

The third part of Prony's method calculates the complex

amplitude or residue of each complex exponential in the Prony series

which is written in equation (5-29).

[Vn]:=0 A1.[exp(s1.Tn)]:=0 (5'29)

d
o

1
|
M
2

1
.
1

Even if equation (5-29) is not true for all time, it can be satisfied

exactly for a time sequence of 2N sample data point (contiguous) by

allowing exactly N complex modes in equation (5-29).

He can use Part 1 of Prony's method to obtain the Prony

K-Pulse given by equation (28). He can also write it in its equivalent

form of equation (5-30) even if we have not yet solved for all of the

roots or natural frequencies.

[kn12zo = [l.-eXP(s]T)]*.-.*[l.-exp(sNT)] (5-30)

Convolving the K-Pulse with the signal sampled data sequence, we

obtain equation (5-31)

[kango *[VnJReO = [1,-exp(s1T)]* . . .

N

*[1,=exp(sNT)]*.121A1.[exp(s1.ln)J‘I":O (5-31)

1:

NB)Ct recalling our definition of the j-th mode excitation waveform, it

cari also be written in factored convolutional form as in equation (5-32).
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j N-l N '
[an]n=0 = H [11*[l.-exp(s T)] (5'32). . i

1fJ

There is one simple identity which we shall use repeatedly. If the

convolution of a single complex exponential with the inverse couplet,

given by equation (5-33)

[exp(siTn)]:;0*[1,-exp(siT)] = [1,0,0 . . .] (5-33)

Using equations (5-31) and (5-30), equation (5-29) becomes obviously

of finite duration and is given by equation (5-34).

N-l
[kn]*[vn]:=0 = A11Efl1n=0 (5-34)2

1: 1

Hence the output convolution of a sampled data Prony series with its

Prony K-Pulse is of length NT in time and is actually the N different

j-th mode excitation waveforms weighted by the complex amplitude of

the j-th mode in the original Prony series.

Taking the z-transform of each side of equation (5-34), we

obtain equation (5-35).

N .

z'”]”'1 = 1151(2) (5-35)A.[E. _

"‘0 1-1
(12(2) = K(z)S(2) , J,

1

"
N
Z

—
J

Now the complex amplitude or residue of the j-mode can readily be

obtained if the j-th mode excitation waveform and the j-th root are

known. But the j-th mode excitation transform is known if the Prony

K-Pulse and the j-th root are known. It is given by equation (5-36).
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. _ N

53(2) = K(z)(l-Zj/Z) ‘ = ingI-Zi/Z) (5-36)

The j-th mode residue or complex amplitude is now easily computed

because equation (5-37) hold for each j-th mode excitation trans-

form.

Ej(z

N

) n l- . = o . (5-37)k ifj< Z1/Zk) for zkfzJ

But this implies the important equation (5-38).

I
I
M
Z

A.Ei(z.) = AjEj(zj) (5-38)
C(Zj) = . 1 l j1

Hence the j-th mode complex amplitude is given by the simple formula

of equation (5-39).

- 1
Aj - C(zj)/E (zj) (5-39)

Equation (5-39) is an original result. It gives the correct complex

amplitude for a "Prony series" without the use of the transposed

Vandermonde matrix and without knowing all_of the complex roots or

natural frequencies. Only the j-th root in addition to the "Prony

K-Pulse" is necessary to calculate the complex amplitude, Aj. This

formula also provides the link to our "polar mode A-scope" displays

which we use whether or not we can positively identify a "Prony

series."



138

Let us redo the Figures 4-6 and 4-9 without the handicap of

standard matrix arithmetic. Figure 5-4 illustrated the lst mode

waveform excitation from 100 value excitation vectors. Similarly

Figure 5-5 illustrates the 3rd mode waveform excitation from 100

value excitation vectors. The following are to be observed:

1. Ne avoided two 100 x 100 matrix equations

2. No target root splitting occurred

3. Excitation vectors give the appearance of being

smoother, although this is not observable for

the K-Pulse

4. A-scope plot is much smoother and without ripples

5.5 Computational Comparisons

for Part 1

 

Table 5-2 gives a comparison of the "Fast" Prony's method,

Part 1, with other "fast" algorithms for the computation of the

K-Pulse sequence or Prony polynomial. It should be noted that the

"fast" Prony algorithm consistently has an advantage over these pub-

lflshed state-of-the-art algorithms for m as small as 10 or as large

as 1000. For comparison with the common direct matrix algorithms

such as Gaussian elimination is typically M3/3 Operations. However,

storage is a more severe problem in direct methods, e.g., the IMSL

routrine LEQZC requires matrices using 2M2+4M storage locations.

This compares with the 4M=1 storage location required by the "fast"

Prony method for the K-Pulse solution.

The surprise depicted in Table 5-3 is a comparison with the

SYmmetric Toeplitz algorithm as used in the so-called "autocorrelation
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Table 5-3.

Variable

on iteration

142

Calculations for the "Fast" Prony K-Pulse

Multiplications

& Divisions

 

 

m=1,...,M

cm m

d m

m

a(m)

b(m)

am 1

Bm= 0m 0

Km+1 1

totalm 4m+3

total0 2

2: total 4(M/2)(M+1)+3M+2

=2M2+5M+2
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method." It might have been suspected that Part 1 of the "fast"

Prony method would be twice as slow, require twice as much memory,

and twice as many variables to implement and compute for the same

physical problem. This is a defective conclusion for three major

'reasons:

1. Raw data are not naturally symmetric (unless noise

free). Some processing must have been performed

which is typically more computationally intensive

(Ref. 5-3) than the symmetric Toeplitz algorithm

2. More raw data (>>2N) are required to compute

reasonable estimates (Ref. 5-4) of the processed

symmetrical sample data points than are required

for the "fast" Prony method

3. If the raw data are not symmetricized, the "fast"

Prony method obtains twjg§_as many solutions, each

of which is different and useful in the radar

target discrimination problem

5.6 Special Cases for

SEM Computations
 

Numerical zeros play a crucial role in the Operation of the

"fast Prony's method algorithm." First, if equation (5-40) holds,

Part 1 of the algorithm must be terminated, returning the "Prony

K-Pulse" of equation (5-41).

v(NT) = O, of the 2N+1 sampled data (5-40)

{k 1”i i=0 = {1,0,0, . . . 0} (5-41)
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This special K-Pulse is just the identity operator and is a necessary

form for use in the next chapter. He shall identify equation (5-40)

by noting that equation (5-42) occurred in Part 1 of the algorithm.

= 0 (5-43)

A much more desirable event to occur is equation (5-53)

aN = 0 (5-43)

This event tells us that lower order errors 00, 01, oz, . . ., aN-l

were all nonzero and that the next iteration is now singular. This

means that we have an exact Prony series solution to the 2N+1 sampled

data. Note that equation (5-42) is consistent with this interpreta-

tion for the 2-1 + 1 = 1 sampled data point.

To illustrate what happens, we take a simple "Prony series"

given by equation (5-44).

vn = Aexp(51Tn) = A2: , n > 0 (5-44)

0 , otherwise

This is simple enough; we can perform the computations by hand.

We do so on the worksheet of Figure 5-6. Note that ol=0. This is

our singularity flag A which tells us we have successfully detected

a 1 term Prony Series. From the summary of Figure 5-7, we can tell

that we have a (forward) Prony K-Pulse given by equation (5-45) with

trailing zeros appended if desired.
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Function Type is Natural Mode vn - o, n<0

. n
Alexp(s1Tn) A121,

otherwise

Upper left corner of Matrix 0 -

m=0:

F v 1 1 I. 1 c I A 22

vn n-1 I . “o “0 V" 1 1

3

_Vn+lvn 1,0 fog CO: V1141. A121

vn vn_11 O] 3 (do dot Vn-l' All;

gn+lvn ..LI .804 80' vn ' A121

K1"cD/BO:'vn+1/vn' 11

L1=-d0/oo=-vn-1/vn= -21

m=1

(11 h] 0‘ [1‘ 1
1 : +K1 a :

.‘u .9 3) K0 '21

11;“ I0] 11‘ [.11 -231
: +L 3 3

l

.11 L1 .01 1.) 1

I . 7 1 F = A 22-2 A 2 =0

vn- vn-1vn-2 01 01 1 1 1 1 1

. 1

- vn+1vn vn-I a1 ' 0 4 3

b-vn+2v"+1vn J 0 -c1 c1: A121-21A121=0

I v v 1 o Pd d =-2’1A z +A =0
'n n-1 n-2 1 1 1 1 1 1

1 -

vn+1vn vn-l bl ' 0 I 2

vn+2vn+1vn . 1 _81 813.21 A121+A121=0

K =-c /B =

2 1 1 Exit with m=1.

ng-dl/al"

Figure 5-6. Prony K-Pulse Worksheet #1.
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Figure 5-7. Prony K-Pulse Worksheet #2.

 



147

”13:20 = 11,-21) (5-45)

So, this singularity flag 1 all by itself tells us we possess an N

term Prony series with an exact synthesis for the 2N+1 sampled data

values. Note that the ordinary Prony's method performed similarly on

2N data values and handled 2N+1 data values by a differencing opera-

tion on the original data. For these cases, the calculation of the

amplitude coefficients is flexible: any N of 2N equations can be used

in a transposed Vandermonde matrix. We know from section 3.7 there

are cases (nonsingular) where this is not true. Hence, the absence

of the singularity flag 1 warns us we may not wish to use the

standard calculation of the amplitude coefficients given in Chapter 4.

We know that our radar data will not be a perfect "Prony

series" even before we test empirical data because our analyses

abound with entire functions multiplying and adding to our natural

mode waveforms. Hence, we shall show that the "fast Prony's method

algorithm" also possesses a second flag which detects some of the

"class 2 Prony series" and allows us to successfully compute the

time varying amplitude coefficients. We shall change our example

by a slight amount to equation (5-46).

V. = Iggy, 253} (5'45)

Note that we have set the data value in the upper right hand corner

of the matrix to zero. We use the worksheet in Figure 5-8 to show

that this has a drastic effect on the computation. We no longer
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Figure 5-8.

 

= 0

 

 

A z

‘5‘ 11

. 3 2-
c1 Alzl-zlAlzl-

dl-O

BlgAlzl

Exit on Flag 2.

Non-late-time Prony K-Pulse Worksheet #1.
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obtain the algorithmic singularity flag 1 since our standard error

formula will never go to zero.

We will define the C and 0 flags to help us identify a "class

2 Prony series" by equations (5-47) and (5-48).

c O + flag C (5-47)
I'll

dm 0 +' flag 0 (5-48)

From the summary in Figure 5-9, we may observe that one of the

K-Pulses has the correct root. For the flag C condition we are

through only with Parts 1 and 2 of the algorithm. Remember that as

in equation (4-27) of section 4.7, all of the possible equations for

determining the amplitude coefficients do not give the same values.

The correct solution, of course, is to use equation (5-37). Further,

if equation (5-37) is performed as a convolution as we do for our

radar A-scope displays, the time-varying amplitude is obtained.

The previous two examples illustrate the K-Pulse part of the

algorithm for a very simple example. We need another level of com-

plexity to observe the effects of amplitudes and possible "ill-

conditioning" on the algorithm. Equation (5-49) is a 2-term "Prony

series" we shall use.

vn = {212? + AZZS, 2:8) (5'49)

The algorithm calculations on this "Prony series" is carried oUtin

Figure (5-10) through (5-11). In the summary of Figure (5-12) through

(5—11). In the summary of Figure (5-12), we note that for m = 2, both
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late-time not
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0.
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2,, otherwise
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    A
_
.
_
-

.
.
.
e

     
Figure 5-9. Non-late-time Prony K-Pulse Worksheet #2.
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=1 -1

Figure 5-10. Two Mode Prony K-Pulse Worksheet #1.
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Figure 5-11. Two Mode Prony K-PuTse Worksheet #2.
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Figure 5-12. Two Mode Prony K-PuTse Worksheet #3.
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K-Pulses has the correct roots with no dependency upon complex

amplitudes of the original "Prony Series." Note for the shorter

sequencies at m = 1, complex amplitude dependency still exists.

Note carefully, if one amplitude is much larger than the other

amplitude, then at m = l the shorter sequences approximately contains

only one root without amplitude dependency.

Now we shall observe the effect of violating the late-time

”Prony series" as we did in section 4.7. Let us alter equation (5-49)

by only one sampled data point. The different point is given by

equation (5-50).

v = 0 (5-50)

He will simply reuse Figures (5-10) through (5-12) and note the dif-

ferences. First, 3(2) sequence is a perfect Prony K-Pulse, but

a2 f 0. So the algorithm will not be terminated by singularity

flag A. Since C2 and 03 will be zero, we will terminate at m = 2

by means of flag C. Also note that d2, L3, and b(2) are not the same

as before.

Next suppose that equation (5-49) is modified by both equa-

tions (5-50) and (5-51)

Recalculating in Figures (5-10) through (5-12) only the steps which

differ, we find the short sequence a(l) is as far as we can go without

significant differences. At this step if one of the two amplitudes
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were much larger than the other, we would have approximately iden-

tified one root without amplitude dependency.

The pattern we are observing is that for a sequence composed

of significant energy in only a small number of high amplitude modes,

low "complex root degrees of freedom" will yield an approximate short

K-Pulse which is amplitude independent of these high amplitude modes.

This is compatible with the results of section 3.7 when the iden-

tified roots were always identified in batches. All large amplitude

modes together and when sufficient "complex root degrees-of—freedom"

occurred, the finite remaining small amplitude modes.



CHAPTER 6

RADAR TARGET DISCRIMINATION TECHNIQUE

6.1 Requirements for Automatic

Radar Target Discrimination

We have now developed a number of analytical tools for radar

target discrimination. The last remaining tool is the radar target

discriminant itself. we choose not to embue our radar target proces-

sor with any learning ability or artificial intelligence. It must,

however, be completely compatible with normal radar defects of

clutter, thermal noise, propagation scintillations, receiver dis-

tortions, coded transmitter waveforms, etc. We shall adopt the

following three processor requirements for the radar target discrim-

ination:

1. Criteria must be radar target aspect-angle

independent

2. Criteria must be radar range independent

3. Only reversible operations may be used

Requirement (1) is obviously desirable since it deletes the neces-

sity of storing extremely complex radar target data files within the

discrimination processor. Its implementation may not be obvious.

Requirement (2) is also desirable and its implementation should be

more obvious to a radar designer. Angle tracking radars are

required to solve this problem. We choose a monopulse-like technique

156
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for both requirements (2) and (1). By means of a normalizing channel,

we shall develop a radar target discriminant from a "mode ratio dis-

crimination detector." Requirement(3) will be achieved by avoiding

least-squares techniques in our processor and analyses.

6.2 Discrimination Algorithm

for Radar Targets
 

Figure 6-1 illustrates the discrimination algorithm which we

shall test on empirical radar target data. The significant features

to be noted are the use of the following original analytical tools:

1. Dual "polar mode A-scope" displays

2. Double "Prony K-Pulse" convolutions

3. "Fast Prony's method algorithm"

Data which must be stored in the memory of the radar target discrimina-

tion processor are for gagh radar target in its library:

1. "Prony K-Pulse" for the radar target antenna

terminal response

2. Natural frequencies (or invariant parameters) of

the radar target which may have significant energy

in the radar return signal

Note that our "Prony K-Pulse" for each specific target is specifically

measured (or calibrated) for our specific radar. This K-Pulse file

will contain natural mode waveforms of our radar system which may be

excited by the radar target.

Table 5-1 gives the functions which the radar target discrim-

ination processor must perform.
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Figure 6-1. Radar Target Discrimination Algorithm Summary.
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TABLE 6-1. Radar Target Discriminant

 

Part Procedure

 

A

B-l

B—Z

Target or lst Prony K-Pulse convolution is performed using

a previously measured K-Pulse on this radar and this target.

The output of the convolution should contain not signifi-

cant natural mode waveforms of the "right target" or the

radar system. For the "right target" only return, after the

N+1 samples of "early time" response, most remaining energy

will simply be thermal noise and nonsuppressed clutter.

"Fast" Prony algorithm is performed to detect any residual

natural mode waveforms of significant energy. The primary

output of this step is the second "Prony K-Pulse."

The second Prony K-Pulse Convolution is performed on the

original clutter-reduced radar target antenna terminal

response file. This should kill the unexpected natural

mode waveforms of the unknown target and radar system, but

not necessarily the natural mode waveforms which are

expected and would have been killed by the first "Prony

K-Pulse." We shall call this output convolution the

"2nd K-Pulsed" file.

We now perform mode excitation convolutions on both the

original clutter-reduced radar target antenna terminal

response file and the "2nd K-Pulsed" file. The mode

excitations are derived from the "Prony K-Pulse" and radar

target natural frequency in the manner of the "fast

Prony's method algorithm," part 3.

The dual "polar mode A-scope" displays are for a human

radar operator discrimination. The machine radar target

discriminant uses the sum-and-differences of the dual

traces. The difference files must be level even in the

presence of thermal noise for a "right" target. The sum

file is necessary to detect target energy above a noise

threshold.
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6.3 Part A--Target Library Prony

K-Pulse COnvolution
 

Let us start the analysis without the inclusion of noise. In

this case in the frequency domain at the antenna terminal we have

equation (6-1) which we have simplified slightly from equation (3-5).

“.5) + C “k(s.6.d>)(S-sk)'1 (6-1)a.) 4m

9 k=1

Now W( ,s) is the entire function originating in equation (2-15)

and the Ak(s,e,¢) are the entire functions required by the "class 2"

coupling coefficients observed in the retarded scattered E-field.

After the sampler, the invertible, but more precise modified 2-

transform in equation (6-2) is more appropriate.

-1‘
e m -1 ,
L1 Ak(z,m,e,¢)zk(1-zk/z) (5 2)V(Z.m) = W (T.Z.m)+z

e k

Stored within the radar target library of our radar target discrim-

ination processor is a specific "Prony K-Pulse" of length N+1 which

must contain the radar target invariant parameters for which much of

the target energy will be located. Equation (6-3) is the target

library K-Pulse.

K(z) = (l-Zi/Z) (6'3)

1

"
:
1
2

1

Ida first perform a time domain convolution of the clutter-reduced

radar target antenna terminal response, v(t,m) from equation (6-2)
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with the target library K-Pulse, k(t=nT), of equation (6-3) to obtain

the "first K-Pulses convolution," y(t,m), representable as equation

(6-4).

N

Y(z,m) = K(z)lvle(1l,z,m) + z'lkZIAk(z,m,e,¢)z': n (1-2142)
= wk

N .
-1

+z{n(1-. 13A, '"- -1i=1 Zf/Z) k=N+1 k(z m.6,o)zk(1 zk/z)

= ETe(z,m) + NMN(z,m) + LT(z,m) (5-4)

We wish to discuss each of the three terms given by equations (6-5),

(6-6), and (6-7) separately.

ETe(z,m) = K(z)we(fl,z,m) (6-5)

-1 N m

NMN(z,m) = 2 Z Ak(z,m,e,<b)zk H (l-zi/z) (6-6)

k=1 lfk

-1 N ’ co m -1

LT(z,m) = 2 {.H (1-z./z)} 2 Ak(z,m,e,¢)zk(1-zk/z) (5-7)

i=1 1 k=N+1

First of all it should be noted that only LT(z,m) of equation (6-7)

has in the time domain, nonzero values in the retarded "late-time"

of the processed clutter-reduced radar target antenna terminal response.

For the "right target" these are small amplitude natural modes which

are not normally excited by this radar transmitted waveform. 0r

possibly they were not available in sufficient amplitude when the
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"Prony K-Pulse" for this "right target" was made. Second the NMN(z,m)

is the residual of the N natural mode waveforms of both the target and

radar system which have been killed and in the time domain cease

identically after NT retarded time units. Third the contribution due

to the entire function, we( ,z,m), alone is known to cease in the

retarded "late-time" (“class 1" assumption). However, the composite

term, ETe(z,m) potentially possesses a time domain convolution response

nearly twice as long. Remember this term mgy (or may not) be required

by the Mittag-Laffler theorem and definitely ceases to be necessary

if there is any noninfinite representation of equation (6-1) for any

reason. Now Prony's method does presume a finite summation of complex

exponentials in the time domain or simple pole singularities in the

frequency domain (we are for clarity excluding radar targets with

repeated natural frequencies). We know from experience that the

"Prony K-Pulse” will give us a zero response in the retarded late-

time interval NT:t:(2N-)T. So there are two possibilities:

1. we( ,t,m) is an error contributor in the determina-

tion of the natural frequencies, or

2. we( ,t,m) cancels the effect of the higher indexed

natural mode waveforms as indicated by equation (6-8)

ete(t,m) = lt(t,m)_<_for NT _<_ t i (2N-1)T (6—8)

It should be recognized that (6-8) is not likely to be satisfied

for all (e,¢) and (e',¢').
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6.4 Part B--"Fastflgqy

Convolution Algorithm"

Part B of Table 6.1 is described as two parts. The first is

identical to the "fast Prony's method algorithm," part 1. In this

case we are seeking "Prony K-Pulses" {ai}§=0 and {bi}?=0 and {bi}?=0

on the output of the "Target K-Pulse convolution," y(t,m). If we

perform this convolution on the original data file (m-l and original

thermal noise), we will obtain from the 2N+1 sampled data values, a

2N+1 output of N+1 nonzero values followed by N identically zero

values. For the {ai}?=0 "Prony K-Pulse" solution, we obtain matrix

equation (6-9).

FAN yN+1 '°' 3;) F-ai} {Tyn+1T61

0 yN °'° Y2 2 azé 3 YN+2=°I
. . . E a . 2 (6-9)

L0 0 yr: _aNJ Lyzw‘oJ'   

The "fast Prony's method algorithm" will return equation (6-10) for

this "Prony K-Pulse."

{ka} = {1,0,0, . . ., 0} (6-10)

Equation (6-10) should be recognized as the identity operator.

We can, however, do slightly better than equation (6-10) with

the "2nd Prony K-Pulse" from equation (6-11). This solution {kb} is

similar to the {ai} solution of Figure 5-5. The output of the B

Part is given by equation (6-12).



 
 

3N NH 5’1 bra—1 I30’“)-1

0 yN yzé f bN-I; ! y1f0

. . . _, .
g % ; i -§ ; (5-11)

3 ° d m we

u(t,m) = kb(t)*v(t,m) (6-12)

We shall call u(t,m) the "2nd K-Pulsed convolution." This convolution

is on the original clutter reduced radar target antenna terminal

response and not y(t,m).

6.5 Part C--Dual "Polar Mode

ALScope" Displays

In Part C of the radar target discrimination algorithm, "polar

mode A-Scope" displays are produced for several of the expected large

amplitude modes of the radar "right target." This requires the use

of the processor target library. The mode excitation waveform is

generated from the target library Prony K-Pulse and known radar target

natural frequencies. The processed waveforms for both the clutter-

reduced radar target antenna response and the "2nd K-Pulsed convolu-

tion," u(t,m), are given by equations (6-13) and (6-14), respectively.

ej(t)*v(t,m) (6-13)vj(t,m)

ej(t)*u(t,m) (5-14)vj(t,m)
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For the human radar operator, these are presented as dual traces on

the pair of polar mode A-scopes, the rotation display and the envelope

display. Denoting trace 1 as the "2nd K-Pulse convolution" and

trace 2 as the original response, we have display equations (6-15)

through (6-18).

env1(t) = Realfclog(uj(t,m))} (6-15)

env2(t) = Real{clog(vj(tm,))} (6-16)

rot1(t) = Imaginary{clog(uj(t,m))} (6-17)

rot2(t) = Imaginary{clog(vj(t,m))} (6-18)

6.6 Part D--Target Trigger

and Identification

 

 

Part D of the radar target discrimination algorithm is for

the automatic discrimination function. In this case a monopulse-like

sum-and-difference operation is performed on the "polar mode A-scope"

display files. From this part, we keep them in complex form rather

than separate the real and imaginary parts as is required for display.

In this process, the sum-and-difference of the dual traces become

equations (6-19) and (6-20), respectively.

£j(t,m) = clog(uj(t,m)) + clog(vj(t,m)) (5-19)

Aj(t,m) = clog(uj(t,m)) - clog(vj(t,m)) (6-20)

Note that equations (6-19) and (6-20) can be written as equations

(6-21) and (6-22) which give better clues as to their use.
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clog(uj(t,m)vj(t,m)) (6-21)Zj(t,m)

ciog(uj(t.m)/v5(t.m)> (6-22)Aj(t,m)

For our special case of the "right target" equation (6-22) is a com-

plex zone for all time. Even small amounts of thermal noise will not

greatly disturb this general flatness. We still need equation (6-21)

as a trigger channel for our discrimination processor to tell us when

radar target energy is present at the antenna terminals.

Next we need to examine special cases with noise and "wrong

target" to fully explore the power of this technique described. The

baseline low noise case is summarized in Table 6-2.

Now it should be obvious that thermal noise in the radar

system must degrade both our target trigger channel and our target

identification channel, Aj(t,m). However, since we have performed

nonlinear operations, it is not clear what the effect of low level

thermal noise might be. We need to return to Part B to evaluate the

effect of thermal noise in the radar receiver. Equation (6-9)

becomes equation (6-23).

 

—r.-_ F— 1

[_yN-1+€N-1 yN-2+€N-2 °°' yo+€o E1 EN

EN yN-1+€N-1 °'° y1"51 g2 EN+1

= - . (6-23)

8mm 6mm yN-1+€N-1 gN E2N-1
L.

_J..- L... .J
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Equation (6-23) cannot be solved by inspection. One would be tempted

to speculate that relation (6-24) would hole for small noise levels.

lgi| << 1, i = 1, 2, . . ., N (5-24)

This does not always seem to hold, but all that is necessary is that

kp(t-nT) act similar to an identity operator on v(t,m). This must be

the case unless there are one or more strong complex exponential

waveforms within y(t,m). This would be the case for the "wrong target,"

and complex root degrees of freedom are consumed to kill the complex

exponential.

Remember that the error variable, am, told us if we success-

fully found a "class 1" Prony series. Flag C of the Part 1 algorithm

told us if we successfully found a "class 2 Prony series." What happens

”success" is not complete is not theoretically clear, but empirically

it appears that the complex root degrees-of-freedom will suppress

some thermal noise in the NT §.t §_(2N-1)T retarded time region if

not used to kill a complex exponential waveform.

6.7 Empirical Illustration

In this section we shall present the empirical validation of

our radar target discrimination algorithm on the radar measurement data

received from NSWC. Figure 5-2 shows the two sampled data files we

shall use in this section exclusively. The "right target" for which

Target Library Prony K-Pulse is obtained is for a 12-inch thin cylin-

der'(L/a = 200) at a 45 degree elevation angle, 12" above the "'
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conducting ground plane. The "wrong target" whose target library is

not used, is a normal incidence 9" wire (18" imaged with L/a = 400).

Performing the Radar Target Discrimination Algorithm of

Figure 6-1 and Table 6-1, we obtained the dual "polar mode A-scope"

displays for each target for the first three modes of the "right

target." These are displayed in Figures 6-2, 6-3, and 6-4. In each

case the "right target" A-scope displays are on the left and the

"wrong target" A-scope displays are on the right.

Ideally, a “right target" file with different noise samples

should be used in this illustration so that the dual traces of the

A-scope displays will not perfectly align. The independent supplier

of the data was unable to comply with the request. The next best

method was to use a slightly defective lst (or target) K-Pulse. Note

that this part of the technique is performed in the original radar/

target calibration and is independent of the real-time target dis-

crimination algorithm. In this case the target K-Pulse was synthe-

sized using the extended (least-squares) Prony's method. This means

that there could not be a perfect noise suppression for gay part of

the data file. This is believed to be the reason that the "2nd K-

Pulsed" file in Figure 6-2 shows a 2.6 dB processing gain over the

normalizing file in the envelope display.

In both the lst and 2nd mode displays, the termal noise in

the original data does not obscure our discrimination process because

we are looking for differences between the dual traces. The differ-

ences are alight for the"right target' but quite large for the "wrong

target." In the "wrong target" envelope displays there are extended
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time intervals for which the "2nd K—Pulsed convolution" is 15 dB

below the normalizing trace.

In the 3rd mode display of Figure 6-5, the differences are

still visible for the "wrong target.“ For the "right target? it is

known that the 3rd mode is at best 11 dB lower in level from the lst

mode. Discrimination in the presence of more noise would likely be

difficult for this mode.

This plots illustrate how the radar designer would establish

thresholds for Part D of the algorithm for automatic discrimination.
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CHAPTER 7

CONCLUSIONS

In Chapters 2 through 5, we developed the analytical tools

of the "fast Prony's method algorithm," the “Prony K-Pulse," the

"polar mode A-scope," and the "mode discrimination ratio detectors."

In the last chapter, using only these basic analytical tools, we

developed a radar target discrimination algorithm which worked very

well on empirical data from a strong clutter background without

Doppler shift exploitation.

Different radar operating modes and environments will require

more elaborate radar target discrimination algorithms. To fully exploit

these radar target discrimination principles, faster digital logic

is advisable. When devices are available which even approach the speed

and power of the 100 GHz controllable binary counter of reference 7-1,

it is confidently believed that the forecast of the cartoon of

Figure 7-1 will become reality.

Original contributions of this dissertation in addition to the

prinary objective of developing a range and aspect-angle independent

radar target discrimination technique potentially compatible with

"quiet" radar, are four original analytical tools developed solely

for this purpose:
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"Fast Prony's method algorithm" for real-time

invariant parameter calculation of 4-dimensional

radar data.

"Prony K-Pulse" for calculating SEM coupling

coefficients from retarded scattered E-field

sampled data.

"Polar mode A-scope" display file processing

replacing part of the conventional radar target-

independent matched filter.

"Mode ratio discrimination detectors" for auto-

matic radar target trigger and identification

channels.
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APPENDIX A

LAPLACE TRANSFORMS AND Z-TRANSFORMS FOR PRONY SERIES

A-l Introduction and Notation

We shall make frequent use of the Laplace transform pairs of

electromagnetic quantities which we will consider in this disserta-

tion to have Laplace transforms and inverse transforms for some

appropriately defined region of convergence. In addition, for the

purpose of the ordinary z-transform only, we must temporarily impose

continuity on the time function of the electromagnetic quantity.

This is because the integral transforms we shall use, essentially

ignore removable points of discontinuity, but these same removable

points of discontinuity will drastically effect the ordinary

z-transform if they are, in fact, in the sampled data points. This

additional requirement of time domain continuity is not required for

the modified z-transform unless it is to be compared to the z-transform

of a specific discrete sampled data sequence. All electromagnetic

quantities shall be presumed to satisfy these requirements and will

be denoted in this chapter by the letter v. We will employ the

following consistent convention for physical quantities and func-

tions:
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v(t) the time function (in lower case)

V(s) the Laplace transform (in upper case)

V(z) the z-transform (in upper case)

V(z,m) the modified z-transform (in upper case)

A-2 Ordinary z-Transform

and LapIace Transform

 

 

The Laplace transform pairs for time waveform of a continu-

ous causal electromagnetic quantity, v(t), which we shall hereafter

assume possesses a Laplace transform given by equation (A-l). The

constant a is called the abscissa of absolute convergence of the

transform and is determined by the values of s for which the integral

converges absolutely. Equation (A—Z) is the inversion formula for

the inverse Laplace transform.

L[v(t)] = 9(5) = f v(t)exp(—st)dt, Re(s) > a (A-l)

O

c+joo

‘1 = = " d A-ZL [V(s)] v(t) [C v(,s).2_sfi,c>a,t>o ( )
-joo

Figure A-1 is a diagram of a typical continuous transient

waveform (v(t) as a function of time. Also indicated in this figure

are the discrete sample values v(OT), v(1T), . . ., v(5T). These

discrete values are given exactly by equation (A-3)

v(nT) - v(t for n = 0, 1, . . . (A-3)
)lt-nT
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Next it can be seen that v(t) can be approximated as a function of

all time values by a step function of the discrete samples of

equation (A-3) by va(t) given in equation (A-l).

va(t) = : v(nT) pT(t-DT)
(A-4)

n=0

pT(t) is a rectangular pulse of area T given by equation (A-5)

[Ll-(E) = 1, O<t<T (A'S)

0, otherwise

Note that the formula of equation (A-4) is exactly equal to v(t) for

the discrete values of time t - nT, n = D, 1, 1, . . . va(t) may be

a good approximation to v(t) for all values of continuous time, but

this is not guaranteed. It will depend both on the sample spacing

and on the smoothness of v(t) itself.

He now apply the Laplace transform to our step function

approximation, va(t), and obtain equation (A-6).

oo

L[v3(t)1 = L[ §0v<ni)pT(t-ni)1 = 20v(ni> LIpT(t-nT)] (A-6)
n= '1:

‘The Laplace transform of the pulse function pT(t) is given by

equation (A-7) and its time shifted version by equation (A—8).

LIpT(t)] = L[U_1(t)-u_](t-T)] = [i-exp(-sT)]/s = PT(5) (A-7)

LIPT(t-nT)J = L[pT(t)] exp((-sTn) = PT(S) exp(-sTn) (A-8)
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This gives equation (A-7) as the Laplace transform of our step func-

tion approximation, va(t), to v(t).

L[va(t)] = v(nT)PT(s)exp(-sTn) = PT(s) ; v(nT)exp(-sTn) (A-9)

n -
0 n—D

H
M
S

From equation (A-9) it can be seen that the Laplace transform of va(t)

has two distinct now separated characteristics. PT(s) is related to

the shape of the approximating pulse function of equation (ILS).

The summation on the right of equation (A-9) is independent of this

pulse and dependent on the sampling process.

We shall now rewrite equation (A-9) to emphasize these inde-

pendent characteristics as in equation (A-lD).

L[va(t)] = L[pT(t)] L[vd(t)] (A-IO)

Let us now examine this new function vd(t) which appears in equa-

tion (A-lO). It is independent of the pulse shape, pT(t), used in the

synthesis process of approximating v(t). He can obtain a formula for

vd(t) by taking the inverse Laplace transform, equation (A-Z) of its

transformed value in equation (A-9). This yields equation (A-ll).

vd(t> = L'1[L[vd(t)]] L'1[ E v(nT)exp(-sTn)]

n=D

; v(nT)6(t-nT) (A-ll)

n=0

Note that equation (A-ll) is a sum of generalized functions (Dirac

delta functions). This is no problem here since from equation (A-ID)
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it can be seen that there will always be associated with vd(t) some

realizable (but perhaps undesirable) pulse shape, pT(t), which it is

multiplied by in the Laplace domain or convolved in the time domain.

Now we are ready to define the ordinary z-transform of v(t).

He will be guaranteed its existence since we are deriving it solely

from the Laplace transform, 9(5), which exists by hypothesis. We

define the z-transform of v(t) by equation (A-IZ), where vd(t) is

given by equation (A-ll). '

oo

V(z) = z[v(t)] = L[vd(t)]| _1 = Z v(nT) z.n (A-12)

s=T ln(z) n=0

for Re(s=T-1ln(z)) > a

Rewriting equation (A-12), we obtain an often-used equation (A-13).

Q

V(Z) = Z v(nT) z-n, Re(z) > exp(aT) (A-13)

n=0

So we are now capable of computing the z-transform either from the

complete sampled data values of v(t) and the region of convergence

or from the Laplace transform L[vd(t)].

Next we wish to obtain an inversion formula for equation

(A-IZ). That is, recover L(v(t)), and therefore v(t), solely from

V(z). This inversion cannot be exact for the nonsampled data points

of v(t). As a useful intermediary step, we shall first invert

(equation (A-13). That is, obtain sample data points [v(nT)J:=0 from

\I(z). Note that we can easily obtain the second sampled data value
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(n=1) by the use of Cauchy's integral formula on the Laurent series,

V(z), as in equation (A-14).

v(lT) =-§%§ .ig V(z)dz (A-14)

)z\=r>exp(aT)

The circular contour of equation (A-14) is in the region of converg—

ence of V(z) and encloses only one simple pole of V(z) of the sampled

data z-transform representation. In general the n-th sampled data

point can be obtained by applying the Cauchy integral formula to the

-1
function V(z)zn as fliequation (A-IS).

v(nT) =.§%3 V(z)z"’1dz (A-15)

Iz)=r>exp(aT)

Equation (A-15) consitutes an inversion formula for recovery of the

time domain sampled data values from the z-transform, V(z). There is

another useful form of equation (A-15). By substituting equation

(A-16) into (A—15), we obtain equation (A-17).

z = exp(sT) (A-16)

1 Z=r n 1
v(nT) "’ mfi V(Z)Z dZ

2;;xp(sT)=r

= §%£exp(sr)=-rv(ew(5t))(exP(ST))n-1d(exP(ST))

sT=cT+jn

-—? V(exp(sT))exp(sTn)d(sT)

2"3 sT=cT-jn (A-17)
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Performing the last substitution in equation (A-17), we obtain

equation (Ar18).

 

T c+jn/T

v(nT) = ij if. . [TV[exp(sT)] exp(sTn) ds (A-18)

C-Jn

Equation (A-18) constitutes an inversion formula for recovery of time

domain sampled data values from the s-plane. Note that equation

(A-18) only requires values of for V(z) for one circle in the z-plane.

But one circle in the z-plane is an s-place strip which is of width

2n/T in the imaginary direction. Furthermore, because the argument

of V(exp(sT)) is periodic in s in the imaginary direction, any strip

(parallel to the real axis) of width 2n/T can be used to close the

circular contour in the region of convergence in the z-plane. As

illustrated in Figure A-l, any of a number of strips in the s-plane

can be used to obtain the values in the z-plane necessary to recover

any of the original sampled data values [v(nT)]:=0. Now to recover

the original v(t) (nonuniquely), we note that equation (A-18) is,

in fact,well defined for noninteger values of n. By substituting

equation (A-19) into equation (A-18), we obtain a new function vc(t)

given by equation (A-20).

nT (A-19)fl

l
l

c+jn/T

vc(t) = §;3’~/p V[exp(sT)] exp(st) ds (8'20)

' c-jn/T
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The function vc(t) is equal to va(t) and v(t) exactly only at the

original discrete values of time. Taking the Laplace tranform of

vc(t), which was obtained from V(z), we have a Laplace transform

Dc(s) which satisfies our requirements. Equation (A-21) gives the

formula for calculating the Laplace transform of vc(t).

V(s) = j{:(t)exp(-st)dt

m T c+jn/T

=[Im {V(exp(qT))Iexp(qt)dq}exp(—st)dt

c-jn/T

T C+JN/T m

“273. {V(exp(qTH exp(-(s-q)t)dt}dq

c-jn/T ‘ o

c+jn/T

.;L_ _XLeXP(qT))

an s-q dq (A-Zl)

C-jn/T

The notation we shall use for this nonunique inversion is given by

equation (A-22).

C+jn/T

_ T -
v(s) - an J(:jn/T V(gfg(qT)) dq (A 22) 

 

A-3 Modified z-transform and

the Laplace Transform

Next we will derive a unique correspondence between the

Laplace s-plane domain and the z-plane of the modified z-transform.

Returning to Figure A-1, let us now assume that not only are the

values of v(t) available at the discrete time values t = 0T, 1t,

2T, . . ., but for t defined by equation (A-23).
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t = (n-1+m)T, n = 0, 1, 2, . . . 0 :_m < 1 (A-23)

Hence v(t) is available for all values of t as in equation (A-24),

but may be accessed in the noncontinuous manner of the standard

z-transform.

v(t) = v(n-l + m)T) (A-24)

He will again synthesize an approximating step function

va(t,m) defined by equation (A-ZS).

a(t,m) = v((n-1_m)T) pT(t-nt- : (v(t-T+mT)6(t-nT))

n=0 n=0

*pT(t) (A-ZS)

V

Carefully note, if m is defined by equation (A-23), then we have

the special case of equation (A-26).

va(t,m) = v(t=nT-T+mT) for all t (A-26)

Next let us try a different relation m = 1. We now have equation (A-27).

0v((n-1+1)T) pT(t-nT) = va(t) (A-27)
va(t,m=1) =

n

I
I
M
8

We now have a more general approximating step function, va(t,m),

defined by equation (A-25). In this form, we can see the effect of

choosing different values of fixed m. Figure A-3 is a picture of

whathe are doing for m = 1/2. Note that the location of the sampled

values has changed and hence the shape of the step function



 

///////l
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approximation, va(t,m). Now the approximation is exact at a different

set of waveform values, v(-T/2), v(T/Z), . . ., v((n-1/2)T), . . . .

Next we will take the Laplace transform of va(t,m) using equation

(A-25) with arbitrary m-dependence to obtain equation (A-ZB)

L[va(t,m)] = exp(-sT) :0L[v(t+mT) 6(t-nT)] PT(S) (A-28)

"3

Note that the -T in v(-) is a constant time shift which becomes an

entire function in the Laplace domain, whereas the mT is still a

variable and remains inside the operator. Also, the pulse shape,

pT(t), has been represented as a time domain convolution with the

time shifted 6-function so that in the Laplace domain, the PT(s)

can be factored out in equation (A-ZB). What remains within the

last operator brackets of equation (A-28) is the product of two time

functions. We will now use the convolution theorem of the Laplace

transform which is given by equation (Ae29). (See Appendix B.)

C+jm

L[f<t)g<t)1= ‘ [ f(pms-pwp (A-29)
27R] J c-joo

 

where F(s) = L[f], G(s) = L[g], and c is the joint convergence region.

The Laplace transforms for each of the remaining time functions in

equation (A-28) are given by equations (A-30) and (A-31).

L[v(t+mT)] V(s) exp(msT) (A-30)

exp(-sTn) (A—31)L[6(t-nT)]
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Substituting these equations into equation (A-28) and performing

the summation of the one-sided power series of equation (A-31) terms,

we obtain equation (A-32).

l

c+jco

r a ,‘ = Tqm AL.v (tum) exp(-SUZ—jfc3.. Wake 1_exp(_T(s_qndq 'PT(s) (A-32)

0'4

As before, we will split L[va(t)] into two parts. One of which is

solely due to the pulse shape, PT(t), and the other is independent of

the pulse shape. In doing so we define a new function vd(t,m) given

by equation (A-33).

L[va(t.m)] L[vd(t.m)] L[p7(t>3 (A-33)

Note that if m 1, then equation (A-33) becomes equation (A-9).

The part of equation (A-33) which is independent of the pulse shape

we shall define to be the modified z-transform of v(t). The modified

z-transform of theoriginal function v(t) will be defined by equation

(A-34).

V(2.m)= ZmILIV(t)]] = L[vd (t.m)]| T,11 ( ) (A-34)

S: nz

The formula for computing the modified z-transform from the Laplace

transform is given by equation (A-35).

 

x i I

V(q)exp(Tqm)]_exp(-T(5-qjjdq)SzT-l]n(z) _ (A-35)
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Using the inverse Laplace transform of L[vd(t,m)}. we could obtain

vd(t,m) which when convolved with the pulse function, pT(t), satis-

fies equation (A-36).

va<t.m) - vd<t.m) * pT(t) (A-36)

Note that the synthesizing approximation function, va(t,m) is the

bridge of two purposes:

1. va(t,m) is precisely equal to v(t=nT-T+mT) for all

values of t, so that the transform relations between

the Laplace transforms and the modified z-transforms

are unique with extensive tables already in existence

2. For a specific value of m, va(t,m) gives only dis-

crete values of the original function, v(t), so

that the correspondence with the ordinary z-transform

can be found

The ordinary z-transform can always be found by equation (A-37) and

sometimes by equation (A-38) from the modified z-transform.

V(z) = zV(z,m)l 0 always (A-37)

m=

V(z) = V(z,m)l if v(t=O)=O (A-38)

m=1

The next step is to obtain the inverse transformation from

Zm to L, that is, from the modified z-transform to the Laplace

transform. This is done by straight forward substitution into

equation (1), to obtain equation (A-39).
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m w (n+1)T

f v(t)exp(-st)dt = I: [ v(t)exp(-st)dt

0 ":0 "T

(S)<
>

I
I

M

.. (n+1)T

Jl. v(nT-T+mT)exp(-s(n-1+m)T)d(t=nT-T+mT) , Ogmsl

O

nT

n

"
M
B

T~/. exp(ésT(1-m)) 2 v(nT-T+mT)exp(-sTn)dm

0 n=0

1 m

= T‘jr 21.m Z v(nT-T+mT)z'ndm|

0 n=0 z=exp(sT)

1

T] zl-mV(z,m)dml (A-39)

0 z=exp(sT)

A-4 Transforms of a Prony Series

We shall now use the preceding formalism to obtain the

modified z-transform of a Prony series of natural mode waveforms

given by equation (A-4).

M
2

V(t) = A, exp(sit) , t a 0, Re(s.) < o (A-40)

i=1 1

The Laplace transform of equation (A-4D) is easily computed from

Equation A-l to be equation (A-41).

A.(s-s.)'] (A-41)

Substituting equation (A-41) into the formula for the modified

.z-transform, equation (A-45), yield equation (A-42).
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As a verification we will find the unique Laplace transform from

this modified z-transform. Substituting equation (A-43) into the

inversion formula (A-45), we obtain equation (A-44).

T £214" V(z,m)dm9(5)

 

 

 

 

z=exp(sT)

m

1 N z. N A. 1

1-m -1 1 1 m -m

= T 2 z 2 A. dm = T 2 .’~ 2.2 dm

L i=1 1i'21“ i=II'Zi/Z o ‘

N A" f1 < 1 < 'lm= T 2 ~-—-—-— exp m n 2.2 m

. . z -1

_ T g Ai exp(ln(zi/z))-1 = T g A1 21/

' i=1 l-zi/z ln(zi/z) i=1l-zi/z ln(zi)-ln(z)

N -Ai N Ai

= T 2: = z —— _

i=1siT'ST i=1 5'51 (A 44)

This is the correct answer.

We may also obtain the ordinary z-transform of v(t) by

substituting equation (A-40) into the formula (A-37) for the ordi-

nary z-transform yielding equation (A-45).

N -1
2 Ai(1-zi/z) (A-45)

' 1

V(a) = zV(z,m)| 0 =

m= 1

‘This, of course, is an expected result.
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V(z,m) = 271,3 '1 f (fwd) \7(p)1_2:p _T'2_p dp|S=T_1]n(z)(A-42)

c-Jw

If the poles of V(s) are distinct, the Cauchy formula is a particular

easy method of evaluating equation (A-42). Figure A-4 is a diagram

of the finite singularities of the integrand of equation (A-42). By

assumptions in equation (A-40) all poles of V(p) lie in the left

hand plane. The value of c is chosen to pass through an analytical

strip of the integrand and in this case leave the poles of the sampling

function on the right hand side of the Bromwitch countour set by c.

First we will evaluate by using a contour closed on the left as shown

in Figure A-4. In this case we will need to evaluate the integrand

at the N poles of V(s) which are enclosed by this contour. Using

the Cauchy residue formula, we obtain equation (a-43). By closing

the contour to the left, the entire function exp(mpT), remains bounded

even at infinity. This was the-logic of introducing (1-m)T rather than

mT originally.

9(p)exp(me)
 

 

_ -1 .

1

= '1 - - \ V(plexmem)

Z 2 11m1t (p'pi’l-exp(pT)exp(-ST)

n.- W9,-

-1 N 2'1?
= z X A. -—-—~1 , 0 < m < 1

i=1 1 1-ziz

zi=exp(piT) (A-43)
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APPENDIX B

LAPLACE TRANSFORM CONVOLUTION THEOREM FOR THE

SAMPLER

Here we wish to derive equation (B-l) with the appropriate

region of absolute convergence.

1 €4.ij A

L[v(t)g(t)] =53] v(p)e(s-p)dp (3-1)
c...

For our purpose we shall assume v(t) is strictly causal or satisfies

equation (B-2) but that g(t) is not necessarily causal. This will

give us a derivation adaptable for either the unilateral Laplace

transform or the bilateral Laplace transform.

v(t) = {g(t)’ ”0 }
, ts 0 (8-2)

Suppose the Laplace transform pairs of v(t) are given by

equations (B-3) and (B-4) where a1 is the axis of absolute convergence.

For this strictly causal function, the region of absolute convergence

is the open half plane to the right of the axis of absolute converg-

ence.

200
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no

L[v(t)] = V(S) = [WHEN-5t)“: Rem) a1 (B-3)

-1 A - cl+jm V(S)€Xp($t) d5 C >3 s t>0,

L [V(s)] = v(t) - c -3... 7.3. 1 1 (3.4)

Note that we have used the bilateral Laplace transform limits in

equation (B-3). However, since v(t) is strictly causal, we could

obtain V(s) from the unilateral Laplace transform tables without

modification.

Next, the Laplace transform pairs of the double-sided function

of time, g(t), are given by equations (B-5) and (B-6), where b2 and a2

are the limits of absolute convergence of (B-5).

L(g(t)) = 8(5) = _/ g(t)exp(-st)dt, a2 <Re(s)< b2 (B-5)

(X)

1 A 1 C2+jm ( t)d$ a (c.<b

L' (6(5)) = g(t) = 7713?] 9(5)”) 5 ’ 2 2 2 (B-6)

c -jm

Substituting (3-3) into the bilateral Laplace transform formula for

the product, v(t)g(t), we obtain equation (B-7).
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L(v(t)g(t)) = J/‘ v(t)g(t)exp(-st)dt

-¢D

m °1*3.

[ {fie-f v<q>exv<qtfl«WM-stun era. for v(t)
C

1'3” I-00

+jw
1 A 00

{Half g(t)exp(-(s-<1)t)dt}dq.
ZnJ cl-jw

Re(q)>a1 for 9(p) (3'7)

So far we clearly have restrictions (B-8) and (B-9) due solely to

v(t) and V(q).

a1 < c1 for absolute convergence of L(v(t)) (B-B)

Re(q) > a1 is the region of absolute convergence of

V(q) (3-9)

Continuing, we obtain equation (B-IO).

1 c1+jm
L(v(t)g(t)) = 5;; ‘ . V(q)G(s-q)dq. a2< Re(s-Q)< b2

C1-J°°

(B-IO)

Note that we have picked up another restriction (B-11) due to the

region of absolute convergence of G(s-q).

a2 + Re(q) < Re(s) < b2 + Re(q) (B-ll)

Combining the restrictions (A-9) and (A-11), we obtain equation (B-12).
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a1 + a2 < Pe(q) + a2 < ReIs) b2 + Re(q) (B-12)

Figure A-l illustrates the region of absolute convergence of equation

(B-12) and the remaining constraint (B-8). The final region of abso-

lute convergence in the s-plane can be obtained from the cross-hatched

region in the bottom of Figure B-l. In the p-plane the line Re(p) = c

must be chosen in this region of absolute convergence (which depends

on s). The minimum value of c is given by equation (B-B).

He shall now demonstrate the evaluation of the Laplace

transform convolution theorem and its region of absolute convergence

on typical electromagnetic quantitites. In these cases both functions

are causal with proper choice of time origin. For the strictly

causal v(t), we choose for evaluation a two complex mode Prony series

as given by equation (B-13).

N

v(t) = Z Aiexp(sit), t > O, Re(sl) < a1, Re(sz) < a1 (B-13)

1=1

We choose for the second function one term of the sampling function

used in Appendix A. This single term is given by equation (B-14).

g(t) = A3exp(s3t), r.: O, Re(s3) < a2 = O (B-14)

The required Laplace transforms are given in equations (B-15) and

(B-16).

171p) = A.<p-s.)'1. Re(p) > a1 113-15>

"
M
N

1 1
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s(s-p) = A31s-p-s31'1. Re(s-p) > a2 (3-16)

The desired transform of v(t)g(t) is given by equation (B-17) and

its restrictions by equation (B-18).

L(v(tmtn = fwgfwwpme-pwp (3-17)
c-jw

a1 < c, a1 + a2 < Re(s) (3-13)

Note that in (B-18) the region of absolute convergence for s in (B-17)

is given by the sum of the axes of absolute convergence for V(s) and

6(5). Since only simple poles are involved, the evaluation is a

simple Cauchy integral formula which must include a line in the region

of absolute convergence as in Figure 8-2. Using the closed contour,

C1, in Figure B-2, equation (B-17) can be evaluated as in equation

 

(3-19).

1 x xL(v(t)g<t)) = fife 11p)c(s-p)dp = Residues v(p)e(s-p)
S ,S

l '1 2

A A A
. . 1 2 3

= lim1t(p-s )(—:— + -:—')*:——-'
p*51 1 p 51 p 52 s p-s3

A A A
. . 1 2 \ 3

+ l1m1t(p-s ‘(-:—'+ - -

P+52 2’ p 52 p-SZ/S p S3

A A
= 1 3 + A2A3

5'51'53 5'52'53
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Figure B-1. Region of Absolute Convergence for a Product in Time Domain.
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Im(p)

 
Figure B-2. Counterclockwise Contour Closure.

  

  

“Mme: //A

~ 7 Re(p)

/////

\

Figure B-3. Clockwise Contour Closure.



207

Contour C1 is not the only contour which can be used to evaluate (B-l7).

Figure B-3, depicts contour C2 which closes clockwise to the right.

This contour which closes on the right hand side at infinity can be

used in equation (B-ZO).

L(v(t)9(t)) 2'1113 ¢V(p)§(S-p)dp= -ResidueV(p)§(s-p)

c 53
2

A A A
. . 1 2 \ 3

-l1m1t(p-s-s )(—-— +

P+S3+s 3 p-sl p-sz/s-p-s3

l
l

 

A A

e - ___l___.(-A
S-S -S

) - -———(-A
3 1 3 s-s3—s

A1A3 + A2A3 (B 20)

5-51-53 5'52-53

Hence both contours passing through the region of absolute converg-

ence give the same answer.
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APPENDIX C

COUPLETS AND THE K-PULSE SINGULARITY THEOREM

C.1 Definition of Couplets and

N-Plets for a Pronnyeries

Equation (C-l) is the definition of a "Prony series" which

our link between a "class 1" SEM time domain solution of a transient

electromagnetic boundary value problem and our radar target discrim-

ination technique

keXp(skt), t 3_0 (C-l)

N

v(t) = E C

k: 0 , otherwise

First using the completely equivalent modified z-transform notation

of Appendix A, we obtain equation (C-Z).

N

v(t,m) = Zk 1 Ckexp(san)exp(skT(1-m)), n 3.0

(C-2)

0 , n < 0

where t = nT - T + mT

n is an integer

0 < m §_1

For sampled data, we shall constantly use a notation given by

equation (C-3).

209



 

210

zk = eXp(skT) (C-3)

Hence equation (C-2) may be given by equation (C-4),

N

v(t,m) = Z c znzk(1'm), n 3_O

k=1 k k
0 n < 0 (C-4)

Note that equation (C-4) is completely equivalent to equation (C-l).

Sometimes we are able to successfully ignore the synchronization, m,

of the waveform by sitting m = 1. In this case, the simplified

notation of equation (C-S) results.

N n

Y = Z c z , n > O

0 n < 0 (C-5)

Convolutions are the fundamental processing technique which

we shall use. For a given finite length (or memory) processor a(t),

we define the convolution output, c(t,m), as given by equation (C-6).

T

C(t,m) = v(t-t', m) a(t')dt' (C-6)

When synchronization is not important, we obtain equation (C-7).

N

C = z y .a. (C-7)

There is a sampled data operator which is of extreme use to use. It

is the identity operator with respect to convolution, 60(t) or 50.
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We will call it the unit impulse (or unit sample). It is defined by

equation (C-8).

(C-8)
* = '

V" 50 V"

We shall also introduce advances or delays by means of this unit

impulse operator as given by equations (C-9) and (C-lO).

vn * 61 = vn+1 (c-9)

(C-IO)* =

vn 6-1 vn-l

The use of these unit impulse functions permits us to represent all

values of ‘h by a single summation as in equation (C-ll).

(C-11)

The next important concept we need is the convolutional

inverse of V", which may or may not exist. We will denote it by v;

and it is defined by equation (C-12) if it exists.

(C-lZ)

is a single term "Prony series“ for which we can represent all

time values as equation (C-13), then the couplet, cn, given by equation

(C-14) is the convolution inverse.

(C-13)

o...-"
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C = 6 - 216 (C-14)
n o 1

To verify the desired property, we convolve the two functions as in

equation (C-15).

* -_- * _ *

cn n 60 vn 2161 V‘n

m 1 m i+1
= Z 2 6 Z 2. 6 .

i=0 1 n-1 1:0 1 n-1+1

= z z. a _ - 2 z a . = a (C-15)

Before introducing new complexity, we shall illustrate with

two examples. In Figure C-1 top we illustrate a natural frequency

and sample spacing which satisfy equation (C-lS).

p = 21 = SlT = 0.75 (C-16)

The couplet which is the convolutional inverse is illustrated imme-

diately below. Similarly in Figure C-Z top we illustrate a natural

frequency and sample spacing which satisfy equation (C-17).

p = 21 = slT = -0.75 (C-17)

The couplet which is the convolutional inverse is illustrated imme-

diately below. Although we cannot conveniently illustrate for a

complex root, the same relationships hold..



 

213

 
 

  

 

   

9%

‘F
RHoT

8 3‘ 1"0.75
:3

t:
.J

g:- e, f T T T I ’F X zj J
Cl: 0

ID

6- .
I

O. [N] {RHOnN FOR N>=O}

70.0 21.0 410 810 810 10.0 12.0

TIME UNITS

Ti

w “3..
D O

:3
.—

I]

% 9
C: o

“.3“ XIN]:[1.—.7S]

1!

a RHO= 0.75

T r r I l r '0.0 2.0 4.0 0.0 8.0 10.0 12.0

TIME UNITS

Figure C-l. Single Term "Prony Series," v(t).
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Figure C-2. Single Term "Prony series," w(t).
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Next if vn and “h are each exponential waveforms and xn is

given by equation (C-18), then

xn _ vn * wn

=0 k=O

The convolutional inverse is given by the triplet yn defined by

equation (C-19)

= -1 -1 -' - -

yn wn * vn ' (50 2151) * (60 2251)

do - (21 + 22) 61 + 212262 (C-19)

Note that observed these exact values in the two-mode Prony K-Pulse

Worksheet of Figure 5-12. Hence, one interpretation of a Prony K-

Pulse that it is a specific convolutional inverse of a waveform which

is the convolution of elementary exponential waveforms.

One must also observe that if we have a waveform which is

represented by a couplet such as equation (C-13) its convolutional

inverse is given by the infinite term wavefunction given by equa-

tion (C-14). There is no finite length convolutional inverse for

the couplet.

Now we illustrate a more complex case, the linear combination

(If two different exponential waveforms as given by equation (C-ZO).

Sn = avn + bwn (C-ZO)
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This waveform is illustrated in the top of Figure C-3. Not knowing

the convolutional inverse of equation (C-19) by inspection, we shall

formulate a triplet which resembles our "Prony K-Pulse“ which is

illustrated in the bottom of Figure C-3. This potential Prony

K-Pulse is given by equation (C-Zl).

=.1 -1
kn wn * vn (C-21)

We calculate the output of this convolution, cn, as given by

equation (C-22).

0

II kn * (avn + bwn) = (W';1 * v51) * (avn + bwn)

av'1* v’1 * v + bw"1 * v'1*w,

n n n n n n

-1

n

1* -1
wn = avn + bv (C-22)

-1 -1 -

w + *

a n bvn wn

Note that equation (C-ZI) is a linear combination of two different

couplets. Therefore, in general, on cannot be the convolutional

identity and sn cannot have a finite length convolutional inverse

because of the arbitrary amplitudes a and b of the exponential wave-

form.

Generalizing these results to a "Prony series" of N terms, the

potential "Prony K-Pulse" is an N-plot. An N-plot is just the N

convolutions of the corresponding N couplets. In this case, the

output of the potential "Prony K-Pulse“ convolved with the "Prony
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Figure C-3. Two Term "Prony Series," S(t)°
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series" is. itself’ an (N-1)-plet (N nonzero sampled data values)

containing the amplitude dependencies of the exponential waveforms.

Lastly, the "class 2 Prony series" given by equation (C-23)

V =w + Z ckzk (C-23)

where n is an N-l length waveform whose transform is an entire func-

tion. From Chapter 5, we know that if we possess enough "complex root

degrees of freedom," in our "Prony K-Pulse," we can recover both the

2k 5 and ck s.

C-2 K-Pulse Singularity Theorem

In the derivation of the "fast Prony's method" algorithm of

Chapter 5, we intentionally detected a flag A or singularity condi-

tion. For sampled data waveforms, this sometimes occurs sooner than

we might expect from an observation of only the continuous time

domain. This optional theorem will give insight into why this happens

and also illustrate the use of couplets in analyzing sampled data

problems.

First of all, we have observed that for an N term "Prony

series" with known 2-way transit time, we can always obtain an N+1

length "Prony K-Pulse" which by the previous section is an N-Plet

(or repetitive convolution of N couplets. Note that the length of the

"Prony K-Pulse" denotes a quantized amount of information content. We

shall denote this standard or N+1 values of information content as
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the o-th order singularity. When we are able to use only N values of

information content, we shall call this the l-st order singularity

times. Similarly the 2-nd order singularity times exists, they will

result in an N-1 length "Prony K-Pulse." Still higher order singu-

larity times are similarly defined. We are now ready for the state-

ment of the theorem.

K-Pulse Singularity Theorem:

The first order singular times, T1, of the N term

real "Prony series" are given by equation (C-24).

11 = P(2N)HPm (c-24)

where P is a positive integer

HPm is the half-period of any complex natural frequency, sm.

Proof for P = 1 and any m e {1, 2, . . ., N}:
 

The sample spacing is T - HPm.

Now the m-th real natural mode is:

. _ n00 * noo

Amexp(oan)cos(men+¢m) - (Cm{pm}o + CmIp; Io)

which is the sum of two complex natural modes of the identical period

and nmgnitude of amplitude. Expanding,



co

{0:}0 = {exp(om T-n)exp(jwm 1 . n1}o

but

mm T = w HP I
I

:
1

So

exp(jnn) = (-1)nexp(jwm T9n)

floo_ n _ .noo

{om}o - {eXP(0m T-n)(-1) I - {(-lom1) )0

Similarly,

{pan} = {exp(om T-n)exp(-jwn T - n)}'

But

-wm T = -mePn = -n

So

exp(-jmm T - n) = exp(-jwn) = (-1)n

{pgnf: = {exp(om - Ton)(-1)n}o = {(-|pm1)n}o

co

IWOW'the same couplet (l, + (pm|)kills both {pg} and {pEn}o.

o

Hence, if T = HPm were used in the N term “Prony K-Pulse" with

2N+1 information values, there would be an extra (1, + (pml) couplet.

Only one of the two identical couplets is necessary. The reduced
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K-Pulse has only 2N information values. Proof for P = 2 and any m =

.
.
.
.

l
l

2HPm

{exp(om - ZHPm - n) - exp(jmm . 2HPm . n)}or
-
H

'
0

3

\
-
.
-
J

I
I

But

mm - ZHPm = Zn

Then

exp(jmm . 2HPm - n) = I

00

n — o o co: nm
{pm}o - {exp(om 2HPm 0)}o {lpml }0

Similarly since - w - 2HPm = -2n

*n m _ n m
{pm Io - {lpnl }

Hence, the couplet (1, - [pm|) kills two complex natural modes:

co * co

{0"} and {p "‘1

m o m 0

One of the two identical couplets can be deleted, yielding a reduced

N-term "Prony K-Pulse" of only 2N information values instead of 2N+1

for arbitrary T.
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Proof for P odd and any m (of N):

 

11= P-HPm

- _ n
exp(Jwm F’ HPm - n) - (-1)

non. rToo

{om}o - {(- Ioml) }

o

*n w _ n m _
{om Io - {(-loml) }0 same result as P - 1.

where Ipml = exp(om 0 P ° HPm)

Proof for P even and any m (of N):

 

exp(jwm - p . HPm - n) = (+1)n

n m _ n m
{omlo - {1me 1

o

n w n w
{0* } = {lo I } same result as P = 2.

m m
o o '

where lel = exp(om . P - HPm)

Converse Proof: Suppose T f P . HPm for any M€(1, . .
 

., N)

then {pg} f {0;n} for all m, since mm f O for all m. Hence the

O O

. n on *n (0

same couplet (1, -p) does not kill both {pm} and {pm }o'

O
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Suppose, however, that T is such thatcoone of the 2N couplets, (1,a)

of the N-Mode K-Pulse kills both {om}: and {p2}}m,£e(1, . . ., N).

o

But if this is true, then (1,a*) which is also a member of the N-Mode

* °° a,

K-Pulse kills both {pm"}o and {p:"}o. But this means that this 1

defines a 2nd (or higher) order singularity which was deleted by

hypothesis. Hence we have shown that if T f P . HPm for some m c

(1, . . ., N), then either T = P r 2N - T is not a singular time or
1

T1 is singular of order greater than 1.
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C t t t MULTI-RATE CONVOLUTIQNS t t t I t t t i t t i i t t t i t t i t 00

C t t * FOR SOUPLING CQEPFI {BNTS I t t i t t t t t t t t t t t i i t %

c * * * PIL; PURPOSE * * PIL * PURPOSE * * * * * * * * * * * * *

C LINE UNIT=9 LINE UNIT-10

c cos AMP SINE AMP

C LINE UNIT=13 2 LINE UNIT=14

C DECI 4 ROTATIONS

c cos EXCITATION 8 SINE EXCITATION

c SAN LE SPACINCS RECORD LENGTHS

C 1 INPUT WAVEFORM 18 EXCITATION IN

E n; FREIEETIWUWT 1 1
C t t t t i i t t t i t 9 i t t t t i t t t i t t t i i t t t t t t t 2

PROGRAM FALTUNG(INPUT,OUTPUT) 3

EHARACT R ANS*4

ALL PP 'ATTACH',‘DIPNIRE','OIPNIRE1§')
CALL PP 'ATTA H','DPULSE , DIPPULSE

DO 2 1:117 11

2 RBWIND I

PRINT*,'§NTE§: CONv :POR CONVOLUTION '

READ * ' A ' ANS

CALL DICTION 1

1 CALL TEARCH . g

1P ANS.ES.'CONV';THEN

CALL TART(1O 4

CALL CONVOLU 5

CALL DIPCLAS 9

ELSE IP1ANS.E8.'PLOT')THEN

PRINT* 'PL T LY

CALL PLOTS

END IF

PRINT*,'* * * STOP OR NEW ANSNER ' 1

RETD *,'(A)')ANS g

IP ANs.EQ. STOP )CALL EXIT

60 To 1 g

 

C tittgygttttttttttttittitittttttttiittit*ttttttfitttt*ttttitttttitttttti

E EEYEQ:£5AP£S$59§£A§§é§gg£t§Ié§I£AEQ§¥9%9&RETQI§AOQ£§S%§§OOnAttenttttaa

SUBROUTINE DICTIQN

IMPLICIT COMPLEX C)

NTOT) C
, IFSKEW , IPSKEN

TACH',;wIRE1e;, GNTEETS
SKEW , N3 2

'bIRECT',RECL 1
='DIRECT ,RECL- )

xgfiTATION PPN- '

PPN=,A14)')PPN

mt?" £51411?“
L sLFfi: '

STIIG, ELT,CPA,T,1,NP,NP,NLENGTH)

ttittttitttitttttfitt*ttttitttittttititt*****t*******tttt

?A(NP),CSA(NP),RFA(NP)

)

D

I

8 N'

.
;
u

m
u

'
0

v SEARc?

¥XCIEEN1%S,DELT,CFA,T,1,NP,NP,MLBNGTH)

REVERS CFA,MLENGTH%

RPULSE PA,NLENOTH PA)

* NOE I = o xc

L ZRPOLY RPA,MLENGTH—1,CR,IER)

T* 'NO?XCIT=',NOEX 1T

L ngER cx MLENGTH-l 5)

NT 'NOE?CIT=' N xc T

RBTL CAOICE CSA,MLENGTN,Cx,CZI)

c *it****g§§*ttttit*tittttttttt******t*t*****ttttt*tttttttttttttttttiit!

OTS

PRIN$* g’OU'I'PU'I' EXCITATION TAPBO'? '

IPINOOT.E .0 CALL EXIT

CALL BARP OT 1,NOUT, SA,NOEXCIT,T,NLENCTH)

R T RN
C *ttttttgttittttttittittitttttitit*ttttttttttttttttttitti*tttttttttttit

ENTRY DIFCLAS
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PIsACOSé-l.)

Do 3 I: 14

3 RENIND I

53A§1=9°1 LE G
READTII,*TTT,ENVL

E50? N3s* ET E"V5
READT12,*TTT,ROTL

READ 14 * TT ROTS

ROT=ROT -ROTL

g=c§xP CMELAIENV. 2. *PI*ROT))

CLA5T=c

31 CONTI E

ex 1 T L NGTH, 7)

CALL ROTAT 10x 1 LEENETHHI

CALLRSW ,CR, 1 T LENGTH, 5)

C tittttttttttttiittttttttttflii*ttttttttttt*ttttttttttii*ttttttttttttttt

ENTRY START(LR)

LARGER:N OT

(LR

PRIN NTE”SIGNAL LPN: '

READ

OPEN LR PILTM

ggLEESIGEAL LR, LL s, LARGER,T DELN, LENGTH)

ISKIP= DELT+.0001) DELN

PRTNEA, COMPUTED I KIP= ',ISKIP

C itittit itt*ttit**t**t*****titttttttttttttt*tttttttt*ttttttttttttttttt

ENTRY CONVO

CALL SIGNAL 109 1 5 Ms T, DELN, LENGTH)

CALL REVERSE csANLENGTH)

NSKIP=MS/ISKIP

PRINT* COMPUTED NSKIP-

CALL EARPLOT I

Do 2 II=7,16

2 RENIND II

IANs=0

IF(ISKIP‘NE.1)THEN

PRINT 'ENTER 0 FOR NO DEMULTIPLEx ? '

READ*,IANS

END IP

Do 1 ISTART=1 ISKIP

NSKIP=(MS+ISKIP-ISTART{/ISKIP

MAxLENG=MLEN TH+NSK IP—

CALL DCONv L cx CSA MLENGTH, ISKIP ISTART,N§KIP)

CATL NROUT ITKIP,Cx' MLENGTNhT,ISTART NSKIP,9

Ir IANs.E8.0 T7EN

CALL R TAT cx MLENGTN MAXLENG}

ENDC?%L WROUT ISRIP, cx, MLENGTH T START,NSRIP,13)

1 CONTINUE

IF(ISKIP.NE.1)

IP1§aN3.NE.O THEN

CALL DMURTKR ISKIP s, MST

CALL DMUX KR$1 ISRIP NsfiR11R+1)

CALL CFILEEKRRCx

CALL wmUT 1 CR,xNLENGTI-I, T, LMS, 13)

n31? ‘F
ALL LINE(C? C21, 1 LENG H, DELT)

CALL ROTAT? CR 1 'LENGTN

g8R01,cN,1,TT,1,L NGTN,11)

******************ttit!*tti**********;;*;£6;***ttfitttttttifltfitfltiititi

LEVEL 2A: EXCITES, EXCITE, REVERSE,

***********S*§¥9%‘*§£§§§%‘ttggézg‘tt*9?I‘*§Ett*tttttttttttttttttttittt

SUBROUTINE DCONVngCX,CFA,M ,ISKIP, S, ISTART, NMAX)

IMPLICITNCOMPLE

CX(NMAX+M 1)

ISTART= ISTARRT

NMAX+

CFA(M) RFA(MAkS(ISKIP,NMAX).T(ISKIP,NNAX)

MTN IT, M)

MAX IT-'NMAx+1.1)

SKIP. 15 csA,"MEENGTH, T, NSKIP) i
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D0 11=iM

11X(IT

1 CONTINUE

C ******Qttttt*tiitfifiiitiitttttfiitfi*ti*****fi*************i**fi****t*****i

ggTRYDEggITES(LW,,DELT, CPA, T, ISKIP, NMAx, M, MLENGTN)

READiLw,*,END-23,,ERR-24)TEIRST(CPA(1)
NTLWI**END§23 ENR-ZG TT

CE!ITI+CPA(J)*S(ISTART, IT-J+1)

LW

READ<Lw *)TEARLY, CC

DO 31 IPAG =1

3 KS2 5 3

wRITEtlo REC=IPAGE1K

TLAR?E=TEARLY+DELT*£

END-2

IF RTT.éLTéEEARLYI.O

1

WI?gTLARGE))THEN

ME TH

L
n

REc-IPAGGE

GOATOY311

END IF

TEARLY-TT

TINUE

INUE

GE/4.NEAG(IPAGE+1)Y4I%

NT ,1? 8+1 TEARL

,I PAGETI, K, TT, CC

R
*iittttiitfltttttitt*************tfi******ttiitfi*ttfififiifiifittiittfifitfifififit

ggTRYDE§CITE(LN,,DELT, CPA,L ISKIP, NMAx, M, MLENGTH)

ggAD(100bREg: IPAGE)¥LENGTH

P IN ,‘CYCLE= IPAGE HAS LENGTH- ,MLENGTH

PR1 NT*é 'WHAT CYCLE to YOU WANT?

REAAD

RENINENL

DO 7 IPL

READ

DO
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NCYCLE

EC=IPAGE)MLENGTH

END= 73LE R-Z4)T(ISKIP, K), CPA(K)

5E8..NCY

K EQ. 2))THEN

EONIGORCF3:?

ISKIPK

T 10, IPA E K, T(ISKIP, K). x, CEA(K)

17,*)T(ISKIP,K),' , ',CFA(K)

“
~
3
2
!

H
u
m
—
-

’
9
’

*
¢
V
~
U
7
K
X
O

n

'
a
n
V
\
'
|
O
I

A
v
>
r
H
-
H

e
v
e
A
;
o
a
-
»
-

N
*
Q
P
*
X

w H p
a

0

I
?
)
O

4
2
2

C
‘
i
‘
i
'
fl
t
‘
l
H
O
G

”
H
s
z

w
o
o

Z
Z
Z
H
U

A
Z
Z

C
C
Z

'
U
H
H

m
e
v
a

s
t
>

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
H
H
H
P
H
H
H
H
H
H
H
H
P
H
H
H
H
H
H
H
H
H
H
H
P
H
H
H

A
'
I
J
H

l
l
.

t
a
2
a
m

TENT IgKIP K

PRINT 10,1IPACE, x, T(ISKIP, K), K, CPA(N)

CONTINUE

RETURN

PORMAT Té' 12 ' F§2 ' Ns, CPM'S m;,2P5.1)

PRINT*,'TH RE ANE'RONLY'' CTCLES' ON THISQIL
PRI N 'ERRROON RADING 'PILE-

READ 109 REC-IPAGE MLENGTH
SRiNTEmLEN ,IPAGE, ' CYCLE ON PILE- ' ,MLENGTR

RETURN
C tttttttttittttittitttt*titttttttti*iit*tttt*tttttttttttttttttitttttttt

fiTRYmTRIP ET(CZIfig' ISKIP, NMAX, LW)
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D

cczI- ON C

WRITE Lu, T ISKIP,1 ,',',CMPLx 1.,0.)

wRITE LW,* T ISKIP,2 ,',',CZI C 2I

ggigg LN¢* T I§Ké513,,',',CZI*CCZI

RETSR*"T% ISKIP,', 1)-', T(ISKIP, 1)

C ***********************************************ti********************fi

EN RY SIGNAL(LS, ISKIP, IS, 5, NMAX, T, DELN, LENGTH)

IF IS. E?.1)REWINDLS
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READ(Ls *,END-25,ERR-26)T(IS,K),S(IS,K)

égNGTHH: mt

TO

PRIggaé,‘ERROR ON READING FILE- ',LS

LE

PRINT*, 'L NGTH OF §¥GN?L FI&E- ',LENGTH

PRINT* 'T ISTART, 2 T 15.2

CONTIN E

DELN:T IS 2) -T(Is. 1)

PR§N§NJHELN(' ,1)- ',DBLN

tatttat«atittattttttttttttttatttatttctttttttaa«tatttattttttatttttttttt

ESTRYKWROUT(ISKIP,CX,M,T,KK,NMAX,LT)

=1,NMAX

éF(ETTTKR§)'.EQ. TF).AND. (LT.EQ.9))THEN

PRINT* T CXI', TF, CXTF

WRITE KK , ,

:NwRITETLT41)T§T (kT’R),' ,BETTégé TTZK))
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ENTRY OTAT (8x M,NMAX)

AL=20 cc 1 .3
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TH ELEMENT IS 2ERo'

.NE.0.)CALL CROTATE(CX(I),PI,AL,ROTSTEP,FRACTIO)
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ENTRY L1NE(cx C21 M NMAx DELT)

PRINT* RST= T?is TF= TF

TEIRSTSDgT-%MA DELT

'REs= cc

tAssv(cC, czx, cx NMAX)

titttttttittttittttttttttttttttttt*ttttttttttt*tttttttttttt

EVERS§;CPA,,M)
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NON: AUSAL ADVANCED BY 1 '
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co E

PRINT', POLYNOMIAL REVERSED '

END IE'

ENTRY RPDL5E(CEA, M, RFA)

1-1 M

REA 1 =REAL(CEA(I))

gngY BARPLOT(ISKIP, LU, CPA, M, T, NMAX)

CONREWIND LUTI

n-TT1N25--T(1 1)

pRINT*'SAMRLE SPACING= ,D,‘ NS'
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-1

U, K,LU)

CA L R U,'E.LU+1)
6 CONTINUE

RETURN

D
C *i********iitittttfiitfititittiittattgtttttttttfittfitttttittiiiiittittttt

CL§VEL 28 DMUX CFIL§ 9RD§R CHO

******&*****&* at. £R *‘t it; Etttttttttit!attttttttttttttttttttt

SUEROUTINE fiT<LRgISKIP,,5, Ms, T, Lu)

DIMENSIONRS

NSKIP=(MS+1§KIPBISTARTQ41$KIP

CALL SIGNAL LR ISKIP I ART SNSKIP,T,DELN,LENGTH)

1 CONTINUE

REwIND Lw

' Do 11 I-1

11 WRITEle, *)T(I). .'.S(I)

RETURN

END
C titit*tfit*ittii*********i*t*fliti****tit*ittttittittttttifitfitttfiitfifiitt

SUBROUTINB (CF3LE(LR,,CX, MS, LW)

COMPLEM?C?GTI)

FRA

DO H
.

O

N 33 ERR=325T AD-

END=33 ERR )T,E

(A, TH

.igéxTIT-Cx(1--1

TH ELEMENT I ZERO'

.NE.0.)CALL CROTATE(CX(I),PI,AL,ROTSTEP,PRACTIO)
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RINT* 'ERROR ON CFILES'

ENTa, 'MIN LENGTH-',Ms  
 

 
C *iitiit*ittitt*itttt**i***i*ititttttifittitifitifiiittt*ttttitttttiitifiti

SUEROUTINE ORDER c NR, x)

NaEgg exam Kmc,- N
PO TCC)=CMPL£?EXP (REALTCCT; AIMAG(CC)/PI/2. )

CEOG(C2(K))

R x(NR)

'fi

MINSN( R-N+1,E(K),XMIN,INDEX)

EX+K-l sX(K

XM N

a (C2(K),CZ(K+INDEx-l))

c ttfitggrgggttttttttt*ttttttttttttttttttttt**t***tittitttttttttttttttfitt

ENTRYOC703C§(CFA,,NR, C2, C21)
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PI:

CZI-SSS

PRINT ,‘POLAR ZEROS'

DO 1 J=2

CZP-CPOLAR(ELOG(CZ(J-1)))

PRINT

1 CFA(£)=

CPA 11= . ,

REIT? f'ENTRRN0 OR MODE TO 3 To BE DELETED

IP?I.E8.0)mE ,
PRI T*, x-PULSE

ELSE

PRINT 10, I ,CPOLAR(CLOG(Cz(I)))

CZI-CZ(I)
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END IF

DO 2 i=1 R-}

CONTIWJ. NE. I CALL POLYN(CFA, NR, C2(J))

IF(I. NE. 0)NR=NR 1

RBTU N

FORMAT(13,' (',F7.4,',',F7.4,')')

END
****ittttiittttttttttittttittt*tttt*tttttttit*tttttttittttttttittttttt

£§¥§Et§§tRSpegx§1¥1N§RAQ§¥£3SR‘tEgkxy‘tSRgréIE‘ts&é§§ttitttttttittttt

RET RN
tatttttgtatitgatttttttctaatititttttttttcttttttatttt*Rtttttatttttctatct

ENTRY POLYN(CFA, NR, CV)

m8 J- -1

A I FA V*

33.121321H3“C "M“
t****** ittitttttttttttttttttttttittittttttttt*ttitttttttttttttttttttt

ENTRY SWITCH(CG,CH)

CC'CG

CG'CH

CH=CC

BTUR
ititttitittttttttttittttitttttititittttitttttittt*tttttttttttttttttfitt

ENTRY CROTATE(CCX, PI ,AL,ROTSTEP,FRACTIO)

g8TIgC=FRACT 0

X: LOG(C x

ENVEL= REAL CCf)‘AL

FRACTIOSAIMAG CCX {2C/PI

R0 INC=FRACTIOR0

IF ROTINC.GT. 0. 5 ROTSTEP=ROTSTEP1.

IF ROTINC.LT. 0.5 ROTSTEP= ROTSTEP+1.

ROTATIOtFRACTIO+R TSTEP

CCXICMPLX(ENVBL,ROTATIO)

*ttttttiiifittfitfltitflitti*t***i*****t**t*t**fi****tittttttfittttflfittfififlfifi

Sg¥RO TINE RECPLOT( AU, DTAU, A, MU)

 

TE MU,* TAU, ,1, .

w IT MU, TA '

ITE MU,* TAU4DT U, ' ,',A

WRIEENMU, * TAU+DTAU, ' ' ,0.

ND
*tttttt*tittiit*i**t*ttt*ii**t*******tittifi*ttitit*iitiitifitfiittttfifiit

SUBROUTINEOCLASSYéCC,,CZI, CX, LENGTH)

IMPLICIT COM

DIMENSI N CX(LENGTH)

DO 2 I= ,LENGTH

CK I =CC*CZI**I

RETURN

Ittfigt*ttttflittittittflt*tttt****t*****tt*9iit!*tfifltitttiitttttifitfitfifit 



O
O
O
O
O
O
O
O
G
O
O

m
o

33

C

0
.
}
.

’
I
I
"

*t**

LEVE
titi

*tfifi

*t**

231

 

   
 

 

* t t t t t t t i t t H.1! t iK. t t t t t t t t t i t i *

' t t t i *

§A§T.P§°IY.S.M§T§°92L§°§{I“"&:H9L38..A§A&Y§E§ . . . . .
* * F1 E PU OS * * EIL PURPOSE * * * * * * * t *

SU”PACII PLOT SCRATCH *

SYNTHETIC EREQ. {0 INPUT WAVEPORM *

PRINT 1 K-PULSB *

MODEL 11% SPECTRA NORMALIZED *

1% EY§¥§E¥I PUL E 117 MggPEE s :
t t i t t t E ECW? t t g i i 2 t t t t i t i O *

PROgRAM FPRONYD(INPUT, OUTPUT)

DO I-o 8

coumb'é" “’9”
WRITE(110 '(///) )

EALL PRAME

ALL LOOPSET

CALL ER Es

CALL POLYNOM

sggp

gttttit*ttii*tttitttttitittttttt*ttitttttI*tittttttttttiittttttttt

gt}§ta§§¢¥§‘*&99P§§t‘i§§é§§§‘tEgggggt‘it*tttitttittitttttttttttttt

SUEROUTINE DICTI N

IMPLICIT COMPLEX C)

IMPLICLT DOUBLE PRECIS ON(w)

IMPLIC.T HARA R*7 O

PARA EvLR N=256 NCOLS=1,NP-Ioo,,NPP-NP+1 LR=109, Lw-LR+1)

PARA‘L'LR OPRONés PR NY

DIMENSION cfoPC (NP ,CAM(NP) CPA(NPP). cz(NP)

DIMENbION W8 NPw} NP) 4

DIMENSION WAVEIN N; WFASI?NP+1) CZNUM(NP) :

DIMENSION NPA NP NP 5 ONP REA NPP) RPASIO(NPP)
EQUIVALENCE(CP(1PA 2 4
* *itttttittttti ‘ttfi * *ti**;**fittit*t**t*******t*******itfififiitflt‘

ENTRY PRAME 4

CALL PFE'ATTACH','LOA208',,'wIREI ROOTSLOAZSB'; 6

CALL PP 'ATTACM','LOA40 ' 'NIREI ROOTSLOA4 '

RENIND 12

CALL TARGET(NM LR Lw)

CALL TIME NR TTI MEC ISKIP, LR)
PRINT*,'#ROWS+COMLUMNS- + ,NR ' RE-ENTER CROWS '

RBAD* NC

NCaMAk<NC,NR)

CONTINUE

NPOINTS-éNCTNR)*}SSKIP- (ISKIP-l)

PRINT*,I PTS FRAME: NPOINTS

PRINT* 'INPUTNNUMBER E FRAMES-

READ* NERAMES

INCROR=(N--NPOINTS) NERAMES
PRINT*,'IN EM ALUE- ,INCRON

IE(INCRON.LT. GOETO 33

MPINAL= NERAMEs—1)*INCRON

TEND=TTIME*PLOAT MPINAL+1)

PRINT* 'LAST FRAME START: ,TEND, ' NS ENTER LAST PRAME START- '

READ* TEND

NEINAL-TEND/TTIME

PRINT*,NEINAL

NPINAL-MIN MPINAL NFINALg

gggLRSINIT xNR, NC NM I KIP,LW) ;

tttgtitt*ttfttfitttt;ttttttittttttit*tit!tit*ttttttittttfiittttttttt7

ENTRY L PSET ;

ISTART-

IF NEINAL.LT.MEINAL)TH ;

PRINT* 'lST FRAME START @ o. 0 NS, ENTER START TIME- '

READ* STARTIN 7

ISTART=STARTIN/TTIME*ISKIP

PRINT* ISTART

IE ISTART..NE.0ATHEN

PRINT* 'INC EMENT-',INCRON,'ENTER NEW INCREMENT- '

READ*,INCRow

END IF

END IF

ISTARTsMIN(ISTAART NFINAL£

PRINT* ISTART,NPINAL, INC ow
OANs='PAST

RITE(Lw,'(1x,2A7)' )OANS,OPRONY

RETURN  
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SPULS =2.*P DT 4

WRITE LW,50 GHZ TTIME*(NR+1& INE 5

WRITE W 60 FKPUL$E TNORM* N ‘1 NR NC
50 FORMAT 1t ' FMAX= R4.1,' H2', 1 'k--P LSE ERAME- '

+ F5. NS' 12x,'sAMPLING- F3. N
60 RmmT(' EfiAxx= E4. ' K-RATE -PULS PRAME- ' ,FS. 2

+ TRANSIT TIME ‘SAMPLES- .12814 4

C ttttitt*ttttttttttttttititttiiitttititittittitttttttttttttttttitiff... 2%

ENTRY ORDER(Cz, NR) 43

m7} {:1 R 44

x J CLOG(C2(J)) 45

71 CONTINUE 49

DO 72 K=1 -1 4

C LL MfNSNlNRiK+}x(x), XMIN, INDEX) 4

x INDEx+x-14

x K =xMIN

CALL SWITCCH(CZ(K),CZ(K+INDEx-1))

72 CONTINUE 2

C *ttttttt*§****titttttt*ttt*ttttfitttttttttittittttttttttt*tttttttttiflit 2

ENTRY WROUT(CEA NR, LU) 5

DO 41 I: N g

WRITE LU, * T(IP+ISKIP*(I- 1)+1), .',CEA(I)

41 CONTINNUE

C *tttggrgfiilttitiii*ittttttttitttttttittttt*ttiiittit*ttttfitittttt'ktttflt

ENTRY<LSTP§9N(CS,,CAMNR1? C2, CZNUM, ISKIP, LM) g$

° MAGNITUDEEROT TI ON:g?OTS¥ROLAR) zEROS(ROLAR)', 2

+' RBFF EF*REF

C2NUM(NR =1.

6 1=1 NR

TT=T IR+ISNIR*( 1-1)+1)

C29=CROLAR(CL CZ I )

IF(CABS CAN I .LT 1 E—66)CAN(I)=1.E-66

CD=CROLAR CLO gszlj)

CS(I =CLOG C2 I 2 71

CZNP=CPOLAR LOG ZNUM 72

CRC=.1*CMPLX SNGL W RC WGLE2;) 73

CABP=?.1*CM Lx<SN L WAD NGL 74

WRITE LM,10 TT,cs I ,C IstCZNP, AB? 75

6 90431108 39
CAER=0.1*CMPLx SNG (WA(I)), SNGL(W(I))) 7

EET¥HP§1§SW 6 1 1 A p 7
10 FORMAT%F6.2,ZT' (1.97.4.1,':F8.4,1"9,4?1'(9,ég.3,¢,§,F5.3,')')) g 2

C *tttggl‘gggttttttit”!*tttttit*tttttt***********tttttfittttfi*tttttfitittttt3 3

ENTRY WMODES(cs, NR, 1?, ISKIP NCOUNT, CZ LM) 4

DO 4 1:2,NR 1 5

64 CPA I;=0. 9

CEA 1 =1.

NCOUNT=0

MCOUNT=0

DO 63 1=1 NR

CGH2=CS(I)*DT/TTIME

SIOMAsREAL(c8(I

IF SIGNA.LT. T73?

AICS=AIMAG$CS I )

CALL POLYN CPA NR+1,C2(I))

NCOUNT=NCOUNT+1 9

IF AIcs.GT.o 01)THEN

BHAVE=1.{81&-EXP(R AL(CH 94*2. )

SPECTRU= . ALOGIO REAL CD **2 EWAVE

NRITEéLM+g *)?IMAG cs I SPECTRU

WRITE 12 O)T IR+1 ,AIC ,SRECTRU 4

MCOUNT=MCOUNT+1 4 2

CE MCOUNT -C5(I)

CAM(MCOUNT -CAM I

END IF

END IF 4

63 CONTINUE 4

DO 5 =0 NCOUNT 4

65 ggITE(LM+4, T(IP+ISKIP*I+1),',',CFA(NCOUNT+l-I) :

70 FORMAT 3F8.3) . g 2

C tittggtgtttttttttit******************************fi*****t****it********4i3

ENTRY NATEREQ<NMODES,NM,CS,C2,NR,NC,CEA,LW) 4  
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PI-ASOS(-l.)
LP38

REWIND LF

DO 841 {:1,,40

$41 READ LF * ,EN088‘2)CS(I)

42 NMODE§=I

PRINT 'NMODES-' .NMODES

RENIND LP

Do 84 = ,NR+1

84 FA J '0.

CFAKI):1°W

Do RE D1LEH§E§I)

FSNM NE. PHERE)CS(I)-CS(I)/PI

NI NUE

PRINT*,'K'PULSE LENG H=;fi§§ULSE*TTIME,' NS'
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ME=TKPULSE*DT 2

TN HE‘Z. KP

RN1=TNORM*AIMA CS

ULSE*RN1

RNl

WRITEI€N,*)'SAMPLES/HP1=',RNl,‘ HPl/K-PULSEt',PT1

C *ttiififiititittit******tfii**tttitiitttfi*iitt.*t**t*i****t*************

ENTRY (COUP ET(NMODES C5 C2 NR NC, CFA,L

 

W)

WRITE( MTRAL RREOUEENCY ROLAR 2EROEs'

+ ' MAGNITUD ROTATION

DO 81 I-1 NMODES

CSW=Cs(I)*RI

DO 81} 4:3,3

811 C3 C? {O .

C211 =CEXP(C$W*TTIME)

RN1=TNORM*AIMAG cs I )

RT1=SRULsEtRNI

CPO-CMPLX PTl 1 /RN1

czpchoLAR(CLOGI z I ))

CRO=CROLAR CLOO CAM I

WRITE LW 3? I,Cs I C29,CRO

CALL ROLTN C3 3 C 1

C2 I)=CONJG C? 1

CALL ROLYN C3, ,C2(I))

81 CONTINUE

PRINT* 'NH DES= ' NMODEs

EATBRMINSN NMODES, x, xMIN, INDEX)

gottttt *4.311x444d§4§144144§§4§44444494§44141144444.444444444444444...

ENTRY MODELSSShNR, 1?, ISKIP,MCOUNT,LM)

DO 33 IT=0 NR-1

on L: .

TT=TZIP+ISKIP*IT+1)

DO 8 1 J=1 COUNT

TN=TT*DT TTIME

61 comNCMOBEL-C ODEL+CAM(J)*CEXP(CS(J)*TN)

6 WRITE(LM+2, *)TT, ' ' ,REAL(CMODEL)
RETURN

c ************tt**t*it*****t************************t‘**.**t*tt*fittt*it*

ENTRY CONVOLV(WAVEIN, CPA, NR, REASIG, CEASIG)

Do 31 ITsI, NR

1,1T

311 WSI NAL=WSI§NAL+DBLE£C§))*WAVEIN(IT-J+1)

I

30 IF

ASIG IT -SNGL(WSIGNAL)

gASIG IT -CMPLX(WSIGNAL)

c *****§*9§******************************i**********ittttttittfitttfiifiifit

ENTRY AMPADE(CFASIG, CZ, NR, CAN)

DO 3 J81,NR
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1

EMé$LT.N?§-66)THEN

6

E
ittilt!*****i****t*‘kttfl'iifittttiiitiiti*********i***i********fit*Iiitfififi

E§Y**t2*tt§¥£$§§§t§9%¥§‘tQ§V§R§§‘t§£§§§‘ttttitttt*tttttittttfitttttttfit

SUBROUTINE SNITC C, CH)

IMPLICIT CO W§

DIMENSION CF(NR NR)

CCICG

CG=CH

CH=CC

RETURN

tittttttatititttttttttttttttttttittittttttittitttiittttttttttttttttttt

ENTRY POLYN(CF, NR, CV)

C:(§§13fl§=CE(J11)-CV*CF(J)
=-CV*

*****§*9*ttittttttttttttttitittttItttttttittit*ttttttttttttttttittittfl

ENTRY REVERSE(CF,NR)

DO 9 J= l N /2

CC J

=CF( RTJ+1)

CO =CC

fig ‘POLYNOMIAL REVERSED'

N

%~
titfiitt 'k*itttti*tttiiiiti***********tt*****titttfittttttttitfittt*ii

ENTRY MINSN(NR, x, xMIN, INDEx)

INDEX:

IF}X}1NDEX).GT. X(I))INDEX=I

CONTIN

XMINtX INDEX)

RE URN

CF'zJR-J

CF NR

TINUE

NT*,

URN
*tit

u
p

itittttttitttttttttttititittttitttttttttttitttttitttitttttfifittttttttt!

* * ’ * * * FAST PRONYMETHOD ALGORITHM"THE K’P L E * * * * * * * . ’
fittiiittttttfliiittfit it *Wi tittiitiitfitt i *i*fifi**fi***t*.ttiti

MSUBROUTINEFPRONY(NSS;ION(3,RCMRC ,ERRORF, NDOF)

M

my REC -G

ION s *M+1 A M+1),E(0:M+1)

ON CM) RCE
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:S(N+J)*A(0)

EORNARDsEORwARD+s N+J-

EACKNRDsEACKwRD+s N-K)

CONTINUE

RCFORWs-FORWARD/ERRORB

RCBACK=-BACKWR?{ER RF

-RCEORN*RCEACK)

O RORF

RORBRCF-ERRORB+RCBACK*FORWARD

RC(BJ)

A J sRCEOR *B(0)

K= -1

s VEB=B( -K)

E J-K)= J-

AK)=A(K+

CONTIN

’émi}

K)+RCEACK*A(K)
CFORw*SAVEE
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B( )8RCBACK*A o; 77

IF ERRo .E8.N THE 7

PRINT* Ro ERIES IDENTIFIED D0E=' J 7

égéTE(110,*)¥PRONY SERIES IDENTIFIED Dor=‘,a 1

R§EURN g

IF (RCFORW 38.0.).AND.(RCBACK.EQ.O.))THEN 4

RI NT* ASS 2 PRONY SERIES D0E=' J 5

wRIT8311 ,* CLASS 2 PRONY SERIES, DOE-',J g

DOF=

RETURN

END IF

3 CONTINUE

RETURN %

C tttttttiiittittt*ittt'ktttttitittitittttttitittttiitittttiittttttttiitt 3
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C tit.itItitttttttitt*ttitttttttttt*fitttii****ttttt*tttttttttttttttttttfi

PROGRAM JEEVES INPUTOUTPUT)

IMPLICIT COMPL x(

EXTERNAL F

R wI

wRITE 'Nléfi'
WRITE , , zARAA a SHETTY ** CORRECTIwON TO PAGE 280' ,

wRITE * OME§H D OF HOONE AND JEEvESN1TH DISCRETE STEPS

CD1=CNPLx

CDZ=CMPL

cx=CMPLx2 31% 2

CALL mEgtE x CD1 CD2
ggégE 8 * NOTE ROUND--OE ERROR IN BOOK AT ITERATION x-a J-2'

c itttgggtttttittttttitttttttfittttttflititttfitttit!ttttttitttfiitittittttt

SUEROUTINE HOOKE% ,Cx, CD1 CD2)

INPLICITLCOMPLEX

EOEIAAL SSPLA

C P7c§=QRBA:1%“1?§f*4+( EAL(C)- 2. *AIMAG(C))**2

DATA A

DELTA

EPSILON= .1

ALPHA-I.

CYSC?

YlsF CY)

J-I

K81

x1=Y1

3133313" 3
C tittttttt ‘tt fittitttttt*tttt*ttttttt*tttitttttittfiii***t*t*********t

DO 1 NNaI 200N

IF(J.88.2

C08 D2 DELTA

LSE 4

CD=CD1*DELTA 3

END IF

CYP-?Y+C

YP-F CYP

Y2=YP

IF(Y2.LT.Y1)THEN

LELAG-.TRUE.

CYZ-CYP

ELSE

LPLAG=.EALSE.

CTN-Cv-CD

YN=F CYN

Y2=YN

IF(Y2.LT.Y1)THEN

SFLAG-.TRUE.

CYZ-CY-CD

ELSE

CYZ-CY

Y2=Y1

SELAO=.EALSE.

em??? 1"
*****tttt*tttittiti’ttttt*titt‘ktfitt*ttttit*ttttit'kttttttittitfi'kttttfittt

2

g7JIm.LTSME2)THENHEN ;

fi¥§,28)N1DELTA cx J, CY, CD1, CYP ;

LswRITE .3 x1,?1,Y2, AS'

ERITE g, zogx1DELTA cx J CY CD1, CYP, CYN ;

wRITE 30 x1,Y1,YP, At 1N ,Av 7

END IF 7

J-2

Yl-YZ

CY=EY2

GO TO

ELSE

IE(LELAG

wRITE Hso J CY CD2, CY2

NRITE '60 Y1, EPA

ELSE

Av-AE

IE§SELAchy=AS

NR TE 8, o J,CY,CDZ,CYP,CYN
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HRITE(8,60)Y1,YP,AF,YN,AV

DE)? u.-
c *tiifit‘tfittiiiiit*ifitit'lttiiittifiifiifiiiItlitftiitifiltiffiitiiiiiiflifiifi

IF(E§§LgfiXI)THEN

CX=CY2
CY=CX+ALPHA*(CX-CXB)
xlsy
Y1=F CY)

IP(DELTA LEi§PSILQN)THEN
wRITEIB, ' K: ,K ' s',Cx ' (x)-‘,x1
PRINT‘, K=',K, x. cx, E(x -',xI
RETURN

END IF
DELTA-DELTA/Z.

CY=CX

t
‘

m [
*
1

ttitittittliiiiitiitifiiiitiDitttt*tliifififiiilitilititii

K 5x ?HDEL 4x HF(XK) 4x }HJ,4x,5HF(YI),4x,5x,2HDY,

1 12H? YJ—DEL*DY)
x 1H ,E4.2,1H,,P4.2,1H),1x,11,

i2?5.2,A3,4x))

ttittiititfitittfitttiiiltittifiiititiiii*i

60

C it!‘

M LEX(C)

2. **4+ REAL(C)-2.‘AIMAG(C))**2
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