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ABSTRACT 

A FAIR COMPARISON OF THE PERFORMANCE OF COMPUTERIZED ADAPTIVE 

TESTING AND MULTISTAGE ADAPTIVE TESTING 

By 

Keyin Wang 

The comparison of item-level computerized adaptive testing (CAT) and multistage 

adaptive testing (MST) has been researched extensively (e.g., Kim & Plake, 1993; Luecht et al., 

1996; Patsula, 1999; Jodoin, 2003; Hambleton & Xing, 2006; Keng, 2008; Zheng, 2012). 

Various CAT and MST designs have been investigated and compared under the same item pool. 

However, the characteristics of an item pool designed specifically for CAT are different from the 

characteristics of an item pool designed for MST. If CAT and MST are compared under the same 

item pool designed for either CAT or MST, the comparison might be unfair to the other test 

mode. To address this issue, this study focused on comparing the measurement accuracy and 

averaged test length of MST and CAT, when they were matched on conditional standard error of 

measurement, exposure rates, IRT scoring method and content specifications, under different 

item pools designed for MST and CAT, respectively.  

When designing a MST, multiple factors need to be considered. In this paper, a total of 

16 conditions of MST designs (i.e., 1-2-3 and 1-3-3 panel designs; the AMI and DPI routing 

strategies; the test lengths of 45 and 60 items; forward and backward assembly) were employed. 

Each condition was compared with the result of the corresponding CAT. A simulation study was 

conducted to evaluate the performance of MST against the corresponding CAT.   

The results show similar measurement accuracy between MST and CAT, which implies 

that the efforts to make a fair comparison where successful. The reason is that both procedures 

matched similar conditional test information. This fair comparison of MST and CAT provides a 



 
 

reference for testing mode change from CAT to MST in terms of ability recovery and averaged 

test length. When considering the testing model change from CAT to MST, the backward 

assembled MST is not suggested even for a classification-oriented test. Whether to change the 

testing mode depends on the current averaged test length in CAT. If the current CAT has a 

moderate-length test, switching to a forward assembled MST with 3 stages is plausible and 

feasible. For a long test, staying in CAT is preferred over switching to MST.   
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CHAPTER 1 INTRODUCTION 

 

1.1 Background 

    Since the early 1970s, computerized adaptive testing (CAT) has been extensively researched 

and implemented in educational assessments. Starting in the 1990s, the Graduate Management 

Admission Test (GMAT) and the National Council Licensure Examination (NCLEX) have 

changed successfully from paper-and-pencil (P&P) format to CAT format (Gu, 2007). In 

operational CATs, each examinee is administered a tailored test with the items well matching 

their estimated ability level. After administering each item within the test, an examinees’ 

estimated ability level will be updated for selecting the next item. The process of administering 

items does not stop until a certain measurement accuracy is achieved or until the maximum test 

length is reached. The main advantage of CAT over paper-and-pencil tests is achieving 

measurement precision with shorter tests. A shorter test can reduce examinees’ fatigue that may 

have an impact on their test results. In addition, the computers delivering CAT are able to give 

immediate scoring feedback, to have flexible testing schedules, and to adopt new item formats 

(Chalhoub-Deville & Deville, 1999). Although there are multiple advantages of CAT, the 

disadvantages of CAT have aroused researchers’ concerns. First, the test form will not be 

assembled until the end of the test. It is impossible for test specialists to review each test form for 

test quality purposes. The quality of item pool can be guaranteed, but the one of an individual 

test form cannot. Second, the examinees are not allowed to review their answers on previous 

items, which is the greatest disadvantage of CAT (Lunz, Bergstrom & Wright, 1992).  

    To eliminate the disadvantages of CAT, multistage adaptive testing (MST) as an alternative 

has been increasingly developed and implemented. The Certificated Public Accountants (CPA) 

Examination, the Graduate Record Examination (GRE), the Law School Admissions Test 
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(LSAT), the U.S. Medical Licensure Examination (USMLE) and the National Assessment of 

Educational Progress (NAEP) have switched successfully from paper-and-pencil (P&P) and 

CAT formats to MST formats. Although there are various terms applied to MSTs including 

multistage testing (Patsula, 1999), multistage adaptive testing (Zheng et al., 2012), and 

computerized multistage testing (Ariel, Veldkamp & Breithaupt, 2006), multistage adaptive 

testing (MST) will be used in this study. Before MST administration, multiple panels are 

developed for test security purposes. Groups of items known as test modules are preassembled in 

each panel with several stages (Luecht & Nungster, 1998). In the beginning of MST 

administration, each examinee receives a randomly selected test panel. In each panel, examinees 

receive a module at each stage of testing. They are assigned to the next module with pre-

determined routing rules according to their performance on the previous stage. This is where the 

point of “adaptive” derives from. MST involves adaptive selection of a group of items instead of 

adapting every item. The number of stages and modules are the same across panels, but both 

numbers in each stage can vary in different test designs.   

There are several advantages of MST compared to CAT. First, as mentioned by Wainer 

(1990), the distinct advantage of MST over CAT is that test developers are able to review a small 

number of pre-assembled MST test forms before delivery for quality control, rather than simply 

relying on the adaptive algorithm to form the test. Second, MST maintains a lot of the 

advantages of CAT such as providing information on speed of response, convenient test 

scheduling with individuals, and immediate scoring feedback. Third, examinees are allowed to 

review and change their answers to the previous items within modules in a MST administration. 

Scoring and routing procedures are implemented after examinees submit their module.  
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1.2 Statement of Problem 

    From the review of recent literature comparing the performances of CAT and MST, various 

CAT and MST designs are investigated and compared under the same item pool. The study of 

Kim and Plake (1993), Patsula (1999), Armstrong et al. (2004) and Keng (2008) consistently 

indicated that the CAT design is more accurate and efficient than the MST design.  However, the 

characteristics of an item pool designed specifically for CAT are different from the 

characteristics of an item pool designed specifically for MST. A CAT item pool should contain 

an appropriate number of items to build individualized tests according to each examinee’s ability 

level. A MST item pool should have sufficient items to meet the specification of the automated 

test assembly process and reflect the demands of measurement accuracy. If CAT and MST are 

compared under an item pool designed for CAT, the comparison might be unfair because the 

item pool is in favor of CAT. Similarly, if the comparison is conducted under an item pool 

designed for MST, the item pool could also be in favor of MST. To address this issue, this study 

assembled one item pool for MST and the other for CAT from the master pool based on their test 

design.  Thus, the primary purpose of this study is to compare the performance of MST and CAT 

with matching psychometric properties under two separate item pools constructed from a master 

pool.     

While administering a MST, the measurement precision can be affected by a number of 

factors including the number of stages, the number of modules per stage, module length, and the 

distribution of item difficulty per module (Zenisky & Hambleton, 2014). Longer test lengths tend 

to give a more accurate ability estimate. Specifically, if the routing module is not long enough to 

produce an accurate trait level, examinees could be routed to a wrong next module. Routing 

Strategy helps to determine the routing points for assigning examinees to next modules.  The 
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assembly priority is a factor that cannot be ignored during the test assembly process.  When 

selecting items to fit the pre-determined test information function from the available items in a 

pool, modules assembled earlier are likely to have a better fit than modules assembled later. 

Various MST designs were always conducted and evaluated before implementing a final design 

in practice. Thus, another purpose of this study is to investigate and compare different MST 

designs in terms of measurement precision. Each MST design will be compared with CAT.  

Therefore, the research questions of this study are: 

1) Does MST outperform CAT consistently in terms of measurement precision, when 

matching similar test information on overall ability scale, item exposure rate and test 

content specification?  

2) Which MST designs will give the highest measurement precision under different 

conditions (e.g. two levels of panel designs, two levels of assembly priority, two levels of 

routing strategy and two levels of test lengths)? 

3) Which testing mode (i.e., CAT or MST) will give a shorter test under each item pool with 

matched properties? Will the result of comparison be consistent across all conditions? 
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CHAPTER 2 LITERATURE REVIEW  

 

     This chapter contains three sections. First, a brief description of the procedure for 

computerized adaptive testing (CAT) administration and main factors considered are presented. 

Second, a brief description of the procedure for multistage adaptive testing (MST) is introduced, 

and followed by the design considerations of a MST. Related to the current topic, this study 

focuses on the explanation of item pool, panel consideration design, test assembly and routing 

strategy. The third section provides a review of several current comparison studies between CAT 

and MST.  

                                           2.1 Computerized Adaptive Testing (CAT) 

Computerized adaptive testing has been widely used in educational testing programs. CAT is a 

method of administering items sequentially according to the ability level (θ) of each examinee. In 

CAT, each item is selected by a pre-determined item selection rule according to the examinee’s 

current ability estimate (𝜃), based on the available responses in the test. Then, the difficulty of 

each item is well matched to the examinee’s ability level and other practical requirements such 

as content balance and item exposure rate. The process of selecting items continues until the 

stopping rule is met.  He (2010) provided a clear presentation of the adaptive nature of CAT, 

which is displayed by Figure 2.1.  
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                                      Figure 2.1 Steps for Administrating a CAT (He, 2010) 

 Reckase (1989) stated four major components of CAT: the item pool, the item selection 

procedure, the scoring procedure and the stopping rule. In addition, some additional components, 

such as content balancing and item exposure control, are always incorporated in the item 

selection procedure. Generally, CAT administers a tailored test by selecting items well matched 

to examinee’s estimated ability level, and then achieve a desirable measurement accuracy with a 

short test length.  
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2.1.1 CAT Item pool  

    CAT requires an item pool to have sufficient number of high quality items to give thousands 

of tests to examinees. In reality, there are two kinds of item pools: the master pool and the 

operational pool. The master pool has as many items as possible to supply the testing program. 

The operational pool is used to give individual tests during a test administration period. The 

range of difficulty of items in an operational item pool should cover the range of examinee’s 

ability levels to ensure that all the examinees receive items well matched to their ability levels 

(Gu, 2007). In addition, exposure control and content balancing are required to be incorporated 

in the process of designing an item pool. A large item pool size is always suggested to provide 

accurate ability estimate over a broad range, to avoid item over-exposure and to maintain content 

balancing (Patsula & Steffan, 1997; Luecht, 1998; Luo, 2015). However, item writing cost and 

effort also need to be considered in practice. 

2.1.2 Item Selection Procedure 

The item selection procedure is a basic component of a CAT. The widely used item selection 

procedures in CAT are the maximum information method (MI; Weiss, 1982) and Bayesian 

approach (Owen, 1975). The MI selects the next item providing the maximum Fisher 

information on the current ability level. For a given dichotomous item j, Fisher information is 

(Lord, 1980):  

𝐼𝑗(𝜃) =
[

𝜕𝑃𝑗(𝜃)

𝜕𝜃
]

2

𝑃𝑗(𝜃)(1−𝑃𝑗(𝜃))
=

[𝑃𝑗
′(𝜃)]

2

𝑃𝑗(𝜃)(1−𝑃𝑗(𝜃))
                                                                               (2.1) 

where 𝑃𝑗(𝜃) denotes the probability of correct response on item j given θ. In the case of the 

unidimensional three-parameter logistic model (3PLM), the Fisher Information for a 

dichotomous item is (Lord, 1980; Hambleton, & Swaminathan, & Rogers, 1991): 
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𝐼𝑗(𝜃) =
𝐷2𝑎𝑗

2(1−𝑐𝑗)

(𝑐𝑗+𝑒
𝐷𝑎𝑗(𝜃−𝑏𝑗)

)(1+𝑒
−𝐷𝑎𝑗(𝜃−𝑏𝑗)

)2
                                                                                (2.2) 

where D =1.7, 𝑎𝑗 is the item discrimination parameter, 𝑏𝑗 is the item difficulty parameter, and 𝑐𝑗 

is the pseudo-guessing parameter. This item selection method prefers the item with a large 

discrimination parameter because this provides large item information at the current ability level.  

The Bayesian approach is to select an item that maximizes the expected posterior precision of 

the ability estimate. Chang & Stout (1993) presented that the Bayesian approach may select 

different items then the MI in the early stage of CAT, but gave similar result with the MI as the 

test length increases. Various research compared the performances of item selection methods, 

and found no difference between the MI and the other method (Veldkamp, 2003; Ho, 2010). 

Thus, MI is adopted in this study for convenience.  

2.1.3 Scoring Procedure 

One of the advantages of CAT is selecting the item well matched to an examinee’s ability 

level. In the beginning of the test, an initial value of the ability level is arbitrarily set since there 

is no information about an examinee. Then, the ability estimate is updated repeatedly after 

administering each item based on the available responses at that time. The two widely used 

ability estimation methods are maximum likelihood estimation (MLE) and Bayesian estimation.  

The MLE method finds the ability estimate according to the maximum value of the likelihood 

function, 

𝐿(𝒖|𝜃) = ∏ 𝑃𝑖(𝑢𝑖|𝜃, 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖)
𝑛
𝑖=1                                                                                        (2.3) 

where n is the number of items, and 𝑃𝑖(𝑢𝑖|𝜃, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is the probability of getting response 𝑢𝑖 

(𝑢𝑖=0 for incorrect response and 1 for correct response) on item i given item parameters and 
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examinees’ true abilities. The MLE method provides a 𝜃 as the estimate of examinee’s true 

ability by setting the first derivative of 𝐿(𝒖|𝜃) as 0, 

    
𝜕

𝜕𝜃
 𝐿(𝒖|𝜃) = 0                                                                                                                 (2.4) 

     However, this method would give an infinite ability estimate if the item responses are all 

correct or incorrect at the early stage of CAT. In reality, the arbitrary minimum and maximum 

ability estimates (e.g., -4 and +4) for such response patterns are set to solve this problem. MLE 

cannot be used until one correct or one incorrect response are obtained. Bayesian estimation is 

also considered as an alternative to MLE for solving the infinity problem, because it can estimate 

examinees’ ability after the first response. In the Bayesian estimation procedure, the posterior 

distribution of ability level is updated based on Bayes Theorem with the specified prior 

distribution 

    𝑓(𝜃|𝒖) =
𝑓(𝒖|𝜃)𝑓(𝜃)

𝑓(𝑢)
                                                                                                          (2.5) 

where 𝑓(𝜃|𝒖) is the posterior distribution, 𝑓(𝜃) is the prior distribution, and 𝑓(𝒖) is the 

likelihood of a given response string u which is a constant. The mean of the posterior distribution 

(EAP) or the mode of the posterior distribution (MAP) is used to update the ability estimate. 

Although the Bayesian method can solve the problem of MLE, one disadvantage is that the 

selection of prior distribution may have an impact on the final ability estimate. Wang & Vispoel 

(1998) pointed out that if an inappropriate prior is selected, the final estimate could be biased a 

lot. Various studies by (Chen, Hou, & Dodd, 1998; Wang & Wang, 2001; Ho, 2010) have 

compared different ability estimation methods and conclude that the MLE has comparable effect 
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on the results with other methods. Therefore, this study applied MLE to estimate the examinee’s 

ability level.  

2.1.4 Content Balancing 

    The procedure for meeting the constraints of content area and item format is called the content 

balancing procedure. Taking the adaptive test, the test-takers must receive the same distribution 

of items by content area to obtain relative comparable test scores (Stocking & Swanson, 1993).  

In operational CATs, the content balancing procedure is always implemented through the item 

selection algorithm (Kingsbury & Zara, 1991).  Various approaches have been researched and 

applied in CAT, such as the constrained CAT approach (CCAT; Kingsbury & Zara, 1991), the 

weighted deviation model approach (WDM; Swanson & Stocking, 1993), the shadow-test 

approach (STA; Van der Linden & Reese, 1998), the modified CCAT (MCCAT; Leung, Chang 

& Hau, 2003b) and the maximum priority index approach (MPI; Cheng & Chang, 2009). 

Generally speaking, the STA, the WDM and the MPI are more flexible in dealing with a number 

of constraints (He, 2010).  

2.1.5 Exposure Control 

When administering items in an adaptive test, examinees with similar abilities tend to receive 

multiple overlapped items. Additionally, selecting the most informative items frequently will 

possibly allow examinees to remember some items and circulate them to future examinees. Then, 

the future examinees will collect this pre-knowledge, which reduces the precision of 

measurement. To prevent the leaking of the information to the future examinees, it is therefore 

important that the exposure rate of each item should be controlled below a threshold. Way 

(1998), Davis & Dodd (2003) and Davis (2004) classified exposure control procedures into three 

categories: randomization, conditional selection and stratification procedures. 
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The randomization procedure randomly selects the next item from a group of items near 

optimal level instead of selecting the item with maximized information at the ability level. The 5-

4-3-2-1 technique (McBride & Martin, 1983) and the randomesque method (Kingsbury & Zara, 

1989) are two widely used randomization procedures. They are very straightforward to 

implement, but do not guarantee the exposure rates of items will be constrained to a given level 

(Davis, 2004; Keng, 2008). 

Conditional selection procedures control the exposure rate of an item on a given criterion 

which is the exposure control parameter. This parameter guarantees the maximum exposure rate. 

The Sympson-Hetter (SH) method (Sympson & Hetter, 1985) is the most commonly used 

conditional selection procedure. This method assigns an exposure control parameter to limit the 

maximum exposure rate of each item to a predetermined level. During the test administration, if 

the exposure control parameter is greater than a random number, the item will be selected. 

However, one disadvantage of SH method is that implementation is very time-consuming for 

determining the exposure control parameters (Keng, 2008).  

2.1.6 Stopping Rule 

Fixed length and variable length are two ways to decide when to terminate the test. A fixed 

length test requires all the examinees to take the same number of items in a test, which takes 

similar testing time across examinees. However, one disadvantage is that test reliability reporting 

will have a problem due to different measurement precision across examinees (Gu, 2007). A 

variable length test has examinees take different numbers of items until a pre-specified precision 

level of ability estimate is met. A target standard error of measurement can be used as a stopping 

criterion to terminate the test, so that each examinee can be measured to the same degree of 

precision. Compared with fixed-length tests, variable-length tests tend to improve the item pool 



12 
 

use due to minimizing test length (Bergstrom & Lunz, 1999). One problem in variable-length test 

is that the examinees with extreme ability levels will have a longer test than the one with ability 

levels matching the items in the pool. The item pool will possibly run out of appropriate items to 

administer. Thissen & Mislevy (2000) suggested that the combination of specific precision and 

maximum number of items should always be implemented in practice to avoid this situation.  

2.2 Multistage Adaptive Testing (MST) 

The basic components of a MST are similar to those of a CAT, such as an item pool from 

which all test forms are built, routing strategies assigning examinees to the next module, scoring 

methods to report an examinee’s final score, and test specification to construct the test forms. In 

addition, MSTs also have some unique factors, such as modules, panels and stages.  

As defined earlier, modules are bundles of items that are built before test administration. Each 

module can be built to meet both a statistical target like test information function or a non-

statistical target like content specification. According to the overall difficulty level of items in a 

module, a module can be classified to easy, moderate and hard categories. Once modules are 

built, they are combined to create a panel for administration. A panel is analogous to a test form 

since it needs to meet both statistical and non-statistical targets. Multiple panels should be built 

for controlling the exposure of modules and items. Each examinee will be assigned one panel in 

a MST administration. In addition, a series of stages also exist in a panel. Most MSTs have two 

to four stages. Each stage has a number of modules. The first stage of a MST always has one 

module taken by each examinee. The later stages can have multiple modules.  

Figure 2.2 gives an example of the ten parallel panels having three stages and seven modules 

(i.e., 1-3-3 design). As its name suggested, the term 1-3-3 means that one module in the first 

stage, and three modules in stage 2 and 3 within each panel. The letters E, M and H represent the 
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average difficulty of the module (E = Relatively Easy, M = Moderately Difficulty, H = 

Relatively Hard). The possible pathways across the modules are identified by solid lines. How to 

assemble multiple parallel panels was discussed in the next chapter. 

Any examinee who is administered a 1-3-3 design MST will take the items in Module 1M 

first. Based on the performance in Module 1M, examinees will be routed to one module of stage 

2. If examinees perform well, then will be routed to the hard module (Module 2H); if examinees 

perform moderately well, then will be routed to the moderate difficult module (Module 2M); and 

if examinees perform poorly, then will be routed to the easy module (Module 2E). Luecht & 

Nungester (1998) suggested that the extreme change of performance from L to H is unlikely to 

happen, and thus examinees cannot be routed from easy to hard or hard to easy module. Similar 

rules will be applied to route examinees from stage 2 to 3. 
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Figure 2.2 Example of 1-3-3 Multistage Test with 10 Panels. The solid lines are the possible 

pathways for an examinee. E = Relatively Easy; M = Moderately Difficult; H = Relatively Hard. 

 

     When designing a MST, a number of considerations about the components should be decided, 

such as item pool, panel configuration, test assembly, routing strategy and scoring procedure. In 

addition, content specification and examinees’ ability distribution are incorporated in making 

these decisions. Details of these considerations are explained as followed.  

 

 

 

Stage 2 

Module 2E 

Stage 2 

Module 2M 

Stage 2 

Module 2H 

Stage 3 

Module 3M 

Stage 3 

Module 3E 

Stage 3 

Module 3H 

Stage 1  

Routing Module (1M) 

    Panel 1 

Panel 2 

Panel 10 



15 
 

2.2.1 MST Item pool 

The item pool, which is built to incorporate the test content and both statistical and non-

statistical constraints, is considered an important factor to obtain measurement results in MST. 

Hendrickson (2007) suggested that the item pool should have a sufficiently large size to support 

assembling modules and multiple panels. Luecht and Nungester (1998) suggested that the quality 

of item pool affects the successfulness of the test assembly process. Wang (2012) indicated that 

using an item pool specifically designed for MST contributes in scoring accuracy. For example, 

two studies have examined the effect of item pool characteristics on psychometric properties of 

MSTs. Jodoin (2003) compared three computerized test designs under two item pool conditions: 

1) item pool quality measured by item discrimination, which is specified as low-, middle- and 

high-discriminating item pool; 2) the match between test content specification and item pool. 

The results showed that measurement precision and classification accuracy benefit from the item 

pool quality and the match between test specification and the item pool. Wang et al. (2012) 

compared 25 different panels under both an item pool designed for fixed form tests and an 

“optimal” item pool for MST. The results indicated that the quality of item pool affects the 

quality of panel design. They also suggested that different panel configurations need different 

optimal item pools for that design.  

Generally speaking, a MST item pool supports test assembly as a CAT pool does. The ideal 

item pool should have sufficiently large size to well target desired difficulty range and to provide 

flexibility for module and panel assembly. But item writing cost and item exposure rate are 

always considered in controlling the item pool size. Wang et al. (2012) suggested that the MST 

item pool size is determined as 1.5 times of the required number of items in test design.  
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2.2.2 Panel Configuration 

    A panel is considered as a combination of modules. Panel design configuration can vary in the 

following ways: 1) the number of stages; 2) the number of module per stage; 3) the length of 

each module; 4) the distribution of item difficulty among modules; and 5) item-attribute and test 

requirements for the modules at each stage (Luecht & Burgin, 2003). Generally, design decisions 

about these issues depend on the factors such as the purpose of the test, available items and test 

specifications.  

Different across-stage module arrangements (e.g. simple 1-2 and 1-3, 1-2-2, 1-2-3, and 1-3-3) 

are researched in the MST literature. Patsula (1999) suggested that increasing the number of 

stages from two to three improves measurement precision. Jodoin et al. (2006) showed that a 

two-stage 40-item MST provided a lower measurement precision and classification accuracy 

than a three-stage 60-item MST, which reinforced that increasing the number of stages generally 

increases measurement precision. Hendrickson (2007) also noted that recent studies have been 

using three or four stages instead of simply two stages.  

In terms of the number of modules in each stage, most MST research use one module in the 

first stage. Lord (1971) and Kim & Plake (1993) found that the number of modules in stage 2 

affect measurement accuracy. The results of Amstrong et al.’s paper (2004) indicated that three 

modules per stage is sufficient for desirable accuracy of ability estimates for most MSTs. 

In terms of the number of items within each module, Kim & Plake (1993) found that a longer 

first-stage module which is also known as the routing test contributes to the accuracy of the 

ability estimate. Within a fixed-length MST, Patsula (1999) showed that varying number of 

items within each module did not affect the accuracy of ability estimation.  
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In MST, the difficulty level of the module is targeted at a specific range on the ability scale 

(e.g. low, medium and high difficulty level), which is also an implicit part of the assembly 

process of selecting items to match the desired test information function for each module (Ariel, 

Veldkamp, & Breithaupt, 2006).  

2.2.3 Test Assembly 

The test assembly in MST focuses on incorporating statistical and non-statistical test 

specifications simultaneously with an item pool and mathematical algorithm to select items and 

construct multiple modules and panels (Zenisky & Hambleton, 2014). To achieve this goal, 

automated test assembly (ATA) is an effective way to assemble modules from the existing item 

pool (Melican, Breithaupt, & Zhang, 2010).  

Luecht and Nungester (1998) proposed two heuristic “Top-Down” and “Bottom-Up” 

assembly strategies to build panels for MST. The Top-Down strategy (e.g., Zheng et al., 2012) is 

used to assemble not completely parallel modules which are combined to meet test-level 

constraints. That is, modules are not exchangeable across panels when the Top-Down strategy is 

used. The Bottom-Up strategy (e.g., Luecht et al., 2006) is applied to assemble parallel forms of 

each module, and then mixed and matched these modules to build parallel panels. Each module 

is built up independently by meeting module-level content requirements and statistical 

constraints. Thus, modules within the Bottom-Up strategy are exchangeable across panels. 

Compared to the Top-Down strategy, which deals with uneven constraints for each module, the 

Bottom-Up assembly is easier and more straightforward to implement.  

When constructing a MST, the widely used statistical target is the target test information 

function (TIF). The target TIF is a pre-determined curve to specify the amount of required test 

information. Luecht & Burgin (2003) pointed out that target TIFs need to reflect three goals: 1) 
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to help guarantee measurement precision provided by test information functions; 2) to derive 

targets that produce large number of content-balanced module; and 3) to control the conditional 

exposure of items in a test among examinees. Luecht and Nungester (1998) suggested the shape 

of TIF to be built sharper in the later stage according to the decreasing standard deviation of item 

difficulty across modules. The reason is that the later modules focus on a narrow range of 

examinee’s ability. The Target TIF is also used to determine the cutoff point on ability scale to 

route examinees when applying the approximate maximum information (AMI) method. Once the 

TIFs and other non-statistical constraints are determined, multiple panels can be constructed 

simultaneously by a test assembly method.  

 Linear programming and heuristic methods are commonly used to assign items to each 

module and create panels. The linear programming method is able to strictly satisfy a number of 

constraints (e.g., content specifications and item exposure rate) when building the panels 

(Armstrong et al., 2004; Van der Linden, 2005; Breithaupt and Hare, 2007; Luetch et al., 2006). 

The essential part of this method is to provide optimal solutions of a set of inequalities, which are 

the assignments of items into modules. Mixed Integer Programming (MIP) is one well-known 

form of linear programming methods, which can be found in van der Linden (2005), Breithaupt 

and Hare (2007), and Melican, Breithaupt, and Zhang (2010). The MIP can have a large number 

of feasible solutions (all constrains are met), and then find the best possible solution. Some MIP 

based software have been developed, such as CASTISEL (Luecht, 1998), CPLEX 9.1 (ILOG, 

2005), JPLEX (Park, Kim, Dodd & Chung, 2011) and lp_Solve (Diao & Van der Linden, 

2011a). Linear programming methods for ATA are widely used to conduct MST test assembly, 

but the detailed discussion of it goes beyond this study.  
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Heuristic test assembly method generally includes the weighted deviation model (WDM; 

Swanson and Stocking, 1993), the normalized weighted absolute deviation heuristics (NWADH; 

Luecht, 1998) and the maximum priority index (MPI; Cheng & Chang, 2009). 

The WDM incorporates both statistical and non-statistical item properties by the user-assigned 

weights to achieve a desirable measurement balance. Deviation from the content targets is 

weighted with the deviation from the current test information to the target but unreachable value. 

The WDM selects the item with the smallest sum of weighted deviations for a CAT 

administration. The item selection algorithm using WDM includes three steps generally. First, 

the deviation for each of the constraints is calculated by assuming each item was already selected 

to the test. Second, the weighted deviation across constraints are summed. Finally, the item with 

the smallest summed deviation will be administered. A comprehensive description of this 

heuristic method is provided in Swanson & Stocking (1993).  

The NWADH is the only heuristic method used in MST assembly studies (e.g. Luecht & 

Nungester, 1998; Patsula, 1999; Jodoin et al., 2006; Hambleton & Xing, 2006; Wang, 2014). 

This heuristic has been successfully implemented in a medical licensure test assembly problem. 

Compared to MIP, it doesn’t need commercial software but can always provide a solution to 

meet all constraints. In addition, the ease and speed of converging to a feasible solution might be 

more valuable than converging to a best possible solution (Luecht, 1998; Swanson & Stocking, 

1993). Thus, this study chose the NWADH to conduct MST test assembly for simplicity and 

feasibility. The MPI is able to account for both statistical and non-statistical constraints as well, 

which was applied in this study to assemble individualized tests in CAT. The details of these two 

methods were discussed in the following section.  
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2.2.4 Routing Strategy 

    The routing strategy in MST assigns examinees to the next well-matched module on the basis 

of their performances in the previous module, which is analogous to the items selection 

procedure in CAT. Two routing strategies have been widely used: the approximate maximum 

information strategy (AMI; Luecht, Brumfield & Breithaupt, 2006) and the defined population 

intervals strategy (DPI; Jodoin et al., 2006; Zenisky & Hambleton, 2014). The former one 

identifies the empirical target TIF first, and then sums the TIFs of a previous administered 

module and current alternative modules respectively. The next step is to find the intersection 

point of adjacent cumulative TIFs as the routing point. This method is analogous to the 

maximum information item selection strategy in CAT, given a current provisional estimate. The 

later one, which relates to policy issues, routes a pre-specified proportion of examinees to the 

next modules according to their rank-ordered ability estimates. The value of the proportion is 

predetermined. For example, in a 1-3-3 panel design, if roughly equal number of examinees are 

required to be assigned to module 2E, 2M and 2H, the scores of the 33 percentile and the 67 

percentile would be the routing points. According to the normally distributed population, those 

would be -0.44 and 0.44 on the θ-scale.  

     Zenisky, et al (2010) suggested the commonly used scoring methods included IRT-based 

proficiency estimate, number-correct (NC) scoring and cumulative weighted NC. IRT-based 

scoring, which is usually done by maximum likelihood estimation (MLE) or expected a 

posteriori (EAP) estimation, is commonly used in various research studies (e.g. Kim & Plake, 

1993; Jodoin, 2003; Jodoin et al., 2006; Hambleton & Xing, 2006 and Keng, 2008). Even though 

NC scoring is straightforward to route examinees, it is inappropriate to be reported as the final 
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ability estimate. The reason is that examinees take statistically nonequivalent items in a MST 

(Lord, 1980). Thus, this study applied IRT-based scoring for reporting the final ability estimate.  

2.3 Comparison of CAT and MST 

Various recent studies have investigated the comparison of item-level CAT and MST in terms 

of some psychometric properties.  Kim & Plake (1993) compared the measurement precision and 

relative efficiency between CATs and MSTs with the length of first-stage module (10, 15, 20 

items), total test length (40, 45, 50 items), number of second-stage modules (6, 7, 8 modules), 

and distribution of item difficulty in the first-stage module (peaked or rectangle) varied. The 

results indicated that CAT outperformed MST in terms of both measurement precision and 

relative efficiency.  

The study by Patsula (1999) was conducted to compare the accuracy of ability estimation in 

different item-level CAT designs, P&P design, and the MST designs in terms of number of 

stages, number of modules per stage, and number of items per module. The study noted that 

item-level CAT produced the most accurate ability estimate over P&P and MST, and that 

increasing the number of modules per stage increased measurement precision and efficiency of 

MST.  

Jodoin (2003) compared linear fixed length test (LFT), CAT and MST with item pool 

characteristics, degree of match between test and item pool content specifications, total test 

length and exposure control varied. The results, not surprisingly, indicated that the CAT design 

outperformed MST and LFT designs in terms of some psychometric properties.  

Hambleton and Xing (2006) compared the performances of computer-based LFTs, CATs and 

MSTs in terms of classification accuracy, and found once again that CAT performed the best, 

followed by MST and then LFT.  
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Keng (2008) investigated the performance of the innovative testlet-based CATs, item-level 

CATs and MSTs. The results indicated that MST yields good measurement accuracy, good item 

pool utilization but high item exposure rates. In general, the results in the literature confirmed 

that CAT results achieve better than those of MSTs in terms of measurement precision. 
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CHAPTER 3 METHODOLOGY 

     

    This chapter first presents the various conditions for the MST simulation study. Then, the 

simulation study of CAT was matched to some psychometric properties of MST design. All the 

procedures were completed using Matlab R2011a Student version, R2015b and R2016a 

Academic Version. 

3.1 MST Simulations 

    Several conditions of MST test designs were compared in this simulation study, including test 

length, panel design consideration, routing strategy and assembly priority. Within the operational 

MST pool, sixteen separate combination conditions were generated across ten panels. Each one 

was compared with the result of the corresponding CAT. Ten replications were implemented to 

obtain stable estimates. The list of factors that were varied for the simulations of MST and CAT 

is presented in Table 3.1. The explanations for the selection of the factors are presented below.  

Table 3.1 Simulation Factors 

 MST CAT 

Master pool size 8100 8100 

Item pool size 2700 900 

Panel design 1-2-3; 1-3-3 ---- 

Test length 45; 60 Variable-length 

Routing strategy AMI; DPI MPI 

Assembly priority Forward; Backward ---- 

 

3.1.1 Panel Configuration 

As stated earlier, the paper by Amstrong et al. (2004) showed that three modules per stage was 

sufficient for desirable accuracy of ability estimates for most MSTs. In addition, testing agencies 

prefer to implement a three-stage MST at minimum for operational tests since it provides a 

second routing point (Zenisky and Hambleton, 2014). Then, this study applied the 1-2-3 design 
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(Zenisky 2004; Armstrong & Roussos, 2005) and 1-3-3 design (Zenisky 2004; Luecht et al 2006; 

Jodoin, Zenisky & Hambleton 2006). The 1-3-3 design is described in the previous chapter. The 

1-2-3 design is illustrated in Figure 3.1 below. As mentioned earlier, the letters E, M and H 

represent the average difficulty of the module (E =Relatively Easy, M = Moderately Difficulty, 

H = Relatively Hard). The possible pathways across the modules are indicated by solid lines. 

Three-stage panel designs are not the only commonly-used designs. Because Stark and 

Chernyshenko (2006) suggested that the greatest influence on measurement precision of MSTs 

did not lie in most of test design considerations but the test length, this study only adopted three-

stage panel design with test length varied.  
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Figure 3.1 Example of 1-2-3 Multistage Test with 10 Panels. E = Relatively Easy; M = 

Moderately Difficult; H = Relatively Hard. 

 

3.1.2 Test length  

     Test length is essential for measurement and scoring precision. Longer tests give more precise 

estimates but cost more in item writing and need longer administration time. Two levels of total 

test length were simulated in this study: moderate and long. Tests under the moderate length 

condition have 45 items. This is similar to the statewide assessment’s length. Tests under the 

long test length condition have 60 items. This is equal to the averaged test length of four CPA 
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examination sections, 60 items. The number of items in a module was fixed as equal in each 

panel. Then, the corresponding number of items in each module in a panel is 15 and 20, 

respectively.  

3.1.3. Item Pool Characteristics 

    The item pool should be designed carefully because the success of test assembly depends on 

the available items in the pool. As pointed by Van der Linden, Ariel & Veldkamp (2006), the 

item pool can be assembled from a set of fixed tests optimal at the distribution of examinee’s 

ability level. Following this idea, the operational MST pool in this study was constructed based 

on each module considered as fixed tests. The three-parameter logistic model (3PLM) was used 

in generating the item pool designed for MST for generalization purposes. The probability of 

correct response in a 3PL model is defined as  

     𝑃(𝑋𝑖 = 1|𝜃) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp(𝐷𝑎𝑖(𝜃−𝑏𝑖))

1+exp(𝐷𝑎𝑖(𝜃−𝑏𝑖))
                                                                     (3.1) 

where 𝑎𝑗 is the item discrimination parameter, 𝑏𝑗 is the item difficulty parameter, and 𝑐𝑗 is the 

pseudo-guessing parameter. Assuming this is a mathematics test covering five contents (e.g. 

Number, Data handling, Measurement, Algebra and Geometry), each content has an equal item 

number in the item pool.  

      Next, the current MST operational pool was cloned to obtain the master pool which should 

be guaranteed to have a sufficient large number of items meeting the content requirements. For 

convenience purposes, the master pool covered these five contents with equal number of items. 

Each item in the master pool was given a content code. 

3.1.4 Data Generation 

    The data generation process included generating examinee’s true ability, the operational item 

pool and the master pool. A group of 5000 examinees’ true ability were randomly drawn from 
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the standard normal distribution. As indicated in Zheng et al.’s (2012) paper, the examinees’ 

ability distribution was truncated within (-3.5, 3.5) to eliminate the effect of outliers. The values 

of the discrimination and guessing parameters in the MST pool were generated from the 

distributions, a ~ lognormal (1, .3); c ~ Uniform (.2, .1), to mimic a computerized test pool in 

mathematics (Leung, Chang & Hau, 2005). Discriminative power is a measure of item pool 

quality. The more discriminating items are selected, the more precise ability estimates will be. 

These distributions were selected to provide a high discriminating item pool to control item 

quality.  

The distribution of item difficulty is essential on deciding target TIFs. The distribution of item 

difficulty parameters in the pool was generated to follow normal distribution to fit examinees’ 

ability distribution. The desirable item difficulty level of each module aims to match the ability 

level of examinees routed to that module.  

 In the 1-2-3 design, item difficulty from stage 1 was designed to classify examinees 

accurately at the routing point into the next two modules. Since the examinee’s ability 

distribution followed the standard normal distribution, roughly equal number of examinees 

tended to be routed to the easy and hard module in stage 2. Spray & Reckase (1994) suggested 

that choosing the most informative items at the cut-point yields efficient decisions. Thus, the 

mean item difficulty level of the module in stage 1 which is called the routing module, is 

supposed to be close to 0. Approximately, the item difficulty of the routing module followed the 

normal distribution N (0, 0.3) to ensure the item difficulty does not spread out from zero too 

much. Because of roughly equal number in module 2E and 2H, the item difficulty level was 

centered on -0.7 and 0.7 respectively. This was determined by the median ability level of two 

halves of examinees. In the last stage, three groups of examinees with nearly equal numbers were 
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desired to be routed to three modules 3E, 3M and 3H. Then, the mean difficulty of each module 

was set as -1, 0 and 1. The variance of item difficulty parameter should drop in later stages, as 

for narrowing down the region on the ability scale (Wang, 2013). To take account into the fact 

that the examinees are possibly routed to the wrong next module, the item difficulty distribution 

should have an overlap above a small range in the ability scale. The distributions of item 

difficulty parameter in each module are displayed in Table 3.2.   

 For the 1-3-3 design, the item difficulty level of the routing module followed the standard 

normal distribution N (0, 1) to match the ability level of examinees. This is different with the one 

of the 1-2-3 design because examinees were routed to three different modules rather than simple 

two modules. The similar process of determining item difficulty level was implemented in the 

stage 2 and 3 for the 1-3-3 design.  

Table 3.2 Distributions for Item Difficulty Parameters in Each Module 

Design 1-2-3 1-3-3 

Stage 1 N (0,0.3) N (0,1) 

Stage 2E N (-0.7, 0.6)  N (-1, 0.6) 

Stage 2M ---- N (0, 0.6) 

Stage 2H N (0.7, 0.6) N (1, 0.6) 

Stage 3E N (-1, 0.3)  N (-1, 0.3) 

Stage 3M N (0, 0.3) N (0, 0.3) 

Stage 3H N (1, 0.3) N (1, 0.3) 

 

Wang et al. (2012) noted that the MST pool size was set as 1.5 times of the number of items 

needed in most literature. In this study, there were a total of 9 modules with different item 

difficulty distributions. Based on the longer module length of 20 items and 10 panels in the 1-3-3 

design, the ideal operational MST pool contained 2700 items for the two MST designs. 

Considering the real-life master pool size for AICPA, NCLEX and LSAT, the master pool size in 

this study was cloned from this operational MST pool 3 times to obtain 8100 items. Although the 

master pool was created by the MST pool, the large master pool size was able to guarantee the 
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fairness of drawing a CAT pool with a much smaller size than the MST pool. The information 

curve of the master pool is displayed in Figure 3.2. It follows the normal distribution which is 

similar to the information curve of LSAT’s master pool. The information curve of the MST item 

pool can be found in the Appendix. 

 

Figure 3.2 Information Curve of Master Pool 

 

3.1.5 Test Assembly 

3.1.5.1 Test Information Function (TIF) targets  

      In this study, the Bottom-Up assembly strategy was employed to build the test. This strategy 

can assemble one or more versions of a panel simultaneously. Luecht et al. (2006) indicated that 

separate information targets and content constraints were required for each module under this 
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      1. Specified a certain point on the ability scale with respect to the desired peak of TIFs for 

each module. For example, a predetermined point for the routing module is 𝜃 = 0 in this study. 

      2. Computed the item information at that certain point (e.g., 𝜃 = 0)  in item pool. 

      3. Sorted the item information in the descending order. 

      4. Given the module length n and the number of panels m, the most informative 𝑛 × 𝑚 items 

were determined.  

      5. Computed the sum of item information of these 𝑛 × 𝑚 items at each of the selected points 

on the ability scale, 𝜃𝑡, t = 1, …, T. (e.g., -3 to 3) with the increment of 0.1, then divided this 

amount by m to obtain the TIF targets. The target TIF is denoted as 

      TIF(𝜃𝑡) =
∑ 𝐼𝑖(𝜃𝑡)𝑛∗𝑚

𝑖=1

𝑚
                                                                                                               (3.2) 

     Ten parallel modules without overlapped items across panels were built up simultaneously 

following the above procedures. Figure 3.3 displays an example of the target TIFs for each 

module in a forward-assembled 1-2-3 panel design. The examples of the target TIFs for each 

module in a backward-assembled 1-2-3 panel design, forward-assembled 1-3-3 panel design and 

backward-assembled 1-3-3 panel design can be found in the Appendix. 
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Figure 3.3 Module Level Target TIFs for One of the 1-2-3 Panels, Forward Assembly, 45 items 

     When maximizing the information at the same point for different modules (e.g. in “1-2-3” test 

design, routing module and medium-difficulty module have the target TIFs peaked at 𝜃𝑡 = 0), 

two levels of assembly priority were considered here. The first one is forward assembly. As 

suggested by the term, modules in the early stage are built up prior to the ones in later stages. 

The other one is backward assembly, which means modules in later stage are built up prior to the 

ones in early stage. Table 3.3 lists the points where module information was maximized. 

Table 3.3 The Points Where Module Information Was Maximized 

Design “1-2-3” “1-3-3” 

Stage 1 𝜃𝑡 = 0 𝜃𝑡 = 0 

Stage 2 𝜃𝑡 = (-0.7, 0.7) 𝜃𝑡 = (-1, 0, 1) 

Stage 3 𝜃𝑡 = (-1, 0, 1) 𝜃𝑡 = (-1, 0, 1) 
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3.1.5.2 Assembly Algorithm  

      Luecht (2000) pointed out that the bottom-up strategy cannot be used if content constraints 

were not met in each stage. In addition to TIF targets as statistical constraints, separate content 

specifications as non-statistical constraints were required for each stage. Then, there was one 

content specification for each stage, respectively. For example, in 1-3-3 design, the content 

specification for three modules 2E, 2M and 2H are the same, even though they have different 

TIFs. Similarly, the three modules (3E, 3M and 3H) in Stage 3 meet the same content 

specification.  

     Once the target TIFs were determined, the normalized weighted absolute deviation heuristic 

(NWADH; Luecht, 1998) was used to build multiple panels simultaneously from the operational 

MST pool. This heuristic can handle any number and type of content or other categorical 

constraints. In the module having n items, as for identifying the jth item, this heuristic firstly 

computed the current information value by abstracting the value of selected items from the target 

value T(𝜃𝑞) ; then divided this value by the remaining number of items (n-j+1) . The expression 

in Equation 3.3 provides the target value of the next item to be selected.  

     
𝑇(𝜃𝑞)−∑ 𝐼𝑗(𝜃𝑞)

𝑗−1
𝑖=1 )

𝑛−𝑗+1
                                                                                                                      (3.3) 

Secondly, the next item was selected with the information value matched to the value of 

Equation 3.3 in terms of all 𝜃𝑞 values. Then, the next item should maximize  

      𝑒𝑖 = 1 −
∑ 𝑑𝑖𝑞

𝑄
𝑞=1

∑ ∑ 𝑑𝑖𝑞
𝑄
𝑞=1𝑖∈𝑅𝑗−1

+
𝑐𝑖

∑ 𝑐𝑖𝑖∈𝑅𝑗−1

,   𝑖 ∈ 𝑅𝑗−1                                                                   (3.4) 

where 𝑅𝑗−1 represents index of the remaining items in the item pool except the selected j-1 items,  

      𝑑𝑖𝑞 = |[
𝑇(𝜃𝑞)−∑ 𝐼𝑗(𝜃𝑞)

𝑗−1
𝑖=1 𝑥𝑗

𝑛−𝑗+1
] − 𝐼𝑗(𝜃𝑞)|                                                                                  (3.5) 
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where 𝑥𝑗 is a binary variable indicating whether each item was selected, and 𝑐𝑖 is the 

accumulated content weights for each unselected item in 𝑅𝑗−1 

      𝑐𝑖 = 𝑣𝑖𝑔𝑊𝑔 + (1 + 𝑣𝑖𝑔)𝑊𝑔                                                                                              (3.6) 

     𝑊𝑔 = 𝑊[𝑚𝑎𝑥] −
1

𝐺
∑ 𝑊𝑔                     𝐺

𝑖=1                                                                            (3.7) 

The weights can be user-assigned integer weights. Adjusting Luecht’s (1998) heuristics, the 

weights are given as followed: 

      If    ∑ 𝑣𝑖𝑔
𝑗−1
𝑖 = 𝑍𝑔,     𝑡ℎ𝑒𝑛 𝑊𝑔 = 0;                                                                               (3.8) 

      If    ∑ 𝑣𝑖𝑔
𝑗−1
𝑖 < 𝑍𝑔,     𝑡ℎ𝑒𝑛 𝑊𝑔 = 1;                                                                               (3.9) 

Where 𝑣𝑖𝑔 is the binary incidence of the item indicating a specific content constraint: 𝑣𝑖𝑔 equals 

to 1 if the item belongs to the content constraint g, and equals to 0 if the item does not belong. 𝑍𝑔 

is the number of items required for each content in a module. For convenience, modules across 

stages were set to have the same content specifications in this study. For this reason, 𝑍𝑔 was set 

as 3 for the module length of 15, and 4 for the module length of 20. User assigned proportional 

weights can be incorporated into the composition function in Equation 3.4 as well, in order to 

show the importance of satisfying statistical and non-statistical constraints (Luecht, 1998). Since 

this is a simulation study without real content specifications, user assigned proportional weights 

were not adopted.  

     Following the procedure of the Bottom-Up Strategy and NWADH, modules and panels were 

assembled successfully. Furthermore, to avoid the situation that panels assembled later tend to 

have worse-fitted items, items in each module and modules in each panel were permutated across 

panels to keep the quality of each panel equal. Examples of averaged module level information 

curves across panels in forward assembly and backward assembly for the 1-2-3 panel design are 
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displayed in Figure 3.4 and Figure 3.5, respectively. Each graph shows that the stages assembled 

earlier tend to have higher module level information. The figures of the 1-3-3 panel design and the 

figures of the 1-2-3 panel design with the test length of 60 items are presented in the Appendix. 

Figure 3.6 shows an example of the test information function for the routing modules (1M) across 

the ten backward assembled panels for the 1-2-3 panel design with test length of 45 items. Only a 

small variation ranged from the least to the most informative modules due to permutation. These 

three graphs were used to examine if the MST assembly process achieved its goals. Compared 

with the above Figure 3.3, the information curves in Figure 3.4 were a little lower due to the 

availability of items satisfying both information and content constrains. 

 

Figure 3.4 Averaged Module Level Information Curves across Forward Assembled Panels for 

the 1-2-3 Panel Design, 45 items 
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Figure 3.5 Averaged Module Level Information Curves across Backward Assembled Panels for 

the 1-2-3 Panel Design, 45 items 
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Figure 3.6 Averaged Module Level Information Curves of Module 1M across Backward 

Assembled Panels for the 1-2-3 Panel Design, 45 items (Green Graph = Most Informative 

Module 1M across 10 Panels; Blue Graph = Least Informative Module 1M across 10 Panels) 

 

3.1.5.3 Routing Rules and Scoring  

     This study employed the approximate maximum information (AMI) method and the Defined 

Population Interval (DPI) to determine the routing points. Under the AMI method, the routing 

points were determined as the intersection point of the test information curves of the previous 

administered and current module (Luecht, Brumfield & Breithaupt, 2006). Figure 3.7 illustrates a 

routing procedure for AMI in a 1-3-3 panel design. Two routing points assigning examinees to 
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routing point 𝜃𝑈 corresponds to the intersection of test information curve of 1M+2M and 

1M+2H. Examinees with the estimated ability level below 𝜃𝐿  are assigned to the module 2E. 

Examinees with the estimated ability level above 𝜃𝑈 are assigned to the module 2H. Others are 

assigned to the module 2M. The routings points from stage 2 to 3, denoted as 𝜃𝐿′ and 𝜃𝑈′, are 

determined by the summed test information curves over three stages. Since it is very likely to 

have different TIF of each module across panels, the routing points are likely to be different 

across panels as well.  

 

Routing Procedure Process 

 

 

 

 

 

  

 

 

 

 

  

Figure 3.7 Example of AMI Procedure.  AMI = Approximate Maximum Information. 

                      E = Relatively Easy; M = Moderately Difficult; H = Relatively Hard. 
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Under the DPI method, as a matter of policy, a pre-determined proportion of examinees is 

determined for each module in the next stage. In this study, roughly equal numbers of examinees 

were expected in each module of stage 2 and 3. That is to say, the 50th percentile is the routing 

point from stage 1 to stage 2 in the 1-2-3 design, while the 33rd and 67th percentiles are the 

routing points in the 1-3-3 design and in the transition from stage 2 to 3 of the 1-2-3 design. 

Since the distribution of examinees followed normal distribution, the routing points were -0.43 

and 0.43 for the 1-3-3 design, and 0, -0.43 and 0.43 for the 1-2-3 design. After identifying the 

routing points, the scoring procedure was implemented. As mentioned earlier, this study applied 

3PL-IRT model for all dichotomously-scored items in the whole simulation procedure.  

3.1.6 Test Administration 

      For example, the 1-3-3 MSTs were administrated in this study as the following steps after the 

modules and panels. 

1. The examinee was randomly assigned one of the ten panels.  

2. The examinee would take the routing module (i.e., Module 1M with medium difficulty 

level) of the assigned panel.  

3. And the end of the routing module, the ability estimate (𝜃) of the examinee was obtained 

by MLE.  

4. The examinee was routed to a module (2E, 2M or 2H) of stage 2 based on the comparison 

of 𝜃 and predetermined routing points from stage 1 to 2.  

5. And the end of the routing module, the updated ability estimate (𝜃′̂) of the examinee was 

obtained by MLE.  

6. The examinee was routed to a module (3E, 3M or 3H) of stage 3 based on the comparison 

of 𝜃′̂ and predetermined routing points from stage 2 to 3.  
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7. After stage 3, the final ability estimate of the examinee was obtained and recorded. The 

test information was calculated and recorded as well for the comparison with CAT. 

3.2 CAT Simulations 

3.2.1 Item Pool Characteristics 

An important characteristic of the item pool is to have enough items to cover the whole ability 

scale. The CAT item pool should have enough items as well to give a fair comparison. 

Guidelines for the appropriate size of the item pool are from six to twelve times the test length 

(Weiss, 1985; Stocking 1994; Gu, 2007). In order to match the maximum item exposure rate of 

0.1 in MSTs which is strict in CATs, this study adopted 15 as the ratio of pool size to test length. 

Since the long test has 60 items, the pool size was set as 900 which also guarantees enough items 

for the moderate test length of 45. There were equal numbers of items in 5 contents. In this 

study, the operational CAT pool consisting of 900 items will be constructed from the master pool 

by following the a-stratified method (Chang & Ying, 1999) and “item distribution for the .96-

optimal item pool with exposure control” (Mao, 2014, p. 63). The later one illustrated the 

number of items in b-bin in a .96-optimal CAT item pool. The definition of “.96-optimal item 

pool” represents an item pool “that always has an item available for selection that p% matches 

the desired characteristics specified by the item selection routine for the CAT” (Reckase, 2007). 

Given the item distribution for such an optimal item pool, the procedure of CAT item pool 

construction had the following steps: 

1. Divided the master pool into 5 sub-pool by content, then each content had equal number 

of items (i.e., 1620) as well. 

2. Sorted the items in each sub-pool based on an ascending order of the a-parameters. 
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3. Partitioned each sub-pool into 3 strata by a-parameter with lowest-a items being put in the 

first stratum and largest-a items being put in the last stratum. Each stratum has equal 

number of items (i.e., 540).  

4. Within each a-stratum, the number of items in the b-bin (e.g. b < -1.7, -1.7 ≤ b < -0.2;  

-0.2 ≤ b < 0.2; 0.2 ≤ b < 1.7; and b ≥ 1.7) were determined by following the item 

distribution for the .96-optimal item pool with exposure control. The current study 

adopted more examinees and lower item exposure rate than the ones of Mao’s study 

(2014). For this reason, more items were needed for the examinee whose ability level was 

near 0 on the ability scale. Table 3.4 illustrates the distribution of item frequencies within 

each b-bin.      

5.  Randomly drew items following the item distribution shown in Table 3.4 within each 

stratum. 

6. All items drawn in each stratum were pooled across sub-pools to finalize the CAT 

operational item pool. The example of item distribution for the CAT item pool is shown in 

Figure 3.8 below.  

Table 3.4. Item Distribution for Each a-Stratum  

 b < -1.7 -1.7 ≤ b < -0.2 -0.2 ≤ b < 0.2 0.2 ≤ b < 1.7 b ≥ 1.7 

Number of items 8 18 7 18 8 
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Figure 3.8 Example of Distribution of Difficulty (b) Parameter in the CAT Item Pool 

3.2.2 Item Selection Procedure 

    When incorporating multiple statistical constraints and test requirements simultaneously in 

CATs, the item selection procedure becomes more complicated than the basic procedure. This 

study employed the Maximum Priority Index (MPI; Cheng & Chang, 2009) method which is 

very promising for constrained item selection in CAT. It successfully controls multiple 

constraints (e.g. exposure control and content constrains) simultaneously, requires no weight 

adjustment and can be applied with different item selection algorithm. The MPI is computed for 

each eligible item after administering one item. The item with larger MPI tends to be selected 

more likely. The priority index is denoted:  

    𝑃𝐼𝑖𝑐
= 𝐼𝑖𝑐

∏ (𝑤𝑘𝑐𝑓𝑘)𝑐𝑖𝑘𝐾
𝑘=1                                                                                                    (3.10) 
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where 𝐼𝑖𝑐
 represents Fisher information of item 𝑖𝑐 at current ability estimate; 𝑖𝑐 is the number of 

items in the pool; 𝑐𝑖𝑐𝑘 equals 1 when item l is relevant to constraint k, otherwise it equals to 0; 𝑓𝑘 

represents the scaled “quota left” of constraint k and 𝑤𝑘𝑐 represents the weight according to 𝑓𝑘 in 

CAT simulation. For convenience purpose, the weight of the constraint k (𝑤𝑘𝑐) was fixed as 1 in 

this study. When constraint k represents content constraint, the scaled “quota left” is computed as 

     𝑓𝑘 =
(𝑋𝑘−𝑥𝑘)

𝑋𝑘
                                                                                                                     (3.11) 

where 𝑋𝑘 represents the number of items required from a certain content area, and 𝑥𝑘 represents 

the number of items have been selected. Due to the property of variable length CAT, there is no 

specific number of items required from each content for all examinees. This study assigned a 

value to 𝑋𝑘 by maximum number of items from each content. Followed by equal number of 

items across 5 contents,  𝑋𝑘 was fixed as 11 for the maximum test length of 55 items, and as 14 

for the maximum test length of 70 items. When constraint k’ represents exposure control 

constraint and require the item exposure rate to be no more than r, the scaled “quota left” is 

computed as  

     𝑓𝑘′ =
(𝑟−(

𝑛𝑒
𝑁𝑒

))

𝑟
                                                                                                                   (3.12) 

where 𝑁𝑒 represents the total number of examinees, and 𝑛𝑒 represents the number of examinees 

who have seen item l. Because the items in MSTs had item exposure rate no more than 0.1, r in 

the above equation (3.12) was fixed as 0.1.  

3.2.3 Data Generation 

 Ten replications were implemented in CAT simulation as well. In the CAT simulation, the 

initial value of examinees was randomly generated from the uniform (-0.4, 0.4) distribution. For 

fair comparison purpose, there were four factors matched with those of MST simulations, 
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including similar conditional test information, IRT scoring procedure, maximum item exposure 

rate and content specifications. In this variable-length CAT, the test was terminated once the test 

information conditional on an examinee’s ability level fell into the range from below to above 

5% of the corresponding conditional test information of MST. Even though the goal is to make a 

fair comparison, it was not realistic to have exactly the same conditional standard error of 

measurement. The test was terminated when the test length reached 55 items for the test length 

of 45 in MST, and 60 items for the test length of 70 in MST. This was to avoid an endless test for 

the examinees having extreme ability level. The IRT-based score produced by Maximum 

Likelihood Estimation (MLE) was used in item selection procedure of CAT administration, and a 

final IRT-based score was reported to the examinees. 

3.3 Evaluation Criteria 

The performances of MST and CAT were evaluated based on ability estimates. The evaluation 

criteria for ability estimate including mean of bias, and mean squared error (MSE). The mean bias 

was calculated as  

𝑀𝑒𝑎𝑛 𝐵𝑖𝑎𝑠 = ∑
𝜃̂𝑒−𝜃𝑒

𝑁𝑒

𝑁𝑒
𝑒=1 ,                                                                                                  (3.13) 

where 𝑁𝑒 was the number of examinees, 𝜃𝑒 was the estimated ability, 𝜃𝑒 was the true ability. And 

MSE was obtained by Equation 3.14 

𝑀𝑆𝐸 = ∑
(𝜃̂𝑒−𝜃𝑒)

2

𝑁𝑒

𝑁𝑒
𝑒=1 ,                                                                                                        (3.14) 

      Considering the testing mode change from CAT to MST, the comparison of MST and CAT 

was evaluated by averaged test length for item writing cost and test administration time, as well 

as measurement accuracy.      

      The first analysis dealt with the question of which MST design gave the highest measurement 

precision under different conditions. Further, whether MST outperformed CAT in terms of 
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measurement accuracy was examined. The mean bias and MSE were calculated for both the 

corresponding CAT and MST designs under each of 16 conditions. Each condition of MST was 

compared with the corresponding result of CAT. 

      The other research question focused on the comparison between averaged test length of CAT 

and fixed-length MST. When considering testing mode change, administration time, 

measurement accuracy and item cost should be noticed. Which testing mode gave a shorter test 

based on a fair comparison was examined.  
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CHAPTER 4 RESULTS 

 

     The results for CAT and MST designs are presented in this chapter. They were compared on 

measurement accuracy, and these findings are presented first. They are followed by the comparison 

of averaged test length in MST and the corresponding CAT for the purpose of testing mode change. 

This study also found a situation of routing point shift using AMI routing strategy for backward 

assembled MSTs, which is presented next. The Maximum Priority Index (MPI) was used to select 

items in the variable-length CAT of this study. The results of content balancing are shown last. 

MST designs were simulated across four factors: panel design, test length, routing strategy and 

assembly priority. All tables and figures are included in this chapter. All results are averaged across 

the ten replications under each condition.   

4.1 Measurement Accuracy 

      Measurement accuracy was evaluated by the degree of ability estimate recovery. The overall 

results included mean bias and mean squared error (MSE). These were compared across MST 

conditions first, and between each condition of MST and the corresponding CAT.  

      Table 4.1 to 4.4 give the overall measurement accuracy statistics for CAT and MST across all 

conditions. These tables show that the overall measurement accuracy was good. Table 4.1 indicates 

that forward assembled MSTs always have slightly higher mean biases than backward assembled 

MSTs for the moderate length test (i.e., 45 items). The absolute difference ranged from .002 to .011. 

No obvious trend in panel designs and routing strategies was found among forward assembly 

conditions. Under backward assembly condition, similar mean biases were obtained between MST 

panel designs and routing strategies. All of them are close to 0, even though backward assembled 

MST using DPI routing strategy always underestimated examinees’ abilities slightly. Compared 
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to CAT, MST always provided slightly smaller mean biases, which absolute difference ranged 

from .006 to .025.  

Table 4.1 Mean Bias of the Estimated 𝜃 for Moderate Length Test  

Test length Testing 

Mode 

Design Forward 

AMI 

Forward 

DPI 

Backward 

AMI 

Backward 

DPI 

45 CAT Item-Level .018 .022 .025 .023 

MST 1-2-3 .012 .003 .001 -.001 

CAT Item-Level .019 .020 .020 .024 

MST 1-3-3 .004 .011 .001 -.001 

Note: All statistics were computed across 10 replications; each replication has 5,000 examinees.  

     Table 4.2 indicates the mean biases of the long test (i.e., 60 items) across all conditions. The 

results demonstrate that there is no obvious difference in mean bias between assembly priorities, 

panel designs and routing strategies. CATs have similar mean bias with MSTs. When comparing 

the mean bias between two test length conditions, it is shown that the longer test had a slightly 

smaller mean bias. Figure 4.1 displays a straightforward comparison across all MST conditions.  

Table 4.2 Mean Bias of the Estimated 𝜃 for the Long Test  

Test length Testing 

Mode 

Design Forward 

AMI 

Forward 

DPI 

Backward 

AMI 

Backward 

DPI 

60 CAT Item-Level .008 .015 .015 .018 

MST 1-2-3 .005 .007 .007 .006 

CAT Item-Level .013 .013 .004 .011 

MST 1-3-3 .007 .011 .004 .002 

Note: All statistics were computed across 10 replications; each replication has 5,000 examinees. 
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Figure 4.1 The Mean Biases under Different MST Design Conditions 

        Table 4.3 and 4.4 list the MSE of the estimated ability for the moderate-length test and long 

test, respectively. With respect to the moderate-length test exhibited by Table 4.3, the MSEs were 

smaller in MSTs than in CATs, whose differences ranged from .02 to .03. There is a slight 

difference of .01 and .02 in MSEs between forward and backward assembled MSTs. The routing 

strategies and panel designs provided similar MSE.  
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Table 4.3 MSE of the Estimated 𝜃 for Moderate Length Test  

Test length Testing 

Mode 

Design Forward 

AMI 

Forward 

DPI 

Backward 

AMI 

Backward 

DPI 

45 CAT Item-Level .14 .15 .16 .16 

MST 1-2-3 .12 .12 .14 .14 

CAT Item-Level .15 .15 .15 .16 

MST 1-3-3 .13 .13 .13 .14 

Note: All statistics were computed across 10 replications; each replication has 5,000 examinees 

       The patterns of MSE were similar in both the moderate-length and long test. As indicated by 

Table 4.4, MSEs are slightly higher in backward than forward assembled MSTs. The routing 

strategies and panel designs did not have an impact on the MSE. It is noted than MSTs gave slightly 

smaller MSEs than CATs, ranging from .01 to .02. According to the comparison between test 

lengths, a longer test has a smaller MSE. Figure 4.2 displays a straightforward comparison among 

MST conditions.  

Table 4.4 MSE of the Estimated 𝜃 for Long Test 

Test length Testing 

Mode 

Design Forward 

AMI 

Forward 

DPI 

Backward 

AMI 

Backward 

DPI 

60 CAT Item-Level .12 .12 .13 .13 

MST 1-2-3 .10 .10 .11 .11 

CAT Item-Level .12 .12 .14 .13 

MST 1-3-3 .10 .10 .12 .12 

Note: All statistics were computed across 10 replications; each replication has 5,000 examinees. 
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Figure 4.2 The MSEs under Different MST Design Conditions 

     In summary, Tables 4.1, 4.2, 4.3 and 4.4 demonstrated that the difference in overall 

measurement accuracy across MST conditions was very small. Different panel designs, assembly 

priorities and routing strategies did not have a considerable impact on measurement accuracy. 

Longer tests performed slightly better than short tests. Measurement accuracy of the MST designs 

was slightly higher than the corresponding CATs on the overall ability scale.  
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4.2 Averaged Test Length 

      Table 4.5 summarizes the average test length in CAT matched with MST conditions. No 

obvious difference in average test length was indicated by the comparison between routing 

strategies. Consistently, the averaged test lengths in CAT corresponding to backward assembled 

MSTs were shorter than those with forward assembled MSTs. The difference between forward 

and backward assembly increased as test length increased. For comparing the average test length 

between MST and the corresponding CAT, it is noted that there was a slight difference of 1 or 2 

items under forward assembly conditions for the moderate-length test. In contrast, a large 

difference of 5 or 6 items was noticed under backward assembly conditions. For the long test, 

there was a difference of 3 to 6 items between the MST and the corresponding CAT under 

forward assembly conditions, and a difference of 9 to 11 items under backward assembly 

conditions. With respect to panel designs, both 1-2-3 and 1-3-3 panel designs required similar 

averaged test length in CAT for the moderate-length test. But for the long test, the 1-3-3 panel 

design needed shorter averaged test length in CAT than the 1-2-3 panel design did, whose 

difference ranged from 1 to 3 items. Figure 4.3 shows a clear comparison. A plausible 

explanation is presented in Chapter 5.  

Table 4.5 Average Test Length in CAT with the Corresponding MST Conditions 

Test length MST  

Panel Design 

Forward 

AMI 

Forward 

DPI 

Backward 

AMI 

Backward 

DPI 

45 1-2-3 44 44 40 40 

1-3-3 44 43 40 39 

60 1-2-3 57 57 51 51 

1-3-3 55 54 50 49 
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Figure 4.3. The Averaged Test Lengths of CAT with the Corresponding MST Conditions  

4.3 Routing Point Shift in MSTs using AMI routing strategy 

      In addition to the measurement accuracy and average test length, this study also found a 

situation that routing points shifted in backward assembled MSTs using AMI strategy. Tables 4.6 
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the examinees taking Module 3E, and over 20 percent of the examinees taking Module 3H in the 

forward assembled MSTs. In contrast, 20 percent of the examinees taking Module 3E and almost 

40 percent examinees taking Module 3H in the backward assembled MSTs. This result indicated 

that the routing points in stage 3 shifted to the left in the backward assembly condition.  

Table 4.6 The Averaged Percentage of Examinees Routed to Each Module in the 1-2-3 Panel 

Design over 10 Replications (%) 

Module Test length = 45 Test length = 60 

Forward Backward Forward Backward 

2E 51 48 52 50 

2H 49 52 48 50 

3E 32 21 35 19 

3M 42 41 42 44 

3H 27 38 23 37 

 

      For the 1-3-3 panel design summarized by Table 4.7, the largest amount of examinees in stage 

2 were routed to module 2E under forward assembly conditions. This is similar with the examinee 

distribution in stage 2 in the 1-2-3 panel design. Module 2M and 2H divided the remaining 

examinees, which only took nearly 5 percent examinees (i.e., 52 percent on Module 2E in the 1-2-

3 panel design – 47 percent on Module 2E in the 1-3-3 design = 5 percent) from Module 2E. With 

respect to moderate-length versus long test under forward assembly condition, the amount of 

examinees taking Module 3E was the largest, followed by Module 3M, and then Module 3H.  

      Compared to forward assembly condition, the routing points from stage 1 to 2 under backward 

assembly condition shifted to the left to move 20 percent examinees from Module 2E to the 

remaining two modules. Only 27 and 26 percent examinees were routed to Module 2E in moderate-

length and long test, respectively. The routing points from stage 2 to 3 shifted to the left even more 

compared to the ones from stage 1 to 2. Nearly 20 percent examinees were routed to Module 3E. 

Similar numbers of examinees took Module 3M and 3H.  
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Table 4.7 The Average Percentage of Examinees Routed to Each Module in the 1-3-3 Panel Design 

over 10 Replications (%) 

Module Test length = 45 Test length = 60 

Forward Backward Forward backward 

2E 47 27 47 26 

2M 20 39 25 37 

2H 33 34 28 37 

3E 40 22 41 19 

3M 33 37 33 41 

3H 27 41 25 40 

   

   In summary, for the 1-2-3 panel design, the routing points from stage 2 to 3 shifted to the left 

in backward assembly condition compared with forward assembly condition. Over 10 percent 

fewer examinees were routed to Module 3E in backward rather than in forward assembled MST. 

The number of examinees routed to Module 3M was similar.  

    The situation for the 1-3-3 panel design was more complex than the 1-2-3 panel design. 

According to the forward assembly condition, the largest number of examinees (i.e., 47 percent) 

were routed to Module 2E, instead of the expected Module 2M. In contrast, the number of 

examinees on Module 2E was the smallest in stage 2 under backward assembly condition. 

Module 2M and 2H had similar number of examinees. Since the extreme pathway is unlikely to 

happen, Module 3E and 3M kept similar amounts as well. Compared to the forward assembly 

condition, the routing point from the routing module to 2E shifted to the left under the backward 

assembly condition. From stage 2 to 3, the routing points shifted further to the left. A plausible 

explanation is presented in Chapter 5 below.   

4.4 Content balance using MPI in a variable-length CAT 

     Previous research employed MPI in the fixed-length CAT. This study attempted to employ it 

in a variable-length CAT and to examine the content balancing. As illustrated by Equation 3.11, 

the maximum number of items in each content was set to be one fifth of the maximum test 
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length, since an equal number of items was required in five contents. Under each condition over 

ten replications, more than 90 percent of examinees had the equal number of items or a 

difference of 1 item across contents. This slight content violation is acceptable.  
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Chapter 5 DISCUSSION and CONCLUSION 

 

       This chapter provides a summary, a discussion and limitations of the results. It has four main 

sections. The first section summarizes the research objectives, the methodology applied in this 

study, and the results. The discussion of the results based on the major finding are then 

described, followed by implications. Limitations of this study and directions for future research 

are discussed in the final section.  

5.1 Summary of This Study 

  The main purposes of this study were (1) to compare the measurement accuracy of MSTs 

with the corresponding CATs; (2) to investigate which MST designs will give the highest 

measurement accuracy under different conditions (e.g., 1-2-3 and 1-3-3 panel designs, forward 

and backward assembly, routing strategies of AMI and DPI and the test lengths of 45 and 60 

items); and (3) to compare which testing mode (i.e., CAT or MST) will give a shorter test under 

each item pool matching similar test information on overall ability scale, item exposure rate and 

test content specification. The goal of this study was to make a fair comparison which includes 

three facets: (1) creating an item pool for MST and CAT respectively; (2) matching similar 

conditional test information for examinees; and (3) providing other matched properties during 

test administration (i.e., similar level of availability of items in each item pool, maximum item 

exposure rate, and content specifications). Then, a master pool was created to ensure the 

availability of items for maintaining MST item pool and drawing CAT item pool. A simulation 

study was conducted to build a MST item pool first, and then to assemble MST panels based on 

target TIFs in each module according to different panel designs, test lengths and assembly 

priority. The MSTs were administrated across different conditions. The comparison between 
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MST and CAT were on both measurement accuracy and then on test length when considering 

testing mode change. In addition to the research objectives, the shifted routing point in backward 

assembled MSTs using AMI routing strategy were found in this study, as well as the examination 

of the MPI in a variable-length CAT. 

5.1.1 Measurement Accuracy Criteria 

       No meaningful difference in mean bias of ability estimate was found among different 

conditions of test length, of routing strategy, of assembly priority and of panel design. Generally, 

the mean biases were all close to 0.  

       In terms of MSE, no notable difference was demonstrated among different conditions of 

routing strategy, of assembly priority and of panel design. Among all conditions, the MSE 

decreased as test length increased. But the magnitude was small, ranging from .01 to .03.  

      With respect to the overall measurement accuracy across MST conditions, there was no 

difference between routing strategies, panel designs and assembly priorities. Long test performed 

slightly better than moderate-length test. 

      Comparing measurement accuracy between all conditions of MSTs and the corresponding 

CATs, MSTs outperformed CATs slightly and consistently in both MSE and mean bias. The 

magnitude of difference only ranged from 0 to .025 across all conditions in mean bias, and 

from .01 to .02 across all conditions in MSE.  

5.1.2 Test Length Criteria 

      Based on the fair comparison between MST and CAT in this study, CAT provided a slightly 

shorter test than the corresponding forward assembled MSTs. When MST had a fixed test length 

of 45 items, CAT can achieve similar conditional test information with MST by a test length 

having one or two items less in average than MST. The small difference of 1 item was noted 
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between panel designs. However, the CAT gave a much shorter test than MST under the 

backward assembly condition with a difference of 5 and 6 items. 

      For the long test (i.e., 60 items), CAT still provided shorter test length than MSTs across all 

conditions. The difference in averaged test length between MSTs and CATs were larger than for 

the test length of 45 items. CAT can have many fewer items on average to achieve similar 

conditional test information of MSTs, especially for the backward assembled MSTs. The CAT 

required shorter tests corresponding to the 1-3-3 panel design than to the 1-2-3 panel design 

under the forward assembly condition, but similar test length under the backward assembly 

condition.  

In summary, different routing strategies used in MST did not affect the averaged test length in 

the corresponding CAT. CAT provided shorter tests than MST across all conditions on the basis 

of fair comparison. The difference in averaged test length between MST and CAT increased as 

test length increased. CAT gave much shorter tests corresponding to backward than forward 

assembled MST. Specifically, the 1-3-3 panel design MSTs required shorter tests in CAT than 

the 1-2-3 panel design MSTs did under forward assembly condition, but similar test length in 

CAT under backward assembly condition.  

5.1.3 Routing Point Shift using AMI routing strategy  

For the 1-2-3 panel design, the routing point from stage 2 to 3 shifted to the left quite a bit in 

the backward assembled MSTs. Compared to forward assembly condition, the number of 

examinees taking Module 3M in stage 3 under backward assembly condition was similar, while 

the number on Module 3E decreased and the number on Module 3H increased. For the 1-3-3 

panel design under backward assembly condition, the routing point from stage 1 to 2 shifted to 

the left compared with the one under the forward assembly condition, and to the left further from 
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stage 2 to 3. This caused nearly 80 percent examinees to be routed to Module 3M and 3H evenly 

in stage 3. The pattern of routing point shift was the same for both test lengths.  

5.1.4 MPI in the variable-length CAT 

    This study successfully adopted MPI to incorporate item selection algorithm and non-

statistical constrains (i.e., content constrain and item exposure control) in a variable-length CAT. 

MSTs had equal number of items across five contents. The variable-length CAT had already 

matched this content requirements with great effort. There were only 1 to 2 items different across 

contents in CAT.  

5.2 Discussion of Results 

5.2.1 Fair comparison between MST and CAT 

      This study addressed a comparison of CAT and MST based on the important feature of 

“fairness”, which is represented by different item pools for administering CAT and MST, by 

similar conditional standard error of measurement and by other matched properties (i.e., 

availability of items in item pools, maximum item exposure rate and content specifications). The 

results of this study offered a reference for considering testing mode change from MST to CAT 

for both moderate-length and long tests in terms of measurement accuracy and averaged test 

length in CAT.  

     Mean biases were similar among all MST conditions. MST and the corresponding CAT had 

similar mean bias.  

      In terms of MSE, no meaningful difference was found between MST and CAT because both 

procedures matched the similar conditional test information. The result of measurement accuracy 

implied that the efforts to make a fair comparison where successful. In addition, as indicated by 

Table 4.5 above, CAT provided shorter test than MST across all conditions. The difference in 
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averaged test length between CAT and MST increased as test length increased. However, CAT 

still achieved the similar measurement accuracy with MST, which confirmed the efficiency of 

CAT.  

5.2.2 Testing mode change 

     In addition to policy issues, whether to change CAT to MST depends on measurement 

accuracy especially in the context of reporting continuous proficiency score, and on test length 

which is related to item writing cost and test administration time. Since there was no difference 

in measurement accuracy between routing strategies and panel designs, only the test length and 

assembly priority were discussed here. When considering the testing model change from CAT to 

MST for a moderate length test (e.g., 45 items), only 1 or 2 more items were needed for a fixed-

length forward assembled MST to maintain the similar measurement accuracy. Compared with 

the backward assembled, CAT saved more items (i.e., 5 or 6 items). It indicated if changing CAT 

to a backward assembled MST, a couple of items would be added to the test which cost longer 

administration time and more effort in item writing. The reason was that the overall test 

information was lower in backward than forward assembled MST. As the term suggested, 

backward assembly is to assemble modules from the last to first stage following the target TIFs. 

For example, it assigned the most informative items from the pool to the three modules in stage 3 

first, and each examinee only took one of them. The least informative items were left to the 

routing module in the whole panel to each examinee. In contrast, forward assembly assigned the 

most informative items to the three modules: 1M, 2E and 2H in a 1-2-3 MST. Each examinee 

took two of them, and one module in stage 3 with the least informative items in the whole panel. 

Figure 5.1 supports this explanation. Each subplot in Figure 5.1 is a different pathway in the 1-2-

3 MST design with the test length of 45 items; different curves in a subplot represent the same 
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pathway in forward and backward assembled MST over 10 panels, respectively (Pathway 1 = 

1M-2E-3E; Pathway 2 = 1M-2E-3M; Pathway 3 = 1M-2H-3M; Pathway 4 = 1M-2H-3H). Thus, 

changing CAT to the forward assembled MSTs are suggested for moderate length test. Since 

there is only a 1 item different between the 1-2-3 and 1-3-3 panel design, either one can be 

applied.  

  

Figure 5.1 Pathway Information Curves of the 10 Parallel Panels for Both Forward and 

Backward Assembled 1-2-3 MST, 45 Items 

 

When considering the testing model change from CAT to MST for a long test (e.g., 60 items), 

3 to 5 more items were needed for the forward assembled MSTs to achieve similar conditional 

test information; and 9 to 11 more items were needed for the backward assembled MSTs. Under 
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such large difference in test length, CAT was still able to reach similar level of measurement 

accuracy with MST. When employing a three-stage MST, 3 more items were needed for the 1-2-

3 panel design, while 5 or 6 more items were needed for the 1-3-3 panel design. If testing mode 

change is necessary, the 1-2-3 panel design was recommended.  

 The item-level CAT is more adaptive than MST. It assembled individualized test, and can be 

terminated at any point as long as the termination rule has met without losing test precision. In 

contrast, the module-based MST can only be terminated after a whole test form is completed. 

Then CAT was not surprisingly to be more efficient that MST for long tests. Generally, CAT is 

preferred over MST for long tests.   

5.2.3 Routing point shift for using AMI routing strategy 

      As stated above, the routing point shifted to the left in the backward assembled MSTs, 

compared to the forward assembled MSTs. The reason was that the least informative items in the 

whole panel were assigned to stage 1 and 2 in backward assembled MSTs. As stated earlier, 

backward assembly assigned the most informative items from the pool to the three modules in 

stage 3 first, and left the least informative items to stage 1 followed by stage 2 in the whole 

panel. Since 3PL-IRT based model was applied in this study, the items in stage 1 and 2 have the 

low-discriminative ability to separate the examinees in the 1-2-3 panel design. For this reason, 

fewer examinees were routed to Module 3E than expected.  The number of examinees on 

Module 3M was the largest compared with the remaining two, which was expected due to the 

standard normal distribution of examinee’s ability level. Figure 5.2 illustrates the routing points 

shift between assembly priorities for the 1-2-3 panel design. The red dot represents the routing 

point identified by the intersection of adjacent cumulative TIFs. The same reasoning applies to 

the routing point shift of the 1-3-3 panel design, which figure can be found in the Appendix. In 
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summary, backward assembled MSTs tended to route examinees to the module whose difficulty 

level was higher than examinee’s ability level. This brought to slightly lower measurement 

accuracy of backward than of forward assembled MST.  

 

Figure 5.2 The Example of Routing Points Shift between Assembly Priorities of One of the 1-2-3 

Panels 

 

5.3 Implications 

    The major finding from this simulation study confirmed the efficiency of CAT over MST. 

CAT is always able to achieve similar measurement accuracy with MST by a shorter test. The fair 

comparison of MST and CAT provides a reference for testing mode change in terms of ability 

recovery and averaged test length. Previous research (e.g., Zheng, 2012) pointed out that backward 

assembly outperformed forward assembly in terms of classification accuracy.  However, when 

considering testing mode change from CAT to MST, the backward assembled MST is not 

suggested even for a classification-oriented test. The reason was that it required a much longer test 
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in MST to achieve similar level of measurement accuracy of CAT. Whether to change the testing 

mode depends on the current averaged test length in CAT. If the current CAT has a moderate-

length test, switching to a forward assembled MST with 3 stages is plausible and feasible. The 

routing strategies between DPI and AMI and the panel designs between 1-2-3 and 1-3-3 will not 

affect measurement accuracy. For a long test, staying with CAT is preferred over switching to 

MST.   

5.4 Limitation and Future Studies 

Although the findings of this study addressed the posed questions, they also raise other questions 

because of the limitations in this study. These limitations can be investigated in the future research.  

First, factors to assemble the MST are limited in this study, such as test length, non-overlapping 

panels, equal number of items in each module, and three-stage panel design. This study applied 45 

and 60 item tests because they are similar with the test lengths of many large-scale high-stakes 

testing program, despite its association with test reliability and decision accuracy. However, short 

tests using MST (e.g., NAEP) are also administered widely in reality, which should arouse the 

attention for future studies. Compared with non-overlapped panels, creating overlapped panels 

requires less items from the pool, and are supposed to satisfy the target TIF and content constraints 

better than non-overlapped panels. This is more practical if the operational MST pool size is 

limited. As mentioned earlier, mixed integer programming (MIP) as a test assembly strategy is 

used successfully for automated test assembly following optimization routines. It can be 

considered as an alternative algorithm to NWADH as for improving the ability to implement a 

MST. Thus, future studies can include the factors of MST varied by test assembly algorithm, panel 

design and see how they compared fairly with the CAT designs. 
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Second, all simulations adopted equal number of items for each content and each module for 

convenience in both item pool and administered test. In reality, content specifications always have 

different number of items across contents. So does an item pool. Future studies can make a 

comparison of CAT and MST using a real item pool followed by practical content constraints.  

Third, this study assumed there were enough items to create MST item pool and panels. 

However, not all exams have a master pool or a large operational CAT pool.  For example, the 

item pool size of NAEP is above 200 items, which limited the flexibility of test assembly (e.g. the 

number of panels, test length, and the number of different modules that an item is allowed to be 

assigned to). The successfulness of ATA, which depends on the quality of the item pool, is 

associated with the availability of items in the operational item pool. Future studies can create the 

MST panel with practical limitations in test assembly under a real item pool. 

    Fourth, this study only employ multiple choice items to create the item pool and simulated tests. 

Mixed format tests including multiple choice items and passages are more naturally used in a real 

test (e.g. AICPA). Considering both dichotomous and polytomous models may provide further 

information about testing mode change for a real test. Future studies can therefore examine the fair 

comparison of mixed-format MST and CAT.  
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Figure A.1 MST Pool Information Curve 
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Figure A.2 Module Level Target TIFs of the 1-2-3 Panel Design, Backward Assembly, 45 Items 
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Figure A.3 Module Level Target TIFs of the 1-3-3 Panel Design, Forward Assembly, 45 Items 
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Figure A.4 Module Level Target TIFs of the 1-3-3 Panel Design, Backward Assembly, 45 Items 
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Figure A.5 Module Level Target TIFs of the 1-2-3 Panel Design, Forward Assembly, 60 Items 
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Figure A.6 Module Level Target TIFs of the 1-2-3 Panel Design, Backward Assembly, 60 Items 
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Figure A.7 Module Level Target TIFs of the 1-3-3 Panel Design, Forward Assembly, 60 Items 
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Figure A.8 Module Level Target TIFs of the 1-3-3 Panel Design, Backward Assembly, 60 Items 
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Figure A.9 Averaged Module Level Information Curves across Forward Assembled Panels for 

the 1-2-3 Panel Design, 60 Items 
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Figure A.10 Averaged Module Level Information Curves across Backward Assembled Panels for 

the 1-2-3 Panel Design, 60 Items 
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Figure A.11 Averaged Module Level Information Curves across Forward Assembled Panels for 

the 1-3-3 Panel Design, 45 Items 
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Figure A.12 Averaged Module Level Information Curves across Backward Assembled Panels for 

the 1-3-3 Panel Design, 45 Items 
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Figure A.13 Averaged Module Level Information Curves across Forward Assembled Panels for 

the 1-3-3 Panel Design, 60 Items 
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Figure A.14 Averaged Module Level Information Curves across Backward Assembled Panels for 

the 1-3-3 Panel Design, 60 Items 
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