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ABSTRACT

MARKOV RANDOM FIELD
TEXTURE MODELS

By

George Robert Cross

We consider a texture to be a stochasticy possibly
periodicy two-dimensional image fields A texture model is
a mathematical procedure capable of producing and
describing a textured imagees A detailed account of the
current Lliterature about texture models is given, along

Wwith a discussion of the intuitive notions of texturee

We explore the use of Markov Random Fields as texture
modelse The binomial modely where each point in the
texture has a binomial distribution with oparameter 8
controlled by its neighbors and "number of tries" equal to
the number of gray levelsy was taken to be the basic model
for the analysis. This represents the first use of the
binomial model for 1image analysis and the first

application of the binomial model for any ourpose.



A method of generating samples from the binomial
model Js given followed by a theoretical and practical
analysis of 1its convergence. Examples show how the
parameters of the Markov Random Field control the strength
and directifon of the clustering in the imagee. The power
of the binomial model to produce blurry, sharpy Line-like,

and blob=-Like images is demonstratedes

Natural texture samples were digitized and their
parameters were estimated under the Markov Random Field
models The use of a hypothesis test. for an objective
assessment of goodness-of-fit under the Markov Random
Field model +ds 2a key feature of this dinvestigatione.

Overally highly random textures fit the model wells

The estimated parameters of the natural textures were
used as input to the generation procedure. The synthetic
micro-textures closely resemble their real counterpartsy

while the regular and inhomogeneous textures do note

Co-occurrence matrices of binary, first-order Markov
Random Field textures were computed as a function of the
field parameterss There is a good correspondence between
the predicted matrices and the observed matrices on

numerous samplese



a realistic apprafsal of the Markov Random

as a texture model is accompanied by a List of

for future studye.




To Ellen
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CHAPTER l1e INTRODUCTION

Image modellina {is a central part of an 4mage
understanding systeme. It 4s also the core of classical
image processing? image restoration Cely and
two-dimensional filtering U[423]. The subject of image
modelling {involves the construction of models or
procedures for the specification of imagess These models
serve a dual role in that they can describe 1images that
are observed and also can serve to generate synthetic
imades from the model parameters. We will be concerned
with a specific type of image modely the class of texture
models. Understandinag texture is an essential oart of

understanding human visione.

In this thesisy we will explore the use of a Markov
Random Field model for the generation and analysis of
textured images. The goal of the research is to produce a
texture analysis and synthesis system which will take as
input a stochastic texturey analyze its oarameters
according to the Markov Random Field modely and then
generate a textured image that both resembles the dnput
texture visually and matches it closely from a statistical
point of view. This can be considered a kind of Turing
test for image aeneration [100J, in that the proof of the

g




viability of the system will be to produce textures that
cannot be distinguished by humans from their real
counterpartse We will not perform a rigorous
psychological study of the correspondencey but will
concentrate on the statistical evaluation of the doodness

of fit of the observed texture and the generated texture.

1.1 Intuftive Notions of Texture

We mention a study by Tamura et ale. [98] which
attempted to find statistical features correspanding to
the usual attributes of texture. Although the study had
Limited successy the textural attributes identified serve
as a useful framework for the discussfon that followse
The study delimited six attributes: coarsenessy contrast,

directionalityy line-Likenessy regutarityy, and roughnesse.

Coarseness refers to the size of the cells (areas of
near equal brightness) present {n the pictures A fine
grain picture has small cellsy whereas a coarse picture
has Llarge cellse Large areas of equal brightness are

significant visual cuese



o

The ¢ontrast of a picture is determined by Llocal
'variation in gray tonee A low=-contrast picture may have
all the gray scale values present, but has few transitions
from near black to near white in object boundariese.
Before processing a picturey we often normalize the
contrast and modify its histogram so that an equal number
of pixels is present at each gray Level. Moreovery the
gray scale 1is then adjusted so that G levels occur at
equally spaced intervals from 0 (black) to 255 (white).
Such a transformation distorts the natural contrast in the

image and negates the value of this feature.

Directionality refers to whether we perceive the
trend of the image to be verticaly horizontal, skewedy or
non=directionale The bricks picturey Ficure 1y is clearly
directional, while the gravel {fmagey figure 2, f{s

non-directionale.

Line-Likeness refers to the presence of Lines in the
picture. It 1is contrasted to a blob-Like effecty where
there are clusters of equal brightness and of circular
shapee Some {images have a mixture of both. Figure 3 1is
an image of Venetian blinds and has a definite Line-Llike

structure.
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Regularity refers to whether the 1image 1s highly
random or note An image of a rag rugy Figure &4, is
clearly regulary whereas the picture of gravel, Figure 2,

is frregulare.

Finallys roughness describes a tactile attribute of
texture rather than a visual one per se. But a rough
surface is also visibly roughy and real pictures show
surface contours that we would expect to feel rough if we

could touch thems

1.2 Texture Formation Paradigms

There s no universally accepted definition for
texture. Part of the difficulty in giving a definition of
texture is the extremely large number of attributes of
texture that we would Like to subsume under a definition.
Moreovery some of these attributes are adsoarently
contradictorye. The first definition is that a texture is
a periodicy stochastic gray-scale image. Examples of such
textures dinclude clothy tilesy and bricks. The second
definition of texture is any stochastic dray-scale dimagee

This includes such textures as grassy sandy and cloudse



Most texture research can be characterized by the
underlying assumotions made about the texture formation
processe There are two major assumptions, and the choice
of the assumption depends primarily on the type of
textures to be considered in the study. The first
assumptiony which is called the placement rule viewpoint,
was explained by Rosenfeld and others [86]y (11113, In
this modely a texture 4s composed of small primitivese
These primitives may be of varying ar deterministic shapey
such as circlesy hexagonsy or even dot patternse The
textured image is formed from the primitives by oplacement
rules which specify how the primitives are orientsdy both
on the 1image field and with respect: - to each othere.
Examples of such textures include tilinas of the plane,
cellular structures Llike tissue samplesy or the picture of
bricksy Figure 1. Notice that no two bricks are
identicaly but there is a uniformity to their placemente.
There s a random aspect to the brick picture in that the

shading of the individual bricks varies.

The image of gravely Figure 2y is not approoriately
described by a olacement model. The key feature of this
jmage is the coloring and distribution of the cells (areas
of near-equal brightness)e The primitives are very random

in shape and cannot be easily describede The second



viewpoint regarding texture generation processes involves
the stochastic assumptione We have already seen that the
placement rule paradigm for textures may include a random
aspecte In the stochastic point of viewy howevery we take
a more extreme position and consider that the texture is a
sample from a probability distribution on the image space.
The image space is usually an N by N grid and the value at
each grid point 1is a random variable 4in the range

{09lyeeesG-1}e

1.3 Vision Research about Texture

In this sectiony we will describe what vision
researchers have found to be the important constituents of
human texture vision. Although machine perception need
not be an emulator of the human visual systemy the success
of human visfon in discriminat ing textures merits
attention. In additiony since we are 1interested in
performing automatically tasks that are currently done by
humansy such as radiographic screeningy we should be
guided by the cues and sensitivities of the human visual

systeme



1.3+1 Julesz' Work on Texture

Julesz' investigations of texture span twenty yearse
Besides the study of texture perception itselfy he has
studied texture's role in binocular or stereoptic
perceptiony, motion perceptiony and color perception [571].

We will examine only the work on texture itselfe.

Early 1in his worky Julesz decided that it is
appropriate to examine perception of textures without
visual cueses He uses random dot patterns controlled by
analogs of one-dimensional Markov processes and Gaussian
processese Because of thisy his work has Limited
applicability to textures generated according to olacement
rule schemese His work is also concentrated on "pure
perceptiony” which means perceptifon $n the absence of
higher-order scrutinye. When he speaks of "effortless
discriminationsy” he refers to the process of deciding
whether two textures are the same after seeing them for
only 100 milliseconds. If they are seen for a longer time

than thaty higher-order conceptual processes take overe

One of the key features that he identified in texture
perception 1is cluster formation [S6]e This is related to

image coarseness in the sense mentioned earlier in section
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lele He found that the human vwisual system acts as a
slicer or thresholding device 4in clustering idntensity
valuese For exampley if the 1image contains the gray
Levels 0y 19y 29 and 3y then it 4s not possible for
clusters to form consisting of the gray level sets {042}
and {193}s Furthery cluster detection is central to the
entire perceptual processy from the Lowest Level

aggregation up to the higher order mental processese.

The aspect of Julesz' work that has captured the most
attention 1is the conjecture that the human visual system
cannot effortlessly discriminate textures that agree in
their second-order statistics [54Jy [551y [581y [59]y
[60]e The first-order statistics are simoly the
proportions of the pixels at edch gray Llevels. The
proportions control whether we see the picture as a black
object on a white background or vice versa. Julesz has
found that we <can effortlessly perceive a first-order
difference between textures withtn fairly narrow ranges
[5435 this work is related to the classical figure-ground
problem and numerous optical illusions [351. The
second-order statistics involve the joint probability that
a randomly thrown rod of Length r will fall on the image
in such a way that one of its endpoints Lands on a pixel

of color i while the other lLands on a pixel of color j.






2l

Similarilyy third-order statistics have to do with
triangles and the configuration of gray levels at the
vertices after a similar random experiment. The
conjecture that the second-order description (which of
course implies the first-order statistics) determines our
discrimination ability has held up remarkably well with
only a few classes of unusual textures that confound it

[581.

Another aspect of texture that Julesz dinvestigated
[57]1 14s that periodicity of a texture is only observable
if the frequency is large compared to the size of the
picturee. For exampley it is all but impossible to notice
that Figure Sa consists of the same texture repeated four
timesy whereas it 1is immediately obvious that Sigure Sb
consists of repetitions of the same random structure. The
difference is that Figure 5Sb consists of sixteen
repetitions of a 16 by 16 picture in a frame size of 128
by 128y whereas Figure 5a consists of only four
repetitions of a 64 by 64 picture in the same frame size

of 128 by 128.

Julesz' work has been extended by a number of
researchersy notably. Pratt et al. £83l. It d4s now

generally assumed that the second=-order statistics are
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Figure 5. Repetitions of Random Textures: (a) Four
repetitions (b) Sixteen repetitionse.

sufficient in a pattern recognftion environment to
discriminate between textures. There s still much work
to be done in the sense that the second-order
probabilities must be combined 1in some way to provide
features for recognition of the textures. The previously
discussed work of Tamura et ale. (98] is such an attempt,
as i1s the continuing efforts of Conners and Harlow [23] to
define a texture recognition feature set from the
second-order statisticse. It 1s possible to use
third-order statistics in texture discrimination even
though the human visual system does not appear to make use

of theme The difficulty Lies in attempting to estimate
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the third-order parameters given a relatively small
texture fieldy such as a field of size 64 by 64.
Moreovery the storage requirements for mafntaining
frequency statistics on the Llarge number of possible

configurations are enormouse

1342 Marr's Work on Texture Vision

The ultimate goal of Marr's research< is a
comprehensive computational theory of visione. Such a
theory can be implLemented with a computery which willy in
facty emulate the human visual systeme His plan revolves
around the "primal sketch" [681y [69]s The primal sketch
is produced from the original intensity values received at

the retina.

The primal sketch consists of measurements on the
strengths and characteristics of the following primitfves:
edgesy Lines or barsy and blobse These primitives are
quantified further by the predicates of orientationy size
(Lengthy widthy diametery or aspect ratio if approoriate),
contrasty positiony and terminal pointse This dis in
general agreement with the work of Caelli and Julesz [181],
[1°]1 4n describing the processing at early Llevels in the

visual system.



14

Marr asserts that once the primal sketch is computed,
it can then be analyzed to find objects or regions of
intereste This is done by aggregating the primitives
which are close in some sense. We may thus characterize
his overall approach as "bottom-upy™ in the sense that we
do not begin with high-level knowledge of the scene or
preconceptions of the objects presente The recognition of
objects using the primal sketch model is based on usina
the texture information to define the objectsy rather than

considering the texture to be noisy background.

l1e4 Applications of Texture

There are essentially four areas of image processino
in which texture plays an important role. We offer this
discussion as Justification of our 1interest fIn the
production of synthetic textures. As a side benefity, such
generation procedures may help in furthering our
understanding of human perceptions According to Julesz

571,

eee to solve the problem of visual texture
generation of familiar surfaces is important for
both theoretical and practical useses I can only
hope that in the near future scientists will
Learn to clarify the enigmatic problem of
familiar texturess
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(i) Classification

Supposey for exampley that we have a series of
pictures of mineral samples that we would Llike to classify
into groups based on the type of mineral representeds The
true class of some training samples is generally known and
could be provided by geologistse Such 1images have a
specifal structure characteristic of the mineraly but the
structure is not deterministic Like a tiling. We would
Like to specify some features of the image in order to
classify it. There are obvious differences in
distribution of grain sizey gray toney and even color.
Studies of this type have been done by Haralick [46] on
sandstone samples and by Weszka et al. [1061] on terrain

samplese

(11) Image Segmentation

Segmenting an image means dividing it into
homogeneous regions such that each region has some
significances Typically, the regions are connected and we
have some a priori idea of what we are Looking for or what
might be present in the image. For exampley we may wish

to segment a LANDSAT 1image into land-use categories by

means of texture analysise Nevatfa C763] uses the
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assumption that the objects of dinterest have strona
boundariés and the textured background is composed of
short Line segments to extract the boundarfes of a small
toy tank from the background of grasse. Thompson [29] uses
a generalized edge operator to define texture borders and
is successsful in finding the boundaries between two
regions with differing texturese. A Linear aporoach to
segmentation of textured regfons s taken by Degucht and
Morishita [26]y which we will discuss in detail in chapter

2.

(111) Realism in Computer Graphics

Computer graohics differs from 4image processing in
that its goal s the productfon of 1images from a
descriptiony whereas image processing is concerned with
the modification and interpretation of real-world images.
Although high resolutiony colory raster-graphics displays
capable of bproducing realistic images are availabley the

existing algorithms cannot produce the desired realisme

Texture gives important information on the depth and
orfertation of an objecty besides beina an intrinsic
feature of realistic objects [64]y (7817 A number of

approaches have been takeny mostly related to mapping a
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flat textured image onto the skeleton of a
three-dimensional object and then displaying a perspective
viewe Catmull ([20]y C[21] describes a procedure for
wrapping photographs of texture onto objects to produce
textured surfaces. BLinn [141y C[15] uses a patch of
texture to tesselate the image. Csuri et ale. [25] extend
the basic patch 1idea to dnclude the specification of
structure for the patch in terms of reflectance values at
each pixele. This allows more realistic shading and
permits the simulation of the appearance of the textured
patch under the generated illuminatione They 1intend to
extend their model to fnclude some randomness in the
patcheses Dungan [29] has coupled height data from Defense
Mapping Agency maps with an overlay identifying terrain
segments (treesy lLakesy etc) to simulate the appearance of

the ground scene to a viewer in an airplane.

As the applications of computer graphics growy the
importance of an understandino of texture will also
increase. In facty the generation of natural textures
will Likely play a more 1important role than the

recognition of texturese



18

(iv) Picture Encoding

The final area where texture generation and analysis
has application 4s 1n picture . encoding. If we can
generate a texture with a few parameters that is
indistinguishable from an observed textures then we have
effectively compressed the enormous amount of data in the
original texture to the parameter vector. By analogys
this 4s tantamount to knowing an algorithm for the
generation of normal deviates rather than carrying an
enormous pre-printed book Listing millions of samoles from

a normal population.

Such a procedure has application to the previously
mentioned graphics problems in that we could artifficfally
generate background scenes from descriptions defined by
textural parameterse Such scenes are presently generated
by a hybrid graphics and 1image processing procedure of

mapping photographs onto the graphics skeletonse.

Some work has already used texture synthes?s 4in the
pure information theory context of reducing the total
number of bits needed to store the picture. Modestino and
Fries [75] encode a picture according to a Poisson Line

modely while Delp et ale [27] use a Gaussian model. In
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both casesy the image 1s>part1tioned into small squarese.
The texture of each square 1s estimated and the few
parameters of the texture are stored instead of the 256
gray levels of the observed texturee Since the picture fs
reconstructable by the same model that was used to
estimate ity the picture can be approximately
reconstructed square by square from the estimated

parameters.
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1.5 Organization of the Thesis

Chapter 2 contains a review of tex{ure models that
have appeared in the Literature and further specifies the
Levels of texture modellinge Chapter 3 describes the
specifics of the Markov Random Field theory needed to
uncderstand the models that we wuse 1in generating and
fitting texturese. Chapter 4 detafls the generation
procedure for obtaining a texture sample from a
distribution specified by a parameter sete In chapter Sy
we give our results in fitting a variety of models to a
sample of textures from the Brodatz texture album [17].
Chapter 6 gives theoretical results in deriving textural
features from the model parametersy such as the
co-occurrence matrices for Markov Random Field texturese.
Finallyy chapter 7 gives our conclusions and directfons

for future research.



CHAPTER 2. TEXTURE MODELS

2e1 Introduction

By a model of a texturey we mean a mathematical
process which creates or describes the textured image.
The goal of texture modelling is the description of the
image; real textures can be compared to generated textures
as a test of the validity or utility of the modele. The
test can take the form of a psychological study or of a

statistical assessment of goodness of fite

A secondary goal of texture modelling is
classification of textures. The numerical parameters of
the model can be used as features to classify the texturee.
There 1is a distinction between model-based studies and
attempts to find good features for the classification of
textures. In a model-based environmenty we have the
capability to producey for exampley textures that match
observed texturese. In a feature-based texture analysisy
the textural features are measured without an ideal or

representative texture in mind.
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Texture modelling can be approached at three Levelse.
The highest Levely, which we call. the knowledge
representation Llevely uses our understanding of the
physical scene in order to describe the textured image.
For exampley consider the set of textured images of wood
grain observed in samples {T(8})y where 8 is the angle at
which the cut was made in the tree to form the wood
sample. Because trees grow in concentric ringsy the ideal
appearance of such samples T(8) varies contfnuously from
an image of concentric circles (when 8 is 0) to ellipsesy
and finally to parallel Lines (when 8 {s 90 degrees).
This fdeal 1image 1isy of coursey corrupted by noisey
degraded by frregularities in the circlesy andy perhapy
distorted from the expected 1image by the presence of
knotse We do havey howevery an ideal image for specifying
membership 1in the <class defined by 8. Such a model was

used in automatic drafting [1081].

Once we have this ideal modely the classification
problem can be attacked. In the present example,y the
classification problem has been reduced to the relatively
trivial one of circle and Lline detection along with
estimation of the aspect ratio of the ellipseses Thusy our
structural descriotion of the expected image permfts us to

ijdentify observable featurese. On the other handy the
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knowledge wused in one domain of images may not be applied
easily to other areas. Models constructed for the texture
of corn fields from satellite photographs may not be of
much use in constructing a model for the appearance of
wheat fields or even corn fields grown in other countries
under different cultivation regimes. The success of the
knowledge representation approach ¥s Limited by our

capability to generalize.

The bottom Level of texture modelling is called the
feature-based Level. In facty it is possible to make a
case for not calling feature-based studies modelling at
alle We assume that the textures are samples from some
unknown probability distribution over a lattice or grid L,
representina the dimagey which has dimension N by Ne. The
objective is to find features that correctly classify a
texture 1into one of the texture classes represented by a
set of different orobability difstributfonse A survey of
the well-known and commonly wused texture features that

have been investigated appears in a recent report [473Je

Texture features include the 1image autocorrelation
function [62]y which has been found to have visual
significance. An  influential npaper by Haralick [45]

describes the use of features computed from the gray Llevel



24

co-occurrence matricese. The (rys) entry in a
co-occurrence matrix s the probability that a point of
the image (1y3) has gray value r while point (kyl) has
gray value sy where k = § + dxy and L = j + dye The
increments dx and dy are constant over the {individual
matrices and we compute a set of matrices indexed by the
increments (dxydy)e If G is the number of distinct gray
Levels in the imagey then the co-occurrence matrices are

of size G by Ge.

Haralick [45] defines some 14 features based on the
co-occurrence matrices. We mention three of theme. Let R
be the number of pairs of grid positions that were used to
compute the co=-occurrence matrix C with entries c(iy])
corresponding to the displacement (dxedy)e The angular

second moment feature fl1 is defined by

G-1 G-1

\ \ 2

\ N /7 c(iyiIN\
1 = - -

/ / \ r /

/ /

i=o0 §=0
and measures the homogeneity of the image. Large values
of fl1 1indicate the presence of many domfnant gray level

transitions in the imagee. The contrast feature 1is given
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by f2
G-1
\ 2\ 2
\ n \ /7 ctisyII\
f2 = [,
/ / \ g /
/ /
n =20 [1=31=n

and is a measure of the local correlation. Smatll values
of f2 correspond to images with Little local variatione.
Finallyy the correlation feature f2 measures the Linear

dependence in the image:

G-1 G=1
N \
\ \
£ = (4Jc(f9J)/R) - UxUy
7 74 ceeeccccccccccncnaa
/ / SxSy
f =0 1 =0

where Ux and Uy are the means and Sx and Sy are the
standard deviations of the marginal distributions
associated with c(iyJ)/Re The feature f3 is Large if the
correlation 4in the direction expressed by (dxsdy) is

large.
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Several studies have shown that features based on
co-occurrence matrices perform reasonably well in
classifying some texturesy [106]y [23]. Conners and
Harlow [24] have theoretically evaluated co-occurrence
features in distinguishing Markov scan texturese. Other
features that have been used with some success include
gray Llevel run lengths [37]y edae per unit area [861]y
[87]y extrema in gray scale height [861]y and encoded

maxima along scan Llines [741].

242 Stochastic Texture Modellina

We now turn our attention to the middle Level of
texture modellingy the stochastic process approache. We
use the term stochastic process 1in a Lloose sense to
describe a random procedure used to generate an image.
There is some inevitable overlap between the stochastic
process approach and the knowledge representation point of
view since we try to find a stochastic process for the
mocelling of the image that s physically meaningful and
related to the textures which we are modellinge We use
more prior information about the texture in the stochastic
process approach than in the feature-based approache. In
the stochastic orocess approachy brightness Llevels or

pixel gray values are the random variablese. The Level
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X(iyj) at some point (iyj) 1is not independent of the
Levels at other points 4n the 1imagee. In fact our
principal concern 1is about the correlations between the

{XCi93)3}e

This section is subdivided into discussions about the
major classes of texture models that have appeared in the
Literatures A short description of each type 1is giveny
along with some indication of the class of textures that

can be handled by the modele.

2+2.1 Quantized Continuous Models

Suppose that we have M points in the unit square. We
impose an M by N grid on the unit square and then count
the number of points that fall in each grid square. Such
a grid can now be quantized by a scale change to form an
image in the usual sensey with a gray scale in the range
from 0 to G-1e The value of G can be either the maximum
number of points that fall into a grid square or we may
choose G a priori and then use a quantizing function to

map the accumulated grid counts to Levels from 0 to G-1le
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A wide variety of continuous processesy including the
multivariate normal distributiony are available to form
such imagese On the other handy much greater generality
can be achieved by the use of spatial processes as

explained by Ripley [84] or Matern [701.

Following Ripley [841y a realization of a spatial
process is a countable set of points without Limit pointse
For each measurable set Ay Llet Z(A) be the number of
points of a realization that fall ¥n the set A. If A 4s a
bounded sety then Z(A) 1is finite. The process is
described by the set of random variables {Z(A)] A is a
bounded Borel set}. If the process 1s second ordery
transtation invariant, and rotation invariant, then Ripley
calls the process a "model's These latter assumptions are
for mathematical tractability. Ripley remarks that the
first and second moments of a spatial model should be
sufficient to distinguish realizations and justifies this
by the work of Julesz [54]y who found thaty for the most
party textures with the same second-order statistics were

indistinguishable by human vision (see chapter 1).

The continuous models of Ripley [84] can be broadly
delimited on a scale of clusteredy randomy, and inhibitory.

Let U be a set of unit areas The intensity of the process
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is called and we assume that ELZ(U)] = A « For a
agiven Ay wWe uoufd expect a concentration of nearest
nefighbor distances for a clustered process at Levels far
below that for a random ({eee Poisson) processe
Similarlyy an inhfbitory model has a concentration of
nearest neighbor distances far above that expected for the
random processe One kind of inhibitory model is called
hard corey in that we do not allow any points less than a
distance 2r aparty where r is a positive parameter of the

process called the inhibitfon distance.

The discretization of continuous processes 2as 1image
models of texture has not been explored except for a brief
mentfon in [90] and some simulation in [11]. Some results
in discrete analogs of continuous processes appear in
Rogers' monograph on retail trade [8%5]y but no direct

application to images was made.

24242 Time Series Models

McCormick and Jayaramamurthy [6€6]1 have developed a
model of texture based on a time series forecasting
technique. A time series isy of coursey a one-dimensional
sequence of random variables indexed by a parameter which

is usually associated with time. To make such a seqguence
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into an N by N imagey the time series is broken up into

pieces of size N and then stacked as rows of an imagee.

McCormick and Jayaramamurthy use the auto-regressive
integrated moving average process (ARIMA) to simulate
textures. The oparameters are estimated from real
texturese. They exhibited some success 1in generating
textures characterized by long streaky lines such as the

cheesecloth picture in Brodatz [17], image D10S.

The applicability of this model to isotropic
texturesy dfeeey ones with random or irregular globular
clustersy is dubious. It 4sy howevery an appropriate
model for line-like texturesy as they are able to satisfy
the criterion expressed in Chapter 1 that the texture
synthesis process be successful in the production of an

image that the viewer might think was a real texture.
24243 Fractal Textures

The term fractal was coined by Mandelbrot [671 to
describe point sets or stochastic processes whose
Hausdorff dimension exceeds their topological dimensione.
The topological dimension of a point set wusually

corresponds to our intuitive notion of dimension but
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differs for certain pathological cases. As we should
expecty the topological dimension of a countable set of
points is 0y of a Lline 1is 1y and of a plane is 2. A
discussion of the definition and the development of the
theory of topological dimension is given by Hurewicz and
Wallman [51]; a more modern treatment with considerable
detail on specfal cases of dimension in abstract spaces fs
given by Pears [81]. The Hausdorff dimension of a set fis
always at Least as Large as its topological dimensione
Sets that are extremely irregular, such as
nowhere-differentiable curves and surfaces, have Hausdorff
dimensions which exceed their topological dimensions. For
exampley the Cantor set has Hausdorff dimension equal to
Loc2/Log3y though 1its topological dimension is 0.
Moreovery the Hausdorff dimensfon of a set in Euclidean
D-space can be a fractional value but is always Less than

or equal to D [S513J.

A fractal set process can generate a texture 1in a
number of wWayse Mandelbrot [67] exhibits some Brownian
texturese. These are simulations of mountain ranges
Z=f(XyY) over the X-Y plane such that every plane cut in a
direction perpendicular to the X-Y plane gives an ordinary
planar Brownian function. The displayed image is oroduced

by simulating a Light source at an angle of &0 degrees
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with the resultant shadow effects, and viewinag angle of 25
degreess The pictures Look Like irregular surfacesy such

as lunar Lanscapese

Other textured images can be obtatned by dropping on
a plane circles whose radii vary according to a random
variable with a Pareto distributiony with the exponent in
the density function playing the role of the Hausdorff
dimension. Work is needed in the estimation of the fit
between natural textures and fractal textures before
fractal models can be utilized as true texture models
rather than just pattern generation processese In
additiony further work is needed on the estimation of the
Hausdorff dimension of stochastic processess For the

appropriate backaground see Billinasley [123y [133.

2+2¢4 Random Mosaic Models

A tiLing or tesselation of the plane is a collection
{A} of disjoint sets whose union is the entire plane. The
elements of <{A} are called cellss A mosaic s a
tesselation combined with a functfon H from {A} to the
finite set of gray Llevels {0slyeeesG-1} which is constant

on each cell: H is called the coloring function.
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We may speak of vrandom tesselations where the
tesselations are determined by some random process or
where the H function {s probabilistic, for example
controlled by a discrete Markov process. We generally
only deal with mosaics on bounded sets; such mosaics can
be achieved by taking a full olamar mosaic and
intersecting C with the bounded set and restricting the
coloring functione. Such a restriction 1s the true
environment for the image processing applicationsy, yet it
is usually easier to deal with the theory in the infinite
plane case and hooe that the bounded set Lattice fis Large

enough to allow reasonable approximation.

In a sensey the mosaic models generalize the standard
notion of a digitized dimage. The pixels of an image
correspond to the cells of a mosaicy but the mosaic models
allow us to consider cells that are much Larger and of
different shapes Ahuja [2] makes a distinction between
region-based models and pixel-based modelse The appeal of
the region-based models is that they have the virtues of
the stochastic approach along with some of the strength of
the placement paradigm in describing Llarge primitivese.
For exampley the bricks picturey, Figure 1y is an example
of a macro-texture appropriately described by a

region-based model. The relatively fine-grained gravel
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picturey Figure 2y is a micro-texturey best suited to a

pixel-based models

The cells can be generated in a number of wWayse We
follow current Literature [75]y [89]y [90] and discuss the

possible patterns.

(1) Random Checkerboard: A checkerboard is oriented at an

angle 8 to the x=axise

(i1) Occupancy Model: Use any spatial point process to
generate a realization in the plane. Define the cells
V(p)y indexed by the points p of the realization by the
relation: V(p) = {q on the plane| d(gyp) minimal among pl}.
Each point of the plane is a member of exactly one V(p)
since the realizations have no Limit points. This model

is also called the Voronoi polycon modele.

(i11) Poisson Lines: Distribute lines 4dsotropically over
the plane wusing a Poisson process to generate the radii
(distance from line to origin) and the angle the Line
makes with the x-axise The polygons determined by the

Lines are convex and constitute the cells of the mosaice
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(iv) Bombing Patternsf Let B be a convex set (this
restriction is not necessary but makes the process
mathematically tractable)s The set B is placed on the
plane with random orientation at a point x which is
determined by a ™"marked"” Poisson processe Marking a
process means that we enumerate each point in a
realization and assign it a positive integer. We assume
that the copies of the bomb B are of one colory say blacks
while the plane is white. The cells of the mosaic are
then the components of the bombing processe. After the
bombing i1s overy the plane can be recolored using any

coloring function for the components.

(v) Johnson-Mehl: Points are dropped on the plane using a
marked process and the cells are formed by growth from
these "seed" pointse Unlike the occupancy modelsy the
resulting cells need not be convexe. This model 1is
appropriate as a ohysical model for crystal growth in
metallurgical applications, but has proven to be
mathematically intractable for expressing

auto-correlations and other featurese.

(vi) Dead Leaves: The dead leaves model is similar to the
bombing model except that the boundary of the bombing

shape is retained and the boundaries of previously dropped
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"Leaves" are removede The final pattern resembles the
appearance of Leaves on the forest floor with many full
outlines of the shapes visible and many partial shapese

This model is discussed by Serra [93].

The mosaic models discussed above can be subsumed
into a more general theory of random sets called
Mathematical Morphologye The theory is under continuing
development by a number of European workers and has seen
considerable application in the metallurgical areae. See
the work of Serra [92]y Matheron [71]y [721y and Giger
C40). Serra calls this general class of models Boolean
models. The Boolean model starts with a realization of a
Poisson process and takes each point to be a growth
centere The primary grain {s a random sety usually
convexy the randomness beina controlled by a growth
processe It 1s <clear that this very general growth
process can include the above mosaic modelse. Algebraic
operationsy including the familiar operations of uniony
intersection and specialized operations called dilation
and erosiony allow the specification of composite models.
Specifal hardware 1is available to perform the set
operations along with the estimatfon of model parameters

C631y [911y [95]y [961].



The advantage of some of the mosaic models 4s that
the theoretical autocorrelations can be computed from a
knowledge of the process parameterse By fitting the
observed autocorrelation to the theoretical
autocorrelation for the proposed model, features such as
cell size distribution can be inferred without having to
segment the dimage. Julesz [54] has found that the
distribution of olateau regions of constant gray Level is
a very important consideration in texture discrimination,
so any model that effectively models cell size contributes

to our understanding of texture.

24245 Syntactic Methods

The syntactic approach to texturey Like the
stochastic methodsy can be dichotomized into modelling and
classification effortse Ehrich and Foith [30]y bolstered
by the success of syntactic methods in waveform analysisy
have used syntactic methods to encode textures as mountain
ranges whose heights are associated with gray Levelse. The
encoded texture can then be wused in classification

experiments.
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Our notion of a model <dncludes the capability to
synthesize samples from a textural classe Lu and Fu [65]
take this approach and encode ¢ by 9 squares of a texture
as a primitive in a stochastic grammar and tken Link the
squares together to form an image. Some success fis
reported in generating Brodatz [17] textures that have a
fairly regular structurey such as the picture of reptile
skine We suspect that difficulty would be experienced in
using this method to synthesize micro-textures such as
sand or grasse Other problems include the extension to
multiple gray levelsy but the principal problem 1is the
estimation (or in this contexty grammatical inference) of

the model parameterse
24246 Linear Models

Following a procedure analagous to a linear filtering
modely Deguchi and Morishita [26] assume a texture model

of the form:

X(iy9) = A(pya)X(f=py{=-a) + E(y )
7

(pyq)
(not (04,0))

where X(iyj) 1is the gray level at point (iyj)y and the
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EC(i9J) are feied Gaussian variables with zero mean. The
local neighborhood s a rectangle of dimension 2m+1 by

2n+l.

The A(pyq) parameters are estimated by minimizing the
expected difference between the estimated X(iyJ) and the
observed X(iyj)e This approach is fairly similar to the
classical analysis of Whittle C107]y but Whittle was only
interested in estimating the parameters in an applied
statistics context for testing the hypothesis of no
interaction between the site varfiables.s When we begin an
estimation problemy we do not know what value of m and n
to choose. Hencey we must consider them parameters of -the
model which must be estimatedes Degdguchi and Morishita use
a procedure due to Akaike [41y [S] in a time series

context to estimate m and n in an optimal manner.

Textures following the above model can be generated
by a filtering schemee. Generate dindependent Gaussian
variables at each sites Then use the filter coefficients
Alpyq) to create a new 1image by summing over the
nefghborhoods (it isy of coursey possible to use an FFT
algorithm to do this faster). The real values at each

point of the Lattice can then be quantized.
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Deguchi and Morishita do not denerate any textures
from the above modele. Their purpose is to segment the
textured regions of an image. One example is the Location
of small regionsy called "defects", whose texture differs
from that of a background textures To locate the defectsy
first estimate the A(pyqg) parameters for the entire image.
Since the defect regions are presumed smally they will not
significantly dinfluence the estimation of the A(pyq)
parameterse The error between the predfcted pfxel values
using Llinear estimation and the true value is calculated
for each pixel in a 2m by 2n neighborhood. If the error
exceeds a preset thresholdy, then the pixel is presumed to
belong to the defect regions Variations on this theme are

presented for other segmentation experimentse.

2+247 Markov Models

The term "Markov" is loosely applied to any model
where the probability of any particular gray level at a
site (iyJ) does not depend on pixels beyond a "small"
neighborhood of (iy93)e We may express this by the

relation:
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p(X(iy§)=k|]given all other sites) =

p(X(¥93)=k|values at neighbors)e.

The term "neighbors" is defined topologically and can be
enforced as any configuration surrounding a given pixele.
Following Besag [10]y or Hammersley [44]y a Markov Random
Field obeys the above neighborhood condition altong with
two other condftionse The first is called positivity and
says that any assignment of colors to the Llattice
(integers in the range <{0yljyeeesG-13}) has non=-zero
probabilitye. The other condition is called homogeneity
and says that the conditional probabilities are unaffected
by the actual coordinates of the sitei only the
neighborhood values matter. The Markov Random Field model
has been briefly 1dnvestigated by Hassner and Sklansky
C481y [491y [S01e Their work was Limited to an exposition
of the -equivalence between the Gibbs field and Markov
Random Field expressions for the conditional probability
distributions (see Spitzer [94]1 for the proof) and
generation of a few examples of texturese. Moreovery they

Limited their attention to the binary casee.
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An alternative to the use of the full two-dimensional
Markov Random Field for images is to traverse the Lattice
along a scan Line and provide a direct analog to the usual
Markov chain [13. Connors and Harlow [24] generated
textures according to a simple Markov chain on the rowsy
which produces streaky Lline textures but 4ignores the
correlations between pixels in neighboring rowse. Haralick
and Yokoyama [110] generated essentfally one-dimensfional
textures wusing scansy but provided some correlations
between neighboring rows by considering changes in the

features computed from the co-occurrence matrices.

23 Summary

We have defined a texture model to be a process
capable of generating or describing a texture. The types
of processes capable of modelling texture were delimited
as knowledge-based descriptionsy stochastic processesy and
feature-based descriptionse. We concentrated on the middle
Level stochastic process models and surveyed the models
availables These include discretized continuous models,
time-seriesy fractalsy random mosaicsy syntactic methodsy
Linear modelsy and Markov models. Each model was found to
be wuseful for certain classes of textures. It is as

inappropriate to assume that one class of generation
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procedures can generate all textures as it fs to assume

that the Gaussian distribution can explain all datae.



CHAPTER 3. MARKOY RANDOM FIELDS

3.1 Introduction

The brightness Level at a pofnt fn an image is highly
dependent on the brightness Levels of neighboring points
unless the image is simply random noisee In this chaptery
we explain a precise model of this dependencey called the
Markov Random Fielde The notion of near-neighbor
dependence is all-pervasive in image processing. Focusing
directly on this property is a promising approach to the
overall problem of micro-textureses The Markov Random
Field has had a long historyy beginning with Isfng's 1925
thesis [532] on ferromagnetisme Although it did not prove
to be a realistic model for magnetic domainsy it is
approximately correct for phase-separated alloysy
idealized gasesy and some crystals [773]. The model has
traditionally been applied to the case of either Gaussian
or binary variables on a Lattice. Besag's paper [103]
allows a natural extension to the case of variables that
have integer rangesy efther bounded or wunbounded. These
extensionsy coupled with estimation proceduresy permit the
application of the Markov Random Field to 1image and

texture analysise

44
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3.2 Definitions and Theorems

Our exposition follows Besag [10] and Bartlett [73].
As beforey Let X(iyj) denote the brightness level at a
point (iyJ) on the N by N Lattice L. We simplify the
Labelling of the X(iy7) to be X(i)y ¥ = 1929eee9M where M
= N**2,
Definition 3.1: Let L be a Lattice. A coloring of L
B G Llevels) denoted X is a function
from the peints of L to the set {0ylsecesG-1}. The
notation 0 denotes the function that assigns each point of

the Lattice to 0.

Before defining a special type of probability on the
set of all ¥, we first give the notfon of neighbor. Note
that the definftion does not imply that the neighbors of a
point are necessarily close in terms of distance.

Definition 3.2: The point j is said to be a neighbor

of the point 1 if
POXCI) [XT1)9X(2) geeegX(i=1)9X(i+1)yeeeX(M))

depends on X(j)e
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Now we can give the definition of a Markov Random

Field.

Definition 3.3: A Markov Random Field s a Joint
probability density on the set of all possible colorings X

of the Lattice L subject to the following conditions:

le.Posftivity: p(X) > 0 for all X.

2eMarkovianity:

p(X(¥)] ALL points in lattice except ) =

p(X(i)| Neighbors of 1)

3eHomogeneity: p(X(i1)| Neighbors of i) depends only on the
configuration of neighbors and 1is translation invariant
(with respect to translates with the same neighborhood

configuratfon).

We would Like to delimit insofar as possible the kind of
probability distributions that represent Markov Random
Fieldse This fs the content of the Hammersley-Clifford

theorems We first need a definition.

Definition 3.4t A cligue s a set of points that
consists of either a single point or has the property that
each point in the set is a neighbor of every other point

in the set.






47

It will prove to be convenient to consider
distribution function in terms of the ratio of p(X)

p(0)e Define the quantity Q(X) by:

(3.1) Q(X) = Ln(p(X)) = Ln(p(0))e.

We may expand Q(X) as follows:

(3.2) Q(X) =

XCHFIX (1))

—————i

\
+ X(HXIF (X)X (1))
KD
/
e==e=iy]
+  eeee
4 X1 easX(MIF (XC1)yaaasX(M))e
12.0eM

Each summation in equation (3.2) extends over sets

indices without repetitions.

the

to

of
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Note that Q(X) can always be expanded in this way as
long as the positivity condition 1is satisfiede The F
functions can be determined inductively from a knowledge
of the function P(X)e First set every X(j) to zero except
for a single index is This determines the value of Fie.
After repeating this for every index i, the £ functions
with two arguments can be found by setting all pairs
{X(1)9X(3)} to zero except for a single pair {X(r)yX(s)l.
Continuing in this manner with successively larger sets of
indices yields the values of the F functions for all
numbers of arguments. With this notatfon, we may now

state the Hammersley-Clifford theorems

Theorem 3.1: Q(X)y expanded as in equation (3.2)y
defines a valid probability distribution for a Markov
Random Ffeld provided that the F functions with subscripts
iJeees are non-zero 1if and only if the points fsfsecess

form a cliaue.
proof: See Besag [10]y page 196.

The Hammersley-Clifford theorem provides a connection
between the purely graph-theoretic relationships on a
Lattice with the algebraic form of the expansion of the

distribution function in equation (3.2). It also assures
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that the conditional probability distribution determines
the joint probability mass function. In facts the theorem
can be applied to the case where the Lattfce is
triangulary or even irregulare. Such extensions allow the
formulatior of models in geography; for exampley see the

review paper by CLiff and Ord [221].

3e3 Further Assumptions

In order to simplify the form of the probability
density in equation (3.2) furthery we make two
assumptions:

Assumption 1: The F functions in (3.2) with more than

two arguments vanish identicallye.

Assumption 28 The conditional probability

distribution at each point of the Lattice belongs to the

exponential family.

¢ A Markov Random Field s called an
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The class of auto-models 1is defined in

order to

simplify the inference problem for the F functfons. Under

these assumptionsy we may write Q(X):

(3.3) Q(X) =

\
XCIIFT(Xei))
————f
\
+ XCOXUIF (X)X ()
AED)
/
—————iy]
This resultsy, following Besag [10]y in the
form for the conditional densities:
(3e4) P(X(I)=K|eee)/D(X(1)=0]eee) = exp(kT(X))
where
M
\
(3e5) T(X) = Fi(X(i)) + VCigjIX(i)e
/

Yo

following
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The {V(193)} are the parameters of the modely V(i,79)
= V(jsi)y and V(iyj) = 0 if and only if i and j are not

neighbors of each other.

3¢4 Order Dependence

Note that 4in equation (3.4)y we are actually assuming
that the parameters V(iy)) may vary with 1. In most
casesy wWe are dinterested in models whose ‘parameters
{V(i4J)} depend only on the distance from point 1 to point

je This prompts the definition of ordere.

Definition 3.6: On a Llattice, the distances between
points assume discrete valueses The first few terms of the
sequence of possible squared distances are 0y 1y 2y 4y Sy
8y 9y 10. See Figure 6 for a picture of thise Call this
sequence {e(k)}y k = 0y 1y 29eee Let r = max(d(iysj))
where 1y J are points for which V(iyj) is non-zero. A
process s said to have order k 1f e(k) = rx*2, Figure 7

shows the order of the points identified fn Figure 6.
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The number of parameters needed to describe a model
depends on its order. For exampley a first-order model is
specified by three parameterse In the case of a Lattice
with range set {091} the conditional probabilities take

the form (the points are labelled as in Figure 8):

(3e6) piX=x|ugutytyt?) = exp(xT)/(1 + exp(T))

where

(3.7) T = a + b(1)(t + t7v) + b(2)(u + u").

The binary Markov Random Field described by equation
(3.6) has parameters ay b(l)y and b(2). The parameters
b(1) and b(2) control the clustering 1in the Lattice;
posftve values dndicate attractfon between pofnts with
value 1y negative values indicate repulsion, while a value
of zero implies a random configuratione In the random
casey the proportion of black points (1=-valued points)
should be exp(a)/(1 + exp(a))e The value of b(1l) controls
clustering in the E-W direction while b(2) controls N=S

clustering.
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Eigure 8 First-order Neiahbors

A full second=-order model involves

three and four.

The expressfons (3.6)

cliques

of

size

and (3.7) are

replaced by the following expressions (the points Labelled

as in Figure 9):

(348) p(X=x|totTyusutyvevioywsw') = exp(xT)/(1 + exp(T))

where

(3.9) T =

Cliaques containing three points are triangles

by selecting three points of a two by two square.

triangle contributes to the conditional probability

a + b(1)(t + t*) + b(2)(u + u*)

+ a(1)(v + v') + a(2)(w + w')

+ 2(1)(tu +u'w + W't )

+ 2(2)(tv # vyt et Uty

+ 2(3)(tw + W'u + urt")

+ z(4)(tu' + uv + vt

+ aCtuv + t'u'v? + tu'w + t'u'w")e.

formed

Such a

of

X



S6

only when X 1{s one of its verticess By the homogeneity
assumptiony each triangle with the same orientation makes
the same contribution to the sum T in equation (3.9)y and
is associated with a certain z(i)e For examples following
Figure 9y the triangles xtwy xu't'y xw'u all have the same
orientation and influence the conditional probability in
equations (3.8) and (3.9) according to the value of the
parameter z(3)e For cliques of size 4y we consider two by

two squares with one corner on X

In this thesisy we have considered only the Linear
case of the full expansiony which means that the F
functions with two or more arguments vanishe In the

expression for the full second-order model given by

Eigure 2 Second-order neighbors



equations (3.8) and (3.9)y this implies that the z and a
parameters are zeroe We have also Limited our attention
to the case of a maximum fourth-order dependencey since ft
does not seem Llikely that any higher order parameters can
be estimated accurately from textured images of size 64 by

64.

When dealing with a finite rectangular Lattice and
using the definitions of neighbor and order abovey points
on the edge of the Lattice have fewer neighbors than the
interior pointse We compensate for this by assuming that
the Lattice has a perfodic or torus structures This means
that the left edoe is connected to the right edge and the

upper edge is connected to the Lower edgee.

Our final form for the value of T is given below for
orders up to four. Models of order lLess than four can be
obtained by assuming that the b(iyk)y the parameters of

the modely, are 0 for all i larger than the order.



(3.10) T = a + b(isk)ISCigk) e

The S(iyk) are composed of the sum of the values at
order 1 with respect to X. The directfon is defined by k.
See Figure 10 for a description of the components of
SCtisk)e We can now formul ate a definition of

directionality in terms of the model parameters.

Definition 3.7: A Markov Random Field is isotropic at
order 31 4f b(iy1) = b(1y2)e Otherwisey it is said to be
anisotropic at order i. The notation b(iye) implies
isotropy a2t order i and signifies the common value of

b(isl) = b(ig2)e

The notion of anisotropy agrees with our fntuitive
notion of directionality in textures. As we shall see in
Later chaptersy the directionality is determined to some

extent by the relationship between the b(iyl) and b(iys2)e
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3.5 Specific Models

We now discuss specific choices for the conditional
distributions that are appropriate for wuse 1in d{mage
processing applications. A desfrable model {includes a
small number of parameters and a close correspondence to
the Llocal image formation processe The two models which
are considered in detail are the binary model and its
extensiony the binomial model. We mention a few others
which are approoriate for image processing applications

but have received Little or no attention so far.
3e5e1 Binary Model

The variable X takes on the value 0 or 1. Define the

varfable T by the formula:

(3.11) T = a + b(isk)ISCigk)

k=1 i=1

where the S(fyk) are composed of the sum of the

values shown in Figure 10.
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Eicure 10 Constituents of the S(isk)e The points are
Labeled with the index of the S(isk) in which they appeares
For exampley S(442) is the sum of 4 pointsy 2 near the
Lower Left-hand corner and two near the uppper right-hand
corner.
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We obtain the conditional probab1l1ty for X by:

exp(xT)
(3612) p(X=x|T) = B )

1 + exp(T)
3.542 Binomial Model

The binomial model generalizes the binary model to
the case of variables with range {091929eee9G=1}e We
assume that the conditional probability p(X=k|T) ) is
binomial with parameter 8(T)y and number of trifes G-le
The value of the parameter 6(T) is given by

exp(T)

(3.13) oM = S Pheciey. A Rl
1+ exp(T)

3+543 Other Auto-Models

We can use any member of the exponentfal family as
the conditional distributione. Slight adjustments have to
be made to the theory for the continuous cases Besag [103]
cites the Poissony exponential, and normal distributions

as possible candidatese
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It should be noted that the auto-normal scheme is not
the same as the auto-regressive scheme mentioned in
section 2.2.6. In the auto-normal formulatfion, the
variables X(i) have a Gaussian distribution with common
variance and mean Ty where T is given in equation (3.11).
The value of T depends on the neighborhood configuration

about X(i)e.

3+5.4 Other Lattice Models

It is possible to relax assumptions (1) and (2) of
sectfon 3+.2. The resulting models are stfllL Markov Random
Fieldsy but have a somewhat different conditional
probability structure. The resultina fields have efther

too many parameters or are relatively intractables

3e5e4e1 Strauss Model

Strauss [97] introduced a type of Markov Random Field
that uses wunordered ‘'colors' {0y1y929eee9C}e After some
reductiony he obtains a conditional distribution of the
form:

exp(T)

(3414) p(X=k|e) = ==mcmccecaa ==== 9 k = 192yeee9C
1 + exp(T)
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C
\
p(X=0]e) = 1 = p(X=k|e)
/
k=1
where
G
X
T = u + VIIINCXy 1)
/
i=1

and u and v(i) are parameters and can be any real numberse.
The notation p(X=k|e) represents the probability that X
takes the value ky conditioned on its neighborse The
quantities N(Xy1) represent the number of neighbors of the

point X at Llevel i.

This model is oriented toward cases where the Llevels
are genuinely unorderedy without arithmetic relations. It
might be appropriate for detection of clustering among
pixels that have been classified according to some
Land-use scheme for LANDSAT pictureses The v(i) parameters

control the affinity for the ith color to cluster.
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One difficulty with the above model is that the
"Left-over" color 0 (in the sense that there ¥s no
parameter v(0)) tends to have either a very small or very
Large conditional probability. Limited experiments showed
that no natural, equalized picture could be fit to this
model with four Llevels. It was thus not considered

further as a texture model.

The most serious drawback of this model, even in the
case where the unordered color assumption might be
correcty 1s the number of parameters. Unless some
simplifying assumptions can be madey one needs to add one
parameter for each direction and for each gray Level
added. For exampley a 32-gfay Level picture with
first-order anisotropy would require 63 parameters under
the Strauss modely yet only three under the binomtal
models Of coursey the figure of 63 can be reduced if
there 1s equality of attractiony but the assumotion of
unordered colors tends to require a Llarge number of
parameterse Strauss was only interested in the case when
all of the v(i) were the samey resulting in a much simpler

estimation problem.
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3+5¢4¢2 Welberry=-Galbraith Fields

Work on another kind of binary Markov Random Field
than presented earlier has been progressing sfnce 1975
£38l)y [391y C1011y C1021y [1031y C[1041 10417 A
Welberry-Galbraith field 1is a Markov Random Field which
uses unilateral dependence to define the conditional
probabilitiess It is controlled by four parametersy as by

cy and dy as shown in figure 11.

Boundary values are either random or determined by a

distribution matching the true distribution. The model,

although simple to explain and easy to simulatey has

Neighborhood Configuration

0. 0. 1. 1.
0 1 0 1
tmmm————— r———
| ! | | |
0 | a | b | c | d |
| ! | | |
—— ——————— rm———— -
| | | | |
1 | 1-a | 1-b | 1-c | 1-d !
I | | | |
tomne= - S ——
Eigure 11 Conditional Probabilites for the

Welberry-Galbraith Field: The probability of a 0 or 1
oiven the neighbors to the Left and belowe. The four
possible wunilateral neighborhood configurations form the
columns.
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proven to be difficult to analyze. The expectation of the
number of l-valued pofnts 1is known approximately along
with the fact that the process is ergodic. This model is
essentially the same as the Markov Mesh [13]. Also of

interest is Pickard's [82] binary field.

3e6 Summary

We have defined a Markov Random Field formally and
stated the main characterization result, the
Hammersley-ClLifford theoreme The general Markov Random
Field model was reduced through simplifying assumotions to
a compact form with a few parameterse The parameters
define the order of the oprocess along with the
directionalitye. ‘e specified in detail the models which
will be 1investigated for texture generation and sn}hesis
purposesy the binary and binomial modelse Finallyy we
have mentioned some other models that may have some use in

image processing applicationse.



CHAPTER 4. SIMULATION OF MARKOV RANDOM FIELDS

4¢1 Introduction

In chapter 2 we gave the conditional probability
formulation for Markov Random Fieldse. In order to
generate textures that are the visual representation of
Markov Random Fieldsy we need a procedure that yields a
sample from a Markov Random Field with given parameterse
Fortunatelyy such procedures exist and have been used
extensively in physics to investigate the properties of
two- and three-dimensional Ising Lattices [161y [343],
£32]. Simulation is usually needed to estimate many of
the properties of Markov Random Fields since the
analytical calculations arey for the most party

unsatisfactory [331].

4.2 Definitions

The reaquired theory for the simulation of Markov
Rardom Fields comes from the theory of discretey
finite-state Markov chainse We review the main results
and definitionsy mostly to fix notation. We follow Feller

[31] and Hammersley [43] closelys

67
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We consider discrete integer timesy t = 192939e0e o
The process has an at most countable state set S(1),
S(2)9eee o Let X(t) denote the state of the process at

time to

Definition 4.1: The system of states {S(§j)} s safid

to be a2 Markov chain if the conditional probability of the
system being ¥in a state at time ty given its state at all
other timesy depends only on the state it was in at time

t-1. We may write this as:

p(X(t)=S(j)| ALL values of X(t)) =

PIX(Et)=S(J)|X(t=1)=S(i))e
In all cases that we considery the conditional probability
depends only on the state value and s 1independent of
time. In this casey the conditional probabilities are
called stationary and we can write without ambiguity:
pIX(t)=S(§) |X(t=1)=S(i)) = p(isj)e The p(isj) are called
the (stationary) transition probabilities. The system s

called symmetric if p(isf) = pCiside

Definition 4.2: The n-step transition probabilities

are p(nifyi) = D(X(E)=S(I)IX(t=n)=S(T)). The

fnity?) =

PUXCEI=S(I) 9X(t=1)2S (1) geaesX(t=n+1)2S(J) |X(t=n)=SC(i))e
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The mean recurrence times are

\
migi) = nf(niisgdide
/

n=1

The m(i9%) represent the expected time for the process to

return to state 1 given that it was in state 1 at time t.

Definition 4.3: The states S(i) and S(j) are called

|-

mutually accessible 1f there exist integers m and n so
that ptmiiej) and p(nijsi) are both non=-zeroe. Mutually
accessible states are safid to belong to the same classe A

system with only one class of states is said to be

irreducible.

We can now delimit some ifmportant classes of states.

Definition 4.4: A state S(i) is called positive if

m(*yi) 4¥s finitey null 1f m(iy7) is infinfte. If o(nii,i)
is non=-zero only when n is a multiple of dy the state S(i)
is called periodic (of period d)e If d = 1y it is called

aperiodice A state S(i) is called recurrent if
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oo

f(niiyi) = 1

n=1

otherwisey it is called non-recurrente.

It can be shown (Theorem 1y p391y [311) that the
states of the same class are all non-recurrenty or all

positivey or all nully and all have the same periode

The set of numbers {q(j)} is called a Limiting

Lim p(n3isd) = a€J) = 1/m(5y3)
n=>o

443 Simulation Procedure

The simulation procedure is explained by three
theorems: (4¢1)y (442)y and (4¢3)e We Wwant a Markov chain
whose states are the set of colorings {X} with Limiting
distribution {p(X)}. We can sample such a chain and

observe colorings {X} with frequency given by {p(X)}.
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Theorem 4.1 gives sufficient conditions for a Markov
chain to have a unique Limiting Qistr1bution. Theorem 4.2
shows how to convert a relatively arbitrary Markov chain
to ore with Limiting distribution {q(j)}e The key feature
of theorem 4.2 is the fact that we need only know the
ratios {a(J)/a(i)} 4in order to obtain the desired chaine.
Finallyy theorem 4.3 shows how to calculate the set of
ratios <{a(j)/aq(i)} = {p(X)/p(Y)} from the conditional
distribution of a Markov Random Field without explicit

calculation of the set of {p(X)}.
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Theorem 4.1: Let <{S(j)} be the states

of an

aperiodicy drreducible Markov chaine Let {q(j)} be a set

of numbers that satisfy the following three conditions:

as q(j)>0 for all J

\
be q(i) = a &
0
A
Ce a(i)p(iyj) = atih)
/

3
Under these conditions we have
leFach state S(i) is positive
2¢The set {qg(3)} ds unique {Js satisfying
2esbesce

3. Lim p(n3dsi) = a(j) = 1/m(js3)
n=>oco

conditions
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proof: See Feller (p393y [311)e O

Theorem 4.1 justifies the use of Limiting

distribution as a description of the set {q(f)}. We
describe a procedure for transforming a given Markov chain
with transition matrix Px = {p*(1y§)} to another chain
with transition matrix P = {p(isj)} such that the new

chain has Limiting distribution {a(j)}.

Consider a symmetricy aoeriodicy

irreducible Markov chain with transition matrix P*e Let
{a(j)} be a set of positive numbers with sum 1. Then the
Markov chain with transition matrix P has Llimit

distribution {a(j)}y where P is defined by:

p*(i93)q(§)/q€i) if a(i)da(i)
p(iy3) =
p*(iy3) if q(i)2a(i)

\
pCiyi) = p* (iy1) + p*(¥93)(1 = a(f)/aCi))
7

3

]

where the ' on the summation means summation over all

incdices j with g(j)/a(i) Less than 1.
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proof: See Hammersley [43]. O

To apply theorem 4.2 to the problem of generating a
sample from a Markov Random Fieldy, we need to identify the
constituents of the Markov chain. The relevant pieces
are:

State set: ALL colorings X of the Lattice L.

Matrix Px: p*(iyJ) = 1/zy z is the total number of
coloringse.

fg¢j)}: The Limiting distribution value for the state X
should be p(X)y where p(e) 1is the joint probability mass

function over the set of all coloringse

In chapter 6y we will study the Jjoint probability
formulation of a Markov Random Field 1in detaile The
expression is unwieldy but we do not actually need to use
ity because the actual numbers {a(Jj)} are never needed in
the calculation of the p(isyj) in theorem 4.2 we need only
examine the set of ratfos {q(j)/a(i)} = {p(Y)/p(Y)}.

Following Besag [101]y we have
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[l

heorem 403: Let X and Y be two colorings of the

Markov Random Field Lattice L. Then:

M
PXCII=y (F)IXC1)9X(2) yaoes X(T=1)9Y(T+1)geeaeY(N))

pexX) POXCHI =X (1) [X(1)9XC2) paney XCi=1) Y (i+1)paaa¥(N))
1
proof: See Besag [101y pl95. O

In generaly we are interested in textures with the
same number of pixels at each gray level. Such textures
are the output of a histogram-flattening procedure such as
the Equal Probability Quantizing algorithm described by
Haralick [45]s It is therefore appropriate to Limit our
state set to those colorings X which have a uniform
histogrames In practicey this is done by starting with an
image that 1is generated by colorina the point (iy3) with
Level ky where k is chosen with equal probability from the
set {0919290e009G=13}0 The convergence to the Limft
distribution is wunaffected by the choice of idnitial
configuration; only the rate at which -equilibrium is
reached depends on the choice of the initial

configuratione.

Given 2 state (i.es colorina ) Xy we choose the next
state Y to be the same as X except that the gray values of

two randomly selected points are 1interchanged. Tn the
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notation of theorem 4.2y all p*(iyj) are equal, so we need
only Look at q(j)/a(i) = p(Y)/p(X) = re The algorithm is
diagrammed in Figure 12, This aloorithm was used by Flinn

[33] and was invented by Metropolis et al. [731.

Any initial assignment of gray levels to the po?¥nts
of the 4dimage <can be mades One possibility is to choose
the next state Y as X with one pixel changed at randome
This allows us to begin with any histogram whatsoever and
reach states {S(i)} with the desired frequency. The other
side of this problem is that the choice of parameters of
the Markov Random Field determines the expected histograme.
This means that if we arrange to make the histogram to be
uniform wheny in facty, the parameters do not determine a
Markov Random Field with a wuniform histogramy the
procedure will converge to a Markov Random Ffeld with
different parameters than intendede 1In a practical senses
this is not a significant problem since we usually want to
generate a texture that resembles a given texture. We can
generate a texture starting with exactly the same
histogram as the gfven texture and use the measured

parameters from the sample.
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until STABLE !

|
choose two sftes X(1)y X(2) with |
different gray Llevels !

!

| compute p(Y)/p(X) = r |
|

yes no

switch X(1)
and X(2)

get random number 2z

> ¢

e e e S

| switch Xx(1)

|
| retain X
I and Xx(2) !
| |

|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
!
|
|
!
|
|
|
|
|
|
|
|

e i i S S i e e i e e e ) i

-—— ——————— ————+

Ficure 12 Algorithm for generating Markov Random Field
Wwith joint probability function p(X)e The coloring Y is
obtained from the coloring X by switching the values of
the points X(1) and X(2)e.
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4.4 Convergence Properties

Theorem 4.2 guarantees that the application of the
algorithm in Figure 12 will eventually result in a Lattice
in a state Y with the frequency controlled by p(X). The

practical question is how Long this will take.

We first need to define a time-dimension for the
simulations Suppose the Lattice fs N by N and Let M=N#»#x2,
We consider M attempted exchanges or switches to
constitute one iteration. Notice that this dignores
attempted exchanges between pixels of the same colore We
have experimental guidelines for the number of iterations
required to achieve a Lattice that matches the {nput
parameters. In generaly it was observed that 1n 10
iterations or Lless efther the number of changes per
iteration drops to one percent of M or the measured
parameters match the dinput parameters within about S
percente. These guideleines define the variable "STABLE"
in Figure 12. On a PDP=-11/34 computery the time required
for one iteration on a 64 by 64 image was two to three

minutes depending on the number of gray levelss
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We give an example of the convergence for a soec1f1é
casee We want to simulate a first-order Markov Random
Field with binary varfables with parameters a = =2y b(lye)
= 1 on a 128 by 128 Llatticee. The notation follows
equation (3.11) of chapter 3. The estimated parameters
b(lye) “are shown plotted against number of fterations in
Figure 13. The value of the parameter a is not shown
becausey as Will be proven Llatery in the uniform histogram
casey a is =2b(lye)e The graph flattens rather quickly
and stays within 0.05 of the intended value of 1.0 for
b(lye)e Figure 14 shows the number of changes observed
per 256 attempted exchangesy as the estimates were made
every 1/64 fteratione Thusy although in an iteration of M
attempted exchanges we are still observing nearly M/2
changesy the chain is near equilibrium as the observed
model parameters are within a small tolerance of the

intended parameters.
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4.5 Examples of Textures

We present some examples of textures generated
according to varfous settings of Markov Random Field
parameterses These images are representative of the kind
of results that can be achieved but are not necessarily
attempts to imitate real textures.s They should rather be
considered to be an ‘'alphabet' of Markov Random Field
texturese In chapter Sy we exhibit generated textures

matching observed textureses

(i) Clustering effects

Figure 15 shows a series of 64 by 64 binary textures
with various degrees of clusteringe This is an isotropicy
first-order model as represented by equatfions (346) and
(3e7)e Figure 15a represents binary 'noise' in the sense
that each pixel has probability «5 of being black and 5
of being white dindependently of all other pixelse 1In
Markov Random Field termsy this means a is 0 and b(1y1) =
b(1y2) = Oe The value of b(ly1) is increased from 0 ¥n
Figure 15a to 3.5 in Fiaure 15h. The 1increase in

clustering is clearly visible.
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(i1) Anisotropic Effects

Figure 16 shows extreme anisotropy in first-order and
second-order models on a 64 by 64 Latticee In Figure 16by
a = =2¢09 b(1l91l) = 14939y and b(192) = <16 The gquantity
b(191) controls the horizontal clustering so there is a
Large amount of Line-likeness in that direction. As
b(1,2) is non-negativey a small amount of vertical
clustering is presenty resulting fn thickened and noisy
horizontal Linese. Contrast this with Figure 16ay which
has parameters b(ly1) = =2y and b(142) = 2.1, The value
of b(1492) causes vertical clusteringy similar in intensity
to the horizontal clustering of Figure 16be The
significant difference s that the negative value of the
parameter b(ly1) forces ‘'clean' vertical Llines with

virtually no horizontal clusteringe.

The decidedly diagonal effect of Figure 16c results
from the use of a second-order structure. The clustering
in the NW-SE direction is pronounced since the oarameter
in this direction is 1.9 while the parameters in all other

directions are aquite smalle.
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(ii1) ordered Patterns

Many of the applications of the Ising model 4dnvolve
studying the checkerboard-lLike patterns obtained with
negative clustering parameterse In this sensey a perfect
checkerboard is ordered and represents a Limit state for a
an alloy or magnet [77]e This is 1{illustrated by Figure
17y which has b(1ly1) = =2.25y b(1y2) = =2.16 on a 64 by 64
Lattices The most Likely configuration is a black pixel

surrounded by four white pixels or vice versae

(iv) Attraction-Repulsion Effects

An attraction-repulsion process involves having
Low-order parameters positive resulting in clustering but
high-order parameters negative in order to inhibit the
growth of clusterse If high-order parameters were also
positivey large clusters would resulty whereas negative

high-order parameters yfelds small clusterse

Fiaure 18 shows the effect of anisotropic clustering
with inhibitione The first-order parameters of Figure 18a
are approximately 0y which accounts for an 1{immediate
visual impression of randomnesse. On closer examination,

there are many short horizontal and vertical Linesy but



very -few diagonal joins. The Llack of dfagonal joins 1s a
result of negative second-order diagonal parameterse. In
Ficure 18by the first-order clustering parameters b(1l,1)
and b(l92) have been 1{ncreasedy resultinoc in Longer

horizontal and vertical Llines.

Ficure 19 shows two fisotropic attractfon-repulsion
texturese. These are the result of positive first and
second-order parameters and negative third and
fourth-order parameterse. As a consequence of ' the
high=-order inhibitiony the cluster size s relatively
smaller than one would expect {if the third- and

fourth-order parameters were zeroe

(v) Multiple Gray Scale Textures

The binary textures above 1{llustrate the essential
features of the visual attributes of a Markov Random Field
but are fundamentally unrealistic as textureses We now
turn our attention to the binomial model. We follow the

notation of section 3.5

It should be noted that many of these 1images appear
blurry and out of focuse This effect is not due to the

reproduction process but is intrinsic to the modele. If






there is no inhibition (via negative high-order
parameters)y then the binomial model tends to have smooth
transitions from black to white. The binomial
distribut1oﬁ is unimodal andy as a consequencey values
above and below the mean gray value are highly orobable
alsoe This results in a tapering of the gray scale around
maxima and minima. Such a tapering as one moves away from
black or white points has an effect similar to a

neighborhood averaging or Llow=-pass filtere.

Figure 20 shows a 4=-gray Llevel picture with
considerable clustering. Figure 20a s 1isotropic and
first-ordery whereas Figure 20b is second-order
anisotropic with diagonal clusteringes Figures 21a and 21b
represent typical multiple gray scale pictures with

isotropic fourth-order clusteringe

Figure 22 shows a pattern similar to Figure 16, but
with 32 gray Llevelse. The resemblance to wood-grain is
apparente. Fiqures 23a and 23b show the result of
attraction-repulsion processes with multiple gray Levelse.
Figure 23a has the appearance of reticulated photographic
film due to strona third and fourth-order inihibition.
The diagonality in Figure 23b is a result of strong

repulsion in some directions and clustering in otherse
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Ficure 15: Isotropic First Order Textures. The b(lya)
parameters are: (a) 0e0y (b) 0e50y (c) 0e75y (d) lely
£e) 1+26y (f) 14529 (g) 179y (h) 3.0e In all casesy the
a2 parameter is =2bflye)e






Anisotropic Line Texturess

b(2y2)= =0.075.

Ordered Pattern. The parameters are a =

The parameters are

b(291)= 1.9






Figure 18: Diagonal Inhibition Textures. The parameters
are (2) a = 2419y b(191) = =0.088y b(192) = =04009y b(241)
= =1y b(292) = =1s (b) a =0e169 b(191l) = 24069y b(192) =

24059 b(192) = =2.03)y b(292) = =2.10a

Nt

a b

Eigure 19: Isotropic Inhibition Textures. The parameter

values are: (a) a ==0497y b(lye) = 0e94y b(29e) = 0e94y
b(39e) = =0e42y blhya) = -0.49. (b) a = =4.6y
b(lye) 2662y b(2ye) = 2417y b(3ye) = =078y

b(4ye) = =085
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Figure 20: Clustered Textures with 4-Gray Levels. The
parameters are (a) a = =2y b(lye) = 1e0e (b) a = =2

b(1lye) = 1409 b(291) = 140 b(2492) = 0.0

Eicure 21: Clustered Textures with 16 and 32 Gray Levelse

The parameters are (a) 16 Llevelsy a = =240y b(1l9e) =
b(29e) = b(3ye) = bl4ye) = 0405« (b) 32 Levelsy a =
=240y b(lye) = b(29e) = b(39e) = blsys) = 0.05.
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Eigure 22: Horizontal Texture with 16 Gray Levels.
parameters are a = =240y b(1ly1l) =

The
= 0408y b(192) = 1a40e
£
/’I 2
=
r-/z—'ﬁ(
e
a b
Attraction-repulsion Textures with 16 Gray
parameters are (a) a = =2y b(lye) = b(2y.)
b(39e) = bl4ye) = =0ele (b) a = =2y b(lye) =0a2y
= =242y b(292) = 2y b(391) = =0.05y b(342) =
b(491) = -0.059y b(492) = 0405

= 0405y



4.6 Summary

We have reviewed the notion of a Markov chain and
seen how to obtain a new Markov chain with desfred Limit
distribution from a relatively arbitrary chaine This
construction Led directly to an algorithm for the
generation of Markov Random Fields with specified
parameterse An example of the convergence of the
procedure was given, along with some guidelines on the
number of diterations required to obtain a Markov Random
Field with the desired parameterss Finallyy, we presented
a catalog of textures generated according to various

settings of the model parameterse



CHAPTER Se MODELLING OF NATURAL TEXTURES

Se1 Introduction

In previous chaptersy we have df¥scussed the
probabilistic structure of Markov Random Fields and have
shown how samples from Markov Random Fields can be
generated. one of the principal contributions of this
thesis is the implementation of a statistical measure of
the correspondence between an observed texture and a
texture models No prior study has performed this kind of
evaluatione. ALL prior studies in texture modelling have
considered a model adequate if its parameters yfelded good
classification in pattern recognition experiments or if it
was found to be the best=-fitting among a number of models
testeds For examoley Deguchi and Morishfta (261 determine
the best size for a neighborhood 1in an auto-regressive
schemey but do not give any overall guidelines on when the

auto-regressive scheme fits the observed texturee

We first explain the method used to estimate the
Markov Random Field parameters and perform hypothesis
testse This dis followed by the results of testing
textures from the Brodatz texture album [173] for a fit to

various Markov Random Field texture modelse The final

93
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section shows textures generated synthetically 4in an

effort to match natural texturese

5.2 Estimation of Parameters

Following the notation of equations (3.12) and
(3.13)y this section explains the estimatfon of the
parameter set {b(jysk)} from a textured sample wusing the
binomial model. The binary model is a special case of the

binomial model and is not handled separately.

The technique used to estimate the parameters is
Maximum Likelihood Estimatione. Let p(X].) denote the
conditional probability p(X=x| Neighbors of X)y where X is
a point of the Lattice Ls The usual log Likelihood is

given by

(5.1) L = Ln(p(X|e))

where the summation extends over all points of the

Lattice.
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It is difficult to maximize L as stated in equation
(5¢1) since the summands are not independent. Besag [9]
provided a solution to this problems Instead of forming L
as a sum over all points of the Latticey the Lattice is
partitioned into disjoint sets of points called codingse.
Each coding is chosen so that its points are independent.
This can be done by adequately spacing the X points so
that 1f X(i) and X(j) are two points in a codingy then
X(i) is not a neighbor of X(j) in the Markov Random Field

sensee.

The number of codings required depends on the order
of the process. We would like each coding to be as large
as possible because the Llarger the codinay the more
samples are available to estimate the parameterse A
first-order process requires at Lleast two codings for
estimation purposesy as shown in figure 24. A
second-order process requires spacing so that three by
three neighborhoods do not interferees This yields four
codings as shown in Figure 25. Third= and fourth-order
processes require separation of three units since they are
based on five by five neighborhoodsy as shown in Figure

26+ There are nine codings in this case.
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The actual estimation procedure is straightforwards. Let

L(1) be the Log Llikelihood for the ith codina®

(5.2) LD = Ln(p(X|e))

where the summation extends over all points X' in the
coding 1« In equation (5¢2)y p(X|e) depends on the order
of the Markov PRandom Field whose parameters are being

estimated.

We seek to maximize L(f)e This s done by findina

values of the parameters a and {b(jsk)} so that

(5.3) aL(i)/2a = 0 and al(i)/a3ab(jsk) =0

for § = 192y9eee9r and k = 192 where r is the order of the
processe If the process is isotropic at some order J,
then we only consider derivatives with respect to b(Jjye)

in equation (5+3)e

The system of eauations (S5e3) s solved numerically
by the wusual multivariable extension of Newton's method

[52]s We omit the routine expression for the derivatives
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in equation (5¢3) and the second partials that are needed
in Newton's methode The stopping criterfon for the
iteration process was fifteen iterationsy or a change in
the magnitude of successive parameter estimate vectors of
less than 10E-06. Except for a few cases among the
natural and synthetic texture samplesy ten 1{terations
sufficed to provide a resfdual of Less than 10E-06e This
is fortunatey since each iteration of Newton's method 1in
the multivariate case effectively requires the inversion
of a matrix of size equal to the number of parameters,
which could be as many as nine for fourth-order

anisotropfc textureses

An estimate of the parameter vector is obtained for
each codinge Our final estimate of the parameters is the
average value over all the codingse On a PDP-11/34
computer an unoptimized estimation procedure requires
thirty seconds per coding for binary textures and eighty
seconds per coding for efght gray level textures. These

timings are averages for textures of size 64 by 64.

5+3 Hypothesis Testing

Note that we really have only one sample from the

unknown distribution p(X) on the set of colorings of the
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Lattice L. From the conditional probability point of
viewy each observed configuration of neighbors and the
value of the center point X is a sample. In this sensey
we have M = N**2/k samples of the conditional density
p(X|e) for the N by N Lattice Ly where k fs the number of
codingse We can then perform a chi-square test of the fit
between the expected frequencies for each center pixel and
the observed frequencye. The expected frequencies are
computed using the estimated parameters with an

appropriate reduction in degrees of freedome

An example of a chi-sauare test is shown 1in Figure

27+ The null hypothesis is:

HO: The texture is a sample from a Markov Pandom Field

with the estimated parameter set {asb(fyk)2

while the alternative hypothesis is simply the negation of
HO o The estimated parameters for the example shown in
Figure 27 are a = =44,26y b(1lyl) = 2470y and b(192) = 145
The number of cells is Gy the number of gray lLevels, times
the number of observed neighborhood configurati&ns. The
example 1s a first-ordery anisotropic binary Latticey so
there are 2+*9 cells possible and all were observed. The
entries 1in the table are of the form 'observed(expected)'

and the expected entry is computed using the conditional
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probability distribution with the estimated parameters.
The degrees of freedom are computed by means of the

formula:

(S5¢4) df = (G-1)*Nc - E

where G is the number of gray levelsy Nc is the number of
neighborhood configurations (in Figure 27y each
neighborhood configuration is a row)y and E is the number
of estimated parameterss In the example of Figure 27,
there are two gray Levelsy nine neighborhood
corfigurations and three estimated parametersy so we have
(2-1)*9=3 = 6 df. We also use the convention of having at
Least one expected observation per cell. This results in

a reductfon in the number of cells and degrees of freedome

Since we are performing a number of tests on the same
data (one on each of k codings)y there 1is a great
Likelihood of having the hypothesis of a fit to a Markov
Random Field scheme accepted on some codings and rejected
on others. The results of the tests are not {indeoendente.
If they were 1independenty, and we performed k tests at a
Level X 4 then the probability of no rejections would be

(1= 0 daxk,
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Eicure 27 Example of a Chi-Square Test. This is a bfnary

64 by 64 textures A first-order anisotropic scheme was
fittede The results of coding number 1 are shown above.
Chi-square is 12.30957y on 6 dfe.

Besag [10] suggests a conservative solution to the
problem of amb iguous results. Suppose the most
significant result we observed over k codinas was exactly
at Llevel pe. The overall significance of the set of tests
is then taken to be kpe For exampley in a first-order
fsotropic scheme we obtained two chi-squared values of

778 (p=0410) and 1143 (p=0.01) on 3 df. The value 11.3
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has exact significance lLevel of 0.01. Since there are two
codingssy we take our overall significance Llevel to be
exactly 0402 = 2#04019y and would reject the null

hypothesis at the 5 percent Level.

In the tables in section 5.5y we have given the
number of "conservative" rejections at the five percent
Level for each scheme along with the number of samoles of
each texture that had Oslseeesk rejections over k codings
at the five percent Level. This second tabulation Leads
to a "liberal" rejection policy of rejecting a Markov

Random Field fit if any coding is rejected.

Se4 Description of the Data

The study of natural textures was based on twelve
pictures from the Brodatz texture album [17J. The plates
used are given in Table 1. Each plate was photographed on
35mm film to form 24mm by 36mm slides. The slides were
digitized in such a way that the small dimension occupied
slightly over 256 pixels of the 480 by 640 image of
Spatial Data Eyecom systeme The 256 by 256 4images were
split dnto sixteen non-overlapping 64 by 64 subimages and
also into four 128 by 128 non-overlapping subimagese The

gray scale of each subimage was reduced from 256 gray
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Levels to both two and eight gray Llevels using Equal

Probability Quantizing [45].






Table 1@
refer to

Brick Wall
Ceiling Tile
Pressed Cork
Calf Fur

Grass Lawn
Handmade Paper
Petbles

Beach Sand
Straw Screening
Water

Wood Grain (1)

Wood Grain (2)

Textures
the Brodatz texture album [173.

106

Used in the Studye.

Plate Number

DSa

D8é

D4

D93

De

DE7

D31

D29

D69

D70

The plate numbers
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Se5 Evaluation of the Fit

The textures were evaluated for their fit to various
modelse The purpose of this analysfs was twofolde Firsty
we need to validate that the Markov Random Field model s
generally applicable to -textured 1imagese. The second
objective is to formulate some general guidelines on how
to choose an appropriate modely in terms of order and the
degree of anisotropy and isotropys to generate specific

types of textures.

Se5e1 Binary Texture Results

Except for the screen texturey some first- or
second-order model was able to give at Lleast ten
acceptancesy under the previously mentioned conservative
decision ruley, for each texture sample. Detailed analysis
of the screen texture samples showed very few distinct
neighborhood configurationse. This is a consequence of its
regularitye The few neighborhood configurations dominate
the computation of the Markov Random Field parameterse
Howevery the Low frequency neighbor probabilities are not
properly controlled by these parametersy resulting in
Large chi-square values. Essentfally, the histogram ¥s so

skewed toward these configurations that the positivity
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condition of section 3.2 is nearly violated.

As an example of thisy Ffgure 28 consists of 64
repetitions of a random sixteen by sixteen pattern. It
was analyzed on the basis of first- and second-order
isotropic and anisotropic modelse Because of the
repetitionsy there are very few different configurations
of nefghborse "nly 42 different ones appear out of a
possible 81 in a second-order anisotropic scheme.
Chi-squared values are in the rance 1000-3000 on 20-40
degrees of freedomy depending on the model. The estimated
parameters vary wildly from coding to codinge For
examplesy on a second-order anisotropic schemey the
parameter a was estimated as 0.02y 0e8y =04243y 04325,
The b(1ly1) estimates were 06376y =0e469y +0es469y and
-0e5676 Similar varfability was present fn all the

parameters.

Tables 2 through 9 give the results of testing binary
texture samples under a number of models. A test against
a first-order model results in two hypothesis testssy one
for each coding. There are sixteen subimages of each
texture and each may be rejected on zeroy oney or two
codings at the five percent Llevel. The number of

subimages which had each number of refections is recorded
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in the Llast three columns of tables 2 and 3. Also Llisted
is the number of conservative acceptancesy of which there
are a maximum of sixteen possibles For an appreciation of
the difference between the conservative and the Liberal
ruley compare the number of conservative acceptances with
the number of subimages which had no rejections. Tables 4
through ¢ parallel the format of tables 2 and 3 except
that they represent tests performed using the second-order
codingse There is a possibiity of zeroy oney twoy threey
or four rejections per subimagey as there are four

codingse

Besag [10] makes the point that one cannot compare
the fit of a second-order model to the fit of a
first-order model unless the same coding scheme is used in
bo*h casess From Tables 2 and 3y it would appear that the
first order scheme fits very well, but in many cases it fis
inferior to a second-order scheme when considered on the
same codinge Table 10 gives the best results on
second-order coding for each of the binary texturese. The
general good fit of the first order model should be
reconciled with the fact that there are only two codings
rather than the four for a second-order schemey which

means that fewer rejections are Llikelyes
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Eigure 28: Non-Markovian Periodic Texture. This fs a 64
by 64 section of a 128 by 128 texture. The basic pattern
is 16 by 16 and is repeated 64 times over the image.

We have Limited our attention to the case of 54 by 64
texturese. Although third-order estimates can be made
which give good visual results in texture generation
experiments explained Latery we cannot reliably perform a
chf-square test of them on the 64 by 64 Llatticee. The
number of cells with only one member is very large since
the number of possible cells with a fully anisotropic
third-order model is 729 while there are only about 585 in

a single third-order coding (there are 9 codings in all).
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Our preferred chofces for the best-f!ttfng model are

based on , simple rule: choose the model that gives the

We would not consider a fit to be adequate unless the

majority of samples frop the texture class fit the model .
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Table 2: Isotropicy First-Ordery Binary Testse The
parameters estimated are ay b(lye)e

Texture Name Conservative Rejections at 0.05 Level
Acceptances 2 1 2
Brick 14 10 6 ©
Ceiling Tile 10 9 4 3
Cork 14 12 3 1
Fur L5} 211 3
Grass 15 12 3 1
Paper 16 12. 4.0
Pebbles 14 10 6 ©
Sand 185 14. 1 1
Screen 0 0 214
Water 10 9.1 AT 0
Wood (1) 9 8 8 0

Wood (2) 9 67 9% X
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Table 3: Anisotropicy First-Ordery Binary Testse The
parameters estimated are ay b(ly1)y b(1y2)e

Texture Name Conservative Rejections at 0.05 Level
Acceptances 1 f 4
Brick 11 11 5 0
Cefling Tile 11 6.1 13
Cork 11 10; »S: -1,
Fur 6 S 8 3
Grass 13 h i (A o |
Paper 13 13 3 0
Pebbles ks & 9 92,72
Sand 16 12 3 1
Screen A 0 511
Water 8 84 T 1
Wood (1) 9 T 58-S,

Wood (2) 4 209

o
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Jable 43 Isotropicy First-Ordery Binary Testsy on
second-order spacinge The parameters are ay b(lye)e

Texture Name Conservative Rejections at 0.05 Level
Acceptances 2 o3
Brick 16 13 3 0 0 ©
Cefling Tile 16 11 4 1 0 O
Cork ) 14 123 100
Fur 11 8- .38 070
Grass 15 11 4 10 -0
Paper 15 14 2 0 0 O
Pebbles 14 10 6 0 0 O
Sand 14 12: - 4.0 "0« 0
Screen 0 0 1 189
Water 11 10 2 3 1 0
Wood (1) 13 10 6 0 0 O

Wood (2) 13 6 9 1 0 0
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Table 5: Anisotropicy First-Ordery Binary Testsy on
second-order spacinge. The parameters are ay b(lyl)y
b(1y2)e

Texture Name Conservative PRejections at 0.05 level
Acceptances 2 1 2 3 &
Brick 9 6 8 2 0 O
Ceiling Tile 15 11 4 1 0 O
Cork 12 10 4 2 0 0
Fur 10 9. - 303 BT
Grass 16 11 -4 1. 0 0
Paper 14 10 6 0 0 O
Pebbles 11 9 1l6 0i 00
Sand 14 10 S 1 0 O
Screen 2 g6 2 3.6 S
Water 14 9 6 1 0 0
Wood (1) 12 T T2 00

Wood (2) 11 310 3 0 O
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Binary Testse The parameters are ay b(lye)y b(29e)e

Texture Name Conservative Rejections at 0.05 Level
Acceptances 1 2 3 &
Brick 5 1 #3+ I¥.53 . f2
Cefling Tile 12 9 & 201 0
Cork 11 6 6 4 0 0
Fur 12 7 w8510 10 0
Grass 13 12x (3 f¢ 0% L0
Paper 11 8. 6. 2. ‘0: 0
Pebbles b € 6 272 10
Sand 14 9590 125 "0 10
Screen 0 0 3. 02711
Water 12 o Q. R T S
Wood (1) 10 8N 1S a0 0

Wood (2) 10 T 6t 1y.,'c2 110
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Table Ze First-Order (Isotropic), Second-Order
(Anisotropic) Binary Testse. The parameters are ay b(lye)y
b(2y1)y b(242)e

Texture Name Conservative Rejections at 0.05 Llevel
Acceptances 0 1 2 -3 &
Brick S 3 6 4 3 0
Ceiling Tile 13 30 =8~ 2. A070
Cork 14 11 S 0 0 O
Fur 10 7 8 1 0 0O
Grass 15 11 S 0 0 0
Paper 13 12 4 0 0 O
Pebbles 11 9 4 0 2 1
Sand 14 12 4 0 0 O
Screen 3 ¢ R T S (& S 1)
Water 13 11. 4 20 5000
Wood (1) 13 9 %5 2 00

Wood (2) 12 1t 3.1 .0 -0
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Iable 8: First-order (Anisotropic), Second-Order
(Isotropic) Binary Testse The parameters are ay b(1ly1),
b(192)y b(29e)e

Texture Name Conservative PRejections at 0.05 Level
Acceptances 10: 135,528, 43 44
Brick 2 07 &4 3 2
Ceiling Tile 12 31 .20 R, SN0
Cork 9 3 6 6 1 0
Fur 9 7 7 2 0 O
Grass 14 9 4 2 1 0
Paper 13 6 4 2 4 0
Pebbles 10 9:. 12 137 Jluria
Sand 12 11 4 1 0 O
Screen 4 2 2 ISty -6
Water 13 T- 9> 0190/ -0
Wood (1) 10 7 6 3 0 O

o0
0
-
[
o

Wood (2) 13






Table  3:

First-Order
(Anisotropic) Binary Testse.

b(192)y b(291)y b(292)e

Texture Name

Brick
Cefling Tile
Cork

Fur
Grass
Paper
Pebbles
Sand
Screen
Water
Wood (1)

Wood (2)

6

13

14

11

15

12

14

o

14

14

15
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(Anisotropic)y
The parameters

Conservative
Acceptances

]
4
10
11
8
10
11
11

14

10

13

3

2

Rejections at

2

0

Second=-Order
are ay b(ly1),

0.05 Llevel

0

0
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Table 10: Best-fitting Binary Texture Models. In the
table belowy 'I' means that the fewest rejections were
obtained by using isotropic estimationy while 'A'
sfanifies the best results were obtafned using anisotropic
parameterse The symbol '«==' in the second-order column
signifies that the best results were obtained using a
first-order model.

Texture Name First Second Acceptances
order Order
Brick 2 —— 9 16
Cefling Tile I -— 16
Cork I A 14
Fur X I 12
Grass A it 16
Paper ) g == 15
Pebbles 14 ma 14
Sand A A 14
Screen A A S
Water A A 14
Wood (1) A A 14

Wood (2) A A 14
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S5e52 Binomial Texture Results

With the experience gained from the binary fitsy we
Limited our attention to four samples from each of the
efght gray level pictureses First-order models yielded
consistently negative resultse. The binomial model is
unable to effectively model bimodal or uniform conditional
probabilitiese. The binomial model always has a peak at
exactly one value for any choice of 8. Alsoy if there are
two LUikely gray values which are not contiguousy then no
choice of the 8 parameter can yield the correct

probabilities.

As in the binary casey third-order analysis cannot be
performed on samples of size 64 by 64 for efight gray Level
texturese. In the matching experimentsy estimation was
performed for third-order textures using 128 by 128
samples. Even this is barely enoughy and results in about
thirty percent collapsing of the cells when the cells are
pooled to force expectations of at least one per celle A
first-order model with anisotropy can have as many as 225
cellsy white a full third-order model with anisotropy can
use as many as 225**3 cells.s Of coursey the number of

cells is Limited by the number o* points on the Lattice.
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Tables 11 and 12 give the results of fitting
efght-color models to four samples from each texture
classe The format is analagous to Tables 2 through 9,
except that only four samples per texture class were usede.
As in the case of the binary texturesy, good results were
obtained for all but the inhomogeneous textures: Watery
Woody and Pebbless The binomfal model has difficulty in
handling Llarge areas of equal brightness. ALL of the
textures which did not fit the model well are either
blotchy or regulary Like the 1image of the screene
Fine-grained textures can be handled andy as we shall seey
generated by the binomial model easily. The best results

of the two sets are shown in Table 13.



.
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Table 11: Eight gray Levely First-order(Anisotropic),
Second-order(Anisotropic)es The parameters are asy b(lyl),
b(192)y b(291)y and b(2y2)e

Texture Name Conservative Rejectfons at 0.05 Llevel
Acceptances

Brick 0 0 0 0 0 4
Ceiling Tile 2 1 3 0 0 O
Cork 4 3 1.0 0 0O
Fur 1 1.2 0 1 90
Grass 3 3200 10
Paper 4 3 10 0 O
Pebbles 0 0 0 0 0 &
Sand 4 4 0 0 0 O
Screen 0 0 0 0 0 4
Water 0 o0 1 0 1
Yood (1) 1 0 0 0 0 4

Wood (2) 0 0 0 0 0 &
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JTable 123 Eight gray Llevely First-order(Isotropic)y
Second-order(Anisotropic)s The parameters are ay b(lye)y
b(291)y and b(2492).

Texture Name Conservative Rejectfons at 0.05 Level
Acceptances 1 2 3 &
Brick 3 0. 2 27 B .D
Ceiling Tile 3 30 7Y 40000 0
Cork 2 Xee 0% ST deded
Fur 4 4 0 0 0 O
Grass 3 1 920 Ak 0 0
Paper 3 2 2 0 0 O
Pebbles 0 0o 0 0 0 4
Sand 4 2 128 20,100 0
Screen 0 0 0 0 0 &
Water 0 0 0o 0 0 &
Wood (1) 0 g 0 -0 0. .4

Wood (2) 0 0 20 00 0 4
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Table 13: Best-fitting Efght-gray Level Texture Models.
In the table belowy 'I' means that the fewest rejections
were obtained by wusing 4isotropic estimation, while "A?
sianifies the best results were obtained using anfsotropic
parametersse. The symbol f===' d4ndicates that neither
model was appropriate.

Texture Name cirst Second Acceptances
Order Order
Brick A I 3
Cefling Tile A 3 ¢ 3
Cork A A 4
Fur ¥ A 4
Grass A A 4
Paper A A 4
Pebbles — — 0
Sand A A 4
Screen = ==, 0
Water e, === 1]
Wood (1) A A 3.

Wood (2) e = 0
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Se6 Texture Matching Experiments

This section examines the viability of the Markov
Random Field as a supervised texture generation proceduree.
The input texture is measured using the Maxfmum Likelihood
approach described in section 5.3. The results of that
evaluation are used as the 1input to the generation

procedure in Figure 12,

As mentioned in section 5¢5y the third-order model on
a 64 by 64 texture cannot be reliably fitted since it
causes too many empty or near-empty cellse Limited
experimentation showed that {f the <image size was
increased to 128 by 128y a sensible chi-square estimate
could be madey though the parameters did not change very

much from the estimates made on the 64 by 64 texturess

Se6el Binary Textures

Binary textures have far simpler structures than
multi-gray Llevel textures. If they are not regulary Like
2 tiling of the plane by polygonsy then we can describe
their general appearance by a few general characteristicse.
This is really an abbreviated Llist of the dntuitive

textural attributes defined in the first chapter.
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(i) Directfonality: Verticaly, Horizontal, Diagonal,

or Nonee

(11) Cluster size: Largey Mediumy or Small

(ii1) Homogeneity: Homogeneous or Inhomogeneouss
Inhomogeneous 1images have different characteristics in

different parts of the picture.

(iv) Specfal Features: Regularfty, Line-Likenessy

Blob-Likenesse

Table 14 fllustrates rough characterfzation on the
basis of one 64 by 64 sample of the features given above.
We can use this guide to evaluate our success in matching
the generated texturese. 0f coursey we would Ll¥ke to be
able to say that one texture "looks Like" anothery but we
need some way of quantifying this correspondence. Figure
29 shows the results of generating the twelve textures
from the estimated parameterse The parameters used to
generate the synthetic textures were obtaftned by averaging
the parameter estimates from each of the codings of a
single subimagee. The choice of subimage was arbitrarye. A
third-order estimate was used in all cases except for the

pictures of Yood grain(l) and Pebblese. In these two






Iable 14:

Jexture

Bricks
Ceiling
Cork
Fur
Grass
Paper
Pebbles
Sand
Screen
Water
Wood (1)

Wood(2)

128

Binary Texture Characteristics

Cluster

Direction Size

Vertical
Vertical
Diagonal
None
Diagonal
Diagonal
None
None
Vertical
Vertical
Horize

Horiz.

Larce
Small
Small
Large
Small
Small
Large
Medium
Small
Medium
Large

Large

Homo -
geneity
Low
High
High
Low
High
Hihag
Low
High

High

Low

Low

Special
Eeatures
Regular
None
None
None
None
None
Blobs
None
Lines,y dots
None
Blobs

Blobs
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casesy a first-order model gave better visual resultse.
First-order models tend to form fn blob-lLike aggregations
and cannot correctly characterize fine-structured
texturese. Moreovery they are inadequate in showing any

directionality except vertical and horizontal.

The clear failures are:

Bricks: The regularity and neat rectangles are not
present. Cluster size is close to correct along with the
overall vertical structure. The regularfty occurs at an
order of around 20 pixelsy and there is Llittle chance of

capturing such a structure from a 64 by 64 picturee

FuryWood (1)y Wood (2): The inhomogeneity is missed in the
synthetic examplese What remains of these pictures after
binary quantization can hardly be called a texturee. The
images are estimated to be fine-structured rather than
cleany blob=Like shapes like pebblesy because their noise
component modifies the estimate so that third-order
inhibition 1is wused in the generation. This s an
unfortunate consequence of the estimation procedure. It
is possible that a2 preliminary smoothina might help in
getting a more correct estimate. In all casesy the

directionalfty is correctly simulated in these texturese.






The remaining nine textures are reasonably
approximated by the simulated texturess In the poictures
of Corky Grassy and Paper,y diagonality is the overrfding
feature and this is correctly modelleds The screen image
is remarkably similar to the original. The third=-order
repulsion effect provides the curious checkerboard effects
along the Lines in both the original and the generated
texture. Without this inhibitifon effecty the image would

resemble the vertical images shown in Figure 16.
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e 29 Real and Synthetic Binary

s (al) Synthetic Binary (b) Binary Ceiling
{bl) Synthetic Rinary Ceilino Tile (c) Binary Cork
Synthetic Binary Cork

Textures: (a) Binary
Bricks
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Figure 29 Continued: (d) Binary Fur {d1) Synthetic Binary
Fur (e) Binary Grass (el) Synthetic Binary Grass

(f) Binary Paper (f1) Synthetic Binary Paper






Eioure 22 Continued: (g) Binary Pebbles (gl) Synthetic

Binary Pebbles (h) Binary Sand (h1l) Synthetic Binary Sand
(i) Binary Screen (il) Synthetic Binary Screen
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LN

L L1

Elgure 29 continued: (i)Binary Water (i1)Synthetic Binary
Water (k) Binary Wood Grain(1l) (k1) synthetic Binary Wood
Grain(1l)e (LJ Binary Wood Grain(2) (L1) Synthetic Binary

Wood Grain(2).






Se6e2 Binomial Texture Matching

The same basic data set of Brodatz [17] textures was
used 1in the binomial matching experiments as was used in
the binary experimentse The pictures were quantized to
have eight gray Llevels usina histogram equalization.
Howevery during the estimation of the third-order Markov
Random Field parameter sety, it was found that far too many
cells were empty or contained only a sinale member when
the 1image size was 64 by 64. Thereforey a 128 by 128
image size was used for both estimation and matchinge In
all casesy a third-order model was estimated and used to

generate the synthetic texturese.

Numericallyy the Markov Random Field parameters of
the estimated binomial textures are very similary which
accounts for the similar appearance of the generated
texturese. He have omitted some of the obvious failures:
Watery Wood Grain (1)y Wood Grain (2)y and Pebblese When
considered as an eight-gray level image, these textures
take on a distinctly {inhomogenous appearance. At this
sizey they Llook Like pictures of obfectsy whereas the
generated textures Look Like a fine-grain field. The
Markov Random Field always results 1in a homogeneous

covering of the images which cannot result in a blotchy
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image wunless the parameters are extremes. As an exampley
the fur picturesy Figure 30a and 30aly show the result of

an inhomogeneity in the image.

The other clear faflure is the Bricks picture. As in
the binary casey the Bricks image has a regular structure.
The Markov Random Field can only detect a hint of a
vertical structure. This 1s shown ¥n Figures 30b and

30b1.

Ceiling tiley Corky Grassy Papery and Sand are
handled adequatelys Missing are the lLarge black holes in
the synthetic ceiling tile picturey but there are some
dense black patchese. The distinctly three-dimensional
appearance of the the handmade papery admittedly a tactile

propertyy is not captured either.

The Screen texture has the general Lline-like quality,
but Llacks the straightness present in the originale. This
could be correctedy but the estimated parameters of the
screen texture do not support the further inhibition
needed to straighten out the Lines and keep them narrow

rather than fuzzy.
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The model seems to be adequate for duplicating the
micro-texturesy but 1is dncapable of handling strong
regularity or cloud=-Llike inhomoageneitiese These
experiments should be taken as an exploration Bf the
Limits of a purely statistical approach to texture without
any a priori knowledge at all. For exampley if we knew
that the Bricks picture was supposed to have rectangles of
a certain size and orientationy then we could start with
them as an outline and then fill in the rectangles with a

Markov Random Field.
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o:

Real and Synthetic Eight Level Textures (a) Fur
thetic Fur

(b) Bricks (bl) Synthetic
ng Tile (cl) Synthetic Cefling Tile

Bricks
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ic Screen

(gl1) Synthetic Sand
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Se7 Summary

We have explained the estimation procedure for the
Markov Random Field parameterse Hypothesis testing was
presented as a method of objective evaluation of the fit
between a texture model and a texture. We computed the
fit between Markov Random Field textures and a collection
of samples from the Brodatz texture album C[173.
Experiments in the generation of textures that matched
real 4images were performedy with some successes and

explainable failurese






CHAPTER 6. CO-O0CCURRENCE MATRICES

6e1 Introduction

Features based on co-occurrence matrices continue to
play an important role in texture analysis [241y [88]e In
a model-based approachsy we would Like to determine the
distribution of these features as a function of the model
parameterse If we knew these distributionsy then we
couldy at Lleast in principley determine the discriminative
capability of classification algortithms based on the
co-occurrence features.s As an exampley let W(1) and W(2)
be two distinct parameter vectors for a texture model.
Suppose further that the meany S = E[Z:X(1)Jo is the same
for textures from either the class defined by W(1) or the
one defined by W(2)e. Then any classification scheme based
solely on S would be wunable to discriminate between

textures from the two classese.

A study along these Lines was performed by Conners
and Harlow £241. They created textures using a
one-dimensional Markov processe The Markov process
specifies the probability that a pixel with gray Llevel 1
follows a pixel with gray level j in a rowe The rows of

the image are uncorrelateds This texture model provides a

142
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method of computing co-occurrence matrices from the
transition matrix of the process. Texture algorithms can
be compared on their capability of distinguishing textures

with different transition matricese.

The difference between the above study and oprior
comparative studfes [106] is that Conners's study did not
compare the texture analysis algorithms on the basis of
their performance on a texture databasey but rather
predicted their performance on texture classes defined by
model parameterse Empirical studies certainly are of
interest to users of texture analysfs algorithmsy but they
guide 1in the selection of textural recognition algorithms
only insofar as the results of the empirical study can be

generalized to new data.

Our purpose in this chapter is to begin a theoretical
calculatfon of textural feature distributions based on
Markov Random Field parameters. We limit our attention to

the case of binarysy first-order Markov Randqm Fieldse
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6.2 Joint Probability Formulation

This section defines the variables we need to
calculate the co-occurrence matricess We assume that the
binary variables take values in {=1y12. Following
Bartlett [7]y we have the following expression for the

joint probability mass function:

(6e1) p(X) = Zexp( =aS(X) =Y(1IUL(X) = Y(2)U2(X))

where
\
(662) S(X) = XCrys)
74
(rys)
\
(6e3) UL(X) = X(rys)X(r=1ys)
74
(rys)
b
(6e4) U2(X) = XCrys)X(rys=1).
/
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The Lattice is assumed to have a periodic boundarye.

The quantity Z 1in equation (6e.1) 4s called the
partition functione It depends on ay Y(1)y and Y(2) and
is a normalizing constant .so that p(X) 4s a valid
probability mass functione

The quantity ECS(X)] 4is called the mean of the
processe If the value of o is zeroy then ECS(X)] is also
zeroe This is not hard to show. For each coloring X, let
=X denote the negative of Xy in the sense that the value
of each point X(rys) of the Lattice L is reversed in signe
Then S(X) = =S(-X)y but ULI(X) = U1(=X)y and U2(X) =
U2(-X)e Since the quantity «a is zeroy we see from

equation (6.1) that p(X) = p(-X)e Hencey we conclude that

\
ECS(X)] = S(X)p(X)
/
X
\
= (S(X) +S(=X))p(X)
/
X with

S(x)>0
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The case of o = 0 is of interest in image processing
applications. As mentioned earliery we usually reduce the
gray scale from some high level Llike 256 to 16 or Less in
such a way that the numbers of pixels present at each gray
Level are equal. If we reduce the gray scale to two
Levelsy the observed S(X) should be <close to 0 in the

{-141) formulation.

If we transform the variables so they take values in
{091} 1dnstead of {-141}y then the conditional probability

parameters of section 3+5¢1 can be written as:

(645) a = 22 = 4Y(1) = 4Y(2)

b(lyi) = 4Y(i)y § = 1y 2.

When @ = 0y a = =b(1lyl) - b(1y2) (in the isotropic casey
we have a = =2b(lye))e This means that an anisotropics
first order texture appears to have three parameters: a,
b(1l91)y and b(142)e If Wwe force the mean to be Nx*2/2,
iees ECS(Xx)] = 0 in the {-1y1} formulation, then there
are reélly only two parameters: b(ly1) and b(142)e
Strauss [97] properly considers the a parameter to be a

"nuisance" parametery while the b(jsk) parameters control
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the clustering in the Lattice.
6¢3 Join Count Calculations

This section derives the formulas for the join count
statisticsy which in turn imply the co-occurrence
matricese e assume that a=0y Jeeso the equalized

histogram casees

The gquantities Ul and U2y as defined in equations
(663) and (6+4)y are the join counts. By deffnition, the

bivariate cumulant generating function for Ul and U2 is
K($(1)yd(2)) = Log(ECexp($(1IU1 + 4(2)U21).

Let Z( (1)y (2)) denote the partition function for the

case a=0. The peculiar form of the joint probability

mass function in (6.1) implies that

(6e6) K(P(1)y d(2)) = LogZ(Y(1)yY(2))

= LoaZ(Y(1)=9(1)y Y(2)=4(2)) e
From equation (6+6)y we obtain

(6.7) ELU1] = (BK(¢(1)'¢(2))/3¢(1))WH)=00):0
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= 3logZ(Y(1)yY(2))/3Y(1)
and

(6.8) ECU2] = 3logZ(Y(1)yY(2))/3Y(2)e

It ¥s thus possible to compute the expectation and
moments (or even approximate the distribution by a
cumulant expansion) of Ul and U2. In this approachy we
require knowledge of the partition function Z. Onsager
[79] calculated the exact value of Z for the case a = 0.
This is 1is only case for which analytical results are
available.s The somewhat unwieldy exact Z can be closely
approximated by the more compact form given by Kac and
Ward [61]s When N is larée and eveny and the Lattice has

a periodic boundary then we can write

(6e9) LoaZ(Y(1)yY(2)) = N(cosh(Y(1))+cosh(Y(2))

+ LocHlrys)

where
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H(rys) = (L+x*x*2) (1+y**2)
+ 2y(x**2=1)cos(2nr/N)
+ 2x(yx*2=1)cos(2ns/N)

and x = =tanh(Y(1))y y = =tanh(Y(2)).
The expression for the expectation of Ul or U2 is

(6410) ECU%] = Ntanh(Y(1))

\ \ 1 aHCrys)

/ HCrys) aYti)

and the variances are given by

(611) VarfUi] =

Nsech Y (1)

\ \ 1 3H(rys) 1 3HCrys)

+ -

/ / Hirys) aY(i)  H2Crys) 3Y(i)







We are now in a position to compute the co-occurrence
matricese. He need to define the join counts for the case
of variables in the form {0y1}s Each Lattice point X(rys)
has a Left-hand neighbor X(r=1ys) and a Llower neighbor
X(rys=1)y assuming the boundary is periodic. We can then
define the following set of numbersy in a manner

consistent with current practice [801]:
BB1 = number of times a black pixel has a black Left-hand
neighbore.

WW1l = number of times a white pixel has a white left-hand

neighbore

BW1 = number of times a black pixel has a white Left-hand

neighbore

WB1 = number of times a white pixel has a black left-hand

nefghbore.

The quantities BB2y WW2y BW2y and WB2 are defined in
the same way except that "left-hand" is replaced with

"Lowere" It is clear that on an N by N Lattice we have

(6412) BBl + WW1 + BW1 + WB1 = N#»x2
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and

(6413) BB2 + WW2 + BW2 + WB2 = N#**2

The co-occurrence matrices can be expressedy at Least

for displacements of <(0y1) and (190)y in frequency form

from equations (6.12) and (6.13). On a torusy the (-1,0)

and (190) co-occurrence matrices are the same. Their

common form is:

(6e14) C(1y0) =

(6e15) C(0y1) =

To compute these quantities from Ul and U2y observe

that
(6415) Ul = BBl + WW1 = BW1 - WB1l
(6e16) U2 = BB2 + WW2 = BW2 - WB2.

Combining equation (6¢12) with (6.15) and equation (613)

with (6.16)y we obtain
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(6617) BBl + WW1 = (N#**2 + U1)/2

(6418) BB2 + WW2 = (N**2 + U2)/2.

The final step in the computation rests on two
assumptionse The first assumption is that the number of
BB joins is closely approximated by the number of WW
joins. Intuitivelyy, this means that 1f the black pixels
are clusteredy the white pixels must also be clusterede.
The following propositfon and 1ts corollary establish
thaty from a Markov Random Field point of viewy the

clustering parameters for white and black are the same.

Suppose a first-order Markov Random

Ffeld has conditional parameters ay b(1l1y1)y and b(192)e
Then the Markov Random Field obtained by reversing each
coloring of each realization has parameter set

{a*yb*(191)9b*(142)}y where

ax = =a = 2b(1ly1) = 2b(1,2),
b*(191) = b(lyl),
b*(142) = b(ly2).

Proof: Let p denote the conditional probability
distritution of the original field and p* the conditional
probability of the field obtained by reversina

realizationss Let S*(1y1) and S*(142) denote the neighbor
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sums in the reversed Lattice (the quantities {S(iyk)} were

defined in section 3.5+.1)e Then wWe havey

PIX=0|S(191)9S(142))

= P*(X=1|S*(191)=2=-S(191)9S*(192)=2=S(192))e

This meansy following equations (3.11) and (3.12)y that

1

(1 + exp(a + b(1y1)S(191) + b(192)SC192))

expla* + b*(19y1)(2=S(191)) + b*(192)(2-S(1,2))

1 + expla* + b*(191)(2-S(1y1)) + b'(le)(?‘S(l'Z)).
After some simplificationy we obtain the relation that
(6.19) 0 = a *: b(191)S(191) + b(192)S(1y2)

+ a* 4+ b*(191)(2=-S(191)) + B(152)(2=5(142))

Equatfon (6419) actually represents nine equations
depending on the three values of S(141) and the three
values of S(192)e The only consistent solution is ax = a
= 2b(191) = 2b(142)y b*(1y1) = b(1yl)y b*(192) = b(1ly2)e

o}

As an immediate consequence, in the equal fzed

histogram case we can be more specific:
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Corollary 6e1: If a binaryy first-order Markov Random
Field has parameter a=0y then the parameters of the
reversed field are the same as the parameters of the

original field.

Proof: a* = =a = 2b(ly1) =2b(142). But in the

equalized histogram case a = = b(1ly1) = b(1y2) so a* = =-a

The second assumption needed to complete the
computation 1s that the number of BW joins is closely
approximated by the number of WB foins. Intuitively, this
means that the <conditional probability of a black pixel
having a white neighbor is the same as the conditional
probability of a white pixel having a black neighbore.
This is a consequence of the egual clustering between
black and white pixelsy along with approximately equal

numbers of white and black pixels.

Combining all of this, we obtain the final version of

the co-occurrence matrices in frequency form:
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[ N**2 + Ul N**2 - U1 1
4 4
(6420) C(1,0) =
N**2 = Ul N**2 + Ul J
L 4 4
rN#*2 + U2 N#*2 = U2 7
4 4
(6¢21) C(0y1) =
N**2 = U2
L 4 .

6e4 Experimental Results

In order to test the adequacy of the approximatfons
inherent in equations (6420) and (€.21)y we _simulated a
number of Markov Random Fields with various parameters and
measured the correspondence between the expected and

observed co-occurrence matricese

The first set of simulations fnvolves 200 samoles of
64 by 64 1isotropic Markov Random Field textures with
b(lye) parameters in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>