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ABSTRACT

MARKOV RANDOM FIELD

TEXTURE MODELS

BY

George Robert Cross

We consider a texture to be a stochastic, possibly

periodic, two-dimensional image field. A texture model is

a mathematical procedure capable of producing and

describing a textured image. A detailed account of the

current literature about texture models is given, along

with a discussion of the intuitive notions of texture.

We explore the use of Markov Random Fields as texture

models. The binomial model, where each point in the

texture has a binomial distribution with parameter 9

controlled by its neighbors and "number of tries" equal to

the number of gray levels, was taken to be the basic model

for the analysis. This represents the first use of the

binomial model for image analysis and the first

application of the binomial model for any purpose.



 

A method of generating samples from the binomial

model is given followed by a theoretical and practical

analysis of its convergence. Examples show how the

parameters of the Markov Random Field control the strength

and direction of the clustering in the image. The power

of the binomial model to produce blurry. sharp, line—like.

and blob-like images is demonstrated.

Natural texture samples were digitized and their

parameters were estimated under the Markov Random Field

model. The use of a hypothesis test' for an objective

assessment of goodness-of-fit under the Markov Random

Field model is a key feature of this investigation.

Overall, highly random textures fit the model well.

The estimated parameters of the natural textures were

used as input to the generation procedure. The synthetic

micro-textures closely resemble their real counterparts,

while the regular and inhomogeneous textures do not.

Co-occurrence matrices of binary, first-order Markov

Random Field textures were computed as a function of the

field parameters. There is a good correspondence between

the predicted matrices and the observed matrices on

numerous samples.



Ala realistic_appraisal of the Markov

“f as a texture model is accompanied by a

for future study.
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CHAPTER 1. INTRODUCTION

Image modelling is a central part of an image

understanding system. It is also the core of classical

image processing: image restoration [6]. and

two-dimensional filtering [423. The subject of image

modelling involves the construction of models or

procedures for the specification of images. These models

serve a dual role in that they can describe images that

are observed and also can serve to generate synthetic

images from the model parameters. We will be concerned

with a specific type of image model. the class of texture

models. Understanding texture is an essential oart of

understanding human vision.

In this thesis. we will explore the use of a Markov

Random Field model for the generation and analysis of

textured images. The goal of the research is to produce a

texture analysis and synthesis system which will take as

input a stochastic texture. analyze its parameters

according to the Markov Random Field model. and then

generate a textured image that both resembles the input

texture visually and matches it closely from a statistical

point of view. This can be considered a kind of Turing

test for image generation [1003. in that the proof of the



viability of the system will be to produce textures that

cannot be distinguished by humans from their real

counterparts. We will not perform a rigorous

psychological study of the correspondence. but will

concentrate on the statistical evaluation of the goodness

of fit of the observed texture and the generated texture.

1.1 Intuitive Notions of Texture

We mention a study by Tamura et al. [983 which

attempted to find statistical features corresponding to

the usual attributes of texture. Although the study had

limited success. the textural attributes identified serve

as a useful framework for the discussion that follows.

The study delimited six attributes: coarseness. contrast.

directionality. line-likeness. regularity. and roughness.

Coarseness refers to the size of the cells (areas of

near equal brightness) present in the picture. A fine

grain picture has small cells. whereas a coarse picture

has large cells. Large areas of equal brightness are

significant visual cues.
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The contrast of a picture is determined by local

Ivariation in gray tone. A low-contrast picture nay have

all the gray scale values present. but has few transitions

from near black to near white in object boundaries.

Before proceSsing a picture. we often normalize the

contrast and modify its histogram so that an equal number

of pixels is present at each gray level. Moreover. the

gray scale is then adjusted so that G levels occur at

equally spaced intervals from 0 (black) to 255 (white).

Such a transformation distorts the natural contrast in the

image and negates the value of this feature.

Directionality refers to whether we perceive the

trend of the image to be vertical. horizontal. skewed. or

non-directional. The bricks picture. Figure 1. is clearly

directional. while the gravel image. figure 2. is

non-directional.

Line-likeness refers to the presence of lines in the

picture. It is contrasted to a blob-like effect. where

there are clusters of equal brightness and of circular

shape. Some images have a mixture of both. Figure 3 is

an image of Venetian blinds and has a definite line-like

structure.
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Regularity refers to whether the image is highly

random or not. An image of a rag rug. Figure 4. is

clearly regular. whereas the picture of gravel. Figure 2.

is irregular.

Finally. roughness describes a tactile attribute of

texture rather than a visual one per se. But a rough

surface is also visibly rough. and real pictures show

surface contours that we would expect to feel rough if we

could touch them.

1.2 Texture Formation Paradigms

There is no universally accepted definition for

texture. Part of the difficulty in giving a definition of

texture is the extremely large number of attributes of

texture that we would like to subsume under a definition.

Moreover. some of these attributes are aooarently

contradictory. The first definition is that a texture is

a periodic. stochastic gray-scale image. Examples of such

textures include cloth. tiles. and bricks. The second

definition of texture is any stochastic gray-scale image.

This includes such textures as grass. sand. and clouds.



Most texture research can be characterized by the

underlying assumptions made about the texture formation

process. There are two major assumptions. and the choice

of the assumption depends primarily on the type of

textures to be considered in the study. The first

assumption. which is called the placement rule viewpoint.

was explained by posenfeld and others [86]. [111]. In

this model. a. texture is composed of small primitives.

These primitives may be of varying or deterministic shape.

such as circles. hexagons. or even dot patterns. The

textured image is formed from the primitives by placement

rules which specify how the primitives are oriented. both

on the image field and with respect~ to each other.

Examples of such textures include tilinos of the plane.

cellular structures like tissue samples. or the picture of

bricks. Figure 1. Notice that no two bricks are

identical. but there is a uniformity to their placement.

There is a random aspect to the brick picture in that the

shading of the individual bricks varies.

The image of gravel. Figure 2. is not appropriately

described by a placement model. The key feature of this

image is the coloring and distribution of the cells (areas

of near-equal brightness). The primitives are very random

in shape and cannot be easily described. The second



viewpoint regarding texture generation processes involves

the stochastic assumption. We have already seen that the

placement 'rule paradigm for textures may include a random

aspect. In the stochastic point of view. however. we take

a more extreme position and consider that the texture is a

sample from a probability distribution on the image space.

The image space is usually an N by N grid and the value at

each grid point is a random variable in the range

{091100096-1}0

1.3 Vision Research about Texture

In this section. we will describe what vision

researchers have found to be the important constituents of

human texture vision. Although machine perception need

not be an emulator of the human visual system. the success

of human vision in discriminating textures merits

attention. In addition. since we are interested in

performing automatically tasks that are currently done by

humans. such as radiographic screening. we should be

guided by the cues and sensitivities of the human visual

system.



1.3.1 Julesz' Work on Texture

Julesz' investigations of texture span twenty years.

Besides the study of texture perception itself. he has

studied texture's role in binocular or stereoptic

perception. motion perception. and color perception [573.

He will examine only the work on texture itself.

Early in his work. dulesz decided that it is

appropriate to examine perception of textures without

visual cues. He uses random dot patterns controlled by

analogs of one-dimensional Markov processes and Gaussian

processes. Because of this. his work has limited

applicability to textures generated according to placement

rule schemes. His work is also concentrated on "pure

perception." which means perception in the absence of

higher-order scrutiny. When he speaks of "effortless

discrimination." he refers to the process of deciding

whether two textures are the same after seeing them for

only 100 milliseconds. If they are seen for a longer time

than that. higher-order conceptual processes take over.

One of the key features that he identified in texture

perception is cluster formation [56]. This is related to

image coarseness in the sense mentioned earlier in section
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1.1. He found that the human visual system acts as a

slicer or thresholding device in clustering intensity

values. For example. if the image contains the gray

levels 0. 1. 2. and 3. then it is not possible for

clusters to form consisting of the gray level sets {0.2}

and {1.3}. Further. cluster detection is central to the

entire perceptual process. from the lowest level

aggregation up to the higher order mental processes.

The aspect of dulesz' work that has captured the most

attention is the conjecture that the human visual system

cannot effortlessly discriminate textures that agree in

their second-order statistics [54]. [55]. E583. E59].

[60]. The first-order statistics are simply the

proportions of the pixels at each gray level. The

proportions control whether we see the picture as a black

object on a white background or vice versa. Julesz has

found that we can effortlessly perceive a first-order

difference between textures within fairly narrow ranges

[54]: this work is related to the classical figure-ground

problem and numerous optical illusions [35]. The

second-order statistics involve the joint probability that

a randomly thrown rod of length r will fall on the image

in such a way that one of its endpoints lands on a pixel

of color i while the other lands on a pixel of color j.
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Similarily. third-order statistics have to do with

triangles and the configuration of gray levels at the

vertices after a similar random experiment. The

conjecture that the second-order description (which of

course implies the first-order statistics) determines our

discrimination ability has held up remarkably well with

only a few classes of unusual textures that confound it

[58].

Another aspect of texture that dulesz investigated

[57] is that periodicity of a texture is only observable

if the frequency is large compared to the size of the

picture. For example. it is all but impossible to notice

that Figure 5a consists of the same texture repeated four

times. whereas it is immediately obvious that Figure 5b

consists of repetitions of the same random structure. The

difference is that Figure 5b consists of sixteen

repetitions of a 16 by 16 picture in a frame size of 128

by 128. whereas Figure 5a consists of only four

repetitions of a 64 by 64 picture in the same frame size

of 128 by 128.

Julesz' work has been extended by a number of

researchers. notabiy Pratt ef al. [83]. It is now

generally assumed that- the second-order statistics are
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Figure 5. Repetitions of Random Textures: (a) Four

repetitions (b) Sixteen repetitions.

sufficient in a pattern recognition environment to

discriminate between textures. There is still much work

to be done in the sense that the second-order

probabilities must be combined in some way to provide

features for recognition of the textures. The previously

discussed work of Tamura et al. [98] is such an attempt.

as is the continuing efforts of Conners and Harlow [23] to

define a texture recognition feature set from the

second-order statistics. It is possible to use

third-order statistics in texture discrimination even

though the human visual system does not appear to make use

of them. The difficulty lies in attempting to estimate
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the third-order parameters given a relatively small

texture field. such as a field of size 64 by 64.

Moreover. the storage requirements for maintaining

frequency statistics on the large number of possible

configurations are enormous.

1.3.2 Marr's Work on Texture Vision

The ultimate goal of Marc's research. is a

comprehensive computational theory of vision. Such a

theory can be implemented with a computer. which will. in

fact. emulate the human visual system. His plan revolves

around the "primal sketch" E68]. [693. The primal sketch

is produced from the original intensity values received at

the retina.

The primal sketch consists of measurements on the

strengths and characteristics of the following primitives:

edges. lines or bars. and blobs. These primitives are

quantified further by the predicates of orientation. size

(length. width. diameter. or aspect ratio if appropriate).

contrast. position. and terminal points. This is in

general agreement with the work of Caelli and dulesz E18].

[19] in describing the processing at early levels in the

visual system.
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Marr asserts that once the primal sketch is computed.

it can then be analyzed to find objects or regions of

interest. This is done by aggregating the primitives

which are close in some sense. We may thus characterize

his overall approach as "bottom-up." in the sense that we

do not begin with high-level knowledge of the scene or

preconceptions of the objects present. The recognition of

objects using the primal sketch model is based on using

the texture information to define the objects. rather than

considering the texture to be noisy background.

1.4 Applications of Texture

There are essentially four areas of image processing

in which texture plays an important role. We offer this

discussion as justification of our interest in the

production of synthetic textures. As a side benefit. such

generation procedures may help in furthering our

understanding of human perception. According to Julesz

C5739

... to solve the problem of visual texture

generation of familiar surfaces is important for

both theoretical and practical uses. I can only

hope that in the near future scientists will

learn to clarify the enigmatic problem of

familiar textures.
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(i) Classification_

Suppose. for example. that we have a series of

pictures of mineral samples that we would like to classify

into groups based on the type of mineral represented. The

true class of some training samples is generally known and

could be provided by geologists. Such images have a

special structure characteristic of the mineral. but the

structure is not deterministic like a tiling. We would

like to specify some features of the image in order to

classify it. There are obvious differences in

distribution of grain size. gray tone. and even color.

Studies of this type have been done by Haralick [46] on

sandstone samples and by Weszka et al. [106] on terrain

samples.

(ii) Image Segmentation

Segmenting an image means dividing it into

homogeneous regions such that each region has some

significance. Typically. the regions are connected and we

have some a 951951 idea of what we are looking for or what

might be present in the image. For example. we may wish

to segment a LANDSAT image into land-use categories by

means of texture analysis. Nevatia [76] uses the
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assumption that the objects of interest have strong

boundaries and the textured background is composed of

short line segments to extract the boundaries of a small

toy tank from the background of grass. Thompson E°93 uses

a generalized edge operator to define texture borders and

is successsful in finding the boundaries between two

regions with differing textures. A linear approach to

segmentation of textured regions is taken by Deguchi and

Morishita [26]. which we will discuss in detail in chapter

2.

(iii) Realism in Computer Graphics

Computer graphics differs from image processing in

that its goal is the production of images frOm a

description. whereas image processing is concerned with

the modification and interpretation of real-world images.

Although high resolution. color. raster-graphics displays

capable of producing realistic images are available. the

existing algorithms cannot produce the desired realism.

Texture gives important information on the depth and

orientation of an object. besides being an intrinsic

feature of realistic objects [643. [78]. A number of

approaches have been taken. mostly related to mapping a
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flat textured image onto the skeleton of a

three-dimensional object and then displaying a perspective

view. Catmull E20]. [21] describes a procedure for

wrapping photographs of texture onto objects to produce

textured surfaces. Blinn [14]. [15] uses a patch of

texture to tesselate the image. Csuri et al. [25] extend

the basic patch idea to include the specification of

structure for the patch in terms of reflectance values at

each pixel. This allows more realistic shading and

permits the simulation of the appearance of the textured

patch under the generated illumination. They intend to

extend their model to include some randomness in the

patches. Dungan [293 has coupled height data from Defense

Mapping Agency maps with an overlay identifying terrain

segments (trees. lakes. etc) to simulate the appearance of

the ground scene to a viewer in an airplane.

As the applications of computer graphics grow. the

importance of an understanding of texture will also

increase. In fact. the generation of natural textures

will likely play a more important role than the

recognition of textures.
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(iv) Picture Encoding

The final area where texture generation and analysis

has application is in picture. encoding. If we can

generate a texture with a few parameters that is

indistinguishable from an observed texture. then we have

effectively compressed the enormous amount of data in the

original texture to the parameter vector. By analogy.

this is tantamount to knowing an algorithm for the

generation of normal deviates rather than carrying an

enormous pre-printed book listing millions of samples from

a normal population.

Such a procedure has application to the previously

mentioned graphics problems in that we could artificially

generate background scenes from descriptions defined by

textural parameters. Such scenes are presently generated

by a hybrid graphics and image processing procedure of

mapping photographs onto the graphics skeletons.

Some work has already used texture synthesis in the

pure information theory context of reducing the total

number of bits needed to store the picture. Modestino and

Fries [75] encode a picture according to a poisson line

model. while Delp et al. [27] use a Gaussian model. In
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both cases. the image is partitioned into small squares.

The texture of each square is estimated and the few

parameters of the texture are stored instead of the 256

gray levels of the observed texture. Since the picture is

reconstructable by the same model that was used to

estimate it. the picture can be approximately

reconstructed square by square from the estimated

parameters.
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1.5 Organization of the Thesis

Chapter 2 contains a review of texture models that

have appeared in the literature and further specifies the

levels of texture modelling. Chapter 3 describes the

’specifics of the Markov Random Field theory needed to

understand the models that we use in generating and

fitting textures. Chapter 4 details the generation

procedure for obtaining a texture sample from a

distribution specified by a parameter set. In chapter 5.

we give our results in fitting a variety of models to a

sample of textures from the Brodatz texture album [17].

Chapter 6 gives theoretical results in deriving vtextural

features from the model parameters. such as the

co-occurrence matrices for Markov Random Field textures.

Finally. chapter 7 gives our conclusions and directions

for future research.



CHAPTER 2. TEXTURE MODELS

2.1 Introduction

By a model of a texture. we mean a mathematical

process which creates or describes the textured image.

The goal of texture modelling is the description of the

image; real textures can be compared to generated textures

as a test of the validity or utility of the model. The

test can take the form of a psychological study or of a

statistical assessment of goodness of fit.

A secondary goal of texture modelling is

classification of textures. The numerical parameters of

the model can be used as features to classify the texture.

There is a distinction between model-based studies and

attempts to find good features for the classification of

textures. In a model-based environment. we have the

capability to produce. for example. textures that match

observed textures. In a feature-based texture analysis.

the textural features are measured without an ideal or

representative texture in mind.

21
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Texture modelling can be approached at three levels.

The highest level. which we call} the knowledge

representation level. uses our understanding of the

physical scene in order to describe the textured image.

For example. consider the set of textured images of wood

grain observed in samples {T(e}). where 9 is the angle at

which the cut was made in the tree to form the wood

sample. Because trees grow in concentric rings. the ideal

appearance of such samples T(9) varies continuously from

an image of concentric circles (when 9 is O) to ellipses.

and finally to parallel lines (when 9 is 90 degrees).

This ideal image is. of course. corrupted by noise.

degraded by irregularities in the circles. and. perhap.

distorted from the expected image by the presence of

knots. We do have. however. an ideal image for specifying

membership in the class defined by 9. Such a model was

used in automatic drafting [1083.

Once we have this ideal model. the classification

problem can be attacked. In the present example. the

classification problem has been reduced to the relatively

trivial one of circle and line detection along with

estimation of the aspect ratio of the ellipses. Thus. our

structural description of the expected image permits us to

identify observable features. 0n the other hand. the
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knowledge used in one domain of images may not be applied

easily to other areas. Models constructed for the texture

of corn fields from satellite photographs may not be of

much use in constructing a model for the appearance of

wheat fields or even corn fields grown in other countries

under different cultivation regimes. The success of the

knowledge representation approach is limited by our

capability to generalize.

The bottom level of texture modelling is called the

feature-based level. In fact. it is possible to make a

case for not calling feature-based. studies modelling at

all. We assume that the textures are samples from some

unknown probability distribution over a lattice or grid L.

representing the image. which has dimension N by N. The

objective is to find features that correctly classify a

texture into one of the texture classes represented by a

set of different probability distributions. A survey of

the well-known and commonly used texture features that

have been investigated appears in a recent report [47].

Texture features include the image autocorrelation

function [62]. which has been found to have visual

significance. An influential paper by Haralick [45]

describes the use of features computed from the gray level
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co-occurrence matrices. The (r.s) entry in a

co-occurrence matrix is the probability that a point of

the image (i.j) has gray value r while point (k.l) has

gray value 5. where k = i + dx. and l = j + dy. The

increments dx and dy are constant over the individual

matrices and we compute a set of matrices indexed by the

increments (dx.dy). If G is the number of distinct gray

levels in the image. then the co-occurrence matrices are

of size G by G.

Haralick [45] defines some 14 features based on the

co-occurrence matrices. We mention three of them. Let R

be the number of pairs of grid positions that were used to

compute the co-occurrence matrix C with entries c(i.j)

corresponding to the displacement (dx.dy). The angular

second moment feature fl is defined by

6-1 6-1

\ \ 2

\ \ / c(i.i)\

f1 = ---------

/ / \ r /

/ /

and measures the homogeneity of the image. Large values

of f1 indicate the presence of many dominant gray level

transitions in the image. The contrast feature is given
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by f2

G-1

\ 2 \ 2

\ n \ / c(i.j)\

f2 = -----""

/ / \ r /

/ /

n = 0 li-3l=n

and is a measure of the local correlation. Small values

of f2 correspond to images with little local variation.

Finally. the correlation feature f3 measures the linear

dependence in the image:

6-1 6-1

\ \

t \ \

f3 = (ijc(i.j)/R) - Uny

/ / -------------------

/ / SxSy

i = 0 i = 0

where Ux and Uy are the means and Sx and Sy are the

standard deviations of the marginal distributions

associated with c(i.j)/R. The feature f3 is large if the

correlation in the direction expressed by (dx.dy) is

large.
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Several studies have shown that features based on

co-occurrence matrices perform reasonably well in

classifying some textures. E106]. E231. Conners and

Harlow [241 have theoretically evaluated co-occurrence

features in distinguishing Markov scan textures. Other

features that have been used with some success include

gray level run lengths E37]. edge per unit area [861.

E87]. extrema in gray scale height [86]. and encoded

maxima along scan lines [743.

2.2 Stochastic Texture Modelling

We now turn our attention to the middle level of

texture modelling. the stochastic process approach. We

use the term stochastic process in a loose sense to

describe a random procedure used to generate an image.

There is some inevitable overlap between the stochastic

process approach and the knowledge representation point of

view since we try to find a stochastic process for the

modelling of the image that is physically meaningful and

related to the textures which we are modelling. We use

more prior information about the texture in the stochastic

process approach than in the feature-based approach. In

the stochastic process approach. brightness levels or

pixel gray values are the random variables. The level
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X(i.j) at some point (i.j) is not independent of the

levels at other points in the image. In fact our

principal concern is about the correlations between the

{X(i.j)}.

This section is subdivided into discussions about the

major classes of texture models that have appeared in the

literature. A short description of each type is given.

along with some indication of the class of textures that

can be handled by the model.

2.2.1 Quantized Continuous Models

Suppose that we have M points in the unit square. We

impose an N by N grid on the unit square and then count

the number of points that fall in each grid square. Such

a grid can now be quantized by a scale change to form an

image in the usual sense. with a gray scale in the range

from 0 to 6-1. The value of G can be either the maximum

number of points that fall into a grid square or we may

choose G a pgiggi and then use a quantizing function to

map the accumulated grid counts to levels from 0 to G-1.
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A wide variety of continuous_processes. including the

multivariate normal distribution. are available to form

such images. 0n the other hand. much greater generality

can be achieved by the use of spatial processes as

explained by Ripley £841 or Matern [701.

Following Ripley [84]. a realization of a spatial

process is a countable set of points without limit points.

For each measurable set A. let Z(A) be the number of

points of a realization that fall in the set A. If A is a

bounded set. then Z(A) is finite. The process is

described by the set of random variables (Z(A)! A is a

bounded Borel set}. If the process is second order.

translation invariant. and rotation invariant. then Ripley

calls the process a 'model'. These latter assumptions are

for mathematical tractability. Ripley remarks that the

first and second moments of a spatial model should be

sufficient to distinguish realizations and justifies this

by the work of Julesz [54]. who found that. for the most

part. textures with the same second-order statistics were

indistinguishable by human vision (see chapter 1).

The continuous models of Ripley [84] can be broadly

delimited on a scale of clustered. random. and inhibitory.

Let U be a set of unit area. The intensity of the process
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is called x and we assUme that EEZ(U)J = x . For a

given A. we would expect a concentration of nearest

neighbor distances for a clustered process at levels far

below that for a random (i.e. Poisson) process.

Similarly. an inhibitory model has a concentration of

nearest neighbor distances far above that expected for the

random process. One kind of inhibitory model is called

hard core. in that we do not allow any points less than a.

distance 2r apart. where r is a positive parameter of the

process called the inhibition distance.

The discretization of continuous processes as image

models of texture has not been explored except for a brief

mention in [90] and some simulation in [11]. Some results

in discrete analogs of continuous processes appear in

Rogers' monograph on retail trade [85]. but no direct

application to images was made.

2.2.2 Time Series Models

McCormick and Jayaramamurthy [66] have developed a

model of texture based on a time series forecasting

technique. A time series is. of course. a one-dimensional

sequence of random variables indexed by a parameter which

is usually associated with time. To make such a sequence
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into an N by N image. the time series is broken up into

pieces of size N and then stacked as rows of an image.

McCormick and dayaramamurthy use the auto-regressive

integrated moving average process (ARIMA) to simulate

textures. The parameters are estimated from real

textures. They exhibited some success in generating

textures characterized by long streaky lines such as the

cheesecloth picture in Brodatz [17]. image 0105.

The applicability of this model to isotropic

textures. i.e.. ones with random or irregular globular

clusters. is dubious. It is. however. an appropriate

model for line-like textures. as they are able to satisfy

the criterion expressed in Chapter 1 that the texture

synthesis process be successful in the production of an

image that the viewer might think was a real texture.

2.2.3 Fractal Textures

The term fractal was coined by Mandelbrot [67] to

describe point sets or stochastic processes whose

Hausdorff dimension exceeds their topological dimension.

The topological dimension of a point set usually

corresponds to our intuitive notion of dimension but
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differs for certain pathological cases. As we should

expect. the topological dimension of a countable set of

points is 0. of a line is 1. and of a plane is 2. A

discussion of the definition and the development of the

theory of topological dimension is given by Hurewicz and

Wallman [51]; a more modern treatment with considerable

detail on special cases of dimension in abstract spaces is

given by Pears C81]. The Hausdorff dimension of a set is

always at least as large as its topological dimension.

Sets that are extremely irregular. such as

nowhere-differentiable curves and surfaces. have Hausdorff

dimensions which exceed their topological dimensions. For

example. the Cantor set has Hausdorff dimension equal to

lOGZ/log3. though its topological dimension is- 0.

Moreover. the Hausdorff dimension of a set in Euclidean

D-space can be a fractional value but is always less than

or equal to D [51].

A fractal set process can generate a texture in a

number of ways. Mandelbrot [671 exhibits some Brownian

textures. These are simulations of mountain ranges

Z=f(X.Y) over the X-Y plane such that every plane cut in a

direction perpendicular to the X-Y plane gives an ordinary

planar Brownian function. The displayed image is produced

by simulating a Light source at an angle of 60 degrees
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with the resultant shadow effects. and viewing angle of 25

degrees. The pictures look like irregular surfaces. such

as lunar lanscapes.

Other textured images can be obtained by dropping on

a plane circles whose radii vary according to a random

variable with a Pareto distribution. with the exponent in

the density function playing the role of the Hausdorff

dimension. Work is needed in the estimation of the fit

between natural textures and fractal textures before

fractal models can be utilized as true texture models

rather than just pattern generation processes. In_

addition. further work is needed on the estimation of the

Hausdorff dimension of stochastic processes. For the

appropriate background see Billingsley C12]. [13].

2.2.4 Random Mosaic Models

A tiling or tesselation of the plane is a collection

{A} of disjoint sets whose union is the entire plane. The

elements of {A} are called cells. A mosaic is a

tesselation combined with a function H from {A} to the

finite set of gray levels {0.1.....G-1} which is constant

on each cell: H is called the coloring function.
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We may speak of random tesselations where the

tesselations are determined by some random process or

where the H function is probabilistic. for example

controlled by a discrete Markov process. We generally

only deal with mosaics on bounded sets; such mosaics can

be achieved by taking a full planar mosaic and

intersecting C with the bounded set and restricting the

coloring function. Such a restriction is the true

environment for the image processing applications. yet it

is usually easier to deal with the theory in the infinite

plane case and hope that the bounded set lattice is large

enough to allow reasonable approximation.

In a sense. the mosaic models generalize the standard

notion of a digitized image. The pixels of an image

correspond to the cells of a mosaic. but the mosaic models

allow us to consider cells that are much larger and of

different shape. Ahuja [2] makes a distinction between

region-based models and pixel-based models. The appeal of

the region-based models is that they have the virtues of

the stochastic approach along with some of the strength of

the placement paradigm in describing large primitives.

For example. the bricks picture. Figure 1. is an example

of a macro-texture appropriately described by a

region-based model. The relatively fine-grained gravel
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picture. Figure 2. is a micro-texture. best suited to a

pixel-based model.

The cells can be generated in a number of ways. We

follow current literature [75]. E89]. E90] and discuss the

possible patterns.

(i) Random Checkerboard: A checkerboard is oriented at an

angle 6 to the x-axis.

(ii) Occupancy Model: Use any ‘spatial ,point process to

generate a realization in the plane. Define the cells

V(p). indexed by the points p of the realization by the

relation: V(p) = {g on the planel d(q.p) minimal among b).

Each point of the plane is a member of exactly one V(p)

since the realizations have no limit points. This model

is also called the Voronoi polygon model.

(iii) Poisson Lines: Distribute lines isotropically over

the plane using a Poisson process to generate the radii

(distance from line to origin) and the angle the line

makes with the x-axis. The polygons determined by the

lines are convex and constitute the cells of the mosaic.
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(iv) Bombing Patterns: Let B be a convex set (this

restriction is not necessary but makes the process

mathematically tractable). The set B is placed on the

plane with random orientation at a point x which is

determined by a "marked" Poisson process. Marking a

process means that we enumerate each point in a

realization and assign it a positive integer. We assume

that the copies of the bomb B are of one color. say black.

while the plane is white. The cells of the mosaic are

then the components of the bombing process. After the

bombing is over. the plane can be recolored using any

coloring function for the components.

(v) dohnson-Mehl: Points are dropped on the plane using a

marked process and the cells are formed by growth from

these "seed" points. Unlike the occupancy model. the

resulting cells need not be convex. This model is

appropriate as a physical model for crystal growth in

metallurgical applications. but has proven to be

mathematically intractable for expressing

auto-correlations and other features.

(vi) Dead Leaves: The dead leaves model is similar to the

bombing model except that the boundary of the bombing

shape is retained and the boundaries of previously dropped
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"leaves" are removed. The final pattern resembles the

appearance of leaves on the forest floor with many full

outlines of the shapes visible and many partial shapes.

This model is discussed by Serra C93].

The mosaic models discussed above can be subsumed

into a more general theory of random sets called

Mathematical Morphology. The theory is under continuing

development by a number of European workers and has seen

considerable application in the metallurgical area. See

the work of Serra [92]. Matheron E71]. E72]. and Giger

E403. Serra calls this general class of models Boolean

models. The Boolean model starts with a realization of a

Poisson process and takes each point to be a growth

center. The primary grain is a random set. usually

convex. the randomness being controlled by a growth

process. It is clear that this very general growth

process can include the above mosaic models. Algebraic

operations. including the familiar operations of union.

intersection and specialized operations called dilation

and erosion. allow the specification of composite models.

Special hardware is available to perform the set

Operations along with the estimation of model parameters

[63]. C91]. C95]. [96].



The advantage of some of the mosaic models is that

the theoretical autocorrelations can be computed from a

knowledge of the process parameters. By fitting the

observed autocorrelation to the theoretical

autocorrelation for the proposed model. features such as

cell size distribution can be inferred without having to

segment the image. Julesz [543 has found that the

distribution of plateau regions of constant gray level is

a very important consideration in texture discrimination.

so any model that effectively models cell size contributes

to our understanding of texture.

2.2.5 Syntactic Methods

The syntactic approach to texture. like the

stochastic methods. can be dichotomized into modelling and

classification efforts. Ehrich and Foith E303. bolstered

by the success of syntactic methods in waveform analysis.

have used syntactic methods to encode textures as mountain

ranges whose heights are associated with gray levels. The

encoded texture can then be used in classification

experiments.
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Our notion of a model includes the capability to

synthesize samples from a textural class. Lu and Pu [65].

take this approach and encode 9 by 9 squares of a texture

as a primitive in a stochastic grammar and then link the

squares together to form an image. Some success is

reported in generating Brodatz E17] textures that have a

fairly regular structure. such as the picture of reptile

skin. We suspect that difficulty would be experienced in

using this method to synthesize micro-textures such as

sand or grass. Other problems include the extension to

multiple gray levels. but the principal problem is the

estimation (or in this context. grammatical inference) of

the model parameters.

2.2.6 Linear Models

Following a procedure analagous to a linear filtering

model. Deguchi and Morishita E26] assume a texture model

of the form:

X('iyj) = A(D!G)X("D.1'O) 4' 5(191)

(9.0)

(not (090))

where X(i.j) is the gray level at point (i.j). and the
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E(i.j) are i.i.d Gaussian variables with zero mean. The

local neighborhood is a rectangle of dimension 2m+1 by

2n+1.

The A(p.q) parameters are estimated by minimizing the

expected difference between the estimated X(i.j) and the

observed X(i.j). This approach is fairly similar to the

classical analysis of Whittle [107]. but Whittle was only

interested in estimating the parameters in an applied

statistics context' for testing the hypothesis of no

interaction between the site variables. When we begin an

estimation problem. we do not know what value of m and n

to choose. Hence. we must consider them parameters of the

model which must be estimated. Deguchi and Morishita use

a procedure due to Akaike [4]. E5] in a time series

context to estimate m and n in an optimal manner.

Textures following the above model can be generated

by a filtering scheme. Generate independent Gaussian

variables at each site. Then use the filter coefficients

A(p.q) to create a new image by summing over the

neighborhoods (it is. of course. possible to use an FFT

algorithm to do this faster). The real values at each

point of the lattice can then be quantized.



4o

Deguchi and Morishita do not generate any textures

from the above model. Their purpose is to segment the

textured regions of an image. One example is the location

of small regions. called "defects". whose texture differs

from that of a background texture. To locate the defects.

first estimate the A(p.q) parameters for the entire image.

Since the defect regions are presumed small. they will not

significantly influence the estimation of the A(p.q)

parameters. The error between the predicted pixel values

using linear estimation and the true value is calculated

for each pixel in a 2m by 2n neighborhood. If the error

exceeds a preset threshold. then the pixel is presumed to

belong to the defect region. Variations on this theme are

presented for other segmentation experiments.

2.2.7 Markov Models

The term "Markov" is loosely applied to any model

where the probability of any particular gray level at a

site (i.j) does not depend on pixels beyond a "small"

neighborhood of (i.j). We may express this by the

relation:
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p(X(i.j)=k|given all other sites) =

p(X(i.j)=k|values at neighbors).

The term "neighbors" is defined topologically and can be

enforced as any configuration surrounding a given pixel.

Following Besag [103. or Hammersley [443. a Markov‘ Random

Field obeys the above neighborhood condition along with

two other conditions. The first is called positivity and

says that any assignment of colors to the lattice

(integers in the range {0.1.....G-1}) has non-zero

probability. The other condition is called homogeneity

and says that the conditional probabilities are unaffected

by the actual coordinates of the site: only the

neighborhood values matter. The Markov Random Field model

has been briefly investigated by Hassner and Sklansky

E48]. [493. [50]. Their work was limited to an exposition

of the equivalence between the Gibbs field and Markov

Random Field expressions for the conditional probability

distributions (see Spitzer [94] for the proof) and

generation of a few examples of textures. Moreover. they

limited their attention to the binary case.
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An alternative to the use of the full two-dimensional

Markov Random Field for images is to traverse the lattice

along a scan line and provide a direct analog to the usual

Markov chain [1]. Connors and Harlow E24] generated

textures according to a simple Markov chain on the rows.

which produces streaky line textures but ignores the

correlations between pixels in neighboring rows. Haralick

and Yokoyama E110] generated essentially one-dimensional

textures using scans. but provided some correlations

between neighboring rows by considering changes in the

features computed from the co-occurrence matrices.

2.3 Summary

We have defined a texture model to be a process

capable of generating or describing a texture. The types

of processes capable of modelling texture were delimited

as knowledge-based descriptions. stochastic processes. and

feature-based descriptions. We concentrated on the middle

level stochastic process models and surveyed the models

available. These include discretized continuous models.

time-series. fractals. random mosaics. syntactic methods.

linear models. and Markov models. Each model was found to

be useful for certain classes of textures. It is as

inappropriate to assume that one class of generation



procedures can generate all textures as it is to assume

that the Gaussian distribution can explain all data.

 



CHAPTER 3. MARKOV RANDOM FIELDS

3.1 Introduction

The brightness level at a point in an image is highly

dependent on the brightness levels of neighboring points

unless the image is simply random noise. In this chapter.

we explain a precise model of this dependence. called the

Markov Random Field. The notion of near-neighbor

dependence is all-pervasive in image processing. Focusing

directly on this property is a promising approach to the

overall problem of micro-textures. The Markov Random

Field has had a long history. beginning with Ising's 1925

thesis [53] on ferromagnetism. Although it did not prove

to be a realistic model for magnetic domains. it is

approximately correct for phase-separated alloys.

idealized gases. and some crystals [77]. The model has

traditionally been applied to the case of either Gaussian

or binary variables on a lattice. Besag's paper [103

allows a natural extension to the case of variables that

have integer ranges. either bounded or unbounded. These

extensions. coupled with estimation procedures. permit the

application of the Markov Random Field to image and

texture analysis.

44
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3.2 Definitions and'Theorems

Our exposition follows Besag C101 and Bartlett [7].

As before. let X(i.j) denote the brightness level at a

point (i.j) on the N by N lattice L. We simplify the

labelling of the X(i.j) to be X(i). i = 1.2.....M where M

1: Let L be a lattice. A c lorigg f L
“-6-.—

(or a go oging g: L with G Levels) denoted X is a function 

from the points of L to the set {0.1.....G-1}. The

notation Q denotes the function that assigns each point of

the lattice to 0.

Before defining a special type of probability on the

set of all 1. we first give the notion of neighbor. Note

that the definition does not imply that the neighbors of a

point are necessarily close in terms of distance.

Definition 3.2: The point j is said to be a agigflggg

of the point i if

p(X(i)IX!1).X(2).....X(i-1).X(i+1)....X(M))

depends on X(j).
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Now we can give the definition of a Markov Random

Field.

ngini iog 333: A Mggkgg Rand m ielg is a joint

probabili y density on the set of all possible colorings K

of the lattice L subject to the following conditions:

1.Positivity: p(§) > O for all X-

2.Markovianity:

p(X(i)l All points in lattice except i) =

p(X(i)l Neighbors of i)

3.Homogeneity: p(X(i)| Neighbors of i) depends only on the

configuration of neighbors and is translation invariant

(with respect to translates with the same neighborhood

configuration).

We would like to delimit insofar as possible the kind of

probability distributions that represent Markov Random

Fields. This is the content of the Hammersley-Clifford

theorem. We first need a definition.

Definition 3:4: A gliggg is a set of points that

consists of either a single point or has the property that

each point in the set is a neighbor of every other point

in the set.
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It will prove to be convenient to consider the

distribution function in terms of the ratio of p(5) to

p(Q). Define the quantity 0(5) by:

(3.1) m1) = Ln<p<xn - mung”.

We may expand 0(5) as follows:

(3.2) mg) =

----- i

\

* X(T)X(j)F (X(i)9X(j))

’

/

..... i.j

4' see.

’i’ X(1)eooX(M)F (X(1)90009X(M))e

12..."

Each summation in equation (3.2) extends over sets of

indices without repetitions.
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Note that 9(X) can always be expanded in this way as

long as the positivity condition is satisfied. The F

functions can be determined inductively from a knowledge

of the function P(X). First set every X(j) to zero except

for a single index i. This determines the value of Fi.

After repeating this for every index i. the F functions

with two arguments can be found by setting all pairs

{X(i).X(j)} to zero except for a single pair {X(r).X(s)}.

Continuing in this manner with successively larger sets of

indices yields the values of the F functions for all

numbers of arguments. With this notation. we may now

state the Hammersley-Clifford theorem.

Ihggggg 3:1: 0(3). expanded as in equation (3.2).

defines a valid probability distribution for a Markov

Random Field provided that the F functions with subscripts

ij...s are non-zero if and only if the points i.j.....s

form a clique.

959 f; See Besag [10]. page 196.

The Hammersley-Clifford theorem provides a connection

between the purely graph-theoretic relationships on a

lattice with the algebraic form of the expansion of the

distribution function in equation (3.2). It also assures
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that the conditional probability distribution determines

the joint probability mass function. In fact. the theorem

can be applied to the case where the lattice is

triangular. or even irregular. Such extensions allow the

formulation of models in geography? for example. see the

review paper by Cliff and 0rd [22].

3.3 Further Assumptions

In order to simplify the form of the probability

density in equation (3.2) further. we make two

assumptions:

Assumg iog 1; The F functions in (3.2) with more than

two arguments vanish identically.

Assumption g; The conditional probability

distribution at each point of the lattice belongs to the

exponential family.

Definition 3.5: A Markov Random Field is called an

Agtggflgggl if it satisfies assumptions 1 and 2 above.



50

The class of auto-models is defined in order to

simplify the inference problem for the F functions. Under

these assumptions. we may write 0(1):

(3.3) 0(5) =

\

X(i)Fi(X(i))

----- 1

\

+ X(i)X(j)F (X(i)9X(j))o

_191

/

----- 1.1

This results. following Besag [10]. in the following

form for the conditional densities:

(3.4) p(X(i)=k|...)/p(X(i)=O|...) : exp(kT(1))

where

(3.5) T(§) = Fi(X(i)) + V(i.j)x(j).

/
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The {V(i.j)} are the parameters of the model. V(i.j)

= V(j.i). and V(i.j) = 0 if and only if i and j are not

neighbors of each other.

3.4 Order Dependence

Note that in equation (3.4). we are actually assuming

that the parameters V(i.j) may vary with i. In most

cases. we are interested in models whose 'parameters

{V(i.j)} depend only on the distance from point i to point

j. This prompts the definition of order.

Qefigitigg 336: On a lattice. the distances between

points assume discrete values. The first few terms of the

sequence of possible squared distances are 0. 1. 2. 4. 5.

8. 9. 10. See Figure 6 for a picture of this. Call this

sequence {e(k)}. k = O. 1. 2.... Let r = max(d(i.j))

where i. j are points for which V(i.j) is non-zero. A

process is said to have Qgggg k if e(k) = r**2. Figure 7

shows the order of the points identified in Figure 6.
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The number of parameters needed to describe a model

depends on its order. For example. a first-order model is

specified by three parameters. In the case of a lattice

with range set {0.1} the conditional probabilities take

the form (the points are labelled as in Figure 8):

(3.6) p(X=xlu.u'.t.t') = exp(xT)/(1 + exp(T))

where

(3.7) T = a + b(1)(t + t') + b(2)(u + u').

The binary Markov Random Field described by equation

(3.6) has parameters a. b(1). and b(2). The parameters

b(1) and b(2) control the clustering in the lattice;

positve values indicate attraction between points with

value 1. negative values indicate repulsion. while a value

of zero implies a random configuration. In the random

case. the proportion of black points (1-valued points)

should be exp(a)/(1 + exp(a)). The value of b(1) controls

clustering in the E-W direction while b(2) controls N-S

clustering.
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E1995; g First-order Neighbors

A full second-order model involves cliques of size

three and‘ four. The expressions (3.6) and (3.7) are

replaced by the following expressions (the points labelled

as in Figure 9):

(3.8) p(X=xlt.t'.u.u'.v.v'.w.w') = exp(xT)/(1 + exp(T))

where

(3.9) T = a + b(1)(t + t') + b(2)(u + u')

+ q(1)(v + v') + g(2)(w + w')

+ z(1)(tu + u'w + w't )

+ z(2)(tv + v'u' + ut' )

+ z(3)(tw + w'u + u't')

+ z(4)(tu' + uv + v't')

+ d(tuv + t'u'v' + tu'w + t'u'w').

Cliques containing three points are triangles formed

by selecting three points of a two by two square. Such a

triangle contributes to the conditional probability of X
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only when X is one of its vertices. By the homogeneity

assumption. each triangle with the same orientation makes

the same contribution to the sum T in equation (3.9). and

is associated with a certain z(i). For example. following

Figure 9. the triangles xtw. xu't'. xw'u all have the same

orientation and influence the conditional probability in

equations (3.8) and (3.9) according to the value of the

parameter 2(3). For cliques of size 4. we consider two by

two squares with one corner on X.

In this thesis. we have considered only the linear

case of the full expansion. which means that the F

functions with two or more arguments vanish. In the

expression for the full second-order model given by

+----+----+----+

I I I I

I W I U' I v'I

I I I I

+----+----+----+

I I I I

ItIXIt'I

I I I I

+----+----+----+

I I I I

I V I U I W' I

I I I I

+-—--+----+----+

Eigggg 2 Second-order neighbors
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equations (3.8) and (3.9). this implies that the z and q

parameters are zero. We have also limited our attention

to the case of a maximum fourth-order dependence. since it

does not seem likely that any higher order parameters can

be estimated accurately from textured images of size 64 by

64.

When dealing with a finite rectangular lattice and

using the definitions of neighbor and order above. points

on the edge of the lattice have fewer neighbors than the

interior points. We compensate for this by assuming that

the lattice has a periodic or torus structure. This means

that the left edge is connected to the right edge and the

upper edge is connected to the lower edge.

Our final form for the value of T is given below for

orders up to four. Models of order less than four can be

obtained by assuming that the b(i.k). the parameters of

the model. are 0 for all i larger than the order.



(3.10) T = a + b(i.k)S(i.k).

The S(i.k) are composed of the sum of the values at

order i with respect to X. The direction is defined by k.

See Figure 10 for a description of the components of

S(i.k). We can now formulate a definition of

directionality in terms of the model parameters.

ngigitiog 3:1: A Markov Random Field is isgtgggig at

95g r 1 if b(i.1) = b(i.2). Otherwise. it is said to be

anisotropic at order 1. The notation b(i..) implies

isotropy at order i and signifies the common value of

b(i.1) = b(i.2).

The notion of anisotropy agrees with our intuitive

notion of directionality in textures. As we shall see in

later chapters. the directionality is determined to some

extent by the relationship between the b(i.1) and b(i.2).
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3.5 Specific Models

We now discuss specific choices for the conditional

distributions that are appropriate for use in image

processing applications. A desirable model includes a

small number of parameters and a close correspondence to

the local image formation process. The two models which

are considered in detail are the binary model and its

extension. the binomial model. We mention a few others

which are appropriate for image processing applications

but have received little or no attention so far.

3.5.1 Binary Model

The variable X takes on the value 0 or 1. Define the

variable T by the formula:

(3.11) T = a + b(i.k)S(i.k)

where the S(i.k) are composed of the sum of the

values shown in Figure 10.
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5199;; 1Q Constituents of the S(i.k). The points are

labeled with the index of the S(i.k) in which they appear.

For example. S(4.2) is the sum of 4 points. 2 near the

lower left-hand corner and two near the uppper right-hand

corner.
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We obtain the conditional probability for x by:

exp(xT)

1 + exp(T)

3.5.2 Binomial Model

The binomial model generalizes the binary model to

the case of variables with range {0.1.2.....G-1}. We

assume that the conditional probability p(X=le) A is

binomial with parameter e(T). and number of tries G-l.

The value of the parameter e(T) is given by

exp(T)

(3.13) 9(T) : ------------- .

1 + exp(T)

3.5.3 Other Auto-Models

We can use any member of the exponential family as

the conditional distribution. Slight adjustments have to

be made to the theory for the continuous case. Besag E10]

cites the Poisson. exponential. and normal distributions

as possible candidates.
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It should be noted that the auto-normal scheme is not

the same as the auto-regressive scheme mentioned in

section 2.2.6. In the auto-normal formulation. the

variables X(i) have a Gaussian distribution with common

variance and mean T. where T is given in equation (3.11).

The value of T depends on the neighborhood configuration

about X(i).

3.5.4 Other Lattice Models

It is possible to relax assumptions (1) and (2) of

section 3.2. The resulting models are still Markov Random

Fields. but have a somewhat different conditional

probability structure. The resulting fields have either

too many parameters or are relatively intractable.

3.5.4.1 Strauss Model

Strauss [97] introduced a type of Markov Random Field

that uses unordered 'colors' {0.1.2.....C}. After some

reduction. he obtains a conditional distribution of the

form:

exp(T)

(3014) D(X:I<Ie) : -------------- 9 k '—' 1.2.....C

1 + exp(T)



 



63

C

\

p(X=O|.) = 1 - p(X=kl.)

/

k=1

where

C

\

T = u + v(i)N(X.i)

/

i=1

and u and v(i) are parameters and can be any real numbers.

The notation p(X=kl.) represents the probability that X

takes the value k. conditioned on its neighbors. The

quantities N(X.i) represent the number of neighbors of the

point X at level i.

This model is oriented toward cases where the levels

are genuinely unordered. without arithmetic relations. It

might be appropriate for detection of clustering among

pixels that have been classified according to some

land-use scheme for LANDSAT pictures. The v(i) parameters

control the affinity for the ith color to cluster.
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One difficulty with the above model is that the

"left-over" color 0 (in the sense that there is no

parameter v(O)) tends to have either a very small or very

large conditional probability. Limited experiments showed

that no natural. equalized picture could be fit to this

model ’with four levels. (It was thus not considered

further as a texture model.

The most serious drawback of this model. even in the

case where the unordered color assumption might be

correct. is the number of parameters. Unless some

simplifying assumptions can be made. one needs to add one

parameter for each direction and for each gray level

added. For example. a 32-gray level picture with

first-order anisotropy would require 63 parameters under

the Strauss model. yet only three under the binomial

model. Of course. the figure of 63 can be reduced if

there is equality of attraction. but the assumption of

unordered colors tends to require a large number of

parameters. Strauss was only interested in the case when

all of the v(i) were the same. resulting in a much simpler

estimation problem.
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3.5.4.2 Welberry-Galbraith Fields

Work on another kind of binary Markov Random Field

than presented earlier has been progressing since 1975

E38]. [393. [101]. [102]. E1033. E1043. [104]. A

Welberry-Galbraith field is a Markov Random Field which

uses unilateral dependence to define the conditional

probabilities. It is controlled by four parameters. a. b.

c. and d. as shown in figure 11.

Boundary values are either random or determined by a

distribution matching the true distribution. The model.

although simple to explain and easy to simulate. has

Neighborhood Configuration
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Eiggge 11 Conditional Probabilites for the

Welberry-Galbraith Field: The probability of a 0 or 1

given the neighbors to the left and below. The four

possible unilateral neighborhood configurations form the

columns.



 



66

proven to be difficult to analyze. The expectation of the

number of 1-valued points is known approximately along

with the fact that the process is ergodic. This model is

essentially the same as the Markov Mesh [11. Also of

interest is Pickard's C82] binary field.

3.6 Summary

We have defined a Markov Random Field formally and

stated the main characterization result. the

Hammersley-Clifford theorem. The general Markov Random

Field model was reduced through simplifying assumptions to

a compact form with a few parameters. The parameters

define the order of the process along with the

directionality. L'e specified in detail the models which

will be investigated for texture generation and 3%thesis

purposes. the binary and binomial models. Finally. we

have mentioned some other models that may have some use in

image processing applications.



CHAPTER 4. SIMULATION OF MARKOV RANDOM FIELDS

4.1 Introduction

In chapter 3 we gave the conditional probability

formulation for Markov Random Fields. In order to

generate textures that are the visual representation of

Markov Random Fields. we need a procedure that yields a

sample from a Markov Random Field with given parameters.

Fortunately. such procedures exist and have been used

extensively in physics to investigate the properties of

two- and three-dimensional Ising lattices [163. E34].

[321. Simulation is usually needed to estimate many of

the properties of Markov Random Fields since the

analytical calculations are. for the most part.

unsatisfactory [333.

4.2 Definitions

The required theory for the simulation of Markov

Random Fields comes from the theory of discrete.

finite-state Markov chains. We review the main results

and definitions. mostly to fix notation. We follow Feller

[31] and Hammersley E43] closely.

67
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We consider discrete integer times. t = 1.2.3.... .

The process has an at most countable state set 8(1).

8(2).... . Let X(t) denote the state of the process at

time t.

ggjigitiog 4:1: The system of states {S(j)} is said

system being in a state at time t. given its state at all

other times. depends only on the state it was in at time

t-1. We may write this as:

p(X(t)=S(j)I All values of X(t)) =

p(X(t)=S(j)|X(t-1)=S(i)).

In all cases that we consider. the conditional probability

depends only on the state value and is independent of

time. .In this case. the conditional probabilities are

called statiggagz and we can write without ambiguity:

p(X(t)=S(j)IX(t-1)=S(i)) = p(i.j). The p(i.j) are called

the (stationary) transition Qggbabilitigs. The system is

called expositis if p(i.j) = p(ioi)-

Qsiinitiso float The n-step transition ecsbabilitiss

are p(nii.j) : p(X(t)=S(i)IX(t-n)=S(i)). The

First-passagg probabilities are

f(nii.i) 1'

p(X(t)=S(j).X(t-1)¢S(i).....X(t-n+1)¢S(j)IX(t-n)=S(i)).
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m(i.i) = nf(nii.i).

The m(i.i) represent the expected time for the process to

return to state i given that it was in state i at time t.

Definition 4.3: The states S(i) and S(j) are called

EEIEQLLX sccessigts if there exist integers m and n so

that p(m;i.j) and p(nij.i) are both non-zero. Mutually

accessible states are said to belong to the same £Lé§§o A

system with only one class of states is said to be

iccegusible-

We can now delimit some important classes of states.

Definition 4.4: A state S(i) is called assigigs if

m(i.i) is finite. QQLL if m(i.i) is infinite. If p(nii.i)

is non-zero only when n is a multiple of d. the state S(i)

is called gsgiodic (of gsgigg g;. If d = 1. it is called

sgeriodic. A state S(i) is called recurrent if
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f(niioi) = 1

It can be shown (Theorem 19 03919 [31]) that the

states of the same class are all non-recurrent, or all

positive, or all null. and all have the same period.

The set of numbers {q(1)} is called 3 Limiting

Qisizieu isn provided

lim p(n;i.i) = d(j) = 1/m(igj)

4.3 Simulation Procedure

The simulation procedure is explained by three

theorems: (4.1). (4.2), and (4.3). We want a Markov chain

whose states are the set of colorings {X} with limiting

distribution {p({)}. We can sample such a chain and

observe colorings {X} with frequency given by {o(&)}.
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Theorem 4.1 gives sufficient conditions for a Markov

chain to have a unique limiting distribution. Theorem 4.2

shows how to convert a relatively arbitrary Markov chain

to one with limiting distribution {q(1)}. The key feature

of theorem 4.2 is the fact that we need only know the

ratios {d(j)/q(i)} in order to obtain the desired chain.

Finally. theorem 4.3 shows how to calculate the set of

ratios {d(j)/q(i)} = {p(§)/p(1)} from the conditional

distribution of a Markov Random Field without explicit

calculation of the set of {p(§)}.
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Theorem 3:;: Let {S(i)} be the states of an

aperiodic, irreducible Markov chain. Let {0(3)} be a set

of numbers that satisfy the following three conditions:

a. q(j)>0 for all j

\

b. q(j) = 1

3

\

c. q(i)p(i.i) = c(i)

/

i

Under these conditions we have

1.Each state S(i) is positive

2.The set {q(i)} is unique is satisfying

a. QbO’C.

3. lim p(niiyi) = q(j) = 1/m(j.j)

n->°°

conditions
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95931: See Feller (p393. [313). D

Theorem 4.1 justifies the use of Limiiigg

gigigibgiigg as a description of the set {q(i)}. we

describe a procedure for transforming a given Markov chain

with transition matrix P* = {0*(i’i)} to another chain

with transition matrix P = {p(iqj)} such that the new

chain has limiting distribution {0(1)}.

Ihggggm gig: Consider a symmetric, aperiodic.

irreducible Markov chain with transition matrix P*. Let

{d(j)} be a set of positive numbers with sum 1. Then the

Markov chain with transition matrix D has limit

distribution {0(1)}, where P is defined by:

o*(i.i)q(i)/q(i) if q(i)>q(i)

p(ivi) =

p*(iyi) if q(i)2q(i)

\

p(igi) = p*(i9i) + o*(i,i)(1 - q(i)/q(i))

/

where the ' on the summation means summation over all

indices j with q(j)/q(i) less than 1.
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95991: See Hammersley [433. D

To apply theorem 4.2 to the problem of generating a

sample from a Markov Random Field. we need to identify the

constituents of the Markov chain. The relevant pieces

are:

gigig sgi: All colorings X of the lattice L.

Maigii 31: p*(i.j) = 1/2. 2 is the total number of

colorings.

igiiii: The limiting distribution value for the state i

should be p(X). where p(.) is the joint probability mass

function over the set of all colorings.

In chapter 6, we will study the joint probability

formulation of a Markov Random Field in detail. The

expression is unwieldy but we do not actually need to use

it. because the actual numbers {q(i)} are never needed in

the calculation of the p(i.j) in theorem 4.2; we need only

examine the Set of ratios {d(j)/q(i)} = {v(i)/0(1)}.

Following Besag [10]. we have
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l
-
i

heore 33;: Let 5 and i be two colorings of ithe

Markov Random Field lattice L. Then:

M

p(I) p(X(i)=Y(i)IX(1)9X(2)9...,X(i-1)9Y(i+1)ooo.Y(N))

 

p(X) p(X(i)=x(i)|X(1),X(2)9...,X(i-1)9Y(i+1)g...Y(N))

1

ggggiz‘See Besag [10], p195. D

In general, we are interested in textures with the

same number of pixels at each gray level. Such textures

are the output of a histogram-flattening procedure such as

the Equal Probability Quantizing algorithm described by

Haralick [453. It is therefore appropriate to limit our

state set to those colorings 3 which have a uniform

histogram. In practice. this is done by starting with an

image that is generated by coloring the point (i.j) with

level k. where k is chosen with equal probability from the

set £09192.....G-1}. The convergence to the limit

distribution is unaffected by the choice of initial

configuration: only the rate at which equilibrium is

reached depends on the choice of the initial

configuration.

Given a state (i.e. colorino ) X! we choose the next

X except that the gray values ofstate 1 to be the same as

two randomly selected points are interchanged. In the
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notation of theorem 4.2. all p*(1.j) are equal. so~we need

only look at q(j)/q(i) = p(1)/p(z) = r.' The algorithm is

diagrammed in Figure 12. This algorithm was used by Flinn

C333 and was invented by Metropolis et al. [733.

Any initial assignment of gray levels to the points

of the image can be made. One possibility is to choose

the next state 1 as 5 with one pixel changed at random.

This allows us to begin with any histogram whatsoever and

reach states {S(i)} with the desired frequency. The other

side of this problem is that the choice of parameters of

the Markov Random Field determines the expected histogram.

This means that if we arrange to make the histogram to be

uniform when. in fact. the parameters do not determine a

Markov Random Field with a uniform histogram. the

procedure will converge to a Markov Random Field with

different parameters than intended. In a practical sense.

this is not a significant problem since we usually want to

generate a texture that resembles a given texture. He can

generate a texture starting with exactly the same

histogram as the given texture and use the measured

parameters from the sample.





77

 

until STABLE

 

choose two sites X(1). X(2) with

different gray levels

 

compute p(z)/p(§) = r

switch X(l) get random number 2

and X(2)
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Eigggg lg Algorithm for generating Markov Random Field

with joint probability function p(z). The coloring I is

obtained from the coloring X by switching the values of

the points X(l) and X(2).
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4.4 Convergence Properties

Theorem 4.2 guarantees that the application of the

algorithm in Figure 12 will eventually result in a lattice

in a state i with the frequency controlled by 9(1). The

practical question is how long this will take.

We first need to define a time-dimension for the

simulation. Suppose the lattice is N by N and let M=N**2.

We consider M attempted exchanges or switches to

constitute one iiggaiigg. Notice that this ignores

attempted exchanges between pixels of the same color. We

have experimental guidelines for the number of iterations

required to achieve a lattice that matches the input

parameters. In general. it was observed that in 10

iterations or less either the number of changes per

iteration drops to one percent of M or the measured

parameters match the input parameters within about 5

percent. These guideleines define the variable "STABLE"

in Figure 12. On a PDP-ll/34 computer. the time required

for one iteration on a 64 by 64 image was two to three

minutes depending on the number of gray levels.
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We give an example of the convergence for a specific

case. We want to simulate a first-order Markov Random

Field with binary variables with parameters a = -z. b(1..)

= 1 on a 128 by 128 lattice. The notation follows

equation (3.11) of chapter 3. The estimated parameters

b(1..) 'are shown plotted against number of iterations in

Figure 13. The value of the parameter a is not shown

because. as will be proven later. in the uniform histogram

case. a is -2b(1..). The graph flattens rather quickly

and stays within 0.05 of the intended value of 1.0 for

b(1..). Figure 14 shows the number of changes observed

per 256 attempted exchanges. as the estimates were made

every 1/64 iteration. Thus. although in an iteration of M

attempted exchanges we are still observing nearly M/2

changes. the chain is near equilibrium as the observed

model parameters are within a small tolerance of the

intended parameters.
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Eigggg lg: Convergence of b(1..).
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4.5 Examples of Textures

We present some examples of textures generated

according to various settings of Markov Random Field

parameters. These images are representative of the kind

of results that can be achieved but are not necessarily

attempts to imitate real textures. They should rather be

considered to be an 'alphabet' of Markov RandOm Field

textures. In chapter 5. we exhibit generated textures

matching observed textures.

(i) Clustering effects

Figure 15 shows a series of 64 by 64 binary textures

with various degrees of clustering. This is an isotropic.

first-order model as represented by equations (3.6) and

(3.7). Figure 15a represents binary 'noise' in the sense

that each pixel has probability .5 of being black and .5

of being white independently of all other pixels. In

Markov Random Field terms. this means a is 0 and b(1.1) =

b(1.2) = 0. The value of b(1.1) is increased from 0 in

Figure 15a to 3.5 in Figure 15h. The increase in

clustering is clearly visible.
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(ii) Anisotropic Effects

Figure 16 shows extreme anisotropy in first-order and

second-order models on a 64 by 64 lattice. In Figure 16b.

a = -2.0. b(1.1) = 1.93. and b(1.2) = .16. The quantity

b(1.1) controls the horizontal clustering so there is a

large amount of line-likeness in that direction. As

b(1.2) is non-negative. a small amount of vertical

clustering is present. resulting in thickened and noisy

horizontal lines. Contrast this with Figure 16a. which

has parameters b(1.1) = -2. and b(1.2) = 2.1. The value

of b(1.2) causes vertical clustering. similar in intensity

to the horizontal clustering of Figure 16b. The

significant difference is that the negative value of the

parameter b(1.1) forces 'clean' vertical lines with

virtually no horizontal clustering.

The decidedly diagonal effect of Figure 16c results

from the use of a second-order structure. The clustering

in the Nw-SE direction is pronounced since the parameter

in this direction is 1.9 while the parameters in all other

directions are quite small.
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(iii) Ordered Patterns

Many of the applications of the Ising model involve

studying the checkerboard-like patterns obtained with

negative clustering parameters. In this sense. a perfect

checkerboard is ordered and represents a limit state for a

an alloy or magnet [77]. This is illustrated by Figure

17. which has b(1.1) = -2.25. b(1.2) = -2.16 on a 64 by 64

lattice. The most likely configuration is a black pixel

surrounded by four white pixels or vice versa.

(iv) Attraction-Repulsion Effects

An attraction-repulsion process involves ' having

low-order parameters positive resulting in clustering but

high-order parameters negative in order to inhibit the

growth of clusters. If high-order parameters were also

positive. large clusters would result. whereas negative

high-order parameters yields small clusters.

Figure 18 shows the effect of anisotropic clustering

with inhibition. The first-order parameters of Figure 18a

are approximately 0. which accounts for an immediate

visual impression of randomness. On closer examination.

there are many short horizontal and vertical lines. but
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very -few diagonal joins. The lack of diagonal joins is a

result of negative second-order diagonal parameters. In

Figure 18b. the first-order clustering parameters b(1.1)

and b(1.2) have been increased. resulting in longer

horizontal and vertical lines.

Figure 19 shows two isotropic attraction-repulsion

textures. These are the result of positive first and

second-order parameters and negative third and

fourth-order parameters. As a consequence of 'the

high-order inhibition. the cluster size is relatively

smaller than one would expect if the third- and

fourth-order parameters were zero.

(v) Multiple Gray Scale Textures

The binary textures above illustrate the essential

features of the visual attributes of a Markov Random Field

but are fundamentally unrealistic as textures. We now

turn our attention to the binomial model. We follow the

notation of section 3.5.

It should be noted that many of these images appear

blurry and out of focus. This effect is not due to the

reproduction process but is intrinsic to the model. If
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there is no inhibition (via negative high-order

parameters). then the binomial model tends to have smooth

transitions from black to white. The binomial

distribution is unimodal and. as a consequence. values

above and below the mean gray value are highly probable

also. This results in a tapering of the gray scale around

maxima and minima. Such a tapering as one moves away from

black or white points has an effect similar to a

neighborhood averaging or low-pass filter.

Figure '20 shows a 4-gray level picture with

considerable clustering. Figure 20a is isotropic and

first-order. whereas Figure 20b is second-order

anisotropic with diagonal clustering. Figures 213 and 21b

represent typical multiple gray scale pictures with

isotropic fourth-order clustering.

Figure 22 shows a pattern similar to Figure 16. but

with 32 gray levels. The resemblance to wood-grain is

apparent. Figures 23a and 23b show the result of

attraction-repulsion processes with multiple gray levels.

Figure 23a has the appearance of reticulated photographic

film due to strong third and fourth-order inihibition.

The diagonality in Figure 23b is a result of strong

repulsion in some directions and clustering in others.
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55:51:?

 

   

Eigggg ii: Isotropic First Order Textures. The b(1..)

parameters are: _(§_)_ 0.0. La; 0.50. igi 0.75. gg; 1.1.

121 1.26. ii; 1.52. igi 1.79. ihi 3.0. In all cases. the

a parameter is -2b(1..).
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Eigggg i6: Anisotropic Line Textures. The parameters are

igi a: -0.26. b(1.1) = -2.. b(1.2) = 2.1. b(2.1) = 0.13.

b(2.2) = 0.015. ibi a: -2.04. b(1.1) = 1.93.

b(1.2) = 0.16. b(2.1) = 0.07. b(2.2) = 0.02.

(c) a = -1.9. b(1.1) = -0.1. b(1.2): 0.1 . b(2.1)= 1.9 .

b(292)= '000750

 

Figure i1: Ordered Pattern. The parameters are a = 5.09.

b(1.1) = -2.25. b(1.2) = -2.16.
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iagonal Inhibition Textures. The parameters

.19. b(1.1) = -0.088. b(1.2) = -0.009. b(2.1)are 2g: 3'-

: -1. b(2.2)

2.05. b(1.2)

Figure 1 : D

‘ 2

-1. (b) a =0.16. b(1.1) = 2.06. b(1.2) =

'2.03. b(2.2) = -2.10.

 

Eigggg 19: Isotropic Inhibition Textures. The parameter

values EFe: 1a; a :-o.97. b(1..) = 0.94, b(2..) = 0.94.

b(3..) = -o.42, b(4..) : - -o.49. 5g; a = -4.6,

b(1..) 2.52, b(2..) = 2.17. b(3..) = -0.78.

b(qyo) = ”0.850
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Eigggg gg: Clustered Textures with 4-Gray Levels. The

parameters are (a) a = -2. b(1..) = 1.0. 3g; a = -2.

b(1..) = 1.0, b(291) : 1.0 b(2’2) = 0000

 

Eigggg 2i: Clustered Textures with 16 and 32 Gray Levels.

The parameters are igi 16 levels. a = -2.0. b(1..) =

b(2..) : b(3..) : b(4..) = 0.05. 1g; 32 levels. a =

-2009 b(1..) : b(290) = b(3..) : b(490) : 0.050
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Eigggg 22: Horizontal Texture with 16 Gray Levels. The

parameters are a = -2.0. b(1.1) = 0.08. b(1.2) = 1.0.

  
Eigggg 23: Attraction-repulsion Textures with 16 Gray

Levels. The parameters are igi a = -2. b(1..) = b(2..)

: 029 b(390) = b(‘too, : ”001. b) a = ‘2! b(1,.) 300295.-..

b(291) ‘ '202. b(292) = .2. b(391) = '0.059 b(392) = 0.059

b(4.1) = -0.05. b(4.2) = 0.05.



4.6 Summary

We have reviewed the notion of a Markov chain and

seen how to obtain a new Markov chain with desired limit

distribution from a relatively arbitrary chain. This

construction led directly to an algorithm for the

generation of Markov Random Fields with specified

parameters. An example of the convergence of the

procedure was given. along with some guidelines on the

number of' iterations required to obtain a Markov Random

Field with the desired parameters. Finally. we presented

a catalog of textures generated according to various

settings of the model parameters.



CHAPTER 5. MODELLING OF NATURAL TEXTURES

5.1 Introduction

In previous chapters. we have discussed the

probabilistic structure of Markov Random Fields and have

shown how samples from Markov Random Fields can be

generated. One of the principal contributions of this

thesis is the implementation of a statistical measure of

the correspondence between an observed texture and a

texture model. No prior study has performed this kind of

evaluation. All prior studies in texture modelling have

considered a model adequate if its parameters yielded good

classification in pattern recognition experiments or if it

was found to be the best-fitting among a number of models

tested. For example. Deguchi and Morishita E263 determine

the best size for a neighborhood in an auto-regressive

scheme. but do not give any overall guidelines on when the

auto-regressive scheme fits the observed texture.

We first explain the method used to estimate the

Markov Random Field parameters and perform hypothesis

tests. This is followed by the results of testing

textures from the Brodatz texture album [173 for a fit to

various Markov Random Field texture models. The final

93
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section shows textures generated synthetically in an

effort to match natural textures.

5.2 Estimation of Parameters

Following the notation of equations (3.12) and

(3.13). this section explains the estimation of the

parameter set {b(i.k)} from a textured sample using the

binomial model. The binary model is a special case of the

binomial model and is not handled separately.

The technique used to estimate the parameters is

Maximum Likelihood Estimation. Let p(Xl.) denote the

conditional probability p(X=xl Neighbors of X). where X is

a point of the lattice L. The usual log likelihood is

given by

(5.1) l = ln(p(X|.))

where the summation extends over all points of the

lattice.
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It is difficult to maximize l as stated in equation

(5.1) since the summands are not independent. Besag [9]

provided a solution to this problem. Instead of forming l

as a sum over all points of the lattice. the lattice is

partitioned into disjoint sets of points called g_gigg§.

Each coding is chosen so that its points are independent.

This can be done by adequately spacing the X points so

that if X(i) and X(i) are two points in a coding. then

X(i) is not a neighbor of X(j) in the Markov Random Field

sense.

The number of codings required depends on the order

of the process. We would like each coding to be as large

as possible because the larger the coding. the more

samples are available to estimate the parameters. A

first-order process requires at least two codings for

estimation purposes. as shown in figure 24. A

second-order process requires spacing so that three by

three neighborhoods do not interfere. This yields four

codings as shown in Figure 25. Third- and fourth-order

processes require separation of three units since they are

based on five by five neighborhoods. as shown in Figure

26. There are nine codings in this case.
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The actual estimation procedure is straightforward. Let

[(i) be the log likelihood for the ith coding?

(5.2) [(i) = ln(D(XI.))

XV

where the summation extends over all points X' in the

coding i. In equation (5.2), p(XI.) depends on the order

of the Markov Random Field whose parameters are being

estimated.

We seek to maximize l(i). This is done by finding

values of the parameters a and {b(i.k)} so that

(5.3) Blli)/Ba = 0 and alli)/bb(jgk) = 0

for j = 1,29,...gr and k : 1.2 where r is the order of the

process. If the process is isotropic at some order i.

then we only consider derivatives with respect to b(jq.)

in equation (5.3).

The system of equations (5.3) is solved numerically

by the usual multivariable extension of Newton's method

[52]. We omit the routine expression 4or the derivatives
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in equation (5.3) and the second partials that are needed

in Newton's method. The stopping criterion for the

iteration process was fifteen iterations. or a change in

the magnitude of successive parameter estimate vectors of

less than 10E-06. Except for a few cases among the

natural and synthetic texture samples. ten iterations

sufficed to provide a residual of less than 10E-06. This

is fortunate. since each iteration of Newton's method in

the multivariate case effectively requires the inversion

of a matrix of size equal to the number of parameters,

which could be as many as nine for fourth-order

anisotropic textures.

An estimate of the parameter vector is obtained for

each coding. Our final estimate of the parameters is the

average value over all the codings. On a POP-11/34

computer an unoptimized estimation procedure requires

thirty seconds per coding for binary textures and eighty

seconds per coding for eight gray level textures. These

timings are averages for textures of size 64 by 64.

5.3 Hypothesis Testing

Note that we really have only one sample from the

unknown distribution p(X) on the set of colorings of the
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lattice L. From the conditional probability point of

view. each observed configuration of neighbors and the

value of the center point X is a sample. In this sense.

we have M = N**2/k samples of the conditional density

p(xl.) for the N by N lattice L. where k is the number of

codings. We can then perform a chi-square test of the fit

between the expected frequencies for each center pixel and

the observed frequency. The expected frequencies are

computed using the estimated parameters with an

appropriate reduction in degrees of freedom.

An example of a chi-square test is shown in Figure

27. The null hypothesis is:

H0: The texture is a sample from a Markov Random Field

with the estimated parameter set {a.b(i.k)}

while the alternative hypothesis is simply the negation of

H0. The estimated parameters for the example shown in

Figure 27 are a = -4.26. b(1.1) = 2.70. and b(1.2) = 1.5.

The number of cells is G. the number of gray levels. times

the number of observed neighborhood configurations. The

example is a first-order. anisotropic binary lattice. so

there are 2*9 cells possible and all were observed. The

entries in the table are of the form 'observed(expected)'

and the expected entry is computed using the conditional
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probability distribution with the estimated parameters.

The degrees of freedom are computed by means of the

formula:

(5.4) df = (G-1)*Nc - E

where G is the number of gray levels. No is the number of

neighborhood configurations (in Figure 27. each

neighborhood configuration is a row). and E is the number

of estimated parameters. In the example of Figure 27.

there are two gray levels. nine neighborhood

corfigurations and three estimated parameters. so we have

(2-1)*9-3 = 6 df. We also use the convention of having at

least one expected observation per cell. Thisresults in

a reduction in the number of cells and degrees of freedom.

Since we are performing a number of tests on the same

data (one on each of k codings). there is a great

likelihood of having the hypothesis of a fit to a Markov

Random Field scheme accepted on some codings and rejected

on others. The results of the tests are not independent.

If they were independent. and we performed k tests at a

level a . then the probability of no rejections would be

(1' d )**I(o
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-r 7

Ficure 21 Example of a Chi-Square Test. This is a binary

64 by 64 texture. A first-order anisotropic scheme was

fitted. The results of coding number 1 are shown above.

Chi-square is 12.30957. on 6 df.

Besag [10] suggests a conservative solution to the

problem of ambiguous results. Suppose the most

significant result we observed over k codings was exactly

at level p. The overall significance of the set of tests

is then taken to be kp. For example. in a first-order

isotropic scheme we obtained two chi-squared values of

7.78 (p=0.10) and 11.3 (p=0.01) on 3 df. The value 11.3
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has exact significance level of 0.01. Since there are two

codings. we take our overall significance level to be

exactly 0.02 = 2*0.01. and would reject the null

hypothesis at the 5 percent level.

In the tables in section 5.5. we have given the

number of "conservative" rejections at the five percent

level for each scheme along with the number of samples of

each texture that had 091.....k rejections over k codings

at the five percent level. This second tabulation leads

to a "liberal" rejection policy of rejecting a Markov

Random Field fit if any coding is rejected.

5.4 Description of the Data

The study of natural textures was based on twelve

pictures from the Brodatz texture album [17]. The plates

used are given in Table 1. Each plate was photographed on

35mm film to form 24mm by 36mm slides. The slides were

digitized in such a way that the small dimension occupied

slightly over 256 pixels of the 480 by 640 image of

Spatial Data Eyecom system. The 256 by 256 images were

split into sixteen non-overlapping 64 by 64 subimages and

also into four 128 by 128 non-overlapping subimages. The

gray scale of each subimage was reduced from 256 gray
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levels to both two and eight gray levels using Equal

Probability Quantizing E453.



 



Table 1: Textures

ref

Name

Brick Hall

Ceiling Tile

Pressed Cork

Calf Fur

Grass Lawn

Handmade Paper

pebbles

Beach Sand

Straw Screening

Water

(1)Hood Grain

Wood Grain (2)

106

Used in the Study.

r to the Brodatz texture album [173.

312:: flames:

D94

D86

04

D93

D9

031

029

069

D70

The plate numbers
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5.5 Evaluation of the Fit

The textures were evaluated for their fit to various

models. The purpose of this analysis was twofold. First.

we need to validate that the Markov Random Field model is

generally applicable to 'textured images. The second

objective is to formulate some general guidelines {on how

to choose an appropriate model. in terms of order and the

degree of anisotropy and isotropy. to generate specific

types of textures.

5.5.1 Binary Texture Results

Except for the screen texture. some first- or

second-order model was able to give at least ten

acceptances. under the previously mentioned conservative

decision rule. for each texture sample. Detailed analysis

of the screen texture samples showed very few distinct

neighborhood configurations. This is a consequence of its

regularity. The few neighborhood configurations dominate

the computation of the Markov Random Field parameters.

However. the low frequency neighbor probabilities are not

properly controlled by these parameters. resulting in

large chi-square values. Essentially. the histogram is so

skewed toward these configurations that the positivity
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condition of section 3.2 is nearly violated.

As an example of this. Figure 28 consists of 64

repetitions of a random sixteen by sixteen pattern. It

was analyzed on the basis of first- and second-order

isotropic and anisotropic models. Because' of the

repetitions. there are very few different configurations

of neighbors. ”nly 42 different ones appear out of a

possible 81 in a second-order anisotropic scheme.

Chi-squared values are in the range 1000-3000 on 20-40

degrees of freedom. depending on the model. The estimated

parameters vary wildly from coding to coding. For

example. on a second-order anisotropic scheme. the

parameter a was estimated as 0.02. 0.8. -0.243. 0.325.

The b(1.1) estimates were 0.376. -0.469. +0.469. and

-0.567. Similar variability was present in all the

parameters.

Tables 2 through 9 give the results of testing binary

texture samples under a number of models. A test against

a first-order model results in two hypothesis tests. one

for each coding. There are sixteen subimages of each

texture and each may be rejected on zero. one. or two

codings at the five percent level. The number of

subimages which had each number of rejections is recorded
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in the last three columns of tables 2 and 3. Also listed

is the number of conservative acceptances. of which there

are a maximum of sixteen possible. For an appreciation of

the difference between the conservative and the liberal

rule. compare the number of conservative acceptances with

the number of subimages which had no rejections. Tables 4

through 9 parallel the format of tables 2 and 3 except

that they represent tests performed using the second-order

codings. There is a possibiity of zero. one. two. three.

or four rejections per subimage. as there are four

codings.

Besag [10] makes the point that one cannot compare

the fit of a second-order model to the fit of a

first-order model unless the same coding scheme is used in

both cases. From Tables 2 and 3. it would appear that the

first order scheme fits very well. but in many cases it is

inferior to a second-order scheme when considered on the

same coding. Table 10 gives the best results on

second-order coding for each of the binary textures. The

general good fit of the first order model should be

reconciled with the fact that there are only two codings

rather than the four for a second-order scheme. which

means that fewer rejections are likely.
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Figure 28: Non-Markovian Periodic Texture. This is a 64

by 64 section of a 128 by 128 texture. The basic pattern

is 16 by 16 and is repeated 64 times over the image.

We have limited our attention to the case of 64 by 64

textures. Although third-order estimates can be made

which give good visual results in texture generation

experiments explained later. we cannot reliably perform a

chi-square test of them on the 64 by 64 lattice. The

number of cells with only one member is very large since

the number of possible cells with a fully anisotropic

third-order model is 729 while there are only about 585 in

a single third-order coding (there are 9 codings in all).
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Our preferred choices for the best-fitting model arebased on a simple rule: choose the model that gives the

We would not consider a fit to be adequate unless themajority of samples from the texture class fit the model.
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Table 2: Isotropic. First-Order. Binary Tests. The

parameters estimated are a. b(1..).

Texture Name Conservative Rejections at 0.05 level

Acceptances g 1 2 _

Brick 14 10 6 0

Ceiling Tile 10 9 4 3

Cork 14 12 3 1

Fur 5 2 11 3

Grass 15 12 3 1

Paper 16 12 4 0

Pebbles 14 10 6 0

Sand 15 14 1 1

Screen 0 0 2 14

Water 10 9 7 0

Wood (1) 9 8 8 0

Wood (2) 9 6 9 1
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Table 3: Anisotropic. First-Order. Binary Tests. The

parameters estimated are a. b(1.1). b(1.2).

Texture Name Conservative Rejections at 0.05 level

Acceptances

Brick ' 11 11 5 0

Ceiling Tile » 11 6 7 3

Cork 11 10 5 1

Fur 6 5 8 3

Grass 13 11 4 1

Paper 13 13 3 0

Pebbles 11 9 5 2

Sand 15 12 3 1

Screen 1 0 5 11

Water 8 8 7 1

Hood (1) 9 7 4 5

Hood (2) 4 2 9 5
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Table 3: Isotropic. First-Order. Binary Tests. on

second-order spacing. The parameters are a. b(1..).

Texture Name Conservative Rejections at 0.05 level

Acceptances

Brick 16 13 3 0 0 0

Ceiling Tile 16 11 4 1 0 0

Cork . 14 12 3 1 0 0

Fur 11 8 3 5 0 0

Grass 15 11 4 1 0 0

Paper 15 14 2 0 0 0

Pebbles 14 10 6 0 0 0

Sand 14 12 4 0 0 0

Screen 0 0 1 1 5 9

Water 11 10 2 3 1 0

Wood (1) 13 10 6 0 0 0

Hood (2) 13 6 9 1 0 0
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Table 5: Anisotropic. First-Order. Binary Tests. on

second-order spacing. The parameters are a. b(1.1).

b(1.2).

Texture Name Conservative Rejections at 0.05 level

Acceptances Q 1 2 3 5

Brick 9 6 8 2 0 0

Ceiling Tile 15 11 4 1 0 0

Cork 12 10 4 2 0 0

Fur 10 9 3 3 1 0

Grass 16 11 4 1 0 0'

Paper 14 10 6 0 0 0

Pebbles 11 9 1 6 0 0

Sand 14 10 5 1 0 0

Screen 2 0 2 3 6 5

Water 11 9 6 1 0 0

Wood (1) 12 7 7 2 0 0

Hood (2) 11 3 10 3 0 0
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Binary Tests. The parameters are a. b(1..). b(2..).

Texture Name Conservative Rejections at 0.05 level

Acceptances 1 2 _ 3

Brick 5 1 3 7 3 2

Ceiling Tile 12 9 4 2 1 0

Cork 11 6 6 4 0 0

Fur 12 7 8 1 0 0

Grass 13 12 3 1 0 0

Paper 11 8 6 2 0 0

Pebbles 11 , e 6 2 2 0

Sand 14 9 5 2 0 0

Screen 0 0 3 0 2 11

Water 12 7 5 3 1 0

Hood (1) 10 5 8 3 0 0

Wood (2) 10 7 6 1 2 0
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1292; 1: First-Order (Isotropic). Second-Order

(Anisotropic) Binary Tests. The parameters are a. b(1..).

b(2.1). b(2.2).

Texture Name Conservative Rejections at 0.05 level

Acceptances g 1 2 3 3

Brick 5 3 6 4 3 0

Ceiling Tile 13 10 5 1 0 0

Cork 14 11 5 0 0 0

Fur 10 7 8 1 0 0

Grass 15 11 5 0 0 .0

Paper 13 12 4 0 0 0

Pebbles 11 9 4 0 2 1

Sand 14 12 4 0 0 0

Screen 3 3 1 1 11 0

Water 13 11 4 1 0 0

Wood (1) 13 9 5 2 0 0

Wood (2) _ 12 11 3 1 0 0
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122;; 8: First-Order (Anisotropic). Second-Order

(Isotropic) Binary Tests. The parameters are a. b(1.1).

b(112)’ b(29o).

Texture Name Conservative Rejections at 0.05 level

Acceptances g 1 2 2 3

Brick 2 0 7 4 3 2

Ceiling Tile 12 11 2 1 2 0

Cork 9 3 6 6 1 0

Fur 9 7 7 2 0 0

Grass 14 9 4 2 1 0

Paper 11 6 4 2 4 0

Pebbles 10 9 2 3 1 1

Sand 12 11 4 1 0 0

Screen 4 2 2 5 1 6

Water 13 7 9 0 0 0

Wood (1) 10 7 6 3 0 0

(
)
1

\
D

H H DWood (2) 13
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First-Order

(Anisotropic) Binary Tests.

b(1.2). b(2.1).

Texture Name

Brick

Ceiling Tile

Cork

Fur

Grass

Paper

Pebbles

Sand

Screen

Hater

Hood (1)

Hood (2)

b(292).

Conservative

Acceptances

6

13

14

11

15

12

14

U
!

14

14

(Anisotropic).

The parameters

Rejections at

Q .1.

4 7 3 2

10 4 2 o

11 4 1 o

a s 2 o

10 4 2 o

11 4 1' 0

11 2 1 1

14 2 0 0

10 3 3 0

13 2 1 0

Second-Order

are a. b(1.1).

0.05 LEVEL

4

0

0
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: Best-fitting Binary Texture Models. In the

ow. 'I' means that the fewest rejections were

obtained by using isotropic estimation. while 'A'

signifies the best results were obtained using anisotropic

parameters. The symbol '---' in the second-order column

signifies that the best results were obtained using a

first-order model.

Texture Name L'irst Second Acceptances

70rder Order

Brick I --- , 16

Ceiling Tile I --- 16

Cork I A 14

Fur _ I I 12

Grass A --- 16

Paper I --- 15

Pebbles I --- 14

Sand A A 14

Screen A A 5

Water A A 14

Wood (1) A A 14

Wood (2) A A 14
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5.5.2 Binomial Texture Results

With the experience gained from the binary fits. we

limited our attention to four samples from each of the

eight gray leVel pictures. First-order models yielded

consistently negative results. The binomial model is

unable to effectively model bimodal or uniform conditional

probabilities. The binomial model always has a peak at

exactly one value for any choice of 6. Also. if there are

two likely gray values which are not contiguous. then no

choice of the e parameter can yield the correct

probabilities.

As in the binary case. third-order analysis cannot be

performed on samples of size 64 by 64 for eight gray level

textures. In the matching experiments. estimation was

performed for third-order textures using 128 by 128

samples. Even this is barely enough. and results in about

thirty percent collapsing of the cells when the cells are

pooled to force expectations of at least one per cell. A

first-order model with anisotropy can have as many as 225

cells. while a full third-order model with anisotropy can

use as many as 225**3 cells. Of course. the number of

cells is limited by the number of points on the lattice.
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Tables 11 and 12 give the results of fitting

eight-color models to four samples from each texture

class. The format is analagous to Tables 2 through 9.

except that only four samples per texture class were used.

As in the case of the binary textures. good results were

obtained for all but the inhomogeneous textures: Hater.

Hood. and Pebbles. The binomial model has difficulty in

handling large areas of equal brightness. All of the

textures which did not fit the model well are either

blotchy or regular. like the image of the screen.

Fine-grained textures can be handled and. as we shall see.

generated by the binomial model easily. The best results

of the two sets are shown in Table 13.
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I§b1g 11: Eight gray level. First-order(Anisotropic).

Second-order(Anisotropic). The parameters are a. b(1.1).

b(1.2). b(2.l)9 and b(292).

Texture Name Conservative Rejections at 0.05 level

Acceptances 1 2 1 3

Brick 0 0 0 0 0 4

Ceiling Tile 2 1 3 0 0 0

Cork 4 3 1 0 0 0

Fur 1 1 2 0 1 0

Grass 3 3 1 0 0 0

Paper 4 3 1 0 0 0

Pebbles 0 0 0 0 0 4

Sand 4 4 0 0 0 0

Screen 0 0 0 0 0 4

Water 0 0 0 1 0 1

Hood (1) 1 0 0 0 0 4

Wood (2) 0 0 0 0 0 4
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12213 12: Eight gray level. First-order(Isotropic).

Second-order(Anisotropic). The parameters are a. b(1..).

b(291). and b(292).

Texture Name Conservative Rejections at 0.05 level

Acceptances 1 2 1 3

Brick 3 0 2 2 0 0

Ceiling Tile 3 3 1 0 0 0

Cork 1 1 0 1 1 1

Fur 4 4 0 0 0 0

Grass 3 1 2 1 0 0

Paper 3 2 2 0 0 0

.Pebbles o o o n o 4

Sand 4 2 2 0 0 0

Screen 0 0 0 0 0 4

Mater 0 0 0 0 0 4

Wood (1) 0 0 0 0 0 4

Hood (2) 0 0 0 0 0 4
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12913 11: Best-fitting Eight-gray level Texture Models.

In the table below. '1' means that the fewest rejections

were obtained by using isotropic estimation. while 'A'

signifies the best results were obtained using anisotropic

parameterss. The symbol '---' indicates that neither

model was appropriate.

Texture Name First Second Acceptances

Order Order

Brick A I 3

Ceiling Tile A I 3

Cork A A 4

Fur I A 4

Grass A A 4

Paper A A 4

Pebbles --- --- 0

Sand A A 4

Screen --- --- 0

Water --- --- 0

Hood (1) A A 1

Hood (2) --- --- 0
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5.6 Texture Matching Experiments

This section examines the viability of the Markov

Random Field as a supervised texture generation procedure.

The input texture is measured using the Maximum Likelihood

approach described in section 5.3. The results of that

evaluation are used as the input to the generation

procedure in Figure 12.

As mentioned in section 5.5. the third-order model on

a 64 by 64 texture cannot be reliably fitted since it

causes too many empty or near-empty cells. Limited

experimentation showed that if the image size was

increased to 128 by 128. a sensible chi-square estimate

could be made. though the parameters did not change.very

much from the estimates made on the 64 by 64 textures.

5.6.1 Binary Textures

Binary textures have far simpler structures than

multi-gray level textures. If they are not regular. like

a tiling of the plane by polygons. then we can describe

their general appearance by a few general characteristics.

This is really an abbreviated list of the intuitive

textural attributes defined in the first chapter.
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(i) Directionality: Vertical. Horizontal. Diagonal.

or None.

(ii) Cluster size: Large. Medium. or Small

(iii) Homogeneity: Homogeneous or Inhomogeneous.

Inhomogeneous images have different characteristics in

different parts of the picture.

(iv) Special Features: Regularity. Line-likeness.

Blob-likeness.

Table 14 illustrates rough characterization on the

basis of one 64 by 64 sample of the features given above.

We can use this guide to evaluate our success in matching

the generated textures. of course. we would like to be

able to say that one texture “looks like" another. but we

need some way of quantifying this correspondence. Figure

29 shows the results of generating the twelve textures

from the estimated parameters. The parameters used to

generate the synthetic textures were obtained by averaging

the parameter estimates from each of the codings of a

single subimage. The choice of subimage was arbitrary. A

third-order estimate was used in all cases except for the

pictures of Mood grain(1) and Pebbles. In these two
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1221; 13: Binary Texture Characteristics

Cluster

1251252 212211122 Size

Bricks Vertical

Ceiling Vertical

Cork Diagonal

Fur None

Grass Diagonal

Paper Diagonal.

Pebbles None

Sand None

Screen Vertical

Hater Vertical

Nood(1) Horiz.

Nood(2) Horiz.

Large

Small

Small

Large

Small

Small

Large

Medium

Small

Medium

Large

Large

Low

High

High

High

Hihg

Low

High

High

Low

Low

Special

Eeatsces

Regular

None

None

None

None

None

Blobs

None

Lines. dots

None

Blobs

Blobs
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cases. a first-order model gave better visual results.

First-order models tend to form in blob-like aggregations

and cannot correctly characterize fine-structured

textures. Moreover. they are inadequate in showing any

directionality except vertical and horizontal.

The clear failures are:

Bricks: The regularity and neat rectangles are not

present. Cluster size is close to correct along with the

overall vertical structure. The regularity occurs at an

order of around 20 pixels. and there is little chance of

capturing such a structure from a 64 by 64 picture.

Fur.wood (1). Wood (2): The inhomogeneity is missed in the

synthetic examples. What remains of these pictures after

binary quantization can hardly be called a texture. The

images are estimated to be fine-structured rather than

clean. blob-like shapes like pebbles. because their noise

component modifies the estimate so that third-order

inhibition is used in the generation. This is an

unfortunate consequence of the estimation procedure. It

is possible that a preliminary smoothing might help in

getting a more correct estimate. In all cases. the

directionality is correctly simulated in these textures.
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The remaining nine textures are reasonably

approximated by the simulated textures. In the pictures

of Cork. Grass. and Paper. diagonality is the overriding

feature and this is correctly modelled. The screen image_

is remarkably similar to the original. The third-order

repulsion effect provides the curious checkerboard effects

along the lines in both the original and the generated

texture. Without this inhibition effect. the image would

resemble the vertical images shown in Figure 16.
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Eigggg 22 Real and Synthetic Binary Textures: £21 Binary

Bricks 1211 Synthetic Binary Bricks _(_p__)_ Binary Ceiling

tile 5311 Synthetic Binary Ceiling Tile 121 Binary Cork

1511 Synthetic Binary Cork



 



 
1g; Binary Fur 5g1; Synthetic

1211 Synthetic

1 Synthetic Binary Paper

Binary

Binary

Grass



 



  
519252 22 ...Continwsg! 1.91 Binary Pebbles 19.1.18ynthetic

Binary Pebbles (h) Binary Sand 1511 Synthetic Binary Sand

11; Binary Screen 1111 Synthetic Binary Screen





 
Figure 22 Continued: 111Binary Water £111Synthetic Binary

Water 121 Binary wood Grain(l) £511 synthetic Binary Hood

Grain(1). 111 Binary Wood Grain(2) 1111 Synthetic Binary

Wood Grain(2).





5.6.2 Binomial Texture Matching

The same basic data set of Brodatz 0173 textures was

used in the binomial matching experiments as was used in

the binary experiments. The pictures were quantized to

have eight gray levels using histogram equalization.

However. during the estimation of the third-order Markov

Random Field parameter set. it was found that far too many

cells were empty or contained only a single member when

the image size was 64 by 64. Therefore. a 128 by 128

image size was used for both estimation and matching. In

all cases. a third-order model was estimated and used to

generate the synthetic textures.

Numerically. the Markov Random Field parameters of

the estimated binomial textures are very similar. which

accounts for the similar appearance of the generated

textures. He have omitted some of the obvious failures:

Water. Hood Grain (1). Hood Grain (2). and Pebbles. Hhen

considered as an eight-gray level image. these textures

take on a distinctly inhomogenous appearance. At this

size. they look like pictures of obiects. whereas the

generated textures look like a fine-grain field. The

Markov Random Field always results in a homogeneous

covering of the image. which cannot result in a blotchy
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image unless the parameters are extreme. As'an example.

the fur pictures. Figure 30a and 30a1. show the result of

an inhomogeneity in the image.

The other clear failure is the Bricks picture. As in

the binary case. the Bricks image has a regular structure.

The Markov Random Field can only detect a hint of a

vertical structure. This is shown in Figures 30b and

30b1.

Ceiling tile. Cork. Grass. Paper. and Sand are

handled adequately. Missing are the large black holes in

the synthetic ceiling tile picture. but there are some

dense black patches. The distinctly three-dimensional

appearance of the the handmade paper. admittedly a tactile

property. is not captured either.

The Screen texture has the general line-like quality.

but lacks the straightness present in the original. This

could be corrected. but the estimated parameters of the

screen texture do not support the further inhibition

needed to straighten out the lines and keep them narrow

rather than fuzzy.
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The model seems to be adequate for duplicating the

micro-textures. but is incapable of handling strong

regularity or cloud-like inhomogeneities. These

experiments should be taken as an exploration of the

limits of a purely statistical approach to texture without

any 2 251251 knowledge at all. For example. if we knew

that the Bricks picture was supposed to have rectangles of

a certain size and orientation. then we could start with

them as an outline and then fill in the rectangles with a

Markov Random Field.





138

 
Real and Synthetic Eight Level Textures 121 Fur

' Fur 121 Bricks 1211 Synthetic Bricks

g Tile 1911 Synthetic Ceiling Tile





 
519252 39 222112222: 121 Cork 1211 Synthetic Cork

(e) Grass 1e ) Synthetic Grass 111 Paper 1:11 Synthetic
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Figure 30 ggggigggg: 191 Sand 191) Synthetic Sand

Iii-Ezreeh 1h11 Synthetic Screen
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5.7 Summary

We have explained the estimation procedure for the

Markov Random Field parameters. Hypothesis testing was

presented as a method of objective evaluation of the fit

between a texture model and a texture. We computed the

fit between Markov Random Field textures and a collection

of samples from the Brodatz texture album [17].

Experiments in the generation of textures that matched

real images were performed. with some successes and

explainable failures.



 



CHAPTER 6. CO-OCCURRENCE MATRICES

6.1 Introduction

Features based on co-occurrence matrices continue to

play an important role in texture analysis [243. [88]. In

a model-based approach. we would like to determine the

distribution of these features as a function of the model

parameters. If we knew these distributions. then we

could. at least in principle. determine the discriminative

capability of classification algortithms based on the

co-occurrence features. As an example. let 2(1) and 3(2)

be two distinct parameter vectors for a texture model.

Suppose further that the mean. S = EE2:X(i)J. is the same

for textures from either the class defined by 2(1) or the

one defined by 3(2). Then any classification scheme based

solely on S would be unable to discriminate between

textures from the two classes.

A study along these lines was performed Iby Conners

and Harlow [24]. They created textures using a

one-dimensional Markov process. The Markov process

specifies the probability that a pixel with gray level i

follows a pixel with gray level j in a row. The rows of

the image are uncorrelated. This texture model provides a
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method of computing co-occurrence matrices from the

transition matrix of the process. Texture algorithms can

be compared on their capability of distinguishing textures

with different transition matrices.

The difference between the above study and prior

comparative studies [1063 is that Conners's study did not

compare the texture analysis algorithms on the basis of

their performance on a texture database. but rather

predicted their performance on texture classes defined by

model parameters. Empirical studies certainly are of,

interest to users of texture analysis algorithms. but they

guide in the selection of textural recognition algorithms

only insofar as the results of the empirical study can be

generalized to new data.

Our purpose in this chapter is to begin a theoretical

calculation of textural feature distributions based on

Markov Random Field parameters. JWe limit our attention to_

_the case of binary. first-order Markov Random Fields.
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6.2 Joint Probability Formulation

This section defines the variables we need to

calculate the co-occurrence matrices. We assume that the

binary variables take values in {-1.1}. Following

Bartlett [7]. we have the following expression for the»

joint probability mass function:

(6.1) p(X) = Zexp( -GS(§) -Y(1)U1(§) - Y(2)U2(§))

where

\

(6.2) S(X) = X(r.s)

/

(P95)

\

(6.3) U1(§) = X(r.s)X(r-1.s)

/

(r.s)

\

(6.4) u2(x) : X(r.s)X(r.s-1).

/
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The lattice is assumed to have a periodic boundary.

The quantity Z in equation (6.1) is called the

partition function. It depends on a. Y(1). and Y(2) and

is a normalizing constant .30 that p(X) is a valid

probability mass function.

The quantity EES(§)] is called the mean of the

process. If the value of a is zero. then EES(§)] is also

zero. This is not hard to show. For each coloring 5. let

-1 denote the negative of 5. in the sense that the value

of each point X(r.s) of the lattice L is reversed in sign.

Then my = -s<-x>. but 01(1) = U1(-§). and 02(5) =

U2(-5). Since the quantity a is zero. we see from

equation (6.1) that p(X) = p(-X). Hence. we conclude that

Ets<xn = squuy

= (3(5) «ct-gnu!)
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The case of a = O is of interest in image processing

applications. As mentioned earlier. we usually reduce the

gray scale from some high level like 256 to 16 or less in

such a way that the numbers of pixels present at each gray

level are equal. If we reduce the gray scale to two

levels. the observed 8(3) should be close to 0 in the

{-1.1} formulation.

If we transform the variables so they take values in

{0.1} instead of {-1.1}. then the conditional probability

parameters of section 3.5.1 can be written as:

(6.5) a = 2a - 4H1) - 4Y(2)

b(1.1) = 4Yli). i = 1. 2.

When a = O. a = -b(1.1) - b(1.2) (in the isotropic case.

we have a = -2b(1..)). This means that an anisotropic.

first order texture appears to have three parameters: a.

b(1.1). and b(1.2). If we force the mean to be N**2/2.

i.e. EES(§)] = 0 in the {-1.1} formulation. then there

are really only two parameters: b(1.1) and b(1.2).—

Strauss E97] prOperly considers the a parameter to be a

"nuisance" parameter. while the b(j.k) parameters control
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the clustering in the lattice.

6.3 Join Count Calculations

This section derives the formulas for the join count

statistics. which in turn imply the co-occurrence

matrices. We assume that 4:0. i.e. the equalized

histogram case.

The quantities U1 and U2. as defined in equations

(6.3) and (6.4). are the join counts. By definition. the

bivariate cumulant generating function for U1 and U2 is

K(¢(1).¢(2)) = log(ECexp(¢(1)U1 + ¢(2)U2]).

Let Z( (1). (2)) denote the partition function for the

case 4:0. The peculiar form of the joint probability

mass function in (6.1) implies that

(6.6) K(¢(1).<I>(2)) = logZ(Y(1).Y(2))

- lqu(Y(1)-¢(1).Y(2)-¢(2)).

From equation (6.6). we obtain

(6.7) EEUI] : (8K(¢(1)’¢(2))/3¢(1))I¢(1):¢(2):O
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: alogZ(Y(1).Y(2))/6Y(1)

and

(6.8) ECU2] = alqu(Y(1).Y(2))/3Y(2).

It is thus possible to compute the expectation and

moments (or even approximate the distribution by a

cumulant expansion) of U1 and U2. In this approach. we

require knowledge of the partition function Z. Onsager

E79] caLCUlated the exact value of Z for the case a = 0.

This is is lonly case for which analytical results are

available. The somewhat unwieldy exact Z can be closely

approximated by the more compact form given by Kac and

Ward [61]. When N is large and even. and the lattice has

a periodic boundary then we can write

(6.9) logZ(Y(1).Y(2)) = N(cosh(Y(1))+cosh(Y(2))

N N/2

\ \

+ logH(r.s)

/ /

s=1 r=1

where
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H(r.s) = (1+x**2)(1+y**2)

+ 2y(x**2-1)cos(2nr/N)

+ 2x(y**2-1)cos(2ns/N)

and x = -tanh(Y(1)). y = -tanh(Y(2)).

The expression for the expectation of U1 or U2 is

(6.10) EEUi] = Ntanh(Y(i))

N N/2

(---- :---- 1 aH(r.s)

/ / LIFE? 3????

-221" '22}-

and the variances are given by

(6.11) VarEUi] =

Nsech2Y(i)

\ \ 1 §H(r.s) 1 3H(r.s)

 

/ / H(r.s) av(i)2 H2(r.s) 8Y(i)



 



We are now in a position to compute the co-occurrence

matrices. We need to define the join counts for the case

of variables in the form {0.1}. Each lattice point X(r.s)

has a left-hand neighbor X(r-1.s) and a lower neighbor

X(r.s-l). assuming the boundary is periodic. We can then

define the following set of numbers. in a manner

consistent with current practice E80]:

881 = number of times a black pixel has a black left-hand

neighbor.

WW1 : number of times a white pixel has a white left-hand

neighbor.

8W1 = number of times a black pixel has a white left-hand

neighbor.

W81 = number of times a white pixel has a black left-hand

neighbor.

The quantities B82. WW2. 8W2. and W82 are defined in

the same way except that "left-hand" is replaced with

"lower." It is clear that on an,N by N lattice we have

(6.12) 881 + WW1 + 8W1 + ”81 = N**2
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and

(6.13) 882 + ”“2 + 8H2 + H82 = N**2

The co-occurrence matrices can be expressed. at least

for displacements of (0.1) and (1.0). in frequency form

from equations (6.12) and (6.13). On a torus. the (-1.0)

and (1.0) co-occurrence matrices are the same. Their

common form is:

881 8W1

(6.14) C(1.0) =

W81 WWI

The (0.1) and (O.-1J co-occurrence matrix is:

(6.15) C(0.1) =

To compute these quantities from U1 and U2. observe

that

(6.15) U1 = 881 + WW1 - 8W1 - W81

(6.16) U2 = 882 + WW2 - 8W2 - W82.

Combining equation (6.12) with (6.15) and equation (6.13)

with (6.16). we obtain
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(6.17) 881 + WNl = (N**2 + U1)/2

(6.18) 882 + WW2 = (N**2 + U2)/2.

The final step in the computation rests on two

assumptions. The first assumption is that the number of

BB joins is closely approximated by the number of WW

joins. Intuitively. this means that if the black pixels

are clustered. the white pixels must also be clustered.

The following proposition and its corollary establish

that. from a Markov Random Field point of view. the

clustering parameters for white and black are the same.

Egggggitigg 6:1: Suppose a first-order Markov Random

Field has conditional parameters a. b(1.1). and b(1.2).

Then the Markov Random Field obtained by reversing each

coloring of each realization has parameter set

{a*.b*(1.1).b*(1.2)}. where

8* = -a ' 2b(1.1) - 2b(1.2)9

b*(1.1) = b(1.1).

b*(1.2) = b(1.2).

3599:: Let p denote the conditional probability

distribution of the original field and p* the conditional

probability of the field obtained by reversing

realizations. Let S*(1.1) and S*(1.2) denote the neighbor
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sums in the reversed lattice (the quantities {S(i.k)} were

defined in section 3.5.1). Then we have.

p(X=0IS(1.1).S(192))

= D*(X=1IS*(1.1)=2-S(1.1).S*(1.2)=2-S(1.2)).

This means. following equations (3.11) and (3.12). that

1

(1 + exp(a + b(1.1)S(1.1) + b(1.2)S(1.2))

exp(a* t b*(1.1)(2-S(1.1)) + b*(1.2)(2-S(1.2))

 

1 + exp(a* + b*(1.1)(2-S(1.1)) + b*(1.2)(2-S(1.2)).

After some simplification. we obtain the relation that

(6.19) 0 = a + b(1.1)S(1.1) + b(1.2)S(1.2)

4» a. + b*(1.1)(2-S(1.1)) + b‘(1.2)(2-S(1.2n

Equation (6.19) actually represents nine equations

depending on the three values of S(1.1) and the three

values of S(1.2). The only consistent solution is a* = a

" 2b(1.1) - 2b(1!2)9 b*(1.1) = b(1.1). b*(192) = b(1.2).

0

As an immediate consequence. in the equalized

histogram case we can be more specific:
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Qgro 1251 221: If a binary. first-order Markov Random

Field has parameter 4:0. then the parameters of the

reversed field are the same as the parameters of the

original field.

Egoof: a* = -a - 2b(1.1) -2b(1.2). But in the

equalized histogram case a = - b(1.1) - b(1.2) so a* = -a

+2a=a.EI

The second assumption needed to complete the

computation is that the number of BW joins is closely

approximated by the number of WB ioins. Intuitively. this

means that the conditional probability of a black pixel

having a white neighbor is the same as the conditional

probability of a white pixel having a black neighbor.

This is a consequence of the equal clustering between

black and white pixels. along with approximately equal

numbers of white and black pixels.

Combining all of this. we obtain the final version of

the co-occurrence matrices in frequency form:
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N**2 + U1 N**2 - U1

4 4

(6.20) C(1.0) =

N**2 - U1 N**2 + U1

4 4

N**2 + U2 N**2 - 02

4 4

(6.21) C(0.1) =

N**2 - U2 N**2 + U2

4 4

6.4 Experimental Results

In order to test the adequacy of the approximations

inherent in equations (6.20) and (6.21). we.simulated a

number of Markov Random Fields with various parameters and

measured the correspondence between the expected and

observed co-occurrence matrices.

The first set of simulations inVOLVes 200 samples of

64 by 64 isotropic Markov Random Field textures with

b(1..) parameters in the range 0 to 1. The high values

closely approximate natural textures. A scatter-plot of

the results of the expected and observed results appears

in Figure 31. The horizontal axis is the clustering
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parameter b(1..). The vertical axis is the value of the

c(0.0) entry (probability of a black-black join) in the

C(1.0) co-occurrence matrix. The curve drawn in is a plot

of the expected value of the c(0.0) entry plotted as

function of b(1..). computed using equation (6.20).

The second set of simulations involves a series {of

anisotropic textures with parameters b(1.1) and b(1.2)

varying independently over the range 0 to 1.0 by

increments of .1. Each texture was estimated under the

first-order anisotropic model. The values of the C(O.1)

and the C(1.0) co-occurrence matrices were recorded for

each texture. The estimated parameters of the Markov

Random Field were used to compute U1 and U2 using equation

(6.10). The co-occurrence matrices were then approximated

using equations (6.20) and (6.21).

The difference between the observed value of the

probability of a black-black join and the approximated

value is shown below in Table 15. There is a total of 128

co-occurrence matrices (two per texture). The mean error

between the expected and observed black-black probability

is 0.0135 over the 128 matrices. The average error is

about three percent with a maximum error of eight percent.

This error is entirely reasonable: the variance of the.



 

 



join count in the isotropic case

84.6. with an expectation of 1211.
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12919 1;: Errors in Co-occurrence Predictions. The error

column represents the difference between the predicted

black-black join probability and the observed.

Error Frequency

Greater than 0.04 2

0.03 to 0.04 10

0.02 to 0.03 20

0.01 to 0.02 39

0.005 to 0.01 25

0.001 to 0.005 26

Less than 0.001 6

121 l 128
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6.5 Summary

We have formulated the joint probability form for

binary Markov Random Fields. The partition function was

shown to be the cumulant generating function for the

horizontal and vertical join counts. Co-occurrence

statistics were computed from the join counts. Finally.

experiments showed good correspondence between the

predicted co-occurrence matrices and the observed on a

number of simulations.



 

 



CHAPTER 7. CONCLUSIONS AND DISCUSSION

7.1 Summary

Texture is defined as a stochastic. possibly

periodic. two-dimensional image field. We reviewed the

important aspects of texture and discussed vision research

applicable to texture. The significant applications of

texture analysis and synthesis were explained:

classification. image segmentation. realism in computer

graphics. and picture encoding.

A texture model was defined as a mathematical

procedure capable of producing and describing a textured

image. The models which have been used were summarized in

some detail. Included were discretized continuous models.

time-series. fractals. random mosaics. syntactic models.

linear models. and Markov models. Each was found to be

appropriate for some but not all types of textures.

The focus of this research was on the Markov Random

Field model for texture. with special attention to the

selection of an appropriate conditional distribution for

the points of a lattice. The binomial model. where each

point in the texture has a binomial distribution with

161
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parameter 9 controlled by its neighbors and "number of

tries" equal to G. the number of gray levels. was-taken to

be the basic model for all the analysis. This represents

the first use of the binomial model for image analysis and

seems to be the first application of the binomial model

for any purpose whatsoever.

A method of generating samples from a binomial or

binary model was given. The colorings X of a lattice were

identified with the states of a Markov chain. Convergence

of the generation procedure was taken to mean that the

equilibrium distribution of the Markov chain was the same

as the set of probabilities {p(1)}. The practical aspect

of the rate of convergence was discussed and an example

was given to show that a Markov Random Field image with

desired parameters is obtained rather quickly.

The Markov Random Field parameters control the

strength and direction of the clustering of the image.

Samples of various types of textures were exhibited to

show the effects of various input parameters. These

included line-likeness. blob-likeness. coarseness. and

directionality. The power of the binomial model to

simulate blurry or sharp images was demonstrated.

Numerous types of images were found to require an
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attraction-repulsion effect in the sense that the

low-order Markov Random Field parameters were positive.

causing clustering. while high-order parameters were

negative. resulting in a fine structure of small clusters.

In order to determine the relevance of the binomial

model to real textures. samples from the Brodatz texture

album [17] were digitized. Overall. the micro-textures.

grass. sand. cork. ceiling tile. and paper. obeyed the

Markov Random Field model well. The use of a hypothesis

test for the objective evaluation of the correspondence of

the model to the sample was a major feature of this

investigation.

Using the estimation procedure for Markov Random

Fields. the parameters of the natural textures were

measured. The measured parameters were used as input to

the texture generation procedure. This was an attempt to

see how‘ far the statistical approach alone could be

carried in the absence of any structural information about

the texture. Micro-textures were successfully generated

while the regular and inhomogeneous textures bore little

resemblance to their synthetic counterparts.
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An investigation was begun of the connection between

the distribution of the usual statistics used for texture

analysis and the Markov Random Field model. The

co-occurrence matrices of binary. first-order Markov

Random Fields were computed as a function of lthe field

parameters. Good correspondence was noted between the

co-occurrence matrices of sample textured images and the

matrices predicted from their Markov Random Field

parameters.

7.2 Discussion

This section is divided into two parts. The first

part cites the advantages of the Markov Random Field image

model and the second part details the limitations and

defects of the model.

7.2.1 Advantages

The positive aspects of the Markov Random Field model

are given below. Comparisions are made with other texture

models.
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(i) The model is fully two-dimensional and does not

assume a causal (unilateral) dependence. Many texture

models are one-dimensional. such as time series E66] or

simple Markov scan-line textures [24]. It is essential.

at least in principle. that a texture model be capable of

describing spatial interaction over the plane in all

directions. In fact. the Markov Random Field can even be

adapted for use on irregular or triangular lattices by

application of the Hammersley-Clifford theorem [103.

(ii) The texture parameters are measurable from

samples and the appropriateness of the model can be

assessed objectively by a hypothesis test. Contrast this

with the texture generation process of Yokoyama and

Haralick [1093. Their growth model represents a pattern

generation process which certainly adds to our

understanding of images. but we have no way of testing the

sample image for correspondence to the model. Moreover.

the Markov Random Field model allows the fitting of the

sample texture directly to the model parameters. The

current state of most models requires indirect fits by

using variograms and correlation matches [90]. E26].
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(iii) The model parameters themselves are sufficient

to generate images. The joint probability mass function

p(X) is sufficiently peaked so that textured image samples

governed by it resemble each other visually. In a purely

feature-based approach. we do not have the capability to

generate images from features because the features do not

uniquely define a texture class.

(iv) The pattern formation process. though specified

locally. implies a global pattern. The consistency

conditions enforced by the Markov Random Field cause a

pattern over_the entire lattice. As Besag explains in the

discussion of his lattice model paper. [103:

Incidentally. the fact that a scheme is formally

described as "locally interactive" does not

imply that the patterns it produces are local in

nature (cf. the extreme case of long-range

order in the Ising model).

(v) The patterns formed are realistic. The binomial

model allows natural smooth peaks and valleys in the gray

level height field over the plane. Sharp or blurry images

can be controlled by the amount of high-order inhibition.

Contrast this to the Poisson checkerboard with uniformly

colored blocks and sharp boundaries [75]. If the

assumption of uniform cell coloring is dropped from the
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mosaic models. then their parameters cannot be estimated

by currently available means.

(vi) The patterns generated by varying the model

parameters can be studied and classified. The results of

chapter 4 show the visual significance of the parameter

settings. Directionality. coarseness. gray level

distribution. and sharpness can all be controlled by

choice of the parameters.

(vii) The parameter estimation procedure can be

implemented in a parallel algorithm. Each parameter

estimate is performed on disjoint codings. each of which

can be processed separately and then averaged to form the

final result. Even the hypothesis tests could be done in

parallel.

7.2.2 Disadvantages and Limitations

The Markov Random Field model has the following

disadvantages. most of which are common to any purely

stochastic approach to texture:



 



168

(i) Regular textures are not modelled very well. The

only successful regular textures produced were the

one-pixel wide checkerboard. Figure 17. or the screen.

Figure 29i. The screen texture is really a

one-dimensional texture consisting of highly correlated

rows. The Markov Random Field approach is unable to

provide the texture of regular cloth. a regular tiling. or

the highly repetitive texture shown in Figure 29.

(ii) The textural primitives of the Markov Random

Field are non-geometric. The shape of the cells in a

Markov Random Field has a distribution determined by the

parameters. We cannot enforce any geometrical conditions

or force things as triangular shapes to appear. such as is

possible in a bombing model [903. We can only control the

clustering characteristics: size. aspect ratio. density.

and orientation.

(iii) Large images are required to get good parameter

estimates. It would appear that third-order estimates

require at least 128 by 128 pictures for eight gray level

textures. When the gray scale is two or four. 64 by 64

seems to be enough. Low cell frequencies discourage the

use of the chi-square test in these cases. In fact. the

chi-square test is really based on the variance and some
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other type of test may be more appropriate for testing

third-order statistics.

(iv) The theoretical properties of the model are. in

general. difficult to obtain. For example. the

theoretical auto-correlation is known only numerically in

the first-order binary case [33] and even less is known

for higher-order models unless some stringent simplifying

assumptions are made like b(1..) = b(2..) [28].

7.3 Suggestions For Future Research

Listed below are areas for investigation that extend

the work in this thesis. All use the Markov Random Field

model in some way.

(i) Obtain numerically (or analytically) the

autocorrelation and higher-order co-occurrence matrices.

This is neeeded to complete the theoretical study begun in

chapter 6. Special attention is needed for the case of

more than two gray levels.

(ii) Expand the data base of texture samples. The

Brodatz texture samples certainly do not exhaust the

possibilities of the model. It may be possible. for
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example. to use the Markov Random Field model as a method

of modelling film grain noise [363. The binomial model

textures have a distinctly biomedical flavor and may be of

use in modelling images obtained by microscopy.

(iii) For the binary case. it is possible to apply

the estimation procedure to the case of pictures

thresholded at other than the fifty percent point of the

histogram. Rosenfeld [883 has begun a productive

investigation using the twenty-five percent point as a

threshold. The clusters are smaller and carry more of the

the structure of the picture without enormous. randomly

linked clusters.

(iv) Consider other conditional distributions. Besag

[10] lists auto-normal and auto-poisson as possible

candidates.

(v) Try the full second-order model. as exoressed in

equation (3.9). This may provide sufficient information

about the image without any need to go as far as the

third-order. The full second-order model has only four

codings. which is a distinct computational advantage.
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(vi) Image encoding experiments can be performed in a

manner similar to those performed by Modestino and Fries

[75]. The appropriate block size for the reconstructed

mosaic could be as small as 32 by 32. It is conceivable

that even a smaller size could be used as long as the

process does not require high-order parameters. One of

the problems in generating entire images with a single set

of parameters is that the image generated is homogeneous.

but the target image is not. Using a mosaic approach

could compensate for this.

(vii) Use Welberry-Galbraith type Markov Random

Fields as explained in section 3.5.4.2.

(viii) Apply the Markov Random Field model in a

hierarchical manner. First. estimate the parameters on

the given resolution. Next. consider the lattice of

dimension half the original dimension by either averaging

non-overlapping two by two neighborhoods or simply

selecting every other point. The reduced lattice

parameters are then estimated and the process is repeated

to get a sequence of parameter vectors which may describe

the structure of the image better than a single set.
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(ix) Texture segmentation experiments can be

performed by dividing the lattice into 32 by 32

non-overlapping blocks and estimating the Markov Random

Field parameters on each block. It is possible to perform

a hypothesis test for equality of parameters [103 and this

could be used to determine the region membership.

(x) A test of homogeneity is needed. The Markov

Random Field model assumes homogeneity in the image. Some

verification of this should be made before estimating the

parameters and assessing the goodness-of-fit.
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