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ABSTRACT

NON-EQUILIBRIUI'TEERIODTNAMIC

MODELING AND PARAIETER ESTIMKTION OF

PRENOIENOLOGICAL COEFFICIENTS DESCRIBING COUPLED

TRANSPORT ACROSS A MEMBRANE

By

Steven Patrick Nowlen

A diffusion chamber microscope stage has been developed which

subjects a email smmple, of cells (lOul) to a psuedo-step-change in

extracellular concentration of permeable and/or impermeable solutes.

The response of an individual cell to the induced osmotic imbalance

was documented via a series of photomicrographs. These images were

processed using simple image analysis techniques to yield the

volume-time history of the c311 of interest. These volume-time data

were used to estimate the values of the permeability parameters for

the cell membrane through one of three modified ordinary least squares

parameter estimation. methods linked to an irreversible thermodynamic

model of the membrane transport process. Data were successfully pro-

cessed for hamster embryos for both the single parameter omnotic

shrinkage. and the three parameter binary flow shrinkrswell cases of

the Iedmm and Ketchalsky permeability model. These results are con-

sistent with results reported previously by other investigators.
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CHAPTER 1

Introduction

1.1 Motivation £25 Prgsggt Iggk

The work described in this thesis was performed at the

Bio-Engineering Transport Processes (BTP) laboratory of Michigan State

University. The problem addressed was to adapt and develop the exper-

imental and analytical tools needed to perform experiments to

determine the passive transport preperties associated with the mem-

brane of an individual cell. This work is part of an ongoing study of

the effects of cryopreservetion procedures on the survival of dif-

ferent cell types.

The transport properties of a cell will have a direct effect on

the response of that cell to a freezing procedure. As water freezes

the solutes in the water are excluded from the crystal structure of

the ice. Thus as an ice front moves towards a cell the solutes are

concentrated into the remaining liquid water. This rise in solute

concentration will cause the cell to respond. in the form of an

induced volume change. in an attempt to regain an equilibrium state

with respect to the chemical potential inside and outside the cell.

The dynemic response for such a situation will be governed by the per-

meability characteristics of the cell.

 



During the freezing process two major mechanisms are thought

destructive. causing life-threatening damage to a cell. [22]. If the

rate of freezing is "slow" then the cell is subjected to high concen-

tration extracellular solutions for a relatively long period of time.

The cell will generally respond by expelling water from inside the

cell thereby decreasing the cell volume. In a sense the cell is

attempting to increase the intracellular concentration in order to

reestablish equilibrium. At slow freezing rates so much water is lost

that the cell can suffer damage due to the high intracellular and/or

extracellular concentration of solutes.

On the other hand. if the freezing rate is "fast" then the cell

will contain a large fraction of the initial amount of internal water

after extracellular ice has formed. This situation results in a high

prohability that internal ice ‘ill form. [23].

From this argument it is plain that the rate at which a cell

transports water and other permeable solutes will. to a great extent.

determine the freezing rate at which the cell is most likely to sur-

vive. It would be desirable to be able to predict the optimum

freezing rates before attempting a freezing process. This requires

that one know the transport properties of the cells of interest. It

would also require that the properties be determined as a function of

temperature as well.

The techniques described in this thesis make it possible to

determine the passive transport properties of an individual cell.



This is a significant advance over previously published methods (such

as the stop-flow methods) which only give average data based on bulk

samples of the cells. [2.8.12]. Being able to observe individual

cells as they undergo a non-equilibrium passive transport process

makes it possible to determine information on the distribution of

individual parameters within the population. It also makes it possi-

ble to work with cells for which a large bulk sample is not readily

available.

The diffusion chamber microscope stage described in Chapter 4.

Section 1 of the present work. which is used to gather the experimen-

tal data on the cells. can easily be modified to include a heat

exchanger system. This will allow one to study the effects of tem-

perature on the passive transport properties as well. This feature

was not yet installed at the time this thesis was completed so that

all of the data presented in the present work was gathered at room

temperature. .



1.2 Statement 21_Objgctizgs

The overall objective of this work was to adapt existing and

develop new experimental and analytical tools required for the deter-

mination of cell membrane permeability coefficients. It is intended

that this thesis will serve as a starting point for future investiga-

tors working on the problem of passive membrane transport.

The first step towards realization of this goal was to conduct a

literature survey to define the state of the art with respect to the

most popular and widely used of the passive transport models. The

presentation of these models is not intended to be all-encompassing or

fully detailed. Rather they are meant to be used as an introduction

to each of the models presented and to the field of passive membrane

transport in general. Once the reader has gained a basic understand-

ing of the passive transport process and the approach taken by various

investigators. it should be possible to work with the original presen-

tations of the models reviewed in this work and others not included

here with the fundamentals in hand.

The most widely used of the passive transport models. developed

by ledem and Iatchalsky in 1958. has been coded into FORTRAN for com-

puter implementation. This subprOgram is described in detail and

listed in Appendix C of the present work. This subprogram is intended

not only as a usable routine but also as an example of the interfacing

required between the modeling subprogram and the other subprogram

units described in this thesis. From this example the user should be
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able to code and implement other models of interest for use with the

other subprograms developed as a part of the present work.

The actual determination of the values of the permeability param-

eters contained in the model of interest is accomplished through a

parameter estimation routine. Several of the available parameter

estimation routines are presented in chapter 3 of this thesis. Here

again the presentation is intended to serve only as an introduction to

the science of parameter estimation. By reading this chapter the user

should be able to gain sufficient understanding of the methods of

parameter estimation to be able to use the subprograms deve10ped as a

part of the present work. and to understand some of Ithe pitfalls

involved. In parameter estimation the pitfalls are many and the cor-

rective actions required are often learned only through experience.

The programs presented in this work have been extensively documented

and thoroughly tested and are to the best knowlege of the author in

good working order.

The parameter estimation subprogram MARBOX is presented in Appen-

dix A of this thesis. This subprogram is actually three parameter

estimation routines in one. It has the capability to run as the Ordi-

nary Least Squares (OLS) method (see chapter 3 sections 2 and 3). or

the Box-Kanemasu method (see chapter 3 section 4). or as Merquardt's

method (see chapter 3 section 5). It also enables the user to specify'

upper and lower bounds on the values of each of the floating parame-

ters.

 



The user is encouraged to make his own copies of this routine and

to modify it to suit his own needs. This will be particularily

appropriate in the adaptation of new models and in tailoring the input

and output formats. Each subroutine is written in a stuctured form in

order to facilitate understanding. Emphasis has been placed on docur

menting each routine with liberal use of comment statements and

variable definition blocks. The user is encouraged to follow suit.

The data reported in this thesis was collected using a simple

diffusion chamber microscope stage developed by Ligon and documented

in an unpublished work. [19]. This chamber is described in Chapter 4.

Section 1 of the present work (see figures 4.1.1 through 4.1.3). This

chamber makes it possible to subject an isolated sample of cells in

suspension to a psuedo-step change in extracellular concentration.

The cells remain stationary and are not sheared during this process.

The response of an individual cell to this treatment can be observed

directly. and videotaped or photographed. The resulting photo images

can be processed to yield cell volume as a function of time. This

processing can be done either by hand or through the use of computer

image analysis techniques. The computer is able to define and enhance

the boundary of the cell in the photcmicrograph.

This volume-time history. along with the experimental conditions

and initial estimates of the parameter values. form the input to the

parameter estimation routine. The parameter estimation routine then

calculates the statistically-determined values of the permeability

parameters which result in the best fit between the experimental data
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and the values predicted by the model.

The overall routine has been tested using several sets of data

for two cases of the Kedem and Katohalsky permeability model. The

first case was that of osmotic shrinkage in which no permeable solute

is present. Osmotic shrinkage data reported by Shabana. [20]. for

unfertilized hamster ova was processed using the parameter estimation

routine linked to the Redem and Ratchalsky permeability model for this

case. The results are consistent with those generated by Shabana

using~ a- closed-form approximate solution to the Kedem and Katchalsky

equations. Data has also been generated on the response of unfertil-

ized hamster ova in a binary flow situation. that is. one in which

there is a permeable solute present. Processing of these data using

the parmmeter estimation routine also yielded consistent results.

The data on the response of the eve in the binary flow situation

was generated from photomicrographs taken with 35mm black and white

film. These photos were processed using simple computer image ana-

lysis techniques to yield the radius of the ovum as a function of

time.

Thken together these techniques form a powerful and versatile

tool for the determination of the passive transport preperties associ-

ated with the membrane of an individual cell.



CHAPTER 2

Historical Development of Permeability Models

2.1 Higgggical nggyigg

Characterizing the flow of materials across the membrane of a

cell has long been a problem of concern to investigators. Eerly

models. such as Jacob's model. 1952. [1]. attempted to describe the

passive transport process for membranes with expressions similar to

Fick's Law describing free diffusion. In this model the flowrate of a

given species was assumed to be linearly dependent on the spatial gra-

dient in concentration for that species. While this model adequately

described the transport process for some cases it was found that it

did not hold true in general.

The groundwork for the models generally used today was laid by

Onsager in 1931. [4]. Omsagor extended Lord Rayleigh's. [24]. work to

include thermodynamic flows and forces. Rayleigh originally expressed

a linear dependence between all mechanical flows in a system and all

the mechanical forces acting on the system. Thus Onsager proposed

what are referred to as the phenomenological equations to govern thor-~

modynamic systems which are not too far removed from equilibrium. He

also derived certain restrictions on the resulting coefficients based

on statistical considerations.
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In 1958 Redem and Katohalsky. [3]. used an Onsagor set of pho-

nomenological equations and applied the principles of irreversible

thermodynamics in order to derive a model for the passive transport

process in a membrane. The resulting set of equations resolved the

inadequacy of previous models and has become the classical model for

membrane transport. This set of equations is generally referred to as

the REX permeability formulation.

The Kr! model was expanded.somowhat by Papanek in 1978. [12].

Papanek was able to derive a more general set of equations of the same

form as the EEK equations but without assuming ideal. dilute solu-

tions. The value of this aspect of Papanek's work remains to be

proven as the increase in generality comes at the expense of consider-

able computational effort and little comparative data between the

simpler I?! model and the Papanek.model is available. The Papanek

model will not be used in the present investigation as the considera-

tion of non-ideal solutions requires the determination of certain

empirical relationships for the solutes of interest and this is beyond

the scope of the present work. Papanek's model is presented in anti-

cipation of future work to be conducted in passive membrane transport.

Other investigators have derived direct closed-form functional

volume-time solutions for certain special cases of the KER equations.

[13.14]. Johnson and Wilson. [8]. derived an approximate closed-form-

power series solution for the binary KER equations. Direct solutions

of this type are generally easier to evaluate as they do not involve

the evaluation of a set of differential equations over time as in the
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full set of Redom and Katohalsky equations. While these closed form

solutions may involve simplifiing assumptions and hence may not be as

accurate as the full set of Kedem and Katchalsky equations it may be

possible to use the simpler solutions to provide beginning estimates

to the values of the permeability coefficients at a relatively small

computational effort. This hypothesis has not been orplorod in the

present work but again the methods are presented in anticipation of

future work.

 



2.2 lggobg' gags;

One of the earliest models for the transport of materials across

a membrane was proposed by Jacobs in 1952. [1]. He considered the

problem of two regions in thermal and mechanical equilibrium separated

by a semi-permeable membrane with nonreloctrolyto solutions of differ-

ing concentrations on each side of the membrane.

The flow of solute through the membrane was described by an

equation analogous to Fick's Law:

dNildt = isA(c3-c§) (2.2.1)

where the superscript (0) represents one region and (i) the other; the

subscript (s) implies solute; N represents the number of moles; A the

membrane area; es the concentration of solute (in.moles/liter); and k3

is the proportionality constant or solute permeability coefficient

with units of (cm/sec).

Similarly the volume flow. which Jacobs related to water flow. is

assumed to be proportional to the transmembrane difference in chemical

potential of the solution. Assuming no hydrostatic pressure differ-

ence exists across the membrane. the chemical potential difference is

equivalent to the osmotic pressure difference. (xi-n")1 . Further

assuming ideal solution behaviour in both regions one can use the

relation’:

 

1 Iatchalsky and Curran. [9]. eq(10-8). pg.118 .

2 Iatchalsky and Curran. [9]. oq(5-55). pg.56 .

11
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n = RTe (2.2.2)

where c is the osmotic concentration. which is the sum of the concen-

trations of all solutes. The osmotic concentration can be expressed

as the sum of the concentration of the permeable solute and the total

impermeable solute concentration:

0 = e, + c,ll (2.2.3)

The subscript (m) implies the sum of all impermeable solutes and the

subscript (s) implies the permeable solute. Thus the equation des-

cribing volume flow can be written:

dVi/dt = k,A(c1-c°) , (2.2.4)

where Vi is the internal cell volume. and k" is the permeability

coefficient for water ( the factor RT has been absorbed into k' giving

it typical units of cm‘lmole-sec ).

For a system of only one permeable solute one can write:

dVi/dt = k'a[[(ug+N§)/vi] - (cg+cg)] (2.2.5)

This is the form of the equation generally referred to as Jacobs'~

equation.

Many investigators have shown this model to be inadequate to des-
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cribe the general passive transport process. Among those are Zeuthen

and Prescott. [2]. In their investigation Zeuthen and Prescott sub-

jected frog eggs (otherwise in equilibrium with the solutes present)

to high external concentrations of heavy water. 9,0. The heavy ygter

was shown to act like any other solute as its penetration into the

eggs followed the response predicted by (2.2.1) exactly. However.

while the solute penetrated the cell as expected. it was observed that

the volume of the cell remained constant so that (dV/dt = 0). From

(2.2.3) we see that:

dVildt = o = k'A(c1-c°) - (2.2.6)

' which implies that c1 = co. Using equation (2.2.4) then:

c: + c: a cg + cg (2.2.7)

As stated above the eggs were brought to equilibrium with all other

solutes present prior to immersion in the heavy water solution by

first immersing them in a similar solution with normal water replacing

the heavy water so:

°3 = c: (2.2.3)

This leads to the conclusion that:

cg - c: (2.2.9)
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and this is clearly a contradiction of the known experimental condi-

tions. This then proved that (2.2.4) and (2.2.5) are incomplete

descriptions of the volume transport process.

Zeuthen and Prescott went on to show that for cells not in equi-

librium, with the non-penetrating solutes the penetration of heavy

water was not adequately described by (2.2.1). Penetration was found

to be more rapid in solutions where the extracellular concentration of

nonrpermeating solutes was lower than the internal concentrations and

slower in the reverse case. This demonstrates the need for some form

of coupling between the volume and solute flows which is not accounted

for in the Jacobs model.



2.3 The fizz Pgrmeability Formulation

In 1958 Kedom and Hatchalsky put forth what has come to be a

classic model for membrane permeation based on the principles of irre-

versible thermodynamics. [3]. This set of equations is known as the

RH! formulation and is still used extensively in various forms.

The EEK model resolved the inadequacy of the Jacobs model by

relating the £10108. Ji' of each species to all of the driving poten-

tials. X1. in the system through coupling coefficients. Lij‘

I1 3 LIIXI. + L131: + e e e + 111an

I: - L31X1 + L331: + e e e + 143an

. (2.3.1)

In 8 Ln1x, + Ln3X, + . . . + Lnan

These equations also can be expressed in their conjugate form where

the driving forces are expressed as functions of the species fluxes.

This leads to the so-called resistance formulation and will be dis-

cussed in the following section. It should be noted that use of these

equations implies the assumption that the system is not too far

removed from equilibrium as the linear relationship between forces and

fluxes can not necessarily be expected to hold as the forces increase.‘

The development begins by considering a system of two chambers

separated by a membrane. Each chamber contains a solution of a single

15



16

permeating solute in the same solvent (presumably water). The regions

are assumed to be in thermal equilibrium characterized by a single

temperature. T (see Figure 2.3.1).

 

r—Membrone

Chamber 0      

Figure 2.3.1. The two-chamber system.

One of the basic principles of irreversible thermodynamics is

that if an adiabatic system undergoes a change of state via a reversi-

ble process then the entropy of the system will remain unchanged. If.

however. the adiabatic process is irreversible then the system will

experience a not increase in entropy. The rate at which entropy is

produced in a system which is in thermal equilibrium can be expressed

as the sum of the product of the flows in the system and their cor-

responding driving forces. The system of interest is defined as the

chamber designated chamber (i). which will be referred to as the cell.

and includes the membrane itself. no rate of entropy production for-

this system is given by the expression‘:

 

1 Kedem and Ketchalsky. [3]. eq(12).
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dis/dt = (1/r) [(ue-u$)dN$/dt + (pg-p§)dN§/dt] (2.3.2)

where S is the entropy of the system. I is the absolute temperature. u

18 the chemical Potential. N} is the number of moles of component (j)

inside the cell. and t is time. The grouping di()/dt implies internal

to the system. The superscript (i) implies inside the cell while the

superscript (0) implies outside the cell. A dissipation function per

unit area of membrane. A. is defined for convenience as:

n - (TIA)diS/dt = (1/A)[(perui)dNé/dt+(u:-u§)dnildt] (2.3.3)

letting each mole flux be represented by: 55 = (1/A)dN}/dt (2.3.4)

o - ("S-vi". + (pg-phi, (2.3.5)

Thus for this lumped analysis the dissipation function. 0. is the sum

of the products of the fluxes h and their corresponding forces (the

differences in chemical potentials).

The system of particular interest in this study is that of a mem-

brane separating two solutions each made up of many solutes of which

the membrane is only permeable to one. Further. we are interested in

the case where there is no transmubrane hydrostatic pressure differ-

ence (AP-0) as most biological membranes will not support such a

difference. [3].

An alternate set of fluxes will be defined for use in the follow—
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ing developent. The total volume flux through the membrane is given

by the expression:

The diffusion flux through the membrane is given as:

I. - (5,5,) - (5.1...) (2.3.1)

“10!. t1“ quantity 3, is defined by the relation:

AO‘IE' II 13(02/01‘) (2.3 .8)

If the transmembrane concentration difference is small then Ac‘/3'<(1

and 3,2(o§+c2)/2. Kodem and Ratchalsky describe the diffusion flow as

the "relative velocity of solute versus solvent which is a measure for

exchange flow". [3]. Note that c'-(1-§,-§1)/;' where i: represents the

volume fraction and the subscript (s) implies the permeable solute and

(i) the sum of all the impermeable solutes. Thus if the solution is

assumed dilute so that the total volume fraction of the solutes is

3.411 compared to 1 then 6,-1l—v'. This allows one to express Jd as:

Id = (is/3.) - in. (2.3.9)

In order to derive an expression for the entropy dissipation

function in terms of these new fluxes we must define a set of conju-
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gate forces for this set of flows. Let the conjugate forces for Jv

and Id be represented by TV and 1d respectively. Using these fluxes

and their conjugate forces the dissipation function analogous to

(2.3.5) then becomes:

0 ' (ifiaifiaxv + [(£,IE,)-(?,i,) 11d (2.3.10)

Because the entropy dissipation function.must remain unchanged under

the transform one can equate the two expressions for 0 represented by

(2.3.5) and (2.3.10) to form a single expression which excludes the

term 0. Th0 £13808 5. and n, are independent so their coefficients on

each side of this newly formed equation can be equated yielding two

independent expressions relating the new forces. X, and Id. to the old

set of forces. Au. and An'. These two expressions can be solved for

IV and In in terms of Au' and An'. The resulting expressions are

given by:

xv - o'au' + 3,1)”, (2.3.11)

x‘l - (l-fi.);'Au. - {‘O‘Ap‘ (2.3.12)

where {.e;;;,. If the solutions are assumed to be ideal and the

volume fractions of all the solutes are assumed to be small then’:

Au, - -(1/o,) [RTAc‘ + RTAci] (2.3.13)

2 Kedem and Katehalsky. [3]. eq. 35.
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where the subscript (i) implies the sum of the impermeable solutes and

the subscript (s) implies the permeable solute. Similarily for the

permeable solute:

An. = arAc,fEs (2.3.14)

Introducing (2.3.13) and (2.3.14) into (2.3.11) and (2.3.12):

IV = -RTAci (2.3.15)

Id 3 RTACS + g‘RTACi (2.3 .16)

Using the Onsagor phenomenological equations each of the fluxes

in the system is assumed to be a function of all of the driving poton- .

tials in the system. For the case of two permeating species (the

permeable solute and the solvent) one will have two independent flows

and hence two independent forces related by the expressions:

II a L11x1 + Lizxs

The (L's) in these expressions are called the phenomenological

coefficients and are governed by Onsager's Law which requires that the

cross coefficients be equal. [4]:

L13 3 L31 (2.3.18)
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For the system under consideration here (2.3 .12) becomes:

J'v ‘- I"va + I"pdxd

The values of the coefficients LP’ Lpd’ and La are restricted by the

requirement. under the principles of irreversible thermodynamics. that

the entropy production and hence the dissipation function must be

greater than or equal to zero. Substituting (2.3.19) into (2.3.10)

using (2.3.6) and (2.3.7) the dissipation function can be expressed

a a prv’ + “1.33de + ded’ 2 0 (2.3.20)

Since either Iv or Xd can be made to go to zero independently this

restricts both LP and Ld to positive values only. and requires that

the magnitude of Lpd be such that:

Most investigators will use a transform changing from the phe-

nomenological coefficients LP’ Ld. and I‘pd to an alternate set of

coefficients L1” 0‘. and a). [3.6.7.8.9.10]. The Staverman reflection

coefficient. a. is defined by the relation. [6]:

0' B [1 + All";';‘Aus]ngo (2 e3 .22)
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The condition 0f vao occurs when the solute and solvent are flowing

in Opposite directions with magnitudes such that the volume of the

cell remains constant with time. Using (2.3.6). (2.3.7). and (2.3.19)

one can show that:

The solute permeability coefficient. 0. is defined by the relation.

[12]:

is 3 [ 633A“, 11 =0 (2.3.24)

v

so that using (2.3.6). (2.3.7). and (2.3.19) it can be shown that:

a) - ;‘[([.pLd - Hip/LP] - (Ld - Lpa’fi, (2.3.25)

The restrictions on LP and Ld and that represented by equation

(2.3.17) imply a restriction on m such that «20. The solvent permea-

bility coefficient. Lb' remains unchanged with respect to the

transformation.

By introducing (2.3.23) and (2.3.25) into (2.3.19) one can show

that:

Iv ‘ ’I-pRTEAn - deli“. + téAci] (2.3.26)

Id - mg. + «(Tu-an)“. + arm/3,) + «1.911., (2.3.21)
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Since one must usually keep track of the internal solute content in

order to calculate the internal solute concentration it is often con-

venient to work with the total volume flux. Jg, and the solute mole

flux. fi,. rather than Jv and Id. From (2.3.6) and (2.3.7) one can

show that:

I'18 a (JV + Id);s
(2.3 .28)

so that:

1is ' ;e(1-‘)Jv + uRTfAc‘ + Cgifici] (2.3.29)

Ignoring the contribution of the term {'EAci, which represents

the contribution of the impermeable solutes to the force la, in each

expression (as it is normally very small compared to Acs)' these

expressions reduce to the more commonly used set:

IV = -LPRT§Aci - oLpRTAcs (2.3.30)

.1, .. -u;,[Lp(1-.)§A.i + [oLpfl-o) - (u/E,))Ac,] (2.3.31)

It may be of interest to express the solvent flux alone. Using

(2.3.6) and (2.3.7) one can show that:

 

3 Kedem and Katchalsky. [3]. pg. 238.
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i, - -(RT7;;)[Lr2Ac1 + (LPG + v‘)Acs] (2.3.32)

It is worth noting once again the rostictions under which this

set of equations remain valid. The system considered was that of two

compartments separated by a membrane and in thermal equilibrium.

Ihile there may be many solutes present on either side of the membrane

the membrane is assumed to be permeable to only one of those solutes

and the solvent. Further. the solutions are assumed to be ideal and

dilute due to the approximations for the chemical potential used.

Also it has been assumed that the driving forces in the system are

sufficiently small such that a linear relation exists between all the

driving forces and the resulting flow of each species. For the final

version of the equations presented. (2.3.30) and (2.3.31). it is also

assumed that no hydrostatic pressure difference exists across the mem-

brane. This assumption is not inherent in the overall development so

that if a pressure difference is believed to exist in the problem of

interest this can be accounted for in the I?! model. For situations

which comply reasonably well with these restrictions the I?! formula-

tion has been found to provide quite reasonable correlation with

experimental data. [8.10.11].

 



2.4 1;; EEK Rgsistance Formulation

In a work published in 1961 Kedem and Kachalsky presented an

alternate formulation of their membrane permeation model. [7]. This

formulation loads to a set of frictional coefficients governing the

process rather than the phenomenological coefficients as derived in

the previous section. [3]. Those frictional coefficients allow for a

more direct physical interpretation of the permeability parameters LP'

o. and a. While this formulation leads to more complicated expres-

sions than the previous formulation it has the advantage of physical

interpretability. It also represents an advantage in that the mechan-

ical coefficients encountered are largely concentration independent

whereas the phenomenological coefficients are generally concentration

dependent. [7]. While this model may not be practical for calculation

purposes. and will not be used for such in the preseht investigation.

as it introduces additional unknown factors such as the distribution

coefficient of solute in the membrane. it does provide some interest-

ing insights into the passive transport process.

In this formulation relations reciprocal to those represented by

(2.3.1) are used. In this form the driving forces. xi, in the gygtem

are assumed to be linear functions of each of the fluxes. J1, in the

system: .

25
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X1 = R11J1 + 3121: + . . . "' Ran-Tn

x3 = R3111 + Rzsz + e e e + Rszn

. (2.4.1)

X1. =- Rnng + RmJ, + . . . + 11“an

Here the coefficients Rij are in essence frictional coefficients. The

numerical values of these coefficients are restricted by the require-

ment that the entropy production and hence the dissipation function

represented by (2.3.2) and (2.3.3) must be positive. This restricts

the straight coefficients. R11, to positive values and the magnitude

of the cross coefficients. Rij' to the condition:

Rh 1 gun” (2.4.2)

These coefficients must also satisfy Omsager's Law so that. [4]:

As before. a system of one permeable solute and one solvent (usu-

ally water) will be considered. Again we will assume that the system

is composed of two chambers separated by a membrane and in thermal

equilibrium. The solutions in both chambers are assumed to be

well-stirred so that no unstirred layers exist at the boundaries of

the membrane. The membrane thickness will be represented by the quan-

tity Ax so that the membrane covers the region 0<x(Ax (see Figure

2.4.1).
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The local molar flux of solute and solvent can be written as:

Is = Csvs = dnsldt

I' a: C'V' = dn'ldt (2.4.4)

where n1 is the number of moles of species (i) per unit area and Vi is

the local velocity of species (i).

r—\

Membrane

Solution 0 Solution i

.____.x

/"—\(

L—AX—-l

Figure 2.4.1. Membrane cross-section.

 
 

In order to deve10p a set of local equations which can be

integrated across the membrane the system will be assumed to be in a

steady state condition. This will allow us to express various quanti-

ties as total (derivatives with respect to x rather than having to

concern ourselves with a set of partial differential equations in x

and t. This implies that the concentrations. C1, are only functions

of x. as are the velocities. vi. Note also that the concentration.

C1. is defined as the number of moles of species (1) per unit volume

of membrane not per unit volume of solution. This dofinition.makes C1

a local concentration accounting for the membrane volume as well as
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the volume of the solution. The fluxes. 1i: will be assumed to be

independent of x and equal to the macroscopic or total transmembrane

fluxes.

The problem is subject to the following boundary conditions:

us(x=0) = u:

u'(x=0) = u:

n,(x!Ax) - a:

H(x=Ax) - .13, (2.4.5)

Since the objective is to derive a local set of equations to be

integrated across the membrane. local driving potentials must be used.

The local driving force is the local gradient in chemical potential:

Xj 3 'dllj/dx (2.4.6)

(which has units of dyne-cm/mole-sec). This is consistent with the

development which led to equation (2.3.5) except that in section 2.3

the internal mechanics of the membrane were not considered and a set

of transmembrane equations. as opposed to a set of local equations.

was being developed. Using (2.4.6) for this system (2.4.1) becomes:

-d"w’d‘ ' 8waw + RwsIs

-du,/dx - 33,1, + 1:”1, (2.4.7)

where: Rs' 3 2"
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It is now assumed that under steady flow conditions the thermody-

namic force acting on a given component will be counterbalanced by a

sum of mechanical friction forces so that there will be no net accel-

eration. These forces are assumed to be comprised of a set of forces

due to a given species interacting with each of the other permeating

species in the system and a force due to each species interacting with

the membrane itself. For the two component system being considered

here this translates to:

X. = -F - F
8' sm

x' a ’Fws — me (2.4.8)

where F represents the frictional force and the subscripts s. w. and m

refer to solute. solvent. and membrane respectively. Thus the factor

F‘h would represent the frictional force between the solute and mem-

brane per unit mole of solute. Each of the frictional forces is in

turn.represented by an expression relating the force. Fij' to the

relative velocity of component (i) to component (j) through a mechani-

cal friction coefficient. fij' per mole of (i) component:

Choosing the reference frame such that vat: 0. (2.4.6) becomes:

"dllsldx = f"(v,-v') + fmv8 = v8(f"+fm) - v'fs'

-dp‘ldx - f"(vi-vs) + f'nv' = “stws + v‘(f',+f'n) (2.4.10)
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It is also possible to rewrite this set of equations as:

-du,/ax . [(rflumwcshs - (fs'IC'N,

-du,/ax = -(£,,/C,)J, + [(£,,+fm)/c,]1, (2.4.11)

Comparing (2.4.11) with (2.4.7) readily shows the frictional

coefficients to be:

3“ 3 (f3'+f‘.)/Cs 3" = -f,'/C'

a" .. -f'3/Cs a" = (f's-I-meC' (2.4.12)

The restriction represented by Onsager's Law requires that:

-fsw/cw = 'fws/Cs (2.4.13)

Thus only three independent frictional coefficients exist while the

fourth is dependent. This is analogous to the need for three indepen-

dent permeability coefficients in the model presented in section 2.3 .

[Odell and ntchllsky point out that "f" is of the “no mtnre as

the friction coefficient of free diffusion f:' given by Einstein's

equation:

if“, .. um' (2.4.14)

and may therefore be assumed to be approximately independent of the
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local concentration as D° is essentially concentration independent".

Do is the diffusion coefficient of the solute in free solution. This

implies that due to the relation expressed by (2.4.13) the coefficient

f" must be strongly dependent on the solute concentration. This

would imply that substituting fsw for fws would be the most reasonable

strategy in order to yield friction coefficients which are independent

of the concentration. This leads to the expressions:

-du,/dx = [(f..+fm>/C.]J. - (rm/can,

’dl-l'ldx = -(£,,,/c‘,);rs + [[(cslgnflnmJ/CJJ, (2.4.15)

or:

'Csdusldx = (£8'+£sm)13 - (Cs/C')fs'J'

4'4“”, - ‘fst + [(cs/c'nnumh, (2.4.16)

It must be noted that (2.4.16) represents a set of local equa-

tions only and that in order to be truly useful as experimental tools

they must first be integrated across the membrane. The integration

procedure is presented in detail in Kedem and Katchalsky's paper. [7].

and for the sake of brevity only the results are presented here.

After integrating from 0 to Ax (2.4.16) becomes:

‘Ans ' ' w[fsw;wi;;s/§wm]Ax + J.(f"+f‘.)Ax

§n(AP-Aui-Ans) =- J,[£n+(£"?,I;F,)/§“]Ax - Isrwu (2.4.17)
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where 5'“ is the volume fraction of water in the membrane. and the

quantity Kc°s represents the mean value of solute concentration across

the membrane and is given by:

.!_. Ax 1

co, = (l/Ax) L chsdx (2.4.18)

where K: is a local distribution coefficient of the solute in the mem-

brane given by:

I: - eye: (2.4.19)

Cs represents the local concentration of solute based upon the total

volume of the membrane itself. The quantity cs represent. the concen-

tration of a free solution of equal solute chemical potential.‘ If the

solution is ideal in both chambers then!c is constant and:

to 8 tides].
(2.4.20)

1:6, = ridufic‘; + c§)/2 (2.4.21)

A further simplification also occurs if the solute and solvent

penetrate the cell only by passing through solution-filled capillaries

in the membrane rather than through reaction with the membrane itself.

Iedem and latchalsky observed that for a case such as this the solué

tion in the capillaries approaches the composition of the free

solution. This means that the solute distribution coefficient becomes

equal to the volume fraction of water in the membrane.



2.5 Comparison 2; KFK Resistance in; Permeability Formulationg

By comparing the results of the two different formulations of

Kedem and Katehalsky presented in the previous two sections interest-

ing relationships appear. These relationships give added meaning to

the physical significance of the permeability parameters which are

commonly used to describe transport of materials across a membrane.

The relationships derived here will not be used for calculation pur-

poses in the present work.but rather are presented for the insights

into the passive transport process which they provide. An alternate

method of comparison to that presented by Kedem and Katchalsky. [7].

will be presented here. The overall strategy will be to pose the

resistance equations represented by (2.4.17) into the same form as the

permeability equations with flows expressed as functions of the driv-

ing forces.

Let us begin by recalling the EEK permeability equations in the

form:

I, - -(1/v')[LpAni + (LP. + 3,4011%] (2.5.1)

I8 = -';,[[Lp(1-a) - 39.1.1“ + [chU-c) - (./E,)]An,]_ (2.5.2)

where we have included the CsEhci term which was neglected in (2.3.30)

and (2.3.31). The comparable set of resistance equations. represented

by (2.4.17). now must be expressed in this same form. One way to do

this is to solve both of the equations for I, and equate the results.

The resulting expression can then be solved for J' to give:

33
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Kfs‘Ans - §m(fs'+fsm)(A“1+Afls) (2.5.3)

 

Afom( fs'4—fm) + hfs'fm]

where: k -‘V'ch,/§'n. A is used only for convienience of presenta-

tion. Note that it has been assumed that no transmembrane difference

in hydrostatic pressure exists (AP=O) in order to be compatible with

the Kedem and Iatchalsky set.

In a similar manner. by solving both of the equations represented

by (2-4-17) for 1'. equating the results. and solving for Is it can be

shown that:

J’ ___ “fwnflfsflms ' tmlfMAnfiAn.) (2.5.4)

3
 

Axtf“(f"+fm) + “at,“

It is now possible to equate the coefficients of the independent

osmotic pressure differences to obtain the desired cross relation-

ships. For instance by equating the coefficients of Aui in (2.5.1)

and (2.5.3) it can be shown that:

2,2,. (2,, + 53,) (2.5.5)

 

Axlfn(f"+fa) + 128,1...)

A check on the units for this equation shows the right-hand side to

have dimensions of (length’lforce-time) which are the proper dimen-

sions for LP' the solvent permeability.
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This equation also can be written:

1 2.5 .6

 Lp = (E'gm/Ax)[fm + 1f."

In this form it is apparent that LD 1; invorgoly proportional to the

sum of the solvent-membrane friction factor. f'm, and an additional

factor characterizing solute-solvent interactions (the bracketed

term). The direct dependence of solvent permeability. Lb’ on volume

fraction of solvent in the membrane is also apparent. This seems con-

sistent as a membrane with a larger solution content would be expected

to be more permeable than an otherwise identical membrane with a

smaller solution content as the larger solution content would imply

that a larger volume fraction of the membrane is available for flow.

Kedem and Katchalsky developed an expression for Lp only for g

single. very limited case. It would be expected that (2.5.6) should

reduce to the I?! expression under the same restrictions. Tb show

that this is the case we begin by rearranging (2.5.6) as:

 

1 )TI- (2.5.7)

L =- " Ax f +2.: (p (v.6...) )[wm sm “(fa/f")

Consider now only the case of a coarse non-selective membrane. Kedem

and Katehalsky give the non-selectivity condition as:

fem/:8 ' fn’;w (2.5.8)
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using this in (2.5.7) one can show that:

 - 7 - — 1 1 (2.5.9)
1.1) = (v.4.n/Ax)[fm[1 + Mvslv'H 1+(fu/f") )1]—

Kedem and Katchalsky further restrict the consideration to a case with

no transmembrane concentration difference. This reduces the value of

the mean concentration of solute within the membrane to the concentra-

tion of the free solution.multiplied by the (constant) distribution

coefficient:

2'5. " ‘5. (2.5 .10)

While there would be no flow in this case one can still derive a sim-

plified expression for the solvent permeability. Just because there

is no flow this does not imply that the solvent permeability does not

exist.

For membranes with a capillary structure (see Figure 2.5.1) the

distribution coefficient is equal to the volume fraction of water in

the membrane so that:

l = V'c' (2.5 .11)

and (2.5.9) becomes:
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. .121 )Id (25 )

L = '- -'-p (v'tm/Ax)[fm[l + vsc.( 1+(fsm/fsw)

Membrane

 

Capillary

Flow

Figure 2.5.1. lbmbrane with capillary structure.

Unless the membrane is somehow actively inducing the flow of either

the solvent or the solute the frictional coefficients will be posi-

tive. That is to say that the presence of the membrane will act to

inhibit the flow. For relatively dilute solutions with positive fric-

tion coefficients:

$33, << 1 (2.5.13)

1 + (fa/t") > 1 (2.5.14)

so that we can further reduce (2.5.12) to:

LP = (3.1:...) Han“) (2 .5 .15)
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This is indeed the same expression derived by Kedem and Katchalsky for

Lp under these conditionsI. This lends greater confidence to the val-

idity of the more general expression for L represented by (2.5.6)
P

derived for the first time in this work.

Further confidence in the validity of (2.5.6) in particular and

to the present strategy as a whole is gained by consideration of the

Staverman reflection coefficient. By equating the coefficients of Ans

in (2.5.1) and (2.5.3) one can show that:

_. ._ If .-

a = -(v,u/Lp) - (Vw/LPA1)[ " g“'(fs'i'fsn) ] (2.5.16)

f'n(f"+fm)+lf“f8m

Substituing for LP using (2.5.5) in the last term only and rearranging

gfves: -

a =- 1 - (V‘u/Lp) - [(n") / [snuflnmn] (2.5.17)

This is again identical to the relationship derived by ledem and

Iatchalsky. This same result can be achieved by equating the coeffi-

cients of Ari in (2.5.2) and (2.5.4).

Kedmm and latchalsky point out that if the solute and solvent

penetrate the cell by different paths so that there is no

solute-solvent interaction then f"p0 . Using this in (2.5.17) gives

 

1 Kedem and Iatchalsky. [7]. eq. 4-21.
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the expression:

a = 1 - (V‘s/LP) (2.5.18)

This relationship then can be used as a test for the condition of

non-interaction between solute and solvent flows. It is interesting

to note that while this appears to imply that the solute and solvent

flows are uncoupled they are in fact coupled in the sense that the

magnitude Of An, effects the solute flow as well as the solvent flow

and that the magnitude of Aus effects both the solvent flow and the

solute flow. This coupling is implied in the phenomenological equa-

tions.

In order to carry the deve10pment of o farther more information

about the nature of the solute permeability m'is required. One way to

solve for m as a function of the friction coefficients would be to

equate the remaining coefficients (those of An8 in (2.5.2) and

(2.5.4)). substitute for L1) and c. and solve for m. This however

requires solving an extrmnely complex quadratic equation. For this

reason only the form developed by Kedem and Katchalsky will be consi-

dered here.

Kedem and Katchalsky developed the following expression for the

solute permeability:

a - n1 - :,(1-.)1 I mu" + run (2.5.19)
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In.most cases the solute volume fraction. :3, will b. voxy small com-

pared to 1.0. This would reduce the above expression to the more

simple form:

a) = x / [Ax(f" + {an (2.5.20)

If the membrane is assumed to be of the capillary structure then K=§wm

and this expression reduces further to:

w = 2:... I [Ax(f" + me (2.5.21)

These relationships show that the solute permeability is inversely

prOportional to the sum of the solute-water and solute-membrane fric-

tion factors.

It is possible to use the above relationships in (2.5.17) to

develop an expression for the reflection coefficient. or to use

(2.5.17) in (2.5.19) to develop an expression for solute permeability

in which only the friction coefficients appear. These procedures lead

to complicated expressions which are not particularly useful and hence

will not be presented.

In summary this comparison has shown that L1, can be oxprgsggd go

a function of all the friction factors with fwm plmyin‘ the donlngnt

role (see equations 2.5.12 and 2.5.15). The reflection coefficient.

a. was shown to be a function of the ratio of the solute permeability

to the solvent permeability. "/Lb' and an additional factor character-

.(
I
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izing solute-solvent interactions. An expression for (n was not

derived using this method but Kedem and Katchalsky showed that a) is

dependent on the factors f" and fun which characterize the

solute-solvent and solute-membrane interactions respectivly.



2.6 A nger Series Solution to; he §:§,Pgrmeabilitz Equations

In 1967 Johnson and Wilson. [8]. developed an approximate solu-

tion to the Kedem and Katchalsky permeability equations represented by

equations (2.3.30) and (2.3.31). The solution they presented was

based on a perturbation analysis and a power series expansion of the

K9! equations.

While the values obtained from this solution may not be as accu-

rate as one might wish they can be used as starting values for other

more accurate parameter estimation routines. The model presented here

gives volume as a function of time directly from a closed-form analyt-

ical expression and hence is readily evaluated. Other methods which

deal with the full set of K9! equations in differential form will

require the repeated numerical integration of the governing equations

and hence will require much greater computational effort. In these

latter types of routines good starting estimates of the parameters can

significantly reduce the number of iterations required to reach the

final values. In many cases this may mean the difference between a

routine converging to a solution or not. Thus by using the model of

Johnson and Wilson as the generator of starting values for other more

accurate routines one should be able to realize a significant reduc-

tion in total computational effort required to estimate permeability

parameters. While this method has not been utilized in the present

work it is presented in anticipation of future work to be conducted.

The development begins by considering the I?! equations in the

42
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form:

awe: - LPRT‘Aljucon-tchHV/l - cos - c.] (2.6.1)

st/dt = earA[e, - (NS/W] + E,(1-.)dV/dt (2.6.2)

where N: is the number of moles of the permeating solute inside the

cell. V is the volume of the cell. V. is the initial cell volume. A is

the surface area of the cell. c, is the initial concentration of all

is the external concentration of thethe impermeable solutes. cs

P05301519 8013t°o and 3; is the mean tranmnmnbrane concentration of

the permeable solute defined by equation (2.3.8). LP’ a. and o are

the solvent permeability. solute permeability. and reflection coeffi-

cient respectively. These equations carry the implicit assumptions

that the cell is in equilibrium prior to time zero so that the

impermeable solute concentration is the same inside and out. and that

none of the permeating solute is present inside or outside the cell.

At time equal to zero the extracellular concentration of the permeat-

ing solute undergoes a step change from zero to c‘ and remains

constant thereafter. It will also be assumed that the surface area of

the cell remains constant.

Johnson and Wilson define an alternate set of permeability coef-

ficients by combining the factor RT with LI) and m such that:

p, - Lpn-r (2.6.3)

P - «RT (2.6.4)
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This gives P; typical units of (cm‘lmole-sec) and P typical units of

(cm/sec). Using (2.6.3) and (2.6.4) in (2.6.1) and (2.6.2) one gets:

dV/dt = AP'[(o,v. + ensw" - arcs - c.] (2.6.5)

st/dt = pA[e, - (us/w] + gamma: (2.6.6)

This set of equations is then nondimensionalized using the following

groups:

v‘ = Vlv. N‘ = N8/c3V.

t . P'A¢.t/V. b = P/P'c.

u = cos/oo (2.6.9)

V7I is the volume nondimensionalized with respect to the initial

volume. N. is a nondimensional permeable solute content. and t is non-

dimensional time. The factors b and a are used for convenience of

notation. Using these groups in (2.6.5) and (2.6.6) yields the

expressions:

V'dV‘Idt = l - V. + c(N‘-V‘) (2.6.8)

v‘dN‘lde =- b(v‘-N‘) + (1-e)(3,/e,)v‘dv‘/dc (2.6.9)

This set of equations is subject to the initial conditions:

v‘(0) .. 1 N‘(0) = o



45

In a typical case the solvent will penetrate the membrane faster

than the solute so that the cell will initially shrink in size as the

solvent will be leaving the cell faster than the solute is entering.

Eventually the internal solution will reach a concentration high

enough to cause the solvent to begin reentering the cell and the cell

volume will increase. This is the typical "shrink-swell" behaviour

observed for many cases. At the point where the cell reaches its min-

imum volume dV‘ldr-O so that by equation (2.6.8) we see that:

V; = (1+uN;)/(l+u) (2.6.10)

where the subscript m implies minimum. Since N;)o one can show that:

V; > (1 - a) ‘ (2.6.11)

Thus for small values of c (which from (2.6.9) implies small changes

in the permeable solute concentration and/or little rejection of the

permeable solute) the perturbations in volume will be small. One can

then express V.(r) and N.(t) as power series in a such that:

v‘(.) - V:(:) + uV:(t) + a‘v:(c) + . . . (2.6.12)

N‘(c) - N:(t) + uN:(t) + e‘N:(e) + . . . (2.6.13)

where V;(t) and N;(:) are independent solutions which when weighted as

indicated by powers of u and summed up will yield the full solutions

V. and N‘. Note that for values of a less than one. un90 as n96.

Thus for small values of a a small number of the independent solutions
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will have a significant contribution to the total solution.

The initial conditions on v'(t) and N‘(t) can be satisfied by the

power series expressions by requiring that v:(o)=1; v;(o)=o for (1)0);

and that N;(0)=0 for all (i).

These power series expressions can be substituted into (2.6.8)

and (2.6.9). One can then collect like powers of a in the resulting

expressions and equate the coefficients of a given power of u on

either side of a given equation. Equating the coefficients of the

zeroth power of a in the equation resulting from (2.6.8) gives the

expression:

V: dV:/dt = 1 - v: (2.6.14)

This equation and the initial condition on v: gra gatigfigd by v:=1.

Equating the coefficients of the zeroth power of c in the equa-

tion resulting from (2.6.9) gives the expression:

V: dN:/dt a b(V: - N:) + (1-a)(3./c,)v:(dv:ldt) (2.6.15)

Using V: - l in this expression reduces it to:

4N:ldt - b<1 - NI) (2.6.16)

This expression and the initial condition on N: are .otlgflod by:
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N: = l - exp(-br) (2.6.17)

Equating the coefficients of the first power of a from (2.6.8) gives:

.

V:(dV:/dt) + v:(dv:/dt) = -vI + N: — v.

or: dV:/dt = v: - exp(-bt) (2.6.18)

This equation and the initial condition v:=o are gatisfigd by:

VI = -(1-b)-1 [em-ht) - mum] (2.6.19)

Ignoring the higher order terms one can now write:

v’ = v: + av: - 1 - [a/(l-b)][oxp(-bt) - 0*P“"] ‘2"°2°)

This expression will have an error of the order a3 which is

approximately of order (1-V:)’.

Johnson and 'ilson also give a similar expression for the case of

cells initially in equilibrium with a penetrating solute present and

subjected to a step change in extracellular solute concentration from

the initial value to zero at time equal to zero. This expression is:

V. -“-' 1 + [u'/(1-b)][exp(-bt) - exp(-1:)] (2.6.21)

where c'toN;(0)/c.V. and N,(0) is the total number of moles of perme-
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able solute in the cell at time equal to zero. This case corresponds

to the ”washing” of a solute from a cell.

In order to obtain the desired permeability parameters from the

above model we need three pieces of information relating the experi-

mental data to the model. The first of these is the matching of the

shape of the curve for the experimental data to the shape of the curve

for the model. Jahnson and Wilson suggest using the following expres-

sion to characterize the shape of the modeling curve:

[exp(-bt) - exp(-1:)] (2.6.22). t

(V'-V n)/(1-V I!) = 1 " [Olp(’b“.) _ .xP(—1n)]

Note that this expression does not involve the variable a. Figure

(2.6.1) shows the shape of the curve described by (2.6.22) for.various

values of b. This figure shows that reciprocal values of b will give

the same curve. Johnson and Wilson observe that this implies that two

different sets of values for the permeability parameters will satisfy

the model equally well. They found however that one of these two sets

would include unrealistic values such as c>l and could therefore be

eliminated. They also observe that the model will be insensitive to b

for values of b=1 so that special care must be taken in a computer

program implementing this solution. '

Once the shape of the experimental curve has been.matched to that

of the model and a value for b has been obtained. one can then match

the time and volume scales of the model to that of the experimental
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data. The time scale is matched by matching the time at which the

minimum volume is reached. From (2.6.20) one can show that:

t; = (ln b)/(b-1) (2.6.23)

80 that a value of t; can be calculated. Similarly one can match the

volume scale by matching the values of the minimum volume for the

model to that of the experimental data:

v; e 1 - ablb/(l'b)] (2.6.24)

and a value of a can be obtained. Using the numerical values of a. b.

and r and the definitions of u. b. and t given earlier one can deter-

mine the values of the permeability parameters LP’ w. and o as one

will have three equations and three unknowns.
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2.7 In; nggnek 319le

In 1978 Papanek. [12]. presented a permeability model which

closely paralleled the Kedem and Katchalsky permeability model. [3].

The Papanek.model differs from the Kedem and Katehalsky model in that

the assumption of dilute and ideal solutions is not made. Thus the

Papanek model attains broader applicability at the expense of computa-

tional simplicity. This model will not be used for calculation

purposes in the present work as it requires the deve10pment of certain

empirical relationships for each of the solutes of interest in order

to handle the non-ideality. This is beyond the scope of the present

work. A Since the develOpment parallels that of Kedem and

Katchalsky many references will be made to the equations of section 3

of chapter 2 in the present work.

Papanek begins by assuming that the phenomenological equations.

(2.3.1). hold true. The same expressions as those used by Redem and

Iatchalsky are also used for the local rate of entropy production.

(2.3.2). and the entrOpy dissipation function. (2.3.3). Papanek's

model differs from the Kedem and Katchalsky model in that Papanek does

not substitute for the difference in chemical potential. Au. but rath-

er retains it as the driving force. Kedem and Katchalsky on the other

hand assumed that the solutions are dilute and ideal and transformed

from the Au driving force yielding the hydrostatic pressure difference

and the difference in solute concentrations as the new driving forces.

By retaining the chemical potential as the driving potential Papanek

removes these restrictions from the model.

50
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Papanek defines a simple set of phenomenological equations for

the situation involving a binary flow of water. w. and a single per-

meating solute. s. using the molar mass flux. defined by (2.3.4). and

the difference in chemical potential (Ap=u°-u1) as the flows and

forces respectively:

a O I

n' = J" 3 inAl‘w + L”Al-ls

'5. = I. = LLAIL. + L:2Alls (2.7.1)

where Onsager's law. [4]. requires that L:,=L:1. Substituting these

relationships into the dissipation function (2.3.5) one can show that:

0 = 1,1“, + ISA“, (2.7.2)

0 = 1:1,“: + 21;,AHM. + LL”; (2.7.3)

The fact that the rate of entrapy production and hence the dissipation

function must be positive definite implies the following restrictions

on the phenomenological coefficients:

.

L11 2 o

. ,

L33 1 o (2e7e4)

<LI.)‘ 1 LLLL

.Next the alternate set of flows derived by ledem and Iatchalsky are

umed:
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v - 75,, + 13?. (2.7.5)2.
..

l

where Iv is the total volume flux and Id is the velocity of solute

relative to solvent. The phenomenological equations for this set of

flows are:

Iv = 14.x. + Lidia (2.7.7)

Id L;1Xv + L;,xd (2.7.8)

where Onsager's law requires that L;,=L;1. The corresponding dissipa-

tion function for this set of flows and forces is:

It is now required that'the local rate of entropy production and hence

the dissipation function.must remain unchanged by the transform. This

implies that one can equate the two expressions for 0 ((2.7.2) and

(2.7.9)). Recognizing that 3' and Is are independent one can then

equate their coefficients using (2.7.2). (2.7.5). and (2.7.9) to show

that:

X. = Au'l(;'(1+0)) + Lats/(1+0) (2.7.10)

xd = [A6, - (?./?,)A..'] 3,!(1+e) (2.7.11)

where 06?;33. Using these expressions in (2.7.7). (2.7.8). and
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(2.7.6) one can show that:

c.
..

ll,, [$.(1w)’]"[L;.l(AH/3.05.2163] + L;,[;,Aus(l-O)-29Au'l-vw]

' LLIOQAII. - anal-v.1] (2.7.12)

. ['c'./(1+e)’l[L;,[(A..,/?,)+E,Apsl + L;.[((1-o)hu,/?,)+2E,Aus]H ll

+ 1%. [F.An.-(ehu,/?,) 1] (2 .7 .13)

A conversion can now be made from the phenomenological coeffi-

cients to the more widely used set of permeability coefficients LP’ a.

and c. The first of these. LD’ is equal to the first of the phe-

nomenological coefficients. L;1. This parameter is normally called

the solvent (or water) permeability and has typical units of

cm'ldyne-sec. The solute permeability at zero volume flow. m. is

defined by the relationship:

J8 - [Jun] J =0 (2.7.14)

v

The situation of Jv=0 occurs when the solute and solvent are flowing

in opposite directions and with magnitudes such that the volume of the

cell remains constant with time so that:

43,5, - 3,1,, (2.7 .15)
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By eliminating Au, from (2.7.13) using (2.7.10) and (2.7.5) one can

show that:

m = r8./(1+e)1[L;.L;.-(L;.)’I / [L;.-0L;.I (2.7.16)

Note that a has typical units of mol/dyne-sec.

The final parameter. c. is the solute reflection coefficient

which is defined by the expression:

a= 1+1 ” 2347[ u'/(v'c,Au,)]Jv§0 ( )

so that using (2.7.13). (2.7.10). and (2.7.5) one can show that:

a = -L;.(1+e) I (L;,-OL;.) (2.7.15)

Substituting these new parameters into (2.7.12) and (2.7.13)

gives:

1' - [$..]"[[LP/e +«e;,.16e,/?; + [Lp(l-o)/a - $.613.Au,] (2.7.19)

I. a .“[IL,(1-e)/. -'3.eIE.Ae,/?;.+ [3.Lp(1-e)'/a + 913.4u.] (2.7.20)

where s-l+O-o0. Papanek points out that the factor a is typically

very close to one and hence can usually be considered to have very
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little effect on the evaluation of the above expressions. Papanek

prOposes as a worst case an ethylene glycol solution with 38=4M.

I;,=42.3cm’/mol. 6-0.8 so that for this highly concentrated solution

s=1.03=1.0 so that one can. in general. assume s=1.0.

While this set of permeability equations is less restrictive than

the Kbdem and Katchalsky set one must deal with the problem of calcur

lsting the chemical potential of both the permeating solute and

solvent inside and outside the cell. This adds to the computational

complexity of the model. Since very little comparative data between

the simpler I?! model and the Phpanek model is available it is still

unclear whether or not a comparable increase in accuracy is also

achieved.



2.8 Noggimensiggglization of thg EEK Peggeabilitz Eggations

For practical calculations it is desirable to work with a nondi-

mensional (or partly nondimensional) set of equations. In this

section the Kedem and Katehalsky equations for coupled binary flow

represented by equations (2.3.30) and (2.3.31) will be nondimensional-

ized. The equations used for calculation purposes in the parameter

estimation routines deve10ped as a part of the present work are the

partially nondimensional set represented by equations (2.8.14) and

(2.8.15). The fully nondimensional set of equations are not used as

one must absorb either the solute or solvent permeability into the

nondimensional time factor to achieve full nondimensionalization.

Since the permeabilities are unknowns in the parameter routine this

makes the independent variable time an unknown factor as well. This

unneccessarily complicates the input of data to the routine. Thus the

set of equations used for practical calculations retain the dimension-

al time factor as the independent variable. Only the cell volume and

cell solute content are nondimensional.

Begin by writing (2.3.30) and (2.3.31) in the form:

JV . "and“iwi’ + a(c:-c§)] (2.8.1)

6, - shrug-ob + amen. (2.3.2)

where the superscript (0) implies outside the cell and (1) inside the

cell. Reacall that these equations apply to cases where there is no

hydrostatic pressure difference. AP-O. and where the solute volume

56
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fraction is small. The subscript (i) implies the sum of all imperme-

able solutes and (s) the permeable solute.

Recall that Iv is the volume flux and can be expressed as:

IV = (1/A) dV/dt (2.8.3)

and that h. is the permeable solute flux given by:

h. a (1/A) dN/dt (2.8.4)

where A is the surface area of the membrane. V is the cell volume. N

is the number of moles of permeable solute inside the cell. and t is

time. An alternate set of permeability coefficients will be used and

are given by:

P, a LPRT'

(2.8.5)

Pa = uRT

so that P, '111 have typical units of (cm‘lsec-mole) and P. .111 have

typical units of (cm/sec).

Using (2.8.3). (2.8.4). and (2.8.5) in (2.8.1) and (2.8.2) gives:

avm - -P,1[(eg-ei) + e(c:-c’;)] (2.8.6)

dN/dt - P.A(O:-c:) + Z.(1—e)dwdt (2.8.7)
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If it is assumed that there is a relatively small difference in the

concentration of the permeable solute across the membrane then the

mean permeable solute concentration. 33. which is defined by equation

(2.3.8). can be approximated by the arithmetic mean:

3, a (camp/2 (2.8.8)

Also notice that the internal concentrations can be expressed as func-

tions of the cell volume. The internal permeable solute concentration

is equal to the number of moles of permeable solute inside the cell.

N. divided by the cell volume. V:

c: = N/V (2.8.9)

Similarly the impermeable solute concentration inside the cell can be

expressed as:

“i " c1.V./V (2.8.10)

where °io is the initial impermeable solute concentration and V. is

the initial cell volume.

_Incorporating this information into (2.8.6) and (2.8.7) gives:

dV/dt - -P,I[(.g - chm/v) + .(c‘; - NIV)] (2.8.11)

ledt - P.A(c: - N/V) + (112m): + N/V)(1-c)dV/dt (2.8.12)
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Defining the nondimensional volume and solute content as:

v‘ = V/V. N’ = NVc°v. (2.8.13)

and using them in (2.8.11) and (2.8.12) gives:

dv‘ldt = —(P,A/v.)[(eg - ei./v’) + ecg(1 - N‘Iv‘)] (2.8.14)

dN‘Idt - (P,A/v.)(1 - n‘lv‘) + (1/2)(1 + N‘Iv‘)(1—e)dv‘/dt (2.8.15)

While equations (2.8.14) and (2.8.15) are not fully nondimensional-

ized. as they still contain the time factor. they are a good set of

equations to use for practical calculation. This is because the data

available is typically the nondimensional volume as a function of real

time a priori, In order to fully nondimensionalize the equation set

one must absorb either P, or B. into the time factor. Since P8 and P'

are both typically unknowns this makes it impossible to calculate the

nondimensional time as a function of the real time. This will make

the procedure for estimating the permeability coefficients unnecessar-

ily complicated.

If one _wishes to work with a fully nondimensional set of

equations then the groupings used by Johnson and Wilson. [8]:

t a P'Aci.tlv.

b - P'IP'ci. (2.8.16)

a . ace/c1.
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can be used so that (2.8.14) and (2.8.15) become:

dv‘ldt = [(1/v‘) - (cg/81.)] + a[(N‘/v‘) - 1] (2.8.17)

dN‘Idt = b[1 ~ (N‘lv‘)] + (1/2)[1 + (N‘Iv‘)](1-e) dv‘ldt (2.8.18)

For the case of no impermeable solute present at the initial state

(°i930) the groupings in (2.8.16) will not work. For this case one

can use the alternate set of nondimensional groups:

1' = PQAcgt/V.

b' = P,/P,cg (2.8.19)

a' - «we:

in which case the analogous nondimensional equations become:

av‘xdtv . -[.v - (ch/.gv‘) + an - (N‘Iv‘)1] (2.8.20)

dN’Idt' - b'[1 - (N‘Iv‘)] + (1/2)[1 + (N‘Iv’)](1-e) dv‘ldt' (2.8.21)

No further complication occurs if no impermeable solute is introduced

at time equal to zero. One can merely set cgso in (2.8.20) and

(2.8.21).

Mhny authors will simplify the evaluation of the above equations

by assuming that the volume changes induced in a cell will be suffi-

ciently small such that the surface area of the membrane. A. remains

constant [10.12]. The surface area is then typically calculated using.
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the initial cell diameter. Stusnick. [10.11]. explored the effects of

this assumption on the resulting values calculated for the permeablil-

ity coefficients using data reported by Stewart and Jacobs. [18].

Stusnick first calculated the permeability coefficients assuming that

the surface area remained constant and then.by allowing the surface

area to be calculated as a function of cell volume using the expres-

sion:

A = (36n)"” v’“ (2.8.22)

While for the most part the change in the results was not significant

the parameter values in at least one case varied by as much as 20%.

Papanek points out that for a typical case of a cell subjected to

a rise in the extrhcellular concentration of.the permeable solute

while in the presense of impermeable solutes a shrink-swell behavior

is observed: "The rate of rapid initial shrinkage will be determined

almost wholly by the water permeability. LP' a. LP))m and there 1;

initially very little solute transport. As solute begins to enter.

and water continues to exit the cell. the interaction term a becomes

important. The shape of the volume minimum seen ........ will be

fixed primarily by c. As solute slowly enters. the rate of swelling

is almost entirely a function of solute permeability a. During this

phase. intracellular concentration is increasing and water re-enters

the cell. but the change in cell volume is rate-limited by permeable

solute entry”. [12].
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One would expect these trends to express themselves in reverse in

a parameter estimation routine. For instance the value of LD will be

determined almost wholly by the rate of initial shrinkage. In the

case of the shrink-swell behavior the assumption of surface area

rmuaining constant at its initial value will consistently over-predict

the actual surface area. This would suggest that permeability would

be correspondingly under-predicted in order to keep the volume flux

the same for an over-predicted area. particularly during the initial

period of rapid shrinkage. This effect does appear when comparing the

values of LP in Stusnick's work. The effect does not. however.

express itself in the values of w whose value was changed in alternate

directions under the new evalustion depending on the specific case.

It is also interesting to note that the value of c was consistently

over-predicted when using the assunption of constant area as compared

to the values when the area was calculated as a function of volume.

One would suspect that this might be due to compensation for the

under-predicted values of Lb' .

With the availability of fast. efficient computers the extra

evaluations required for calculating the surface area of the membrane

as a function of volume will not significantly increase the execution

time and hence should. in general. be included in order to prevent

biasing of the calculated parameter values.



CHAPTER 3

Parameter Estimation lethods

LIMAi—tieal!ma 912117.191

When one thinks about solving an equation they inherently think

in terms of solving for the state of a system given certain parameters

and initial and/or boundary conditions. The parameters are given no

special consideration but are merely looked up in a hand book. in

many cases. however. the parameters are unknown or perhaps unknown

functions of the state variables. It is this problem which is

addressed by the methods of parameter estimation.

Pbrameter estimation is the science of determining from measured

data the values of the physical properties of materials and systems or

arbitrarily chosen parameters which play the role of constants in an

equation or mathematical model. The determination of physical prepar-

ties is typically performed through measurements of the state

variables (temperature. pressure. etc.). These measurements are

matched to a mathematical model of the process being monitored _in

which the parameters of interest appear either explicitly or implicit-

ly. In the case of arbitrary constants one may be trying to fit a

physical prOperty of a system to an empirical or analytical model.

This model may be a function of one or more of the state variables.
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Typically one would be working from measured values of the preperty of

interest at specific states of the system. Many other applications

for parameter estimation methods have been proposed including the

separate yet related science called function estimation by Beck. [15].

It is not the purpose here to enumerate the applications of

parameter estimation but rather to present for the student new to

estimation theory a simple explanation of some of the more common

methods. This presentation is particularily slanted towards the prob-

lem of parameter estimation in membrane transport. The methods

applicable to this problem are not the most powerful techniques avail-

able. Because of the nature of the data being processed very little

information of a statistical nature is available. For instance. since

the data available using the techniques described in this work are

typically the volume-time history of an individual cell in a single

experiment no knowlege of the variance-covariance pr0perties of the

data is available. Given this type of information many more powerful

techniques could be employed. One of the simpler of the methods which

utilize statistical information. maximum likelihood (IL) estimation.

will be presented in order to illustrate one of the ways in which the

investigators knowlege can be incorporated into these methods.

The first methods to be presented are the ordinary least squares

(0L8) method and the Gauss method of minimization for nonlinear esti-

mation. These are perhaps the oldest and most basic of the parameter

estimation methods. Tbgether they form the basis of a multitude of

other techniques. Some of these modified least squares methods will
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also be presented including the Box-Ianemasu method and larquardt's

method.

A FORTRAN computer program which is based on the OLS estimator

and the Gauss minimization method has been coded as a part of the

present work. This program also incorporates the modifications of

Iarquardt and Box-Kanemasu. This program is call lARBOX and is des-

cribed in detail in Appendix A of the present work. This program has

been particularly tailored to the passive membrane transport problem

which has at most three parameters.
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3.2 Ordinary Least §gpp£gg pad lgxlmum ngglihgog Egtlggtegs

The Ordinary Least Squares (0L8) method is perhaps the oldest and

simplest of the parameter estimation routines. This method. like all

other estimation methods. attempts to minimize the error between the

function values predicted by a mathematical model and the known or

measured functional values with respect to the floating parameters.

The various routines will differ in the way in which they measure the

fit between the data and the model and how they choose the direction

and size of the step-changes taken to determine the "true" parameter

values from initial estimates. It is this method which has been

incorporated into the parameter estimation routines developed as a

part of the present work.

In the OLS method the fit between the data and the model is meas-

ured by the sum of the square of the difference between the measured

values and the corresponding values predicted by the model. This is

referred to as the sum of the squares function and for OLS is given

by:

S - Y (11 - MUD)a (3.2.1)

i-l

where n is the number of data points. the 11'. are the measured data

values. and the “1'8 are the values predicted by the model. ‘3

represents the vector of parameter values so that the notation n1(3)

expresses the dependency of the predicted values on the parameter

values.
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The problem then becomes that of minimizing the functional 8 with

respect to the parameter values. lathematically this is expressed

through the derivatives of the functional S with respect to the vector

of parameters by meeting the condition:

asmr‘ - 0' (3.2.2)

where 5. is the vector of "best fit” parameter values. When the

values of F' are found that satisfy equation (3.2.2) then the sum of

the squares function has been minimized with respect to the parame-

ters. Since one can not generally satisfy (3.2.2) exactly one

typically will continue iteration on the parameter values until the

change in parameter values becomes insignificant. It is possible in

some cases to have more than one set of values satisfy this condition

due to the presence of local minimums. One would wish to find the

values corresponding to the global minimum. This generally is not a

problem as most well-posed models will possess only one minimum value.

Under laximum Likelihood (IL) estimation a slightly modified sum

of the squares function is utilized. Each data point is weighted by

its variance so that 8 becomes:

8 - 1 - ("))/ 1' (3.2.3)In. 2—1 H 1 “19 ‘1

where G, here represents the variance of data point (i). Thus these

data points with a lower variance will be weighted more than those

with higher variances. This type of method is not utilized in the
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present work as the varience of the data points used in the present

work are unknown. Mhny other methods which utilize the investigator's

knowlege are available.



3 .3 33 EM Minimization Mpihod

The Gauss or Gauss-Newton method for minimizing the sum of the

squares function is one of the simplest minimization methods. While

it was prOposed many decades ago it is only with the advent of the

computer that it has become practical to apply due to the large number

of calculations required. This method has proven to be effective for

well-defined problems which have a distinct minimum.

Recall that we are attempting to find values of the vector F such

that an equation of the form (3.2.2) is satisfied. By differentiating

(3.2.1) one can show that for the OLS method:

11

asla - a a - “ ‘ . .3 I3 [2131 (11 “(an ] (3 3 1)

as/a a -2 Y - ‘)) a a" ' (3.3.2)B 2:31 ( i 1|1(B “i/ B

Because 3 is a vector. satisfying (3.2.2) implies simultaneously

satisfying the set of p equations:

aSIap: a 0

68/88: a 0

. (3.3.3)

38/33; . 0

where p is the number of floating parameters.
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A sensitivity matrix X is defined with the components:

xij = ani/apj (3.3.4)

so that X has dimensions of nxp. Further using the matrix notation on

Y and 11:

T

Y = [Y1.Y,......Yn] (3.3.5)

_ T

n = [al.n.......nn] (3.3.6)

equation (3.3.2) can be rewritten:

T __

88/01! = -2 x (Y - 11(3)) (3.3.8)

Thus the desired solution. 3.. will satisfy the condition:

T — a

X (Y-n('6 )) =0 (3.3.9)

The problem is now to solve for the value of 3‘ in this expression.

This is not easy,however,as both X and a are dependent on the value of

F.

In the Gauss method the first two terms in a Thylor series expan-

sion of i about the estimated values of 3.. designated 5. are used to

generate a better estimate of 3.. This method requires that (K have

continuous first derivatives in ‘3 and bounded higher order derivi-

tives. The Taylor series is given by:
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fia‘) = ah) + (mm/ah) (ii’- 8') + H.O.T. (3.3.10)

or using the sensitivity matrix and ignoring the higher order terms

(H.0.T.):

- '6) (3.3.11)

Substituting this expression into (3.3.9):

T _._ _w. ._o ._ -

X [Y - nu.) - X(b)(B - b)] a: 0 (3.3.12)

This expression can now be solved for the approximate value of B. giv-

ing:

- r - 1' ..
II‘ :8 + IX X]1 x (Y- “(6n (3.3.13)

For models which are linear in the parameters. that is for models in

which the parameters appear only to the first power. equations

(3.3.11) through (3.3.13) will be true equalities and only a single

iteration will be required to reach the final values. However for

models nonlinear in the parameters. several iterations may be required

depending on the nature of the model and the accuracy of the initial

parameter estimates.

The iteration procedure can be summarized as follows. Defining

the matrix P as:
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T -1.

P = [X 'X] (3.3.14)

and using the superscript (k) to indicate the current values and (k+1)

to indicate the future values then one iterates on the following two

equations:

1 T k k

P( ) = [‘2 ( )‘X( ) 1‘1 (3.3.15)

T _

8m” = 6”“ + 15ml 2 (“a - “mu (3.3.16)

where fi‘k) is a function of 5(k). The iteration continues until there

is a negligible change in the parameter values. One way of testing

for convergence is to set a tolerence factor. 8. such that execution

ends when:

ABSI bit“) _ his) ]

(k) < 6 (i=1.2...p) (3.3.17)
ABS[ bi ] + 81

 

where 51 is a very small number (81<<<8) which will prevent a divide

by zero conditon in the event that one or more of the parameter values

goes to zero during an iteration. Typically the value of 61 will be

about 10"16 but this will depend on the computer being used.



3.4 flpgzgggggggp Interpolatiop Mpihod

The Box-Kanemasu.method is a minimization method based upon a

modification of the Gauss method. In some cases this method can pre-

vent oscillations of increasing amplitude in the parameter values

caused by the linearization of a nonlinear model using the Gauss

method. Included in this presentation is a modification to the

Box-Kanemasu method used by Bard. [17]. which insures a decrease in

the sum of the squares function for each iteration.

The basic strategy in this method is to modify the step size cal-

culated by the Gauss method in order to insure a better fit with the

new parameter values. The direction of the step is not changed under

this method.

Begin by decomposing equation (3.3.16) into two equations:

A5 (7- 11

k (k _T k) _(k)
‘ ’= p ’[x( )] (3.4.1)

_ 1 _.kb(k+ ) = F.(k) + h(k+1)Ab( )

(3.4.2)

where h is a scalar quantity whose magnitude can vary with each itera-

tion. If h-l for all values of (k) then one has the Gauss method.

Equation (3.4.2) is typical of many of the modified least squares

methods. These methods will differ in the way in which the value of h

is calculated. Sane methods will perform a search on h to determine

the value which gives the minimum value for the sum of the squares

function.
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In the Box-Kanemasu method the value of h which will minimize the

sum of the squares function is approximated through a second order

quadratic approximation for S in h:

S = a. + alh + alh3 (3.4.3)

where a.. a1. and a, are arbitrary constants to be calculated for each

iteration. A corresponding linear approximation of the parameter vec-

tor 5 will also be used:

F=b+hfl (man

To calculate the values of the three arbitrary constants in (3.4.3)

three pieces of information are required. The first is to calculate S

at h-O so that:

(k)

S(h-0) = a, = s. (3.4.5)

_ k

'3(hp0) = b( ) (3.4.6)

1 _(k)

e. = s: ) a S(b ) (3.4.7)

A second value is determined at has where a is initially set to 1.0.

This value of S is denoted Six). The presence of u in this develop-

ment represents the modification used by Bard. i If c-l then the

following development would match that of Box-Kanemasu. In the modi-

fied version the value of e is manipulated to insure a reduction in

the sum of the squares function.
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The final piece of information is gained from the derivative of S

(k)

with respect to h in the Ab direction at h=0:

01’:

From equation (3.3.8) for

[08/01.]th0 = e. = §:=1

- T
a1 = [(aSIaa) (dF/dh)]h=o

the ordinary least

squares function one can show that:

T _

08/08 a -2 X (Y - n)

and from (3.4.4) one can show that:

so that:

(

The scalar quantity G

so that:

(k

dB/dh a 85

“=[4iTW-fiflTmu)

G(k) a [ _T

X

‘1 a —ZG

)

k

) is defined as:

- k

a-anm‘°

(k)

[33/331]h,0 [asi/ah]h=0

squares

(3.4.8)

(3.4.9)

of the

(3.4.10)

(3.4.11)

(3.4.12)

(3 e4 e13)

(3.4.14)



76

Using the definition of the matrix F given by equation (3.3.14) it is

possible to show that:

- k T ‘- _ k

a‘k) = [Ab( )1 ‘P 1 Ab( ) (3.4.15)

It can also be shown that:

k k k

a2 = [5; ) - s: ) + 26‘ )ulluz (3.4.16)

The minimum of S with respect to b can be found by setting the

derivative of S with respect to h equal to zero and solving the

resulting expression for h. This will yield the expression:

(k+1) (k) (k) (k) (k)

h = + 26a u’/[Sa - so a] (3.4.17)

Bard suggests using the variable a to insure that:

s(k) (k)

a . (3.4.18)

If this condition is not met by the initial value of c=l then u is

51Vidfid by t'0 and 3a is recalculated. This process continues until a

value of u is found such that the condition of (3.4.18) is met. If

the value of o.must be reduced to about 0.01 and (3.4.18) is still not

satisfied then it is suggested that execution be discontinued. Beck.

[16]. suggests that this condition may indicate improper programming.

especially in the calculation of the sensitivity coefficients. or near
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linear dependence of the sensitivity coefficients.

The use of equation (3.4.17) in the calculation of h is restrict-

ed by the value of 1,. Beck. [16]. explores the implications of all

three possibilities on the value of a,, that is. a,<0. a,=0. and a.)0.

The results show that equation (3.4.17) should be used only if a,)o.

This can be tested by requiring that:

(k)k k

S( ) E ) - (2-A—1)uG (3.4.19)
0. is

where A is a value equal to or slightly greater than one. Beck sug-

gests using Ael.l. If the inequality represented by (3.4.19) is not

satisfied while (3.4.18) is satisfied then Beck suggests that:

k 1 '

h( + ) = An. (3.4.20)

k+1

be used. If (3.4.19) is satisfied then h( ) should be set to the

value calculated by (3.4.17) or by (3.4.20) whichever is the smaller.



3-5.!sraasrd£;s.!eihed

Marquardt's method of minimization utilizes a compromise between

two different methods. One method is called the method of steepest

descent. In this method the step direction is taken in the direction

opposite the gradient. Thus the direction chosen for the parameter

step is that of the steepest downward slope in the sum of the squares

function with respect to the parameter values. Mhthematically this is

expressed by:

Ab “
j ‘ -aslabj = 22131 (Y1 - ni)ani/abj (3.5.1)

This method typically works well when the parameter estimates are far

from the minimum but is slow to converge near the minimum as the value

of BS/abj approaches zero and the step size decreases.

The second method is the Gauss method of minimization which util-

izes a linearization of the fitting function to calculate the step

size. This method is outlined in section 3.2 of this work. The Gauss

method works well for parameter estimates close to the minimum but

poorly when the estimates are far removed and the model is non-linear.

' In Isrquardt's method a compromise is made between the two

methods. Initially the method resembles that of the steepest descent

and as the parameter estimates improve it shifts toward the Gauss

method. This strategy is implimented by weighting of the Iii matrix.

which is the matrix of sensitivity coefficients.
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The matrix A is defined as:

A = X ‘X (3.5.2)

so that I is a pxp symetric matrix. Also note that from equation

(3.3.14):

P=x (3.503)

The matrix A is modified using the expressions:

A“ = Anne.) (i=j)

(3.5.4)

so that if i=0 the matrix is unchanged. For large values of 1 this

procedure weights the A matrix towards its main diagonal driving the

routine towards the steepest descent method. As k90 the method resem-

bles the Gauss method.

In application the initial value of l is made relatively large

(say about 1000). The worse the initial parameter estimates and the

more ill-behaved the model the larger the initial value of h. A new

set of parameter values and the sum of the squares function for these

new values are calculated based on the initial parameter estimates.

If the sum of the squares function has been reduced by the new parame-

ter values then A is reduced by a certain factor (anywhere from 2 to
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about 10) and iteration proceeds. If the sum of the squares function

is not reduced then.l is increased by the same factor and a new set of

parameter values is calculated using this new value of A. This con-

tinues until a reduction in the sum of the squares is realized. The

routine then proceeds to the next iteration. New parameter values are

calculated based on the updated estimates and iteration continues

until a standard convergence criterion is met.



CHAPTER 4

Data Gathering Techniques

4.1 I}; Difiugion Chamber

The diffusion chamber is a microscope stage capable of subjecting

an isolated sample of cells to a psuedo-step change in extra-cellular

concentration of solutes. These solutes can be either permeable or

impermeable to the cell membrane. Figure 4.1.1 shows a cross section

of the chamber and Figure 4.1.2 shows an exploded view of the chamber

parts.

The sample of cells to be tested is held in a region bounded by

glass on top. a dialysis membrane on the bottom. and a rigid support

ring around the side. The thickness of this region is manipulated by

a spacing ring which is thick enough so that the cells are not com-

pressed between the membrane and the glass and yet not so large as to

allow the cells to drift in and out of focus. Thus the size of the

cells of interest determines the thickness of the spacing ring and

hence the sample region.

Below the sample region on the other side of the dialysis mem-

brane is a second region containing a bulk flow of the extracellular

solution. This region has a volume much greater than that of the sam-
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ple region. Initially the bulk flow region will contain the same

solution as the sample region. The chamber and the cells are allowed

to come to equilibrium with this solution. At time equal to zero the

bulk flow region is flushed with a new solution whose solute concen-

tration differs from that of the initial solution. If the new

concentration is higher than that of the initial solution then solutes

will diffuse upward across the dialysis membrane from the bulk flow

region to the sample region. If the new solution has a lower solute

concentration then the solute flow will be reversed.

The bulk flow can be regulated through a pair of pressurized bot-

tles. one containing the initial solution and the other containing the

new solution. The bottles are connected with plastic tubing to a pair

of small pumps with a single outlet. his outlet is connected to the

bulk flow inlet port on the diffusion chamber. A plastic tube is con-

nected to the bulk flow outlet port and inserted into a discharge

vessel. One switch is provided to switch the pump intake from one

bottle to the other and a second switch turns the pumps on and off.

This mechanism was developed by Ligon and is detailed in an unpub-

lished work. This technique works well for very large cells which do

not have a tendency to move about.

For smaller cells the pressurized bottles created large scale

disturbance due to the sudden introduction of flow in the bulk region~

which could cause the cells to drift out of view. For cases where

this is a problem an alternate injection method has been developed.

Rather than using the pressurized bottles a large (35cc) syringe is



85

used to introduce the bulk flow. The chamber is set up initially with

the equilibrium solution in the bulk flow channel. The syringe is

filled with the new solution and a plastic tube attached to the end.

Air is then removed from both the syringe body and the tube. The

other end of the tube is then connected to the bulk flow inlet port of

the diffusion chamber. At time equal to zero the syringe is manually

depressed introducing a bulk flow of the new solution into the bulk

flow region. This system allows the user to maniputate the velocity

of the bulk flow in order to prevent large scale disturbances in the

system. When using a syringe with smooth plunger action this techni-

que is easily implemented.

Once the fluid in the bulk flow region has been replaced by the

new solution the change in solute concentration will be gradually

introduced into the sample region. The cells in the sample region

will begin to respond to the non-equilibrium osmotic conditions creat-

ed. The response of the cells will depend explicitly on the

extracellular concentration of the sample region as expressed in equa-

tions (2.3.30) and (2.3.31). Thus in order to estimate the value of

the 90:3035111t7 P‘fletOI' Lb' c. and a one must have explicit

knowlege Of the °:(t) and c2(t). the extracellular concentrations of

permeable and impermeable (relative to the cells membrane) solutes.

These extracellular concentrations correspond to the concentrations in

the sample region so that the extracellular concentration.will depend

on the rate at which the new solution in the bulk flow region mani-

fests itself in the sample region. This will in turn depend on the

permeability of the dialysis membrane to each of the solutes present.
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In Ligon's work it was shown that for most solutes the sample

region will have very small concentration gradients and hence can be

characterized by a single concentration. In the following a model is

developed which allows for the prediction of cs(t) and °i(t) in the

sample region based on the solute permeability characteristics of the

dialysis membrane used in the diffusion chamber.

The diffusion chamber itself can be modeled using the Kedem and

Ketchalsky definition of solute permeability. The defining relation-

ship for solute permeability. u. is given by equation (2.3.24):

53 . [ne,An,]Jv=o (4.1 .1)

Iwhere 3’ is the mole flux. m is the solute permeability. and 3' is the

mean' transmembrane solute concentration defined by equation (2.3.8).

A“, is the transmembrane difference in chemical potential in this case

given by ("Sb-“80) where (b) implies the bulk solution and (e) the

extracellular or sample solution. It will be assumed that the volume

of the sample region remains constant and Jv=0° In oxporimgnts run at

high magnifiction using the chamber the dialysis membrane does not

appear to deform to accommodate volume changes as the cells will gen-

erally remain in focus throughout the experiment. This would tend to

support the validity of the constant volume assumption. This means

that for each solute present one can write that:

Ji a 61318.11 (4.1 .2)
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Using the expression. [9]: Afll - :3AP + RTAci/zi (4.1.3)

and assuming no transmembrane pressure difference (AP-O) then:

Again since the dialysis membrane does not appear to deform during an

experiment. and since the fluids are incompressable the assumption of

no hydrostatic pressure difference appears justified as no other

mechanism exsists by which a pressure difference could be maintained.

Defining N as the number of moles of a given solute in the sample

region and dropping the subscript (i) one can write:

dN/dt - JA.- eRTAAc (4.1.5)

where A is the effective transfer area determined by the spacing ring.

One can then use Ae'cb-c. and c‘-N/V where V is the constant volume of

the sample region. Note that if the cells make up a significant por-

tion of the sample region then V can be replaced by (V-Vc) where V0 is

the total volume of cells. If the overall change in cell volume is

assumed to be small then V can be assumed to be constant and no furth-

er change in the following development is needed. Equation (4.1.5)

then becomes:

dN/dt - mRTA [ob - (N/VI] (4.1.6).

or: dN/dt + (uRTA/V)N’- eRTAcb (4.1.7)

Assuming that °b is not a function of time (i.e. that it undergoes a
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step change at time equal to zero) then this is a linear first order

ordinary differential equation in N and t. It is subject to the ini-

tial condition:

N(0) = N0 = cov (4.1.8)

This differential equation can be solved by two linearly

independent solutions which together satisfy the initial condition and

the differential equation. One solution is generated by considering

the homogeneous equation:

th/dt + («IRTA/V)Nh = 0 (4.1.9)

0

This equation is satisfied by the expression:

Nh = B exp[-(uRTA/V)t] (4.1.10)

where B is an arbitrary constant. The second solution comes from the

non-houogeneous equation (4.1.7) and is given by:

Nn a °bv (4.1.11)

Reconstructing the full solution:

N a thn a B exp[-(mRTA/V) t] + Vcb (4.1.12)
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Applying the initial condition:

N. = B + Vcb (4.1.13)

.6 that: B = N. - v6b (4.1.14)

This makes the final solution:

N(t) = Vcb + (No-vcb)exp[-(mRThlV)t] (4.1.15)

Dividing this expression through by V and letting c(t)=N(t)/V then:

c(t) = 6b + (c, 7 ch).xp[-(naIaIV)t] (4.1.16)

Thus the concentration of each solute in the sample region is

expressed as an exponential function of the concentration of the bulk

solution. the initial concentration of the sample region. the permea-

bility of the dialysis membrane to that solute. the volume of the

sample region. the effective area of transfer. and time.

The most difficult of these factors to obtain will be the permea-

bility of the dialysis membrane. Data has been obtained for the

permeability of Cuprophan dialysis membrane produced by Enka

Glanzstoff AG. These data imply a linear relationship between the log

of the permeability of the dialysis membrane for a given species and

the log of the molecular weight of that species. This dependency is

shown in Figure (4.1.3) for three types of the Cuprophan.membrane.
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It is interesting to note that the time constant for equation

(4.1.16) is given by the expression:

t. - V/AmRT (4.1 .17)

Consider as one example the typical configuration used to generate the

data reported in the present work. In that configuration the quantity

VIA was given as 2.286x10'zcm. The Cuprophan 80pm membrane was used

so that for sodium chloride «RThl.166x10"cm/sec. This yields a time

constant of 19.6 sec. Thus it will take 58.8 seconds (three time con-

stants) to reach 955 responce in the sample region when using sodium

chloride. This is a considerable length of time for experiments which

typically last 4-6 minutes.

Consider as a second example the same configuration of the diffu-

sion chamber and the same dialysis membrane but with sucrose as the

solute of interest. The molecular weight of sucrose is 342.3 grams so

that the permeability of the 80pm dialysis membrane to sucrose is

approximatly 3.3x10" and the time constant becomes tc-69.3 see. This

means that it will take nearly 4 minutes to achieve 95% responce.

From these simple calculations it is clear that the presence of

the dialysis membrane in the diffusion chamber will introduce a signi-

ficant delay in the time in which the sample region comes to

equilibrium with the new solution in the bulk flow region. One would

expect this delay to have a significant effect on the values of the

permeability parameters calculated in a parameter estimation routine
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based on data gathered using the diffusion chamber system.



4.2 Characterization g; the Dialzgig Mbmbrane Peggeabiliiy

A technique deveIOped by Ligon. [19]. and modified as a part of

the present work has been used to characterize the permeability of the

dialysis membrane to various solutes. In the present study the Cupro-

phan 100pm flat membrane was tested using the solute glycerol. Other

studies performed in the BTP lab by Dupuis have utilized other solutes

including sodium chloride and sucrose. [25]. The values for the per-

meability of the dialysis membrane generated as a part of the present

work were used in the processing of data on the binary flow response

of hamster embryos. The results of this process are documented in

Chapter 5. Section 2 of the present work. The method used to charac-

terize the dialysis membrane permeability is presented here in order

to document the procedure used for future reference. The characteri-

zation of the dialysis membrane permeability to various solutes will

be an ongoing research project in the BTP lab. In processing data

obtained using the diffusion chamber system the dialysis membrane per-

meability value used in the transport model will have a great effect

on the resulting cell membrane permeabilities calculated as shown in

Chapter 5 of the present work. Thus it is important that the dialysis

membrane permeability to each of the solutes of interest 'be known

accurately in order to obtain reliable results using the diffusion

chamber system.

This technique utilizes two well-stirred chambers separated by a

piece of the dialysis membrane (see Figure 4.2.1). One chamber con-

tains 400ml of a relatively low concentration solution (typically
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0.1-0.2 moles/liter) of glycerol. The other chamber holds 1600m1 of

distilled water.

The larger outer chamber used in the present work was a rectangu-

lar (9x4x6 inches) chamber made from clear plexiglass and sealed with

silicon caulk. This chamber was set off-center on a magnetic stirrer

platform so that the stir-bar was positioned towards one end of the

chamber. The smaller inner chamber. which holds the higher concentra-

tion solution. was made from a section of 3 inch inside diameter PVC

drainage pipe approximately 8 inches long. A clear plastic window was

cut into the side of this chamber in order to facilitate observation

of the inner solution during an experiment. The lower end of the

inner chamber was milled to accommodate a membrane retaining ring also

made from plastic PVC pipe.

A piece of the dialysis membrane approximately 4 inches square

was soaked in distilled water for 20-30 minutes prior to use in an

experiment. At the beginning of an experiment the membrane was

stretched over the lower end of the inner chamber and the membrane

retaining ring pressed over the membrane. holding it securely in

place. The inner chamber was then suspended within the outer chamber

approximately 1 inch above the bottan of the outer chamber using a

ringstand and clamp. The actual level at which the inner chamber was

suspended was predetermined such that when the inner chamber held

400ml and the outer chamber held 1600ml the fluid levels in each

chamber would be the same. This insured that no hydrostatic pressure

difference would be created due to unequal levels in the chambers.
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The presence of the window in the inner chamber made it possible to

check the levels visually as well.

The inner chamber was positioned at the end of the outer chamber

opposite the end with the magnetic stir-bar. In the original set-up a

large circular beaker was used for the outer chamber so that- the

stir-bar was positioned directly below the center of the inner

chamber. It was found that using a set-up such as this would induce a

hydrostatic pressure difference across the membrane due to the vortex?

ing action created by the spinning of the stir-bar. This resulted in

a pressure-driven flow leaving the inner chamber. This could be seen

in that the membrane would bcw outward and the level in the inner

chamber would drop significantly during an experiment. By moving the

stir-bar out from under the inner chamber this problem was avoided.

With both chambers in place distilled water was added to the

outer chamber until the level just reached the level of the membrane.

At this time a step-watch was started and the remainder of the 1600ml

of distilled water and the 400ml of the glycerol solution were quickly

but carefully added to their respective chambers. The two solutions

were added simultaneously at rates such that the fluid levels in the

two chambers remained equal. Stirring in the outer chamber was then

initiated. A Craftsman router with a plastic stir rod powered through

a waerstat variable autctransfcrmer was suspended over the inner

chamber using a second ringstand. The height of the router was set so

that the cross bar at the lower end of the stir rod was about 1/2 inch

above the membrane. Enough power was then applied to the router to
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provide slow but thorough mixing of the inner solution.

A small sample (about 3ml) of the original glycerol solution was

retained at the beginning of each experiment. Additional samples of

the inner solution were taken at ten minute intervals during the

course of an experiment. A typical experiment would have a total

duration of one hour. Each of the samples was tested for concentra-

tion using an automatic csmcmeter. The csmcmeter is normally switched

on one hour prior to use and calibrated using 100 and $00 milli-csmole

standard solutions as described in the csmcmeter manual.

These samples provided a time history of the concentration of the

inner solution. Ligon. [19]. used the following expression to charac-

terise the concentration of the inner solution as a function of time:

aim - [vi/(viwonoim) +

[Vol (V1+Vo)]c1(0)exp[-tA(D/h) (Hwy/(viva): (4.2 .1)

where 01(t) is the concentration of the inner solution at time t. V

represents volume. A.the surface area of the dialysis membrane. D is

the diffusivity of the solute (glycerol) in the membrane. and h is the

thickness of the membrane. The subscript (1) 'implies the inner

chamber and the subscript (c) the outer chamber.

This expression can be rearranged and the natural leg of each

side taken to yield the expression:
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1n[[(Vi+Vo)/V°](ci(t)/ci(0)) - (vi/vo)] = st (4.2.2)

where:

s = -A(D/h)(Vi+Vo)/(Vivo) (4.2.3)

For the experimental conditions used in the present work.Vi=4oom1 and

Vo-lGOOml so that:

ln[5ci(t)/4c1(0) - 1/4] = st (4.2.4)

and:

s = 3.125s10” A(D/h) (4.2.5)

Equation (4.2.4) expresses a linear relationship between the natural

log of a simple expression involving the ratio of the concentration at

a given time. t. to the initial concentration and time. Figure 4.2.2

shows the results obtained in a typical experiment conducted as a part

of the present work. These data clearly show that this type of linear

relationship does indeed exist. A linear least squares minimization

was utilized to find the best fit line through this data set. The

resulting slepe is also shown on Figure 4.2.2. The line was not

forced to pass through the origin as would be the case using equation

(4.2.4) exactly. since the start time of each experiment is somewhat

hard to define exactly. This is due to the fact that start-up of an

experiment is rather clumsy and errors of up to a minute in the start
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Figure 4.2.2- Typical results of dialysis membrane

permeability experiment for Cuprophan 100pm

membrane and solute glycerol.
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time are possible.

The quantity (D/h) is taken to be the permeability of the mem-

brane. Solving (4.2.5) for (D/h) yields:

ad = D/h = s/(3.125:10"A) (4.2.6)

where “d will be used to represent the solute permeability of the

dialysis membrane. Using the inside diameter of the inner chamber to

calculate A and inserting this value into (4.2.6) gives:

where if s is in units of (1/min) ”d will have units of (cm/min).

Using the value of s from the experiment shown in Figure 4.2.2 gives

the result:

md = 2.835 x 10" cm/min (4.2.8)

This is compared to the manufacturer's suggested value (see Figure

4.1.3) of (mas-5.2x10-a cm/min. This relatively large difference may be

accounted for by the difference in the temperature at which the two

values were obtained. The manufacturer's value was reported for 37°C

while that generated in the present work was for room temperature (ap-

proximately 23°C). lbdifications to the system which would allow one

to run experiments at various temperatures (both above and below roan

temperature) are being considered for future investigations. These

.
‘
J
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modifications will make it possible to more closely evaluate the

correlation between the values obtained using this method and those

reported by the manufacturer.
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4.3 22251522122112.1322;

This section describes the techniques used while working in the

Bio-engineering Transport Processes (BTP) Laboratory of Michigan State

University. The tasks described are the formation of unilamellar

liposomes ("artificial" cells). and the generation of a series of pho-

tomicrographs using the diffusion chamber.

The liposomes used in the present study were formed from

Leo-lecithin produced by Leon Laboratories of St. Louis. lb. (lot

nnmber 102112). lhen not in use the lecithin was kept frozen in a

plastic jar. About 10 minutes prior to its use the lecithin was

removed from the freezer and placed in a vacuum chamber with dessicant

beads in the bottom and allowed to come to room temperature in this

dry environ-put. Nb v;cuum was drawn on the chamber at this time. A

small sample of the lecithin (about a 1/8 inch diameter ball) was

removed from the bottle and transferred to a glass coverslide. The

ccverslide and lecithin were placed in a 150ml beaker and about 10ml

of a 1:2 (V:V) chloroform-to-methanol solution was added. This mix-

ture was then agitated until all of the lecithin dissolved. The glass

cover slide was then removed from the beaker with tweezers and the

beaker was placed in the vacuum chamber. A.vacuum pump was connected

to the chamber and activated. The pump was left on for 30-45 minutes

causing the chloroform and methanol to evaporate. This process leaves

a thin coating of lecithin on the bottom of the beaker.

The beaker was then removed from the chamber and about 20ml of



103

the solution in which the liposomes are to be formed was carefully

added. Most of the liposomes used in the present study were formed in

a 0.2 mole/liter solution of sucrose. Almost immediately after intro-

duction of the sucrose solution a cloud will begin to form in the

solution. Care was taken not to disturb the solution once this cloud

begins to form. The beaker was covered with Parafilm and placed in a

constant temperature bath preheated to 60°C. The bath was turned off

just prior to placing the beaker into the bath in order to minimize

the disturbance to the solution in the beaker which could be caused by

the turbulent mixing of the bath. The cover was placed on the bath

and the solution allowed to sit for 24 hours.

After the waiting period the beaker was removed from the bath.

At this time one will typically observe that a cloudy ring has formed

in the solution. Experience has shown that the best. most useable

liposomes will be found in and around this cloudy ring. A pipet was

used to draw small samples of the solution (about 5-7ml each) from the

beaker. These samples were placed in centrifuge tubes and centrifuged

at 15.600 G. 15.000 RPM for 15 minutes. After centrifuging the cloudy

material will tend to collect near the top of the tube. Experimental

samples were generally taken from the edges of this cloudy material.

One faces a trade-off as the best liposomes are generally found within

the cloud and yet when sampling from the cloud a significant amount of

"junk" is also obtained. No technique has yet been developed for

separating the good liposanes fran the "junk".

Once the liposcnes (or cells) have been prepared one is ready to
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generate a series of photomicrographs using the diffusion chamber.

The first step in this process is to prepare the chamber itself. One

must begin by soaking a small (about 2 inches square) piece of the

dialysis membrane in a solution the same as that in which the lipo-

somes (or cells) are in at the onset of an experiment. The dialysis

membrane is soaked for 20-30 minutes prior to use in order to insure

full saturation. A small sample of the liposome suspension is removed

from one of the centrifuge tubes with a micro-pipet and placed in the

sample region of the diffusion chamber with the tap fitting in an

inverted position (see Figures 4.1.1 and 4.1.2). A piece .of .the

dialysis membrane is removed from the solution in which it has been

soaking and stretched firmly by holding at each corner. The membrane

was carefully stretched across the membrane retaining ring such that

no wrinkles are left in the center region. The membrane was released

from the users grasp and instead the corners of the retaining ring are

used to hold both the membrane and the retatining ring itself. The

retaining ring with the membrane clinging to it was then pressed care-

fully over the inverted top fitting such that the sample is disturbed

as little as possible. By holding the retaining ring only. and not

the membrane. the membrane is able to conform to the shape of the top

fitting by slipping between the retaining ring and the sides of the

top fitting. One must be careful to insure that no air bubbles remain

between the membrane and the top fitting. The bulk flow channel in

the diffusion chamber is filled with the initial solution (taken. fees

the solution in which the membrane was soaking) and the tap fitting

pressed into place.
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The entire chamber was then transferred to the microscope (a

Zeiss Universal Research licroscope) and attached to an X?! traversing

mechanism. One 1/8 inch inside diameter Tygon tube is connected to

the bulk flow outlet port at one end and the other end of the tube was

inserted into a discharge vessel. Another tube is connected to a 35cc

syringe and the syringe and tube are loaded with the new solution to

be introduced into the chamber. All air bubbles are removed frua both

the syringe body and the tube. The free end of the tube is then con-

nected to the bulk flow inlet port.

Provided that there are suitable liposomes in the sample used.

one is now ready to generate a series of photomicrographs documenting

the response of an individual liposome to an induced osmotic imbal-

ance. A Chinon LED Prcmaster 35mm camera with an automatic winder was

used to generate the photos used in the present study. ASA 125 black

and white film was used with an exposure time of 1/30 of a second.

The microscope illuminator was a 60' tungsten bulb with a voltage

input of approximately 12V.

When the cperator is ready to begin the stop-watch is started and

the syringe plunger slowly depressed. Typically the syringe would be

loaded with about 20cc of the new solution and the entire 20cc intro-

duced in about 20-30 seconds. Once the new solution has been

introduced into the bulk flow channel a diffusion process begins

between the solution in the bulk flow region and that on the other

side of the dialysis membrane in the sample region. This diffusion

process creates an osmotic imbalance for the cells in the sample
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region to which they will respond. Photos are then taken at predeter-

mined intervals. Any special circumstances or observations are noted

in a lab log book for future reference.

It was found to be easiest to use two people to generate a series

of photographs. One person would monitor the chamber through the

microscope keeping the liposome (or cell) of interest in view and in

focus while the other would take the photos at predetermined inter-

vals.

An effective technique was also developed by which a series of

photos could be generated by a single individual. A computer program

written by Tom Gielda. a member of the BTP lab group. when run on the

DEC PUP 11/03 mini-computer in the ET? lab would cause the terminal

bell to ring once every second. Using this program one could count

time by the bells and at the same time keep the liposome of interest

in view and in focus. A stop-watch was also used and checked periodi-

cally to insure that one did not lose count. Typically for the first

1.5-2 minutes a photo would be taken every 10 seconds so that the

operator merely counts to ten and shoots. The time between shots was

then increased to 20 seconds and after 3-4 minutes into the experiment

extended to 40 seconds. A full series of photos would typically have

15-20 individual images taken over a total period of 6-8 minutes.

The film was then processed using standard procedures outlined in

the documentation which comes with the film. Good results were

obtained by placing 8 images on a single 8x10 print using a masking
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kit. These photos were processed to yield volume as a function of

time using the techniques described in Chapter 4 Section 4 of the

present work. Figure 4.3.1 shows some typical photos of embryos

undergoing a shrink-swell binary flow process with NaCl as the

impermeable solute and glycerol as the permeable solute. Figure 4.3.2

shows some typical photos of liposomes generated using the diffusion

chamber.

The facilities are also available in the lab to record the entire

process on video-tape including a character generator which displays

elapsed time directly onto the tape. The same procedure would be fol-

lowed except that one need not worry about taking photos at specific

times. The character generator would be initialized and set running

.at the beginning of the introduction of the new solution so that no

stop-watch was required. This was the method used by Helkerson in his

investigation of unilamellar liposome permeability. [26].



 
Figure 4.3.1 - Typical ovun photos from diffusion chamber
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Figure 4.3.2 - Typical liposane photos fran diffusion
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4.4 Imagg Egocgsging Tgchgigues

Cells or liposome ("artificial" cells) were subjected to a

pseudo-step change in extracellular concentration using the diffusion

chamber described in the previous section. The response of the cell

of interest to the non-equilibrium conditions created was documented

through a series of photomicrographs taken at known intervals. These

photo images were processed to yield the volume of the cell as a func-

tion of time. This volume information was then matched to the model

of interest in order to estimate the values of the transport preper-

ties. There are many possible ways to perform the image processing

task.

Shabana. [20]. used slides. rather than prints. and projected the

image of each cell onto a piece of thin tracing paper. The outline of

each cell image was traced onto a separate sheet of paper. These out-

lines were then cut out of the paper and weighed. The ratio of the

weights of each image to that of the first image (at time-0) was taken

as the ratio of the area of the projected images. It was then assumed

that the cell remained relatively spherical so that the radius could

be calculated from the area and from the radius a volume was calculat-

ed. This method assumes that the density of the paper is constant.

It is also very time-consuming as each image must be processed indivi-

dually and by hand.

Another method developed as a part of the present work was to use

a photo-enlarger to project the image from a black and white film

110
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negative onto a large grid. The diameter of the cell image was then

measured by hand in grid units several times for each image. The

scale of the image could be calculated by measuring the distance

between calibrated scale marks imprinted on each image at the same

time the photo was taken. This method worked fairly well when the

image on the negative was very distinct and the cell remained circu-

lar. Many cases were found in which the image produced by projection

of the negative was not distinct enough to clearly define the boundary

of the cell. This was particularly true for liposome (artificial

cell) images very early in the sequence and for those very late in the

sequence. During the majority of the experiment the difference in

concentration inside and outside the liposome was large enough to pro-

duce a phase-contrast halo around the cell as viewed in the

phase-contrast microscOpe which made the outline'of the liposome eafi-

ly identifiable. However. when. the concentration was nearly in

balance. as in the very early and very late times. this contrast was

not present and the boundary of the cell was not easy to identify in

the negative image.

This problem could be avoided by utilizing positive prints rather

than the negatives. By manipulating the exposure time of the print

the boundary of the cell or liposome could be made distinguishable in

most cases. Unfortunately the images could not be made large enough

to measure accurately without losing resolution in the photo. Instead

the tools of the Computer Image Analysis Laboratory of Michigan State

University administered by Professor Richard Dubes were utilized.
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The photomicrOgraphic images (typically 8 images to a single 8x10

glossy) were projected onto a video terminal display screen. The pro-

jected image could be made sufficiently large to fill the screen

without losing significant resolution. A. movable cursor was then

positioned at several (typically 20) positions around the boundary of

the cell and the X-Y coordinates of the cursor at each point were

determined by the computer. All of the points entered will have first

quadrant coordinates (positive X and positive Y).

An algorithm called CIRCLE (see Appendix E) was then used to per-

form an integration in radial coordinates to determine the projected

area of the image as defined by the 20 input points. The equivalent

radius of the image was then calculated as the radius of a perfect

circle with the same area as that determined for the image.

The first step in this procedure was to change to an XrY coordi-

nate system whose origin is within the confines of the point set. The

new origin is arbitrarily placed at the location (in terms of the ori-

ginal coordinate system):

X. = (Xmax + xminHZ'o

(4.4.1)

Y. = (1..., + Imp/2.0

where Xm‘x and 1": are the largest x and T values respectively

contained in the data set. and Skin and 1min are the smallest such

values. Thus if the new coordinates are designated 1' and Y' then:
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x' - x - x,

(4.4.2)

Y'-Y-Y.

These coordinates are then transformed into radial coordinates such

that:

r3 . 1" + Y" (4.4.3)

0 - arctan( X'IY' ) (4.4.4)

For a planar are the area bounded between the origin and the arc can

be expressed as:

I 8 ' ' eA O‘Io .Ir r dr d9 (4.4.5)

A - 0 Je’ (1/2) :‘49 (4.4.6)

1

In this algorithm r is assumed to be a quadratic function of 9 such

that:

r- e+b0+cO’ (4.4.7)

Substituting (4.4.7) into (4.4.6) and performing the integration on

theta yields the expression:

A - (1/2)[.'o + 289‘ + (2.o+b‘)e’/3 + ch‘l4 + c'e‘ls 9 ]°’ (4.4.8)

1
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Successive groups of three consecutive points each are used to evalu-

ate the constants a. b. and c and the value of the expression (4.4.8)

is evaluated for each are generated. In practice the (radial) coordi-

nate axes are rotated prior to the calculation of a. b. and e such

that O'-0 for the first point in each group. Thus the value of the

lower limit in the integration on theta is always zero and equation

(4.4.8) need only be evaluated at one value of theta for each point

group (that of the new angle after rotation of the third point in the

current group). The contributions to the area calculated for each are

generated from a group of three points are summed to yield the total

area. In practice each successive pair of points is used in two arcs

generated from the groups of three points (see Figure 4.4.1). Because

of this overlapping of arcs the contribution for each arc is halved

effectively averaging the contributions. Thus if 20 data points are

entered then 20 arcs generated from.three successive points each are

used to calculate the total area of the image.

Thus the user must enter the data points at relatively equally

spaced intervals around the circle. in a clockwise rotation. and in

sequential order around the border of the image.

The scale of the image was determined by positioning the cursor

at two points on the calibrated scale appearing in each image. This

is done prior to entry of the points around the boundary of the image

when using the routine TAIEPT (see Appendix E). The distance between

these two points was then calculated and output with the data points.

By developing all of the images at the same scale with the
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Figure 4.4.1- Point selection sequence and integration

region selection sequence.
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photo-enlarger and not changing the focal distance of the projected

immges the scales determined for each image should ideally be the same

so that each of the individual scales can be averaged to produce the

final scale for all images.

This process was acomplished through two sub-programs. The first

is called TAKEPT and was used to take the data points from the image.

The second is called CIRCLE and does the actual fitting of the points

to the circles. These routines are presented in Appendix E of the

present work. The output from TAIEPT consists of the two scale end-

points. the number of data points entered around the edge of the image

(currently 20 by default). and the actual 1+! data points. This out-

put is written into a file called POINTS.DAT. The routine CIRCLE will

read all the values from this file. perform the integration to deter-

mine the area. and then output the area calculated. the equivalent

radius. and the scale length to a file named POINTS.OUT.

This procedure seemed to work well for most cases. The results

for a given image were reproducible to within 1 percent for a clear

image and if the points were entered carefully. The times required

for image processing using this method were much shorter than those

required for hand processing. By processing each image 2-3 times an

average value could be determined for the radius of each image and

individual errors minimized. The fitting routine. CIRCLE. was very

fast requiring about as much time to execute as it takes to enter the

next command to the computer. Thus a series of 20 images would typi-

cally take about one hour to process using this procedure.



5.1 Ogotic Shrink!“ g;M Embgog

The results reported here were generated using the program MARBOX

to process data reported by Shabana. [20]. on the osmotic shrinkage of

hamster embryos. These results serve to demonstrate the workability

of IlARBOX in determining the permeability of a membrane to water using

the simplified Kedem and Katchal sky model. The raw data reported by

Shabana are tabulated in Appendix F of the present work. The data are

reported in this form in order to provide a set of reference values

for use by other investigators in testing of other computer routines.

In the course of this work one of the problems encountered was the

lack of tabulated data' available with which to test the programs

deve10ped.

Shabana reported numerical values for the nondimensional volume.

V.=V/V.. where V is the volume of the cell as a function of time and

V. is the initial cell volume. of an individual cell as a function of

time. Four mabryos where tested in separate experiments. These

embryos were made to undergo an osmotic shrinkage using the diffusion

chamber described in Chapter 4. Section 1 of the present work. A step

change in the concentration of the solute sodium chloride. to which

the cells‘ are impermeable. was introduced in the bulk flow region of

the chamber and diffused into the sample region through an Enka

dialysis membrane. type 80pm.' All of the experiments were conducted

a t room temperature.

Shabana processed the data by hand using a closed-form solution
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to the simplified Iedem and Katchalsky equation for this case

developed by Terwilliger and Solomon. [21]. This solution assumes

that the cells experience a step change in extracellular solute con-

centration at time equal to zero. Iith the diffusion chamber this

assumption does not reflect the true conditions as the dialysis mem-

brane. which separates the bulk flow region from. the sample region.

will cause the step-change induced in the bulk flow region to be gra-

dually introduced intc the sample region. Tbrwilliger and Solomon's

solution also assumes that the surface area of the membrane remains

constant throughout the experiment and is set to the initial value.

The effects of these two assumptions on the permeability values

calculated were explored using MARBOK and the data for cell 1. The

program IMRBOX has the ability to simulate the conditions assumed in

Terwilliger and Soloaon's solution. It can also take into considera-

tion the lag introduced by the presence of the dialysis membrane in

the diffusion chamber. The concentration of the sample region as a

function of time is calculated using the permeability of the dialysis

membrane. “d4 to the solute present and the algorithm derived in

Chapter 4. Section 1 of the present work. The routine IAIBOX can also

be made to calculate the surface area of the membrane as a function of

the volume of the cell assuming a spherical shape for the cell. These

results are summarised in Table 5.1.1.

Note that the values for the permeability of the cell membrane to

water. LP’ are reported in units of (place). The conversion to these

units from.uuits typical of the ledem and Iatchalsky definition of
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Table 5.1.1 - Results for Shabana's cell #1.

*
(I)

d

 

Final sum of

 

 

 

 

 

 

Run # conditions L

P squares

l Shabana's value 16.17 -

2 Area constant _3

_ 16.69 8.93 x 10
0d - 1000.

3 Area constant . _3

"d = 1.167 x 10-3 25.69 5.63 x 10 .

4 Area = function(V) _3

_ 18.72 10.81 x 10
o — 1000.

d

Area = function(V) _3

5 3 28.51 5448 x 10 «d = 1.167 x 10'    
 

reported in units of cm/sec, Lp
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solute permeability. (cm’ldyne-sec). (see equation 2.3.24) is made by

using the expression:

Lp(u/sec) = LP(cm'/dyne-sec) [ RT/v' ] x 10‘ (5.1.1)

The first value reported in Table 5.1.1 is the value calculated

by Shabana. The second value was calculated using MARBOX and assuming

that the surface area remained constant and by setting the dialysis

membrane permeability. “d' to a value of 1000(cm/s). Using the

present version of the computer routine which calculates the concen-

tration of the sample region if the dialysis membrane permeability is

set to a value higher than 998.0 (cm/min) the sample region concentra-

tion for all times is set to the value of the concentration of the new

bulk-flow solution. This simulates a step-change in the concentration

of the sample region. The actual value of the dialysis membrane per-

meability is typically 10’1 to 10" (cm/min) so that it is safe to

assume that when the user inputs a value as large as 10’ that they

wish to simulate a step-change response. These conditions match those

assumed in the solution used by Shabana. Cauparison of these two

values show only a.3$ difference between. the calculated permeabili-

ties. This slight difference can be attributed to the difference in

the weighting of the data applied in the two methods of minimization

and to numerical evaluation of the Redem and Ratchalsky equations in

IARBOE. In Terwilliger and Solomonfs solution the data is linearized

and a least squares linear regression used to fit a straight line to

the data. In IARBOK.a least squares is performed directly on the data
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with no linearization. The closeness of these results support the

conclusion the MARBOX is indeed executing properly.

The third value in Table 5.1.1 differs from the second value only

in that the third value was generated using the manufacturer's

recomended permeability value for the dialysis membrane of

wd=l.1667xlO-'(cm/sec). The surface area was again assmned to rmnain

constant. The results show a 545 increase in the permeability value

calculated for the cell membrane. This result is consistent with the

expected results as if one assumes a step-change in extracellular con-

centration then. one will be consistently over-predicting the actual

extracellular concentration due to the lag induced by the dialysis

membrane. This will force the routine to under-predict the cell mem-

brane permeability in order to maintain the same flux rate at a higher

concentration difference. The magnitude of the change was somewhat

surprising. however. as initial investigations on the diffusion

chamber seemed to indicate that the permeability of the dialysis mem-

brane to the solute sodium chloride was high enough so as to have

little effect on the response of the cells. These results show that a

small effect on the cell volume response can induce a large change in

the calculated permeability values. Thus accurate characterization of

the dialysis membrane permeability to various solutes will be vital to

the future successful use of the diffusion chamber system.

The final values in Table 5.1.1 include the calculation of the

surface area of the membrane as a function of cell volume assuming

sperical geometry. The fourth value used the step-change simulation
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of the sample region concentration. and the fifth value used the

manufacturer's recommended value for the dialysis membrane permeabili-

ty. These results are consistent with the observation that by

assuming constant surface area one will consistently over-predict the

actual area and hence will cause an under-prediction of the cell mem-

brane permeability.

It is interesting to note that the final predicted values of the

nondimensional volume over time for run 3 and for run 5 were virtually

identical. These two runs both used the manufacturer's permeability

value for the dialysis membrane but for run 3 the surface area was

assumed to remain constant and for run 5 the surface area was calcu-

lated as a function of volume. While they permeability values

calculated differed significantly the final fit of the model to the

dita was not significantly different. This would imply that one

should maintain consistency when calculating predicted responses from

permeability values. That is if the permeability values were calcu-

lated assuming constant surface area then the predicted responses

should also be calculated assuming constant surface area. If the per-

meability is calculated assuming a varying surface area then so should

the predicted responses. One should be aware of this effect when

utilizing published permeability values in simulating cell responses.

As long as one remains consistent with the method used to generate the

permeability values a good fit should result.

The sum of the squares values reported in Table 5.1.1 can be used

as a relative measure of the closeness of the fit between the data
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points and the predicted curve. A lower sum of the squares value

implies a better fit. From these values it is apparent that the per-

meability of the dialysis membrane will have a major effect on the fit

of the model to the data. The best fit for cell 1 was obtained in run

5 which has the cell surface area being calculated as a function of

the volume and uses the manufacturer's value for the dialysis membrane

permeability. The predicted response for runs 4 and 5 are presented

in Figure 5.1.1. This figure illustrates the effect of the dialysis

membrane on the predicted response.

In an attempt to check the value of the dialysis membrane permea-

bility recommended by the manufacturer the modeling subroutine in

lARBOK.was modified to allow the dialysis membrane permeability to

float as a second parameter. Each of the four data sets reported by

Shabana were processed using this modified routine. The results are

presented in Table 5.1.2. Note that for cell 4 the program was unable

to meet the convergence criterion after 60 iterations. This implies

that this data set does not have a distinct minimum for this model.

The parameter search was varying the parameter values in the third

significant digit around the values reported. One can assume that the

minimum exists somewhere in the near neighborhood of these values if

it exists at all.

The final values calculated for ”d: the dialysis membrane permea-

bility. were reasonably close to the manufacturer's value and fell to

either side of that value. This would tend to support the validity of

the manufacturer's values for permeability as well as the sample
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Figure 5.1.1- Measured and predicted response of cell #1.
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Table 5.1.2 - Results letting "d float

at

as parameter.

 

 

 

 

   

“d = 1.167 x 10.3 "d as parameter #2

“d = 1.247 x 10-3

cell #1 Lp = 28.51 Lp = 27.63

(ed = 0.770 x 10-3

cell #3 L = 39.13

P L = 61.52

9

_ -3

cell #4 L = 27.91 “a " 0'97 x 1°

P Lp = 31.81

 

* 0 reported in units of cm/sec. Lp in microns/sec.

Table 5.1.3 - Final permeability values as determined

**

by parameter estimation routine.

k

 

 

 

 

 

  

Value reported alue calculated

by Shabana using MARBOX

cell #1 16.39 28.51

cell #2 20.00 46.72

cell #3 19.17 39.13

cell #4 16.17 27.91   
** A11 L values reported in units of microns/sec.
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region concentration algorithm derived and used as a part of the

present work. The effect on the calculated permeability of the cell

membrane was very dramatic. This demonstrates again the need to care-

fully characterize the dialysis membrane permeability for the solutes

of interest.

The final recommended permeability values for each of the four

cells as determined by the parameter estimation routine are presented

in Table 5.1.3. These values were generated using the manufacturer's

recomended permeability values for the dialysis membrane and by calcu-

lating the surface area of the cell as a function of cell volume

assuming a spherical geometry for the cell. It is interesting to note

the fairly wide variation in the permeability values calculated.

These cells appear to be identical visually and yet their permeability

to water varies greatly. This points out the advantage of the diffu-

sion chamber in the investigation of population distribution

information through the observation of individuals within the popula-

tion. The final simulated response for cells 2. 3. and 4 are shown in

Figures 5 .l .2 through 5 .1 .4 .
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Figure 5.1.2- Measured and predicted response of cell #2.
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5.2.§;g;;y 21g; 1; Ugfertilized Eggster‘ggg

Photomicrographic images were taken of two unfertilized hamster

ova undergoing a process of binary flow. Each ovum was taken from

separate sample groups and tested in separate experiments using the

diffusion chamber. Both of the experiments were conducted at room

temperature and within 3 hours of rmnoval of the ova from the host

hamster. The ovum designated 5 was subjected to a change in extra-

cellular concentration of the permeable solute glycerol from 0.0 to

0.20 (osmol/kg). Ovum 6 was subjected to a change in glycerol conr

centration from 0.0 to 0.25 (osmol/kg). Both ova were initially in a

0.3 (camel/kg) saline solution.

The resulting photomicrographic images were processed using the

computer image analysis techniques described in Chapter 4 Section 4 of

the present work to yield the volume of each ovum as a function of

time. These data were then used to test the execution of the parame-

ter estimation routine for the three parameter case. The parameter

routine was able to converge for both sets of data. Figure 5.2.1

shows the measured and "best fit" predicted response for these two

0V8.

Two additional ova were tested by Th. [29]. and recorded on

video-tape. Both ova were subjected to a change in glycerol concen-

tration from 0.0 to 0.25 (camel/kg). Diameters of the ova were

determined by direct measurement of the projected image from a televi-

sion screen. One of these data sets was successfully processed using
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the parameter estimation routine. Figure 5.2.2 shows the measured and

"best fit” predicted responses for that ovum. designated ovum 8.

In the processing of each data set using the parameter estimation

routine the parameter search would consistently drive the value of the

hydraulic permeability to the upper bound set for that parameter.

Thus the significance of the calculated hydraulic permeability values

must be questioned. For this case it is believed that the dialysis

membrane itself is rate limiting on the system. due to its relatively

low permeability to glycerol (3.8 microns/sec). and that the ovum

remained in a quasi-equilibrium state. with respect to the water con-

tent. during the initial period of rapid shrinkage. It should be

noted that this should not effect the validity of the calculated gly-

cerol permeability values as the solute permeability will‘be primarily

determined by the rate at which the cell recovers during the later

stages of the experiment. Since the ova solute permeability. values

are much lower than the solute permeability of the dialysis membrane

the model should produce an accurate prediction of the solute tran-

sport process for all times. It is only the water transport that is

limited by the slow response of the dialysis membrane and an upper

bound to the rate of water tranport is quickly approach for reasonable

hydraulic permeability values (30-40 microns/sec).

The solute permeability values calculated were 4.2x10”,

3.0x10”. and 2.9xlO" (microns/sec) for ova 5. 6. and 8 respec-

tively. Jackowski. et al. [30]. reported glycerol permeability values

for mouse ova at room temperature of 1.7x10” (microns/sec). This

.
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Figure 5.2.2 - Measured and predicted response of cell #8.

133



134

would indicate that the hamster ova are much more permeable to gly-

cerol than are the mouse ova. This is somewhat surprising as one

would expect these two systems to be quite similar. Further work

should be conducted in order to substantiate these findings.

For both ova 5 and 6 the calculated value of the reflection coef-

ficient. c. was 1.0. For ovum 8 the caculated value of c was 0.76 .

The validity of these values is questionable as the reflection coeffi-

cient characterizes solvent-solute interactions and the hydraulic

permeability. and house true rate of solvent transport. is unknown due

to the rate limiting problem.

One significant difference between the data generated using the

techniques of image analysis and that generated by direct measurement

of cell diameter can be seen quite clearly in Figures 5.2.1 and 5.2.2.

That is that the image analysis technique produces "smoother" data.

The fluctuation in the data obtained by direct measurement is due to

the difficulty in determining the diameter of a cell which deviates

even slightly from a spherical shape and to the poor resolution

obtained with use of a ruler. The image analysis technique performs

an integration to determine the projected area of the image and deter-

mines an equivalent radius for a circle with the same area. This

method thereby accounts for deviations from a spherical shape more

accurately than direct measurement. The resolution of the grid on the

computer display terminal used to enter points around the cell boun-

dary is also much greater (spprcxamately 1 part in 400 for a typical

image). This results in more accurate and "smoother" data.
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It should be noted that the data obtained using image analysis

were checked by using a photo-enlarger to project several of the photo

images onto a grid and measuring the diameter directly. These results

were consistent with those obtained using image analysis and indicated

that no biasing of the data occured through the image analysis pro-

cedure itself.

The tabulated values of the nondimensional volume of ova 5

through 8 are presented in Appendix B of the present work. Also

included in this appendix are the input conditions for the parameter

estimation routine used to generate the results presented above.

The results presented here confirm that the parameter estimation

routine is capable of handling the three parameter problem. and that

'the image analysis methods yielded accurate data. It will be left to

future investigators to increase the data base and to investigate the

implications of these results.



CHAPTER 6

Conclusions

The results of this study demonstrate the workability of the dif-

fusion chamber system in determining the passive transport properties

of an individual cell membrane. This work has also shown. that the

parameter estimation computer algorithm is capable of handling models

of 1. 2. or 3 parameters. The routine has reached convergence on sev-

eral sets of experimental data. The techniques of computer image

analysis have also been shown to work well on well defined photo

images yielding accurate. high resolution data.

Four separate data sets reported by Shabana. [20]. for individual

unfertilized hamster ova subjected to an osmotic shrinkage process

have been successfully processed using the parameter estimation

routine. One conclusion drawn from these results was that the effects

of the dialysis membrane on the concentration history of the sample

region must be taken into consideration when processing data obtained

from the diffusion chamber. Shabana processed the same data sets by

hand using a closed-form solution to the simplified Redem and Ratchal-

sky equations. This solution assumes that the cells experience a step

change in extracellular concentration. When using the diffusion

chamber this assumption does not reflect the true experimental condi-
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tions. The presence of the dialysis membrane between the bulk flow

region and the sample region of the chamber introduces a lag in the

response of the sample region to the step change in concentration

induced in the bulk flow region. As expected it was found that when

processing the same data sets using the relationship derived in

Chapter 4 Section 1 of the present work to calculate the concentration

of the sample region as a function of time the resulting hydraulic

permeability values calculated were consistently higher than those

calculated using the closed-form solution. For the four data sets

processed Shabana reported hydraulic permeability.values in the range

of 16.2 to 20.0 (microns/sec) using the closed-form.solution. Using

the parameter estimation routine with the concentration algorithm

included the same data sets yielded hydraulic permeability values in

the range of 27.9 to 46.7 (microns/sec).

In order to test the parameter estimation routine on a model of

three parameters and to test the image analysis methods as well binary

flow experiments on unfertilized hamster ova were conducted. Two ova

were subjected to changes in extracellular concentration of the perme-

able solute glycerol and their responses were documented via a series

of photomicrographic images. A. third ovum was tested by another

investigator also using the diffusion chamber. The response of this

third ovum was documented on video-tape.

The photo images were processed using the image analysis techni-

ques described in Chapter 4 Section 4 of the present work. The

accuracy of these data was checked by directly measuring the diameter
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of several of the photo images and comparing the resulting predictions

of volume at various times. The two methods gave similar results

although the image analysis results were much more consistent and

showed the expected trends with much less fluctuation. From this it

was concluded that the image analysis technique yielded more accurate

and more consistent data than did the direct measurement method. The

time involved in using the image analysis techniques was longer

however due to the need to process the film. The actual measurement

process for the image analysis was approximately the same as the

direct measurement process.

Each of these data sets was- successfully processed using the

parameter estimation routine linked to the Kedem and Iatchalsky model

for coupled binary flow in a membrane. In each case it is believed

that the permeability of the ovum to water was so high that the

dialysis membrane permeability to the solute glycerol became the rate

limiting factor in the diffusion chamber system. This could be

observed in that as the hydraulic permeability value increased above a

value of approximately 30.0 (microns/sec) there was no significant

effect on the predicted curve. Thus the values of the hydraulic per-

meability calculated for these data sets have no significance.

This rate limiting of the solvent transport should not have a

significant effect on the calculated solute permeability values as the

dialysis membrane is significantly more permeable to the solute than

are ova. The solute permeability values calculated will be primarily

determined by the rate of volume increase during the later stages of
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the experiment. The glycerol permeability values calculated ranged

from 2.9x10"3 to 4.2x10"a (microns/sec) for the three cells processed.



CHAPTER 7

Suggestions for Future Work

The results of the present work show great promise for utiliza-

tion of the diffusion chamber in conjunction with various computer

routines in the study of the permeability characteristics of cell mem-

branes. During the course of this work several points which should be

investigated in the future were revealed.

The first of these is the characterization of the dialysis mem-

brane permeability. In the processing of data obtained using the

diffusion chamber the permeability value of the dialysis membrane to

the solutes used was found to play a key role in the resulting cell

membrane permeabilities calculated as describe in Chapter 5 of the

present work. Thus it will be vital to know accurately the permeabil-

ity of the dialysis membrane to each of the solutes of interest. As

future research plans include modification of the diffusion chamber to

accommodate a temperature regulating system one will need to know the

pemeability characteristics of the dialysis membrane as a function of

temperature as well.

The modification of the diffusion chamber to accommodate a tem-

perature regulating system is. in itself. another project which should
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be undertaken in the future. As the overall research effort in the

BTP lab centers on the investigation of the effects of cryopreserva-

tion procedures on various cell types,investigation of cell transport

properties as a function of temperature becomes a key concern. In

order to accurately predict the response of a particular type of cell

to a particular freezing protocol one will need to know the cell's

permeability characteristics over the entire range involved in the

freezing protocol.

Another project which should be undertaken is the modification of

the bulk flow system. The present system of pressurized bottles has

several drawbacks. One is that as flow is introduced into the diffu-

sion chambers bulk flow channel the initial surge can cause severe

disturbance in the sample region. This can make it difficult to keep

the cell of interest in view and in focus. This problem might be

solved by lowering the pressure in the bottles and regulating it more

closely. This would require that a low pressure regulator be

installed in the air supply line. Another problem with the present

bottle system is that due to the way the bottles are interconnected a

relatively long section of tubing exists between the Y-junction which

connects the two bottles to a single pump and the bulk flow inlet port

of the diffusion chamber. This creates a lag of unknown duration

between the time the pump is activated and the time the new solution

actually enters the bulk flow channel. This makes it rather difficult

to clearly define time equal to zero in an experiment. A Y—junction

closer to the inlet port. and use of a separate pump for each bottle.

would probably resolve this problem. While the technique utilizing a
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manually depressed syringe does not encounter either of these problems

it is more cumbersome to work with and was found by lelkerson. [26].

to be less reproducible. Thus a modified bottle system is the prefer-

able option to pursue.

During several runs using the diffusion chamber it was found that

a sudden rippling of the dialysis membrane would occasionally cause

the entire contents of the sample region to be flushed out of the sam-

ple region. It was also found that when working with the relatively

small liposomes that they had a tendency. on occasion. to drift about

and sometimes squeeze between the dialysis membrane and the top fit-

ting of the diffusion chamber. A. modification of the membrane

retaining ring would probably solve both of these problems. It might

be useful to replace the retaining ring with a cup-like fitting which

would then sandwich the dialysis membrane firmly between two rigid

supports. A small hole in the center of the cup corresponding to the

hole in the spacer ring (which makes up the sample region) would allow

the bulk flow to come into direct contact with the dialysis membrane.

The base of the cup should be made as thin as possible in order to

prevent the region within the hole from becoming an isolated pocket

bypassed by the bulk flow. As the hole in the center will allow view-

ing of the sample region this cup-retainer could be made from most any

material. opaque or transparent. A retainer such as this would pre-

vent rippling of the dialysis membrane and press the membrane finely

against the top fitting preventing leakage from the sample region.

Iany points regarding the statistical nature of the parameter
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search exist which should be explored in the future. Tb the best

knowlege of the author very little investigation into these aspects of

the parameter search applied to the problem of passive cell membrane

transport has been performed. Enough work relating to this area

potentially exists to justify devotion of an entire thesis project to

just this problem. For instance it would be interesting to apply a

sequential method of minimization to this problem. That is. a method

which adds data points one at a time and adjusts the parameter values

with each additional point. This type of routine can often provide

interesting insights into both the data being processed and the model

being used to simulate the data. It would also be interesting to map

out the sensitivity coefficients as a function of time for the final

parameter values as this can often provide insights into the model

which are not obvious from inspection of the modeling equations. For

instance Papanek's observation (quoted in Chapter 3 Section 7 of the

present work) that in a binary flow shrink-swell situation the initial

rate of shrinkage will be almost entirely dependent on the value of

solvent permeability. and that the shape of the minimum will be pri-

marily dependent on the value of the interaction coefficient. o. and

that the rate of swelling during the final stages will be dependent on

the solute permeability value. should be reflected in the sensitivity

coefficients. Thus one would expect the sensitivity coefficient

relating to solvent permeability to have relatively high values during

the period of initial shrikage and to drop off thereafter. Similarly

for the other sensitivity coefficients.

The investigation of models other than the Kedem and Katchalsky
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permeability model used in the present work is an obvious area of

research for the future. This is particularly true with regards to

using the Johnson and Wilson power series solution. outlined in

Chapter 3 Section 6 of the present work. as a generator of starting

estimates to the parameter values. Use of this model should improve

the initial estimates and hence reduce the total computational effort

required. The Papanek model. described in Chapter 3 Section 7 of the

present work. also needs to be investigated. This could be done in

conjunction with the investigation of the statistical nature of the

parameter search applied to the passive transport problem. Various

methods exist by which one can statistically compare two or more

models. It would be interesting and very useful to perform such a

comparison between the Papanek model and the more commonly used K-K

model. It would also be interesting to apply the Kedem and Iatchalsky

resistance model. particularly to the dialysis membrane where one

could assume a capillary structure and thereby simplify the model con-

siderably.

A final area which needs further work is the deve10pment of image

analysis methods. Reasonable results were obtained in the present

work using very simple methods of analysis. lore sephisticated

methods with better reproducibility should be developed as the com-

puter image analysis techniques have the potential for becoming an

elegant and easily utilized method of photo data processing. This

project in itself could become a major undertaking.

The present work has demonstrated the workability of the diffu-
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sion chamber as an experimental tool. and the computer programs

written as a part of that work as analytical tools. It is now up to

future investigators to refine and expand these techniques.
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APPENDIX A

Subprogram Unit HARBOR

The ordinary least squares based parameter estimation routines

main driving program is contained in a file name lARBOX.FOR. This

file also contains three support routines called only from .IAIN.

which will also be described here. These support routines are BOUNDS.

IIINVER. and DETERI.

The input to the routine is through a data file. Input is read

from logical unit 2 so that under the RT11 operating system the input

file has the name FTN2.DAT (see R111 FORTRAN IV Users Guide page 3-5).

All input is in the free format mode so that no special formating is

necessary. Input values on a single line should be seperated by com-

mas. The order of input and the definition of each of the input

variables is included in the program listing.

The main routine embodies a variety of parameter estimation

routines all based on the ordinary least squares (OLS) method. The

form of the routine to be executed is set by the user through) the

input variables BOEFLG. and IFLAG. By setting one of these variables

to 1 the user introduces modifications to the basic OLS routine. If

both of the flags are set to 0 then the routine is the 0L8 method with

4
‘
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a modification which checks for violation of the parameter bounds set

by the user during input. The OLS routine will have the fastest exe-

cution time per iteration on the parameter values but will probably

require more iterations to reach convergence than the other forms.

The first modification allows the user to set upper and lower

limits on the values of each of the parameters. In the current ver-

sion of the program this option is invoked by default. Within the

input section of the program there is a set of statements which can be

easily modified to allow the user to make this option selectable via

the input variables. This is not recomended however as this option

adds very little to the execution time of the program and will prevent

the search from diverting to unrealistic values of the parameters

(such as o<0 or o)1.0). For instance in the Ir! equations negative

values for any of the parameters will result in meaningless solutions.

Thus the user should set a lower limit on each of the parameters of no

less than 0.0 . After each iteration the newly calculated parameters

are compared to the bounds set by the user. If the new value violates

either of the bounds then the value of the parameter is set to the

value of the violated bound and execution continues. The checking is

done in subroutine BOUNDS.

The second option is invoked by setting lFLAG-l. This causes the

routine to execute as Narquardt's method (see Chapter 4 Section 5 of

the present work). larquardt's method modifies both the size and

direction of the step in parameter values taken in each iteration.
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The final option is invoked by setting BORFLG to one. This

causes the routine to execute under the Box-Kanemasu minimization

method.

Note that the Box-lanemasu method is not compatible with lar-

quardt's method so that one should not set both BOXFLG and IFLAB equal

to one.

The convergence of the routine is based on the change in the

parameter values through the input variable TOLER. Execution is ter-

minated and final values of the cell volume with time calculated when

the condition:

ABi’Bi ( TOLER

is met for all of the parameters (i-l.2......P).

The support routine am is a subroutine which will invert an

(nxn) matrix where (n53). Subroutine DETERN calculates the determi-

nant of an (nxn) matrix where (n53).

In utilizing this routine the user should have patience. The

results in a parameter estimation routine can be unexpected and the

corrective actions required to enable convergence are often learned

only through experience. By utilizing the various options available

the user can run a particular data set under several different pro-

cedures. For instance the user can "trick" the routine into

manipulating only one of the parameters in the three parameter model
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by setting the upper and lower bounds of the other two parameters to

the value of the initial estimate and invoking the bounding option.

Thus one can "zero in" on the final parameter values one at a time.

This is often helpful when the initial estimates are not very good and

the routine has trouble converging. By allowing only one parameter to

vary at a time the user can often get an idea of the direction in

which to change the initial estimates in order to approach the solu-

tion. Even this method will not work in every case. however.
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PRmRAM REFEREVCE: BECK. JABES V.; ARNQD. KENNETH 1.3

PARADETER ESTIMATION IN ENGINEERING

AND SCIENCE. JOHN WILEY _SONS. INC. .

1977. CALL TA340.B39.

THIS PRMRAM IS A PARADET‘ER ESTIMATION RWTINE BASED ON

BAS- ON THE ORDINARY LEAST SQUARES RWTINE. IT ALSO HAS

AN OPTION FOR CONSTRAINING THE PARABT‘ER SEARCH.

IT IS ALSO SETUP TO RUN AS MARQUARUI'S RWTINE OR AS THE

BOX-KANEMASU IETHOD.

INPUT TI) THIS RWTINE IS THRCIIGH A FILE NABED FINZ .DAT

THIS FILE SHOULD CONTAIN IN THE FOLLWING ORDER:

D-UGJIFLAG.BOXFLG

ACONFL.P

II

T(l) .Y(1)

T(2) .Y(2)

fin) .im)

BETA(l) .moau(1).mmm(1)

BETA(P) . IBBETA(P) .IBBETA(P)

TOLER

DT

CIZERO.CISTEP

CSZERO.CSSTEP

DPERMI.DPERDB.DEPTH

RADIUS

VDEAD

( IF MFLAG=1 (MARQUARDI‘S BETHOD) THE‘I: )

LABBDA.FACLAN

WHERE:

onus INTEGER Dill} WTPUT CONTRG. CHARACTER

BOXFLG INTEGER FLAGS FOR BOX-KANEMASU 1811100

1 = YES

0 = N0

MFLAG INTFBER FLAGS FOR MARQUARUI‘S METHOD

1-YES

O-NO

AmNFL 11(me FLAGS FOR ASSUMPTION 0F CONSTANT DEDBRANE

SURFACE AREA

0 = (INSTANT AREA

1 a Nm-CONSTANT AREA

P INTEGER NUDER OF PARAMETERS IN DIEL

II INTEGER NULBER OF DATA POINTS

T REAL(II) TIDE DATA IN VECTOR FOR]! IN (SEC)

Y REAL(II) DEPENDENT VARIALBLE IN VECTOR FORM

BETA REAL(P) PARADETER ESTIMATES

LBBET‘A REAL(P) [HER BWND ON PARAMETERS

UBBETA REAL(P) UPPER BWND ON PARADET‘ERS

DT REAL AFROXIllATE VALUE OF TILE INGREDIENT FOR  
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INTERATION STEP SIZE (SINCE INCREMENT

MAY NOT FIT TOTAL TILE INTERVAL EVELY

ACTUAL STEP SIZE IS CALCULATED 1N "RK4"

CIZERO REAL INITIAL (DNCENTRATION OF IMPERMEABLE SG.UTES

CISTEP REAL NEW IMPERMEABLE SCEUTE CONCENTRATION

CSZERO REAL INITIAL mNCENTRATION OF PERMEABLE SEUTE

CSST'EP REAL NEW PERMEABLE SG..UTE CON(ENTRATION

NOTE- CONCENTRATIONS IN (MOLES/CM”3)

DPERMI REAL DIALYSIS MEbBRANE PERMEABILITY TO SEUTE I (CHI SEC)

DPERIB REAL DIALYSIS MEMBRANE TERMEABILITY TO‘ SG..UTE 8 (CN/ SEC)

DEPTH REAL DEPTH OF SAMPLE REIGN IN DIFFUSION CHABBE (CM)

DEPTH =- (TRANSFER AREA) / (SAMPLE VEUBE)

RADIUS REAL CELL RADIUS IN cm

VDEAD REAL FRACTION OF INITIAL VEUIE ATRIBUTED TO OSBDTIC

DEAD SPACE. 'IHAT IS SPACE NOT INV(LV- IN

ACTIVE TRANSPORT. ( 0.0 (3 VDEAD => 1.0 )

LADBDA REAL SEE MARQUARDT'S METHOD

FACLAN REAL SEE MARQUARDT' S DBTHOD

D-UG IS A ULTY-LEVE IEBUGGING (DNTRG. GARACTER. ITS VALUE WILL

DETERMINE 'THE LEVE OF D-UGGING EINTWTS GEEATED BY mE EmRAM

DURING ICUTION. A BIG. VALUE RESULTS IN TIME EXTENSIVE PRINTOUTS.

'THIS IS VEY HANDY FOR PRINTING WT INTERMEDIATE VALUES 0F VARIABLES

NOT NORMALLY DESIRED IN 'IHE OUTPUT OR FOR PRINTING A MESSAGE PRIOR

TO A SUBRGJTINE CALL IN ORMR TO DETERMDIE WHERE A PRWRAM IS RUNNING

INTO TRWBLE. A STATEIWT OF THE FOLLWING TYPE IS RECOMENIED:

IF (D-UG .GT. 2) PRINT . . . .

THIS PRUIRAN IS SET UP FOR PR(BLENS OF UP TO 3 PARADETERS

ALTHWGH IT MAY VEY EASILY BE DDDIFIED TO WORK WITH ANY

NUIBE OF PARADE'ERS. TO IN) THIS THE USER MUST CHANGE

'THE DITENSION OF ARRAYS BETA. BSTORE. IBBETA. IBBETA. DELB.

H. X. m. AND CHANGE.

ONE HIST ALSO SUPPLY RWTINE TO CALCULATE ms IETERNINANT AND

INVESE OF THE LARGE MATRIX (PIP) .

THE USE MIST SUPPLY A SUBRGITINE NAIED "DEQBDD" IN 'THE

FOLLWING FORMAT:

SUBRGJTINE IDEQBDD(Y1 . Y2 . T. DYlDT. DY2DT. BETA)

REAL DYlDT. DY2DT. T. Y1 . Y2 . BETA( 3)

( OPTIONAL (DEMANDS: )

INTEGE DEBIK}

COMDDN/ BLOCR9/VDEAD

CONTON/ BLOClO/AmNFL

COULDN/Bm/DEBIK}

WHERE:

Y1 FIRST DEPENIENT VARIABLE (TYPICALLY V‘)

Y2 SECOND DEPENMVT VARIABLE (TYPICALLY NS‘)

T - REPRESEVTS THE INIEPENIENT VARIABLE (TIDE)

DYlDT DERIVITIVE OF Y1 W.R.T. TIDE

DY2DT DERIVITIVE OF Y2 W. R.T. TIDE

BETA ITINATED VALUE OF PARAIETERS
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VDEAD - REAL VALUE INDICATING FRACTION OF CELL DEVOTED TO

OSDDTIC DEAD SPACE ( 0 <= VDEAD ( 1.0 )

AmNFL - INTEGE CONTRG. VARIABLE TO SET AREA CONSTANT

ACONFLIO THE A=CONSTANT

ACONFL-l THEN A=F(V(I.UIE)

D-UG - INTEGE DEBUG CONTRG. VARIABLE (SEE ABOVE)

'IHE VALUES OF Y1. Y2. TIDE. AND BETA ARE INPUT TO THE SUBRETINE

AND SHWLD NOT BE ALTERED.

THE VARIABLES DYlDT AND DY2DT ARE 'IHE SUBRETINE OUTPUT.

PRERANED BY: STEVE NELE

3/ 83

DIDENSION BETA(3) .IBBETA(3) .IBBETA(3) .BSTORE(3)

_.EANGE(3) .DELB(3) .E(50) .ETA(50) .H(3)

_.PR(3 .3) .TIIE(50) .X(50.3) .XTX(3 .3) .XTXM(3 .3)

_.Y( 50)

INTEGE I. I. II. P. !OUNT. L. SFLAG. CDIFF. CFLAG

_. BOXFLG. BFLAG. “FLAG. DIUG. DOWN. A(DNFL

REAL PR. LBBETA. IDDEL. MINVE. LAIBDA

COMIDN/ BLOC!1/ BETA. LBBETA. IBBETA. BSTORE

COMWN/ BLOCKZ/TIDE. Y. ETA. X

COMIDN/ BLOCKS/DELB

COMIDN/ BIJOC!4/DT ‘ .

CONDDN/ BLOC!5/ RADIUS

CONlDN/ BLOCKGICSZEO. CSSTEP. CIZEO. CIST‘EP. DPERDB. DPERMI. DEPTH

COMIDN/ BLOCKS/P. CDIFF

COMDDN/ BLOC!9/ VDEAD

CONDN/ BLOClO/ ACONFL

CONWN/ BIB/DEBUG

SET ITEATION LOOP COUNTER

!OUN'T'-0

SET CDIFF TO INITIALLY USE A FOEARD DIFFEREE

CDIFFIO

eeeseeeeeeeeeeeeeeeeeeeeeeeeeeeeee

DATA INNT SECTION:

READ (2.‘)D-UG.|IFLAG.BOXFLG

DEFAULT VALUE EEC!S FOR PARAIETER

BENDS VIOLATION

BFLAG INTEGE FLAGS FOR BENDS EEC! 0N PARADETERS

1 8 EC! FOR VIOLATION

O = NO EEC!

BFLAG-l

READ (2.‘)ACONFL.P
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READ (2.")II

DO 10 I=1.II

READ (2.‘)TIBE(I).Y(I)

CONTINUE

READ (2.‘)(BETA(I).IBBETA(I).IBBETA(I).I=1.P)

READ (2.‘)TOLER

SET TOLE FOR USE IN CHECKING FOR NEAR CONVENIENCE

AND SUITE TO CENTRAL DIFF DERIV.

TOLE=10 .‘TOLER

READ IN NUBBE OF STEPS FOR R-! RETINE INTEGRATION

READ (2.‘)DT

READ IN EXPERIIENTAL ENDITIONS

READ (2.‘)CIZERO.CISTEP

READ (2.’)CSZERO.CSSTEP

READ (2.’)DPERMI.DPERDB.DEPTH

READ (2.‘)RADIUS

READ (2.‘)VDEAD

IF MARQUARUT DETHOD READ IN LAIBDA AND DL

IF(MFLAG.E.1)READ(2.‘)LAIBDA.FACLAM

COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

DATA VEIFICATTON BLOC!:

PRINT 900

FORMAT(1El. ' SPECIFIED RUN ENDITIONS: ')

PRINT 901.11

FORMAT( ' NUDBE OF DATA POINTS ='.I3)

PRINT 902

FORMATU . ' INTEPENDENT DEPENDENT')

PRINT 903.(TIIE(I).Y(I).I=1.II)

FORMAT(2E15.6)

PRINT ‘. ' INITIAL PARATETER ESTIMATES: '

PRINT 904.(I.BETA(I).I-1.P)

FORMAT(' BETA'.Il.' a '.E15.6)

IF(BFLAG.NE.1) GOTO 19

PRINT 921.(I.BBETA(I) .I.IBBETA(I) .I=1.P)

FORMAT(E15.6.' < BETA'.Il.' ( '.E15.6)

GOTO 17

CONTINUE

PRINT 922

FORMAT( ' NO ENS'TRAINT ON PARAIBTERS')

CONTINUE

PRINT 934.TOLER

FORMATUI.’ MEANE FOR CONVENEE = '.E10.4)

PRINT 926

FORMATU/I . ' EXPERIENTAL ENDITIONS: ' .//)

PRINT 927.CIZEO.CSZERO

FORMAT( ' INITIAL (X)N(ENTRATIONS: ' ./ .

_' INITIAL IMPERIEABLE S(LU'TE ENCENTRATION = '

0

1

2

3

4

1

2

4

6



0060

0061

0062

0064

0065

0067

0068

0069

0070

0072

0073

0075

0076

0077

0078

0079

0080

0081

0082

0083

0084

0085

928 FORRAT(' NEW VALUES OF CONCENTRATION IN RULR S(LUTION: '.I.

_' NFII IMPERMEABLE SILUTR CONCENTRATION = '

_.E16.8.' mLES/CC'J.

_' NEW PERMEABLE smUrF. CONCENTRATION = '

_.E16.8.' IDLES/CC'J)

IF(IIOUNUII.NF.3)FRINT 929.DPERMI.DPERMS.DEPTH

929 FORMAT(' CONDITIONS FOR DIALYSIS MEMBRANE IN DIFFUSION mummy

_./.' PERMEABILITY To IMPERMEABLE SCLUTF = '

_.E16.8.' CM/SEC'J.

_' PERMEABILTI‘Y To PERMEABLE smUTF = '

_,El6.8.' CM/SEC'./.

_' DEPTH OF SAMPLE REGION (vaIm/ARRA) = '

_.E16.8.' cum)

IF(IIODNUII.BR.3)PRINT 938

938 FORMAT(' DIALYSIS IFIBRANF FFRIUIADILITY To IIIFFRIUIARLF SILU'IE'J.

_' IIILL FLOAT AS SECOND PARADETER'JI.

_' DEPTH OF SAMPLE RFCION (VCLUlB/AREA) - '.El6.8)

PRINT 930.RADIUS.VDEAD

930 FORMAT(' INITIAL CELL RADIUS = '

_.El6.8.' cum/I.

_' FRACTION OF DEAD SpAdI IN INITIAL vaIa = '

_.F6.4.' (mum/(INITIAL VCLUIm'J)

IF(ACONFL.UO.0)PRINT 931

931 FORMATU.’ MEBBRANE SURFACE AREA ASSUIED CONSTANT')

IF(ACONFL.DO.1)PRINT 932

932 FORMATU.’ ImIBRANR SURFACE AREA IIILL VARY IIITU vaIe')

PRINT 933

933 FORMAT(1E1)

C

COOOOOCCOOOOOOOOOOOOOOOOOOOOOOOOOO

c

c RESIN CALCULATION PROCEDURE:

c

c To START PROCEDURE SET DELB(I) =- 101. (BETA(I))

c THIS IS To SET INCREIENT FOR FIRST EVALUATION OF

c PARTIAL DERIVITIVES IN IoDFL IIFIm ARE BASED ON

c VALUE OF DELB.

Do 18 I=1.P

DELB(I)-0.1‘BETA(I)

18 CONTINUE

c

C .0....#.... TOP OF “IN mmm LOOP OOOOOOOOOOOQ

c

20 CONTINUE

KOUN’D-KOUN'HI

DO 23 I=1.P

RS'mRF(I)-DF.TA(I)

25 CONTINUE

c

c CALL TO USER SUPPLIED SURRoITINF ”IDDEL"

C

154

_JE16.8.' MOLES/CC'.I.

‘_' INITIAL PERMEABLE SOLUTE CONCENTRATION = '

{_.E16.8.' MOLES/CC'./)

PRINT'928.CISTEP.CSSTEP
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0090
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0103

0104

0105

0106

0107

0108

0109

0110

0112

0113

0114

0115

0116

0117

0118

0119

0120

0121

0122

0123

0124

0125

0126

0127

0128
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CALL IDDEL( II . TIDE. ETA. X. BETA. UBBETA. LBBETA. 1)

C

C CALCULATE AND STORE SUM OF SQUARES

C

SQUAR#0.0

DO 30 Iil.II

E(I)=Y(I)-ETA(I)

SQUAR=SQUAR+E(I)"2

30 CONTINUE

SSTOREPSQUAR

PRINT'905.SQUAR

905 FORNATU.’ SUM OF SQUARES FUNCTION FOR THESE VALUES ='.E15.6)

C

C BECK'S EQUATION:

C

D0 31 I=1,P

DO 31 J=I.P

m(I.J)=0.0

DO 32 L=1.II

XTX(I.J)=XTX(I.J)+X(L.I)"X(L.J')

32 CONTINUE

XTX(J.I)§XTX(I.I)

31 CONTINUE

C

C SET UP XT'X DUMMY FOR NARQUARUI'S mDIFICATIONS

‘ DO 33 I81,P

D0 33 151.P

XTXN(J.I)=XTX(J.I)

33 CONTINUE ‘

C

C SET COUNTER FOR MAEQUARDTS METHOD

IIOUNTEO

Ott¢¢ttttt0 TOP OF MARQUARDT LOOP OCOOOOOOCOCCO

0
0
0

34 CONTINUE

NKOUNT=IKOUNT¥1

IF(IFLAG.NE.1) GOTO 36

DO 35 I31,P

XTXNU. I)=XTX(I. I)‘(1 .0+LADBDA)

35 CONTINUE

36 CONTINUE

CALL HINVER(XTXN.PR.P)

D0 37 I=1.P

H(I)=0.0

DO 38 LF1.II

H‘I)=H(I)+X(L.I)‘E(L)

38 CONTINUE

37 CONTINUE

D0 39 I-1,P

DELB(I)=0.0

D0 40 1.2-1 .P

DELB(I)IDELB(I)+PR(I.L) 'H(L)

40 CONTINUE

39 CONTINUE
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D0 41 I=1.P

BETA(I)=BSTORE(I)+OELB(I)

41 CONTINUE

C CHECK FOR OUT OF BOUNDS

IF(BFLAG.EQ.1) CALL BOUNDS(P)

C

c t O C O O O t O O a O c O O 8 t 8 o C O C t O o t t C O t 8 O O

C

C CHECK FOR BOX-KANEMASU DETHOD AND BYPASS THIS SECTION IF NOT

C

IF(BOKFLG.NE.1)GOTO 50

ALPHA!1.0

A91.1

42 CALL IDDEL(II.TIDE.ETA.X.BETA. UBBETA.IBBETA.0)

SALPHAF0.0

D0 43 I=1.II

SALPHASSALPHA*(Y(I)-ETA(I))“2.0

43 CONTINUE

IF(SALPHAALT.SSTORE)GOTO 46

IF(ALPHA.LE.0.01)GOIO 45

ALPHAFALPHAI2.0

DO 44 I=1,P

BETA(I)iBSTORE(I)+ALPHAfiDELB(I)

44 CONTINUE

GOTO 42

45 CONTINUE

C ERROR CONDITION

PRINT '. ' UNABLE TO REDUCE SUM OF SQUARES IN BOX METHOD'

FRINT".' EHECUTION CONTINUING AT’LAST VALUES OF ALEHA' '

46 CONTINUE

6-0.0

DO 47 I=1,P

DO 47 I81.P

G=G+DELB(J)’XTX(I.J)*DELB(J)

47 CONTINUE

TEST%SSTOREFALPHAFG‘(2-(1/A))

HBOX=AFALPHA

IF(SALPHA. LT. TEST)GOTO 48

HBOX2=G‘(ALPHA“2 .0)/(SSTORE+SALPHA+(2.0*ALPHAFG))

IF(HBOXZ.LT.BOX)EOX=BOX2

48 CONTINUE

m 49 I81,P

DELB(I)=DOX’DELB(I)

BETA(I)=BSTORE(I)+DELB(I)

49 CONTINUE

C

C END OF BOXPKANENASU METHOD.BLOCK

C

c o t C O o o o O t c t O o t o t o t o t t t O C O o t c t c o t C

C

50 CONTINUE

C

C IARQURDT'S METHOD BLOCK:

C

C AGAIN CHECK FOR MARQUARDT'S METHOD FLAG:



0174

0176

0177

0178

0179

0180

0181

0183

0185

0187

0188

0189

0190

0191

0192

0193

0194

0196

0197

0198

0199

0201

0202

0203

0204

0205

0206

0208

0209

0210

0211

0
0
0
0
0

0
0
0
0
0
0
0

0
0
0

157

IF(MFLAG.NE.1)GOTO 54

CALL M)DEL( II. TIDE. ETA. X. BETA. UBBETA. LBBETA. 0)

SQUAR=0.0

DO 51 I=1.II

SQUAR=SQUAR+(Y(I )-ETA(I) )“2

CONTINUE

IF(SQUAR.LT.SSTORE)GOTO 53

IF(MKOUNT.GT.10)GOTO 52

IF(DEBUG.GE.1)PRINT 998.FACLAM

FORMATU INCREASING LADBDA BY FACTOR 0F '.E10.4)

LABDA=LAIBDA‘FA(I.AN

GOTO 34

51

998

Ottoman”... 30mg 0F MARQUARDT LOOP OOOOOCCCOOOCO

ERROR CONDITION WTPUT BLOCK:

CONTINUE

PRINT 912

FORMATU.’ UNABLE TO REDUCE SUM OF SQUARES WITH LAIBDA'J.

_ ' AFTER 10 ITERATIONS. CONTINUING EXECUTION')

CONTINUE

IF(D-UG.GE.1)PRINT 999.FACLAM

FORMATU REDUCING LAIBDA BY FACTOR 0F '.E10.4)

LAIBDA'BLAJBDA/FACLAN

mNTINUE

52

912

53

999

54

‘umuomuuuo 30mg. 01: ESTIMATION BLOCK ”tuttouuto

BmIN CHECK FOR CONV‘EWCE:

IF CONSTRAINT PRCBLEN (EEC! PARAIETERS FOR GIT 0F BWNDS:

IF(BFLAG.m.1) CALL BWNDSU’)

ITERATION COMPLETE. CHECK FOR CHANGE IN PARABETER VALUES:

D0 60 I-1.P

CHANGE(I)-ABS(DELB(I) )/(ABS(BSTORE(I) )+1E-16)

60 CONTINUE

C

C BE SURE CDIFF .m. 1 SO THAT AT LEAST ONE IT'ERATION US. CENTRAL

C DIFFEREKE APPROXIMATION FOR DERIVITIVES

C

SFLAGa-l

D0 65 I-1,P

IF(CDIFF.NE.1 .OR. CHANGE“) .GT. TILER)SFLAG-0

65 CONTINUE

C

C (EEC! FOR NEAR CONVERGENB AND SWITCH TO CENTRAL DIFF IF TRUE

C

CFLIO-l

DO 66 I-1.P

IF(CHANGE(I) .GT. MER2)CFLAG-0



0213

0214

0216

0217

0218

0219

0220

0222

0223

0224

0225

0226
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0236

0237
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023 9
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C
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CONTINUE

IF(CFLAG.m.1)CDIFF=1

C OUTPUT NEW PARALETER VALUES:

C

906

907

C

PRINT 906.KOUN'T

FORMATU.’ NEW PARAIETER VALUES AFTER '.I3.’ ITI'ERATIONS:')

PRINT 907.(1.BETA(I).CHANGE(I).I=1.P)

FORMAT(' BETA'.Il.' =',m5.6.101. '70 CHANGE ='.E15.6)

C CHECK IF CONVERGBWG BET:

C

80

C

C TOLERANG NOT IET.

C

C

500

C

IF(SFLAG) GOTO 500

RE-ITERATE:

GOTO 20

CONTINUE

C DID PRmRAN SNUENE:

C

908

909

70

935

910

911

CALL ADDEIJ 11. TIDE. ETA. X. BETA. IBBETA. IBBETA. 0)

PRINT 908

FORMAT(1m. ' FINAL ESTIMATED PARABETER VALUES: ' .//)

PRINT 9-093(IDBETA(I)DI.11P)

FORMAT“ ' BETA' . 11. ' =' .m5.6)

SQUAR=O .0

DO 70 181.11

SQUAR'flUAR+(Y(1)'ETA(1))”2 .0

CONTINUE

PRINT 935.&UAR

FORMATKII.’ FINAL SUN OF 'mE SQUARES FUNCTION 3 3315.6)

PRINT 910 '

FORMATU/ . ' INIEPENDENT' .81. 'DEPE‘IIENT VARIABLE' ./ .

_4X. 'VARIABLE' .7X. 'IEASURED' .81. 'DDDEL' .Il)

PRINT 911. (TIDEU) .Y(I) .ETA(I) . I=1 . II)

FORMAT(3E15.6)

STOP

MD
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C mIS SUBRCIITINE CHECKS FOR VIOLATION OF THE PARADETER BOUNDARIES:

C

11

10

901

902

SUBROUTINE BOUNDS(P)

DUENSION BETA(3) .IBBETA(3) .UBBETA(3) .BSTORE(3) .DELB(3)

REAL LBBEIA

INTEGER P

COMWN/ BLOCKI/ BETA. LBBETA. IBBETA. BSTORE

CONDON/ BLOCK3/DELB

DO 10 I=1 .P

IF(BETA(I).GT.LBBETA(I)) GOTO 11

PRINT 901 . I

DELB(1)=LBBEIA(I)-BSTORE(I)

BETA(I)=LBBETA(I)

GOTO 10

IF(BETA(I).LT.UBBETA(I)) GOTO 10

PRINT 902.1

DELB(I)=UBBETA(I)-BSTORE(I)

BETA(I)=UBBETA(I)

CONTINUE

RETURN

FORMAT( ' DOVER BGJND VIOLATION BY BETA' .11)

FORMAT( ' UPPER BGJND VIOLATION BY BETA' .11)

END
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C

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

C

C THIS SUBWTINE WILL CALCULATE THE INVERSE OF A MATRIX "A"

C WHICH IS NXN AND PLACE THE RESULT IN "B" (N ( 4).

C

SUBRCIITINE N1NVER(A.B. N)

IF(N.NE.1)GOTO 5

IF(A(1.1).EQ.0.0)GOTO 6

B(1.1)=1.0/A(1.1)

RETURN

5 DETIFDETERN(A.N)

IF(DETA.NE.0.0) GOTO 10

6 TYPE ‘.' ERROR - SINGULAR MATRIX'

STOP

10 CONTINUE

DO 20 181.N

DO 20 I=1.N

NN-N-l

DO 30 K81,NN

D0 30 L=1.NN

KK=K

IF(K.GE.J) KK=K+1

LLBL

IF(L.GE.I) LL=L+1

COFA(K.L)=A(KK.LL)

30 CONTINUE

OETCAPDETERNICOFA.NN)

B(I.J)=DETCA‘((~1)“(I+J))IDETA

20 CONTINUE

RETURN

END
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C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

0001 FUNCTION DETERN(A.N)

0002 DIENSION A(3.3)

0003 IF(N.NE.1) GOTO 10

0005 DETERM-A(1.1)

0006 RE'IURN

0007 10 IF(N.NE.2) GOTO 20

0009 DETERDhA(1.1)‘A(2.2)-A(2.1)‘A(1.2)

0010 RE'IURN

0011 20 IF(N.NE.3) GOTO 30

0013 DETERM- A(1.1)‘(A(2.2)‘A(3.3)-A(2.3)"A(3.2))

_ -A(1.2)‘(A(2.1)‘A(3.3)-A(2.3)‘A(3.1))

__ +A(1.3)"(A(2.1)*A(3.2)-A(2.2)‘A(3.1))

0014 RE'IURN -

0015 30 TYPE 9. ' ERROR - NATRIX IN IBTERM CALL LARGER THAN 3X3'

0016 STOP

0017 m
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APPENDIX.B

Subprogram Unit IDDEL

This subprogram handles the calculation of the predicted values

using the user supplied set of differential equations. It also calcu-

lates the matrix of sensitivity coefficients. In support of this

routine the user must supply a subroutine called DEQIDD in the form:

SUBRWTINE DEAIDD(V.N8.TIB.WDT.INSUT.BETA)

REAL BETA(S).DNSDT}DVDT.NS.TIIE.V

OPTIONAL COIIANDS DBPENDING ON’NEEDH

. INTEGER IERUG.AOONFL

REAL CISTEP. CIZERO. CSSTEP. CSZERO. RADIUS. VIEAD

OOIImN/BUG/DEBUG

COINDN/BLOCIS/RADIUS

OOHMDN/BLOCK6/CSZERO.CSSTEP.CIZERO.CISTEP

OOHNDN/BLOCR9/VDBAD

OOIION/BLOCIOIACONFL

An example of the type of routine required is contained in Appendix D

of the present work. As illustrated in this example the user can sup-

ply additional support routines such as the one shown which calculates

the concentration of the sample region using Equation 4.1.16 of the

present work. The input variable are defined in these routines.

Note that this routine can be made to use a one-directional

derivitive (forward or backward difference) or a central difference

chosen via the variable CDIFF. In the present version the routine

always uses the central difference unless the parameter is at the
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value of one of the user specified bounds. If this occurs then the

routine will use a one directional difference approximation in the

direction towCTds the center of the bounded region. The statements

needed to change this to a selectable option are included in the pro-

gram but in the current version are nulled out via a comment

indicator.
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THIS SUBRWTINE EVALUATES THE Vim-TIDE HISTORY FOR A GIVEN

SET OF PARALETER VALUES AND EXPERIDENTAL (ONDITIONS. ITALSO

EVALUATES THE MATRIX 0F PARTIAL DERIVITIVES WITH RESPECT TO EACH

OF THE THREE PARAMETERS USING A CENTRAL DIFFERDICE APIROXIMATION

10

IF AND ONLY IF XFLAG=1 IN THE RWTINE CALL.

SUBTOUTINE INPUT IS:

N INTEGER NUBBER OF DATA POINTS

TIDE REAL(SO) VECTOR OF INDEPENDENT VARIABLE VALUES

BETA REAL(3) VECTOR 0F PARABETER VALUES:

DEFINED BY SUBRGJTINE DEQIDD

XFLAG INTEGER CONTRG. VARIABLE FOR SUPRESSION OF

DERIVATIVE CALCULATION .

SUBRGJTINE OUTPUT IS:

ETA REAL(SO) VECTOR OF CALCULATED IEPENDENT VARIABLE

VALUES

X REAL(50.3) MATRIX 0F PARTIAL DERIVITIVES

PRwRAIBD BY: STEVE NWLEV

4/ 83

SUBRGJTINE DDDEL( N. THE. ETA. X. BETA. IBBETA. IBBETA. XFLAG)

DIIENSION TIBEUO) . ETA(50) .X(50 .3) .BETA(3)

.BETAD(3) .DELB(3) .IBBETA(3) . IBBETA(3)

INTEGER XFLAG. N. DEBUG. CDIFF. P

REAL NS. NEERO. IBBETA

COMIDN/ BIB/DEBUG

COMDDN/ BIOCKB/DELB

COMDDN/ BLOCK4/DT

COMIDN/ BLOCK6/CSZERO. CSSTEP. CIZERO. CISTEP. DPERMS. DPERMI. DEPTH

COMIDN/ BLOCKS/P. CDIFF

SET INITIAL mNDITIONS

NEEROBO .0

IF(CSZERO. NE.0 .0) NEERO-CSZERO/CSEXT (0 .0)

Y1-1 .0

NS-NEERO

CALCULATE PREDICTED VALUES FROM

USER mm. FOR GIVEN PARAIETER VALUES

CALL RK4(0.0.TII_E(1).Y1.NS.UT.BETA)

ETA(1)=Y1

NN-N-l

DO 10 I=1,NN

CALL RK4(TIE(I).TIB(I+1).Y1.NS.UT.BETA)

ETA(I+1)-Y1

CONTINUE

GECK IF DERIVITIVES ARE Nab

IF(IFLAC.NE.I)RETURN
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IF CDIFF.EQ.1 THEN CALCUTATE X

USING CENTRAL DIFFERENCE

IF CDIFF.NE.1 TEEN USE FORWARD

DIFFERENCE

[=2

IF(CDIFF.EQ.1)K=2

ZERO OUT DERIVITIVE MATRIX:

DO 15 131.3

DO 15 I81,N

X(I.J)-0.0

CONTINUE

SET UP DUMMY PARAMETER VECTOR

DO 18 I=1.P

BETAD(I)=BETA(I)

CONTTNUE

EVALUATE dV()/dBETA()

DO 30 LILP

DP‘0.01'ABS(DELB(L))

IF(DP.ED.0.0)DP-0.001‘BETA(L)

IF(L.EQ.3.AND.DP.EQ.0.0)DP*0.001

CHECK TO SEE IF CURRENT'PARAMETER

IS AT ONE OF PARAMETER BOUNDS AND

ROUTE ACCORDINGLY

IF(BETA(L) .LE.IBBETA(L) )GOTO 27

IF(BET‘A(L) .GE.IBBETA(L) )GOTO 26

THIS SECTION FOR.FORIARD OR CENTRAL

DIFFEREHE CALCULATION AS SET BY CDIFF

DO 25 181,!

BETAD(L)=BETA(L)+DP

Y1=1

NSBNSZERO ‘

CALL RX4(0.0.TTME(1).Y1.NS.DT.BETAD)

X(1.L)!X(1.L)+((XI-ETA(I))/DP)/X

DO 20 I-1.NN

CALL RK4(TIIB(I) .TIIE(I+1) .Y1.NS. UT. BETAD)

X(I+1.L)-X(I+1.L)+((Y1-ETA(I+1))/DP)/K

CONTINUE

DPB-DP

CONTINUE

GOTO 29

THIS SECTION FOR SPECIAL CASE

REQUIRING FORIARD 0R BACXIARD
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DIFF IF AT PARAIETER BWNDS

CONTINUE

IF AT UPPER LIMIT USE BACK-DIFF.

DP=-DP

CONTINUE

BETAD(L) =BETA( L) +DP

Y1=1 .0

NS=NEERO

CALL RK4(0.0 .TIDE(1).Y1.NS. D'T. BETAD)

X(1.L)=X(1.L)+((Y1-ETA(1) )lDP)/K

DO 28 I=1.NN

CALL RX4(TIBE(I) .TIDE(I+1) .Y1.NS. D'I'. BETAD)

x<1+1 . L) =X(I+1 . L) +(Y1-ETA(I+1) ) IDP

CONTINUE

HID SPECIAL SECTION

BETAD ( L) =BETA( L)

CONTINUE

RETURN

mD
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APPENDIX C

Subroutine RI4

Subroutine RX4 is e nulericel interretion routine for two sinul-

tenious ordinery differentiel equetions. It is besed on e verietion

of the fourth order RunIe-Kutte nethod developed by Gill. [27]. end

presented in deteil by Ronenelli. [28].

The user inputs the velues of the lower end upper linits of

intezretion. T1 end T2 respectively. the velues of the two dependent

veriebles et the lower linit. Yl end Y2, end the epprorinete size of

the tine step increment to be used. The progren will celculete the

ectuel number of integretion steps fro-.11 to T2. NSTEPS. since the

user specified increlent ney not divide evenly into the totel tine

(T2-T1). The routine will then eveluete the velue of the dependent

veriebles et the tine T2 end plece these velues in 11 end Y2 before

returning to the ceiling routine. All other input veriebles ere

unchenged.

The routine requires en externel user supplied subroutine nmled

DEQMDD of the forn:

SUBRGITINE DEQDDUI .Y2 . TIE. DYlDT. DY2DT.BETA)
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This subroutine should eveluete the derivitives of the dependent veri-

ebles. Y1 end Y2. with respect to the independent verieble. TIE,

besed on the current velues of Y1. Y2. TIME. end the vector of perene-

ter velues BETA. These velues ere then pieced in DYlDT end DY2DT es

the subroutine output. The velues of Y1. Y2. TIE. end BETA should

not be eltered in the routine.

Subroutine K4 conteins two debugging stetenents which will fleg

the cell to end successful return from the user supplied subroutine

DMDD. The level for output of these flegs is DEBUG.GE.1.
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SUBRGITINE RK4(T1 .12 .Y1 .Y2 .DT. BETA)

TRIS SUBRGJTTNE IS A RUMB-KUT'TA NMRATION ROUTINE OF THE

FORTE ORDER FOR TWO SIELTANIOUS ORDINARY DIFFERWTIAL

'EE LIMITS OF INTEGRATION

TEE INITIAL FUNCTION VALUES AT T].

APPROXIMATE TIE INCREDENT (STEP SIZE)

EQUATIONS.

INPUTS TO THE RWTINE ARE:

T1.T2 REAL

'Y1.Y2 REAL

DT REAL

BE'TA REAL(3) VECTOR OF PARAMETER VALUES

OUTHJT FROM THE RWTINE IS:

Y1 AND Y2 ARE REPLACED BY THE NEW VALUES AT TIME T2

T]. AND T2 ARE UNmANGED

DT IS UNmANGED

EXTERNAL FUNCTION mummm ARE FOR A SUBRWTDIE OF THE FORM:

SUBRCIITINE DEQIDD(Y1 . Y2 . TIE. DYlDT. DY2DT)

THIS EXTERNAL SUBRGITINE EVALUATES TEE ERIVITIVES 0F Y1 AND Y2

WITH RESPECT TO TIE AND RETURNS THEM IN DYlDT AND DY2DT

REPECTIVEY. TEE VALUES 0F Y1. Y2. AND TIE SEWLD NOT BE

EDIFIED IN THE RWTINE.

DIWSION A(4) .B(4) .C(4)

REAL A. B. C, DT. DYlDT. DY2DT, B, QX. Q]. . m .X. Y1.Y2

1 .BETA(3)

INTEGER FLAG. I. J. NST'EPS. DEBUG

COMEN/ BIB/D-m

DATA FLAG/ 0/

NOTE THAT FOR SPEED OF EXECUTION IN REPETED CALLS TO RX4 TEE

VALUES OF A. B. AND C ARE EVALUATED ONLY THE FIRST TIE TERWGE

TEE RWTINE. THEY WILL REMAIN UNCEANGED TRERAFTER.

IF FIRST TIE TERGIGR EVALUATE A. B. ANDC

IF(FLAG. NE.0) GOTO 10

A(l)=0.5

SR-SQRT(0.5)

- A(2)=1-SR

A(3)=l+SR

A(4)=1.0/6.0

B(1)-2 .0

B(2)-1 .0

B(3)=1 .0

B(4)=-2 .0

C(1)=0.5

C(2)-A(2)

C(3)-A(3)

C(4)=0 .5

FLAG-l

10 CONTINUE
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EVALUATE ACTUAL STEP SIZE

APPROX STEP SIZE. DT. MAY NOT FIT IN'ERVAL

EVE‘JLY SO EST RECALCULATE

30

20

901

902

NSTEPSIIINTT (T2-T1) /DT)

E-(T2-Tl)/FLOAT(NSTEPS)

X==T1

DO 20 I=1.NSTEPS

QX=0.0

0180.0

(112-0.0

DO 30 J=1,4

IF(DEBUG.GE.1)TYPE 901

CALL DEQDDD(Y1 . Y2 . X. DYlDT. DY2DT. BETA)

IF(D.UG.GE.1)TYPE 902

X=X+E*A(J)‘(1.0-B(J)‘QX)

QX=QX+3.0‘A(J)‘(1.0-B(J’)‘QX)-C(J)

Y1=Y1+E‘A(J)‘(DY1DT-B(J’) '01)

01=QI+3.0'AU)‘(DYlDT-BUPQD-CUHDYlDT

Y2-Y2+E'A(J) ‘ (DY2DT-B( J') ‘02)

02:02+3 .O‘AU) ‘ (DY2DT-3(1) ‘QZ)-C (J’) ‘DY2DT

CONTINUE

CONTINUE

RETURN

FORMAT(' CALLING DEQIDD')

FORMAT( ' BACK FROM DEQIDD')

DID
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APPENDIX D

Subprogrem Unit DEQMDD end CEXT

The routines described here ere exemples of the routines which

the user must supply when instelling e new trensport nodel for use

with MARBOX. MODEL. end 214. These exemples ere elso vieble for cel-

culetion purposes. The model is thet of ledem end Ketchelsky

formuleted for binery flow problems (see Chepter 3 Section 3 of the

present work). It is e very simple problem to nodify this model for

the cese of osmotic shrinkege only by setting ud-O end c-1.0 et the

top of the routine.

The support routine CEXT uses Equetion 4.1.16 to celculete the

concentretion of the semple region besed on the perneebility of the

dielysis membrene end the thickness of the region. CSEXT is for the

permeeble solute (reletive to the cell or liposome membrene) end CIEXT

is for the impermeeble solute (egein reletive to the cell or liposome

membrsne).

Note thet it is in routine DEQMDD thet the definitions of eech of
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the peremeters in the vector BETA ere defined reletive to the modeling

equetions. As fer es MARBOX is concerned the peremeters ere not

defined implicitly. The user chooses which pereneter will be essigned

to BETA(l) end which to BETA(2) etcetere. Thus the user must neintein

consistency between the input end the modeling routine.
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SUBRWTINE DEQED(V. NS. TIE. DVD'T. INSDT. BETA)

THIS SUBRGITINE EVALUATES THE K-K SET OF PERMEABILITY

EQUATIONS IN DIFFERRTIAL FORM FOR THE VALUES 0F DV’IDT

AND INS‘IDT WHERE WE STAR IMH..IES NWDIDENSIONAL VALUES.

NOTE THAT IN THIS VRSION OF THE RWTINE mE TIE FACTOR

HAS NOT BER NWDIDENSIONALIZED. THIS LEAVES THE EQUATIONS

IN A PARTIALLY NWDITENSIONAL FORM ONLY.

THIS VERSION THEREFORE RFDUIRES THE INITIAL RADIUS OF

THE (ELL TO BE PASSED TERGIGH (OMEN BLOCK 5.

THIS RCIITINE ALSO WNTAINS THE FLAG FOR CONSTANT AREA

ASSUMPTION

INPUT TO THE RWTINE ARE THE VALUES OF N. AND V‘ AS WELL

AS THE TIE AT WHICH THE SEUTION IS DESIRED.

NOTE THAT ma TIE IS ONLY RRUIRED TO EVALUATE TEE

EXTERNAL SG.UTION (ONCENTRATION.

NOTE ALSO THAT THE K-K SET USED INCLUDES THE TERMS TO

HANILE IMPEREABLE SQUTES AS REL.

IT SHOULD ALSO BE NOTED THAT IT IS IN THIS RGJTINE THAT

m3 PARAE'ERS ARE DEFINED. IN THIS VRSION:

BETA(l) = Pw (80..va PERMEABILITY) (CM“4/MOLE-SEC)

BETA(Z) = Ps (S(LUTE PEREABILITY) (CM/SEC)

BETA(3) = SIGMA (REFLECTION (OEFFICIENT)

REAL BETA(B) .NS. Pl. PS. SIGMA

sum IS AN INTER DEBUGING VARIABLE

WITH ELT‘Y LEVH. CAPABILITY

INTEGR EBUG. ACONFL

COMlDN/Bm/DEBUG

COMIDN/ BLOCKS/ RADIUS

COMEN/ BLOCK6/CSZRO. CSSTEP. CIZRO. CISTEP. DPERMS . DPERMI. DEPTH

COMIDN/ BLOCK9/ VDEAD

(1)leBLOC10/ ACONFL

CHECK FOR NFBITIVE VEUE

IF(V. LT.0 .0) GOTO 99

EVALUATE EXTERNAL CONCENTRATIONS

CSWT-CSEXNTIE)

CIOUT‘BCIEH(TIE)

SET UP PARAETERS FROM BETA

P'=BETA( 1) ‘18 .015‘18—4

PSBBETAQ) '1E-4

SIGMABBETA( 3)

EVALUATE DV/DT

DVDTt-(PI‘S .0/ RADIUS) ‘

1 (SIGMA‘CSGIT‘(1.0-(NS/ (V-VEAD) ))

1 +CIOUT-(CIZRO‘(1-VDEAD) / (V-VIEAD) ) )

CHECK FOR Nm-CONSTINT AREA

IF (ACONFL.m.1)DVDT-DVUT‘(V”(2 ./3 .))
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X1=( (1 .0-(NS/ (V-VIEAD) ) )‘PS‘3 .0) /RADIUS

CHECK FOR NOV-CONSTANT AREA

IF (A(DNFL.HI.1) X1=X1‘ (V”(2 .l3 .))

DNSDT=X1+(DVDT‘(1 .0-SIGMA) " (1 .0+(NS/ (V-VIEAD) ) ) l2 .0)

IF(D-UG. GE.2)PRINT 903 . DVDT. INSDT. CSGIT

RETURN

CONTINUE

nus SECTION FOR NRATIVE VEUE

PRINT 904.“. PS. SIGMA

STOP

FORMAT( ' CALLING CSEKT')

FORMAT(' BACK FROM CSEH')

FORMAT(' DVUT =- '.m5.7.'

FORMAT(' ”‘ ERROR CONDITION IN DEQIDD ”"J.

1 ' NRATIVE VEUE RmUNTERED. PARAETER VALUES: '.I.

' PI

RD

3 'pmSer/p' PS

INSET = '.E15.7.'

. '3m5e63/D'

CSGJT = ' .F10.4)

SIGMA 8 '.E15.6)
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FUNCTION CSEXNTIE)

THIS FUNCTION IS A USR GRRATED FUNCTION TO EVALUATE HE

EHERNAL S(LUTE (DNENTRATION AS A FUNCTION OF TIE.

THIS IS OF PARTICIILAR INTREST IN THE DIFFUSSION (EAER WHRE THE

EXTERNAL SQUTION CANNOT BE ASSUMED TO UNDERGO A STEP CHANGE.

NOTE THAT IF THE INVESTIGATOR BEIEVES THE STEP (RANGE IS

APPROPRIATE EARLY HAVE THIS FUNCTION RETURN A CONSTANT VALUE.

IN THIS VRSION THIS IS NNE IF mE DIALYSIS EERANE

PEREABILITY IS GREATR THAN 998.0 (CM/SEC).

COMEN/ BLOCK6/CSZRO. CSSTEP. CIZRO. CISTEP. DPERMS. DPERMI . DEPTH

IF(DPERE . LT.998 .0) GOTO 10

CSEXT=CSSTEP

RETURN

CONTINUE

CSEXT=CSSTEP+ ( CSZRO-CSSTEP) I'EXP ("DPERMS'TIE/DEPTH)

RETUR

RD

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

10

FUNCTION CIEKT(TIE)

COMle BLOCK6/CSZRO. CSSTEP. CIZRO. CISTEP. DPERIB. DPERMI. DEPTH

IF(DPERMI . LT.998 .0) GOTO 10

CIEXT=CISTEP

RETURN

CONTINUE

CIEXT¥ICISTEP+ ( CIZRO-CISTEP) l'EXP (-DPERMI‘TIE/DEPTH)

RETURN

RD
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Subproyrm Units TAKEP'I‘ and CIRCLE
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PRCBRAIBD BY:

mun. MD1Y

ENDZX. WDZY

II

X(1) . Y(1)

1(2) .Y(2)

X(II) . Y( II)

WHERE:

E‘IDlX INTEGER

MDlY INTEGER

mm INTEGER

ENDZY INTEGER

II INTEGER

X INTEGER

Y INTEGER
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THIS IRMRAH UNIT INTEGRATES A SERIES OF ARCS DEFINED

BY THREE POINTS EACH. THE FINAL AREA IS THE SUM OF THE

INTEGRATED PARTS DIVIDED BY TWO. TRIS PROCEWRE IS

DOGHENTED IN CHAPTER 4 SECTION 4 OF THIS THESIS WORK.

INPUT TO HIS RWTINE IS THRIIJGE A FILE NABD POINTS.DAT

THIS FILE SEWLD CONTAIN IN THE FOLLWTNG ORDER:

‘ X COORDINATE OF FIRST SCALE WDNNT

Y COORDINATE OF FIRST SCALE DIDPOINT

X COORDINATE OF SEmND SCALE EJDPOINT

Y COORDINATE OF SEWND SCALE WDNNT

NUDBER OF DATA POINTS

SET OF I COORDINATES

SET OF Y COORDINATES

TEE PRmRAM OUTPUT IS WRITTEQ INTO A DATA FILE NABD

POINTSJDT TEE PRCBRAN WILL DESTORY ANY EXISTING FILE

WITH THIS NAB DURING EXECUTION SO TEAT ANY FILE TO BE

SAVED MUST BE REWARD BEFORE RUNNING CIRCLE AGAIN.

STEVE NWLEW

3/ 83

DIWSION 1(20) .Y(20) .XX(3) .YY(3) . SUBA(3.3)

1 .SUBB(3.3).SUBC(3.3).COEF(3.3).R(20).THETA(3)

INTEGER LJ’, II,P,K(RINT,L. SFLIGJI

_, D-UG

COMIDN/ BUG/DEBT];

COOOOOOOOOOOOOOOIQOOOQOOOOOOO

C

C DATA INPUT SECTION:

C

OPEN(UNIT‘-2.NAlE-'DK:POTNTS.DAT' .TYPEB'mD')

READ (2.‘)IDJD1X.IEND1Y

READ (2.’)IE~W2X.IE€D2Y

F1-ABS(FLOAT(IE{D1X-IENDZX) )

F2-ABS(FLOAT(IEND1Y-IEWD2Y))

SCALE=SIRT(F1"2+F2”2)

READ (2.‘)N

DO 10 I-1,N
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READ (2.‘)IX.IY

X(I)=FLOAT(IX)

Y(I)==FLOAT(IY)

CONTINUE

CLOSE(UNIT‘-2 .DISPOSE= ' SAVE')

OPEN(UNIT‘-4.NADE='DK:POINTS.WT' .TYPEB'NEW')

BHiIN CALCULATION PROCEDURE:

omnttmutt TOP 012 MAIN mmm LOOP an.

XMAX=0.0

XMIN=IOO0.0

YHAX=0.0

YMIN=IOO0.0

DO 19 I=1,N

IF(X(I) .G'T.XHAX)XMAX=X(I)

IF(X‘I).LT.XMTN)XMIN=X(I)

IF(Y(I).GT.YMAX)YMAX=Y(I)

IF(Y(I).LT.YMIN)YNIN=Y(I)

CONTINUE

xo-(XMAX+XMIN)/2.0

YO=(YMAX+YUN) l2 .0

DO 20 I=1,N

CONVERT TO RADIAL

R(I)=SQEIT(X(I)-XO)“2.+(Y(I)‘YO)“2.)

CONTENUE °

ARE!F0.0

DO 21 1'1,N

ROTATE COORDS AND CALC TEETA

TEETA‘I)‘ATAN((Y(I)-YO)/(X(I)’XO))

TEETA(2) =ATAN( (Y(I+1)-YO) ’(X(I+1)"XO) )‘THETAUJ

TEETA(2)=ATAN((Y(I+2)-YO)/(X(I+2)-XO))‘THETA(1)

TEETA(1) =0 .0

CALCULATE A. B, AND C:

DO 22 131.3

COEF(J.1)'1.0

COEF(J.2)'TEETA(J)

COEF(J.3)=EEETA(J)“2.

CONTINUE

DETXF(COEF(2.2)‘COEF(3.3))‘(COEF(2.3)‘COEF(3.2))

DO 23 151.3

SUBA(J:1) =R(I+J"1)

SUBA(L2)'wEF(J.2)

SUBA(L3)=COEF(L3)

SUBB(J.2)=E(I+J-1)

SUBB(J,3)=COEF(J.3)

SUBC(J.1)'(X)EF(L1)

SUBC(J.2)'COEF(J.2)

SUBC(J:3).R(I+J’1)

CONTINUE

AFDETERI“ SUBA) IDEn



0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074

0075

21

C

905

906

907

1
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B=DETERM(SUBB)/DETX

C=DETERM(SUBC)/DETX

ThTEETA(3)

AREA.- AREA + 0.5"I ( T‘(A“2.) + A!B‘(T"2.)

+ (2.‘A‘C+(B“2.))‘(T‘*3.)/3.

+ B'C*(Tu4.)/2. + (C"2.)‘(T"5.)/5.)

CONTINUE

END PROGRAM SEQUENCE

WRITE(4.905)AREA

FORMAT(' AREA:- '.E15.8.'

PI=4.0‘ATAN(1.0)

RADIUS=SQRTTAREAIPI)

WRITE(4.906)RADIUS

FORMAT(' RADIUS = '.F10.4.’ UNITS')

WRITE(4.907)SCALE

FORMAT(' SCALE I 1 :

STOP

END

UNITS')

'.F10.4)
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FUNCTION DETERM(X)

DILENSION X(3.3)

DETERM-X(1.1)’(X(2.2)‘X(3.3)-X(2.3)"X(3.2))

- X(1.2).(X(2.1)‘X(3.3)-X(2.3)‘X(3.1))

+ 1(1.3)‘(X(2.1)'X(3.2)-X(2.2)*X(3.1))

RETURN

END
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WWW POINTS

THIS PRMRAM UNIT IS LOCAL TO ma IMAGE ANALYSIS

LABORATORY OF MIGIGAN STATE UNIVERSITY. ITS PURPOSE

IS TO READ IN A SERIES OF X-Y COORDINATE POINTS. THE

USER SIGNIFIES THAT THE (IIRSOR IS ROPERLY POSITIONED

FOR THE NEXT POINT BY DEPRESSING TEE BACK-SPACE KEY ON

THE (ONS(LE TERMINAL. TEE PRCBRAM WILL mm RING TEE

TERMINAL BEL WHEN READY FOR ANOTHER POINT.

nus PRmRAM HIST BE LINKED TO THE LIBRARY TVLIBJBJ'

ON THE SYSTEM VGJIIB. THIS LIBRARY CONTATINS TEE EXTERNAL

ROUTINE CURSOR. TEE PRmRAM IS CURRENTLY SET UP TO READ

FIRST:

TWO SCALE EWDPOINTS FOR REFERENCE SCALE

20 DATA POINTS ARGIND mE ENE OF A CIRCULAR IMAGE

OUTPUT FROM THE RWTINE consrsrs OF THE DATA POINTS IN

IN'TFfiER FORMAT (IS) AND HE NUDBER OF DATA POINTS (20) IN

PROPER FORMAT FOR DIRECT EJTRY INTO THE RWTINE CIRU..E.FOR

TEE OUTPUT FILE NAE IS POINTS.DAT WEIG IS THE INHIT

FILE NATE FOR RWTINE CIRCLE.FOR.

PRCBRAIED BY: STEVE NWLEQ

319

INTWER I.K.X.Y

EHERNAL OWLCURSOR

OPHT(UNIT‘-3,NA|E='DK:POINTS.DAT'.TYPEP'NH')

TYPE 905

FORMAT(' mm SCALE WU POINTS NW')

CALL WRSOR(X.Y)

WRITE(3.901)X.Y

FORMAT(ZIS)

CALL WRSOR(X.Y)

WRITE(3.901)X.Y

'RITE(3.902)

FORMAT( ' 20 ')

TYPE 903

FORMAT(' ENTER 20 DATA mIN'TS NW')

DO 10 1.1320

CALL CURSOR(X.Y)

WRITE(3.901)X.Y

CONTINUE

CLOSE(UNIT‘=3 .DISPOSE= ' SAVE')

STOP

m0

905

901

902

903

10

 

 



APPENDIX F

Subprogram Unit CURGEN

This program unit is for use in generating predicted curves from

specific parameter values independent of the parameter estimation

routine. The routine requires the external routines RK4 and DEQMDD as

described in the previous sections. The input-output format is des-

cribed in the program listing.
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THIS ROUTINE IS A DRIVER FOR GENERATING SEUTIONS

TO A SET OF DIFFERENTIAL EQUATIONS FOR THE mANSPORT

OF MATERIALS ACROSS A ELL EBBRANE. THE RETINE

SEVES TEE IDDELING EQUATIONS FOR A TIE SEUTION OF

VEUIE AND SEUTE ENTEWT.

INPUT TO THE RETINE IS THREGE LEICAL UNIT 3 SO

EAT UNER RT-ll TEE INPUT FILE SHELD BE NADBD

"FTN3.DAT".

INPUT IS IN THE FREE FORMAT FORM AND IN THE ORDER:

D-UG

DTINT. DTOUT. TMAX

CIZERO. CISTEP

CSZERO. CSSTEP

DPERMI . DPERBB. DEPTH

PI , PS, SIGMA

RADIUS

VEAD

AENFL

E

D-m INTEER VARIABLE LEVE. -113 ETPUT

(DNTRG. VARIABLE

DTINT REAL STEP SIZE FOR INTEGRATION (SEC)

DTET REAL INTERVAL FOR PRINTING OF

VEUIE AND SEUTE ENTWT (SEC)

TMAX REAL LEIGTE OF TIME TO INTERATE OVER (SEC)

CIZERO REAL INITIAL IMPERMEABLE SALUTE

ENENTRATION

CISTEP REAL NH IMPERMEABLE SEUTE CONC.

CSZERO REAL INITIAL EREABLE SEUT'E ENC.

CSSTEP REAL NEW ERMEABLE SEUTE CONC.

cease NOTE ALL ENC. IN UNITS HOLES/CC) ””‘

DPERMI REAL DIALYSIS EBRANE PEREABILI'TY

TO IMPERMEABLE SEUTE (CM/SEC)

DPERMS REAL DIALYSIS MEDBRANE EREABILITY

TO PERMEABLE SEUTE (CM/SEC)

DEPTE REAL DEPTH OF SMPLE REIGN IN DIFFUSION

EAIBER (CM)

P" REAL HYDRAULIC OR 8(1va (WATER)

PERMEABEITY OF CELL (MIECNS/ SEC)

PS REAL SEUTE PERMEABILITY OF CELL (MIEWS/ SEC)

SIGMA REAL INTERACTION TERM

RADIUS REAL INITIAL ELL RADIUS (CM)

VEAD REAL FRACTION OF INITIAL VEUE EVOTED

OSDDTICALLY INACTIVE VEUE

A(DNFL INTEGER FLAGS FOR AREA AS FUNCTION OF VEUIE

ACONFL I 0 IMHJES ENSTANT AREA

AENFL - 1 IMHJES AREA-FUD

DIIENSION BETA(3) .VSTORE(50) ,TIEUO)

REAL NS. Pl. PS. SIGMA

INTEGR sum. ACONFL

COMDN/ BLOCKS] RADIUS

 



0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0026

0028

0029

0030

0031

0032
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0035

0036

0037

0038

0039

0040

0041

0042

0043
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0047

0048

0050

0051

0052

0053

0055

0057

0058

0059

0060

0061

0062

10

15
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COMIDN/Ems/csznno, CSSTEP, CIZERO. CISTEP. DPERMS, DPERMI. DEPTH

COMWN/BwCK9/VDEAD

commBLOC10/ACONFL

COMIDNIBUG/D-UG

OPEN FILE FOR OUTPUT

omN (UNIT=6,NADE='DY1:OUTPUT.DAT".TYPEs'NEW')

DATA ENTRY BLOCK

READ(3."')DEBUG

READ(3.‘)DTINT,UI‘GJT.TMAX

READ(3 . ‘)CIZERO. CISTEP

mn(3.t)cszmo,cssmp

READ(3.‘)DPERMI.DPERMS.DEPTH

READ(3.')PW,PS,SIGMA

READ(3.‘)RADIUS

READ(3.‘)VDEAD

READ(3.")A(I)NFL

ECHO OUTPUT OF EXPERIMENTAL UONCITIONs

mun6 . 905) CIZERO. CISTEP. cszmo. CSSTEP

“mu6 , 906) DPERMI , OPEENS. DEPTH

mTE<6.904)Pw. PS. SIGMA

WRITE(6.907)RADIUS.VDEAD

BEGIN CALCULATION PROCEDURE

NSTEPS=mT(TMAX/DTOUT)

IF(NSTEP.CT.50)wnrrE(6.911)

IF(NS‘I‘EPS.GT.50)NSTEPS=50

BETA(1)=PI

BETA(2)-PS

BETA(3)-SIGIIA

Ns=0.0

IF(Cszm0.NE.O.0)Ns-cszm0/CSEIT(0)

TIIE2=0.0

v-1.0

WRITE(6.900)

WRITE(6.901)TIIE2.V.NS

IFLAG-O

ROUND-0

no 10 I=1,NSTEPS

TInEI=TnE2

TIDEZ=TIBB1+DTOUT

IF(DEBUG.GE.1)TYPE 903

CALL RK4(TIIE1 , TIIEZ . v. Ns. UTINT, BETA)

VSTORE(I)=V

TInE(I)=TIm2

IF(D-UG.GE.1)TYPE 902

IRITE(6.901)TI)E2.V.NS

CHANGE=ABS(VSTORE(I )-VS'mRE(I-1) )

KOUNTa-KOUNTu

IF(CBANGE. LT.0 .0001) IFLAG-mama

IF(IFLAG.GE.3)GOTO 15

CONTINUE

CONTINUE

WRITE(6.908) ‘

Vim-21.0

00 16 I-1.KOUNI'

IF(vsmnEm .LT.vm)vuIN=vsmEE(I)
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CONTINUE

DO 20 I=1.KOUNT

VSTAB=(vstE(I)-VNIN)/(I.0-VMIN)

RADRAT=(ABS(VS'IORE(I)))”(1./3.)

wBITE(6.909)TIIE(I).VSTAB,BADEAT

CONTINUE

CLOSE(UNIT=6)

STOP

FORMAT(E15.4.IOX.£15.6.10X.E15.8)

FORMAT(/.' NOTE: NSTAR IS DEFINED AS IIIE NUDBER 0F MOLES'

1 ./.' PERMEABLE smUTE INSIDE DIVIDED BY THE EIT'EBNAL'

2 .l.’ PERMEABLE SILUTE mNCEN'IRATION AT TIDE t DIVIDED'

3 ./.' BY THE INITIAL vaNE'J

4 ./.sx,' TIDE (SEC)',9x.'va.UIE(t)/va.UME(0)',IOX.'NSTAB')

FORMAT(' BACK FROM n40

FORMAT(' CALLING RK4')

FORMAT‘(/.' HYDRAULIC PERMEABILITY - '.E15.6.' nmmS/SEC'

1 ,/,' SGJTI‘E PERMEABILITY = '.El5.6,' mmmS/SEC'

2 .I.' SIGMA . =- '.F6.4)

FORMAT(' INITIAL IMPERMEABIE 80.011! CONCENTRATION a '.E15.6.

I ' IDLES/CC',

2 .l.' NE! IIIBEBICIABLE SILU'IE CONCENTRATION - '.E15.6

3 ' IDLES/CC',

4 Jim INITIAL mBIIEABLE SOLUTE CONCENTRATION - '.E15.6

5 ' IDLES/CC',

6 .I.’ NE! BEBNEABLE 8mm CONCENTRATION = '.El$.6

7 ' mLES/CC')

FORMAT(/.' DIALYSIS IEIBBANE PEREABLILITYUJ.

1 ' TO INPEENEABLE SGJJTE - '.El5.6.' (CM/SEC)’.I.

2 ' TO PERMEABLE sum as '.E15.6.' (CM/SEC)’,/,

3 I.’ DEPTH 0F SAMPLE RHEION 8 '.E15.6.' (CM)')

FORMAT(I.’ INITIAL (ELL RADIUS = '.E15.6.' (CM)',/,

1 ' OSBDTICALLY INACTIVE V(LULE FRACTION 8 '.F6.4)

FORMATU ./ .SX. ' TIDE (SEC) ' .7X. ' (V(t)-Vmin)/(V( 0) -Vnin) ' .81.

1 'DSTAR=D(t)/D(0)')

FORMAT(ZX.m5.6.8X.E15.6.8X.E15.6)

FORMAT(/.' EXCEEDED MATRIX DIWSIONS. WILL MAKE 50 STEPS'J.)

DID
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APPENDIX.G

Tabulated Osmotic Shrinkage Data

Experimental Conditions

All cells initially in 0.3 (camel/kg) saline solution.

For cells 1 and 2 the saline concentration increased

to 0.5 (osmol/kg). For cells 3 and 4 the saline con-

centration increased to 0.8 (camel/kg).

Initial radius as follows:

cell 1: r - 39.5 (microns)

cell 2: r - 40.4

cell 3: r - 38.0

cell 4: r t 38.5

Osmotic inactive volume as fraction of initial volume:

cell 1: 0.219

cell 2: 0.156

cell 3: 0.292

cell 4: 0.260

All experiments conducted at room.temperature using the

diffusion chamber. Dcpth of sample region - 228.3 (microns).

Cuprophan 80pm.msmbrane used.

 



Time

(sec)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

130.0

140.0

150.0

160.0

170.0

180.0

190.0

200.0

cell 1

1.0

1.0

0.9479

0.8747

0.8651

0.8147

0.8417

0.7933

0.7752

0.7227

0.7170

0.7342

0.6836

0.6726

0.6863

0.6836

0.6863

0.6781

0.7001

0.7001

0.6974
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V‘ = V/ v.

cell 2

1.0

0.964

0.903

0.847

0.791

0.729

0.752

0.758

0.730

0.706

0.693

0 .677

0.686 '

0.662

0.659

0.662

0.653

0.658

0.672

0.667

0.667

cell 3

1.0

0.9787

0.8320

0.7086

0.6416

0.6352

0.5961

0.5950

0.5604

0.5546

0.5575

0.5585

0.5575

0.5575

0.5575

cell 4

1.0

0.9703

0.8710

0.8096

0.7290

0.6250

0.5514

0.5595

0.5574

0.5615

0.5514

0.5374

0.5374

0.5314

0.5374
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4.)

5.)

APPENDIX E

Thbulated Binary Flow Data

Experimental Conditions

All cells initially in 0.3 (osmol/kg) saline solution. New

solution also 0.3 (osmol/kg) saline content. .

New solution contains solute glycerol. For cell 5 the

concentration is 0.2 (osmol/kg). For all others the

concentration is 0.25 (camel/kg).

Initial cell radius as follows:

cell 5: r a 39.3 (microns)

cell 6: r 8 37.0

cell 7: r . 33.2

cell 8: r B 33.5

All experiments run at roan tamperature using the diffusion

chamber. CuprOphan type 80pm membrane used.

Depth of sample region in diffusion chamber a 228.6

(microns).

6.) Osmotic inactive volume unknown in all cases.
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Time

(sec)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

140.0

160.0

180.0

190.0

cell 5

1.0

0.9765

0.9224

0.8196

0.7998

0.7255

0.6876

0.6764

0.6823

 

0.6571

 

0.6865

0.6764

0.7092

 

0.7192

w-
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cell 6

1.0

0.9504

0.8106

0.7354

0.7064

0.6301

0.5991

0.5834

0.5941

0.5976

0.6178

0.6025

0.6102

0.6267

0.6315

0.6575

wvo

cell 7

1.0

0.98

0.96

0.94

0.90

0.848

0.83

0.779

0.729

0.713

0.713

0.681

0.697

0.666

0.681

cell 8

1.0

1.0

0.852

0.800

0.735

0.735

0.719

0.719

0.704

0.735

0.689

0.704

0.712

0.689

0.704



Time

(sec)

210.0

220.0

240.0

250.0'

270.0

280.0

300.0

310.0

330.0

340.0

360.0

370.0

390.0

400.0

420.0

480.0

540.0

600.0

cell 5

0.7498

0.7865

 

0.7861

 

0.8001

 

0.7873

 

0.8360

 

0.8686
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V" = Vlvo

cell 6

0.6453

 

0.6999

 

0.7056

 

0.7379

 

 

0.7755

cell 7

0.666

0.697

0.666

0.713

0.697

0.729

0.713

0.745

cell 8

0 .719

0.719

0.735

0.735

0.766

0.800

0.784

0.835

0.870

0.888
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