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ABSTRACT

NUCLEAR SPECTROSCOPY WITH THE IN-MEDIUM SIMILARITY
RENORMALIZATION GROUP

By

Nathan Michael Parzuchowski

The in-medium similarity renormalization group (IMSRG) is an ab initio many-body method

which features soft polynomial scaling with system size and a Hermitian framework to create

Hamiltonians tailored for use with low-level approximations such as Hartree-Fock (HF) theory or

the random phase approximation (RPA). The flexibility that comes with these characteristics has

made the IMSRG a mainstay in contemporary nuclear structure theory. However, spectroscopy

with IMSRG calculations has been limited to scalar observables in nuclei accessible with shell

model machinery, where the IMSRG is used to construct effective valence-space interactions.

In this thesis, we present two novel developments which have greatly extended the IMSRG’s ca-

pability to perform spectroscopic calculations. First is the introduction of the equations-of-motion

IMSRG (EOM-IMSRG), which uses an approximate, but systematically improvable diagonaliza-

tion scheme in conjunction with the IMSRG to produce spectra and wave functions. The method

does not suffer the model-space limitations of the shell model, but sacrifices some accuracy due

to the approximate diagonalization. We benchmark this new method with the well established

equations-of-motion coupled cluster and full configuration interaction methods, where we demon-

strate that the method is indeed viable for closed-shell systems, encouraging expansion to open

shells using a multireference formalism. We also introduce a perturbative framework to add sys-

tematic corrections to the EOM-IMSRG, showing results for closed shell nuclei and quantum dots.

The second development is a generalized effective operator formalism for the IMSRG, capable

of consistently evolving non-scalar operators relevant for electroweak transitions and moments.

This general framework is applicable to both the EOM-IMSRG and the valence-space IMSRG

approaches. We benchmark electromagnetic transition strengths and moments using both of these

methods, also comparing with the quasi-exact no-core shell model and experiment when available.



We demonstrate that consistent renormalization of observables is critical for precise computations

with the IMSRG. We find that our methods perform well for transitions that are strongly single

particle in nature, but for collective transitions involving many particles, we note that work remains

to properly incorporate these effects in the IMSRG.



“...I must earnestly entreat both the patience and attention of the reader: his patience in order to
examine a detail which may perhaps in some places appear unnecessarily tedious; and his
attention in order to understand what may, perhaps, after the fullest explication which I am

capable of giving of it, appear still in some degree obscure. I am always willing to run some
hazard of being tedious in order to be sure that I am perspicuous; and after taking the utmost pains
that I can to be perspicuous, some obscurity may still appear to remain upon a subject in its own

nature extremely abstracted.” - Adam Smith
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CHAPTER 1

INTRODUCTION

It has been apparent for some time that an important forefront of nuclear theory lies in ab ini-

tio methods. These are approaches which seek to describe nuclear properties starting from first

principles. Over the past fifteen years, we have seen an explosion of applicability for this brand

of theory, growing from the lightest nuclei well into the medium-mass region, with contemporary

investigations reaching as far as the tin isotopes.

It was not too long ago that the only reliable ab initio approaches for nuclear physics were

quasi-exact methods such as the no-core shell model (NCSM) [16–18] or quantum Monte Carlo

(QMC) [19–21]. At the time, approximate methods were not effectual because nucleon-nucleon

potentials designed to reproduce elastic scattering phase shifts often exhibited strong short-range

repulsion and tensor forces, which result in significant coupling to high-momentum modes, produc-

ing strongly correlated wave functions incapable of a perturbative description. While quasi-exact

methods exhibited extraordinary success for nuclei existing in the lightest regions of the p-shell,

the idea of one day computing a nucleus such as 100Sn, or even a more modest system such as 56Ni,

was a veritable pipe dream. The brute-force nature of these quasi-exact methods results in expo-

nential or factorial scaling with system size, and hence even with an optimistic view of Moore’s

law, the medium-mass region seemed completely inaccessible using only these approaches.

Meanwhile, the field of quantum chemistry enjoyed a much more bountiful array of ab initio

methods. Along with the quasi-exact methods, chemists had employed approximate, but system-

atically improvable methods such as many-body perturbation theory (MBPT) and coupled-cluster

(CC) theory [11, 22–28]. These methods employ various many-body truncations, where dynamic

correlations beyond a certain level are omitted for reasons of computational feasibility. These

truncations offer much more favorable polynomial scaling with system size at the expense of some

precision. While these approaches were known in nuclear physics [29–31], their many-body trun-

cations were ultimately their undoing in that field, as the highly nonperturbative interactions of
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Figure 1.1 Taken from [3]. The progress of ab initio nuclear structure from 2005 to 2016.

the time resulted in crippling many-body truncation errors. In contrast, descriptions of the elec-

tronic systems of interest in quantum chemistry can typically treat inter-particle interactions as a

perturbation on top of the dominant mean-field.

Owing to the difficulties associated with the interactions, the earliest attempts at ab initio nu-

clear theory primarily served as a means to draw loose connections between the more quantitative

phenomenological models and the underlying inter-nucleon forces [32, 33]. Phenomenology such
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as the empirical shell-model [34] and Skyrme energy density-functionals [35,36] have long offered

a computationally elegant and numerically precise means to explain nuclear properties in regions

of the nuclear landscape where experimental data can be used to constrain the models, but as the

sights of experimenters turn to the exotic reaches of the nuclear chart, the utility of phenomenology

is reduced drastically. These shortcomings stem from uncontrolled extrapolations beyond regions

of known data; here artifacts of the fitting procedure are amplified, resulting in strongly model

dependent predictions. Furthermore, phenomenological predictions for observables other than en-

ergies are a subtle matter, as there is no obvious way to consistently renormalize the operators with

the fitted effective interactions of these methods.

A path forward was revealed by two revolutionary developments, which brought forth a re-

naissance in ab initio nuclear theory. The first was the arrival of chiral effective field theory

(EFT) [37, 38], where two- and three-nucleon interactions (and consistent electroweak current

operators) are constructed systematically via a consistent power-counting scheme which connects

with the symmetries of quantum chromodynamics (QCD). The second breakthrough came with

the increased popularity of renormalization group (RG) methods [39, 40] in the field, which have

brought about a unitary softening mechanism for the nuclear interactions. With chiral EFT provid-

ing a consistently constructed starting point for both the inter-nucleon interactions and observables,

RG methods act as a resolution dial for nuclear interactions. Here we can tune the strength of short-

range correlations to construct a more perturbative interaction, where rudimentary approaches such

as Hartree-Fock (HF) theory can then provide a reasonable starting point for approximate many-

body methods.

With these developments on the interaction front, the quasi-exact NCSM has been pushed

to new frontiers, reaching as far as the oxygen chain [40]. In regards to the proliferation of ab

initio methods, the most meaningful consequence of these developments was the reintroduction

of the polynomial scaling methods which had taken refuge in quantum chemistry. Techniques

such as CC theory have re-emerged in nuclear physics, along with a plethora of new approaches,

such as the in-medium similarity renormalization group (IMSRG) and the self-consistent Green’s
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function (SCGF) approach [41–60]. These methods, armed with the power of chiral EFT and RG

softening, have pushed the boundaries of predictive ab initio nuclear structure to the entirety of the

sd and p f -shells, and further beyond to the tin chain, as demonstrated in fig. 1.1. In this endeavor,

significant progress has been made in including the effects of three-nucleon forces [60–64] and

extending calculations to open-shell nuclei [44–46, 49, 51–53, 65, 66] through the clever use of

various normal-ordering schemes and also through marriages of ab initio machinery with effective

interaction ideas ported from phenomenology.

Ab initio efforts of the past decade have largely targeted energies and scalar observables such

as nuclear radii. In recent years however, there has been a significant push to develop a more gen-

eral effective operator formalism for these approximate ab initio methods, which includes tensor

observables such as transitions and moments. A particularly crucial frontier is that of neutrinoless

double β -decay, where a consistent and reliable prediction of the nuclear matrix element [67] for

the process would be invaluable to experimental efforts and analyses in the event of a confirmed

observation. There are many hurdles to be surpassed before the ab initio community can contribute

confidently on this front; to start, the development of a reliable theory for electromagnetic transi-

tions between excited states in heavier open-shell nuclei would be a needed step forward. While

there have certainly been efforts to explain excited states and strength distributions in medium-

mass nuclei [68–70], a versatile, lightweight framework for such explorations has not yet been

formalized. In the IMSRG, extensions to excited states and observables come quite naturally, as

the method offers a malleable and transparent Hermitian framework to renormalize various many-

body correlations within the nuclear Hamiltonian. Of late, much of the IMSRG’s progress on this

front has been through construction of effective valence-space interactions for shell-model calcu-

lations [46, 51, 52]. In the valence-space IMSRG (VS-IMSRG), ground states and excited states

are treated on the same footing and observables such as transition strengths follow from existing

shell-model machinery. This description is restricted however by those limitations which are en-

demic to any diagonalization method, where larger nuclei or multi-shell excitations will eventually

be confronted with the factorial scaling of the method.
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An alternative approach is offered by the equations-of-motion (EOM) formalism [71]. EOM

methods are systematically improvable approximate diagonalization methods. Much like the shell

model, ab initio EOM is greatly improved when used jointly with the IMSRG, which softens

couplings between various excitations in the Hamiltonian, and thus facilitates approximate diag-

onalizations. The equations-of-motion IMSRG (EOM-IMSRG) [72] utilizes Hamiltonians which

have been softened by IMSRG decoupling, where one may use less sophisticated transformations

than those needed for the VS-IMSRG, as the approximate diagonalization in the EOM calcula-

tion allows one to keep all particles active in the full model space. As such, the two methods

are excellent complements; the VS-IMSRG shell-model diagonalization allows for more detailed

descriptions where valence-space collectivity is important, such as in deformed nuclei, and the

EOM-IMSRG allows for less restricted explorations of states where low-order excitations domi-

nate. Both methods are growing in the scope of their applicability, as valence space decoupling

techniques continue to be perfected, and systematic improvements are built into the EOM-IMSRG

in both the manner of improved approximate diagonalization and decoupling schemes.

The EOM-IMSRG is an analog to the well established equations-of-motion CC (EOM-CC)

theory [68, 69, 73–76], and thus we expect similar behavior from these methods. The promise of

the EOM-IMSRG lies with the impending inclusion of generalized normal-ordering [77], which

has been used to develop the multireference IMSRG (MR-IMSRG) [45, 47]. As of now, the MR-

IMSRG has shown great potential as a method to obtain open-shell ground state observables for

even-even nuclei. Extension of this method to the MR-EOM-IMSRG will enable the exploration of

spectra in open-shells without any of the inherent limitations of the shell model method. Addition-

ally, the MR-EOM-IMSRG can be extended to odd-even and odd-odd nuclei with a generalized

EOM formalism. The application of generalized normal-ordering is a non-trivial task, so we have

first demonstrated the principle and produced some novel results in a single-reference formulation,

which is limited to nuclei near closed shells. In this work, we introduce and explore the strengths

and limitations of the EOM-IMSRG as a method for obtaining excited states, and introduce a gen-

eral effective operator formalism for the IMSRG, which is explored and benchmarked in both the
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VS- and EOM-IMSRG for numerous light and medium-mass nuclei.

The rest of this dissertation is organized as follows. In chapter 2, we introduce the nuclear

many-body problem, and much of the notation and terminology used in this work. In chapter 3, we

formalize the IMSRG, introducing normal-ordering, the IMSRG equations, and the resummation

of perturbation theory through IMSRG decoupling. In chapter 4, we discuss some of the major new

developments brought about by this work, namely the direct computation of excited states methods

in the EOM paradigm, first from the perspective of decoupling the 1p1h sector exactly, and second

as a general formulation of the EOM-IMSRG. In chapter 5, we introduce a generalized effective-

operator formalism for IMSRG, which was developed throughout the course of this work. This

technical advance is applicable for all variants of the IMSRG, so we make comparisons between

the VS-IMSRG and EOM-IMSRG. Here we seek to understand the strengths and weaknesses

of the complementary methods, which are also benchmarked with NCSM and experiment where

available. Finally we present conclusions in chapter 6. The technical advances which brought

about the results in chapters 4 and 5 are showcased in the appendix.
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CHAPTER 2

THE NUCLEAR MANY-BODY PROBLEM

Nuclei are self-bound collections of protons and neutrons, held together by complicated inter-

particle interactions. If nucleons are taken to be the fundamental degrees of freedom for a nuclear

structure problem, it is then necessary to take into consideration two-, three-, and up to A-body

forces to account for the composite nature of the proton and neutron. Of course, such consider-

ations are impractical for computation, so we must start from a heavily restricted approximation,

and improve systematically from there.

In this chapter we explore the basic facets of the nuclear many-body problem. First we in-

troduce inter-nucleon interactions and briefly discuss chiral effective field theory, which is used to

produce the input two- and three-nucleon interactions used in this work. We review the independent

particle model, and from there motivate the nuclear many-body problem. We introduce Hartree-

Fock theory as a means of generating a suitable reference state, and then summarize the formalism

of the popular configuration interaction method, many-body perturbation theory, and coupled clus-

ter theory. These methods serve both as motivations and benchmarks for the in-medium similarity

renormalization group, which is the focus of this thesis.

2.1 Nuclear Interactions

Perhaps the most daunting challenge for nuclear theory is to construct an accurate description of

the inter-nucleon interaction. There are two classes of interactions used for the nuclear many-body

problem; phenomenological interactions that are tuned to specific many-body methods and/or nu-

clei in a given mass range, and “realistic” interactions which accurately describe two- and three-

nucleon systems in free-space, and can be used to describe any nucleus within any many-body

framework. Phenomenological interactions are designed to perform well for a restricted set of nu-

clei and/or observables, and are fit to data within that region of the nuclear chart. Most prominent
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among these phenomenological interactions is the USDB interaction [78], which has performed

excellently in the reproduction of nuclear observables in the sd-shell [34], and the Skyrme force,

which in modern parlance is a phenomenological parameterization of the nuclear energy density

functional [35, 36]. Beyond the specific region targeted by phenomenological interactions, their

predictive power becomes extremely limited, often exhibiting model dependent extrapolation prop-

erties. Moreover, if one wishes to explore observables other than energies, such as electromagnetic

moments or strengths, a phenomenological renormalization procedure for the relevant operators is

often ad hoc and uncontrolled. For this reason, ab initio approaches, where one starts from realis-

tic two- and three-nucleon interactions in free-space and then solves the many-body Schrödinger

equation as accurately as possible, have attracted increased attention in recent years.

Of course, the ab initio label raises a picture of interactions derived analytically from QCD,

starting with quarks and gluons, and deriving from there the meson-exchange processes which

govern the nuclear interactions. This is not possible at present, as the QCD Lagrangian is nonper-

turbative at low energies relevant to nuclear structure, in stark contrast to the lovely perturbative

properties which have brought great success to quantum electrodynamics. While lattice QCD cal-

culations offer a step forward, immense computational demands limit these explorations to 0s shell

nuclei such as the deuteron and triton, where the pion mass is artificially large [79, 80].

A more practical starting point is from so-called “realistic” interactions, where all nucleons are

treated as active, and the forces are fit to very light-mass nuclear data, such as nucleon-nucleon

(NN) phase shifts, and binding energies from the triton and 4He. Some early examples of these

interactions are high-precision potentials [81–83] which use meson-exchange phenomenology to

fit to elastic channel NN scattering. While these potentials have been extraordinarily successful in

the description of light nuclei, they struggle as we enter the medium-mass region. Moreover, ab

initio methods which use many-body truncations to access this region are subject to large errors

resulting from the hard repulsive core featured in several of these interactions. These interactions

also lack a formal consistency between two- and three-nucleon interactions, and offer no path to

build consistent current operators for coupling to to external electroweak probes.
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Figure 2.1 Chiral EFT forces up to N3LO (ν = 4). Solid and dashed lines represent nucleons and
pions respectively. Vertex order ∆ is 0 for small dots, 1 for filled circles, 2 for filled squares, and 4
for filled diamonds. Figure taken from [4].

An ab initio paradigm which has gained significant traction in the past decade is to use chiral

effective field theory (EFT) to construct the inter-nucleon interactions systematically starting from

an effective Lagrangian which is modeled after QCD. Chiral EFT preserves the symmetries of

QCD, in particular chiral symmetry breaking [4, 84]. Chiral symmetry is exhibited by massless

particles, where right-handed helicity states are completely decoupled from left-handed states.

In the two-flavor QCD Lagrangian, the constituent up and down quarks are nearly massless in

comparison to the hadronic masses at around 1 GeV/c2 (mu = (2.5±0.8) MeV/c2, md = (5.0±0.9)

MeV/c2 [85, 86]). Therefore, the QCD Lagrangian exhibits approximate chiral symmetry, which

is spontaneously broken in the axial-vector subgroup of the SU(2)L× SU(2)R chiral symmetry
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group (see e.g. [38,87]). This spontaneous chiral symmetry breaking implies the existence of three

massless Nambu-Goldsone bosons. In reality, the slight explicit breaking of chiral symmetry due

to the non-zero quark masses results in massive, but unnaturally light psuedoscalar mesons in the

place of the Nambu-Goldstone bosons, namely pions. The existence of pions implies a separation

of scales in the hadronic degrees of freedom, as the pion mass mπ ≈ 140 MeV/c2 is significantly

smaller than the mass of other vector mesons [86]. This separation is exploited to formulate chiral

EFT.

In contrast to the quarks and gluons of QCD, chiral EFT employs nucleons and pions as the

fundamental degrees of freedom,

LχEFT = Lππ +LπN +LNN + · · · . (2.1)

Pions, being of significantly lighter mass than the other mesons exchanged in nuclear interactions,

account for long-range interactions and are the only meson fields included in the Lagrangian.

Short-range physics, the result of heavier meson exchange, is encoded in contact interactions with

low energy constants (LECs) which must be fit to light-mass nuclear data. Treating short range

physics in low-resolution such as this means that the theory is only valid for long-range physics

whose characteristic energy scale Q is on the order of the pion mass. As such, the theory must be

regulated by a cut-off at some momentum Λ, which suppresses high momenta on the order of the

heavier meson masses. The EFT Lagrangian constitutes the most general expression which con-

serves the symmetries of QCD, and hence there are an infinite number of terms in the expansion,

and with each term comes a myriad of LECs. Fortunately, the vertices may be organized by the

number of terms proportional to the soft scale Q. This breaks down to the number of pion mass

insertions or derivatives, d and nucleon fields n,

∆ = d +n/2−2 , (2.2)

and the problem may then be treated in chiral perturbation theory, where interaction terms are

grouped in powers of (Q/Λ), which is ostensibly small. Thus a chiral EFT is specified by the order
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ν of (Q/Λ) kept in the perturbative expansion, as well as the fitting procedure used to constrain

the forces. For a given chiral order ν , there are a finite number of diagrams which may contribute

to the nuclear forces. As a result, the chiral forces can in principle be calculated to any order.

Fig. 2.1 illustrates the chiral power counting for the EFT up to ν = 4 or next-to-next-to-next-to

leading order (N3LO). Here you can see the number of nucleons A, loops L, and the vertex orders

∆i factor into the chiral order of a given diagram,

ν =−4+2A+2L+∑
i

∆i . (2.3)

This figure also demonstrates the fact that many-body forces appear naturally as you increase the

chiral order, with 3N forces appearing at N2LO, 4N at N3LO, and so on. Thus, we expect that

for sufficiently small (Q/Λ), the importance of many-body forces decreases significantly with

many-body operator rank. This is an important feature in ab initio calculations, as the diminished

importance of these higher-body forces means that accurate computations are indeed feasible.

The most popular interaction in the literature is the NN interaction of Entem and Machleidt,

computed to N3LO [5], with a cutoff at Λ=500 MeV. Often coupled with this is the 3N force of

Navrátil, which is computed to N2LO at Λ=400 MeV [13]. This is of course inconsistent with

the order and cutoff of the NN force, but 3N forces at N3LO have not been computed until very

recently [88], and it has been demonstrated that using a 500 MeV cutoff for the 3N interaction

leads to large induced 4N forces upon SRG softening [63]. The so called NN+3N(400) force has

been quite successful as a means to describe ground state energies up to the light constituents of the

sd-shell. A notable shortcoming is the interaction’s inability to produce ground states with proper

radii. Radii are under predicted and significant overbinding is exhibited in heavier nuclei, but the

effect seems to be filtered out by observables such as separation and excitation energies [55,89,90].

There have been numerous works in recent years to improve chiral EFT. Two main strategies have

developed: a brute force approach to increase the chiral order [88, 91], and a re-evaluation of the

fitting procedures at lower orders [92–94].

For this work we use almost exclusively the NN force of Entem and Machleidt, often including
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the 3N force of Navrátil. We choose this interaction because of its preponderance in the literature.

We refer to it as the standard NN+3N(400) force.

2.2 Independent Particle Model

The most elementary picture of nuclear structure can be constructed by neglecting the inter-nucleon

forces, and instead treating the problem as a collection of independent particles subject to some

empirical mean-field; this reduces the original problem of solving the many-body Schrödinger

equation to that of a single particle moving in a potential well, a problem that is familiar from

introductory quantum mechanics. An approximation for the ground state of the A-body nucleus

can be made simply by filling the lowest A orbitals, where the highest single-particle energy cor-

responds to the Fermi energy εF . We then construct an antisymmetric product state in accordance

with the Pauli exclusion principle. The resulting theory of nuclear structure is often referred to

as the independent particle model (IPM). A standard choice for the mean-field potential is the

Woods-Saxon (WS) potential [95], shown schematically in fig. 2.2 and given by

V (r) =−V0

[
1+ exp(

r−R0
a

)

]−1
, (2.4)

where V0 is the depth of the potential well, R0 is the empirical nuclear radius, and a controls the

gradient of the potential near r = R0. These parameters are chosen to match observed properties of

nuclei. In particular, the approximately uniform density (saturation density) which occurs within

the interior of the nucleus is ensured by the flat region of the WS potential, and the sharp gradient

in the potential near R0 guarantees a strong binding force at the surface. The potential quickly

goes to zero after R0, which accounts for the finite range of the nuclear force. As the WS potential

vanishes at infinity, the WS basis contains both discrete bound states in the potential well and

scattering states within the continuum.
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Figure 2.2 Schematic diagram of the Woods-Saxon potential. Discrete levels exist in the potential
well, and a continuum of scattering states exist above it. Orbitals are filled up to the Fermi level,
εF .

The constructed antisymmetric product state is called a Slater determinant,

Φ0(r1, . . . ,rA) =
1√
A!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rA)

φ2(r1) φ2(r2) · · · φ2(rA)

...
... . . . ...

φA(r1) φA(r2) · · · φA(rA)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.5)

where φi are the WS orbitals. In the IPM, this is our approximation to the ground state wave func-

tion. Despite the IPM’s extreme simplicity, it gives a remarkable account of the gross structure of

nuclei; the method is able to produce shell structure and magic numbers, as well as nuclear proper-

ties such as ground state spins and magnetic moments in the vicinity of shell closures. Conversely,

open-shell nuclei have strongly correlated ground states due to the presence of quasi-degenerate

orbitals near εF , and hence a single Slater determinant fails to describe them even qualitatively.

Moreover, the method is not systematically improvable without the inclusion of correlations.
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When we do add correlations by restoring the inter-nucleon interactions and solving the many-

body Schrödinger equation, the IPM offers a convenient starting point for nuclei near shell closures,

from which we may build in dynamic correlations in the form of excitations brought about by the

interactions. To compute solutions to the nuclear many-body problem, we must construct a many-

body basis from the single-particle basis. Such a task may be accomplished by enumerating all

possible A-body Slater determinants allowed within the chosen single-particle basis. The ground-

state approximation from the mean-field picture is now referred to as the “reference state”, and all

other Slater determinants are particle-hole excitations on top of this reference.

While there is a continued effort to solve the nuclear many-body problem using idealized

single-particle bases where bound and scattering states are treated on equal footing [96–99], most

many-body methods at present focus primarily on bound states using the harmonic oscillator (HO)

potential

V (r) =
1
2

mω
2r2 (2.6)

as a starting point. The HO potential, despite allowing only bound states, exhibits desirable prop-

erties owing to a clean factorization of the center-of-mass and relative coordinates. This allows for

convenient transformations between momentum and coordinate space, as well as access to intrinsic

properties without spuriosities from the violation of translational invariance necessarily suffered

when using a spherical basis. Despite some striking differences from the WS potential, the IPM

with the HO basis is nonetheless able to recover fundamental properties of nuclei such as shell

structure arising from its evenly spaced degenerate orbitals.

2.3 The Many-Body Basis and Hamiltonian

To include the dynamic correlations that are neglected by the independent particle model, we now

formulate the interacting nuclear many-body problem in second quantization (see [100,101]). The

nuclear many-body problem boils down to solving the stationary Schrödinger equation,

H|Ψν〉= Eν |Ψν〉 , (2.7)
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where Ψν and Eν are the wave function and energy for any stationary state of the system. The

intrinsic A-body nuclear Hamiltonian H consists of a kinetic energy term, as well as two-, three-

and up to A-nucleon forces,

H = T 1b +
A

∑
n=2

V nb−T 1b
cm −T 2b

cm . (2.8)

Here we have subtracted contributions from the COM kinetic energy,

Tcm =
P2

2mA
=

A

∑
i=1

p2
i

2mA
+

1
2

A

∑
i 6= j

pi ·p j

mA
= T 1b

cm +T 2b
cm , (2.9)

which account for translation of the entire nucleus. In practice, finite computational power limits us

to at most three-nucleon forces, so state-of-the-art many-body calculations use second-quantized

Hamiltonians of the form

H = ∑
pq
(1− 1

A
)〈p|T |q〉a†

paq +
1
4 ∑

pqrs
〈pq|V (2)− p1 ·p2

mA
|rs〉a†

pa†
qasar

+
1

36 ∑
pqrstu

〈pqr|V (3)|stu〉a†
pa†

qa†
r auatas. (2.10)

Here, we use antisymmetrized two- and three-body bras and kets. We will often use short-hand

such as

Tpq ≡ (1− 1
A
)〈p|T |q〉 , (2.11)

V (2)
pqrs ≡ 〈pq|V (2)− p1 ·p2

mA
|rs〉 , (2.12)

V (3)
pqrstu ≡ 〈pqr|V (3)|stu〉 , (2.13)

for the antisymmetrized operators, where the subtraction of the center-of-mass kinetic energy has

been absorbed into the interaction terms. a† and a are fermion creation and annihilation operators,

which are used to construct the many-body basis of antisymmetrized A-body product states, or

Slater determinants:

|Φ0〉= {
A

∏
i=1

a†
i }|0〉 . (2.14)

Here each a†
i corresponds to the addition of the ith single-particle orbital to the antisymmetrized

product. |Φ0〉 is the reference state, consisting of the A single-particle orbits which comprise
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the Fermi sea. The Pauli exclusion principle is encoded here by the fermion anti-commutation

relations,

[a†
i ,a j]+ = δi j, [a†

i ,a
†
j ]+ = [ai,a j]+ = 0 . (2.15)

A complete many-body Hilbert-space can be constructed via the application of creation and anni-

hilation operators,

|Φa
i 〉= a†

aai|Φ0〉 , |Φab
i j 〉= a†

aa†
ba jai|Φ0〉 , etc . . . (2.16)

Here we note that fermion creation and annihilation operators cannot create an already existing

particle, or annihilate one which is already absent. Thus, when these cases arise, the creation

and annihilation operators annihilate the state, which can be shown using eq. 2.15. In the defini-

tion 2.16, we see a single excitation and a double excitation from the reference state. The ellipses

indicates that in order to construct the complete basis, we must include triples, quadruples and up

to A-body excitations, corresponding to A creators and A annihilators acting on the reference state.

To simplify the discussion of the many-body basis, we develop the particle-hole nomenclature,

where particles are created above the Fermi level, and holes are destroyed below it. In this work

(except where otherwise noted), the indices a,b,c, . . . will refer to particles and i, j,k, . . . to holes.

Unspecified orbitals will be referred to as p,q,r, . . . In this terminology, the reference state cor-

responds to a Slater-determinant filled with all hole states. A single excitation corresponds to a

particle-hole excitation (1p1h) from the reference,

|Φa
i 〉= a†

aai|Φ0〉 , (2.17)

doubles to 2p2h, triples to 3p3h, and so on to ApAh excitations. This is shown schematically in

fig. 2.3

As the reference state and all possible excitations constitute a complete basis, the eigenstates

of eq. 2.7 can be written as a linear combination of these Slater determinants,

|Ψν〉=C0|Φ0〉+
A

∑
N=1

1
N! ∑

i1,...,iNa1,...,aN

C
a1,...,aN
i1,...,iN

a†
a1
· · ·a†

aN
aiN · · ·ai1 |Φ0〉 . (2.18)
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0p0h 1p1h 2p2h 3p3h

F

Figure 2.3 Schematic depiction of the reference state (0p0h), single (1p1h), double (2p2h) and
triple (3p3h) excitations.

The goal of the nuclear structure theorist is then to solve for the coefficients Cα which describe the

state of interest.

The single particle basis used to construct the many-body basis is specified by a truncation on

the single-particle energies in the HO basis, emax. It is not practical to solve the problem in m-

scheme, where each orbital has good spin projection quantum number m, as the necessary model

spaces for converged calculations (emax > 10) would possess over 1000 orbitals, corresponding

to billions of antisymmetrized two-particle states, and an astronomical number of three-particle

states. We instead express the problem in J-scheme, exploiting the spherical symmetry of the

Hamiltonian. For spherical nuclei, it is sufficient to only consider scalar matrix elements. To

transition to J-scheme, all dependence on the spin projection m is summed out using the Wigner-

Eckart theorem (see appendix for details). In J-scheme, the number of orbitals is reduced by

roughly an order of magnitude. Even with this simplification, many-body problems involving

hundreds of orbitals are far from trivial. Thus the matrix must be stored in such a way as to exploit

every symmetry available, namely total angular momentum J, isospin projection Tz, and parity Π.

Additionally, we note that observables must be expressed as Hermitian operators, reducing the size

of the matrix by roughly a factor of two.

Even after these symmetries are exploited, it is often found that the number of unique non-zero

three-body matrix elements requires many terabytes of storage even for light sd-shell nuclei. Thus

an additional truncation E3max is introduced, where

E3 = e1 + e2 + e3 . (2.19)
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Here the summed single particle energies for a three-body basis state are restricted to E3max. Typ-

ical values are E3max = 12,14,16, which limit the size of the three-body interaction to 1-100 GB.

Ground state energies are dependent on this truncation for low values of the HO single-particle

basis frequency h̄ω , but for sd-shell nuclei, E3max = 14 is sufficient after h̄ω = 20 MeV. The dif-

ference between E3max = 12 and 14 is typically on the order of 1−2% for the optimal h̄ω [102].

Solution of the many-body problem often requires the storage of several copies of the interac-

tion, and therefore it is rarely practical to include the three-body force, even after E3max trunca-

tion. However, partial incorporation of the three-body force at the two-body level can be achieved

through normal-ordering. Nuclear many-body operators are expressed in-medium through use of

normal-ordering with Wick’s theorem.

A normal ordered operator string is a string of N creation and annihilation operators (denoted

generically by Ai) which are ordered in such a way that the reference state expectation value is

zero,

〈Φ0|{A1A2 · · ·AN}|Φ0〉= 0 . (2.20)

While this ordering may be achieved using the standard fermion anti-commutation relations, a

more useful approach is through the use of Wick contractions

a†
i a j = a†

i a j−
{

a†
i a j
}
, (2.21)

which are zero by construction for operator pairs which are already normal-ordered, and which

correspond to the anti-commutator for pairs which are not. This is related to the convenient fact that

all creation and annihilation operators within a normal-ordered string anti-commute, so exchanges

only require a change of sign. For two strings of normal-ordered operators of length 2n and 2m,

Wick’s theorem (see, e.g., [11]) relates their product to a linear combination of normal-ordered

operator strings:

{
a†

i1
. . .a†

ina jn . . .a j1

}{
a†

k1
. . .a†

km
alm . . .al1

}
= (2.22)

(−1)m·n{a†
i1
. . .a†

ina†
k1
. . .a†

km
a jn . . .a j1alm . . .al1

}
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+(−1)m·na†
i1

al1

{
a†

i2
. . .a†

km
a jn . . .al2

}
+ singles

+(−1)m·na†
i1

al1a†
i2

al2

{
a†

i3
. . .a†

km
a jn . . .al3

}
+ doubles+ triples+ · · · . (2.23)

Here singles, doubles, and triples refer respectively to all possible single contractions, pairs and

triplets of operator contractions in the two strings. The expansion continues until all terms are con-

tracted in every way possible. The phase of each term is determined by the number of exchanges

needed to bring the total operator string into the form shown, including the process of bringing

contracted operators adjacent to one another. Note that we do not show contractions between two

creation or two annihilation operators, as these anti-commute with one another, and thus their

contractions vanish.

Normal ordering has the effect of mapping the second quantized Hamiltonian,

H = ∑
pq

Tpqa†
paq +

1
4 ∑

pqrs
V (2)

pqrsa†
pa†

qasar +
1

36 ∑
pqrstu

V (3)
pqrstua†

pa†
qa†

r auatas , (2.24)

to a form where vertices contain density dependent elements of higher-body forces:

H = E0 +∑
pq

fpq{a†
paq}+

1
4 ∑

pqrs
Γpqrs{a†

pa†
qaras}+

1
36 ∑

pqrstu
Wpqrstu{a†

pa†
qa†

r auatas} . (2.25)

Here, “in-medium” vertices are determined by Wick’s theorem:

E0 = ∑
i

Tiini +
1
2 ∑

i j
V (2)

i ji jnin j +
1
6

V (3)
i jki jknin jnk, (2.26)

fpq = Tpq +∑
i

V (2)
piqini +

1
2 ∑

i j
V (3)

pi jqi jnin j, (2.27)

Γpqrs =V (2)
pqrs +∑

i
V (3)

pqirsini, (2.28)

Wpqrstu =V (3)
pqrstu. (2.29)

Here ni is the integer occupation number for the reference state (ni = Θ(εF − εi)). All normal-

ordered vertices include in-medium contributions from higher order many-body forces. For exam-

ple, the zero-body term E0 contains hole index summations over all of the free-space operators,

and corresponds to the energy of the reference state, which has become the in-medium vacuum

state.
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Normal ordering of the Hamiltonian is injective, and thus exact solution of the many-body

Schrödinger equation requires the same amount of work in either representation. However, in the

in-medium formulation, one may truncate away the residual three-body force W , and still retain

in-medium components of the free-space three-body force in the zero, one and two-body terms.

This constitutes the normal-ordered two-body (NO2B) approximation, where three-body physics

can be incorporated in a computationally practical two-body framework. With these tools, we have

a foundation on which to build a many-body method. However, we will return briefly to the IPM

in the context of Hartree-Fock theory, which we use to systematically construct a single-particle

basis.

2.4 Hartree-Fock Theory

The mean-field picture of the IPM can be put on a microscopic foundation through use of Hartree-

Fock (HF) theory. This method again seeks to describe the ground state with only a single Slater

determinant, but here we work with the full inter-nucleon interaction, constructing the mean-field

through minimization of the energy functional

E[Φ] = 〈Φ|H|Φ〉 , (2.30)

where the ground state is taken to be a single Slater determinant. Using NN and 3N forces, the

energy functional becomes

E[Φ] = ∑
i
〈i|T |i〉+ 1

2 ∑
i j
〈i j|V (2)|i j〉+ 1

6 ∑
i jk
〈i jk|V (3)|i jk〉 , (2.31)

where the choice of indices indicates summation over hole states. We vary the single particle

orbitals via Thouless’ theorem [103], which states that any two Slater determinants are related by

an exponentiated one-body excitation operator,

|Φ′〉= eC1 |Φ〉 . (2.32)
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Taking the amplitudes of C1 to be small, we arrive at

|Φ′〉= (1+∑
ia

δCaia
†
aai)|Φ〉 , (2.33)

and

δE[Φ] = ∑
ai

δCai〈Φ|Ha†
aai|Φ〉 . (2.34)

Setting δE[Φ] to zero yields the condition

〈Φ|Ha†
aai|Φ〉= 0 ∀ a, i such that εi ≤ εF and εa > εF . (2.35)

Expanding in terms of the single-particle basis, we arrive at

〈Φ|Ha†
aai|Φ〉= 〈i|T |a〉+∑

k
〈ik|V (2)|ak〉+ 1

2 ∑
kl
〈ikl|V (3)|akl〉= 0 . (2.36)

this condition is known as the Brillouin condition, and is clearly satisfied by the eigenbasis of the

operator

F = ∑
pq

a†
paq

[
Tpq +∑

k
V (2)

pkqk +
1
2 ∑

kl
V (3)

pklqkl

]
. (2.37)

F is called the Fock operator. Its eigenfunctions correspond to the HF orbitals, and eigenvalues

to the HF single-particle energies. F is the one-body piece of the normal-ordered Hamiltonian in

eq. 2.25, highlighting the fact that in-medium operators contain mean-field components of higher-

order free-space operators.

Here we have computed the HF mean-field,

V HF
pq = ∑

k
V (2)

pkqk +
1
2 ∑

kl
V (3)

pklqkl , (2.38)

a one-body potential constructed by summing over the hole orbitals in the reference state. This is

the microscopic analog to the phenomenological construction of the IPM in sec. 2.2. The HF ref-

erence state |ΦHF〉 is a Slater-determinant filled up to εF , and thus it is the energetically optimized

reference state for a many-body calculation. The reference energy corresponds to the Hartree-Fock

energy EHF = E[ΦHF ].

21



One does not know the form of the HF basis a priori, so in practice, we start with a HO basis,

and solve the eigenvalue problem self-consistently, as the construction of the mean-field requires

knowledge of the HF orbitals. We construct F using the HO orbitals, diagonalize F , and use

the new orbitals to restart the procedure. We iterate until convergence is obtained in the single

particle energies and the HF basis has been established. As the HO basis is truncated to a finite

single-particle energy emax, the HF orbitals will be dependent on the frequency of the HO basis

h̄ω . However, for large enough emax, we see convergence where h̄ω dependence of computed

quantities is negligible over a wide range.

2.5 The Configuration Interaction Method

As previously stated, the principle task facing ab initio nuclear structure theorists is to solve for

the coefficients Cα of the configuration expansion

|Ψν〉=C0|Φ0〉+
A

∑
N=1

1
N! ∑

i1,...,iNa1,...,aN

C
a1,...,aN
i1,...,iN

a†
a1
· · ·a†

aN
aiN · · ·ai1 |Φ0〉 . (2.39)

If we have knowledge of the correlated wave function |Ψν〉, accurate observables such as energy,

radii, and transition strengths follow from expectation values. The expansion of states in terms

of the many-body basis suggests that the most straightforward way of doing this is to express the

Hamiltonian as a matrix on the many-body Hilbert space. Solving the matrix eigenvalue problem

yields the energies as eigenvalues and the coefficients Cα in the eigenvectors. Thus, for a given

single-particle basis truncated at emax, we wish to construct all possible configurations of A filled

orbitals, written as Slater determinants, and then represent the matrix in the resulting basis by

computing individual matrix elements, e.g.

〈Φab
i j |H|Φ0〉= Γabi j . (2.40)

Subsequent solution of the eigenvalue problem yields the correlated wave functions for the ground

and excited states. This approach is appropriately named the full configuration interaction (FCI)
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approach. Frequently, we will refer to FCI as the standard of “exactness” within a given model

space.

It now appears that solving the many-body problem is a rather simplistic task, but of course,

FCI is not practical for nuclear physics beyond the lightest nuclei, as construction of the full set of

configurations scales factorially with the number of single particle orbitals. Nonetheless, a close

relative of FCI has made a name for itself in ab initio nuclear structure, namely the no-core shell

model (NCSM) [16–18]. Here COM factorization is ensured using a truncation on the excitation

quanta allowed in the many-body basis rather than including the full set of configurations. In prac-

tice, the actual Slater determinants are never explicitly constructed in either of these approaches,

as Krylov space approximate diagonalization methods [104, 105] can be used in place of conven-

tional eigenvalue solvers, requiring only knowledge of the matrix-vector products, which may be

computed fully in Fock-space with second quantization machinery. Regardless, computational de-

mands grow rapidly with system size, so either of these exact methods are only applicable to light

nuclei. Methods such as the FCI and NCSM belong to a class of ab initio approaches called “quasi-

exact” methods, meaning that they are exact within the accessible model spaces. Other examples

include quantum Monte Carlo [19–21] and lattice effective field theory [106,107], which are exact

up to statistical errors. A common feature of any quasi-exact method is limited applicability, as the

complex nature of the many-body problem demands significant computational power for an exact

solution.

While no ab initio method can proclaim universal applicability, vast improvements can be made

here if we sacrifice the quasi-exact moniker by applying some systematically improvable many-

body truncation. This can be accomplished by limiting the number of Slater determinants included

in the expansion of the correlated state functions. The most obvious way to do this is to truncate

the FCI expansion of eq. 2.39 up to a certain excitation rank from the reference state. The resultant

configuration interaction (CI) method is specified by what remains. In this manner, we define the
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configuration interaction with singles and doubles (CISD) [108]:

|ΨCISD
ν 〉=C0|Φ0〉+∑

i,a
Ca

i a†
aai|Φ0〉+

1
4 ∑

i jab
Cab

i j a†
aa†

ba jai|Φ0〉 . (2.41)

This method is approximate of course, as the many-body Hamiltonian directly couples the ref-

erence state to single, double, and triple excitations, and indirectly to all excitation ranks. Any

results expressed with such a method are then subject to so-called “many-body truncation errors”.

We say this method is systematically improvable, as we can make things better by going to the

next level of CISDT, or further to CISDTQ if we have the patience to implement such a method.

The many-body truncation of the configuration interaction sheds some light on the importance of

Hartree-Fock theory. As the CI expansion is limited to the reference state and a finite number of

excitations built on top of that reference, it is critical that we use the best possible reference state.

For most systems, the HF reference is a sufficient choice, as it minimizes the energy functional for

Slater determinants.

Truncated CI, despite having a desirable simplicity in its formulation, suffers from a fatal short-

coming; the method violates size-extensivity, a principle that states that a uniformly distributed

system’s energy should be proportional to system size [11].

2.6 Many-Body Perturbation Theory

The lack of size-extensivity observed in truncated CI can be understood using many-body per-

turbation theory (MBPT), which is itself a method for constructing the correlated ground state

wave function [11, 109, 110]. MBPT treats the non-interacting reference state as the order zero

wave function, and the corresponding reference energy as the order zero energy. Generically, the

Hamiltonian is partitioned into a diagonal and interaction piece

H|Ψ0〉= (H0 +HI)|Ψ0〉= E0|Ψ0〉 , (2.42)

with the known order zero solution

H0|Φ0〉= E(0)
0 |Φ0〉 . (2.43)
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Left multiplying eq. 2.42 by 〈Φ0| gives

〈Φ0|HI |Ψ0〉= E0−E(0)
0 ≡ ∆E , (2.44)

where we have invoked the intermediate normalization 〈Φ0|Ψ0〉 = 1. Treating this problem in

Rayleigh-Schrödinger perturbation theory yields MBPT to infinite order

|Ψ0〉=
∞

∑
m=0

[R0(HI−∆E)]m|Φ0〉 , (2.45)

with the resolvent operator

R0 =
Q

E(0)
0 −H0

, (2.46)

where the complement space projector is given by Q = 1−|Φ0〉〈Φ0|. Thus, MBPT can be com-

puted up to a specified order m, and at each order, a finite number of terms contribute. For example,

the first order wave-function is given by

|Ψ(1)
0 〉= |Φ0〉+R0HI |Φ0〉 , (2.47)

and the corresponding second-order energy correction is

∆E(2) = 〈Φ0|HIR0HI |Φ0〉 . (2.48)

The energy and wave functions are often evaluated using Goldstone diagrams (for details, see [11]),

and it can be shown that any unlinked diagrams arising from the HI [R0HI ]
m term in eq. 2.45

are canceled exactly at each order by so-called renormalization terms proportional to ∆E. This

is a restatement of the famous linked-cluster theorem [111–114], and it results in a simplified

expression for the MBPT energy corrections

∆E(m+1) = 〈Φ0|{HI [R0HI ]
m}C|Φ0〉 , (2.49)

where the subscript C denotes connected diagrams. By the linked-cluster theorem, a method is

size-extensive if the ground state energy can be expressed diagrammatically using only connected

diagrams, hence MBPT is size-extensive at each order.
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Starting from the NO2B approximation, we partition the Hamiltonian as

H0 = E0 +∑
p

fpp{a†
pap} HI = ∑

pq
fpq(1−δpq){a†

paq}+
1
4 ∑

pqrs
Γpqrs{a†

pa†
qasar} . (2.50)

This is simplified in the HF basis, as the Brillouin condition sets the one-body piece of HI to

zero. Employing this partitioning in the HF basis, the first-order energy correction vanishes and

the second-order correction (MBPT(2)) is

E(2)
0 = ∑

α

|〈Φα |HI |Φ0〉|2

E0−Eα

=
1
4 ∑

i jab

|Γi jab|2

∆
i j
ab

, (2.51)

where ∆
i j
ab = fii+ f j j− faa− fbb is the Møller-Plesset energy denominator. This energy correction

scales as O(N2
pN2

h ) , where Np and Nh are the number of particle and hole orbitals in the single

particle basis. The method is systematically improvable, with the MBPT(3) correction scaling as

O(N4
pN2

h ).

In principle, truncated CI and MBPT are different routes to solving the same problem. In fact,

CISD includes energy contributions from all orders of MBPT at a computational cost similar to

MBPT(3). The resummation is incomplete however, in particular the renormalization terms which

violate size-extensivity are not cancelled out at each order of CI. This manifests diagrammatically

with the observation that the CI excitation operators

C1 ≡∑
ia

Ca
i a†

aai C2 ≡
1
4 ∑

i jab
Cab

i j a†
aa†

ba jai , (2.52)

which are constructed by solving the CISD eigenvalue problem

H|ΨCISD
0 〉= ECISD|ΨCISD

0 〉 , (2.53)

contain unlinked diagrams composed of the bare interaction vertices.

2.7 Coupled Cluster Theory

The resummation of perturbation theory exhibited by CI motivates a size-extensive counterpart,

called coupled cluster (CC) theory [11, 25]. CC theory reorganizes the CI expansion into an expo-
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nential expansion of cluster operators,

exp[T1 +T2 +T3 + · · ·+TA]≡ 1+C1 +C2 +C3 + · · ·+CA , (2.54)

where TN are the N-body cluster operators defined by

TN =
∞

∑
m=1
{R0HI}mC,N , (2.55)

where the subscript (C,N) denotes connected terms with 2N external lines. Rewriting the expan-

sion in this way allows us to make a size-extensive many-body truncation on the cluster operators,

denoted as CCSD, CCSDT, and so on. Thus the CCSD ground state is

|ΨCCSD
0 〉= exp[∑

ai
ta
i {a

†
aai}+

1
4 ∑

abi j
tab
i j {a

†
aa†

ba jai}]|Φ0〉 . (2.56)

In coupled-cluster calculations, the exponential operator eT is a similarity transformation,

H|Ψ0〉= E0|Ψ0〉 → e−T HeT |Φ0〉= E0|Φ0〉 → H̄|Φ0〉= E0|Φ0〉 , (2.57)

which is applied to the Hamiltonian and used to derive a system of algebraic equations in the

intermediate normalization,

〈Φ0|H̄|Φ0〉= E0 〈Φα 6=0|H̄|Φ0〉= 0 . (2.58)

Thus, CCSD calculations are carried out by solving eqs. 2.58 for the cluster amplitudes ta
i , tab

i j

and the energy E0, with α ranging over all singly- and doubly-excited Slater determinants. Here

it is possible to show that the MBPT energy through third-order is included completely in the

CCSD energy, with incomplete but size-extensive contributions from all orders of perturbation

theory included in addition to MBPT(3). This is a marked improvement over MBPT, as the time

complexity is the same, yet significantly more components of the infinite MBPT energy expansion

are included in the ground state energy and wave function.

The many-body truncations used here lead to large errors when confronted with hard core po-

tentials where HF is often unbound, but these methods have become popular in nuclear physics in
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the past decade, as the number of soft perturbative potentials such as those from chiral EFT has

been rapidly increasing. CCSD and perturbative approximations to CCSDT, such as Λ-CCSD(T)

and completely renormalized CCSD(T) (CR-CC(2,3)), have ushered in a new era of ab initio calcu-

lations in nuclei, providing access to nuclei in the vicinity of closed shells throughout the medium-

mass region [41, 49, 50, 57, 58, 115, 116].

Along with CC theory, additional methods such as the self-consistent Green’s function (SCGF)

method [53–55] and the in-medium similarity renormalization group (IMSRG) [43, 44, 46] offer

alternative tactics to resum MBPT in a size-extensive framework. The IMSRG, which is of princi-

ple interest in this work, uses a modified exponential ansatz to produce a similar resummation to

CC theory in a Hermitian framework,

|ΨIMSRG
0 (s)〉= e−Ω(s)|Φ0〉 . (2.59)

Here Ω(s) is an anti-Hermitian operator and consequently the similarity transformation is uni-

tary. The Hermitian framework is extremely desirable as it allows for simplistic extensions of the

method, such as the multireference IMSRG (MR-IMSRG) [45, 47], which targets open shell nu-

clei. The IMSRG offers Hermitian calculations at comparable computational cost to CC theory,

but a consequence of this Hermiticity is that the IMSRG cannot construct the intuitive system of

equations in 2.58. Instead, the IMSRG transformation is applied as a differential flow equation,

dH̄(s)
ds

= [η(s), H̄(s)] , (2.60)

where η(s) is the arbitrary anti-Hermitian generator of the transformation. Alternatively, one can

solve for Ω(s) directly using the Magnus expansion [117]. This method will be explored in detail

in chapter 3, and extended to the calculation of excited states and general observables in chapters 4

and 5, respectively.
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CHAPTER 3

IN-MEDIUM SIMILARITY RENORMALIZATION GROUP

As mentioned in previous chapters, much progress has recently been made in ab initio nuclear

structure, largely due to the development of renormalization group methods to produce soft “low-

momentum” interactions from underlying “hard” interactions while preserving observables. Such

potentials greatly facilitate many-body methods which expand wave functions in a finite basis

of localized single-particle orbitals, as convergence is achieved with much smaller bases using

softened potentials. Because softened interactions reduce the effects of short-range correlations,

Hartree-Fock becomes a reasonable starting point for methods like many-body perturbation theory

and coupled cluster theory, and consequently these methods have flourished in the presence of

these innovations.

In this chapter, we will flesh out the fundamentals of the IMSRG approach, which extends

the RG concept of decoupling low- and high-momentum degrees of freedom to the decoupling

of states in the many-body Hilbert space. Here we formulate “in-medium” flow equations; the

solution of which is tantamount to the block-diagonalization of the many-body Hamiltonian [43–

48]. The IMSRG offers the ability to target ground and excited states in both closed- and open-

shell nuclei, and as it exhibits polynomial scaling with system size, the method is a powerful ab

initio approach for medium-mass nuclei. We discuss recent results, as well as some advances

in the implementation of the method. We review the Magnus expansion variant of the IMSRG,

which enables the explicit construction of the unitary transformation. We also briefly review the

perturbative resummation of the IMSRG(2), and discuss corrections to this resummation which are

motivated by the availability of the unitary transformation via the Magnus generator.
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3.1 The Similarity Renormalization Group

The similarity renormalization group (SRG) can be viewed as a continuous sequence of unitary

transformations,

U†U =UU† = 1 , (3.1)

which by construction preserves the inner product of two vectors, and consequently the eigenval-

ues of all operators. Renormalization groups (RGs) are designed to exploit separation of scales in

physical problems. The SRG was developed independently by Wegner [118], for the solution of

many-body problems in condensed matter physics, and Głazek and Wilson [119], who developed

the procedure for Hamiltonians in light-front quantum field theory. The SRG was subsequently

ported to nuclear physics, where it was used to decouple low- and high-momentum modes in the

input inter-nucleon interactions [9,39,120–124]. This was motivated by the fact that realistic inter-

actions which give a good description of low energy nuclear observables tend to feature strongly

repulsive cores and strong tensor forces [21, 39, 125]. Both of these features produce strong cou-

plings between low- and high-momentum states in the many-body Hamiltonian, which in turn

leads to computationally demanding matrix diagonalizations due to the large couplings between

energetically well-separated basis states. The SRG can be used as a means to soften this core, and

thus reduce the off-diagonal couplings in momentum-space via a suitably chosen unitary transfor-

mation.

3.1.1 Formalism

If we parameterize the SRG transformation by some arbitrary flow variable s, we can then take the

derivative of eq. 3.1,
dU(s)

ds
U†(s)+U(s)

dU†(s)
ds

= 0 , (3.2)

which yields a differential equation for the explicit form of the unitary transformation,

dU(s)
ds

=−η(s)U(s) . (3.3)
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Here η(s) is the so-called generator of the unitary transformation

η(s)≡ dU(s)
ds

U†(s) =−U(s)
dU†(s)

ds
=−η

†(s) , (3.4)

where the constraint of anti-Hermiticity immediately follows from eq. 3.2. The solution of eq. 3.3

is the s-ordered exponential,

U(s) = S exp(−
∫ s

0
ds′η(s′))≡ lim

N→∞

(
eη(sN)δ seη(sN−1)δ s · · ·eη(s1)δ seη(s0)δ s

)
. (3.5)

The s-ordering assures that the sequence of infinitesimal transformations, which are in general

non-commutative, will be applied in the correct order. In practice, using this form of the transfor-

mation requires storage of the generator at each step in the s-evolution. One may circumvent the

complications of ordered exponential operators by use of flow equations to determine the form of

SRG evolved operators. For any operator O, the similarity transformation takes the form

Ō(s) =U(s)OU†(s) . (3.6)

Taking the derivative,

dŌ(s)
ds

=
d
ds

[U(s)OU†(s)] =
dU(s)

ds
OU†(s)+U(s)O

dU†(s)
ds

= [η(s),U(s)OU†(s)] , (3.7)

we arrive at the SRG differential flow equation

dŌ(s)
ds

= [η(s), Ō(s)] . (3.8)

The power of eq. 3.8 is the ability to apply the SRG transformation numerically without re-

taining knowledge of η for all values of s. As the only constraint on η is that the operator must

be anti-Hermitian, it can be chosen to construct Hamiltonians tailored for particular many-body

methods.

A general prescription for choosing an SRG generator was proposed by Wegner [118],

η(s)≡ [Hd(s),Hod(s)] , (3.9)

31



where Hd and Hod are arbitrarily defined diagonal and off-diagonal components of the Hamilto-

nian. Hd need not be limited to the literal diagonal of the matrix, but rather describes the desired

form of the rotated operator, which may be band- or block-diagonal. Such a choice of generator

clearly produces a fixed point in the flow equation 3.8 if Hod becomes zero for some value of s. If

such a condition arises, the flow equation can be evolved to s→∞, and the desired decoupling will

be achieved. Coincidental commutation of Hd and Hod will also create a fixed point, but such an

incidence has not been observed in practice.

3.1.2 A Practical Example

As a pedagogical example, it is instructive to consider a two-body system in momentum-space,

where we can express the problem in relative coordinates. The flowing Hamiltonian is

H(s) = Trel +V (s) , (3.10)

where the kinetic energy Trel is independent of s by construction, and is diagonal in momentum

space. The residual s-dependence is absorbed into the potential V (s) and equation 3.9 becomes

η(s) = [Trel ,V (s)] . (3.11)

Plugging eq. 3.11 into eq. 3.8, we can show that for a given partial wave in momentum space [121],

dV (k1,k2,s)
ds

=−(k2
1− k2

2)
2V (k1,k2,s)+

2
π

∫
∞

0
q2dq(k2

1 + k2
2−2q2)V (k1,q)V (q,k2) . (3.12)

The solution of eq. 3.12 for strongly off-diagonal terms is dominated by the linear term,

V (k1,k2,s)≈V (k1,k2,0)exp(−(k2
1− k2

2)
2s) . (3.13)

Eq. 3.13 demonstrates proper RG behavior, where farther off-diagonal matrix elements decay at

an increased rate, quantified by the lifetime

λ (k1,k2) =
1

(k2
1− k2

2)
2
. (3.14)
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Figure 3.1 SRG evolution of the two-body Hamiltonian in momentum space. In the left panel, we
show solution of eq. 3.8 for select values of s. In the right panel we show the non-unitary decay of
matrix elements when given a half-life corresponding to eq. 3.14.

A simple example is provided by the 1d mock-up of a local nuclear interaction suggested by

Negele and Orland [126]:

V (k1,k2) =V1(e
(−α1(k1−k2)2)− e(−α1(k1+k2)2))

−V2(e
(−α2(k1−k2)2)− e(−α2(k1+k2)2)) . (3.15)

Here V1 = V2=12.0 fm−2, α1 = 0.01 fm2 and α2 = 0.16 fm2. We analyze this potential for the

case of two particles, where constructing the many-body Hamiltonian is as simple as discretizing

the relative momentum and evaluating V at each point. For purposes of demonstration, we use a

modest 120 relative momentum states, building a momentum grid with spacing 0.25 fm−1. Here

we may demonstrate the SRG’s properties exactly, as at most two-body forces are needed.

This potential does not induce extreme scattering from low to high momentum, but those modes

are coupled through the band diagonal structure, shown in the s = 0.0 panels of fig. 3.1. While one

could easily diagonalize this small matrix using a packaged solver, much insight is to be gained
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by performing the SRG exactly. For reference, the right panel of fig. 3.1 shows the decay pattern

if eq. 3.13 were the only contribution to the SRG evolution. The left panel demonstrates the exact

SRG flow, where additional features are present. It is evident that the broad features of the flow are

very similar in either case, but fine details are present in the SRG flow which account for unitary

equivalence.

This SRG softening allows for a significant reduction in storage requirements with minimal loss

of accuracy in the ground state energy. For this system, diagonalization of the unevolved operator

gives a ground state energy of -0.473 fm−2. If the diagonalization is instead performed with only

the first 90 basis states, the result is 46.000 fm−2, clearly an unsuitable result. However, after SRG

softening to s=2.1×10−4 fm4, both the 90 and full 120 state diagonalizations yield -0.473 fm−2.

Additional softening further reduces the number of basis states needed for a converged ground

state energy.

For notational purposes, we note that SRG softened forces are often specified by a momentum-

cutoff λSRG = s−1/4, in natural units. We can think of λSRG as a scale for the maximum size of

momentum transfer between nucleons allowed after SRG softening [39, 121].

3.1.3 SRG Softening of Interactions

The primary use of the SRG is to pre-process nuclear interactions, making them more amenable

to many-body calculations [18, 40, 45, 47, 48, 53–55, 63, 89, 102, 116, 124, 127–129]. NN and 3N

interactions from χ-EFT are applied to many-body calculations using the second-quantized Hamil-

tonian:

H = ∑
k

k2

2
a†

kak +
1
4 ∑

k1k2k3k4

〈k1k2|V (2)|k3k4〉a
†
k1

a†
k2

ak4ak3

+
1

36 ∑
k1k2k3
k4k5k6

〈k1k2k3|V (3)|k4k5k6〉a
†
k1

a†
k2

a†
k3

ak6
ak5

ak4 . (3.16)

Here V (2) and V (3) in general connect two- and three-body kets with bras containing elements with

drastically different momentum components, which is a hallmark of a hard-core interaction, and is

34



largely responsible for convergence difficulties in many-body methods based on diagonalization.

Starting from unevolved quantities, the Wegner generator (eq. 3.9) is

η = ∑
all k

k2
7
2

(
〈k1k2|V (2)|k3k4〉[a

†
k7

ak7,a
†
k1

a†
k2

ak4ak3 ]

+ 〈k1k2k3|V (3)|k4k5k6〉[a
†
k7

ak7,a
†
k1

a†
k2

a†
k3

ak6
ak5

ak4 ]

)
, (3.17)

where the commutators of the first and second terms yield two and three-body operators respec-

tively. Thus, η(s) is in principle a many-body operator. Solution of eq. 3.8 will necessarily in-

duce higher order operators, as the commutator of two three-body operators includes up to five-

body operators. It is apparent that to retain an exact unitary transformation, the A-body nucleus

will require up to A-body induced forces. Of course, this is intractable computationally, and in

fact, including three-body forces is a demanding challenge which has only recently become feasi-

ble [9, 123, 124, 130, 131]. Nonetheless, it has been shown that inclusion of the three-body force

is absolutely imperative [130], as truncation to two-body operators has been linked to strong s-

dependence in many-body observables. The errors introduced by truncating four-body forces and

higher are ostensibly smaller than those of missing three-body forces, provided we do not make

absurd demands of our SRG transformation. Softening beyond a certain point will almost certainly

induce large many-body forces, so one must take care to stop at a reasonable value of λsrg. Typical

choices are between λsrg = 1.8 and 4.0 fm−1.

3.2 The In-Medium Similarity Renormalization Group

The free-space SRG formalism has had great success as a method to soften input nuclear interac-

tions for few- and many-body calculations, but the general SRG concept can be extended to serve

as an ab initio method in and of itself when the evolution is performed directly in the A-body sys-

tem. The in-medium similarity renormalization group (IMSRG) applies eq. 3.8 to the many-body

Hamiltonian after normal-ordering with respect to an A-body reference state. In this context, the
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application of the SRG seeks to renormalize couplings between A-body basis states, i.e. Slater

determinants (SD).

3.2.1 The In-Medium Similarity Renormalization Group Equations

With the power of normal-ordering, which was discussed in sec. 2.3, we may derive the in-medium

variant of the SRG, by normal-ordering the generators and operators with respect to the A-body

reference state, and evaluating eq. 3.8 using Wick’s theorem. The critical component of this deriva-

tion is the computation of the commutator of two normal-ordered two-body operators,

[A,B](0b) = ∑
ab
(na−nb)AabBba +

1
4 ∑

abcd
(AabcdBcdab−BabcdAcdab)nanbn̄cn̄d , (3.18)

[A,B](1b)
qr = ∑

a
(AqaBar−BqaAar)+∑

ab
(na−nb)(AabBbqar−BabAbqar)

+
1
2 ∑

abc
(nanbn̄c + n̄an̄bnc)(AcqabBabcr−BcqabAabcr) , (3.19)

[A,B](2b)
qrst = ∑

a
((AqaBarst +AraBqast −BqaAarst −BraAqast)

− (AasBqrat +AatBqrsa−BasAqrat −BatAqrsa))

+
1
2 ∑

ab
(1−na−nb)(AqrabBabst −AqrabBabst)

−∑
ab
(na−nb)(1−Pqr)(1−Pst)AbratBaqbs . (3.20)

Here ni is the reference state occupation number for the ith orbital, and n̄i = (1− ni) and Pqr ex-

changes the indices q and r. The commutator of two-body operators will also have three-body

components, but we will only concern ourselves with the two-body components, anticipating that

this truncation will cause minimal error in the final results of computations in the NO2B approxi-

mation. Plugging these expressions into eq. 3.8, we arrive at the IMSRG(2) flow equations

dE0
ds

= ∑
ab
(na−nb)ηab fba +

1
2 ∑

abcd
ηabcdΓcdabnanbn̄cn̄d , (3.21)
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d fqr

ds
= ∑

a
(1+Pqr)ηqa far +∑

ab
(na−nb)(ηabΓbqar− fabηbqar)

+
1
2 ∑

abc
(nanbn̄c + n̄an̄bnc)(1+Pqr)ηcqabΓabcr , (3.22)

dΓqrst

ds
= ∑

a
((1−Pqr)(ηqaΓarst − fqaηarst)

− (1−Pst)(ηasΓqrat − fasηqrat))

+
1
2 ∑

ab
(1−na−nb)(η12abΓab34−Γ12abηab34)

−∑
ab
(na−nb)(1−P12)(1−P34)ηb2a4Γa1b3 . (3.23)

The name IMSRG(2) refers to the truncation of the commutators to two-body operators. While

here we have only included two-body operators, taking the commutator of an N- and M-body op-

erator results in an (N +M− 1)-body operator, thus an exact solution of the IMSRG equations

will produce up to A-body forces for an A-body nucleus. IMSRG(A), where up to A-body op-

erators are included in the commutator expressions and IMSRG equations, would then produce

the same result as FCI, making it an exact method within a given model-space. Naturally, any

implementation of this exact method would pose the same computational difficulties as the FCI

calculation itself. The utility of the IMSRG lies in the ability to make systematically improvable,

size-extensive truncations on the CI expansion, such as IMSRG(2) or the next level of IMSRG(3),

which keep normal-ordered three-body operators in the flowing Hamiltonian and generator. In

practice, the commutator expressions are often implemented in JJ-coupled scheme (see appendix),

where spherical symmetry is exploited by summing magnetic substates out of the single-particle

and many-body bases using the Wigner-Eckart theorem.

3.2.2 Choice of Generator

A variety of generator choices have been explored for IMSRG calculations [3, 48]. As in the free-

space SRG, the specific choice of generator reflects the desired decoupling scheme. For ground-

state calculations, one seeks to decouple the reference state from the block of particle-hole excited
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Figure 3.2 Schematic representation of the initial and ground-state-decoupled Hamiltonians, H̄(0)
and H̄(∞), in the many-body Hilbert space spanned by particle-hole excitations of the reference
state.

Slater determinants. Fig. 3.2 demonstrates this schematically, where we have included up to 3p3h

states in the visualization. In the left panel we see that the reference state is coupled to particle-hole

excitations through the 1p1h and 2p2h channels. These matrix elements are induced by the fph

and Γpp′hh′ terms in eq. 2.25,

〈Φp
h |H |Φ0〉= fph , (3.24)

〈Φpp′
hh′ |H |Φ0〉= Γpp′hh′ , (3.25)

as well as their Hermitian conjugates. Here p and h denote particle and hole indices respectively.

The generator of the IMSRG unitary transformation thus should be designed to suppress

Hod = ∑
i j

fi j(n̄in j + n̄ jni){a†
i a j}+

1
4 ∑

i jkl
Γi jkl(n̄in̄ jnknl− n̄kn̄lnin j){a†

i a†
jalak} . (3.26)

With this definition, the Wegner choice can be computed using eq. 3.9, and the desired decoupling

is achieved with leading off-diagonal behavior

Γ(s)pp′hh′ ≈ Γ(0)pp′hh′e
−(∆pp′

hh′ )
2s
. (3.27)
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Here ∆
pp′
hh′ = ( fpp + fp′p′− fhh− fh′h′) is the Møller-Plesset (MP) energy difference. Analogous

to the free-space variant, the decay rate of off-diagonals is mediated by this energy difference. As

a result, the differential flow equations are moderately stiff when solved with this generator. This

means that at different points in the flow, different terms will be emphasized for suppression in

the differential equation, and thus numerical complications can arise. Under these circumstances,

calculations will have difficulty converging, and often a more sophisticated and memory intensive

ordinary differential equation solver will be required to solve the flow equations.

More numerically practical generators can be devised to mitigate the stiffness by making the

lifetimes of off-diagonal matrix elements less dependent on the single particle energy spectrum.

An example is proposed by White, following from the theory of Jacobi canonical diagonalization

[43, 132],

η
(1)
i j =

f od
i j

∆i
j

η
(2)
i jkl =

Γod
i jkl

∆
i j
kl

, (3.28)

where the ∆ may be either MP or Epstein-Nesbet (EN) denominators. The definition is chosen

to conceptually match the IMSRG rotation to a Jacobi rotation, by scaling individual off-diagonal

matrix elements by the angle with which they must be rotated in order for suppression. At leading

order, off-diagonals are suppressed like

Γ(s)pp′hh′ ≈ Γ(0)pp′hh′e
−s , (3.29)

which means all elements decay at a similar rate, and thus stiffness is relieved.

The cost of this drastic reduction in stiffness is the presence of explicit energy denominators

in eq. 3.28, which may potentially become small during the course of IMSRG decoupling. Such

an event would certainly create pathological behavior in the flow and derail the computation. A

reasonable compromise between the Wegner and White generators can be inferred by starting from

the general form

ηα = (∆α)
γHod

α . (3.30)

Here α denotes a general set of indices, and γ an integer power. For the White generator, γ=-1,

and for Wegner’s choice γ=1 at leading order in the interaction vertices. The compromise, known
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as the imaginary-time generator [47], is found at γ=0,

η
(1)
i j = f od

i j g(∆i
j) η

(2)
i jkl = Γ

od
i jklg(∆

i j
kl) , (3.31)

where g(x) is some odd regulator function which ensures an anti-Hermitian η . Here we get an

off-diagonal decay of

Γ(s)pp′hh′ ≈ Γ(0)pp′hh′e
−∆

pp′
hh′ s, (3.32)

which is more stiff than the White generator, but less so than Wegner.

In practical applications of the IMSRG, the White generator is often sufficient. However,

in decouplings which strongly renormalize the single-particle spectra, it is useful to employ the

imaginary-time generator to avoid vanishing energy denominators. For the remainder of this dis-

sertation, it should be assumed that the White generator is applied, and use of any other generator

will be specified explicitly.

3.2.3 Solving the IMSRG Equations

We can analyze the IMSRG equations by writing them in terms of Hugenholtz diagrams. Dia-

grammatically, eq. 3.21 becomes

d
ds

E = + . (3.33)

Figure 3.3 Schematic zero-body flow.

where η(s) is proportional to H(s), and MBPT energy denominators are included within the defi-

nition of η . The gray circles represent renormalized or dressed vertices, which have s-dependence.

If we discretize the flow and take light gray circles to be Γ(2δ s), dark gray as Γ(δ s), and a small

black circle as the bare vertex Γ(0), we may represent the integration step of eq. 3.23 for Γ(2δ s)

in terms of the vertex of the previous step, and again in terms of the bare vertex:
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= + + + + . . .

= + + + + . . .

+ + + + . . .

+ + + . . . (3.34)

Figure 3.4 Schematic resummation of MBPT diagrams.

This representation illustrates an important feature of the IMSRG equations; solving them sums

higher-orders of MBPT into the flowing vertices. In the first row, we see that IMSRG renormal-

izes short-range physics with the resummation of all particle-particle and hole-hole ladders into

the dressed vertex, similar to Brueckner G-matrix approaches [112, 114, 133–136]. Additionally,

long-range physics is consistently included with the resummation of particle-hole chains, which is

a feature of the random phase approximation (RPA) [100,114,136]. On top of incorporating the re-

summations of both of these well known methods, the IMSRG incorporates interference diagrams

between ladder and chain components. In the limit of IMSRG(A), an exact solution of the IMSRG

equations would result in a complete infinite resummation of MBPT. As the IMSRG is truncated

to two-body operators in practice, this resummation is only approximate, but can be shown to be

exact up to third-order, while also containing extensive, but incomplete, content from all orders of

perturbation theory [3].
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Figure 3.5 IMSRG ground-state-decoupling for a 6-electron quantum dot, with ω = 1.0 and four
major oscillator shells. Hartree-Fock energy, second-, and third-order MBPT energies are plotted
as function of flow parameter s. Exact energies for the bare and dressed Hamiltonians are given
for reference.

This point is illustrated in practice by fig. 3.5, which demonstrates a typical IMSRG ground-

state-decoupling for a 6-electron parabolic quantum dot in two dimensions. Parabolic quantum

dots consist of A electrons confined by a harmonic oscillator potential in two dimensions. In

atomic units, the Hamiltonian is given by:

H =
A

∑
i=1

[
1
2

p2
i +

1
2

ω
2r2

i ]+
1
2

A

∑
i 6= j

1
|ri− r j|

. (3.35)

Quantum dots provide an excellent testing ground for approximate many-body methods, as the

strength of many-body correlations can be controlled by varying ω , with smaller values corre-

sponding to stronger correlations, and comparisons can be made to exact full configuration in-
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teraction (FCI) calculations in sufficiently small bases. In the present work, all calculations are

performed for the 6-electron system. The IMSRG(2) equations are solved here using a high-order

adaptive step solver (see below), so numerical errors in the solution of the ODE should be neg-

ligible here. At s=0, the solid lines correspond to so-called bare quantities, which are yet to be

renormalized. Thus the reference energy corresponds to the Hartree-Fock (HF) energy and the

perturbative corrections represent standard MBPT. For reference, the dotted purple line gives the

exact energy, Egs(0) = 20.4158 Hartree, computed with FCI using the bare Hamiltonian. The IM-

SRG equations are propagated forward to s=5.4, where numerical convergence has been obtained.

At this point, some truncation errors due to the neglect of induced higher-body forces have accu-

mulated; for reference the exact result using the dressed Hamiltonian, Egs(5.4) = 20.4070 Hartree,

is given by the dotted blue line. The truncation error amounts to less than 10 mH, which is on the

order of chemical precision.

Note that as the IMSRG(2) equations are solved, the HF energy becomes equivalent to the cor-

related ground state energy of the dressed Hamiltonian. This is due to complete decoupling of the

reference state from excitations, as illustrated in fig. 3.2. As the flow converges, the second- and

third-order energy corrections are diminished to zero, consistent with the expectation of a resum-

mation of MBPT. Note that the perturbative corrections have strong s-dependence, indicating that

higher-order corrections are also being summed into the reference energy during the flow. While

the MBPT(3) appears to capture the vast majority of the correlation energy here, this will not be

the case for more strongly correlated systems such as nuclei. This indicates a clear preference for

IMSRG, as the dominant contribution to the scaling of the IMSRG(2) equations goes as O(N4
pN2

h ),

which is the same as MBPT(3), while including higher-order terms such as ladder summations and

bubble chains.

The previous calculation, as well as the original implementation of the IMSRG [43–45], em-

ployed a high-order ordinary differential equation (ODE) solver to solve eqs. 3.21-3.23 directly.

High-order predictor/corrector methods such as the Shampine and Gordan implementation of

Adams-Bashforth [137] are necessary to solve the IMSRG equations accurately, as accumulated
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numerical errors in low-order solvers rapidly degrade the unitarity of the IMSRG transformation

to the point where computed eigenvalues can have sizable errors. High-order adaptive step solvers

require anywhere from 10-25 copies of the ODE, and thus memory requirements can be extraor-

dinary for computations with large model spaces. Additionally, the flow equation (eq. 3.8) must

be solved individually for every operator of interest in order to compute observables consistently.

This means that the memory requirements, which are already demanding for a single operator,

scale linearly with the number of observables requested.

Many of these complications were mitigated by the development of the Magnus expansion

variant of the IMSRG [6]. The Magnus expansion [117] provides an expression for ordered-

exponentials in the form of a true exponential,

U(s)≡ exp(−Ω(s)) = S exp(−
∫ s

0
ds′η(s′)) , (3.36)

where the components of the Magnus generator Ω(s) follow from the differential equation

dΩ

ds
=

∞

∑
j=0

B j

j!
ad j

Ω
η(s) , (3.37)

where B j are Bernoulli numbers (B0 = 1, B1 =−1/2 , B2 = 1/6, . . . ) and

ad0
Ω

η(s) = η(s) , ad j
Ω

η(s) = [Ω(s),ad j−1
Ω

η(s)] . (3.38)

This method is an exact reformulation of the IMSRG, provided that no truncations are made. Of

course, the flow equation approach is truncated to two-body operators, and any practical imple-

mentation of the Magnus variant requires a similar truncation, as well as numerical termination of

the expansion at a reasonable number of terms. As evaluation of eq. 3.37 depends on the same

generator as eq. 3.8 and requires computation of only one commutator at at time, it can be solved

with the same machinery that one might use in the flow equation method. The expressions 3.18-

3.20 can be used for the evaluation of ad j
Ω

η(s), where the only difference from the flow equation

approach is that both operators are anti-Hermitian.

The Magnus formalism avoids the complications of using a sophisticated ODE solver, as nu-

merical step-size errors in the exponential operator do not degrade the unitary transformation,
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because even if time-step errors are significant, upon exponentiation of the anti-Hermitian Ω(s), a

unitary transformation is still realized. However, numerical errors will still accumulate in the ex-

ponentiation procedure, (i.e. applying the transformation to an operator), so care must be taken to

assure that the desired transformation is achieved as quickly as possible. If we do not retain a rea-

sonable amount of numerical accuracy in the solution of eq. 3.37, we will not achieve the desired

decoupling and eventually errors from applying the transformation will destabilize the calculation.

Consequently, the Magnus variant of the IMSRG may be solved with a rudimentary forward Eu-

ler step, but we cannot take arbitrarily large steps in s without changing the nature of the unitary

transformation so far as to increase off-diagonal pieces rather than suppress them. The most useful

property of the Magnus formalism is that eq. 3.37 need only be solved once, and all other observ-

ables follow from application of the explicitly constructed unitary transformation using the well

known Baker-Campbell-Hausdorff expansion,

Ō(s) =
∞

∑
j=0

1
j!

ad j
Ω

O . (3.39)

Fig. 3.6 displays results for the 16O ground-state energy for both approaches using a forward

Euler step to solve the respective differential equations. For this system, we compute the ground

state energies using both the direct ODE solver approach and the Magnus expansion method. Ad-

ditionally the Adams-Bashforth method is used as a high-precision point of reference. Here we

see that the IMSRG flow equation is subject to large errors when solved using a forward Euler step

method, with the converged result strongly dependent on the step size δ s. The Magnus approach,

on the other hand, does not exhibit dependence on δ s, but rather converges to approximately the

same result as the Adams-Bashforth ODE solver, regardless of step-size. This is confirmation

that the Magnus expansion minimizes the effect of step-size errors, and thus reduces the immense

storage requirements of IMSRG which originate from the use of high-order ODE solvers.

As mentioned above, the efficacy of the Magnus approach is contingent upon a reasonable

numerical termination point for both the Magnus and the BCH expansions. For the kth term in
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Figure 3.6 Flowing reference energy E0(s) for 16O at with the EM input NN potential,
N3LO(500) [5] at λSRG = 2.0 fm−1, emax = 8 and h̄ω = 24 MeV. Computed with Magnus and
flow equation methods using forward Euler step. Results are benchmarked against flow equation
solved by high-order adaptive step solver [6].

eq. 3.37, we adjudicate numerical termination by the convergence criterion∣∣∣∣Bk||adk
Ω

η ||
k!||Ω||

∣∣∣∣< εderiv , (3.40)

where double bars refer to the Frobenius norm. The convergence of eq. 3.39 is determined by∣∣∣∣{adk
Ω

H}0b
k!

∣∣∣∣< εBCH . (3.41)

This criterion is not as strict as the one used for the Magnus expansion, as the BCH expansion is

used only to determine the ground state energy in this application. If one wishes to analyze the full

content of the dressed Hamiltonian post-IMSRG decoupling, a more stringent criterion analogous

to eq. 3.40 should be used. Fig. 3.7 displays the relative magnitude of each nested commutator

term as a function of the flow parameter, in either expansion, computed for 16O with a sample

46



0 5 10
s

10
-8

10
-6

10
-4

10
-2

10
0

R
el

at
iv

e 
M

ag
n
it

u
d
e

k=0
k=1
k=2
k=4

N
3
LO (500 MeV)   λ = 2.0 fm

-1

16
O

a)

0 5 10
s

10
-8

10
-6

10
-4

10
-2

10
0

R
el

at
iv

e 
M

ag
n

it
u

d
e

k=0
k=1
k=2
k=4

16
O

N
3
LO (500 MeV)  λ = 3.0 fm

-1
b)

0 5 10
s

10
-8

10
-6

10
-4

10
-2

10
0

10
2

lo
g

1
0
[ 

k
th

 t
er

m
 (

M
eV

)]

k=1
k=3
k=5
k=7
k=9

c)

N
3
LO (500 MeV)   λ = 2.0 fm

-116
O

0 5 10
s

10
-8

10
-6

10
-4

10
-2

10
0

10
2

lo
g

1
0
[ 

k
th

 t
er

m
 (

M
eV

)]

k=1
k=3
k=5
k=7
k=9

16
O N

3
LO (500 MeV)   λ = 3.0 fm

-1

d)

Figure 3.7 The top panels show the relative magnitude of each term in the Magnus expansion,
eq. 3.37, computed for 16O with the EM input NN potential, N3LO(500) [5] at emax = 8 and h̄ω =
24 MeV. The potential is SRG evolved to (a) λSRG = 2.0 fm−1, and (b) λSRG = 3.0 fm−1. The
bottom panels show similar plots for the BCH expansion of eq. 3.39 [6].

NN interaction SRG evolved to either λSRG= 2.0 or 3.0 fm−1. We see monotonic weakening of

the magnitude of each successive term, indicating that these expansions numerically terminate at

a manageable number of terms. In the Magnus expansion (top), the fourth nested commutator is

sufficient for a numerical convergence criteria of 10−6. The individual terms are larger for the

harder λ = 3.0 fm−1 interaction since the system is more strongly correlated, but they systemati-

cally decrease with increasing order k. The convergence criteria for the BCH expansion (bottom)
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is met at about nine nested commutators, with more commutators needed for harder interactions.

Reassuringly, we find that the final results in our calculations are essentially independent of the

convergence criteria provided εderiv . 10−4 and εBCH . 10−4, where the latter is in units of MeV.

For instance, raising both convergence criteria from 10−8 to 10−4 changes the ground state energy

at the 1 eV level.

3.2.4 Center-of-Mass Factorization in the IMSRG

The Magnus expansion offers a straightforward means to compute effective operators via the BCH

expansion, and thus we can investigate the center-of-mass (COM) factorization using an effec-

tive operator Hcm(s). This problem is of critical importance in nuclear structure, as the structure

of self bound nuclei is governed by a translationally invariant Hamiltonian, and thus we require

factorization of the intrinsic and COM components of the wave function

|Ψ〉= |ψ〉in⊗|ψ〉cm . (3.42)

The many-body problem is often formulated in a spherical basis, as intrinsic conservation of angu-

lar momentum appears naturally here. A consequence of this is the loss of translational invariance

due to localization of the center of mass. This is not a problem if the wave function factorizes

properly, as we would only expect a degeneracy in the intrinsic spectra corresponding to each of

the COM excitations. The expression of the problem in a truncated HO basis results in an arti-

ficial oscillatory behavior of the center of mass, which is often characterized by a harmonic trap

with characteristic frequency ω̃ . Thus, COM excitations are evenly spaced by h̄ω̃ , and offsetting

the COM Hamiltonian (Hcm) by (3/2)h̄ω̃ guarantees that the COM ground state will have Ecm =

0 MeV. The COM excitations with Ecm 6= 0 MeV are considered spurious states, as we are only

interested in the intrinsic structure of the nucleus, and the harmonic spectrum of the COM is an

artifact of the truncated model space.

There are two popular methods for preserving COM factorization with a spherical basis. The

first is to formulate the problem in Jacobi coordinates, which are translationally invariant [138–
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140]. This approach is limited in applicability due to factorial scaling of the antisymmetrization

procedure. A second approach is to use the HO single particle basis with a truncation on the

many-body basis which includes all excitations from the reference up to and including Nh̄ω . For

this truncation, called the Nmax truncation, the model-space projection operator commutes with

the COM Hamiltonian, and thus factorization is ensured. Again, this approach is not particularly

useful for heavier nuclei, as the construction of the basis scales exponentially with the number of

active nucleons. Thus, for medium-mass nuclei and beyond, we must be content with approximate

center of mass factorization.

The form of the COM Hamiltonian is taken to be that of a harmonic trap,

Hcm(ω̃) =
P2

2mA
+

1
2

mAω̃
2R2− 3

2
h̄ω̃. (3.43)

For methods where factorization is analytically guaranteed, such as the NCSM, ω̃ is an arbitrary

quantity. Here it can be shown that the model-space projection operator commutes with Hcm(ω̃)

regardless of the choice for ω̃ . The IMSRG and similar methods are formulated in a general

basis with truncation on the single particle energies (emax = 2n+ l), and as a result we cannot

ensure rigorous factorization of the COM and intrinsic wave functions. Nevertheless, we often see

oscillatory COM behavior if we probe the intrinsic wave functions with COM coordinate space

operators. From these observations we may extract an optimized ω̃ , where approximate COM

factorization is typically observed.

Hcm is evolved consistently with the intrinsic Hamiltonian in the IMSRG unitary transforma-

tion [6]. Calculation of ω̃ demonstrates that equation 3.43 is indeed the approximate form of Hcm,

as the observed trapping frequency is approximately independent of the underlying frequency of

the single particle basis. This is demonstrated in fig. 3.8, where results are shown for 14C at two

frequencies, ω̃±, which are solutions of a quadratic equation [141].

h̄ω̃ = h̄ω +
2
3

Ecm(ω)±
√

4
9
(Ecm(ω))2 +

4
3

h̄ωEcm(ω) . (3.44)

In the top panel of figure 3.8, Ecm(ω) is the center of mass energy calculated for trapping frequen-

cies equal to that of the underlying basis. It is apparent that Ecm(ω) exhibits quadratic dependence

49



15 20 252

0

2

4

6

8

10
E
cm

 (M
eV

)
emax=14

14C    NN+3N(400)
Ecm(ω)

Ecm(ω̃+)

Ecm(ω̃− )

15 20 25
ω (MeV)

10

20

30

40

50

ω̃
 (M

eV
)

ω̃+

ω̃−

Figure 3.8 Center-of-mass diagnostics for IMSRG(2) calculations of 14C starting from the
NN+3N(400) interaction, SRG evolved to λSRG = 2.0 fm−1. See the text for details. The
calculations were done in an emax=14 model space.

50



on ω , indicating that the center of mass behaves approximately as an isotropic harmonic oscillator

of frequency ω̃ , which corresponds to the vertex of the parabola.

The lower panel displays the calculated frequencies from eq. 3.44, which show approximate

independence of ω , with an approximate value of 15.7 MeV/h̄, consistent with the vertex of Ecm.

Returning to the top panel, we see that Ecm(ω̃) is approximately independent of ω , at an energy of

0 MeV, which indicates that our wave function is properly factorized, and in the ground state of the

COM trap. Verification of factorization must be performed for every computed state, but the full

frequency sweep and computation of ω̃ is often unneeded. ω̃ is obtained using the intrinsic ground

state wave function, and as we expect all non-spurious states to have the same COM ground state,

it suffices to demonstrate that Ecm ≈ 0 for each excited state. States which exhibit Ecm = Nh̄ω̃ for

non-zero N are clearly spurious excitations of the center of mass.

Difficulty arises when Ecm is non-zero, nor a multiple of h̄ω̃ . This is an indicator of strong

COM contamination of an intrinsic state. In other words, the wave function does not factorize for

these states. For such states, it is best to augment the intrinsic Hamiltonian with a scaled variant of

eq. 3.43, constituting the Lawson-Gloeckner method [142],

Hin→ Hin +βHcm(ω̃) . (3.45)

Here the energy from COM excitations is explicitly included, but as the ground-state is defined to

have Ecm = 0 MeV, this should only scale spurious states. Thus, β can be taken to arbitrarily large

values, which will scale spurious states from the spectrum and increase the perturbative energy

denominators for contaminated states, improving their factorization.

3.2.5 Results for Ground States of Closed Shell Nuclei

This dissertation focuses primarily on the single reference IMSRG, which is most appropriate

for the description of nuclei in the vicinity of shell closures, which are subject to correlations of

primarily dynamic nature. The IMSRG(2) exhibits computational scaling O(N4
pN2

h ) and is thus

able to work with very large single particle bases, on the order of 15 major harmonic oscillator
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shells. In these model spaces, even bare chiral NN interactions will show reasonably converged

results for doubly magic nuclei. Fig. 3.9 demonstrates the convergence properties for the three

doubly-magic nuclei 4He, 16O, and 40Ca. In the left column, results are shown for the bare (λsrg =

∞) Entem and Machleidt (EM) NN interaction at N3LO with cutoff Λ = 500 MeV [5]. In the

right column are results for the same potential softened with the free-space SRG to λsrg = 2.0

fm−1. These calculations were originally published in the review by Hergert et. al. [3]. They use

a Hartree Fock reference state, and the White generator for IMSRG(2) ground-state-decoupling in

the flow equation approach.

The exhibited convergence properties are desirable in either case, where for each nucleus, in-

dependence from basis frequency has begun to appear by emax = 14. For each case an extrapolated

result is given by the dashed line, using the prescription described in [3]. For the bare interaction,

the extrapolated result is matched nicely by actual calculations for 4He and 16O at optimal basis

frequencies h̄ω ≈ 32 MeV. For 40Ca, convergence in emax is not quite obtained, but the difference

between actual calculations and extrapolation is minimal.

SRG softening clearly improves the convergence properties of 16O and 40Ca, which are essen-

tially converged outside of the high-frequency infrared regime. The convergence of 4He with the

soft interaction does not show much improvement from the bare interaction, as this system is small

enough to have significantly converged calculations in either case. Some non-variational conver-

gence patterns are evident in the softened interaction, which is a result of the IMSRG(2) truncation

having invalidated the variational principle. The accelerated convergence in heavier nuclei is in-

dicative of the fact that SRG softened potentials can be used with IMSRG to describe much heavier

nuclei and also more strongly correlated open shell nuclei with multi-reference approaches.

An important point is that the SRG softened interaction produces a significantly stronger bind-

ing than that of the bare interaction. As alluded to in section 3.1.3, this is because using the SRG

to soften interactions shifts significant repulsive content into the induced three-body force, which

is ignored here. In order to properly describe binding in these nuclei, we must at least keep the

three-body forces induced from the free-space SRG. The results of doing so are shown in fig. 3.10,
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which was taken from the work of Hergert et. al., [64]. For the time being, we will focus only on

the IMSRG(2) results, shown in blue. In the left column, two nucleon forces plus 3N forces in-

duced by SRG softening are included. In the right column, both induced and SRG softened forces

from a local chiral 3N potential [13] are included. While including induced forces significantly

corrects for the errors in binding energy introduced by SRG evolving the NN potential, significant

dependence on λsrg is still present, and for reliable binding energies, one must use large values

of λsrg, which do not exhibit the pleasant convergence properties of more softened potentials (e.g.

λsrg = 2.00, 1.88 fm−1). Inclusion of the full 3N force mostly rectifies this difficulty, where the

difference between λsrg = 2.24 and 1.88 fm−1 has been reduced to roughly 1-10% of the total

binding energy.

Returning to the additional methods plotted in fig. 3.10, we see that IMSRG(2) is compared

with coupled-cluster (CC) theory. Two variants of CC theory are shown. CC with singles and

doubles (CCSD) [11, 58, 116, 143] is a truncation analogous to IMSRG(2), where correlations are

included through exponential cluster operators, truncated at two-body operators,

|Ψ0〉= exp[T 1b +T 2b]|Φ0〉 . (3.46)

Here cluster amplitudes are solved for by applying the exponential operator to the Hamiltonian and

exploiting the intermediate normalization of the ground-state (see sec. 2.7). Λ-CCSD(T) [116,144]

includes an additional perturbative step to correct for the missing three-body cluster operator T 3b.

For reference, quasi-exact importance-truncated no-core shell model (IT-NCSM) [145,146] calcu-

lations are included where available. We note that IT-NCSM includes the full 3N force, where in

IMSRG and CC theory, the 3N force is included in the NO2B approximation. Interestingly, IM-

SRG(2) tracks closer to Λ-CCSD(T) than CCSD. This point will be discussed in the next section.

It’s evident that all of these approximate approaches produce overbinding in comparison with

IT-NCSM. This is largely attributable to three components, which are the many-body truncation,

the NO2B approximation and the E3max truncation, which does not contribute to the error in IT-

NCSM as the model-space truncation incorporates this. The NO2B approximation has been shown
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to add about 1.0-2.5% additional binding, and is likely responsible for the bulk of the error in the

approximate methods shown here.

3.2.6 Perturbative Corrections

As mentioned in section 3.2.5, IMSRG(2) ground state results, despite having a more restrictive

many-body truncation, track with the many-body method Λ-CCSD(T). IMSRG(2) is third-order

exact in MBPT, meaning that the resummation of MBPT into the reference state energy includes all

terms up to MBPT(3), along with additional incomplete resummations of all orders of MBPT [3].

The same is true of CCSD. The difference comes from the fact that the missing terms at fourth order

and above are different between the two methods. Fig. 3.11 shows all fourth order Hugenholtz

energy diagrams, grouped by intermediate states. CCSD contains all fourth order energy diagrams

except those with intermediate triples states, whereas IMSRG(2) lacks all intermediate triples and

also undercounts a class of asymmetric intermediate quadruples diagrams (Q1, Q2, Q6, Q7) by a

factor of two [3, 147, 148]. The different counting of these quadruples diagrams is responsible for

the bulk of the difference between the CCSD and IMSRG(2) ground state energies. Λ-CCSD(T),

on the other hand, is fourth-order exact, and thus includes all energy diagrams from MBPT(4).

Errors from the undercounting of repulsive asymmetric quadruples in the IMSRG(2) apparently

cancel those from missing attractive triples diagrams, as IMSRG(2) has been observed to reproduce

Λ-CCSD(T) results robustly for a variety of single-reference systems.

The Magnus variant of the IMSRG offers a convenient framework to formulate perturbative

corrections to the IMSRG(2) [147], as the unitary transformation is explicitly constructed and then

applied via the BCH expansion. Explicitly writing the first several terms of eq. 3.39

H̄(s) = H +[Ω(s),H]+
1
2
[Ω(s), [Ω(s),H]]+

1
6
[Ω(s), [Ω(s), [Ω(s),H]]]+ · · · , (3.47)

we see that the induced three-body forces in this case may be approximated by

Wpqrstu = [Ω(s),Y (s)]pqrstu , (3.48)
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Figure 3.11 Connected Hugenholtz diagrams for the fourth-order energy correction E(4) (cf. [11]).
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where Y(s) can be as limited as Y (s) = H or as sophisticated as

Y (s) = H +
1
2
[Ω(s),H]+

1
6
[Ω(s), [Ω(s),H]]]+ · · · , (3.49)

where the commutators in expansion of eq. 3.49 are limited to two-body operators, similar to the

BCH expansion used in the Magnus implementation of the IMSRG(2). Y (s) and Ω(s) appear at first

order in MBPT, and thus the leading order component of eq. 3.48 is second-order in MBPT. From

this we may immediately construct a fourth order triples correction, using Rayleigh-Schrödinger

perturbation theory. The induced three-body forces from eq. 3.48 can be treated as a perturbation

on the IMSRG(2) ground-state-decoupled Hamiltonian, and the first non-zero correction to the

energy is

δE{3} =
1

36 ∑
abci jk

|Wabci jk|2

∆
i jk
abc

, (3.50)

where ∆ are EN energy denominators. This correction is just an MBPT(2) correction in the dressed

vertices, but constitutes a fourth order correction in the bare vertices. Diagrammatically, one can

show that this expression encapsulates all fourth-order triples expressions, in the approximation

that W is the full three-body force. We will refer to the IMSRG(2) with this triples correction as

IMSRG({3}), where brackets indicate the approximate nature of the triples inclusion.

The undercounting of antisymmetric fourth-order quadruples diagrams in IMSRG(2) originates

from the neglect of induced three-body forces which feed into renormalized two-body forces later

in the flow. Fig. 3.12 shows the relevant dressed two-body forces which contribute to the asymmet-

ric quadruples diagrams. Looking at the portion of the diagrams above the dashed blue line, we see

two two-body vertices which are singly contracted and thus form an intermediate three-body force

at second-order in MBPT. The intermediate force is triply contracted with an another two-body

vertex, which creates a dressed two-body force at third-order in MBPT. The diagram can be closed

at fourth order to form an asymmetric quadruples energy diagram.

These diagrams are included in CCSD due to the presence of (T2)
2 in the exponential expan-

sion. Inclusion of these terms in the IMSRG would require the IMSRG(3) formalism, but their

effect can be approximated in the spirit of eq. 3.48. In CCSD, these diagrams would first appear in
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Figure 3.12 Induced two-body force with intermediate three-body force. Above the dashed blue
line is the intermediate three-body force. The portion to the left of the dashed red line is an
effective one-body insertion term.

the third term (k = 2 or two nested commutators) of the BCH expansion. We can add a correction

for the missing fourth order quadruples by adding them to the k ≥ 2 terms in eq. 3.39,

Xk→ Xk +X∗k , (3.51)

where Xk = k[adk
Ω
(H)] and X∗k contains the missing quadruples contributions. In this context, the

square vertices in fig. 3.12 refer to Ω(s) and the black circle vertex to the Hermitian intermedi-

ate, or previous (k− 1) nested commutator. We note here that there are two additional diagrams

which must be computed, where the black circles and squares are exchanged in the intermediate

three-body term. These additional terms are the result of the commutators in the BCH expansion.

While one might think that a three-body vertex must be computed in this case, this is not actually

required, because the vertices on the left side of the dashed red line constitute a one-body operator

at second order in MBPT, and can be computed as an intermediate state, and then contracted with

the remaining two-body vertex in the form of a one-body insertion.
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Figure 3.13 Convergence of IMSRG(2*) ground state energy for 4He with the input EM N3LO
NN potential, SRG evolved to λSRG = 2.0 fm−1. IMSRG ground state energies are computed to
emax=9 for IMSRG(2), IMSRG(2*), and IMSRG({3}*). Results from CCSD and Λ-CCSD(T) are
also shown.

The problem becomes the evaluation of

(X∗k )abi j =
1
4
(1−Pi j)∑

k
nk

(
[X(k−1)]abk jGki−Ωabk jDki

)

− 1
4
(1−Pab)∑

c
n̄c

(
Gac[X(k−1)]cbi jDac−Ωcbi j

)
, (3.52)

where the intermediate one-body operators are given by

Gpq =
1
2 ∑

rst
Ωt prsΩrstq(n̄rn̄snt −nrnsn̄t) (3.53)

and

Dpq =
1
2 ∑

rst

(
[X(k−1)]t prsΩrstqn̄rn̄snt −Ωt prs[X(k−1)]rstqnrnsn̄t

)
. (3.54)
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Figure 3.14 Convergence of IMSRG(2*) ground state energy for 16O with the input EM N3LO
NN potential, SRG evolved to λSRG = 2.0 (3.0) fm−1 in the left (right) panel. IMSRG ground
state energies are computed to emax=9 for IMSRG(2), IMSRG(2*), and IMSRG({3}*).

This method is denoted as IMSRG(2*) or IMSRG({3}*) in the case where it accompanies the

perturbative triples correction.

Fig. 3.13 shows the convergence of the IMSRG(2*) method as a function of emax and h̄ω for

4He using the E.M. N3LO NN potential. The calculation uses up to emax=9, where convergence is

satisfactory for purposes of demonstration. The IMSRG({3}*) and IMSRG(2) curves for emax=9

are also included. For reference, converged CCSD and Λ-CCSD(T) calculations are provided [43].

Consistent with our expectations, IMSRG(2) falls nearer to Λ-CCSD(T) than CCSD. IMSRG(2*)

closely reproduces CCSD and IMSRG({3}*) closely reproduces Λ-CCSD(T). Thus, we conclude

that for this case, IMSRG(2*) and IMSRG({3}*) capture much of the same perturbative content

as CCSD and Λ-CCSD(T), respectively.

In fig. 3.14, the same calculation is shown for 16O with the E.M. N3LO interaction softened

to 2.0 and 3.0 fm−1 in the left and right panels respectively. Here we do not have CC results for

comparison, but the same pattern is evident. With the softer interaction, the IMSRG(2*) correction

removes about 2 MeV of binding energy, which is promptly reintroduced by the triples correction.

For the harder interaction, convergence is not as clear, but nonetheless the same trend is observed,
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albeit at a somewhat larger scale.
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CHAPTER 4

EXCITED STATE EXTENSIONS

After ground-state-decoupling, the IMSRG rotated Hamiltonian is block diagonal, where the ref-

erence state has been completely decoupled from all excitations. Ground state properties can then

be extracted using the reference expectation value of any consistently transformed effective oper-

ators. However, if we wish to explore excited states, we must further process the remaining block

of the Hamiltonian matrix, which still exhibits correlations between all levels of excitation, despite

complete isolation from the reference state. While the couplings between various excitation ranks

have been softened in the ground-state-decoupling, 1p1h excitations are still indirectly coupled to

as much as ApAh excitations, and thus the problem of solving for excited states requires essentially

the same effort as an FCI calculation using the bare Hamiltonian.

There are two different strategies for the computation of excited states in the IMSRG for-

malism. One approach is to devise a secondary transformation to decouple blocks of different

particle-hole excitation rank. If such a transformation is possible with the IMSRG(2) truncation,

then diagonalizations of the particle-hole sub-blocks would provide tractable access to low lying

excited states. We will show that this method is viable for a limited set of physical systems, which

includes doubly magic nuclei. For these nuclei, the method performs exceedingly well for low ly-

ing 1p1h dominant odd-parity states, but poorly for states with higher-order content in their wave

functions. As such, the method is often formulated in a valence 1p1h space, and is hence named

the valence Tamm-Dancoff approximation IMSRG (vTDA-IMSRG).

A more robust, but less elegant approach may be formulated without a second decoupling.

Here we work with the ground-state-decoupled Hamiltonian, where softened couplings between

the various excitation ranks facilitates the use of approximate diagonalization methods such as

the second-RPA [149, 150]. The general method, named the equations-of-motion IMSRG (EOM-

IMSRG), is introduced in this chapter. We show that this method provides more consistent access

to 1p1h states, with slightly diminished accuracy due to the approximate nature of the diagonaliza-
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tion. However, the EOM-IMSRG is systematically improvable through the many-body truncations

of both the IMSRG and EOM stages. The implementation of EOM-IMSRG is similar to what is

done in CC theory [68, 69]. While the EOM-IMSRG potentially offers some technical simplifi-

cations due to the Hermiticity of the transformed Hamiltonian (e.g., no need to solve a separate

left-eigenvalue problem when calculating properties other than energy), the practical limitations

of the single-reference formulation should be comparable to the analogous EOM-CC calculations,

limiting the method to nuclei within 1 or 2 nucleons of a closed shell.

To remove these limitations, one possibility is to merge EOM techniques with the multirefer-

ence IMSRG (MR-IMSRG) formulation recently developed for ground-state calculations of open-

shell even-even nuclei [45, 47]. In principle, spectroscopy for the target nucleus and its even-odd,

odd-even, and odd-odd neighbors could then be accessed using suitably generalized EOM excita-

tion operators. Since the full implementation of the MR-EOM-IMSRG is a significant undertak-

ing, we first develop the single-reference EOM-IMSRG to calculate excited states in closed-shell

systems as a “proof-of-principle”, before taking on the much more challenging multireference for-

mulation. In the following we will show that the EOM-IMSRG is indeed a viable approach to

target excited states, giving good agreement with analogous EOM-CC calculations for the 16O and

22O nuclei considered, and exhibiting systematic improvement towards the exact full configura-

tion interaction (FCI) results in 2d quantum dots when perturbative triple-excitation corrections are

included in our EOM calculations. We demonstrate improvement in nuclear spectra when com-

puted with the perturbative triples correction. We also introduce extensions to the EOM-IMSRG

in the form of particle removed and attached variants for neighboring isotopes and isotones, and a

charge-exchange variant to compute properties of neighboring isobars.
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4.1 Sequential Decoupling

4.1.1 TDA-IMSRG

At the end of the IMSRG ground-state decoupling, Hartree-Fock is made exact for the ground

state of the evolved Hamiltonian. One might propose a similar treatment for excited states, sup-

posing that a decoupling can be designed to make some simple approximation for excited states

exact at the end of the evolution. We start with the Tamm-Dancoff approximation (TDA), where

excited states are approximated as linear combinations of 1p1h excitations of a reference Slater

determinant [95],

|ΨT DA
ν 〉= ∑

ai
Xa

i a†
aai|Φ0〉 . (4.1)

With this excitation operator, the Schrödinger equation becomes:

∑
b j
( fabδi j− f jiδab +Γa jib)X

b
j = ω

T DA
ν Xa

i (4.2)

where ωT DA
ν = (ET DA

ν − Ere f ). For a Hartree-Fock reference state, the TDA is equivalent to

diagonalizing H on the subspace spanned by |Φ0〉 and the singly-excited |Φa
i 〉 Slater determinants.

The TDA neglects all ground-state correlations and higher-rank particle-hole excitations in the

excited states, making it a poor approximation for Hamiltonians that feature significant coupling

between the reference state and the higher particle-hole sectors, or between the 1p1h and higher

excitation blocks. The initial nuclear Hamiltonian (treated in the NO2B approximation) certainly

falls into this class, as indicated by the left panel in Fig. 3.2.

For the ground-state-decoupled Hamiltonian in the right panel of Fig. 3.2, we note a block-

diagonal form, where couplings between individual particle-hole excitation ranks have been con-

siderably weakened. The ground-state is completely decoupled from the excited states, and direct

couplings between the 1p1h and 3p3h blocks have been suppressed to zero. Thus, we expect a

TDA calculation using H̄(∞) to be more accurate than an analogous calculation for the initial

Hamiltonian H̄(0) ≡ H. In fact, as ground-state decoupling removes all correlations between the

reference state and 1p1h excitations, the TDA becomes equivalent to the random phase approx-
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imation (RPA) [95] in this reference frame, as the only difference between the methods is the

incorporation of ground-state correlations in the RPA.

A secondary transformation can be devised to make the TDA exact, up to IMSRG(2) truncation

errors, for a subset of excited states. Such a transformation necessarily decouples the 1p1h block

from all higher rank particle-hole excitations, while leaving the decoupling from the ground state

intact. In fact, such a transformation would bring the Hamiltonian to the block diagonal form seen

in the left panel of Fig. 4.1. As the transformations are applied sequentially, we label the ground-

state decoupling as U1, and the secondary transformation to decouple the different particle-hole

sectors as U2. We seek to construct

H̄21(s)≡U2(s)H̄1(∞)U†
2 (s)

=U2(s)U1(∞)HU†
1 (∞)U†

2 (s) , (4.3)

with the relevant off-diagonal terms for U2 given in the NO2B approximation by

H̄od : 〈Φbc
jk|H̄21(s)|Φa

i 〉 ∼ Γic jk ,Γbcak (4.4)

and their Hermitian conjugates. Assuming the second IMSRG evolution converges, the trans-

formed Hamiltonian becomes block-diagonal in particle-hole excitations

〈Φa1...an
i1...in

|H̄21(∞)|Φ
a′1...a

′
m

i′1...i
′m
〉= 0 (n 6= m) , (4.5)

taking the schematic form shown in the left panel of Fig. 4.1. It is often useful to use the imaginary-

time generator for the sequential decoupling, as the secondary stage strongly renormalizes the

single particle spectra. Hereafter, we refer to this sequential decoupling as TDA-IMSRG, since the

TDA is exact when applied to H̄21(∞).

4.1.2 vTDA-IMSRG

The simple block-diagonal structure of H̄21(∞) enables the exact calculation of eigenvalues by

diagonalization of each npnh block separately, with the TDA being the simplest case. However, in
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〈i| H̄21 | j〉 〈i| H̄31 | j〉

0p0h 1p1h 2p2h 3p3h 0p0h 1p1h 2p2h 3p3h

0p
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3h

0p
0h

1p
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2p
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Figure 4.1 Schematic representation of the sequentially-decoupled Hamiltonians in the
many-body Hilbert space spanned by particle-hole excitations of the reference state. The left
panel corresponds to the use of Eq. 4.4 where the entire 1p1h sector is decoupled, and the right
panel corresponds to Eq. 4.10 where just the valence 1v1h excitations are decoupled. The latter
corresponds to the small block in the upper left corner of the full 1p1h-block.

practice we find that the second U2 transformation does not always converge with respect to the

flow parameter s. Even if the U2 evolution converges, the IMSRG(2) truncation errors are typically

found to degrade the unitary equivalence between the initial H and H̄21(∞) beyond acceptable

tolerances. The breakdown of unitarity is a result of the large number of off-diagonal terms driven

to zero in the second transformation, which can lead to large induced three- and higher-body terms

which are neglected in the IMSRG(2).

We can mitigate the effects of truncation errors in the second transformation by decoupling

a smaller portion of the 1p1h configuration space in which the particle orbital is restricted to the

lowest valence shell, as shown in the right panel of Fig. 4.1. This valence-space approach is

denoted vTDA-IMSRG, and we denote the new transformation by U3 with

H̄31(s)≡U3(s)H̄1(∞)U†
3 (s)

=U3(s)U1(∞)HU†
1 (∞)U†

3 (s) . (4.6)
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To determine the form of H̄od for the U3 transformation, let us denote low-lying valence par-

ticle states as av,bv,cv, . . . and high-lying non-valence particle states as aq,bq,cq, . . .. If we don’t

distinguish between valence and non-valence particle states, we use the labels a,b,c, . . . as before.

Performing TDA in the valence space alone modifies Eq. 4.1 to

|ΨV T DA
ν 〉= ∑

avi
Xav

i a†
avai|Φ0〉 , (4.7)

and hence condition 4.5 is reduced to

〈Φbc
jk|H̄31|Φ

av
i 〉= 0 , (4.8)

with the additional requirement

〈Φaq
j |H̄31|Φ

av
i 〉= 0 . (4.9)

These two conditions are met if we choose

H̄od : Γaqi jav ,Γic jk,Γbcavk, faqav . (4.10)

This definition of the off-diagonal terms is significantly reduced in scope from that of Eq. 4.4, so we

expect that the loss of unitarity caused by the IMSRG(2) truncation should be less severe. The right

panel of Fig. 4.1 shows the schematic form of a successful vTDA-IMSRG(2) decoupling. A vTDA-

IMSRG(2) calculation will not leave the Hamiltonian block diagonal for all excitation ranks, and

will limit the number of states accessible to the calculation. However, if we are interested in only

low-lying states, this calculation is much more stable than the full TDA-IMSRG(2). We note

here that both TDA-IMSRG(2) and vTDA-IMSRG(2) are conceptually similar to the similarity-

transformed EOM-CC method, reviewed recently in [151].

4.1.3 Full Configuration Interaction Analysis of TDA-IMSRG(2) and vTDA-IMSRG(2)

The sequential TDA-IMSRG decoupling is designed so that FCI in the space of 1p1h configura-

tions is exact for a set of low lying eigenvalues. As both IMSRG decouplings are carried out using
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the IMSRG(2) truncation, we expect some deterioration of the unitary equivalence between the

initial, ground-state-decoupled, and sequentially-decoupled Hamiltonians due to the neglect of in-

duced three- and higher-body forces. The breakdown of unitarity can be understood and quantified

by performing FCI calculations at various values of s during the flow. In the limit of an IMSRG(A)

calculation with no truncations, we expect energies computed with FCI to be s-independent. Thus,

in an IMSRG(2) calculation, we can measure the truncation errors by analyzing the s-dependence

of each energy level as computed by FCI.

In the left panel of fig. 4.2, FCI behavior is demonstrated as a function of s for a few low-

lying energy levels of a 6-electron quantum dot, with single-particle basis truncated to four major

oscillator shells. The FCI calculations use the evolved Hamiltonian at intermediate steps in the

sequential decoupling, defined by eq. 4.3. The first stage of the IMSRG evolution is the ground-

state-decoupling, and the second stage decouples the particle-hole blocks. The vertical black line

in Fig. 4.2 indicates the endpoint of the ground-state decoupling U1, and the beginning of the sec-

ondary 1p1h decoupling U2. The ground state and first (ML,MS) = (1,0) excited state show weak

dependence on s in either transformation, indicating that the loss of unitarity from the IMSRG(2)

is small.

A more pathological behavior is uncovered by zooming in on the second and third excited

states, as seen in the right panel of Fig. 4.2. For reference, FCI results computed with the initial

Hamiltonian are indicated by horizontal dotted lines. In the second stage, dashed lines show FCI

results for the flowing H̄21(s) during TDA-IMSRG(2), and solid lines correspond to the analogous

vTDA-IMSRG(2) calculations using H̄31(s) where the valence-space used for the vTDA-IMSRG

calculation includes all 1p1h excitations into the third oscillator shell. The U3 evolution shows

limited s-dependence, with small errors induced at the beginning of the flow. The calculation is

converged numerically around s ≈ 11.5. Conversely, the U2 evolution induces larger errors from

the outset, and continues to show s-dependence as the flow continues, exhibiting undesirable fea-

tures such as erratic convergence patterns and level crossings. These results are consistent with

our intuition that IMSRG(2) truncation errors should be smaller for the valence 1p1h decoupling,
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Figure 4.2 (ML,MS) = (1,0) excited states of a 6-electron quantum dot in an ω = 1.0 trap model
space composed of four major oscillator shells. Three FCI calculations are shown; two using the
flowing TDA-IMSRG(2) and vTDA-IMSRG(2) Hamiltonians corresponding to each choice of the
secondary decoupling Ux(s) (where x = 2 or 3), and one using the bare Hamiltonian.

as fewer matrix elements are driven to zero in this framework. In fact, the behavior of the U2

transformation in this specific case is relatively pleasant; we find that in larger systems, the patho-

logical behavior of the TDA-IMSRG(2) decoupling typically leads to numerical instabilities and

thus non-convergent energies. It is for this reason that we consider the vTDA-IMSRG(2) to be the

preferred sequential decoupling method.

In fig. 4.3, we show the practical benefits of the vTDA-IMSRG(2), where sequential decou-

pling is used to make TDA exact in the rotated frame. This calculation is performed for the first

(1,0) state of the 6-electron quantum dot. For comparison, we have plotted the flowing and bare

FCI calculations for both the ground and first excited state, as well as the 0-body component of

the Hamiltonian Ere f (s). At s = 0, Ere f (0) corresponds to the Hartree-Fock energy and ET DA(0)

to a traditional TDA calculation limited to the third oscillator shell. These are rather poor approx-

imations to reality, as they fail to incorporate couplings to higher order configurations, which are

critical in correlated systems such as quantum-dots and nuclei. As s increases, successively more

many-body correlations are resummed into the relevant pieces of the flowing Hamiltonian, and

thus the corresponding Ere f (s) and ET DA(s) become better approximations to exact results. At

70



0 2 4 6 8 10
Flow Parameter (s)

20.25

20.5

20.75

21

21.25

21.5

E
n

er
g

y
 (

H
ar

tr
ee

)

E
ref

(s)

E
TDA

(s)

FCI (H
31

) 

FCI (H)

U
1
(s) U

3
(s)

(0,0)

(1,0)

Figure 4.3 FCI and TDA calculations of the first (ML,MS) = (1,0) excited state using the flowing
vTDA-IMSRG(2) Hamiltonian for a 6-electron quantum dot with N = 3 and ω = 1.0. For
reference, the flowing 0-body part of the Hamiltonian Ere f (s) and the FCI results for the bare
Hamiltonian are also shown.

the completion of ground-state-decoupling, Ere f (s≈ 5.4) is in excellent agreement with the exact

ground state, while ET DA(s≈ 5.4) is significantly improved compared with its initial counterpart.

As the secondary decoupling progresses, ET DA(s) approaches the flowing FCI calculation, which

at this point has deviated little from the bare result. Thus ET DA(s) is now a very good approxi-

mation of the exact ground state, with a much more modest computational demand. This method

is powerful because of its scalability. The time-complexity of vTDA-IMSRG(2) is dominated by

the IMSRG(2) equation, and thus behaves as O(N4
pNvNh), which is far more manageable than the

factorial scaling of FCI. Another important feature of this sequential decoupling is that Ere f (s) is

independent of s during the second stage, indicating that the secondary decoupling does not re-
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introduce couplings between the reference state and particle-hole excitations. The computational

benefits of this approach come at a cost, as the valence space severely limits the number of excited

states which one may describe with this method. Thus we turn to the equations-of-motion method

for a less elegant but more general approach to excited states.

4.2 Equations-of-Motion Method

The sequential decoupling seeks to make simple methods exact, by suppressing the matrix ele-

ments which are responsible for the errors in these methods. While this strategy is intuitively

pleasing, methods such as the TDA- and vTDA-IMSRG(2) cannot circumvent the problems asso-

ciated with maintaining unitary equivalence, particularly when they are tasked with decoupling a

large space of excited states from the rest of the Hamiltonian. We showed that one can decrease the

number of matrix elements we must suppress by defining a valence space for vTDA-IMSRG, but if

we want to describe higher energy excited states, vTDA-IMSRG(2) quickly becomes unpractical

because of the increased size of the valence space required to encapsulate these states.

These limitations can be avoided if we pursue a third strategy where we apply higher-order

equations-of-motion techniques to approximately diagonalize the ground-state-decoupled Hamil-

tonian without the need for a second transformation. Equations-of-motion (EOM) methods [71]

describe a class of systematically improvable methods, which include the TDA and RPA. The key

observation in the formulation of EOM is that any excited state can be exactly rewritten in terms

of a ladder-operator X†
ν and the correlated ground state

|Ψν〉= X†
ν |Ψ0〉 . (4.11)

X†
ν is formally given by the dyad |Ψν〉〈Ψ0|, and can be written as a linear combination of 1- to A-

body excitation and deexcitation operators. The energy eigenvalue problem can then be expressed

in terms of the commutator of H and X†
ν :

[H,X†
ν ]|Ψ0〉= ωνX†

ν |Ψ0〉 , (4.12)
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where ων = Eν −E0 is the excitation energy. The strength of EOM methods, when applied to the

bare Hamiltonian, lies in the ability to make controlled, computationally feasible approximations

on the form of X†
ν . Given some approximation of the correlated ground state, the amplitudes of X†

ν

can be solved for in a generalized eigenvalue problem [95]. In principle, the approximate ground

state can then be improved iteratively using the X†
ν and its Hermitian conjugate, which can then be

used to get an improved X†
ν , and so on.

We can eliminate the need to solve the equations-of-motion self-consistently with the IMSRG.

After ground-state-decoupling, the reference state |Φ0〉 corresponds to the true ground state of

H̄1 ≡U1(∞)HU†
1 (∞), and thus need not be improved. Multiplying Eq. 4.12 by U1(∞) and using

the rotated ground state U1(∞)|Ψ0〉= |Φ0〉 gives

[H̄1, X̄
†
ν ]|Φ0〉= ων X̄†

ν |Φ0〉 , (4.13)

where X̄†
ν ≡U1(∞)X†

νU†
1 (∞) only contains excitation operators since the reference state is anni-

hilated by deexcitation operators. We recover the TDA equations for the ground-state-decoupled

Hamiltonian if we choose

X̄†
ν = ∑

ai
X̄a

i a†
aai . (4.14)

Alternatively, we may use a more complete ladder operator which includes up to 2p2h excitations,

X̄†
ν = ∑

ai
X̄a

i a†
aai +

1
4 ∑

abi j
X̄ab

i j a†
aa†

ba jai . (4.15)

The consequence of the increased precision introduced with eq. 4.15 is a more complicated eigen-

value problem than that of the TDA, but it significantly reduces the need for a second transfor-

mation as it includes a large portion of the correlations which are suppressed by U2 or U3. If we

return to fig. 3.2, we see that in addition to the complete decoupling of the reference state, IM-

SRG(2) ground-state-decoupling also achieves a significant softening of the excited state block,

and thus an EOM method such as that specified by eq. 4.15 will be much more successful here

than with the bare operator, which includes direct couplings between the 1p1h and 3p3h channels.

Note that the EOM calculation with this ladder operator is equivalent to diagonalizing H̄1 on the
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space of singly- and doubly-excited Slater determinants. This is a configuration interaction calcu-

lation with singles and doubles (CISD) in disguise. However, this is only due to the fact that the

true ground state is a simple Slater determinant in this rotated frame.

In general, the EOM ladder operator may have any excitation rank up to ApAh, which would

constitute an exact diagonalization of H̄1. Similarly, the truncation rank of the IMSRG equations

can in principle be increased to the IMSRG(A) level, where the unitary equivalence of H̄1 and

H is exact. Therefore, EOM-IMSRG approximations are systematically improvable, allowing for

EOM(m)-IMSRG(n) calculations, which will simply be referred to as EOM-IMSRG(m,n). The

calculations in the present work are carried out in the EOM-IMSRG(2,2) approximation.

As a result of the vanishing de-excitation piece of X̄†
ν , Eq. 4.13 has the advantage that it may

be solved as a traditional eigenvalue problem using power-iteration methods such as the Lanczos

algorithm. Such methods only require knowledge of matrix-vector products. If X̄†
ν is taken to be

an eigenvector, the corresponding matrix-vector product is given by

[H̄1, X̄
†
ν ] = {H̄1X̄†

ν}C (4.16)

where the subscript C denotes connected terms. Thus, pre-packaged Lanczos algorithm solvers can

be used with the EOM-IMSRG, where the matrix-vector product is just the evaluation of the com-

mutator expressions, and thus the method scales the same as IMSRG(2) ground-state-decoupling:

O(N4
pN2

h ). Note that for nuclei, ladder operators are spherical tensors of rank J with definite par-

ity, as they must connect the ground state to excited states of any desired spin Jπ . For this reason,

EOM-IMSRG calculations are more computationally demanding than TDA-IMSRG and vTDA-

IMSRG calculations. However, the relatively small rotation of the ground-state decoupling U1

makes the EOM-IMSRG equations far more numerically stable in comparison to the sequential

decoupling approaches, which require a large secondary rotation U2,3.

74



4.2.1 Improving the EOM-IMSRG(2,2)

By the nature of the ground-state-decoupled Hamiltonian, we expect some coupling between the

1p1h and 3p3h channels simply because those blocks are transitively related through the 2p2h

block. Thus, description of 1p1h dominant states can be largely improved by going to the next

truncation level in EOM, the EOM-IMSRG(3,2). Additionally, inclusion of triples excitations will

be imperative for the description of 2p2h dominant states, which are still directly coupled to the

3p3h block in the ground-state-decoupled frame. The appropriate ladder operator is

X̄†
ν = ∑

ai
x̄a

i a†
aai +

1
4 ∑

abi j
x̄ab

i j a†
aa†

ba jai +
1

36 ∑
abci jk

x̄abc
i jk a†

aa†
ba†

caka jai . (4.17)

The solution of eq. 4.13 using eq. 4.17 can be achieved with a modest increase in computational

scaling, O(N5
pN3

h ), but doing so requires the storage of a three-body operator for each desired

excited state. This is not practical computationally, particularly in the case of nuclear excited

states with large total angular momentum, where a significant number of matrix elements can be

non-zero. We can instead treat the problem with Rayleigh-Schrödinger perturbation theory. The

order zero wave function is taken to be the solution of the EOM-IMSRG(2,2),

|Ψ̃(0)
ν 〉= |Ψ̄ν〉= X̄†

ν |Φ0〉 . (4.18)

Using Epstein-Nesbet partitioning of the Hamiltonian, the zero order energy is

E(0)
ν = E0 +ων , (4.19)

and the first order energy correction is zero by definition. The second order energy correction is

then given by

E(2)
ν = 〈Ψ̃(0)

ν |H̄1
Q̂

E(0)
ν − H̄(0)

H̄1|Ψ̃
(0)
ν 〉 , (4.20)

where Q̂ is the complement space projector

Q̂ = |Φ0〉〈Φ0|+ ∑
µ 6=ν

|Ψ̄µ〉〈Ψ̄µ |+
1

36 ∑
i jkabc

|Φabc
i jk 〉〈Φ

abc
i jk |+ · · · (4.21)
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Note that Q̂ = 1− P̂, where P̂ = |Ψ̄ν〉〈Ψ̄ν | projects onto the particular solution of the EOM-

IMSRG(2,2) for which we are calculating the perturbative correction. Since couplings between

|Ψ̄ν〉 and the reference state or npnh excitations with n ≥ 4 are zero in a ground-state-decoupled

framework, and since couplings with |Ψ̄µ 6=ν〉 vanish due to the approximate diagonalization per-

formed in the EOM-IMSRG(2,2) calculation, the triply-excited terms of Eq. 4.21 give the only

non-vanishing contribution and Eq. 4.20 becomes

E(2)
ν =

1
36 ∑

i jkabc

〈Φ0|X̄ν H̄1|Φabc
i jk 〉〈Φ

abc
i jk |H̄1X̄†

ν |Φ0〉

E(0)
ν −〈Φabc

i jk |H̄1|Φabc
i jk 〉

. (4.22)

Eq. 4.22 gives a perturbative energy correction that approximates the full EOM-IMSRG(3,2)

energy. In practice, we write Eq. 4.22 as:

E(2)
ν =

1
36 ∑

i jkabc

|Wabci jk|2

Di jk
abc

, (4.23)

where

Di jk
abc = ων −〈Φabc

i jk |H̄|Φ
abc
i jk 〉 , (4.24)

and

Wabci jk = [H̄, X̄†
ν ]abci jk . (4.25)

Storage of three-body matrix elements is not needed as Eqs. 4.23-4.25 need only be calculated

once for each excited state with manageable N4
pN3

h scaling. In the following, the inclusion of

perturbative triples on top of EOM-IMSRG(2,2) will be referred to as the EOM-IMSRG({3},2)

approximation.

4.2.2 Comparison of the EOM-IMSRG and vTDA-IMSRG via Quantum Dots

Fig. 4.4 shows vTDA-IMSRG(2), EOM-IMSRG(2,2) and EOM-IMSRG({3},2) (labeled TDA31,

EOM1, EOM{3}1, respectively) spectra for two different quantum dots, along with FCI calcu-

lations performed for the bare Hamiltonian (FCI0) and FCI calculations using the ground-state-

decoupled Hamiltonian H̄1 (FCI1). The length of the lines indicate the 1p1h content of a given
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Figure 4.4 Selected excitation spectra of 6-electron quantum dots for ω = 1.0 (left) and ω = 0.5
(right) performed in an N = 3 single-particle basis. The quantum numbers of the various states
are color-coded as (ML,MS) = (0,0), (1,0), (2,1), (3,0). The calculated spectra are displayed for
five different many-body approaches, where the subscript indicates which Hamiltonian the
respective method is applied to. For example FCI0 and FCI1 denote FCI calculations on the bare
and ground-state-decoupled Hamiltonians respectively, TDA31 denotes a TDA calculation on the
vTDA-decoupled Hamiltonian, etc. The lengths of the plotted energy levels indicate the 1p1h
content of the state as defined in Eqs. 4.26-4.29.

state which we define as

n(1p1h)FCI0 = ∑
ph
|Cp

h |
2 (4.26)

n(1p1h)FCI1 = ∑
ph
|(C̄1)

p
h |

2 (4.27)

n(1p1h)EOM1 = ∑
ph
|(X̄1)

p
h |

2 (4.28)

n(1p1h)T DA31 = ∑
vh
|(X̄31)

v
h|

2 = 1 . (4.29)
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Note that this quantity is defined differently depending on the particular unitary transformation,

so a direct 1-to-1 comparison can be misleading. For instance, in the vTDA-IMSRG calculations,

the excited states are completely 1p1h in the unitarily-transformed frame, hence all of the lines

in the TDA31 column are the maximum possible length. Since FCI1 and EOM1 are performed

for the same operator H̄1, a direct comparison of Eq. 4.28 and 4.27 is consistent. We note that

EOM-IMSRG({3},2) partial norms are corrected by normalizing with the wave function corrected

to first order in perturbation theory, resulting in a slight decrease.

In Fig. 4.4 we show four sets of states with the indicated quantum numbers chosen to demon-

strate the robustness of the EOM-IMSRG method. For odd parity states such as (ML,MS) = (1,0)

and (3,0), we see that those which are strongly of 1p1h nature are well-described by both vTDA-

IMSRG and EOM-IMSRG methods. We also note that the EOM-IMSRG reproduces the FCI1

partial norms nicely for these states, indicating that the EOM-IMSRG(2,2) is a good approxi-

mation to the full diagonalization of H̄1. The EOM-IMSRG spectra degrades somewhat for even

parity states, since the sizable shell gap at the Fermi level tends to suppress the 1p1h dominance for

such states, and at higher excitation energies. However, it bears repeating that the EOM-IMSRG

is significantly more flexible than the vTDA-IMSRG, as the latter is intrinsically unable to access

even parity and/or higher excited states without expanding the model space to include the entire

1p1h configuration space, which often leads to numerical instabilities and/or erratic convergence.

While the EOM-IMSRG is only an approximate diagonalization of the evolved Hamiltonian, it

can be systematically improved. EOM-IMSRG({3},2) corrections significantly reduce the errors

in the EOM-IMSRG(2,2) approximation at a manageable computational cost. Excitation energies,

which are consistently overestimated by the EOM-IMSRG(2,2) calculation, are consistently re-

duced by the perturbative triples correction, bringing results into better agreement with the FCI1

and FCI0 spectra. The quality of EOM-IMSRG({3},2) energies is still dependent on higher excita-

tion rank content, but 1p1h states are described quite sufficiently by this approximation. The error

in 2p2h dominant states is significantly reduced, but this block couples directly to the 3p3h block,

so a perturbative treatment may be uncontrolled here.
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Figure 4.5 Absolute difference between quantum dot excitation energies calculated via IMSRG
methods and those calculated with FCI on the bare Hamiltonian. Each point corresponds to an
EOM or TDA energy level in Figure 4.4. The left panel is plotted against FCI 1p1h content, while
the right is plotted against the EOM 1p1h amplitudes.

The quality of IMSRG results degrades as the importance of correlation in the system increases.

This is seen clearly in the right panel of Fig. 4.4 for the smaller trap frequency ω = 0.5. Never-

theless, the perturbative triples correction still gives substantial improvement. A strong correlation

between the errors of either method and the bare FCI 1p1h amplitudes is apparent. The right panel

of fig. 4.5 shows the absolute difference between the FCI0 excitation energy and those calculated

via EOM-IMSRG(2,2) or vTDA-IMSRG(2), plotted against the bare FCI partial norm for each

state. A clear inverse proportional relationship can be seen. Accessible vTDA-IMSRG(2) results

are generally more accurate than EOM-IMSRG(2,2). While a successful vTDA-IMSRG calcu-

lation should fully decouple the relevant excited states from truncated terms in the configuration

expansion, where EOM-IMSRG(2,2) ignores some non-zero couplings by definition. Despite full

decoupling, the vTDA-IMSRG(2) should induce additional errors due to the secondary transfor-

mation. Evidently, the errors from the EOM(2) truncation are typically greater than those of the

vTDA-IMSRG(2) secondary transformation. However, this difference is for the most part erased

by the EOM-IMSRG({3},2) triples correction. The root-mean square deviations from the FCI

results are 0.095 Hartree for EOM-IMSRG(2,2) and 0.031 Hartree for EOM-IMSRG({3},2).
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In larger spaces, FCI calculations are not feasible, so we should also consider the relationship

between the error and the EOM1 partial norm of Eq. 4.28. The right panel of fig. 4.5 demonstrates

this relationship, using the same states displayed in Fig. 4.5. Here it is evident that EOM-IMSRG

overestimates the 1p1h content of calculated states, however there is a modestly linear relationship

between the error and the EOM partial norm. This is a useful tool to gauge the reliability of EOM-

IMSRG calculations in larger spaces, as EOM amplitudes are immediately available after solution

of Eq. 4.12.

4.2.3 Results in Finite Nuclei

Applying both the vTDA-IMSRG(2) and EOM-IMSRG(2,2) to finite nuclei, we find a clear prefer-

ence for the latter method. Unfortunately, the promising results of vTDA-IMSRG(2) calculations

in quantum dots do not carry over to nuclei, as uncontrolled numerical instabilities in the sec-

ondary transformation render the vTDA-IMSRG unusable for systems with strong correlations.

Until these instabilities are better understood and overcome, sequential decoupling appears to be

appropriate only for computations in doubly-magic nuclei. Figure 4.6 depicts the lowest excita-

tion energies of 16O calculated at several different angular momenta and parities. We find that the

vTDA-IMSRG(2) tracks well with EOM-IMSRG(2,2) for low-lying 1p1h dominant states, but is

non convergent for all others. In the left column, the 1p1h partial norm (Eq. 4.28) of the EOM

wave function is listed above the corresponding energy for that state. While the 0+ state has strong

1p1h content in the EOM calculation, the vTDA-IMSRG(2) fails to converge beyond the three

lowest excited states1. Strongly 1p1h even parity states in doubly-magic nuclei require the valence

space to contain two-major shells above the Fermi level, hence the convergence difficulties. In

nuclei with sub-shell closures such as 22O, the vTDA-IMSRG(2) fails to converge even for most

low-lying 1p1h dominant states. This is most likely due to the presence of stronger correlations,

1We are not attaching any physical meaning to states at such unphysical high excitation ener-
gies. Rather, our point is to illustrate that obtaining converged, stable calculations in the EOM-
IMSRG is relatively foolproof for a wide range of states, whereas the vTDA-IMSRG calculations
are fraught with numerical difficulties.
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Figure 4.6 Lowest 16O excitation energies plotted for various quantum numbers, calculated with
EOM-IMSRG(2,2) and vTDA-IMSRG(2) starting from the N3LO (500 MeV) NN interaction of
EM [5], softened by free-space SRG evolution to λ = 2.0 fm−1. The single-particle basis is given
by h̄ω = 24.0 MeV and emax = 8. Above each plotted energy level from the EOM-IMSRG(2,2)
calculation is the 1p1h partial norm of Eq. 4.28.

which exacerbate the issue of unitary breakdown. For this reason, we will restrict ourselves to the

EOM-IMSRG(2,2) formalism in the remainder of this chapter.

As we restrict the single-particle basis by orbital energy rather than excitation quanta, there is

no a priori factorization of center of mass components of the wave function for self-bound systems

such as nuclei. Nonetheless, we expect approximate factorization and thus spurious COM excita-

tions are treated via the Lawson-Gloeckner method [142], with an augmented intrinsic Hamiltonian

H = Hint +βHCM(ω̃) , (4.30)
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where ω̃ is determined with the method of Hagen et. al. [6, 152]. Assuming that the intrinsic and

COM wave functions factorize, the use of the Lawson term in Eq. 4.30 should remove spurious

excitations from the low-lying spectrum as β is increased. An example is shown in Figure 4.7 for

the 1− spurious state in 22O, which gets shifted rapidly out of the spectrum for non-zero values of

β . The weak residual β dependence of the remaining states indicates that the COM factorization
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Figure 4.7 Low lying states of 22O at h̄ω = 28.0 MeV and emax = 11 for several values of the
Lawson parameter β , using the N3LO (500 MeV) NN interaction of EM [5], softened by
free-space SRG evolution to λ = 3.0 fm−1. The COM frequency h̄ω̃ = 17.28 MeV.

is approximately satisfied for these states. We expect this factorization to improve (weaker β

dependence) as we go to higher excitation levels and larger bases, as has been empirically observed

in [152, 153].

An important litmus test for the EOM-IMSRG(2,2) method is the ability to produce results that

are comparable to analogous EOM-CC calculations. As with ground-state coupled cluster theory,

EOM-CC methods originated in nuclear physics [73, 74, 154], but were largely ignored for many

years due to convergence issues arising from the “hard cores” found in most NN potential models,
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Figure 4.8 Selected excitation spectra of 22O at h̄ω = 20.0 MeV and emax = 11 using the N3LO
(500 MeV) NN interaction of EM [5], softened by free-space SRG evolution to λ = 2.0 fm−1.
The left frame shows the excitation energies calculated with the intrinsic Hamiltonian, and the
right frame shows the result of adding a Lawson center-of-mass term H = Hint +βHCM(ω̃), with
β = 5.0. Different colors indicate different JΠ.

while going on to enjoy great success in quantum chemistry [11, 76]. In recent years, EOM-CC

methods have had a resurgence in nuclear physics due to the development of softer chiral EFT

interactions and RG methods to soften them further, providing unprecedented access to ab initio

calculations of ground and excited state properties for medium-mass nuclei in the vicinity of closed

shells [42, 59, 68, 69, 93, 144].

Due to similar truncations being made, we expect the EOM-IMSRG(2,2) to produce results that

are comparable to EOM-CCSD calculations. As mentioned in section 3.2.6, IMSRG(2) ground

state calculations tend to more closely reproduce the more sophisticated CCSD(T), due to an
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Figure 4.9 Selected excitation spectra of 22O at h̄ω = 28.0 MeV and emax=11 using the N3LO
(500 MeV) NN interaction of EM [5], softened by free-space SRG evolution to λ = 3.0 fm−1.
The left frame shows the excitation energies calculated with the intrinsic Hamiltonian, and the
right frame shows the result of adding a Lawson center-of-mass term H = Hint +βHCM , with β =
5.0. Different colors indicate different JΠ.

undercounting of asymmetric quadruple diagrams at MBPT(4). Understanding how each spe-

cific resummation of MBPT affects excited states would require an analytical treatment in quasi-

degenerate perturbation theory, which is beyond the scope of this work. We will content ourselves

with empirical investigations, using both the IMSRG(2) and IMSRG(2*) ground-state-decoupled

Hamiltonians in our exploration. In Figure 4.8 we show calculations of the low-lying spectra of

22O performed on the intrinsic Hamiltonian, as well as the Lawson Hamiltonian with β=5.0. In

each panel, the left column shows the excited states calculated in the standard EOM-IMSRG(2,2)

approximation, while the right column shows the quadruples corrected EOM-IMSRG(2,2*).
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On a technical note, COM frequencies ω̃ are calculated independently for the IMSRG(2) and

IMSRG(2*) methods, and corresponding Lawson terms are constructed. The Lawson term is con-

structed in the CCSD calculations using the frequencies calculated in the IMSRG(2*) formalism,

which we expect to be a good approximation given the similar perturbative content of both meth-

ods. The relevant frequencies are given in table 4.2.3. The observed removal of spurious center-

of-mass excitations is consistent in all three approaches.

Figure 4.9 displays a similar comparison for a “harder” interaction at λ = 3.0 fm−1. Differences

between the EOM-IMSRG(2,2*) and CCSD are more notable here, but qualitative agreement is

still intact. The EOM-IMSRG(2,2) excitation energies are generally shifted up from their CCSD

counterparts. This is indicative of the increasing effect of missing 4th-order quadruples for harder

interactions and is consistent with observations of increasing differences between IMSRG(2) and

CCSD ground-state energies for interactions with larger λ values [3].

To reproduce experimental spectra, we include an N2LO 3N force fit at Λ = 400 MeV [13],

which has had some success in the ab initio description of excited states [46, 51, 155]. Fig. 4.10

shows the computed spectra for closed shell nuclei 14C and 22O, using the above interaction.

Results are compared with experiment. Here spurious states have been identified and removed

from the spectra.

Here much of the experimental spectrum is poorly reproduced by EOM-IMSRG(2,2). We see

many of the states in 14C are missed, and the calculated 2+1 state appears to align with the exper-

imental 2+2 state. We are unable to rule out the possibility that we miss the first experimental 2+

state entirely due to low 1p1h content, as we only have energetics to draw comparisons with. This

Method λ = 2.0 fm−1 λ = 3.0 fm−1

IMSRG(2) 18.19 17.28
IMSRG(2*) 18.05 17.50

CCSD 18.05 17.50

Table 4.1 Values of h̄ω̃ in MeV, used in center-of-mass Hamiltonian for Lawson calculations of
22O energy spectra.
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Figure 4.10 Low lying spectra of 14C and 22O at h̄ω = 20.0 MeV and emax=14 using the
standard input NN+3N(400) interaction, softened by free-space SRG evolution to λ = 2.0 fm−1.
Results are compared with experiment [12].

calculation can surely benefit from the inclusion of a triples correction and analysis of observables.

Matching with experimental states will be discussed in more detail in chapter 5.

The picture is less obscure in 22O, where given the assumption that the nucleus is appropriately

described by a single-reference state, parity arguments give us confidence that the low-lying 2+1 and

3+1 are largely composed of single excitations within the sd-shell. Accordingly, EOM-IMSRG(2,2)

reproduces experiment for these states fairly well. Higher energy spectra are not produced partic-

ularly well, which is expected as the higher energy states certainly contain more 2p2h and higher

content than the first two excited states. Again, this study can be greatly facilitated by inclusion of

a triples correction, which we would expect to be small for the first two excited states.
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Figure 4.11 Triples correction for low lying spectra of 14C and 22O at h̄ω = 20.0 MeV and
emax=8 using the N3LO (500 MeV) NN interaction of EM [5] with N2LO 3N force (400
MeV) [13], softened by free-space SRG evolution to λ = 2.0 fm−1. Results are compared with
experiment [12].

4.2.4 Perturbative Corrections for Nuclei

While the EOM-IMSRG({3},2) correction is a rather straightforward computation for manageable

systems such as parabolic quantum dots, the correction is much more computationally challenging

for a strongly correlated nucleus. The correction must be implemented in J-scheme (see appendix),

and thus requires numerous sums over intermediate couplings to total angular momentum quan-

tum number, along with the already taxing O(N4
pN3

h ) scaling. For this reason we are unable to

perform extensive EOM-IMSRG({3},2) calculations with the large model spaces used in the pre-

vious calculations. However, as a demonstration of the method, results for an emax=8 model space

are shown in Fig. 4.11. Here we compute the same states as in fig. 4.10, but we use a smaller

model space for the purposes of computational feasibility. As calculations are performed at the
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optimal basis frequency (h̄ω = 20 MeV) for these systems, EOM-IMSRG(2,2) calculations are

reasonably converged despite the small model space. The EOM-IMSRG({3},2) correction shifts

all of the states down, as constituents of the excluded-space of triply excited Slater-determinants

do not exhibit any near degeneracies with the low-lying EOM-IMSRG(2,2) spectra. Strongly 1p1h

states such as the 2+1 and 3+1 states in 22O undergo smaller corrections than higher energy states,

which couple more strongly to the 3p3h block through their higher-order many-body content. The

computed 2+1 state in 14C experiences a shift which moves it closer to its experimental counterpart,

whereas previously it aligned more closely with the experimental 2+2 state. Likewise, numerous

states which appear at high energy are moved down significantly by the inclusion of the triples

correction, in better correspondence with the experimental spectra. The larger shifts seen in odd-

parity states indicate significant content beyond 1p1h, and thus it is likely that for a perturbative

triples treatment, additional IMSRG evolution will be needed to soften couplings to higher-order

content.

A curious case is presented by the 0− state for both nuclei. The shift is quite large compared

with the other odd-parity states, and in 22O, the triples result (not shown to reduce clutter) gives

a negative excitation energy for the 0− state. Another issue is the observation that in 22O, the

EOM-IMSRG(2,2) results for the two lowest states, seemingly consistent with experiment, are

shifted further from experiment by their triples corrections. At the moment, these results are not

thoroughly understood, but the discrepancy may be attributable to several sources. The interaction

may contribute to the overbinding in these states, leading to slightly lower energies. Work is in

progress to understand the nature of these errors.

Overall, the EOM-IMSRG({3},2) is inconsistent in that it treats the IMSRG calculation with a

two-body truncation and the EOM portion at an approximate three-body level. We could certainly

construct the EOM-IMSRG({3},{3}) by shifting all of the absolute energies by the triples correc-

tion of eq. 3.50, however a full inclusion of correlations with the triples-corrected ground state

would require additional perturbative terms involving the first-order wave functions of the ground

and excited states, which we will denote EOM-IMSRG({3,3}) when it comes to fruition.
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4.2.5 Extensions of EOM-IMSRG

The EOM-IMSRG formalism presented is sufficient to describe the excited states of closed shell

nuclei only. This stems from the fact that the flowing vertices in eqs. 3.21-3.23 are normal-ordered

with respect to a single Slater determinant reference state. The most obvious solution to this

limitation would be to merge multireference IMSRG (MR-IMSRG) [45,47] with EOM techniques.

This method uses generalized normal-ordering to include static correlations in the reference state

[77], and as a result augments the IMSRG(2) equations with terms proportional to one-, two- and

higher-body irreducible density matrices. Ultimately the full MR-EOM-IMSRG will allow for the

description of many additional open-shell nuclei, but the current formulation of the MR-IMSRG

with scalar operators in J-scheme limits the description to spherical even-even nuclei.

Single reference EOM-IMSRG can be extended to open shell nuclei using particle attached

(PA) and removed (PR) operators,

Y †
ν = ∑

a
yaa†

a +
1
2 ∑

abi
yab

i a†
aa†

bai (4.31)

Z†
ν = ∑

i
ziai +

1
2 ∑

ai j
za
i ja

†
aa jai , (4.32)

where particle number breaking operators are used to connect that A-body reference state to the

(A± 1)-body spectra. Solving eq. 4.13 using eq. 4.31 or eq. 4.32 in place of X† constitutes the

PA-EOM-IMSRG(2,2) or PR-EOM-IMSRG(2,2) respectively, where the first “2” now refers to

the truncation to 2p1h or 2h1p operators. Analogously, we can construct methods for two-particle

attachment or removal. It’s not foolhardy to think that the MR-IMSRG precludes the practical

use of PA-EOM-IMSRG, as it provides direct access to open-shell nuclei. However, the particle

number conserving formalism will only be able to describe even-even nuclei, as the MR-IMSRG

can only provide a 0+ reference state. Here the PA and PR formalism will be needed to fill in

the gaps. At the moment, no MR-EOM-IMSRG implementation exists, but we have performed

PA/PR-EOM-IMSRG for cylindrical quantum dots, as a proof of efficacy.

The left panel of Fig. 4.12 shows results of particle addition energies for the six particle quan-
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Figure 4.12 Calculated (ML,MS) = (0,1) particle addition and removal energies for a 6-electron
quantum dot with ω = 1.0 state with EOM-IMSRG, EOM-CCSD and Hartree-Fock theory.
Results are plotted as a function of oscillator shells used for the single-particle basis.

tum dot system. Results are computed using the IMSRG(2), IMSRG(2*), and CCSD as a base for

EOM methods, and the HF single particle energy is given for reference. The effect of correlations

here is rather small, but this system offers an excellent testing ground to compare methods. The

IMSRG and CCSD methods show similar convergence properties. The discrepancy between PA-

EOM-IMSRG(2) and PA-EOM-CCSD accounts for less that 0.01% of the total addition energy,

with that discrepancy being reduced by roughly a factor of two when the IMSRG(2*) approxi-

mation is used. In the right panel, removal energies are computed for the same system. Despite

showcasing a larger overall discrepancy than the addition energies, the difference between EOM-

IMSRG and EOM-CCSD (1% of the removal energy) is much smaller than the effect of correla-

tions (10%). This stands in contrast to the addition energies, where the discrepancy is only about a

factor of two smaller than the discrepancy caused by correlations.

In nuclear systems, an additional extension of the single-reference EOM-IMSRG(2,2) can be

made through use of isospin breaking charge-exchange operators, which can be used to describe

isobaric neighbor nuclei to closed shells. The formalism is exactly the same as the particle-number

conserving EOM-IMSRG derived from eq. 4.15, with the only difference being that neutrons are

converted to protons or vice versa. For example, we may construct a ladder operator for the 1+
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ground state of 14N , using the 14C reference state,

|Ψ0(
14N)〉= X†(∆T z =−1)|Φ0(

14C)〉 (4.33)

X†(∆T z =−1) = ∑
ia

xa
i p†

ani +
1
4 ∑

i jab
xab

i j δtzbtz j
p†

aa†
ba jni (4.34)

where p† and n are proton creation and neutron annihilation operators, respectively.

Results for 14N are shown in fig. 4.13. Similar to the charge conserving EOM-IMSRG(2,2),

the 1p1h-dominant low-lying 0+1 state is described well by this method. The remaining states

have excitation energies which are too high, indicating some admixture of 2p2h and higher-order

content. We have not implemented a triples correction here, but again we expect that such a

correction would have a noticeable effect on the odd-parity states, which likely have more balanced

compositions of 1p1h excitations into the sd-shell and 2p2h excitations where only one particle

crosses the major shell-gap. We also consider the accuracy of ground state energy, as the wave

function is built here upon the 14C reference state. Its binding energy is calculated to be 7.430

MeV/nucleon, while the experimental value is 7.475614 MeV/nucleon [156]. We will use the

charge-exchange formalism for both energetics and electromagnetic observables in chapter 5.

We have seen that with a single reference EOM-IMSRG(2,2) code, closed shell nuclei and their

four nearest isobaric, isotonic and isotopic neighbors should be within reach. However, we caution

that next-nearest neighbors will be described rather poorly in this way, as EOM-IMSRG(2,2) is

a fairly limited approximation for nuclei which have no 1p(1h) components with respect to the

closed-shell reference state.
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Figure 4.13 Low lying spectra of 14N at h̄ω = 20.0 MeV and emax=14 using the standard
NN+3N(400) softened by free-space SRG evolution to λ = 2.0 fm−1. Results are compared with
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CHAPTER 5

CONSISTENT COMPUTATION OF OBSERVABLES

In the previous chapters, we have discussed the computation of both ground and excited state

energies within the IMSRG framework. A complete theory, capable of guiding and analyzing

experiment, should also be able to describe general observables which are of interest in experiment

such as electromagnetic transition strengths and moments. A general and consistent framework for

observables in ab initio methods will help address longstanding problems in nuclear physics, such

as the nature of the observed quenching of the axial vector coupling constant gA, or the source of

effective charges in medium.

A critical property of physical observables is that they are invariant under unitary transfor-

mation. In other words, when a change of resolution scale is implemented through some renor-

malization group transformation or otherwise, the effects of the scale change should be applied

consistently to the operators of interest. The consistently transformed operators,

Ō(s) =U(s)OU†(s) , (5.1)

are called “effective” operators. This highlights the fact that interactions and operators themselves

are not observables [39], but rather tools used to probe observables. These tools are most useful

when tuned to the proper degrees of freedom. In this chapter, we will introduce a general effective

operator formalism for the IMSRG, where the bare operators are transformed consistently along-

side the Hamiltonian. Non-scalar effective operators have been implemented in both the EOM-

IMSRG and the recently developed valence-space IMSRG (VS-IMSRG). We explore the effects

of consistent operator evolution and convergence properties for both methods, benchmarking with

no-core shell model (NCSM) and experiment when available.
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5.1 Effective Operators in the IMSRG

The IMSRG transformation may be straightforwardly applied to any operator using eq. 3.8 where

the generator η is defined in terms of the flowing Hamiltonian. Prior to the Magnus formulation,

large scale effective operator calculations were unpractical. As discussed in section 3.2.3, the

traditional IMSRG approach is computationally unfeasible because of the many copies of each

operator needed for a high-order ODE solver.

In the Magnus formulation, we may solve first for the Magnus generator Ω, and subsequently

apply the transformation to each additional operator via the Baker-Campbell-Hausdorff expansion

of eq. 3.39. Until recently, these calculations were limited to scalar observables such as radii

and monopole moments. Ab initio calculations of non-scalar observables have been possible in the

NCSM and QMC, where no renormalization of the operators is needed [157–160], but these explo-

rations are limited to light nuclei and often lack sufficient convergence due to the restricted model

spaces necessary for quasi-exact approaches. The present work extends IMSRG calculations in the

medium-mass region to transitions and moments, through the derivation and efficient implemen-

tation of commutator expressions involving arbitrary rank spherical tensor operators. The relevant

equations are given in the appendix. As a result, consistent calculation of all tensor observables

such as electromagnetic strengths, moments, and Gamow-Teller strengths are now accessible. In

principle, this formalism also paves the way for consistent predictions of quantities on the cutting

edge of physics, such as the nuclear matrix elements for neutrinoless double β -decay [67] and

structure factors of weakly interacting massive particles (WIMPs) scattering from nuclei, which

are relevant in searches for dark matter [161, 162].

5.1.1 Transition Operators

In this work, we will consider three electromagnetic multipole operators, the M1, E2, and E3

operators. The latter, known as the electric octupole operator, allows for odd-parity transitions up

to ∆J = 3, which are relevant to the low lying 3−1 states observed in doubly magic nuclei. The M1
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and E2 operators are responsible for the even-parity transitions which are most prolific in nuclear

physics, namely the magnetic dipole and electric quadrupole transitions. Observables discussed

here include transition strengths, given by

B(σλ ;ΨiJi→Ψ jJ f ) =
1

2Ji +1
|M f i|2 , (5.2)

where M f i is the reduced transition matrix-element

M f i = 〈ΨiJi||Oσλ ||Ψ f J f 〉 , (5.3)

and Oσλ are the transition operators (σ is a dummy variable for M or E, and λ is the tensor rank).

We also compute moments of the M1 and E2 operators,

M σλ = 〈ΨJM = J|Oσλ
0 |ΨJM = J〉 , (5.4)

where the transition matrix element is no longer reduced, and we take the M = J projection of the

state Ψ. We take the bare operators as our starting point, using only the leading-order one-body

piece for each operator, written in the lab frame. The operators are derived from the electric and

magnetic multipole expansions [163],

OEλ
µ =

A

∑
j=1

e( j)rλ
j Y λ

µ (Ω j) , (5.5)

OMλ
µ = µN

A

∑
j=1

[
2

λ +1
g( j)

l l( j)+g( j)
s s( j)

]
·∇ j[r

λ
j Y λ

µ (Ω j)] , (5.6)

where µN is the nuclear magneton. The electric charge e( j) and gyromagnetic ratios g( j)
s and g( j)

l

are given by their bare values

e(p) = 1 g(p)
s = 5.586 g(p)

l = 1 (5.7)

for protons, and

e(n) = 0 g(n)s =−3.826 g(n)l = 0 (5.8)

for neutrons. Phenomenological computations of electromagnetic observables typically require

effective values for these parameters to account for in-medium effects, which can be thought of as
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arising from the polarization of the core by valence nucleons through the inter-nucleon interactions.

As the valence nucleons change their state, the polarized core produces a motion of charge beyond

that of only the valence protons [95, 164–167]. In the spirit of ab initio nuclear structure, we start

with the bare nucleon values for e, gs and gl , and expect them to be dressed appropriately by

renormalization from consistent operator evolution.

While a detailed analysis is beyond the scope of this dissertation, the IMSRG provides an

excellent environment to study the renormalization of these parameters in-medium. Of critical

importance is the axial-vector coupling constant gA, which mediates the Gamow-Teller strength

of nuclear β -decay; a strong quenching of gA is observed in medium [168, 169]. While some

attempts to describe this effect have been made in an ab initio framework [170], the origin of this

quenching is very much an open question in nuclear physics. Theoretical explanations attribute the

quenching either to configurations missing from the model spaces used in the computations, or to

non-nucleonic degrees of freedom. The former explanation pertains to phenomena such as short-

range correlations or multi-phonon states [171–173], where the latter refers to missing physics

such as ∆-isobar excitations [172, 174]. The effective operator formalism present here, coupled

with the versatility of a Hermitian method such as the IMSRG, offers a promising framework to

investigate such ideas for a wide range of nuclei.

5.1.2 General Observables in the IMSRG

At present, two distinct flavors of the IMSRG offer viable frameworks to study transitions and

moments in nuclear structure. The EOM-IMSRG is a capable vessel, but observables may also be

accessed by the valence-space (VS)-IMSRG [46, 52].

In the EOM-IMSRG, reduced matrix elements between excited-states and the ground state

must be computed by the coupled product of spherical tensor operators,

M0ν = 〈Φ0||{Oλ ⊗X†
ν (J

Π
ν ,∆Tz)}0||Φ0〉 (5.9)
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= δλJν
(−1)Jν

[
∑
ai

Xai√
2J+1

Oai +
1
4 ∑

abi j
∑

J1J2

X̃
J1J2
abi j√

2J+1
Õ

J1J2
abi j

]
. (5.10)

Here Oλ represents an operator of rank λ , and X†
ν (J

Π
ν ,∆Tz) is an EOM ladder operator whose

tensorial rank is given by the total angular momentum Jν , with parity Π and charge-exchange

character given by ∆Tz.

For moments or transitions between two EOM excited states, a more involved calculation is

needed:

Mµν = 〈Φ0||{Xµ(JΠ′
µ ,∆Tz

′)⊗{Oλ ⊗X†
ν (J

Π
ν ,∆Tz)}Jµ }0||Φ0〉 . (5.11)

Knowledge of the full tensor product

Y J
M ≡ {O

λ ⊗X†
ν (J

Π
ν ,∆Tz)}JM = ∑

Mν µ

CλJν J
µMν MOλ

µX†
ν (JνMν) , (5.12)

is required for computation of eq. 5.11. The expressions for this are given by eqs. 108 and A.6.2

in the appendix.

The VS-IMSRG is not the focus of this dissertation, but nonetheless we include results for

the sake of benchmarking and for a more complete interpretation of effective operator evolution

in the IMSRG. The VS-IMSRG approaches spectroscopy and related observables via a different

paradigm in which a valence space is decoupled for use with existing shell-model machinery. In

this context, the IMSRG serves as a means to construct nonperturbative effective valence space

interactions and corresponding effective operators. After decoupling the shell-model core by the

ground-state IMSRG, a secondary decoupling, similar to the vTDA-IMSRG decoupling of sec-

tion 4.1.2, is used to suppress dynamic correlations between the two valence particle-attached

space and the core and non-valence orbitals. The relevant off-diagonal is given by

Hod : fph, fpp′, fpp′,Γpp′hh′,Γpp′vh,Γpq′vv′ (5.13)

and their Hermitian conjugates [46]. Here p and h are particle and hole indices, respectively, v are

valence space orbitals, and q non-valence particle orbitals. In typical calculations, the Hamiltonian
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is normal ordered with respect to an ensemble reference state specified by the density matrix

ρ = ∑
α

Cα |Φα〉〈Φα | , (5.14)

where |Φα〉 are Slater determinants of varying particle number Aα , and the Cα are chosen so that

the ensemble-averaged particle number is equal to the mass of the target nucleus. This alters the

Wick contractions (see sec 2.3) such that they are proportional to a fractional occupation number,

rather than an integer occupation. Ensemble normal ordering (ENO) has the effect of properly

including valence three-body forces in the NO2B approximation, and is crucial for the reproduction

of binding energies far from shell-closures. With these improvements in normal-ordering, the

method has had great success in the reproduction of binding energies and spectra throughout the sd-

and p f -shells [51,52]. Despite this progress, the VS-IMSRG has heretofore been limited to scalar

operators. However, the same machinery required for effective operator evolution in the EOM-

IMSRG can be used for the VS-IMSRG. The actual computation of observables is accomplished

in a shell model framework using the consistently transformed operator together with the wave

functions that result from diagonalizing the valence Hamiltonian.

5.2 Results

5.2.1 Center-of-Mass Treatment

Spurious center-of-mass-excited states manifest as nearly degenerate intrinsic states in nuclear

spectra. As discussed in sec. 3.2.4, these states are removed via the Lawson-Gloeckner method

[175], where the intrinsic Hamiltonian is augmented with a scaled center of mass trap of the form

of eq. 3.43,

H = Hin +βHcm. (5.15)

Here, the scale factor β can be taken to arbitrarily large values if sufficient factorization is achieved

in calculations using Hin only. This process effectively scales spurious states out of the spectrum

by adding a large COM excitation energy.
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Figure 5.1 Observables calculated at several values of the Lawson scaling parameter β , for 14C,
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β Ecm(0+gs) (MeV) Ecm(2+1 ) (MeV)
0 0.099 1.298
1 0.068 0.046

Table 5.1 Ecm for intrinsic ground state and first 2+ state of 14C, computed at emax=14 and h̄ω =
20 MeV using the standard input NN+3N(400) interaction softened by the SRG to λSRG = 2.0
fm−1 with EOM-IMSRG(2,2). Values are given for calculations using Hin (β=0), and Hin +Hcm
(β=1).

Figure 5.1 demonstrates this procedure with 14C, for the ground state, first 2+ excited state,

and corresponding B(E2) value. Quantities are calculated with the EOM-IMSRG(2,2) method. The

energies are approximately independent of β ; this may be taken naively as evidence of factorization

for these states. However, the B(E2) value undergoes a sudden downward shift as the Lawson term

is introduced. The value saturates and displays factorization as we go to higher β . This shift

indicates that the approximate factorization observed in the energies is not sufficient to describe

observables whose operators are not expressed in a translationally-invariant manner, such as the

electric quadrupole operator discussed here.

A common resolution for this problem is the inclusion of a cumbersome recoil correction for

the transition operator [164]. This is a two-body operator which may require approximate or exact

IMSRG(3) machinery to minimize truncation errors. A more elegant solution is to force the COM

wave function into the ground state via explicit trapping with the Lawson-Gloeckner method dis-

cussed above. Table 5.2.1 gives the computed Ecm for calculations with and without explicit inclu-

sion of a center of mass trap via the Lawson term. We expect a perfectly factorized wave-function

to have Ecm=0 MeV, as Hcm is written so that the COM ground state has zero energy. For either

case, the ground state wave function demonstrates limited contamination from spurious COM ex-

citations, with Ecm < 100 keV. The 2+1 state of Hin does not exhibit this level of factorization, with

Ecm=1.298 MeV, indicating a relatively small admixture of spurious states, as the first spurious

excited state has energy h̄ω̃ = 15.7 MeV. This level of contamination is evidently negligent for

excitation energies, but has important effects when the state is probed by the quadrupole operator.

When the COM trap is explicitly added this issue is rectified, and as a result, we see a shift in the
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B(E2) strength, which corresponds to a recoil correction.

5.2.2 The Deuteron

As a first illustration, we consider some ground state properties of the deuteron. This is useful for

a few reasons. First, the system consists of only two particles and so induced three body forces are

irrelevant. Further, the reference is taken to be the true vacuum, so the neglected three body forces

do not feed back into the two body terms. We should therefore expect the IMSRG(2) to be exact.

Second, full configuration interaction (FCI) calculations are easily performed for modest model

spaces, allowing a direct evaluation of the precision of the IMSRG calculation. Finally, we may

treat the deuteron in the 0s valence space where the bare quadrupole moment is identically zero. In

this case, the calculated quadrupole moment is entirely due to effects of the IMSRG decoupling.

Fig. 5.2 shows the ground-state energy, root-mean-square charge radius, quadrupole moment and

magnetic moment of the deuteron, computed both with FCI and using IMSRG to decouple the

0s valence space, followed by a trivial diagonalization. We can see that the IMSRG calculation

indeed reproduces the FCI.

Here again we see the effect of COM spuriosities in the deuteron wave function. While the

energy and dipole moment converge to the exact values with little alteration from COM contami-

nation, the charge radius overshoots it drastically. Although we have not reached convergence for

the charge radius, it is evident that Lawson scaling significantly reduces its value. Furthermore,

the quadrupole moment, which is also non converged at emax=12, shows a more agreeable conver-

gence pattern when treated with the Lawson scaling. We note that the convergence properties and

COM sensitivity of the charge radius and quadrupole moment are quite different, despite the latter

being proportional to the square of the radius. These discrepancies are not fully understood at the

moment.
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Figure 5.2 Ground state properties of the deuteron calculated with a full diagonalization (labeled
FCI), compared to the same properties calculated in the 0s valence space using operators
transformed with the IMSRG. The line labeled “exact” is obtained by diagonalizing in the Jacobi
basis with emax = 200. Here we use the EM input N3LO nucleon-nucleon interaction SRG
evolved to λSRG = 2.0 fm−1.

5.2.3 p shell Nuclei: Comparison to NCSM and Small-Space FCI

The deuteron is, of course, an exceptionally simple case, due to the fact that there is not really a

“medium”, and so the IMSRG is really a free-space SRG. Once additional particles are considered,

the normal-ordered two-body approximation is used, and the IMSRG(2) should no longer be exact.

To test this approximation, we consider p-shell nuclei which may also be treated exactly in the no-

core shell model (NCSM).

As a test in the p shell, we consider 14C. Because this is a closed-shell nucleus, we may employ

the EOM-IMSRG as well as the VS-IMSRG, while 14 particles is still feasible with the NCSM.

Fig. 5.3 displays results for the 2+1 excitation energy and B(E2;2+1 → 0+0 ) for 14C. Here, we

find excellent agreement between NCSM and both variants of the IMSRG. We remind the reader

that the EOM-IMSRG calculation is performed with an explicit center-of-mass trap, as in eq. 5.15,
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Figure 5.3 Convergence of the 2+1 excitation energy and B(E2) to ground state of 14C with the
VS- and EOM-IMSRG methods, using the standard input NN+3N(400) interaction softened by
the SRG to λSRG = 2.0 fm−1. Experimental values are taken from [1].

where β = 1.0. This treatment only serves to remove spurious COM contamination of the 2+1 state.

Of note are the excellent convergence properties of the IMSRG calculations. For the EOM-

IMSRG, observables are nearly independent of the specified h̄ω for the single-particle basis. VS-

IMSRG calculations have not used the exhaustive model spaces of the EOM-IMSRG, but they

too demonstrate desirable convergence features. The NCSM has begun to show convergence at

Nmax=8, but extrapolation methods must be used to reveal fully converged values. Hence the

utility of the IMSRG; for light mass nuclei such as 14C, convergence is obtainable without extrap-

olation because the IMSRG cannot only reach higher model-spaces, but also indirectly treats the

full configuration space within the emax truncation on the single-particle basis. On the other hand,

the quasi-exact NCSM is restricted to the subset of Slater determinants with total excitation quanta
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Figure 5.4 Convergence of the 1+1 excitation energy and B(M1) to ground state of 14C with the
VS- and EOM-IMSRG methods, using the standard input NN+3N(400) interaction softened by
the SRG to λSRG = 2.0 fm−1. Experimental values are taken from [14].

up to and including Nmax. Correspondingly, we expect extrapolation procedures in heavier nuclei

to be relatively painless in the IMSRG, compared with exact methods such as NCSM.

As a further test in 14C, we analyze the first 1+ state and corresponding M1 transition to the

ground state in figure 5.4. Again, fantastic convergence properties are exhibited by both IMSRG

methods, and consistency with NCSM is observed. The 1+1 excitation energy is consistent between

methods and shows reasonable reproduction of experiment. While B(M1) values computed by the

many-body methods are in excellent agreement, these overestimate experiment by a significant

amount. A possible source of this discrepancy are contributions from two-body currents which

originate from chiral-EFT. These currents can in principle be incorporated in our calculations, but

the normal-ordered current operators have yet to be implemented in this formalism.
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Additionally, we analyze the isobaric neighbor nucleus 14N. Here the EOM-IMSRG requires

charge-exchange formalism discussed in sec. 4.2.5, i.e. ladder operators which exchange one neu-

tron for a proton. Figure 5.5 displays the 0+1 excitation energy for 14N, the strength of the dipole

transition to the 1+0 ground state and the ground state magnetic dipole moment. Here we see a

trend of VS-IMSRG overpredicting observables. The EOM-IMSRG(2,2) underpredicts experi-

ment for the energy and B(M1) value, while slightly overpredicting the magnetic moment. The

VS-IMSRG(2) drastically overpredicts both experiment and NCSM for the B(M1) value. We do

not yet understand the source of this discrepancy, but the EOM-IMSRG(2,2) also struggles here,

underpredicting the B(M1) value by roughly an order of magnitude. While the lack of discernible

convergence for the B(M1) value in the NCSM calculation seems to demonstrate that this nucleus

is challenging for ab initio theory, the IMSRG methods certainly should share a fair portion of

the blame; in sec. 5.2.7, we will discuss potential sources of error in the VS- and EOM-IMSRG

approaches.

Ultimately, the power of IMSRG approaches for excited states and effective operators will be

the ability to describe these properties in medium- to heavy-mass regions where exact methods are

not computationally tractable. In the next sections, we investigate the quality of these calculations

for several medium-mass nuclei, again using the electric quadrupole and magnetic dipole operators

as case studies.

5.2.4 Electric Quadrupole Observables in sd and f p shell Systems

Figure 5.6 displays the first 2+ energy and B(E2) strength for transitions to the ground state of 22O.

While we see excellent convergence and agreement with experiment for the excitation energy, the

transition strength is underpredicted by an order of magnitude. These results are strikingly consis-

tent between the two methods. A tentative explanation is provided by the lack of valence protons

in the sd-shell. The VS-IMSRG treats this nucleus as six neutrons sitting above an 16O core; the

low-lying 2+1 state is composed solely of excitations within the sd-shell, and thus the wave func-
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Figure 5.6 Convergence of the 2+1 excitation energy and B(E2) to ground state of 22O with the
VS- and EOM-IMSRG methods, using the standard input NN+3N(400) interaction softened by
the SRG to λSRG = 2.0 fm−1. Experimental values are taken from [1].

tion is is composed purely of neutron excitations. As a result, valence neutrons must be dressed

consistently as quasi-neutrons possessing an effective charge in order to properly produce tran-

sition strengths. A similar situation manifests in the EOM-IMSRG(2,2), where by conservation

of parity, the only proton excitations allowed across the major shell gap are 2p2h, and these are

of significantly higher energy than the 1p1h neutron excitations within the sd-shell. The absence

of any appreciable strength in the two IMSRG calculations is a somewhat convincing argument

that IMSRG decoupling does not appropriately renormalize the neutron charges. However, this

discrepancy is evident in many other nuclei, regardless of whether the protons are semi-magic or

not. Figure 5.7 shows a similar situation for 32S, which has numerous valence protons to account

for the transition strength. Here we see reasonable reproduction of the 2+1 experimental excita-

107



0

1

2

3

4

5

6

7

E
(2

+ 1
)(
M
eV

)

Exp Valence-space
IMSRG

EOM
IMSRG

emax= 4
emax= 6

emax= 8

emax=10

emax=12

emax=14

10

20

30

40

50

60

70

B
(E

2;
2

+ 1
→

0
+ 0
)(
e

2
fm

4
)

18

16

14

12

10

8

6

4

2

0

Q
(2

+ 1
)(
fm

2
)

12 16 20 24 28

ω(MeV)
12 16 20 24 28

ω(MeV)

32S

Figure 5.7 Convergence of the 2+1 excitation energy, corresponding B(E2) to ground state and
quadrupole moment of 32S with the VS- and EOM-IMSRG methods, using the standard input
NN+3N(400) interaction softened by the SRG to λSRG = 2.0 fm−1. Experimental values are
taken from [1].

108



1

2

3

4

5

6

7

8

9

10

E
(2

+ 1
) 

(M
eV

)

Exp 48Ca Exp 56Ni Exp 60Ni

0

50

100

150

B
(E

2
;2

+ 1
→

0
+ 0

) 
(e

2
fm

4
)

10 15 20 25 30

ω (MeV)
10 15 20 25 30

ω (MeV)
10 15 20 25 30

ω (MeV)

emax= 4
emax= 6

emax= 8

emax=10

emax=12

emax=14

Figure 5.8 First excited 2+ states and corresponding B(E2) transition strengths for 48Ca and
56,60Ni, using the standard input NN+3N(400) interaction softened by the SRG to λSRG = 2.0
fm−1. Convergence patterns are shown, computed with EOM-IMSRG(2,2). Results are compared
with experimental points in the left panel [1].

tion energy, but the B(E2) value is drastically underpredicted by roughly an order of magnitude.

Correspondingly, the quadrupole moment’s magnitude is underpredicted by a factor of about 3.5

for the valence-space IMSRG and about 6 for EOM-IMSRG. Much like 14N, this nucleus exhibits

marked disagreement between the two IMSRG approaches. We will forego discussion here and

discuss this in detail in section 5.2.7.

As we investigate heavier nuclei, we find that underprediction of B(E2) values is far more

common than the stunning success seen with 14C. Figure 5.8 shows convergence of 2+1 energies

and E2 transition strengths in 48Ca and 56,60Ni. Again, calculated strengths are roughly an order

of magnitude smaller than experiment, while energies are reasonably consistent with observed

values. Table 5.2.4 compiles the results from several of the calculations presented here, where
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Nucleus B(E2↓)exp B(E2↓)EOM B(E2↓)V S BW (E2↓)
14C 3.6(6) 4.1 3.9 2.0
22O 4.2(1.6) 0.5 0.4 3.7
32S 59(1) 7.2 11.3 6.0

48Ca 17(2) 2.6 10.4
56Ni 1.2(3)×102 30.7 12.7
60Ni 186(3) 16.2 14.0

Table 5.2 Computed E2 transition strengths from first excited 2+ state to 0+ ground state for
even-even nuclei, using the standard input NN+3N(400) interaction softened by the SRG to
λSRG = 2.0 fm−1. Experiment [1] and Weisskopf [2] single particle estimates are compared with
IMSRG calculations.

B(E2↓) corresponds to B(E2;2+1 → 0+0 ) value. In the far right column, the Weisskopf units (W.U.)

for the transition are included [2]. Weisskopf units, given by

BW (E2) =
9r4

0
100π

A4/3e2 f m4, (5.16)

take the transition to be a single proton excitation from a hard-core with the empirical nuclear

radius r0A1/3, where r0 = 1.2 fm. Strongly 1p1h transitions will yield experimental B(E2) values

near the Weisskopf estimate. This picture certainly falls short of describing those nuclei with magic

proton numbers, such as 22O, but it is instructive to consider what the single particle estimates are

for this nucleus nonetheless, as they describe neutrons with an effective charge in this case.

We find that computed B(E2) values track with Weisskopf estimates rather than actual ex-

perimental values, except in the case of a magic proton shell closure, where computations are

significantly smaller than the Weisskopf units, suggesting that indeed, the renormalization of neu-

tron effective charges may not be sufficient in our IMSRG calculations. Importantly, the fact that

many of the experimental B(E2) values are significantly larger than the single particle estimates

indicates that collectivity which is neglected by IMSRG(2) calculations may be more critical to E2

transition strengths than it is to excitation energies.
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Figure 5.9 Convergence of the 1+1 excitation energy, B(M1) to ground state of 22O with the VS-
and EOM-IMSRG methods, using the standard input NN+3N(400) interaction softened by the
SRG to λSRG = 2.0 fm−1.

5.2.5 Magnetic Dipole Observables in sd and f p shell Systems

We turn to M1 observables, where the Weisskopf unit has no dependence on A and thus we expect

the transition to have similar properties from nucleus to nucleus, unlike E2 observables. As an

analog to the E2 observables, we first investigate 22O. Here we do not have a measurement of the

1+1 state, so this analysis serves only to compare EOM- and VS-IMSRG. Here we see excellent

consistency between the two methods, with convergence patterns for the energy being nearly iden-

tical, and those for the M1 transition very similar in character. This matches expectations derived

from the agreement we saw for the E2 transition. As expected from the mass independence of the

Weisskopf estimates, the B(M1) for this nucleus is predicted around 1 µ2
N , which is similar to that

of 14C.
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We also compute M1 observables for the 1+1 and 2+1 states in 32S. Figure 5.10 shows results

for these calculations. Here we see that IMSRG calculations are within an order of magnitude of

experiment for all observables considered. Again, some notable discrepancies between VS- and

EOM-IMSRG are evident, stemming from the fact that the VS-IMSRG uses a full valence space

diagonalization, and the EOM-IMSRG uses an approximate diagonalization in the full active space.

Nonetheless, some consistency is observed, particularly for the dipole moment of the 2+1 state. We

don’t expect agreement with experiment for the M1 observables, as we neglect meson-exchange

currents, which are understood to be important to reproducing experiment [95, 176]. However, as

the leading order effects are included in our calculation, it is promising to see qualitative agreement

within an order of magnitude.

A more pleasant picture surfaces in fig. 5.11, where we have computed ground state properties

of 32Cl. The ground state energy is given here as an excitation energy from the 32S ground state,
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as it is calculated in the EOM-IMSRG as an excited state of 32S with a charge-exchange excitation

operator. Disagreement between EOM- and VS-IMSRG is far less prominent here than in the

isobaric neighbor 32S, and the methods again show qualitative agreement with experiment. This

agreement is somewhat surprising considering that 32Cl is situated near the center of the sd-shell.

The observed consistency indicates strong 1p1h character in the ground state.

We have computed the magnetic dipole properties of five nuclei: 32S, 32Cl, 22O, 14C and 14N,

with reasonable consistency between VS-IMSRG and EOM-IMSRG achieved for 14C, 22O, and

32Cl. Considering the closed shell cases only, this corresponds to what is seen for E2 observables.

In order to compare with experiment, we would need to add higher-order mesonic currents which

occur within the nucleus during the transition. Computationally, these manifest as a two body

correction to the M1 transition operator. This is beyond the scope of this work, as normal-ordering

has yet to be implemented for two-body tensor operators (normal-ordering is trivial for one-body

tensor operators). IMSRG truncation errors are more important for two-body operators than one-

body, so additional considerations must be made before exploring the addition of mesonic currents.

5.2.6 Electric Octupole Transitions

The electric octupole transition offers an additional test of the EOM-IMSRG. We investigate the

transition strengths from the first 3− state to ground state for the doubly magic nuclei 16O and

40Ca. The left panel of figure 5.12 shows the convergence of this calculation for 16O. This is an

interesting case study, as the 3−1 excitation energy has been shown to correlate with the 16O charge

radius and thus depends on saturation properties of the interaction [177]. For this reason, we

compare calculations with the NN+3N(400) interaction to those using N2LOsat , which is fit to the

16O charge radius [177]. We see an improvement of the excitation energy when using N2LOsat ,

moving from 9.03 MeV with the NN+3N(400) interaction to 6.90 MeV, in significantly better

agreement with the experimental value at 6.13 MeV. Regardless, the gains from switching to the

saturating interaction are not seen in the B(E3) value, as both interactions underpredict experiment
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Figure 5.12 Excitation energies of the first 3− state of 16O and 40Ca, along with corresponding
B(E3) strength for transition to ground state. These values are computed using the
EOM-IMSRG(2,2) with N2LOsat and the standard NN+3N(400) interaction softened by the SRG
to λSRG = 2.0 fm−1.. Results are compared with experiment [15].

by roughly an order of magnitude. Despite EOM partial norms indicating 90% 1p1h content in the

3− wave-function, higher order correlations may play a significant role in the structure pertinent

to the E3 transition, as α-clustering may be important to the structure of the 3−1 state [178].

A similar picture presents itself for 40Ca in the right panel of figure 5.12, where again, N2LOsat

improves excitation energy but underpredicts the B(E3) strength. For either interaction, the dis-

crepancy is less striking than that seen in 16O, but the deviation is significant nonetheless. Notable

is the poor convergence features exhibited by N2LOsat , where results are seemingly dependent

on the basis frequency h̄ω for both energy and B(E3) value. At the moment we are working to

understand these issues.

Computed E3 strengths suffer from largely the same shortcomings as E2 strengths, where we

see a significant reduction of the strength from that of experiment. The Weisskopf single-particle

estimates for 16O and 40Ca are 15.21 and 95.04 e2 f m6 respectively. The immense size of the

experimental values compared with these estimates indicates a strong level of collectivity in these

3−1 states, which is apparently missed by our calculations, though computed E3 strengths are indeed
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larger than the single-particle estimates.

5.2.7 Comparing and Contrasting Methods

We return now to 32S, where noticeable differences between the EOM- and valence-space variants

of IMSRG were demonstrated. This discrepancy is the result of some combination of two sources

of error. The VS-IMSRG(2) introduces a second decoupling, and as such, unitarity is degraded

beyond truncation errors from ground-state-decoupling. On the other hand, the EOM-IMSRG(2,2)

lacks the ability to describe higher-order correlations in states with minimal 1p1h character. This

underscores the fact that the two methods are complimentary, and a different class of states fall

into the set that is best described by either method.

The VS-IMSRG takes into account all possible valence-particle configurations within the spec-

ified valence space. States that are described well by phenomenological shell-model approaches

should then be described appropriately by the VS-IMSRG. However, states with significant con-

tributions from multiple major shells, in particular unnatural parity states, are unreachable by this

method in its current state. Methods to decouple a multi-shell valence space are still under inves-

tigation.

EOM-IMSRG is not restricted by any valence space, but rather derives its computational sim-

plicity from a restriction of the configurations included in the diagonalization. Thus, unnatural

parity states are treated on the same footing as natural. However, any state will be poorly described

if the dominant configurations of particle-hole excitation are left out of the definition of the ladder

operators. For the EOM-IMSRG(2,2), we work with a space of 1p1h and 2p2h configurations.

In this case, states with strong 1p1h content are best described by the method. States with 2p2h

dominant wave functions are described reasonably well, but the ground-state-decoupled Hamilto-

nian still introduces strong correlations between these states and 3p3h excitations. For these states,

additional IMSRG softening may be needed to make a perturbative treatment valid.

For the specific case of 32S, the differences between the two IMSRG methods appear in cal-

culations of both the energy and transition strength. The 1p1h partial norms for the 2+1 state are
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Figure 5.13 Computed ground-state and 2+1 energies for 32S, using the standard input
NN+3N(400) interaction softened by the SRG to λSRG = 2.0 fm−1. Here we use VS-IMSRG
with a variety of truncations on particles allowed into the 0d3/2 shell. Results are compared with
EOM-IMSRG values.

around 0.87 for 32S, while they are at 0.92 for the analogous state in 22O. This difference, while

small, could be responsible for the noticeable discrepancy between EOM and VS-IMSRG. In the

sd-shell diagonalization, 32S has eight active protons and an equal amount of active neutrons. This

allows for the inclusion of many sd-shell configurations not accounted for by EOM-IMSRG(2,2),

which at most examines two particle excitations from the 32S core. On the other hand, EOM-

IMSRG includes excitations of nucleons into much higher shells, and from lower lying shells.

While VS-IMSRG compensates for this through decoupling of the valence space, this additional

decoupling introduces IMSRG truncation errors beyond those inflicted by the EOM-IMSRG.

Figure 5.13 demonstrates the effect of restricting various particles from entering the 0d3/2

shell during the VS-IMSRG diagonalization. The ground and 2+1 state are computed at various

[Np,Nn], which corresponds to the number of protons and neutrons allowed in the 0d3/2 shell.

EOM-IMSRG(2,2) energies are given for reference. The EOM-IMSRG(2,2) treats the ground

state as a Slater determinant which is filled through the 1s and 0d5/2 shells. Any excited states are
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constructed of at most 2p2h excitations into the 0d3/2 shell and higher. The comparison made here

is not rigorous, as the two methods use different decoupling schemes, but nonetheless it sheds light

on some of the differences between these methods.

It is evident from fig. 5.13 that the full active valence-space is needed to describe the absolute

energies with VS-IMSRG, which are similar to that of the single-reference EOM-IMSRG(2,2) for

lower truncations, and have shifted downward by 4-5 MeV once the full valence-space becomes

active. The discrepancy between the single-reference ground state and VS-IMSRG is due to IM-

SRG(2) truncation errors related to the differing decoupling schemes. EOM-IMSRG(2,2) allows

for all one- and two-particle excitations of neutrons or protons. While limitations of the shell-

model code [179] used here do not allow for an analogous truncation in the VS-IMSRG, we can

compare to truncations which include a portion of the EOM-IMSRG(2,2) content; these are [1,1],

[2,0], and [0,2]. We can also analyze truncations which contain EOM-IMSRG(2,2) content as well

as extra valence-space configurations, namely [1,2], [2,1], and [2,2].

We see that the 2+1 excitation energy of EOM-IMSRG(2,2) is produced reasonably well by the

[1,1] truncation, using just one proton and neutron in the 0d3/2 shell. For the [0,2] and [2,0] trun-

cations, we find that the VS-IMSRG produces a larger excitation energy than EOM-IMSRG(2,2).

The [1,2], [2,1] and [2,2] truncations allow for significantly more configuration mixing relevant

to the EOM-IMSRG(2,2), but also introduce 3p3h and 4p4h content that EOM-IMSRG(2,2) ne-

glects. Nonetheless, we see that the EOM-IMSRG(2,2) excitation energy is still closely mirrored

by the VS-IMSRG(2) for these truncations, with a shift in the absolute energies. As one adds more

active particles in the [3,3] and [4,4] truncations, the excitation energy reduces to the result shown

in fig. 5.7. It is apparent from these results that the full valence space needs to be active here to

produce the smaller excitation energy of VS-IMSRG(2), which is somewhat illuminating when

considering the noticeably larger excitation energy of EOM-IMSRG(2,2), where configurations of

more than two 0d3/2 nucleons are ignored.

The discrepancies exhibited in 32S are ostensibly the result of its midshell character, where for

nuclei with fewer valence nucleons, such as 22O, discrepancies are minimized. While this analysis
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has certainly clarified some of the differences between EOM- and VS-IMSRG, it is generally

difficult to clearly determine which method performs best for any given state because, at present,

there is no prescription to assign accurate theoretical error bars to these calculations. However, one

can make inferences about which method will perform best based on the 1p1h partial norms, the

number of valence nucleons, and the size of the valence-space decoupling. Here it will be important

to develop a reliable measure of unitarity to quantify IMSRG(2) truncation errors associated with

additional decoupling.

5.2.8 The Effects of Consistent Operator Evolution

We now seek to understand the effects of consistently applying the IMSRG unitary transforma-

tion to the operators we’ve discussed thus far. Bare operators are expressed in the Hartree Fock

basis, and have not been consistently evolved along with free-space SRG softening. As a result,

the operator evolution cannot be exactly consistent, but free-space softening transformations are

understood to have little effect on long-range operators such as the electromagnetic multipole oper-

ators discussed here. The principle effect of SRG softening is to renormalize short-range physics.

Nonetheless, the problem is currently being given ample attention in the nuclear physics commu-

nity [180, 181].

The IMSRG transformation is expected to have a noticeable effect on transition operators, as

it renormalizes dynamic correlations in the nucleus which are crucial to transition behavior. Table

5.2.8 contains a few examples of transition matrix elements computed with and without consistent

evolution of the operator. M1b
bare refers to the matrix element computed without consistent evolu-

tion, (the wave functions are computed in the evolved frame however), and M1b,2b
dressed refer to the

same calculation with consistently evolved operators. It is evident from those values included in

the table that IMSRG evolution transforms a one-body operator into a many-body operator. Here

we truncate this operator to two-body terms, consistent with the IMSRG(2) truncation.

For EOM-IMSRG(2,2) calculations, The induced two-body term generally contributes less

than 10% of the total magnitude. This indicates that the current level of truncation is sufficient.
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Nucleus operator method M1b
dressed M2b

dressed M1b+2b
dressed M1b

bare
14C M1 EOM 1.816 0.155 1.931 2.396

VS 1.724 0.051 1.775 1.889
14C E2 EOM 4.257 0.297 4.554 3.870

VS 4.345 0.094 4.439 4.933
22O M1 EOM 2.154 0.134 2.288 2.620

VS 2.124 -0.025 2.099 2.351
22O E2 EOM 1.383 0.117 1.500 0.845

VS 1.499 -0.071 1.428 0.000
32S M1 EOM 0.110 0.004 0.114 0.126

VS 0.049 0.004 0.053 0.063
32S E2 EOM 5.403 0.594 5.997 4.990

VS 7.688 -0.174 7.514 5.773

Table 5.3 Operator matrix elements computed for select nuclei with the EOM-IMSRG(2,2), using
the standard input NN+3N(400) interaction softened by the SRG to λSRG = 2.0 fm−1.
Calculations are performed for bare operators and operators dressed by consistent IMSRG
evolution. Values are expressed in e f m2 and µN for E2 and M1 operators respectively.

In regards to the total magnitude, consistently evolved M1 transition matrix elements exhibit a 10-

20% decrease in magnitude compared with the bare operator, and the equivalent comparison for E2

transitions show an increase in magnitude of 20%, except in the case of 22O, where the magnitude

increases by 77.5%. Regardless of consistency with experiment, these results demonstrate that the

use of effective operators is crucial in IMSRG calculations of electromagnetic observables.

As the decoupling schemes of the VS- and EOM-IMSRG are different, we include results for

both methods. We note that the VS-IMSRG(2), despite having a two-stage decoupling, produces

a smaller two-body contribution to the matrix elements for all cases studied here. The patterns

demonstrated by the EOM-IMSRG are not observed for the VS-IMSRG, where the one- and two-

body terms do not have consistent signs, and the E2 matrix element is reduced rather than increased

by consistent evolution. This suggests that the renormalization of operators in the EOM-IMSRG

is more predictable than it is in the VS-IMSRG. This is naively expected, as the EOM-IMSRG

uses a more intuitive decoupling of the reference state for the specific nucleus of interest, where

for the VS-IMSRG, the reference state used for normal ordering is not typically decoupled from

excitations. The VS-IMSRG results demonstrate the critical effect of charge renormalization in
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22O, which has no sd-shell protons, and thus vanishing strength when using the bare operator.

From the results shown here, it is evident that consistent operator evolution is of integral im-

portance to ab initio nuclear structure calculations, as it is responsible for dressing the effective

parameters of the transition, such as e, gl and gs. Furthermore, even when the relevant nucleons

are protons, renormalization effects are important for an accurate description of transition matrix

elements.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The present thesis focused on novel extensions and applications of the IMSRG to excited states

and observables related to excited states. The particular vehicle chosen for this task was the newly

formulated equations-of-motion IMSRG (EOM-IMSRG), which was demonstrated to be success-

ful for describing low-lying, single excitation dominant excited states. The results here were fo-

cused on closed-shell nuclei and isobaric neighbors, which were accessed by generalized charge-

exchange ladder operators.

In our quest to describe excited states with the IMSRG, we also have introduced the vTDA-

IMSRG, which is a special case of the EOM-IMSRG, where explicit decoupling of the valence

1p1h block can in principle be achieved to make the method exact up to IMSRG(2) truncation

errors. While this latter method has shown some promise in doubly magic nuclei as a means to

describe odd-parity 1p1h states, the nature of the secondary valence space decoupling renders it

impractical for more correlated systems. Thus, the generic EOM-IMSRG, which exchanges er-

rors from the secondary decoupling for errors in approximate diagonalization, is championed as

the preferred and more robust approach for excited states computed directly in the IMSRG. We

demonstrated that EOM-IMSRG(2,2) produces results comparable to the well established EOM-

CCSD, and also that the method can be systematically improved using perturbative corrections

to include triple-excitation components in the wave functions. With these corrections we demon-

strated general improvements in spectra when compared with experiment, but we note that these

corrections have yet to be analyzed rigorously.

We have also introduced an effective operator formalism for the IMSRG, where now it is pos-

sible to consistently evolve operators of arbitrary spherical tensor rank. Thus, this work has in-

troduced to the IMSRG the capability to handle electromagnetic transitions and moments, and in

principle, we can also tackle Gamow-Teller strengths and various form factors. We benchmarked

results for energies and electromagnetic observables using the EOM-IMSRG, the recently estab-
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lished VS-IMSRG, and NCSM. General agreement between all three methods was observed for

energies, B(E2), and B(M1) values in 14C. As we go to heavier nuclei where NCSM is not ap-

plicable, we see a varied picture of consistency between the VS- and EOM-IMSRG. Here the

VS-IMSRG is presumably more accurate for midshell nuclei such as 32S, where the EOM-IMSRG

neglects many-particle configurations within the valence space. For nuclei nearer to the extrema of

the shell, such as 22O, excellent agreement is exhibited. Despite this agreement, we note striking

disagreement with experiment for B(E2) values in all but 14C, which is ostensibly due to signifi-

cant many-particle collectivity which is neglected by the truncation to two-body operators in both

the IMSRG and EOM calculations. The EOM-IMSRG offers a path forward here, as the triples

corrections are straightforward, and their wave function components can be used to add collectivity

to the calculations of observables.

The broad conclusion from this work is that EOM-IMSRG is a viable framework for which to

compute nuclear excited states and observables, despite some notable limitations. The method is

straightforwardly extended to a multireference formalism which will make it applicable to open-

shells. The MR-EOM-IMSRG, which we anticipate to arrive within a year, will be a powerful

method to compute spectra, transitions, and response in open-shell nuclei. Response functions

follow directly from the Lanczos method used to evaluate the equations of motion. We note that

this is not straightforward in the shell-model formalism which has become popular in the ab initio

community, as the required method of moments will certainly excite states outside of the valence

space. The MR-EOM-IMSRG will derive the bulk of its utility from its lightweight computational

requirements, as even in the multireference formalism, polynomial scaling will be observed. This

will provide a simple tool to perform large computational sweeps, crossing the nuclear landscape

in an attempt to analyze generic issues in nuclear physics, such as the quenching of gA and the

enigma of neutrinoless double β -decay, which is tied intimately with the former point.

Moreover, the methods discussed here are important to the nuclear community because it is

desirable to have numerous approaches to ab initio nuclear structure problems, where we can

make predictions and benchmark them against methods starting from the exact same fundamental
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assumptions. For example, multiple ab initio methods producing consistent results for the neu-

trinoless double β -decay matrix element would mark a triumph for nuclear theory. Consistency

is not the only goal for our methods however; here we return to the oft repeated distinguishment

between precision and accuracy. As alluded to in this work, we have achieved precise predictions

for observables and energies which are reproduced from method to method. However, we lack

accuracy with experiment. It is crucial that we use these precise methods to facilitate the quest to

achieve accuracy through improved interactions and currents, and for this, intricate understanding

of the strengths and weaknesses of each method is paramount.
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A.1 Definitions for J-scheme Formulation

Shorthand:

(ama)≡ (ξa, ja,ma) , (1)

(a)≡ (ξa, ja) , (2)

Ĵ ≡
√

2J+1 , (3)

PrsA...r...s... ≡ A...s...r... (4)

Prs(J)≡ (−1)( jr+ js−J)Prs , (5)

∑
{m}

: sum over all m , (6)

m-scheme antisymmetrized matrix elements:

Aλ µ
pq ≡ 〈pmp|Aλ

µ |qmq〉 , (7)

Aλ µ
pqrs ≡ 〈pmp,qmq|Aλ

µ |rmrsms〉 , (8)

Clebsch-Gordan coefficients:

C
jp jqJ
mpmqM ≡ 〈 jpmp; jqmq|( jp jq)JM〉 (9)

C
jp j̄qJ
mpm̄qM ≡ (−1)( jq−mq)〈 jpmp; jq−mq|( jp jq)JM〉 , (10)

J-scheme matrix elements:

Aλ
pq ≡ 〈p||Aλ ||q〉 , (11)

A
(J1J2)λ
pqrs ≡ 〈(pq)J1||Aλ ||(rs)J2〉 , (12)

Unnormalized matrix elements for practical use:

Ã
(J1J2)λ
pqrs ≡ (Npq(J1)

)−1(Nrs(J2)
)−1〈(pq)J1||Aλ ||(rs)J2〉 , (13)

ÃJ
pqrs ≡ (Npq(J))

−1(Nrs(J))
−1〈(pq)J0|A0|(rs)J0〉 , (14)

(Npq(J))
−1 ≡

(1+δξpξqδ jp jq)√
1+(−1)Jδξpξqδ jp jq

(15)
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Pandya transformed matrix elements:

Ā
(J1J2)λ
ps̄rq̄ =− ∑

J3J3

(−1)(J2+J4+ jq+ js)Ĵ1Ĵ2Ĵ3Ĵ4


jp js J1

jq jr J2

J3 J4 λ

Ṽ
(J3J4)λ
pqrs (16)

Spherical tensor product:

[Aλ1Bλ2 ]λµ = ∑
µ1µ2

C
λ1λ2λ

µ1µ2µA
λ1
µ1B

λ2
µ2 (17)

A.2 Spherical tensor operators

The definition of a spherical tensor T J
M is:

[Jz,T J
M] = Mh̄T J

M , (18)

[J±,T J
M] = h̄

√
(J±M+1)(J∓M)TJ,M±1 , (19)

where

Jz = h̄ ∑
pmp

mpa†
pmpapmp , (20)

J± = h̄ ∑
pmp

m∓p a†
pmpapmp∓1 , (21)

and

m±p =
√
( jp±mp +1)( jp∓mp) . (22)

One can very quickly show that a particle creation operator transforms as a tensor:

[ jz,a
†
jm] = ∑

m′
m′[a†

jm′a jm′,a
†
jm] = ma†

jm , (23)

[ j±,a
†
jm] = ∑

m′
m∓′[a†

jm′a jm′∓1,a
†
jm] = m±a†

jm±1 . (24)

Attempts to show this for the particle annihilation operator fail:

[ jz,a jm] = ∑
m′

m′[a†
jm′a jm′,a jm] =−ma jm , (25)

[ j±,a jm] = ∑
m′

m∓′[a†
jm′a jm′∓1,a jm] =−m∓a jm∓1 . (26)
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An operator which does in fact transform as a tensor is

ã jm = (−1)( j+m)a j,−m , (27)

as is demonstrated here:

[ jz, ã jm] = ∑
m′

m′[a†
jm′a jm′,a j,−m](−1)( j+m) = ma j,−m(−1)( j+m) = mã jm , (28)

[ j±, ã jm] = ∑
m′

m∓′[a†
jm′a jm′∓1,a j,−m](−1)( j+m) =−m±(−1)( j+m)a j,−m∓1 = m±ã j,(m±1) .

(29)

Consider now the tensor product of two spherical tensor operators A
jp
mp and B

jq
mq coupled to

total angular momentum J:

[A jpB jq ]JM = ∑
mp,mq

C
jp jqJ
mpmqMA

jp
mpB

jq
mq (30)

It can be shown that this product is a spherical tensor of rank J:

[Jz, [A jpB jq ]JM] = ∑
mp,mq

[( jp)z +( jq)z,C
jp jqJ
mpmqMA

jp
mpB

jq
mq ]

= ∑
mp,mq

(mp +mq)C
jp jqJ
mpmqMA

jp
mpB

jq
mq = M[A jpB jq ]JM (31)

[J±, [A jpB jq]JM] = ∑
mp,mq

[( jp)±+( jq)±,C
jp jqJ
mpmqMA

jp
mpB

jq
mq]

= ∑
mp,mq

(m±p C
jp jqJ
mpmqMA

jp
mp±1B

jq
mq +m±q C

jp jqJ
mpmqMA

jp
mpB

jq
mq±1)

= ∑
mp,mq

(m∓a C
jp jqJ
mp∓1mqM +m∓b C

jp jqJ
mpmq∓1M)A

jp
mpB

jq
mq

= M±C
jp jqJ
mpmqM±1A

jp
mpB

jq
mq = M±[A jpB jq ]JM±1 (32)

where the identity used to arrive at the third line comes from acting with J± on both M-scheme

and J-scheme versions of a two body ket and equating the two expressions.
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A.2.1 J-scheme operators in second quantization

We can use the Wigner-Eckart theorem

〈p jpmp|Tλ µ |q jqmq〉= ĵ−1
p T λ

pqC
jqλ jp
mqµmp (33)

to write a one-body operator in J-scheme:

∑
pq
〈p jpmp|Tλ µ |q jqmq〉a†

pmpaqmq = ∑
pq

ĵp
−1T λ

pqC
jqλ jp
mqµmpa†

pmpaqmq

= ∑
pq

λ̂
−1T λ

pqC
jp jqλ

mp−mqµ(−1)( jq−mq)a†
pmpaqmq

= ∑
pq

λ̂
−1T λ

pqC
jp j̄qλ

mpm̄qµ
a†

pmpaqmq

= ∑
pq

λ̂
−1T λ

pq[a
†
pãq]

λ
µ (34)

Consider now two particle excitations on the fermi-vacuum:

[a†
pa†

q]
J
M|Φ0〉= Npq ∑

mpmq
C

jp jqJ
mpmqMa†

pmpa†
qmq |Φ0〉 (35)

The excitation operator transforms as a spherical tensor. In order for the de-excitation operator to

transform in this way, we take the Hermitian conjugate

(Npq[a†
pa†

q]
J
M|Φ0〉)† = Npq ∑

mpmq
C

jp jqJ
mpmqM〈Φ0|aqmqapmp

= Npq ∑
mpmq

C
jp jqJ
−mp−mq−M(−1)( jp+ jq−J)〈Φ0|aqmqapmp

=−Npq ∑
mpmq

C
jp jqJ
mpmq−M(−1)(J−M)〈Φ0|ãpmp ãqmq

=−Npq〈Φ0|[ãpãq]
J
−M(−1)(J−M) (36)

The normalization constant is obtained by calculating the overlap of the two wavefunctions. We

tend to use un-normalized matrix elements to avoid this issue however. We can from here construct
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a two-body operator:

1
4 ∑

pqrs
〈pmp,qmq|V λ

µ |rmr,sms〉a†
pmpa†

qmqasmsarmr

=
1
4 ∑

J1J2
M1M2

∑
pqrs

N−1
pq N−1

rs C
jp jqJ1
mpmqM1

C
jr jsJ2
mrmsM2

〈(pq)J1M1|V λ
µ |(rs)J2M2〉a†

pmpa†
qmqasmsarmr

=
1
4 ∑

J1J2
M1M2

∑
pqrs

1
Ĵ1

C
jp jqJ1
mpmqM1

C
jr jsJ2
mrmsM2

C
J2λJ1
M2µM1

Ṽ
(J1J2)λ
pqrs a†

pmpa†
qmqasmsarmr

=
1
4 ∑

J1J2
M1M2

∑
pqrs

1

λ̂
C

jp jqJ1
mpmqM1

C
jr jsJ2
mrmsM2

C
J1J2λ

M1−M2µ
(−1)(J2−M2)Ṽ

(J1J2)λ
pqrs a†

pmpa†
qmqasmsarmr

=−1
4 ∑

J1J2
M1M2

∑
pqrs

1

λ̂
C

jr jsJ2
−mr−msM2

C
J1J2λ

M1−M2µ
(−1)(J2−M2)Ṽ

(J1J2)λ
pqrs [a†

pa†
q]

J1
M1

ar−mras−ms

=−1
4 ∑

J1J2
M1M2

∑
pqrs

1

λ̂
C

jr jsJ2
mrms−M2

C
J1J2λ

M1−M2µ
(−1)( jr+ js+mr+ms)Ṽ

(J1J2)λ
pqrs [a†

pa†
q]

J1
M1

ar−mras−ms

=−1
4 ∑

J1J2
M1M2

∑
pqrs

1

λ̂
C

J1J2λ

M1−M2µ
Ṽ
(J1J2)λ
pqrs [a†

pa†
q]

J1
M1

[ãrãs]
J2
−M2

=−1
4 ∑

J1J2
∑
pqrs

1

λ̂
Ṽ
(J1J2)λ
pqrs [[a†

pa†
q]

J1 [ãrãs]
J2 ]]λµ (37)

A.2.2 Normal-ordered spherical tensor operators

If we normal order these operators, we find:

∑
pq

∑
mpmq

〈pmp|Tλ µ |qmq〉a†
pmpaqmq

= ∑
pq

λ̂
−1T λ

pq{a†
pãq}λµ +∑

imi

T λ
ii ni

(−1)( ji−mi)

λ̂
C

ji jiλ
mi−miµ

= ∑
pq

λ̂
−1T λ

pq{a
†
jp ã jq}

λ
µ +∑

i
ĵiT

λ
ii niδλ0 (38)

We find a similar zero body piece when we normal order the two-body operator:

1
2 ∑

i j
∑
J

ĴṼ (JJ)λ
i ji j nin jδλ0 (39)
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The in-medium one-body piece from the free-space two-body operator is:

∑
J1J2

∑
pqi

Ĵ1Ĵ2

λ̂
Ṽ
(J1J2)λ
piqi ni(−1)( ji+ jp+J2+λ )

J1 ji jp

jq λ J2

{a†
pãq}λµ (40)

For scalar operators, this reduces to

∑
J

∑
pqi

Ĵ2

ĵ2p
Ṽ J

pibini{a†
paq} (41)

In summary, a spherical tensor operator Aλ
µ can be expressed in normal ordered form:

{V λ
µ }= δλ0δµ0 [∑

i
ĵiV

0
ii ni +

1
2 ∑

i j
∑
J

ĴṼ (JJ)0
i ji j nin j]

+
1

λ̂
∑
pq
{a†

pãq}λµ(V λ
pq +∑

i
∑

J1J2

Ĵ1Ĵ2

J1 J2 λ

jq jp ji

(−1)(λ+J2+ jp+ ji)Ṽ
λJ1J2
piqi nk)

− 1

4λ̂
∑
pqrs

∑
J1J2

{[a†
pa†

q]
J1 [ãrãs]

J2}λµṼ
λJ1J2
pqrs (42)

Typically, we use non-reduced matrix elements for the scalar operators, i.e.:

〈p|X |q〉= 1
ĵp
〈p||X0||q〉 . (43)

This is possible because the non-reduced matrix elements are independent of M just as the reduced

ones are. So in a typical IMSRG code you might calculate the zero body piece of a scalar operator

as:

E0 = ∑
i

ĵ2i Viini +
1
2 ∑

i j
∑
J

Ĵ2Ṽ J
i ji jnin j (44)

A.3 Jucys diagrams

In the following sections it becomes necessary to use a diagrammatic strategy to execute the re-

quired angular momentum coupling. Without immense digression into the theory of Jucys angular

momentum diagrams, we introduce some relevant definitions and identities for this work. We

implore the reader to learn more about these fantastic diagrams in Ref. [182].

131



A.3.1 Basic Components and Symmetries

First we introduce the basic diagrams for Clebsch-Gordan coefficients,

C
j1 j2 j3
m1m2m3 = ĵ3(−1)2 j2

j3

j1

j2
+ , (45)

C
j1 j̄2 j3
m1m̄2m3

≡C
j1 j2 j3
m1−m2m3

(−1) j2−m2 = ĵ3

j1
j2

j3

+ . (46)

Figure A.1 Diagrammatic representation of Clebsch-Gordan coefficients

The diagrams consist of three oriented lines and an oriented vertex. The diagrams are based on 3 j-

symbols, hence the phase and scale factors that pop out when you equate them to Clebsch-Gordan

coefficients. The orientation of the lines indicates whether or not the specific angular momenta

is time-reversed, and the orientation of the vertex indicates the direction you would read off a

3 j-symbol from these diagrams, with + indicating clockwise.

Some diagrammatic represenations of the symmetries of the 3 j-symbol:

j3

j1

j2

+ = (−1) j1+ j2+ j3

j3

j1

j2

− =

j3

j2

j1

− , (47)

j3

j1

j2

+ = (−1)2 j3
j1

j2

j3

+ , (48)

Figure A.2 Symmetries of Jucys diagrams.
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Figure A.2 (cont’d)

j1

j2

j3
+ =

j1

j2

j3
+ . (49)

Here we see diagrammatic rules for permutation of columns and time reversal of all angular mo-

menta.

A.3.2 Diagram manipulation

The utility of Jucys diagrams comes from contracting the lines, which corresponds to summing out

an angular-momentum substate,

∑
m1

C
j1 j2 j3
m1m2m3C

j4 j5 j1
m4m5m1 = ĵ1 ĵ3(−1)2( j2+ j5)

j1

j2 j4
j5j3

+ + (50)

Figure A.3 Jucys contraction.

Now we have arrived at the concept of external and internal lines. For computation of J-scheme

expressions (where all m-dependence has been summed out of the problem), our goal is to construct

diagrams consisting only of internal lines.

We need to be able to change the orientation of a line. For internal lines labeled j, this is as

simple as multiplying by (−1)2 j. You get a sign change if you flip the orientation of a half-integer

angular momenta. For external lines, time reversal still has an explicit effect, as the line still has

m-dependence. Thus for an external line labeled j, you must multiply by (−1) j−m in order to flip

the line orientation.
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Once all lines are connected, we must be able to factorize large diagrams. There are only two

rules that are important for our purposes,

j1

j2

= ∑
j3

ĵ23

j2

j1

j2

j1
j3

+ − , (51)

j1

j2

j3

=

j1
j2

j3
+ j2

j1

j3
− . (52)

Figure A.4 Jucys factorization rules.

With these two rules, we can factorize pretty much everything we encounter into 6 j and 9 j sym-

bols,

{
j1 j2 j3
j4 j5 j6

}
=

j5

j4

j6

j3
j2

j1

+

+ +

+ , (53)


j1 j2 j3
j4 j5 j6
j7 j8 j9

=

j6

j9j2

j8

j4

j1 j5

j7j3
+

−+

−

+ −

(54)

Figure A.5 Jucys diagrams for 6 j- and 9 j-symbols.
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A.4 Particle-hole picture

For certain derivations, it is convenient to formulate angular momentum coupling in terms of

particle-hole creation and annihilation operators. The hole creation operator, which creates a time

reversed particle, is given by

ā†
mp = ãmp = (−1)p+mpa−mp , (55)

and the corresponding annihilation operator by

āmp = ã†
mp = (−1)p−mpa†

−mp . (56)

Again we must alter the form of the annihilation operator to ensure that it is a spherical tensor.

˜̄amp =−a†
mp . (57)

With these definitions, we can construct particle-hole creators

|Φp
q(JM)〉= ∑

mpmq
C

jp jqJ
mpmqMa†

pmp ā†
qmq |Φ0〉 ,

≡ ∑
mpmq

C
jp j̄qJ
mpm̄qMa†

pmpaqmq |Φ0〉 ,

= [a†
pā†

q]
J
M|Φ0〉 , (58)

and corresponding annihilators

〈Φp
q(JM)|= ∑

mqmp
C

jq jpJ
mqmp−M(−1)( jq+ jp+M)〈Φ0| ˜̄aqmq ãpmp

〈Φp
q(JM)|= ∑

mqmp
C

j̄p jqJ̄
m̄pmqM̄〈Φ0|apmpa†

qmq

= (−1)J−M〈Φ0|[ãp ˜̄aq]
J
−M . (59)

Now we may construct a two-body operator in the particle-hole picture.

− 1

4λ̂
∑
pqrs
J1J2

Ṽ
(J1J2)λ
pqrs [[a†

pa†
q]

J1[ãrãs]
J2]λµ

=
1

4λ̂
∑
pqrs
J1J2

Ṽ
(J1J2)λ
pqrs ∑

mpmqmrms
M1M2

C
jp jqJ1
mpmqM1

C
jr jsJ2
mrmsM2

C
J1J̄2λ

M1M̄2µ
a†

mpa†
mqamsamr

(60)
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=
1
4 ∑

pqrs
J1J2

Ṽ
(J1J2)λ
pqrs ∑

mpmqmrms
a†

mpa†
mqamsamr(−1)(J1+J2+λ )Ĵ1Ĵ2

J1

λ

J2

jr
jsjp jq

+ + +
(61)

Figure A.6 Jucys diagram for a two-body operator.

The sum over the Clebsch-Gordan coefficients, represented as a Jucys diagram, can be recoupled

using Jucys factorization rules,

J1

λ

J2

jr
jsjp jq

+ + +
= (−1)(J1−mp−mq) jq jp

J1

λ

J2

jr
js

+ + +

= ∑
J3J4

(Ĵ3Ĵ4)
2 λ

J2

jq

J1

J4

jr
jq

js

J3

jp
js

jpjr

++

+

−

+

+

−
(−1)(J1−mp−mq)

= ∑
J3J4

(−1)(J2+λ−mp−mq)(Ĵ3Ĵ4)
2

J2

jsJ4

J3

J1

jq λ

jp
jr

+

−+

−

+ −

jq jr

J4

λ

J3

jp
js

+ − +

= ∑
J3J4

(−1)(J1−mp−mq)(Ĵ3Ĵ4)
2


jp js J3
jq jr J4
J1 J2 λ

 jq jr

J4

λ

J3

jp
js

− − −

= ∑
J3J4

(−1)(J1+J4+λ+ jq− js)(Ĵ3Ĵ4)
2


jp js J3
jq jr J4
J1 J2 λ

 jr

J4

λ

J3

jsjq jp
+ + +

= ∑
J3J4

(−1)(J1+J4+λ+ jq+ js)Ĵ4


jp js J3
jq jr J4
J1 J2 λ

 ∑
M3M4

C
jr j̄qJ4
mrm̄qM4

C
jp j̄sJ3
msm̄pM3

C
J4λJ3
M4µM3

. (62)

Figure A.7 Diagrammatic derivation of the Pandya transform.
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Thus,

− 1

4λ̂
∑
pqrs
J1J2

Ṽ
(J1J2)λ
pqrs [[a†

pa†
q]

J1 [ãrãs]
J2 ]λµ

=
1
4 ∑

pqrs
J1J2J3J4

Ṽ
(J1J2)λ
pqrs (−1)(J2+J4+ jq+ js)Ĵ1Ĵ2Ĵ4


jp js J3

jq jr J4

J1 J2 λ


× ∑

mpmqmrms
M3M4

C
jp j̄sJ3
mpm̄sM3

C
jr j̄qJ4
mrm̄qM4

C
J4λJ3
M4µM3

a†
mpamsamra†

mq

=
1
4 ∑

pqrs
J1J2J3J4

Ṽ
(J1J2)λ
pqrs (−1)(J2+J4+ jq+ js)Ĵ1Ĵ2Ĵ4


jp js J3

jq jr J4

J1 J2 λ


× ∑

mpmqmrms
M3M4

C
jp j̄sJ3
mpm̄sM3

a†
mpamsC

j̄r jqJ̄4
m̄rmqM̄4

amra†
mq

Ĵ3

λ̂
C

J3J̄4λ

M3M̄4µ

=
1

4λ̂
∑
pqrs

J1J2J3J4

Ṽ
(J1J2)λ
pqrs (−1)(J2+J4+ jq+ js)Ĵ1Ĵ2Ĵ3Ĵ4


jp js J3

jq jr J4

J1 J2 λ

 [[a†
pā†

s ]
J3 [ãr ˜̄aq]

J4 ]λµ

(63)

The particle-hole formalism two-body operator has been “Pandya transformed”,

− 1

4λ̂
∑
pqrs
J1J2

Ṽ
(J1J2)λ
pqrs [[a†

pa†
q]

J1[ãrãs]
J2]λµ ≡−

1

4λ̂
∑
pq̄rs̄
J3J4

V̄
(J3J4)λ
ps̄rq̄ [[a†

pā†
s ]

J3 [ãr ˜̄aq]
J4 ]λµ (64)

where

V̄
(J3J4)λ
ps̄rq̄ =− ∑

J1J2

(−1)(J2+J4+ jq+ js)Ĵ1Ĵ2Ĵ3Ĵ4


jp js J3

jq jr J4

J1 J2 λ

Ṽ
(J1J2)λ
pqrs (65)

Pandya transformed matrix elements are very useful for computing terms with multiple Wick con-

tractions acting on particle and hole states.
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A.5 Derivation of the general tensor product

In order to calculate moments and certain transitions in the EOM-IMSRG(2,2), the spherical tensor

product

[Aλ1Bλ2 ]λµ = ∑
µ1µ2µ

C
λ1λ2λ

µ1µ2µA
λ1
µ1B

λ2
µ2 (66)

must be computed. We will include up to two-body operators in accordance with the truncations

of both the EOM and IMSRG calculations. The tensor product of A and B is named Z, for which

we may compute reduced matrix-elements

〈XJX ||Zλ ||Y JY 〉=
1

ĴX
∑

µMX MY
∑

µ1µ2
C

JY λJX
MY µMX

C
λ1λ2λ

µ1µ2µ〈XJX MX |A
λ1
µ1B

λ2
µ2 |Y JY MY 〉 , (67)

or equivalently

〈XJX ||Zλ ||Y JY 〉=
1

λ̂
∑

µMX MY
∑

µ1µ2
C

JX J̄Y λ

MxM̄Y µ
C

λ1λ2λ

µ1µ2µ〈XJX MX |A
λ1
µ1B

λ2
µ2 |Y JY MY 〉 . (68)

This calculation proceeds in two steps:

1. Expand A and B in m-scheme and perform all possible Wick contractions.

2. Return full expression to J-scheme by summing out remaining angular momentum substates.

A.5.1 Step one: Wick Contractions

We write out the relevant multiplications of two normal-ordered operator strings,[
{a†

paq}{a†
r as}

]
0b

= δqrδpsnpn̄q (69)[
{a†

paq}{a†
r as}

]
1b

= δqrn̄q{a†
pas}−δpsnp{a†

qar} (70)[
{a†

paq}{a†
r as}

]
2b

= {a†
pa†

r asaq} (71)[
{a†

pa†
qasar}{a†

t au}
]

1b
= (1−Ppq)(1−Prs)δpuδrtnpn̄r{a†

qas} (72)[
{a†

pa†
qasar}{a†

t au}
]

2b
= (1−Prs)δtrn̄r{a†

pa†
qasau}+(1−Ppq)δpunp{a†

qa†
t asar} (73)

138



[
{a†

pa†
qasar}{a†

t a†
uawav}

]
0b

= (1−Prs)(1−Ppq)δpvδqwδsuδrtnpnqn̄sn̄r (74)[
{a†

pa†
qasar}{a†

t a†
uawav}

]
1b

= (1−Ppq)(1−Prs)(1−Pwv)δqwδsuδrtnqn̄rn̄s{a†
pav}

− (1−Ppq)(1−Prs)(1−Ptu)δpvδqwδsunpnqn̄s{a†
t ar} (75)[

{a†
pa†

qasar}{a†
t a†

uawav}
]

2b
= (1−Prs)δrtδsun̄rn̄s{a†

pa†
qawav}

+(1−Ppq)δpvδqwnpnq{a†
t a†

uasar}

− (1−Ppq)(1−Prs)(1−Ptu)(1−Pvw)δrtδqwnqn̄q{a†
pa†

t asav} .

(76)

With these expressions, we can perform step one for all terms up to and including two-body oper-

ators. We will do this for one example only. For simplicity, we denote the R-body product of an N

and M body operator as Z(NM→ R).

Zλ
pq(11→ 1)∼ 1

λ̂1λ̂2
∑
{m}

∑
rstu

A
λ1
rs B

λ2
tu C

jr j̄sλ1
mrm̄sµ1

C
jt j̄uλ2
mtm̄uµ2

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ

[
{a†

r as}{a†
t au}

]
1b

=
1

λ̂1λ̂2
∑
{m}

∑
rstu

A
λ1
rs B

λ2
tu C

jr j̄sλ1
mrm̄sµ1

C
jt j̄uλ2
mtm̄uµ2

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ

[
δst n̄s{a†

r au}−δrunr{a†
t as}

]
.

(77)

Zλ
pq(11→ 1) =

1

λ̂1λ̂2
∑
{m}

∑
rs

A
λ1
pr B

λ2
sq C

jp j̄rλ1
mpm̄rµ1

C
js j̄qλ2
msm̄qµ2

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ
n̄rδrs

− 1

λ̂1λ̂2
∑
{m}

∑
rs

B
λ2
pr A

λ1
sq C

jp j̄rλ2
mpm̄rµ2

C
js j̄qλ1
msm̄qµ1

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ
nrδrs

=
1

λ̂1λ̂2
∑
r

A
λ1
pr B

λ2
rq ∑
{m}

C
jp j̄rλ1
mpm̄rµ1

C
jr j̄qλ2
mrm̄qµ2

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ
n̄r

− 1

λ̂1λ̂2
∑
r

B
λ2
pr A

λ1
rq ∑
{m}

C
jp j̄rλ2
mpm̄rµ2

C
jr j̄qλ1
mrm̄qµ1

C
λ1λ2λ

µ1µ2µC
jp j̄qλ

mpm̄qµ
nr (78)

From here, we may proceed with step two and sum out all of the m-dependence remaining in the

expression. While we will explicitly demonstrate step two for each term in the multiplication, we

will skip the demonstration of step one for all except Z(11→ 1), and immediately jump to step
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two.

A.5.2 Step two: angular momentum coupling

To verify the final expressions, we have derived them using both the angular-momentum relations

of [183] and the Jucys diagrammatic formalism summarized in [182]. As the latter method is

more transparent (after an admittedly steep learning curve has been surmounted), we will use this

strategy here.

A.5.2.1 Zero-body terms

Z0(11→ 0) =
1

λ̂1λ̂2
∑
{m}

C
λ1λ2λ

µ1µ2µ ∑
pq

C
jp j̄qλ1
mpm̄qµ1

C
jq j̄pλ2
mqm̄pµ2

A
λ1
pqB

λ2
qpnqn̄p

=
1

λ̂1λ̂2
∑

µ1µ2µ

C
λ1λ2λ

µ1µ2µ ∑
pq

δλ1λ2
δµ1−µ2A

λ1
pqB

λ2
qp(−1)( jp− jq−µ1)nqn̄p

=
1

λ̂1
δλ0δλ1λ2 ∑

pq
A

λ1
pqB

λ2
qp(−1)( jp− jq+λ1)nqn̄p (79)

Analogously,

Z0(22→ 0) =
1

λ̂1
δλ0δλ1λ2 ∑

pqrs
J1J2

A
(J1J2)λ1
pqrs B

(J2J1)λ2
rspq (−1)(J1−J2+λ1)npnqn̄rn̄s (80)

A.5.2.2 One-body terms

Zλ
pq(11→ 1) =

1

ĵpλ̂1λ̂2
C

jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µ

× ∑
r{m}

[
n̄rC

jp j̄rλ1
mpm̄rµ1

C
jr j̄qλ2
mrm̄qµ2

A
λ1
pr B

λ2
rq −nrC

jp j̄rλ2
mpm̄rµ2

C
jr j̄qλ1
mrm̄qµ1

B
λ2
pr A

λ1
rq

]
. (81)

We will look at only the first term, as the second follows analogously.
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1

ĵpλ̂1λ̂2
∑
{m}

C
jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp j̄rλ1
mpm̄rµ1

C
jr j̄qλ2
mrm̄qµ2

=∑ λ̂

jp

jq

λ

+

λ

λ1

λ2
+

jp

jr

λ1

+

jr
jq

λ2

+ (82)

Figure A.8 Expression of the first term of eq. 81 with Jucys Diagrams.

Here we see that each external line can be contracted if we reverse time for the two leftmost

diagrams and permute the indices of all but the first.

1

ĵpλ̂1λ̂2
∑
{m}

C
jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp j̄rλ1
mpm̄rµ1

C
jr j̄qλ2
mrm̄qµ2

= λ̂

jq

jp

jr

λ

λ1

λ2

+

+ +

+
(−1)( jp+ jq+λ ) ,

= λ̂

{
λ1 λ2 λ

jq jp jr

}
(−1)( jp+ jq+λ ) . (83)

Figure A.9 Contraction of all Jucys diagrams in eq. 82.

The second term is the same up to an index exchange and a phase. Hence,

Zλ
pq(11→ 1)

= λ̂ (−1)( jp+ jq+λ )
∑
jr

[
n̄r

λ1 λ2 λ

jq jp jr

A
λ1
pr B

λ2
rq −nr

λ1 λ2 λ

jp jq jr

(−1)(λ1+λ2+λ )B
λ2
pr A

λ1
rq

]
.

(84)

For the next term, we start from the Pandya two-body representation, which is more straightforward
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for sums over particle and hole states,

Zλ
pq(21→ 1)

=
1

ĵpλ̂1λ̂2
∑
rs

J1J2{m}

C
jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jr j̄sλ2
mrm̄sµ2

C
jp j̄qJ1
mpm̄qM1

C
jr j̄sJ2
mrm̄sM2

C
J1J̄2λ1
M1M̄2µ1

Ā
(J1J2)λ1
pq̄rs̄ B

λ2
rs nsn̄r ,

=
1

ĵpλ̂1λ̂2
∑

rs{m}J1

C
jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp j̄qJ1
mpm̄qM1

C
J1λ̄2λ1
M1µ̄2µ1

Ā
(J1λ2)λ1
pq̄rs̄ B

λ2
rs nsn̄r ,

=
1

ĵpλ̂ λ̂2
∑

rs{m}
C

jqλ jp
mqµmpC

jp j̄qλ

mpm̄qµ
Ā
(λλ2)λ1
pq̄rs̄ B

λ2
rs nsn̄r(−1)(λ1+λ2+λ ) ,

=
1

λ̂ 2λ̂2
∑
rsµ

Ā
(λλ2)λ1
pq̄rs̄ B

λ2
rs nsn̄r(−1)(λ1+λ2+λ ) ,

=
1

λ̂2
∑
rs

Ā
(λλ2)λ1
pq̄rs̄ B

λ2
rs nsn̄r(−1)(λ1+λ2+λ ) . (85)

Likewise,

Zλ
pq(12→ 1) =

1

λ̂1
∑
rs

A
λ1
rs B̄

(λ1λ )λ2
rs̄pq̄ nrn̄s . (86)

The final contribution to Zpq is from two two-body operators,

Zλ
pq(22→ 1) =

1
2

1

ĵpλ̂1λ̂2
∑

rst{m}
J1J2J3[

nrn̄sn̄t Ã
(J1J2)λ1
prst B̃

(J2J3)λ2
stqr C

jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp jrJ1
mpmrM1

C
J1J̄2λ1
M1M̄2µ1

C
jq jrJ3
mqmrM3

C
J2J̄3λ2
M2M̄3µ2

− n̄rnsnt B̃
(J1J2)λ2
prst Ã

(J2J3)λ1
stqr C

jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp jrJ1
mpmrM1

C
J1J̄2λ2
M1M̄2µ2

C
jq jrJ3
mqmrM3

C
J2J̄3λ1
M2M̄3µ1

]
(87)

The angular momentum coupling is achieved using Jucys diagrams,

1

ĵpλ̂1λ̂2
∑
{m}

C
jqλ jp
mqµmpC

λ1λ2λ

µ1µ2µC
jp jrJ1
mpmrM1

C
J1J̄2λ1
M1M̄2µ1

C
jq jrJ3
mqmrM3

C
J2J̄3λ2
M2M̄3µ2

= λ̂ Ĵ1Ĵ2 ∑
{m}

jp

jq

λ

+

λ

λ1

λ2
+

J1

jp

jr
+

Figure A.10 Derivation of Zλ
pq(22→ 1) with Jucys diagrams.
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Figure A.10 (cont’d)

×

J3

jq

jr
+

J1
J2

λ1

+

J2
J3

λ2

+

= λ̂ Ĵ1Ĵ2(−1)( jq− jr+J3+λ+λ1+λ2)

jp
jr

jq

λ

J3

J2
λ2

λ1

J1

+

++

+

+ +

= λ̂ Ĵ1Ĵ2(−1)( jp+ jr+J1)
λ

λ1J1
J2

J3 λ2

-

+

-

+

λ

jqJ3
jr

J1 jp

-

+

-

+

= λ̂ Ĵ1Ĵ2(−1)( jp+ jr+J1)
{

J1 J2 λ1
λ2 λ J3

}{
J3 jr jq
jp λ J1

}
. (88)

Applying this expression to eq. 87, we arrive at

Zλ
pq(22→ 1) =

1
2

λ̂ ∑
rst

J1J2J3

Ĵ1Ĵ2

 jp jq λ

J3 J1 jr


[

n̄rnsnt B̃
(J1J2)λ2
rpst Ã

(J2J3)λ1
stqr

λ1 λ2 λ

J1 J3 J2


−nrn̄sn̄t Ã

(J1J2)λ1
rpst B̃

(J2J3)λ2
stqr

λ1 λ2 λ

J3 J1 J2


]

(89)

A.5.2.3 Two-body terms

For two-body operators, we start with the disconnected term,
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Z
(J1J2)λ
pqrs (11→ 2) =

1

λ̂ λ̂1λ̂2
(1−Ppq(J1))(1−Prs(J2))A

λ1
pr B

λ2
qs

× ∑
{m}

C
jp jqJ1
mpmqM1

C
jr jsJ2
mrmsM2

C
J1J̄2λ

M1M̄2µ
C

λ1λ2λ

µ1µ2µC
jp j̄rλ1
mpm̄rµ1

C
jq j̄sλ2
mqm̄sµ2

= (1−Ppq(J1))(1−Prs(J2))A
λ1
pr B

λ2
qs

× ∑
{m}

λ̂ Ĵ1Ĵ2

J1

jp

jq
+

J2

jr

js
+

λ

λ1

λ2
+

jp

jr

λ1

+

jq
js

λ2

+

J1
J2

λ

+ (90)

= (1−Ppq(J1))(1−Prs(J2))A
λ1
pr B

λ2
qs ∑
{m}

λ̂ Ĵ1Ĵ2

J1

jp

jr

js λ

λ2

J2
jq

λ1

+

++

+

+ +

= (1−Ppq(J1))(1−Prs(J2))A
λ1
pr B

λ2
qs λ̂ Ĵ1Ĵ2


jp jr λ1
jq js λ2
J1 J2 λ

 . (91)

Figure A.11 Derivation of Z
(J1J2)λ
pqrs (11→ 2) using Jucys diagrams.

Next, we couple the (21→ 2) and (12→ 2) multiplications. There are four unique terms here,

which we will express in m-scheme first for clarity.

Zpqrs(21→ 2) = ∑
tmt

[
(1−Prs)ApqtsBtrn̄t − (1−Ppq)BptAtqrsnt

]
(92)

Zpqrs(12→ 2) = ∑
tmt

[
(1−Ppq)AptBtqrsn̄t − (1−Prs)BpqtsAtrnt

]
(93)

Now we will express the first term of eq. 92 in J-scheme,
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Z
(J1J2)λ
pqrs (21→ 2a) =

1

λ̂ λ̂1λ̂2
∑
tJ3

(1−Prs(J2))A
(J1J3)λ1
pqts B

λ2
tr

× ∑
{m}

C
J1J̄2λ

M1M̄2µ
C

jr jsJ2
mrmsM2

C
λ1λ2λ

µ1µ2µC
jt jsJ3
mtmsM1

C
J1J̄3λ1
M1M̄3µ1

C
jt j̄rλ2
mtm̄rµ2

(94)

where

1

λ̂ λ̂1λ̂2
∑
{m}

C
J1J̄2λ

M1M̄2µ
C

jr jsJ2
mrmsM2

C
λ1λ2λ

µ1µ2µC
jt jsJ3
mtmsM1

C
J1J̄3λ1
M1M̄3µ1

C
jt j̄rλ2
mtm̄rµ2

= ∑
{m}

λ̂ Ĵ2Ĵ3

J2

jr

js
+

J3

jt

js
+

λ

λ1

λ2
+

×

J1
J2

λ

+

J1
J3

λ1

+

jt
jr

λ2

+

= λ̂ Ĵ2Ĵ3(−1)(J2+J3+ jt− jr)

js
jt

jr

J2

λ2

λ1
λ

J1

J3

+

++

+

+ +

= λ̂ Ĵ2Ĵ3(−1)( jt+ js+J1+λ2+λ )
J2

λ2λ
λ1

J1 J3

-

+

-

+

J2

J3js
jt

jr λ2

-

+

-

+

= λ̂ Ĵ2Ĵ3(−1)( jt+ js+J1+λ2+λ )
{

λ λ1 λ2
J3 J2 J1

}{
js jt J3

λ2 J2 jr

}
. (95)

Figure A.12 Derivation of Z
(J1J2)λ
pqrs (21→ 1) using Jucys diagrams.
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From this, and analagous derivations, we arrive at

Z
(J1J2)λ
pqrs (12→ 2)

= (1−Ppq(J1))λ̂ Ĵ1 ∑
t

∑
J3

Ĵ3(−1)( jp+ jq+J1+J2+J3+λ1+λ )

×

 jp jq J1

J3 λ1 ja


λ1 λ2 λ

J2 J1 J3

A
λ1
pt B̃

(J3J2)λ2
tqrs n̄t

+(1−Prs(J2))λ̂ Ĵ2 ∑
t

∑
J3

Ĵ3(−1)(J1+J3+λ2)

 jr js J2

J3 λ1 ji


λ1 λ2 λ

J1 J2 J3

A
λ1
tr B̃

(J1J3)λ2
pqst nt (96)

and

Z
(J1J2)λ
pqrs (21→ 2)

=−(1−Prs(J2))λ̂ Ĵ2 ∑
t

∑
J3

Ĵ3(−1)(J1+J3+λ2+λ )

 jr js J2

J3 λ2 ja


λ1 λ2 λ

J2 J1 J3

B
λ2
tr Ã

(J1J3)λ1
pqst n̄t

−(1−Ppq(J1))λ̂ Ĵ1 ∑
t

∑
J3

Ĵ3(−1)( jp+ jq+J1+J2+J3+λ1)

×

 jp jq J1

J3 λ2 ji


λ1 λ2 λ

J1 J2 J3

B
λ2
pt Ã

(J3J2)λ2
tqrs nt . (97)

The (22→ 2) term has three unique types of contractions. As demonstrated in eq. 76, we have pp

and hh ladder diagrams, and the ph chain diagrams. We will start with the ladder diagrams, which

are quite simple compared with the chain.

Z
(J1J2)λ
pqrs (22→ 2(pp,hh)) =

1

2λ̂ λ̂1λ̂2
∑

tuJ3

Ã
(J1J3)λ1
pqtu B̃

(J3J2)λ2
turs n̄t n̄u

× ∑
{m}

C
J1J̄2λ

M1M̄2µ
C

λ1λ2λ

µ1µ2µC
J1J̄3λ1
M1M̄3µ1

C
J3J̄2λ2
M3M̄2µ2

+
1

2λ̂ λ̂1λ̂2
∑

tuJ3

B̃
(J1J3)λ2
pqtu Ã

(J3J2)λ1
turs ntnu

× ∑
{m}

C
J1J̄2λ

M1M̄2µ
C

λ1λ2λ

µ1µ2µC
J1J̄3λ2
M1M̄3µ2

C
J3J̄2λ1
M3M̄2µ1

(98)
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where

1

λ̂ λ̂1λ̂2
∑
{m}

C
J1J̄2λ

M1M̄2µ
C

λ1λ2λ

µ1µ2µC
J1J̄3λ1
M1M̄3µ1

C
J3J̄2λ2
M3M̄2µ2

= ∑
{m}

λ̂

λ

λ1

λ2
+

J1
J2

λ

+

J1
J3

λ1

+

J3
J2

λ2

+

= λ̂ (−1)(J1+J2+λ )
J1

λλ1
λ2

J3 J2

-

+

-

+

= λ̂ (−1)(J1+J2+λ )
{

λ1 λ2 λ

J2 J1 J3

}
, (99)

Figure A.13 Derivation of Z
(J1J2)λ
pqrs (22→ 2(pp,hh)) using Jucys diagrams.

hence,

Z
(J1J2)λ
pqrs (22→ 2(pp,hh)

=
1
2

λ̂ ∑
tuJ3

(−1)(J1+J2+λ )

λ1 λ2 λ

J2 J1 J3

 Ã
(J1J3)λ1
pqtu B̃

(J3J2)λ2
turs n̄t n̄u

+
1
2

λ̂ ∑
tuJ3

(−1)(J1+J2+λ1+λ2)

λ1 λ2 λ

J1 J2 J3

 B̃
(J1J3)λ2
pqtu Ã

(J3J2)λ1
turs ntnu (100)

For the final term, the ph chain, we use Pandya-transformed matrix elements,

Z̃
(J1J2)λ
pqrs (22→ 2(ph)) =

1

λ̂ λ̂1λ̂2
(1+Ppq(J1))(1+Ppq(J2))

× ∑
tu

J3J4J5

Ĵ1Ĵ2Ĵ3Ĵ4(−1)( jq+ js+J2+J4)


jp js J3

jq jr J4

J1 J2 λ

 Ā
(J3J5)λ1
ps̄tū B̄

(J5J4)λ2
tūrq̄ n̄tnu
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× ∑
{m}

C
J3J̄4λ

M3M̄4µ
C

λ1λ2λ

µ1µ2µC
J3J̄5λ1
M3M̄5µ1

C
J5J̄4λ2
M5M̄4µ2

(101)

Here we have applied the inverse pandya transform and anti-symmetrization operators to construct

Z
(J1J2)λ
pqrs . The angular momentum coupling is exactly the same as in the last case,

Z̃
(J1J2)λ
pqrs (22→ 2(ph)) =− λ̂ (1+Ppq(J1))(1+Ppq(J2))

× ∑
tu

J3J4J5

Ĵ1Ĵ2Ĵ3Ĵ4(−1)( jq+ js+J2+J3+λ )


jp js J3

jq jr J4

J1 J2 λ


λ1 λ2 λ

J4 J3 J5

 Ā
(J3J5)λ1
ps̄tū B̄

(J5J4)λ2
tūrq̄ n̄tnu

(102)

A.6 Compilation of the full tensor product

Here we compile the results of the previous section for use in the construction of transition matrix

elements in the EOM-IMSRG(2,2). For nuclear physics applications, EOM-IMSRG(2,2) ladder

operators are linear combinations of one- and two-body excitation operators coupled to desired

spin JΠ

X†
ν (J

ΠM) = ∑
pq

XJ
pq(ν)

[a†
pãq]

J
M√

2J+1
n̄pnq +

1
4 ∑

pqrs
∑

J1J2

X̃
(J1J2)J
pqrs (ν)

[[a†
pa†

q]
J1 [ãrãs]

J2 ]JM√
2J+1

. (103)

We suppress parity and isospin quantum numbers, as their selection rules do not affect the J-

scheme expressions. However, ladder operators X† do have definite parity and charge exchange

characteristic, so commensurate selection rules apply. Note that we break from the convention

that a,b,c, . . . denote particle states here. We will instead use p,q,r, . . . for non-contracted indices

(external lines), and a,b,c, . . . for contracted or summed indices.

A.6.1 Transitions to the ground state

For transitions to the ground state, we compute

M0ν = 〈Φ0||Ōλ ||Ψ̄ν〉= [Ōλ X̄†
ν (Jν)]

0 . (104)
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Adding eqs. 79 and 80, we arrive at:

[Aλ1Bλ2]0 =
1

λ̂2
δλ1λ2 ∑

ab
A

λ1
ba B

λ2
ab (−1)( ja− jb+λ )n̄anb

+
1

λ̂2
δλ1λ2 ∑

abcd
J1J2

A
(J1J2)λ
cdab B

(J2J1)λ2
abcd (−1)(J1−J2+λ )n̄an̄bncnd . (105)

A.6.2 Transitions between excited states and moments

For transitions between states constructed via a ladder operator acting on the reference, or moments

involving these states, we must compute the full tensor-product

ZJ
M ≡ [Ōλ X̄†

ν (Jν)]
J
M , (106)

and then the zero-body product

Mµν = [X(Jµ)ZJ]0 . (107)

Here, we combine eqs. 84 through 89 to reveal

Zλ
pq = λ̂ (−1)( jp+ jq)∑

a

[
A

λ1
paB

λ2
aq (−1)λ

λ1 λ2 λ

jq jp ja

 n̄a

−B
λ2
paA

λ1
aq (−1)(λ1+λ2)

λ1 λ2 λ

jp jq ja

na

]

+∑
ab
(

1

λ̂1
A

λ1
ba B̄

(λλ1)λ2
pq̄bā +

(−1)(λ1+λ2+λ )

λ̂2
Ā
(λλ2)λ1
pq̄ab̄

B
λ2
ab )nbn̄a

− 1
2 ∑

abc
∑

J1J2J3

λ̂ Ĵ1Ĵ3

 jp jq λ

J3 J1 jc


[λ1 λ2 λ

J3 J1 J2

 Ã
(J1J2)λ1
cpab B̃

(J2J3)λ2
abqc n̄an̄bnc

− (−1)(λ1+λ2+λ )

λ2 λ1 λ

J3 J1 J2

 B̃
(J1J2)λ2
cpab Ã

(J2J3)λ1
abqc nanbn̄c

]

(108)
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and eqs. 91 through 102 to arrive at

Z̃
(J1J2)λ
pqrs = (1−Ppq(J1))(1−Prs(J2))A

λ1
pr B

λ2
qs λ̂ Ĵ1Ĵ2


jp jr λ1

jq js λ2

J1 J2 λ


+(1−Ppq(J1))λ̂ Ĵ1 ∑

a
∑
J3

Ĵ3(−1)( jp+ jq+J1+J2+J3+λ1+λ )

 jp jq J1

J3 λ1 ja


λ1 λ2 λ

J2 J1 J3

A
λ1
paB̃

(J3J2)λ2
aqrs n̄a

+(1−Prs(J2))λ̂ Ĵ2 ∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2)

 jr js J2

J3 λ1 ja


λ1 λ2 λ

J1 J2 J3

A
λ1
ar B̃

(J1J3)λ2
pqsa na

−(1−Prs(J2))λ̂ Ĵ2 ∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2+λ )

 jr js J2

J3 λ2 ja


λ1 λ2 λ

J2 J1 J3

B
λ2
ar Ã

(J1J3)λ1
pqsa n̄a

−(1−Ppq(J1))λ̂ Ĵ1 ∑
a

∑
J3

Ĵ3(−1)( jp+ jq+J1+J2+J3+λ1)

 jp jq J1

J3 λ2 ja


λ1 λ2 λ

J1 J2 J3

B
λ2
paÃ

(J3J2)λ2
aqrs na

+
1
2

λ̂ ∑
ab

∑
J3

(−1)(J1+J2+λ )

λ1 λ2 λ

J2 J1 J3

 Ã
(J1J3)λ1
pqab B̃

(J3J2)λ2
abrs n̄an̄b

+
1
2

λ̂ ∑
ab

∑
J3

(−1)(J1+J2+λ1+λ2)

λ1 λ2 λ

J1 J2 J3

 B̃
(J1J3)λ2
pqab Ã

(J3J2)λ1
abrs nanb

+(1−Ppq(J1))(1−Prs(J2))λ̂ Ĵ1Ĵ2 ∑
J3J4J5

Ĵ3Ĵ5(−1)( js− jq+J3+λ )
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×


jp jr J3

jq js J5

J1 J2 λ


λ1 λ2 λ

J5 J3 J4

∑
ab

Ā
(J3J4)λ1
pr̄ab̄

B̄
(J4J5)λ2
ab̄sq̄

n̄anb (109)

A.7 Tensor-scalar Commutators

The most frequently used result of the derivation of Sec. A.5 are the commutator expressions for a

scalar operator (expressed in non-reduced matrix elements) and an arbitrary rank spherical tensor

operator (expressed in reduced matrix elements). There are two uses for these expressions.

One use is the solution of the EOM-IMSRG(2,2) equations. Analogous to the m-scheme case,

ladder the amplitudes XJ
ai(ν) and X̃

(JabJi j)J
abi j (ν), as well as excitation energies, are obtained through

application of the Lanczos algorithm to solve the eigenvalue problem in eq. 4.13. The commutator

expression [H,X†
ν ] requires the commutator of a scalar operator H, and the ladder operator, which

is a spherical tensor.

A more general application is to compute effective operators in the IMSRG. For all IMSRG cal-

culations, observables must be consistently evolved using eq. 3.8 in the flow-equation approach or

eq. 3.39 in the Magnus formalism. If the operator is of tensor character, tensor-scalar commutators

are required. Thus we must compute

Zλ
µ ≡ ABλ

µ −Aλ
µB , (110)

which can be derived as a limiting case of the general tensor-product in eqs. 105 through A.6.2,

A corresponds to the scalar operator, where λ1→ 0 and the Wigner-Eckart theorem has been used

to revert to non-reduced matrix elements. B is a tensor operator of rank λ2 = λ . The resultant
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operator Z is also of rank λ .

Zλ
pq = ∑

a

(
ApaBλ

aq−Bλ
paAaq

)
−∑

ab
(na−nb)

(
Āλ

pq̄ab̄Bλ
ab− ĵaB̄(λ0)λ

pq̄ab̄
Aab

)

+
1
2 ∑

abc
J1J2

(nanbn̄c + n̄an̄bnc)Ĵ1Ĵ2(−1) jp+ jc+J1+λ

×

J1 J2 λ

jq jp jc


(

Ã
J1
cpabB̃

(J1J2)λ
abcq − B̃

(J1J2)λ
cpab Ã

J2
abcq

)
(111)

and

Z̃
(J1J2)λ
pqrs = ∑

a

(
ApaB̃

(J1J2)λ
aqrs +AqaB̃

(J1J2)λ
pars − B̃

(J1J2)λ
pqas Aar− B̃

(J1J2)λ
pqra Aas

)

− Ĵ1Ĵ2(−1)λ
∑
a

[
(1−Ppq(J1))(−1) jp+ jq+J2

J2 J1 λ

jp ja jq

Bλ
paÃ

J2
aqrs

− (1−Prs(J2))(−1) jr+ js−J1

J1 J2 λ

js ja jr

 Ã
J1
pqraBλ

as

]

+
1
2 ∑

ab
(1−na−nb)(Ã

J1
pqabB̃

(J1J2)λ
abrs − B̃

(J1J2)λ
pqab Ã

J2
abrs)+ ∑

abJ3J4

Ĵ1Ĵ2Ĵ3Ĵ4(na−nb)

×

[
(1−Ppq(J1))(1−Prs(J2))(−1) jq+ js+J2+J4


jp js J3

jq jr J4

J1 J2 λ

 Ā
J3
ps̄ab̄

B̄
(J3J4)λ
ab̄rq̄

]
.

(112)

Here we have employed the scalar Pandya-transformed matrix elements defined by

Ā
J1
pq̄rs̄ =−∑

J2

Ĵ2

 jp jq J1

jr js J2

 Ã
J2
psrq (113)
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A.8 Scalar Commutators

Finally, taking λ → 0 for both operators reveals the scalar limit, with non-reduced matrix elements.

Z0 = ∑
ab
(na−nb) ĵ2aAabBba +

1
4 ∑

abcd
J

(nanbn̄cn̄d−ncnd n̄an̄b)Ĵ
2ÃJ

abcdB̃J
cdab , (114)

Zpq = ∑
a
(ApaBaq−BpaAaq)+δ jp jq ∑

abJ

Ĵ2

ĵ2p
(na−nb)(AabB̃J

bpaq−BabÃJ
bpaq)

+
1
2

δ jp jq ∑
abJ

Ĵ2

ĵ2p
(nanbn̄c + n̄an̄bnc)(ÃJ

pcabB̃J
abqc− B̃J

pcabÃJ
abqc) , (115)

Z̃J
pqrs = ∑

a
(ApaB̃J

aqrs +AqaB̃J
pars− B̃J

pqasAar− B̃J
aqraAas)

−∑
a
(BpaÃJ

aqrs +BqaÃJ
pars− ÃJ

pqasBar− ÃJ
aqraBas)

+
1
4 ∑

ab
(1−na−nb)(Ã

J
pqabB̃J

abrs− B̃J
pqabÃJ

abrs)

+(1−Ppq(J))(1−Prs(J)) ∑
abJ1

Ĵ2
1

 jp js J1

jr jq J

 Ā
J1
ps̄ab̄

B̄
J1
ab̄rq̄

(na−nb) . (116)

These expressions are used for the evaluation of the IMSRG unitary transformation involving the

scalar operators η and H.

A.9 EOM-IMSRG({3},2) triples expression

For the computation of the EOM-IMSRG({3},2) triples correction in m-scheme, we must compute

δEν

{3} =
1

36 ∑
abci jk

|Wabci jk|2

Di jk
abc

(117)

where Di jk
abc is the energy denominator, and

Wabci jk = [H,X†
ν ]abci jk = (1−Pab−Pac)(1−Pi j−Pik)∑

jq
(ΓbcqiXaq jk−XbcqiΓaq jk) (118)

In J-scheme, eq. 117 becomes

1
36Ĵ2

ν

∑
abc
i jk

∑
j1 j2

JabJi j

ĵ21
Di jk

abc

|〈[(ab)Jabc] j1||W Jν ||[(i j)Ji jk] j2〉|2 , (119)
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where the triples amplitudes are given by

〈[(ab)Jabc] j1||W Jν ||[(i j)Ji jk] j2〉

=
1
Ĵν

∑
{m}

C
ja jbJab
mambMab

C
ji j jJi j
mim jMi j

C
Jab jc j1
Mabmcm1

C
Ji j jk j2
Mi jmkm2

C
j1 j̄2Jν

m1m̄2Mν

〈ama,bmb,cmc|W Jν
Mν
|imi, jm j,kmk〉 , (120)

and the Epstein-Nesbet energy denominator Di jk
abc is approximated with up to two-body monopole

matrix elements,

Di jk
abc = fii + f j j + fkk− faa− fbb− fcc +kabab +kacac +kbcbc +ki ji j +kikik +k jk jk

−kiaia−kibib−kicic−k ja ja−k jb jb−k jc jc−kkaka−kkbkb−kkckc . (121)

Where monopole matrix elements are given by

kpqrs = ∑
J

Γ̃
J
pqrs(2J+1) . (122)

To compute the triples amplitudes, there are 18 terms to evaluate. We now derive the J-scheme

expressions. We will only perform the derivation for the m-scheme term

T1A = ∑
q

Γaqi jXbcqk , (123)

which is expressed in J-scheme as

T1A =
1
Ĵ2

ν

∑
q{m}

J1J2J3

C
ja jbJab
mambMab

C
Jab jc j1
Mabmcm1

C
Ji j jk j2
Mi jmkm2

C
j1 j̄2Jν

m1m̄2Mν

×C
ja jqJ1
mamqM1

C
jb jcJ2
mbmcM2

C
jq jkJ3
mqmkM3

C
J2J̄3Jν

M2M̄3Mν
Γ̃

Ji j
aqi jX̃

(J2J3)Jν

bcqk . (124)

We sum the angular momentum substates out,
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1
Ĵ2

ν

∑
{m}

C
ja jbJab
mambMab

C
Jab jc j1
Mabmcm1

C
Ji j jk j2
Mi jmkm2

C
j1 j̄2Jν

m1m̄2Mν

×C
ja jqJi j
mamqMi j

C
jb jcJ2
mbmcM2

C
jq jkJ3
mqmkM3

C
J2J̄3Jν

M2M̄3Mν

= Ĵ2Ĵ3ĴabĴi j ĵ1 ĵ2

j2

jk

jq

Ji j
ja

jb

Jab jc

j1

J2

J3

Jν

+

++

+

+ -

-
+

= Ĵ2Ĵ3ĴabĴi j ĵ1 ĵ2
j1

Jabja
jb

J2 jc

-

+

-

+

j1

JνJ2
J3

ja j2

-

+

-

+

×
j2

Ji jja
jq

J3 jk

-

+

-

+

(−1)( j2+ ja+ jb+ jc+ jk+ jq+J3+Jν )

= Ĵ2Ĵ3ĴabĴi j ĵ1 ĵ2(−1)( j2+ ja+ jb+ jc+ jk+ jq+J3+Jν )

×
{

ja jb Jab
jc j1 J2

}{
J2 J3 Jν

j2 j1 ja

}{
ja jq Ji j
jk j2 J3

}
, (125)

Figure A.14 Derivation of induced three-body force with Jucys diagrams.

and thus

T1A = ∑
q

∑
J2J3

= Ĵ2Ĵ3ĴabĴi j ĵ1 ĵ2(−1)( j2+ ja+ jb+ jc+ jk+ jq+J3+Jν )

×

 ja jb Jab

jc j1 J2


J2 J3 Jν

j2 j1 ja


 ja jq Ji j

jk j2 J3

 Γ̃
Ji j
aqi jX̃

(J2J3)Jν

bcqk (126)
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The remainder of the terms may be computed with more or less the same procedure, and the full

expression is given by

〈[(ab)Jabc] j1||W Jν ||[(i j)Ji jk] j2〉=
9

∑
N=1

TN , (127)

where

T1 = ĵ1 ĵ2 ˆJab ∑
J1J2q

Ĵ2(−1)( jc+ jb+ jq+ j2+Jν )

×
[

Ĵ1Ĵi j(−1)( ja− jk+J2)

 ja jb Jab

jc j1 J1


 j2 ja J2

J1 Jν j1


 ja jq Ji j

jk j2 J2

 Ã
Ji j
aqi jX̃

(J1J2)Jν

bcqk

− Ĵ2Ĵ1(−1)J1

 ja jb Jab

jc j1 J2


 j2 jk Ji j

J1 Jν j1


 ja jq J1

jk j1 J2

 X̃
(J1Ji j)Jν

aqi j Ã
J2
bcqk

]
(128)

T2 = ĵ1 ĵ2 ˆJabĴi j ∑
qJ1
J2J3

Ĵ1Ĵ2Ĵ3(−1)( jb+ jc+ j j+ jk+ jq− j2+Jν )

 ja jb Jab

jc j1 J3


 ji j j Ji j

jk j2 J2


×
[

Ĵ2(−1)( ja− ji+J2+J1)

J1 J3 Jν

j1 j2 ja


 ja jq J2

ji j2 J1

 Ã
J2
aq jkX̃

(J3J1)Jν

bcqi

− Ĵ3(−1)(J1+J2)

J2 J1 Jν

j1 j2 ji


 ja j1 J3

ji jq J1

 X̃
(J1J2)Jν

aq jk Ã
J3
bcqi

]
(129)

T3 = ĵ1 ĵ2 ˆJabĴi j ∑
qJ1
J2J3

Ĵ1Ĵ2Ĵ3(−1)( jb+ jc+ ji+ jq− j2+Jν+Ji j)

 ja jb Jab

jc j1 J3


 ji j j Ji j

j2 jk J2


×
[

Ĵ2(−1)( ja+J1)

J1 J3 Jν

j1 j2 ja


 ja jq J2

j j j2 J1

 Ã
J2
aqkiX̃

(J3J1)Jν

bcq j

− Ĵ3(−1)( j j+J1)

J1 J2 Jν

j2 j1 j j


 ja jq J1

j j j1 J3

 X̃
(J1J2)Jν

aqki Ã
J3
bcq j

]
(130)
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T4 = ĵ1 ĵ2 ˆJab ∑
qJ1J2

Ĵ1Ĵ2(−1)( ja+ jq+ j2+Jν+Jab+J1+J2)

×
[

Ĵi j(−1) jk

 ja jb Jab

j1 jc J1


 jq jb Ji j

j2 jk J2


J1 J2 Jν

j2 j1 jb

 Ã
Ji j
bqi jX̃

(J1J2)Jν

caqk

− Ĵ2(−1) jb

 ja jb Jab

j1 jc J2


 jq jb J1

j1 jk J2


J1 Ji j Jν

j2 j1 jk

 X̃
(J1Ji j)Jν

bqi j Ã
J2
caqk

]
(131)

T5 = ĵ1 ĵ2 ˆJabĴi j ∑
qJ1
J2J3

Ĵ1Ĵ2Ĵ3(−1)( ja+ jq+ jk+ j j− j2+Jν+Jab+J1+J2+J3)

×
[

Ĵ1(−1) ji

 ja jb Jab

j1 jc J2


 ji j j Ji j

jk j2 J1


 jb jq J1

ji j2 J3


J3 J2 Jν

j1 j2 jb

 Ã
J1
bq jkX̃

(J2J3)Jν

caqi

− Ĵ3(−1) jb

 ja jb Jab

j1 jc J3


 jb jq J1

ji j1 J3


 ji j j Ji j

jk j2 J2


J2 J1 Jν

j1 j2 ji

 X̃
(J1J2)Jν

bq jk Ã
J3
caqi

]

(132)

T6 = ĵ1 ĵ2 ˆJabĴi j ∑
qJ1
J2J3

Ĵ1Ĵ2Ĵ3(−1)( ja+ jq+ ji+ j2+Jν+Jab+Ji j+J1+J3)

×
[

Ĵ1(−1)J2+J1

 ja jb Jab

j1 jc J2


 ji j j Ji j

j2 jk J1


 jb jq J1

j j j2 J3


J3 J2 Jν

j1 j2 jb

 Ã
J1
bqkiX̃

(J2J3)Jν

caq j

−Ĵ3(−1)( jb− j j)

 ja jb Jab

j1 jc J3


 jb jq J1

j j j1 J3


 ji j j Ji j

j2 jk J2


J2 J1 Jν

j1 j2 j j

 X̃
(J1J2)Jν

bqki Ã
J3
caq j

]

(133)
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T7 = ĵ1 ĵ2 ∑
qJ1

Ĵ1(−1)( jq− j2+Jν+Jab+J1)

× [Ĵi j(−1)( jc− jk)

 jc jq Ji j

jk j2 J1


J1 Jab Jν

j1 j2 jc

 Ã
Ji j
cqi jX̃

(JabJ1)Jν

abqk

− ˆJab

 jc jq J1

jk j1 Jab


J1 Ji j Jν

j2 j1 jk

 X̃
(J1Ji j)Jν

cqi j Ã
Jab
abqk

]
(134)

T8 = ĵ1 ĵ2Ĵi j ∑
qJ1J2

Ĵ1Ĵ2(−1)( jk+ jq+ j j+ j2+Jν+Jab+J1+J2)

×
[

Ĵ1(−1)( jc− ji)

 jq ji J2

j2 jc J1


 ji j j Ji j

jk j2 J1


Jab J2 Jν

j2 j1 jc

 Ã
J1
cq jkX̃

(JabJ2)Jν

abqi

− ˆJab

 jc jq J1

ji j1 Jab


 ji j j Ji j

jk j2 J2


J1 J2 Jν

j2 j1 ji

 X̃
(J1J2)Jν

cq jk Ã
Jab
abqi

]
(135)

T9 = ĵ1 ĵ2Ĵi j ∑
qJ1J2

Ĵ1Ĵ2(−1)( jq+ ji+ j2+Jν+Jab+Ji j)

×
[

Ĵ1(−1)( jc+J2)

 jc jq J1

j j j2 J2


 ji j j Ji j

j2 jk J1


Jab J2 Jν

j2 j1 jc

 Ã
J1
cqkiX̃

(JabJ2)Jν

abq j

− ˆJab(−1)(J1− j j)

 jc jq J1

j j j1 Jab


 ji j j Ji j

j2 jk J2


J1 J2 Jν

j2 j1 j j

 X̃
(J1J2)Jν

cqki Ã
Jab
abq j

]

(136)

You can arrive at the expressions required for the ground state triples correction by taking Jν → 0

and converting to non-reduced matrix elements.

158



BIBLIOGRAPHY

159



BIBLIOGRAPHY

[1] B.V. Pritychenko, M. Birch, B. Singh, and M. Horoi. Tables of E2 transition probabilities
from the first 2+ states in even–even nuclei. At. Data Nucl. Data Tables, 107:1, 2016.

[2] V. F. Weisskopf. Radiative transition probabilities in nuclei. Phys. Rev., 83:1073, 1951.

[3] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K. Tsukiyama. The in-medium
similarity renormalization group: A novel ab initio method for nuclei. Phys. Rept., 621:165,
2016.

[4] R. Machleidt and D. R. Entem. Chiral effective field theory and nuclear forces. Phys. Rept.,
503:1, 2011.

[5] D. R. Entem and R. Machleidt. Accurate charge-dependent nucleon-nucleon potential at
fourth order of chiral perturbation theory. Phys. Rev. C, 68:041001, 2003.

[6] T. D. Morris, N. M. Parzuchowski, and S. K. Bogner. Magnus expansion and in-medium
similarity renormalization group. Phys. Rev. C, 92:034331, 2015.

[7] R. J. Furnstahl, G. Hagen, and T. Papenbrock. Corrections to nuclear energies and radii in
finite oscillator spaces. Phys. Rev. C, 86:031301, 2012.

[8] S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T. Papenbrock. Universal properties
of infrared oscillator basis extrapolations. Phys. Rev. C, 87:044326, 2013.

[9] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl. Evolution of nuclear many-body forces
with the similarity renormalization group. Phys. Rev. Lett., 103:082501, 2009.

[10] G. Audi, O. Bersillon, J. Blachot, and A. H. Wapstra. The nubase evaluation of nuclear and
decay properties. Nuc. Phys. A, 729:3, 2003.

[11] I. Shavitt and R. J. Bartlett. Many-Body Methods in Chemistry and Physics: MBPT and
Coupled-Cluster Theory. Cambridge University Press, 2009.

[12] Evaluated nuclear structure data file. https://www.nndc.bnl.gov/ensdf/. Accessed:
2017-02-20.

[13] P. Navrátil. Local three-nucleon interaction from chiral effective field theory. Few-Body
Systems, 41:117, 2007.

[14] F. Ajzenberg-Selove. Energy levels of light nuclei A = 13–15. Nucl. Phys. A, 523:1, 1991.

[15] T. Kibédi and R. H. Spear. Reduced electric-octupole transition probabilities, B(E3;0+1 →
3−1 ) – an update. At. Data Nucl. Data Tables, 80:35, 2002.

[16] P. Navrátil, J. P. Vary, and B. R. Barrett. Large-basis ab initio no-core shell model and its
application to 12C. Phys. Rev. C, 62:054311, 2000.

160

https://www.nndc.bnl.gov/ensdf/


[17] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett. Recent developments in no-core
shell-model calculations. J. Phys. G: Nucl. Part. Phys., 36:083101, 2009.

[18] B. R. Barrett, P. Navrátil, and J. P. Vary. Ab initio no core shell model. Prog. Part. Nucl.
Phys., 69:131, 2013.

[19] B. S. Pudliner, V. R. Pandharipande, J. Carlson, Steven C. Pieper, and R. B. Wiringa. Quan-
tum Monte Carlo calculations of nuclei with A≤ 7. Phys. Rev. C, 56:1720, 1997.

[20] S. C. Pieper and R. B. Wiringa. Quantum Monte Carlo calculations of light nuclei 1. Ann.
Rev. Nucl. Part. Sci., 51:53, 2001.

[21] J. Carlson, S. Gandolfi, F. Pederiva, Steven C. Pieper, R. Schiavilla, K. E. Schmidt, and R. B.
Wiringa. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys., 87:1067,
2015.

[22] J. Hubbard. The description of collective motions in terms of many-body perturbation the-
ory. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, volume 240, page 539. The Royal Society, 1957.

[23] N. M. Hugenholtz. Perturbation theory of large quantum systems. Physica, 23:481, 1957.

[24] H. F. Schaefer III. Quantum Chemistry: The Development of Ab-Initio Methods in Molecu-
lar Electronic Structure Theory. Dover Publications Inc., 2004.

[25] J. Cizek. On the correlation problem in atomic and molecular systems. calculation of wave-
function components in ursell-type expansion using quantum-field theoretical methods. J.
Chem. Phys., 45:4256, 1966.

[26] J. Cizek and J. Paldus. Coupled cluster approach. Phys. Scripta, 21:251, 1980.

[27] J. Cizek and J. Paldus. Correlation problems in atomic and molecular systems iii. red-
erivation of the coupled-pair many-electron theory using the traditional quantum chemical
methodst. Int. J. Quantum Chem., 5:359, 1971.

[28] P. Piecuch, K. Kowalski, I. S. O Pimienta, and M. J. Mcguire. Recent advances in elec-
tronic structure theory: Method of moments of coupled-cluster equations and renormalized
coupled-cluster approaches. Int. Rev. Phys. Chem., 21:527, 2002.

[29] F. Coester. Bound states of a many-particle system. Nucl. Phys., 7:421, 1958.

[30] F. Coester and H. Kümmel. Short-range correlations in nuclear wave functions. Nucl. Phys.,
17:477, 1960.

[31] H. Kümmel, K. H. Lührmann, and J. G. Zabolitzky. Many-fermion theory in exps-(or cou-
pled cluster) form. Phys. Rept., 36:1, 1978.

[32] J. W. Negele and D. Vautherin. Density-matrix expansion for an effective nuclear Hamilto-
nian. Phys. Rev. C, 5:1472, 1972.

161



[33] T. T. S. Kuo and G. E. Brown. Structure of finite nuclei and the free nucleon-nucleon
interaction: An application to 18O and 18F. Nucl. Phys., 85:40, 1966.

[34] W. A. Richter, S. Mkhize, and B. Alex Brown. sd-shell observables for the usda and usdb
Hamiltonians. Phys. Rev. C, 78:064302, 2008.

[35] T. H. R. Skyrme. The effective nuclear potential. Nucl. Phys, 9:615, 1958.

[36] D. Vautherin and D. M. Brink. Hartree-fock calculations with skyrme’s interaction. i. spher-
ical nuclei. Phys. Rev. C, 5:626, 1972.

[37] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner. Modern theory of nuclear forces. Rev.
Mod. Phys., 81:1773, 2009.

[38] R. Machleidt and D. R. Entem. Chiral effective field theory and nuclear forces. Phys. Rept.,
503:1, 2011.

[39] S. K. Bogner, R. J. Furnstahl, and A. Schwenk. From low-momentum interactions to nuclear
structure. Prog. Part. Nucl. Phys., 65:94, 2010.

[40] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil. Similarity-transformed chi-
ral NN + 3N interactions for the Ab Initio description of 12C and 16O. Phys. Rev. Lett.,
107:072501, 2011.

[41] M. Włoch, D. J. Dean, J. R. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrock, and
P. Piecuch. Ab-initio coupled-cluster study of o 16. Phys. Rev. Lett., 94:212501, 2005.

[42] M. Wloch, J. R. Gour, P. Piecuch, D. J. Dean, M. Hjorth-Jensen, and T. Papenbrock.
Coupled-cluster calculations for ground and excited states of closed- and open-shell nuclei
using methods of quantum chemistry. J. Phys. G, 31:S1291, 2005.

[43] K. Tsukiyama, S. K. Bogner, and A. Schwenk. In-medium similarity renormalization group
for nuclei. Phys. Rev. Lett., 106:222502, 2011.

[44] K. Tsukiyama, S. K. Bogner, and A. Schwenk. In-medium similarity renormalization group
for open-shell nuclei. Phys. Rev. C, 85:061304, 2012.

[45] H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth. Ab Initio calculations of
even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett.,
110:242501, 2013.

[46] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, and
R. Roth. Nonperturbative shell-model interactions from the in-medium similarity renormal-
ization group. Phys. Rev. Lett., 113:142501, 2014.

[47] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci, J. Langhammer, and R. Roth.
Ab initio multi-reference in-medium similarity renormalization group calculations of even
calcium and nickel isotopes. Phys. Rev. C, 90:041302, 2014.

162



[48] H. Hergert. In-medium similarity renormalization group for closed and open-shell nuclei.
Physica Scripta, 92:023002, 2017.

[49] G. R. Jansen, J. Engel, G. Hagen, P. Navratil, and A. Signoracci. Ab-initio coupled-cluster
effective interactions for the shell model: Application to neutron-rich oxygen and carbon
isotopes. Phys. Rev. Lett., 113:142502, 2014.

[50] G. R. Jansen, A. Signoracci, G. Hagen, and P. Navrl. Open sd-shell nuclei from first princi-
ples. Phys. Rev. C, 94:011301, 2016.

[51] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk. Ground and excited
states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C,
93:051301, 2016.

[52] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. Bogner, R. Roth, and A. Schwenk. A
nucleus-dependent valence-space approach to nuclear structure. arXiv:1607.03229, 2016.

[53] V. Somá, C. Barbieri, and T. Duguet. Ab initio gorkov-green’s function calculations of
open-shell nuclei. Phys. Rev. C, 87:011303, 2013.

[54] V. Somá, C. Barbieri, and T. Duguet. Ab initio self-consistent Gorkov-Green’s function
calculations of semi-magic nuclei: Numerical implementation at second order with a two-
nucleon interaction. Phys. Rev. C, 89:024323, 2014.

[55] V. Somá, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet. Chiral two- and three-
nucleon forces along medium-mass isotope chains. Phys. Rev. C, 89:061301, 2014.

[56] F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R. B. Cakirli, S. George,
F. Herfurth, J. D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Nei-
dherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf, and
K. Zuber. Masses of exotic calcium isotopes pin down nuclear forces. Nature, 498:346,
2013.

[57] G. Hagen, A. Ekström, C. Forssen, G. R. Jansen, W. Nazarewicz, T. Papenbrock, K. A.
Wendt, S. Bacca, N. Barnea, B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen,
M. Miorelli, G. Orlandini, A. Schwenk, and J. Simonis. Neutron and weak-charge dis-
tributions of the 48Ca nucleus. Nature Physics, advance online publication:–, 2015.

[58] K. Kowalski, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, and P. Piecuch. Coupled cluster
calculations of ground and excited states of nuclei. Phys. Rev. Lett., 92:132501, 2004.

[59] J. R. Gour, P. Piecuch, M. Hjorth-Jensen, M. Wloch, and D. J. Dean. Coupled-cluster
calculations for valence systems around 16O. Phys. Rev. C, 74:024310, 2006.

[60] S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil, and R. Roth. Extension of
coupled-cluster theory with a noniterative treatment of connected triply excited clusters to
three-body Hamiltonians. Phys. Rev. C, 88:054319, 2013.

163



[61] G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A. Nogga, M. Włoch, and P. Piecuch.
Coupled-cluster theory for three-body Hamiltonians. Phys. Rev. C, 76:034302, 2007.

[62] V. Somá, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet. Chiral two- and three-
nucleon forces along medium-mass isotope chains. Phys. Rev. C, 89:061301, 2014.

[63] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and P. Navrátil. Medium-mass
nuclei with normal-ordered chiral NN+3N interactions. Phys. Rev. Lett., 109:052501, 2012.

[64] H. Hergert, S.K. Bogner, S. Binder, A. Calci, J. Langhammer, et al. In-medium similar-
ity renormalization group with chiral two- plus three-nucleon interactions. Phys. Rev. C,
87:034307, 2013.

[65] V. Somá, C. Barbieri, and T. Duguet. Ab-initio gorkov-green’s function calculations of
open-shell nuclei. Phys. Rev. C, 87:011303, 2013.

[66] E. Gebrerufael, K. Vobig, H. Hergert, and R. Roth. Ab Initio Description of Open-Shell
Nuclei: Merging No-Core Shell Model and In-Medium Similarity Renormalization Group.
arXiv:1610.05254, 2016.

[67] J. Engel and J. Menéndez. Status and future of nuclear matrix elements for neutrinoless
double-beta decay: a review. Rep. Prog. Phys., 80:046301, 2017.

[68] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, et al. Effects of
three-nucleon forces and two-body currents on gamow-teller strengths. Phys. Rev. Lett.,
113:262504, 2014.

[69] G. R. Jansen. Spherical coupled-cluster theory for open-shell nuclei. Phys. Rev. C,
88:024305, 2013.

[70] S. Bacca, N. Barnea, G. Hagen, M. Miorelli, G. Orlandini, and T. Papenbrock. Giant and
pigmy dipole resonances in 4He, 16,22O, and 40Ca from chiral nucleon-nucleon interactions.
Phys. Rev. C, 90:064619, 2014.

[71] D. J. Rowe. Equations-of-motion method and the extended shell model. Rev. Mod. Phys.,
40:153, 1968.

[72] N. M. Parzuchowski, T. D. Morris, and S. K. Bogner. Ab initio excited states from the
in-medium similarity renormalization group. Phys. Rev. C, 95:044304, 2017.

[73] K. Emrich. An extension of the coupled cluster formalism to excited states. Nucl. Phys. A,
351:397, 1981.

[74] K. Emrich and J. G. Zabolitzky. Negative parity states in 16O from coupled-cluster equa-
tions. Nucl. Phys. A, 351:439, 1981.

[75] H. J. Monkhorst. Calculation of properties with the coupled-cluster method. Int. J. Quantum
Chem, 12:421, 1977.

164



[76] J. F. Stanton and R. J. Bartlett. The equation of motion coupled-cluster method. a systematic
biorthogonal approach to molecular excitation energies, transition probabilities, and excited
state properties. J. Chem. Phys., 98:7029, 1993.

[77] W. Kutzelnigg and D. Mukherjee. Normal order and extended wick theorem for a multicon-
figuration reference wave function. J. Chem. Phys., 107:432, 1997.

[78] B. A. Brown and W. A. Richter. New “usd” Hamiltonians for the sd shell. Phys. Rev. C,
74:034315, 2006.

[79] S. R. Beane, E. Chang, W. Detmold, H. W. Lin, T. C. Luu, K. Orginos, A. Parreño, M. J.
Savage, A. Torok, and A. Walker-Loud. Deuteron and exotic two-body bound states from
lattice QCD. Phys. Rev. D, 85:054511, 2012.

[80] T. Yamazaki, K. Ishikawa, Y. Kuramashi, and A. Ukawa. Helium nuclei, deuteron, and
dineutron in 2+1 flavor lattice QCD. Phys. Rev. D, 86:074514, 2012.

[81] R. Machleidt, K. Holinde, and Ch. Elster. The bonn meson-exchange model for the nu-
cleon—nucleon interaction. Phys. Rept., 149:1, 1987.

[82] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart. Construction of
high-quality nn potential models. Phys. Rev. C, 49:2950, 1994.

[83] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla. Accurate nucleon-nucleon potential with
charge-independence breaking. Phys. Rev. C, 51:38, 1995.

[84] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner. Modern theory of nuclear forces. Rev.
Mod. Phys., 81:1773, 2009.

[85] K. Nakamura, Particle Data Group, et al. Review of particle physics. J. Phys. G: Nucl. and
Part. Phys., 37:075021, 2010.

[86] J. Beringer, J.-F. Arguin, R. M. Barnett, K. Copic, O. Dahl, D. E. Groom, C.-J. Lin, J. Lys,
H. Murayama, C. G. Wohl, et al. Review of particle physics particle data group. Phys. Rev.
D, 86, 2012.

[87] E. Epelbaum. Few-nucleon forces and systems in chiral effective field theory. Prog. Part.
Nucl. Phys., 57:654, 2006.

[88] K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, and R. Skibiński. Efficient calculation of
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