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ABSTRACT

A PROBABILISTIC ASSOCIATION MEASURE

FOR PATTERN RECOGNITION

by

Xiaobo Li

This thesis investigates the properties of a

probabilistic association measure in four areas of pattern

recognition and image processing. It is essential to

measure the association between patterns, between features

and between partitions in both pattern recognition and

exploratory pattern analysis. Direct interpretation and

known distribution are desirable properties for an

association measure. This thesis proposes a statistic with

these characterisitcs under a permutation null hypothesis

which has been used to advantage in the literature. The

four problems attacked in this thesis are described below.

A preliminary feature analysis studies the unusualness

of feature-category relations before feature extraction,

which is just as important as cluster tendency study before

clustering. This is formally defined in this thesis for the

first time in a statistical hypothesis testing framework.

This thesis shows that the permutation statistic is

preferable to the commonly used correlation coefficient with

binary features. Both statistics have comparable power but



the threshold of the permutation statistic has a more direct

interpretation than that of the correlation coefficient.

The use of this statistic is demonstrated on questionnaire

data.

The second and third problems attacked with the

permutation statistic are the measurement of the adequacy of

binary partitions in validating clustering results and

designing tree classifiers. The relations among three

well-known measures of cluster validity are derived and the

permutation statisti is shown to be different but highly

correlated to these measures. Computational advantages make

it preferable to the other statistics. In tree classifier

design, the permutation statistic can be used as a criterion

for choosing the feature and threshold at each node in the

tree. The threshold can be set more easily than with the

mutual information criterion. Several examples on

artificial data and real data sets demonstrate that the

permutation statistic is a reasonable criterion for node

definition and leads to successful tree classifiers.

The fourth problem investigated is the general problem

of image template matching posed as a test of hypothesis.

The alternative hypothesis is that a distorted version of

the object is in the image. The null hypothesis is that the

object is not in the image. ‘We derive an approximate

likelihood ratio statistic for testing these hypotheses and



compare it to three other statistics. The optimal statistic

is most powerful but computationally intensive. A

simplified Neyman Pearson statistic is shown to be more

powerful than other suboptimal measures, yet to remain

sensitive to the true object location in the image. The

permutation statistic acts about the same as other

sub-optimal measures, such as absolute difference and

correlation coefficent.

The last chapter of the thesis reviews algorithms for

computing cumulative hypergeometric distribution functions,

which is essential to the proposed statistic. A pipeline

architecture design implementing a recursive computation

formula is proposed. This design is more efficient than

other exact computation methods by several degrees of

magnitude. It is faster. than the best approximation

algorithm for many reasonable cases.
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CHAPTER 1

INTRODUCTION

1.1 Summary

This thesis proposes a probabilistic association measure

for binary vectors and examines its application in pattern

recognition. It is essential to measure association between

patterns, between features, between partitions of patterns

or between subimages. There exist many association measures

in the pattern recognition literature. Only Goodall's

similarity index is directly based on probability. This

Chapter reviews previous work on probabilistic measures and

the permutation hypothesis and proposes a permutation

statistic S, which is directly based on permutation

unusualness and has known distribution under randomness.

In Chapter 2, we apply S to the preliminary analysis of

binary features for the first time and state its utility.

We define several null hypotheses expressing the relation



between features and category. Rejection of these

hypotheses motivates feature extraction. We compare S to

Pearson correlation for testing these hypotheses. Since S

has known distribution under all null hypotheses, the

selection of thresholds for the tests is direct. The

selection of the threshold for Pearson correlation demands

Monte Carlo simulation. Both statistics have similar power

for detecting Bahadur type alternative hypotheses and both

act similarly in a questionnaire data analysis example.

This suggests S be used in the preliminary analysis of

binary features.

Chapter 3 applies the permutation statistic S'=:S-0.5:

as an adequacy measure for binary partitions in cluster

validity and as a criterion. for tree classifier design.

Three statistics, Rand, Hubert's Gamma and Fowlkes' B, are

compared to S' in the permutation environment. These three

statistics are linear functions of each other and thus have

the same power against any alternative hypotheses in testing

the random permutation null hypothesis. The statistic S' is

highly correlated to those statistics when the numbers of

1's in the vectors are about half the vector length. The

other three statistics have asymptotic normal distributions

under the null hypothesis while 5' has a known distribution.

That makes 5' easier to use for assessing global fit of a



binary partition to category than the other three

statistics. The statistic S' is used for the first time in

designing a tree classifier, and is compared to a mutual

information criterion. Both criteria give similar trees but

the threshold for S' is far easier to determine. Several

artificial data sets and a real data set are used in the

numerical examples. The results demonstrate that S' is a

reasonable measure in tree classifier design.

Chapter 4 investigates the image template matching

problem. We study a null hypothesis stated in the

literature and propose a new alternative hypothesis. Under

this model, we propose a statistic R which is derived

directly from the likelihood ratio statistic to measure

similarity between template and subimages. With an extra

independence assumption, this statistic is theoretically

optimal, but its computation is very time consuming. We

suggest a simplified version of the statistic, G, as a

similarity measure and compare the powers of these two

statistics by a Monte Carlo means to the commonly used

similarity measure, the absolute difference D. The

statistic R is most powerful. The 6 statistic is more

powerful than other sub-optimal measures and has the same

complexity as others. More importantly, G is more sensitive

to the. true location of the object in the image than any



others. The correlation coefficient C and the permutation

statistic S defined in Chapter 1 are also compared to the

likelihood statistics and they perform about the same, worse

than the derived measures. All these statistics are applied

to several Landsat data sets and demonstrate that R is not

as sensitive as statistic G. In summary, G strikes the best

balance between power ans sensitivity.

Since the computation of S is directly based on the

hypergeometric distribution, Chapter 5 reviews some commonly

used algorithms for computing the hypergeometric c.d.f.

Their computation times are compared and a pipeline

architecture design is proposed to implement the recursive

computation algorithm. The pipeline design is much more

efficient than other exact computation methods. It is even

faster than the Peizer approximation using single CPU when

the vector size is small or a, the number of (1,1) pairs, is

small (a < 932). This pipeline design also solved a more

general problem. In implementing a product using pipeline

functional units with x segments, we give examples of some

individual designs for different y values and one general

design for y=2,3,...,15, which are typical pipeline length

for arithmetic operators. A computation time and circuit

complexity analysis are given.



From the above applications, we conclude that the

statistic S is a good similarity measure between features in

preliminary analysis for binary features; S is a good

similarity measure between feature and category in tree

classifier design; and S is also a reasonable adequacy

measure for binary partitions. Since S has a known

distribution under null hypotheses, the threshold and

significance level are easy to determine. In image template

matching, S acts as well as other sub-optimal similarity

measures between sub-images. Finally, a hardware

architecture design is more efficient than other methods for

computing hypergeometric c.d.f.'s, which is essential to the

computation of S. The application of S and other proposed

measures to the above pattern recognition areas and the

methodology for using S are the main contributions of this

thesis.

1.2 Background

Pattern Recognition is concerned with the description

and classification of objects, which are represented by

measurements taken from realizations of physical processes.

Pattern recognition includes three distinct steps -



Representation, Abstraction, and Generalization. The input

data for pattern recognition is usually represented as a

pattern matrix, whose rows are patterns. Each pattern

consists of a series of measurements, called features, and

describes an object. In classical pattern recognition

problems, the category, or pattern class, of each training

pattern is known. A subset of the features or some function

of this subset is extracted for the representation of the

patterns. Based on this subset and category information, a

pattern classifier is designed. Feature extraction and

classifier design are the Abstraction phase of Pattern

Recognition. The Generalization phase of Pattern

Recognition involves evaluation of algorithms and

classifiers.

There are two mathematical approaches to solving pattern

recognition problems: the decision-theoretic (or

discriminant) approach and the syntactic (or structural)

approach. In the decision-theoretic approach, each pattern

is considered as a vector in a feature space and the

recognition is made by partitioning the feature space. In

the syntactic approach, each pattern is considered as a

composition of components, called sub-patterns or

primitives, and the recognition is made by parsing the

pattern according to some syntax rules.



Cluster analysis and image processing are closely

related to pattern recognition. Cluster analysis explores

the data structure with and without category information,

which can be considered as the Representation phase of

Pattern Recognition. Image processing deals with two

dimensional pictorial patterns. Many basic techniques used

for pattern recognition and image processing are very

similar in nature.

This thesis proposes an association measure for binary

vector pairs based on permutation statistics. Its

application in various areas of pattern recognition is

compared to other measures of association and both hardware

and software computational methods are developed. The

particular areas of application studied are preliminary

analysis of binary features, validity of binary partitions,

design of tree classifiers, and image template matching.

Section 1.3 reviews previous work in probabilistic proximity

measures and permutation models. Section 1.4 defines the

proposed statistic.



1.3 Probabilistic Proximity Measures and Permutation Models

A proximity (or association) measure, either a

similarity or a dissimilarity, is a symmetric mapping from

VxV to [0,00), where V is a space of vectors. A similarity

measure increases as two vectors become more alike, while a

dissimilarity measure increases as two vectors become more

unalike. For example, Euclidean distance is a dissimilarity

measure and correlation is a similarity measure.

The history of Statistics is replete with association

measures [84]. Hundreds of proximity measures have been

proposed by researchers in the biological and engineering

literature. Comprehensive reviews [l,25,26,27,28,77] and

comparative experiments have been reported [21,30,41,71].

This thesis is mainly interested in measures using

cumulative probability, not information theory, although

some similarity measures based on information theory are

also considered to be probabilistic measures [77].

Goodall's similarity index is the best example of this

type [22,23,24]. We seek a statistic which can be easily

interpreted and is easy to compute.



A population is needed to establish the significance of

a probabilistic index of association. The null hypothesis

is that all members of the population are equally likely. A

permutation population is formed from all permutations of

the components of the vectors. The vectors could be

patterns, features, subimages or partitions.

Permutations have long been used as a randomization

procedure to generate populations [44]. Statistics useful

in pattern analysis, such as the Mantel statistic

[19,33,35,37,53,54] and the B statistic [17] use

permutations to generate null hypotheses. These two indices

have known asymptotic distributions under this null

hypothesis. Formulas for exact means and variance are

available but require a significant amount of computation.

The permutation null hypothesis for a vector pair used

for much of our work is defined below.

H0: all permutations of one vector in the pair are

equally likely.
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If this vector pair represents partitions of a pattern

set resulting from clustering, then the testing of this

hypothesis is a cluster validity analysis, which validates

the global fit of a partition. This null hypothesis is

reasonable for external criteria, as when prior structure is

being compared to the result of a cluster analysis [33].

However, it is irrelevant as an internal criterion

[18,42,621 even though it is the only hypothesis for which

analytical results are available. Specific null hypotheses,

alternative hypotheses, and appropriate tests are stated in

each area of investigation.

For some statistics, Monte Carlo simulation is needed to

obtain the critical levels, thresholds or power estimates.

Usually, we set the size of the Monte Carlo simulation. to

100 [11]. In some permutation situations, we set the size

of Monte Carlo simulation to 1000 [33].
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1.4 Proposed Probabilistic Indices for Binary Vector Pairs

If a statistic measuring association between data items

has known distribution under some H0, its tail probability

(the probability that this statistic is less than or equal

to a threshold) is called a p-value, and is a probabilistic

index of association. This section proposes the p-value of

the number of matches between two binary vectors as such an

index. This index has known distribution under HO.

Consider a pair of binary vectors, V1 and V2, of size L,

whose entries are either 0 or 1. The number of 1's in Vi is

ni. The set of all possible permutations of V2 forms a

sample space. Table 1.1 defines the observables for these

two vectors. For example, a' is the number of positions in

which both vectors are 0 and n1 is the number of 1's in V1.
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Table 1.1 Frequencies of Combinations

of Two Binary Vectors

V2

0 l

+-------------+------------- +

0 : a' : b' : L-nl

vl +------------- +-------------+

1 i c' : d' : n1

4»-------------+------------- +

L-n2 n2 L

The random variable D' denotes the number of positions

in which the two vectors are both 1. For example,

If V1=(100110) and V2=(110010) then D'sd's2. The following

statistic measures the degree of association between two

vectors.

S(l,2) a Pr(D' < d') + Pr(D' = d') U

where U is an independent random variable with uniform

distribution over [0,1]. Probabilities are computed

under H0.

Under H0, S(V1,V2) is distributed uniformly over [0,1].

It has a clear interpretation as permutation unusualness,

i.e., the probability that a vector pair has at most that

many (l-l) matches. The explicit formula for the statistic
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is as follows.

This statistic is used as a similarity measure between

features in preliminary feature analysis (Chapter 2), as a

similarity measure between partitions in measuring

partitional adequacy (Chapter 3), and as a similarity

measure between subimages in image template matching

(Chapter 4). The null hypotheses are rejected for extreme

values of this statistic.



CHAPTER 2

PRELIMINARY ANALYSIS OF DICHOTOMOUS FEATURES

Feature selection in pattern recognition chooses a

subset of features which best reflects a-priori category

information in some manner [78] and which are "independent"

in some sense. Feature selection algorithms select or

extract features one at a time and stop when a predefined

threshold has been exceeded. For example, the percent

variance retained in the eigenvector method of feature

extraction [78] and the recognition rate in the sequential

forward method of feature selection [86] are thresholds

which the user must specify beforehand. Few theoretical

guidelines exist for selecting these thresholds, especially

when the relationships among the variables are completely

arbitrary. This chapter proposes a methodology for

examining a data set before feature extraction to alleviate

the danger of interpreting the results of feature extraction

inappropriately. For example, we ask whether or not binary

(dichotomous) features significantly relate to each other,

14
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and whether or not some features significantly relate to

category. If no significant relations exist, it would

appear useless or misleading to proceed with feature

extraction and discriminant analysis. The motivation for

this preliminary analysis is much the same as for clustering

tendency [13] where the pattern set is examined for

randomness.

In this chapter, we pose several questions about

dichotomous. features in a statistical hypothesis testing

framework. We define hypotheses and examine the application

of the probabilistic similarity measure S, defined in

Chapter 1, for testing those hypotheses, in comparison with

statistics based on Pearson correlation.

An important application of the proposed methodology is

to questionnaire data, which come as an NxK pattern matrix

containing only 0'3 and 1's. Rows denote patterns and

columns denote features. Some of the features may be

reserved as category information.

In Sec. 2.1, we examine the entire pattern matrix in

terms of statistical hypotheses, and define two statistics

for establishing the existence of relationships between

columns. One is based on the correlation coefficient and



16

the other is based on the similarity S. We discuss their

distributions and tests of hypotheses. Section 2.2 asks if

any feature is related to category. We briefly discuss the

distributions of two statistics. Sec. 2.3 describes

approximations to the distributions of the statistics

defined in Sec. 2.1 and 2.2, based on the similarity 8.

Section 2.4 reports a power comparison of these statistics.

The methodology is demonstrated on a data set derived from

medical questionnaires in Sec. 2.5. Finally, Sec. 2.6

summarizes the results in this chapter.

The main contribution of this chapter is the methodology

for the preliminary analysis of binary features, which is

summarized in Sec. 2.6.

2.1 Are Any Two Features Unusually Similar to One Another?

In this section, we consider the first question in the

preliminary analysis of dichotomous features stated below.

Two null hypotheses and their tests will be defined. The

distributions of test statistics will be discussed in some

detail.



17

Consider an NxK binary pattern matrix in which columns

can be considered as categorical or measured features. This

first question searches for significant similarity between

any pair of features, including those used later as

categories. Two reasonable hypotheses for describing a

state of "no relationship" are defined below. In all cases,

we regard the rows of the pattern matrix as samples of

independent random variables.

H01: The patterns are samples of K independent

Bernoulli random variables with parameters {pi}.

H02: The pattern matrix is chosen randomly from

population P2.

Population P2 is formed by independently permuting each

column in 'the pattern matrix. There are (N!)K matrices in

P2. If Ni denotes the number of 1's in column i, then the

number of distinct matrices in P2, each occuring the same

number of times, is
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If a matrix can be realized under both hypotheses, its

probability is lower under H01 than under H An ideal
02'

statistic for testing H01 or H02 satisfies the following

criteria:

1. It has reasonable power against certain alternatives.

2. Its value is easy to compute.

3. Its distribution is known analytically, or at least can

be approximated analytically.

4. The analytical form is simple.

5. Its distribution is independent of the parameters in

the problem.

Several measures of correspondence between dichotomous

variables have been suggested in the literature [1,30,77].

In this chapter, we examine the application of the

similarity S to test H01 and H02. We define statistic §

directly based on S below. We also define statistic g based

on the commonly used Pearson correlation coefficient for

purpose of comparison.

I
n a max{c(i,j)}

S = max{S(i,j)}

Here c(i,j) is the sample Pearson correlation between column
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i and j, and S(i,j) is defined in Chapter 1.

Let Ni be the number of 1's in column i and let Nij be

the number of rows in which columns i and j are both 1.

- _ _ 1/2

(uni. NiNj)/ [NiNj(N Ni)(N Nj)]c(i,j) J

In our case, S(i,j) takes the following form:

5(1.3) = [ > h(N,Ni,Nj,y)]'h(N,Ni,Nj,Nij)U

where the sum is for y from max(0,Ni+Nj-N) to Nij' U is a

(continuous) uniform random variable on the unit interval,

independent of all other random variables, and h is the

density function for a hypergeometric distribution, defined

below.

Note that since h(N,K,L,y) = h(N,L,K,y), including 0-0

matches as well as 1-1 matches does not alter the nature of

the statistic.

Large positive values of c(i,j) and S(i,j) indicate a

positive relation between features i and j. With the

questionnaire type applications in mind, we only consider
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positive relations because the coding in questionnaire data

is usually fixed and (1,1) matches have stronger meaning

than (0,0) matches.

Under H02, has a hypergeometric distribution andNij

c(i,j) is a linear function of Nij' The distribution of

c(i,j) has a rather complicated form so the analytical forms

for the distributions of 9 under either H01 or H02 are also

complicated. The threshold of this distribution is usually

estimated by Monte Carlo means. The distribution of S(i,j)

under H02 is clearly uniform. The fact that S(i,j) is

uniformly distributed over [0,1] under H01 follows from the

following equality.

Write S(l,2) as an explicit function of random

variables N1,N2,N12 and U. The sum is over all allowable

values of (21,22).

Pr(S(Nl,N2.N12.U) g y : 801)

> Pr(S(zl,zz,N12,U) 3 y:H02) Pr(Nl=zl,N2=zz:HOI)

y > Pr(Nl=zl,N2=22:H01)

l
l

"
<



21

Based on the fact that S(i,j) has a uniform distribution

under H01 and H02, Sec. 2.3 derives a simple approximation

to the distribution of § under H02 for M>2, which eliminates

Monte Carlo work when choosing thresholds for tests of

hypothesis.

A test of H01 or H02 has the following form, where T is

either 9 or S .

Reject HO if T>t

where threshold t is computed as

P(T>t:HO) = a

and a is a specified level, such as 0.05. Alternatively, we

*

compute the critical level a

' *

P(T>t*,HO) = a .

where t* is the observed value of the statistic and reject

the null hypothesis if a* is small, say 0.1 or less. -

The distribution of 9 does not have a simple analytical

form, and depends on the parameters {pi} under H01 and on

the original matrix under H02. The distribution of S(i,j)

has a simple analytical form, regardless of parameters,

under both H01 and H02. An approximation for the

distribution of S will be developed. Therefore, according
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to Criteria 2 through 5, S is prefered over 9 . The

comparison according to Criterion l is discussed in

Sec. 2.4.

2.2 Is Any Feature Unusually Closely Related to Category?

Here we designate one feature, say feature M, as

categorical and ask whether any one of the remaining

features is unusually similar to feature M. Two null

hypotheses of interest are defined below.

H All N! permutations of feature M are equally
03‘

likely.

304: All matrices in population P4 are equally likely.

Population P4 is created in the same way as population

P2 except that feature M is not permuted. Two test

statistics based on our indices of proximity are:

CM = max{c(i,M),i#M}

S a max{S(i,M),i#M}
M

The forms of tests of these hypotheses are as in

Sec. 2.1. A test of H03 asks whether it is likely that the

observed statistic could have been produced were the
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category labels inserted at random. Accepting H03 implies

that no feature is unusually "close” to the categorical

feature. The distribution of CM under H03 must be obtained

by Monte Carlo means, but a procedure discussed in

Sec. 2.3.3 can approximate the distribution of SM under H03.

All columns are permuted independently so the

distributions of CM and SM are known under H04.

P(SM>t: H04) = 1 — c(x'l)

P(CM>t: H04) = 1 - i- P[ c(i,M)§t: H04]

Em

where

P[c(i,M)=ti: H04] : h(N,Ni,NM.ti)

- - - 1/2
and ti— [NiNj+t[NiNj(N Ni)(N Nj] )]/N

Under H03, the distribution of 5M can be approximated

analytically, while the distribution of CM requires Monte

Carlo simulation. Under H04, both statistics have known

distributions, but that of S is uniform. This fact
M

suggests that SM is better than CM under Criteria 3 through

5.
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2.3 Approximating the Distributions of S and SM

We first discuss the distribution of S when K=2. Then

we view S as the maximum of dependent uniform random

variables and try to approximate its distribution. The

distribution of SM is then considered.

2.3.1 Null Distributions of S for K=2

Assume K=2 so that S is simply the similarity measure

between two binary vectors; S is uniform under

H01 regardless of N, p1 and p2. Table 2.1 demonstrates

empirical means and variances for S and S . Each row in

Table 2.1 corresponds to a parameter set (N,M,pl,p2). One

hundred Monte Carlo samples were used for each row.
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Table 2.1. Means and Variances of S and S under H01 for

20 .10 .10 -.02808 .03129 .51732 .08919

20 .10 .50 -.01565 .04664 .53185 .08632

20 .10 .90 .01468 .04015 .48699 .08465

20 .50 .50 .02982 .05273 .48520 .07934

20 .50 .90 .00577 .03625 .54219 .06516

20 .90 .90 .01331 .03786 .54297 .08038

200 .10 .10 .00578 .04061 .45545 .07565

200 .10 .50 .05577 .08443 .47903 .07233

200 .10 .90 .00137 .04455 .49546 .09711

200 .50 .50 -.07583 .09182 .47418 .08335

200 .50 .90 -.05822 .23322 .50266 .08883

200 .90 .90 .00896 .04410 .52179 .07967

The theoretical mean and variance of S under H01 are

0.5 and 0.0833. The empirical means and variances of S in

Table 2.1 are stable and close to theoretical values,

independent of N, K, p1 and p2. The distribution of S

varies with these parameters. This fact favors S over S

with respect to Criterion 5.

2.3.2 Approximating the Null Distribution of S when K>2

Statistic S is a maximum of k=K(K-l)/2 dependent U(0,l)

random variables under H01. A one-sided test of H01 is

Reject H01 if S > t+.
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The dependences among {S(i,j)} require that t+ be estimated

from an approximate null distribution for S. Since the

distribution of the maximum of k independent random

variables is well known, we consider the possiblility of

approximating t from this distribution. Let T' have this
4.

distribution, whose c.d.f. is

.k
Pr(T' 3 t' : H01 ) = t if 0<t'<l.

The threshold t' from this distribution at size a is

for S
+ _

t'=(l-a)l/k. Table 2.2 gives the thresholds t

generated by 1000 Monte Carlo runs per entry (pi=0.5 for all

i), and the thresholds t' computed analytically for a few

values of K. The right-most column in Table 2.2 gives the

position of t' among 1000 Monte Carlo values, which is an

estimate of the size for the test using t'.

Table 2.2 0.05 Thresholds for S and T'

N K t+ t' size for t'

+-----+-------+----------+----------+-------- +

: : 3 : .98045 : .98305 : .045 :

| 50 | +----------+----------+--------+

E E 5 : .99650 : .99659 : .049 :

+-----+-------+----------+----------+--------+

: : 6 : .99535 : .99659 E .048 :

| 100 I +----------+----------+--------+

E E 9 : .99845 : .99858 : .045 :

+-----+-------+----------+----------+-------- +

: : 9 : .99827 : .99858 : .042 :

| 200 ' +----------+----------+-------- +

E E 13 : .99924 : .99934 : .044 :

+----- +———————+----------+----------+-------- +
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The values of t' are close to those of t Thus using+0

t' as an approximate threshold will give similar size for

the test.

In order to more formally compare the distributions of S

and T', Consider the 12 cases listed in Table 2.3. One

hundred matrices were generated for each case and the

distributions of S and T' were compared. The results of the

Kolmogorov-Smirnov test of equality between distributions

[7] are listed below. In all 12 cases, the hypothesis that

T' is the same as S is accepted at level 0.05. This

suggests that the threshold on T' is indeed a good

approximation to the threshold on S for those cases.

Table 2.3 Comparing Distributions of S and T'

N O

m
m
m
m
m
m
m
m
m
m
m
m

O
O

O
O

O
O

O

\
D
U
‘
I
U
‘
H
D
—
‘
H
m
m
m
i
-
‘
H
H

O
O

O
O

O
O

O
C

O
O

O
O

\
O
K
O
U
‘
I
U
D
U
I
H
K
D
K
D
U
I
O
U
I
H

O O u w

.061
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Statistic SM is a maximum of (K-l) dependent U(0,l)

random variables under H03. When K>2, our results suggest

that the distribution of T' approximates the distribution of

SM’ This point is also demonstrated in the application

described in Sec. 2.5.

2.4 Power Comparison of S and Q

The purpose of using S and S is to detect relations

among features. We now examine the powers of these

statistics under a class of alternatives where the relations

among features are governed by a Bahadur model [4], in which

the feature relations are specified in terms of the

correlation coefficient. In this section, we consider the

following alternative hypothesis.

H11: The given matrix is generated with Bahadur

parameter set (p1,...,pK and w) with w>0;

pi is the Bernoulli parameter for column 1.

Power studies are conducted for the case when pi under

301 is the same as the pi under H11 for any i, so that the

hypotheses differ only in relation among features.
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The test of H01 relative to H11 based on S is:

Reject H01 If S > ts.

The test relative to H11 based on S is:

Reject H01 if S > tc.

The general procedure for estimating power of a test

based on S is as follows [16]. One hundred matrices are

generated under H01 with given p's and the sixth largest

value is used as the 0.05 level tc' Then, 100 matrices are

generated under H11 with given w # 0. Our study involves

the four factors listed below with levels for each factor

indicated.

(p1,p2) = (.2,.2),(.2,.5),(.2,.8),(.5,.5),(.5,.8),(.8,.8):

pi = 0.5 for 3 g i 3 K;

w = 0.1, 0.2, 0.4; '

N a 20, 60, 200;

K = 2, 5.

All combinations of levels are used except the impossible

case (pl, p2, w )=(.2,.8,.4). The power of the test based

on S is estimated by the number of matrices generated under

H11 with S value greater than to' The power of the test

based on S is estimated similarily, except that the
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threshold ts is approximated analytically (Sec. 2.3.2).

For each combination of parameters, we have two

integers, the estimated power (P"(g)) of the correlation

statistic and the estimated power (P"(S)) of S. Let P(S)

and P(S) denote the true powers. Then p"(g) has a binomial

distribution B(100, P(§)) and P"(§) has a 8(100, P(S))

distribution. We report P”(Q) and P”(S) in Table 2.4 for

K82 and in Table 2.5 for K=5. The symbol "+" at the upper

right corner indicates that P(§) > P(Q) at confidence level

0.95. The symbol "-" means P(§) < 9(9) at confidence level

0.95.
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Table 2.4 Power Estimates when K=2

(p1,p2)=(.2,.2) (.2,.5) <.2,.a> (.5,.5) (.5,.a> <.s,.a)

W
I

N

I10 I

I 12I13

11
l
I

7 I

8

+-------+-----——+-------+-------+-----—-+-------+

I 12

I
I1020,

I17 I

I 25I26

E 21

I

I

+-------+----—--+—------+-------+---—---+-------+

I 30

l
I21

:25
I

I
2020,

41I57 I

51:

566554

485

+-------+-------+-------+-------+-------+-------+

546420.4 I20,

I 14

I
I22

22
I

15E

15

I' 35 I

I 43 I49

46
I

45E

38

89

I 86

I

I
95

93
I

94E

:94
I

I

I

93 I

+--—----+—-----—+———----+----—--+-------+------—+

E 30

I

I
36

-E 55 I

36 I I

+-------+------—+-—-----+--—----+-------+—------+

:54
I

I
0200,

81

100

{100

+: 74

84 E

100

{100

100 I

{100

5

100

9

{100

I

I

91 E

100

96

I

{100

0.2

0.4

200,

200,

+---------+

+---------+
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Table 2.5 Power Estimates when K=5

( p1, p2)=(.2,.2) (.2,.5) (.2,.8) (.5,.5) (.5,.8) (.8,.8)

+----—--+-------+-------+-------+-----—-+-------+WN.

20,
7

I 8
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I9
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1l

9+

9

3

3l

0l

5l

3l
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Each2.6.Table 2.4 and 2.5 are summarized into Table

box in Table 2.6 corresponds to a combination of K, N and w.

theisupper left cornerthe number at theIn each box,

of p' combinations (columns in Table 2.4 or 2.5) fornumber
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which P(§) > P(S) (minus signs) at level 0.95. The number

at the lower right corner is the number of cases for which

P(Q) < P(S) (plus signs).

Table 2.6 Result of Power Comparison

4» ---------------------+---------------------+

K I 2 I 5 I

+------ +------ +-------+------+------+------- +

N E 20 E 50 E 200 E 20 E 50 E 200 E

w ==83888::=22:====8======3838833883883883883a:

I 0 I 1 I 2 I 0 -I 0 I 0 I

0.1 E 1 E 0 E 1 E 1 E 3 E 0 E

+------ +------ +------- +------+------+------- +

I 0 I 1 I 0 I 0 I 0 I 2 I

0.2 E 0 E 0 E 1 E 2 E 2 E 0 E

+------+------ +-------+------+------+------- +

I 2 I 0 I 0 I l I 0 I 0 I

0.4 E 0 E 0 E 0 E o E 1 E 0 E

+------ +------ +------- +------+------ +------- «I-

Table 2.6 indicates that, among the 13 combinations of

(K,N,w), for some (pl,p2) values P(E)I and P(§) are

significantly different. Seven combinations of (K,N,w)

contain more cases for which P(S) > P(Q) , while in six

combinations the reverse is true. We conclude that S is as

powerful as S under the condition of this experiment, even

though the structure of the data under all was specified in

terms of correlation. Although the powers of SM and CM for

testing H03 and H04 were not compared experimentally, we

expect them to be related in the same way.
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The analytical approximations to the distributions for S

and SM are independent of parameters. In addition, they

have the same power as C and CM against certain

alternatives. We conclude that S and SM are prefered over S

and CM.

2.5 An Application of Preliminary Feature Analysis

As a detailed application of our methodology, we studied

a set of questionnaire responses completed over the past

several years by female patients of a medical doctor

regarding self breast examination. We randomly chose 145

questionnaires for this study, no two from the same

individual. We then reduced the data to 26 features. Table

2.7 defines the meaning of a "1" value for the first 13

features. A "1" value for features 14 through 26 denote the

occurrence of cancer in a relative, such as a father,

mother, or aunt.
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Table 2.7 Definitions of First 13 Features

Feature Meaning of ”1" Value

1 Menstrual period has stopped

2 Operative menapause

3 Pregnant at least once

4 At least one miscarriage

5 Have used female hormones

6 Currently use female hormones

7 Positive result on pap smear

8 Perform semi-annual self breast exam

9 Perform monthly self breast exam

10 Have had mammograms

11 Use contraceptive techniques

12 Have had pelvic surgery

13 Have had breast surgery

The ultimate goal was to discover any factors that

explained why self breast examination was performed by some

women but not by others. Features 8 and 9 in Table 2.7 will

be taken as category variables. This is a typical feature

extraction problem in which a subset of features that

predict category well is to be found. Some clustering

algorithms were used to cluster features [40] and the

resulting dendrograms suggested random clusters. A

preliminary feature analysis should indicate whether any

non-random relation exists among features.

Our experiments proceeded as follows.

1. Test H01 using S and S .

2. Test H02 u51ng S .

3. Test H03 and H04 using CM and SM for two categorical
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features.

4. Verify the results by a Mantel test [53] on original

pattern matrix.

5. Perform feature extraction for any non-random

categories.

6. Verify the results by Mantel tests on selected features.

7. Perform feature extraction for any categorical feature

for which either H03 or H04 is accepted.

8. Verify the results by a Mantel test on selected

features.

The details are explained in the following sections.

2.5.1 Tests for Significant Relations between Features

First, we test H01 and H02 using statistics S and S.

Critical levels for S were estimated from 1000 Monte Carlo

trials. Random matrices were generated under H01 using Ni/N

from the original pattern matrix to estimate pi and S was

computed for each matrix. The critical level for S was

approximated by t' as explained in Sec. 2.3 and also

estimated from 1000 Monte Carlo trials. Table 2.8

summarizes the results. The approximate critical level for

S using t' is the same as the Monte Carlo result in this

case. We reject H01 and H02 and conclude that the
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questionnaire data merit further study.

Table 2.8 Testing H01 and H02

Hypothesis Stat, Value Cr. Level Method

*

a

H01 S , 0.4528 0.001 1000 Monte Carlo Trials

H02 S , 0.4528 0.002 1000 Monte Carlo Trials

H02 S , 1.0000 0.00016 Approximation or 1000

MC Trials

We feel justified to proceed with testing H03 and H04.

We designate features 8 and 9 as categories separately, and

we ask whether any one of the remaining features is

unusually similar to these categories, based on statistics

CM and SM' The critical level of CM under H03 was estimated

from 1000 Monte Carlo trials, while the critical level of

SM was obtained by both Monte Carlo means and analytical

approximation. The results reported in Table 2.9 indicate

that some feature is close to category feature 9 but no

feature is unusually similar to category feature 8. Testing

H04 produces the same result as testing H03 so only feature

9 is used as a category in further study.
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Test results using the two statistics agree with each

other. The approximate thresholds for $8 and $9 produce the

same results as that derived by Monte

results support conclusions drawn ealier.

Table 2.9 Testing H03 and H04

Hypothesis Categorical Statistic

feature value

H03 8 C8 0.1172

H03 9 C9 0.2463

H03 8 S8 0.9156

H03 8 58 0.9156

H03 9 59 0.9984

H03 9 89 0.9984

H04 8 C8 0.1172

H04 8 S8 0.9156

H04 9 C9 0.2463

H04 9 59 0.9984

Cr.

0.835

0.034

0.880

0.824

0.039

0.025

0.379

0.379

0.005

0.005

Carlo

Level

means. These

Method

1000 MC Trials

1000 MC Trials

Approximation

1000 MC Trials

Approximation

1000 MC Trials

Exact

Exact

Exact

Exact
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2.5.2 Verification on Original Pattern Matrix

We now ask whether the grouping of patterns defined by a

particular categorical feature could have been defined in a

purely random manner. We measure similarity between

patterns i and j by the Jaccard coefficient [1], J(i,j).

The reason for using the Jaccard coefficient is that (1,1)

matches are more important than (0,0) matches in

questionnaire data. If nll is the number of (l-l) matches

in rows i and j of the pattern matrix and n00 is the number

of (0-0) matches, then

J(i.j)=nll/(M-l-noo).

A category matrix is defined by:

B(i,j) 1 if rows i and j have the same value for

category feature M

0 else.

The test statistic, denoted by G is the point
amma'

serial correlation between matrices [J(i,j)] and [B(i,j)].

The baseline is defined by H03. A test of hypothesis based

on Gamma 15 called a Mantel test [53,54] 1n other

applications and tests whether the increases and decreases

observed in the two matrices are unusually similar. The



40

distribution of Gamma was estimated by Monte Carlo means and

the critical level was found to be 0.049 for the

questionnaire data, using feature 9 as category. This

suggests that H03 be rejected, which implies that the set of

features is significantly related to category feature 9.

2.5.3 Feature Extraction Using Feature 9 as Categorical

Previous tests suggest that individual features and the

entire matrix are unusually similar to categorical feature

9. Thus, we feel justified in seeking a subset of features

which "explains" categorical feature 9 and which can lead to

an efficient design for future questionnaires.

We chose a sequential forward stepwise selection method

for study [86]. The best individual feature is chosen

first. The best pair containing the best individual feature

is then found, and the best triple containing the best pair

is identified. This process is continued until a suitable

level of performance is observed. Although ‘only an

exhaustive search of all subsets ensures optimality with

binary features [8,9,14,15], the stepwise procedure is

computationally attractive and is recommended in the

literature [58,86]. The criterion used to compare two

subsets of features is recognition rate under the
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leave-one-out method. The five features selected, in order

of selection, were features 10, 4, 6, 7, and 16. Feature 16

records whether a brother had cancer.

To verify these results, we repeated the Mantel test

described above using only the five features selected from

the questionnaire data. The critical level of the

Gamma statistic was 0.003, which suggests that the patterns

cluster by category unusually well and that the five

features reflect category better than the set of all

features.

2.5.4 Feature Extraction Using Feature 8 as Categorical

We carried out feature extraction and Mantel test using

feature 8 as category. The critical level of Gamma for the

entire matrix is 0.653, which suggests accepting H03.

Feature 1 had recognition rate 0.97, no lower than any other

feature or any feature subset selected by our stepwise

procedure. The critical level of Gamma using Feature 1

alone is 0.093. These results are summarized in Table 2.10.
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Table 2.10 Critical Levels of Gammas

use all features use selected features

category +------------------+-----------------------+

8 E 0.653 E 0.093 E

+------------------+----------------------- +

9 E 0.049 E 0.003 E

+------------------+-----------------------+

Table 2.10 indicates that feature 8 is not a valid

categorical feature. It might be caused by improper design

of questionnaires. Its high recognition rate is due to the

fact that there are only four 1's in column 8. Blindly

performing feature selection and trusting in the recognition

rate alone is misleading.

2.6 Summary and Conclusions

This chapter discussed the problem of preliminary

analysis of dichotomous features. Four null hypotheses are

stated to describe randomness in feature relationships. The

necessity of this preliminary analysis is examined for the

first time and is demonstrated with questionnaire data where

much irrelevant information is usually involved. Rejecting

these null hypotheses give us confidence in performing

feature extraction. Accepting one of these null hypotheses

prevents us from useless work and misleading results in

feature extraction. This point is clear in the application
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where preliminary analysis shows that feature 8 is not a

valid categorical feature, although the feature extraction

could give high recognition rate.

In testing H01 to H03, statistics based on the

correlation coefficient require Monte Carlo simulation to

estimate thresholds. The statistics based on similarity S

can be approximated analytically. Under H04, both

statistics, CM and SM' have known distribution, while SM is

distributed uniformly. For detecting Bahadur type relations

between features, S and SM have reasonable power. These

facts suggest that S and SM are better than S and CM in

preliminary feature analysis.

The Mantel test can also prevent us from accepting a

misleading result, but estimating the critical level of

Gamma requires either complicated asymptotic normal

approximations [33,34] or Monte Carlo simulation. The test

of'I-i03 or H04 using SM does not require Monte Carlo work and

gives the same conclusion. This fact suggests that SM is

more suitable than Gamma for exploratory type analysis which

requires speed and simplicity.
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Tests of H01 and H02 using the two types of statistics

give similar results for questionnaire data; tests of

H03 and H04 also provide similar results. Since the

thresholds of S and SM are easier to compute in the cases

of H02 and H04 than those for S and CM' we may choose to

limit ourselves to testing H02 and H04. In this case, the

following simplified methodology is proposed.

(1) Test H02 on the original pattern matrix using S.

(2) If H02 is accepted, stop and try to gather more data.

(3) If H02 is rejected, choose categorical feature M.

(4) Test H04 on the pattern matrix with categorical

feature M eliminated, using SM'

(5) If H04 is accepted, stop and try other categorical

features or gather more data.

(6) If H04 is rejected, go on with feature extraction.



CHAPTER 3

ADEQUACY OF BINARY PARTITIONS

This chapter studies procedures to assess the

significance of a binary partition of a pattern set. For

example, in cluster analysis one must verify structures

resulting from clustering methods. Verification procedures

assess the global fit of a hierarchy, the global fit of a

partition, and the isolation and compactness of individual

clusters. A sequence of partition fits, i.e., a sequence of

partitional adequacy measures, can provide a basis for

assessing global fit of a hierarchy [17]. We examine the

application of the S statistic defined in Chapter 1 to two

problems. One is the use of S as an external measure for

binary partitions in cluster analysis. The second

application is the design of a binary tree pattern

classifier, where S measures the correspondence of a feature

vector to category.

45
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Section 3.1 compares S, under the permutation hypothesis

defined in Chapter 1, to three other commonly used measures

in a cluster validity framework. The relations among them

are derived and their powers and computational costs are

compared. Section 3.2 uses S in binary tree classifier

design in comparison with the mutual information criterion

[74]. A brief conclusion is given in Sec. 3.3.

3.1 Four External Measures of Association for Cluster

Validity

A clustering algorithm begins with a measure of

proximity. between all pairs of objects in a set and induces

a clustering, or partition, of the objects in (which

"dissimilar" objects are placed in separate clusters.

Clustering algorithms will impose partitions even on totally

random data, so a clustering must be validated to establish

its "adequacy”, or its degree of unusualness, when compared

to a hypothesis of randomness [13].

Two types of measures of partitional adequacy are used

in cluster analysis: external and internal [33,56]. An

external criterion validates a partition with respect- to a
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source of information that is independent from that used to

form this partition. Permutation statistics provide clear

external criteria of partitional adequacy. For example, if

distances between patterns were used to establish a

partition, then category labels can be the second source,

and the partitional adequacy measure answers the question:

Do the patterns cluster by category? A prior conjecture,

the result of another clustering algorithm, or some

independent proximities could also serve to define the

second partition. An internal criterion assesses the fit of

a partition using only the proximity data from which the

partition was generated. Several external criteria for

partitional adequacy have been proposed [13,56].

The problem of partitional adequacy has been formulated

under two hypotheses of randomness. The Random Graph

Hypothesis [3] assumes that all possible rank order

proximity matrices are equally likely. The permutation

hypothesis [31] assumes that only those proximity matrices

corresponding to a relabeling of patterns are equally

likely. The permutation hypothesis provides a good baseline

for assessing statistical significance [32,36,37]. In this

section, we adopt the permutation hypothesis as the null

hypothesis and compare S to three related measures, the

Rand, Gamma and B statistics 1n terms of power and
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computation time. Section 3.1.1 gives the definitions of

the four statistics and Sec. 3.1.2 discusses the relation

among them. Our goal is to examine the effectiveness of the

statistic S'=ES-0.5E in measuring the adequacy of binary

partitions.

3.1.1 Definitions

Binary partitions are the basis for hierarchical

clustering [1] and for binary tree classifier design. If we

consider a hierarchy resulting from some hierarchical

clustering method as a sequence of binary splits, then a

binary partitional adequacy measure can be use to validate

one split at a time and indicate from which point the

splitting is random. In this section, we study four

measures for the adequacy of binary partitions. These

statistics assess the unusualness of a particular pair of

partitions by testing the permutation hypothesis

H0 (Chapter 1). All have unimodal null distributions so a

threshold can be selected under the null distribution for

defining the significance of association.

Consider two independent binary partitions of a set of L

patterns. Each pattern in each partition is coded as 0 or

1. The coding is presented as two binary L-vectors,
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Vl=[V1(i)] and V2=[V2(i)]. Indicator matrices X and Y are

defined as follows.

X(i,j)=1 if v1(i)=v1(j),

=0 otherwise;

Y(i,j)=l if V2(i)=v2(j),

=0 otherwise.

The four cells in Table 3.1 contain all the information

about the similarity between x and Y; K=L(L-l)/2.

Table 3.1 Frequencies of Combinations

Y

0 1

+-------------+-------------+

0 E a E b E K-Nl

x +-------------+-------------+,

1E C E d E N1

+-------------+------------- +

K-N2 N2 K

For example,

a .. E(i,j) : i<j, (x(i,j)=0)fl(Y(i.j)=0)I-

The Rand statistic R [67], also called the simple

matching coefficient, is the most commonly used measure of

association between X and Y. It is also a basis of

comparison for permutation statistics [17].



50

where p = Z/K and q = (K-Nl-N2)/K

The Gamma statistic is the point serial correlation

between the two indicator matrices and is used in Mantel

tests [31,53,54].

d - [(c+d)(b+d)/N]

‘JN1N2(N-Nl)(N-N2)

(Fowlkes and Mallows [17] recently proposed the B

statistic as an external criterion for clustering.

' (c+d)(a+b)

- - 05

where z - (N1(K Nl))
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The distributions for the three statistics above do not

have known analytical form under H0 and must be estimated by

Monte Carlo means or approximated by normal distributions.

The fourth statistic is

S' = ES(1,2)-0.5E where S(i,j) is defined in Chapter 1.

The statistics R, B and Gamma can also be used as

external criteria for partitions with an arbitrary number of

components.

3.1.2 Relation Among Measures

We are interested in whether the four statistics 5',

R, G and B are essentially the same in practice. First,
amma

we establish algebraic relations among them. We then study

the sample correlation between S' and Gamma and compare

their powers.

Under the permutation model and for fixed values

of N1 and N2, the three StatlStICS, R, Gamma and B are all

linear functions of d. Therefore, they are linear funCtions

of each other. In order to study the relation between S'

and the other three statistics, we need only consider the
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Since G is a linearrelation between S and Gamma' amma

function of d, it is sufficient to study the relation

between S' and d. Under the permutation model,

d'=Eii: V1(i)V2(i)=l}E is the only independent variable. We

investigate how d and S' vary with d'.

The S statistic is defined in Chapter 1 in terms of

L, n1, n2 and (a',b',c',d'). When L, nl and n2 are fixed,

d' takes values in the fixed range: [nl+n2-L, min(nl,n2)].

In this entire range, it is clear that E(S) under H0 is a

monotone increasing function of d'. Therefore, since S has

uniform distribution under H0, E(S')=EE(S)-0.5E decreases

first, reaches a minimum then increases as d' varies over

this range. The quantity d is the following function of d'.

a' b'\ c' d' 2

d = )+ + + = 2d' + (L-2n1-2n2)d' + f

2 2] 2 2

where f = nl +n2 +n

This function reaches its minimum when d'= g =

(2n1+2n2-L)/4. If nl+n2-L > g, d and Gamma are

monotonically increasing functions of d' over the entire

range of d'. Thus the non-monotone function 5' does not

measure the same thing as G If nl+n2-L < g, such as in
amma‘
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the case nl=n2=L/2, both d and S' are non-monotone functions

of d'. Figure 3.1 demonstrates how d and E(S') vary as

functions of d' under HO when L=20, nl=9 and n2=13.

d E(S'I

80 ‘ .5 56’)

78‘J

d

60 ‘ .3

50‘3

40 ‘ .I

d,  

Fig.3.l d and E(S') vs d' when L=28, n1=9 and n2=13

Table 3.2 gives some examples of the ranges of d' and g

values. The cases marked with a star mark exhibit the

general behaviour of Figure 3.1.
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Table 3.2 Examples of d' Ranges and 9 Values

L n1 n2 range of d' g

10 3 3 ( 0, 3 ) 0.5 *

10 3 5 ( 0, 3 ) 1.5 *

10 3 6 ( 0, 3 ) 2.0 *

10 5 5 ( 0, 5 ) 2.5 *

10 5 6 ( l, 5 ) 3.0 *

10 6 6 ( 2, 6 ) 3.5 *

20 5 5 ( 0, 5 ) 0.0

20 5 10 ( 0, 5 ) 2.5 *

20 5 13 ( 0, 5 ) 4.0 *

20 10 10 ( 0, 10 ) 5.0 *

20 10 13 ( 3, 10 ) 6.5 *

20 13 13 ( 6, 13 ) 8.0 *

40 10 10 ( 0, 10 ) 0.0

40 10 20 ( 0, 10 ) 5.0 *

40 10 25 ( 0, 10 ) 7.5 *

40 20 20 ( 0, 20 ) 10.0 *

40 20 25 ( 5, 20 ) 12.5 *

40 25 25 ( 10, 25 ) 15.0 *

80 20 20 ( 0, 20 ) 0.0

80 20 40 ( 0, 20 ) 10.0 *

80 20 50 ( 0, 20 ) 15.0 *

80 40 40 ( 0, 40 ) 20.0 *

80 40 50 ( 10, 40 ) 25. *

80 50 50 ( 20, 50 ) 30.0 *

200 50 50 ( 0, 50 ) 0.0

200 50 100 ( 0, 50 ) 25.0 *

200 50 130 ( 0, 50 ) 40.0 *

200 100 100 ( 0, 100 ) 50.0 *

200 100 130 ( 30, 100 ) 65.0 *

200 130 130 ( 60, 130 ) 80.0 *

The quantity 9 is inside the range of d'

when nl and n2 are around L/2. These cases exhibit the

behavior in Figure 3.1. To further study the relation

between S' and Gamma' we examine the sample correlation for

the special cases when n1=n2=L/2, which is representative of

the cases with star marks in Table 3.2. We generated vector
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pairs of different lengths. For each permutation of one

vector, we compute S' and Gamma which is converted to its

z-score [33,34]. The correlation coefficients are shown in

Table 3.3, which suggests that S' and Gamma are highly

correlated under H0 when the number of 0's and 1's are

equal.

Table 3.3 Sample Correlation between

S ,E(S ) and z-score of Gamma

+-------+--------+----------+---------------+---------------

E no.of E vector E Pearson E Kendall's Tau E Kendall's Tau

E perms E size Ecorr(S',z)E corr(S',z) E corr(E(S'),z)

+-------+--------+----------+---------------+---------------

E 1000 E 30 E 0.873 E 0.900 E 1.000

E 1000 E 60 E 0.901 E 0.962 E 1.000

E 1000 E 90 E 0.913 E 0.969 E 1.000

E 10000 E 120 E 0.912 E 0.980 E 1.000

+-------+--------+---------- +---------------+---------------

The sample space consists of all permutations of one

vector. Under any alternative a non-uniform probability

assignment is made to these permutations. The fact that the

two statistics have correlation coefficient 1 under H0 thus

implies they have identical power under any alternative.

Since R, B and G are linear functions of each other, we
amma

conclude that they have the same power against any

alternative hypothesis. When nl=n2=L/2, S' is highly

correlated to R, Gamma and B. Since the rank order

correlation between S' and G is above 0.9, we expect
amma

+

+
-
-
-
—
—
+
-
-
—



56

that they have compatible power against any alternatives.

Since the threshold for S’ can be determined in a natural

fashion and it is comparable to other statistics, 5' is a

good choice for assessing partitional adequacy.

3.2 Binary Tree Classifier Design

In this section, we apply 3' to the design of a binary

tree classifier. Section 3.2.1 briefly discusses the

concept of tree classifier, some existing techniques, and

where this study fits. Section 3.2.2 describes the

computation of feature thresholds from S. Section 3.2.3

considers the efficiency of computing feature thresholds.

Some numerical examples are shown in Sec. 3.2.4.

3.2.1 Binary Tree Classifiers

Binary tree classifiers have been used in many pattern

recognition problems [50,51,59,72,73,75,85,90]. Each node

of the tree corresponds to a subset of features. A pattern

to be classified is passed through the tree from the root to

a leaf. At each non-terminal node, based on the subset of

feature values corresponding to that node, the pattern is

sent to one of two descendent nodes. Every terminal node,

or leaf, is labeled by category. The unknown pattern
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eventually reaches a leaf and is assigned the corresponding

category label.

A tree classifier is designed from training patterns.

At each non-terminal node, a subset of features is selected

based on the training patterns available at the node. The

training pattern set is divided into two disjoint subsets

according to these features for use at successor nodes. A

terminal node is labeled by the category of the majority of

training patterns remaining. Since the computational cost

in classification is roughly proportional to the square of

the number of features used [81], we follow the literature

and use one feature per node. Thus, descendent nodes are

chosen by comparing the value of the feature corresponding

to that node to a predefined threshold.

The advantages of a tree classification rule versus a

single stage classification rule are in computational

efficiency, use of features, avoidance of the "curse of

dimensionality" and ease in human interpretation

[2,38,50,59,65]. One disadvantage is that the design of a

binary tree classifier often requires a large amount of

computing time and storage [75], especially when a fully

optimal tree is desired [65].
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The design of a binary tree classifier with one feature

per node consists of two components [46,49,75]: (1) Defining

the structure of the tree; (2) Choosing the most effective

feature and threshold at each node. Some design criteria

[46,55,90] are low error rate, minimum number of nodes on

the tree, shortest path length, and weighted sum of these

factors [46]. Numerical examples show that local optimality

does not ensure global optimality and that no simple method

exists for specifying the optimal tree structure in a given

problem [47]. Therefore, only conditional optimality can be

achieved. Game tree search techniques and the look-ahead

property have achieved partial global optimality [76]. Most

practical tree designs use heuristic approaches and make no

claim of optimality [50,59,70,73,75,8l,90]. Our study

provides an alternative heuristic approach, without

optimization'or look-ahead.

Systematic procedures have been developed for the first

component [46,55,65]. Given thresholds for features which

partition the feature space, Meisel's dynamic programming

method will generate equivalent partitions of that space

which are optimal in the sense of having min-max path

length, minimum number of nodes and minimum expected path
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length. Since the number of possible trees under the

constraint of a given partition is still very large, this

algorithm is not feasible for large numbers of features

[55,65].

Many approaches have been proposed to attack both

components of tree design simultaneously [48,67,74]. A

specific criterion is selected to determine the feature

thresholds. At each node, the best threshold of the best

feature splits the training pattern set on this node. This

splitting criterion is used at every non-terminal node until

the tree is constructed. The maximum distance between the

empirical c.d.f.'s of the feature under different categories

[70] and the mutual information between the category and the

thresholded feature [74] have been used as criteria. We

examine a splitting criterion based on the S statistic

between a thresholded feature vector and category vector for

the two-class problem.

3.2.2 Computation of Feature Thresholds

Consider a non-terminal node with N training patterns,

each being described by M features. The features must be at

least on an ordinal scale, although binary features are

allowed. The data are represented as an NxMx2 matrix A,
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where A(i,j,l) denotes feature j of pattern i, A(i,j,2)

denotes the category label of pattern i for all j, and

A(*,j,l) and A(*,j,2) denote the feature and category

vectors respectively for feature j. Order the entries so

that for each j, A(i,j,l) becomes the ith smallest value and

A(i,j,2) is the corresponding category label. A threshold

value between A(i,j,l) and A(i+l,j,1) creates a binary

vector Ai(*,j,l) with i 0's and (N—i) 1's. A similarity

measure between Ai(*,j,l) and the category vector A(*,j,2)

serves as the splitting criterion. Table 3.4 is an example

of feature and category values for feature j. Threshold 5.0

will result in binary feature vector A2(*,j,l)=001111, while

the threshold 8.0 will give A4(*,j,l)=000011.

Before sorting:

A(i,j,2): 0 0 0 1 l' 1

A(i,j,l): 8.21 7.43 1.20 5.56 4.23 8.02

After sorting:

A(i,j,2): 0 l l 0 1 0

A(i,j,l): 1.20 4.23 5.56 7.43 8.02 8.21

Table 3.4 Ordering of Training Patterns by Feature j

(i=l,2,...,6)

The splitting of a node can be described as the

Pascal-like procedure SPLIT written below.
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Procedure SPLIT (node,MINCUT);

Begin

Build matrix A for this node and set N,M;

SMAX := 0;

.For j=l,M begin

Sort to obtain A(*,j,l);

Arrange A(*,j,2) accordingly;

For i=l,N-l begin

THRESH(j):=(A(i,j,1)+A(i+l,j,l))/2;

For k=l,i Ai(k,j,1):=0;

For k=i+l,N Ai(k,j,l):=l;

S(i,j):=SIMILAR [Ai(*,j,l),A(*,j,2)];

if S(i,j)>SMAX then begin

SMAX := S(i,j); IMAX :=i; JMAX :=j

end; (* if *)

end; (* for *)

end: (* for *)

if SMAX > MINCUT then begin

For i=l,IMAX the pattern corresponding to

A(i,JMAX,l) is passed on to the left-son;

For i=IMAX+l,N the pattern corresponding to

A(i,JMAX,l) is passed on to the right-son;'

SPLIT(left-son,MINCUT); SPLIT(right-son,MINCUT)

end; (* if *)

end; (* procedure *)
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The algorithm for designing the whole tree is simply

SPLIT(root,MINCUT), where MINCUT is the user specified

minimum splitting criterion value. Several splitting

criterion functions SIMILAR can be used, such as average

mutual information [74]. We propose

S'=ES[(A(*,j,l),A(*,j,2)]-0.5E

as the SIMILAR function, since it has a direct intepretation

and known distribution under H0 (Chapter 1).

3.2.3 Efficiency in Feature Threshold Computation

Consider the N training patterns assigned to a node and

feature. j, represented by sorted arrays A(*,j,l) and

A(*,j,2). There are at most (N-l) possible thresholds in

the procedure SPLIT. To avoid checking every possible

threshold, we investigate whether the best feature threshold

occurs between runs of 0's or 1's in the A(*,j,2) vector, or

occurs at the boundaries of the largest runs. Sethi [74]

suggested restricting the search for feature thresholds to

the boundaries of runs, i.e., check threshold

[A(i,j,l)+A(i+l,j,l)]/2 only if A(i,j,2) # A(i+l,j,2).

Sethi didn't prove that other thresholds can be ignored when

the mutual information is used as the splitting criterion.
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Appendix A gives a simple induction proof that only

thresholds at the boundaries of runs need be checked if S'

is the splitting criterion.

We now ask whether threshold checking can be further

restricted to the boundaries of the largest runs of 0's and

1's. To be specific, suppose the run lengths in A(*,j,2)

are kt,t=1,2,...,m and let

*

k =max{kl,k2,...,km}

which is achieved between pattern k1+...+ki_l+l and

kl+...+ki. We have observed that the threshold

[A(kl+...+ki_l,j,l)+A(kl+...+ki,j,l)]/2 or

[A(kl+...+ki,j,l)+A(kl+...+ki+1]/2

results in a binary feature vector with highest 5' among all

possible thresholds. We have not been able to prove this in

general. Figure 3.2 demonstrates this phenomenon with 14

cases. In each case, two vectors are presented. The first

vector is the category vector A(*,j,2). The second is the

feature vector thresholded to have the maximum E(S') value.

In every case, the "best" threshold point is at a boundary

of a largest run. The category vectors in the last two

pairs are identical, i.e., the "best” threshold is not

unique. If we can only check the boundaries of largest
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runs, we can further reduce the time for finding feature

thresholds.

1110000100 11011100010110 01001111010010011101

0001111111 00000011111111 00001111111111111111

01011110 1101001111 0100001100 010011010111

00011111 0000001111 0000001111 000000000111

0000000000110 01001100000000000000 1000000100

0000000000111 00000011111111111111 0111111111

0111000110110110 01000110 01000010 01000010

0000000111111111 00000111 00111111 00000011

Fig.3.2 Fourteen Examples of Category-Feature Vector Pair

3.2.4 Numerical Examples

Since there are infinitely many different types of

classification problems, a formal comparison of binary tree

design algorithms is not feasible. Following the

literature, we use several numerical examples to demonstrate

the use of S' as a splitting criterion in tree design and

indicate its advantages over the mutual information

criterion in an informal manner. Our experiments are on

four artificial data sets and two real data sets.
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Data sets 1 through 4 are from a cluster process and are

generated on a computer. Each cluster has about the same

number of patterns. The number of clusters is a Poisson

random variable. Patterns are distributed around cluster

centers randomly chosen in a unit hypercube according to a

Normal distribution with diagonal covariance matrix, all of

whose diagonal elements equal sigma, the spread factor. The

smaller sigma, the more distinct the clusters. We code the

patterns in odd numbered clusters "1" and those in even

numbered clusters "0” to serve as category labels. One half

of the patterns in each cluster are used for training while

the rest are for testing. The parameters actually used are

shown in Table 3.5.

Data sets 5 and 6 are created from the Munson

handprinted Fortran character set, containing 48 samples of

each of four letters, namely "I", "M", "O" and "X”. Each

character is represented by an eight-dimensional pattern

[12]. Data set 5 includes characters "I" and "M". Data set

6 contains all four characters with "I", "0" being one

category and "M","X" being the other. The first half of

each cluster (Data sets 1 through 4) and each alphabet (Data

sets 5 and 6) are used for training.
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Table 3.5 Parameters of Artificial Data Sets

+----+----------+----------+----------+----------+-------+

E E no. of E no. of E no. of E no. of E E

EDataE training E testing E features E clusters E Sigma E

E setE patterns E patterns E E E E

+--—-+----------+----------+----------+----------+-------+

E l E 74 E 76 E 6 E 5 E .09 E

E 2 E 72 E 73 E 15 E 6 E .20 E

E 3 E 71 E 74 E 15 E 6 E .30 E

E 4 E 74 E 76 E 9 E 4 E 1.0 E

E 5 E 48 E 48 E 8 E (2) E - E

E 6 E 96 E 96 E 8 E (4) E - E

+----+---------- +----------+----------+----------+-------+

The mutual information and S' are used as splitting

criteria to construct two binary classification trees for

each data set. The procedure SPLIT is used in all cases.

We specify a minimum splitting criterion MINCUT in every

case. When no threshold for any feature exceeds MINCUT,the

node in question will be a leaf. Using the direct

interpretation of S', we set MINCUT for S' at 0.475 for all

data sets, which corresponds to a significance level of.

0.05. That is, S'>0.475 means that the thresholded feature

vector and the category vector are more closely related than

95% of the pairs formed by permuting one of these vectors.

The mutual information levels are explained with the data

sets.
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The tree classifiers are summarized in Table 3.6 through

Table 3.11. The trees for data sets 1 and 2 are given and

written in prefix form to give a general feeling for the

tree structure. The labels in "<>" ("a' or "b") are labels

of leaf nodes. Other numbers are the features used. For

example, 2(4<b><a>)<b> indicates the tree in Figure 3.3.

F2 < .382

/ \

/ \

F4 < .457 Cat <b>

/ \

/ \

Cat <b> Cat <a>

Fig.3.3 Tree Designed with S'

(minimum splitting S'=.475)

(artificial data set 1)
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Table 3.6 Tree Design for Data Set 5

mutual

formation

.9.

I

I

I

I

=========3=======a=s=

I

I

+

splittin

criterio

MINCUT

"
D
I
D

I
I
H

“
:
1

0.330

training

recog.rate

testing

Table 3.7 Tree Design for Data Set 2

+-----------+----------------+-----------------+

E splitting E mutual E E

E criterion E information E S' E

E MINCUT E 0.33 E 0.475 E

+-----------+----------------+-----------------+

E tree E 6(<a>)(9(3(<b><a>)<b>)<b>) E

+-----------+----------------------------------+

E number of E E

E nodes E 7 E

+-----------+---------------------------------- +

E training E E

E recog.rateE 1.000 E

+-----------+----------------------------------+

E testing E E

E recog.rateE 0.918 E

+-----------+----------------------------------+
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Table 3.8 Tree Design for Data Set 1

+-----------+----------------+----------------- +

E splitting E mutual E E

E criterion E information E S' E

E MINCUT E 0.33 E 0.475 E

+-----------+----------------+-----------------+

E tree E 2(4<b><a>)<b> E 4(<b>)(2<a><b>) E

+-----------+---------------- +----------------- +

E number of E E E

E nodes E 5 I 5 I

+-----------+----------------4----------------- +

E training E E E

E recog.rateE 1.000 E 1.000 E

+-----------+---------------- +----------------- +

E testing E E E

E recog.rateE 0.987 E 0.987 E

+----------- +----------------+----------------- +

Both methods gave the same result for Data set 5 (Table

3.6) and Data set 2 (Table 3.7). The difference between the

trees for Data set 1 under the two criteria (Table 3.8)

involves only the order of the features used and slight

changes in feature threshold values. The minimum splitting

criterion value MINCUT for mutual information was chosen

because it gave good results for data set 5 in a preliminary

trial. The distribution of mutual information is not known

under H0 , although it has an asymptotic chi-square

distribution [6]. These data sets suggest that the two

criteria give comparable results.
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Table 3.9 Tree Design for Data Set 3

splitting mutual

criterion

MINCUT E 0.330 E 0.200 E 0.100 E 0.475

-----------+-------+-----—-+-----——+—------

number of E E E E

nodes E 1 E 3 E 17 E 17

-----------+----—-—+-——----+——-----+—--—---

training E E E E

recog.rateE 0.563 E 0 761 E 1.000 E 1.000

-----------+-------+---—---+-—----—+-------

testing E E E E

recog.rateE 0.568 E O 730 E 0 716 E 0 716

-----------+--——---+--—----+-------+-------

Table 3.10 Tree Design for Data Set 4

+-----------+---------------+-------+

E splitting E mutual E E

E criterion E information E S' E

E MINCUT E 0.500 E 0.050 E 0.475 E

+-----------+-------+-------+-------+

E number of E E E E

E nodes E l E 25 E 13 E

+-----------+-------+-------+-------+

E training E E E E

E recog.rateE 0.635 E 1.000 E 0.865 E

+-----------+-------+-------+-------+

I testing I I I I
E recog.rateE 0.618 E 0.566 E 0.566 E

+-----------+-------+-------+-------+
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Table 3.11 Tree Design for Data Set 6

+-----------+-----------------------+--------- +

E splitting E mutual E E

E criterion E information E S' E

E MINCUT E 0.350 E 0.200 E 0.020 E 0.475 E

+-----------+-------+------- +-------+---------+

E number of E E E E E

E nodes E 3 E 5 E 9 E 5 E

+-----------+-------+------- +-------+---------+

E training E E E E E

E recog.rateE 0.885 E 0.979 E 1.000 E 0 979 E

+-----------+-------+-------+-------+--------- +

I testing I I I I I

E recog.rateE 0.885 E 0.938 E 0.917 E 0 938 E

+-----------+-------+------- +-------+--------- +

Data set 3 (Table 3.9) is very loosely clustered. The

recognition rates are lower than those for data sets 1 and

2. The value of MINCUT for mutual information has a

significant effect on the tree obtained. Data set 4 (Table

3.10) is completely random. Different MINCUT values for the

mutual information method result in very different trees.

Data set 6 (Table 3.11) also shows the effect of MINCUT

value with the mutual information criterion.

The above examples demonstrate that S' is a reasonable

splitting criterion in tree classifier design. The trees

designed with S' are as good as those designed with the

mutual information criterion. Since 5' has a known

distribution under H0 that is independent of the number of

patterns at each node, 5' has a direct meaning and the
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MINCUT value for S' can be based on theory. The user must

select the minimum threshold MINCUT under the mutual

information criterion. These data sets demonstrate that the

selection of MINCUT has a dramatic effect on the tree

structure and on the recognition rates. Little prior

information is available for selecting a mutual information

threshold but a threshold on S' can be defined in a natural

way. Mutual information has an asymptotic chi square

distribution [6], but the degree of freedom depends on the

number of patterns at.each node. If one really wants the

statistical significance to be consistent in the entire tree

design, a p-value for mutual information can be approximated

and different chi square tables can be used when the number

of patterns changes from node to node, assuming the

asymptotic distribution is applicable. This process is much

more tedious than selecting the threshold of S'.

3.3 Summary and Conclusions

This chapter evaluated the similarity S, defined in

Chapter 1, in two applications. Both applications require

that the adequacy of a binary partition be measured. A

version of S named S' is compared to three well known

statistics (R, G B). The three are shown to be linear
amma'

functions of each other. All have ,asymptotic normal
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distribution under H0. The measure 5' is shown to be

different from the others. When the numbers of 1's in both

vectors are half the vector length, 5' is highly correlated

to. other measures. The statistical significance of the

other three measures demands either Monte Carlo simulation

or rather complex approximation, while the significance

level of S' is obvious.

We also applied 5' to the design of a binary tree

classifier. Numerical examples demonstrated that S' is a

reasonable splitting criterion to be used in determining

features and their thresholds. The known distribution and

known statistical significance of 5' permits one to

establish the threshold of each feature in a simple and

direct fashion. By comparison, the mutual information

threshold must be approximated from asymptotic results and

changes from node to node.



CHAPTER 4

TEMPLATE MATCHING

This chapter provides a probabilistic analysis of some

statistics used in the template matching problem on binary

images. We assume mathematical models for both null and

alternative hypotheses. An approximately optimal statistic

and two other statistics are derived and their powers are

compared. We propose' a suboptimal statistic which has

reasonable power and is more sensitive to the true object

location than existing statistics. Along with the

experiments on artificial images generated under our

mathematical model, this statistic is applied to several

real Landsat'images.

The permutation statistic S defined in Chapter 1 and the

Pearson correlation coefficient are also applied to matching

binary images and are shown to provide result similar to

other sub-optimal statistics. In this chapter, we

concentrate on the statistic derived from the Neyman Pearson

74
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Criterion, which is optimal under a weak assumption and

which has reasonable power and sensitivity.

4.1 Introduction

Template Matching is a simple classical approach to the

problem of locating an object in a digitized image

[29,68,79,82]. An image is an Nr by Nc matrix of gray

levels. A template is an Nr' by Nc' matrix containing a

picture of an object with Nr' << Nr and Nc' << Nc' The

image may contain that object without rotation or size

distortion, or it may contain no object at all. The object

in the image is the same as the template except for lighting

conditions. An example in Figure 4.1 shows an image and a

template which are pictures of the same scene but are seen

through different light frequency channels. This chapter

considers only binary images and templates.
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The standard solution to template matching is to scan

through the image and compare the template with subimages at

all possible template locations using some measure of

similarity to decide whether or not the image contains an

object and if it does, to estimate its location.

Since there are (Nr-Nr.+l)(NC-NC.+1) locations for the

template, the computation complexity of the standard

solution to the template matching problem is

O((Nr-Nr.+l)(NC-Nc.+1)(Nr.*Nc.)).

Several methods have been proposed to reduce the

computational burden of the standard solution

[5,43,60,61,66,87,88,89]. Bolles' planning method first

applies an interest operator [57] to eliminate locations

with low interest. This method is effective for grey level

images and for images with structure, i.e. when pixels are

dependent. Our study employs a randomness model with

independent pixel values, which is appropriate for the Two

Stage solution described below.
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The first stage [83] compares a subtemplate to the

subimages at all possible template locations. The second

stage applies the entire template only at the locations with

a sufficient match between the subtemplate and the subimage.

The smaller the subtemplate, the lower the computational

cost, but the higher the possibility of false match or

missing a true match. The problem of choosing the optimal

subtemplate size has been studied [83].

In one binary image model [83], a background pixel takes

value 1 with probability p independent of other pixel

values. The binomial distribution and the normal

approximation describe the distributions of the simple

matching coefficient between subtemplate and subimage. The

independence assumption is more reasonable when the

subtemplate is selected at random and is ”sparse" [83].

In two stage matching, the simple matching coefficient,

or equivalently, the absolute difference of pixel values

between template and subimage, has low computational cost,

but it has not been compared to other measures, such as the

Jaccard coefficient and the correlation coefficient [29].

These measures have been compared in other applications
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[80].

This chapter examines two stage template matching on a

binary image and with a fixed binary subtemplate. We

suggest a probabilistic model for both null hypothesis and

alternative hypothesis and seek a powerful and

computationally feasible statistic for recognizing the

object. We do not attack the subtemplate size problem or

the methodology of the second stage.

4.2 Mathematical Model

Section 4.2.1 discusses notation for the mathematical

model. Section 4.2.2 defines five statistics for testing

hypotheses. Approximations to the Neyman-Pearson statistic

and two other statistics are defined in Sec. 4.2.3.

4.2.1 General Definition

An object is a mapping from a two dimensional grid of

size (Nr.xNC.) to {0,1}. A template is a perfect copy of

the object. In our experiment, each object pixel is

generated independently with probability p' of being 1. A

subset of n template pixels forms a subtemplate. Let q be

the fraction of 1's in the subtemplate. An image G is a
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matrix of size (erNC) with binary valued elements. The

image may contain a single distorted version of the object

(template). The template is scanned over the image but the

image is seen only through the subtemplate. Let the

possible locations of the template in the image be

arbitrarily ordered from 1 to x0. Let Lx denote the set of

image pixels covered by a grid of size (Nr.ch.) at location

x. Define Nii(x) as the number of pixels at which both the

image and the subtemplate of a template at x are i for

i=0,l, 0 5 Nii(x) g n.

The mapping G is a matrix valued random variable and two

hypotheses can be stated. We assume independent pixel

values under both hypotheses. The template and the

subtemplate are fixed.

H0 : (No distorted object in the image),

Pr[G(i,j)=1EH0]=p for any (i,j).

Hlx: (The distorted object is at location x),

Pr[G(i,j)=lE(i,j) not in Lx, Hlxl=pI

Let Tx(i,j) be the template pixel value corresponding

to image pixel (i,j) when the template is at location

x. The parameters a and b measure distortion of the

object in the image, such as lighting condition

differences between the image and the template.
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Pr[G(i,j)=lE(i,j) in Lx' Tx(i,j)=0, Hlx]=a,

Pr[G(i,j)=lE(i,j) in Lx' Tx(i,j)=l, Hlx]=b.

H1 : (The distorted object is at some location),

{G(i,j)} are distributed as in H1x for some x.

The random experiment consists of setting the template

at all locations of the image and viewing the image at first

only through the subtemplate. At each location y, 1 g y 5

x0, we observe N00(y) and Nll(y). Let Ey denote the event

that N00(y)= n0(y) and Nll(y)= nl(y) for fixed numbers n0(y)

and nl(y), where n0(y)+nl(y) g n.

Consider the likelihood ratio Rx":

Pr((W EYEHlx)

Y

Rx": ---------------

Pr(IWZE EH0)

Y

Events Ey(l) and Ey(2) are not independent under H0, H1,

or {Hlx' all x} when the templates at locations y(l) and

y(2) overlap, but we treat {BY} as independent events to

obtain an approximation to Rx"'
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If x=y, the template and the distorted object coincide

under Hlx° In this case, N00(y) has a B[n(l-q),1-a]

distribution and Nll(y) has a B[nq,b] distribution, where

B[M,p] is a binomial distribution representing the result of

M independent Bernoulli trials with probability of success

p. Under H0, N00(y) has a B[n(l-q),l-p] distribution and

N11(y) has a B[nq,p] distribution. In addition, N00(y) and

Nll(y) are independent under all hypotheses because the

template and the subtemplate are fixed.

Pr(E EH ) n (y) n (y)

xx = ----57-;5— = u 0 v 1 Cxx where

Pr(ExEHO)

(l-a)p b(l-p)

u: -------- v: --------

a(l-p) (l-b)p .

Cxx= (a/pIn‘l‘q’((i-hI/Ii-p>)“q.

Similar equations can be stated for the special cases

a=0, a=l, b=0, and b=1.
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The term Sxy involves the distribution of the sum of two

binomial random variables, so no closed form exists for sxy'

Poisson approximations create complicated expressions. We

choose to use a binomial approximation, as explained in

Appendix B. Let Rx denote the approximation to Rx' when

S is approximated as in Appendix B.

xy

R = un0(x)vnl(x)C T-T [--_w§2----p_]no(y)-nl(y) }

x xx' ' _ _ xY
y¥x (l wxy)(1 p)

log(Rx) = n0(x)log(u) + nl(x)log(v) + log(Cxx) +

--- wxy p ---

+ \ {[n0(y)-nl(y)]log[ ----------- I} + \ 109(ny)

/ (l-wxy)(l-p) /

4.2.2 Statistics for Testing H0 vs. H1x

To test Hlx' we simply place the template at position x

and compute a statistic based on Noo(x) and N11(x). The

five statistics which we will compare are defined below.

Dx = N00(x)+ Nll(x),

the simple matching coefficient,

Gx = N00(x)log(u) + Nll(x)log(v),
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an approximation to the optimal statistic.

J = Nll(x)/(n-N00(x)),

Jaccard coefficient, in which only (1,1) matches

are considered, and n is the subtemplate size,

C = Pearson correlation coefficient,

S = the S statistic defined in Chapter 1.

The test using any of the above statistics is to reject

140 when the observed value of the statistic is larger than

some threshold. AMonte Carlo comparison study will be

<3escribed in Sec. 4.3 to see if any of the statistics can

Inatch the performance of 6x“

4.2.3 Statistics for Testing H0 vs. H1

The most powerful statistic for testing H0 vs H1 can be

<obtained by combining the statistics for tests of H0 vs

141x and using the assumption that all positions are equally

Llikely for the distorted object. Define
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x0

4321805) 1
R. g ------------ = --- \ Rx.

x0 x0 5--

puygl EYEHO) x=1

We approximate each Rx. by RK from Sec. 4.2.1. The result

is a sum of products.

x

1 --0

R = --- \ R

x0 /

=1

The computational complexity of N00(y) and Nll(y) at

each location y is O(M). The complexity of computing Rx is

O(M ky), where ky is the number of positions in which

templates overlap with the template at location y. Since

kY is of order (Nr'Nc')' the complexity of computing R is

O(x0MNr.NC.). Since R uses the information provided in

overlapping locations, it should be more powerful, but more

complicated, than other statistics, such as D and G defined

below, which have complexity O(x0M). Statistics based on

J C and Sx are not considered since they act poorly for
x' x

testing H0 vs Hlx (Sec. 4.3).

D = max( D )
x x
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G = max( G )
x x

Note that Gx uses only the information contained in

N00(x) and Nll(x) about location x and ignores the

information in overlapping locations. The (0,0) and (1,1)

matches are weighted according- to parameters p,a and b.

Statistic D is the special case of G that weights N00(x) and

Nll(x) equally, and is equivalent to the measure used

elsewhere [69,83].

In order to compare D, G, and R in testing H0 vs H1, we

define the sensitivities V(D), V(G), and V(R). Let x be the

true object location,

V(D) = E{ y : DY 3 DxIE

V(G)=E{y:Gy 3 0x}:

V(R) = E{ y : Ry Z RXIE.

The sensitivity is the proper number of locations which

should be identified for second stage template matching.

The smaller this number, the better this statistic as a

similarity measure in first stage template matching.

Sensitivity is just as important as power for a criterion in

first stage template matching.
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4.3. Comparison Study

We compare the powers of D J Cx' x’ x' SK and Gx in

testing H0 vs H1x for a fixed x. The image size and

template size are both 8 by 8, the subtemplate size is 19

and pixels in the subtemplate are selected randomly. The

four parameters (p,p',a and b) establish four factors whose

levels are:

{0.2,0.4,0.6,0.8} for p and p',

{(0.l,0.9), (0.2,0.8)] for (a,b).

These parameters are known. In each case, 100 images

generated under H0 are used to establish a threshold and

another group of 100 images under H1x are used to estimate

powers.

Based on the resulting power estimates, we performed a

standard two sample t-test for each pair of comparison

between statistics (Appendix C). The results indicate that

D J Cx and SK have essentially the same power, while
x' x'

Dx is slightly more powerful than the other three with

significance level 0.6. Statistic Gx is more powerful than

all others with at least 0.75 significance level.

Therefore, we limit ourselves to Gx and Dx for testing H0 vs
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Now we compare D,G and R in testing HO vs H1 using the

following criteria: (1) power, (2) sensitivity, (3)

computational complexity, (4) feasibility of analytical

thresholding. Our experiments study the effects of the

following factors.

(1) Parameter values for p,p',a and b,

(2) State of knowledge: known or estimated parameters,

(3) Subtemplate size.

Statistics D and G are compared analytically, while a

large scale Monte Carlo simulation is used to evaluate D,G

and R. All tests have size 0.05. Empirical thresholds for

tests are estimated from 100 Monte Carlo trials under H0.

Power estimates are based on 100 trials under the

alternative hypothesis. The analytical comparison of D and

G is given in Sec. 4.3.1. The Monte Carlo comparison of D,

G and R is described in Sec. 4.3.2. Results are summarized

in Section 4.4.
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4.3.1 Analytical Comparison of D and G

The normal distribution is used to approximate the

distributions of D and G under H0 and H1. We approximate

powers for the following levels of parameters:

{0.2,0.5,0.8} for p and p‘,

{(0.l,0.9), (0.2,0.8)} for (a,b).

To obtain numerical values, typical image/template sizes

of 16x16/8x8 and 32x32/12x12 were used.

Based on the resulting power estimates (Appendix D), we

performed a standard two sample t-test which indicates that

G is more powerful than D at level .025.

4.3.2 Monte Carlo Comparison of D, G and R

The image size is 16x16, the template size is 8x8 in

this study. For each combination of the following parameter

sets or variables, nine different random seeds are used to

start the process. For every random seed, 100 trials are

used to estimate the threshold and another 100. trials are

used to estimate power. The parameters vary in the

following ranges:
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values of p: {.2,.5,.8};

values of p': {.2..5..8};

values of (a,b): {(.l,.9),(.2,.8)}.

There are five different states of parameter knowledge

(coded in variable SPK). For SPK>0, p is estimated from 100

random images, different from the images used in estimating

‘threshold and power.

SPK=0= know all parameters;

SPK=1: estimate p; p',a,b are known;

SPK=2: estimate p,p': assume a=.10,b=.90;

SPK=3: estimate p,p'; assume a=.25,b=.96;

SPK=4: estimate p,p': assume a=.05,b=.88.

Subtemplate sizes: {19,26,33,39];

The parameter p' is used only in statistic R. The

=Ei‘tclbtemplate is selected randomly, except in one experiment

(: fiL ndicated in Table 4.5), in which the number of 0's and 1's

‘3‘ 1:? e approximately equal.
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4.4 Results

The experimental results for comparing D, G and R

described above are collected in this section. In

Sec. 4.4.1, Table 4.1 - Table 4.5 list the average powers of

D, G and R. In Sec. 4.4.2, Table 4.6 - Table 4.10 list the

average sensitivities of D, G and R. In Sec. 4.4.3, Tables

4.11 - 4.12 list the results of two sample t tests comparing

powers and sensitivities of D, G and R.

44.4.1 Power Study Results:

Table 4.1 lists the mean powers PD, PG and PR for the

<=:aase when all parameters are known, the distortion is low,

iEIlfid the template size is relatively small. The marginals

5L Indicate the average effect of p and p'. From the overall

‘t=~<:tal averages, we can compare powers between statistics and

<==I::mpare to results of other subtemplate sizes, other

=E=i1LJbtemplate selection methods, other parameter sets for

(:«EEI,b), and other options for estimating parameters. In

Table 4.1 and all following tables, "size" means the

s ubtemplate size .
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Table 4.1 Effect of (p,p‘) on Powers

SPK=0, (a,b)=(0.l,0.9), size=l9

p= .2 .5 .8

+-------------+-------------+------------- +

E .23 E .80 El.00 E .68

P'=.2 E .31 E .82 E 1.00 E .71

E .30 E .95E 1.00 E

+------------- +-------------+-------------+

E .89 E .75 E .83 E .82

p':.s E .95 E 75 E 95 E .89

E .99 E .74 E 1.00 E .91

+------------- +-------------+------------- +

E1.00 E 79 E .25 E .68

P'=.8 E 1.00 E .82 E .37 E .73

E 1.00 E .97 E .33 :

+------------- +-------------+-------------+

71 .78 .70 .73

.76 .80 .78 .78

.77 .89 .78 .81

+------------- +

I l

3 PD p, I
l P I

I...........B-I

Parameters p and p' indicate the difference in frequency

0 f 1's between the background and the object. The further

a~part p and p' , the: easier. the object is to detect. Our

11‘ esults .confirm this. The mean powers of any statistic for

t he cases (p,p')=(.2,.2) and (.8,.8) are comparable, which

I: e flects the symmetry in the problem. That is, reversing

t he coding should not alter the results. A similar comment

C an be made for other symmetric locations in the table. All

three mean powers for the cases (p,p')=(.2,.2) and (.8,.8)

are low, because the information for discrimination in these

.75

.77
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cases is low. The expressions for Gx' u and v show that

when p is small then u<<v so N11(Y) is more heavily weighted

than N00(y). That is, the discrimination is based primarily

on N11(Y)' even though Nll(y) is small. This weighting

between N00(y) and Nll(y) made G have higher power than D.

Based on this understanding, we will develop a subtemplate

selection method to increase Nll(x) when both p and p' are

small. The result of this method will be described in Table

44.5.

The first row of Table 4.2 contains the grand averages

.ffrom Table 4.1. The second row contains the grand averages

<=rf a table for (a,b)=(0.2,0.8). Table 4.2 shows that

li.r1creasing distortion between template and object in the

image increases the difficulty in detection. Table 4.3

shows grand averages as functions of the state of parameter

l(ruowledge, while Table 4.4 shows them as functions of

S ubtemplate size .

Table 4.2 Effect of (a,b) on Powers

SPK=0, size=l9.

D G R

+----------+----------+---------- +

(a,b)=(.1,.9) E 0.73 E 0.78 E 0.81 E

+---------- +----------+---------- +

(.2,.8) E 0.49 E 0.58 E 0.74 E

+---------- +----------+---------- +
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Table 4.3 Effect of Parameter Knowledge on Powers

(a,b)=(0.2,0.8), size=l9

D G R

+----------+----------+----------+

SPK=0 E 0.49 E 0.58 E 0.74 E

+----------+----------+----------+

1 E 0.49 E 0.63 E 0.74 E

+----------+----------+----------+

2 E 0.49 E 0.58 E 0.68 E

+----------+----------+----------+

3 E 0.49 E 0.56 E 0.69 E

+----------+----------+----------+

4 E 0.49 E 0.57 E 0.67 E

+----------+----------+----------+

Table 4.3 suggests that it is not crucial to know the

distortion parameters exactly. Parameter p must be

Iestimated from images similar to that used, or from prior

lcnowledge about lighting conditions.

Table 4.4 Effect of Subtemplate Size on Powers

SPK=0, (a,b)=(0.l,0.9)

D G R

+----------+----------+----------+

subt.size= 9 E 0.39 E 0.41 E 0.70 E

+----------+----------+----------+

13 E 0.56 E 0.60 E 0.74 E

+----------+----------+----------+

19 E 0.73 E 0.78 E 0.81 E

+---------- +----------+---------- +

26 E 0.83 E 0.87 E 0.87 E

+----------+---------- +---------- +

33 E 0.88 E 0.94 E 0.93 E

+-------;--+---------- +----------+

39 E 0.92 E 0.96 E 0.95 E

+---------- +----------+----------+

Table 4.4 shows that increasing subtemplate size does,
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indeed, improve the performance, which is intuitively

expected. Since the optimal size problem has been solved

[83], we did not study this in much detail, although the

optimality was defined without an explicit alternative

hypothesis.

Recall that when (p,p')=(.2,.2) or (.8,.8), the more

laeavily weighted number of pairs (N00 or N11) is usually

small when the subtemplate is selected at random. We

aapplied another algorithm which selects a subtemplate with

aalmost equal numbers of 0's and 1's! The results are shown

i.n Table 4.5. Comparing Table 4.1 and Table 4.5 shows that

tZIie way of selecting the subtemplate increases power

153:ignificantly when p=p' is very small or very large and does

17I<3t affect it in other cases. Thus, a balanced subtemplate

performs better than a randomly selected one. Actually, we

at ight vary the fraction of 1's in the subtemplate according

‘t=-<:> the parameters p, p', a and b to get optimal results.
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Table 4.5 Powers when Subtemplate

is Balanced

I

P'=.2 E .93

I

I

p':.s E .95
I

I

I

P'=.8 E 1.00
I

I
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41.. 49E ..2 Sensitivity Study Results

Tables 4.6 - 4.10 show the results of the sensitivity

as . .
t:“dl<:3y for the conditions of Table 4.1 - 4.5, respectively.

.96

.90

.97

.94
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(a,b)=(0.l,0.9), size=19

Table 4.6 Effect of (p,p') on Sensitivities

SPK=0,

0.8

+------------+------------+------------+
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+------------+

+-----------—+

size=l9

Table 4.7 Effect of (a,b) on Sensitivities

SPK=0,

D

E 1.95 E 2.21 E2.59

+----------+----------+---—------+

(a,b)=(.1,.9)

5.22 E.984E 7.44 E(.2,.8)
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Table 4.8 Effect of Parameter Knowledge on Sensitivity

(a,b)=(0.2,0.8), size=l9

D c R

+----------+----------+---------- +

spxso E 7.44 E 4.98 E 5.22 E

+----------+----------+---------- +

1 E 7.21 E 5.01 E 5.14 E

+----------+----------+---------- +

2 E 7.27 E 4.47 E 5.15 E

+----------+----------+----------+

3 E 7.44 E 6.41 E 7.53 E

+---------- +----------+----------+

4 E 7.44 E 4.94 E 5.58 E

+----------+---------- +---------- 4-

Table 4.9 Effect of Subtemplate Size on Sensitivity

SPK=0, (a,b)=(0.l,0.9)

D G R

+----------+---------- +----------+

subt.size= 9 E 8.29 E 7.03 E 6.06. E

+----------+----------+----------+

13 E 4.88 E 3.81 E 3.69 E

+----------+----------+----------+

19 E 2.59 E 1.96 E 2.21 E

+----------+----------+----------+

26 E 1.61 E 1.27 E 1.50 E

+----------+----------+----------+

33 E 1.25 E 1.09 E 1.28 E

+----------+----------+----------+

39 E 1.10 E 1.02 E 1.19 E

+---------- +----------+---------- +
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Table 4.10 Sensitivities when Subtemplate

is Balanced

I

I

p'=.2 : 1.04

i

p':.s

Tables 4.6 - 4.10 indicate that the effects of

( p,p'),(a,b) and subtemplate size on sensitivity are similar

t:o their effects on power. Estimating parameters does not

a: ffect sensitivity very much. Interestingly enough,

sstatistic G is more sensitive than statistic R, except when

‘tihe subtemplate is very small. An intuitive reason for this

is that the high value of Rx may happen at several locations

OVerlapping with the the true object location. The use of

1“formation at overlapping locations provides higher power

‘3}1an ignoring the overlap, but some sensitivity is lost.
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4.4.3 Formal Comparison

Table 4.1 - 4.10 use only mean values of power estimates

and sensitivity estimates and give a general idea of the

effects of parameters. To compare the three statistics, we

performed a standard two sample t test in each case of

different subtemplate size. For example, we test the

hypothesis Power(D)>Power(G). A positive t value indicates

the acceptance of the hypothesis at the critical level wt.

A negative t value indicates the acceptance of the reverse

hypothesis Power(D)<Power(G) at the critical level wt.

Tables 4.11 and 4.12 show the values of t and the values of

w The sample size for every block is 81. In Table 4.11,t.

PWD, PWG and PWR represent powers of D, G and R respectively

in tests of H0 vs H1.
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Table 4.11 Power Comparison

(a,b)=(0.l,0.9)

(results of two sample t test)

SPK=0,

PWD>PWR PWG>PWRPWD>PWGsize
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Table 4.12 Sensitivity Comparison

Result of Two Sample t Test

SPK=0, (a,b)=(0.l,0.9)

size V(D)>V(G) V(D)>V(R) V(G)>V(R)

+------------+------------+------------+

9 : 1.132 : 1.965 : 0.881 :

: .13 : .03 : .19 :

+------------+------------ +------------ +

13 : 1 654 : 1.826 : 0.221 :

: .05 : .04 : .41 :

+------------+------------ +------------+

19 g 1.681 : 0.983 : -0.881 :

: .05 : .16 : .19 :

+------------+------------ +------------+

26 : 2.098 : 0 649 : -2.259 :

: .02 : .26 : .01 :

+------------+------------+------------+

33 : 2 108 : -0.33s : -3.609 :

: .02 : .37 : .00 :

+------------+------------+------------+

39 : 2.207 : -1.665 : -4.316 :

: .02 : .05 : .00 :

+------------ +------------+------------+

+------------ +

i t i
I W I

1------_---1-1

Table 4.11 indicates that R is more powerful than the

other statistics when-the subtemplate is small. This may be

explained by the fact that overlapping locations provide

most of the information for discrimination. Both R and G

are significantly more powerful than D in almost all cases.

When the subtemplate size is 19 or larger, R is only

slightly more powerful than G. A similar situation exists

for sensitivity, except that G is significantly more

sensitive than R and D when subtemplate size is large. The
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reason for R to perform worse when the subtemplate size is

large might be the fact that some assumptions made in

deriving R are violated when the subtemplate points are more

dependent.

4.4.4 Results on Landsat Images

This study involves landsat images of the same scene

from different light frequency channels. Each image was

converted into a binary image using the average grey level

of that image as threshold. We arrange the study into

several cases. In each case, we take a subimage of size 8x8

from a channel i image to form an object or template. Then

we take another subimage of size 64x64 from channel j (i#j)

which includes the object. We consider that this 64x64

image contains a intensity distorted (not geometrically

distorted) object. We apply our scheme to find the relative

location of the distorted object. We studied five measures

of similarity and three subtemplate sizes. Each study was

repeated three times. The parameter p is estimated by the

fraction of 1's in the 64x64 image from channel j. The

parameter p' is estimated by the fraction of 1's in the 8x8

template. The distortion parameters (a,b) are assumed to be

(0.1,0.9). A balanced subtemplate is formed in each case.
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Table 4.13 Results on Several Landsat Images

subtemplate

size V(D) V(G) V(R) V(max(Cx)) V(max(Sx))

9 1512 1211 718 2244 1222

9 1719 1456 829 2159 1188

9 154 110 1528 110 110

l9 l8 14 541 18 22

19 165 64 1630 42 36

19 1188 979 711 1117 1117

29 79 64 544 78 102

29 926 756 750 787 722

29 719 468 681 969 719

Among the nine cases in Table 4.13, G is more sensitive

than D in every case; 6 is more sensitive than R in five

cases; more sensitive than max(Cx) in seven cases; more

sensitive than max(Sx) in five cases. These results support

our conclusion about G drawn from artificial data.

In two cases using very small subtemplates, statistic R

performs best of all statistics. However, in four cases

using large subtemplates, R performs worst. The reason may

be that the independent assumption we made in the derivation

of R is violated for the Landsat images. Since R is the

only statistic using the information from overlapping

locations, it performs rather differently from all other

statistics.
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4.5 Summary and Conclusions

This chapter stated a null hypothesis (no object) and

alternative hypotheses (single object present) for a problem

in binary template matching and examined an approximation to

the Neyman Pearson statistic for testing them. This

statistic is compared to the simple matching coefficient and

other similarity measures including the S statistic defined

in Chapter 1. A new sensitivity index is proposed to assess

the ability of a statistic to locate the true object in the

image. Power, sensitivity and computation cost are the

criteria for comparison.

In testing H0 vs Hlx' G is more powerful than all other

statistics. In testing H0 vs H1, R is most powerful, but

less sensitive than G to the true object location. The

statistic G, with the information in overlapping locations

ignored, is almost as powerful as R, but computationally

much simpler, and more sensitive to the true object location

when the subtemplate is large. The threshold of G for

testing H0 vs H1 can be obtained analytically, which is

another important advantage of G over R.
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The simple matching coefficient D, is less powerful and

less sensitive than G, but has the same order of

computational complexity as G. The correlation coefficient

has been used for ,grey level image template matching

problems [29]. Correlation and the 5 statistic defined in

Chapter 1 have lower power and lower sensitivity than G and

R, with computational complexity at least as large as G.

Therefore, we suggest using G in the first stage of template

matching.



CHAPTER 5

COMPUTATIONAL CONSIDERATIONS

Since the S statistic is computed directly from the

cumulative hypergeometric distribution function (c.d.f.), we

will discuss algorithms for computing hypergeometric

c.d.f.'s that have appeared in the literature. Notation is

defined in Sec.5.l. The Peizer approximation is described

in Sec.5.2. We give a hardware architecture design for the

recursive algorithm in Sec.5.3 and an overall computational

time comparison in Sec.5.4. A brief conclusion is given in

Sec.5.5.

5.1 Notation

Consider two binary N vectors V1 and V2. We first

define n,r and a as follows, to be consistent with the

literature [52].

107
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Table 5.1 Observables in Vector Pair

V2

1 0

+-----+-----+

1 : a : b : n

V1 +-----+-----+

0 : c i d i m

+-----+-----+

r S N

For example, for the following vector pair,

V1=[0010110°]

v =[10010110]
2

N=8, n=3, r=4 and a=l.

For computational convenience [52], without

generality, we can recode V1, V2 and 0,1, so that

a g d and a < b g c,

or, equivalently,

2a + l g n 5 r i m.

Also, we let k=min(a,b-1,c-l,d) [52].

loss of

The probability density function (p.d.f.) h(i) and the

c.d.f. H(a) of the hypergeometric distribution are defined

below.
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(‘2) (ii?)
h(i) = h(N,n,r,i) = --------- for 0 g i 5 a,

N

(.J

a

H(a) = \ h(i) for 0 5 a 5 min{n,r}.

/

i=0

The S statistic studied in the previous chapters can be

written in the form of H(.) as follows.

S(V1,V2) = H(a) - [H(a)-H(a-l)]U

where U is an independent random variable distributed

uniformly over [0,1].

variousThe remainer of this chapter is concerned with

ways of computing H(a). The computation of the c.d.f. H(a)

has attracted great attention. We compare them in terms of

incomputation time, i.e. the number of time cycles involed

the computation. We first define the following notation.

Ta

Tm

*
3

Q
:

: number

number

number

number

number

of

of

of

of

of

cycles

cycles

cycles

cycles

cycles

needed

needed

needed

needed

needed

in

in

in

in

in

addition,

multiplication,

division,

square root operation,

logarithm operation,
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Tt: number of cycles needed in looking up a standard

normal distribution table.

Each number is the time needed for each operation when a

single CPU is used. It is also the number of segments in

each functional pipeline unit; e.g., Ta is the number of

segments in an pipeline adder. The computation time for

each algorithm discussed below assumes a single CPU unless

otherwise specified.

The order of operations is important since the word

length in a computer is limited. The ratio of two long

products should be done by alternating division and

multiplication. Since the direct computation involves

factorials and a great deal of repetition, it is very time

consuming. The computation time is

aTa+ (a+l) [(2r-1)Tm+ 2er]

The following formula provides a recursive way to

compute h(j).
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m(m-l)...(m-r+l)

N(N-l)...(N-r+l)

h(j+l) = h(j)X(j)

(n-j)(r-j)

where X(j) = ------------------

(j+1)(N—n-r+j+l)

The computation time for the recursive formula is

(r-1)Tm + er + a(2Tm+ 2Td+Ta).

5.2 Peizer Approximation

The approximate computation of H(a) has been

investigated by many researchers and a recent extensive

empirical study [52] of the accuracy of 12 normal and three

binomial approximations showed that a normal approximation

by Peizer is both far superior to other normal appoximations

and simple to compute. Since the binomial tail is almost as

difficult to compute as the hypergeometric tail, the

binomial approximation is not recommended [52]. In this

section, we briefly state the Peizer formula and give a

simple discussion on computational complexity.

The Peizer approximation is

8(a) ~ Fn(z)

where Fn is the c.d.f. of the standard normal distribution,
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and

.02 .01 .01

where A = a+.5, A' = A+(l/6), A" = A'+----+---+--- ,

B,B',B",C,... are defined in a similar manner from b,c,...,

and L = Alog(AN/nr)+Blog(BN/ns)+Ciog(CN/mr)+Dlog(DN/ms).

The maximum absolute error of this approximation is .001

if k>2, with the maximum relative (percent) error being

0.71% through 19.7%. The guaranteed number of correct

decimal places in this case is at least 3.040 [52].' When k

is small, approximations are not needed since the exact

computation is trivial.

The computation time of Peizer's approximation T(Peizer)

is a constant, independent from the vectors V1 and V2. The

computation time (using a single CPU) is

37Ta + ZZTm + 18Td + 4Tg + Tr + Tt

We noticed that some portions of the computation can be done

concurrently, e.g., Alog(AN/nr) and Blog(BN/ns). If we have

sufficient hardware and perform all possible concurrent

computations, the computation time will be reduced to
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3Ta+4Tm+Td+Tg+Tr+Tt.

5.3 A Hardware Implementation

In recent years, considerable efforts have been devoted

to developing special computer architectures for pattern

recognition and image processing [20,63]. We desribe a two

level pipeline design for the recursive computation of H(a).

Section 5.3.1 is an overview of the architecture. A

detailed discussion of the pipeline structure is given in

Sec.5.3.2.

5.3.1 An Overview of the Architecture

The overall structure is shown in Figure 5.1. The input

is the observables of vector pair V1 and V2. Since the

computation of h(O) can be implemented by a straightforward

design or by a table look-up, h(O) is considered as input in

our design.
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Nnra

   hti+gl

l
v
l
e
-
o
l

Hta)

Fig.5.1 Overall Architecture for Computing H(a)

The bottom pipeline adder contains z(=Ta) segments. The

pipeline multiplier with y(=Tm) segments computes values of

h(.) in the following fashion.

h(i+y) = h(i)Y(i) where 2(1) = X(i)x(i+l)...X(i+y-l)
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The box on the upper left corner in Figure 5.1 produces

X(j) for different j every cycle. The box right below it

computes Y(i) from X(j), which is the main part of this

design. The details of those two boxes are shown in Figures

5.2 through 5.6. The boxes marked "MUX' indicates a

multiplexer and the small boxes with a decrement or

increment input are counters. The input from above to these

counters are initiation lines.

n r N-n-r+1 1 a

 

¢-— clock

enable

.XIJ)

Fig.5.2 Compute X(j)
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5.3.2 Computing Y(i)

We discuss this part of architecture in a general

environment. The function is

Y(i) = x(i) * x(i+1) * * x(i+y) =

where "*" can be any operator which is commutative

and associative.

In this design, a pipeline functional unit with x

segments is used and represented by a box marked with a

letter ”x". For the hypergeometric case, x=y=Tm. The

design of the pipeline can vary with y. We consider y =

2,3,...,15, which are the usual lengths of pipeline

functional units in computers such as Cray 1. Figures 5.3

through 5.5 show designs for y=4, 7 and 13. The general

design is shown in Figure 5.6. In the cases y=4 and y=13,

the design is the same as in the general case. The case y=7

takes advantages of individual y value and thus is different

from the general design. A box with one input, one output

and a number NUM, represents a NUM-bit shift register. Some

of those boxes are small, with NUM=1,2,4. Some are larger

with NUM=x,x-l,x-2.
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Fig.5.3 Compute Y(i) from X(j) when y=4
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Fig.5.4 Compute Y(i) from X(j) when y=7
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Fig.5.5 Compute Y(i) from X(j) when y=13
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Fig.5.6 Compute Y(i) from X(j) (general design)
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Multiplexer control is indicated either as conditions at

input lines, or as a dash line at the side connected to the

control signal. The control signals happen to be the bits

in the binary expression of y.

Y 3 Y3Y2Y1YO

To demonstrate how these pipelines work, we present a

time diagram showing the data contents in different portions

of the pipeline at different time steps. We pick y=7 and

x=3 and give the pipeline design in Figure 5.7. Boxes

(Cl,C2,C3), (Fl,F2,F3) and (11,12,13) are pipeline units.

Boxes B, D1, D2, El, E2 and G are one-bit shift registers.

The time diagram is shown in Figure 5.8.
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Fig.5.7 Compute Y(i) from X(j) when y=7 and x=3
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The computation time and the circuit complexity of the

part computing Y(i) from X(j) are shown in Table 5.2. The

time complexity, denoted by Ty, is the number of time cycles

through the pipeline. The circuit complexity, denoted by

M is the number of functional units used in the general
Y,

design in Fig.5.6. Also, we define the following functions.

fl(y) - 1 if y is an odd number,

= 0 otherwise;

f2(y,a) = 1 if y > a,

0 otherwise.



125

Table 5.2 Time and Circuit Complexity of

the Part Computing Y(i) from X(j)
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4x + 13 4x + 11 fl

4x + 13 4x + 13 
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Table 5.2 demonstrated that the individual design for a

fixed y value can be more efficient than the general design

for y<15.

We now derive the total computing time of 8(a), for

Fig.5.l, which is denoted by T We first define
total‘

TX( ) to be the time for computing X(0) (Fig.5.2), define

Tmerge to be the time for the bottom pipeline adder to

produce final result after h(a) is fed in the adder. We

have

T = T
total x(.)

+ TY + Tm + a + 1 + Tmerge'

T 3 Tu + T

XI.) d

T9 2 T.rlong.1 + T. - 1 - t1(Tn’

Llonglj

T a Tlrlong31-(2 -r.)+rmerge 2(T'.a)(T.-a)rlogza]

L1 0921...]

T s (2rlongn]+41TI - 2 + Td + a +
total

+ tth-.a)(T--alrlogza] - rllrn’
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5.4 Comparison

We compare the computation times of all methods in Table

5.3. The word "soft” in parentheses means software serial

computation on a single CPU; the word "hard" means special

hardware which performs concurrent operation with possible

pipeline structures. Since the actual computation in a

computer depends on programming and the individual machine,

the numbers in Tables 5.3 and 5.4 provide only the order of

magnitude. The logarithm operation is performed by table

look-up, all of which take 4 time cycles. The square root

operation assumes a standard algorithm [39]. Based on

Cray-l parameters, every cycle is 12.5 nsec and the number

of cycles for various operations are as follows.

Ta = 6, T111 8 7, Td-29,

T9 8 4, Tr =30, Tt- 4.

The results in Table 5.3 are computed according to [64].

In Table 5.4, we show how the computing time ranges over

values of a for various methods when r=50, 150 and 450. The

times are in number of cycles. All the times are computed

when Cray-l parameters are used [10].
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Table 5.3 Computation Time Comparison

 

 

 

 

 

    

general form of typical computing

computing time time based on Crag 1

°"°°‘ aT +ta+11112r-11T +2rT 1 72ar+72r-a-7
(soft) a I d

recursive _ _
(soft) . (r ilTl+er+a12Tn+2Td+Tal 36r+78a 7

Ll092TIJ

recursive (2rlong.‘|+4lTn 2 +Td+a+ a + 94 +

(hard)
+£21T..al(Tu-a1r109231-tliT.) +t2(7.a117-a)rlo92a]

Peizer
(sort) 37Ta+22Tn+iBTd+4Tg+TP+Tt 1026

Peizer

(hard) 373* “T.* Tg’ 79*Trth 113

 

Table 5.4 Typical Computation Time Ranges

( for a=0,1,2,...,r)

r=50 r=150 r=450

+---------+-------------+----------------+----------------+

: direct :3,593 ~ :10,793 ~ :32,393 ~ :

: (soft) : 183,543| 1,630,643: 6,223,335:

+---------+-------------+----------------+----------------+

:recursive:l,793 ~ : 5,393 ~ :16,l93 ~ :

: (soft) : 5,693: 17,093: 51,293:

+---------+-------------+----------------+----------------+

:recursive: 94 ~ : 94 ~ : 94 ~ :

: (hard) : 144: 244: 544:

+---------+-------------+----------------+----------------+

: Peizer : :

: (soft) : 1'025 :
+---------+-----------------------------------------------+

: Peizer : i

: (hard) : 113 :

+---------+-----------------------------------------------+
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'The computing time of the Peizer approximation is

problem independent. Therefore this approximation is

prefered when a > 932 and the exact value of 8(a) is not

necessary. The hardware approach to the recursive exact

method is much faster than other exact methods in all cases.

It is faster than Peizer approximation using single CPU when

a < 932.

5.5 Summary and Conclusions

In this chapter, we reviewed some existing techniques

for computing the c.d.f. of the hypergeometric distribution.

Since the direct computation is very time consuming, an

approximation is desired in many cases. The recursive

algorithm for the exact computation avoids much of the

repetition of the direct method. We proposed a hardware

pipeline architecture which implements the recursive formula

and presented a detailed design. The main part of the

design is actually a possible solution for a more general

problem. This pipeline architecture is computationally

efficient. For a large range of values of parameter a, the

proposed architecture is 100 times to 10,000 times faster

than the direct computation, 50 times to 100 times faster

than the recursive method using single CPU, and two to ten

times faster than the Peizer approximation using a single
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CPU. This design uses six functional units for pipelines

with no more than 15 segments. The modularity and the

regularity of the system make it suited for VLSI

implementation.



CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusions

The statistic S has a known distribution under a

permutation null hypothesis and its critical level and

threshold are easy to determine. This statistic is a good

similarity measure between features in preliminary analysis

for binary features. It has about the same power as the

correlation coefficient. The statistic S is a good

similarity measure between feature and category in binary

tree classifier design. It gives similar trees as the

mutual information criterion. The statistic S is also a

reasonable adequacy measure for binary partitions in cluster

validity. It is different but highly correlated to

Gamma and other commonly used measures. In image template

matching, S acts as well as other sub-optimal similarity

measures between sub-images. An approximatation to the

likelihood statistic is proposed. The hardware architecture

131
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design is more efficient than other methods for computing

hypergeometric c.d.f.'s.

The original contributions of this thesis are summarized

below:

(1) Adaption of the cumulative hypergeometric

distribution to the definition of similarity measures in

pattern recognition.

(2) Definition of the preliminary feature analysis

problem in pattern recognition and the use of S in this

analysis (Chapter 2).

(3) Study of the relation among adequacy measures for

binary partitions and the successful application of S in

binary tree classifier design (Chapter 3).

(4) Definition of alternative hypothesis in .image

template matching and the design of a modified

Neyman-Pearson statistic (Chapter 4).

(5) Design of a hardware implementation for computing the

hypergeometric c.d.f. which is much faster than

conventional means (Chapter 5).
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6.2 Future Reseach

Future research includes extension to multivalued

vectors, extension to two sided tests in preliminary feature

analysis, extension to multi-class tree classifier design,

and the multiple stage approach to image template matching.

6.2.1 Extension to Multi-Valued Vectors

This thesis involved binary vectors. The definition of

a permutation statistic for multivalued nominal vectors is a

direct extension, if we can define "match” between nominal

values. When the match is obvious from common sense or from

the physical meaning of the variables, the definition of S

is straightforward. An example is given in Appendix E for a

special case. Since not very many similarity measures exist

for general nominal vectors, 5 could be an alternative. It

will have known distribution as in the binary case. Since

the computational complexity is high even for a moderate

number of values, some algorithm or hardware structure must

be used to apply this multi-valued permutation statistic to

the problems in this thesis.
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6.2.2 Two-Sided Tests for Preliminary Analysis

In Chapter 2, the tests are one sided since we are only

interested in positive relations between features. This is

true for questionnaire data, but not true for the cases

where the coding (0,1) is irrelevent. Our statistic could

be max(:S(i,j)-0.5:) and still have known distribution. It

will be interesting to compare it with max(:C(i,j):).

6.2.3 Multi-class Tree Classifier Design

Tree classifiers have been used for classification

problems with a large number of pattern classes. At each

node, the recognition problem is to identify which subset to

which the unknown pattern belongs. If the tree itself is a

binary tree, each node still deals with binary partitioning

of a pattern set. A mulitivalued version of S' or some

hierarchy of the binary version of 5' might be used to

assess the association of features to the grouping of class

symbols.
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6.2.4 Multi-stage and Sequential Approach to Template

Matching

In image template matching a multi-stage approach might

have certain advantages over the two-stage approach. An

analysis of optimal number of stages in a hypothesis testing

framework could be a future topic. It makes no sense to

scan the entire image after the true location of the object

has been found. A sequential decision making scheme under

our hypothesis testing might be more efficient than the

traditional approach. The hardware implementation of the

computation of the proposed statistics may also be a future

research topic.
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APPENDIX A

THE THRESHOLDS AT THE BOUNDARIES OF RUNS

GIVE HIGHEST S VALUES

Let h(nl,i) denote h(n,nl,n2,i) for fixed n,n2, where

h(.,.,.,.) is defined as in Sec. 2.1; and let

n11

H(nl,nll) = > h(nl,1)

i=0

We need to prove that H(nl,nll) < H(nl+l,nll+l)

for nl+n2-n g nll 5 min(nl,n2). We proceed by induction

on I'll.

Base case (111g 1):

(1) If n 0,
11"

H(1,0)=(n-n2)/(2n)

H(2,l)=(n-n2)(n+n2-l)/[n(n-l)] > (n-n2)/(2n)

(2) If nllzl,

H(l,1)=(n+n2)/(2n)

H(2,2)=1 > (n+n2)/(2n)

Assume H(nl,nll) < H(nl+l,nll+l) for a particular n11.



137

(1) If “11.3 min(nl,n2)

(nl+l)(n-nl-n2+i)

Since H(nl +1, i)=-----------------H(nl,i)

(n-nl )(n1+l- i)

(nl+2)(n-nl-n2+i)

H(nl +2, i)=-----------------H(nl +1, i+l)

(n-n1 -l)(n1 +1- 1)

0< c.=-55lii15333l332ii). d..-531i311223123211’

1 (“'“1)("1+1'i) 1 (“‘“1’l)(nl+l-i)

Therefore,

> [H(n1,i)-H(nl+l,i+l)] < > [ciH(nl,i)-diH(nl+l,i+l)] < 0

(2) If n2>nl and nll'snl+l,

(nl+2)(n2-n1 -1)

+2)=---------------H(nl +1, nH+l)<H(n+1, n l+1)

(nl+2)(n-n1-l)

H(nl +2,,n1
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APPENDIX B

APPROXIMATION or sxy WHEN y¥x

This section shows the derivation of Sxy (Sec. 4.2.1).

The following figure demonstrates the situation when a

distorted object is at location x and a template is at

location y where Lx overlaps with Ly.

distorted object :

at location x :

I

I

y* ------------------+

: template :

+------ : at location y :

i i
I I

I I

I I

I I

+------------------+

+------------------------------------------+

I

. 351-321-2113

Pr( N00(y)= no: H0) Pr( Nll(y)=nl: H0)
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Let tx be the overlap between LY and Lx expressed as a

Y

number between 0 and 1. If x=y, t =1, which results in

XY

5 defined in Sec.4.2.l. If t =0, S = 1. For 0<t <1,
xx' xy xy xy

the number of (0-0) matches can be written as the sum of two

random variables

N00(y) = N00'(y) + N00"(y).

where N00'(y) counts matches in the region of overlap and

N00“(y) counts matches between the template and background.

Under our assumptions, N00'(y) has a B[txyn(l-q),l-p"]

distribution and N00”(y) has a B[(l-txy)n(l-q),l-p]

distribution, where

p” = a(l-p')+bp'

and p' is the probability that a template pixel is l. The

distribution of the sum can be approximated by a Poisson

distribution which involves three table look-ups and

factorial computations. We choose to approximate this

distribution by a B[n(l-q),wxy] distribution, where

w = (1-p)(l-txy)+(l-p")tx

3y y

From Sec.4.2.l, N00(y) has a B[n(l-q),l-a] distribution

under H0.
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A similar analysis shows that the distribution of Nll(y)

under Hlx can be approximated by a B[nq,1-wxy] distribution

and Nll(y) has a B[nq,p] distribution under H0.

Under these conditions,

W n ( )-n ( )
- [---xx--_9--_] 0 Y 1 Y c

S

“Y ' (l-wxy)(l-p) XY
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APPENDIX C

RESULTS OF t-TESTS FOR SEC. 4.3

We use PWD, PWJ, PWC, PWS and PWG to denote powers of

D J C Sx and Gx respectively. In the following table,
x' x’ x’

each box reports the result of testing the hypothesis that

Power(i)>Power(j) where i (row) and j (column) can refer to

any of the five statistics above. The first number of each

entry is the actual t value and the second number is

w where the critical level is w Positive t value
t t'

indicates the acceptance of the hypothesis with level wt; a

negative t value indicates the acceptance of the reverse

hypothesis. For example, Power(Dx)>Power(Jx) is accepted at

level 0.36; Power(Cx) < Power(Gx) is accepted at level 0.10.

PWJ PWC PWS PWG

+----------------------------------------------------+

pwn : .367 (.36) .472 (.32) .501 (.31) -0.748 (.23) :

pwa : .092 (.46) .122 (.45) -1.146 (.13) :

ch : .031 (.49) -l.289 (.10) :

Pws : -1.321 (.09) 1

+----------------------------------------------------+

This table indicates that Gx is more powerful than all

others and Dx is slightly more powerful than the other

three.
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APPENDIX D

SUMMARY OF RESULTS FOR SEC. 4.3.1

The following table compares analytical approximations

of the powers of D and G. In each box, the first integer is

the number of combinations of (p,p",a,b) for which Power(D)

< Power(G); the second number is the number of cases for

which Power(D) > Power(G). There are 18 cases for each box.

image size / template size

16x16 / 8x8 32x32 / 12x12

subtemplate +--------------- +...............1

size = 19 : 10 , 4 : 10 , 4 :

25 l 12 . 2 l 12 , 2 :

33 : 15 , 2 : 8 , 4 g

39 l 11 . 5 : 11 , 6 g

+---------------+---------------+

We consider all 144 pairs of power approximations as

random samples and perform a standard two sample t-test.

The resulting t value is 2.16648 and the hypothesis Power(D)

< Power(G) is accepted at significence level (l-O.975).
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APPENDIX E

AN EXAMPLE OF THE PERMUTATION STATISTIC

IN MULTIVALUED NOMINAL VECTOR CASES

Consider nominal vectors V1 with 3 possible values and

V2 with 4 possible values. We defined "match" between the

values of vector components as follows. Let n be the vector

length. The letter ”x” means the corresponding values in

the two vetors are considered as "match”.

2

l 2 3 4

+-------------------- +

l : x x

V 2 ' x

l 3 : x x

Let n be the vector length, ni* be the number of

components taking value i in V1, “*j be the number of

components taking value j in V2, and let xij be the number

of components that Vl takes value i and V2 takes value j.

The following table indicates the relation among them.



144

V2

1 2 3 4

+--------------------+

1 1 x13 x14 1 “1*

V1 2 : x22 : n2,

3 1 x31 x32 : “3*

+--------------------+

“*1 11,,2 n,.,3 11,,4 n

Let the random experiment is the permutation of V2, a

random variable M be the number of matches

between V1 and V2, and let m be the observed value of M in

the original vector pair, then a permutation statistic S can

be defined as

s = Pr(M 5 m) - Pr(M=m)U

where U is as defined in Chapter 1 and
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